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Abstract

In this thesis we study a coordinated path following problem for multi-agent systems.

Each agent is modelled by a smooth, nonlinear, autonomous, deterministic control-affine

ordinary differential equation. Coordinated path following involves designing feedback

controllers that make each agent’s output approach and traverse a pre-assigned path while

simultaneously coordinating its motion with the other agents. Coordinated motion along

paths includes tasks like maintaining formations, traversing paths at a common speed and

more general tasks like making the positions of some agents obey functional constraints

that depend on the states of other agents.

The coordinated path following problem is viewed as a nested set stabilization prob-

lem. In the nested set stabilization approach, stabilization of the larger set corresponds

to driving the agents to their assigned paths. This set, under suitable assumptions, is an

embedded, controlled invariant, product submanifold and is called the multi-agent path

following manifold. Stabilization of the nested set, contained in the multi-agent path fol-

lowing manifold, corresponds to meeting the coordination specification. Under appropriate

assumptions, this set is also an embedded controlled invariant submanifold which we call

the coordination set.

Our approach to locally solving nested set stabilization problems is based on feed-

back equivalence of control systems. We propose and solve two local feedback equivalence

problems for nested invariant sets. The first, less restrictive, solution gives necessary and

sufficient conditions for the dynamics of a system restricted to the larger submanifold and

transversal to the smaller submanifold to be linear and controllable. This normal form

facilitates designing controllers that locally stabilize the coordination set relative to the

multi-agent path following manifold. The second, more restrictive, result additionally im-
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poses that the transversal dynamics to the larger submanifold be linear and controllable.

This result can simplify designing controllers to locally stabilize the multi-agent path fol-

lowing manifold. We propose sufficient conditions under which these normal forms can be

used to locally solve the nested set stabilization problem.

To illustrate these ideas we consider a coordinated path following problem for a multi-

agent system of dynamic unicycles. The multi-agent path following manifold is character-

ized for arbitrary paths. We show that each unicycle is feedback equivalent, in a neigh-

bourhood of its assigned path, to a system whose transversal and tangential dynamics to

the path following manifold are both double integrators. We provide sufficient conditions

under which the coordination set is nonempty. The effectiveness of the proposed approach

is demonstrated experimentally on two robots.
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Chapter 1

Introduction and literature review

1.1 Motivation

In many situations team work helps people achieve their goals more efficiently than work-

ing alone; there are tasks that can only be completed through collaboration. Similarly,

in the field of control systems, the use of cooperative control systems is unavoidable in

many occasions and a large amount of research has concentrated on cooperative control

systems [66]. A cooperative control system is a system in which a group of autonomous

control systems work together to achieve a common goal. This thesis studies a cooperative

control problem called coordinated path following [44]. Coordinated path following in-

volves designing feedback controllers that make each agent’s output approach and traverse

a pre-assigned path while simultaneously coordinating its motion with the other agents.

As a motivating example for the study of coordinated path following consider the

following mine sweeping scenario. Suppose that there is an area with explosive mines that

must be detected and disarmed. It is a highly dangerous task for humans so it is natural
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to have robots perform the task. In this scenario a pair of mobile robots are employed

to safely deactivate the mines in a cooperative manner. The mobile robots are assigned

predefined paths in the field. For the sake of illustration we assume the first robot’s path is

an ellipse and the second robot’s path is a circle. Once the mobile robots reach their paths

they must have equal phase, see Figure 1.1. Control design specifications in this example

Path 1

Path 2

Robot 1

Robot 2

Figure 1.1: Schematic depiction of the mine field operation.

are:

1. Each mobile robot must converge to its assigned path and move along the path.

2. Once the mobile robots have reached their assigned paths they must remain there

during the whole mission.

3. When the mobile robots are on their corresponding paths they must have the same

2



phase.

4. Once the robots become coordinated they must remain coordinated during the whole

mission.

5. If the coordination task is changed, the robots should resynchronize but not leave

their paths.

The coordination aspect of coordinated path following includes tasks like maintaining for-

mations, traversing paths at a common speed and more general tasks like making the

positions of some agents obey functional constraints that depend on the states of other

agents. Coordinated path following is well-suited to applications in which accurate path

traversal is vital and is motivated by applications in marine vehicle control [30, 61], mo-

bile manipulation [24], search and rescue operations [16], and patrolling a pre-defined

region [95].

Most studies on coordinated path following take an ad-hoc approach; they consider

specific systems and devise system specific solutions. One motivation for this research is

to take a more structural approach to coordinated path following that can be applied to a

large class of systems. A second motivation is to consider applications in which invariance

of the path of each agent as well as the invariance of the coordination specification are

prioritized. This distinguishes this thesis from most studies in the literature. Finally, we

formulate coordinated path following in such a way that many existing results on coordina-

tion of multi-agent systems can be incorporated into our solution to achieve decentralized

coordination.

In Chapter 2 the coordinated path following problem is formulated as two set stabi-

lization problems in the state space of a multi-agent system. It turns out that, under
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suitable assumptions, the sets are embedded controlled invariant1 submanifolds and one

set is nested inside the other. The simultaneous set stabilization problem is referred to as a

nested set stabilization problem throughout this thesis. In the nested set stabilization prob-

lem stabilization of the larger set corresponds to driving the agents to their assigned paths,

and stabilization of the nested set corresponds to meeting the coordination specification.

Example 1.1.1. Recall the previously described mine sweeping application. Each robot

is modeled as a dynamic unicycle

ẋi = vi cos (θi)

ẏi = vi sin (θi)

θ̇i = ui,2

v̇i = ui,1
where (xi, yi) denotes the position of the unicycle in the plane, θi is the heading angle, and

vi is the forward velocity of the unicycle. The control inputs ui,1 and ui,2 are, respectively,

the forward acceleration and angular velocity. Let xi := (xi, yi, θi, vi) ∈ R2 × S1 × R

denote the state space of each unicycle. We take the position of the unicycle i as its

output yi = hi(xi) := (xi, yi). The state of the multi-agent system of two unicycles is

x := (x1,x2) ∈ (R2 × S1 × R)2. The assigned paths are

γ1 =

{
y1 ∈ R2 : s1(y1) =

y2
1,1

a2
+
y2

1,2

b2
− 1 = 0

}
γ2 =

{
y2 ∈ R2 : s2(y2) = y2

2,1 + y2
2,2 − r2

2 = 0
}

where a, b, r2 ∈ R. The paths give rise to the following sets in the state spaces of each

1Refer to Appendix D and Definition D.1 for the definition of a controlled invariant submanifold.
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robot

Γ1 =

{
x1 ∈ R2 × S1 × R : s1(x1) =

x2
1

a2
+
y2

1

b2
− 1 = 0

}
Γ2 =

{
x2 ∈ R2 × S1 × R : s2(x2) = x2

2 + y2
2 − r2

2 = 0
}
.

If the state of robot i, i ∈ {1, 2}, reach the set Γi its output reaches path γi. However, there

are points in this set at which the heading angle θi is not tangent to the path in the output

space. Thus, if the robot is initialized at such a point it leaves the path instantaneously.

In order to ensure that robots do not leave their corresponding paths we consider a subset

Γ?i ⊂ Γi where there do not exist such points. If we define Γ? := Γ?1 × Γ?2, then the path

following specification for the multi-agent system of two robots is accomplished if and only

if this set stabilized.

The coordination specification can be cast as the stabilization of the set

C = {x ∈ Γ? : arg(x1 + jy1)− arg(x2 + jy2) = 0} .

Similarly, C contains points at which the angular velocity of the robots are not the same.

Thus, if the robots are initialized on the paths and in coordination but with different

angular velocities the coordination set will be left instantaneously. In order to make sure

this situation is avoided we consider the largest controlled-invariant subset C? ⊂ C. The

coordination specification for the two robots is accomplished if and only if C? is stabilized.

M

In this thesis we (1) stabilize the larger set in the state space of the multi-agent system

and (2) stabilize the nested set for the states of the multi-agent system contained in the

larger set. We employ feedback equivalence of control systems to accomplish (1) and (2)

locally. Two control systems are said to be feedback equivalent if there exists a coordi-

5



nate transformation and a feedback transformation that maps trajectories of one control

system to the other one. Given a control system and two nested sets, instead of designing

controllers to accomplish (1) and (2) directly, we first seek a coordinate and feedback trans-

formation that brings the control system to a form which is specially suitable for designing

stabilizing controllers.

1.2 Coordinated path following

In this section we, somewhat informally, state a general coordinated path following problem

which is the main subject of study in this thesis. Consider a multi-agent system consisting

of N heterogeneous agents. Each agent i is modeled by

ẋi = fi(xi) +

mi∑
j=1

gi,j(xi)ui,j := fi(xi) + gi(xi)ui

yi = hi(xi),

i ∈ {1, · · · , N} (1.1)

where xi ∈ Rni denotes the states, ui ∈ Rmi the control inputs, and yi ∈ Rpi the outputs

of the agent i. In equation (1.1) fi : Rni → Rni , hi : Rni → Rpi , and gi,j : Rni → Rni for

j ∈ {1, · · ·mj} , i ∈ {1, · · · , N}, are smooth functions.

We define the state of the overall multi-agent system as x := (x1, · · · ,xN) ∈ Rn with

n := n1+· · ·+nN , the control input of the overall multi-agent system is u := (u1, · · · ,uN) ∈

Rm with m := m1 + · · · + mN , and the output of the overall multi-agent system is y :=

(y1, · · · ,yN) ∈ Rp with p := p1 + · · · + pN . With these definitions, the dynamics of the
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overall multi-agent system are compactly expressed as

ẋ = f(x) + g(x)u

y = h(x)
(1.2)

where

f :=


f1

...

fN

 , g :=



g1 0 · · · 0

0 g2 · · · 0

...
...

. . .
...

0 0 · · · gN


, h :=


h1

...

hN

 .

1.2.1 Allowable paths

Suppose that each agent is assigned a path γi in its output space which is the image of a

smooth, regular, map

σi : R −→ Rpi i ∈ {1, · · · , N} . (1.3)

We denote by γi := σi(R) the path of agent i. Since each curve σi is regular, we assume,

without loss of generality, that it is unit-speed parameterized, i.e., for each λ ∈ R, ‖σ′i‖ ≡ 1.

We henceforth assume that each path satisfies the following.

Assumption 1.2.1. For i ∈ {1, · · · , N}, the path γi ⊂ Rpi is a one-dimensional embedded

submanifold2. There exists a smooth map si : Rpi → Rpi−1 such that γi = s−1
i (0) and

dsi(yi) 6= 0 for all yi ∈ γi. Moreover, there exist 2N class-K∞ functions ρi,1, ρi,2 : [0,∞)→

R+ such that

(∀yi ∈ Rpi) ρi,1(dist(yi, γi)) ≤ ‖si(yi)‖ ≤ ρi,1(dist(yi, γi)). (1.4)

2Refer to Appendix C.2 Definition C.12 for the definition of an embedded submanifold
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C

Assumption 1.2.1 requires that the entire path can be represented as the zero level set

of the function si : Rpi → Rpi−1 so that its Jacobian has full rank pi − 1 at each point

of the path. While the curve γi may be unbounded, condition (1.4) in Assumption 1.2.1

ensures that dist(yi, γi)→ 0 if and only if s(yi)→ 0.

1.2.2 Control design objectives

A coordination specification is described with a set of constraints on the position and

velocity of agents along their paths. In order for the agents to coordinate their motions

they must exchange state information. However, in general, communication constraints

might be present so that some agents cannot access some other agents’ states.

Given the multi-agent system (1.1) or (1.2), paths γi, i ∈ {1, · · · , N}, assigned to each

agent, a set of coordination constraints, and communication restrictions, the coordinated

path following problem entails designing a state feedback controller u : Rn → Rm such

that the closed loop satisfies

PF1 For each initial condition the corresponding solution is defined for all t ≥ 0 and all

solutions are such that yi → γi as t→∞.

PF2 The assigned path γi for each agent is invariant in the sense that, if each agent is

appropriately initialized on its corresponding path it remains there for all future time.

C1 When restricted to their assigned paths, the evolution of the agents is such that they

approach coordination.
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C2 The coordination specification must be invariant in the sense that, if all the agents

are appropriately initialized on their corresponding path and in coordination, they

maintain coordination for all t ≥ 0.

C3 The state feedback u must be decentralized in the sense that it only uses state

information that satisfy all inter-agent communication constraints.

A1 Once all the agents are on their corresponding paths and coordinated the overall

multi-agent system must satisfy application specific specifications, e.g., boundedness,

tracking, etc.

1.3 Literature review

In this section we review the literature on coordinated path following problem, nested set

stabilization problem, and feedback equivalence.

1.3.1 Coordinated path following

Early studies on coordinated path following investigated the problem for two agents. For

instance in [61] coordinated path following for two underwater vehicles is studied. A

nonlinear control law based on Lyapunov theory is designed to steer two vehicles toward

their paths. While they are on the paths one of them is selected as the leader and it travels

with a desired velocity profile. The other one is selected as follower and adapts its distance

with the leader. In [30] the coordinated path following problem between an autonomous

surface craft (ASC) and an autonomous underwater vehicle (AUV) is considered. The

ASC is assumed to be the leader and is launched to follow a path. The AUV is required

to follow the ASC in the x− y plane at a certain depth from the ASC.
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Predominantly, two distinct approaches has been employed to solve a coordinated path

following problem; namely, decoupling method [38] and curve extension method [13]. While

the path following portion of the coordinated path following is invariably solved using only

each agent’s own information the specific manner in which the path following portion of

the problem is solved distinguishes these studies.

The key idea in the decoupling method is to separate controller design for the path

following and the coordination portions of the coordinated path following problem. In

order to solve the path following portion each path is parameterized, the parameterization

is utilized as a reference trajectory, and the evolution of the path parameter is treated as

an additional control input. This approach, and variations on its theme, is popular and

the subject of a considerable amount of work, see [86, 1, 2, 15, 44] among others. In this

approach, path following is accomplished when the error between the output of an agent

and the reference point on the path defined by the path parameter is asymptotically driven

to zero. The point on the path defined by the controlled path parameter can be viewed as

a virtual target in this approach. In [37] linearization and gain scheduling are utilized to

stabilize the error dynamics for a multi-agent system of wheeled mobile robots. Lyapunov-

based methods are employed in [35, 93] to stabilize the error dynamics for the multi-

agent system of mobile wheeled robots, unicycles, and autonomous underwater vehicles,

respectively. In [39] a multi-agent system of autonomous surface vessels is considered

and adaptive back-stepping is employed to stabilize the error dynamics. In [91] a multi-

agent system of marine surface vehicles is investigated and a neural network adaptive

technique is employed to accomplish path following in the presence of disturbances and

model uncertainties.

As far as the coordination portion is concerned, in the decoupling method it is typically

enforced through clever re-parameterization of each system’s assigned path. In [61, 35] each
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path is parameterized so that the desired formation corresponds to having each system’s

path parameter approach a common value. In [74, 44, 16, 97] a method called formation

reference point is suggested to re-parameterize the assigned paths for each agent. The

desired formation, which can change over time, is treated as a virtual geometric structure

and a desired reference path is assigned to the centroid of the virtual structure. The

reference path of the centroid determines the movement of the whole multi-agent system.

The path of each agent is then re-parameterized according to its position in the virtual

structure.

As opposed to the decoupling method, in the curve extension method the path following

and coordination controllers are designed simultaneously. In addition, path following is

viewed as a set stabilization problem. That is, a smooth function is employed for each

path such that the zero level set of this function is the desired path. Convergence to

the path is achieved when the value of the smooth function reaches zero. The process of

finding a smooth function for a path is called curve extension. All the studies on the curve

extension method are limited to closed paths. In order to drive each agent to the zero

level set of the smooth function an error between the velocity vector of an agent and the

tangent vector to the path is considered and path following is achieved if this error reaches

zero. In [94, 13] coordinated path following of differential drive robots is solved using the

curve extension method. A novel curve extension method is proposed which is effective

for curves like circles, ellipses, and rounded parallelograms. In [96, 72] coordinated path

following of unit speed particles in the plane along closed curves is studied. The control

laws are designed to steer the particles to a pattern. In [95] it is assumed that a group of

autonomous underwater vehicles are assigned to collect oceanographic information. They

are required to traverse closed curves and to achieve patterns under which the spacing

between neighbour vehicles are constant. In the curve extension method coordination is
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implemented by forcing the relative arc-length between each pair of vehicles to a constant

value.

In some studies a different notion of coordinated path following is investigated in which

all the agents are required to reach a common path. In [60] a group of unicycles is tasked

to approach a common path and to achieve a desired inter-vehicle formation. It is assumed

that each unicycle can measure its distance to the path and the heading error as well as the

curvature of the path segment it can sense. Another distinct assumption made in this paper

is that no global coordinates exist and each vehicle can only sense a part of the path locally.

In this study it is required that the vehicles be located close enough to the path. A hybrid

control approach is employed to solve the described coordinated path following problem in

which each vehicle either runs a coordination algorithm or a single-vehicle algorithm. The

main stability result states that if a vehicle is running coordination algorithm, it will not

switch to the single-agent algorithm. And if they are running single-agent algorithm they

will get to run coordination algorithm after a finite time.

In practice there are some obstacles to implementation such as bandwidth limitations,

time delays, transmission noise, and communication failures. Some studies have investi-

gated the impact of different imperfections in the communication topology on the stability

of closed loop systems. Because of bandwidth limitations in [5] it is assumed that the

information is exchanged in discrete-time instants. It is further assumed that the com-

munication is directed and no delay and packet collisions exists. Under mild assumptions

on the connectivity of the graph and assuming periodic communications, stability of the

control laws are shown. In [36] the coordinated path following problem for a group of

vehicles is considered and it is assumed that the communication topology suffers from time

delays and losses. Two cases considered for the communication topology. In the first case

it is assumed that there are brief connectivity losses. The second case assumes that the
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union of the communication graphs over uniform intervals of time remains connected.

The first drawback of the studies on coordinated path following is that a particular

multi-agent systems with homogeneous agents is considered; thus application to other

examples is not straightforward. The second drawback of the aforementioned approaches is

that invariance of the paths is not guaranteed independently of the coordination task. This

is important because it ensures that even if coordination fails due to, say, communication

errors, or the coordination task changes the individual robots remain on their paths. The

third drawback is that the coordination is not invariant; thus even if the agents are initially

coordinated they might leave the coordination. Finally, most previous studies only consider

position coordination, i.e., formation control, along the desired paths.

1.3.2 Hierarchical control design approach

A common practice for approaching a sophisticated control problem is to split the problem

into prioritized sub-problems and solve them separately. This method is known as hierarchi-

cal control design. In [28] the hierarchical control design problem is viewed as the simulta-

neous stabilization of a chain of closed nested, controlled invariant, sets S1 ⊃ S2 ⊃ · · · ⊃ Sn

in which set Si represents the sub-problem i. Set Si being nested in the set Si−1 indicates

that the sub-problem i + 1 is solved only if the sub-problem i is solved. For instance

the hierarchical control design approach is employed to formulate the position control

problem of thrust-propelled vehicles in [78]. Other applications using hierarchical control

design viewpoint include the circular formation stabilization problem for kinematic unicy-

cles in [25, 83, 84], and the three-dimensional circular formation stabilization problem for

kinematic particles in [26].

The objective of hierarchical control design problem is twofold : to design control laws

13



solving each sub-problem independently and to investigate conditions under which the de-

signed control laws solve the main problem when working together. The solution to the

second aspect is closely related to the so-called reduction problem. The reduction problem

was initially formulated in [80, 81]. There, a dynamical system with two closed invariant

sets S1 ⊃ S2 in its state space is considered, and it is assumed that S1 is asymptotically sta-

ble and S2 is asymptotically stable relative to S1. The reduction problem seeks conditions

required to guarantee S2 is asymptotically stable. The reduction theorems for stability and

asymptotic stability of compact sets are proven in [82]. The extension to non-compact sets

as well as the reduction theorem for attractivity are proved in [28].

In this thesis coordinated path following problem is cast as an instance of hierarchical

control design and the first aspect of the hierarchical control design problem is investigated.

1.3.3 Feedback equivalence

Feedback equivalence problems have been extensively studied in the last thirty five years

and their solutions have been a valuable tool in making many nonlinear control design

problems tractable. Two control systems are said to be feedback equivalent if there exists

a coordinate transformation and a feedback transformation mapping trajectories of two

control systems to each other. A large portion of the control literature on feedback equiva-

lence is dedicated to finite-dimensional, autonomous, deterministic, nonlinear control-affine

systems and the feedback equivalence is local, i.e., valid in a neighbourhood of a point in

the system’s state space. Most of the studies on this field are heavily influenced by the

seminal works of Poincaré [73] and Cartan [11]. Poincaré found sufficient conditions for

a dynamic system to be locally equivalent to a linear one by means of an analytic trans-

formation. In Cartan’s method of equivalence a Pfaffian system of differential forms is
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generated by a dynamical or control system. The feedback equivalence problem of control

systems is analyzed by studying the feedback equivalence of the corresponding Pfaffian

systems. Many studies have built up on Cartan’s method of equivalence the most promi-

nent of which are [32, 33, 34, 31, 40, 42, 43, 49, 85]. A profound survey of different studies

on feedback equivalence problem can be found in [77] and references therein.

A distinguished subdivision of studies on feedback equivalence is called feedback lin-

earization in which feedback equivalence of a nonlinear control system to a controllable

linear, or partially linear, system is sought. The motivation for studying this special case

is clear. Rather than designing a feedback controller for the nonlinear control system, a

potentially difficult task, the designer first finds the feedback equivalent linear system. The

controller is designed for the linear equivalent system using the rich set of design tools for

this class of system and then implemented on the nonlinear plant. Feedback equivalence

to a complete linear time invariant (LTI) control system, known as state-space exact feed-

back linearization problem (SEFLP), was initially introduced in [53]. In [9] this problem

was solved for single-input single-output (SISO) nonlinear control systems. Extension to

the multi-input multi-output (MIMO) case was investigated in [87, 88]. In [47] the feed-

back equivalence of a control system to a partially linear control system, known as partial

feedback linearization problem (PFLP), was investigated. In [55] PFLP yielding a linear

subsystem of maximal size is investigated for SISO systems. In [64, 65] the MIMO case is

considered.

Frequently, the input of a control system is employed to control its output. Thus,

a natural feedback equivalence problem is to find, if possible, a coordinate and feedback

transformation linearizing the input-output dynamics. This problem is referred to as input-

output feedback linearization problem (IOFLP) and in [47, 48] is investigated for SISO

control systems. Similar results for MIMO control systems are discussed in [45]. Since a few
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control systems are feedback linearizable, the concept of approximate feedback linearization

was first raised by [54] and later different aspects of which was studied in [57, 56, 58, 51].

IOFLP is solvable if and only if the system possesses a well-defined relative degree. It turns

out that the SEFLP and PFLP are closely related to IOFLP. That is, because solving the

SEFLP or PFLP amounts to finding a virtual output which yields a well-defined relative

degree.

In [6] transverse feedback linearization is proposed for stabilizing the periodic orbits of

SISO control-affine systems. The term transverse feedback linearization (TFL) was coined

in this study and it is motivated by the fact that in their method the dynamics transversal

to the orbit is made linear and controllable. In [70] the results are generalized to MIMO

control-affine systems and the target set is allowed to be an arbitrary embedded, controlled-

invariant, submanifold of the state-space. Our solution to the nested set stabilization

problem is based on this study.

1.4 Organization and contributions of the thesis

This thesis is organized as follows. In Chapter 2 we formalize the problem described in

Section 1.2. The outline of Chapters 3 and 4 alongside their main contributions are listed

below.

1.4.1 Chapter 3

• In Theorem 3.4.2 necessary and sufficient conditions are provided for the solvability

of the main problem of Chapter 3 which is introduced as Problem 1. Given a control
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system and two nested sets the main problem asks to feedback linearize the dynamics

with respect to the nested set when restricted to the larger set.

• In Section 3.3 we present results which are needed to solve Problem 1. The problem

of restricting a control-affine system to nested, controlled invariant, embedded sub-

manifolds is introduced in Problem 3. In order to provide the solution to this problem

two results in Lemma 3.3.8 and Lemma 3.3.11 are produced in which, respectively,

slice coordinates are generalized to two nested sets and the conditions under which

a mutual friend of two controlled invariant submanifolds exists are provided. Fi-

nally, the necessary and sufficient conditions under which Problem 3 is solvable are

presented in Theorem 3.3.13.

• In Problem 4, an extension of Problem 1 is introduced and in Theorem 3.5.1 necessary

and sufficient conditions under which Problem 4 is solvable are presented. Given a

control system and two nested sets Problem 4 asks to feedback linearize the dynamics

with respect to the larger set as well as to feedback linearize the dynamics with respect

to the nested set when restricted to the larger set.

• In Section 3.6 a local version of the nested set stabilization problem is introduced in

Problem 5. In Theorem 3.6.1 we present sufficient conditions under which Problem 5

is solvable.

1.4.2 Chapter 4

• Coordinated path following problem for a multi-agent system of dynamics unicycles

is considered. In Section 4.3 the multi-agent path following submanifold is globally

characterized and in Proposition 4.3.1 it is shown that it consists of four disjoint
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components.

• In Section 4.3.2 it is shown that dynamics transversal to the multi-agent path fol-

lowing can always be transversally feedback linearized in a tubular neighbourhood of

each component of the multi-agent path following manifold and in Lemma 4.3.3 the

corresponding diffeomorphism is presented.

• In Section 4.6 experimental results are provided to demonstrate the effectiveness of

the proposed control algorithms.

