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Abstract

Polychotomous ordinal response data are often analyzed by first introduce a

latent continuous variable which can be modeled as an ordinary regression problem

with the presence of covariates by using Markov chain Monte Carlo techniques. For

variable selection purpose, we modified this approach by using the idea of Stochastic

EM algorithm to infuse L-1 penalized regression in estimating the parameter of

interest. This allows us to rank the variables in their order of significance based on

posterior selection probabilities. We make comparisons with univariate Bayesian

variable selection in the simulation and applied the proposed algorithm on data

obtained from the MovieLens Project and the World Value Survey.

Given the convenience of using Gibbs sampler to sample from the posterior dis-

tributions and choosing prior distributions based on the problems of our interest in

Bayesian analyses, we extended the variable selection problem to consider multi-

ple response data by allowing different sets of variables to be selected for different

response variables through the infusion of additional information into the prior

distribution of the selection variables. This contrasts with the usual approach to

multiple response variable selection that selects a common set of variables for all

of the response variables. In the simulation, we compared our proposed method

against univariate Bayesian variable selection and it shows that the performance is

improved after the infusion of relationship information.
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Chapter 1

Introduction

Polychotomous ordinal response data arise often in surveys that involve rankings,

where the answers are categorical but have an underlying order. This type of data

can be analyzed by first introduce a latent continuous variable. The presence of

covariates allows us to impose an ordinary regression model on the latent variable

that can be transformed back into corresponding ordinal levels. Such models can

be easily fitted with standard Markov chain Monte Carlo techniques. In this thesis,

we consider one of the most important problems in statistical modeling: variable

selection, for polychotomous ordinal response data.

Variable selection has been a popular problem in statistical modeling. As such,

many methods have been proposed. A number of methods such as L-1 penalized

regression and Bayesian variable selection have received great attention recently.

In analyzing ordinal response data, the method known as data augmentation has

made it easy to incorporate existing variable selection techniques in the latent

regression step. Historically, extended Bayesian variable selection techniques are

used to analyze dichotomous ordinal response data. We propose to incorporate an

existing constrained optimization problem in the MCMC algorithm as a selection

technique for the analysis of polychotomous response data. Doing so allows us

to rank the importance of the covariates naturally by their respective selection

probabilities. Other than simulations, the proposed algorithms have been applied

to data obtained from the MovieLens Project and the World Value Survey.

1



We extended the variable selection problem to consider multiple response data:

while the majority of work in multivariate variable selection focuses on selecting

a common set of variables for each of the responses, we are interested in selecting

different sets of variables for different responses. This is because of the possibility

that the sets of variables with the greatest influence on the responses might be

different for each response. We allowed the process of selecting variables for each

response to communicate with one another through the infusion of the relationship

information into the conditional prior distribution. Furthermore, we showed that

the resulting posterior distribution has some desirable properties. The proposed

method has been applied on the World Value Survey data.

1.1 Contributions

This thesis first focuses on analyzing polychotomous ordinal response data, the

techniques proposed can be seen as a generalization and are easily applied to di-

chotomous ordinal response data, as well as multinomial response data by making

some modifications. Other than polychotomous ordinal response data, a method

is developed for the analysis of multiple continuous response data. After all, we

show that the proposed methods are computationally convenient and also address

the importance of prior specification in Bayesian analysis.

1.2 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews some basic

concepts which build the foundation of our proposed methods. Chapter 3 introduces

the proposed algorithm, presents some simulation results, the comparison with

other methods, and the applications to real datasets. Chapter 4 shows an extension

of Bayesian variable selection to analyzing multiple response data, some simulation

results, and real data analysis. Finally, we summarize our findings, draw conclusions

and suggest future research opportunities and challenges that might be encountered

in Chapter 5.
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Chapter 2

Background

In this chapter, we briefly review the Gibbs sampler and some variations and ap-

plications of Gibbs sampler that build the foundation for the analysis of ordinal

response data and our proposed method, which include Expectation Maximization

(EM), Stochastic EM algorithms, Maximum A Posteriori, and Collapsed Gibbs.

2.1 Gibbs Sampling

With the increase in complexity of models in statistical analyses, the joint dis-

tribution of the parameters are usually intractable hence difficult to sample from

and make inference directly. However, an approximation algorithm that uses the

idea of a Markov chain has been proposed by [10] and [9] has demonstrated its

application in calculating Bayesian posterior densities. The procedure can be

summarized as follows. We are interested in the joint distribution defined by

f(Θ)=f(θ1, θ2, . . . , θp). Gibbs sampler can be implemented as follows

• We begin with some initial value Θ(0)

• For each i ∈ {1, . . . , p}, sample θ
(t)
i from θ

(t)
i ∼ f(θ

(t)
i |θ

(t)
1 , . . . , θ

(t)
i−1, θ

(t−1)
i+1 , . . . , θ

(t−1)
p )

until convergence. The samples approximates the joint distribution.

3



2.2 Expectation Maximization (EM) algorithm

It is often encountered in applications of statistics where the data are incomplete

or cannot be analyzed directly with information available. However, in the case of

data being incomplete, we cannot simply dispose of the observations with missing

values since it might contain important information. Expectation Maximization

[7] iterates between two steps as suggested by its name. The Expectation step

calculates the expectation of the loglikelihood of the complete data with respect to

the conditional distribution of the augmented data given observed data under the

current estimate of the parameters at the iteration. The Maximization step then

updates the estimate of the parameters so that the expectation calculated from the

previous step is maximized.

Let X = (Y, Z) be a complete set of data where Y is observed and Z is augmented

(latent).

Expectation Step:

Compute Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [logf(X|θ)] = EZ|Y,θ(t−1) [logf(Y, Z|θ)]

where θ(t−1) is the current estimate of θ.

Maximization Step:

θ(t) = arg max
θ
Q(θ|θ(t−1))

The algorithm is proven to increase the observed data likelihood function at each

iteration, that is,

L(θ(t+1)) = logf(Y |θ(t+1)) ≥ L(θ(t))

However, when several stationary points are present, there is no guarantee that θ(t)

will converge to a maximum likelihood estimate. Moreover, the EM algorithm has

been observed to be extremely slow in some applications.
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2.3 Stochastic EM algorithm

In cases where it is difficult to compute the expectation in the EM algorithm or it

converges slowly, an alternative is to use stochastic imputation for the Maximization

step in EM. Stochastic EM algorithm [5] draws a sample of the augmented data

from its conditional distribution to form a complete data with the observed and

updates the estimate of the parameters based on the complete data. Given the

same setup where X = (Y, Z) is a complete set of data with Y observed and Z

latent, the Stochastic

Expectatation Step:

Sample Z(t) ∼ f(Z|Y, θ(t−1))

where θ(t−1) is the current estimate of θ. Let X(t) = (Y, Z(t))

Maximization Step:

θ(t) = arg max
θ
L(X(t)|θ) = arg max

θ
L(Y, Z(t)|θ)

which calculates the maximum likelihood estimate of θ based on X(t).

