
Deniable Key Exchanges for Secure
Messaging

by

Nik Unger

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

Nik Unger 2015

Some rights reserved.

BY NC SA

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/4.0/.

ii

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Statement of Contributions

The content in Chapter 2 of this thesis was co-authored with Sergej Dechand, Joseph
Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and Matthew Smith. In particular,
the expert usability reviews were performed by Sergej Dechand, Sascha Fahl, Henning Perl,
and Matthew Smith, and the figures in Chapter 2 were produced by Sergej Dechand. All
other chapters in this thesis contain original work authored under the supervision of Ian
Goldberg.

iii

Abstract

Despite our increasing reliance on digital communication, much of our online discourse
lacks any security or privacy protections. Almost no email messages sent today provide
end-to-end security, despite privacy-enhancing technologies being available for decades.
Recent revelations by Edward Snowden of government surveillance have highlighted this
disconnect between the importance of our digital communications and the lack of available
secure messaging tools. In response to increased public awareness and demand, the market
has recently been flooded with new applications claiming to provide security and privacy
guarantees. Unfortunately, the urgency with which these tools are being developed and
marketed has led to inferior or insecure products, grandiose claims of unobtainable features,
and widespread confusion about which schemes can be trusted.

Meanwhile, there remains disagreement in the academic community over the definitions
and desirability of secure messaging features. This incoherent vision is due in part to the
lack of a broad perspective of the literature. One of the most contested properties is
deniability—the plausible assertion that a user did not send a message or participate in a
conversation. There are several subtly different definitions of deniability in the literature,
and no available secure messaging scheme meets all definitions simultaneously. Deniable
authenticated key exchanges (DAKEs), the primary cryptographic tool responsible for
deniability in a secure messaging scheme, are also often unsuitable for use in emerging
applications such as smartphone communications due to unreasonable resource or network
requirements.

In this thesis, we provide a guide for a practitioner seeking to implement deniable se-
cure messaging systems. We examine dozens of existing secure messaging protocols, both
proposed and implemented, and find that they achieve mixed results in terms of secu-
rity. This systematization of knowledge serves as a resource for understanding the current
state-of-the-art approaches. We survey formalizations of deniability in the secure mes-
saging context, as well as the properties of existing DAKEs. We construct several new
practical DAKEs with the intention of providing deniability in modern secure messaging
environments. Notably, we introduce Spawn, the first non-interactive DAKE that offers
forward secrecy and achieves deniability against both offline and online judges; Spawn can
be used to improve the deniability properties of the popular TextSecure secure messaging
application. We prove the security of our new constructions in the generalized univer-
sal composability (GUC) framework. To demonstrate the practicality of our protocols,
we develop and compare open-source instantiations that remain secure without random
oracles.

iv

Acknowledgments

Foremostly, I would like to thank Ian Goldberg, as this thesis would not be possible
without his outstanding supervision. I would like to thank Urs Hengartner and Doug
Stinson for their excellent feedback. I would also like to thank my other co-authors: Sergej
Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, and Matthew Smith; together we
produced source material for Chapter 2 of which we can all be proud. We thank the
anonymous reviewers, Trevor Perrin, and Henry Corrigan-Gibbs for their helpful feedback
on Chapter 2. Finally, I would like to thank the other members of the CrySP lab (and
especially the inhabitants of #crysp) for fostering a fantastic creative environment.

The artwork on the quotation page was produced on commission by Danny Rivera;
its use is governed by the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. The drawing has been modified from the original version.

v

Dedication

To my parents, for their motivation, love, and support.

vi

Table of Contents

List of Figures xi

List of Tables xii

List of Algorithms xiii

List of Definitions, Theorems, and Conjectures xiv

1 Introduction 1

2 Secure Messaging 4

2.1 Background . 5

2.1.1 Types of specification . 5

2.1.2 Synchronicity . 5

2.1.3 Deniability . 6

2.1.4 Forward/Backward Secrecy . 6

2.2 Systematization Methodology . 7

2.2.1 Problem Areas . 7

2.2.2 Threat Model . 8

2.2.3 Systematization Structure . 8

2.3 Trust Establishment . 10

2.3.1 Security and Privacy Features . 10

vii

2.3.2 Usability Properties . 12

2.3.3 Adoption Properties . 13

2.3.4 Evaluation . 14

2.3.5 Discussion . 24

2.4 Conversation Security . 26

2.4.1 Security and Privacy Features . 26

2.4.2 Usability and Adoption . 29

2.4.3 Group Chat Features . 29

2.4.4 Two-party Chat Evaluation . 30

2.4.5 Group Chat Evaluation . 39

2.4.6 Discussion . 43

2.5 Transport Privacy . 45

2.5.1 Privacy Features . 45

2.5.2 Usability Properties . 47

2.5.3 Adoption Properties . 47

2.5.4 Evaluation . 48

2.5.5 Discussion . 53

2.6 Future Directions . 53

3 Deniability for Secure Messaging 56

3.1 Deniability . 57

3.1.1 Deniable Conversations . 57

3.1.2 Judges . 58

3.1.3 Practicality . 60

3.2 Deniable Authenticated Key Exchanges . 60

3.3 Overview of Contributions . 62

3.4 Cryptographic Preliminaries and Notation 62

3.4.1 Notation . 63

viii

3.4.2 Digital Signatures . 63

3.4.3 Public-Key Encryption (PKE) . 65

3.4.4 Dual-Receiver Encryption (DRE) 66

3.4.5 Non-Committing Encryption (NCE) 68

3.4.6 Ring Signatures . 69

3.5 The GUC Framework . 70

3.5.1 Universal Composability . 70

3.5.2 Generalized UC (GUC) . 74

3.6 The Walfish Protocol . 76

3.6.1 Ideal Functionality F IncProc
keia . 76

3.6.2 Real Protocol Φdre . 79

3.6.3 An Efficient Instantiation with Interactive DRE 80

3.7 An Efficient Interactive DAKE from Ring Signatures 82

3.7.1 Ideal Functionality F IncProc
post-keia . 83

3.7.2 Real Protocol RSDAKE . 85

3.7.3 Proof of Security . 87

3.8 A Non-Interactive Deniable Key Exchange 94

3.8.1 Ideal Functionality F IncProc
1psp-keia . 95

3.8.2 Real Protocol Spawn∗ . 97

3.8.3 Unrigging Non-Committing Encryption 99

3.8.4 Proof of Interactive Spawn∗ Security 99

3.8.5 An Attack on Online Repudiation 108

3.8.6 Implications of IncProc . 110

3.8.7 Non-Interactive Spawn∗ . 111

3.8.8 Conjecture: The TextSecure Iron Triangle 113

3.8.9 A Practical Relaxation: Spawn . 114

3.8.10 Spawn as an Axolotl Bootstrap . 116

3.9 Selecting a Protocol . 117

ix

4 Implementation 118

4.1 Overview . 118

4.2 Libraries . 119

4.2.1 PBC Go Wrapper . 119

4.2.2 Ring Signatures . 120

4.2.3 One-Time Signatures . 121

4.2.4 Cramer-Shoup . 122

4.2.5 Non-Interactive DRE . 123

4.2.6 Interactive DRE (IDRE) . 124

4.2.7 Φdre . 124

4.2.8 RSDAKE . 124

4.2.9 Spawn . 125

4.3 Evaluation . 125

4.3.1 Space Complexity . 125

4.3.2 Time Complexity vs. Security Level 127

4.3.3 Time Complexity vs. Latency . 130

4.3.4 Time Complexity vs. Bandwidth 132

4.4 Discussion . 134

5 Concluding Remarks 136

References 138

x

List of Figures

2.1 Forward vs. backward secrecy . 7

2.2 TextSecure key change warning . 15

2.3 RedPhone SAS verification . 16

2.4 OTRv1 vs. 3-DH key exchanges . 34

2.5 Axolotl key ratchet . 37

3.1 Φdre key exchange protocol . 79

3.2 RSDAKE key exchange protocol . 86

3.3 Spawn∗ key exchange protocol . 98

3.4 Spawn key exchange protocol . 114

4.1 Transmitted data vs. security level . 126

4.2 Time vs. security level with a strong connection 128

4.3 Time vs. security level with a poor connection 129

4.4 Effect of connection latency with 112-bit security 130

4.5 Effect of connection latency with 128-bit security 131

4.6 Effect of connection latency with 192-bit security 131

4.7 Effect of connection bandwidth with 112-bit security 132

4.8 Effect of connection bandwidth with 128-bit security 133

4.9 Effect of connection bandwidth with 192-bit security 134

xi

List of Tables

2.1 Comparison of trust establishment approaches 11

2.2 Comparison of conversation security approaches 27

2.3 Comparison of transport privacy approaches 46

3.1 Summary of simulator behavior for Spawn∗ 101

xii

List of Algorithms

1 Ideal functionality F IncProc
keia . 77

2 Ideal functionality F IncProc
post-keia . 84

3 IncProc(sid, I, R, PKI , PKR, SKR, k) for RSDAKE 87
4 Ideal functionality F IncProc

1psp-keia . 96
5 IncProc(sid, I, R, PKI , PKR, SKR, k) for Spawn∗ 100

xiii

List of Definitions, Theorems, and
Conjectures

Definition 3.1: UC-emulation . 72

Theorem 3.1: EUC-emulation is GUC-emulation 75

Theorem 3.2: Security of RSDAKE . 87

Theorem 3.3: Security of Spawn∗ . 100

Definition 3.2: TextSecure-like Key Exchanges 113

Conjecture 3.1: TextSecure Iron Triangle . 113

Theorem 3.4: Security of Spawn with Static Corruption 114

Theorem 3.5: Security of Spawn in the Semi-Adaptive Erasure Model 115

Definition 4.1: The Subgroup Decision Problem 120

xiv

There are gems of wondrous brightness
Ofttimes lying at our feet,

And we pass them, walking thoughtless,
Down the busy, crowded street.

If we knew, our pace would slacken,
We would step more oft with care,

Lest our careless feet be treading
To the earth some jewel rare.

RUDYARD KIPLING

xv

Chapter 1

Introduction

For the past few decades, our society has become increasingly reliant on digital communi-
cation. Today, we make use of large-scale platforms such as the Internet, mobile networks,
and leased communication lines to reliably deliver our most critical discourse. Despite
the immense importance of these communication channels, a significant portion of our
transmitted messages are completely free of security or privacy protections. For exam-
ple, nearly all email communications lack end-to-end security even though protocols such
as OpenPGP and S/MIME have been available for decades; these schemes have failed
to achieve widespread adoption and have been plagued by usability issues [WT99; GM05;
GMS+05; RVR14]. Consequently, there is a prominent disconnect between the importance
of our digital communications and the effort that users employ to secure them.

The lack of widely adopted secure communication tools can be attributed to several
problems: a lack of computational resources for cryptography during the Internet’s forma-
tive years, serious usability issues with available tools, and a general lack of concern about
privacy issues. However, recent revelations about mass surveillance by intelligence services
have highlighted the lack of security and privacy in our messaging tools and spurred demand
for better solutions [Ope14a]. A recent Pew Research poll found that 80% of Americans
are now concerned about government monitoring of their electronic communications. A
combined 68% of respondents reported feeling “not very secure” or “not at all secure” when
using online chat and 57% felt similarly insecure using email [Mad14]. With widespread
availability of computational power and renewed interest in secure communication, new
applications are being developed to meet this demand.

Unfortunately, many new messaging tools are failing to achieve their claimed security
objectives. Despite the publication of a large number of secure messaging protocols in the

1

academic literature, tools are being released with new designs that fail to draw upon this
knowledge, repeat known design mistakes, or use cryptography in insecure ways. However,
the academic research community is also failing to learn some lessons from tools in the
wild.

Furthermore, there is a lack of coherent vision for the future of secure messaging.
Most solutions focus on specific issues and have different goals and threat models. These
problems are compounded by differing security vocabularies and the absence of a unified
evaluation of prior work. Outside of academia, many products mislead users by adver-
tising with grandiose claims of “military grade encryption” or by promising impossible
features such as self-destructing messages [Gol14; Tel14; Wic14; Con14]. The recent EFF
Secure Messaging Scorecard evaluated tools for basic indicators of security and project
health [Ele14] and found many purportedly “secure” tools do not even attempt end-to-end
encryption.

A widespread weakness in current secure messaging tools is the lack of strong deni-
ability properties. Deniable secure messaging schemes allow conversation participants to
later plausibly deny sending messages, or even participating in a conversation. This no-
tion was popularized in the secure messaging context with the release of Off-the-Record
Messaging (OTR) a decade ago [BGB04]. Unfortunately, the OTR protocol is not well
suited to modern settings such as mobile device communication due to its requirement
for synchronous connections. Protocol designers seeking to achieve OTR-like deniability
properties in these environments have been forced to turn to the cryptographic literature,
and have found that existing primitives are not well suited to the task. Some practitioners
have also prematurely dismissed deniability as an impractical property for modern secure
messaging applications.

Our goal in this work is to facilitate new secure messaging research by providing a
broad perspective of the field, and new tools for protocol designers. We aim to identify
where problems lie and create a guide to help move forward on this important topic. We
also approach the problem of deniability from a practitioner’s perspective, and construct
new cryptographic protocols designed to address modern secure messaging problems.

The primary contributions of this thesis are:

1. a systematization of knowledge of secure messaging schemes:

• establishment of a set of common security and privacy feature definitions for
secure messaging;

• systematization of secure messaging approaches based both on academic work
and “in-the-wild” projects;

2

• a comparative evaluation of these approaches;

• identification and discussion of current research challenges, indicating future
research directions;

2. construction of several new cryptographic protocols for use in deniable secure mes-
saging tools:

• a dual-receiver encryption scheme that improves the practical performance of
an existing deniable key exchange protocol;

• a highly efficient deniable key exchange protocol designed for use in interactive
settings (e.g., instant messaging);

• an interactive deniable key exchange protocol requiring only a single communi-
cation round;

• a non-interactive key exchange protocol with forward secrecy and the strongest
deniability properties ever achieved in this setting;

• a method to incorporate our non-interactive key exchange into a popular secure
messaging application for smartphones;

• security proofs for our newly constructed protocols;

3. development of open-source implementations of our new cryptographic protocols.

Chapter 2 presents our systematization of knowledge of current secure messaging ap-
proaches. Chapter 3 describes the problem of deniability in the secure messaging context,
and includes our new cryptographic constructions. Chapter 4 provides an overview of our
implementations and performance evaluations. Finally, Chapter 5 includes some closing
remarks.

3

Chapter 2

Secure Messaging

This chapter is adapted from work that previously appeared in the 2015 IEEE Symposium
on Security and Privacy [UDB+15a], and later as a technical report published by the
Centre for Applied Cryptographic Research [UDB+15b].

Motivated by recent revelations of widespread state surveillance of personal communi-
cation, many products now claim to offer secure and private messaging. This includes both
a large number of new projects and many widely adopted tools that have added security
features. The intense pressure in the past two years to deliver solutions quickly has re-
sulted in varying threat models, incomplete objectives, dubious security claims, and a lack
of broad perspective on the existing cryptographic literature on secure communication.

In this chapter, we evaluate and systematize current secure messaging solutions and
propose an evaluation framework for their security, usability, and ease-of-adoption prop-
erties. We consider solutions from academia, but also identify innovative and promising
approaches used “in the wild” that are not considered by the academic literature. We
identify three key challenges and map the design landscape for each: trust establishment,
conversation security, and transport privacy. We aim to establish evaluation criteria for
measuring security features of messaging systems, as well as their usability and adoption
implications. A further goal in this chapter is to provide a broad perspective on secure
messaging and its challenges, as well as a comparative evaluation of existing approaches,
in order to provide context that informs future efforts.

After defining terminology in Section 2.1, we present our systematization methodology
in Section 2.2. In subsequent sections (Section 2.3, Section 2.4, and Section 2.5), we
evaluate each of the proposed problem areas. Our findings are discussed and concluded in
Section 2.6.

4

2.1 Background

Secure messaging systems vary widely in their goals and corresponding design decisions.
Additionally, their target audiences often influence how they are defined. In this section, we
define terminology to differentiate these designs and provide a foundation for our discussion
of secure messaging.

2.1.1 Types of specification

Secure messaging systems can be specified at three different broad levels of abstraction:

Chat protocols: At the most abstract level, chat protocols can be defined as sequences
of values exchanged between participants. This mode of specification deals with high-level
data flows and often omits details as significant as the choice of cryptographic protocols
(e.g., key exchanges) to use. Academic publications typically specify protocols this way.

Wire protocols: Complete wire protocols aim to specify a binary-level representation
of message formats. A wire protocol should be complete enough that multiple parties can
implement it separately and interoperate successfully. Often these are specific enough that
they have versions to ensure compatibility as changes are made. Implicitly, a wire protocol
implements some higher-level chat protocol, though extracting it may be non-trivial.

Tools: Tools are concrete software implementations that can be used for secure messag-
ing. Implicitly, a tool contains a wire protocol, though it may be difficult and error-prone
to derive it, even from an open-source tool.

2.1.2 Synchronicity

A chat protocol can be synchronous or asynchronous. Synchronous protocols require all
participants to be online and connected at the same time in order for messages to be trans-
mitted. Systems with a peer-to-peer architecture, where the sender directly connects to the
recipient for message transmission, are examples of synchronous protocols. Asynchronous
protocols, such as SMS (text messaging) or email, do not require participants to be online
when messages are sent, utilizing a third party to cache messages for later delivery.

5

Due to social and technical constraints, such as switched-off devices, limited reception,
and limited battery life, synchronous protocols are not feasible for many users. Mobile
environments are also particularly prone to various transmission errors and network inter-
ruptions that preclude the use of synchronous protocols. Most popular instant messaging
(IM) solutions today provide asynchronicity in these environments by using a store-and-
forward model: a central server is used to buffer messages when the recipient is offline.
Secure messaging protocols designed for these environments need to consider, and possibly
extend, this store-and-forward model.

2.1.3 Deniability

Deniability, also called repudiability, is a common goal for secure messaging systems. Con-
sider a scenario where Bob accuses Alice of sending a specific message. Justin, a judge,
must decide whether or not he believes that Alice actually did so. If Bob can provide evi-
dence that Alice sent that message, such as a valid cryptographic signature of the message
under Alice’s long-term key, then we say that the action is non-repudiable. Otherwise, the
action is repudiable or deniable. We can distinguish between message repudiation, in which
Alice denies sending a specific message, and participation repudiation in which Alice denies
communicating with Bob at all. The high-level goal of repudiable messaging systems is to
achieve deniability similar to real-world conversations.

The cryptographic literature has produced many subtly varying definitions of “denia-
bility” since deniable encryption was first formally proposed [CDNO97]. For the purposes
of this chapter, we consider message and participation repudiation only in the context of a
judge that examines a protocol transcript after a conversation has concluded, attempting
to determine if the transcript is genuine. We return to this issue in Chapter 3, where
we consider stronger notions of deniability granting judges real-time access to malicious
conversation participants.

2.1.4 Forward/Backward Secrecy

In systems that use the same static keys for all messages, a key compromise allows an
attacker to decrypt the entire message exchange. A protocol provides forward secrecy if
the compromise of a long-term key does not allow ciphertexts encrypted with previous
session keys to be decrypted (Figure 2.1a). If the compromise of a long-term key does not
allow subsequent ciphertexts to be decrypted by passive attackers, then the protocol is
said to have backward secrecy (Figure 2.1b). However, tools with backward secrecy are still

6

E
compromise

t

secure vulnerable window

(a) Forward Secrecy

E
compromise

t

securevulnerable window

(b) Backward Secrecy

Figure 2.1: Forward vs. backward secrecy. Session keys are protected from long-term key
compromise.

vulnerable to active attackers that have compromised long-term keys. In this context, the
“self-healing” aspect of backward secrecy has also been called future secrecy. The terms
are controversial and vague in the literature [And97; Shi00; Ope13a].

2.2 Systematization Methodology

Over the years, hundreds of secure messaging systems have been proposed and developed in
both academia and industry. An exhaustive analysis of all solutions is both infeasible and
undesirable. Instead, we extract recurring secure messaging techniques from the literature
and publicly available messaging tools, focusing on systematization and evaluation of the
underlying concepts and the desirable secure messaging properties. In this section, we
explain our precise methodology.

2.2.1 Problem Areas

While most secure messaging solutions try to deal with all possible security aspects, in our
systematization, we divide secure messaging into three nearly orthogonal problem areas ad-
dressed in dedicated sections: the trust establishment problem (Section 2.3), ensuring the
distribution of cryptographic long-term keys and proof of association with the owning en-
tity; the conversation security problem (Section 2.4), ensuring the protection of exchanged
messages during conversations; and the transport privacy problem (Section 2.5), hiding the
communication metadata.

While any concrete tool must decide on an approach for each problem area, abstractly
defined protocols may only address some of them. Additionally, the distinction between
these three problem areas is sometimes blurred since techniques used by secure messaging
systems may be part of their approach for multiple problem areas.

7

2.2.2 Threat Model

When evaluating the security and privacy properties in secure messaging, we must consider
a variety of adversaries. Our threat model includes the following attackers:

• Local Adversary (active/passive): An attacker controlling local networks (e.g.,
owners of open wireless access points).

• Global Adversary (active/passive): An attacker controlling large segments of
the Internet, such as powerful nation states or large Internet service providers.

• Service providers: For messaging systems that require centralized infrastructure
(e.g., public-key directories), the service operators should be considered as potential
adversaries.

Note that our adversary classes are not necessarily exclusive. In some cases, adversaries
of different types might collude. We also assume that all adversaries are participants in the
messaging system, allowing them to start conversations, send messages, or perform other
normal participant actions. We assume that the endpoints in a secure messaging system
are secure (i.e., malware and hardware attacks are out of scope).

2.2.3 Systematization Structure

Section 2.3, Section 2.4, and Section 2.5 evaluate trust establishment, conversation security,
and transport privacy approaches, respectively. For each problem area, we identify desirable
properties divided into three main groups: security and privacy features, usability features,
and adoption considerations. Each section starts by defining these properties, followed by
the extraction of generic approaches used to address the problem area from existing secure
messaging systems. Each section then defines and evaluates these approaches, as well as
several possible variations, in terms of the already-defined properties. Concrete examples
of protocols or tools making use of each approach are given whenever possible. The sections
then conclude by discussing the implications of these evaluations.

In each section, we include a table (Table 2.1, Table 2.2, and Table 2.3) visualizing our
evaluation of approaches within that problem area. Columns in the tables represent the
identified properties, while rows represent the approaches. Groups of rows begin with a
generic concept, specified as a combination of cryptographic protocols, followed by exten-
sion rows that add or modify components of the base concept. Whenever possible, rows

8

include the name of a representative protocol or tool that uses the combination of concepts.
Representatives may not achieve all of the features that are possible using the approach;
they are merely included to indicate where approaches are used in practice. Each row is
rated as providing or not providing the desired properties. In some cases, a row might only
partially provide a property, which is explained in the associated description.

For each problem area, we identify desirable properties in three main categories:

1. Security and Privacy Properties: Most secure messaging systems are designed
using standard cryptographic primitives such as hash functions, symmetric encryp-
tion ciphers, and digital signature schemes. When evaluating the security and pri-
vacy features of a scheme, we assume cryptographic primitives are securely chosen
and correctly implemented. We do not attempt to audit for software exploits which
may compromise users’ security. However, if systems allow end users to misuse these
cryptographic primitives, the scheme is penalized.

2. Usability Properties: Usability is crucial for the use and adoption of secure mes-
saging services. Human end users need to understand how to use the system securely
and the effort required to do so must be acceptable for the perceived benefits.

In previous research, various secure messaging tools have been evaluated and weak-
nesses in the HCI portion of their design have been revealed. The seminal paper
“Why Johnny Can’t Encrypt” [WT99] along with follow-up studies evaluating PGP
tools [GM05; GMS+05] and other messaging protocols [SDOF07; SYG08; CGM+11;
FHM+12; RKB+13] have also showed users encountering severe problems using en-
cryption securely. However, these studies focused on UI issues unique to specific
implementations. This approach results in few generic insights regarding secure mes-
senger protocol and application design. Given the huge number of secure messag-
ing implementations and academic approaches considered in our systematization,
we opted to extract generic concepts. Because we focus on usability consequences
imposed by generic concepts, our results hold for any tool that implements these
concepts.

To evaluate the usability of secure messaging approaches, we examine the additional
user effort (and decisions), security-related errors, and reduction in reliability and
flexibility that they introduce. Our usability metrics compare this extra effort to a
baseline approach with minimal security or privacy features. This is a challenging
task and conventional user studies are not well suited to extract such high-level us-
ability comparisons between disparate tools. We opted to employ expert reviews to
measure these usability properties, which is consistent with previous systematization

9

efforts for security schemes in other areas [BHvS12; Cv13]. To consider usability and
adoption hurdles in practice, we combined these expert reviews with cognitive walk-
throughs of actual implementations based on Nielsen’s usability principles [Nie92;
Nie94; JM95] and already known end-user issues discovered in previous work [WT99;
GM05; GMS+05; SBKH06; SYG08; CGM+11; FHM+12; RVR14]. These usability
results supplement our technical systematization and highlight potential trade-offs
between security and usability.

3. Ease of Adoption: Adoption of secure messaging schemes is not only affected by
their usability and security claims, but also by requirements imposed by the under-
lying technology. Protocols might introduce adoption issues by requiring additional
resources or infrastructure from end users or service operators. When evaluating the
adoption properties of an approach, we award a good score if the system does not
exceed the resources or infrastructure requirements of a baseline approach that lacks
any security or privacy features.

2.3 Trust Establishment

One of the most challenging aspects of messaging security is trust establishment, the pro-
cess of users verifying that they are actually communicating with the parties they intend.
Long-term key exchange refers to the process where users send cryptographic key material
to each other. Long-term key authentication (also called key validation and key verifi-
cation) is the mechanism allowing users to ensure that cryptographic long-term keys are
associated with the correct real-world entities. We use trust establishment to refer to the
combination of long-term key exchange and long-term key authentication in the remainder
of this thesis. After contact discovery (the process of locating contact details for friends
using the messaging service), end users first have to perform trust establishment in order
to enable secure communication. In Table 2.1, we compare the features of existing trust
establishment approaches.

2.3.1 Security and Privacy Features

We identified the following security and privacy features for trust establishment protocols:

• Network MitM Prevention: Prevents Man-in-the-Middle (MitM) attacks by local
and global network adversaries.

10

Scheme Example Security Features Usability Adoption

N
etw

ork
M

itM
P
revented

O
p
erator

M
itM

P
revented

O
p
erator

M
itM

D
etected

O
p
erator

A
ccou

ntab
ility

K
ey

R
evocation

P
ossib

le

P
rivacy

P
reservin

g

A
u
tom

atic
K

ey
In

itialization

L
ow

K
ey

M
ainten

an
ce

E
asy

K
ey

D
iscovery

E
asy

K
ey

R
ecovery
In

-B
an

d

N
o

S
h
ared

S
ecrets

A
lert-less

K
ey

R
en

ew
al

Im
m

ed
iate

E
n
rollm

ent

In
attentive

U
ser

R
esistant

M
u
ltip

le
K

ey
S
u
p
p
ort

N
o

S
ervice

P
rovid

er

N
o

A
u
d
itin

g
R

equ
ired

N
o

N
am

e
S
qu

attin
g

A
syn

ch
ron

ou
s

S
calab

le

Opportunistic Encryption†* TCPCrypt - - - - -
+TOFU (Strict)† - - - - -

+TOFU†* TextSecure - - - -

Key Fingerprint Verification†* Threema - - - - - - - - -

+Short Auth Strings (Out-of-Band)†* SilentText - - - - - - - - - - -

+Short Auth Strings (In-Band/Voice/Video)†* ZRTP - - - - - - - - -

+Socialist Millionaire (SMP)†* OTR - - - - - - - - - -

+Mandatory Verification†* SafeSlinger - - - - - - - -

Key Directory†* iMessage - - - - -

+Certificate Authority†* S/MIME - - - -
+Transparency Log - - - - -
+Extended Transparency Log† - - - -
+Self-Auditable Log† CONIKS -

Web-of-Trust†* PGP - - - - - - - -

+Trust Delegation†* GnuNS - - - - - - -

+Tracking* Keybase - - - - - - -

Pure IBC† SIM-IBC-KMS - - - - - - -
+Revocable IBC† - - - - - - -

Blockchains* Namecoin - - - - - -

Key Directory+TOFU+Optional Verification†* TextSecure - - - -

Opportunistic Encryption+SMP†* OTR - - - - - -

= provides property; = partially provides property; - = does not provide property;
†has academic publication; *end-user tool available

Table 2.1: Trade-offs for combinations of trust establishment approaches. Secure approaches often sacrifice
usability and adoption.

11

• Operator MitM Prevention: Prevents MitM attacks executed by infrastructure
operators.

• Operator MitM Detection: Allows the detection of MitM attacks performed by
operators after they have occurred.

• Operator Accountability: It is possible to verify that operators behaved correctly
during trust establishment.

• Key Revocation Possible: Users can revoke and renew keys (e.g., to recover from
key loss or compromise).

• Privacy Preserving: The approach leaks no conversation metadata to other par-
ticipants or even service operators.

2.3.2 Usability Properties

Most trust establishment schemes require key management: user agents must generate,
exchange, and verify other participants’ keys. For some approaches, users may be con-
fronted with additional tasks, as well as possible warnings and errors, compared to classic
tools without end-to-end security. If a concept requires little user effort and introduces
no new error types, we award a mark for the property to denote good usability. We only
consider the minimum user interaction required by the protocol instead of rating specific
implementations.

• Automatic Key Initialization: No additional user effort is required to create a
long-term key pair.

• Low Key Maintenance: Key maintenance encompasses recurring effort users have
to invest into maintaining keys. Some systems require that users sign other keys or
renew expired keys. Usable systems require no key maintenance tasks.

• Easy Key Discovery: When new contacts are added, no additional effort is needed
to retrieve key material.

• Easy Key Recovery: When users lose long-term key material, it is easy to revoke
old keys and initialize new keys (e.g., simply reinstalling the app or regenerating keys
is sufficient).

12

• In-band: No out-of-band channels are needed that require users to invest additional
effort to establish.

• No Shared Secrets: Shared secrets require existing social relationships. This limits
the usability of a system, as not all communication partners are able to devise shared
secrets.

• Alert-less Key Renewal: If other participants renew their long-term keys, a user
can proceed without errors or warnings.

• Immediate Enrollment: When keys are (re-)initialized, other participants are able
to verify and use them immediately.

• Inattentive User Resistant: Users do not need to carefully inspect information
(e.g., key fingerprints) to achieve security.

2.3.3 Adoption Properties

Trust establishment schemes can exhibit some additional properties that can help them to
attain widespread adoption:

• Multiple Key Support: Users should not have to invest additional effort if they
or their conversation partners use multiple public keys, making the use of multiple
devices with separate keys transparent. While it is always possible to share one
key on all devices and synchronize the key between them, this can lead to usability
problems.

• No Service Provider Required: Trust establishment does not require additional
infrastructure (e.g., key servers).

• No Auditing Required: The approach does not require auditors to verify correct
behavior of infrastructure operators.

• No Name Squatting: Users can choose their names and can be prevented from
reserving a large number of popular names.

• Asynchronous: Trust establishment can occur asynchronously without all conver-
sation participants online.

• Scalable: Trust establishment is efficient, with resource requirements growing loga-
rithmically (or smaller) with the the total number of participants in the system.

13

2.3.4 Evaluation

2.3.4.1 Opportunistic Encryption (Baseline)

We consider opportunistic encryption, in which an encrypted session is established without
any key verification, as a baseline. For instance, this could be an OTR encryption session
without any authentication. The main goal of opportunistic encryption is to counter passive
adversaries; active attackers can easily execute MitM attacks. From a usability perspective,
this approach is the baseline since it neither places any burden on the user nor generates
any new error or warning messages.

2.3.4.2 TOFU

Trust-On-First-Use (TOFU) extends opportunistic encryption by remembering previously
seen key material [WAP08]. The network MitM prevented and infrastructure MitM pre-
vented properties are only partially provided due to the requirement that no attacker is
present during the initial connection. TOFU requires no service provider since keys can be
exchanged by the conversation participants directly. TOFU does not define a mechanism
for key revocation. TOFU can be implemented in strict and non-strict forms. The strict
form fails when the key changes, providing inattentive user resilience but preventing easy
key recovery. The non-strict form prompts users to accept key changes, providing easy key
recovery at the expense of inattentive user resilience.

TOFU-based approaches, like the baseline, do not require any user interaction during
the initial contact discovery. This yields good scores for all user-effort properties except
for the key revocation property, which is not defined, and alert-less key renewal, since users
cannot distinguish benign key changes from MitM attacks without additional verification
methods. For instance, TextSecure shows a warning that a user’s key has changed and
the user must either confirm the new key or apply manual verification to proceed (shown
in Figure 2.2). If the user chooses to accept the new key immediately, it is possible to
perform the verification later. The motivation behind this approach is to provide more
transparency for more experienced or high-risk users, while still offering an “acceptable”
solution for novice end users. Critically, previous work in the related domain of TLS
warnings has shown that frequent warning messages leads to higher click-through rates in
dangerous situations, even with experienced users [SEA+09; AKJ+15].

From a usability and adoption perspective, TOFU performs similarly to the baseline,
except for key recovery in the strict version and multiple key support in both versions.
The multiple key support problem arises from the fact that if multiple keys are used, the

14

Figure 2.2: TextSecure warning for key changes: the user must either accept the new key
by selecting “complete”, or perform manual verification [Ope13c].

protocol cannot distinguish between devices. An attacker can claim that a new device,
with the attacker’s key, is being used.

2.3.4.3 Key Fingerprint Verification

Manual verification requires users to compare some representation of a cryptographic hash
of their partners’ public keys out of band (e.g., in person or via a separate secure channel).

Assuming the fingerprint check is performed correctly by end users, manual verification
provides all desirable security properties with the exception of only partial key revoca-
tion support, as this requires contacting each communication partner out-of-band. The
approaches differ only in their usability and adoption features.

Fingerprint verification approaches introduce severe usability and adoption limitations:
users have to perform manual verification before communicating with a new partner (and
get them to do the same) to ensure strong authentication. Thus, manual verification
does not offer automatic key initialization, easy key discovery, or immediate enrollment.
In addition, new keys introduce an alert on key renewal, resulting in a key maintenance
effort. Fingerprints complicate multiple key support since each device might use a different
key.

While it is possible to improve the usability of key fingerprint verification by making it
optional and combining it with other approaches, we postpone discussion of this strategy
until Section 2.3.5.

15

Figure 2.3: Users read random words during SAS verification in RedPhone [Ope13c].

2.3.4.4 Short Authentication Strings

To ease fingerprint verification, shorter strings can be provided to the users for comparison.
A short authentication string (SAS) is a truncated cryptographic hash (e.g., 20–30 bits
long) of all public parts of the key exchange. It is often represented in a format aimed to
be human friendly, such as a short sequence of words. All participants compute the SAS
based on the key exchange they observed, and then compare the resulting value with each
other. The method used for comparison of the SAS must authenticate the entities using
some underlying trust establishment mechanism.

Several encrypted voice channels, including the ZRTP protocol and applications like
RedPhone, Signal, and SilentPhone, use the SAS method by requiring participants to
read strings aloud [Blo99; ZJC11]. Figure 2.3 shows an example of SAS verification during
establishment of a voice channel in RedPhone. For usability reasons, RedPhone and Silent-
Phone use random dictionary words to represent the hash. Because these tools require the
user to end the established call manually if the verification fails, they are not inattentive
user resistant.

SAS systems based on voice channels anchor trust in the ability of participants to
recognize each other’s voices. Users who have never heard each other’s voices cannot au-

16

thenticate using this method. Even for users that are familiar with each other, the security
provided by voice identification has been the subject of controversy [GS07; PHJ+08]. Re-
cent work [SS14] suggests that, with even a small number of samples of a target user’s
speaking voice, audio samples can be synthesized that are indistinguishable from the gen-
uine user’s voice with typical levels of background noise. We should expect that artificial
voice synthesis will improve in cost and accuracy, while human auditory recognition will
not improve.

For this reason, we consider voice-based SAS verification to be obsolescent from a
security standpoint. In Table 2.1, we assume that users verify the SAS with a method
providing stronger security (e.g., using audio and video channels with careful inspection
during the SAS verification). If the communication channel (e.g., text messaging) does not
support a mechanism to establish trust, the SAS must be compared out of band (e.g., as
recommended by SilentText).

The SAS approach sacrifices asynchronicity, since mutual authentication must be done
with all users at the same time. Due to the short size of the SAS, the näıve approach
is vulnerable to a MitM attack by an adversary that attempts to select key exchange
values that produce a hash collision for the two connections. To mitigate this problem,
the attacker can be limited to a single guess by forcing them to reveal their chosen keys
before observing the keys of the honest parties. This can be accomplished by requiring
that the initiator of the key exchange release a commitment to their key, and then open
the commitment after the other party reveals theirs.

2.3.4.5 Secret-based Zero-Knowledge Verification

The Socialist Millionaire Protocol (SMP) is a zero-knowledge proof of knowledge protocol
that determines if secret values held by two parties are equal without revealing the value
itself. This protocol is used in OTR as the recommended method for user verification [JY96;
AG07]. Alice poses a question based on shared knowledge to Bob in-band and secretly
records her answer. After Bob answers the question, the two parties perform the SMP to
determine if their answers match, without revealing any additional information. Users are
expected to choose secure questions with answers based on shared knowledge that attackers
would be unable to know or guess.

The SMP used in OTR is performed on a cryptographic hash of the session identifier,
the two parties’ fingerprints, and their secret answers. This prevents MitM and replay
attacks.

17

Since a MitM must perform an online attack and can only guess once, even low min-
entropy secrets achieve strong security [BST01; AG07]. However, use of the SMP sacrifices
asynchronicity since all participants must be online during the verification. If the protocol
fails, the end users do not know whether their answers did not match, or if a MitM attacker
exists and has made an incorrect guess.

2.3.4.6 Mandatory Verification

The previously defined verification methods are prone to inattentive users. Mandatory
verification approaches counter user negligence by requiring that users enter the correct
fingerprint strings instead of merely confirming that they are correct. Of course, entering
the fingerprints takes user effort. In practice, QR-Codes and NFC are popular methods to
ease this process.

In SafeSlinger the user must choose the correct answer among three possibilities to
proceed [FLK+13]. Physically co-located users form a group and exchange ephemeral
keys. Each device hashes all received information and displays the hash as a sequence
of three common words. Two additional sequences are randomly generated. The users
communicate to determine the sequence that is common to all devices and select it to verify
the ephemeral keys, preventing users from simply clicking an “OK” button. These keys
are then used to exchange contact information within the group with security guarantees
including confidentiality and authenticity.

Mandatory verification is a technique that is applied to another trust establishment
scheme; the resulting approach inherits the usability properties of the underlying scheme.
Incorporating mandatory verification sacrifices asynchronicity to ensure inattentive user
resistance.

2.3.4.7 Authority-Based Trust

In authority-based trust schemes, public keys must be vouched for by one or more trusted
authorities.

During key initialization, authorities can verify ownership of public keys by the claimed
subjects through various means, such as password-based authentication or email validation.
The authority then asserts the keys’ validity to other users. Two well-known examples
of authority-based trust establishment are public-key directories and certificate authority
schemes.

18

A Certificate Authority (CA) may issue signed certificates of public keys to users, who
can then present them directly to other users without needing to communicate further with
the authority. This model has been widely deployed on the web with the X.509 Public
Key Infrastructure (PKIX) for HTTPS. While the S/MIME standard uses this model for
secure email, it has seen less widespread deployment than PGP.

Alternatively, users may look up keys directly from an online public-key directory over
a secure channel. This is common in several proprietary messaging applications such
as Apple iMessage and BlackBerry Protected Messenger. In contrast to CA schemes,
where the conversation partner directly provides an ownership assertion from the CA, the
authority is directly asked for ownership assertions in key directory schemes.