1.5 Notation

In this thesis, N denotes the set of natural numbers, Z denotes the set of integers, R denotes

the set of real numbers, and C denotes the set of complex numbers. If k is a positive integer,

k denotes the set of integers {0, . . . , k − 1}. Let j :=
√
−1 and let arg : C→ (−π, π] map

a complex number to its principle argument. Let ∅ denote empty set. The identity map

on a set A is 1A.

Let Rk, k ∈ N, denote the k-fold Cartesian product R × · · · × R. Elements of Rk are

ordered k-tuples of real numbers (x1, · · · , xk) and are called vectors. If x ∈ Rk, we denote

by xi the ith component of x.

We treat Rn as an inner product space with the standard inner product

〈x, y〉 :=
n∑
i=1

xiyi
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which induces the Euclidean norm

‖x‖ :=

(
n∑
i=1

x2
i

) 1
2

.

Given a nonempty set A ⊂ Rn and a point x ∈ Rn, the point-to-set distance is defined as

dist(x,A) := inf {‖x− y‖ : y ∈ A} .

The symbols In and 0n represent, respectively, the n × n identity matrix and matrix of

zeros while 1n and 0n represent the n×1 vector of ones and vector of zeros. Let Un denote

an n× n upper-triangular matrix with uij = 1, i ≤ j, uij = 0, i > j. Let

GL (n,R) :=
{
M ∈ Rn×n : detM 6= 0

}
denote the set of nonsingular n × n matrices with real coefficients. This set has the

algebraic structure of group and is called the general linear group.

Let f be a scalar-valued function from an open set U ⊆ Rn into R we denote by ∂xif

its partial derivative with respect to xi. The function is said to be smooth at p ∈ U if it

possesses continuous partial derivatives. If f is continuous at every p ∈ U then we say it

is smooth. We denote by C∞ the class of smooth scalar-valued functions defined on an

open set U ⊆ Rn. A map f : U ⊆ Rn → V ⊆ Rm is smooth if each of its component

scalar functions is smooth. Let U ⊆ Rn and V ⊆ Rn be two open and connected sets, i.e.,

domains. A map f : U → V is a diffeomorphism if it is bijective and both f and f−1 are

of class C∞. Let U be an open and connected subset of Rn and denote by Diff(U) the

collection of diffeomorphisms onto their images with domain U . Two sets U and V are

diffeomorphic is there exists a diffeomorphism between them. The Jacobian of a C1 map
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f : Rn → Rm if evaluated at p ∈ Rn is written df(p). A vector field on an open set U ⊆ Rn

is a continuous map from U to Rn. If f : Rn → Rn is a smooth vector field and λ : Rn → R

is a smooth map then Lfλ(x) := 〈dλ(x), f(x)〉. If f and g are smooth vector fields, then

the Lie bracket of f and g is defined by the relation

(∀λ ∈ C∞) L[f,g]λ = Lf (Lgλ)− Lg(Lfλ).

The following standard notation is used for iterated Lie derivatives and Lie brackets:

LgLfλ := Lg(Lfλ),

L0
gλ := λ, Lkgλ := Lg(L

k−1
f λ),

ad0
fg := g, adkfg :=

[
f, adk−1

f g
]
, k ≥ 1.

If F : M → N is a diffeomorphism between two manifolds, and if v is a vector field

on M , then the differential of F can be used to define a vector field on N by means of

the push-forward map F?, defined as F?v(q) = (dFpv(p))|p=F−1(q). If D is a non-singular

distribution on a manifold M , D⊥ is the orthogonal complement of D obtained from the

orthogonal structure on the tangent bundle TM . The non-singular distribution D⊥ is a

subbundle of TM and satisfies, for each p ∈M , TpM = D(p)⊕D⊥(p). Let inv(D) denote

the involutive closure of D.

Given r > 0, x ∈ Rn, and A ⊂ Rn then Br(x) = {y ∈ Rn : ‖y − x‖ < r} is the open

ball of radius r centered at x and Br(A) = {x ∈ Rn : dist(x,A) < r} is the tubular neigh-

bourhood of A. We denote by N (A) an open set containing A. Given N (A) there does

not necessarily exist an r > 0 so that Br(A) ⊂ N (A). By φ(t, x0) we denote the solution

of the system ẋ = f(x) at time t with initial condition x0.
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Chapter 2

Coordinated path following as a

nested set stabilization problem

In this chapter, the coordinated path following problem from Section 1.2 is re-formulated

as an instance of a nested set stabilization problem. A set called the multi-agent path

following manifold is introduced with the property that if it is stabilized then control

objectives PF1 and PF2 of Section 1.2.2 are met. A second set, nested in the multi-agent

path following manifold, called the coordination set is introduced. If the coordination set

is stabilized then the control objectives C1 and C2 of Section 1.2.2 are accomplished.
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2.1 Path following

Control objective PF1 of Section 1.2.2 requires each agent’s closed-loop output approach

its corresponding path γi. Moreover, PF2 requires that γi be output invariant. Let

Γi := {xi ∈ Rni : αi(xi) := si ◦ hi(xi) = 0}. (2.1)

and Γ := Γ1 × · · · × ΓN . Driving xi towards the set Γi corresponds to sending the output

yi of agent i to its desired path. However, generally Γi cannot be made invariant under

the dynamics of (1.1) via a smooth feedback. Therefore, we seek to stabilize the largest

controlled-invariant subset of Γi, which we denote by Γ?i . Intuitively, the set Γ?i is the

collection of all those motions of agent i whose associated output signals can be made to

lie in γi for all time by a suitable choice of input signal. The set Γ?i is not necessarily

connected. Moreover, if it is disjoint the components might have different dimensions.

Assumption 2.1.1. For each i ∈ {1, · · · , N} the largest controlled-invariant submanifold

of Γi is non-empty and has a closed embedded component whose dimension is n?i > 0. C

Remark 2.1.2. Assumption 2.1.1 requires the global characterization of a component of

Γ?i . However, global characterization of Γ?i is, in general, an open problem. One can utilize

the zero dynamics algorithm [45] or the constrained dynamics algorithm [71] to generate a

local characterization of a connected component of Γ?i that contains the initialization point

of the algorithm.

Definition 2.1.3. ([68]). The path following manifold Γ?i of γi with respect to (1.1)

is a connected component of the largest controlled-invariant submanifold contained in Γi.

•
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Definition 2.1.4. Let ûi : Rni → Rmi be a smooth feedback and let Γ?i be the path

following manifold of γi. The path γi is output invariant under the closed-loop vector

field fi + giûi if Γ?i is invariant under fi + giûi. •

Definition 2.1.5. The multi-agent path following manifold for N paths γ1, . . . , γN

that satisfy Assumption 1.2.1 is

Γ? := Γ?1 × · · · × Γ?N (2.2)

and its dimension is n? :=
∑
n?i ≥ N . •

Figure 2.1 summarizes the construction of the path following manifold of each agent

and multi-agent path following manifold.

ẋ1 = f1(x1) + g1(x1)u1 · · · ẋN = fN(xN) + gN(xN)uN

x1 ∈ Rn1 × · · ·× xN ∈ RnN

Γ1⋃

⋃
× · · ·× ΓN⋃

⋃

Γ?1 × · · ·× Γ?N

Γ?

‖

Figure 2.1: An illustration of the construction of the multi-agent path following manifold.
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2.2 Coordination

A coordination specification is viewed as a set of constraints on the motions of agents

along their paths. Also, as discussed in the previous section, when the state of a multi-

agent system lies in the multi-agent path following manifold, the output of each individual

agent is on its assigned path. Therefore, the coordination specification along the paths

can be alternatively modeled as a constraint on the allowable motions on the multi-agent

path following manifold. To this end, we model a coordination specification as a smooth

constraint map β : Γ? → Rc with c ≤ n?.

Definition 2.2.1. Consider a multi-agent system with its multi-agent path following man-

ifold Γ? which has dimension n?. A coordination function is a smooth map

β : Γ? → Rc

such that c ≤ n? and dβ has rank c at each point on Γ?. •

Let the restriction of (1.2) to Γ? be

ẋ = f̄(x) + ḡ(x)v (2.3)

where f̄
∣∣
Γ? and ḡ|Γ? are tangent to Γ? and v ∈ Rr are control inputs restricted to Γ?.

In Chapter 3 we find necessary and sufficient conditions under which such a restriction is

well-defined.

Let β : Γ? → Rc be a coordination function and consider the following subset of Γ?

C := {x ∈ Γ? : β(x) = 0}. (2.4)
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Definition 2.2.1 and the constant-rank level set theorem [62, Theorem 8.8] imply that

the not necessarily bounded set C is a closed embedded submanifold of Γ? of dimension

n? − c. We take the view that stabilizing C corresponds to achieving coordination. This

motivates us to characterize the largest controlled-invariant subset of C. Just as for the

multi-agent path following manifold, the largest controlled-invariant subset of C is not

necessarily connected and if it is disjoint the components do not have necessarily the same

dimension. Furthermore, any smooth feedback that makes C? invariant must satisfy the

communication constraint in the sense that the control laws of each agent only use the

state information of agents it can communicate with.

Throughout this thesis we model communication between agents of a multi-agent sys-

tem using a weighted directed graph G called a communication graph1.

Definition 2.2.2. Let G be a communication graph. The coordination set C? associated

to a coordination function β : Γ? → Rc is a connected component of the largest, controlled-

invariant subset of C and the control laws that make C? invariant satisfy the communication

constraints defined by G . •

The set C? consists of all the trajectories of the multi-agent system for which the

output trajectory is both on the path and satisfies the coordination constraint. In general,

obtaining a global characterization of C?, even in the absence of communication constraints,

is an open problem.

Definition 2.2.3. Let G be a communication graph. A coordination specification is called

feasible if the largest controlled-invariant subset of C is a non-empty, closed, embedded

submanifold with dimension c? and the control laws that make C? invariant satisfy the

communication constraints defined by G . •
1Refer to Appendix A for the definition of a weighted directed graph
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Definition 2.2.4. Let G be a communication graph. Let v̂ : Rn −→ Rr be a smooth

feedback respecting G and let C? be the coordination set. A coordination specification is

invariant if C? is invariant under the closed-loop system f̄ + ḡv̂. •

Example 2.2.5. Suppose that, once each agent reaches its path it must approach a par-

ticular point on its path. In this case we can model the coordination task using a function

β : Γ? → Rc with c = n?, i.e., dim (C) = 0, a point on Γ?. Such a coordination task

does not require any interaction between agents. In such cases the coordination function

β = (β1, · · · , βn?) naturally decomposes into the constituent parts of the product manifold

Γ? with βi : Γ?i → Rn?
i for i ∈ {1, · · · , N}.

In coordinates, the decentralized nature of this coordination task is evident in the

derivative dβ. Specifically, if we choose local coordinates charts for Γ? using its product

structure, i.e., local chart on Γ? are the product of the individual coordinate charts of Γ?i ,

then the derivative of dβ in coordinates takes a block diagonal structure

dβ =



dβ1 0 · · · 0

0 dβ2 · · · 0

· · · ·

0 0 · · · dβn?


.

M

Figure 2.2 illustrates the relationship between the sets Γ, Γ?, C, and C?.
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ẋ1 = f1(x1) + g1(x1)u1 · · · ẋN = fN(xN) + gN(xN)uN

x1 ∈ Rn1 × · · ·× xN ∈ RnN

Γ1⋃
⋃

× · · ·× ΓN⋃
⋃

Γ?1 × · · ·× Γ?N

C = β−1(0)

⋃

C?
⋃

Figure 2.2: Inclusion diagram for the multi-agent path following manifold and the coordi-
nation set.

2.3 Nested set stabilization

In this section we reformulate the coordinated path following problem in Section 1.2.2 as

a nested set stabilization problem. Consider a multi-agent system of the form (1.2) with

paths γi, i ∈ {1, · · · , N}, that satisfy Assumption 1.2.1. Let the inter-agent communica-

tion be modelled by a weighted, directed graph G . Suppose, the multi-agent path following

manifold of the paths γ1, · · · , γN , Γ? is characterized. Consider a coordination specifica-

tion which is expressed by coordination function β. Suppose the coordination set, C?, is

characterized. The coordinated path following control design problem entails designing

feedback control laws such that for each initial condition x(0) in a neighbourhood of Γ?,

the corresponding solution φ(t,x(0)) is defined for all t ≥ 0 and the closed-loop multi-agent

system meets the following objectives.
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S1 For each initial condition x(0) in a neighbourhood of Γ?, the corresponding solution

φ(t,x(0)) is defined for all t ≥ 0 and Γ? is asymptotically stable.

S2 For each initial condition x(0) in a neighbourhood of C?, with x(0) ∈ Γ?, the cor-

responding solution φ(t,x(0)) ∈ Γ? is defined for all t ≥ 0 and C? is asymptotically

stable relative2 to Γ?.

S3 The proposed control laws must satisfy the communication constraints defined by G .

S4 The dynamics of the multi-agent system restricted to C? satisfy application specific

specifications, e.g., boundedness, tracking, etc.

We have cast the coordinated path following problem as two set stabilization problems;

namely the stabilization of Γ? and C? relative to Γ?. This way, path following control

design and coordination control design are performed separately. Although one could, in

principle, achieve coordinated path following by directly stabilizing C?, we take a nested set

stabilization approach. This approach has three distinct advantages. First, this view point

enables us to decouple the design of path following controllers from coordination controllers.

Second, this approach ensures that if coordination fails due to, say, communication errors,

the individual agents remain on their paths. Third, the nested set stabilization approach

allows one to change the coordination specification without causing the agents to leave

their paths.

Assume that one has designed a feedback control û(x) which accomplishes S1 and

S2. In other words, those solutions of ẋ = f + gû starting in a neighbourhood of Γ?

asymptotically approach Γ? and those solution of ẋ = f+gû starting from a neighbourhood

of C? contained in Γ? asymptotically approach C?. There is no guarantee that the solutions

2Refer to Appendix E and Definition E.2 for relative stability.
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of ẋ = f + gû starting in a neighbourhood of C? but not contained in Γ? asymptotically

approach C?. In Section 3.6, sufficient conditions are provided for a local version of the

nested set stabilization problem under which the asymptotic stability of the nested set is

guaranteed.
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Chapter 3

Local nested transverse feedback

linearization

In this chapter we study two local feedback equivalence problems for a nonlinear control-

affine system with two nested, controlled invariant, embedded submanifolds in its state

space. We do not assume the larger submanifold to be a product manifold. The first, less

restrictive, result gives necessary and sufficient conditions for the dynamics of the system

restricted to the larger submanifold and transversal to the smaller submanifold to be linear

and controllable. This normal form facilitates designing controllers that locally stabilize

the smaller set relative to the larger set. The second, more restrictive, result additionally

imposes that the transversal dynamics to the larger set be linear and controllable. This

result can simplify designing controllers to locally stabilize the larger submanifold. This is

illustrated by sufficient conditions under which these normal forms can be used to locally

solve a nested set stabilization problem. Portions of this chapter have been submitted for

publication in [20, 21].
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3.1 Partial local nested transversal feedback lineariza-

tion

Consider a control-affine system

ẋ = f(x) +
m∑
i=1

gi(x)ui =: f(x) + g(x)u (3.1)

where x ∈ Rn denotes the state, u = (u1, · · · , um) ∈ Rm is the control input, and f : Rn →

Rn and gi : Rn → Rn, i ∈ {1, · · · ,m}, are smooth. To (3.1) we associate the family of

distributions

Gi := span
{
adjfgk : 0 ≤ j ≤ i, 1 ≤ k ≤ m

}
. (3.2)

The vectors g1(x), . . . , gm(x) are assumed to be linearly independent at each x ∈ Rn,

i.e., dim (G0(x)) = m. Along with (3.1), we are also given two embedded submanifolds

S1 ⊂ Rn and S2 ⊂ Rn with s1 := dim(S1), s2 := dim(S2). The following assumption is

made throughout this chapter.

Assumption 3.1.1. The sets S1 and S2 are controlled-invariant embedded submanifolds

for (3.1) and S1 ⊃ S2. C

The main problem investigated in this chapter, Problem 1, seeks a decomposition

of (3.1) into three subsystems modelling its evolution on (i) S2 (ii) S1\S2 and (iii) Rn\S1,

with the essential requirement that the dynamics on S1\S2 be linear and controllable.

Problem 1. (Partial local nested transversal feedback linearization): Given (3.1),

nested sets S1 ⊃ S2 satisfying Assumption 3.1.1 and a point x̄ ∈ S2, find, if possible, a

diffeomorphism Ξ : U → Ξ(U) ⊂ Rs2×Rs1−s2×Rn−s1 , x 7→ (ζ, µ, ξ), and a regular feedback
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transformation (α, β) valid in a neighbourhood U ⊆ Rn of x̄, such that (3.1) is feedback

equivalent to

ζ̇ = f1(ζ, µ, ξ) + g11(ζ, µ, ξ)v‖ + g12(ζ, µ, ξ)v‖,t + g13(ζ, µ, ξ)vt

µ̇ = Aµ+Bv‖,t + f2(ζ, µ, ξ) + g21(ζ, µ, ξ)v‖ + g22(ζ, µ, ξ)v‖,t + g23(ζ, µ, ξ)vt

ξ̇ = f3(ζ, µ, ξ) + g31(ζ, µ, ξ)v‖ + g32(ζ, µ, ξ)v‖,t + g33(ζ, µ, ξ)vt

(3.3)

where

Ξ(S1 ∩ U) = {(ζ, µ, ξ) ∈ Ξ(U) : ξ = 0} , (3.4a)

Ξ(S2 ∩ U) = {(ζ, µ, ξ) ∈ Ξ(U) : ξ = 0, µ = 0} , (3.4b)

f3(ζ, µ, 0) = 0, g31(ζ, µ, 0) = 0, g32(ζ, µ, 0) = 0, f2(ζ, µ, 0) = 0, g21(ζ, µ, 0) = 0, g22(ζ, µ, 0) =

0, the pair (A,B) is controllable, and B is full rank. N

Problem 1 seeks a coordinate and feedback transformation valid in a neighbourhood of

x̄ which generates a normal form with two types of decompositions. First the dynamics

are decomposed into three subsystems; namely the ξ-, µ-, and ζ-subsystems. We call the

ξ-subsystem the transversal dynamics to S1. This is motivated by the fact that, in the

light of (3.4a), stabilizing S1 ∩ U is equivalent, under mild assumptions, to stabilizing

the origin of the ξ-subsystem. We call the µ-subsystem the transversal dynamics of S2,

restricted to S1. Similarly, this name is motivated by the fact that, in the light of (3.4b),

stabilizing S2 ∩ U relative to S1 ∩ U is equivalent, under mild assumptions, to stabilizing

the µ-subsystem when ξ = 0. The ζ-subsystem is called the tangential dynamics to S2

because when ξ = 0 and µ = 0, the ζ dynamics govern the system’s evolution on Ξ(S2∩U).

The second type of decomposition is in the original m inputs. They are partitioned

into three groups : v‖, v‖,t, and vt. The restrictions imposed on f2, f3, g31, g32, g21, and
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g22 after (3.4) imply that
(
v‖, v‖,t, vt

)
= (?, ?, 0), where ? represents smooth functions for

which the closed-loop system has solutions, renders Ξ(S1∩U) locally invariant, i.e., (?, ?, 0)

is a friend of Ξ(S1 ∩ U). Substituting ξ = 0 and vt = 0 in (3.3) the dynamics of (3.1)

restricted to Ξ(S1 ∩ U) are

ζ̇ = f1(ζ, µ, 0) + g11(ζ, µ, 0)v‖ + g12(ζ, µ, 0)v‖,t

µ̇ = Aµ+Bv‖,t.
(3.5)

The µ-subsystem in (3.5) is linear and controllable and represents the dynamics of (3.1)

restricted to Ξ(S1∩U) and transversal to Ξ(S2∩U). The control input v‖,t can effectively

be used to stabilize S2 ∩ U relative to S1 ∩ U . Finally Ξ(S2 ∩ U) is controlled-invariant

with friend
(
v‖, v‖,t, vt

)
= (?, 0, 0). The dynamics of (3.1) restricted to Ξ(S2 ∩ U) are

ζ̇ = f1(ζ, 0, 0) + g11(ζ, 0, 0)v‖. (3.6)

Remark 3.1.2. In (3.3) the µ-subsystem is not feedback linearized. It only becomes linear

when it evolves on Ξ(S1 ∩ U). Thus (3.3) is less restrictive compared to a normal form in

which the µ-subsystem is linear off the set Ξ(S1 ∩ U).

The normal form (3.3) finds application in the stabilization of S2∩U relative to S1∩U .

The main result of this chapter, Theorem 3.4.2, provides necessary and sufficient conditions

for Problem 1 to be solvable.
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3.2 Linear time invariant systems

To facilitate understanding of the results of this chapter, we begin with LTI control systems.

Consider

ẋ(t) = Ax(t) +Bu(t), (3.7)

where x ∈ X , with X , an n-dimensional vector space and u ∈ U , with U an m-

dimensional vector space. The maps A : X → X and B : U → X are linear. Sys-

tem (3.7) is a special case of (3.1) in which f(x) = Ax and g(x) = B. As such, the

distributions introduced in (3.2) for LTI system (3.7) take the following familiar form

Gi = Im
[
B · · · AiB

]
.

Similarly, throughout this section it is assumed that B is full rank. In the linear set-

ting S1 ⊂ X and S2 ⊂ X are (A,B)-invariant1 subspaces with dimensions s1 and s2,

respectively, and S1 ⊃ S2.

Problem 2. (Nested cascade connected LTI control system): Given (3.7), nested

(A,B)-invariant subspaces S1 ⊃ S2, find, if possible, an isomorphism Ξ : X → X ‖ ×

X ‖,t ×X t, x 7→ (ζ, µ, ξ), with dim X ‖ = s2, dim X ‖,t = s1 − s2, and dim X t = n− s1,

and a linear feedback transformation u = Fx + Hv such that (3.7) is feedback equivalent

to 
ζ̇

µ̇

ξ̇

 =


A11 A12 A13

0 A22 A23

0 0 A33



ζ

µ

ξ

+


B11 B12 B13

0 B22 B23

0 0 B33




v‖

v‖,t

vt

 (3.8)

1Refer to Definition D.1 for the definition of an (A,B)-invariant subspace.
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where

Ξ(S1) = {(ζ, µ, ξ) : ξ = 0} , (3.9a)

Ξ(S2) = {(ζ, µ, ξ) : ξ = 0, µ = 0} , (3.9b)

the pairs (A22, B22) and (A33, B33) are controllable, and B22 and B33 are full rank. N

The control input
(
v‖, v‖,t, vt

)
= (?, ?, 0), where ? represents smooth functions for

which the closed-loop system has solutions, is a friend of Ξ(S1). Thus, substituting ξ = 0

and vt = 0 in (3.3) the dynamics of (3.7) restricted to Ξ(S1) are

 ζ̇

µ̇

 =

 A11 A12

0 A22


 ζ

µ

+

 B11 B12

0 B22


 v‖

v‖,t

 (3.10)

The control input
(
v‖, v‖,t, vt

)
= (?, 0, 0) is a friend of Ξ(S2). Thus, the dynamics of (3.7)

restricted to Ξ(S2) are

ζ̇ = A11ζ +B11v
‖. (3.11)

Provided S1 and S2 are (A,B)-invariant it is always possible to find a coordinate and

feedback transformation bringing the system (3.7) to the normal form (3.8). However,

there is no guarantee that the pairs (A22, B22) and (A33, B33) are controllable. Thus, we

aim to determine checkable necessary and sufficient geometric conditions under which the

controllability requirements in Problem 2 are satisfied.

3.2.1 Linear coordinate and feedback transformation

In this section we review how to construct an isomorphism and a linear feedback transfor-

mation bringing (3.7) to the normal form (3.8). We emphasize that in order to put (3.7)

35



in the form (3.8), it is necessary and sufficient that S1 ⊃ S2 be (A,B)-invariant. This

does not, however, guarantee that the matrix pairs outlined in Problem 2 are controllable.

Fix the basis on X as, without loss of generality, the natural basis. Let T ⊆ X

be any subspace such that S1 ⊕ T = X . Let S ⊂ S1 be any subspace such that

S2⊕S = S1. Take as an alternate basis for X the union of a basis {ζ1, · · · , ζs2} for S2,

a basis {µs2+1, · · · , µs1} for S , and a basis {ξs1+1, · · · , ξn} for T . Let Ξ : X →X be the

isomorphism representing the change of basis form the natural basis to the one described

above.

By [92, Lemma 5.7] there exists a mutual friend F of S1 and S2. Set u = Fx+v where

v is an external input. In the new basis and with this choice for control, system (3.7) takes

the form 
ζ̇

µ̇

ξ̇

 =


A11 A12 A13

0 A22 A23

0 0 A33



ζ

µ

ξ

+


B1

B2

B3

 v (3.12)

where A11 ∈ Rs2×s2 , A12 ∈ Rs2×s1−s2 , A13 ∈ Rs2×s1−s2 , A22 ∈ Rs1−s2×s1−s2 , A23 ∈

Rs1−s2×n−s1 , A33 ∈ Rn−s1×n−s1 , B1 ∈ Rs2×m, B2 ∈ Rs1−s2×m, and B3 ∈ Rn−s1×m.