2.4 Maximum A Posterior (MAP) Estimation

In Bayesian statistics, a maximum a posteriori estimate is a mode of the posterior

distribution, or

θ̂ = arg max
θ
f(θ|X) = arg max

θ
f(X|θ)π(θ)

as opposed to a maximum likelihood estimate of

θ̂ = arg max
θ
f(X|θ).

5



2.5 Collapsed Gibbs

Consider the fact that Gibbs sampling procedure can be computationally expensive

if the model contains a reasonably large number of variables and many of them are

irrelevant in the analysis, collapsed Gibbs can be used to approximate the marginal

distribution of any subsets of the variables by integrating out the rest. The idea

can be illustrated as follows. Suppose we are interested in approximating f(α, β, θ),

the usual approach would be to sample

1. α ∼ f(α|β, θ)

2. β ∼ f(β|α, θ),

3. θ ∼ f(θ|α, β)

for a number of iterations; however, suppose now that we can integrate out θ, we

are left with f(α, β) which takes fewer steps to approximate and we can obtain θ

later on by sampling from θ ∼ f(θ|α, β).

6



Chapter 3

L-1 Penalized Univariate Ordinal

Response Data Analysis

In this chapter, we will first review a popular approach to analyzing ordinal re-

sponse data that is to introduce a latent continuous variable consider there exist an

underlying order on the level of categories. The presence of covariates allows us to

impose an ordinary regression model on the latent variable. By the presence of co-

variates, we consider the problem of variable selection where the response variable

is ordinal. We will also introduce some alternatives for variable selection purposes

and introduce our proposed method.

3.1 Analysis of Ordinal Response Data

Polychotomous response data arise often in social science applications where the

methodology limitations in collecting data force the researchers to report grouped

categorical results [14]. Therefore, the categories are thought to have an underlying

order. Moreover, when the true ”distance” between each successive level does not

seem to be constant, it does not make sense to treat them as continuous. Given

a sample of n observations on response variable Yn×1, and p independent variables

X1, X2, ..., Xp, the usual linear model assumes that these data satisfy

Yn×1 = Xn×pβp×1 + un×1, u ∼ N(0, σ2I)

7



However, in the case of Y being ordinal, some of the assumptions for the model

might be violated. To overcome such difficulties, a popular approach is to intro-

duce a latent continuous variable by the method of data augmentation [11]. In the

context of analyzing ordinal response data, it is natural to assume an underlying

continuous variable (Z) and breakpoints (γ) so that when the latent continuous

variable (Zi) falls in the interval ([γj−1, γj]) defined by the breakpoints, the obser-

vation (Yi) is in the corresponding category (j).

Yi ∈ Rj ⇐⇒ γj−1 < Zi < γj 1 ≤ j ≤ K

Since Z is continuous, we can assume a normal regression structure on Z that

is given by

Zn×1 = Xn×pβp×1 + un×1, u ∼ N(0, σ2I)

So,

Yi ∈ Rj ⇐⇒ γj−1 < Xiβ + ui < γj

⇐⇒ γj−1 −Xiβ

σ
<
ui
σ
<
γj −Xiβ

σ

where γk are breakpoints for the ordinal levels 0 ≤ k ≤ K and −∞ = γ0 ≤ γ1 ≤
· · · ≤ γK =∞. Since u ∼ N(0, σ2I)

Pr(Yi ∈ Rj) = Φ(
γj −Xiβ

σ
)− Φ(

γj−1 −Xiβ

σ
)

where

Φ(t) =

∫ t

−∞

1√
2π
e−x

2/2dx

For identifiability reason, σ is usually taken to be 1 and γ1 = 0.

When introducing Zi’s and γ, the joint posterior distribution is given by

π(β, γ, Z|y) ∝
n∏
i=1

[
1√
2π

exp{−(Zi −Xiβ)2

2
}{

J∑
j=1

I(Yi = j)I(γj−1 < Zi < γj)}]

8



by assuming a diffuse prior for (β, γ). The complete data likelihood is hard to

evaluate and sample from directly. However, it can be seen that

β|Z ∼ N(β̂, (XTX)−1))

Zi|β, Yi = j, γ ∼ N(Xiβ, 1) truncated at the left (right) by γj−1(γj), and

γj|Z, Y ∼ Unif[max{Zi : Yi = j},min{Zi : Yi = j + 1}].

3.2 Variable Selection

Variable selection is the process of selecting variables for the purpose of constructing

statistical models to help us understand the relationships among variables. It has

been one of the most popular and important topics in statistical modeling since the

data collected usually contain redundant information that should be excluded. The

problem has been examined from both frequentist and Bayesian perspectives and

a large number of techniques have been proposed in the literatures. In this section,

we will review some of the most commonly seen techniques.

3.2.1 Frequentist

The frequentist approach assumes that each parameter has a true (unique) value

and that given sufficient information (data), we should be able to draw conclusions

about the parameters so the techniques proposed are usually deterministic in na-

ture.

Recall that the ordinary least square solution of a variable selection problem given

by

Y ∼ N(Xβ, σ2)

is obtained by solving

β̂ = arg min
β
|Y −Xβ|2.

However, not every predictor should be included in the model; therefore, variable

selection is needed. LASSO, SCAD and MCP are some of the most commonly seen

9



variable selection techniques that solve the problem of the form

arg min
β
|Y −Xβ|2 + pλ(β) (3.1)

with different penalty functions of the form pλ(β).

LASSO Least Absolute Shrinkage and Selection Operator [16] places a constraint

on the sum of the absolute value of the coefficients in a regression problem,

which can be written as

arg min
β
|Y −Xβ|2 subject to |β| ≤ t

where t is a tuning parameter. In terms of β,

arg min
β
|Y −Xβ|2 = arg min

β
βTXTXβ − 2βXTY + constant

= arg min
β
βTXTXβ − 2βXTXβ̂ols = arg min

β
(β − β̂ols)TXTX(β − β̂ols)

The criterion |Y − Xβ|2 for β is equivalent as (β − β̂ols)
TXTX(β − β̂ols)

where β̂ols = (XTX)−1XTY is the lease square estimate of β. The possible

solutions occur at the intersections of the elliptical contours and the constraint

and the lasso solution occur at the first point of intersection. The constraint

shrinks the estimate of the coefficients from their least square estimates to 0

as t increases so it produces sparse solutions that achieves variable selection

automatically. Adding the constraint is equivalent as placing a Lagrangian

penalty to the residual sum of squares, with λ depending on t. The problem

is equivalent as

arg min
β
|Y −Xβ|2 + λ|β|.

This problem has solutions for any given λ, so we need to fix λ to obtain

estimate for the coefficient β.