From the security point of view, the two schemes only differ in key revocation and
privacy preservation. While key updates in key directories imply the revocation of old keys,
in the CA approach, certificates signed by the authority are trusted by default; revocation
lists have to be maintained separately. However, CA-based revocation lists used in web
browsers are known to have issues with effectiveness and practicality [Mar09; GIJ+12;
Cv13]. Since certificates may be exchanged by peers directly, the CA-based approach can
be privacy preserving.

With either system, users are vulnerable to MitM attacks by the authority, which can
vouch for, or be coerced to vouch for, false keys. This weakness has been highlighted by
recent CA scandals [VAS11; Lan13a]. Both schemes can also be attacked if the authority
does not verify keys before vouching for them. Authorities in messaging services often rely
on insecure SMS or email verification, enabling potential attacks.

The two approaches both support good usability. Well-known systems using public-key
directories, such as iMessage, work without any user involvement.

2.3.4.8 Transparency Logs

A major issue with trusted authorities is that they can vouch for fraudulent keys in an
attack. The Certificate Transparency protocol [LLK13] requires that all issued web certifi-
cates are included in a public log.

This append-only log is implemented using a signed Merkle tree with continual proofs
of consistency [LLK13]. Certificates are only trusted if they include cryptographic proof
that they are present in the log. This ensures that any keys the authority vouches for
will be visible in the log and evidence will exist that the authority signed keys used in an
attack.

19

Certificate Transparency is a specific proposal for logging PKIX certificates for TLS, but
the general idea can be applied to authority-based trust establishment in secure messaging.
We refer to the general concept as transparency logs for the remainder of the chapter. While
there are no known deployments to date, Google plans to adapt transparency logs for user
keys in End-to-End, its upcoming email encryption tool [Goo14a]. In the absence of a
concrete definition, we evaluate transparency logs based on the certificate transparency
protocol.

The main security improvement of the two schemes consists of operator accountability
and the detection of operator MitM attacks after the fact. The remaining security features
are inherited from authority-based trust systems.

However, these schemes introduce new and unresolved usability and adoption issues.
For instance, the logs must be audited to ensure correctness, negating the no auditing
required property. The auditing services require gossip protocols to synchronize the view
between the monitors and prevent attack bubbles (e.g., where different views are presented
to different geographical regions) [LLK13]. Also, since only identity owners are in a position
to verify the correctness of their long-term keys, they share responsibility for verifying
correct behavior of the log. Previous research has shown that users often neglect such
security responsibilities [SEA+09], so this task should be performed automatically by client
applications. However, if a client detects a certificate in the log that differs from their
version, it is not clear whether the authorities have performed an attack, an adversary
has successfully impersonated the subject of the certificate to the authorities, or if the
subject actually maintains multiple certificates (e.g., due to installing the app on a second
device). Ultimately, end users have to cope with additional security warnings and errors,
and it remains to be seen whether they can distinguish between benign and malicious log
discrepancies without training. In addition, transparency logs might hamper immediate
enrollment due to delays in log distribution.

Ryan [Rya14] proposed extending the transparency logs concept using two logs: one
of all certificates in chronological order of issuance, and one of currently valid certificates
sorted lexicographically. This enables a form of revocation by making it efficient to query
which certificates are currently valid for a given username.

Melara et al. [MBB+14] proposed CONIKS, using a series of chained commitments to
Merkle prefix trees to build a key directory that is self-auditing, that is, for which individual
users can efficiently verify the consistency of their own entry in the directory without relying
on a third party. This “self-auditing log” approach makes the system partially have no
auditing required (as general auditing of non-equivocation is still required) and also enables
the system to be privacy preserving as the entries in the directory need not be made public.

20

This comes at a mild bandwidth cost not reflected in our table, estimated to be about 10
kilobytes per client per day for self-auditing.

Both Ryan’s Extended Certificate Transparency and CONIKS also support a proof-of-
absence, which guarantees the absence of an identifier or key in the log.

2.3.4.9 Web of Trust

In a web of trust scheme, users verify each other’s keys using manual verification and,
once they are satisfied that a public key is truly owned by its claimed owner, they sign
the key to certify this. These certification signatures might be uploaded to key servers.
If Alice has verified Bob’s key, and Bob certifies that he has verified Carol’s key, Alice
can then choose to trust Carol’s key based on this assertion from Bob. Ideally, Alice will
have multiple certification paths to Carol’s key to increase her confidence in the key’s
authenticity. Zimmermann introduced the concept of a web-of-trust scheme as part of
PGP [Zim95].

The user interface for web of trust schemes tends to be relatively complex and has never
been fully standardized. The scheme also requires a well-connected social graph, hence
the motivation for “key-signing parties” to encourage users to form many links within a
common social context.

Assuming that the web of trust model performs correctly, MitM attacks by network
and operator adversaries are limited due to distribution of trust. However, since key
revocations and new keys might be withheld by key servers, the model offers only partial
operator accountability and key revocation. Since the web of trust model produces a public
social graph, it is not privacy preserving.

The key-initialization phase requires users to get their keys signed by other keys, so
the system does not offer automatic key initialization, alert-less key renewal, or immedi-
ate enrollment, and is not inattentive user resistant. Because users must participate in
key-signing parties to create many paths for trust establishment, users have a high key
maintenance overhead and a need for an out-of-band channel. Even worse, users must
understand the details of the PKI and be able to decide whether to trust a key.

PGP typically uses a web of trust for email encryption and signing. In practice, the
PGP web of trust consists of one strongly connected component and many unsigned keys
or small connected components, making it difficult for those outside the strongly connected
component to verify keys [UHHC11].

A simplification of the general web of trust framework is SDSI [RL96] (Simple Dis-
tributed Security Infrastructure) later standardized as SPKI [Ell96; EFL+99] (Simple

21

Public Key Infrastructure). With SDSI/SPKI, Bob can assert that a certain key belongs
to “Carol” and, if Alice has verified Bob’s key as belonging to “Bob”, that key will be
displayed to Alice as “Bob’s Carol” until Alice manually verifies Carol’s key herself (which
she can then give any name she wants, such as “Carol N.”). We refer to these approaches
as trust delegation. A modern implementation is the GNU Name System (GNS) [WSG14a;
WSG14b], which implements SDSI/SPKI-like semantics with a key server built using a
distributed hash table to preserve privacy.

2.3.4.10 Keybase

Keybase is a trust establishment scheme allowing users to find public keys associated with
social network accounts [Key14]. It is designed to be easily integrated into other software
to provide username-based trust establishment. If a user knows a social network username
associated with a potential conversation partner, they can use Keybase to find the partner’s
public key.

During key initialization, all users register for accounts with the Keybase server. They
then upload a public key and proof that they own the associated private key. Next, the user
can associate accounts on social networks or other services with their Keybase account.
Each external service is used to post a signature proving that the account is bound to the
named Keybase account.

When looking up the key associated with a given user, the Keybase server returns the
public key, a list of associated accounts, and web addresses for the external proofs. The
client software requests the proofs from the external services and verifies the links. The user
is then prompted to verify that the key belongs to the expected individual, based on the
verified social network usernames. To avoid checking these proofs for every cryptographic
operation, the user can sign the set of accounts owned by their partner. This signature is
stored by the Keybase server so that all devices owned by the user can avoid verifying the
external proofs again. This process is known as tracking. Tracking signatures created by
other users are also accessible, providing evidence of account age. Old tracking signatures
provide confidence that a user’s accounts have not been recently compromised, but does
not protect against infrastructure operator attacks.

Keybase provides partial operator MitM protection since attacks require collusion be-
tween multiple operators. The scheme also provides easier key initialization and key main-
tenance than web-of-trust methods.

22

2.3.4.11 Identity-Based Cryptography

In identity-based cryptography (IBC), first proposed by Shamir [Sha85], plaintext identi-
fiers (such as email or IP addresses) are mapped to public keys. A trusted third party,
the Private Key Generator (PKG), publishes a PKG public key that is distributed to all
users of the system. Public keys for an identifier are computed using a combination of
the identifier and the PKG public key. The owner of the identity requests the private key
for that identity from the PKG while providing proof that they own the identity. The
advantage of this system is that users do not need to contact any other entity in order to
retrieve the public key of a target user, since the public key is derived from the identifier.

There are two main problems with basic IBC schemes: they lack any operator MitM
prevention and key revocation is not possible. Since the PKG can generate private keys for
any user, the operator of the PKG can break the security properties of all conversations.
While this fundamental problem cannot be overcome without using hybrid encryption
schemes, key revocation support can be added. Revocable IBC approaches [BGK08; LV09;
WLXZ14] add timestamps to the public key derivation process, regularly refreshing key
material.

IBC schemes are normally deployed in situations where the trustworthiness of the PKG
operator is assumed, such as in enterprise settings. Few pure-IBC schemes have been
proposed for end-user messaging [TZ05; BMHD08].

2.3.4.12 Blockchains

The Bitcoin cryptocurrency utilizes a novel distributed consensus mechanism using pseu-
donymous “miners” to maintain an append-only log [Nak08]. Voting power is distributed in
proportion to computational resources by using a probabilistic proof-of-work puzzle. For
the currency application, this log records every transaction to prevent double-spending.
Miners are rewarded (and incentivized to behave honestly) by receiving money in propor-
tion to the amount of computation they have performed. The success of Bitcoin’s consensus
protocol has led to enthusiasm that similar approaches could maintain global consensus on
other types of data, such as a mapping of human-readable usernames to keys.

Namecoin, the first fork of Bitcoin, allows users to claim identifiers, add arbitrary data
(e.g., public keys) as records for those identifiers, and even sell control of their identifiers
to others [Nam11]. Namecoin and similar name-mapping blockchains are denoted by the
blockchain entry in Table 2.1. Unlike most other schemes, Namecoin is strictly “first-come,
first-served”, with any user able to purchase ownership of any number of unclaimed names

23

for a small, fixed fee per name. This price is paid in Namecoins—units of currency that are
an inherent part of the system. A small maintenance fee is required to maintain control of
names, and small fees may be charged by miners to update data or transfer ownership of
names.

From the security perspective, blockchain schemes achieve similar results to manual
verification, except that instead of exchanging keys, the trust relies on the username only.
Once users have securely exchanged usernames, they can reliably fetch the correct keys.

However, various shortcomings arise from a usability and adoption perspective. The
primary usability limitation is that if users ever lose the private key used to register their
name (which is not the same as the communication key bound to that name), they will
permanently lose control over that name (i.e., key recovery is not possible). Similarly, if
the key is compromised, the name can be permanently and irrevocably hijacked. Thus, the
system requires significant key management effort and burdens users with high responsibil-
ity. If users rely on a web-based service to manage private keys for them, as many do with
Bitcoin in practice, the system is no longer truly end-to-end. The system requires users
to pay to reserve and maintain names, sacrificing low key maintenance and automatic key
initialization. Users also cannot instantly issue new keys for their identifiers (i.e., there is
no immediate enrollment) but are required to wait for a new block to be published and
confirmed. In practice, this can take 10–60 minutes depending on the desired security level.

On the adoption side, for the system to be completely trustless, users must store the
entire blockchain locally and track its progress. Experience from Bitcoin shows that the
vast majority of users will not do this due to the communication and storage requirements
and will instead trust some other party to track the blockchain for them. This trusted party
cannot easily insert spurious records, but can provide stale information without detection.
In any case, the system is not highly scalable since the required amount of storage and
traffic consumption increases linearly with the number of users.

Finally, there are serious issues with name squatting, which have plagued early attempts
to use the system. Because anybody can register as many names as they can afford, a
number of squatters have preemptively claimed short and common names. Given the
decentralized nature of blockchains, this is hard to address without raising the registration
fees, which increases the burden on all users of the system.

2.3.5 Discussion

As Table 2.1 makes evident, no trust establishment approach is perfect. While it is common
knowledge that usability and security are often at odds, our results show exactly where

24

the trade-offs lie. Approaches either sacrifice security and provide a nearly ideal user
experience, or sacrifice user experience to achieve nearly ideal security scores. Authority-
based trust (whether in the form of a single authority or multiple providers) and TOFU
schemes are the most usable and well-adopted, but only offer basic security properties. Not
surprisingly, authority-based trust (particularly app-specific key directories) is predominant
among recently developed apps in the wild, as well as among apps with the largest userbases
(e.g., iMessage, BlackBerry Protected, TextSecure, and Wickr). By contrast, no approach
requiring specific user action to manage keys, such as web-of-trust, Keybase, GNS, or
blockchains, has seen significant adoption among non-technically-minded users.

In practice, we may be faced with the constraint that none of the usability properties
can be sacrificed in a system that will achieve mass adoption. Higher-security schemes
may be useful within organizations or niche communities, but defending against mass
surveillance requires a communication system that virtually all users can successfully use.
Thus, it may be wise to start from the basic user experience of today’s widely deployed
communication apps and try to add as much security as possible, rather than start from
a desired security level and attempt to make it as simple to use as possible. The recent
partnership between WhatsApp and TextSecure [Ope14a] exemplifies this approach.

There appears to be considerable room for security improvements over authoritative key
directories even without changes to the user experience. Transparency logs might provide
more accountability with no interaction from most users. Because this approach has not
yet been deployed, it remains to be seen how much security is gained in practice. The
insertion of new keys in the log does not provide public evidence of malicious behavior if
insecure user authentication methods (e.g., passwords) are used to authorize key changes,
as we fully expect will be the case. Still, the possible loss of reputation may be enough to
keep the server honest.

Another promising strategy is a layered design, with basic security provided by a cen-
tral key directory, additional trust establishment methods for more experienced users (e.g.,
visual fingerprint verification or QR-codes), and TOFU warning messages whenever con-
tacts’ keys have changed. TextSecure and Threema, among others, take such a layered
approach (represented by the second-to-last row in Table 2.1). In contrast, OTR uses op-
portunistic encryption with the ability to perform the SMP to ensure trust (represented
by the last row in Table 2.1).

Conversely, the approaches with good security properties should focus on improving
usability. There has been little academic work studying the usability of trust establish-
ment. Further research focusing on end-users’ mental models and perception for trust
establishment could help to develop more sophisticated and understandable approaches.

25

2.4 Conversation Security

After trust establishment has been achieved, a conversation security protocol protects
the security and privacy of the exchanged messages. This encompasses how messages are
encrypted, the data and metadata that messages contain, and what cryptographic protocols
(e.g., ephemeral key exchanges) are performed. A conversation security scheme does not
specify a trust establishment scheme nor define how transmitted data reaches the recipient.

In Table 2.2, we compare the features of existing approaches for conversation security.
Rows without values in the “group chat” columns can only be used in a two-party setting.

2.4.1 Security and Privacy Features

• Confidentiality: Only the intended recipients are able to read a message. Specifi-
cally, the message must not be readable by a server operator that is not a conversation
participant.

• Integrity: No honest party will accept a message that has been modified in transit.

• Authentication: Each participant in the conversation receives proof of possession
of a known long-term secret from all other participants that they believe to be par-
ticipating in the conversation.1 In addition, each participant is able to verify that a
message was sent from the claimed source.

• Participant Consistency: At any point when a message is accepted by an honest
party, all honest parties are guaranteed to have the same view of the participant list.

• Destination Validation: When a message is accepted by an honest party, they can
verify that they were included in the set of intended recipients for the message.

• Forward Secrecy: Compromising all key material does not enable decryption of
previously encrypted data.

• Backward Secrecy: Compromising all key material does not enable decryption of
succeeding encrypted data.

• Anonymity Preserving: Any anonymity features provided by the underlying trans-
port privacy architecture are not undermined (e.g., if the transport privacy system

1We define authentication in this manner in order to decouple it from participant consistency.

26

Scheme Example Security and Privacy Adoption Group Chat

C
on

fi
d
entiality

Integrity

A
u
th

entication

P
articip

ant
C
on

sisten
cy

D
estin

ation
V
alid

ation

F
orw

ard
S
ecrecy

B
ackw

ard
S
ecrecy

A
n
onym

ity
P
reservin

g

S
p
eaker

C
on

sisten
cy

C
au

sality
P
reservin

g

G
lob

al
T
ran

scrip
t

M
essage

U
n
lin

kab
ility

M
essage

R
ep

u
d
iation

P
articip

.
R

ep
u
d
iation

O
u
t-of-O

rd
er

R
esilient

D
rop

p
ed

M
essage

R
esilient

A
syn

ch
ron

icity

M
u
lti-D

evice
S
u
p
p
ort

N
o

A
d
d
ition

al
S
ervice

C
om

p
u
tation

al
E
qu

ality

T
ru

st
E
qu

ality

S
u
b
grou

p
M

essagin
g

C
ontractab

le

E
xp

an
d
ab

le

TLS+Trusted Server†* Skype - - - - - - - - - - - -

Static Asymmetric Crypto†* OpenPGP - - - - - - - - - -
+IBE† Wang et al. - - - - - - - - - - - -
+Short Lifetime Keys OpenPGP Draft - - - - - - - - -
+Non-Interactive IBE† Canetti et al. - - - - - - - - -
+Puncturable Encryption† Green and Miers - - - - - - - - -

Key Directory+Short Lifetime Keys† IMKE - - - - - - - -
+Long-Term Keys† SIMPP - - - - - - - - -

Authenticated DH†* TLS-EDH-MA - - - - -

+Näıve KDF Ratchet* SCIMP - - - -

+DH Ratchet†* OTR - - -

+Double Ratchet†* Axolotl - - -

+Double Ratchet+3DH AKE†* - - - -

+Double Ratchet+3DH AKE+Prekeys†* TextSecure - - - -

Key Directory+Static DH+Key Transport† Kikuchi et al. - - - - - - - - - - - -
+Authenticated EDH+Group MAC† GROK - - - - - - - - - -

GKA+Signed Messages+Parent IDs† OldBlue - - - - - - - -

Authenticated MP DH+Causal Blocks†* KleeQ - - - -

OTR Network+Star Topology† GOTR (2007) - - - - - - - - - - -
+Pairwise Topology† - - - -

+Pairwise Axolotl+Multicast Encryption* TextSecure - - - - -

DGKE+Shutdown Consistency Check† mpOTR - - - - - - - -

Circle Keys+Message Consistency Check† GOTR (2013) - - - -

= provides property; = partially provides property; - = does not provide property;
†has academic publication; *end-user tool available

Table 2.2: Conversation security protocols and their usability and adoption implications. No approach
requires additional user effort.

27

provides anonymity, the conversation security level does not deanonymize users by
linking key identifiers).

• Speaker Consistency: All participants agree on the sequence of messages sent by
each participant. A protocol might perform consistency checks on blocks of messages
during the protocol, or after every message is sent.

• Causality Preserving: Implementations can avoid displaying a message before
messages that causally precede it.

• Global Transcript: All participants see all messages in the same order.

Not all security and privacy features are completely independent. If a protocol does not
authenticate participants, then it offers participation repudiation (since no proof of partic-
ipation is ever provided to anyone). Similarly, no authentication of message origin implies
message repudiation as well as message unlinkability. Note that the implications are only
one way: repudiation properties might be achieved together with authentication. Addition-
ally, a global transcript order implies both speaker consistency and causality preservation
since all transcripts are identical.

Conversation security schemes may provide several different forms of deniability. Based
on the definitions from Section 3.1, we define the following deniability-related features:

• Message Unlinkability: If a judge is convinced that a participant authored one
message in the conversation, this does not provide evidence that they authored other
messages.

• Message Repudiation: Given a conversation transcript and all cryptographic keys,
there is no evidence that a given message was authored by any particular user. We
assume that the accuser has access to the session keys because it is trivial to deny
writing a plaintext message when the accuser cannot demonstrate that the ciphertext
corresponds to this plaintext. We also assume that the accuser does not have access
to the accused participant’s long-term secret keys because then it is simple for the
accuser to forge the transcript (and thus any messages are repudiable).

• Participation Repudiation: Given a conversation transcript and all cryptographic
key material for all but one accused (honest) participant, there is no evidence that
the honest participant was in a conversation with any of the other participants.

28

2.4.2 Usability and Adoption

In classic messaging tools, users must only reason about two simple tasks: sending and
receiving messages. However, in secure communication, additional tasks might be added.
In old secure messaging systems, often based on OpenPGP, users could manually decide
whether to encrypt and/or sign messages. Many studies have shown that this caused
usability problems [WT99; GM05; GMS+05; FHM+12; RVR14]. However, during our
evaluation, we found that most recent secure messenger apps secure all messages by default
without user interaction. Since all implementations can operate securely once the trust
establishment is complete, we omit the user-effort columns in Table 2.2. However, we take
other usability and adoption factors, such as resilience properties, into account:

• Out-of-Order Resilient: If a message is delayed in transit, but eventually arrives,
its contents are accessible upon arrival.

• Dropped Message Resilient: Messages can be decrypted without receipt of all
previous messages. This is desirable for asynchronous and unreliable network services.

• Asynchronous: Messages can be sent securely to disconnected recipients and re-
ceived upon their next connection.

• Multi-Device Support: A user can participate in the conversation using multiple
devices at once. Each device must be able to send and receive messages. Ideally, all
devices have identical views of the conversation. The devices might use a synchro-
nized long-term key or distinct keys.

• No Additional Service: The protocol does not require any infrastructure other
than the protocol participants. Specifically, the protocol must not require additional
servers for relaying messages or storing any kind of key material.

2.4.3 Group Chat Features

Several additional features are only meaningful for group protocols (i.e., protocols support-
ing chats between three or more participants):

• Computational Equality: All chat participants share an equal computational load.

• Trust Equality: No participant is more trusted or takes on more responsibility than
any other.

29

• Subgroup messaging: Messages can be sent to a subset of participants without
forming a new conversation.

• Contractible Membership: After the conversation begins, participants can leave
without restarting the protocol.

• Expandable Membership: After the conversation begins, participants can join
without restarting the protocol.

When a participant joins a secure group conversation, it is desirable for the protocol
to compute new cryptographic keys so that the participant cannot decrypt previously sent
messages. Likewise, keys should be changed when a participant leaves so that they cannot
read new messages. This is trivial to implement by simply restarting the protocol, but
this approach is often computationally expensive. Protocols with expandable / contractible
membership achieve this without restarts.

There are many higher-level security and privacy design issues for secure group chat
protocols. For example, the mechanisms for inviting participants to chats, kicking users
out of sessions, and chat room moderation are all important choices that are influenced by
the intended use cases. We do not cover these features here because they are implemented
at a higher level than the secure messaging protocol layer.

2.4.4 Two-party Chat Evaluation

2.4.4.1 Trusted Central Servers (Baseline)

The most basic conversation security features that a secure chat protocol can provide are
confidentiality and integrity. This can be easily implemented without adversely affecting
usability and adoption properties by using a central server to relay messages and securing
connections from clients to the central server using a transport-layer protocol like TLS.
This also allows the central server to provide presence information. Since this approach
does not negatively affect usability, it is no surprise that this architecture has been adopted
by some of the most popular messaging systems today (e.g., Skype, Facebook Chat, Google
Hangouts) [Sai11; SFK+12; Mic14; Goo14b; Fac14]. We do not consider these protocols
further because they allow the central server to decrypt messages and thus do not meet our
stronger end-to-end definition of confidentiality—that messages cannot be read by anyone
except the intended recipient(s). We include this approach as a baseline in Table 2.2 in
order to evaluate the effects of various designs.

30

Note that the baseline protocols provide all repudiation features, since there is no cryp-
tographic proof of any activity. Additionally, these protocols are highly resilient to errors
since there are no cryptographic mechanisms that could cause problems when messages
are lost. The use of a trusted central server makes asynchronicity and multi-device support
trivial.

2.4.4.2 Static Asymmetric Cryptography

Another simple approach is to use participants’ static long-term asymmetric keypairs for
signing and encrypting.

OpenPGP and S/MIME are two well-known and widely implemented standards for
message protection, mostly used for email but also in XMPP-based tools [CDF+99; FL04;
RT10; Sai11].

While this approach provides confidentiality, message authentication, and integrity, it
causes a loss of all forms of repudiation. Additionally, care must be taken to ensure that
destination validation and participant consistency checks are performed. Without destina-
tion validation, surreptitious forwarding attacks are possible [Dav01]. Without participant
consistency, identity misbinding attacks might be possible [DvW92]. Defenses against re-
play attacks should also be included. These considerations are particularly relevant since
the OpenPGP and S/MIME standards do not specify how to provide these features, and
thus most implementations remain vulnerable to all of these attacks [CDF+99; RT10].

To simplify key distribution, several authors have proposed the use of identity-based
cryptography in the same setting. The SIM-IBC-KMS protocol acts as an overlay on the
MSN chat network with a third-party server acting as the PKG [BMHD08]. Messages are
encrypted directly using identity-based encryption. The protocol from Wang et al. [WLL13]
operates similarly, but distributes the PKG function across many servers with a non-
collusion assumption in order to limit the impact of a malicious PKG. These protocols
partially sacrifice confidentiality since an attacker with access to the PKG private key
could surreptitiously decrypt communications.

A second issue with näıve asymmetric cryptography is the lack of forward or backward
secrecy. One way to address this issue is to use keys with very short lifetimes (e.g., changing
the key every day). Brown et al. [BBL02] propose several extensions to OpenPGP based
on this principle. In the most extreme proposal, conversations are started using long-term
keys, but each message includes an ephemeral public key to be used for replies. This
method provides forward and backward secrecy for all messages except those used to start
a conversation.

31

From a usability and adoption perspective, static key approaches achieve the same prop-
erties as the baseline. Apart from the non-transparent trust establishment, iMessage is a
prominent example of how static asymmetric cryptography can achieve end-to-end conver-
sation security with no changes to the user experience. Since the same long-term keys are
used for all messages, message order resilience, dropped message resilience, asynchronicity,
and multi-device-support are provided. No additional services are required.

2.4.4.3 FS-IBE

In traditional PKI cryptography, forward secrecy is achieved by exchanging ephemeral
session keys or by changing keypairs frequently. The use of key agreement protocols
makes asynchronicity difficult, whereas frequently changing keypairs requires expensive
key distribution. Forward Secure Identity Based Encryption (FS-IBE) allows keypairs to
be changed frequently with a low distribution cost. Unlike traditional identity-based en-
cryption schemes, the private key generators (PKG) in FS-IBE are operated by the end
users and not by a server. Initially, each participant generates a PKG for an identity-based
cryptosystem. Participants generate N private keys (SKi), one for each time period i, by
using their PKG, and then immediately destroy the PKG. Each private key SKi is stored
encrypted by the previous private key SKi−1 [And97; CHK03]. The participant then dis-
tributes the public key of the PKG. Messages sent to the participant are encrypted for
the private key corresponding to the current time period. When a time period concludes,
the next secret key is decrypted and the expired key is deleted. Thus, if intermediate
keys are compromised, the attacker can only retrieve corresponding future private keys;
forward secrecy, but not backward secrecy, is provided. In contrast to generating key pairs
for each time period, which requires distribution of N keys, only a single public master
key is published; however, the generation still needs to be repeated after all time periods
expire.

Canetti, Halevi, and Katz were the first to construct a non-interactive forward secrecy
scheme based on hierarchical IBE with logarithmic generation and storage costs [CHK03].
In addition, they showed how their scheme can be extended to an unbounded number of
periods (i.e., the private keys do not have to be generated in advance), removing the need
for additional services to distribute new keys at the cost of increasing computational re-
quirements over time. This scheme provides non-interactive asynchronous forward secrecy
without relying on additional services. However, if messages arrive out of order, their cor-
responding private keys might have already been deleted. As a mitigation, expired keys
might be briefly retained, providing partial out-of-order resilience.

32

Green and Miers proposed puncturable encryption [GM15], a modification of attribute-
based encryption [SW05] in which each message is encrypted with a randomly chosen “tag”
and the recipient can update their private key to no longer be able to decrypt messages with
that tag after receipt. This approach provides arbitrary out-of-order resilience, although
to make the scheme efficient in practice requires periodically changing keys.

Computational costs and storage costs increase over time for both FS-IBE and punc-
turable encryption, introducing scalability concerns. To our knowledge, neither approach
has been deployed and they thus merit further development.

2.4.4.4 Short Lifetime Key Directories

Several protocols make use of a central server for facilitating chat session establishment. In
these systems, users authenticate to the central server and upload public keys with short
lifetimes. The server acts as a key directory for these ephemeral public keys. Conversations
are initiated by performing key exchanges authenticated with the short-term keys vouched
for by the key directory. Messages are then encrypted and authenticated using a MAC.
IMKE [Mv06] is a protocol of this type where the server authenticates users through the
use of a password. SIMPP [YK07; YKAL08; LY09] operates similarly, but uses long-term
keys to authenticate instead.

These protocols achieve confidentiality and integrity, but lack authentication of partic-
ipants since the central server can vouch for malicious short-term keys. Since session keys
are exchanged on a per-conversation basis, these protocols achieve forward and backward
secrecy between conversations. Since SIMPP uses signatures during the login procedure,
it loses participation repudiability ; the accuser cannot forge their response to the server’s
challenge.

2.4.4.5 Authenticated Diffie-Hellman

While the use of central servers for presence information and central authentication is
fundamental to systems such as IMKE and SIMPP, there is an alternative class of solu-
tions that instead performs end-to-end authenticated Diffie-Hellman (DH) key exchanges.
By default, the authenticated DH key agreement does not rely on central servers. In an
authenticated key exchange (AKE) such as authenticated DH, the participants generate
an ephemeral session key and authenticate the exchange using their long-term keys. The
resulting session key is used to derive symmetric encryption and MAC keys, which then

33

A B

gae gbe

sign sign

authenticated key agreement

(a) OTRv1 DH handshake. The session key
is derived from the key agreement based on
signed ephemeral keys: s = DH(gae , gbe)

ga gb

gae gbe
key agreements

(b) 3-DH handshake. The session key is
a combination of all key agreements: s =
KDF(DH(gae , gbe)||DH(gae , gb)||DH(ga, gbe))

Figure 2.4: TLS/OTRv1 handshake vs. 3-DH handshake (figures derived from [Ope13d]).
Gray nodes represent ephemeral keys, white nodes represent long-term keys.

protect messages using an encrypt-then-MAC approach. This basic design provides con-
fidentiality, integrity, and authentication. TLS with an ephemeral DH cipher suite and
mutual authentication (TLS-EDH-MA) is a well-known example of this approach. Note
that further protections are required during key exchange to protect against identity mis-
binding attacks violating participant consistency [DvW92; AG07], such as those provided
by SIGMA protocols [Kra03].

The use of ephemeral session keys provides forward and backward secrecy between con-
versations. Message unlinkability and message repudiation are provided since messages are
authenticated with shared MAC keys rather than being signed with long-term keys. At a
minimum, messages can be forged by any chat participants. Some protocols, such as OTR,
take additional measures, such as publication of MAC keys and the use of malleable en-
cryption, to expand the set of possible message forgers [BGB04]. If the participants simply
sign all AKE parameters, then this approach does not provide participation repudiation.
However, if participants only sign their own ephemeral keys, these signatures can be reused
by their conversation partners in forged transcripts. Figure 2.4a shows the authenticated
key exchange used by OTRv1 (more recent versions use a SIGMA key exchange). Con-
versation partners are able to reuse ephemeral keys signed by the other party in forged
transcripts, thereby providing partial participation repudiation. OTR users can increase
the number of possible forgers by publishing previously signed ephemeral keys in a public
location, thereby improving their participation repudiation.

Once the AKE has been performed, the encrypt-then-MAC approach allows messages to
be exchanged asynchronously with out-of-order and dropped message resilience. However,
since a traditional AKE requires a complete handshake before actual messages can be
encrypted, this basic approach requires synchronicity during conversation initialization.

34

Additionally, since key agreements can only be performed with connected devices, there is
no trivial multi-device support.

2.4.4.6 Key Evolution

A desirable property is forward secrecy for individual messages rather than for entire con-
versations. This is especially useful in settings where conversations can last for the lifetime
of a device. To achieve this, the session key from the initial key agreement can be evolved
over time through the use of a session key ratchet [Ope13a]. A simple approach is to use
key derivation functions (KDFs) to compute future message keys from past keys. This
näıve approach, as used in SCIMP [MBZ12], provides forward secrecy. However, it does
not provide backward secrecy within conversations; if a key is compromised, all future
keys can be derived using the KDF. Speaker consistency is partially obtained since mes-
sages cannot be surreptitiously dropped by an adversary without also dropping all future
messages (otherwise, recipients would not be able to decrypt succeeding messages). If mes-
sages are dropped or arrive out of order, the recipient will notice since the messages are
encrypted with an unexpected key. To handle this, the recipient must store expired keys
so that delayed or re-transmitted messages can still be decrypted, leaving a larger window
of compromise than necessary. Thus, out-of-order and dropped message resilience are only
partially provided.

2.4.4.7 Diffie-Hellman Ratchet

A different ratcheting approach, introduced by OTR, is to attach new DH contributions
to messages [BGB04]. With each sent message, the sender advertises a new DH value.
Message keys are then computed from the latest acknowledged DH values. This design
introduces backward secrecy within conversations since a compromised key will regularly
be replaced with new key material. Causality preservation is partially achieved since
messages implicitly reference their causal predecessors based on which keys they use. The
same level of speaker consistency as the näıve KDF solution can be provided by adding
a per-speaker monotonic counter to messages. A disadvantage of the DH ratchet is that
session keys might not be renewed for every message (i.e., forward secrecy is only partially
provided). Like the KDF-based ratchet, the DH ratchet lacks out-of-order resilience; if
a message arrives after a newly advertised key is accepted, then the necessary decryption
key was already deleted.

35

2.4.4.8 Double-Ratchet (Axolotl)

To improve the forward secrecy of a DH ratchet, both ratchet approaches can be combined:
session keys produced by DH ratchets are used to seed per-speaker KDF ratchets. Messages
are then encrypted using keys produced by the KDF ratchets, frequently refreshed by
the DH ratchet on message responses. The resulting double ratchet, as implemented by
Axolotl [Per13], provides forward secrecy across messages due to the KDF ratchets, but also
backward secrecy since compromised KDF keys will eventually be replaced by new seeds.
To achieve out-of-order resilience, the Axolotl ratchet makes use of a second derivation
function within its KDF ratchets. While the KDF ratchets are advanced normally, the
KDF keys are passed through a second distinct derivation function before being used for
encryption.

Figure 2.5 depicts the double ratchet used in Axolotl. The secondary KDF, denoted
as KDF2, allows the chain keys (ci) to be advanced without sacrificing forward secrecy;
each ci is deleted immediately after being used to derive the subsequent chain key ci+1 and
the corresponding message key (ki) for encryption. If messages arrive out of order, this
system provides a mechanism for decrypting the messages without compromising forward
secrecy. For example, if Bob is expecting message M1 and is storing c1 in memory, but
then receives M2 instead, he uses c1 to compute k1, c2, k2, and c3. Bob uses k2 to decrypt
the newly received message, and then he deletes c1 and c2 from memory, leaving only k1

and c3. When the missing M1 eventually arrives, Bob can use k1 to decrypt it directly.
However, if an attacker compromises Bob’s system at this moment, they will be unable
to derive k2 to decrypt M2. A similar situation is depicted in Figure 2.5, where gray key
nodes denote keys held in memory after Alice was able to receive M4.

Axolotl also simplifies the use of its outer DH ratchet. In OTR, a chain of trust, allowing
trust in new DH key exchanges to be traced back to the original AKE, is provided through
the use of DH key advertisements and acknowledgments. To speed up this process, Axolotl
instead derives a root key from the initial AKE in addition to the initial DH keys. Each
subsequent DH secret is derived by using the sender’s latest DH key, the latest DH key
received from the other participant, and the current root key. Each time the DH ratchet is
advanced, a new root key is derived in addition to a new chain key. Since deriving the chain
keys requires knowledge of the current root key, newly received DH keys can be trusted
immediately without first sending an acknowledgment. Despite these improvements, the
double ratchet still requires synchronicity for the initial AKE.

36

A B
agreement(A0, B0)

DH(A1

Alice chooses A1

,B0)

c0

c1

c2

c3

k0

k1

k2

KDF1

KDF1

KDF1

KDF1

KDF2

KDF2

KDF2

DH(A1

Bob receives A1

,B0)

c0

c1

c2

c3

k0

k1

k2

KDF1

KDF1

KDF1

KDF1

KDF2

KDF2

KDF2

send(A1, 0

message counter

, Ek0(M0))

encrypt message with ki

message M1 lost

send(A1, 2,Ek2(M2))

DH(A1,B1

Bob chooses B1

)

c0

c1

c2

k0

k1

KDF1

KDF1

KDF1

KDF2

KDF2

DH(A1

Alice receives B1

,B1)

c0

c1

c2

k0

k1

KDF1

KDF1

KDF1

KDF2

KDF2

send(B1, 0,Ek0 (M3))

send(B1, 1,Ek1 (M4))

Figure 2.5: Simplified version of Axolotl: ci denote chain keys, ki message keys, KDFi
arbitrary key derivation functions, Eki an encryption function using ki, and Ai = gai and
Bi = gbi as public DH values. Gray key nodes denote keys held in memory after Alice
receives message M4.

37

2.4.4.9 3-DH Handshake

A triple DH (3-DH) handshake is a different AKE scheme that provides stronger partic-
ipation repudiation [Ope13d]. Specifically, transcripts of conversations between any two
participants can be forged by anyone knowing nothing more than the long-term public
keys of the participants. Figure 2.4b depicts a 3-DH AKE. Triple DH is an implicitly au-
thenticated key agreement protocol—a category that has been extensively examined in the
literature [MQV95; AJM95; Nat98; LMQ+03; Kra05; LM06; LLM07]. Assuming that Alice
and Bob both have long-term DH keys ga and gb and ephemeral keys gae and gbe , the 3-DH
shared secret s is computed as s = KDF(DH(gae , gbe)||DH(ga, gbe)||DH(gae , gb)) [Per13].
If a secure key derivation function is used, a MitM attacker must either know a and ae,
or b and be. Kudla et al. [KP05] have shown that the 3-DH key exchange provides the
same authentication level as achieved with the authenticated versions of DH key agree-
ments. 3-DH achieves full participation repudiation since anybody is able to forge a tran-
script between any two parties by generating both ae and be and performing DH key
exchanges with ga and gb. Assuming that Mallory uses gm as her long-term DH value
and gme as her ephemeral key agreement value, and that she knows Alice’s long-term
DH value ga, she is able to forge a transcript by choosing gae for Alice and calculating
s = KDF(DH(gae , gme)||DH(ga, gme)||DH(gae , gm)) as the common HMAC and encryption
secrets. Mallory can do this without ever actually interacting with Alice. Since the secret
is partially derived from the long-term public keys, 3-DH also provides participant consis-
tency without the need to explicitly exchange identities after a secure channel has been
established. Unfortunately, this also causes a partial loss of anonymity preservation since
long-term public keys are always observable during the initial key agreement (although
future exchanges can be protected by using past secrets to encrypt these identities). It
is possible to regain anonymity preservation by encrypting key identifiers with the given
ephemeral keys.

2.4.4.10 Prekeys

While a double ratchet does not provide asynchronicity by itself, it can be combined with
a prekey scheme to create an asynchronous version of the protocol. Prekeys are one-
time ephemeral public DH contributions that have been uploaded in advance to a central
server [Ope13b]. Clients can complete a DH key exchange with a message recipient by
requesting their next prekey from the server. When combined with a 3-DH exchange, this
is sufficient to complete an asynchronous AKE as part of the first message. In comparison
to time-window based FS-IBE approaches (cf. Section 2.4.4.3), this approach requires the

38

precomputation of a number of ephemeral keys; otherwise, forward secrecy is weakened.
However, this scheme also permits the destruction of the private ephemeral values imme-
diately after receiving a message using them, instead of keeping a key until a time window
expires.