In order to impose the desired decomposition of control inputs in Problem 2 we define

the following subspaces

B‖ := B ∩S2

B‖,t := [B ∩S2]⊥ ∩ [B ∩S1]

Bt := [B ∩S1]⊥ ∩B,

(3.13)
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and integers

ν := dim(S2 ∩B)

ρ := dim ((S1 ∩B)/(S2 ∩B))

σ := dim ((S1 + B)/S1) ,

(3.14)

where B = ImB. It is immediate that dim B‖ = ν. We calculate

dim B‖,t = n− dim (B ∩S2) + dim (B ∩S1)− dim
(

[B ∩S2]⊥ + [B + S1]
)

= dim (B ∩S1)− dim (B ∩S2) = ρ

and

dim Bt = n− dim (B ∩S1) + dim (B)− dim
(

[B ∩S1]⊥ + B
)

= dim (B)− dim (B ∩S1) = σ.

The sum of the integers in (3.14) is m since

ν + ρ+ σ = dim(S2 ∩B) + dim(S1 ∩B)− dim(S2 ∩B) + dim(S1 + B)− dim S1

= dim(S1 ∩B) + dim(S1 + B)− dim S1

= dim S1 + dim B − dim(S1 + B) + dim(S1 + B)− dim S1 = dim B = m.

It can be readily verified that the subspaces in (3.13) are independent, thus B = B‖ ⊕

B‖,t ⊕Bt. We have that B‖ is a subspace of S2, B‖,t is a subspace of S1 but not S2,

and Bt is not a subspace of S1.

Let H = (H1, H2, H3) : U → U be defined as a map such that Im(BH1) = B‖,

Im(BH2) = B‖,t, and Im(BH3) = Bt. Thus, u = Fx+Hv is the desired linear feedback

transformation yielding the normal form (3.8).
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3.2.2 Solution to Problem 2

Now, we turn our attention to finding geometric conditions under which the pairs (A22, B22)

and (A33, B33) are controllable. Since S1 is (A+BF )-invariant one can extract the dy-

namics transversal to S1 and tangential to S1. Let P1 : X → X /S1 be the canonical

projection introduced in Definition B.3. The map Ā : X /S1 → X /S1 is the unique

solution of P1(A + BF ) = ĀP1. This map is called the induced map by (A + BF ) and is

well-defined. Letting B̄ = P1B the following diagram commutes

X

P1

��

(A+BF ) //X

P1

��

U
B̄

''

B

66

X /S1
Ā //X /S1.

The pair
(
Ā, B̄

)
, called the quotient system, isolates the dynamics transversal to S1. In

the coordinates of (3.8) their matrix representation is (A33, B33). Thus, the eigenvalues of

the pair (A33, B33) is controllable if and only if
(
Ā, B̄

)
is controllable, i.e.,

X /S1 = R̄n−s1−1 (3.15)

where R̄n−s1−1 := B̄ + ĀB̄ + · · ·+ Ān−s1−1B̄ and B̄ = Im B̄. Condition 3.15 is necessary

and sufficient for the pair (A33, B33) to be controllable as required in Problem 2.

Let Q : X → S1 be the natural projection on S1 along T with T being such that

T ⊕S1 = X . The map AS1 : S1 → S1 is the unique solution of Q(A+BF ) = AS1Q and

has the action of (A+BF ) on S1 with codomain S1. Since S2 is invariant for (A+BF )

it is also invariant for its restriction AS1 . Define BS1
:= QB. With this construction, the

38



following diagram commutes

X
(A+BF ) //

Q

��

X

Q

��

U
BS1

''

B

77

S1

AS1 //S1.

The pair (AS1 , BS1) describes the dynamics of (3.7) restricted to S1. In the coordinates

of (3.8) their matrix representation is

 A11 A12

0 A22

 ,
 B11 B12

0 B22

 .

Let P2 : S1 → S1/S2 be the canonical projection. The map ĀS1 : S1/S2 → S1/S2 which

is the unique solution of P2AS1 = ĀS1P2 is the induced map by AS1 and is well-defined.

Letting B̄S1
:= P2BS1 we have that the following commutative diagram

S1

P1

��

AS1 //S1

P1

��

U
B̄S1

''

BS1

66

S1/S2

ĀS1 //S1/S2.

The matrix representation of the pair (ĀS1 , B̄S1) in the coordinates of (3.8) is (A22, B22).

Thus, the pair (A22, B22) is controllable if and only if the pair (ĀS1 , B̄S1) is controllable,

i.e.

S1/S2 = R̄s1−s2−1, (3.16)
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where R̄s1−s2−1 = B̄S1 + ĀS1B̄S1 + · · ·+ Ās1−s2−1
S1

B̄S1 and B̄S1 = Im B̄S1 .

Theorem 3.2.1. Let F : Ξ → U be a mutual friend of S1 and S2, B = ImB, BS1 =

ImBS1, Rn−s1−1 = B + (A + BF )B + · · · + (A + BF )n−s1−1B, and Rs1−s2−1 = BS1 +

AS1BS1 + · · ·+ As1−s2−1
S1

BS1. Problem 2 is solvable if and only if

(a) X = S1 + Rn−s1−1

(b) S1 = S2 + Rs1−s2−1.

Proof. Assume that Problem 2 is solvable. As shown in the preceding discussion, this

means that conditions (3.15) and (3.16) hold. Consider the identity

dim (P1(S1 + Rn−s1−1)) = dim (S1 + Rn−s1−1)− dim ((S1 + Rn−s1−1) ∩Ker (P1)).

We have that

dim (P1 (S1 + Rn−s1−1)) = dim (P1Rn−s1−1) = dim
(
R̄n−s1−1

)
.

But, by (3.15) dim
(
R̄n−s1−1

)
= n− s1. Moreover, since Ker (P1) = S1

dim ((S1 + Rn−s1−1) ∩Ker (P1)) = dim (Ker (P1)) = s1.

Thus, we conclude that dim (S1 + Rn−s1−1) = dim X = n and condition (a) holds. As-

suming condition (3.16) one can prove that condition (b) holds in the same manner.

Conversely, suppose condition (a) holds. Then

X /S1 = P1X = P1S1 + P1Rn−s1−1 = P1B + P1(A+BF )B + · · ·+ P1(A+BF )n−s1−1B
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Since, P1(A+BF ) = ĀP1 and B̄ = P1B

X /S1 = B̄ + ĀP1B + · · ·+ ĀP1(A+BF )n−s1−2B = B̄ + ĀB̄ + · · ·+
(
Ā
)n−s1−1

B̄

= R̄n−s1−1.

Thus (3.15) holds. Assuming condition (b) holds one can show that condition (3.16) holds

in the same manner. Thus, Problem 2 is solvable.

Conditions (a) and (b) of Theorem 3.2.1 are easier to verify in comparison with condi-

tions (3.15) and (3.16) because we only need to find the dynamics restricted to S1 instead

of finding the quotient systems (Ā, B̄) and (ĀS1 , B̄S1). The following theorem shows that

one can replace condition (b) of Theorem 3.2.1 with a condition that can be checked using

the original pair (A,B) and avoid computing restricted dynamics.

Theorem 3.2.2. Let F : Ξ → U be a mutual friend of S1 and S2, B = ImB, BS1 =

ImBS1, and Rs1−s2−1 = BS1 +AS1BS1 + · · ·+As1−s2−1
S1

BS1. Let R? := supC(S1) be the

largest controllability subspace2 contained in S1. Problem 2 is solvable if and only if

(a) X = S1 + Rn−s1−1

(b) S1 = R? + S2.

Proof. We must show condition (b) of this theorem is equivalent to condition (b) of The-

orem 3.2.1. Assume that condition (b) of this theorem holds. Then

QS1 = Q (R? + S2) = QR? +QS2

2See Appendix D and Definition D.6 for the definition of a controllability subspace
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By [92, Theorem 5.5], R? = (B ∩S1)+(A+BF ) (B ∩S1)+ · · ·+(A+BF )n−1 (B ∩S1),

thus

QS1 = Q (B ∩S1) +Q(A+BF ) (B ∩S1) + · · ·+Q(A+BF )n−1 (B ∩S1) + S2

where S2 is a subset of S1 and not X . Since Q(A+BF ) = AS1Q and Q(B∩S1) = BS1

QS1 = BS1 + AS1BS1 + · · ·+ (AS1)
n−1BS1 + S2.

By Cayley-Hamilton, for i > s1 − s2 − 1, we have that (AS1)
i BS1 ⊂ Rs1−s2−1. Thus

BS1 + AS1BS1 + · · ·+ (AS1)
n−1BS1 = Rs1−s2−1,

and

QS1 = Rs1−s2−1 + S2.

We have that QS1 = S1. Thus the condition (b) of Theorem 3.2.1 hold.

Conversely, suppose that the condition (b) of Theorem 3.2.1 hold. Let S : S1 → X

be the insertion map. Thus, SS1 = SS2 + SRs1−s2−1 and

SRs1−s2−1 = SBS1 + SAS1BS1 + · · ·+ SAs1−s2−1
S1

BS1

Since, (A+BF )S = AS1S and SBS1 = (B ∩S1)

SRs1−s2−1 = (B ∩S1) + (A+BF )SBS1 + · · ·+ (A+BF )SAs1−s2−2
S1

BS1

= (B ∩S1) + (A+BF ) (B ∩S1) + · · ·+ (A+BF )s1−s2−1 (B ∩S1) .
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Thus, dimSRs1−s2−1 ≤ dim R? ≤ s1. Thus condition (b) of this theorem holds.

Lemma 3.2.3. Consider the LTI control system (3.7) with given subspaces S1 ⊃ S2.

Suppose that Problem 2 is solvable. Let vt = K1ξ and v‖,t = K2µ such that A33 + B33K1

and A22 + B22K2 are Hurwitz. Then (ξ, µ) = (0, 0) is globally exponentially stable for the

closed-loop system.

Proof. After applying vt = K1ξ and v‖,t = K2µ to (3.8) we obtain


ζ̇

µ̇

ξ̇

 =


A11 A12 +B12K2 A13 +B13K1

0 A22 +B22K2 A23 +B23K1

0 0 A33 +B33K1



ζ

µ

ξ

+


B11

0

0

 v‖

The eigenvalues of the closed-loop system is the union of the eigenvalues ofA11, A22+B22K2,

and A33 +B33K1 and all the eigenvalues of matrices A22 +B22K2, and A33 +B33K1 belong

to C−. Therefore, (ξ, µ) = (0, 0) is globally exponentially stable.

Example 3.2.4. Consider the LTI system

ẋ =



0 1 2 0

−2 1 0 −2

1 1 0 2

0 1 −1 1


x+



1 4 1

1 0 1

0 2 1

1 1 1


u
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and the nested (A,B)-invariant subspaces

S1 = span





1

1

0

0


,



0

1

1

1


,



1

0

1

1




, S2 = span





0

1

1

1





0

−1

1

1




,

with s1 = dim S1 = 3 and s2 = dim S2 = 2. In order to determine the solvability of

Problem 2 we check conditions of Theorem 3.2.2. Condition (a) holds since

X = S1 + R0 = S1 + B = rank



1 0 1 1 4 1

1 1 0 1 0 1

0 1 1 0 2 1

0 1 1 1 1 1


= 4.

Condition (b) holds since

S1 = S2 + R? = rank



0 0 1 7 0 0 0 0 0 0

1 −1 5 3 −38 −42 244 236 −1616 −1584

1 1 4 4 −23 −17 160 160 −1052 −1028

1 1 4 4 −23 −17 160 160 −1052 −1028


= 3.

To find the normal form (3.8) we find the coordinate transformation Ξ and feedback trans-

formation u = Fx + Hv. The coordinate transformation is found by finding a new basis
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for X

X = span





0

1

1

1


,



0

−1

1

1


,



1

−1

0

0


,



0

0

0

1


.


Then, the coordinate transformation is the isomorphism Ξ transferring to the new basis

Ξ =



1
2

1
2

1
2

0

−1
2
−1

2
1
2

0

1 0 0 0

0 0 −1 1


In order to find the feedback transformation u = Fx+Hv we first find a mutual friend

of S1 and S2. Following Lemma D.5 we find the following mutual friend

F =


1 1 1 1

0 1 0 0

−1 −6 −3 −1

 .

In order to find the matrix H we first calculate the integers in (3.14)

ν = rank



0

4

3

3


= 1, ρ = rank



5 1

1 1

2 1

2 1


−ν = 1, σ = rank



1 0 1 1 4 1

1 1 0 1 0 1

0 1 1 0 2 1

0 1 1 1 1 1


−s1 = 1.
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Simple matrix calculations yield the subspaces defined in (3.13)

B‖ = span





0

4

3

3




, B‖,t = span





68

−12

8

8




, Bt = span





−2

−6

13

−5




.

We calculate H : U → U to be

H =


−1 20 −17

−1 20 1

5 −32 11

 .

After applying the coordinate and feedback transformations the LTI system reads



ζ̇1

ζ̇2

µ̇

ξ̇


=



−13
2

1
2

5
2
−1

2

3
2

1
2

1
2

3
2

0 0 0 0

0 0 0 0





ζ1

ζ2

µ

ξ


+



7
2

32 5
2

−1
2
−24 21

2

0 68 −2

0 0 −18




v‖

v‖,t

vtξ̇



M

3.3 Preliminary results

We now return to the nonlinear setting. The results in this section lay the foundation

for our solution to Problem 1. We investigate the problem of restricting the control-affine
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system (3.1) to nested sets S1 ⊃ S2 satisfying Assumption 3.1.1.

Problem 3. (Restricting control-affine systems to nested sets): Given the control

system (3.1), nested sets S1 ⊃ S2 satisfying Assumption 3.1.1, and a point x̄ ∈ S2, find,

if possible, a diffeomorphism Ξ : U → Ξ(U) ⊆ Rs2 × Rs1−s2 × Rn−s1 , x 7→ (ζ, µ, ξ), and

a regular feedback transformation (α, β) valid in a neighbourhood U ⊆ Rn of x̄, such

that (3.1) is feedback equivalent to

ζ̇ = f1(ζ, µ, ξ) + g11(ζ, µ, ξ)v‖ + g12(ζ, µ, ξ)v‖,t + g13(ζ, µ, ξ)vt

µ̇ = f2(ζ, µ, ξ) + g21(ζ, µ, ξ)v‖ + g22(ζ, µ, ξ)v‖,t + g23(ζ, µ, ξ)vt

ξ̇ = f3(ζ, µ, ξ) + g31(ζ, µ, ξ)v‖ + g32(ζ, µ, ξ)v‖,t + g33(ζ, µ, ξ)vt

(3.17)

where

Ξ(S1 ∩ U) = {(ζ, µ, ξ) ∈ Ξ(U) : ξ = 0} , (3.18a)

Ξ(S2 ∩ U) = {(ζ, µ, ξ) ∈ Ξ(U) : ξ = 0, µ = 0} , (3.18b)

f3(ζ, µ, 0) = 0, g31(ζ, µ, 0) = 0, g32(ζ, µ, 0) = 0, f2(ζ, 0, 0) = 0, and g21(ζ, 0, 0) = 0. N

The normal form (3.17) features two types of decomposition similar to those in (3.3).

However, unlike (3.3), we do not require the transversal dynamics to S2, restricted to S1

be linear and controllable. The normal form (3.17) is useful for understanding the inter-

play between the control vector fields g1, · · · , gm of (3.1) and the nested sets S1 ⊃ S2.

That is, g is partitioned into three sub-matrices corresponding to v‖, v‖,t, and vt. The

impositions on g21 and g31 mean that the columns of the matrix Ξ?(gβ) corresponding to

v‖ are tangent to both Ξ(S1 ∩ U) and Ξ(S2 ∩ U). The requirement on g32 implies that the

columns corresponding to v‖,t are tangent to Ξ(S1 ∩ U) but not Ξ(S2 ∩ U). Finally, the

requirements on f2, f3, imply that the vector field Ξ?(f + gα) = (f1, f2, f3) is tangent to
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both Ξ(S1 ∩ U) and Ξ(S2 ∩ U). As with the normal form (3.3), substituting ξ = 0 and

vt = 0, the dynamics of (3.1) restricted to Ξ(S1 ∩ U) are

ζ̇ = f1(ζ, µ, 0) + g11(ζ, µ, 0)v‖ + g12(ζ, µ, 0)v‖,t

µ̇ = f2(ζ, µ, 0) + g21(ζ, µ, 0)v‖ + g22(ζ, µ, 0)v‖,t.
(3.19)

The tangential dynamics on S2 are the same as (3.6). In principle, the normal form (3.17)

may facilitate the design of control laws to stabilize ξ = 0 and µ = 0. However, a drawback

of (3.17) is that the dynamics remain nonlinear and it may not be clear how to proceed

with control design. The aforementioned partition of g is closely related to the properties

of the distributions

P := G0 ∩ TS2

Q := [G0 ∩ TS2]⊥ ∩ [G0 ∩ TS1]

R := [G0 ∩ TS1]⊥ ∩G0

(3.20)

and the integer-valued functions ν, ρ : S2 → Z, σ : S1 → Z

ν(x) := dim(TxS2 ∩G0(x))

ρ(x) := dim(TxS1 ∩G0(x))− ν(x)
(3.21a)

σ(x) := dim(TxS1 +G0(x))− s1. (3.21b)

The values of (3.21) equal the dimensions of the distributions (3.20) and the sizes of the

sub-matrices corresponding to v‖, v‖,t, and vt in (3.17). In Figure 3.1 the distributions

in (3.20) are illustrated in an example.
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Figure 3.1: An illustration of the distributions in (3.20). In this figure ν(x̄) = 0, ρ(x̄) = 1,
and σ(x̄) = 1.

Proposition 3.3.1. For all p ∈ S1, q ∈ S2, dim (P (q)) = ν(q), dim (Q(q)) = ρ(q) and

dim (R(p)) = σ(p).

Proof. The proof that dim (P (q)) = ν(q) is obvious from their definitions and is omitted.

Next we have

dim(Q(q))

= n− dim(G0(q) ∩ TqS2) + dim(G0(q) ∩ TqS1)− dim
(

[G0(q) ∩ TqS2]⊥ + [G0(q) ∩ TqS1]
)

= dim(G0(q) ∩ TqS1)− dim(G0(q) ∩ TqS2)

= ρ(q).

Similar computations yield dim (R(p)) = σ(p) on S1.
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Proposition 3.3.1 motivates Definition 3.3.2.

Definition 3.3.2. A point x̄ ∈ S2 is a regular point of the distributions (3.20) if there

exists an open set V1 ⊆ S1 containing x̄ such that for all p ∈ V1, q ∈ V1 ∩ S2, the functions

σ(p), ν(q), ρ(q) are constant. •

Remark 3.3.3. Under Assumption 3.1.1 the topology of S1 is its subspace topology as a

subset of Rn. Thus for each open set V1 ⊆ S1 there exists an open set U ⊆ Rn such that

V1 = U ∩ S1.

The next proposition provides a computationally tractable way of checking the regu-

larity of the distributions (3.20).

Proposition 3.3.4. A point x̄ ∈ S2 is a regular point of (3.20) if and only if dim (TxS1 ∩G0(x))

and dim (TxS2 ∩G0(x)) are constant in, respectively, open sets V1 ⊆ S1, V2 ⊆ S2 containing

x̄.

Proof. Let U ⊆ Rn be an open set containing x̄ and set V1 = S1∩U . If dim (TxS1 ∩G0(x))

is constant on V1 then, since dim (TxS1) and dim (G0(x)) are constant on V1, the function

σ(x) in (3.21) is constant on V1. If both dim (TxS2 ∩G0(x)) and dim (TxS1 ∩G0(x)) are

constant on V2 = S2 ∩ U then the functions ν and ρ in (3.21) are constant on V2.

Conversely, if the function σ is constant on an open set V1 ⊂ S1 with x̄ ∈ V1, then

since TxS1 and G0(x) are constant dimensional and from the definition of σ it follows that

dim (TxS1 ∩G0(x)) is constant on V1. If ν, ρ are constant on an open set V2 ⊂ S2 with

x̄ ∈ V2 then from their definitions it follows that dim (TxS2 ∩G0(x)) is constant on V2.

Remark 3.3.5. When x̄ is a regular point of (3.20), TS1∩G0 and TS2∩G0 can be viewed

as vector bundles over the base spaces V1 and V2, receptively. In the remainder of this
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chapter we forgo this formality and refer to them as distributions. It is easy to show that if

any two of the functions in (3.21) are constant in an open subset of S2, then the remaining

function is also constant on this set. Furthermore, if x is a regular point of (3.21) then

ν(x) + ρ(x) + σ(x) = m.

Proposition 3.3.6. A point x̄ ∈ S2 is a regular point of (3.20) if and only if there exists

an open set V1 ⊆ S1 containing x̄ such that the distributions (3.20) are smooth and non-

singular in V1 and V1 ∩ S2.

Proof. Let x̄ ∈ S2 be a regular point of the distributions (3.20). Then by Proposition 3.3.4

and Definition 3.3.2 P is non-singular in a neighbourhood V2 = V1 ∩ S2, with V1 ⊆ S1

and containing x̄. Lemma C.29 proves that P is also smooth in a neighbourhood of x̄,

without loss of generality, V2. Proposition 3.3.1 shows that Q is non-singular on V2 and R

is non-singular on V1. Furthermore, by Proposition 3.3.4, the assumed non-singularity of

G0 and Lemma C.29 we have, by possibly shrinking V1, and hence V2, that G0 ∩ TS1 and

[G0 ∩ TS1]⊥ are smooth on V1 and [G0(x) ∩ TS2]⊥ is smooth on V2. Therefore Q and R

are the non-singular intersection of smooth non-singular distributions and by [45, Lemma

1.3.5] they are smooth themselves.

Conversely, suppose that the distribution R in (3.20) is smooth and non-singular in a

neighbourhood V1 ⊆ S1 containing x̄ and distributions P and Q in (3.20) are smooth and

non-singular in V2 = V1∩S2. By Proposition 3.3.1 and Definition 3.3.2 x̄ is a regular point

of (3.21).

Lemma 3.3.7. The values of the functions (3.21) are invariant under coordinate and

feedback transformation.

Proof. Let x ∈ S2 be fixed but arbitrary and let Ξ ∈ Diff(U) be a diffeomorphism onto

its image with domain U containing x. Let (α, β) be a regular feedback transformation
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also defined on U and let g̃(x) := g(x)β(x), G̃0(x) := span {g̃1(x), · · · , g̃m(x)}. Since

each g̃i(x) is a linear combination of g1(x), . . . , gm(x), G̃0(x) ⊆ G0(x). Furthermore, since

β : U ⊆ Rn → GL(m,R) is non-singular, G̃0(x) = G0(x) and therefore

ν(x) = dim(TxS2 ∩G0(x)) = dim(TxS2 ∩ G̃0(x)).

Next, let ĝ := Ξ?(gβ) = Ξ?(g̃) and Ĝ0 := span {ĝ1, · · · , ĝm}. Since dΞx is an isomorphism

at each x ∈ U , we have

dim(TxS2 ∩ G̃0(x)) = dim
(

dΞx

(
TxS2 ∩ G̃0(x)

))
= dim

(
dΞx (TxS2) ∩ dΞx

(
G̃0(x)

))
= dim

(
TΞ(x)Ξ(S2 ∩ U) ∩ Ĝ0(Ξ(x))

)
where the next to last equality comes from the fact that Ker (dΞx) = {0}. From this it

follows that the value ν(x) is unchanged under coordinate and feedback transformations.

The same arguments hold for the other functions in (3.21).

The following lemma generalizes slice coordinates for two nested embedded submani-

folds.

Lemma 3.3.8. Let S1 ⊃ S2 be two smooth embedded submanifolds of Rn. For all x̄ ∈ S2

there exists an open set U ⊆ Rn such that S1 and S2 are, respectively, s1-slices and s2-slices

of U .

Proof. Let x̄ ∈ S2 be arbitrary. Since S1 ⊆ Rn is an embedded submanifold there exist

slice coordinates (V1, ψ) for Rn with x̄ ∈ V1 such that

ψ(S1 ∩ V1) = {x ∈ V1 : ψs1+1(x) = cs1+1, · · · , ψn(x) = cn}
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where, without loss of generality, we take the constants ci to be zero. Let π1 : Rn → Rn−s1

denote the projection onto the last n − s1 factors, i.e, π1(x) = (xs1+1, · · · , xn). Define

Φ1 : V1 → Rn−s1 , x 7→ π1 ◦ ψ(x). Then Φ1 is a submersion and

ψ(S1 ∩ V1) = {x ∈ V1 : Φ1(x) = 0} .

This construction is summarized in the following commutative diagram

V1 ⊆ Rn

ψ
��

Φ1

&&
ψ(V1) ⊆ Rn π1 // Rn−s1 .

We now apply a similar construction to S2. Let (V2, ϕ) be slice coordinates for Rn with

x̄ ∈ V2 and let π2 : Rn → Rn−s2 be the projection onto the last n−s2 factors. Then, letting

Φ2 := π2 ◦ φ we have

ϕ(S2 ∩ V2) = {x ∈ V2 : Φ2(x) = 0} .

and the commutative diagram

V2 ⊆ Rn

ϕ

��

Φ2

&&
ϕ(V2) ⊆ Rn π2 // Rn−s2 .

Let U := V1∩V2 and note that x̄ ∈ U . Since Φ1 and Φ2 are submersions we have that, for all

x ∈ U , rank(dΦ1) = n−s1 and rank(dΦ2) = n−s2. Furthermore, by [62, Lemma 8.15], for

all x ∈ S2 ∩ U , Ker dΦ1,x = TxS1 and Ker dΦ2,x = TxS2. Therefore Ker dΦ2,x ⊂ Ker dΦ1,x
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and

rank

 dΦ1,x

dΦ2,x

 = rank
[

dΦ2,x

]
= n− s2. (3.22)

This allows us to construct a submersion Φ : U → Rn−s2 . We take the last n − s1

components of Φ to be the function Φ1. From (3.22) we conclude that in the set Φ2 =

{ϕs2+1, · · · , ϕn} it is possible to find s1−s2 functions, without of loss of generality {ϕs2+1, · · · , ϕs1} =:

Φ̄2, with the property that the n − s2 differentials dϕs2+1, · · · , dϕs1 , dψs1+1, · · · , dψn are

linearly independent at x̄. Let Φ :=
(
Φ̄2,Φ1

)
.