MCP MCP [17] also solves the problem of the form 3.1 with

pλ(β) = λ

∫ t

0

(1− β

γλ
)+dβ, γ > 0.

or

pλ(β) =

 λβ − β2

2γ
if β ≤ γλ

λ2γ
2

if β > γλ

10



which can be easier to understand by looking at the first derivative

p′λ(β) =

 λ− β
γ

if β ≤ γλ

0 if β > γλ

SCAD Smoothly Clipped Absolute Deviation Penalty [8] is defined by

pλ(β) = λ

∫ t

0

min{1, (γλ− β)+
(γ − 1)λ

}dβ, γ > 2

or

p′λ(β) = λ{I(β ≤ λ) +
(γλ− β)+
(γ − 1)λ

I(β > λ)}, γ > 2

Both MCP and SCAD have rate of penalty shrinks to 0 as the size of the coefficient

increases [3].

3.2.2 Bayesian

Bayesian models are specified by distinctive prior distributions where the prior acts

as a penalty for models with a smaller number of observations. Bayesian variable

selection usually involves introduction of a latent indicator variable for the inclusion

of the predictors. In this section, we briefly review two of the most popular choices

for prior distributions of the coefficient β.

Spike and slab [11] uses a Gibbs sampling technique called ”stochastic search

variable selection” that introduces a latent indicator variable α and places a

two-component normal mixture prior on the coefficient β defined by

βj|αj ∼ (1− αj)N(0, τ 2j ) + αjN(0, c2jτ
2
j )

with p(αj) = p
αj
j (1− pj)1−αj or αj

iid∼ Bernoulli(pj). In matrix form

β|α ∼ Np(0, DαRDα)

where α = (α1, . . . , αp), R is the prior correlation matrix for β, and

D ≡ diag[a1τ1, . . . , apτp]

11



with ai=1 if αi=0 and ai = ci if αi=1. [11] argues that since the densities

of N(0,τ 2i ) and N(0,c2i τ
2
i ) intersect at ξ(ci) =

√
2(log ci)c2i /(c

2
i − 1)τi and ci

is the ratio of the heights of N(0,τ 2i ) and N(0,c2i τ
2
i ) at 0 so ci can be inter-

preted as the prior odds that xi should be excluded when βi is very close to 0.

If we consider each βi separately, since

β̂i|σβi , γi = 0 ∼ N(0, σ2
βi

+ τ 2i )

β̂i|σβi , γi = 1 ∼ N(0, σ2
βi

+ c2i τ
2
i )

Let tiσβi denote the intersection points of these distributions where σβi is the

variance of the least square estimate β̂i. Then

P (γi = 1|β̂i, σβi) > pi iff β̂i/σβi > ti

so the point ti can be thought of as the threshold at which the t statistics

corresponds to an increased marginal probability that Xi should be included

in the model. In practice, the performance of this method is highly sensitive

to the choice of c and τ where we must be able to obtain the standard errors

for the least square estimates before we can determine what to use for them.

Non-informative [12] employed a hierarchical Bayesian model that includes la-

tent variables for analyzing dichotomous ordinal response variable. The prior

distribution for the coefficient β is defined as

βα|α ∼ N(0, c(XT
αXα)−1)

where c is a positive scale factor that need to be pre-specified and Xα the

columns of X corresponding to those α’s that are nonzero.

12



3.3 Penalized Ordinal Regression Algorithm

Here, we describe our proposed method and make comparisons with univariate

Bayesian variable selection proposed by [12] for binary classification problems.

Ordinal Regression

We use the procedure proposed in [1] for ordinal regression, which can be summa-

rized as follows.

• Initialization

– Set γ(0)

– Draw Z|Y, γ from Unif[γj−1, γj]

– Set β(0) =(XTX)−1XTZ

• At the kth iteration

Expectation Step:

1. Sample γ from γj|Y, Z ∼ Unif[max{Zi : Yi = j},min{Zi : Yi = j + 1}]

2. Sample Z from Zi|Yi = j, β, γ ∼ N(Xβ, 1) truncated at the left (right)

by γj−1 (γj)

Maximization Step:

– Update β by setting β ∼ arg maxβ p(β|Z)

We infuse LASSO in the β sampling step to achieve automatic variable selec-

tion by letting

β = arg min
β
|Y −Xβ|2 + λ|β|

and select appropriate λ based on the number of predictors we want to retain

by using an algorithm that stops after certain number of steps. Other variable

selection techniques such as SCAD, and MCP can also be used here to achieve

automatic variable selection.

13



3.4 Simulation Studies

To test the performance of our proposed method, we consider 4 design structures for

generating independent variable X. The latent (response) variable Z is distributed

Nn(η, σ2I) where η is a linear combination of X as in [6, 15]. Here, we only consider

one model

η = 3X1 + 1.5X2 + 2X5

and σ = 1.5. Once we have Z, Y is obtained by partitioning Z into 5 levels

based on their percentiles so each level has approximately the same number of

observations, which contrasts with real data sets where the number of observations

are not uniform in each level. We use fixed number of observations (n = 50),

predictors (p = 20), number of iterations at 100, Gibbs sampling cycles within

each iteration at 400 and burnins at 200. For each design, we show the selection

probabilities of the predictors under 3 different variable selection techniques and

compare them against the result obtained by Bayesian variable selection with β’s

prior distribution given by β|α ∼ N(0, c(XT
αXα)−1) where c approaches infinity and

P (αj = 1) = maximum steps/p for all j. The rows show results when the maximum

steps (number of variables to retain) used when fitting the models are at 5 and 10,

respectively. The selection probabilities presented are in the order of the variables

for all of the design structures for ease of comparison and in consideration of the

effects of design structures.

• Design 1

Xi
iid∼ Nn(0, In), i = 1, . . . , p

We consider the simplest design for selecting variables where all the predictors

are independently distributed.

14



Figure 3.1: Comparing the selection probabilities for LASSO, MCP, SCAD

against Bayesian variable selection under Design 1

• Design 2

Xi
iid∼ Nn(0, In), i = 1, . . . , 10 and Xi

iid∼ Nn(0.5X1+X2+1.5X3, In), i = 11, . . . , 15

We consider a design for a harder variable selection problem where there are

five predictors that are correlated with the first three.

Figure 3.2: Comparing the selection probabilities for LASSO, MCP, SCAD

against Bayesian variable selection under Design 2

15



• Design 3

Xi ∼ Nn(0, In), i = 1, . . . , p and ρ(Xi, Xj) = 0.7 for all i 6= j

Again, we consider a design for a hard variable selection problem where there

are strong correlations between each pair of predictors.

Figure 3.3: Comparing the selection probabilities for LASSO, MCP, SCAD

against Bayesian variable selection under Design 3

• Design 4

Xi ∼ Nn(0, In), i = 1, . . . , p and ρ(Xi, Xj) = 0.5|i−j|

We consider a different design structure that results in correlation among pre-

dictors in a different way.