TextSecure [Ope13c] is a popular Android app that combines Axolotl, prekeys, and
3-DH to provide an asynchronous user experience while sacrificing the no additional ser-
vice property. It has gained considerable attention recently after being incorporated into
WhatsApp [FMB+14; Ope14a]. Assuming Axolotl is used on two devices, the key material
can evolve independently for each device. However, if one of those devices remains offline
for a long time, a key compromise on that device is problematic: if the device can use its
outdated keys to read messages that were sent when it was offline, then this compromise
defeats forward secrecy ; if the device cannot read the old messages, then the protocol does
not achieve complete multi-device support. Deciding how long a device may be offline be-
fore it can no longer read buffered messages is an adoption consideration requiring further
study of user behavior.

2.4.5 Group Chat Evaluation

2.4.5.1 Trusted Central Servers (Baseline)

The baseline protocol described in Section 2.4.4.1, where clients simply connect to a trusted
central server using TLS, can trivially support group chats. While it is easy to add and
remove group participants in this system, the only thing preventing participants from
reading messages sent before or after they are part of the group is the trustworthiness of
the server. This fact is indicated by half circles for expandable / contractible membership.
SILC [SIL00] in its default mode is an example of a protocol using this design. While
SILC’s architecture involves a network of trusted servers similar to the IRC protocol, for
analysis purposes this network can be considered as one trusted entity.

To improve the security and privacy of these systems, participants can simply encrypt
and authenticate messages before sending them to the server by using a pre-shared secret
key for the group. This approach is useful because it can be applied as a layer on top
of any existing infrastructure. SILC has built-in support for this method in its “private
mode”; users can provide a password for a channel that is used to derive a pre-shared key
unknown to the server. While this design provides confidentiality and integrity, it does not
provide authentication.

39

2.4.5.2 Key Transport

Rather than relying on users to exchange a secret password out-of-band, it is far better to
automatically exchange a new secret for each conversation. A simple proposed method for
doing this is to have one participant generate a session key and securely send it to the other
participants. These systems begin by establishing secure channels between participants.
The conversation initiator then generates a group key and sends it to the other participants
using the pairwise channels. This design provides forward and backward secrecy since a new
group key is randomly generated for each conversation. Due to the use of a group leader,
computational and trust equality are also lost. However, groups are easily expandable and
contractible by having the initiator generate and distribute a new group key.

An early design of this type, proposed by Kikuchi et al. [KTN04], suggests using a key
directory to store static DH public keys for users. When group chats are formed, these
keys and are used to derive pairwise session keys for the participants. A modified DH
exchange is used in order to allow the server to reduce the required computation for the
clients. Participation repudiation is lost due to the design of the key exchange mechanism,
whose security properties have not been rigorously verified. An improvement, used in the
GROK protocol [CKFP10], is to use standard DH exchanges for the pairwise channels,
authenticated using long-term public keys stored in the key directory. This improvement
provides authentication and anonymity preservation, but still suffers from the inherent
inequality of key transport approaches.

2.4.5.3 Causality Preservation

One issue that is rarely addressed in the design of conversation security protocols is causal-
ity preservation. The user interface of the chat application must make design choices such
as whether to display messages immediately when they are received, or to buffer them until
causal predecessors have been received. However, the conversation security protocol must
provide causality information in order to allow the interface to make these choices.

OldBlue [VC12] is a protocol that provides speaker consistency and causality preserva-
tion. An authenticated group key agreement (GKA) protocol is executed at the start of
the conversation. Messages are encrypted with the group key and then signed with long-
term asymmetric keys. This approach to signatures eliminates message repudiation. To
preserve causality, messages include a list of identifiers of messages that causally precede
them. The OldBlue protocol conservatively assumes that any message received by a user
might influence the messages they subsequently send. Therefore, all received messages are
considered to causally precede subsequently transmitted messages. Message identifiers are

40

hashes of the sender, the list of preceding identifiers, and the message contents. When a
message has been lost, the client continuously issues resend requests to the other clients.

A different approach is employed by KleeQ [RKAG07], a protocol designed for use
by multiple trusted participants with tenuous connectivity. An authenticated multi-party
DH exchange is performed to initiate the protocol. By authenticating the parameters in
a manner similar to OTR, participation repudiation can be provided. The group can be
easily expanded by incorporating the DH contribution of a new member into the multi-
party DH exchange, deriving a new group key. However, the group is not contractible
without restarting the protocol. When two conversation participants can establish a con-
nection, they exchange the messages that the other is missing using a patching algorithm.
All messages are encrypted and authenticated with a MAC using keys derived from the
group secret, providing message repudiation. Messages are sealed into blocks, which are
sequences of messages having the property that no messages could possibly be missing.
After each block is sealed, rekeying is performed using the previous keys and the block
contents. A mechanism is provided to seal blocks even if some users are inactive in the
conversation. Speaker consistency is not guaranteed until the messages have been sealed
in a block. While participants are authenticated during group formation, message contents
are not authenticated until after they have been sealed into a block. The block sealing
mechanism indirectly provides participant consistency and destination validation. If mali-
cious participants send differing messages to others, this will be uncovered during the block
sealing phase. Manual resolution is required to identify malicious participants.

2.4.5.4 OTR Networks

Since OTR [BGB04] provides desirable features for two-party conversations, it is natural
to extend it to a group setting by using OTR to secure individual links in a network. A
basic strategy is to enlist a trusted entity to relay messages and then secure client links
to this entity using OTR. This is the approach taken by the GOTR protocol released in
2007 (we write the year to distinguish it from a different protocol with the same name
from 2013). GOTR (2007) [BST07] selects a participant to act as the relay, forming a
star topology of pairwise connections with the selected participant acting as the hub. All
authentication properties, speaker consistency, and causality preservation are lost because
they do not persist across the relay node. Since the relay server can buffer messages,
asynchronicity is provided as long as the relay node remains online. All other properties
are inherited from OTR. Groups can be expanded and contracted simply by establishing
new OTR connections to the relay.

41

Instead of using a star topology, pairwise OTR connections between all participants
can be established. This approach restores authentication and anonymity preservation, as
well as equal trust between members. It is also possible to send messages to subgroups by
only transmitting the message across selected OTR links. The downside of this approach
is that it does not preserve causality or provide speaker consistency ; participants can send
different messages to different people. This design also incurs significant computational
overhead. It would be desirable to achieve these security properties without this level of
additional cost.

2.4.5.5 OTR for Groups

Several protocols have been proposed to achieve OTR-like repudiation properties for group
conversations. The TextSecure protocol can be naturally extended to groups by sending
messages to each recipient using the two-party TextSecure protocol [Ope14b]. Multicast
encryption is used for performance: a single encrypted message is sent to a central server
for relaying to recipients while the decryption key for the message is sent pairwise using
TextSecure. In practice, the wrapped decryption keys are attached to the same message
for broadcasting. It is also possible to accomplish this task using one of the many existing
broadcast encryption schemes [FN94]. This design does not provide any guarantees of
participant consistency, but it inherits the asynchronicity of the two-party TextSecure pro-
tocol. Speaker consistency and causality preservation are achieved by attaching preceding
message identifiers to messages. A message identifier is a hash of the sender, the list of
preceding identifiers, and the message contents.

A repudiable group chat scheme can also be designed by utilizing a deniable group
key exchange (DGKE) protocol, as in the mpOTR protocol [GUVC09; Van13]. When
completed, the DGKE provides each participant with a shared secret group key and in-
dividual ephemeral signing keys. This information is authenticated with long-term keys
in a manner providing participation repudiation while still authenticating participants—
participants receive proof of each other’s identities, but this proof cannot be used to con-
vince outsiders. All parties must be online to complete the DGKE, so the protocol does
not support asynchronicity. Messages are encrypted with the shared group key and signed
with the ephemeral keys. The ephemeral signatures provide proof of authorship to others
in the group but, because outsiders cannot be certain that these ephemeral signing keys
correspond to specific long-term keys, message repudiation is preserved. However, since all
messages from an individual are signed with the same (ephemeral) key, the protocol does
not have message unlinkability. When the conversation has concluded, each participant
hashes all messages received from each other participant. The hashes are then compared

42

to ensure that everyone received the same set of messages, providing speaker consistency.
If this check fails, messages must be individually compared to uncover discrepancies. This
approach, where a consistency check is performed only once at the conclusion of the conver-
sation, does not work if a network adversary disconnects users from the conversation before
the consistency check can be completed. In this worst-case scenario, the only information
received by users is that something went wrong at some point during the protocol, but
nothing more specific. Unfortunately, in many scenarios it is unclear how users should re-
spond to this limited information. In this scheme, subgroup messaging is not possible since
all messages share a single encryption key. The group is also not expandable or contractible
without performing a new DGKE.

A completely different approach is taken by the GOTR (2013) protocol. GOTR
(2013) [LVH13] is built using a “hot-pluggable” group key agreement (GKA) protocol,
allowing members to join and drop out of the conversation with little overhead. This sys-
tem involves the use of “circle keys”: sets of public keys having the property that a shared
secret key can be computed by anyone with a private key matching a public key in the set.
The key exchange mechanism in this protocol is relatively complex; we refer the interested
reader to the original publication for details [LVH13]. Pairwise secure channels are set up
between participants to send consistency check messages. These consistency channels have
the effect of providing global transcript order, but all participants are required to be online
to receive messages. The system otherwise provides features similar to mpOTR but with
flexible group membership and message unlinkability.

2.4.6 Discussion

Similar to our study of trust establishment, Table 2.2 makes immediately clear that no
conversation security protocol provides all desired properties. Since most of the properties
in the table are not mutually exclusive, however, there is significant room for improvement
by combining protocol designs and this should be seen as a tangible and important call to
action for the research community.

Sadly, the most widely adopted solutions also have the worst security and privacy prop-
erties, with most non-security-focused applications providing only basic static asymmetric
cryptography. This does not appear to be due to the usability drawbacks of the more
secure protocols: once the trust establishment has been done, all of the conversation se-
curity approaches we studied can be automated without any additional effort for the user.
An exception is enabling asynchronous communication while still providing forward and
backward secrecy ; the only solution for this problem that appears to have any significant

43

deployment in practice is the prekeys approach implemented by TextSecure. This requires
relatively complicated infrastructure compared to a simple key server, introduces problems
for multi-device support, and is prone to denial-of-service attacks if it is used in anonymous
communication. This approach is poorly studied in the academic literature. The FS-IBE
scheme discussed in Section 2.4.4.3 promises to resolve the issues of server complexity and
denial of service, but introduces new challenges such as scalability and performance is-
sues [CHK03]. Unlike prekeys (Section 2.4.4.10), this scheme has received a considerable
amount of follow-up research and academic citations, but we are unaware of any practical
tool implementing it. In addition, a time-window based FS-IBE scheme requires holding
the ephemeral keys for a certain amount of time to allow decryption of delayed messages.
One possible mitigation is to rely on an additional server maintaining window counters
where every window number is used once, analogous to the prekeys approach. Improving
the practicality of FS-IBE and puncturable encryption schemes warrants further research.

Another outstanding concern that limits adoption of secure conversation security pro-
tocols is the limited support for multiple devices. Despite a vast number of users owning
multiple devices, only the most insecure protocols support this property without requiring
users to perform pairing procedures. Device pairing has proved extremely difficult for users
in practice [KFR09; War14] and allowing users to register multiple devices with distinct
keys is a major usability improvement. Although extremely difficult, implementing usable
device pairing is not necessarily an insurmountable problem. Additional work in this area
is needed.

When it comes to group chat properties, we can identify several areas for improvement
in Table 2.2. Classic protocols often do not provide participant consistency or destina-
tion validation, making them potentially vulnerable to surreptitious forwarding or identity
misbinding attacks. However, these are sometimes addressed in concrete implementations.
The double ratchet used in Axolotl improves forward secrecy with low cost in performance,
implementation complexity, and resilience, but it has not yet been thoroughly evaluated
in an academic context. Additionally, decentralized group chat systems inherently permit
a participant to send different messages to different people. Due to network conditions,
users can also end up observing significantly different transcripts. Despite these intrinsic
weaknesses, surprisingly few protocols explicitly consider speaker consistency or causality
preservation. The recently proposed (n+1)sec protocol [eQu15] is an example of new work
in this area. (n+1)sec builds off of the flexible group key exchange protocol of Abdalla et
al. [ACMP10] to provide a DGKE and checks for transcript consistency.

Existing solutions achieve mixed results concerning repudiation. For the definitions
of participation repudiation and message repudiation used in this chapter, the two-party
protocols based on authenticated DH key exchanges and the OTR-like group protocols

44

provide inexpensive solutions. However, there exist stronger definitions of deniability that
none of the evaluated approaches adequately satisfies. We return to this issue in Chapter 3.

There are also additional adoption constraints imposed by many modern secure group
chat protocols. Group protocols often choose to employ either a trusted participant or an
additional service to improve protocol performance, which can lead to security concerns
or introduce additional costs for deployment. Very few group protocols support subgroup
messaging or changing group membership after the conversation has started without in-
curring the substantial costs of a new protocol run. Additionally, many proposed designs
require synchronicity in order to simplify their protocols, which largely precludes their use
on current mobile devices.

2.5 Transport Privacy

The transport privacy layer defines how messages are exchanged, with the goal of hiding
message metadata such as the sender, receiver, and conversation to which the message
belongs. Some transport privacy architectures impose topological structures on the con-
versation security layer, while others merely add privacy to data links between entities.
The transport privacy schemes may also be used for privacy-preserving contact discovery.
In this section, we compare approaches for transport privacy in terms of the privacy fea-
tures that they provide, as well as usability concerns and other factors that limit their
adoption. Table 2.3 compares the various schemes.

2.5.1 Privacy Features

We make the distinction between chat messages, which are the user-generated payloads
for the messaging protocol to exchange, and protocol messages, which are the underlying
data transmissions dictated by the upper protocol layers. We define the following privacy
properties:

• Sender Anonymity: When a chat message is received, no non-global entities except
for the sender can determine which entity produced the message.

• Recipient Anonymity: No non-global entities except the receiver of a chat message
know which entity received it.

• Participation Anonymity: No non-global entities except the conversation partic-
ipants can discover which set of network nodes are engaged in a conversation.

45

Scheme Example Privacy Usability Adoption

S
en

d
er

A
n
onym

ity

R
ecip

ient
A

n
onym

ity

P
articip

.
A

n
onym

ity

U
n
lin

kab
ility

G
lob

al
A

d
v.

R
esistant

C
ontact

D
iscovery

N
o

M
essage

D
elays

N
o

M
essage

D
rop

s

E
asy

In
itialization

N
o

F
ees

R
equ

ired

T
op

ology
In

d
ep

en
d
ent

N
o

A
d
d
ition

al
S
ervice

S
p
am

/F
lood

R
esistant

L
ow

S
torage

L
ow

B
an

d
w
id

th

L
ow

C
om

p
u
tation

A
syn

ch
ron

ou
s

S
calab

le

Store-and-Forward†* Email/XMPP - - - - - - -

+DHT Lookup†* Kademlia - - -

Onion Routing+Message Padding†* Tor - - - - -

+Hidden Services* Ricochet - - - -
+Inbox Servers† - - - - - -

+Random Delays†* Mixminion - - - - -

+Hidden Services+Delays+Inboxes+ZKGP* Pond - - - -

DC-Nets†* - - - - - - - - -
+Silent Rounds† Anonycaster - - - - - - -
+Shuffle-Based DC-Net+Leader† Dissent - - - - - - -
+Shuffle-Based DC-Net+Anytrust Servers† Verdict - - - - - - -

Message Broadcast† - - - - - - -
+Blockchain - - - - - - - -

PIR* Pynchon Gate - - - - -

= provides property; = partially provides property; - = does not provide property;
†has academic publication; *end-user tool available

Table 2.3: Transport privacy schemes. Every privacy-enhancing approach carries usability and/or adoption
costs.

46

• Unlinkability: No non-global entities except the conversation participants can dis-
cover that two protocol messages belong to the same conversation.

• Global Adversary Resistant: Global adversaries cannot break the anonymity of
the protocol.

2.5.2 Usability Properties

• Contact Discovery: The system provides a mechanism for discovering contact
information.

• No Message Delays: No long message delays are incurred.

• No Message Drops: Dropped messages are retransmitted.

• Easy Initialization: The user does not need to perform any significant tasks before
starting to communicate.

• No Fees Required: The scheme does not require monetary fees to be used.

2.5.3 Adoption Properties

• Topology Independent: No network topology is imposed on the conversation se-
curity or trust establishment schemes.

• No Additional Service: The architecture does not depend on availability of any
infrastructure beyond the chat participants.

• Spam/Flood Resistant: The availability of the system is resistant to denial-of-
service attacks and bulk messaging.

• Low Storage Consumption: The system does not require a large amount of storage
capacity for any entity.

• Low Bandwidth: The system does not require a large amount of bandwidth usage
for any entity.

• Low Computation: The system does not require a large amount of processing
power for any entity.

47

• Asynchronous: Messages sent to recipients who are offline will be delivered when
the recipient reconnects, even if the sender has since disconnected.

• Scalable: The amount of resources required to maintain system availability scales
sublinearly with the number of users.

2.5.4 Evaluation

2.5.4.1 Store-and-Forward (Baseline)

To evaluate the effectiveness and costs of different transport privacy architectures in Ta-
ble 2.3, we compare the solutions to a baseline. For the baseline protocol, we assume a
simple store-and-forward messaging protocol. This method is employed by email and text
messaging, causing minor message delays and storage requirements for intermediate servers.
Since email headers contain sender and recipient information, a simple store-and-forward
mechanism does not provide any privacy properties.

2.5.4.2 Peer-to-Peer Solutions

Instead of relying on centralized servers for message storage and forwarding, peer-to-peer
based schemes try to establish a direct message exchange between the participants. Since
end users frequently change their IP addresses, these systems often use Distributed Hash
Tables (DHTs) to map usernames to IP addresses without a central authority. Examples of
popular DHT systems are Chord, Kademlia (used by BitTorrent), and GNUnet [SML+01;
MM02; PGES05]. In addition to acting as an IP address lookup table, it is possible to
store exchanged messages directly in a DHT. Various query privacy extensions have been
proposed to prevent other users from learning what data is being requested. They can be
used in advanced DHT overlays allowing anonymous queries and message exchange [KT08;
WB12; BGKT12].

Global network adversaries are still able to see the traffic flow between participants
during message exchange. Thus, clients have two options to protect the data flow: fake
message transmissions, or use anonymization techniques. End-user clients might use ser-
vices such as onion routing, which is evaluated in the next section, to hide their identities.

From the usability and adoption perspective, peer-to-peer networks require a syn-
chronous environment. DHTs can be used for contact discovery with easy initialization,
but they introduce message delays and message drops.

48

In practice, various end-user applications use the BitTorrent or GNUnet networks for
their secure messaging service. For instance, Tox, Bleep, and other messengers use BitTor-
rent for message exchange. The GNUnet Name Service (GNS) offers privacy-preserving
name queries for contact discovery [WSG14a].

2.5.4.3 Onion Routing

Onion routing is a method for communicating through multiple proxy servers that com-
plicates end-to-end message tracing [RSG98]. In onion routing, senders send messages
wrapped in multiple layers of encryption through preselected paths—called circuits—of
proxy servers. These servers unwrap layers of encryption until the original message is ex-
posed, at which point it is relayed to the final destination. Each node in the path only
knows the immediate predecessor and successor in the path. The routing process adds some
latency to messages, but otherwise retains the baseline usability features. An onion rout-
ing protocol, such as the widely used Tor protocol [DMS04], provides sender anonymity,
participant anonymity, and unlinkability against network attackers with limited scope.

Global network adversaries are still able to break the anonymity properties of simple
onion routing designs by performing statistical analysis incorporating features such as
content size, transmission directions, counts, and timing, among others. The success of
such an adversary can be limited by individually eliminating these features. Protection
can be added, for example, by introducing random delays to transmissions. The longer
the allowed delays, the less statistical power is available to the adversary. Of course, this
imposes potentially long message delays and additional storage requirements for relays,
making it unusable for synchronous instant messaging.

Unfortunately, random delays do not completely defeat global adversaries. The only
way to do so is to make transmission indistinguishable from no transmission (e.g., by sat-
urating the bandwidth of all connections). However, in practice, this is likely infeasible.
Additionally, concrete implementations such as Tor often provide weaker anonymity guar-
antees than idealized onion routing schemes. Several prominent attacks against Tor have
been based on implementation defects, limited resources, weaknesses introduced by perfor-
mance trade-offs, and predictability of the content being transmitted [MD05; BMG+07;
EDG09; PNZE11]. Adoption of onion routing is limited by the requirement to establish a
large network of nodes to provide a sufficient anonymity set and cover traffic.

In the default mode, onion routing systems do not provide recipient anonymity. How-
ever, Tor can be modified to achieve this property using an extension called hidden services.
To create a Tor hidden service, the recipient uses traditional Tor circuits to upload a set of

49

introduction points and a public key to a public database. The sender later uses a circuit
to acquire this information from the database. The sender chooses a rendezvous point and
sends it along with a nonce to the recipient through an introduction point. The recipient
and sender both connect to the rendezvous point, which uses the nonce to establish a
communication channel by matching up the sender and recipient circuits.

To provide asynchronous communication support, store-and-forward servers can be
incorporated into the onion routing model. Each user is associated with a Tor hidden
service that remains online. To send a message, the sender constructs a circuit to the
recipient’s server and transmits the message. Users periodically poll their own servers to
determine if any messages are queued. Ricochet is an example of this approach [Ric14].

Pond uses this design for its transmission architecture [Lan13b] but adds random delays
between connections, all of which transmit the same amount of data, to weaken statistical
analysis by network adversaries. While some protection against global network adversaries
is provided by the onion routing model, this protection is strictly weaker than Tor because
connections are made directly from senders to recipient mail servers. This design requires
storage commitments by servers and also introduces very high latency.

Without additional protections, this scheme is also highly vulnerable to denial-of-service
attacks because connection delays and fixed transmission sizes artificially limit bandwidth
to very low levels. Pond addresses this by requiring users to maintain group lists secured by
zero-knowledge-group-proof schemes (ZKGP). This way, recipients can upload contact lists
without revealing their contacts. Simultaneously, senders can authenticate by providing
zero-knowledge proofs that they are in this list. The BBS signature scheme [BBS04] is
currently used by Pond to achieve this. Additional work is underway to provide a similar
mechanism in more efficient manner by using one-time delivery tokens [Lan13b].

The ZKGP schemes used by Pond are related to secret handshake protocols. Secret
handshakes enable authentication between parties that share some attributes, while keeping
identities hidden from others [BDS+03].

2.5.4.4 DC-nets

Dining Cryptographer networks (DC-nets) are anonymity systems that are often compared
to onion routing schemes. Since they are primarily used as a general-purpose transport
privacy mechanism, many varieties have been proposed [Cha88; WP89; GRPS03; GJ04;
CF10; Hea12; WCFJ12; CWF12; SCW+14]. We focus on recently introduced schemes
that explicitly list secure messaging as an intended use case.

50

DC-nets are group protocols that execute in rounds. At the start of each round, each
participant either submits a secret message or no message. At the end of the round, all par-
ticipants receive the xor of all secret messages submitted, without knowing which message
was submitted by which participant. In this way, DC-nets provide sender anonymity while
also achieving global adversary resilience—no statistical analysis can reveal the sender of
a message. Recipient anonymity can be achieved by using the protocol to publish an
ephemeral public key. Messages encrypted with this key are then sent and, since the owner
of the matching private key is unknown, the participant able to decrypt the messages
cannot be determined. Since messages are sent in rounds, DC-nets add message latency
and do not support asynchronous communication; dropped messages prevent the protocol
from advancing. Messages are easily linked by observing which network nodes partici-
pate in a round. Additionally, DC-nets have limited scalability due to requiring pairwise
communication.

The basic DC-net design has a problem with collisions: if two parties submit a message
in the same round, the result will be corrupted. A malicious participant can exploit this to
perform an anonymous denial-of-service attack by submitting garbled messages each round.
Worse still, an active network attacker can also perform this attack by perturbing trans-
mitted bits. There are several approaches to mitigate this problem. Anonycaster [Hea12]
adds pseudorandomly determined “silent rounds” where all members know that no message
should be contributed. Receipt of a message during a silent round indicates a denial-of-
service attack by an active network attacker. However, malicious participants can still
launch attacks by sending garbled messages only during non-silent rounds.

Dissent [CF10; WCFJ12; SCW+14] and Verdict [CWF12] take a different approach
by constructing a DC-net system through the use of a verifiable shuffle and bulk transfer
protocol. Shuffle-based DC-nets can include a blame protocol to pinpoint the entity that
caused a round to fail. Dissent appoints one participant as a leader to manage round
timing, the blame protocol, and exclusion of disconnected members from rounds, thereby
restoring support for asynchronicity. Verdict uses an alternative approach where the DC-
net protocol is executed by a set of central servers that clients connect to, providing greater
scalability and maintaining security as long as any one server is honest.

While DC-nets are primarily a transport privacy mechanism, they are distinguished
from other schemes by their use of rounds and the fact that every network node is also a
participant in the conversation. When using DC-nets to transmit higher-level conversation
security protocols, it is important for designers to consider how these properties affect
the overall security of the scheme (e.g., the use of synchronous rounds creates a global
transcript, and the details of the DC-net key exchanges may cause a loss of participation
repudiation).

51

2.5.4.5 Broadcast Systems

There is a simple approach to providing recipient anonymity against all attackers, including
global adversaries: distributing messages to everyone. This approach provides recipient
anonymity, participation anonymity, and unlinkability against all network attackers. It
also provides a natural way to discover contacts because requests for contact data can
be sent to the correct entity without knowledge of any addressing information. However,
there are some serious downsides that hinder adoption: broadcasting a message to everyone
in the network requires high bandwidth, there is no support for asynchronicity, and it
has extreme scalability issues. Additionally, it is easy to attack the availability of the
network through flooding. Bitmessage [Bit12], a broadcast-based transport system, either
requires monetary fees or a proof of work to send messages in order to limit spam, adding
computation requirements and message delays as represented by the blockchains row in
Table 2.3. It is also possible to alleviate scalability problems by clustering users into
smaller broadcast groups, at the cost of reduced anonymity set sizes.

2.5.4.6 PIR

Private Information Retrieval (PIR) protocols allow a user to query a database on a server
without enabling the server to determine what information was retrieved. These systems,
such as the Pynchon Gate [SCM05], can be used to store databases of message inboxes, as
well as databases of contact information. Recipient anonymity is provided because, while
the server knows the network node that is connecting to it, the server cannot associate
incoming connections with protocol messages that they retrieve. For the same reason, the
protocols offer participation anonymity and unlinkability. By default, there is no mecha-
nism for providing sender anonymity. These systems are naturally asynchronous, but they
result in high latency because inboxes must be polled. The servers also incur a high storage
cost and are vulnerable to flooding attacks.

PIR schemes can also be used to privately retrieve presence information, which can
be useful for augmenting synchronous protocols lacking this capability. For example,
DP5 [BDG14] uses PIR to privately provide presence data for a secure messaging pro-
tocol; DP5 does not facilitate message transmission itself.

PIR implementations can be divided into computational schemes, which rely on com-
putational limitations of the server, information-theoretic schemes, which rely on non-
collusion of servers, and hybrid schemes that combine properties of both. There is also a
class of PIR schemes that makes use of secure coprocessors, which requires users to trust
that the (remote) coprocessor has not been compromised. PIR implementations differ in

52

their bandwidth, computation, and initialization costs, as well as their scalability. PIR is
not widely adopted in practice because one or more of these costs is usually prohibitively
expensive.

2.5.5 Discussion

If messages are secured end to end, leaving only identifiers for anonymous inboxes in the
unencrypted header, then metadata is easily hidden from service operators. Assuming that
each message is sent using new channels, an adversary is not able to link single messages
to conversations. However, such schemes introduce adoption and usability issues; they
are prone to spam, flooding, and denial-of-service attacks, or require expensive operations
such as zero-knowledge authentication, posing barriers to adoption. Worse still, hiding
metadata from a global adversary in these schemes necessitates serious usability problems
such as long delays.

In contrast, decentralized schemes either exhibit synchronicity issues or have serious
scalability problems. Most decentralized projects, especially BitTorrent-based approaches,
lack detailed documentation that is required for complete evaluation. Some tools claiming
to hide metadata only do so in the absence of global network adversaries, which recent
surveillance revelations suggest may exist.

Broadcast-based schemes can achieve the best privacy properties, but exhibit serious
usability issues, such as lost or delayed messages, in addition to apparently intractable
scalability issues. Even if anonymous transmission schemes are adopted, they require
a large user base to provide a high degree of anonymity, potentially discouraging early
adopters. Finally, care must be taken when selecting a conversation security scheme to
avoid leaking cryptographic material or identifiers that might lead to deanonymization.

2.6 Future Directions

The vast majority of the world’s electronic communication still runs over legacy protocols
such as SMTP, SMS/GSM, and centralized messengers, none of which were designed with
end-to-end security in mind. We encourage the research community to view the high-profile
NSA revelations in the United States as a golden opportunity to encourage the adoption
of secure systems in their place. As the old adage goes: “never let a crisis go to waste”.

Unfortunately, while we have seen considerable progress in practical tools over the past
two years, there is little evidence suggesting that academic research on secure messaging

53

has dramatically increased. This is unfortunate for two reasons: first, many interesting
problems of practical importance remain unresolved. In particular, apparent practical
deployment constraints, including limitations for asynchronous communication, multiple
independent devices, and zero user effort, are not fully appreciated in most published
research papers. Second, many theoretically solved problems are not considered in prac-
tice, whether because developers are unaware of their existence, or because they cannot
immediately translate the cryptographic publications into working systems.

Our effort to systematize existing knowledge on secure messaging suggests three major
problems must be resolved: trust establishment, conversation security, and transport pri-
vacy. The schemes can largely be chosen independently, yielding a vast design space for
secure messaging systems. Yet we also caution against a proliferation of à-la-carte systems
for specific niches. The main purpose of communication networks is to interact with others
and there is considerable value in having a small number of popular protocols that connect
a large number of users. Currently, many people fall back to email despite its insecurity.

We also note that, disappointingly, most of the exciting progress being made right now
is by protocols that are either completely proprietary (e.g., Apple iMessage) or are open-
source but lack a rigorously specified protocol to facilitate interoperable implementations
(e.g., TextSecure). An open standard for secure messaging, combining the most promising
features identified by our survey, would be of immense value.

Inevitably, trade-offs have to be made. We conclude that secure approaches in trust
establishment perform poorly in usability and adoption, while more usable approaches lack
strong security guarantees. We consider the most promising approach for trust establish-
ment to be a combination of central key directories, transparency logs to ensure global
consistency of the key directory’s entries, and a variety of options for security-conscious
users to verify keys out of band to put pressure on the key directory to remain honest.

Our observations on the conversation security layer suggest that asynchronous environ-
ments and limited multi-device support are not fully resolved. For two-party conversation
security, per-message ratcheting with resilience for out-of-order messages combined with
deniable key exchange protocols, as implemented in Axolotl, can be employed today at
the cost of additional implementation complexity with no significant impact on user ex-
perience. The situation is less clear for secure group conversations; while no approach is
a clear answer, the TextSecure group protocol provides pragmatic security considerations
while remaining practical. It may be possible to achieve other desirable properties, such
as participant consistency and anonymity preservation, by incorporating techniques from
the other systems. It remains unclear exactly what consistency properties are required to
match users’ expectations and usability research is sorely needed to guide future protocol

54

design. Finally, transport privacy remains a challenging problem. No suggested approaches
managed to provide strong transport privacy properties against global adversaries while
also remaining practical.

The active development of secure messaging tools offers a huge potential to provide
real-world benefits to millions. Our goal in this chapter was to support this development
by systematizing secure messaging research and highlighting several areas for future work.
Next, we will focus our attention on one of these open problems: improving the deniability
properties of existing conversation security schemes.

55

Chapter 3

Deniability for Secure Messaging

In the original publication of Off-the-Record Messaging, Borisov et al. argued that unre-
stricted non-repudiation is an undesirable property for secure messaging protocols [BGB04].
Instead, a better approach is to provide authentication only for the parties taking part in
the protocol, while preventing the transfer of proofs of authorship to other parties. If ob-
servers of the protocol cannot be certain that the conversation was genuine, then the con-
versation participants can speak without fear of their statements being plausibly attributed
to them by third parties. In other words, the participants can speak “off-the-record”. If a
protocol provides this property, then we say that it offers “deniability” or “repudiation”.

Since the release of OTR, many secure messaging protocols have attempted to pro-
vide deniability. However, different schemes define deniability in slightly different ways.
Additionally, no existing secure messaging schemes can be said to be deniable under all
definitions. This incomprehensiveness is despite the fact that these definitions are largely
orthogonal, and deniability properties can be implemented without any effects on the us-
ability of the protocol (since they are provided by the conversation security component).

In this chapter, we discuss various definitions of deniability that have been proposed
in the literature. We then turn our attention to deniable authenticated key exchanges—a
class of cryptographic protocols that can be used to construct deniable secure messaging
schemes. There exists only one known key exchange protocol that satisfies all of our de-
niability definitions, but it has never been implemented. We discuss this existing protocol
and present an improvement that makes its use practical in many environments. We then
construct two new efficient deniable key exchange protocols designed to provide strong
repudiation in modern messaging environments (e.g., asynchronous smartphone communi-
cations). We focus solely on two-party protocols in this chapter.

56

3.1 Deniability

Deniability is a notoriously difficult concept to define. This problem arises due to the
fact that deniability is actually a series of distinct, but related, properties. When we
discuss deniability, we must do so with respect to an action and a type of judge.1 We say
that an action is deniable with respect to a given judge if the judge cannot be convinced
that an individual performed the action. To make such a statement, we need to define
the environment in which the judge resides, and the type of evidence that is required to
convince the judge that the action was performed. If an action is deniable with respect
to a judge, we can say that individuals can “plausibly deny” performing the action (with
the definition of “plausibility” being determined by the requirements of the given judge).
In this chapter, we focus on interesting actions and judges within the context of secure
messaging protocols.

3.1.1 Deniable Conversations

There are two primary aspects of conversations that can be called deniable. We can say
that any messages transmitted in a conversation are deniable (message repudiation), but
we can also say that participation in the conversation itself is deniable (participation repu-
diation). A secure messaging protocol that offers message repudiation but not participation
repudiation with respect to a given judge allows the judge to conclude that two users com-
municated with each other, but not that a given message was exchanged as part of that
conversation. When a user participates in a protocol offering participation repudiation
but not message repudiation, the situation is more nuanced. The user can plausibly deny
taking part in the conversation, but if a judge somehow becomes convinced that they did
participate, then they cannot deny the transmission of the messages within the conversa-
tion. For example, if Alice benefits from admitting to the judge that she spoke to Bob
on a given date, but she would like to deny sending a particular message as part of that
conversation, she would not be able to so in a protocol lacking message repudiation.

1When we refer to judges, we are referring to entities that decide whether or not a certain event
occurred. We are not referring to judges in the sense of the legal profession; however, judges of the latter
type are often judges of the former type.

57

3.1.2 Judges

We now turn to the task of defining judges relevant to deniability in secure messaging
protocols.

3.1.2.1 Plausible Deniability

When defining a judge, we must address the issue of plausibility. Namely, we must define
the conditions under which the judge will believe that a user performed a given action,
such as sending a message or participating in a conversation (and correspondingly, the
situations in which performing the action is plausibly deniable).

Unfortunately, we must make some assumptions about the behavior of judges if we wish
to make meaningful statements about the deniability of secure messaging protocols. If we
allow judges to use any criteria to deliver judgments, then we can never conclude that an
action is deniable (e.g., we cannot enable a user to plausibly deny performing an action to
a judge that arrives at conclusions randomly). However, we must ensure that we model
the behavior of judges in a realistic way. If we require a judge to have an unrealistically
large amount of evidence to be convinced of an action, then we may admit protocols that
are not deniable in practice. In contrast, underestimating the amount of evidence needed
by a judge may unrealistically exclude protocols from being called deniable.

In the secure messaging literature, it is common to consider only judges that behave in
one specific manner. These judges are completely rational, and decide on the plausibility
of an event based solely on the evidence presented to them. Moreover, the only acceptable
evidence for these judges is a valid cryptographic proof showing that the event must have
occurred. Normally, this involves an unforgeable cryptographic signature, generated using
secret keys known to be available only to the user in question, that testifies to the action
in question, and that is verifiable by the judge.

Note that unencrypted messages sent between Internet users (e.g., unencrypted IRC
conversations) provide both message and participation repudiation against a judge of this
type. This is intuitively true because anyone can forge a transcript of such a communica-
tion, and thus it would not constitute convincing evidence. It is also important to note that
the model of the judge should take practical considerations into account when assessing the
implications of evidential cryptographic proofs. For example, if the judge receives crypto-
graphic proof that a message was either sent by Alice or by Mallory, under the condition
that Mallory had access to unrealistically powerful computational resources, then Alice
may not be able to convincingly deny sending the message in practice. In contrast, a proof

58

showing that a message was either sent by Alice or by one other unspecified individual with
commonly available resources is likely to provide far more plausible deniability in practice.

In this chapter, we consider only protocols that offer very strong deniability. These
protocols allow conversation transcripts to be forged by any user with the ability to per-
form basic computations, while still providing authentication to conversation participants.
Consequently, no unforgeable cryptographic proofs can be produced to convince a judge
that sessions of these protocols took place.

3.1.2.2 Judge Positioning

In addition to the requirements for evidence, we must also define the circumstances of
the judge. Specifically, we must define their relationship to the participants in the secure
messaging protocol, and their capabilities. There are two primary types of judges that
have been discussed in the secure messaging literature: offline judges, and online judges.

An offline judge examines the transcript of a protocol execution that occurred in
the past, and decides whether or not the event in question occurred. A judge of this
type is given a protocol transcript, showing all of the (usually encrypted) data transmitted
between participants, and a chat transcript, showing the high-level chat messages that were
exchanged. The judge must then decide whether the protocol and chat transcript constitute
proof that the action in question occurred (e.g., a given user sent a given message, or two
given users communicated with each other using the secure messaging protocol). When
proving the deniability of protocols, it is also normally assumed that an offline judge
is given access to the long-term secrets of all parties named in the transcript; judges
should not be able to distinguish real transcripts from fake ones even when given access
to these secret keys. Since a judge with access to these long-term secrets has at least
as much distinguishing power as the same judge without this access, designing protocols
that achieve this level of deniability ensures that judges have no incentive to compromise
long-term secrets in practice. Chapter 2 exclusively considered judges of this type.

Typically, deniability with respect to offline judges is provided by allowing others to
produce forged chat and protocol transcripts. If a protocol transcript can be forged, then
the protocol provides participation repudiation. If an alternate chat transcript can be
forged for a given protocol transcript, then the protocol provides message repudiation.
Security proofs for these properties typically demonstrate that a simulator can produce
transcripts that a judge cannot distinguish from real transcripts.

An online judge interacts with a protocol participant, referred to as the informant,
while the secure messaging protocol is being executed. The judge has a secure and private

59

connection to the informant, and may instruct the informant to perform actions in the
protocol. The goal of the judge is to evaluate whether the actions of other participants
in the protocol are actually occurring, or if the informant is fabricating the conversation
(i.e., they are actually a misinformant). The judge does not have any direct visibility into
the network, but it may instruct the informant to corrupt participants. The judge is also
informed whenever a participant has been corrupted. This situation can be likened to a
real-world situation in which the informant is “wearing a wire” and an earpiece providing
secure communication to a judge in another physical location.

3.1.3 Practicality

There has previously been some debate within the secure messaging community as to
whether or not deniability should be implemented in end-user tools [Hea14]. There are
two main arguments against designing deniable messaging protocols: deniability properties
are too expensive to implement, given their benefits, and these properties are not useful
in practice. As we explained in Chapter 2, the relevant deniability properties for secure
messaging protocols are part of the conversation security component, and thus carry no
usability consequences. We argue that incorporating some deniability properties into secure
messaging proocols is now reasonably inexpensive due to the availability of efficient deniable
key exchange protocols offering offline repudiation (see Chapter 2).