Since, dΦ(x̄) has rank n − s2 it has some (n − s2) × (n − s2) minor with non-zero

determinant. By re-ordering the coordinates we assume that it is the minor correspond-

ing to the first n − s2 rows and columns of dΦ(x̄). Relabel the coordinates as (y, z) =

(x1, · · · , xn−s2 , xn−s2+1, · · · , xn) in Rn. Define Ξ : U → Rn by Ξ(y, z) := (z,Φ(y, z)). Its

total derivative at x̄ is

dΞ(x̄) =

 0 Is2

∂Φi

∂yj

∂Φi

∂zj

 ,
which is non-singular because its columns are independent. Therefore, by the inverse

function theorem [62, Theorem 7.6], by possibly shrinking U , Ξ ∈ Diff(U). In the chart

(U,Ξ) of Rn we have

Ξ(S1 ∩ U) = {x ∈ U : Ξs1+1(x) = · · · = Ξn(x) = 0}

and

Ξ(S2 ∩ U) = {x ∈ U : Ξs2+1(x) = · · · = Ξn(x) = 0} .
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Definition 3.3.9. ([62]). A retraction of a topological space X onto a subspace A ⊂M

is a continuous map r : X → A such that r|A is the identity map of A. •

The tubular neighbourhood theorem [62, Theorem 10.19] states that every embedded

submanifold M of Rn has a tubular neighbourhood N (M). It follows [62, Proposition

10.20] that if N (M) is a tubular neighbourhood of an embedded submanifold M ⊂ Rn,

there exists a smooth retraction of N (M) onto M . In this paper we use a simpler, local

version of these ideas.

Lemma 3.3.10. Let M ⊂ Rn be an m-dimensional embedded submanifold of Rn. Then,

for every x ∈M there exist a neighbourhood U of x in Rn and a smooth retraction r : U →

M ∩ U .

Proof. Let N (M) be a tubular neighbourhood of M . By [62, Proposition 10.20] there

exists a smooth retraction r : N (M) → M . Let U ⊆ N (M) be an open set containing x.

Then restriction r|U is a smooth retraction of U to M ∩ U .

Lemma 3.3.11. Consider two sets S1 and S2 satisfying Assumption 3.1.1 and let x̄ ∈ S2

be a regular point of (3.20). There exists an open set U ⊆ Rn containing x̄ and a smooth

feedback α : U → Rm such that (f + gα)|S1∩U is tangent to S1 ∩ U and (f + gα)|S2∩U is

tangent to S2 ∩ U .

Proof. Apply Lemma 3.3.8 to obtain an open set U ⊆ Rn containing x̄ and maps Φ1 and Φ̄2

such that V1 = Φ−1
1 (0) and V2 =

(
Φ̄2,Φ1

)−1
(0) where V1 := S1∩U and V2 := S2∩U . Since

S1 is a controlled-invariant submanifold there exists a smooth state feedback α1 : V1 → Rm

such that

(∀x ∈ V1) dΦ1(x) (f(x) + g(x)α1(x)) = 0. (3.23)
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Similarly, since S2 is a controlled-invariant submanifold there exists a smooth state feedback

α2 : V2 → Rm such that

(∀x ∈ V2)

 dΦ̄2(x)

dΦ1(x)

 (f(x) + g(x)α2(x)) = 0. (3.24)

We now modify α1 so that the resulting state feedback simultaneously satisfies (3.23)

and (3.24). We have that

(∀x ∈ V2) dΦ1(x) (f(x) + g(x)α2(x))|V2 − dΦ1(x) (f(x) + g(x)α1(x))|V2 = 0

⇒ dΦ1(x)g(x) (α2(x)− α1(x))|V2 = 0.

Since α1 and α2 are both smooth, there exists a smooth v̂(x) ∈ Ker(dΦ1(x)g(x)|V2) such

that, for all x ∈ V2, α2(x) = α1(x)|V2 + v̂(x). We have that

(∀x ∈ V1) rank(dΦ1(x)g(x)) = rank g(x)− dim(Ker dΦ1(x) ∩ Im g(x))

= dim(G0(x))− dim(TxS1 ∩G0(x)).

By hypothesis, x̄ is a regular point of (3.20) and by Proposition 3.3.4, by possibly shrinking

V1, dim(TxS1 ∩ G0(x)) is constant and dimG0(x) is constant. Thus, rank(dΦ1(x)g(x)) is

constant on V1. It implies that dim (Ker(dΦ1(x)g(x))) is also constant on V1. Assume

that dim (Ker(dΦ1(x)g(x))) = q. By [45, Lemma 1.3.1], there exists a set {v1, · · · , vq} of

smooth vector fields defined on V1 such that at each x ∈ V1, the vectors v1(x), · · · , vq(x)

are linearly independent and

(∀x ∈ V1) Ker(dΦ1(x)g(x)) = span{v1(x), · · · , vq(x)}.
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Thus we can write

v̂(x) =

q∑
i=1

ĉi(x)vi(x).

where ĉi : V2 → R are smooth real-valued functions. Apply Lemma 3.3.10 and, by possibly

shrinking U , introduce a retraction r1 : V1 → V2 of V1 onto V2 and define

ci :V1 → R

x 7→ ĉi ◦ r1(x).

and

v(x) =

q∑
i=1

ci(x)vi(x).

Let α′ := α1 + v. It solves equation (3.23) since

(∀x ∈ V1) dΦ1(x) (f(x) + g(x)α′(x)) = dΦ1(x) (f(x) + g(x)α1(x)) + dΦ1(x)g(x)v(x) = 0.

Similarly it can be verified that it solves equation (3.24). Again, applying Lemma 3.3.10

we introduce a retraction r2 : U → V1 of U into V1 and define

α :U → Rm

x 7→ α′ ◦ r2(x).

The state feedback α has the desired property.

Remark 3.3.12. For LTI control systems [92, Lemma 5.7] asserts that, for nested (A,B)-

invariant subspaces S1 ⊃ S2, if F0 is a friend of S2 there always exists a mutual friend F

such that F |S2
= F0|S2

. Lemma 3.3.11 recovers this result because the integers in (3.14)

are constant, and the regularity assumption always holds for LTI systems.
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3.3.1 Solution to Problem 3

Theorem 3.3.13. Problem 3 is solvable at x̄ ∈ S2 if and only if x̄ is a regular point

of (3.20).

Proof. Assume that Problem 3 is solvable at x̄ ∈ S2. Then there exists a neighbourhood

U ⊆ Rn containing x̄, a feedback transformation (α, β) defined on U , and a diffeomorphism

Ξ ∈ Diff(U) such that (3.1) is locally feedback equivalent to (3.17). Let V2 := S2 ∩ U ,

V1 := S1∩U , denote by (ζ, µ, 0) = Ξ(x) the image of a point x ∈ V1 and by (ζ, 0, 0) = Ξ(x)

the image of a point x ∈ V2 under the map Ξ, and let ĝ := Ξ?(gβ), Ĝ0 := span {ĝ1, · · · , ĝm}.

In (ζ, µ, ξ)-coordinates the value of σ in (3.21b) at an arbitrary point (ζ, µ, 0) ∈ Ξ(V1) equals

σ(ζ, µ, 0) = dim

Im

 Is1 ?

0 g33(ζ, µ, 0)

− s1 = rank (g33(ζ, µ, 0)).

We now argue that g33 has full column rank. The equality above implies that the num-

ber of columns in g33(ζ, µ, 0) is greater than or equal to σ(ζ, µ, 0). Suppose, by way of

contradiction, that g33 has σ(ζ, µ, 0) + 1 columns. Then, since there are m inputs

rank

 g11(ζ, µ, 0) g12(ζ, µ, 0)

g21(ζ, µ, 0) g22(ζ, µ, 0)

 ≤ m− σ(ζ, µ, 0)− 1.

But this means that dim (Ĝ0(ζ, µ, 0)) ≤ m − 1 which is a contradiction since (α, β) is a

regular feedback transformation and dim (G0(x)) = m. Thus g33(ζ, µ, 0) has full column

rank. This shows that at an arbitrary point (ζ, µ, 0), the integer function σ is equal to the

number of columns in g33. Since (ζ, µ, 0) is arbitrary, we conclude that σ is constant on

Ξ(V1).
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Having shown that g33(ζ, µ, 0) has full column rank on Ξ(V1) it follows that ν(ζ, 0, 0)

equals

dim
(
T(ζ,0,0)Ξ(V2) ∩ Ĝ0(ζ, 0, 0

)
= dim

Im

 Is2

0

 ∩ Im

 g11(ζ, 0, 0) g12(ζ, 0, 0)

0 g22(ζ, 0, 0)


 .

Additionally, since

dim


 Is2

0

+ Im

 g11(ζ, 0, 0) g12(ζ, 0, 0)

0 g22(ζ, 0, 0)


 = rank

 Is2 ?

0 g22(ζ, 0, 0)


we get that

ν(ζ, 0, 0) = s2 +m− σ(ζ, 0, 0)− (rank g22(ζ, 0, 0) + s2).

Using the above expression for ν and the identity, see Remark 3.3.5, ν + ρ + σ = m at

(ζ, 0, 0) we obtain ρ(ζ, 0, 0) = rank g22(ζ, 0, 0). Using the same reasoning as earlier, one can

show g22(ζ, 0, 0) has full column rank. Thus, at (ζ, 0, 0), the integer function ρ is equal to

the number of columns in g22 which is constant at any point (ζ, 0, 0) ∈ Ξ(V2). Finally, if two

of the functions in (3.21) are constant on Ξ(V2), then so is the third. By Lemma 3.3.7 the

values of (3.21) are invariant under feedback and coordinate transformation which shows

that x̄ is a regular point of (3.20).

Assume that x̄ ∈ S2 is a regular point of (3.20). By Proposition 3.3.6 the distributions

R in (3.20) is smooth and non-singular in a neighbourhood V1 ⊆ S1 containing x̄ and the

distributions P and Q in (3.20) are smooth and non-singular in V2 = V1 ∩ S2. As a result,

there exist local generators p̂i : V2 → Rn, i ∈ {1, · · · , ν}, q̂i : V2 → Rn, i ∈ {1, · · · , ρ}, and

r̂i : V1 → Rn, i ∈ {1, · · · , σ} such that, for all x ∈ V2 P (x) = span {p̂1, · · · , p̂ν} (x) and
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Q(x) = span {q̂1, · · · , q̂ρ} (x) and for all x ∈ V1 R(x) = span {r̂1, · · · , r̂σ} (x).

Next, applying Lemma 3.3.10 we introduce a retraction r1 : U → V1 of an open set

U ⊆ Rn, x̄ ∈ U , onto V1 and a retraction r2 : U → V2 of an open set U ⊆ Rn, x̄ ∈ U , onto

V2 and define

pi : U → Rn

x 7→ p̂i ◦ r2(x)
i ∈ {1, · · · , ν}

qi : U → Rn

x 7→ q̂i ◦ r2(x)
i ∈ {1, · · · , ρ}

ri : U → Rn

x 7→ r̂i ◦ r1(x)
i ∈ {1, · · · , σ}

so that the local generators of P (x), Q(x), and R(x) are now defined on U . We set up the

following equations [
p1 · · · pν

]
=
[
g1 · · · gm

]
β1 (3.25a)[

q1 · · · qρ

]
=
[
g1 · · · gm

]
β2 (3.25b)[

r1 · · · rσ

]
=
[
g1 · · · gm

]
β3 (3.25c)

where β1 : U → Rm×ν , β2 : U → Rm×ρ, and β3 : U → Rm×σ are unknown matrices.

Since, P ⊆ G0 and both are constant dimensional, by possibly shrinking U , there exists

a unique smooth solution β1 to (3.25a). Similarly, by shrinking U , we can find β2 and β3

in equations (3.25b) and (3.25c), respectively. Define [β1 β2 β3] =: β : U → GL (m,R).

Since P (x), Q(x), and R(x) span independent subspaces for each x ∈ U , the matrix β is

non-singular.

By Lemma 3.3.11 there exists a feedback α : U → Rm defined, without loss of generality,
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on U such that (f + gα)|S1∩U is tangent to V1 := S1 ∩ U and (f + gα)|S2∩U is tangent to

V2 := S2 ∩ U . The pair (α, β) is the desired feedback transformation. Applying it to (3.1)

yields

ẋ = f(x) + g(x)α(x) + g(x)β1(x)v‖ + g(x)β2(x)v‖,t + g(x)β3(x)vt (3.26)

where v‖ ∈ Rν , v‖,t ∈ Rρ, and vt ∈ Rσ.

By Lemma 3.3.11 the vector field (f(x) + g(x)α(x))|V2 is tangent to both V1 and V2.

Columns of gβ1|V2 are the local generators of P thus are tangent to V2. the columns of

gβ2|V2 are local generators of Q, so are tangent to V1 and not V2. Finally, columns of

gβ3|V2 are local generators of R, so are tangent to neither V1 nor V2. Select Ξ to be the

diffeomorphism from Lemma 3.3.8. Applying the coordinate transformation Ξ to (3.26)

yielding the desired normal form (3.17).

The following example is intended to shed light on the concepts discussed in this sec-

tion.

Example 3.3.14. Consider the control system

ẋ =



−x2

x1 − (x2
1 + x2

2 − 1)(x2
3 + x2

4 − 1)

−x4

x3 − x2
1 − x2

2 − x2
3 − x2

4 + 2


+



−x2

x1

0

0


u1+



−x2
2

x1 x2

−x4

x3


u2+



0

0

x2

0


u3, (3.27)

and two nested sets

S1 :=
{
x ∈ R4 : x1

2 + x2
2 − 1 = 0

}
, S2 :=

{
x ∈ S1 : x2

3 + x2
4 − 1 = 0

}
,

and the point x̄ = (0, 1, 1, 0) ∈ S2. The objective is to solve Problem 3 at x̄. We first check
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the conditions of Theorem 3.3.13 which requires x̄ to be a regular point of (3.20). Since

S1 and S2 are embedded in R4 as the zero level sets of smooth functions, it is easy to show

that

TxS1 = span





−x2

x1

0

0


,



0

0

1

0


,



0

0

0

1




, TxS2 = span





−x2

x1

0

0


,



0

0

−x4

x3




.

We compute ν(x) and ρ(x) as follows

ν(x) = rank



−x2 −x2
2

x1 x1x2

0 −x4

0 x3


, ρ(x) = rank



−x2 −2
2 0

x1 x1x2 0

0 −x4 x2

0 x3 0


− ν(x)

Let U = {x ∈ R4 : x2 6= 0 ∧ x3 6= 0} be a neighbourhood of x̄ = (0, 1, 1, 0) where, for all

x ∈ U , ν(x) = 2 and ρ(x) = 1. Since the constancy of any two functions in (3.21) implies

the constancy of the third, x̄ is a regular point of (3.20) and by Theorem 3.3.13 Problem 3

is solvable there.

First, we find the feedback transformation (α, β). The function α : U → R3 is a mutual

friend of S1 ∩ U and S2 ∩ U . Following the procedure in the proof of Lemma 3.3.11 we
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obtain α(x) = 0. In order to find β we compute the distributions (3.20) of Proposition 3.3.6

P (x) = span





−x2

x1

0

0


,



−x2
1

x1x2

−x4

x3




, Q(x) = span





0

0

x3

x4




, R(x) = 0.

Even though, the distributions (3.20) are only defined on S1∩U and S2∩U , the calculated

distributions are valid on the entire set U eliminating the need for the retractions in the

proof of Theorem 3.3.13. Solving equation (3.25) yields

β : U → GL(3,R), x 7→


1 0 −x2x4

x3

0 1 x4
x3

0 0
x23+x24
x2x3


We follow the proof of Lemma 3.3.8 to find the coordinate transformation Ξ ∈ Diff(U) to

be defined by x 7→ (x1, x3, x
2
3 +x2

4−1, x1
2 +x2

2−1). Applying the feedback transformation

(α, β) and coordinate transformation Ξ to (3.27) we obtain

ζ̇1 = (1 + ξ − ζ2
1 )

1
2 + (1 + ξ − ζ2

1 )
1
2v
‖
1 − (1 + ξ − ζ2

1 )v
‖
2

ζ̇2 = (1 + µ− ζ2
2 )

1
2 + (1 + µ− ζ2

2 )
1
2v
‖
2 + ζ2v

‖,t

µ̇ = 2(ξ + µ)(1 + µ− ζ2
2 )

1
2 + 2(µ+ 1)v‖,t

ξ̇ = 2ξµ(1 + ξ − ζ2
1 )

1
2 .

(3.28)

Note that when ξ = 0, the term f3(ζ, µ, ξ) = 2ξµ(1 + ξ − ζ2
1 )

1
2 vanishes and g31 and g32 are

identically zero. Also, when ξ = 0 and µ = 0 the terms f2(ζ, µ, ξ) = 2(ξ + µ)(1 + µ− ζ2
2 )

1
2

63



vanishes and g21(ζ, µ, ξ) is identically zero. Thus, the requirements on normal form (3.17)

are satisfied. The dynamics restricted to S1∩U are obtained by substituting ξ = 0 in (3.28)

and the dynamics restricted to S2∩U is obtained by substituting ξ = 0 and µ = 0 in (3.28).

M

3.4 Solution to partial local nested transverse feed-

back linearization problem

We are now ready to present the main result of this chapter, necessary and sufficient

conditions for Problem 1 to be solvable. It is evident that (3.3) is a refinement of (3.17)

and thus the solvability of Problem 3 is a necessary condition for Problem 1 to be solvable.

Thus throughout this section we make the following assumption.

Assumption 3.4.1. The point x̄ ∈ S2 is a regular point of (3.20). C

Assumption 3.4.1 implies, by Theorem 3.3.13, that Problem 3 is solvable at x̄. There-

fore, there exists a regular feedback transformation (α, β) such that, control system (3.1)

on a neighbourhood U ⊂ Rn of x̄ writes as (3.26), re-written here for convenience,

ẋ = f(x) + g(x)α(x) + g(x)β1(x)v‖ + g(x)β2(x)v‖,t + g(x)β3(x)vt

where
(
v‖, v‖,t, vt

)
∈ Rν × Rρ × Rσ. Recall that vt = 0 renders S1 ∩ U invariant; and the

vector field f + gα and columns of gβ1 and columns of gβ2 are tangent to S1 ∩ U . Thus,

the restriction of (3.1) with vt = 0 to S1 ∩ U is well-defined. We introduce the following
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short hand notation for the restriction

fS1
:= (f + gα)|S1∩U , gS1

:= [gβ1 gβ2]|S1∩U v
‖
S1

:= (v‖, v‖,t).

Then, the dynamics restricted to S1 ∩ U are

ẋ = fS1(x) + gS1(x)v
‖
S1
. (3.29)

Similar to (3.2), we associate to (3.29) a family of distributionG
‖
i : S1∩U → T (S1∩U) ⊆ Rn

G
‖
i (x) := span

{
adjfS1

gS1,k(x) : 0 ≤ j ≤ i, 1 ≤ k ≤ ν + ρ
}
. (3.30)

Theorem 3.4.2 (Main Result). Consider control system (3.1) and nested sets S1 ⊃ S2

satisfying Assumption 3.1.1. Let x̄ ∈ S2 and suppose that inv(G
‖
i ), i ∈ s1 − s2 − 1 are

regular at x̄ ∈ S2. Then, Problem 1 is solvable if and only if

(a) x̄ is a regular point of (3.20)

(b) dim
(
Tx̄S2 +G

‖
s1−s2−1(x̄)

)
= s1

(c) There exists an open set U ⊆ Rn containing x̄ such that, for all i ∈ s1 − s2 − 1, for

all x ∈ S2 ∩ U

dim
(
TxS2 +G

‖
i (x)

)
=
(
TxS2 + inv(G

‖
i (x))

)
= constant.

Proof. Suppose that Problem 1 is solvable at x̄ ∈ S2. Then Problem 3 is solvable since

the normal form (3.3) is a refinement of the normal form (3.17). Thus, x̄ is a regular

point of (3.20) and condition (a) holds. As a result, the assumption requiring inv(G
‖
i ), i ∈
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s1 − s2 − 1 be regular at x̄ is a valid assumption. Moreover, since Problem 1 is solvable at

x̄ ∈ S2 there exists a neighbourhood U ⊆ Rn of x̄, a coordinate transformation Ξ ∈ Diff(U),

and a feedback transformation (α, β) such that (3.1) is feedback equivalent to (3.3) in U .

Define V1 := Ξ(S1 ∩ U) and V2 := Ξ(S2 ∩ U). The system dynamics restricted to V1 are

given in (3.5), and any point in V1 and V2 is represented by (ζ, µ) and (ζ, 0), respectively.

In transformed coordinates we have

(∀(ζ, 0) ∈ V2) , (∀i ∈ s1 − s2), T(ζ,0)V2+G
‖
i (ζ, 0) = Im

 Is2 ? ? · · · ?

0r−s2×s2 B AB · · · AiB


which shows that the dimension of T(ζ,0)V2+G

‖
i (ζ, 0) is s2+rank

([
B · · · AiB

])
. Since

the pair (A,B) is controllable, rank
([

B · · · As1−s2−1B
])

= s1− s2; thus we have that

dim
(
T(ζ,0)V2 +G

‖
s1−s2−1(ζ, 0)

)
= s1. Since condition (a) is invariant under coordinate and

feedback transformations it follows that condition (a) holds in original coordinates as well.

In V1, consider the collection of constant distributions ∆
‖
i , i ∈ s1 − s2 given by

∆
‖
i := Im

(
Is2 ⊕

[
B · · · AiB

])
.

At each (ζ, 0) ∈ V2, ∆
‖
i (ζ, 0) = T(ζ,0)V2 +G

‖
i (ζ, 0); thus, G

‖
i (ζ, 0) ⊆ ∆

‖
i . Furthermore, since

each ∆
‖
i is (trivially) involutive, it follows that inv(G

‖
i (ζ, 0)) ⊆ ∆

‖
i . This shows that for all

i ∈ s1 − s2

TV2 + inv(G
‖
i (ζ, 0)) ⊆ ∆

‖
i (ζ, 0) = TV2 +G

‖
i (ζ, 0).

On the other hand TV2 + G
‖
i (ζ, 0) ⊆ TV2 + inv(G

‖
i (ζ, 0)) always holds which shows that

∆
‖
i (ζ, 0) = TV2+G

‖
i (ζ, 0) = TV2+inv(G

‖
i (ζ, 0)). Condition (b) is invariant under coordinate

and feedback transformations; thus it holds in original coordinates.
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Conversely, assume that conditions (a), (b), and (c) hold. By condition (a) Problem 3

is solvable and there exists a neighbourhood U ⊆ Rn of x̄, a coordinate transformation

Ξ1 : U → Ξ1(U) ⊆ Rs2×Rs1−s2×Rn−s1 , x 7→
(
ζ̄ , µ̄, ξ̄

)
, and feedback transformation (α1, β1)

such that (3.1) is feedback equivalent to (3.17) on U . Let π1 : Rn → Rs1 be the projection

to the first s1 factors. Let V̄1 := π1 ◦Ξ1(S1∩U) ⊆ Rs1 and ψ = π1 ◦ Ξ1|S1∩U : S1∩U → V̄1.

By [62, Theorem 8.2] S1 is a smooth manifold of dimension s1 and (S1 ∩ U, ψ) is a coordinate

chart. Define V̄2 := π1 ◦ Ξ1(S2 ∩ U). Since V̄2 =
{(
ζ̄ , µ̄
)
∈ V̄1 : µ̄ = 0

}
we conclude that V̄2

is an embedded submanifold of V̄1. In this coordinate chart (3.29) writes as

˙̄ζ = f̄1(ζ̄ , µ̄, 0) + ḡ11(ζ̄ , µ̄, 0)v̄‖ + ḡ12(ζ̄ , µ̄, 0)v̄t2

˙̄µ = f̄2(ζ̄ , µ̄, 0) + ḡ21(ζ̄ , µ̄, 0)v̄‖ + ḡ22(ζ̄ , µ̄, 0)v̄t2 .
(3.31)

Since condition (a) holds one can assume inv(G
‖
i ), i ∈ s1 − s2 − 1 are regular at x̄ and

considering conditions (b) and (c) all the assumptions and conditions of [70, Theorem 3.2]

for (3.31) with respect to V̄2 at (ζ̄ , 0) := π1◦Ξ1(x̄) hold. Therefore, by possibly shrinking V̄1

(and hence U), there exist a coordinate transformation Ξ2 : V̄1 → Ξ2(V̄1) ⊆ Rs2 × Rs1−s2 ,

and a regular feedback transformation
(
ᾱ2, β̄2

)
, with ᾱ2 : V̄1 → Rν+ρ and β̄2 : V̄1 →

GL (ν + ρ,R), such that (3.31) is feedback equivalent to

ζ̇ = f1(ζ, µ) + g11(ζ, µ)v‖ + g12(ζ, µ)v‖,t

µ̇ = Aµ+Bvt2 .
(3.32)

Let π2 : Rn → Rn−s1 be the projection to the last n− s1 factors. We construct a function

67



Ξ : U ⊆ Rn → Ξ(U) ⊆ Rs2 × Rs1−s2 × Rn−s1 as follows

Ξ := (Ξ2 ◦ π1 ◦ Ξ1)× (π2 ◦ Ξ1) =

 Ξ2 ◦ π1

π2

 ◦ Ξ1.