16



Figure 3.4: Comparing the selection probabilities for LASSO, MCP, SCAD

against Bayesian variable selection under Design 4

For variable selection purpose, LASSO is pretty good at selecting the true vari-

ables with high probabilities and Bayesian variable selection can at the same time

picks the right variables but it also has higher selection probabilities for noises

compared to LASSO. We see that LASSO is successful for selecting variables when

the response is ordinal under the augmented framework. Moreover, comparing to

Bayesian variable selection where we have to update α one at a time, LASSO is

more computationally efficient. Although the estimates of coefficients under LASSO

might be biased, for variable selection purpose, as long as the true variables are

selected, we can always obtain the least square solution using only the variables

selected.

3.5 Data Analysis

We applied the proposed method on two different data sets, one is consumer prefer-

ence data taken from the MovieLens project and the other one is a survey data. By

applying the method to data that are different in nature, we show that our method

is easily applicable to different types of data to obtain the ranking of selection

probabilities.

17



3.5.1 MovieLens

The data set (http://movielens.org) consists of 100,000 movie ratings from users,

the genres of the movies in the form of indicator vectors as well as simple demo-

graphic information of the users such as gender, age and occupation. In the data

set, each user included has at least 20 movie ratings. We use the genres as pre-

dictors to construct linear models on predicting the ratings. We treat each genre

independently as if they are different covariates and do variable selection to find

out the most and least favoured genres by groups of individuals. The results are

presented by groups of individuals and individuals within the same group are not

differentiated. The bar-plots below show the selection probabilities and direction

for frequently selected covariates (genres) for chosen groups of users with similar de-

mographic information. We only include up to two-way interactions since it makes

it easier to compare the results between different groups of individuals.

Figure 3.5: Selection probability by the direction of average effect of top ranked

genres for male scientists age between 35 and 45

18



Figure 3.6: Selection probability by the direction of average effect of top ranked

genres for male executives age between 45 and 55

Figure 3.7: Selection probability by the direction of average effect of top ranked

genres for male engineers age between 25 and 35

19



Figure 3.8: Selection probability by the direction of average effect of top ranked

genres for female students age between 20 and 25

It is interesting to see that some genres are not favored by itself but receive better

feedback when combined with other ones.

3.5.2 World Values Survey

World Values Survey is a global research project (accessed at www.worldvaluessurvey.org)

that explores people’s beliefs and values. We made use of the 2005-2006 Wave data

which consists of 67,268 incomplete responses across 112 countries on 260 questions.

We selected a subset of the questions for our analysis, picked ”life satisfaction” as

our response variable and analysed within countries that have complete data for the

selected questions. Most of the questions are in the forms of ”multiple choice” or

”rating” and the orders of the answers are inconsistent between different questions

so we transformed the data to ensure consistency for the ease of analysis and treat

the predictors as continuous variables.
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Figure 3.9: Selection probability by the direction of average effect of top ranked

factors for life satisfaction in Canada

Figure 3.10: Selection probability by the direction of average effect of top ranked

factors for life satisfaction in Norway
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Figure 3.11: Selection probability by the direction of average effect of top ranked

factors for life satisfaction in South Africa

Figure 3.12: Selection probability by the direction of average effect of top ranked

factors for life satisfaction in Sweden

It can be seen that there are universal factors like financial satisfaction, health,

being a student or retired, believing that wealth is enough for all, and having con-

trol over own life that contribute the most to a satisfied life. On the other hand, the

universal factors that contribute to least satisfied life include thinking about the
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meaning of life, being single, and having life goals as pleasing parents or meeting

others’ expectations. Most interestingly, there exist cross-country variations in the

key factors that affect people’s life satisfaction. In Canada, educated individuals

and people who think women are as good as men are less satisfied whereas right

wing people and atheist are. In Norway, those who trust people easily are satisfied

with their lives. In South Africa, people in upper classes tend to be more satisfied.

In Sweden, people who believe they can shape their own fate or they are the one

who is responsible for their own lives are more satisfied with their lives. The highly

educated individuals and those who are interested in politics are less. These results

are interesting since they coincide with our understand of the countries and also

show the hidden problems in the country.

3.6 Summary and Remarks

• When doing ordinal regression, if we are only interested in selecting variables,

we can modify the Gibbs Sampling algorithm to a stochastic EM algorithm

so less sampling steps are needed. Moreover, when a variable selection tech-

nique such as LASSO, SCAD, or MCP is used, we can rank the covariates in

their order of significance based on the selection probabilities calculated as

E[I(β̂lasso 6= 0)]. For the maximization step, conjugate priors can to be used

for closed form solutions.

• Under the Bayesian framework, it is convenient to choose priors based on the

problems of interest and Gibbs sampler can be used to estimate the posterior

distributions.
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Chapter 4

Multiple Response Data Analysis

In this chapter, we consider an extension of Bayesian variable selection to handle

multiple response data. We will first review multiple response Bayesian variable

selection and discuss the drawbacks of the technique to make improvement upon

that. We make comparisons with several techniques and explain that our proposed

method is comparable to one and show some simulation results to compare their

performances.

4.1 Introduction

In analyzing survey data or biological data, people are usually interested in more

than one attribute. However, the vast majority of work in multivariate variable

selection focuses on selecting a common set of variables for all the responses, which

can be too restrictive in that the sets of variables with the greatest influence on

the responses might be different for each response. However, considering there are

usually ”connections” between the attributes of interest, it also does not make sense

to consider each response separately [13]. Therefore, we attempt to select differ-

ent sets of variables for different responses while allowing the process of selecting

variables for each response to communicate with one another through the infusion

of relationship information into the prior distribution. In this section, we will first

review some proposed variable selection techniques, propose a method and show
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that our results have some desirable properties and demonstrate the performance

of our proposed method by empirical evidences.

4.2 Multiple Response Bayesian Variable Selec-

tion

Given multiple response data Yn×q and a set of independent variables X1, . . . , Xp,

a typical multivariate variable selection problem can be defined as finding the best

model of the form

Yn×q = X∗1B
∗
1 + · · ·+X∗rB

∗
r + En×q

where X∗1 , . . . , X
∗
r is a selected subset of X1, . . . , Xp. In [4], a latent indicator

variable is introduced for the inclusion of the p independent variables and spike and

slab priors [4] are used for the coefficient B, which can be seen as a generalization of

[11] that focused on univariate regression. In summary, [4] calculated the posterior

distribution of the latent indicator variable α which is given by

π(α|Y,X) ∝ π(α)

∫ ∫
f(Y |X,B,Σ)π(B|Σ, α)π(Σ)dBdΣ

The integrals can be evaluated if conjugate priors are used, the resulting posterior

is then

π(α|Y,X) ∝ (|Hα||Kα|)−q/2|Qα|−(n+δ+q−1)/2π(α)

where

Hα = DαRαDα as in [11]

Kα = XTX +H−1α

Qα = Q+ Y TY − Y TXK−1α XTY

under the prior specifications given by

Y ∼MN (XB, In,Σ)

B ∼MN (0, Hα,Σ)