While the secure messaging literature mostly focuses on judges that understand cryp-
tography and rely on cryptographic proofs to make decisions, real-world judges often do
not behave in this manner, and routinely accept plaintext transcripts. We cannot design
protocols that provide more deniability than plaintext; however, we can easily design pro-
tocols that provide less deniability—while a real-world judge of this type may not accept
arguments that a plaintext transcript could theoretically be forged, they may be likely to
accept testimony from experts that a protocol containing a digital signature could not be
forged.

3.2 Deniable Authenticated Key Exchanges

Most secure messaging solutions incorporate an authenticated key exchange (AKE) pro-
tocol as part of their construction. At a high level, the goal of an AKE is to establish a
fresh shared session key, and to authenticate the conversation participants to each other.
When designing an AKE, we assume that trust establishment has already been performed

60

and all users of the system have well-known long-term public keys associated with them.
If the session key cannot be derived from a protocol transcript even when the long-term
secret keys are compromised in the future, then the AKE is said to have forward secrecy.
A deniable authenticated key exchange (DAKE) is an AKE that additionally allows par-
ticipants to plausibly deny taking part in the protocol. DAKEs have been widely studied
in the literature, and we briefly survey some of the existing protocols in this section.

Bellare and Rogaway first formalized the definition of AKEs two decades ago [BR93].
While many AKE schemes were published before and after this definition, deniability for
key exchanges was not a major concern. In the years that followed, deniability emerged
as a desirable property for authentication protocols. Dolev et al. presented the first
explicitly deniable authentication protocol [DDN98]. Deniability was later formalized as
a property for authentication protocols by Dwork et al. [DNS98]. Since then, numerous
papers have expanded this work; see, for example, Dwork and Naor [DN00b], Naor [Nao02],
Katz [Kat03], Pass [Pas03], Wang and Song [WS09], and Youn, Lee, and Park [YLP11].

Shortly after the formalization of the AKE concept, several protocols claimed to of-
fer deniability informally [Kra96; Kra03; BMP04]. Each of these protocols lacks some
aspect of deniability covered in Section 3.1. The SKEME protocol [Kra96] lacks denia-
bility against online judges; an online judge can insist on generating ephemeral keys for
the informant, thereby preventing simulators from learning the shared secret. The SIGMA
protocols [Kra03] lack online repudiation because they involve non-repudiable signatures
that cannot be simulated by a misinformant. While the scheme constructed by Boyd et
al. [BMP04] provides online repudiation, protocol transcripts can only be forged offline by
alleged participants in the protocol (thus, its deniability against offline judges is limited).

With the release of the Off-the-Record Messaging protocol in 2004, repudiation was
recognized as a desirable feature for secure messaging applications [BGB04]. Shortly there-
after, Di Raimondo et al. formalized the notion of deniability for AKEs [DGK06]. Since
then, a variety of DAKEs have been published [JS08; DKSW09; YYZZ10; CF11; YZ13;
Ope13d; WWX14]. Unfortunately, none of these schemes achieve all of our desired prop-
erties. pRO-KE [JS08] provides powerful deniability properties, but does not offer forward
secrecy. Yao et al. [YYZZ10] construct a protocol that lacks online repudiation, since
the MAC keys used by communication partners cannot be computed for simulation. The
DAKE from Wen et al. [WWX14] completes in only one round of communication, but re-
quires an expensive designated-verifier proof of knowledge scheme and is only secure against
passive adversaries. Implicit DAKE schemes, such as those from Cremers and Feltz [CF11],
from Yao and Zhao [YZ13], and 3-DH [Ope13d], all lack online repudiation because they
include non-repudiable (and thus non-simulatable) signatures. The scheme introduced as
Φdre by Walfish in his Ph.D. thesis [Wal08], and later reiterated in a publication by Dodis

61

et al. [DKSW09], does satisfy all of our requirements for a DAKE; we discuss this protocol
in greater depth in Section 3.6.

3.3 Overview of Contributions

In this chapter, we advance the state of the art of deniable authenticated key exchanges
through the following primary contributions:

1. In Section 3.6.3, we describe an approach that improves the practical performance of
the existing Φdre DAKE in the standard model.

2. In Section 3.7.2, we construct a new interactive DAKE that achieves our strongest
notion of deniability with lower latency than Φdre. We prove its security in Sec-
tion 3.7.3.

3. In Section 3.8.2, we construct another interactive DAKE that only requires a single
round of communication while remaining secure against fully adaptive adversaries.
To accomplish this, we admit several obscure attacks that are irrelevant in many
environments. We prove the security of this DAKE in Section 3.8.4.

4. In Section 3.8.7, we show how to use our new DAKE in non-interactive environments,
with a specific focus on use within TextSecure. In doing so, we partially lose online
repudiation.

5. In Section 3.8.8, we conjecture that no DAKE in the TextSecure environment can
provide offline repudiation, online repudiation, and forward secrecy simultaneously.

6. In Section 3.8.9, we show how to dramatically improve the performance of our new
construction when relaxing the security proof with real-world assumptions.

7. In Section 3.8.10, we show how to use our non-interactive DAKE to bootstrap the
Axolotl key ratchet used by TextSecure.

3.4 Cryptographic Preliminaries and Notation

Throughout this chapter, we make use of several specialized cryptosystems when construct-
ing our schemes. This section provides high-level definitions of these underlying cryptosys-

62

tems. Our schemes can be realized by choosing from the wide range of implementations
described in the literature.

3.4.1 Notation

In our constructions, we often need access to randomly generated values. We write r
$←− S

to denote that r is assigned an element from set S selected uniformly at random. For
all schemes, we implicitly assume that a security parameter λ is provided to control the

security level of the system. Thus, we can write r
$←− {0, 1}F(λ) to denote that r is assigned a

random binary value with a length controlled by the security parameter. We often initialize
cryptosystems and generate keys using this convention, where F represents a function that
adjusts the size of r to be appropriate for the task at hand. As a convenience, we abuse

notation by omitting F ; we implicitly assume that r
$←− {0, 1}λ produces a random binary

value appropriate to the task at hand, with a security level controlled by λ, even when the
length of r might not necessarily be λ in practice.

We denote concatenation of values with the ‖ operator. As a convenience, we assume
that concatenated values are always of a fixed length, allowing anyone examining a con-
catenated message to unambiguously extract its constituent values. If this is not feasible
in practice, an implementation can instead include length prefixes when performing the
concatenation.

3.4.2 Digital Signatures

Some of our protocols make use of traditional digital signature schemes, as famously de-
fined by Diffie and Hellman [DH76]. A digital signature scheme consists of the following
functions:

• SigGen(r): a key generation function. SigGen produces a key pair (pk, sk) for use
with the scheme. r is a seed for the algorithm; for any value of r, all invocations of
SigGen(r) return the same pair (pk, sk). As a notional convenience, we sometimes

omit the parameter to denote that SigGen is called with a fresh value r
$←− {0, 1}λ.

• Sig(pk, sk,m, r): a signing function. Sig produces a signature σ for a message m
using key pair (pk, sk). r controls the randomization of the output. For any tuple
(pk, sk,m, r), Sig returns the same signature across invocations. The scheme may or

63

may not return differing signatures for the same (pk, sk,m) when r is changed. If r

is omitted, it is assumed that r
$←− {0, 1}λ is used.

• Vrf(pk, σ,m): a verification function. Vrf returns true if the signature is valid, and
false if it is not. If σ was legitimately computed using Sig and pk, then the sig-
nature is valid (correctness). If sk was never used to legitimately sign m, and sk
has not been compromised, then the signature is invalid with overwhelming proba-
bility (soundness). All calls to Vrf with the same parameters return the same result
(consistency). In all other cases, no guarantees are made about the output of Vrf.

Our security requirements for digital signatures are based on the idealized model defined by
Canetti [Can04], and thus are fairly weak compared to common security notions. Specifi-
cally, our only requirements for a “secure” signature scheme are completeness, soundness,
and consistency. Our protocols tolerate digital signature schemes even if they exhibit any
of the following properties:

• Incorrect verification keys: if a signature is verified using a key pk other than the
one used to compute the signature, the verification result is adversarially controlled.

• Public signature malleability: an adversary given only pk, σ, and m, where σ
is a legitimately produced signature for m, can produce a signature σ′ that is also a
valid signature for m under the same key pk.

• Corrupted signature claims: a corrupted signer can produce a public key pk for
which Vrf reports that any signature is valid for any message.

For more details concerning these security properties, the interested reader is referred to
Canetti’s definition of FSIG [Can04].

We primarily make use of digital signatures to bind cryptographic keys for other schemes
to a single “master” signing key. Because cryptosystems are often based on different
underlying algebraic structures, it is often not possible to use a single key with multiple
cryptosystems. Moreover, key reuse is generally discouraged; a protocol that reuses keys
for multiple cryptosystems may be vulnerable to attacks that do not affect the constituent
cryptosystems in isolation. Instead, different keys can be generated for each required
scheme and signed by the single master key. Other users can interpret valid signatures as
assertions that the signed keys are owned by the entity in possession of the master signing
key.

64

3.4.3 Public-Key Encryption (PKE)

After performing trust establishment, we often need to transmit secret information that can
only be read by a given, verified entity. These transmissions can be protected through the
use of public-key encryption (PKE). A public-key cryptosystem consists of the following
functions:

• PKGen(r): a key generation function. PKGen produces a key pair (pk, sk) for use
with the scheme. As in our definition for signature schemes, r represents the seed

used to generate the key pair and may be omitted to denote that r
$←− {0, 1}λ is used.

• PKEnc(pk,m, r): an encryption function. PKEnc encrypts a message m under pk
to produce a ciphertext γ. The output of PKEnc is consistent across invocations with
the same (pk,m, r) as input and varies when r is changed. Any value of r produces

a valid encryption of m. If r is omitted, it is assumed that r
$←− {0, 1}λ is used.

• PKDec(pk, sk, γ): a decryption function. PKDec uses the pair (pk, sk) to decrypt
a ciphertext γ that was encrypted under pk. We require that the scheme satisfies
PKDec(pk, sk,PKEnc(pk,m, r)) = m for any (pk, sk) produced by PKGen and any
m and r (completeness). In all other cases, PKDec returns the special value ⊥ with
overwhelming probability.

Our schemes that make use of public-key encryption require the cryptosystem to be indis-
tinguishable under adaptive chosen ciphertext attack (i.e., schemes must be secure under
IND-CCA2). This strong security requirement, due to Rackoff and Simon [RS92], is defined
in the following way:

IND-CCA2 security: any probabilistic polynomial time (PPT) adversary has at most
negligible advantage over random guessing in the following security game:

1. The challenger computes (pk, sk) ← PKGen() and sends pk to the adversary, while
keeping sk secret.

2. The adversary is allowed to make queries to a decryption oracle O such that O(φ) =
PKDec(pk, sk, φ). The adversary may perform a polynomially bounded number of
encryptions, calls to O, and other operations.

3. The adversary constructs two messages m1 and m2 of equal length and sends them
to the challenger.

65

4. The challenger generates b
$←− {0, 1} and sends γ ← PKEnc(pk,mb) to the adversary.

5. Access to O is revoked for the adversary and replaced with access to a selective
decryption oracle O′, such that O′(φ) = O(φ) unless φ = γ, in which case O′(γ) = ⊥.
The adversary may perform a polynomially bounded number of encryptions, calls to
O′, and other operations.

6. The adversary outputs a guess b′, and wins if b′ = b.

3.4.4 Dual-Receiver Encryption (DRE)

It is sometimes desirable to encrypt a message such that it can only be read by either of
two named recipients. A näıve approach would be to simply encrypt the message m under
two asymmetric encryptions—one for each receiver. The message encrypted for recipient
keys pk1 and pk2 would contain PKEnc(pk1,m) and PKEnc(pk2,m). Unfortunately, such
a scheme lacks public verifiability; the message received by the two parties may differ.

Dual-receiver encryption (DRE) is a type of specialized cryptosystem that enables pub-
licly verifiable encryptions of messages for two receivers. A DRE scheme consists of the
following functions:

• DRGen(r): a key generation function. DRGen produces a key pair (pk, sk) for use
with the scheme. As in our earlier definitions, r represents the seed used to generate

the key pair and may be omitted to denote that r
$←− {0, 1}λ is used.

• DREnc(pk1, pk2,m, r): an encryption function. DREnc encrypts a message m un-
der two public keys pk1 and pk2 using the same security parameter λ, producing a
ciphertext γ. The output of DREnc is consistent across invocations with the same
(pk1, pk2,m, r) as input and varies when r is changed. Any value of r produces a

valid encryption of m. If r is omitted, it is assumed that r
$←− {0, 1}λ is used.

• DRDec(pk1, pk2, ski, γ): a decryption function. It uses the pair (pki, ski), where
i ∈ {1, 2}, to decrypt a ciphertext γ that was encrypted under pki. We require
that the scheme satisfies DRDec(pk1, pk2, ski,DREnc(pk1, pk2,m, r)) = m for any
(pk1, sk1) and (pk2, sk2) produced by DRGen and any m and r (completeness). In
all other cases, DRDec returns the special value ⊥ with overwhelming probability.

DRE is particularly useful for the construction of DAKEs that are secure against online
judges. If a protocol requires that outgoing messages are encrypted for both the intended

66

recipient as well as the nominal sender, then this allows misinformants to read messages
produced in secret by the judge. Specifically, if the judge insists on generating a message
encrypted with DRE on behalf of the misinformant, the misinformant will be able to
decrypt the message. This decryption often provides the misinformant with a simulation
strategy that would be unavailable if simple PKE was used.

We require DRE schemes to exhibit several strong security properties, as defined by
Chow et al. [CFZ14]:

• Symmetry: all public keys produced by DRGen may be supplied as either argument
to DREnc.

• Public verifiability: for a given ciphertext γ, any party with knowledge of pk1 and
pk2 can verify that there exists m and r such that γ = DREnc(pk1, pk2,m, r).

• Soundness: for any key pairs (pk1, sk1) and (pk2, sk2), which may or may not
have been generated using DRGen, and any value γ, DRDec(pk1, pk2, sk1, γ) =
DRDec(pk1, pk2, sk2, γ).

• Dual-receiver IND-CCA1 security: any probabilistic polynomial time (PPT)
adversary has at most negligible advantage over random guessing in the following
security game:

1. The challenger computes (pk1, sk1) ← DRGen() and (pk2, sk2) ← DRGen(),
then sends pk1 and pk2 to the adversary, while keeping sk1 and sk2 secret.

2. The adversary is allowed to make queries to a decryption oracle O such that
O(φ) = DRDec(pk1, pk2, sk1, φ). The adversary may perform a polynomially
bounded number of encryptions, calls to O, and other operations.

3. The adversary constructs two messages m1 and m2 of equal length and sends
them to the challenger.

4. The challenger generates b
$←− {0, 1} and sends γ ← DREnc(pk1, pk2,mb) to the

adversary.

5. Access to O is revoked for the adversary. The adversary may perform a poly-
nomially bounded number of encryptions and other operations.

6. The adversary outputs a guess b′, and wins if b′ = b.

We remark that the choice of secret key used by O to decrypt messages is irrelevant
due to the soundness of the scheme.

67

Chow et al. [CFZ14] also define the notion of complete non-malleability for DRE schemes.
Their definition is an extension of the corresponding definition for public-key cryptosys-
tems introduced by Fischlin [Fis05] and later extended by Ventre and Visconti [VV08].
A completely non-malleable DRE scheme ensures that ciphertexts are non-malleable even
when the adversary is permitted to change the public keys used for encryption (possibly
to adversarially generated keys). Our schemes do not require this stronger security notion,
thereby allowing us to use more efficient DRE implementations in practice.

3.4.5 Non-Committing Encryption (NCE)

A public-key cryptosystem is called non-committing if, in addition to offering the standard
functions described in Section 3.4.3, it also offers the ability to produce “rigged” cipher-
texts. Specifically, it is possible to construct a ciphertext and public key that can later
be decrypted to any plaintext by using secret information to construct a corresponding
secret key. This notion, first proposed by Canetti et al. [CFGN96], is useful for proving
the security of protocols against adversaries that can adaptively corrupt parties. We later
revisit the usefulness of NCE with respect to adaptive corruptions when we discuss the
security model for our protocols.

A non-committing cryptosystem consists of the following functions:

• NCGen(r): a key generation function. NCGen produces a key pair (pk, sk) for use
with the scheme. As in our earlier definitions, r represents the seed used to generate

the key pair and may be omitted to denote that r
$←− {0, 1}λ is used.

• NCEnc(pk,m, r): an encryption function. NCEnc encrypts a message m under pk
to produce a ciphertext γ. The output of NCEnc is consistent across invocations with
the same (pk,m, r) as input, but may or may not vary when r is changed. Any value

of r produces a valid encryption of m. If r is omitted, it is assumed that r
$←− {0, 1}λ

is used.

• NCDec(pk, sk, γ): a decryption function. NCDec uses the pair (pk, sk) to decrypt
a ciphertext γ that was encrypted under pk. We require that the scheme satisfies
NCDec(pk, sk,NCEnc(pk,m, r)) = m for any (pk, sk) produced by NCGen and any
m and r (completeness). In all other cases, NCDec returns the special value ⊥ with
overwhelming probability.

• NCSim(r): a rigged ciphertext generation function. NCSim produces a public key
pk, a ciphertext γ, and some auxiliary information α. pk is indistinguishable from a

68

“normal” public key generated by NCGen, and γ is indistinguishable from a “normal”
ciphertext generated by NCEnc. Like NCGen, r controls the pairs that are generated
and can be omitted to denote a random seed is used.

• NCEqv(pk, γ, α,m): an equivocation function. If NCEqv is called with (pk, γ, α)
produced by NCSim, it generates values sk, r∗, and rNCE such that NCGen(r∗) =
(pk, sk) and NCEnc(pk,m, rNCE) = γ. In other words, it uses α to generate a secret
key sk corresponding to pk such that the previously generated γ decrypts to m using
sk. All of this is accomplished while making key pair (pk, sk) appear as though it
were honestly generated using NCGen, and γ as though it was honestly generated
using NCEnc.

There are several existing NCE constructions [CFGN96; DN00a; CDMW09; ZANS12].
However, all existing constructions are considerably more expensive (in terms of computa-
tion time or communication size) than the other primitives used in our protocols.

3.4.6 Ring Signatures

Ring signatures, originally proposed by Rivest et al. [RST01], are a specialized type of
digital signature scheme. A ring signature is verifiably produced by a member of a given
set (known as the ring), but the exact identity of the signer cannot be determined. Ring
signatures are useful for constructing DAKEs because they allow parties to authenticate to
each other in a non-transferable manner. Concretely, a ring signature with a ring containing
both the sender and receiver of a message proves to the receiver that the message was signed
by the sender (since the receiver knows that they did not sign the message themselves).
However, the receiver cannot convince anyone else of this fact—since they are a member of
the ring, the receiver could have produced the message. We later make use of this property,
along with the ability to construct rings with more than two members, to construct our
DAKEs.

A ring signature scheme consists of the following functions:

• RSGen(r): a key generation function. RSGen produces a key pair (pk, sk) for use
with the scheme. As in our earlier definitions, r represents the seed used to generate

the key pair and may be omitted to denote that r
$←− {0, 1}λ is used.

• RSig(pk, sk,R,m, r): a signing function. RSig produces a signature σ for a message
m. The ring R is a set of n public keys {pk1, pk2, . . . , pkn} that could possibly have

69

produced the signature. It is required that n > 1, (pk, sk) was generated with RSGen,
and pk ∈ R. r controls the randomization of the output. For any (pk, sk,R,m, r),
RSig returns the same signature across invocations. The scheme returns differing
signatures for the same (pk, sk,R,m) when r is changed. If r is omitted, it is assumed

that r
$←− {0, 1}λ is used.

• RVrf(R, σ,m): a verification function. RVrf returns true if the signature is valid, and
false if it is not. Minimally, it is required that RVrf(R,RSig(pk, sk,R,m, r),m) =
true for any valid inputs (correctness).

Over the years, different authors have proposed varied definitions of security properties
for ring signatures. We make use of the definitions introduced by Bender et al. [BKM06],
which classify ring signature schemes based on their anonymity guarantees and signature
forgeability. In this work, we require the use of ring signatures that achieve the following
strong security properties:

• Anonymity against full key exposure: an adversary cannot determine which
honest party produced a signature, even when given access to a signing oracle, and
the secret keys for all parties after the challenge signature has been generated.

• Unforgeability with respect to insider corruption: an adversary can never
produce a valid signature for a ring that does not include a corrupted party, even
when given access to a signing oracle and the capability to adaptively corrupt parties
(thereby compromising their secret keys).

3.5 The GUC Framework

3.5.1 Universal Composability

When designing a new cryptographic protocol, we would like to have some guarantees
about its security properties. The standard approach to this problem is to create a math-
ematical model of the real-world environment, and prove that the protocol is secure in
this model with respect to some security definition. In the past, this approach has led
to problems with modeling complex protocols; often, the definition of a protocol makes
use of other protocols as subroutines (e.g., a DAKE might make use of a digital signature
scheme). When constructing a composite scheme of this type, its security model and se-
curity definition must account not only for the overall scheme, but also for its constituent

70

parts. This approach quickly becomes unmanageable for complex systems such as secure
messaging protocols, which may consist of dozens of cryptographic primitives and must
guard against a wide assortment of adversaries.

To address these concerns, Canetti introduced the notion of Universal Composability
(UC) [Can01]. The UC framework provides a means for proving that a protocol retains its
security properties even when used as part of a larger scheme with other arbitrary protocols
being executed concurrently. This approach is particularly well suited to constructing
complex schemes for use on the Internet. While this chapter assumes some familiarity
with UC, we briefly summarize the framework in this section.

The general idea behind the UC framework is to prove that a real protocol behaves
identically to an idealized protocol with well-defined security properties. Once this equiva-
lence has been established, more complex schemes can be constructed that make use of the
idealized protocol as a subroutine. When implementing a scheme, the overall security is
guaranteed to be preserved when replacing the idealized subroutine with any real protocol
proven to behave identically.

Ideal protocols in the UC framework consist of a set of parties interacting with a trusted
central authority over secure connections. In an ideal protocol IDEALF , the trusted au-
thority executes some code F referred to as the ideal functionality. F defines the types
of messages that the protocol participants can send to the authority, the computations
that it performs, and the responses that are sent to participants. In addition to the main
parties of the protocol, IDEALF also models the existence of an adversary S, which is
able to interact with the trusted authority in a manner prescribed by F . Each invocation
of IDEALF represents a single session of the protocol. The main parties of the protocol
begin the session with some input values that they send along their secure channels to the
trusted authority. The trusted authority performs some computation on the inputs and
sends the result along its secure channels to the main parties, which then output these
values.

“Real” protocols (e.g., those designed to take place between Internet users) are also
modeled in the UC framework. These protocols consist of messages exchanged between a
set of parties in the presence of an adversary A. We stress that, unlike ideal protocols,
these real protocols do not generally make use of a trusted party.

The ultimate goal of a security proof in the UC framework is to demonstrate that a real
protocol under consideration somehow behaves identically to an ideal protocol, permitting
the ideal protocol to be used in the construction of more complex schemes without worrying
about potentially unexpected interactions. Intuitively, we can achieve this goal if the
environment surrounding a challenge protocol does not behave significantly differently

71

when interacting with the real or ideal protocols under any given attack. The environment
consists of the collection of other protocols running in the system; these other protocols
may influence the input of the challenge protocol, or change their behavior based on the
output of the challenge protocol. We write EXECπ,A,Z to denote the distribution of outputs
of an environment Z interacting with a protocol π involving an adversary A. With this
definition, we now reiterate Canetti’s definition of protocol indistinguishability [Can01]:

Definition 3.1 (UC-emulation)

A protocol π1 UC-emulates protocol π2 if for any adversary A there exists an adversary
S such that, for any environment Z, the ensembles EXECπ1,A,Z and EXECπ2,S,Z are
indistinguishable.

When real protocol π UC-emulates ideal protocol IDEALF , we say π UC-realizes IDEALF .

Typically, it is not possible for a real protocol to UC-realize an ideal protocol IDEALF
unless F permits some interactions with the adversary S. Intuitively, information released
by F to S represents information that is leaked by the real protocol. Commands sent to F
by S represent the possible influence of an adversary on the execution of the real protocol.

The computation model of the UC framework is constructed in terms of interactive
Turing machines (ITMs). An ITM represents the instructions of a Turing machine with
access to three tapes: an input tape, where “secure” messages are queued for delivery to
the machine; a communication tape, where “insecure” messages are written from other
machines; and a subroutine output tape. Callers write parameters to the input tapes of
subroutines; the subroutines can later return output by writing to the subroutine output
tape of the caller. A running instance of an ITM is called an interactive Turing instance
(ITI). Writing to the input or subroutine output tape of an ITI is a privileged operation,
and represents communication over a secure channel. In contrast, messages sent on com-
munication tapes are unauthenticated and visible to the adversary. When an ITI sends a
secure message to another ITI, it includes the ITM (i.e., the code) of the target ITI as part
of its message. If the ITI was not already running, it is started using the given code. An
ITM can contain a “halt” instruction; an ITI that encounters a halt instruction stops exe-
cuting code and thus does not process any data written to its tapes. The formal definition
of the UC framework contains substantially more detail about the computation model; the
interested reader is referred to the original paper for in-depth formalizations [Can01].

The first ITI to be launched as part of a challenge protocol is the distinguishing en-
vironment Z. This machine is permitted to launch one ITI representing the adversary A
for the challenge protocol, as well as ITIs for each main party of the protocol. Z is not
permitted to read the code associated with the ITIs that it launches, as this would make

72

it trivial to distinguish between challenge protocols. Z provides all inputs to the protocol
by writing to the input tapes of the main parties. The main parties of the protocol return
their outputs to Z by writing to its subroutine output tape. Z is also able to communicate
with A by writing to its input tape; A can return results by writing to Z’s subroutine
output tape. Z is not permitted to view transmissions on the communication tapes, or
to interact with subroutines invoked by any of the parties. In contrast, the adversary is
granted widespread power by default. A can view, modify, drop, and generate messages
transmitted on communication tapes between the main parties. A can also send a special
corruption message to the main parties of the protocol. When a party receives a corruption
message, it notifies Z that it has been corrupted, and then sends its current and historical
states to the adversary (including all messages sent from and received by the corrupted
party). A is then considered to have full control of the corrupted party, and may send
messages to other parties using the identity of the corrupted party. Any messages received
by corrupted parties are automatically forwarded to A.

A common situation that must be modeled in ideal functionalities is the notion of
delayed output. This represents the situation in real protocols where the adversary delays
or drops the transmission of a message on the network (or, in the context of the UC
framework, the message written to a communication tape). When we write that the ideal
functionality F sends a delayed output message m to a party P , we implicitly give the
adversary S the authority to delay or drop the message. F sends a message to S stating that
a message is about to be sent to P . If m is a public delayed output, then this communication
also provides the contents of m to S. When F receives a response from S, it actually sends
m to P . S can effectively drop the message by never providing permission to transmit m,
or it may delay transmission by waiting before providing permission. If F halts, then any
outstanding delayed messages are never delivered.

If a real protocol only realizes an ideal protocol under certain attacks, then the security
model can place restrictions on the capability of the adversary. Some common restrictions
include limits on the timing of corruptions and the nature of revealed state information.
If A can corrupt any party at any time, then the security model is said to permit adaptive
corruptions. If A can corrupt parties only before the protocol session begins, the model
is said to permit only static corruptions. If corruptions are permitted only at certain
designated times, then the model is said to permit only semi-adaptive corruptions. In the
default model, parties reveal their entire state history to A upon corruption; this is called
the non-erasure model. The erasure model permits parties to securely erase state so that
it is not revealed during subsequent corruptions.

73

To achieve composability, a protocol π can be permitted to invoke one or more instances
of another functionality F ′. Such a protocol is referred to as a F ′-hybrid protocol, and its
security is examined in the F ′-hybrid model.

3.5.2 Generalized UC (GUC)

While the basic UC framework can provide excellent security guarantees for many proto-
cols, it can only be used when a protocol is “self contained”. Specifically, UC assumes
that a protocol does not have access to an ITI that belongs to another session. Unfortu-
nately, this assumption makes it difficult to model relatively common situations in which
information persists between sessions, as this information could potentially be used by Z
to distinguish between challenge protocols. Protocols that store long-term keys in a public
key directory, or that share data in a common reference string (CRS), are examples of
situations that are difficult to model. A simple way to adapt the UC framework to these
situations is to consider all sessions of a protocol to be part of a single UC “session”. Such
an approach negates many advantages of using UC in the first place—any higher-level
protocol that makes use of a scheme with such a proof must itself be proven secure in a
multi-session environment.

To combat these issues, Canetti and Rabin introduced the notion of universal com-
position with “Joint State” (JUC) [CR03]. JUC modifies UC to include the notion of
multi-session protocols. When a scheme invokes a functionality several times, these sub-
routines can be combined into a single multi-session protocol in a way that preserves the
expected security properties. While the JUC framework achieves its goal of modeling pro-
tocols with shared state while maintaining the usability of the UC framework, it does not
provide security guarantees against adaptive chosen protocol attacks. If an adversary in-
troduces a new malicious protocol that makes use of the shared state, JUC provides no
security guarantees for honest parties who choose (perhaps unknowingly) to make use of
the malicious protocol.

In response, Walfish introduced the Generalized UC (GUC) framework [Wal08]. GUC
extends UC to allow multiple concurrent protocol sessions with shared information. It
also allows the adversary and environment to access the shared information. Additionally,
the environment is permitted to execute arbitrary other protocols. Despite this additional
distinguishing power, GUC can still provide the usual UC security guarantees. When a
real protocol π emulates an ideal protocol IDEALF within the GUC framework, we say
that π GUC-realizes IDEALF .

74

GUC models shared information between UC sessions through the use of “shared func-
tionalities”. A shared functionality is a typical UC functionality that is executed by an ITI
that persists between protocol sessions. For example, ḠFkrk (key registration with knowl-
edge) represents a key directory functionality that models a real PKI system; public keys
for parties in IDEALF are available from ḠFkrk upon request, and F (or corrupted parties)
are additionally permitted to retrieve the associated secret keys. If a protocol π does not
share state with any other protocol sessions, with the exception of the shared functionality
Ḡ, then π is called Ḡ-subroutine respecting.

Many simulation strategies that are secure in the basic UC framework are no longer
viable in the GUC framework because Z is given access to shared functionalities. For
example, a simulator in the UC framework could produce a digital signature for a party P
by simulating P ’s generation of long-term key pair (PK ′P , SK

′
P) and using SK ′P to sign a

message. In the GUC framework, Z would easily be able to distinguish such a transcript
from a real one by querying ḠFkrk for PKP , the true long-term public key associated with
P , and discovering that PKP 6= PK ′P .

Since GUC adds a lot of additional complexity over UC in order to more accurately
model real-world systems, security proofs written directly within the GUC model are more
difficult to formulate. For this reason, Walfish also introduced the External-subroutine
UC (EUC) framework [Wal08]. EUC is identical to the basic UC framework, except it
allows the protocol, adversary, and environment to access a single shared functionality Ḡ.
Such an environment is called Ḡ-externally constrained. When a real protocol π emulates a
protocol φ within a Ḡ-externally constrained environment, we say that π Ḡ-EUC-emulates
φ. We can now restate a surprising theorem proved by Walfish [Wal08]:

Theorem 3.1 (EUC-emulation is GUC-emulation)

Let π be any protocol that is Ḡ-subroutine respecting for shared functionality Ḡ. Then
protocol π GUC-emulates a protocol φ if and only if protocol π Ḡ-EUC-emulates φ.

Due to Theorem 3.1, if a protocol π is Ḡ-subroutine respecting, then a proof of security for
π in the EUC framework provides all of the security guarantees of an equivalent proof in
the GUC framework. This result greatly simplifies the task of using the GUC framework,
since security proofs within EUC are only marginally more complex than proofs performed
in the basic UC framework.

The UC framework and its derivatives are particularly useful for discussing deniable
protocols. If a real protocol is shown to realize an ideal protocol, then this means that the
protocol is fully simulatable in all environments covered by the security model. This is due
to the fact that any attack launched against a real protocol session is indistinguishable from

75

a simulated attack on the publicly known ideal functionality, and thus an attacker cannot
learn any more information from attacking a real session than they could from simulating
their attack. In this sense, the real protocol is shown to be as deniable as the ideal protocol.
In relating these notions to the discussion of deniability in Section 3.1, Z represents the
judge and A the informant (with S representing the misinformant). If a real protocol π
GUC-realizes an ideal protocol IDEALF , then the judge can never distinguish between
the actions of an informant A interacting with a real session of π and a misinformant
simulating S interacting with IDEALF . If Z provides instructions to the adversary during
the protocol execution, then Z is effectively an online judge.

3.6 The Walfish Protocol

In his thesis, Walfish [Wal08] introduced Φdre.
2 As discussed in Section 3.2, Φdre is the

only previously defined DAKE of which we are aware that provides deniability against
both online and offline judges while simultaneously providing forward secrecy. Walfish
proved the security properties of Φdre in the GUC framework. We briefly discuss the ideal
functionality used in this proof, and then present the real protocol.

3.6.1 Ideal Functionality F IncProc
keia

In order to prove the security of Φdre, Walfish modeled the notion of a key exchange protocol
within the GUC framework. A key exchange takes place between two parties: an initiator
I, and a responder R.3 Trust establishment is assumed to take place through a PKI, and
thus the key exchange functionality takes place in the Ḡkrk-hybrid model. I and R are
assumed to have set up keys in the PKI before the session begins. A simple way to model
such a key exchange is with ideal functionality Fke. Fke waits to receive a key-exchange

message from both I and R. S is then given an opportunity to attempt to control the key
produced by the exchange through a set-key message. If S has corrupted R and I has
started a key exchange, then S can cause both parties to output any key k′. Otherwise,
Fke generates a fresh shared secret key k and sends it to each party (if they previously sent
a key-exchange message) through their secure channel.

2The protocol was originally introduced in Walfish’s Ph.D. thesis [Wal08]. It was later restated in a
publication by Dodis et al. [DKSW09].

3The original protocol definition refers to these parties as a sender S and a receiver R. Here, we denote
them as I and R for clarity and to be consistent with other referenced schemes.

76

Algorithm 1 Ideal functionality F IncProc
keia (adapted from original [Wal08])

on receipt of (key-exchange, sid, I, R, SKS) from I:
if (I is “active” || I is “aborted”) return
Mark I as “active”
Send public delayed (key-exchange, sid, I, R) to R

on receipt of (key-exchange, sid, I, R, SKR) from R:
if (R is “active’) return
Mark R as “active”
Send public delayed (active, sid, I, R) to I

on receipt of (set-key, sid, I, R, k′) from S:
if (R is corrupt && I is “active”) {

Send (set-key, sid, I, R, k′) to I and R
} else if (R is honest && R is “active”) {

k
$←− {0, 1}λ

Send (set-key, sid, I, R, k) to R
if (I is “active”) Send delayed (set-key, sid, I, R, k) to I

}
Halt

on receipt of (abort, sid, I, R) from S:
if (I is “active”) {

Mark I as “aborted”
Send delayed (abort, sid, I, R) to I

}
if (R is “active”) Send delayed (abort, sid, I, R) to R

on receipt of (incriminate, sid, I) from S:
if (an incriminate message has already been received) return
if (I is “aborted” && I is honest) {

Execute IncProc(sid, I, R, PKI , PKR, SKI)
}

77

Unfortunately, Walfish proved that Fke cannot be realized in the presence of adaptive
corruptions [Wal08]. Instead, we must relax the functionality by leaking some additional
information to the adversary. S is additionally granted the ability to cause a key exchange
session to abort. When a session aborts, some incriminating, non-simulatable information
is leaked about one of the parties. Since the exact nature of the leaked information depends
on the real protocol being used, the functionality is parameterized with an ITM IncProc
that handles the details of the incriminating leak. The real-world implication of IncProc is
that an adversary can generally break the deniability of protocols by somehow causing the
key exchange to fail. For the remainder of this chapter, whenever we introduce a DAKE,
we discuss the real-world implications of the IncProc definition used in its security proof.
When Fke is parameterized with IncProc, the resulting functionality is called F IncProc

keia

(key exchange with incriminating abort). We restate Walfish’s definition of F IncProc
keia in

Algorithm 1.

As with Fke, F IncProc
keia begins by waiting for I and R to send key-exchange messages,

indicating their willingness to perform the key exchange. When S sends a set-key message,
either a fresh key k or an adversarial key k′ is distributed, based on the corruptions made
by S. In addition, F IncProc

keia allows S to send an abort message to terminate the protocol.
An abort causes delayed notifications to be sent to all active parties, but these can be
withheld by S if it chooses to do so. S can cause R to output a key after an abort has
occurred, but it cannot cause I to output a key after an abort. Finally, S is also allowed to
send an incriminate message to F IncProc

keia if the protocol has been aborted. Upon receipt
of this message, F IncProc

keia invokes a new ITI that executes IncProc. The intent of IncProc is
to allow S to provide a partial transcript from a real protocol execution, to which IncProc
will respond with an incriminating message constructed using I’s secret key SKI .

Proofs of realization of F IncProc
keia take place in the Ḡkrk-hybrid model. Recall that Ḡkrk

(key registration with knowledge) is a shared functionality that models a PKI. Any party
P can register for a key pair with Ḡkrk. Ḡkrk generates the requested key pair directly,
thereby modeling a PKI that requires proof of knowledge of secret keys. A corrupted party
can override this by providing its own key pair for storage. PKP , the public key for a party
P , can be retrieved from Ḡkrk by any machine. ḠFkrk also allows SKP , the secret key for
party P , to be retrieved by an honest ITI executing F or by P if it has been corrupted.

78

I R

sid, “I”, “R”

DREnc(PKI , PKR, sid‖η1)
η1

$←− {0, 1}λ

DREnc(PKI , PKR, sid‖η1‖η2‖pk))
η2

$←− {0, 1}λ
(pk, sk)← NCGen()

DREnc(PKI , PKR, sid‖η2‖NCEnc(pk, k))
k

$←− {0, 1}λ

Figure 3.1: Real protocol Φdre. The shared secret is k.

3.6.2 Real Protocol Φdre

Φdre, depicted in Figure 3.1, is a two-round interactive DAKE.4 Walfish has previously
shown that Φdre GUC-realizes F IncProc

keia in the ḠΦdre
krk -hybrid model with semi-adaptive secu-

rity (i.e., the adversary A may not corrupt I or R while the protocol is executing) [Wal08].

Φdre leverages the security of dual-receiver encryption (see Section 3.4.4) to provide its
deniability guarantees. Each message sent between I and R (other than the introductory
message asserting identities) is encrypted using DRE under the public keys of I and R.
This guarantees that all three messages can be read by both I and R, but nobody else
(unless either I or R have been corrupted). To provide authentication, the core of the
protocol involves each party echoing a nonce generated by their partner, thereby proving
that they can decrypt the communications. Since only I and R can decrypt the DRE, and
each party knows that they did not produce the response to their nonce themselves, this
provides non-transferable authentication. In addition, I includes in its encrypted message
an ephemeral public key pk for an NCE scheme (see Section 3.4.5). R generates the shared
secret for the session, and encrypts it using pk as part of its final message to I.

It is trivial for anyone with access to the PKI to forge protocol transcripts between
any two parties, even without access to any long-term secret keys. An offline forger of

4In practice, the protocol can be collapsed into three flows by having the party denoted as R in Figure 3.1
send the session identifier and party names. In such a case, it would be prudent to swap the names of the
parties, since the party sending the session identifier is the protocol initiator. In this chapter, we continue
to discuss Φdre as defined in Figure 3.1, but we consider the protocol to consist of only three flows when
evaluating its performance.

79

this type merely needs to simulate both participants; although it cannot decrypt the DRE
layer itself, the simulator already knows the contents of all messages. Deniability against
online judges is provided because each party can simulate the behavior of the other; the
DRE scheme allows misinformants to read the contents of any messages that the judge
produces on their behalf. The use of NCE is only needed in the non-erasure model with
semi-adaptive corruptions; if erasures are allowed or corruptions are only static, then a
standard PKE scheme can be used instead. Complete details of the simulation steps can
be derived from the proof of security given by Walfish [Wal08].