The following diagram illustrates our construction.

U ⊆ Rn Ξ1 // Ξ1(U) ⊆ Rs2 × Rs1−s2 × Rn−s1

π1
��

π2 // Rn−s1

V̄1 ⊆ Rs1 Ξ2 // Ξ2(V̄1) ⊆ Rs2 × Rs1−s2 .

The function Ξ is a well-defined diffeomorphism since at x̄

det(dΞ) = det

 dΞ2 0s1×n−s1

0n−s1×s1 In−s1

 det(dΞ1) 6= 0.

Therefore, by the inverse function theorem [62, Theorem 7.6], it is a valid coordinate

transformation in a neighbourhood of x̄, without loss of generality U . In order to construct

the feedback transformation we define

α2 :=

 ᾱ2 ◦ π1 ◦ Ξ1

0σ

 , β2 :=

 β̄2 ◦ π1 ◦ Ξ1 0(ν+ρ)×σ

0σ×(ν+ρ) Iσ

 ,
where α2 : U ⊆ Rn → Rm and β : U ⊆→ GL(m,R). The feedback transformation

(α, β) := (α1 + β1α2, β1β2) and Ξ ∈ Diff(U) solve Problem 1.

Remark 3.4.3. If the conditions of Theorem 3.4.2 hold, then following [70, Theorem 3.1]

one can find ρ smooth R-valued functions λ1(ζ, µ), · · · , λρ(ζ, µ) defined on V̄1, where ρ is

given in (3.21a), such that (a) V̄2 ⊂
{

(ζ, µ) ∈ V̄1 : λi(ζ, µ) = 0, i ∈ 1, · · · , ρ
}

(b) the sys-
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tem (3.31) with output y := (λ1(ζ, µ), · · · , λρ(ζ, µ)) has vector relative degree {k1 · · · , kρ}

with k1 + · · ·+ kρ = s1 − s2 at (ζ̄ , 0). Thus, the nested local transverse feedback lineariza-

tion problem is equivalent to a zero dynamics assignment with well-defined relative degree

problem. A semi-constructive procedure to find such functions is presented in the proof

of [70, Theorem 3.1].

3.5 Extension of the main result

We now outline an extension of the solution to Problem 1. In the extension we seek that

the dynamics transversal to the larger set S1 also be feedback linearizable. The resulting

normal form facilitates the design of controllers to locally stabilize S1.

Problem 4. (Local nested transversal feedback linearization): Find, if possible, a

solution to Problem 1 in which the normal form (3.3) is replaced by

ζ̇ = f1(ζ, µ, ξ) + g11(ζ, µ, ξ)v‖ + g12(ζ, µ, ξ)v‖,t + g13(ζ, µ, ξ)vt

µ̇ = Aµ+Bv‖,t + f2(ζ, µ, ξ) + g21(ζ, µ, ξ)v‖ + g22(ζ, µ, ξ)v‖,t + g23(ζ, µ, ξ)vt

ξ̇ = Eξ + Fvt

(3.33)

where the pair (E,F ) is controllable and F is full rank. N

In Problem 4 the normal form (3.3) has been refined because the ξ-subsystem is now

linear, controllable and decoupled from the ζ- and µ-subsystems.

Theorem 3.5.1. Consider control system (3.1) and nested sets S1 ⊃ S2 satisfying Assump-

tion 3.1.1. Let x̄ ∈ S2 and assume that the distributions inv (G
‖
i ), inv(Gj), i ∈ n− s1 − 1,

j ∈ s1 − s2 − 1 are regular at x̄ ∈ S2. Then, Problem 4 is solvable if and only if
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(a) Problem 1 is solvable.

(b) dim (Tx̄S1 +Gn−s1−1(x̄)) = n.

(c) There exist a neighbourhood U of x̄ in Rn such for all i ∈ n− s1 − 1, for all

(x ∈ S1 ∩ U),

dim (TxS1 +Gi(x)) = (TxS1 + inv(Gi)(x)) = constant.

Proof. Assume that Problem 4 is solvable at x̄ ∈ S2. The normal form (3.33) is a refinement

of the normal forms (3.3) and (3.17). Thus, if Problem 4 is solvable Problems 1 and 3 are

solvable. Thus, condition (a) holds. Besides, if Problem 3 is solvable x̄ must be a regular

point of (3.20) which implies that it is valid to assume inv (G
‖
i ), i ∈ n− s1 − 1 are regular

at x̄. The proof of the necessity of conditions (b) and (c) is easily checked in transformed

coordinates using arguments analogous to those in the proof of Theorem 3.4.2.

Conversely, assume that conditions (a), (b) and (c) hold. By [70, Theorem 3.2], since

conditions (b) and (c) hold, there exist a neighbourhood U of the point x̄, a diffeomorphism

Ξ1 : U → Ξ1(U) ⊂ Rs1 × Rn−s1 and a regular feedback transformation (α1, β1) such that

system (3.1), on U , is feedback equivalent to

η̇ = f0(η, ξ) + g‖(η, ξ)v1 + gt(η, ξ)v2

ξ̇ = Eξ + Fv2

(3.34)

where the pair (E,F ) is controllable and Ξ1(S1 ∩ U) = {(η, ξ) ∈ Ξ1(U) : ξ = 0}. Since

Problem 1 is solvable Assumption 3.4.1 must hold. Thus, v1 ∈ Rν+ρ, v2 ∈ Rσ.

Let π1 : Rn → Rs1 be the projection to the first s1 factors. Let V̄1 := π1 ◦ Ξ1(S1 ∩ U)

and ψ = π1 ◦ Ξ1|S1∩U : S1 ∩ U → V̄1. By [62, Theorem 8.2] S1 is a smooth manifold of
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dimension s1 and (S1 ∩ U, ψ) is a coordinate chart. Define V̄2 := π1 ◦ Ξ1(S2 ∩ U). Since V̄2

is diffeomorphic to S2 ∩ U it is an embedded submanifold of V̄1. In this coordinate chart

the restricted dynamics in (3.29) writes as

η̇ = f0(η, 0) + g‖(η, 0)v1. (3.35)

By condition (a) Problem 1 is solvable and the conditions of Theorem 3.4.2 hold. Therefore

the assumption that inv (G
‖
i ), i ∈ n− s1 − 1 are regular at x̄ is well-posed. Thus, all

the assumptions and conditions of [70, Theorem 3.2] for (3.35) with respect to V̄2 at η̄ :=

π1◦Ξ1(x̄) hold. Therefore, by possibly shrinking V̄1 (and hence U), there exists a coordinate

transformation Ξ2 : V̄1 → Ξ2(V̄1) ⊆ Rs2 × Rs1−s2 , and a regular feedback transformation(
ᾱ2, β̄2

)
, with ᾱ2 : V̄1 → Rν+ρ and β̄2 : V̄1 → GL (ν + ρ,R), such that (3.35) is feedback

equivalent to

ζ̇ = f1(ζ, µ) + g11(ζ, µ)v‖ + g12(ζ, µ)v‖,t

µ̇ = Aµ+Bv‖,t.
(3.36)

The desired diffeomorphism Ξ is constructed from Ξ1 and Ξ2 in the same manner as in

the proof of Theorem 3.4.2. The feedback transformation (α, β) is also constructed from

(α1, β1) and
(
ᾱ2, β̄2

)
in the same way as in the proof of Theorem 3.4.2.

The following example concerning the system from Example 3.3.14 illustrates a case in

which Problem 1 is solvable while Problem 4 is not.

Example 3.5.2. Recall the system, nested sets S1 ⊃ S2, and point x̄ = (0, 1, 1, 0) from

Example 3.3.14. Since Problem 3 is solvable at x̄ in U = {x ∈ R4 : x2 6= 0 and x3 6= 0} we
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can easily compute the dynamics restricted to S1 ∩ U in (3.29) as

ẋ =



−x2

x1

−x4

x3 − x2
3 − x2

4 + 1


+



−x2

x1

0

0


v
‖
1 +



−x2
2

x1 x2

−x4

x3


v
‖
2 +



0

0

x3

x4


v‖,t.

Condition (a) of Theorem 3.4.2 is satisfied since

dim
(
Tx̄S2 +G

‖
0(x̄)

)
= rank



−1 0 −1 −1 0

0 0 0 0 0

0 0 0 0 1

0 1 0 1 0


= 3

Moreover, since

G
‖
0 = span





−x2

x1

0

0


,



−x2
2

x1x2

−x4

x3


,



0

0

x3

x4




is involutive, condition (b) of Theorem 3.4.2 holds. Therefore Problem 1 is solvable at x̄.
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However, since

dim (Tx̄S1 +G0(x̄)) = rank



−1 0 0 −1 −1 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0


6= 4

condition (a) of Theorem 3.5.1 is not satisfied and Problem 4 is cannot be solved at x̄. We

proceed to find the normal form (3.3) of Problem 1.

In order to find the desired feedback transformation and coordinate transformation we

follow the construction in the proof of Theorem 3.4.2. The feedback transformation (α1, β1)

and the coordinate transformation Ξ1 were already found in Example 3.3.14. Letting ξ = 0

in (3.28), the dynamics (3.31) are

˙̄ζ1 =
(
1− ζ̄2

1

) 1
2 +

(
1− ζ̄2

1

) 1
2 v
‖
1 −

(
1− ζ̄2

1

)
v
‖
2

˙̄ζ2 =
(
1 + µ̄− ζ̄2

2

) 1
2 +

(
1 + µ̄− ζ̄2

2

) 1
2 v
‖
2 + ζ̄2v

‖,t

˙̄µ = 2µ̄(1 + µ̄− ζ̄2
2 )

1
2 + 2(µ̄+ 1)v‖,t.

We employ the results of [70, Theorem 3.2] to find

Ξ2 = 13,
(
ᾱ2, β̄2

)
=




0

0

−−2µ̄(1+µ̄−ζ̄22 )
1
2

2(µ̄+1)

 ,


1 0 0

0 1 0

0 0 1
2(µ̄+1)




where 13 is the identity map. It should be noted that µ̄+ 1 = x2
3 + x4

4. Since, x3 6= 0 on U

it follows that µ̄+ 1 6= 0 on Ξ1(U); thus it is not required to shrink the neighbourhood U .
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Next, we find π1 = R4 → R3, (ζ̄1, ζ̄2, µ̄, ξ̄) 7→ (ζ̄1, ζ̄2, µ̄), π2 = R4 → R, (ζ̄1, ζ̄2, µ̄, ξ̄) 7→ ξ̄,

introduced in the proof of Theorem 3.4.2. Therefore,

Ξ = (Ξ2 ◦ π1 ◦ Ξ1)× (π2 ◦ Ξ1) = (x1, x3, x
2
3 + x2

4 − 1, x2
1 + x2

2 − 1)

and

α2 =


0

0

(x23+x24−1)x4
x23+x24

 , β2 =


1 0 0

0 1 0

0 0 1
2(x23+x24)

 .
And finally the feedback transformation (α, β) is

(α, β) = (α1 + β1α2, β1β2) =



−x2x24(x23+x24−1)

x3(x23+x24)

x24(x23+x24−1)

x3(x23+x24)

(x23+x24−1)

x2x3

 ,


1 0 −x2x4
2x3(x23+x24)

0 1 x4
2x3(x23+x24)

0 0 1
x2x3


 .

Applying the feedback transformation (α, β) and the coordinate transformation Ξ the

control system is feedback equivalent to

ζ̇1 = (1 + ξ − ζ2
1 )

1
2 + (1 + ξ − ζ2

1 )v
‖
1 − (1 + ξ − ζ2

1 )v
‖
2

ζ̇2 = (1 + µ− ζ2
2 )

1
2 + 1 + µ− ζ2

2

1
2v
‖
2 +

ζ2

2(µ+ 1)
v‖,t

µ̇ = 2ξ(1 + µ− ζ2
2 )

1
2 + v‖,t

ξ̇ = 2ξµ(1 + ξ − ζ2
1 )

1
2 .

when ξ = 0 the µ-subsystem is µ̇ = v‖,t which is linear and controllable as desired. M

The following example illustrates a case in which Problem 4 is solvable
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Example 3.5.3. Consider the control system

ẋ =



−x1

−x2 − x5 − x5

(
−x1

2 + x2 + x3

)
x2 + x5 + x5

(
−x1

2 + x2 + x3

)
− 2x1

2

x2 + x3 − x4 + x5 + x5

(
−x1

2 + x2 + x3

)
− 2x1

2

x4 − x3


+



0

0

−1

−1

x2


u1 +



0

1

−1

−2

0


u2,

sets S1 = {x ∈ R5 : x2
1 − x2 − x3 = 0} and S2 = {x ∈ S1 : x2 = x3 − x4 = x5 = 0}, and a

point x̄ = (1, 0, 1, 0, 1). It is easy to show that

TxS1 = Im



1 0 0 0

2x1 1 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


, TxS2 = Im



1

0

2x1

2x1

0


.

We check the conditions of Theorem 3.5.1. Condition (a) of Theorem 3.5.1 requires

that Problem 1 be solvable. Thus we first check the conditions of Theorem 3.4.2.

We compute for all x ∈ Rn ν(x) = 0 and ρ(x) = 1. Since the constancy of any

two functions in (3.21) implies the constancy of the third, x̄ is a regular point of (3.20)

and condition (a) of Theorem 3.4.2 hold. In order to check conditions (b) and (c) of

Theorem 3.4.2 we need to find (3.29). Following the proof of Theorem 3.3.13 we find the
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restricted dynamics as

ẋ =



−x1

−x2 − x5

x2 + x5 − 2x1
2

x2 + x3 − x4 + x5 − 2x1
2

x4 − x3


+



0

1

−1

−2

0


v‖,t.

Condition (b) of Theorem 3.4.2 is satisfied since at point x̄

dim(Tx̄S2 +G
‖
2(x̄)) = rank



1 0 0 0

0 1 1 2

2 −1 −1 −2

2 −2 −2 −3

0 0 1 1


= 4.

Moreover, since G
‖
0 contains a single vector it is involutive and condition (e) of Theo-

rem 3.4.2 hold.

Condition (b) of Theorem 3.5.1 holds since

dim(Tx̄S1 +G0(x̄)) = rank



1 0 0 0 0 0

2 1 0 0 0 1

0 −1 0 0 −1 −1

0 0 1 0 −1 −2

0 0 0 1 0 0


= 5.

Condition (c) of Theorem 3.5.1 holds since dim(TxS1+G0(x)) = dim(TxS1+inv(G0(x))) = 5
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for all x ∈ R5. Thus Problem 4 is solvable. Following the proof of Theorem 3.5.1 we find

the following feedback transformation and coordinate transformation

(α, β) =

 0

0

 ,
 0 1

1 0

 ,

Ξ = (x1, x2, x5, x3 − x4, x
2
1 − x2 − x3).

The given control system is feedback equivalent on R5 to

ζ̇ = −ζ

µ̇1 = −µ1 − µ2 + µ2ξ + v‖,t

µ̇2 = −µ3 + µ1v
t

µ̇3 = −µ3 + v‖,t

ξ̇ = vt.

One can verify the second condition of [70, Theorem 3.2] does not hold for S2 since for all

x ∈ Rn dim(TxS2 + G0) 6= dim(TxS2 + inv(G0)). This implies that one cannot make the

µ-subsystem linear and decoupled. Thus the class of systems which is feedback equivalent

to (3.3) is strictly larger than the class of systems for which the dynamics transversal to

both S1 and S2 can be transversally feedback linearized. M
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3.6 Control design for a nested set stabilization prob-

lem

The normal form (3.3) finds application in the stabilization of S2 relative to S1 locally.

For, if v‖,t is designed to stabilize µ = 0 and the trajectories of the closed-loop system

are bounded, then the controller locally stabilizes S2 relative to S1 in original coordinates.

If, on the other hand, the trajectories of the closed-loop system are not bounded, then

the stabilization of µ = 0 implies the stabilization of S2 relative to S1 if and only if

the necessary and sufficient conditions of [29, Theorem IV.1] hold. Similarly, the refined

normal form (3.33) can simplify the problem of designing controllers to locally stabilize

S1. If vt is designed such that ξ = 0 is asymptotically stable and the trajectories of the

closed-loop system are bounded, then the controller renders S1 ∩ U asymptotically stable.

If, on the other hand, the trajectories of the closed-loop system are not all bounded,

then the stabilization of ξ = 0 implies the local stabilization of S1 under necessary and

sufficient conditions of [29, Theorem IV.1]. We now present a local solution to a nested set

stabilization problem using the results of Section 3.4.

Problem 5. (Local nested set stabilization problem): Given the control system (3.1),

two nested sets S1 ⊃ S2 satisfying Assumption 3.1.1, a point x̄ ∈ S2, and an open set U

containing x̄ such that S1 ∩ U and S2 ∩ U are controlled invariant, find, if possible, a

smooth feedback control law such that the closed-loop system meets the following three

specifications.

S1 The set S1 ∩ U is asymptotically stable.

S2 The set S2 ∩ U is asymptotically stable relative to S1 ∩ U .
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S3 The set S2 ∩ U is asymptotically stable.

N

Notice the requirement that S1 ∩ U and S2 ∩ U be controlled invariant is based on the

fact that invariance of a set is a necessary condition for its stability [8, Theorem 1.6.6]

3.6.1 Stabilizing S1

When Problem 1, 3 or 4 is solvable, the submanifold S1 ∩ U in transformed coordinates is

Ξ(S1 ∩ U) = {(ζ, µ, ξ) : ξ = 0}. It may be possible to utilize normal form (3.3) or (3.17)

to design a feedback law vt(ζ, µ, ξ) that stabilizes the origin of the ξ-subsystem. However,

if it happens that all the conditions of Theorem 3.5.1 hold one can solve Problem 4 which

has a decoupled, linear and controllable ξ-subsystem. Thus, designing vt is considerably

simplified. We select the simplest controller

vt = K1ξ (3.37)

with K1 ∈ Rσ×n−s1 such that E+FK1 is Hurwitz. For fast convergence to S1 one typically

chooses the matrix K1 so that the eigenvalues of E + FK1 are far in the open left-half

complex plane. With the above choice the origin of the ξ-subsystem in (3.33) is rendered

exponentially stable and under necessary and sufficient conditions of [29, Theorem IV.1]

ξ → 0 if and only if x→ S1 ∩ U .
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3.6.2 Stabilizing S2 relative to S1

In the normal forms of both Problems 1 and 4 the dynamics restricted to Ξ(S1 ∩ U) are

ζ̇ = f1(ζ, µ, 0) + g11(ζ, µ, 0)v‖ + g12(ζ, µ, 0)v‖,t

µ̇ = Aµ+Bv‖,t.
(3.38)

Since (A,B) is controllable, there exists a linear feedback

v‖,t = K2µ (3.39)

with K2 ∈ Rρ×s1−s2 , such that A+ BK2 is Hurwitz; thus control law (3.39) exponentially

stabilizes the origin of the µ-subsystem restricted to ξ(S1 ∩ U) and under necessary and

sufficient conditions of [29, Theorem IV.1], µ→ 0 if and only if x→ S2 ∩ U

The ζ-subsystem describes the dynamics tangent to both S1 and S2. When restricted

to S2, control system (3.1) evolves according to (3.6). In some cases it may be possible to

utilize the remaining control inputs v‖ to control dynamics (3.6) to accomplish application

specific specifications such as boundedness or tracking.

3.6.3 Stability analysis

When Problem 4 is solvable the following theorem presents sufficient conditions under

which Problem 5 is solvable. Given a continuous signal u let ‖u‖∞ := supt≥0 ‖u(t)‖ where

the norm on the left is a function norm and the norm on the right is a vector norm.

Theorem 3.6.1. Assume Problem 4 is solvable at x̄ ∈ S2. If
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(a) The feedback laws vt = K1ξ and v‖,t = K2µ are such that (E + FK1) and (A+BK2)

are Hurwitz

(b) The control signal v‖ is such that

(i) (∀x(0) ∈ U)(∀ t ≥ 0) x(t) ∈ U .

(ii) (∀x(0) ∈ U)(∃M > 0)‖(ζ, µ, ξ)‖∞ < M .

Then Problem 5 is solvable.

Proof. Since Problem 4 is solvable there exists a neighbourhood U , a coordinate trans-

formation Ξ ∈ Diff(U), and a feedback transformation (α, β) such that (3.1) is locally

feedback equivalent to (3.33). By (a) the closed-loop system is given by

ζ̇ = f̃1(ζ, µ, ξ) + g11(ζ, µ, ξ)v‖

µ̇ = (A+BK2)µ+ f̃2(ζ, µ, ξ) + g21(ζ, µ, ξ)v‖

ξ̇ = (E + FK1)ξ

(3.40)

where f̃1(ζ, µ, ξ) := f1(ζ, µ, ξ) + g12(ζ, µ, ξ)K2µ + g13(ζ, µ, ξ)K1ξ and f̃2 = f2(ζ, µ, ξ) +

g22(ζ, µ, ξ)K2µ + g23(ζ, µ, ξ)K1ξ. By conditions (a) and (b), if x(0) ∈ U , then (3.1) is

feedback equivalent to (3.40) for all t ≥ 0 and (ζ, µ, ξ) is bounded.

Let Vζ × Vµ × Vξ := Ξ(U). The ξ-subsystem is decoupled from the other subsystems

and ξ = 0 is exponentially stable by (a). Therefore, by (b), for any x(0) ∈ U , ξ → 0. In

particular

1. (∀ε1 > 0)(∃δ1 > 0)(∀ξ(0) ∈ Bδ1(0)(∀t ≥ 0) ξ(t) ∈ Bε1(0).

2. ξ(t)→ 0 as t→∞ at an exponential rate.
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By continuity Ξ−1(Vζ × Vµ × Bε1) =: N1(S1 ∩ U) and Ξ−1(Vζ × Vµ × Bδ1) =: N2(S1 ∩ U)

are neighbourhoods of S1 ∩ U . Thus, we conclude that

(∀x(0) ∈ N2(S1 ∩ U))(∀t ≥ 0) x(t) ∈ N1(S1 ∩ U)

which means that S1 ∩ U is stable. Moreover, since ξ(t) is bounded, ξ → 0 if and only if

x → S1 ∩ U which implies that S1 ∩ U is also attractive for all x0 ∈ U . Thus, S1 ∩ U is

asymptotically stable and S1 of Problem 5 holds.

When ξ = 0, the µ-subsystem becomes µ̇ = (A + BK2)µ and µ = 0 is exponentially

stable, by (a), for all initial conditions in Vζ × Vµ × {0}. Thus, when ξ = 0

1. (∀ε2 > 0)(∃δ2 > 0)(∀µ(0) ∈ Bδ2(0))(∀t ≥ 0) µ(t) ∈ Bε2(0).

2. µ(t)→ 0 as t→∞ at an exponential rate.

By continuity of Ξ restricted to S1 ∩ U the sets Ξ−1(Vζ × Bε2 × {0}) =: N3(S2 ∩ U),

Ξ−1(Vζ ×Bδ2 × {0}) =: N4(S2 ∩ U) are open neighbourhoods of S2 ∩ U in the topology of

S1 ∩ U . We emphasize that N3,N4 ⊆ S1 ∩ U . These considerations yield

(∀x(0) ∈ N4(S2 ∩ U))(∀t ≥ 0) x(t) ∈ N3(S2 ∩ U)

which means that S2 ∩ U is stable relative to S1 ∩ U . Moreover, since µ(t) is bounded,

µ → 0 if and only if x|S1∩U → S2 ∩ U which implies that S2 ∩ U is attractive relative to

S1∩U . Thus S2∩U is asymptotically stable relative to S1∩U and S2 of Problem 5 holds.

Since : (1) ξ = 0 is exponentially stable, (2) when ξ = 0, µ = 0 is exponentially stable

and (3) by hypothesis (b) (µ(t), ξ(t)) is bounded all the conditions of [46, Corollary 10.3.3]

hold. Therefore (µ, ξ) = (0, 0) is asymptotically stable. That is

82



1. (∀ε3 > 0)(∃δ3 > 0)(∀(µ(0), ξ(0)) ∈ Bδ3(0))(∀t ≥ 0) (µ(t), ξ(t)) ∈ Bε3(0).

2. (µ(t), ξ(t))→ 0 as t→∞.

By continuity Ξ−1(Vζ × Bε3) =: N5(S2 ∩ U) and Ξ−1(Vζ × Bδ3) =: N6(S2 ∩ U) are neigh-

bourhoods of S2 ∩ U in U ⊆ Rn. Therefore

(∀x(0) ∈ N6(S2 ∩ U))(∀t ≥ 0) x(t) ∈ N5(S2 ∩ U)

which means that S2 ∩ U is stable. Moreover, since (µ(t), ξ(t)) is bounded we have that

(µ, ξ) → 0 if and only if x → S2 ∩ U which implies that S2 ∩ U is also attractive for all

x0 ∈ U . Thus, S2 ∩ U is asymptotically stable and S3 of Problem 5 holds.

Remark 3.6.2. The rate of convergence to ξ = 0 and µ = 0 is proportional to the rate at

which the trajectories of the closed-loop system approach sets S1 and S2, respectively.
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Chapter 4

Coordinated path following of

dynamic unicycles

In this chapter we consider the coordinated path following problem for N unicycle mobile

robots, and solve it as a nested set stabilization problem. Experimental results are also

presented. Portions of this chapter have appeared in [18] and have been accepted for

publication in [19].