Σ ∼ IW(δ;Q)
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where MN n,p(M,U, V ) stands for a matrix normal variate with mean M , row

covariance matrix U , column covariance matrix V , and probability density of

f(X) =
1

(2π)np/2|V |n/2|U |p/2
exp{−1

2
tr[V −1(X −M)TU−1(X −M)]}

This posterior distribution is claimed to enclose the information on the effectiveness

of the predictors in explaining the response Y . For the ease of calculation, a form

is developed for fast updating as

g(α) = π(α|Y,X) (4.1)

∝ (|Hα||Kα|)−q/2|Qα|−(n+δ+q−1)/2π(α) (4.2)

∝ (|X̃T X̃|)−q/2|Qα|−(n+δ+q−1)/2π(α) (4.3)

∝ (|X̃T X̃|)−q/2|Q+ Ỹ T Ỹ − Ỹ T X̃(X̃T X̃)−1X̃T Ỹ |−(n+δ+q−1)/2π(α) (4.4)

where

X̃ =

XH1/2
α

Ip

 , Ỹ =

Y
0


Now the posterior distribution is in closed form and can be evaluated easily for any

given α. Furthermore, by setting Hα = c(XT
αXα)−1, Qα becomes

Qα = Q+ Y TY − Y TXα(XT
αX + (1/c)XT

αXα)−1XT
α Y

= Q+
1

c+ 1
Y TY +

c

c+ 1
(Y TY − Y TXα(XT

αXα)−1XT
α Y )

and |HαKα| simplifies to

|HαKα| = |c(XT
αXα)−1(XT

αXα +H−1α )|

= |(c+ 1)Ipα|

= (c+ 1)pα

However, the space of α is of dimension {0, 1}p, for p sufficiently large, the computa-

tional cost makes evaluating the posterior distribution at every possible α infeasible;

therefore, MCMC is adopted. When p is large (>25), MCMC becomes necessary

to explore the posterior distribution of α by sampling αj one by one from its full

conditional distribution, that is p(αj = 1, α−j|Y,X) = θj/(θj + 1) with

θj =
g(αj = 1, α−j|Y,X)

g(αj = 0, α−j|Y,X)
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and g(α) specified previously in 4.1.

4.3 Bayesian Variable Selection for Linear Mod-

els with Multiple Responses

Now, we wish to consider a problem of the form

Yn×q = Xn×pBp×q + En×q

where the coefficient matrix B is sparse, which makes it easier to consider q different

problems given by

Y
(i)
n×1 = Xn×pB

(i)
p×1 + E

(i)
n×1.

with E
(i)
n×1 ∼ N (0, σ2

i In) for all i and

σ2
i ∼ IG(ν, δ).

We are interested in selecting B
(i)
p×1’s so that the coefficients being non-zero con-

stitutes a significant corresponding variable for response i. In order to do this, we

made use of the popular approach in Bayesian variable selection problems that is

to introduce a (latent) indicator variable α for each of the independent variables

(j) for each response (i) where αi,j follows a Bernoulli distribution with parameter

pi,j.

αi,j ∼ Bernoulli(pi,j)

and given α,

β(i)|αi ∼ N(0, c(XT
αi
Xαi)

−1) for i = 1, . . . , q

where αi is an indicator vector of length p and Xαi is the columns of X correspond-

ing to those αi’s that are nonzero. For univariate variable selection problems, the

variable selection process for each response variable is considered separately as if

they are independent. However, this disregards the most important feature in a

multiple response problem - the relationship between the response variables.
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Given that it is convenient to put a prior on any parameter under the Bayesian

framework, we make use of the advantage to incorporate the relationship informa-

tion into the conditional prior distribution of pi,j. Moreover, Gibbs sampler can be

used directly under the conditional specification even though the joint distribution

is not known. A more thorough discussion can be found in [2].

Consider

Cor(Y (j), Y (k)) =
Cov(XB(j) + E(j), XB(k) + E(k))√
V ar(XB(j) + E(j))V ar(XB(k) + E(k))

=
Cov(XB(j), XB(k))√
V ar(XB(j))V ar(XB(k))

Cov(XB(j), XB(k)) =
∑
i

B
(j)
i B

(k)
i V ar(Xi) +

∑
i<l

2B
(j)
i B

(k)
l Cov(Xi, Xl)

by first assuming X’s are random variables. It can be seen that the variances,

hence the correlations of the response variables depend on the variance of the data

(covariate) matrix, the coefficients B, and most importantly, through the sharing

of common predictors. As an example, suppose Xi’s are independently distributed

with V ar(Xi) = 1 for all i and

BT=  1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0


Y is generated by Y (i) iid∼ Nn(XB(i), 2.52I), i = 1, 2. This is the first model under

Design 1 of our simulations. We will show some results later on in the section. The

correlation can be calculated as

Cor(Y (1), Y (2)) =
Cov(XB(1), XB(2))√
V ar(Y1)V ar(Y2)

=
Cov(X1 +X2 +X3 +X4 +X6, X1 +X5 +X9 +X13 +X17)√

V ar(Y1)V ar(Y2)

=
V ar(X1) + Cov(X2 +X3 +X4 +X6, X5 +X9 +X13 +X17)√

V ar(Y1)V ar(Y2)
=

1

5
.

The correlation between the two response variables is based on the sharing of com-

mon predictors. With this in mind, we consider the problem of variable selection
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where we take the correlations between the response variables into account when

selecting variables given other sets have already been selected for other response

variables by placing a conditional prior on pi,j that depends on αl,j and ρi,l for all

other responses (l). Therefore, α is q by p. The prior is defined as follows,

p(αi,j|pi,j) = p
αi,j
i,j (1− pi,j)(1−αi,j)

with

π(pi,j|αc, R) ∼ Beta(a, b)

where a and b are functions of αc (α except for αi,j), more specifically, α−i,j, and

R ≡ {ρ}i,j. We chose Beta distribution for its properties

1. it’s the conjugate prior for Bernoulli, and

2. it’s parametrized by two positive shape parameters which can be functions of

our parameters of interest (α and ρ or R)

Then,

p(αi,j|α−i,j) =

∫
p(αi,j|pi,j)π(pi,j|α−i,j, R)dpi,j

=

∫
Γ(a+ b)

Γ(a)Γ(b)
pa−1i,j (1− pi,j)b−1p

αi,j
i,j (1− pi,j)(1−αi,j)dpi,j

=
Γ(a+ b)

Γ(a)Γ(b)

∫
p
a−1+αi,j
i,j (1− pi,j)b−1+1−αi,jdpi,j

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ αi,j)Γ(b+ 1− αi,j)
Γ(a+ b+ 1)

So,

p(αi,j = 1|α−i,j, R) =
a

a+ b
,

p(αi,j = 0|α−i,j, R) =
b

a+ b

specifies the posterior distribution of αi,j. Since we would like

p(αi,j = 1|α−i,j, R) =
a

a+ b
=


large if |ρi,l| ≈ 1 and αl,j = 1

πj if ρi,l ≈ 0

small if |ρi,l| ≈ 1 and αl,j = 0
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the selection probability for the covariate be high if the two response variables are

highly correlated and the covariate is selected for the other response variable and

vice versa (with a and b depending on on i and j). For two nearly independent

response variables, the selection probabilities of any covariates for them depend

only on a pre-specified probability. Therefore, we set

ai,j = πjk
(2αl,j−1)|ρi,l|, bi,j = 1− πjk(2αl,j−1)|ρi,l|

for some predetermined πj and tuning parameter 1 < k < 1
πj

. In the case where

there are more than 2 response variables, we use the average effect given by

ai,j = πj
1

q − 1

∑
l 6=i

k(2αl,j−1)|ρi,l|, bi,j = 1− πj
1

q − 1

∑
l 6=i

k(2αl,j−1)|ρi,l|

instead.