If the protocol aborts, the definition of IncProc for Φdre releases incriminating infor-
mation demonstrating that I was attempting to communicate with R. If A modifies the
initial message from R to I to include a different nonce η′1, then I will respond with
DREnc(PKI , PKR, sid‖η′1‖η2‖pk). In practice, the use of IncProc admits an attack in
which an online judge can determine if an adversary is simulating the conversation. If
Justin, the judge, instructs Mallory, the adversary, to modify the first flow from R to I to
an encryption of nonce η′1 known only to Justin, then Mallory will need to invoke IncProc to
simulate I’s response to R. This requires Mallory to actually interact with the real I (i.e.,
Mallory is a legitimate informant), or to compromise SKI or SKR without the knowledge
of Justin (something disallowed by the GUC framework). If Mallory simulates a response
without IncProc, then Justin can later instruct Mallory to corrupt a party to recover their
secret key. Justin can then use this secret key to decrypt the simulated response, and
determine that it did not include η′1.

3.6.3 An Efficient Instantiation with Interactive DRE

In order to implement Φdre, we must select a DRE scheme to use. While any of the
schemes referenced in Section 3.4.4 could be used, nearly all of them require use of the
random oracle model. The DRE construction of Chow et al. [CFZ14] is relatively efficient
and is secure in the standard model, but it is still expensive compared to simple encryption
schemes. Alongside the original definition of Φdre, Walfish describes a construction of a
generic DRE scheme [Wal08]. This scheme involves encrypting the plaintext twice using
a PKE scheme with IND-CCA2 security, and then providing two non-interactive zero-
knowledge proofs of knowledge (NIZKPK) demonstrating that the encrypted ciphertexts
are equal. Unfortunately, NIZKPK schemes are either highly inefficient or require random
oracles. In this section, we describe a new DRE construction that can improve the practical
performance of Φdre while still maintaining all of its security properties in the standard
model.

80

We begin by making an important observation about Φdre: it is an interactive protocol
that takes place between two known parties. While DRE in general is a non-interactive
protocol, allowing the DRE scheme to require interactivity does not negatively impact the
general properties of the overall scheme. We are able to do this because for each encryption
of a message, the only party that will need to decrypt the message is available for interactive
communications. In exchange for this concession, we can construct an efficient DRE scheme
in the standard model.

Our basic approach to the construction is similar to Walfish’s general DRE scheme, but
we make use of an interactive zero-knowledge proof of knowledge (ZKPK) scheme instead.
While we will only describe one possible instantiation, any PKE scheme with IND-CCA2
security can be combined with any interactive ZKPK of plaintext equality. This DRE re-
mains “publicly verifiable” in the sense that the ZKPK verifier can verify the correctness of
the ciphertexts even if they do not know any secret keys; this is sufficient for use in Φdre. As
a PKE scheme, we make use of the cryptosystem published by Cramer and Shoup [CS98].
The Cramer-Shoup scheme provides IND-CCA2 security in the standard model with only
the DDH assumption. To prove that the two ciphertexts contain identical messages and
are of a valid format, we use a Σ ZKPK of the kind described by Schnorr [Sch91]. The re-
sulting scheme is secure with only the DDH assumption for the underlying Cramar-Shoup
group, and consists of the following functions:

• DRGen(r): keys are generated as in the Cramer-Shoup scheme [CS98]. The resulting
public key for a user consists of a group description (G, q, g1, g2) and values c = gx11 g

x2
2 ,

d = gy11 , and h = gz1. The corresponding secret key is (x1, x2, y1, y2, z).

• DREnc(pk1, pk2,m, r): m is encrypted twice using Cramer-Shoup (once for each
public key), and a ZKPK of plaintext equality is produced. r is interpreted as
r = k1‖k2 and is used for the randomization of the encryptions of m. Given public
key pki = (Gi, qi, g1i, g2i, ci, di, hi), the resulting encryptions consist of u1i = gki1i ,
u2i = gki2i , ei = hkii m, and vi = ckii d

kiαi
i for i ∈ 1, 2 and αi = H(u1i‖u2i‖ei) where H is

a collision-resistant hash function.

The result also includes an interactive ZKPK that proceeds between the prover P
(the party calling DREnc) and the verifier V (the party that will call DRDec) as
follows:

1. P generates random values mi ∈ [0, qi) for i ∈ {1, 2}. P then computes T1i =

gmi1i , T2i = gmi2i , T3i = (cid
αi
i)mi , and T4 =

h
m1
1

h
m2
2

, and sends these values to V .

2. V generates random value L and sends it to P .

81

3. P computes ni = mi − Lki (mod qi) for i ∈ {1, 2} and sends these values to V .

4. V accepts the encryption as valid if the following equalities hold for i ∈ {1, 2}:
T1i

?
= gni1i u

L
1i, T2i

?
= gni2i u

L
2i, T3i

?
= (cid

αi
i)nivLi , and T4

?
=

h
n1
1

h
n2
2

(e1
e2

)L.

• DRDec(pk1, pk2, ski, γ): γ is parsed to locate the encryption for pki, and decryption
proceeds as in Cramer-Shoup. Let ski = (x1i, x2i, y1i, y2i, zi). At this point, the
recipient of γ has already verified that the ciphertexts are of the correct form and
that they contain encryptions of the same message as a result of the interactive
ZKPK. In addition, the recipient computes αi = H(u1i‖u2i‖ei) and then verifies that

ux1i1i u
x2i
2i (uy1i1i u

y2i
2i)αi

?
= vi. The message m is recovered using m = ei

u
zi
1i

.

The resulting protocol consists of 9 messages (plus an additional message for the in-
troductory identity assertions). This instantiation of Φdre is very efficient compared to
implementations using non-interactive DRE in the standard model, which typically re-
quire hundreds of group elements to be transmitted [CFZ14]. While we do not prove the
security of this variant here, the original proof by Walfish [Wal08] can be extended with-
out issue, as this interactive DRE construction satisfies all of the required properties of
the original protocol definition. As an explicit warning to implementers, we caution that
the interactive ZKPK sessions must not be interleaved (i.e., the verifier must wait for all
3 message flows of the ZKPK to complete before attempting to decrypt the message). If
such a pipelining approach is attempted, the deniability properties of Φdre no longer hold
against online judges. We also note that, if the implementer is willing to accept the use
of the random oracle model, then this instantiation of DRE can be made non-interactive
through the use of the Fiat-Shamir heuristic [FS87]. However, other DRE schemes may be
a better choice in such environments (see Section 3.4.4 for an incomplete survey).

3.7 An Efficient Interactive DAKE from Ring Signa-

tures

While Φdre can be made practical through the use of interactive DRE protocols, the re-
sulting protocol requires 9 flows to complete the key exchange. In environments with high
latency, such an approach may be undesirable. Additionally, Φdre is a non-contributory key
exchange; the resulting shared secret is chosen entirely by a single party (the responder R).
As is made clear by the definition of F IncProc

keia , this allows an adversary that has corrupted
R to cause the initiator I to use an adversarially chosen key. For some protocols, this is

82

not acceptable. Finally, F IncProc
keia represents a pre-specified peer key exchange; both parties

must know the identity of the other participant before the protocol begins. While Φdre

begins with a flow that identifies the names of the parties (and thus the real protocol is not
a pre-specified peer key exchange), the ideal functionality does not capture this notion.

All of these limitations can be overcome by a family of key exchanges known as SIGMA
(“SIGn-and-MAc”) protocols. First proposed by Krawczyk [Kra03], SIGMA protocols
are contributory (both parties ensure the randomness and freshness of the resulting key),
consist of only 3 message flows, and permit post-specified peers (i.e., the identity of the
other party is an output of the protocol in addition to the key). Canetti and Krawczyk
have previously shown that a basic SIGMA protocol is UC-secure in the FSIG-hybrid
model with adaptive corruptions [CK02]. Unfortunately, this proof shares the limitations
of all proofs in the UC model, including a failure to model public key directories that are
available to the distinguishing environment. Additionally, no SIGMA protocols offer the
strong deniability properties offered by Φdre.

In this section, we make use of ring signatures to construct a new deniable key exchange
protocol, inspired by SIGMA designs, that offers provably strong security and deniability
in the GUC framework. The resulting protocol, RSDAKE, is not a true SIGMA protocol
(since it does not need to use a MAC), but it addresses all of the aforementioned problems
with Φdre.

3.7.1 Ideal Functionality F IncProc
post-keia

Before defining RSDAKE, we begin by formulating a functionality that captures its de-
sired properties in an ideal environment. The resulting ideal functionality, F IncProc

post-keia (post-
specified peer key exchange with incriminating abort), is presented in Algorithm 2. In
the remainder of this section, we discuss the behavior of the functionality and the design
decisions behind it.

Previously, Canetti and Krawczyk proved that the basic SIGMA protocol (upon which
RSDAKE is based) is secure in a UC-based security model [CK02]. They defined an
ideal functionality, Fpost-ke, that captures the notion of a key exchange with post-specified
peers. Like Fpost-ke, F IncProc

post-keia takes place between an unbounded number of parties, but
each session captures the interaction between only two of these parties. The first party
to request a key exchange is subsequently known as I, the initiator. The second party to
request a key exchange is subsequently known as R, the responder. After both I and R are
known, F IncProc

post-keia selects a random shared key k for the session. The adversary is then given
a chance to attempt to set the output (the shared key and the identity of the other party)

83

Algorithm 2 Ideal functionality F IncProc
post-keia

on receipt of (initiate, sid, I, SKI) from I:
if (I is “active”) return
Mark I as “active”
Send (initiate, sid, I) to S

on receipt of (establish, sid, R, SKR) from R:
if ((I is undefined) || (I is not “active”) || (R is “active”) || (R is “aborted”)) return
Mark R as “active”
Send (establish, sid, R) to S
k

$←− {0, 1}λ

on receipt of (set-key, sid, T, P ′, k′) from S:
if (a set-key message was already sent to T) return
if ((T /∈ {I, R}) || (T is not “active”)) return
Let P ∈ {I, R} such that P 6= T
if ((P ′ 6= P) && (P ′ is uncorrupted)) return
if ((I is corrupt) || (R is corrupt)) {

Send (set-key, sid, P ′, k′) to T
} else {

Send (set-key, sid, P, k) to T
}
if (two set-key messages have been sent) Halt

on receipt of (abort, sid, I, R) from S:
if (I is “active”) Send delayed (abort, sid, I) to I
if (R is “active”) {

Mark R as “aborted”
Send delayed (abort, sid, R) to R

}
on receipt of (incriminate, sid, I, R) from S:

if (an incriminate message has already been received) return
if ((R is “aborted”) && (I is “active”) && (R is honest)) {

Execute IncProc(sid, I, R, PKI , PKR, SKR, k)
}

84

of both I and R. If the adversary has corrupted either party, then it is given the ability
to send an adversarially-chosen secret k′ and partner identity P to I and R.5 Otherwise,
each party is given k and the true identity of their conversation partner.

Unfortunately, Fpost-ke cannot be realized in the GUC framework in the ḠRSDAKE
krk -hybrid

model. Like F IncProc
keia , F IncProc

post-keia must explicitly weaken the deniability of the protocol by
allowing for incriminating aborts. Concretely, we allow the adversary to abort the protocol
in order to cause R to output incriminating information. The nature of this incriminating
information is a parameter to F IncProc

post-keia in the form of a procedure IncProc, allowing it to
be tailored to the real protocol under consideration. When the adversary S asks F IncProc

post-keia

to abort, an instance of IncProc is started. S cannot cause an uncorrupted R to output a
key after the protocol has aborted, but it may still cause I to output a key by withholding
the abort message sent to I.

There is another subtle difference between F IncProc
post-keia and F IncProc

keia . In F IncProc
keia , it is the

initiator I that releases incriminating information when the protocol aborts. In contrast, if
the RSDAKE exchange aborts, incriminating information will be released by the responder
R. Since the real protocol Φdre aborts before the shared secret k is generated, F IncProc

keia does
not provide k as an input to IncProc. However, an incriminating abort in F IncProc

post-keia occurs
after R has generated k. Thus, IncProc must also accept k as input in order for the protocol
to be simulatable.

3.7.2 Real Protocol RSDAKE

Our new protocol, RSDAKE, is presented in Figure 3.2. Each protocol participant P has
a long-term key pair (PKP , SKP) for a ring signature scheme, where PKP is publicly
known. The initiator I begins a protocol session by generating an ephemeral signing key
pair (pkI , skI). It also generates an ephemeral Diffie-Hellman public key gi and a ring
signature key pair (rpkI , rskI). It sends its identity, its ephemeral public keys, and a
signature of gi‖rpkI using pkI to R. This signature binds the ephemeral keys for the
different schemes to the same “master” key pkI . This first message is referred to as ψ1.

Responder R performs the same procedure and responds with pkR, gr, and rpkR. It
also performs a ring signature of the two ephemeral master keys pkI and pkR as well as the
identity of I. The response message is referred to as ψ2. The ring used for this signature

5F IncProc
post-keia models a scenario in which the adversary S can completely control the value of the shared

secret key after corrupting only one party. In a contributory key exchange, S may not have full control over
this value, but it can still influence the result (e.g., by controlling the corrupted party’s key contribution).
Consequently, F IncProc

post-keia models a more powerful adversary than is strictly needed for our purposes.

85

I R

“I” ‖ pkI ‖ gi ‖ rpkI ‖ Sig(pkI , skI , g
i‖rpkI)i

$←− {0, 1}λ

(pkI , skI)← SigGen()

(rpkI , rskI)← RSGen()

“R” ‖ pkR ‖ gr ‖ rpkR ‖ Sig(pkR, skR, g
r‖rpkR)

‖ RSig(PKR, SKR, {PKI , PKR, rpkI}, “0”‖“I”‖pkI‖pkR)
r

$←− {0, 1}λ

(pkR, skR)← SigGen()

(rpkR, rskR)← RSGen()

Compute gir and erase r

Compute gir and erase i

RSig(PKI , SKI , {PKI , PKR, rpkR}, “1”‖“R”‖pkR‖pkI)

Figure 3.2: Real protocol RSDAKE. The shared secret is gir.

is {PKI , PKR, rpkI} (i.e., a ring containing the long-term keys for both parties and the
ephemeral key for I). This ring signature serves the same purpose as the (traditional)
signature and MAC in the basic SIGMA protocol. An honest I is convinced that R
produced the signature because it knows that no other parties have access to SKI or rskI .
It also knows that this signature has not been reused from another session (because it
contains pkI and pkR), and that R believes that it is communicating with the correct
partner (because the signature contains the identity of I). However, this proof is not
transferable to any other party because the signature could have also been forged by I
using SKI ; in this way, it offers at least as much deniability as the MAC in the basic
SIGMA protocol.

In the third and final step of the protocol, I responds with its own ring signature of the
master ephemeral keys and the identity of R, computed over the ring {PKI , PKR, rpkR}.
This final message is referred to as ψ3. R is convinced of I’s identity, but cannot transfer
this conviction, for the same reasons as before. The resulting shared secret is gir, as in a
standard Diffie-Hellman exchange.

Unlike the basic SIGMA protocol, RSDAKE offers offline repudiation equal to that of
Φdre. Specifically, anyone can forge a key exchange (and subsequent conversation) between
any two parties I and R using nothing other than PKI and PKR. An offline forger is
in the unique position of generating ephemeral keys for both simulated parties, and so it
can compute both ring signatures using rskI and rskR. Transcripts generated by such a
forger are indistinguishable from real transcripts due to the security of the ring signature

86

scheme. If the ring signature scheme provides security under full-key exposure, this indis-
tinguishability holds even if the long-term secret keys of both I and R are subsequently
compromised by the distinguisher.

3.7.3 Proof of Security

Before proving the security of RSDAKE, we must define the incriminating information
that is leaked when the protocol aborts. Algorithm 3 defines IncProc for F IncProc

post-keia. Given
this definition, we are now ready to prove the security of RSDAKE in the erasure model
with fully adaptive corruptions.

Algorithm 3 IncProc(sid, I, R, PKI , PKR, SKR, k) for RSDAKE

on receipt of (incriminate, sid, I, R, “I”, “R”, pkI , rpkI) from S:

Generate r
$←− {0, 1}λ

Generate rSigGenR

$←− {0, 1}λ

Generate rSigR

$←− {0, 1}λ

Generate rRSGenR
$←− {0, 1}λ

Generate rRSR
$←− {0, 1}λ

Compute (pkR, skR)← SigGen(rSigGenR)
Compute (rpkR, rskR)← RSGen(rRSGenR)
Compute σ1 = Sig(pkR, skR, g

r‖rpkR, rSigR)
Compute σ2 = RSig(PKR, SKR, {PKI , PKR, rpkI}, “0”‖“I”‖pkI‖pkR, rRSR)
Compute ψ2 = “R” ‖ pkR ‖ gr ‖ rpkR ‖ σ1 ‖ σ2

Send (incriminate, sid, I, R, ψ2, r, r
SigGen
R , rSigR , rRSGenR , rRSR) to S

Theorem 3.2 (Security of RSDAKE)

Assuming the existence of a signature scheme (SigGen, Sig,Vrf) and a ring signature
scheme (RSGen,RSig,RVrf) that is secure under full-key exposure, RSDAKE GUC-
realizes F IncProc

post-keia within the erasure ḠRSDAKE
krk -hybrid model with adaptive security when

IncProc proceeds as in Algorithm 3.

Proof: To show that RSDAKE GUC-realizes F IncProc
post-keia, it suffices to show that RSDAKE

EUC-realizes F IncProc
post-keia. This simplification follows from Theorem 3.1, which states

that GUC-emulation is equivalent to EUC-emulation as long as RSDAKE is ḠRSDAKE
krk -

subroutine respecting.

87

By definition, RSDAKE EUC-realizes F IncProc
post-keia if and only if, for any PPT adversary

A attacking RSDAKE, there exists a PPT adversary S attacking F IncProc
post-keia such that

any ḠRSDAKE
krk -externally constrained environment Z cannot distinguish between the real

and simulated conditions.

Like most proofs in UC-based models, we will construct a simulator S that executes
A internally, simulating the real protocol flows that A expects based on conditions in
the ideal environment. To achieve the required indistinguishability property, we need
to show two things: Z can derive no useful information from sessions other than the one
under consideration, and Z cannot distinguish between the challenge protocols in the
context of the current session. To guarantee the latter condition, we must show that,
irrespective of the actions performed by A under the instruction of Z, the outputs of
the main parties of F IncProc

post-keia are equal to those of RSDAKE, corrupted parties provide
memory consistent with all other observations, and the protocol flows within the joint
view of A and Z are consistent with the outputs of the main parties.

3.7.3.1 Simulator Construction

Communications between A and Z: Any data sent to S from Z are copied to
the input of A. Likewise, any output from A is sent to Z by S.

General reactions to actions by A: If A sends any messages within the simulated
environment that are unrelated to RSDAKE, or messages that are duplications, they
are ignored (as they would be in a real network environment). If A delays delivery of a
message flow, S simply waits for the flow to be delivered before continuing. This leaves
A with few possible actions of consequence: it can alter any of the message flows it
perceives, and it can corrupt simulated parties. Our model allows A to corrupt parties
before the protocol begins, after ψ1 has been sent, after ψ2 has been sent, or after ψ3 has
been sent (i.e., we tolerate fully adaptive corruptions). When A corrupts a simulated
party, S corrupts the corresponding ideal party in order to construct the expected state
history. If A causes a corrupted simulated party to output a message, S causes the
corresponding ideal party to output the same message.

Receipt of initiate message from F IncProc
post-keia : When S receives (initiate, sid, I)

from F IncProc
post-keia, it honestly constructs a ψ1 message from the simulated party I. Specif-

ically, it generates random coins i, rSigGenI , rSigI , and rRSGenI , generates ephemeral key
pairs (pkI , skI) ← SigGen(rSigGenI) and (rpkI , rskI) ← RSGen(rRSGenI), and computes

88

ψ1 = “I” ‖ pkI ‖ gi ‖ rpkI ‖ Sig(pkI , skI , g
i‖rpkI , rSigI). S then sends ψ1 through A as

if it were broadcast by the simulated party I.

Receipt of establish message from F IncProc
post-keia : When S receives an establishment

message (establish, sid, R) from F IncProc
post-keia, it checks to see the circumstances of the

simulated ψ1 message transmission. Since F IncProc
post-keia only sends an establish message

after it has already sent an initiate message, ψ1 is guaranteed to have been sent in
the simulated environment (either by S in response to an initiate message or by A
from a corrupted party).

If ψ1 was generated by S and it was not modified by A, or if simulated party I
was previously corrupted, then S honestly constructs a ψ2 message from the simu-
lated party R. Specifically, it first parses ψ1 to extract the ephemeral keys and the
signature generated using skI . If the signature verification is successful, S generates
random coins r, rSigGenR , rSigR , rRSGenR , and rRSR , then generates ephemeral key pairs
(pkR, skR) ← SigGen(rSigGenR) and (rpkR, rskR) ← RSGen(rRSGenR). These coins and
key pairs are then used to compute two signatures: σ1 = Sig(pkR, skR, g

r‖rpkR, rSigR)
and σ2 = RSig(φpk,R, φsk,R, {PKI , PKR, rpkI}, “0”‖“I”‖pkI‖pkR, rRSR). The key pair
(φpk,R, φsk,R) used to produce σ2 is chosen based on the prior events in the system.
If S previously simulated the generation of ψ1 by I, then it uses φpk,R = rpkI and
φsk,R = rskI . If ψ1 was sent by a corrupt simulated party I, then S uses its access to
corrupt ideal party I to retrieve SKI from ḠRSDAKE

krk . It then uses φpk,R = PKI and
φsk,R = SKI . S then constructs message ψ2 = “R” ‖ pkR ‖ gr ‖ rpkR ‖ σ1 ‖ σ2.

If ψ′1 was generated by S but A altered it to ψ1 such that ψ1 6= ψ′1, then S constructs
ψ2 through the use of IncProc. S sends (abort, sid, I, R) to F IncProc

post-keia, but withholds
delivery of the resulting abort messages to the ideal parties I and R. It then sends
(incriminate, sid, I, R) to F IncProc

post-keia, causing an instance of IncProc to be invoked.
Using the values parsed from ψ1, S sends (incriminate, sid, I, R, “I”, “R”, pkI , rpkI)
to IncProc and receives (incriminate, sid, I, R, ψ2, r, r

SigGen
R , rSigR , rRSGenR , rRSR) in re-

sponse.

S then sends ψ2 through A as if it were sent by the simulated party R to the
simulated party I.

If ψ1 is not of the correct format, or the signature verification fails, then S sends
(abort, sid, I, R) to F IncProc

post-keia and delivers the resulting abort message to ideal party
R immediately. The abort message to ideal party I is withheld by S.

89

Receipt of ψ2 by uncorrupted simulated I: When uncorrupted simulated party
I receives message ψ2 from P , it first parses ψ2 to extract “P”, pkP , gp, rpkP , the
signature generated using skP , and the ring signature. If I has previously broadcast a
message ψ1 and ψ2 is valid, then S honestly constructs message ψ3. If the signature
and ring signature verify correctly, S generates random coins rRSI , then computes ψ3 =
RSig(φpk,I , φsk,I , {PKI , PKP , rpkP}, “1”‖“P”‖pkP‖pkI , rRSI). Selection of the key pair
(φpk,I , φsk,I) used to produce ψ3 is based on the prior events in the system. If P = R
and S previously simulated the generation of ψ2 by R, then it uses φpk,I = rpkR
and φsk,I = rskR. If P = R and ψ2 was generated by IncProc, then S computes
(rpkR, rskR) ← RSGen(rRSGenR), using rRSGenR received from IncProc, and uses φpk,I =
rpkR and φsk,I = rskR. If ψ2 was sent by a corrupt simulated party P , then S uses its
access to corrupt ideal party P to retrieve SKP from ḠRSDAKE

krk . It then uses φpk,I = PKP

and φsk,I = SKP . S then sends ψ3 through A as if it were sent by the simulated party
I to the simulated party P .

In addition to sending ψ3, S also causes ideal party I to output a key. It com-
putes k′ = gip = (gp)i, where i is the secret key used to generate ψ1, and sends
(set-key, sid, I, P, k′) to F IncProc

post-keia. The resulting set-key message to I is delivered
immediately.

If I has not previously broadcast a message ψ1, then the message is ignored.
If ψ2 is not of the correct form, or either signature verification fails, then S sends
(abort, sid, I, R) to F IncProc

post-keia and delivers the resulting abort message to ideal party I
immediately. The abort message to ideal party R is withheld by S.

Receipt of ψ3 by uncorrupted simulated R: When uncorrupted simulated party
R receives message ψ3 from I, it first checks to ensure that it has previously received
a message ψ1 from I and that it sent a response ψ2. If either of these conditions do
not hold, then the message is ignored. ψ3 is then interpreted as a ring signature and
verified. If the ring signature is invalid or fails to verify, then S sends (abort, sid, I, R)
to F IncProc

post-keia and delivers the resulting abort message to ideal party R immediately. The
abort message to ideal party I is withheld by S.

If the ring signature is valid, then S also causes ideal party R to output a key. It
computes k′ = gir = (gi)r, where r is the secret key used to generate ψ2, and sends
(set-key, sid, R, I, k′) to F IncProc

post-keia. The resulting set-key message to R is delivered
immediately.

90

Transmission of ψ1 by corrupted simulated I: When S has not yet received
an initiate message from F IncProc

post-keia, but A causes a corrupted simulated party I to
issue message ψ1, then S must reflect this in the ideal environment. S uses its corrup-
tion of the corresponding ideal party I to retrieve SKI from ḠRSDAKE

krk . It then sends
(initiate, sid, I, SKI) to F IncProc

post-keia, but ignores the resulting initiate message sent
by F IncProc

post-keia.

Transmission of ψ2 by corrupted simulated R: When S has not yet received an
establish message from F IncProc

post-keia, but A causes a corrupted simulated party R to issue
message ψ2, then S must reflect this in the ideal environment. S uses its corruption
of the corresponding ideal party R to retrieve SKR from ḠRSDAKE

krk . It then sends
(establish, sid, R, SKR) to F IncProc

post-keia, but ignores the resulting establish message
sent by F IncProc

post-keia.

Constructing state for corrupted parties: When A corrupts a party in the sim-
ulated environment, S corrupts the corresponding party in the ideal environment. In
addition, S must provide A with a simulated historical state for the corrupted party.

If A corrupts the party known as I after an initiate message has been received,
then S provides the random coins rSigGenI , rSigI , and rRSGenI used to construct ψ1. If
I has also sent ψ3 at the time of the corruption, the random coins rRSI are provided.
If the corruption occurs after ψ1 was sent but before ψ2 was received by simulated
party I, then S also provides the secret exponent i. If ψ1 was sent but ψ2 was already
received, then S provides the session key k generated by F IncProc

post-keia and retrieved during
the corruption of the ideal party I.

If A corrupts the party known as R after an establish message has been received,
then S provides the random coins rSigGenR , rSigR , and rRSGenR used to construct ψ2. S also
provides the session key k generated by F IncProc

post-keia and retrieved during the corruption
of the ideal party R.

3.7.3.2 Proof of Indistinguishability

We now turn to the task of proving that S acting on F IncProc
post-keia is indistinguishable fromA

acting on RSDAKE. To do this, we divide all possible behaviors of A into several cases.
For each case, we show that the protocol flows generated by S are indistinguishable
from those generated by RSDAKE, outputs from F IncProc

post-keia are indistinguishable from

91

those from RSDAKE, and that the simulated memory states of corrupted parties are
indistinguishable from those of real parties.

The honest case: This situation occurs when A does not corrupt I or R until after
the session concludes, or alter any message flows.

All three messages are generated by S honestly (i.e., exactly how they would be
generated by the parties in a real RSDAKE session), with the exception of the ring
signatures. The ring signatures are not signed by the long-term secret keys of the
parties, as in a real interaction. Instead, they are signed by the ephemeral key of the
opposite party. However, if Z was able to distinguish the signatures produced by S
from those produced in a real interaction, then Z would be able to break the security
of the underlying ring signature scheme. Since we make use of a scheme that is secure
under full-key exposure, this is true even if I and R are corrupted after the session
concludes (and thus all secret keys in the ring are within the joint view of A and Z).
Since this is a contradiction, the message flows are indistinguishable from real flows.

Since neither party is corrupted, the output from I and R in the ideal environment
includes the correct identity of the conversation partner, as well as the shared secret k
randomly generated by F IncProc

post-keia. These are the expected party identities from the real
interaction, so the only possible way for Z to distinguish between real and simulated
outputs is by examining k. Since i and r are erased by real parties before they return
output, A cannot access these values, even when corrupting simulated I and R after
the session concludes. Therefore, any ability to distinguish between challenge protocols
based on the choice of k would mean that Z could distinguish between k and gir. This
is only possible if Z can break the decisional Diffie-Hellman assumption within the
group containing g, which we assume is not possible.

Finally, corruption of simulated I or R produces memory states containing only ran-
dom coins used for generation of the messages. These coins are produced by S using the
same technique as honest parties, and thus these memory states are indistinguishable
from real ones.

Alteration of ψ1: This situation occurs when ψ1 generated by S is altered by A in
transit, but neither I nor R are corrupted when ψ1 is delivered.

When ψ1 is altered, S generates ψ2 from R using IncProc. The definition of IncProc
involves honestly generating ψ2 using the long-term secret key of R, so this flow is
indistinguishable from a real message from R. Likewise, the memory state of R is

92

indistinguishable from the real situation because IncProc provides S with the random
coins used to generate the ephemeral keys in ψ2.

S causes the protocol to abort, but does not deliver abort messages to either party.
If A allows ψ2 to be delivered to I, then I will abort. This matches the output of real
interactions because I expects ψ2 to include a ring signature over the true pkI generated
by I. The only way for the simulated and real situations to differ is if A somehow alters
ψ2 so that it is a valid response. Since A does not possess any of the secret keys in the
expected ring, this would violate the security properties of the underlying ring signature
scheme.

Alteration of ψ2: This situation occurs when ψ2 generated by S is altered by A
in transit, but neither I nor R are corrupted when ψ2 is delivered. S causes I to
immediately abort when it receives an altered ψ2. As mentioned previously, I will
always abort because the ring signature in the altered ψ2 message cannot be correct.

Indistinguishability under corruptions: This situation occurs when either party
is corrupted at a time before the times covered by the previous cases.

The only difference between the normal operation of S and this case is the secret key
used to compute the ring signatures in messages generated by S. Whereas S normally
uses the ephemeral signing keys rskI and rskR to sign the ring signature produced by
the other party, these keys might not be generated by S when a party is corrupted
before sending its first message. However, S instead makes use of the long-term secret
key of the corrupted party to sign the ring signatures. Again, these message flows are
indistinguishable from real flows due to the security of the ring signature scheme. The
outputs of the protocol are indistinguishable because the uncorrupted party is simulated
honestly.

If both simulated parties are corrupted, then indistinguishability is trivial. S never
generates any messages, and so they cannot be used by Z to detect simulation. The
outputs of corrupted parties are copied to the outputs of the corresponding ideal parties,
so this is also not useful to Z.

In all cases of corruption, S provides the expected memory state for the corrupted
party—the set of random coins used to generate ephemeral signing keys, and possibly
some secret keys (depending on which party is corrupted and when). In all cases, these
values are indistinguishable from real values because the parties are simulated honestly.

93

Data from other sessions: Since we are considering the security of RSDAKE in the
EUC model, we must also consider the usefulness of information collected by Z from
other protocol sessions. No information from other sessions can be used to assist A with
the generation of false message flows: ψ1 is generated using no long-term information,
and both ψ2 and ψ3 require computation of a ring signature bound to the contents of
ψ1. Due to the security of the ring signature scheme, no external information is useful
when generating valid message flows. �

The security of RSDAKE relies on several assumptions: the hardness of the DDH
problem in the group generated by g, the security of the signature scheme, and the security
of the ring signature scheme. The exact set of security assumptions is defined by the
choice of these underlying schemes. In Chapter 4, we consider a particular instantiation of
RSDAKE and list the complete set of resulting assumptions.

3.8 A Non-Interactive Deniable Key Exchange

Both Φdre and RSDAKE have a usability limitation: they are interactive protocols. Both
parties must be online to complete the key exchange. In applications such as secure mes-
saging, the key exchange must be completed before messages can be transmitted. In some
domains, such as instant messaging, consistent peer availability may be a valid assumption.
However, email and text messaging are two extremely popular systems in which interac-
tive key exchanges cannot be used in general. These environments benefit from the use of
non-interactive key exchanges; secure messages can be sent immediately to any peer in the
network, irrespective of their current connectivity.

In this section, we present a secure and deniable one-round key exchange protocol that
can be used in interactive or non-interactive settings. Specifically, we would like a protocol
that can be used as the initial key exchange for TextSecure, one of the most promising
secure messaging schemes identified in Chapter 2. We begin by formalizing the notion
of a non-interactive deniable key exchange by defining a new ideal functionality in the
GUC framework. Next, we present our new protocol, Spawn∗, and prove its security in
interactive environments. Unfortunately, it is not possible to maintain all desired security
properties in non-interactive settings. We discuss the consequences of using Spawn∗ non-
interactively, and show that it is nonetheless an improvement over existing approaches.
Next, we demonstrate how a relaxation of the security model admits a variant, Spawn,
with significantly improved performance in practice. Finally, we explain how Spawn∗ (or
Spawn) can be used as a bootstrap for the Axolotl key ratchet, permitting it to be used in
the TextSecure protocol.

94

3.8.1 Ideal Functionality F IncProc
1psp-keia

To prove that our key exchange is secure in the GUC model, we must define an ideal proto-
col that captures the functionality of 3-DH with prekeys (the scheme used by TextSecure).
Unfortunately, neither F IncProc

keia nor F IncProc
post-keia fully describe the desired properties.

In TextSecure, the initiator I begins by uploading ephemeral prekeys to a central server.
Subsequently, the responder R requests the next available prekey for I and uses it to
complete the key exchange. In practice, the first message of the conversation is encrypted
under this key and attached to the same flow. Even if I is offline when this message is sent,
and R then goes offline forever, I will still be able to decrypt this message when it comes
back online. It is important to note that I does not know the identity of the party that
will respond to the prekeys it produces, but R knows the identity of the party to whom it
wishes to send a message. In this sense, the key exchange has a single post-specified peer.
Concretely, the identity of R should be part of the output for I, while the identity of I is
an input for R. Neither F IncProc

keia nor F IncProc
post-keia captures this notion.

Similarly to F IncProc
post-keia, information generated by IncProc incriminates the responder R

in the TextSecure setting (rather than the initiator I as in F IncProc
keia). Additionally, IncProc

is called after the shared secret k is generated. Therefore, IncProc must also accept k as
input in order for the protocol to be simulatable.

With these differences in mind, we define ideal functionality F IncProc
1psp-keia (single post-

specified peer key exchange with incriminating abort) to capture the desired protocol
properties. F IncProc

1psp-keia takes place between two or more parties. The functionality is given
in Algorithm 4.

In the normal case, a party informs F IncProc
1psp-keia that it would like to solicit a connection.

Without loss of generality, we call this party I. Only one party solicits a connection
per session. Later, another party asks the functionality to complete an exchange with I.
Without loss of generality, we call this party R. Only one party responds to a solicitation
per session. F IncProc

1psp-keia generates a shared secret k, and then waits for the adversary S to
issue a set-key request. If S has not corrupted R, then F IncProc

1psp-keia instantly sends k to R
and then sends k and the identity of R as a delayed message to I.

S can choose to withhold the final message sent to I, causing R to complete and I
to stall. If S corrupts R before the protocol halts, then it can cause I to receive an
adversarially-chosen secret k′ and the identity of any corrupted party P (i.e., S can effec-
tively instruct R to identify itself as any other party under the control of S). Finally, S
is also allowed to abort the protocol after I has solicited a connection, and it can choose
whether or not I should be informed of this abort (by choosing to withhold or allow the

95

Algorithm 4 Ideal functionality F IncProc
1psp-keia

on receipt of (solicit, sid, I, SKI) from I:
if ((I is “active”) || (I is “aborted”)) return
Mark I as “active”; record (initiator, sid, I, SKI)
Send (solicit, sid, I) to S

on receipt of (establish, sid, I, R, SKR) from R:
if ((solicit not received) || (R is “active”)) return
Mark R as “active”; record (responder, sid, R, SKR)
Send (establish, sid, I, R) to S
k

$←− {0, 1}λ

on receipt of (set-key, sid, P, k′) from S:
if ((k is set) && (P = R || P is corrupt)) {

if (R is corrupt) {
Send (set-key, sid, I, P, k′) to R
if (I is “active”) {

Send delayed (set-key, sid, I, P, k′) to I
}

} else {
Send (set-key, sid, I, R, k) to R
if (I is “active”) {

Send delayed (set-key, sid, I, R, k) to I
}

}
}
Halt

on receipt of (abort, sid, I, R) from S:
if (I is “active”) {

Mark I as “aborted”
Send delayed (abort, sid, I, R) to I

}
on receipt of (incriminate, sid, R) from S:

if (already received incriminate message) return
if ((I is “aborted”) && (R is “active”) && (R is honest)) {

Execute IncProc(sid, I, R, PKI , PKR, SKR, k)
}

96

abort message sent to I). In any case, if the protocol is aborted, S can cause R to generate
incriminating information that proves R was attempting to communicate with I. S cannot
cause I to output a key if the protocol was aborted, but it can still cause R to output a
key.

F IncProc
1psp-keia is parameterized with a procedure IncProc that accepts the as parameters the

session identifier, the identities of I and R, the long-term public keys of I and R, the secret
key of R, and the shared secret k. Similarly to F IncProc

keia , this IncProc is meant to capture
the non-simulatable incriminating information sent to the adversary when the functionality
is aborted.

3.8.2 Real Protocol Spawn∗

We now define a one-round DAKE, Spawn∗, that can be used in interactive or non-
interactive settings. Spawn∗ provides both offline and online message and participation
repudiation (with limited exceptions that we will discuss later) while also providing for-
ward secrecy.6 The protocol, which takes place between an initiator I and a responder R,
is depicted in Figure 3.3.

Before any sessions begin, all parties register long-term public keys with a PKI. Each
party P generates a master keypair (PKSig

P , SKSig
P)← SigGen(), and two scheme-specific

keypairs (PKDRE
P , SKDRE

P) ← DRGen() and (PKRS
P , SKRS

P) ← RSGen(). P computes a
signature σPKIP ← Sig(PKSig

P , SKSig
P , PKDRE

P ‖PKRS
P) to bind the keys together, and then

uploads PKP = (PKSig
P , PKDRE

P , PKRS
P , σPKIP) to the PKI along with proofs of knowledge

of the corresponding secret keys. When retrieving PKP from the PKI, parties verify the
trustworthiness of PKSig

P using a trust establishment scheme. This trust is extended to
PKDRE

P and PKRS
P by verifying σPKIP .

When starting a session, I generates an ephemeral key pair (pk, sk) for a standard
signature scheme. This key pair is then used to sign ephemeral public keys for other
schemes: one pair for non-committing encryption, and one pair for ring signatures. This
signature binds both ephemeral keys to pk. In an interactive setting, I immediately sends
its identity, the ephemeral public keys, and the signature binding them to pk, to R as
message ψ1. In a non-interactive setting, I instead uploads this information as a prekey

6 In a well-known result, Bellare et al. have previously shown that no one-round protocol can achieve
the strongest notion of forward secrecy [BPR00]. In this section, we consider a weaker form of forward
secrecy: an adversary cannot recover the shared secret key from an unmanipulated protocol session (i.e.,
a session in which no flows were altered) by later compromising any long-term secret keys. This notion is
equivalent to the “weak forward secrecy” of Bellare et al.