4.1 Introduction

Following Chapter 2 the coordinated path following problem is formulated as a nested

set stabilization problem. Given arbitrary paths for unicycles we characterize the path

following manifold of each agent. We show that each unicycle is feedback equivalent, in a

neighbourhood of its path following manifold, to a system whose transversal and tangential

dynamics to the path following manifold are both double integrators. While our results are
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local, valid in a neighbourhood of each unicycle’s path, it is possible to extend the region

of attraction of the proposed controllers using switched controllers [89, 63]

As discussed in Chapter 2, we model the coordination task as an embedded submanifold

of the multi-agent path following manifold. In the case where the communication graph

is complete we present sufficient conditions under which coordination specifications are

feasible in the sense of Definition 2.2.3. For arbitrary coordination tasks we utilize feedback

linearization to stabilize the nested set in a centralized manner. In the special case in

which coordination entails making the unicycles maintain a formation along their paths,

we propose semi-distributed control law under less restrictive communication assumptions.

When all of the unicycles are assigned simple closed curves, our coordination problem

becomes closely related to the problem of oscillator synchronization [22]. In this case each

unicycle’s path following manifold is diffeomorphic to S1×R. An oscillator can be modeled

as a double-integrator with state space S1 × R. In this case coordinating the unicycle’s

velocities can be viewed as frequency synchronization of oscillators [59], [23]. When all

the unicycles must have the same position along their paths, coordination can be viewed

as a phase synchronization problem [79]. When all the unicycles are asked to maximally

spread themselves along their closed-paths, the coordination task can be viewed as phase

balancing [83]. In these application scenarios, existing distributed control laws can be

employed in conjunction with our path following control laws in a modular manner.

Similarly, when all unicycles are assigned non-closed paths, coordination is closely re-

lated to the consensus problem for double integrator dynamics. In this case each unicycle’s

path following manifold is diffeomorphic to R2. Consequently, in this special case, our ap-

proach allows one to use control laws from the literature that achieve consensus for double-

integrators for our coordination tasks. For example, when coordination entails reaching

consensus along paths, the results in [75] provide minimal connectedness conditions on the
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communication graph. When coordination involves reaching a common velocity along the

paths the results in [12] provide control laws respecting a switching communication graph.

4.2 The multi-agent system of dynamic unicycles

We consider a multi-agent system consisting of N unicycles. Following [25], the model of

unicycle i, i ∈ {1, · · · , N}, is

ẋi = vi cos (θi)

ẏi = vi sin (θi)

θ̇i = ui,2

v̇i = ui,1

(4.1)

where (xi, yi) denotes the position of the unicycle in the plane, θi is the heading angle, and

vi is the forward velocity of the unicycle. The control inputs ui,1 and ui,2 are, respectively,

the forward acceleration and angular velocity. Let xi := (xi, yi, θi, vi) ∈ R2 × S1 × R.

Let τ(θi) := (cos(θi), sin(θi)) denote the unicycle’s heading. We take the position of the

unicycle i as its output yi = hi(xi) := (xi, yi). The state of the multi-agent system is

x := (x1, . . . ,xN) ∈ (R2 × S1 × R)N . Unless otherwise stated, we make the following

simplifying assumption throughout this chapter.

Assumption 4.2.1. The communication graph G of the multi-agent unicycle system is

complete. C

Assumption 4.2.1 is unnecessarily restrictive for implementing the proposed control

laws. Characterizing the minimal communication requirements needed for implementation

is an open problem.
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4.3 The multi-agent path following manifold

4.3.1 Characterization of the multi-agent path following mani-

fold

Each unicycle is assigned a path γi ⊂ R2 in its output space. The parameterization of path

i is σi : R → R2 with γi = σi(R). If path i is closed then the domain of σi is RmodLi

where Li > 0 is the length of the curve. Let ϕi : R → S1 be the map associating to each

λ ∈ R the angle of the tangent vector σ′i(λ) to γi at σi(λ). As discussed in Section 1.2.1

we assume that each path satisfies Assumption 1.2.1. Let

Γi := {xi ∈ R2 × S1 × R : αi(xi) := si ◦ hi(xi) = 0}

and Γ := Γ1 × · · · × ΓN . The largest-controlled invariant subset of Γi is [69]

Γ?i = {xi : αi(xi) = 〈dsi(h(xi)), τ(θi)〉 = 0} . (4.2)

This set has dimension n?i = 2. By Definition 2.1.5, the multi-agent path following manifold

is the product of each agent’s individual path following manifold.

Proposition 4.3.1. For i ∈ {1, · · · , N} the set Γ?i \ {vi = 0}, where Γ?i is given by (4.2),

consists of four disconnected components.
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Proof. Fix i ∈ {1, · · · , N} and consider the set Γ?,•i,• := Γ?,fi,+ ∪ Γ?,ri,+ ∪ Γ?,fi,− ∪ Γ?,ri,− where

Γ?,fi,+ := {xi ∈ Γ?i : vi > 0, 〈σ′i(λ), τ(θi)〉 = 1, λ ∈ R}

Γ?,ri,+ := {xi ∈ Γ?i : vi < 0, 〈σ′i(λ), τ(θi)〉 = 1, λ ∈ R}

Γ?,fi,− := {xi ∈ Γ?i : vi > 0, 〈σ′i(λ), τ(θi)〉 = −1, λ ∈ R}

Γ?,ri,− := {xi ∈ Γ?i : vi < 0, 〈σ′i(λ), τ(θi)〉 = −1, λ ∈ R} .

(4.3)

We first show that Γ?,•i,• has four disconnected components, namely the sets (4.3). The sets

Γ?,fi,+∪Γ?,fi,− and Γ?,ri,+∪Γ?,ri,− are disjoint because any path in the state space connecting these

sets must pass through a point at which vi = 0.

Next assume, without loss of generality, that x̄i ∈ Γ?,fi,+. To connect x̄i to another point

¯̄xi ∈ Γ?,fi,− it has to pass through a point corresponding to 〈σ′i(λ), τ(θi)〉 = 0. This shows

that Γ?,fi,+ and Γ?,fi,− are not path connected. A similar argument holds for Γ?,ri,+ and P ?,r
i,−.

Together, these facts show that Γ?,•i,• is not path connected. By, Proposition [62, Proposition

1.8] a topological manifold is connected if and only it is path connected. Thus, Γ?,•i,• is not

connected.

Lastly, we show that Γ?,•i,• = Γ?i \ {vi = 0}. By definition we have that Γ?,•i,• ⊆ Γ?i .

Conversely, let xi = (xi, yi, θi, vi) ∈ Γ?i with vi 6= 0. Since Γ?i is an invariant set contained

in Γi, the unicycle’s heading must be tangent to the path for, otherwise, it would leave

the path for some time and hence leave the set Γi. This implies that | 〈σ′i(λ), τ(θi)〉 | = 1

where λ ∈ R satisfies yi = σi(λ). This shows that Γ?i ⊆ Γ?,•i,• .

The notation in (4.3) is evocative of the physical interpretation of these sets. The

superscript f stands for forward direction, the superscript r stands for reverse direction,

the subscript + indicates the unicycle is moving in the same direction as curve’s orientation,
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and subscript − indicates the unicycle is moving opposite to the curve’s orientation. In

Figure 4.1 the four different types of motion corresponding to the four components of

Γ?i \ {vi = 0} are illustrated.

(a) Γ?,f
i,+ (b) Γ?,r

i,−

(c) Γ?,f
i,− (d) Γ?,r

i,+

Figure 4.1: The motion of unicycle i restricted to the four components of Γ?i \ {vi = 0}.

4.3.2 Unicycle normal form

We transform the model of unicycle i to a convenient normal form. Among other useful

properties, the normal form suggests local coordinates on Γ?i that simplify finding the

coordination set. It also facilitates the design of decentralized control laws to stabilize Γ?.

Inspired by [14], we introduce a projection in the output space of the unicycle that

associates to each point yi sufficiently close to the path γi a number in R. Let

$i : N (γi)→ R

yi 7→ arg inf
λ∈R
‖yi − σi(λ)‖

(4.4)
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where N (γi) is a neighbourhood of γi. The open set N (γi) is such that, for all yi ∈ N (γi),

there exists a unique yi
? ∈ γi closest to yi, so $i is well-defined. The higher the curvature of

the path γi, the smaller the domain N (γi) of (4.4). Using (4.4) define πi(xi) := $i ◦hi(xi).

Finally, define the path following output function

ŷi := (πi(xi), αi(xi)) . (4.5)

Lemma 4.3.2. The unicycle (4.1) with output (4.5) yields a well-defined vector relative

degree of {2, 2} at each xi ∈ Γ?i \ {vi = 0}.

The proof of Lemma 4.3.2 is omitted because it is similar to [3, Lemma 4.1]. The

next lemma defines a coordinate transformation valid in a neighbourhood of each com-

ponent (4.3) of Γ?i \ {vi = 0}. The lemma explicitly addresses the component Γ?,fi,+ but a

similar result can be obtained for the remaining three components of Γ?i .

Lemma 4.3.3. There exists an open set U f
i,+ ⊆ R2 × S1 × R, with Γ?,fi,+ ⊂ U f

i,+ such that

Ti : U f
i,+ → Ti(U

f
i,+), xi 7→ (ηi,1, ηi,2, ξi,1, ξi,2) = (πi(xi), Lfπi(xi), αi(xi), Lfαi(xi)) is a

diffeomorphism onto its image.

Proof. The generalized inverse function theorem [41, p.56] is employed to prove this result.

We must show that

1. for all xi ∈ Γ?,fi,+, dTi(xi) is an isomorphism

2. Ti|Γ?,f
i,+

is a diffeomorphism.

To show that (1) holds, observe that det(dTi)|Γ?,f
i,+

= −vi(∂xiπi∂yiαi−∂xiαi∂yiπi)2. On Γ?,fi,+,

vi 6= 0. Using arguments analogous to those in [14, Lemma 3.2], dαi = [ ∂xiαi ∂yiαi 0 0 ]

and dπi = [ ∂xiπi ∂yiπi 0 0 ] are orthogonal on Γ?,fi,+ and so (∂xiπi∂yiαi − ∂xiαi∂yiπi) 6= 0.
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To show that (2) holds, note that the restriction of Ti to Γ?,fi,+ is given by (ηi,1, ηi,2, ξi,1, ξi,2) =

(πi(xi), Lfπi(xi), 0, 0). For xi ∈ Γ?,fi,+ we have that yi = h(xi) ∈ γi and so by the definition

of ηi,1 = πi(xi), (xi, yi) = σi(ηi,1). The vector σ′(ηi,1) is tangent to the curve γi at σi(ηi,1).

On the component Γ?,fi,+ of Γ?i , τ(θi) = σ′(ηi,1) and therefore θi = ϕi(ηi,1).

We are left to find an expression for vi. Direct calculations using the expression ηi,2 =

Lfπi(xi) yield vi = ηi,2/(∂xiπi cos θi + ∂yiπi sin θi).

By [14, Lemma 3.2], for all ηi,1 ∈ R, d$i(σi(ηi,1)) = σ′i(ηi,1). Therefore, for xi ∈ Γ?,fi,+,

dπi(xi) = [ σ′i(ηi,1)> 0 0 ] and we can write vi =
ηi,2

〈σ′i(ηi,1), τ(θi)〉 .On Γ?,fi,+, 〈σ′(ηi,1), τ(θi)〉 =

1 so vi = ηi,2. In summary, we have derived the inverse map T−1
i |Γ?,f

i,+
= (σi(ηi,1), ϕi(ηi,1), ηi,2)

which shows that Ti|Γ?,f
i,+

is a diffeomorphism onto its image.

Consider the regular feedback transformation

 ui,1

ui,2

 =
1

v2
i

 Lgi,2Lfαi −Lgi,2Lfπi

−Lgi,1Lfαi Lgi,1Lfπi


 −L2

fα + v
‖
i

−L2
fπ + vti

 (4.6)

where
(
v
‖
i , v

t
i

)
∈ R×R are auxiliary control inputs. The elements in (4.6) can be readily

computed [4, Section V]. By Lemma 4.3.2 this controller is well defined in a neighbourhood

of P?i \ {vi = 0}. Using the diffeomorphism Ti in Lemma 4.3.3, and feedback transforma-

tion (4.6), the dynamic unicycle (4.1) is feedback equivalent, in a neighbourhood of each

component of P?i \ {vi = 0}, to

η̇i,1 = ηi,2

η̇i,2 = v
‖
i

(4.7a)

ξ̇i,1 = ξi,2

ξ̇i,2 = vti .
(4.7b)
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Remark 4.3.4. We stress that unicycle i is not globally feedback equivalent to (4.7).

Furthermore, the equivalence does not hold when its translational velocity equals zero

vi = 0. The latter obstacle can be overcome using the switching scheme in [63].

We call the subsystem (4.7b) the transversal dynamics of unicycle i to each compo-

nent of Γ?i . This is because making each component of Γ?i attractive is equivalent, under

Assumption 1.2.1 and in particular equation (1.4), to stabilizing the origin of (4.7b). The

subsystem (4.7a) is called tangential dynamics of unicycle i with respect to each compo-

nent of Γ?i . The ηi,1 and ηi,2 states convey a strong physical meaning for coordinated path

following. The state ηi,1 represents the position of unicycle i along the path and the state

ηi,2 ∈ R represents its velocity along the path. Let ξ := (ξ1,1, . . . , ξN,1, ξ1,2, . . . , ξN,2) denote

the transversal states of the entire multi-agent unicycle system and vt := (vt1 , . . . , v
t
N). Let

η1 := (η1,1, . . . , ηN,1), η2 := (η1,2, . . . , ηN,2), η := (η1,η2), and v‖ := (v
‖
1, . . . , v

‖
N) then the

overall dynamics of the multi-agent system can be compactly written as

η̇ = A‖η +B‖v‖ (4.8a)

ξ̇ = Atξ +Btvt (4.8b)

where (At, Bt), (A‖, B‖) are controllable. The dynamics of the multi-agent system re-

stricted to Γ? are given by (4.8a) and these dynamics play a key role in achieving coordi-

nation.

Remark 4.3.5. The functions α1(x), · · · , αN(x) satisfy the conditions of [70, Theorem

3.1]. Thus, the multi-agent system dynamics transversal to the multi-agent path following

manifold can be feedback linearized as in (4.8b). In turn, it implies that conditions (b)

and (c) of Theorem 3.5.1 hold for the multi-agent system of unicycles.
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4.3.3 Topology of multi-agent path following manifold

The tangential dynamics (4.7a) evolve on the set (4.2). When the curve γi is non-closed

ηi,1 ∈ R and ηi,2 ∈ R; thus each component of Γ?i \ {vi = 0} is diffeomorphic to R × R.

When the path γi is closed then, by Assumption 1.2.1, it is a Jordan curve. In this case

ηi,1 ∈ RmodLi ' S1 and ηi,2 ∈ R; thus each component of Γ?i \ {vi = 0} is diffeomorphic

to S1 × R.

Assume, without loss of generality, that γi is closed for i ∈ {1, · · · , r}, r ≤ N and

non-closed for i ∈ {r+ 1, . . . , N}. Then each component of the multi-agent path following

manifold is diffeomorphic to Tr ×RN−r ×RN where Tr is the r-torus. This shows that Γ?

is unbounded even if every curve is closed.

As shown in the proof of Lemma 4.3.3, the tangential states in (4.7a) represent local

coordinates on each component of Γ?i \ {vi = 0}. When γi ' R then (Γ?,fi,+, ψi) with ψi :=

(πi|Γ?
i
, Lfπi|Γ?

i
) is a global coordinate chart, i.e., a single chart that covers the entire set

Γ?,fi,+. When γi is closed each component of Γ?i \ {vi = 0} is diffeomorphic to S1 × R and

cannot be covered with a single chart. Instead the coordinate chart (Ui, ψi) with Ui :=

(RmodLi) \ {0}×R ⊂ Γ?,fi,+ covers “most” of Γ?,fi,+. One could define another chart to cover

the omitted region, but this complication is not needed [10].

Since Γ? is a product manifold, (U, ψ) with U := U1× · · · ×UN and ψ := ψ1× · · · ×ψN
is a coordinate chart for Γ?. When all the paths are non-closed it covers the entire set Γ?,

otherwise it covers “most” of Γ?.
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4.4 Feasible coordination constraints

Let β : Γ? → Rc be a coordination function, see Definition 2.2.1. As discussed in Sec-

tion 4.3.3 each component of Γ? is diffeomorphic to Tr × RN−r × RN and the coordinate

chart (U, ψ) covers “most” of it. In this section we work with a local representation of the

coordination function, β̂ : ψ(U)→ Rc, defined by

U ⊆ Γ?

ψ
��

β // Rc

ψ(U) ⊆ R2N .
β̂

88

Remark 4.4.1. In order to define a coordination function globally, and avoid the use of

charts on Γ?, one uniquely identifies smooth functions on the r-torus with smooth periodic

functions on Rr. In light of the discussion in Section 4.3.3 we can then treat β̂ as a map

R2N → Rc, Li-periodic in its first r arguments [7].

For η ∈ ψ(U) the associated local coordination set introduced in Definition 2.2.2 is the

largest controlled-invariant subset of

C =
{
η ∈ ψ(U) : β̂(η) = 0

}
(4.9)

containing η. A coordination specification is feasible if its corresponding coordination set

is non-empty. We present sufficient conditions for both linear and nonlinear coordination

specifications to be feasible under Assumption 4.2.1, i.e, all-to-all communication.
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4.4.1 Linear-affine coordination

Consider a linear-affine coordination function

C =
{
η ∈ ψ(U) : β̂(η) = Aη + b = 0

}
(4.10)

with A ∈ Rc×2N , rank (A) = c, and b ∈ ImA. We write A = [ A1 A2 ] and b = (b1, b2) in

accordance with the partition η = (η1,η2).

Proposition 4.4.2. Consider the set (4.10) and let R be a full rank matrix satisfying

RA2 = 0. If

1. (∀ η2 ∈ C) RA1η2 = 0, or

2.

Im

 b

0

 ∈ Im

 A1 A2

0 RA1

 (4.11)

then, for each η ∈ C, the set C? is non-empty.

Proof. By the definition of (4.10), b ∈ ImA, therefore the set C is non-empty. For the set

C itself to be controlled invariant there must exist a control law v‖ such that the derivative

of Aη+b is identically zero. Taking the derivative of β̂ along solutions of the system (4.8a)

we obtain

A1η2 + A2v
‖|C= 0. (4.12)

Left multiply equation (4.12) by R to obtain that the equation (4.12) is solvable in v‖ if

and only if RA1η2|C= 0. In this case C? = C and is non-empty.
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If, on the other hand, there exists η2 ∈ C for which RA1η2 6= 0, then (4.12) is not

solvable using v‖. In this case we add the constraint RA1η2 = 0 to C and obtain a new set

C1 = {η ∈ C : RA1η2 = 0} .

In order for the set C1 to be controlled invariant there must exist a control law v‖ such

that the derivative of RA1η2 along solutions of system (4.8a) is identically zero. Setting

the derivative equal to zero we obtain

RA1v
‖|C1= 0.

Any feedback control law that satisfies, for all η ∈ C1, v‖(η) ∈ Ker (RA1), solves this

equation, so the coordination set, C?, equals C1. Condition (4.11) guarantees that C1 is

non-empty.

Example 4.4.3. Consider N = 3 unicycles. They are required to move along non-closed

paths with constant velocity vd > 0. That is βi = ηi,2 − vd for i ∈ {1, . . . , 3}. Moreover,

they are required to obtain a formation which is defined based on the relative distance

between unicycles. For instance, consider the case when three parallel paths are given and

the three unicycles are required to get on the paths and form a triangle as depicted in

Figure 4.2. To accomplish this formation the ηi,1 for i ∈ {1, 2, 3} need to satisfy

η1,1 − η2,1 = b

η2,1 − η3,1 = −b
(4.13)

where b ≥ 0. The above coordinated path following problem can be expressed in terms of
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Figure 4.2: Triangle formation along parallel straight lines paths for three unicycles.

the matrices A1, A2, and b

A1 =



1 −1 0

0 1 −1

0 0 0

0 0 0

0 0 0


A2 =



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


b =



b

−b

vd

vd

vd


Since η2 = (vd, vd, vd) and R =

[
12×2, 03×3

]
, one can verify that RA1η2 = 0; thus,

using proposition (4.4.2) we conclude that C? = C and is non-empty. M

We now present an example of an infeasible coordination task.

Example 4.4.4. Consider two unicycles. They are asked to be aligned, that is η1,1 = η2,1.

The velocity of the first unicycles is asked to be η1,2 = v > 0 and that of the second unicycle

is asked to be η2,2 = 2v. Intuitively, we see that this coordination constraint does not make

physical sense and should be infeasible. We verify our intuition using Proposition 4.4.2
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.This coordination can be expressed in terms of the matrices A and b as

A1 =


1 −1

0 0

0 0

A2 =


0 0

1 0

0 1

 b =


0

v

2v

 (4.14)

We calculate R =
[

1 0 0
]

and RA1η2 =
[

1 −1
]
η2 which is nonzero on C. We can

see that

rank



1 −1 0 0 0

0 0 1 0 v

0 0 0 1 2v

0 0 1 −1 0


6= rank



1 −1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1


(4.15)

so based on Proposition 4.4.2 the set C? is empty as intuitively expected. M

Nonlinear Coordination

Consider a coordination specification described by a nonlinear coordination function β̂ :

ψ(U) ⊆ R2N → Rc. We emphasize that either (i) β̂ is the local representation of a coor-

dination function in a chart (U, ψ) or (ii) it is a global function β̂ : R2N → Rc which

is Li-periodic in its first r arguments. By Definition 2.2.1 the set (4.9) is a smooth

(2N − c)-dimensional embedded submanifold of ψ(U). Consider the partition for dβ̂(η) =

[ ∂η1
β̂ ∂η2

β̂ ] in accordance with η = (η1,η2). Propositions 4.4.5 and 4.4.6 give sufficient

conditions for velocity coordination and position coordination constraints to be feasible.

Proposition 4.4.5 (Nonlinear velocity coordination). If the coordination function satisfies

∂η1
β̂ ≡ 0 then, for each η ∈ C, C? = C and is non-empty.
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Proof. To check whether or not C is controlled-invariant we take the derivative of β̂ along

solutions of the system (4.8a) to obtain ∂η2
β̂v‖ = 0. Since v‖ = 0 trivially solves this

equation we have C? = C.

Proposition 4.4.6 (Nonlinear position coordination). If the coordination function satisfies

∂η2
β̂ ≡ 0 and η ∈ C is such that ∂η1

(
∂η1

β̂η2

)
η2 ∈ Im ∂η1

β̂ then, the local coordination

set C? is non-empty.

Proof. By assumption, the derivative of β̂ along solutions of (4.8a) equals ∂η1
β̂η2 = 0.

Since no control inputs appear we impose the additional constraint ∂η1
β̂η2 = 0 to the set

C and obtain C1 = {η ∈ C : ∂η1
β̂η2 = 0}. This set is a closed-embedded submanifold of

dimension 2N − 2c ≥ 0 because its defining constraints are a submersion

rank

 ∂η1
β̂ 0N

∂η1

(
∂η1

β̂η2

)
∂η1

β̂

 = 2c ≤ 2N.

In order to check controlled-invariance of C1 we take the derivative of the constraint

∂η1
β̂η2 = 0 along solutions of (4.8a) to obtain ∂η1

(
∂η1

β̂η2

)
η2 + ∂η1

β̂v‖ = 0. The con-

dition ∂η1
β̂(∂η1

β̂η2)η2 ∈ Im ∂η1
β guarantees that the above equation is solvable in v‖ for

η ∈ C1 ⊆ C and therefore C? = C1.

Example 4.4.7. Consider N = 2 unicycles that must coordinate their velocites. The first

unicycle is asked to have its velocity as a function of the velocity of the second unicycle.

β(η) = η1,2 − 2− sin(η2,2). (4.16)

Since ∂η1
β ≡ 0 by Proposition (4.4.5) we conclude that the coordination set is non-empty.

M
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4.5 Control design

We now design feedback controllers to solve our coordinated path following problem.

4.5.1 Stabilizing the multi-agent path following manifold

To accomplish PF the multi-agent path following manifold Γ? must be stabilized. As

discussed in Section 4.3.2, this can be done by asking each unicycle to stabilize its own

component Γ?i . To stabilize Γ?i we select the simplest transversal controller for unicycle i

vti (ξi) = −ki,1ξi,1 − ki,2ξi,2 (4.17)

with ki,1, ki,2 > 0, i ∈ {1, · · · , N}. For fast convergence to the path one typically chooses

the gains so that the roots of the polynomial s2 + ki,2s+ ki,1 are far to left in the open left-

half complex plane. Alternatively, optimal linear quadratic regulation or model predictive

control can can be employed when actuator constraints are a concern. With the above

choice the origin of each transversal subsystem is rendered exponentially stable.

Remark 4.5.1. If the trajectory of the unicycle is bounded, then stabilizing (ξi,1, ξi,2) = 0

is equivalent to stabilizing Γ?i . When the path is non-closed γi itself is unbounded and

so traversing the path results in unbounded trajectories for the unicycle. In that case,

Assumption 1.2.1 and in particular (1.4) ensures that (ξi,1, ξi,2) → 0 ⇐⇒ xi → Γ?i [27].

Intuitively, (1.4) requires that for all c 6= 0, the distance between any point in s−1
i (c)

and any point in s−1
i (0) be bounded. The component of Γ?i that the unicycle approaches

depends on initial conditions.
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4.5.2 Centralized stabilization of the coordination set

Given a feasible local coordination set C? ⊆ ψ(U) and η ∈ C? we seek to, under Assump-

tion 4.2.1, feedback linearize that portion of the tangential dynamics (4.8a) that governs

whether or not coordination is being achieved. This is equivalent to the following zero

dynamics assignment problem [70] : Find a function β̃ : V ⊆ ψ(U) → Rc, V is an open

set containing η such that (i) β̃ yields a well-defined vector relative degree for the tangen-

tial dynamics (4.8a) at η and (ii) the associated zero dynamics manifold equals C? ∩ V .