4.3.1 The Algorithm

For convenience, we ignore i that indicates which response we are specifying here.

Each step in this algorithm is repeated q number of times (one for each response

i). Moreover, except for αi which conditioned on αc, β(i) and σ2
i depend only on αj

for j = i. The superscripts (k) indicates the iteration.

• Initialization

– Set α(0) from Bernoulli(πi,j) i = 1, . . . , q, j = 1, . . . , p

– Set β(0) and σ2(0) given α(0) to the maximum likelihood estimate of β

given α(0) and σ2 given α(0) and β(0).

• At the kth iteration

Expectation Step:

We incorporate the idea of integrating out (collapsing down) irrelevant pa-

rameters by placing conjugate prior on β to obtain the posterior distribution

of α.

Draw α(k) from p(α|Y, σ2, αc)

p(αi,j|Y, σ2, αc) ∝ exp{−1

2
[
Y TY

σ2
− (

1

σ2
+

1

c
)−1

Y TXα(XT
αXα)−1XT

α Y

σ4
]}p∗αi,ji,j (1− p∗i,j)(1−αi,j)
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where

p∗i,j =
ai,j

ai,j + bi,j

with ai,j and bi,j specified in the previous section. Here, one sample of αi,j is

drawn one by one from Bernoulli( A
A+1

) for each i and each j by keeping αc

fixed.

A =
p(αi,j = 1|Y, σ2, αc)

p(αi,j = 0|Y, σ2, αc)
.

This is the stochastic E-Step in Stochastic EM algorithm.

Maximization Step:

Given α, we update β and σ2 to the mode of their posterior distributions.

– Update

β(k) = arg max
β

p(β|Y, α, σ2) =
c

c+ σ2(k−1) (X
T
α(k)Xα(k))−1XT

α(k)Y

– Update

σ2(k) = arg max
σ2

p(σ2|Y, β) =
δ + (Y −Xα(k)β(k))T (Y −Xα(k)β(k))/2

ν + n
2

+ 1

4.4 Simulation Studies

We use the same design structures as in Chapter 3 to test the performance of our

proposed method. The designs are

• Design 1

Xi
iid∼ Nn(0, In), i = 1, . . . , p

• Design 2

Xi
iid∼ Nn(0, In), i = 1, . . . , 10 , and

Xi
iid∼ Nn(0.5X1 +X2 + 1.5X3, In), i = 11, . . . , 15

• Design 3

Xi ∼ Nn(0, In), i = 1, . . . , p and ρ(Xi, Xj) = 0.7 for all i 6= j
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• Design 4

Xi ∼ Nn(0, In), i = 1, . . . , p and ρ(Xi, Xj) = 0.5|i−j|

For each design, we consider 4 models of the form Y ∼ MN n,q(η, σ2I, I) with

different number of response variables and the results are summarized in plots. The

following results are obtained by 50 simulations for each design under each model;

however, since the variable selection problems for designs 2 and 3 are harder due to

the existence of correlation among the predictors, the number of steps used in each

iteration of simulation is twice that for designs 1 and 4 at 400 and so are burnins at

200. The number of observations and covariates are fixed at n=50 and p=20. The

prior used for pi,j (πi,j) is 0.3 for all i and j. Since k can be any number within the

range (1, 1
π
), we show results for 3 different choices of k’s. The columns of the plots

show the box-plots of the selection probabilities obtained from

1. Univariate Bayesian variable selection

2. Our proposed method with k=1.5

3. Our proposed method with k=2

4. Our proposed method with k=3,

and the rows are in the order of the response variables. We only compare our re-

sults with those obtained by univariate Bayesian variable selection but not the ones

obtained by multivariate variable selection since our method is similar to univari-

ate Bayesian variable selection and results are better than those obtained by using

multiple response Bayesian variable selection due to the allowance of selecting dif-

ferent predictors for different response variables. The univariate Bayesian variable

selection used for comparison is obtained by using the same prior distribution for

coefficient B that is B|α ∼ N(0,100(XT
αXα)−1) and constant pi,j for all i and j so

α’s are drawn from

p(α|Y ) ∝ exp{−1

2
[
Y TY

σ2
− (

1

σ2
+

1

c
)−1

Y TXα(XT
αXα)−1XT

α Y

σ4
]}pαi,ji,j (1− pi,j)(1−αi,j)
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4.4.1 Study 1

Consider the following model, η = Xβ and σ = 2.5 where

BT=  1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0


In this study, we wish to know the selection probabilities for equally strong signals

with 1/5 common variables.

Design 1

The correlation matrix for Y under Design 1 is Cor(Y )=

 1 0.2

0.2 1

 as derived

previously.

Figure 4.1: Comparing Design 1 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 1
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Design 2

The correlation matrix for Y under Design 2 is Cor(Y )=

 1 0.614

0.614 1



Figure 4.2: Comparing Design 2 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 1
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Design 3

The correlation matrix for Y under Design 3 is Cor(Y )=

 1 0.9368

0.9368 1



Figure 4.3: Comparing Design 3 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 1
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Design 4

The correlation matrix for Y under Design 4 is Cor(Y )=

 1 0.4718

0.4718 1



Figure 4.4: Comparing Design 4 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 1
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4.4.2 Study 2

Consider the following model, η = Xβ and σ = 2.5 where

BT= 
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0


In this study, we wish to investigate the selection probabilities for equally strong

signals with each pair of response variables sharing half of the predictors.

Design 1

The correlation matrix for Y under Design 1 is Cor(Y )=


1 0 0.5

0 1 0.5

0.5 0.5 1



Figure 4.5: Comparing Design 1 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 2
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Design 2

The correlation matrix for Y under Design 2 is Cor(Y )=


1 0.493 0.623

0.493 1 0.944

0.623 0.944 1



Figure 4.6: Comparing Design 2 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 2
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Design 3

The correlation matrix for Y under Design 3 is Cor(Y )=


1 0.9589 0.9795

0.9589 1 0.9795

0.9795 0.9795 1



Figure 4.7: Comparing Design 3 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 2
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Design 4

The correlation matrix for Y under Design 4 is Cor(Y )=


1 0.07676 0.7076

0.07676 1 0.67475

0.7076 0.67475 1



Figure 4.8: Comparing Design 4 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 2

For reasonable sized true signals (1), our proposed method performs similar to

univariate Bayesian variable selection but with slightly smaller variances in the

selection probabilities, which also seem to depend on the choice of k.
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4.4.3 Study 3

Consider the following model, η = Xβ and σ = 2.5 where

BT= 1 0.5 0 0 1 0.6 0.6 0 0 0 0.8 0 0 0 0 0 0 0 0 0

0.7 0.7 0 0.5 1 0 1.2 0 0 0 0 1 0 0 0 0 0 0 0 0


In this study, we wish to investigate the effect of sharing of weak signals on the

selection probabilities.