97

I R

“I” ‖ pk ‖ npk ‖ rpk ‖ Sig(pk, sk, npk‖rpk)(pk, sk)← SigGen()

(npk, nsk)← NCGen()

(rpk, rsk)← RSGen()

“R” ‖ NCEnc(npk,DREnc(PKDRE
I , PKDRE

R , “I”‖pk‖k))

‖ RSig(PKRS
R , SKRS

R , {PKRS
I , PKRS

R , rpk}, γ)
k

$←− {0, 1}λ

Figure 3.3: Real protocol Spawn∗. The shared secret is k. γ refers to “R” concatenated
with the ciphertext produced by NCEnc.

to a central server. Later, when R wishes to send a message to I, the central server relays
the keys to R. Note that I expects a single response using each prekey. Thus, the role of
the central server is merely to prevent prekey collisions (i.e., if multiple responders were
to use the same prekey to send messages to I). For this reason, the central server is
not trusted—while it can attack the availability of the protocol by refusing to relay keys,
or by distributing non-genuine or repeated prekeys, it is not entrusted with any secret
information that could be used to attack the security of the protocol (e.g., the central
server cannot cause message exposure by altering the prekey). In effect, the central server
in the non-interactive setting is strictly weaker than an active network attacker in the
interactive setting.

Irrespective of the interactivity mode, R subsequently verifies the consistency of ψ1 and
then uses the ephemeral keys to formulate a response ψ2 to I. At a high level, this response
consists of R’s identity, a wrapped session key k, and a signature to authenticate the
ciphertext. The details of the encryption and ring signature are somewhat unintuitive. The
session key is first encrypted using dual-receiver encryption for the long-term public keys
of I and R. The resulting ciphertext is then encrypted once more using non-committing
encryption for npk. Consequently, the session key can only be decrypted by a party knowing
{nsk, SKDRE

I } or {nsk, SKDRE
R }. In the normal case (when both I and R are honest), the

only party satisfying these requirements is I (since R does not know nsk). The reasons for
these choices will become clear when we prove the security of the protocol.

R also encrypts pk and the identifier for I alongside k. This binds both the non-
committing encryption and the dual-receiver encryption to the current session, preventing
replay attacks.

98

As part of the response ψ2, R also includes a ring signature of the ciphertext. The ring,
{PKRS

I , PKRS
R , rpk}, includes the long-term public keys of both I and R, as well as the

ephemeral key rpk associated with pk. Like the choice of keys for the encryption scheme,
the reasons for this choice will become clear in the security proof. In the case where both
I and R are honest, R creates the signature using its long-term secret SKRS

R . An honest
I is assured that only R could have produced the signature, because I knows that it has
not revealed SKRS

I or rsk to any other party.

3.8.3 Unrigging Non-Committing Encryption

Our proof of security of Spawn∗ makes use of a slightly unintuitive quirk of non-committing
encryption. We will frequently make use of NCSim to “rig” a public key pk and ciphertext
γ with auxiliary information α. However, in some cases γ will be ignored and a ciphertext
γ′ will be produced using γ′ ← NCEnc(pk,m) for some message m. In these cases, we may
need to “unrig” pk by producing a corresponding secret key sk that can decrypt γ′.

To accomplish this task, we can simply perform (sk, r∗, rNCE) ← NCEqv(pk, γ, α, φ),
where φ is any arbitrary message. Now we have “unrigged” pk to produce a key pair
(pk, sk) that can be used normally. It is necessarily true that NCDec(pk, sk, γ′) = m (i.e.,
we can retroactively decrypt γ′ by unrigging pk). This property follows from the fact that
(pk, sk)← NCGen(r∗) is a valid key generation call that satisfies the correctness properties
of non-committing encryption (i.e., it can be used to encrypt and decrypt messages as in
a traditional asymmetric cryptosystem).

3.8.4 Proof of Interactive Spawn∗ Security

Before proving the security of Spawn∗, we must define the incriminating information that
is leaked when the protocol aborts. Algorithm 5 defines IncProc for F IncProc

1psp-keia.

Note that long-term keypairs in Spawn∗ actually consist of three keypairs—each for use
with a different cryptosystem. While it is possible to redefine F IncProc

1psp-keia to explicitly handle
these individual keys, it is preferable to define ideal functionalities as generically as possible
to encourage reuse. Instead, we assume that the PKI, represented by the ideal functionality
Ḡkrk, stores PKP = (PKSig

P , PKDRE
P , PKRS

P , σPKIP) and SKP = (SKSig
P , SKDRE

P , SKRS
P)

for each party P .

Although I will typically initially know the identity of R in an interactive setting, we
will prove that the protocol is secure even when this is not the case (i.e., I broadcasts

99

Algorithm 5 IncProc(sid, I, R, PKI , PKR, SKR, k) for Spawn∗

on receipt of (incriminate, sid, I, R, pk, npk, rpk) from S:
Parse PKI = (PKSig

I , PKDRE
I , PKRS

I , σPKII)

Parse PKR = (PKSig
R , PKDRE

R , PKRS
R , σPKIR)

Parse SKR = (SKSig
R , SKDRE

R , SKRS
R)

Generate k
$←− {0, 1}λ

Generate rDRE
$←− {0, 1}λ

Generate rNCE
$←− {0, 1}λ

Generate rRS
$←− {0, 1}λ

Compute γ = NCEnc(npk,DREnc(PKDRE
I , PKDRE

R , “I”‖pk‖k, rDRE), rNCE)

Compute σ = RSig(PKRS
R , SKRS

R , {PKRS
I , PKRS

R , rpk}, γ, rRS)
Compute ψ2 = “R”‖γ‖σ
Send (incriminate, sid, I, R, ψ2, r

DRE, rNCE, rRS) to S

ψ1 to all parties without knowing which will respond). One motivating factor behind this
decision is to easily facilitate extension of the proof to the non-interactive setting. We
are now prepared to prove that Spawn∗ is a secure deniable implementation of the ideal
functionality F IncProc

1psp-keia, even when we disallow erasures and allow fully adaptive corruptions.

Theorem 3.3 (Security of Spawn∗)

Assuming the existence of a signature scheme (SigGen, Sig,Vrf), ring signature scheme
(RSGen,RSig,RVrf) that is secure under full-key exposure, a dual-receiver encryp-
tion scheme (DRGen,DREnc,DRDec), and a non-committing public-key cryptosystem
(NCGen,NCEnc,NCDec,NCSim,NCEqv), Spawn∗ GUC-realizes F IncProc

1psp-keia within the

non-erasure ḠSpawn∗

krk -hybrid model with adaptive security when IncProc proceeds as in
Algorithm 5.

Proof: To show that Spawn∗ GUC-realizes F IncProc
1psp-keia, we show that Spawn∗ EUC-realizes

F IncProc
1psp-keia. Our proof of this is similar to the proof of Theorem 3.2. We construct a

simulator S that simulates an execution of Spawn∗ for the real adversary A, while
relaying messages between Z and A. We need to show two things: Z can derive no
useful information from sessions other than the one under consideration, and Z cannot
distinguish between the challenge protocols in the context of the current session. To
guarantee the latter condition, we must show that, irrespective of the actions performed

100

A Actions S Actions
Corruptions Alterations Generation Outputs
I R ψ1 ψ2 ψ1 ψ2 I R Case

C C No No NCSim NCEqv k,R k 3.8.4.1
C C No Yes NCSim NCEqv Abort k 3.8.4.2
C C Yes Any NCSim IncProc Abort k 3.8.4.3
A C Any Any A Picks I Signs Corrupt k 3.8.4.4
C A/B Any Any NCSim A Picks k′, P Corrupt 3.8.4.5
B C Any Any NCSim I Signs Corrupt k 3.8.4.6
A/B A/B Any Any NCSim A Picks Corrupt Corrupt 3.8.4.7

Table 3.1: Behavior of S when simulating A. For corruptions, “A” refers to corruption
before ψ1 is sent, “B” to corruption after ψ1 is sent but before ψ2 is sent, and “C” to
corruption after ψ2 is sent (or no corruption at all).

by A under the instruction of Z, the outputs of the main parties of F IncProc
1psp-keia are

equal to those of Spawn∗, corrupted parties provide memory consistent with all other
observations, and the protocol flows observed by A (and available to Z) are consistent
with the outputs of the main parties.

S will need to behave differently based on corruptions and message alterations per-
formed by A. There are seven possible behaviors of S that cover all possible behaviors
of A. In each case, S chooses a mechanism for generating ψ1 and ψ2, and an approach
for inducing outputs from the ideal parties I and R. Table 3.1 provides an overview of
the actions performed by S based on the actions of A. Next, we describe the actions
of S in every possible case.

3.8.4.1 Normal Operation

This situation occurs when A does not corrupt either party or alter any message flows.
In other words, this is the “normal” situation in which both I and R output success.
However, for the purposes of the proof, we never consider a case where a party is never
corrupted—we always assume that a party is corrupted after it returns output to Z (or
earlier). The reason for this is that Z can always potentially learn more by corrupting
a party after protocol completion, but never less; choosing to never corrupt a party is
equivalent to corrupting the party after the protocol and ignoring the revealed state.
Thus, in this case we consider the behavior of S when A does nothing except corrupting
I and R after ψ2 is received by I.

101

S waits until it receives a (solicit, sid, I) message from F IncProc
1psp-keia. It then computes

(pk, sk) ← SigGen(), (npk, γ, α) ← NCSim(), and (rpk, rsk) ← RSGen(). ψ1 is then
constructed as ψ1 = “I”‖pk‖npk‖rpk‖Sig(pk, sk, npk‖rpk). S sends ψ1 through A,
which does not alter it.

S waits until it receives an (establish, sid, I, R) message from F IncProc
1psp-keia. At this

point, S generates random coins rRS
$←− {0, 1}λ and uses them to compute the signature

σ = RSig(rpk, rsk, {PKRS
I , PKRS

R , rpk}, γ, rRS). It then sends ψ2 = γ‖σ through A,
which does not alter it.

S now sends (set-key, sid, R, 0) to F IncProc
1psp-keia, causing a session key k to be sent to

ideal parties I and R (although this key is hidden from S). S does not delay delivery
of these set-key messages. Ideal party I will output (k,R), and ideal party R will
output k—exactly as expected from a real session.

When A corrupts either party, the session key k generated by F IncProc
1psp-keia is revealed

to S (since it corrupts the corresponding ideal party and retrieves its message history).
Now S can open the non-commiting encryption such that it appears to show the ex-

pected encryption of k. It begins by generating random coins rDRE
$←− {0, 1}λ. Next, S

uses (nsk, r∗, rNCE) ← NCEqv(npk, γ, α,DREnc(PKDRE
I , PKDRE

R , “I”‖pk‖k, rDRE))
to construct the historical state of the simulated parties I and R. Specifically, from the
perspective of A, the history of I appears to show (npk, nsk) ← NCGen(r∗), and the
history of R appears to show that ψ2 contained a valid encryption of k using random
coins rDRE and rNCE. By the properties of non-committing encryption, even though
the two flows ψ1 and ψ2 are different from the flows that would be generated by honest
parties, they are indistinguishable from real flows from the perspective of A. Addition-
ally, the security of the ring signature scheme with respect to full key exposure ensures
that the ring signature signed by rsk cannot be distinguished from a real one signed
by SKRS

R , even when both parties are corrupted.

3.8.4.2 Alteration of ψ2

This situation occurs when A does not corrupt either party until the protocol completes
and does not modify ψ1, but modifies ψ2. In this case, S generates ψ1 using NCSim
and ψ2 using NCEqv as in the normal case (Case 3.8.4.1). However, once S notices
that A alters ψ2, it must abort the protocol. S sends (abort, sid, I, R) to F IncProc

1psp-keia,
and does not delay delivery of the abort message to I. Ideal party I will output that
the protocol was aborted, and R will output k, as expected for the real protocol. If A

102

subsequently corrupts either party, the memory of the corrupted party is reconstructed
using NCEqv as in Case 3.8.4.1.

Causing the ideal I to abort is the expected behavior as long as a real I would
also abort. Here, we make the assumption that any modification to ψ2 by A will
result in a response that is rejected by a real I. This is true because, by the security
of the ring signature scheme, A cannot produce a valid ring signature as part of the
message without access to SKRS

I , SKRS
R , or rsk. Since A has not corrupted either

party in this case, it does not have the capability to generate such a signature except
by random guessing (with negligible success). Thus, we can safely assume that I will
abort with any modification to ψ2, and thus the outputs in the simulated case remain
indistinguishable from a real interaction.

Note that since we are only considering the actions of S within the context of a
single protocol execution, we do not yet consider the case where A sends a ψ′2 provided
by Z from another session (i.e., a replay attack). Looking ahead, we will later rule out
the possibility of replay attacks by arguing that no information collected from other
sessions by Z can be used to distinguish between challenge protocols.

3.8.4.3 Alteration of ψ1

In this case, A alters ψ1, but does not corrupt either party until the protocol completes.
S begins by generating ψ1 using NCSim as in the normal case, but thenA alters this flow
to be ψ′1 = “I”‖pk′‖npk′‖rpk′‖σ′1‖σ′2. If ψ′1 has an incorrect format, or any signature
is invalid (i.e., Vrf(pk′, σ′1, npk

′) or Vrf(pk′, σ′2, rpk
′) fails to verify), then ψ′1 is ignored

by S and the protocol stalls indefinitely; since A does not corrupt any parties in this
case, the expected behavior of a real session is for R to ignore the invalid prekey. If ψ′1
has the correct format, S waits until it receives an (establish, sid, I, R) message from
F IncProc

1psp-keia.

This is an example of a case that cannot be simulated without an incriminating
abort procedure. S sends (abort, sid, I, R) to F IncProc

1psp-keia, but delays delivery of the
abort message to I. Next, S sends (incriminate, sid, R) to F IncProc

1psp-keia to gain access
to IncProc. S sends (incriminate, sid, I, R, pk′, npk′, rpk′) to IncProc and receives
a response containing (incriminate, sid, I, R, ψ2, r

DRE, rNCE, rRS). Immediately, S
sends (set-key, sid, R, 0) to F IncProc

1psp-keia, causing R to output the same session key k that
is encrypted by ψ2. This is the expected behavior from the real protocol, because a
real party R has no way to know if ψ1 is an authentic message produced by I; it will
always output a session key. Note that ideal party I does not produce output because

103

it has already been marked as “aborted”, even though the delayed abort message has
not yet been delivered by S.

S then sends the incriminating message ψ2 through A, which may or may not
change it to ψ′2. If A allows any response message (whether altered or not) to reach
simulated I, then S delivers the abort message to the ideal I. This is the expected
result because, in an interactive setting, real party I will always reject any response
message that does not contain an encryption of a message including pk. Since A has
altered ψ1, I will abort on any response from R containing an encryption of pk′ 6= pk.
In the case where A has chosen pk′ 6= pk, but then subsequently alters ψ′2 so that
it contains an encryption of a message including pk anyway, I will still abort for the
same reasons as Case 3.8.4.2 (i.e., A cannot produce a valid ring signature for ψ′2 with
non-negligible probability). Thus, the outputs of the parties are indistinguishable from
a real interaction in all cases.

If A subsequently corrupts R, S constructs its historical state using information
received from IncProc. Concretely, it appears as though R has generated ψ2 using
random coins rDRE, rNCE, and rRS, and the encrypted k matches the output from
ideal party R.

IfA corrupts I, S constructs its historical state by unrigging npk as described in Sec-
tion 3.8.3, producing key pair (npk, nsk) and random coins r∗ such that (npk, nsk)←
NCGen(r∗). By the properties of non-committing encryption, these values are indistin-
guishable from those honestly generated by NCGen during a real protocol session.

3.8.4.4 Initial Corruption of I but not R

When A chooses to corrupt I before S has received a solicit message from F IncProc
1psp-keia,

the simulator behaves much differently than in the normal cases. Once S notices that
A causes corrupted party I to broadcast a message ψ1, S stops waiting for an ideal
party to send a solicit message. Since S always corrupts the corresponding ideal
party whenever A corrupts a simulated party, S has already corrupted ideal party I
when ψ1 is issued.

Note that if A instead corrupts an unrelated party P (and S immediately corrupts
ideal party P in response), but then a solicit message is sent by I in the ideal setting,
then P is not considered to be the session initiator. In other words, the identity of I
is always clear from the perspective of S based on the event that occurs first: either
A generates ψ1 in the simulated environment, or S receives a solicit message from
F IncProc

1psp-keia.

104

Once A has sent ψ1 from corrupt party I, the ephemeral public keys pk, npk, and
rpk are extracted by S and the signature is verified; if signature verification fails, the
message is ignored and the protocol stalls. If ψ1 is valid, S causes ideal I to send
a solicit message to F IncProc

1psp-keia, marking it as active. Any other messages sent from
simulated I by A are ignored, as expected.

S waits until the ideal party R sends an establish message to F IncProc
1psp-keia. It then

issues a (set-key, sid, R, 0) message to F IncProc
1psp-keia, causing ideal R to output a session key

k. However, since ideal I has been corrupted by S, the set-key message normally sent
to I is relayed to S instead, giving the simulator access to k. S then generates random

coins rDRE
$←− {0, 1}λ, rNCE $←− {0, 1}λ, and rRS

$←− {0, 1}λ. These random coins are
used to compute γ ← NCEnc(npk,DREnc(PKDRE

I , PKDRE
R , “I”‖pk‖k, rDRE), rNCE).

Since S has corrupted I, it has access to SKRS
I through ḠSpawn∗

krk . S makes use of SKRS
I

to compute the ring signature σ ← RSig(PKRS
I , SKRS

I , {PKRS
I , PKRS

R , rpk}, γ, rRS).
S then sends ψ2 = “R”‖γ‖σ through A.

It does not matter whether A alters ψ2 or not, since it has already corrupted I
and thus controls its output. In any case, ψ2 will appear to A to be a valid message
produced by real party R in response to ψ1. By the security of the ring signature
scheme, σ is indistinguishable from a signature produced by an honest party using
SKRS

R . Additionally, γ is a valid encryption of k under public key npk, which is
consistent with the output of ideal party R. If A subsequently corrupts simulated R,
then S will reconstruct its historical state using the random coins rDRE, rNCE, and
rRS.

3.8.4.5 Early Corruption of R but not I

In this case, A corrupts R, but not I, before ψ2 is sent. However, S does not initially
know the identity of R, and thus it generates ψ1 as if both parties are uncorrupted.
As per usual, S waits until ideal party I sends a solicit message to F IncProc

1psp-keia, then
uses NCSim to generate ψ1 as in Case 3.8.4.1. If A alters ψ1, then S proceeds as in
Case 3.8.4.3 (i.e., either S waits for an establish message or the protocol stalls if the
format is invalid). In either case, S is now waiting for an establish message.

Before an establish message is sent by an ideal party, A causes the simulated R
to output a message ψ2. S now knows the identity of R. Note that the behavior of S is
the same if R is corrupted before ψ1 is sent or after; this case applies to both situations.
It also does not matter if A altered ψ1 or not; since A completely controls the behavior
of R and it has seen the true ψ1 value, alteration of ψ1 has no effect on any party. Now

105

that R is known to be corrupted, S unrigs npk as per Section 3.8.3, producing random

coins r∗
$←− {0, 1}λ such that (npk, nsk)← NCGen(r∗).

As per usual, A has the ability to alter the message flow containing ψ2. It does not
matter if A alters this output before it reaches I since A has complete control of the
output when it is first generated. There are two possible cases: either ψ2 is valid, or it
is invalid. We begin by considering the case where ψ2 is valid.

Although ψ2 is always sent from R, A may choose to encode the identity of an
arbitrary corrupted party P within ψ2. It may or may not be the case that P = R.
Since ψ2 is valid, it must be of the form ψ2 = “P”‖γ‖σ. S begins by verifying the ring
signature σ. Since A does not have access to rsk or SKRS

I (as it has not corrupted
I), σ is only valid if A or Z have access to SKRS

P (due to the security of the ring
signature scheme). This can only be the case if P has been corrupted. Since we always
assume that parties are corrupted PID-wise (i.e., after corruption, a party remains
corrupted during all subsequent sessions), S can also gain access to SKRS

P by issuing a

retrievesecret command to ḠSpawn∗

krk .

S decrypts the non-committing encryption of γ using nsk, and then decrypts the
dual-receiver encryption using SKDRE

P (instead of SKDRE
I , as in the honest case).

Once S has decrypted γ, it verifies the correctness of the message (i.e., that it contains
the identifier “I” and pk), and extracts k′. Now S causes ideal party R to send an
(establish, sid, I, R) message to F IncProc

1psp-keia. Next, S sends (set-key, sid, I, P, k′) to
F IncProc

1psp-keia. Since the ideal party R has been corrupted, a set-key message is delivered
to ideal party I that causes it to output (P, k′). S does not delay delivery of this
message. This is the expected output for a real execution of the protocol, since a
corrupted R can correctly identify itself as any party for whom the long-term secret
key is known, and R completely controls selection of the shared secret key.

If ψ2 is not valid (e.g., it is not of the correct form or the ring signature is incorrect),
then S causes ideal party I to abort. It does so by sending an abort message to F IncProc

1psp-keia

and allowing delivery of the abort message to ideal party I. This is the expected output
in a real execution of the protocol.

If A subsequently corrupts simulated party I, S provides r∗ as its state history. Due
to the security of the non-committing encryption scheme, this state is indistinguishable
from a real protocol execution.

106

3.8.4.6 Post-ψ1 Corruption of I but not R

In this case, A does not initially corrupt either party, but it corrupts I after ψ1 is sent.
A may or may not alter ψ1. It does not corrupt R until after protocol completion.

Initially, S proceeds as in the normal case (Case 3.8.4.1), constructing ψ1 with
npk generated by NCSim. Whether A alters ψ1 or not, S normally waits until ideal
party R sends an establish message to F IncProc

1psp-keia. In this case, A corrupts I before
such a message is sent. Since A expects to see an internal state for simulated party
I immediately, S unrigs npk as described in Section 3.8.3, producing r∗ such that
(npk, nsk)← NCGen(r∗). npk, nsk, and r∗ are revealed to A as the historical state of
I.

At this point, S can proceed as if I was initially corrupted, and npk was chosen by
A. In other words, S can proceed as in Case 3.8.4.4, without making use of the fact
that it knows nsk in this case. Specifically, S will make use of SKRS

I , accessible from

ḠSpawn∗

krk due to corruption of ideal party I, to sign a response ψ2 from simulated party
R. The arguments presented as part of Case 3.8.4.4 apply to this situation, as well.

3.8.4.7 Pre-ψ2 Corruption of I and R

This situation occurs when A corrupts both I and R at any point before ψ2 is sent. If
A corrupts I and causes it to send ψ1 before S observes a solicit message sent by
an ideal party, then S proceeds as in Case 3.8.4.4. If A instead waits until after S has
sent a ψ1 produced with NCSim to corrupt I, then S unrigs npk as in Case 3.8.4.6. In
either case, while S is waiting for an establish message to be sent by an ideal party
R, A causes corrupted simulated party R to send message ψ2 to I. There is no need
for S to issue any additional messages from the (corrupted) ideal parties I and R since
it completely controls both of their outputs. If A generates output for either corrupted
party, S issues the same output from the corresponding ideal party. Consequently, the
output from the ideal protocol is indistinguishable from the output from a real protocol
execution.

3.8.4.8 Coda

Note that the cases described in cases 3.8.4.1 through 3.8.4.7 cover all possible situa-
tions. Additionally, none of the behaviors described in these cases are contradictory;
S has well-defined behavior under all conditions. For each case, we have shown that

107

the simulated flows generated by S are indistinguishable from flows generated in a real
execution of Spawn∗. These results follow from the security properties of the underlying
cryptographic protocols. Additionally, for each case we have shown that the outputs of
the ideal parties are equivalent to the outputs of the corresponding parties during a real
execution of Spawn∗. Therefore, the simulated challenge protocol is indistinguishable
from the real challenge protocol within a single session from the joint perspective of A
and Z.

The only remaining condition is that Z cannot make use of knowledge from other
sessions to break the indistinguishability of the current session. The Spawn∗ protocol
has two message flows: ψ1 and ψ2. We must show that information from other sessions
is not useful for formulating alterations of either message.

ψ1 is composed entirely of ephemeral public keys (and an unauthenticated assertion
of identity), and Z could instruct A to alter the message to copy one from another
session. However, since we are considering the case where the protocol is being used
interactively, I will reject any response from R that makes use of a different ψ1.7

Therefore, reuse of a message from another session does not grant Z any advantage
over simply generating its own set of ephemeral keys.

ψ2 includes pk, the “master” ephemeral public key from ψ1, as part of its encryption
of the session key k. This causes the dual-receiver encryption in ψ2 to be bound to pk.
Additionally, the non-committing encryption of the dual-receiver encryption is created
for the key npk. npk is also bound to pk as part of the signature in ψ1. Likewise, the
ring signature includes rpk in the ring, and is also bound to ψ1. Since all parts of ψ2

are bound to ψ1 (except for the identity of the responder, which is public knowledge),
information from other sessions are not useful in the construction of this message.

This completes the proof. �

3.8.5 An Attack on Online Repudiation

When a security model does not capture the complete capabilities of a real-world adversary,
it can admit schemes that are not secure in practice. In the proof of Spawn∗ security, we
make an assumption in Case 3.8.4.5 that is not necessarily true in all real-world scenarios.
If Z has previously corrupted some party P and gained access to SKRS

P , it may instruct A
to cause a corrupted party R 6= P to identify itself as P in response to I. In our security
model, we assume that since P is corrupted, S can also access SKDRE

P in order to decrypt

7We consider non-interactive use of the protocol in Section 3.8.7.

108

the response sent by R. When this assumption fails in practice, it yields a potential attack
in which Z can distinguish between simulated and real protocol executions. We will now
consider how such an attack might proceed in the real world.

Alice is a whistleblower that has previously provided secret information to Bob, a
journalist, using Spawn∗ over the Internet. Justin is an agent for a group that has some
leverage over Bob. Justin wishes to incriminate Alice to prevent further whistleblowing,
but he requires evidence that Alice has provided documents to Bob. To accomplish this,
Justin demands that Bob asks Alice to send him some new information that will incriminate
her. Bob refuses to reveal his long-term secret key SKRS

B to Justin since it would allow
Justin to impersonate Bob in all conversations. Justin agrees to this arrangement; Bob will
retain control of his secret key, and Justin will instruct Bob to send particular messages to
Alice. However, Bob does not actually want to incriminate Alice; instead, he would like to
secretly simulate Alice for Justin. If Bob can successfully simulate Alice, then Justin can
never incriminate Alice by threatening Bob.

Bob computes a message ψ1 using NCSim, and reports to Justin that he has received
ψ1 from Alice. However, Justin has covertly stolen the long-term secrets SKC from Alice’s
friend Charlie in the past. Justin constructs a message ψ2 containing session key k that
purportedly comes from Charlie, and signs the ring signature using SKRS

C . He then in-
structs Bob to send ψ2 to Alice, along with a message, encrypted under k, asking Alice to
meet Charlie for coffee (or some other innocuous message). Justin expects Alice to respond
to Charlie’s message using a protocol that requires her to know k.8 If Bob has access to
SKC , as we assume in the proof of Spawn∗ security, then he can forge the expected re-
sponse from Alice by recovering k from ψ2. However, if Bob does not have access to SKC ,
then he cannot simulate the response; Justin has caught Bob attempting to deceive him.

This attack weakens online repudiation in a nuanced manner. If Justin receives a
response purportedly from Alice, then he knows that either Bob was faithfully relaying
Justin’s messages to the real Alice, or Charlie’s secret key was compromised by Bob (and
not only by Justin). If Justin does not receive a response, then he knows that either the real
Alice did not respond to the (forged) message from Charlie, or Bob has attempted to deceive
Justin by simulating Alice. Note that this situation only occurs when Justin “probes” the
honesty of Bob by sending a message from Charlie; Justin does not accomplish his primary
objective of sending a message to Alice from Bob to provoke incriminating behavior from
Alice. If Bob predicts that Justin is going to attempt such a probe, he can easily establish

8Although Spawn∗ is only a key exchange protocol, it is assumed that the shared secret will be used
as a key for some overall secure messaging scheme. Any party other than the party that generates k that
encrypts a message under k reveals the fact that they were able to decrypt the contents of ψ2 (and thus
that they are in possession of one of the long-term keys required for the dual-receiver encryption).

109

a true connection to Alice and relay ψ2 honestly—but if Bob’s prediction is incorrect, then
he will have no choice but to incriminate Alice. In practice, this means that Justin will
always have some uncertainty about the veracity of Alice’s responses to Bob. The exact
usage of Spawn∗ within a larger secure messaging solution determines whether or not this
attack is considered a problem.

3.8.6 Implications of IncProc

The existence of IncProc is required to handle non-simulatable situations in the proof of
security for Spawn∗. Specifically, Case 3.8.4.3 requires an incrimination procedure. IncProc
perfectly captures the extent to which an adversary can break the deniability of the protocol
when all assumptions of the security model hold. For this reason, it is important to consider
the implications of IncProc on real-world use of the protocol.

For Spawn∗, IncProc causes a valid ψ2 message to be created and signed using R’s
secret key SKRS

R . There is a critical difference between Spawn∗, Φdre, and RSDAKE in
this respect: when IncProc is invoked in Spawn∗, one of the honest parties (namely, R)
does not abort. This leads to a potential attack on the deniability of the protocol.

If Mallory, an active network adversary, is attempting to convince Justin that Bob is
communicating with Alice using Spawn∗, she can do so by exploiting the use of IncProc in
the proof of Case 3.8.4.3. Justin begins by generating ψ′1 using (npk′, nsk′) ← NCGen()
and sending ψ′1 to Mallory, while ensuring that nsk′ is kept private. When Alice sends
ψ1 to Bob, Mallory intercepts this message and replaces it with ψ′1. Bob responds with
ψ2 containing an encryption γ of session key k and a ring signature σ signed by ring
{PKRS

A , PKRS
B , rpk}. Mallory relays ψ2 to Justin, but either causes Alice to stall (by

never delivering ψ2 to Alice), or causes Alice to abort (by delivering ψ2 to Alice). Justin
now instructs Mallory to corrupt Bob. When Mallory corrupts Bob (e.g., by confiscating
his phone running a secure messaging app using Spawn∗), she recovers k′. Mallory sends k′

and SKB to Justin. Justin uses his knowledge of nsk and SKDRE
B to decrypt γ, ensuring

that k = k′. In this case, Justin will be convinced that Bob attempted to communicate
with Alice as long as he believes that Mallory did not corrupt Alice or Bob until after ψ2

was sent.9

9If Mallory corrupts either party before ψ2 is sent, then she has a method for choosing or recovering
k, and thus she can forge evidence. Depending on when each party is corrupted, Mallory can use the
simulation techniques from Case 3.8.4.4, Case 3.8.4.5, or Case 3.8.4.7 of the security proof. See Table 3.1
for an overview of when the cases apply.

110

Like the attack described in Section 3.8.5, the setting in which Spawn∗ is used deter-
mines whether or not this attack should be considered a problem.

3.8.7 Non-Interactive Spawn∗

The main advantage of Spawn∗ is that, unlike Φdre and RSDAKE, it can be used in
a non-interactive setting. Before investigating the consequences of using Spawn∗ non-
interactively, we first consider how the two variants might be implemented in practice.

While Spawn∗ does not depend on any particular networking substrate, it is natural
to expect the interactive version to be used in an instant messaging application over the
Internet. When Bob wishes to send a message to Alice, he connects to Alice and establishes
a TCP/IP connection (perhaps with the assistance of an untrusted relay server for the pur-
pose of NAT traversal). Alice generates and sends ψ1 to Bob over the connection, to which
Bob replies with ψ2. Alice rejects any response from Bob that makes use of an ephemeral
key pk other than the one sent in the context of the TCP connection. Consequently, Alice
and Bob enjoy all of the security guarantees of the interactive setting; with the exceptions
of the potential attacks in Section 3.8.5 and Section 3.8.6, it is as if Alice and Bob were
communicating using F IncProc

1psp-keia in the ideal world.10

Non-interactive Spawn∗ is implemented with the assistance of an untrusted central
server tasked with the distribution of prekeys. It is natural to consider this version of the
protocol in the context of mobile text messaging. Initially, Alice uses her phone’s data
connection to connect to a central server operated by the developer of a secure communi-
cation app using Spawn∗. Alice generates a set {ψAlice

1,1 , ψAlice
1,2 , ..., ψAlice

1,n } of n prekeys, where
each prekey is a valid message ψ1 for a Spawn∗ session. Alice uploads all n prekeys to the
central server.11 Later, Bob wishes to send a message to Alice. Bob uses his phone’s data
connection to connect to the central server and request a prekey for Alice. The server sends

10Given that we list two specific attacks on the security of Spawn∗, it is natural to wonder if any other
attacks are possible. The attack on deniability described in Section 3.8.6 is specifically admitted by the
definition of the ideal functionality and is necessary to GUC-realize an ideal key exchange of this type
(i.e., no alternative protocol of the same type could exist without a similar attack). Given the security
proof in Section 3.8.4, any other attack must violate an assumption of the security model (as is the case
for the attack in Section 3.8.5). Practitioners choosing to use any cryptographic protocol should carefully
consider the assumptions of its security model within the context of their specific environment.

11In practice, the server might wish to confirm that the prekeys uploaded in Alice’s name were actually
generated by Alice in order to prevent denial-of-service attacks. A simple way to do this while maintaining
all deniability and security properties of the protocol is to use Spawn∗ or RSDAKE interactively to secure
communications between users and the central server.

111

an available prekey ψAlice
1,i , 1 ≤ i ≤ n, to Bob and removes ψAlice

1,i from its list of available
prekeys for Alice.12 Bob now uses ψAlice

1,i to compute a response ψAlice
2,i to complete the key

exchange. He sends ψAlice
2,i along with his message, encrypted with k, to Alice over his text

messaging service. Even if Alice is offline at this time, the response will be buffered by
store-and-forward servers so that it eventually reaches Alice. Upon receiving the message,
Alice locates the corresponding secret keys for the message to recover k.

Unfortunately, this non-interactive capability comes at a cost: the deniability of the
protocol is not as strong as the interactive version. Intuitively, the issue is that ψ1 is
no longer part of a single protocol session; it has been moved into a cross-session global
infrastructure (i.e., the publicly available prekey distribution server). This breaks a core
assumption of the proof provided in Section 3.8.4: the simulator S can no longer dictate
the value of ψ1, because Z can reuse ψ1 values across protocol sessions. If Z acquires an
actual ψ′1 value produced by I as part of an aborted session, then Z can instruct A to
replace any ψ1 value generated by S with ψ′1. In the interactive setting, a real party I
would detect that ψ1 6= ψ′1 and abort, providing S with a simulation strategy. However, I
would complete successfully in the non-interactive setting because it has no way to detect
that ψ′1 has come from a different session. Consequently, Case 3.8.4.3 no longer holds in
the non-interactive setting. In practice, this means that Spawn∗ does not provide online
repudiation when R attempts to simulate I in the non-interactive setting.

As an illustration of the consequences of this weakness, we consider a possible attack
against the non-interactive implementation described earlier. After Alice has published
{ψAlice

1,1 , ψAlice
1,2 , ..., ψAlice

1,n } to the central server, Justin asks Bob to help incriminate Alice.
Bob, not actually willing to incriminate Alice for Justin, attempts to simulate Alice by
generating ψ1 using NCSim and reporting to Justin that he received ψ1 from the central
server as a prekey for Alice. Justin ignores this value and instead requests ψAlice

1,i , an actual
prekey for Alice, from the central server. He then generates a session key k and encrypts
it according to the Spawn∗ protocol, producing ciphertext γ encrypted for npk from ψAlice

1,i .
Justin then asks Bob to complete ψ2 = “B”‖γ‖σ by producing a ring signature σ for γ
using his secret key SKRS

B . Bob has no recourse in this situation; he cannot recover k from
γ, and thus cannot continue to simulate Alice. Consequently, Justin can be sure that if Bob
ever claims to have received a response from Alice encrypted using k, then the response
truly did come from Alice. Online repudiation for Bob is lost.

12If the server runs out of available prekeys for a user, then that user cannot receive new messages. In
practice, the system should ensure that Alice frequently refills her list of available prekeys. This issue is
similar to a limitation of Mixminion [DDM03], which makes use of SURBs (single-use reply blocks). If the
set of SURBs for a Mixminion user is exhausted, that user cannot anonymously receive packets until the
supply is replenished.

112

Note that the only case of the security proof that is broken in the non-interactive setting
is Case 3.8.4.3. Specifically, Alice still maintains online repudiation in this setting—she can
reliably simulate a response to her messages from any party, even in the presence of online
judges—and all other security properties of the protocol continue to hold. Thus, non-
interactive Spawn∗ still provides stronger deniability guarantees than 3-DH, the current
(non-interactive) TextSecure key exchange protocol.

3.8.8 Conjecture: The TextSecure Iron Triangle

Given the incomplete online repudiation of non-interactive Spawn∗, an obvious question
to ask is whether the protocol can be modified to address these problems. We may also
wonder more generally about all key exchanges suitable for use in the TextSecure setting.
We define such protocols in the following way:

Definition 3.2 (TextSecure-like Key Exchanges)

A TextSecure-like key exchange is a one-round key exchange protocol in which the
initiator I does not initially know the identity of the responder R.

Our results lead us to an unfortunate suspicion about the nature of such protocols:

Conjecture 3.1 (TextSecure Iron Triangle)

Any TextSecure-like key exchange cannot simultaneously provide non-interactivity, for-
ward secrecy13, and online repudiation with respect to R simulating I.

Intuitively, this conflict arises from the set of secrets required to recover the session
key k from the protocol transcript. In general, both I and R may have short-term secrets
(skI and skR, respectively) and long-term secrets (SKI and SKR, respectively). In a non-
interactive setting, R cannot simulate I’s generation of skI to an online judge (for the
reasons given in Section 3.8.7), and the online judge can insist on generating skR itself.
Consequently, the only secret information known only by R in this case is SKR. If R is
able to recover k from the transcript, then this implies that the protocol does not have
forward secrecy (because only long-term secrets are required to recover k). If R is not able
to recover k from the transcript, then this implies that the protocol lacks online repudiation
(because R cannot simulate I’s subsequent use of k). Additionally, there is also no way to
force the judge to reveal any secrets to R since the judge can always insist on the use of a
secure multi-party computation protocol to generate any required response.

13As we do throughout this section, we refer here to the notion of “weak forward secrecy” defined by
Bellare et al. [BPR00].

113

I R

“I” ‖ pk ‖ epk ‖ rpk ‖ Sig(pk, sk, epk‖rpk)
(pk, sk)← SigGen()

(epk, esk)← PKGen()
(rpk, rsk)← RSGen()

“R” ‖ PKEnc(epk,DREnc(PKDRE
I , PKDRE

R , “I”‖pk‖k))

‖ RSig(PKRS
R , SKRS

R , {PKRS
I , PKRS

R , rpk}, γ)
k

$←− {0, 1}λErase sk, esk, rsk

Figure 3.4: Real protocol Spawn. The shared secret is k. γ refers to “R” concatenated
with the ciphertext produced by PKEnc.

3.8.9 A Practical Relaxation: Spawn

The proof of Spawn∗ security in Section 3.8.4 assumes a very strong threat model: the ad-
versary can adaptively corrupt parties, and no information can ever be erased. In practice,
these assumptions may not hold. If either assumption is removed, then the security model
will admit a modified version of Spawn∗ with substantially increased performance. Spawn
is a protocol that is equivalent to Spawn∗, except that it replaces the use of non-committing
encryption in ψ2 with a standard public-key cryptosystem. The motivation for this modi-
fication is that non-committing encryption schemes are extremely expensive compared to
standard public-key cryptosystems (e.g., the NCE scheme described by Walfish [Wal08]
makes 2λn calls to the PKEnc function of an underlying 1-bit PKE scheme to encrypt an
n-bit message with security parameter λ). Spawn is constructed as shown in Figure 3.4.

By removing the use of non-committing encryption, Spawn is dramatically faster than
Spawn∗ when implemented. The most expensive operation that remains is the use of
dual-receiver encryption. We now extend the proof in Section 3.8.4 to show that Spawn
maintains the same security properties as Spawn∗ when adaptive corruptions are disallowed,
or when memory can be securely erased and only semi-adaptive corruptions are allowed.