Following Remark 3.4.3 if conditions of Theorem 3.4.2 hold the zero dynamic assignment

problem can be solved. If such a function exists then, in a neighbourhood of η, the tan-

gential dynamics (4.8a) are locally feedback equivalent to

ζ̇ = f(ζ,µ) + gt(ζ,µ)τ t + g‖(ζ,µ)τ ‖

µ̇ = Aµ+Bτ t
(4.18)

where (ζ,µ) ∈ Rc? × R2N−c? , c? := dim C?, (A,B) controllable, and C?, expressed in

(ζ,µ)−coordinates, is given by {(ζ,µ) : µ = 0}. A natural candidate for the function

β̃ is the coordination function β̂ itself. We explore this possibility in Propositions 4.5.6

and 4.5.7.

In (4.18) the µ-subsystem describes the motion transversal to the set C? but tangential

to Γ?. Since (A,B) is controllable, there exists a linear feedback τ t = Fµ that exponen-

tially stabilizes the origin of the µ-subsystem. Then, because the set C? is not necessarily

bounded, under similar caveats as those discussed in Remark 4.5.1 the set C? is rendered

locally attractive and invariant and specification S1 is achieved.

The ζ-subsystem in (4.18) describes the dynamics tangent to both C? and ψ(U). When
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restricted to C?, the multi-agent unicycle system evolves according to

ζ̇ = f(ζ, 0) + g‖(ζ, 0)τ ‖. (4.19)

System (4.19) models the group dynamics while restricted to evolve on the assigned paths

and restricted to coordinated motion. In some cases it may be possible to use the remaining

control inputs τ ‖ to satisfy S2, see Propositions 4.5.6 and 4.5.7. In Figure 4.3 the proposed

control architecture is illustrated.

Unicycle 1

Feedback
Transformation

(4.6)

Diffeomorphism
for Unicycle 1
Lemma 4.3.3

v
‖
1

vt1

Unicycle N

Feedback
Transformation

(4.6)

Diffeomorphism
for Unicycle N
Lemma 4.3.3

v
‖
N

vtN

Diffeomorphism
Leading to (4.18)

τ ‖τt

Feedback
Transformation

Leading to (4.18)

η̇ = A‖η +B‖v‖

(4.8a)

u1

(ξ1,1, ξ1,2)

x1

(η1,1, η1,2)

uN

(ξN,1, ξN,2)

xN

(ηN,1, ηN,2)η

v‖

µ ζ

Figure 4.3: Block diagram of the closed-loop system.

Remark 4.5.2. It is worthwhile to compare the complexity of our proposed design to that

of other studies. In our approach, instead of directly designing coordinated path following

controllers, we first apply a coordinate and feedback transformation that brings the uni-

102



cycles into the normal form (4.7) and then another that brings the multi-agent tangential

dynamics (4.8a) into the form (4.18). The process of bringing the unicycles into these

normal forms can involve complex, though straightforward, computations depending on

the assigned paths and coordination task. However, once the normal form is obtained,

controller design is greatly simplified. The main challenge in implementing our controllers

is the computation of (4.4). In general this expression does not have a closed-form solu-

tion so numerical optimization algorithms must be employed [14]. A similar computation is

required to implement methods relying on Frenet-Serret frames [36, 39]. In the curve exten-

sion method path following and coordination controller design are performed together. The

implementation of the proposed controllers can involve complex computations depending

on the paths. See, for example, [13, Equations (32),(52)].

As mentioned in Chapter 1, decoupling method and curve extension method are two

distinct approaches employed to solve coordinated path following problem. In Table 4.1 a

qualitative comparison between these methods and that of this thesis is provided

Decoupling
method [38]

Curve extension
method [13]

Our method

Path following
controller

Global Local Local

Coordination
controller Distributed Distributed Centralized

Path invariance No No Yes

Coordination
specification

Formation
coordination

Formation
coordination

General
coordination

Coordination
specification
invariance

No No Yes

Table 4.1: Comparison of different approaches on coordinated path following problem
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The next theorem explicitly addresses the component P?,f+ := P?,f1,+×· · ·×P
?,f
N,+ ⊂ P? but

a similar result can be obtained for other components of P?. The next theorem explicitly

addresses the component Γ?,f+ := Γ?,f1,+×· · ·×Γ?,fN,+ ⊂ Γ? but a similar result can be obtained

for other components of Γ?.

Theorem 4.5.3. Suppose Assumptions 1.2.1 and 4.2.1 hold. Fix x̄ ∈ Γ?,f+ and let U ⊂

(R2 × S1 × R)N , Γ?,f+ ⊂ U be an open set on which the multi-unicycle system is feedback

equivalent to (4.8). Suppose (4.8a) is feedback equivalent, in an open set V ⊆ T (U) con-

taining T (x̄) to (4.18) and there exist class-K∞ functions ρ1, ρ2 : [0,∞)→ R+ such that

(∀η ∈ V ) ρ1 (dist(η, C?)) ≤ ‖µ(η)‖ ≤ ρ2 (dist(η, C?)) . (4.20)

If each unicycle’s transversal control is given by (4.17), τ t = Fµ is such that A + BF

is Hurwitz, and τ ‖ is such that for each (ξ(0),η(0)) ∈ V , (ξ(t),η(t)) ∈ V for all t ≥ 0,

then Γ? ∩ T−1(V ) is asymptotically stable, C? ∩ T−1(V ) is asymptotically stable relative to

Γ? ∩ T−1(V ), and C? ∩ T−1(V ) is asymptoticly stable.

Remark 4.5.4. We once again stress that the existence of the function β̃ only guarantees

local equivalence between the tangential dynamics (4.8a) and (4.18). Intuitively this means

that the controllers of Theorem 4.5.3 only solve the coordinated path following problem if

the unicycles are not too far from coordination at t = 0.

Proof of Theorem 4.5.3. Let vt = F tξ be the overall transversal controller where F t is

an N × 2N matrix composed of the gains in equation (4.17). By hypothesis, the multi-

agent tangential dynamics (4.8a) are locally feedback equivalent to (4.18). In T−1(V ) the
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closed-loop system is feedback equivalent to

ζ̇ = f(ζ,µ) + gt(ζ,µ)Fµ+ g‖(ζ,µ)τ ‖

µ̇ = (A+BF )µ

ξ̇ = (At +BtF t)ξ.

(4.21)

By hypothesis, solutions starting in V remain in V for all t ≥ 0, and At+BtF t and A+BF

are Hurwitz, therefore (µ, ξ) = (0, 0) is exponentially stable for the (µ, ξ)-subsystem.

By hypothesis solutions starting in T−1(V ) remain there. Under condition (1.4) Γ? ∩

T−1(V ) is attractive. Under condition (4.20) C? ∩ T−1(V ) is attractive relative to Γ? ∩

T−1(V ). And under conditions (1.4) and (4.20), C? ∩ T−1(V ) is attractive.

By exactly the same argument in the proof of Theorem 3.6.1 we conclude that Γ? ∩

T−1(V ) is stable, C? ∩ T−1(V ) is stable relative to Γ? ∩ T−1(V ), and C? ∩ T−1(V ) is stable.

Thus, Γ?∩T−1(V ) is asymptotically stable, C?∩T−1(V ) is asymptotically stable relative

to Γ? ∩ T−1(V ), and C? ∩ T−1(V ) is asymptotically stable.

Remark 4.5.5. In Section 3.6 sufficient conditions are presented under which Problem 5

is solvable. For unicycles, the previous result proves that Problem 5 is solvable under less

restrictive sufficient condition where the boundedness assumption is removed provided that

Assumption 4.2.1 holds.

Theorem 4.5.3 shows that under suitable assumptions, as opposed to more general

scenarios [27, 17], for a multi-agent unicycle system the set C? can be rendered locally

asymptotically stable via feedback regardless of whether it is initialized on Γ?.
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4.5.3 Velocity and position coordination

In this section we investigate velocity and position coordinations as two special, but im-

portant, cases of coordination specifications.

Proposition 4.5.6 (Velocity coordination). Given tangential dynamics (4.8a), a coor-

dination function β̂ satisfying the hypotheses of Proposition 4.4.5, and a point η̄ ∈ C?,

there exist a neighbourhood V ⊆ ψ(U) containing η̄ and a function β̃ : V → RN which

satisfies rank dβ̃η̄ = N . Moreover, the tangential dynamics (4.8a) with output β̃ yields a

well-defined relative degree of {1, · · · , 1} at η̄.

Proof. Since ∂η1
β̂ ≡ 0 it follows rank dβ̂ = rank ∂η2

β̂ = c ≤ N . Let φ : V ⊆ ψ(U) →

RN−c be a function such that ∂η1
φ ≡ 0 and rank ∂η2

φ = N − c. Define β̃ = (φ, β̂). It

is immediately evident that it has rank N at η̄. Direct calculations yield LB‖ β̃(η) =

(∂η2
φ(η), ∂η2

β̂(η)). Since rankLB‖ β̃(η̄) = N , the proof is complete.

Using the function β̃ of Proposition 4.5.6 and employing input-output feedback lin-

earization, the tangential dynamics (4.8a) are locally feedback equivalent to

ζ̇1 = f̂(ζ1, ζ2,µ) + ĝt(ζ1, ζ2,µ)τ t + ĝ‖(ζ1, ζ2,µ)τ ‖

ζ̇2 = τ ‖

µ̇ = τ t

(4.22)

where (ζ1, ζ2,µ) ∈ RN × RN−c × Rc, (τ t, τ ‖) ∈ Rc × RN−c, f̂ : V ⊆ R2N → RN is a

smooth function, and ĝ‖ : V ⊆ R2N → RN×N−c and ĝt : V ⊆ R2N → RN×c are smooth

matrix-valued functions. In (4.22), the µ and ζ2-dynamics are decoupled which allows

one to design the control laws τ t, τ ‖ separately, The input τ ‖ can be used to control the

velocity of the coordinated unicycles along their assigned paths.
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Proposition 4.5.7 (Position coordination). Given the tangential dynamics (4.8a), a co-

ordination function β̂ satisfying conditions of Proposition 4.4.6, and a point η̄ ∈ C?, there

exist a neighbourhood V ⊆ ψ(U) containing η̄ and a function β̃ : V → RN which satisfies

rank dβ̃η̄ = N . Moreover, the tangential dynamics (4.8a) with output β̃ yield a well-defined

vector relative degree of {2, · · · , 2} at η̄.

Proof. Let φ : V ⊆ ψ(U)→ RN−c be a function such that ∂η2
φ ≡ 0 and rank ∂η1

φ = N−c.

Define β̃ = (φ, β). Since ∂η2
β̂ ≡ 0 it follows rank dβ̂ = rank ∂η1

β̂ = c ≤ N . As a

result β̃ has rank N at η̄. Simple calculations give LB‖ β̃ = 0N and LB‖LA‖ηβ̃(η) =

(∂η1
φ(η), ∂η1

β̂(η)) which has rank N at η̄.

The function β̃ of Proposition 4.5.7 can be used to feedback linearize the tangential

dynamics (4.8a) to obtain

ζ̇1 = ζ2

ζ̇2 = τ ‖

µ̇1 = µ2

µ̇2 = τ t.

(4.23)

where (ζ1, ζ2,µ1,µ2) ∈ RN−c × RN−c × Rc × Rc, (τ t, τ ‖) ∈ Rc × RN−c. In (4.23), the

(µ1,µ2) and (ζ1, ζ2)−dynamics are decoupled. As a result, the control inputs τ t and τ ‖

can be designed separately. The input τ ‖ can be used to control the position and velocity

of the coordinated unicycles along their assigned paths.

Example 4.5.8. Consider a multi-agent system of three unicycles which are required to
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follow the paths

γ1 = y1,2 + 7 = 0

γ2 = y2
2,1 + y2

2,2 − 4 = 0

γ3 = y2
3,1 + y2

3,2 − 36 = 0.

The path following controller is designed by first feedback linearizing each unicycle to

bring them into the normal form given (4.7). The transversal control input for unicycle i,

i ∈ {1, 2, 3} is designed as

vti = −ki,1ξ1 − ki,2ξ2

where ki,1, ki,2 > 0.

While the unicycles are on their paths we ask that unicycles 1 and 3 traverse the same

arc-length. Unicycle 2 is required to cover for unicycle 3 by oscillating about unicycle 3.

Moreover, the unicycle 1 is required to move with a prescribed velocity vd = 3m/s. Note

that η1,1 ∈ R while η3,1 ∈ [0, 12π) and they are arc-length. One choice of coordination

function that encodes this coordination specification is

β =

 η3,1 − η1,1 mod 12π

η2,1
2
− η3,1

6
− c sin(η3,1

6
)


where c ≥ 0 determines the range of coverage for unicycle 2. For this example we select c =

π
8
. One can verify that the coordination function satisfies the conditions of Proposition 4.4.6

thus C? = C = β−1(0) and is non-empty. Conditions of Proposition 4.5.7 hold and following

its proof we find β̂ = (β(η), η1,1). Thus, the tangential dynamics given by (4.8a) with N = 3
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writes

ζ̇1 = ζ2

ζ̇2 = τ ‖

µ̇1 = µ2

µ̇2 = τt1

µ̇3 = µ4

µ̇4 = τt2 .

We design

τt1 = −k1 sin(µ1)− k2µ2, τt2 = −k3 sin(µ3)− k4µ4

with k1, k2, k3, k4 > 0 to stabilize the coordination set C?. Since µ1 and µ3 are 2π-periodic

we have added sinusoid functions to make τt1 and τt2 2π-periodic. As a result, they are

defined on multi-agent path following manifold globally. On C? we design τ ‖ to make

unicycle 1 move with constant velocity vd. Let τ ‖ = −k (ζ2 − 3) with k > 0. Figure 4.4(a)

shows the position of unicycles along their paths. The path following errors for unicycles

are computed as e1,PF = y1 + 7, e2,PF =
√
x2

2 + y2
2 − 2, e3,PF =

√
x2

3 + y2
3 − 6, and

are depicted in Figure 4.4(b). Figure 4.5(a) shows that βi, i ∈ {1, 2} approaches zero.

Figure 4.5(b) shows the velocities of the unicycles along their corresponding paths. It is

evident that η1,2 has reached vd = 3 as desired. Note, since unicycles 1 and 3 must traverse

the same arc-length they must have the same velocity.

M

Feedback linearization is often criticized for being susceptible to modelling error and

disturbances, in short, for not being robust. The following example, as well as the experi-

mental results of Section 4.6 partially address these concerns.
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Figure 4.5: Coordination of unicycles in Example 4.5.8.

Example 4.5.9. Consider a multi-agent system of three unicycles which are required to

follow the paths

γ1 = y1,2 − sin

(
1

2π
y1,1

)
= 0

γ2 = y2,2 − 2 = 0

γ3 = y3,2 + sin

(
1

2π
y3,1

)
− 4 = 0.
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We assume that model of unicycle i, i ∈ {1, 2, 3}, is affected by disturbances as follows

ẋi = vi cos (θi) + Ai sin(ωit+ φi)

ẏi = vi sin (θi) + Ai sin(ωit+ φi)

θ̇i = ui,2 + Ai sin(ωit+ φi)

v̇i = ui,1 + 0.5vi,

where wi, ωi, and φi are given in Table 4.5.9.

Ai ωi φi

Unicycle 1 0.1 1 π
3

Unicycle 2 0.2 1.5 −π
3

Unicycle 3 0.3 2 0

Table 4.2: Properties of disturbances

While the unicycles are on their paths we ask that all three unicycles traverse the same

amount of arc-length at any moment in time. Moreover, the unicycles are required to move

with a prescribed velocity vd = 1m/s. Since ηi,1 specifies the arc-length of unicycle i along

its path, one choice of coordination function that encodes this specification is

β =

 η3,1 − η1,1

η2,1 − η3,1

 .
One can verify that the coordination function satisfies the conditions of Proposition 4.4.6

thus C? = C = β−1(0) and is non-empty. Following similar procedure as in Example 4.5.8

we design the path following and coordination control laws. Since the paths are all non-

closed we do not use sinusoid functions.
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Figure 4.6(a) shows the position of unicycles along their paths. Figure 4.6(b) shows the

ξi,1 as an indication of path following performance. Figure 4.7(a) shows the coordination

function. Figure 4.7(a) depicts the velocity of unicycles along their paths. While the

performance is clearly deteriorated, the simulations show that in this case the proposed

approach still works reasonably well despite the presence of some unmodelled disturbances

and modelling errors. M

−20 −10 0 10 20 30 40

−2

−1

0

1

2

3

4

5

6
Unicycles following their corresponding paths

(a) Unicycles following their corresponding
paths

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

t(sec)

ξ i
,1

ξ1,1

ξ2,1

ξ3,1

(b) Transversal state ξi,1 for i ∈ {1, 2, 3}

Figure 4.6: Path following of unicycles in the presence of disturbances in Example 4.5.9.
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4.5.4 Semi-distributed stabilization of a linear-affine coordina-

tion set

Here we consider a specific, yet useful, choice of linear-affine coordination function β̂(η).

Consider a coordination constraint in which every two consecutive unicycles must maintain

a constant arc-length separation. i.e., ηi+1,1 − ηi,1 − bi,1 = 0, i ∈ {1, · · · , N − 1} where

bi,1 ∈ R. Moreover, it is required that once all the agents are in formation they all move with

a desired velocity vd > 0, i.e., ηi,2 − vd = 0, i ∈ {1, · · · , N}. This particular coordinated

path following problem is the same as the formation control problem investigated in [75].

We can represent this special coordination function as a linear-affine function. In order to

do so we add a redundant constraint ηN,1 − η1,1 − bN,1 = 0 and define the coordination

function β̂(η) = Aη + b as

b1 =


b1,1

...

bN,1

 , b2 = −vd1N , A1 =

 A11

0N

 , A2 =

 0N

IN

 (4.24)

where A11 ∈ RN×N is the circulant matrix

A11 =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

...
...

...

−1 0 0 · · · 1


. (4.25)

Assumption 4.5.10. The numbering assigned to the agents, the prescribed velocity vd,

the vector b1, and a number k > 0 are known to each unicycle. C
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In particular, we no longer make Assumption 4.2.1 and instead make the following, less

restrictive, assumption.

Assumption 4.5.11. The communication graph G of the multi-agent unicycle system is

rooted out-branching. C

Lemma 4.5.12. Let G be a weighted and directed graph on N vertices and let L be its

Laplacian matrix. If H := −LUN then HA11 = −L where A11 is given by (4.25).

Proof. Since H = −LUN we must show that −LUNA11 = −L. Let Li denote the ith

column of −L, for i ∈ N. Then −LUNA11 =

[
N∑
i=2

−Li L2 · · · LN

]
. A well-know

property of the Laplacian matrix is that its columns sum to zero, i.e, L1 +L1 + . . .+LN =

0 [76]. So, we can write the first column, L1, in terms of other columns L1 = −(L2 +L3 +

. . .+ LN). As a result

−LUA11 =
[
L1 L2 · · · LN

]
= −L

Proposition 4.5.13. If each path γi, i ∈ {1, · · · , N} is non-closed and the communication

graph G of the multi-unicycle system is rooted out-branching then the control law

v
‖
i =

N∑
j=1

wij

ηj,1 − ηi,1 − (j − i)
|j − i|

max{i,j}−1∑
p=min{i,j}

b1,p

− k (ηi,2 − vd) (4.26)

where wij are entries of the adjacency matrix W (G ) and k > 0, renders C? globally

asymptotically stable relative to Γ?.

Remark 4.5.14. The control law (4.26) is an extension of the control law given in [75,

Control law 2]. Similar control laws can be found in swarming problems [50, Equation 1].
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Proof. We view the coordination function as an error function e = Aη + b. Partitioning

e = (e1, e2) in accordance with the linear coordination function we have

e1 = A11η1 + b1

e2 = η2 + b2.
(4.27)

The closed-loop error dynamics resulting from applying the control law (4.26) to the dy-

namics on ψ(U) given in (4.8a) are

 ė1

ė2

 =

 0N A11

H −kIN

 e1

e2

 =: Ee. (4.28)

An immediate result is that 0 is an eigenvalue of matrix E since A11 has rank N − 1.

However, we do not yet know the algebraic multiplicity of the eigenvalue 0. In the following

we find the remaining eigenvalues of the matrix E. Let λ be an eigenvalue of E with

associated eigenvector (x, y) ∈ CN×CN . The relation between eigenvalues and eigenvectors

of the matrix E is

A11y = λx

Hx− ky = λy.
(4.29)

Suppose that λ 6= 0. Combining the equations in (4.29) and using the result from

Lemma 4.5.12 we obtain

1

λ
HA11︸ ︷︷ ︸
−L

y − ky = λy ⇒ −Ly = (k + λ)λy. (4.30)

The Laplacian L has eigenvalues {ν1, . . . , νN}, one of which is zero. From (4.30) we deduce
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that (k + λ)λ is an eigenvalue of −L. This yields the following N equations

(k + λi)λi = νi, i ∈ {1, · · · , N} .

There are 2N solutions to the above equations

λ±i =
−k ±

√
k2 + 4νi
2

, i ∈ {1, · · · , N} .

Since we assumed that λ 6= 0 in (4.30), the solution λ+
1 = 0 corresponding to νi = 0

is not an allowable solution. However, since we already know that 0 is an eigenvalue of

E; it’s just not obtained from solving above equation. Since G is rooted out-branching,

the algebraic and geometric multiplicity of νi = 0 is 1. Therefore, all the λ±i ’s obtained

from above equation have negative real parts, since λ−1 = −k and rest of νi have negative

real parts. As a result, the eigenvalue 0 has geometric and algebraic multiplicity of 1.

Using standard spectral theory, there exists a 2N × 2N matrix V such that the similarity

transform E 7→ V −1EV yields the Jordan form EJF = diag(0, J1, . . . , Jr) where r is the

number of distinct eigenvalues of E and each Jordan block Ji has the form λiI+Ni, where

Ni is a nilpotent matrix in Jordan form and Re (λi) < 0. We therefore have that

lim
t→∞

eEt = lim
t→∞

V eEJF tV −1 = V diag(1, 0, . . . , 0)V −1

= p1q1

where p1 is the first column of V and q1 is the first row of V −1. It is easy to see that p1

and q1 are, respectively, the right and left eigenvectors of E associated with the eigenvalue
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0. Thus, for any e(0) ∈ R2N , the solution to (4.28) can be written.

lim
t→∞

e(t) = (q1e(0))p1. (4.31)

Direct calculations reveal that the following are, respectively, the right and left eigenvectors

of the matrix E associated with the zero eigenvalue

p1 = (0N−1, 1, 0N) q>1 = (1N , 0N). (4.32)

Therefore (4.31) is given by

lim
t→∞

e(t) = (0N−1, e1,1(0) + · · ·+ eN,1(0), 0N)

Since the errors are not independent, they satisfy, for all t ≥ 0, e1,1(t) + · · · + eN,1(t) =

0 ∀t ≥ 0. Thus limt→∞ e(t) = 02N .

We now consider the case when all paths are closed, i.e., ηi,1 ∈ RmodLi. In order

to define a similar formation coordination constraint in this case we define η′i,1 := 2π
Li
ηi,1.

The variable η′i,1 belongs to [0, 2π) so we can view it as an angular variable. Accord-

ingly, we define η′i,2 := 2π
Li
ηi,2. Thus, the coordination constraint (4.24) imposes that two

consecutive unicycles maintain a constant angular separation, i.e., η′i+1,1 − η′i,1 − bi,1 = 0,

i ∈ {1, · · · , N − 1} where bi,1 ∈ [0, 2π). Moreover, the formation must move with a com-

mon velocity ωd > 0, i.e., η′i,2 − ωd = 0, i ∈ {1, · · · , N}.

Corollary 4.5.15. Suppose γi, i ∈ {1, · · · , N} are closed paths and the communication
graph G of the multi-unicycle system is rooted out-branching then the control law

v
‖
i =

N∑
j=1

wij sin

η′j,1 − η′i,1 − (j − i)
|j − i|

max{i,j}−1∑
p=min{i,j}

bi,p

− k (η′i,2 − vd) (4.33)
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where wij are the entries of W (G ) and k > 0, renders C? locally exponentially stable

relative to Γ?.

Proof. The closed-loop error dynamics resulting from applying the control law (4.33) to

the dynamics on Γ? given in (4.8a) are

ė1 = e2

ė2 = H sin (e1)− kINe2

(4.34)

where sin(e1) := (sin(e1,1), · · · , sin(e1,N). Linearizing the above closed-loop about (e1, e2) =

(0, 0) results in error dynamics given in (4.28). Proposition 4.5.13 shows that (0, 0) is glob-

ally exponentially stable for error dynamics (4.28). Therefore (0, 0) is locally exponentially

stable for (4.34).

Remark 4.5.16. When all the paths are closed the multi-agent path following manifold

is diffeomorphic to TN ×RN . Since v‖ is 2π-periodic in its N arguments it is a continuous

function that is defined globally on the multi-agent path following manifold.

4.6 Experimental Implementation

In this section a coordinated path following problem for two unicycles is considered and

the nested invariant set approach is employed to design controllers. The experimental goal

is to implement the designed controllers on two robots to examine their performance in

practice.