Design 1

The correlation matrix for Y under Design 1 is Cor(Y )=

 1 0.6746

0.6746 1



Figure 4.9: Comparing Design 1 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 3

Notice that the selection probabilities for the 2nd variable of Response 2 is smaller

than that for the 1st variable on average for our proposed method although the

true signals are identical. This can be explained by the size of the true signals (and

hence and selection probabilities) of the corresponding variables of Response 1.
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Design 2

The correlation matrix for Y under Design 2 is Cor(Y )=

 1 0.9326

0.9326 1



Figure 4.10: Comparing Design 2 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 3

The selection probabilities of our proposed method have smaller variances compared

to univariate Bayesian variable selection when the true signals are large (≥1).
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Design 3

The correlation matrix for Y under Design 3 is Cor(Y )=

 1 0.9768

0.9768 1



Figure 4.11: Comparing Design 3 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 3

When there exists strong correlation among the response variables and the true

signals are alternating, our proposed method has a harder time picking the right

variables.
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Design 4

The correlation matrix for Y under Design 4 is Cor(Y )=

 1 0.89297

0.89297 1



Figure 4.12: Comparing Design 4 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 3
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4.4.4 Study 4

Consider the following model, η = Xβ and σ = 2.5 where

BT=
0.5 0 0 0 1 0.8 1 0 0 0 0.6 0 1 0 0 0 0 0 0 0

2 0.7 0 0 0 1 0 2 0 0 0 0.8 0 0 0 0 0 0 0 0

0 0.5 0 0 0.6 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1


Design 1

The correlation matrix for Y under Design 1 is Cov(Y )=


1 0.2743 0.4905

0.2743 1 0.1405

0.4905 0.1405 1



Figure 4.13: Comparing Design 1 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 4

The 12th variable of Response 2 has smaller variances in the selection probabilities

under our proposed method, which can be justified by the sharing of variable with
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Response 3 and in return results in smaller variances in the selection probabilities

for the same variable of Response 3.

Design 2

The correlation matrix for Y under Design 2 is Cov(Y )=


1 0.6805 0.8179

0.6805 1 0.4344

0.8179 0.4344 1



Figure 4.14: Comparing Design 2 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 4
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Design 3

The correlation matrix for Y under Design 3 is Cov(Y )=


1 0.9403 0.9564

0.9403 1 0.9177

0.9564 0.9177 1



Figure 4.15: Comparing Design 3 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 4

For highly correlated response variables, the probabilities of selecting certain vari-

ables are lower if they are not selected for other response variables.
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Design 4

The correlation matrix for Y under Design 4 is Cov(Y )=


1 0.6222 0.7673

0.6222 1 0.5639

0.7673 0.5639 1



Figure 4.16: Comparing Design 4 selection probability box plots for each response

variables with univariate Bayesian variable selection results under Model 4

4.4.5 Summary

Overall, it can be seen that the selection probabilities of our proposed method

depend highly on the correlations among the response variables and whether the

variables are selected for other response variables as expected. This also shows the

influence of prior distribution in Bayesian analysis.
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4.5 Data Analysis

In this section, we consider World Value Survey again but with an extra response

variable ”Happiness”. We know that happiness is closely linked with life satisfac-

tion; however, it is interesting to look at what are the differences in factors that

contribute to a satisfied life and happiness. Here we treat the response variables as

continuous.

Figure 4.17: Selection probability by the direction of average effect of top ranked

factors for happiness and life satisfaction in Canada

Figure 4.18: Selection probability by the direction of average effect of top ranked

factors for happiness and life satisfaction in Norway
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Figure 4.19: Selection probability by the direction of average effect of top ranked

factors for happiness and life satisfaction in South Africa

Figure 4.20: Selection probability by the direction of average effect of top ranked

factors for happiness and life satisfaction in Australia

The results in this section are slightly different from those in Chapter 3 which

uses LASSO to select variables. Furthermore, the response variables are treated

as continuous which disregards the ”true” distances between each successive levels

or ratings of our response variables in the analysis. As we can see from the plots,

health and financial satisfaction are among the most influential factors for both

happiness and life satisfaction for most countries. However, quite interestingly we

see that financial satisfaction is not listed as one of the most influential factors for

happiness for Canadians, nor is it as highly ranked as it is for life satisfaction for

Norwegians neither.
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Chapter 5

Conclusion

While there are already lots of work devoted to analyzing ordinal response data,

most of them focuses on analyzing binary data and using Bayesian variable selection

to select the variables. We focused our work on analyzing polychotomous ordinal

response variable by adapting the data augmented framework that is typically used

for analyzing ordinal response data. Under such framework, Gibbs sampler is typ-

ically used to sample Z the latent variable, β the parameter of interest, and γ the

cutpoints that are used to transform Z back to Y the response variable. For variable

selection purposes, it is natural to use Bayesian variable selection since it also uses

Gibbs sampling procedure. Bayesian variable selection usually involves introduc-

tion of a latent variable for indicating whether the corresponding variables should

be entered so Gibbs sampling is required for approximating the joint distribution

of the augmented data. While Bayesian variable selection is a convenient technique

that utilizes Gibbs sampling to select the variables, for univariate variable selection

problems, we proposed to use Stochastic EM and infuse LASSO in the estimation

step for β the parameter of interest since it is more computationally efficient. Since

we are interested in the selection probabilities, the fact that LASSO shrinks the

estimates of the parameters has no impact in our analyses. However, for multiple

response data, we still make use of Bayesian variable selection since it is convenient

to place priors on any parameters. Therefore, we chose to infuse the relationship

information into the conditional prior distribution of α (the latent variable that

indicates which corresponding variables should be entered) considering that the
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correlation between the response variables is one of the most important informa-

tion available when analyzing multiple response data. The simulation results show

that our proposed method look optimistic when being compared against univari-

ate Bayesian variable selection in that it shows the influence of prior distributions

in Bayesian analysis and how we can specify the prior distributions based on the

problem of our interest. Overall, the performance of Bayesian variable selection

can be modified by adding information through the prior distributions.

5.1 Future Work

1. Choice of k

So far we have not proven the difference in performance of our proposed

method for different choices of k; however, we can tell there is no substantial

difference based on empirical evidences but it is worthwhile to know the sen-

sitivity of the performance based on k for choosing an optimal solution to a

variable selection problem.