Theorem 3.4 (Security of Spawn with Static Corruption)

Assuming the existence of a signature scheme (SigGen, Sig,Vrf), ring signature scheme
(RSGen,RSig,RVrf) secure under full-key exposure, a dual-receiver encryption scheme
(DRGen,DREnc,DRDec), and a public-key cryptosystem (PKGen,PKEnc,PKDec),
Spawn GUC-realizes F IncProc

1psp-keia within the ḠSpawn∗

krk -hybrid model with no erasures and
static security when IncProc proceeds as in Algorithm 5.

114

Proof: The proof given in Section 3.8.4 also applies here if all uses of non-committing
encryption are replaced with public-key encryption. All uses of NCGen, NCEnc, and
NCDec are replaced by PKGen, PKEnc, and PKDec, respectively. All that remains is
to explain how S behaves when it would normally make use of NCSim and NCEqv.

In all cases of the proof (except Case 3.8.4.4), S uses NCSim to produce npk, for
use in ψ1, and γ, for later use as part of ψ2. In our case, S instead uses PKGen to
generate (epk, esk). ψ1 is constructed by including epk and signing it with pk. Where
S normally uses γ generated by NCSim, it instead generates random coins r ← {0, 1}λ
and computes γ ← PKEnc(epk,DREnc(PKDRE

I , PKDRE
R , “I”‖pk‖r)). By the security

of the public-key cryptosystem, a γ generated in this way is indistinguishable from an
honestly generated encryption PKEnc(epk,DREnc(PKDRE

I , PKDRE
R , “I”‖pk‖k)) when

esk is unknown.

Of course, S can no longer make use of NCEqv. There are two cases in the proof
where NCEqv is used: Case 3.8.4.1 and Case 3.8.4.2. In both cases, A corrupts either
I or R after ψ2 has been sent. Since we do not allow for adaptive corruptions, these
situations do not apply. �

Theorem 3.5 (Security of Spawn in the Semi-Adaptive Erasure Model)

Assuming the existence of a signature scheme (SigGen, Sig,Vrf), ring signature scheme
(RSGen,RSig,RVrf) secure under full-key exposure, a dual-receiver encryption scheme
(DRGen,DREnc,DRDec), and a public-key cryptosystem (PKGen,PKEnc,PKDec),
Spawn GUC-realizes F IncProc

1psp-keia within the erasure ḠSpawn∗

krk -hybrid model with semi-
adaptive security when IncProc proceeds as in Algorithm 5.

Proof: The proof is identical to the proof of Theorem 3.4, with the exception of the
rationale for the replacement of NCEqv. There are two cases in the proof where NCEqv
is used: Case 3.8.4.1 and Case 3.8.4.2. In both cases, A corrupts either I or R after ψ2

has been sent. In the erasure model, it is assumed that I securely erases esk after it
has received ψ2. Since we only allow semi-adaptive corruptions, A is not permitted to
corrupt I until it has either been aborted or has output a key. In either case, esk has
already been securely deleted, and thus Z cannot decrypt the previously observed ψ1

value; it remains indistinguishable from an honestly generated message. �

In practice, it is reasonable to accept this weaker threat model in many common en-
vironments. Security and privacy tools such as hard drive encryption utilities and secure
messaging tools commonly assume that cryptographic keys can be limited to RAM storage,

115

and RAM can be securely erased while a machine is uncorrupted. It is also reasonable to
assume that corruptions are not fully adaptive. When Spawn is used interactively, I can
easily erase esk if a timely response is not received from R (e.g., if an adversary prevents
delivery of ψ2 in an attempt to cause I to retain esk for later corruption). In the non-
interactive setting, online repudiation of Spawn∗ is already weakened (see Section 3.8.5).
Since an online judge can always mandate the use of a valid prekey from I by retriev-
ing it from the central server, there are no practical situations in non-interactive Spawn∗

that actually require the use of NCEqv for simulation. For this reason, use of Spawn in-
stead of Spawn∗ causes no loss of deniability beyond that already incurred due to use in a
non-interactive environment.

3.8.10 Spawn as an Axolotl Bootstrap

Since the ultimate goal of Spawn is to improve the deniability properties of TextSecure, it
must be able to replace the 3-DH key exchange used to initiate Axolotl. Spawn cannot be
used as a drop-in replacement because it is a non-contributory key exchange, while 3-DH is
a contributory protocol. It is also important to avoid attempting to modify Spawn to make
it contributory, because the existence of ephemeral secrets for I will destroy the deniability
properties of the scheme. Instead, we will demonstrate how Spawn (or Spawn∗) can be
used to bootstrap Axolotl, providing all deniability benefits of the key exchange while also
achieving per-message forward and backward secrecy.

The Axolotl specifications [Per13] require I and R to exchange long-term identity keys
and ephemeral ratchet keys. I sends identity key A, and R sends identity key B. I sends
ephemeral keys (A0, A1), and R sends ephemeral keys (B0, B1). The two parties then de-
rive a shared secret master key from (A,A0) and (B,B0) using 3-DH. From master key,
a key derivation function is used to compute a variety of keys used for message transmission.
A1 and B1 are used as initial contributions within the DH ratchet.

In the general Axolotl specification, the roles of initiator and responder are not initially
known. However, we assume that these roles are initially known by the parties (as is the
case for TextSecure). This allows us to remove the requirement for sending A1, which is
only used when the roles are determined after the initial key exchange. Additionally, we can
remove the need for A0 and B0 by changing the way that the master key is computed. This
is trivially accomplished by using the Spawn protocol in the initial exchange, and setting
master key← k. We can also remove the explicit requirement for B1 to be included in the
initial key exchange by setting ratchet flag← True for R (i.e., requiring R to generate
a fresh ephemeral ratchet key as part of the first message). Now Axolotl can continue as
normal.

116

Intuitively, R will send initial messages to I using a key ratchet based solely on the
secret key k exchanged by Spawn. R will also include a DH ephemeral key as part of its
messages. When I responds, it will include a DH ephemeral key that completes the initial
key exchange. At this point, the scheme has been ratcheted forward to a new set of chain
keys that does not use k for message encryption in any way, but message authentication is
still traceable to the initial key exchange (through the use of root keys for the key derivation
function).

3.9 Selecting a Protocol

The best choice of key exchange protocol for a secure messaging scheme is highly dependent
on the environment in which the scheme will be used. Φdre, RSDAKE, and Spawn have
different security guarantees and usability properties, and thus are best suited for different
environments.

Spawn is the only protocol that supports non-interactive environments. It also requires
the fewest number of flows—only two messages are needed to complete the key exchange.
Although non-interactive Spawn does not provide online repudiation with respect to R
simulating I (see Section 3.8.7), it still provides improved deniability properties compared
to 3-DH. Despite the existence of the security weaknesses described in Section 3.8.5 and
Section 3.8.6, Spawn is also useful in interactive environments where these weaknesses are
not a concern.

In interactive settings, Φdre and RSDAKE can also be used. Φdre and RSDAKE offer
the same security properties, but RSDAKE offers some additional features; RSDAKE is
a contributory key exchange that has been proven to be secure in the post-specified peer
setting.

To select an appropriate protocol for use in a given environment, it is also important
to understand how the schemes perform in practice under various network conditions. In
Chapter 4, we perform a comparative performance evaluation of the protocols in order to
provide concrete advice for practitioners seeking to make use of the schemes.

117

Chapter 4

Implementation

In Chapter 2, we described a disconnect between secure messaging system developers and
the academic community. Specifically, there is an abundance of solutions described in the
literature that are never implemented. It has become clear that describing a new system
and writing security proofs, while necessary, are insufficient for making cryptography us-
able; we need to do more if we want actual users to benefit from our schemes. One way
to bridge this gap is to provide open implementations of our designs to encourage use
by developers of consumer security products. As part of this work, we developed open-
source implementations of every scheme presented in Chapter 3.1 This chapter provides
an overview of the implementations, as well as a comparative evaluation of the schemes.

4.1 Overview

When implementing cryptographic libraries, choosing an appropriate programming lan-
guage is extremely important. Ideally, the programs produced using the language should be
highly efficient, since the speed of cryptographic operations is typically bound by processor
speed. Moreover, it is important that the language does not encourage the introduction
of security vulnerabilities; cryptographic libraries are often used in environments where
they are placed under heightened scrutiny by attackers and where security is a paramount
concern. For these reasons, our implementations were produced using the Go program-
ming language [Go 09]. Go is a compiled and strongly typed language with a variety of
integrated cryptographic libraries.

1The resulting libraries, as well as other software projects maintained by the CrySP research group,
can be found at https://crysp.uwaterloo.ca/software/.

118

https://crysp.uwaterloo.ca/software/

Our primary development objective was to implement the four key exchange schemes
described in Chapter 3: Φdre with non-interactive DRE, Φdre with interactive DRE, RS-
DAKE, and Spawn. Unfortunately, the specialized cryptosystems used by these protocols
lack widely available implementations. Consequently, we also developed implementations
of these underlying cryptosystems as part of our overall development effort. In summary,
we produced the following libraries as part of this work:

• Section 4.2.1: Pairing-Based Cryptography Library [Lyn06] wrapper for Go;

• Section 4.2.2: Shacham-Waters [SW07] ring signatures;

• Section 4.2.3: HORS [RR02] one-time signatures with HORS+ [ZMM10] improve-
ment;

• Section 4.2.4: Cramer-Shoup cryptosystem [CS98], both in prime order finite fields
and elliptic curve groups;

• Section 4.2.5: Chow-Franklin-Zhang [CFZ14] BDDH-based dual-receiver encryption;

• Section 4.2.6: Interactive dual-receiver encryption (defined in Section 3.6.3);

• Section 4.2.7: Φdre [Wal08];

• Section 4.2.8: RSDAKE (defined in Section 3.7.2);

• Section 4.2.9: Spawn (defined in Section 3.8.9).

All of the implemented schemes are provably secure in the standard model (i.e., they do
not require random oracles). For each scheme, we make note of the security assumptions
made by the associated proofs. We evaluate the performance of the schemes in Section 4.3.

4.2 Libraries

4.2.1 PBC Go Wrapper

Several of the schemes required to construct the higher-level protocols make use of pairing-
based cryptography. Cryptographic pairings are defined over three mathematical groups:
G1, G2, and GT , where each group is of the same order r. Additionally, a bilinear map
e maps a pair of elements—one from G1 and another from G2—to an element in GT .

119

Given two generators g ∈ G1 and h ∈ G2, the map e has the property that e(gx, hy) =
e(g, h)xy for any x, y ∈ Zr. This property can be exploited to produce a variety of efficient
cryptosystems, such as those used to construct our DAKEs.

Despite the power of pairings, there are very few active implementations of pairing-
based cryptography. The two most prominent projects are the Pairing-Based Cryptography
Library (PBC), originally authored by Ben Lynn [Lyn06], and the RELIC toolkit [AG09].
We elected to construct our schemes using PBC since it provides a well-documented im-
plementation of pairings over elliptic curve groups of composite order (i.e., where the order
of the group is the product of two large primes), and this setting is required for our chosen
ring signature scheme.

To make use of PBC in our projects, the library was first ported to the Microsoft
Visual Studio environment for Windows (previously, PBC required MinGW for Windows
compilations). We then developed a wrapper for the library to expose all of its functionality
to Go. The wrapper adds type checking to operations, as well as automatic garbage
collection and integration with the standard Go libraries.

4.2.2 Ring Signatures

Ring signatures, described in Section 3.4.6, are required to implement both RSDAKE and
Spawn. For our implementation, we chose to implement the ring signature scheme proposed
by Shacham and Waters [SW07]. This ring signature scheme provides anonymity even in
the event of full-key disclosure, and signatures are unforgeable even in the presence of ma-
licious insiders. These security properties hold in the standard model with three complex-
ity assumptions: integer factorization, computational Diffie-Hellman in prime-order cyclic
subgroups of elliptic curves, and subgroup decision in composite-order elliptic curves. The
subgroup decision problem, with respect to a multiplicative cyclic group of order n = pq
(where p and q are prime) having subgroup Gq of order q, is defined by Shacham and
Waters in the following way [SW07]:

Definition 4.1 (The Subgroup Decision Problem)

Given w selected at random either from G (with probability 1/2) or from Gq (with
probability 1/2), decide whether w is inGq. For this problem one is given the description
of G, but not the factorization of n.

Our implementation of the Shacham-Waters scheme is based on the PBC Go wrapper.
The order n of the pairing groups is generated using the standard Go RSA key generator.
Several predefined configurations are provided for users, offering security levels between 80

120

and 256 bits. Depending on the selected security level, the scheme internally makes use of
the SHA-256 or SHA-512 hash functions on messages before signing them.

4.2.3 One-Time Signatures

One-time signatures are a type of digital signature that can only be used to sign a single
message. In exchange for this concession, the resulting schemes are extremely fast and
often exhibit stronger security properties than traditional digital signature schemes. For
example, one-time signatures can be strongly unforgeable using only standard model as-
sumptions.2 One-time signature schemes can be used to improve the performance of our
higher-level protocols. They are also required in order to maintain the security of our
chosen DRE scheme.

We chose to implement the HORS one-time signature scheme proposed by Reyzin and
Reyzin [RR02]. HORS is extremely efficient and produces strongly unforgeable signatures
in the presence of one-time adaptive chosen message attacks. HORS is similar to a family
of schemes derived from the original Lamport signature scheme [Lam79]. These approaches
are based on releasing a large number of cryptographic hashes as a public key, and then
subsequently releasing selected preimages based on the message to be signed. HORS de-
creases the size of signatures by taking a cryptographic hash of the message and then using
substrings of the hash to determine which preimages to release. The security of HORS is
based on the one-wayness and “subset-resilience” of the hash function.3

Since “subset-resilience” is not a well-studied property of hash functions, an improve-
ment to HORS was proposed by Zhang, Ma, and Moon [ZMM10]. The resulting scheme,
HORS+, alters the manner in which hashes are used to select preimages to release. HORS+
provides the same security properties as HORS, but relies only on the one-wayness and
collision resistance of the underlying hash function.

Our implementation of HORS+ provides a variety of predefined security settings offer-
ing between 80 and 256 bits of security. We selected parameters that provide a balanced
trade-off between signature size and computational demands. Depending on the selected

2A signature scheme is strongly unforgeable if it is existentially unforgeable and, given signatures on
some message m, the adversary cannot produce a new signature on m [BSW06].

3A hash H function is “subset-resilient” if, given a message m1, it is infeasible to find another mes-
sage m2 such that that H(m2) produces a subet of H(m1) when the hashes are partitioned into binary
representations of set indices.

121

security level, the internal hash is either SHA-256, SHA-512, or SHAKE256.4 Messages
signed with the library are first randomized using the NIST SP 800-106 procedure [Dan09].
This procedure generates a nonce that is mixed with the message before signing—it is in-
tended to protect against attacks that occur when the entity selecting the message is not
the same as the entity signing the message.

4.2.4 Cramer-Shoup

The Cramer-Shoup public-key cryptosystem [CS98] is an efficient scheme that is IND-
CCA2 secure using only standard model assumptions.5 The proof of security for the scheme
assumes only the hardness of the decisional Diffie-Hellman problem in the underlying group,
and the collision resistance of the underlying hash function. These reasons led us to suggest
Cramer-Shoup as the basis for the interactive dual-receiver encryption scheme described
in Section 3.6.3. We implemented the Cramer-Shoup scheme in two settings: prime order
finite fields, and elliptic curves.

Our prime order finite field implementation makes use of SHA-256 or SHA-512 as
the underlying hash, based on the selected security level. The parameters for the field
are generated using the NIST FIPS 186-4 standard [Com13]. Allowable key sizes are
extended beyond the range advised by FIPS 186-4 to include those in the NIST SP 800-57
recommendation [Com12]. Messages are uniquely mapped to group elements for encryption
by squaring them to obtain a quadratic residue; they are subsequently mapped back to
the message space by finding the square root. We specifically select groups with order
3 (mod 4) so that square roots can be efficiently computed using Lagrange’s method.

Our elliptic curve implementation uses SHA-256 or SHA-512 as the underlying hash,
and the elliptic curves over prime fields defined in the NIST FIPS 186-4 standard [Com13].
Encryption in this implementation makes use of a hybrid scheme. Cramer-Shoup is used to
transmit a secret random curve point. The X coordinate of this point is hashed to key an
AES-256 cipher in GCM mode; this symmetric cipher is then used to transmit the actual
message.

We compared the two approaches to select an implementation for use in constructing the
higher-level schemes. On a single 3.6 GHz core, the prime order finite field implementation
requires approximately 100 milliseconds to generate a key, encrypt a message, and decrypt

4SHAKE256 is a hash in the SHA-3 family that provides a configurable security level. We use
SHAKE256 in the case where we require at least 256 bits of security, but we need more than 256 bits
of hash output in order to satisfy HORS’ restrictions on parameters.

5Refer to Section 3.4.3 for a detailed definition of the IND-CCA2 security game.

122

the resulting ciphertext at the 128-bit security level. The elliptic curve implementation
requires approximately 25 milliseconds to perform the same operations. Consequently, we
made use of the elliptic curve implementation in subsequent constructions.

4.2.5 Non-Interactive DRE

Both Φdre and Spawn make use of dual-receiver encryption, described in Section 3.4.4.
We chose to implement the non-interactive DRE scheme proposed by Chow, Franklin, and
Zhang [CFZ14]. While these authors construct several schemes in their publication, we
do not require the complete non-malleability properties of their more expensive schemes;
instead, we implemented the approach based on assumed hardness of the bilinear decisional
Diffie-Hellman (BDDH) problem. This scheme provides completeness, soundness, symme-
try, public verifiability, and dual-receiver IND-CCA1 security without the use of random
oracles.6

Our implementation makes use of the HORS+ one-time signature scheme described in
Section 4.2.3, as well as the PBC Go wrapper. The dual-receiver IND-CCA1 security of the
Chow-Franklin-Zhang scheme relies on the fact that all ciphertexts make use of different
verification keys for the underlying digital signatures. For this to be true in the IND-
CCA1 setting, it is insufficient for the signature scheme to be existentially unforgeable;
the signature scheme must be strongly unforgeable. Consequently, only one-time signature
schemes can be used to realize the DRE cryptosystem.

In total, the implementation relies on five hardness assumptions: discrete logarithms
in prime-order elliptic curve groups, discrete logarithms in finite fields, BDDH, and the
one-wayness and collision resistance of the underlying hash used by HORS+.

Similarly to the elliptic curve Cramer-Shoup implementation described in Section 4.2.4,
our dual-receiver encryption implementation makes use of a hybrid encryption scheme. The
Chow-Franklin-Zhang protocol is used to encrypt a random element in the pairing’s target
group GT , which is a point in F2

q. The coordinates of this point, which are independently
selected uniformly at random, are used to directly construct a symmetric key. This sym-
metric key is used to encrypt the actual message using AES-256 in GCM mode.

6Refer to Section 3.4.4 for definitions of dual-receiver encryption security properties.

123

4.2.6 Interactive DRE (IDRE)

Our interactive dual-receiver encryption (IDRE) implementation was constructed exactly
as described in Section 3.6.3. Concretely, we made use of the elliptic curve Cramer-Shoup
implementation described in Section 4.2.4 to produce two encryptions of the message.
An interactive zero-knowledge proof of knowledge is then generated to show that both
ciphertexts are valid and that they encrypt the same plaintext. The resulting scheme relies
only on the hardness assumptions made by the underlying Cramer-Shoup scheme.

The implementation also includes the capability to perform a non-interactive encryption
using the Fiat-Shamir heuristic [FS87]; this facility is not used in our constructions because
it requires the random oracle model to prove its security.

4.2.7 Φdre

Our implementation of Φdre, originally proposed by Walfish [Wal08] and described in Sec-
tion 3.6, makes use of the relaxed version that replaces non-committing encryption with
standard public-key encryption. It is acceptable to make use of the relaxed version if we
assume that memory can be erased; our implementation does not store ephemeral keys
beyond the key exchange session. The implementation uses the elliptic curve Cramer-
Shoup implementation described in Section 4.2.4 to encrypt the session key. Either the
non-interactive DRE scheme described in Section 4.2.5 or the interactive DRE scheme de-
scribed in Section 4.2.6 can be used to encrypt the messages under the long-term keys
(but the choice of scheme must be fixed before the long-term keys are generated). We
refer to the former scheme as Φdre and to the latter scheme as Φidre. The security of the
implementation relies on the assumptions of the chosen DRE scheme and the elliptic curve
Cramer-Shoup scheme. To our knowledge, ours is the first implementation of Φdre; neither
the original thesis written by Walfish [Wal08] nor the subsequent publication by Dodis et
al. [DKSW09] mention an implementation or performance measurements.

4.2.8 RSDAKE

We implemented RSDAKE, described in Section 3.7.2, using the Shacham-Waters ring
signature scheme (see Section 4.2.2). The ephemeral signing key pair for each party is
generated using the Elliptic Curve Digital Signature Algorithm (ECDSA) described in
the NIST FIPS 186-4 standard [Com13]. The key exchange procedure is completed using
Elliptic Curve Diffie-Hellman. To minimize the necessary security assumptions, the ring

124

signature scheme, signature scheme, and Diffie-Hellman scheme all operate over the same
curves defined in the ECDSA standard. The identifiers of the parties are encoded as 8-byte
sequences; it is presumed that these identifiers would be assigned as part of a higher-level
protocol. The security of the implementation relies only on the security assumptions for
the underlying schemes.

4.2.9 Spawn

We implemented Spawn, described in Section 3.8.9, in an interactive setting for the purpose
of comparative evaluation. Like our implementation of RSDAKE, our implementation of
Spawn uses ECDSA to generate ephemeral signing key pairs. Ring signatures are produced
using the Shacham-Waters scheme. The shared secret key is encrypted using the elliptic
curve Cramer-Shoup scheme. The security of the implementation relies only on the security
assumptions for the underlying schemes.

4.3 Evaluation

To compare the performance of the key exchange implementations, we instantiated a sim-
ulation of an interactive session between two parties over the Internet. This simulation
modeled a duplex connection with configurable transmission latency and bandwidth. We
evaluated the performance of four protocols: Φdre using the non-interactive Chow-Franklin-
Zhang DRE, Φidre, RSDAKE, and Spawn. We tested each protocol in a variety of simu-
lated network conditions at 112-, 128-, and 192-bit approximate security levels. We simu-
lated message latencies at 0, 50, 100, 300, 1000, 2000, 5000, and 10000 milliseconds. We
simulated communication channel bandwidth at 10 Gib/s, 100 Mib/s, 20 Mib/s, 5 Mib/s,
500 Kib/s, and 50 Kib/s. We performed each test 200 times on 3.6 GHz processor cores
with access to RAM providing 15 GiB/s read and write speeds with 63 ns latency.

All graphs in this section make use of logarithmic vertical axes and error bars. The
error bars, which denote the standard error of the mean, are typically too small to see.

4.3.1 Space Complexity

All four schemes transmit different amounts of data during the protocol session. The
amount of data transmitted depends only on the choice of protocol and the security level;

125

112 128 192

4

8

16

32

64

128

256

512

Security level (bits)

T
ra

n
sm

it
te

d
d
at

a
(K

iB
)

Φdre

Φidre

RSDAKE
Spawn

Figure 4.1: The amount of data transmitted increases significantly with higher security
levels. Φdre and Spawn require significantly more transmissions than Φidre or RSDAKE.

it does not depend on the speed of the network connection. Figure 4.1 shows the total
amount of data transmitted by each protocol during a session; this total represents the
sum of the number of bytes written at the application layer by each party.

All schemes are relatively expensive compared to a simple SIGMA protocol of the form
described in Section 3.7; all four schemes require at least 4 KiB to complete a session
with at least 112 bits of security. However, both Φdre and Spawn require significantly more
data transmission than Φidre or RSDAKE; additionally, Φdre transmits approximately three
times more data than Spawn. The reason for this disparity is the use of the HORS+ one-
time signature scheme by the non-interactive DRE implementation. The Chow-Franklin-
Zhang DRE scheme requires that an ephemeral public key and signature for a one-time
signature scheme are transmitted as part of every encryption. These keys and signatures
are extremely large because they contain large sets of hashes and preimages. Since Φdre

makes use of three DRE encryptions and Spawn makes use of only one, Φdre requires nearly
three times more data than Spawn to complete the exchange. The use of interactive DRE
in Φidre dramatically reduces the data costs of the protocol; Φidre consistently uses the least
data of all four protocols.

While RSDAKE uses nearly as little data as Φidre for the 112-bit security level, its costs
increase much faster as the security level is increased. Since the Shacham-Waters ring

126

signature scheme used by RSDAKE requires composite-order bilinear groups, the relative
ease of the integer factorization problem requires that the size of group elements increases
with approximately the cube of the security level. As a result, the two ring signatures
exchanged within RSDAKE rapidly grow in size with heightened security. Nonetheless,
RSDAKE never approaches the transmission costs of Φdre or Spawn, even at the 192-bit
security level.

4.3.2 Time Complexity vs. Security Level

As the desired security level increases, all four schemes require increasingly expensive cryp-
tographic operations. To understand the impact of security levels on the time complexity
of the algorithms, we focus on the simulation with minimal impact from network condi-
tions. Figure 4.2 shows the amount of time required to complete a session of each protocol
when the parties are connected through a 10 Gib/s channel with no latency; the resulting
delays are directly indicative of the cryptographic overhead associated with each scheme.

Several interesting observations can be drawn from Figure 4.2. RSDAKE and Spawn
are roughly an order of magnitude more expensive than Φdre and Φidre. The ring signature
scheme used by both RSDAKE and Spawn is to blame for this disparity. As we mentioned
in Section 4.3.1, the Shacham-Waters scheme used in our implementation makes use of
composite-order bilinear groups. Operations in this group setting are considerably more
expensive than operations in the prime-order elliptic curve groups used by Φdre and Φidre.
RSDAKE suffers more from this expense than Spawn does; RSDAKE makes use of two
ring signatures while Spawn only uses one.

Both Φdre and Φidre are extremely computationally efficient, requiring less than one
second to complete at the 112- and 128-bit security levels. However, in this fast network
environment, the interactive DRE scheme used by Φidre scales better than the Chow-
Franklin-Zhang scheme used by Φdre. At the 128- and 192-bit security levels, Φidre requires
the least amount of time to complete. This performance improvement can be attributed
to the direct use of elliptic curve groups by the Cramer-Shoup scheme in Φidre, rather than
the use of pairing-based cryptography in Φdre.

While Figure 4.2 compares the performance of the schemes under ideal network con-
ditions, it is also useful to understand how the schemes react to poor network conditions.
Figure 4.3 shows the total time required to complete a session of each protocol when the
parties are communicating across a 50 Kib/s connection with 2 seconds of latency. This
simulation models an extremely poor network environment that is effectively a worst-case

127

112 128 192

102

103

104

105

Security level (bits)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.2: Over a high-bandwidth connection with no latency, the cryptographic overhead
of each protocol is clear. The use of ring signatures negatively affects the performance of
RSDAKE and Spawn.

128

112 128 192

102

103

104

105

Security level (bits)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.3: When communicating over a high-latency and low-bandwidth channel, the
limitations of the network begins to affect protocol performance. RSDAKE and Spawn
perform the best at 112- and 128-bit security levels.

scenario for the protocols; the primary use of this model is to provide insight into how the
protocols behave under difficult network conditions.

The most immediate observation that can be made from Figure 4.3 is that the poor
performance of the network connection dominates the cost of all four protocols; all protocols
take approximately 10 seconds to complete, even at the 112-bit security level. Despite
requiring nine message flows to complete, Φidre performs comparatively well in this high-
latency environment. Φidre is the most scalable protocol; since it only requires operations in
small elliptic curve groups, the cryptographic overhead is relatively constant. Φdre performs
the worst at all security levels since it makes use of the Chow-Franklin-Zhang DRE scheme
three times, which imposes high bandwidth costs. Spawn generally performs well since it
only requires two message flows to complete, but it is still slower than RSDAKE at 128- and
192-bit security levels due to its use of the Chow-Franklin-Zhang DRE scheme. RSDAKE
is the most efficient protocol at the 112- and 128-bit security levels. At the 192-bit security
level, the performance of RSDAKE and Spawn is impacted by the computational costs

129

102 103 104

103

104

105

Message Latency (ms)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.4: As message latency increases, protocols at the 112-bit security level are grouped
by the number of messages they send.

of the Shacham-Waters ring signature scheme. Consequently, Φidre performs significantly
better than all other protocols at the 192-bit security level.

4.3.3 Time Complexity vs. Latency

To understand the effect of network latency on the performance of the protocols, we exam-
ined the total time required to complete protocol sessions over a high-bandwidth channel
with varying latency. Figure 4.4 plots the performance of the four protocols at the 112-bit
security level as the latency is increased. When the latency is low, the performance of the
algorithms approaches the condition depicted in Figure 4.2. As the latency increases, the
time required to complete the session becomes dominated by the performance of the com-
munication channel. At the highest level of latency, the protocols are effectively grouped by
the number of flows that they require: Φidre, which requires nine message flows, performs
the worst; Φdre and RSDAKE, which both require three message flows, perform similarly;
and Spawn, which only requires two message flows, performs the best. Consequently, as
the latency is increased, the protocols scale at different rates.

The effect of message latency on the performance of the protocols changes as the secu-
rity level increases. Figure 4.5 and Figure 4.6 plot the performance of the protocols at the

130

102 103 104

103

104

105

Message Latency (ms)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.5: At the 128-bit security level, the higher computational costs of RSDAKE and
Spawn are more significant than message latency.

102 103 104

104

105

Message Latency (ms)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.6: At the 192-bit security level, the computational costs of RSDAKE and Spawn
effectively eliminate their performance advantages with respect to message latency.

131

211213215217219221223225227229231

103

104

Channel Bandwidth (bytes/second)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.7: At the 112-bit security level, Φidre performs the best in low-bandwidth envi-
ronments. Φdre scales particularly poorly due to its high data transmission requirements.

128-bit and 192-bit security levels, respectively. As the security level increases, the high
computational costs of the Shacham-Waters ring signature scheme begins to dominate the
performance costs of RSDAKE and Spawn. While Spawn still achieves the best perfor-
mance at the 128-bit security level in environments with extremely high latency, these
advantages are eliminated at the 192-bit security level; the performance of RSDAKE and
Spawn at this security level is almost completely independent of the message latency. In
contrast, Φdre and Φidre continue to scale in a similar manner. Notably, the performance of
Φidre is still significantly harmed by increasing network latency since it requires the most
message flows.

4.3.4 Time Complexity vs. Bandwidth

When considering the impact of network conditions on key exchange protocols, it is also
important to consider the effect of bandwidth constraints. To measure this effect, we eval-
uated the total time required to complete each protocol session in a network environment
with no latency under varying bandwidth constraints.

Figure 4.7 plots the performance of the four protocols at the 112-bit security level as
the available bandwidth decreases. Note that the horizontal axis in this plot is reversed:

132

211213215217219221223225227229231

103

104

Channel Bandwidth (bytes/second)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.8: At the 128-bit security level, the dominance of Φidre becomes more pronounced.
The performance of Spawn begins to become dominated by the cost of the ring signature
scheme.

the bandwidth of the channel decreases toward the right side of the figure. When the
communication channel supports 20 Mib/s (2.5 MiB/s) or more, the performance of the
protocols is effectively constant; this represents the situation depicted in Figure 4.2. How-
ever, as the available bandwidth is decreased, the communication costs quickly dominate
the performance of each scheme. The rate at which the performance of each protocol de-
creases is based on the amount of data that is transmitted; consequently, the performance
of the schemes in the lowest-bandwidth environment is effectively predicted by the data
transmission totals in Figure 4.1. When there is very little available bandwidth, Φidre be-
comes the most efficient scheme. RSDAKE also performs very well in this low-bandwidth
environment since it requires a relatively small amount of data to be transmitted. The
performance of RSDAKE in Figure 4.7 is relatively constant with respect to varying band-
width constraints because its performance is dominated by the computational costs of the
ring signature scheme.

When configuring the protocols for higher security levels, they still scale in a similar
manner with respect to bandwidth constraints. Figure 4.8 and Figure 4.9 plot total ses-
sion time against channel bandwidth for protocols offering 128 and 192 bits of security,
respectively. Similarly to Section 4.3.3, we note that the performance of RSDAKE and
Spawn becomes dominated by the costs of the Shacham-Waters ring signature scheme at

133

211213215217219221223225227229231

104

105

Channel Bandwidth (bytes/second)

T
im

e
(m

s) Φdre

Φidre

RSDAKE
Spawn

Figure 4.9: At the 192-bit security level, Φidre solidifies its performance advantage. RS-
DAKE and Spawn are relatively unaffected by changing bandwidth conditions.

these higher security levels. In particular, the performance of Spawn is only affected by
bandwidth constraints at the 192-bit security level in the most extreme network environ-
ments. Φdre performs consistently poorly in low-bandwidth environments under all security
levels, since it is the scheme that requires the largest data transmissions. Φidre performs
the fastest under all network conditions at the 128- and 192-bit security levels due to its
computationally efficient construction and minimal data transmission requirements.

4.4 Discussion

When choosing a protocol to use in a real-world application, developers should consider
both their security and performance needs. We previously discussed the security charac-
teristics of Φdre, Φidre, RSDAKE, and Spawn in Section 3.9. Our evaluation presented
in Section 4.3 is meant to serve as a guideline for real-world performance expectations;
the final performance of a scheme depends on the implementation and the underlying
cryptosystems used to construct it.

In environments where the amount of transmitted data is the primary concern, such
as mobile data connections that charge based on monthly upload and download totals,

134

Φidre and RSDAKE are the best choices. If the speed of the key exchange is the primary
concern, then the best selection depends on the expected network conditions and desired
security level. When parties communicate over connections with low latency and high
bandwidth, Φdre and Φidre are the best choices. In contrast, Φdre should be avoided in
environments with low bandwidth, and Φidre should be avoided in environments with high
latency. RSDAKE and Spawn are superior in environments with both high latency and low
bandwidth. When computational demands are the primary concern, RSDAKE and Spawn
should be avoided due to their use of relatively expensive ring signature schemes, especially
at higher security levels. If a developer would like to build a system that performs well on
different kinds of devices across multiple interactive environments, they could dynamically
select a DAKE using an initial client handshake protocol; TLS uses a similar negotiation
scheme for establishing secure connections [DR08]. However, if the system will primarily
be used in non-interactive environments, then only Spawn should be used.

If ring signature schemes become more efficient than dual-receiver cryptosystems in the
future, then RSDAKE and Spawn have the potential to outperform the Φdre and Φidre

schemes. Additionally, all of the implementations described in this chapter make use of
only standard-model assumptions. If a practitioner is willing to make use of schemes that
depend on random oracles for security, then the performance of all four protocols can be
greatly improved.

135

Chapter 5

Concluding Remarks

In this work, we sought to provide assistance for practitioners seeking to implement de-
niable secure messaging protocols. We systematized knowledge of existing approaches,
providing much-needed context amidst the current development fervor. We decomposed
secure messaging protocols into three aspects (trust establishment, conversation security,
and transport privacy), easing the task of analyzing and constructing these complex sys-
tems. We then focused specifically on the deniability properties offered by the conversation
security layer. We examined existing deniable authenticated key exchange (DAKE) proto-
cols in the context of multiple definitions of deniability. We introduced several new DAKEs
(RSDAKE and Spawn∗) and variants (Φidre and Spawn) that are well-suited to different se-
cure messaging environments. Most notably, we have introduced Spawn, the first protocol
with strong deniability properties and forward secrecy that can be used in non-interactive
environments. We quantified our claims of practicality by comparing instantiations of the
protocols in simulated network environments, and released the resulting code to the public.

Of course, much work remains to be done. The world still lacks a small set of usable
secure messaging tools with strong and well-defined security properties. Reaching this goal
will require close collaboration between theorists and practitioners, as well as widespread
agreement on desired protocol properties. Additionally, there remain open research prob-
lems, such as protection of metadata, that still lack good solutions. It is our hope that the
systematization presented in Chapter 2 will help to inform these developments.

Deniability of secure messaging schemes also remains a research area with many un-
solved problems. The most appropriate definition of deniability to use when constructing
protocols is not yet agreed upon; specifically, very few publications consider online repu-
diation during analysis of their designs. While we suspect that weak forward secrecy and

136

online repudiation are mutually exclusive properties in the non-interactive setting, Conjec-
ture 3.1 remains unproven. Finally, although we provide proof-of-concept implementations
of our new DAKE protocols, adoption by end-user tools may be encouraged by integrating
these implementations with a higher-level popular cryptographic library.

Since it is easy to become ensnared by the details of security proofs or the intricacies
of an implementation, it is important that we do not lose sight of the bigger picture. The
recent surveillance revelations have reminded us all of the lack of security and privacy in
our digital communications. Currently, end users are confused by the wide selection of
tools promising secure messaging, none of which is perfect, and some of which are broken
or malicious. While the general public debates the politics of government surveillance,
these debates are only meaningful if technology empowers the people with a choice. It
is our responsibility as security researchers to provide this choice through the design and
construction of usable and effective secure messaging tools.

137

References

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. “Flexi-
ble Group Key Exchange with On-Demand Computation of Subgroup Keys”. In:
Progress in Cryptology–AFRICACRYPT. Springer, 2010, pp. 351–368.

[AG07] Chris Alexander and Ian Goldberg. “Improved User Authentication in Off-The-
Record Messaging”. In: Workshop on Privacy in the Electronic Society. ACM.
2007, pp. 41–47.

[AG09] Diego de Freitas Aranha and Conrado Porto Lopes Gouvêa. RELIC is an Efficient
LIbrary for Cryptography. 2009. url: https://github.com/relic-toolkit/
relic (visited on 2015-04-13).

[AJM95] Richard Ankney, Don Johnson, and Stephen Mike Matyas. The Unified Model.
Contribution to X9F1. 1995.

[AKJ+15] Bonnie Brinton Anderson, C Brock Kirwan, Jeffrey L Jenkins, David Eargle, Seth
Howard, and Anthony Vance. “How Polymorphic Warnings Reduce Habituation
in the Brain—Insights from an fMRI Study”. In: CHI. ACM. 2015.

[And97] Ross Anderson. “Two Remarks on Public Key Cryptology”. Available from https:

//www.cl.cam.ac.uk/users/rja14. 1997.

[BBL02] Ian Brown, Adam Back, and Ben Laurie. Forward Secrecy Extensions for
OpenPGP. Draft. Internet Engineering Task Force, 2002. url: https://tools.
ietf.org/id/draft-brown-pgp-pfs-03.txt.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In:
Advances in Cryptology–CRYPTO. Springer. 2004, pp. 41–55.

[BDG14] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A Private Presence Ser-
vice. Tech. rep. 2014-10. CACR, 2014.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon,
and Hao-Chi Wong. “Secret Handshakes from Pairing-Based Key Agreements”.
In: Symposium on Security and Privacy. IEEE. 2003, pp. 180–196.

138

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.cl.cam.ac.uk/users/rja14
https://www.cl.cam.ac.uk/users/rja14
https://tools.ietf.org/id/draft-brown-pgp-pfs-03.txt
https://tools.ietf.org/id/draft-brown-pgp-pfs-03.txt

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-Record Communication,
or, Why Not To Use PGP”. In: Workshop on Privacy in the Electronic Society.
ACM. 2004, pp. 77–84.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. “Identity-based Encryp-
tion with Efficient Revocation”. In: Conference on Computer and Communications
Security. ACM. 2008, pp. 417–426.

[BGKT12] Michael Backes, Ian Goldberg, Aniket Kate, and Tomas Toft. “Adding Query
Privacy to Robust DHTs”. In: Symposium on Information, Computer and Com-
munications Security. ACM. 2012, pp. 30–31.

[BHvS12] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. “The
Quest to Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes”. In: Symposium on Security and Privacy. IEEE. San
Francisco, CA, USA, 2012. url: http://www.jbonneau.com/doc/BHOS12-

IEEESP-quest_to_replace_passwords.pdf.