2. Extension to Multiple Ordinal Response Variable Selection

Our proposed method seem to be working really well on continuous response

data so one future research possibility would be to extend this method to an-

alyzing multiple ordinal response data. The major challenge is the estimation

of correlations - currently we use sample correlation for the conditional prior

distribution of α; however, for ordinal response variable Y , correlation need

to be estimated with caution.

3. High Dimensional Data Analysis

More and more data are high dimensional in nature (with p � n) but we

have not been focusing our work on analyzing such data. To apply our pro-

posed methods to analyzing high dimensional data we might need to make

some adjustments on the prior distribution of α that penalizes or restricts the

number of variables to be selected.
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Appendix A

The Algorithm

For convenience, we ignore i that indicates which response we are specifying here.

Each step in this algorithm is repeated q number of times (one for each response

i). Moreover, except for αi which conditioned on αc, β(i) and σ2
i depend only on αj

for j = i. The superscripts (k) indicates the iteration.

• Initialization

– Set α(0) from Bernoulli(πi,j) i = 1, . . . , q, j = 1, . . . , p

– Set β(0) and σ2(0) given α(0) to the maximum likelihood estimate of β

given α(0) and σ2 given α(0) and β(0)

∗
β(0) = (XT

αXα)−1XT
α Y

∗
σ2(0) =

|Y −Xαβ
(0)|2

n− 1

• At the kth iteration

Expectation Step:

We incorporate the idea of integrating out (collapsing down) irrelevant pa-

rameters by placing conjugate prior on β to obtain the posterior distribution

of α.
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Draw α(k) from p(α|Y, σ2, αc)

p(α|Y, σ2, αc) ∝ π(α|αc)
∫
p(Y |β, σ2)p(β|α)dβ

∝
∫
f(Y |β, σ2)p(β|α)dβ

∏
i,j

p
∗αij
ij (1− p∗ij)1−αij

∫
p(Y |β, σ2)p(β|α)dβ ∝

∫
β

exp{−1

2
(Y −Xαβ)Tσ−2(Y −Xαβ)}exp{−1

2
βT
XT
αXα

c
β}dβ

∝
∫
β

exp{−1

2
[
Y TY

σ2
− 2

Y TXαβ

σ2
+
βTXT

αXαβ

σ2
+
βTXT

αXαβ

c
]}dβ

∝
∫
β

exp{−1

2
[
Y TY

σ2
− 2

Y TXαβ

σ2
+ βT (

XT
αXα

σ2
+
XT
αXα

c
)β]}dβ

Let Σ−1 =
XT
αXα

σ2
+
XT
αXα

c∫
β

p(Y |β, σ2)p(β|α)dβ ∝
∫
β

exp{−1

2
[βTΣ−1β − 2βTΣ−1Σ

XT
α Y

σ2
+
Y TY

σ2
]}dβ

∝
∫
β

exp{−1

2
[βTΣ−1β − 2βTΣ−1(Σ

XT
α Y

σ2
) +

Y TY

σ2

+ (Σ
XT
α Y

σ2
)TΣ−1(Σ

XT
α Y

σ2
)− (Σ

XT
α Y

σ2
)TΣ−1(Σ

XT
α Y

σ2
)]}dβ

∝ exp{−1

2
[
Y TY

σ2
− (Σ

XT
α Y

σ2
)TΣ−1(Σ

XT
α Y

σ2
)]}∫

β

exp{−1

2
[(β − ΣXT

α Y

σ2
)TΣ−1(β − ΣXT

α Y

σ2
)]}︸ ︷︷ ︸

Normal kernel

dβ

∝ exp{−1

2
[
Y TY

σ2
− (Σ

XT
α Y

σ2
)T
XT
α Y

σ2
]}

∝ exp{−1

2
[
Y TY

σ2
− ((

XT
αXα

σ2
+
XT
αXα

c
)−1

XT
α Y

σ2
)T
XT
α Y

σ2
]}

∝ exp{−1

2
[
Y TY

σ2
− (

1

σ2
+

1

c
)−1

Y TXα(XT
αXα)−1XT

α Y

σ4
]}

p(α|Y, σ2,αc) ∝ π(α|αc)
∫
p(Y |β, σ2)p(β|α)dβ

∝
∫
f(Y |β, σ2)p(β|α)dβ

∏
i,j

p
∗αij
ij (1− p∗ij)1−αij

∝ exp{−1

2
[
Y TY

σ2
− (

1

σ2
+

1

c
)−1

Y TXα(XT
αXα)−1XT

α Y

σ4
]}
∏
i,j

p
∗αij
ij (1− p∗ij)1−αij
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So,

p(αi,j|Y, σ2, αc) ∝ exp{−1

2
[
Y TY

σ2
− (

1

σ2
+

1

c
)−1

Y TXα(XT
αXα)−1XT

α Y

σ4
]}p∗αi,ji,j (1− p∗i,j)(1−αi,j)

where

p∗i,j =
ai,j

ai,j + bi,j

with ai,j and bi,j specified in the previous section. Here, one sample of αi,j is

drawn one by one from Bernoulli( A
A+1

) for each i and each j by keeping αc

fixed.

A =
p(αi,j = 1|Y, σ2, αc)

p(αi,j = 0|Y, σ2, αc)
.

This is the stochastic E-Step in Stochastic EM algorithm.

Maximization Step:

Given α, we update β and σ2 to the mode of their posterior distributions.

– Update

β(k) = arg max
β

p(β|Y, α, σ2)

where

p(β|Y, α, σ2) ∝ p(Y |β, σ2)p(β|α)

∝ exp{−1

2
[(β − ΣXT

α Y

σ2
)TΣ−1(β − ΣXT

α Y

σ2
)]}

β(k) = arg max
β

p(β|Y, α, σ2) =
ΣXT

α Y

σ2(k−1) = (
XT
αXα

σ2(k−1) +
XT
αXα

c
)−1

XT
α(k)Y

σ2(k−1)

=
c

c+ σ2(k−1) (X
T
α(k)Xα(k))−1XT

α(k)Y

When c approaches infinity, β(k) is the maximum likelihood estimate.

– Update

σ2(k) = arg max
σ2

p(σ2|Y, β)
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where

p(σ2|Y, β) ∝ p(Y |β, σ2)p(σ2)

∝ exp{− 1

2σ2
(Y −Xβ)T (Y −Xβ)}σ2(−ν−1) exp{− σ

σ2
}

∝ σ2(−ν−1−n
2
)exp{− 1

σ2
[δ +

(Y −Xβ)T (Y −Xβ)

2
]}︸ ︷︷ ︸

Inverse gamma kernel

σ2(k) = arg max
σ2

p(σ2|Y, β) =
δ + (Y −Xα(k)β(k))T (Y −Xα(k)β(k))/2

ν + n
2

+ 1

When ν and δ are taken to be ≈ 0, σ2(k) is the maximum likelihood

estimate.
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