[Bit12] Bitmessage Project. Bitmessage. 2012. url: https://bitmessage.org/ (visited
on 2014-11-02).

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures: Stronger
Definitions, and Constructions without Random Oracles”. In: Theory of Cryptog-
raphy. Springer, 2006, pp. 60–79.

[Blo99] Eric A Blossom. The VP1 Protocol for Voice Privacy Devices Version 1.2. Com-
munication Security Corporation, 1999.

[BMG+07] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. “Low-Resource Routing Attacks Against Tor”. In: Workshop on Privacy
in the Electronic Society. ACM. 2007, pp. 11–20.

[BMHD08] Zhang Bin, Feng Meng, Xiong Hou-ren, and Hu Dian-you. “Design and Imple-
mentation of Secure Instant Messaging System Based on MSN”. In: International
Symposium on Computer Science and Computational Technology. Vol. 1. IEEE.
2008, pp. 38–41.

[BMP04] Colin Boyd, Wenbo Mao, and Kenneth G Paterson. “Key Agreement using Stat-
ically Keyed Authenticators”. In: Applied Cryptography and Network Security.
Springer, 2004, pp. 248–262.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key
Exchange Secure Against Dictionary Attacks”. In: Advances in Cryptology–
EUROCRYPT. Springer. 2000, pp. 139–155.

[BR93] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”.
In: Advances in Cryptology–CRYPTO’93. Springer, 1993, pp. 232–249.

139

http://www.jbonneau.com/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf
http://www.jbonneau.com/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf
https://bitmessage.org/

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. “A fair and efficient
solution to the socialist millionaires’ problem”. In: Discrete Applied Mathematics
111.1 (2001), pp. 23–36.

[BST07] Jiang Bian, Remzi Seker, and Umit Topaloglu. “Off-the-Record Instant Messaging
for Group Conversation”. In: International Conference on Information Reuse and
Integration. IEEE. 2007, pp. 79–84.

[BSW06] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Signatures
Based on Computational Diffie-Hellman”. In: Public Key Cryptography. Springer,
2006, pp. 229–240.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols”. In: Foundations of Computer Science. IEEE. 2001, pp. 136–
145.

[Can04] Ran Canetti. “Universally Composable Signature, Certification, and Authentica-
tion”. In: Computer Security Foundations Workshop. IEEE. 2004, pp. 219–233.

[CDF+99] John Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney Thayer.
OpenPGP Message Format. RFC 4880 (Proposed Standard). Updated by RFC
5581. Internet Engineering Task Force, 1999. url: http://tools.ietf.org/
rfc/rfc4880.txt.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. “Improved
Non-Committing Encryption with Applications to Adaptively Secure Protocols”.
In: Advances in Cryptology–ASIACRYPT 2009. Springer, 2009, pp. 287–302.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafi Ostrovsky. “Deniable Encryp-
tion”. In: Advances in Cryptology–CRYPTO. Springer, 1997, pp. 90–104.

[CF10] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: Accountable Anonymous Group
Messaging”. In: Conference on Computer and Communications Security. ACM.
2010, pp. 340–350.

[CF11] Cas Cremers and Michéle Feltz. One-round Strongly Secure Key Exchange with
Perfect Forward Secrecy and Deniability. Tech. rep. 2011/300. Cryptology ePrint
Archive, 2011. url: https://eprint.iacr.org/2011/300.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively Secure Multi-
party Computation. Tech. rep. Massachusetts Institute of Technology, 1996. url:
http://theory.csail.mit.edu/ftp-data/pub/people/oded/dynamic.ps.

[CFZ14] Sherman SM Chow, Matthew Franklin, and Haibin Zhang. “Practical Dual-
Receiver Encryption. Soundness, Complete Non-Malleability, and Applications”.
In: Topics in Cryptology–CT-RSA 2014. Springer, 2014, pp. 85–105.

140

http://tools.ietf.org/rfc/rfc4880.txt
http://tools.ietf.org/rfc/rfc4880.txt
https://eprint.iacr.org/2011/300
http://theory.csail.mit.edu/ftp-data/pub/people/oded/dynamic.ps

[CGM+11] Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary Wasserman, Kevin Xu,
and Matt Blaze. “Why (Special Agent) Johnny (Still) Can’t Encrypt: A Security
Analysis of the APCO Project 25 Two-way Radio System”. In: Security Sympo-
sium. USENIX, 2011.

[Cha88] David Chaum. “The Dining Cryptographers Problem: Unconditional Sender and
Recipient Untraceability”. In: Journal of Cryptology 1.1 (1988), pp. 65–75.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-Secure Public-Key
Encryption Scheme”. In: Advances in Cryptology–EUROCRYPT. Springer, 2003,
pp. 255–271.

[CK02] Ran Canetti and Hugo Krawczyk. “Security Analysis of IKE’s Signature-Based
Key-Exchange Protocol”. In: Advances in Cryptology–CRYPTO 2002. Springer,
2002, pp. 143–161.

[CKFP10] Joseph A Cooley, Roger I Khazan, Benjamin W Fuller, and Galen E Pickard.
“GROK: A Practical System for Securing Group Communications”. In: Interna-
tional Symposium on Network Computing and Applications. IEEE. 2010, pp. 100–
107.

[Com12] U.S. Department of Commerce / National Institute of Standards & Technology.
Recommendation for Key Management–Part 1: General. Version 3. 2012.

[Com13] U.S. Department of Commerce / National Institute of Standards & Technology.
Digital Signature Standard (DSS). 2013.

[Con14] Confide. Confide - Your Off-the-Record Messenger. 2014. url: https : / /

getconfide.com/ (visited on 2014-11-02).

[CR03] Ran Canetti and Tal Rabin. “Universal Composition with Joint State”. In: Ad-
vances in Cryptology–CRYPTO 2003. Springer, 2003, pp. 265–281.

[CS98] Ronald Cramer and Victor Shoup. “A Practical Public Key Cryptosystem
Provably Secure against Adaptive Chosen Ciphertext Attack”. In: Advances in
Cryptology–CRYPTO’98. Springer. 1998, pp. 13–25.

[Cv13] Jeremy Clark and Paul C van Oorschot. “SoK: SSL and HTTPS: Revisiting past
challenges and evaluating certificate trust model enhancements”. In: Symposium
on Security and Privacy. IEEE. 2013, pp. 511–525.

[CWF12] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively
Accountable Anonymous Messaging in Verdict. Tech. rep. arXiv:1209.4819.
Version Extended Version. arXiv e-prints, 2012.

[Dan09] Quynh H Dang. Randomized Hashing for Digital Signatures. U.S. Department of
Commerce / National Institute of Standards & Technology, 2009.

141

https://getconfide.com/
https://getconfide.com/

[Dav01] Don Davis. “Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP,
and XML”. In: Annual Technical Conference, General Track. USENIX, 2001,
pp. 65–78.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. “Mixminion: Design of a
Type III Anonymous Remailer Protocol”. In: Symposium on Security and Privacy.
IEEE. 2003, pp. 2–15.

[DDN98] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-Malleable Cryptography”.
In: SIAM Journal on Computing. 1998, pp. 542–552.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable Authen-
tication and Key Exchange”. In: Conference on Computer and Communications
Security. ACM. 2006, pp. 400–409.

[DH76] Whitfield Diffie and Martin E Hellman. “New Directions in Cryptography”. In:
Transactions on Information Theory 22.6 (1976), pp. 644–654.

[DKSW09] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. “Composability
and On-Line Deniability of Authentication”. In: Theory of Cryptography. Springer,
2009, pp. 146–162.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. Tech. rep. DTIC, 2004.

[DN00a] Ivan Damg̊ard and Jesper Buus Nielsen. “Improved Non-Committing Encryp-
tion Schemes Based on a General Complexity Assumption”. In: Advances in
Cryptology–CRYPTO 2000. Springer. 2000, pp. 432–450.

[DN00b] Cynthia Dwork and Moni Naor. “Zaps and Their Applications”. In: Foundations
of Computer Science. IEEE. 2000, pp. 283–293.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent Zero-Knowledge”. In:
Symposium on Theory of Computing. ACM. 1998, pp. 409–418.

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.2. RFC 5246 (Proposed Standard). Internet Engineering Task Force, 2008.
url: http://tools.ietf.org/rfc/rfc5246.txt.

[DvW92] Whitfield Diffie, Paul C van Oorschot, and Michael J Wiener. “Authentication and
Authenticated Key Exchanges”. In: Designs, Codes and Cryptography 2.2 (1992),
pp. 107–125.

[EDG09] Nathan S Evans, Roger Dingledine, and Christian Grothoff. “A Practical Conges-
tion Attack on Tor Using Long Paths”. In: Security Symposium. USENIX, 2009,
pp. 33–50.

142

http://tools.ietf.org/rfc/rfc5246.txt

[EFL+99] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. SPKI Certificate Theory. RFC 2693 (Experimental). Internet Engineering
Task Force, 1999. url: http://tools.ietf.org/rfc/rfc2693.txt.

[Ele14] Electronic Frontier Foundation. Secure Messaging Scorecard. 2014. url: https:
//www.eff.org/secure-messaging-scorecard (visited on 2014-11-11).

[Ell96] Carl M Ellison. “Establishing Identity Without Certification Authorities”. In: Se-
curity Symposium. USENIX, 1996, pp. 67–76.

[eQu15] eQualit.ie. (N+1)SEC. 2015. url: learn.equalit.ie/wiki/Np1sec (visited on
2015-02-28).

[Fac14] Facebook. Facebook Help Center. 2014. url: https://www.facebook.com/help/
(visited on 2014-11-03).

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, and Uwe Sander.
“Helping Johnny 2.0 to Encrypt His Facebook Conversations”. In: Symposium on
Usable Privacy and Security. ACM. 2012.

[Fis05] Marc Fischlin. “Completely Non-Malleable Schemes”. In: Automata, Languages
and Programming. Springer, 2005, pp. 779–790.

[FL04] Denis Fomin and Yann Leboulanger. Gajim, a Jabber/XMPP client. 2004. url:
https://gajim.org/ (visited on 2014-11-02).

[FLK+13] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim, Jonathan McCune, and
Adrian Perrig. “SafeSlinger: Easy-to-Use and Secure Public-Key Exchange”.
In: International Conference on Mobile Computing & Networking. ACM. 2013,
pp. 417–428.

[FMB+14] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg
Schwenk, and Thorsten Holz. How Secure is TextSecure? Cryptology ePrint
Archive Report 2014/904. 2014. url: https://eprint.iacr.org/2014/904.

[FN94] Amos Fiat and Moni Naor. “Broadcast Encryption”. In: Advances in Cryptology–
CRYPTO’93. Springer. 1994, pp. 480–491.

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: Advances in Cryptology–CRYPTO’86.
Springer. 1987, pp. 186–194.

[GIJ+12] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software”. In: Conference on Computer and Commu-
nications Security. ACM. 2012, pp. 38–49.

[GJ04] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited”. In: Advances in
Cryptology–EUROCRYPT. Springer, 2004, pp. 456–473.

143

http://tools.ietf.org/rfc/rfc2693.txt
https://www.eff.org/secure-messaging-scorecard
https://www.eff.org/secure-messaging-scorecard
learn.equalit.ie/wiki/Np1sec
https://www.facebook.com/help/
https://gajim.org/
https://eprint.iacr.org/2014/904

[GM05] Simson L Garfinkel and Robert C Miller. “Johnny 2: A User Test of Key Continu-
ity Management with S/MIME and Outlook Express”. In: Symposium on Usable
Privacy and Security. ACM. 2005, pp. 13–24.

[GM15] Matthew Green and Ian Miers. “Forward Secure Asynchronous Messaging from
Puncturable Encryption”. In: Symposium on Security and Privacy. IEEE. 2015.

[GMS+05] Simson L Garfinkel, David Margrave, Jeffrey I Schiller, Erik Nordlander, and
Robert C Miller. “How to Make Secure Email Easier To Use”. In: SIGCHI Con-
ference on Human Factors in Computing Systems. ACM. 2005, pp. 701–710.

[Go 09] Go Project. The Go Programming Language. 2009. url: https://golang.org/
(visited on 2015-04-13).

[Gol14] GoldBug Project. GoldBug - Secure Instant Messenger. 2014. url: http : / /

goldbug.sourceforge.net/ (visited on 2014-11-02).

[Goo14a] Google. End-To-End. 2014. url: https://github.com/google/end-to-end
(visited on 2015-02-22).

[Goo14b] Google. Google Hangouts - Video Conferencing & Meeting for Business. 2014. url:
https://www.google.com/work/apps/business/products/hangouts/ (visited
on 2014-11-03).

[GRPS03] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A Scalable
and Efficient Protocol for Anonymous Communication. Tech. rep. TR2003-1890.
Cornell University, 2003.

[GS07] Prateek Gupta and Vitaly Shmatikov. “Security Analysis of Voice-over-IP Proto-
cols”. In: Computer Security Foundations Symposium. IEEE. 2007, pp. 49–63.

[GUVC09] Ian Goldberg, Berkant Ustaoğlu, Matthew D Van Gundy, and Hao Chen. “Multi-
party Off-the-Record Messaging”. In: Conference on Computer and Communica-
tions Security. ACM. 2009, pp. 358–368.

[Hea12] Christopher C. D. Head. “Anonycaster: Simple, Efficient Anonymous Group Com-
munication”. Available from https://blogs.ubc.ca/computersecurity/files/

2012/04/anonycaster.pdf. 2012. (Visited on 2014-11-02).

[Hea14] Mike Hearn. Value of deniability. Mailing list discussion. 2014. url: https://
moderncrypto.org/mail-archive/messaging/2014/001173.html (visited on
2015-04-02).

[JM95] Bonnie E John and Matthew M Mashyna. Evaluating a Multimedia Authoring
Tool with Cognitive Walkthrough and Think-Aloud User Studies. Tech. rep. DTIC,
1995.

[JS08] Shaoquan Jiang and Reihaneh Safavi-Naini. “An Efficient Fully Deniable Key Ex-
change Protocol”. In: Financial Cryptography and Data Security. Springer, 2008.

144

https://golang.org/
http://goldbug.sourceforge.net/
http://goldbug.sourceforge.net/
https://github.com/google/end-to-end
https://www.google.com/work/apps/business/products/hangouts/
https://blogs.ubc.ca/computersecurity/files/2012/04/anonycaster.pdf
https://blogs.ubc.ca/computersecurity/files/2012/04/anonycaster.pdf
https://moderncrypto.org/mail-archive/messaging/2014/001173.html
https://moderncrypto.org/mail-archive/messaging/2014/001173.html

[JY96] Markus Jakobsson and Moti Yung. “Proving Without Knowing: On Oblivious, Ag-
nostic and Blindfolded Provers”. In: Advances in Cryptology–CRYPTO. Springer.
1996, pp. 186–200.

[Kat03] Jonathan Katz. “Efficient and Non-Malleable Proofs of Plaintext Knowledge
and Applications”. In: Advances in Cryptology–EUROCRYPT. Springer, 2003,
pp. 211–228.

[Key14] Keybase. Keybase. 2014. url: https://keybase.io/ (visited on 2015-05-14).

[KFR09] Ronald Kainda, Ivan Flechais, and A. W. Roscoe. “Usability and Security of Out-
Of-Band Channels in Secure Device Pairing Protocols”. In: Symposium on Usable
Privacy and Security. ACM, 2009.

[KP05] Caroline Kudla and Kenneth G Paterson. “Modular Security Proofs for Key
Agreement Protocols”. In: Advances in Cryptology–ASIACRYPT. Springer, 2005,
pp. 549–565.

[Kra03] Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated
Diffie-Hellman and its Use in the IKE protocols”. In: Advances in Cryptology–
CRYPTO 2003. Springer, 2003, pp. 400–425.

[Kra05] Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol”.
In: Advances in Cryptology–CRYPTO. Springer. 2005, pp. 546–566.

[Kra96] Hugo Krawczyk. “SKEME: A Versatile Secure Key Exchange Mechanism for In-
ternet”. In: Network and Distributed System Security Symposium. IEEE. 1996,
pp. 114–127.

[KT08] Apu Kapadia and Nikos Triandopoulos. “Halo: High-Assurance Locate for Dis-
tributed Hash Tables”. In: Network and Distributed System Security Symposium.
Internet Society, 2008.

[KTN04] Hiroaki Kikuchi, Minako Tada, and Shohachiro Nakanishi. “Secure Instant Mes-
saging Protocol Preserving Confidentiality against Administrator”. In: Interna-
tional Conference on Advanced Information Networking and Applications. IEEE.
2004, pp. 27–30.

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One Way Function. Tech.
rep. CSL-98. SRI International Palo Alto, 1979.

[Lan13a] Adam Langley. Enhancing digital certificate security. 2013. url: http :

/ / googleonlinesecurity . blogspot . de / 2013 / 01 / enhancing - digital -

certificate-security.html (visited on 2014-11-02).

[Lan13b] Adam Langley. Pond. 2013. url: https://pond.imperialviolet.org/ (visited
on 2014-11-02).

145

https://keybase.io/
http://googleonlinesecurity.blogspot.de/2013/01/enhancing-digital-certificate-security.html
http://googleonlinesecurity.blogspot.de/2013/01/enhancing-digital-certificate-security.html
http://googleonlinesecurity.blogspot.de/2013/01/enhancing-digital-certificate-security.html
https://pond.imperialviolet.org/

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. RFC
6962 (Experimental). Internet Engineering Task Force, 2013. url: http://tools.
ietf.org/rfc/rfc6962.txt.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger Security of Au-
thenticated Key Exchange”. In: Provable Security. Springer, 2007, pp. 1–16.

[LM06] Kristin Lauter and Anton Mityagin. “Security Analysis of KEA Authenticated
Key Exchange Protocol”. In: Public Key Cryptography – PKC 2006. Springer,
2006, pp. 378–394.

[LMQ+03] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone.
“An Efficient Protocol for Authenticated Key Agreement”. In: Designs, Codes
and Cryptography 28.2 (2003), pp. 119–134.

[LV09] Benôıt Libert and Damien Vergnaud. “Adaptive-ID Secure Revocable Identity-
Based Encryption”. In: Topics in Cryptology–CT-RSA. Springer, 2009, pp. 1–15.

[LVH13] Hong Liu, Eugene Y Vasserman, and Nicholas Hopper. “Improved Group Off-the-
Record Messaging”. In: Workshop on Privacy in the Electronic Society. ACM.
2013, pp. 249–254.

[LY09] Chia-Pei Lee and Chung-Huang Yang. “Design and Implement of a Secure Instant
Messaging Service with IC Card”. Available from http://crypto.nknu.edu.tw/

psnl/publications/2009CPU_SIMICCard.pdf. 2009.

[Lyn06] Ben Lynn. The Pairing-Based Cryptography Library. 2006. url: https://crypto.
stanford.edu/pbc/ (visited on 2015-04-13).

[Mad14] Marry Madden. Public Perceptions of Privacy and Security in the Post-Snowden
Era. 2014. url: http://www.pewinternet.org/2014/11/12/public-privacy-
perceptions/ (visited on 2014-11-14).

[Mar09] Moxie Marlinspike. “More tricks for defeating SSL in practice”. In: Black Hat
USA. 2009.

[MBB+14] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Michael J. Freedman, and
Edward W. Felten. CONIKS: A Privacy-Preserving Consistent Key Service for
Secure End-to-End Communication. Cryptology ePrint Archive Report 2014/1004.
2014. url: https://eprint.iacr.org/2014/1004.

[MBZ12] Vinnie Moscaritolo, Gary Belvin, and Phil Zimmermann. Silent Circle Instant
Messaging Protocol Protocol Specification. Silent Circle, 2012.

[MD05] Steven J Murdoch and George Danezis. “Low-Cost Traffic Analysis of Tor”. In:
Symposium on Security and Privacy. IEEE. 2005, pp. 183–195.

[Mic14] Microsoft. Does Skype use encryption? 2014. url: https://support.skype.com/
en/faq/FA31/does-skype-use-encryption (visited on 2014-11-02).

146

http://tools.ietf.org/rfc/rfc6962.txt
http://tools.ietf.org/rfc/rfc6962.txt
http://crypto.nknu.edu.tw/psnl/publications/2009CPU_SIMICCard.pdf
http://crypto.nknu.edu.tw/psnl/publications/2009CPU_SIMICCard.pdf
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
https://eprint.iacr.org/2014/1004
https://support.skype.com/en/faq/FA31/does-skype-use-encryption
https://support.skype.com/en/faq/FA31/does-skype-use-encryption

[MM02] Petar Maymounkov and David Mazières. “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”. In: Peer-to-Peer Systems. Springer, 2002,
pp. 53–65.

[MQV95] Alfred J Menezes, Minghua Qu, and Scott A Vanstone. “Some New Key Agreement
Protocols Providing Implicit Authentication”. In: Selected Areas in Cryptography.
1995, pp. 22–32.

[Mv06] Mohammad Mannan and Paul C van Oorschot. “A Protocol for Secure Public
Instant Messaging”. In: Financial Cryptography and Data Security. Springer, 2006,
pp. 20–35.

[Nak08] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. Self-
published. 2008.

[Nam11] Namecoin Project. Namecoin. 2011. url: https://namecoin.info/ (visited on
2014-11-02).

[Nao02] Moni Naor. “Deniable Ring Authentication”. In: Advances in Cryptology–
CRYPTO 2002. Springer, 2002, pp. 481–498.

[Nat98] National Security Agency. SKIPJACK and KEA Algorithm Specifications. Ver-
sion Version 2.0. 1998. url: http://csrc.nist.gov/groups/ST/toolkit/

documents/skipjack/skipjack.pdf (visited on 2014-11-02).

[Nie92] Jakob Nielsen. “Finding Usability Problems Through Heuristic Evaluation”. In:
SIGCHI Conference on Human Factors in Computing Systems. ACM. 1992,
pp. 373–380.

[Nie94] Jakob Nielsen. “Usability inspection methods”. In: Conference Companion on Hu-
man Factors in Computing Systems. ACM. 1994, pp. 413–414.

[Ope13a] Open Whisper Systems. Advanced cryptographic ratcheting. 2013. url: https:

/ / www . whispersystems . org / blog / advanced - ratcheting/ (visited on
2014-11-02).

[Ope13b] Open Whisper Systems. Forward Secrecy for Asynchronous Messages. 2013. url:
https://whispersystems.org/blog/asynchronous- security/ (visited on
2015-05-14).

[Ope13c] Open Whisper Systems. Open WhisperSystems. 2013. url: https : / / www .

whispersystems.org/ (visited on 2014-11-02).

[Ope13d] Open Whisper Systems. Simplifying OTR deniability. 2013. url: https : / /

www.whispersystems.org/blog/simplifying- otr- deniability (visited on
2014-11-02).

147

https://namecoin.info/
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
https://www.whispersystems.org/blog/advanced-ratcheting/
https://www.whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/asynchronous-security/
https://www.whispersystems.org/
https://www.whispersystems.org/
https://www.whispersystems.org/blog/simplifying-otr-deniability
https://www.whispersystems.org/blog/simplifying-otr-deniability

[Ope14a] Open Whisper Systems. Open Whisper Systems partners with WhatsApp to provide
end-to-end encryption. 2014. url: https://www.whispersystems.org/blog/
whatsapp/ (visited on 2014-12-23).

[Ope14b] Open Whisper Systems. Private Group Messaging. 2014. url: https://www.

whispersystems.org/blog/private-groups/ (visited on 2014-11-02).

[Pas03] Rafael Pass. “On Deniability in the Common Reference String and Random Oracle
Model”. In: Advances in Cryptology–CRYPTO 2003. Springer, 2003, pp. 316–337.

[Per13] Trevor Perrin. Axolotl Ratchet. 2013. url: https://github.com/trevp/axolotl/
wiki (visited on 2014-11-02).

[PGES05] Johan A Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. “The BitTorrent
P2P File-Sharing System: Measurements and Analysis”. In: Peer-to-Peer Systems
IV. Springer, 2005, pp. 205–216.

[PHJ+08] Martin Petraschek, Thomas Hoeher, Oliver Jung, Helmut Hlavacs, and Wilfried
N Gansterer. “Security and Usability Aspects of Man-in-the-Middle Attacks on
ZRTP”. In: Journal of Universal Computer Science 14.5 (2008), pp. 673–692.

[PNZE11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. “Website
Fingerprinting in Onion Routing Based Anonymization Networks”. In: Workshop
on Privacy in the Electronic Society. ACM. 2011, pp. 103–114.

[Ric14] Ricochet Project. Anonymous and serverless instant messaging that just works.
2014. url: https : / / github . com / ricochet - im / ricochet (visited on
2015-04-01).

[RKAG07] Joel Reardon, Alan Kligman, Brian Agala, and Ian Goldberg. KleeQ: Asyn-
chronous Key Management for Dynamic Ad-Hoc Networks. Tech. rep. University
of Waterloo, 2007.

[RKB+13] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der Horst, and Kent Sea-
mons. “Confused Johnny: When Automatic Encryption Leads to Confusion and
Mistakes”. In: Symposium on Usable Privacy and Security. ACM. 2013.

[RL96] Ronald L Rivest and Butler Lampson. “SDSI – A Simple Distributed Security
Infrastructure”. Manuscript. 1996.

[RR02] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-time Signatures
with Fast Signing and Verifying”. In: Information Security and Privacy. Springer.
2002, pp. 144–153.

[RS92] Charles Rackoff and Daniel R Simon. “Non-Interactive Zero-Knowledge Proof
of Knowledge and Chosen Ciphertext Attack”. In: Advances in Cryptology–
CRYPTO’91. Springer. 1992, pp. 433–444.

148

https://www.whispersystems.org/blog/whatsapp/
https://www.whispersystems.org/blog/whatsapp/
https://www.whispersystems.org/blog/private-groups/
https://www.whispersystems.org/blog/private-groups/
https://github.com/trevp/axolotl/wiki
https://github.com/trevp/axolotl/wiki
https://github.com/ricochet-im/ricochet

[RSG98] Michael G Reed, Paul F Syverson, and David M Goldschlag. “Anonymous Con-
nections and Onion Routing”. In: Selected Areas in Communications 16.4 (1998),
pp. 482–494.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”. In:
Advances in Cryptology–ASIACRYPT 2001. Springer, 2001, pp. 552–565.

[RT10] Blake Ramsdell and Sean Turner. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed Standard).
Internet Engineering Task Force, 2010. url: http://tools.ietf.org/rfc/

rfc5751.txt.

[RVR14] Karen Renaud, Melanie Volkamer, and Arne Renkema-Padmos. “Why Doesn’t
Jane Protect Her Privacy?” In: Privacy Enhancing Technologies. Springer. 2014,
pp. 244–262.

[Rya14] Mark D Ryan. “Enhanced Certificate Transparency and End-to-end Encrypted
Mail”. In: Network and Distributed System Security Symposium. Internet Society,
2014.

[Sai11] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
RFC 6120 (Proposed Standard). Internet Engineering Task Force, 2011. url:
http://tools.ietf.org/rfc/rfc6120.txt.

[SBKH06] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J Hyland. “Why
Johnny Still Can’t Encrypt: Evaluating the Usability of Email Encryption Soft-
ware”. In: Symposium On Usable Privacy and Security. ACM. 2006.

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: Journal
of Cryptology 4.3 (1991), pp. 161–174.

[SCM05] Len Sassaman, Bram Cohen, and Nick Mathewson. “The Pynchon Gate: A Se-
cure Method of Pseudonymous Mail Retrieval”. In: Workshop on Privacy in the
Electronic Society. ACM. 2005, pp. 1–9.

[SCW+14] Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky, Bryan Ford,
and Aaron Johnson. “Security Analysis of Accountable Anonymity in Dissent”.
In: Transactions on Information and System Security 17.1 (2014), p. 4.

[SDOF07] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. “The Em-
peror’s New Security Indicators: An evaluation of website authentication and the
effect of role playing on usability studies”. In: Symposium on Security and Privacy.
IEEE. 2007, pp. 51–65.

[SEA+09] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. “Crying Wolf: An Empirical Study of SSL Warning Effectiveness”. In:
Security Symposium. USENIX, 2009, pp. 399–416.

149

http://tools.ietf.org/rfc/rfc5751.txt
http://tools.ietf.org/rfc/rfc5751.txt
http://tools.ietf.org/rfc/rfc6120.txt

[SFK+12] Sebastian Schrittwieser, Peter Frühwirt, Peter Kieseberg, Manuel Leithner, Martin
Mulazzani, Markus Huber, and Edgar R Weippl. “Guess Who’s Texting You?
Evaluating the Security of Smartphone Messaging Applications”. In: Network and
Distributed System Security Symposium. Internet Society, 2012.

[Sha85] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Advances
in Cryptology. Springer. 1985, pp. 47–53.

[Shi00] Robert Shirey. Internet Security Glossary. RFC 2828 (Informational). Obsoleted
by RFC 4949. Internet Engineering Task Force, 2000. url: http://tools.ietf.
org/rfc/rfc2828.txt.

[SIL00] SILC Project. SILC – Secure Internet Live Conferencing. 2000. url: http://
silcnet.org/ (visited on 2014-11-02).

[SML+01] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications”. In: SIGCOMM Computer Communication Re-
view 31.4 (2001), pp. 149–160.

[SS14] Maliheh Shirvanian and Nitesh Saxena. “Wiretapping via Mimicry: Short Voice
Imitation Man-in-the-Middle Attacks on Crypto Phones”. In: Conference on Com-
puter and Communications Security. ACM. 2014, pp. 868–879.

[SW05] Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption”. In: Advances
in Cryptology–EUROCRYPT. Springer, 2005, pp. 457–473.

[SW07] Hovav Shacham and Brent Waters. “Efficient Ring Signatures without Random
Oracles”. In: Public Key Cryptography. Springer, 2007, pp. 166–180.

[SYG08] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. “A User Study of Off-the-Record
Messaging”. In: Symposium on Usable Privacy and Security. ACM. 2008, pp. 95–
104.

[Tel14] Telegram. Telegram Messenger. 2014. url: https://telegram.org/ (visited on
2014-11-02).

[TZ05] Amandeep Thukral and Xukai Zou. “Secure Group Instant Messaging Using Cryp-
tographic Primitives”. In: Networking and Mobile Computing. Springer, 2005,
pp. 1002–1011.

[UDB+15a] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-
berg, and Matthew Smith. “SoK: Secure Messaging”. In: Symposium on Security
and Privacy. IEEE. 2015.

[UDB+15b] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-
berg, and Matthew Smith. SoK: Secure Messaging. Tech. rep. 2015-02. CACR,
2015. url: http://cacr.uwaterloo.ca/techreports/2015/cacr2015-02.pdf.

150

http://tools.ietf.org/rfc/rfc2828.txt
http://tools.ietf.org/rfc/rfc2828.txt
http://silcnet.org/
http://silcnet.org/
https://telegram.org/
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-02.pdf

[UHHC11] Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle. “Investigating
the OpenPGP Web of Trust”. In: Computer Security–ESORICS. Springer, 2011,
pp. 489–507.

[Van13] Matthew Van Gundy. “Improved Deniable Signature Key Exchange for mpOTR”.
Available from http://matt.singlethink.net/projects/mpotr/improved-

dske.pdf. 2013.

[VAS11] VASCO. DigiNotar reports security incident. 2011. url: https://www.vasco.
com / company / about _ vasco / press _ room / news _ archive / 2011 / news _

diginotar_reports_security_incident.aspx (visited on 2014-11-03).

[VC12] Matthew D Van Gundy and Hao Chen. “OldBlue: Causal Broadcast In A Mu-
tually Suspicious Environment (Working Draft)”. Available from http://matt.

singlethink.net/projects/mpotr/oldblue-draft.pdf. 2012.

[VV08] Carmine Ventre and Ivan Visconti. “Completely Non-Malleable Encryption Revis-
ited”. In: Public Key Cryptography–PKC 2008. Springer, 2008, pp. 65–84.

[Wal08] Shabsi Walfish. “Enhanced Security Models for Network Protocols”. PhD thesis.
New York University, 2008.

[WAP08] Dan Wendlandt, David G Andersen, and Adrian Perrig. “Perspectives: Improving
SSH-style Host Authentication with Multi-Path Probing”. In: Annual Technical
Conference. USENIX, 2008, pp. 321–334.

[War14] Brian Warner. Pairing Problems. 2014. url: https : / / blog . mozilla . org /

warner/2014/04/02/pairing-problems/ (visited on 2014-04-02).

[WB12] Qiyan Wang and Nikita Borisov. “Octopus: A Secure and Anonymous DHT
Lookup”. In: International Conference on Distributed Computing Systems. IEEE.
2012, pp. 325–334.

[WCFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
“Dissent in Numbers: Making Strong Anonymity Scale”. In: Conference on Oper-
ating Systems Design and Implementation. USENIX, 2012, pp. 179–182.

[Wic14] Wickr. Wickr – Top Secret Messenger. 2014. url: https://wickr.com/ (visited
on 2014-11-02).

[WLL13] Chang-Ji Wang, Wen-Long Lin, and Hai-Tao Lin. “Design of An Instant Messaging
System Using Identity Based Cryptosystems”. In: International Conference on
Emerging Intelligent Data and Web Technologies. IEEE. 2013, pp. 277–281.

[WLXZ14] Changji Wang, Yuan Li, Xiaonan Xia, and Kangjia Zheng. “An Efficient and
Provable Secure Revocable Identity-Based Encryption Scheme”. In: PLOS ONE
(2014).

151

http://matt.singlethink.net/projects/mpotr/improved-dske.pdf
http://matt.singlethink.net/projects/mpotr/improved-dske.pdf
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://matt.singlethink.net/projects/mpotr/oldblue-draft.pdf
http://matt.singlethink.net/projects/mpotr/oldblue-draft.pdf
https://blog.mozilla.org/warner/2014/04/02/pairing-problems/
https://blog.mozilla.org/warner/2014/04/02/pairing-problems/
https://wickr.com/

[WP89] Michael Waidner and Birgit Pfitzmann. “The Dining Cryptographers in the Disco:
Unconditional Sender and Recipient Untraceability with Computationally Secure
Serviceability”. In: Advances in Cryptology–EUROCRYPT. Springer, 1989.

[WS09] Bin Wang and ZhaoXia Song. “A non-interactive deniable authentication scheme
based on designated verifier proofs”. In: Information Sciences 179.6 (2009),
pp. 858–865.

[WSG14a] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. “A Censorship-
Resistant, Privacy-Enhancing and Fully Decentralized Name System”. In: Cryp-
tology and Network Security. Springer, 2014, pp. 127–142.

[WSG14b] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. “On the Feasibil-
ity of a Censorship Resistant Decentralized Name System”. In: Foundations and
Practice of Security. Springer, 2014, pp. 19–30.

[WT99] Alma Whitten and J Doug Tygar. “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0”. In: Security Symposium. USENIX, 1999.

[WWX14] Weiqiang Wen, Libin Wang, and Min Xie. One-Round Deniable Key Exchange
with Perfect Forward Security. Tech. rep. 2014/904. Cryptology ePrint Archive,
2014. url: https://eprint.iacr.org/2014/661.

[YK07] Chung-Huang Yang and Tzong-Yih Kuo. “The Design and Implementation of
a Secure Instant Messaging Key Exchange Protocol”. Available from http://

crypto.nknu.edu.tw/psnl/publications/2007Technology_SIMPP.pdf. 2007.

[YKAL08] Chung-Huang Yang, Tzong-Yih Kuo, TaeNam Ahn, and Chia-Pei Lee. “Design
and Implementation of a Secure Instant Messaging Service based on Elliptic-Curve
Cryptography”. In: Journal of Computers 18.4 (2008), pp. 31–38.

[YLP11] Taek-Young Youn, Changhoon Lee, and Young-Ho Park. “An efficient non-
interactive deniable authentication scheme based on trapdoor commitment
schemes”. In: Computer Communications 34.3 (2011), pp. 353–357.

[YYZZ10] Andrew C. Yao, Frances F. Yao, Yunlei Zhao, and Bin Zhu. “Deniable Internet
Key Exchange”. In: Applied Cryptography and Network Security. Springer. 2010,
pp. 329–348.

[YZ13] Andrew Chi-Chih Yao and Yunlei Zhao. “OAKE: A New Family of Implicitly
Authenticated Diffie-Hellman Protocols”. In: Conference on Computer and Com-
munications Security. ACM. 2013, pp. 1113–1128.

[ZANS12] Huafei Zhu, Tadashi Araragi, Takashi Nishide, and Kouichi Sakurai. “Universally
Composable Non-committing Encryptions in the Presence of Adaptive Adver-
saries”. In: e-Business and Telecommunications. Springer, 2012, pp. 274–288.

152

https://eprint.iacr.org/2014/661
http://crypto.nknu.edu.tw/psnl/publications/2007Technology_SIMPP.pdf
http://crypto.nknu.edu.tw/psnl/publications/2007Technology_SIMPP.pdf

[Zim95] Philip R Zimmermann. The Official PGP User’s Guide. MIT Press Cambridge,
1995.

[ZJC11] Philip Zimmermann, Alan Johnston, and Jon Callas. ZRTP: Media Path Key
Agreement for Unicast Secure RTP. RFC 6189 (Informational). Internet Engi-
neering Task Force, 2011. url: http://www.ietf.org/rfc/rfc6189.txt.

[ZMM10] JunWei Zhang, JianFeng Ma, and SangJae Moon. “Universally composable one-
time signature and broadcast authentication”. In: Science China Information Sci-
ences 53.3 (2010), pp. 567–580.

153

http://www.ietf.org/rfc/rfc6189.txt

	Front Matter
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Definitions, Theorems, and Conjectures
	Introduction
	Secure Messaging
	Background
	Types of specification
	Synchronicity
	Deniability
	Forward/Backward Secrecy

	Systematization Methodology
	Problem Areas
	Threat Model
	Systematization Structure

	Trust Establishment
	Security and Privacy Features
	Usability Properties
	Adoption Properties
	Evaluation
	Discussion

	Conversation Security
	Security and Privacy Features
	Usability and Adoption
	Group Chat Features
	Two-party Chat Evaluation
	Group Chat Evaluation
	Discussion

	Transport Privacy
	Privacy Features
	Usability Properties
	Adoption Properties
	Evaluation
	Discussion

	Future Directions

	Deniability for Secure Messaging
	Deniability
	Deniable Conversations
	Judges
	Practicality

	Deniable Authenticated Key Exchanges
	Overview of Contributions
	Cryptographic Preliminaries and Notation
	Notation
	Digital Signatures
	Public-Key Encryption (PKE)
	Dual-Receiver Encryption (DRE)
	Non-Committing Encryption (NCE)
	Ring Signatures

	The GUC Framework
	Universal Composability
	Generalized UC (GUC)

	The Walfish Protocol
	Ideal Functionality Fkeia,IncProc
	Real Protocol Phi dre
	An Efficient Instantiation with Interactive DRE

	An Efficient Interactive DAKE from Ring Signatures
	Ideal Functionality Fpost-keia,IncProc
	Real Protocol RSDAKE
	Proof of Security

	A Non-Interactive Deniable Key Exchange
	Ideal Functionality F1psp-keia,IncProc
	Real Protocol Spawn*
	Unrigging Non-Committing Encryption
	Proof of Interactive Spawn* Security
	An Attack on Online Repudiation
	Implications of IncProc
	Non-Interactive Spawn*
	Conjecture: The TextSecure Iron Triangle
	A Practical Relaxation: Spawn
	Spawn as an Axolotl Bootstrap

	Selecting a Protocol

	Implementation
	Overview
	Libraries
	PBC Go Wrapper
	Ring Signatures
	One-Time Signatures
	Cramer-Shoup
	Non-Interactive DRE
	Interactive DRE (IDRE)
	The Walfish Protocol
	RSDAKE
	Spawn

	Evaluation
	Space Complexity
	Time Complexity vs. Security Level
	Time Complexity vs. Latency
	Time Complexity vs. Bandwidth

	Discussion

	Concluding Remarks
	References