118



4.6.1 Experimental setup

We experimentally verify our results using two TurtleBots built by Clearpath Inc. The

robots have a maximum translational speed of 65 cm/s and maximum rotational speed

of π rad/s. Each robot is controlled using the Robot Operating System (R.O.S.) running

on an Intel Atom Notebook with Linux. An Indoor Positioning System (I.P.S.) using

NaturalPoint OptiTrack provides the states (xi, yi, θi) of robot i over WiFi at 100Hz. A

practical consideration is that the I.P.S. system is sensitive to shiny objects and one needs

to assure such objects are covered. The state vi of robot i is obtained by integrating the

control input ui,1. In Figure 4.8 robots and I.P.S. system are shown.

(a) robot modified for use with
IPS system

(b) Laboratory

Figure 4.8: Unicycle robot and experimental setup. IPS cameras provide the position and
orientation of robots.

4.6.2 Coordination specification

The robots are assigned circular paths γi = {yi ∈ R2 : si(yi) = 0}, i ∈ {1, 2}, si(yi) =

‖yi‖2
2 − r2

i , r1 = 1.1, r2 = 0.75 metres. These paths satisfy inequality (1.4) of Assump-
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tion 1.2.1 with ρi,1, ρi,2, taken as identity functions.

Since both robots can communicate with each other the communication graph is fully

connected and S4 is trivially satisfied. The coordination specification S2 is that the two

robots be on opposite sides of their respective circles. Such a coordination specification can

arise in patrolling applications because it results in better coverage of an area. For S3 we

require that robots 1 and 2 move with a prescribed angular velocity ωd = .03 rad/s. Note

that η′i,1 =
ηi,1
ri
, η′i,2 =

ηi,2
ri

i ∈ {1, 2}. Thus the linear-affine coordination function (4.24)

becomes

β(η′) =



1 −1 0 0

−1 1 0 0

0 0 1 0

0 0 0 1





η′1,1

η′2,1

η′1,2

η′2,2


−



π

−π

ωd

ωd


.

Using Proposition 4.4.2, condition (1), we immediately find that C = C? and dim C? = 2.

After bringing each robot into the normal form (4.7), the transversal control laws are taken

to be (4.17) with the high gains ki,1 = 30, ki,2 = 20, i ∈ {1, 2} to make the robots approach

their paths quickly. The coordination control laws are obtained using Corollary 4.5.15

v
‖
1 = w12 sin

(
η′2,1 − η′1,1 − π

)
− k

(
η′1,2 − ωd

)
v
‖
2 = w21 sin

(
η′1,1 − η′2,1 − π

)
− k

(
η′2,2 − ωd

) (4.35)

where w12, w21, k > 0. The communication graph weights are treated as controller gains

and taken to be w21 = w12 = k = 10. These gains are smaller, relatively, than the path

following controller gains because we prioritize convergence to the paths over coordination.

Experimental output trajectories are shown in Figure 4.9(a). The path error for each
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unicycle is computed as

ei,PF :=
√
x2
i + y2

i − ri, i ∈ {1, 2} (4.36)

and shown in Figure 4.9(b).
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Figure 4.9: Experimental results: path following of robots while maintaining a phase
difference of π.

Figure 4.10(a) displays the coordination error, eC1 := η′1,1 − η′2,1 − π, expressed in

radians, converging to zero. Figure 4.10(b) shows that each robot’s angular velocity error,

ei,C2 := η′i,2 − ωd, i ∈ {1, 2}, converges to zero quickly. Figures 4.11(a) and 4.11(b) show

the control effort required in these experiments.

4.6.3 Switching coordination specifications

A distinguishing feature of the proposed controllers is that the paths γ1 and γ2 are invariant

for robots 1 and 2. Therefore, if the coordination specification changes we expect the robots
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Figure 4.10: Experimental results: coordination and angular velocity error for robots while
maintaining a phase difference of π.
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Figure 4.11: Experimental results: control signals ui,j, i, j ∈ 2, while maintaining a phase
difference of π.

to remain on their assigned paths, before eventually re-coordinating. In this experiment

we ask that robot 1 initially be phase shifted by π
2

radians from robot 2 and after 240
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seconds the phase difference change to π.

Figure 4.12(a) shows experimental output trajectories of the robots. When the coor-

dination specification is changed the robots are expected to stay on their paths. In this

experiment the robots actually leave their paths because their forward velocities, vi, pass

through 0 which are singularities. The control signals remain bounded because we enforce

actuator constraints |ui,2| ≤ π
2

and |vi| ≤ 0.5, once the robots’ forward velocities become

non-zero, the nominal controllers take over and drive them back to their paths as shown

in Figure 4.12(b). Figure 4.13(a) plots the difference in phase η′1,1− η′2,1. It is initially π/2
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Figure 4.12: Experiment 2: coordinated path following with changing coordination task.

and at t = 240 it increases to π. Figure 4.13(b) shows that each robot’s angular velocity

error, ei,C2, converges to zero quickly. Figures 4.14(a) and 4.14(b) illustrate control signals

ui,1 and ui,2 for i ∈ {1, 2}, respectively.
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Figure 4.13: Experiment 2: phase difference between robots and angular velocity error
when the coordination specification changes.

0 100 200 300 400 500
−10

−5

0

5

10

15

20

t (Secs)

u
i,
1
(m

/s
ec

2
),
i
∈
{
1
,2
}

 

 
u1,1

u2,1

(a) Control signals ui,1, i ∈ 2

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

t (Secs)

u
i,
2
(r
a
d/
se
c)
,i

∈
{
1
,2
}

 

 
u1,2

u2,2

(b) Control signals ui,2, i ∈ 2

Figure 4.14: Experiment 2: control signals ui,j, i, j ∈ 2 when the coordination specification
changes.
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Chapter 5

Conclusions and future research

In this thesis we utilized a hierarchical control design approach to solve a coordinated

path following problem for multi-agent systems. That is, the problem was split into the

path following and the coordination sub-problems, and the path following sub-problem

was prioritized over the coordination sub-problem. This viewpoint allowed us to design

the path following and the coordination controllers separately.

In order to design the path following and the coordination controllers, we cast each sub-

problem as a set stabilization problem. The path following sub-problem being prioritized

over coordination sub-problem, implied that the set corresponding to coordination must

be contained, nested, in the set corresponding to the path following sub-problem. This

motivated us to call the two set stabilization problems a nested set stabilization problem.

Under suitable assumption, the two sets turned out to be embedded, controlled invariant,

submanifolds.

We proposed a method based on local feedback equivalence of control systems to design

stabilizing control laws. The proposed method was not limited to the coordinated path
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following problem and may be employed to solve control specifications that can be broken

down hierarchically.

We introduced normal forms (3.3) and (3.33) for a class of nonlinear control systems

with two nested, controlled invariant, embedded submanifolds in its state space. Normal

form (3.3) was particularly useful in designing controllers for stabilizing the nested set

relative to the larger set. The normal form (3.33) was useful for designing controllers both

for the stabilization of the larger set as well as the stabilization of the nested set relative to

the larger set. Nevertheless, the class of control-affine systems that can be transformed to

normal form (3.33) is strictly smaller than the class of systems that can be transformed to

normal form (3.3). Moreover, the class of the system that can be transformed to a normal

form in which ξ-subsystem and µ subsystem are decoupled is strictly smaller than the class

of systems that can be transformed to normal form (3.33).

Whether or not a nonlinear control-affine system, with two nested, controlled invari-

ant, embedded submanifolds in its state space, is locally feedback equivalent to normal

form (3.3) was asked in Problem 1. In Theorem 3.4.2 we presented necessary and sufficient

conditions under which Problem 1 is solvable. When Problem 1 was solvable, Problem 4

asked whether one can further refine normal form (3.3) and make the dynamics transversal

to the larger set linear and controllable as well. Theorem 3.5.1, presented further neces-

sary and sufficient conditions under which Problem 4 was solvable. In general, there is no

guarantee that the controllers stabilizing the nested set relative to the larger set and those

stabilizing the larger set work as desired when they work together. In Theorem 3.6.1 we

presented sufficient conditions which address this stability concern.

To illustrate these ideas we considered a coordinated path following problem for a multi-

agent system of dynamic unicycles in Chapter 4. The multi-agent path following manifold

was characterized for an a large class paths. We showed that each unicycle was feedback
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equivalent, in a neighbourhood of its assigned path, to a system whose transversal and tan-

gential dynamics to the path following manifold are both double integrators. We provided

sufficient conditions under which the coordination set was nonempty. The effectiveness of

the proposed approach was demonstrated experimentally on two robots.

5.1 Future research

The research in this thesis can be continued in different directions, some of which are

highlighted below

5.1.1 Decentralized control laws

In order for the agents in a multi-agent system to accomplish a coordination specification

they need to exchange state information. The main underlying assumption in this thesis

is that the communication graph is fully connected. However, in some applications this

assumption is not realistic and each agent can only communicate with certain agents called

its neighbors. Future research entails taking into account communication constraints for

general coordination constraints. There are open fundamental questions that need to be

solved. For instance, even in the linear case, how does one characterize the largest invariant

subspace for decentralized systems is an open problem?

5.1.2 Global results

One important issue is that the Problems 1, 3, and 4 are only valid in a neighbourhood of

a point. Hence, a global version of Problems 1, 3, and 4 can be posed. Roughly speaking,
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one seeks a coordinate and feedback transformation such that (3.1) is feedback equivalent

to (3.3), in Problem 1, to (3.17), in Problem 3, and to (3.33), in Problem 4, in a tubular

neighbourhood of the larger set. Accordingly, the global version of Problem 4 can be

employed to solve the global version of the nested set stabilization problem where the

entire sets are considered.

In [67] it is shown that global transverse feedback linearization is restrictive because

the target sets are required to be diffeomorphic to finite dimensional vector spaces. We

conjecture that the global version of Problems 1, 3, and 4 would be as restrictive.

5.1.3 Relative coordinates

The control laws for coordinated path following of unicycles are expressed in terms of a

global frame. However, in some applications the global coordinates of unicycles might not

be available. Thus, it is of interest to develop control laws that depend on the local frames

of unicycles. In other words, to develop control laws that are expressed in terms of relative

distances and heading angles between unicycles.

5.1.4 Practical issues

As far as the multi-agent system of dynamic unicycles is concerned there are some practi-

cal issues. The first limitation is that unicycles cannot have zero forward velocity in our

formulation. Hence, a future research direction is developing effective singularity avoid-

ance methods alongside with proposed control laws. Another major limitation is that the

possibility of collision is neglected in our formulation. However, it is not a safe assumption

in reality. Hence, a future research direction entails employing collision avoidance tech-

niques in conjunction with the results of this thesis. Finally, if the control laws use relative
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coordinates instead of the global coordinates their implementation becomes much easier.

Another research direction involves designing distributed control laws for each agent based

on the relative coordinates of the unicycles it can communicate with.
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APPENDICES

In this chapter we review the mathematical concepts and supporting results used in this

thesis. The materials are taken from [62, 41, 90, 67, 45, 52, 8]

A Graph theory

Throughout this thesis we model communication between agents of a multi-agent sys-

tem using a weighted directed graph G called the communication graph. Let V(G ) =

{a1, . . . , aN} and E(G ) ⊆ V(G )×V(G ) be, respectively, the vertex and edge set of G . Each

vertex represents an agent and an edge (ai, aj) indicates that agent j receives information

from agent i. We denote by wij ∈ R the weight associated to edge (ai, aj). For each vertex

we can define the in-degree, denoted din(ai), as

din(ai) :=
∑

(aj ,ai)∈E

wji.

For each vertex we can also define the out-degree, denoted dout(vi), as

dout(ai) :=
∑

(ai,aj)∈E

wji.
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When a graph is undirected the in-degree and out-degree of a vertex are equal. In the

following we define matrices associated with a graph based on its in-degrees. It should

be noted that the following matrices can be defined based on out-degrees in an analogous

manner.

Definition A.1. The in-degree matrix of G is ∆(G ) := diag(din(a1), . . . , din(aN)). •

Definition A.2. The in-degree adjacency matrix of G is an N×N matrix whose ij-th

element is given by

W (G )i,j :=


wji if (aj, ai) ∈ E(G )

0 otherwise.

•

Definition A.3. The weighed graph Laplacian of G is L(G ) := ∆(G )−W (G ). •

Remark A.4. The sum of the columns of the Laplacian matrix L (G ) is 0 [76]; thus 0 is

an eigenvalue of L (G ) with the associated eigenvector col(1, · · · , 1).

Definition A.5. A directed graph G is rooted out-branching if it does not contain a

directed cycle and there exists a vertex ar ∈ V(G ) such that for all ai ∈ V(G ) there is a

directed path from ar to ai. •
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B Linear algebra

This section gathers a few facts from linear algebra used throughout of this thesis, specially

Section 3.2. All vector spaces in this thesis are finite-dimensional. For a given subspace

X we define its dual space, written X ′, which is defined as the set of all linear functions

x′ : X → R. For a subspace V of the vector space X , we define its annihilator, written

ann(V ), to be the following set

ann(V ) = {x′ ∈X ′ : x′V = 0} .

That is the set of all linear functionals on X annihilating V . It should be noted that

ann(V ) is a subspace of X ′. When, X is an inner product vector space, we identify X

with its dual, and hence consider ann(V ) as a subspace of X . That is,

ann(V ) = {x ∈X : 〈x, v〉 = 0,∀v ∈ V } .

Let V and W be two subspaces of the vector space X . They are independent if V ∩W =

0. Their sum is called the direct sum and is denoted V ⊕ W . If X = V ⊕ W Then

each x ∈ X has a unique representation x = v + w with v ∈ V and w ∈ W . The linear

transformation

Q : X → V

x 7→ v

is called the natural projection on V along W .

For a linear map A : V → W we define a linear map, written A′, called dual map.

The Dual map satisfies

A′(w′) = w′A, w′ ∈ W ′.
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The matrix representation of the dual map A′ is given by A′ = A>.

Remark B.1. Let V and W be two vector spaces. Let A : V → W be a linear transfor-

mation with A := ImA ⊆ W and A′ : V ′ → W ′ its dual map. The annihilator ann(A ) of

A can be characterized as ann(A ) = ker(A′). If K = kerA. The annihilator of ann(K )

of K can be charecterized as ann(K ) = Im(A′).

The following result is used in Chapter 3.

Lemma B.2. Consider an LTI system

ẋ = Ax+Bu

where x ∈X is the state and u ∈ U is the control input. Let K := {x ∈X : Tx = 0} be

a subspace of X where T : X → Z is a surjective linear map. Then, Tx→ 0 if and only

if x→ K .

Proof. The solution to the LTI system with x(0) = x0 is

x(t) = etAx0 +

∫ t

0

e(t−τ)ABu(τ)dτ.

Assume limt−→∞ Tx(t) −→ 0. Let z′ be an arbitrary vector in the dual space Z ′ of Z .

Then limt→∞ z
′Tx(t) → 0. Define x′ = z′T ∈ Im(T ′). Thus, as discussed in Remark B.1,

x′ belongs to ann(K ). By substituting x′ for z′T we obtain limt→∞ x
′x(t) → 0. Since,

x′ ∈ ann(K ) we have that limt→∞ x(t)→ K .

Conversely, Assume limt→∞ x(t) → K . Therefore, for an arbitrary x′ ∈ ann(K ) ⊆

X ′ we have that limt→∞ x
′x(t) → 0. Since T is surjective there exists z′ ∈ Z ′ such
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that x′ = z′T . Therefore, limt→∞ z
′Tx(t) → 0. Since x′ is arbitrary so is z′. Thus,

limt→∞ Tx(t)→ 0.

B.1 Quotient spaces

If V is a vector space and W is a subspace of V , a coset of W in V is a subset of the form

v̄ := {v + w : w ∈ W }

for some v ∈ V . Geometrically, v̄ is the hyperplane passing through v obtained by parallel

translation of W . Two cosets v̄ and v̄′ are equal if and only if v′− v ∈ W . This introduces

an equivalence relation on V and a coset is an equivalence class. The set of all cosets of

W in V is again a vector space called quotient space and is denoted by V /W . In the

following we define a projection map between V and V /W .

Definition B.3. Let V be a vector space and W a subspace of V . Let V /W be the

quotient space of W . The map P : V −→ V /W which is surjective and KerP = W is

called the canonical projection of V onto V /W . •
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C Differential geometry

In this section the notions and definitions from differential geometry along with supporting

results are presented.

C.1 Smooth manifolds

Intuitively, a manifold is a generalization of curves and surfaces in R3 to higher dimensions.

It is locally Euclidean in that every point has a neighbourhood homeomorphic to an open

set of Euclidean space. We first recall a few basic definitions from topology.

Definition C.1. A topology on a set M is a collection τ of subsets of M , called open

sets, satisfying

(i) M and ∅ are open.

(ii) The union of any family of open sets is open.

(iii) The intersection of any finite family of open sets is open.

•

Definition C.2. The pair (M, T ) is called a topological space. When, the topology is

understood, we simply write M is a topological space. •

Definition C.3. Let (M, T ) be a topological space and N ⊂M be any subset of M . The

subspace topology on N is

TN := {N ∩ U : U ∈ T } .
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•

Having introduced a topological space in the following we introduce topological spaces

which locally around each point look like a Euclidean space.

Definition C.4. Suppose M is a topological space. We say that M is a topological

manifold of dimension m or topological m-manifold if it has the following properties

(i) M is a Hausdorff space: for every pair of points p, q ∈ M , there are disjoint open

subsets U, V ⊂M such that p ∈ U and q ∈ V .

(ii) M is second countable: there exists a countable basis for the topology of M .

(iii) M is locally Euclidean of dimension m: every point of M has a neighbourhood

that is homeomorphic to an open subset of Rm.

•

A topological manifold is locally Euclidean; however, it is not clear how to do calculus

on it. Thus, in th following we construct smooth structures for topological manifolds. The

notion of coordinate charts is essential in our construction

Definition C.5. Let M be a topological m-manifold. A coordinate chart on M is a

pair (U,ϕ), where U is an open subset of M and ϕ : U → Ũ is a homeomorphism from U

to an open subset Ũ = ϕ(U) ⊆ Rm. •

Let ϕ1, · · · , ϕm denote the components of ϕ so that ϕ = col(ϕ1, · · · , ϕm). The functions

ϕi : W → R are called local coordinate functions and, for each point p ∈ W , the values

ϕ1(p), · · · , ϕm(p) are the local coordinates of p. Having defined a coordinate chart the

next step is to define the notion of compatibility of two coordinate charts which, loosely

speaking, guarantees that overlapping charts are related by a differential map.
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Definition C.6. Let M be a topological m-manifold. If (U,ϕ) and (V, ψ) are two coor-

dinate charts such that U ∩ V 6= ∅, the composite map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

is called the transition map. These two charts are said to be smoothly compatible if

either U ∩ V = ∅ or the transition map is a diffeomorphism. •

A collection of smoothly compatible coordinate charts that cover M is an smooth atlas

denoted by A . Generally, a topological manifold M may admit more than one atlases.

For example, consider the following pair of atlases on Rn

A1 = {Rn.1Rn} , A2 =
{

(B1(x),1B1(x)) : ∀x ∈ Rn
}
.

the above atlases are however equivalent in the sense that their coordinate charts are

smoothly compatible. One can define an equivalence relation between atlases of a topolog-

ical manifold M as follows: A1 and A2 are equivalent if and only if their union is an atlas

on M . This view point allows us to define a well-defined smooth structure

Definition C.7. A smooth structure on a topological m-manifold M is an equivalence

class of equivalent atlases on M . •

Having introduced the smooth structure we formally define a smooth manifold as follows

Definition C.8. A smooth manifold is a pair (M,A ), where M is a topological m-

manifold and A is a smooth structure on M . When the smooth structure is understood

we just simply say M is a smooth manifold. •

The main reason for introducing smooth structures for topological manifolds is to enable

one to carry over many concepts from Euclidean spaces to topological manifolds. In the

following we define differential maps on manifolds
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Definition C.9. Suppose that M and N are smooth manifolds. We say that a map

f : M → N is of class Ck, 0 ≤ k ≤ ∞, if for each p ∈ M and each chart (V, ψ) of N with

f(p) ∈ V , there exist a chart (U,ϕ) of M with p ∈ U and f(U) ⊆ V , such that the local

representation of f

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is of class Ck. •

Definition C.10. A map f : M → N between smooth manifolds M and N is a diffeo-

morphism if it is a smooth bijection and f−1 : N → M is smooth. If a diffeomorphism

exists between two manifolds, they are called diffeomorphic. •

Definition C.11. Let M be a topological m-manifold. The symbol C∞(M) denotes the

ring of smooth real-valued functions f : M → R on M . •

C.2 Submanifolds

Definition C.12. Let M be an m-dimensional smooth manifold. A subset N ⊂ M is

called an embedded submanifold of dimension n ≤ m if for each p ∈ N there exists a

coordinate chart (U,ϕ) of M , with p ∈ U , such that

N ∩ U = {q ∈ U : ϕn+1(q) = · · · = ϕm(q) = 0} .

Henceforth, we will refer to N simply as a submanifold of M . Submanifold N is also called

n-slice of U . •
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Theorem C.13 ([62], Theorem 8.2). Let N ⊂M be an embedded submanifold of dimension

n. With the subspace topology, N is a topological manifold of dimension n, and has a unique

smooth structure such that the inclusion map i : N →M is a smooth embedding.

In the light of above theorem we introduce the smooth structure for N . Let π : Rm →

Rn be the projection π : (x1. · · · , xm) 7→ (x1, · · · , xn) and let (U,ϕ) be a coordinate chart

in the smooth structure of M . Then (N ∩ U, π ◦ ϕ|N) is a coordinate chart of N and these

charts endow N with a smooth structure.

C.3 Tangent space

The notion of tangent space at a point of a manifold generalizes the concept of the tangent

space plane at a point of a surface in R3. There are different equivalent ways to define a

tangent space at a point of a manifold. We opt to use the notion of derivations at a point

to define the tangent space at a point of a manifold.

Definition C.14. Let M be a smooth m-dimensional manifold and p ∈M . A linear map

X : C∞(M)→ R is called a derivative at p if it satisfies

X(fg) = f(p)Xg + g(p)Xf

for all f, g ∈ C∞(M). The set of all derivations of C∞(M) at p is a vector space of

dimension m called the tangent space to M at p and is denoted by TpM . An element of

TpM is called a tangent vector at p. •

a manifold can be approximated near a point by its tangent space at the point. Just as

in Rn, any smooth map can be approximated at a point of a manifold with a linear map

defined in the following

139



Definition C.15. Let f : M → N be a smooth map between smooth manifolds M and

N . We define a map f? : TpM → Tf(p)N , called the push-forward associated with f , by

(f?X)f = X(φ ◦ f)

for all φ ∈ C∞(M). •

C.4 Vector fields

Having introduced the notion of tangent spaces we would like to generalize the notion of

vector fields to manifolds. the following definition is important in our generalization

Definition C.16. For any smooth m-dimensional manifold M we define the tangent

bundle of M , denoted by TM , to be the disjoint union of the tangent spaces at all points

of M :

TM :=
⋃
p∈M

TpM.

an element of TM can be taken to be a pair (p,X) with p ∈ M and X ∈ TpM . The map

π : TM →M, (p,X) 7→ p, is called the natural projection of TM onto M . •

A vector field on a manifold M is the assignment of a tangent vector Xp ∈ TpM to each

point p ∈M . More formally,

Definition C.17. Let M be a smooth manifold. A vector field is a continuous map

Y : M → TM with the property that

π ◦ Y = 1M .

•
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The following result is known as inverse function theorem.

Theorem C.18 ([62], Theorem 7.10.). Suppose M and N are smooth manifolds, p ∈ M ,

and f : M → N is a smooth map such that f? : TpM → Tf(p)N is bijective. Then, there

exists a connected neighbourhood U0 of p and V0 of f(p) such that f |U0
: U0 → V0 is a

diffeomorphism.

In this thesis we will need a generalization of the inverse function theorem as discussed

in [41].

Theorem C.19. Suppose that f : M → N is a smooth map between manifolds. Let S ⊂M

be a submanifold of M and assume that

(i) f? : TpM → Tf(p)N is bijective for every p ∈ S

(ii) f |P maps S diffeomorphically onto f(S).

Then, f amps a neighbourhood of S diffeomorphically onto a neighbourhood of f(S).

Just as in Rn vector fields give rise to integral curves. Integral curves of a vector field

in Rn are curves whose velocity at any point is the given vector field at the point. In the

following we generalize the notion of integral curves to smooth manifolds

Definition C.20. Let Y be a smooth vector field on smooth manifold M . An integral

curve of Y through a point p ∈ M is a curve c(t) at p such that the tangent vector at

every point q = c(t) coincides with Y (q). •

Given a smooth vector field Y on a smooth manifold M there exist a unique maximal

integral curve through p which we denote by φYt (p). The maximal integral curve φYt (p)

is also called flow generated by the vector field Y .
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In the following we generalize the Lie derivative and Lie bracket notions of Rn to smooth

manifolds.

Definition C.21. If Y is a smooth vector field on M and λ ∈ C∞(M) then the derivative

of λ along Y is a function LY λ defined by

LY λ(p) = lim
h→0

1

h

[
λ(φYh (p))− λ(p)

]
and called Lie derivative of λ along Y at p. It is an element of C∞(M). •

Definition C.22. If f and g are two smooth vector fields on a smooth manifold M , the

Lie bracket of f and g is a smooth vector field [f, g] defined by the relation

L[f,g]λ = Lf (Lgλ)− Lg(Lfλ).

•

We will use the following standard notation for iterated Lie derivatives and Lie brackets

LgLfλ := Lg(Lfλ),

L0
gλ := λ, Lkgλ := Lg(L

k−1
f λ),

ad0
fg := g, adkfg :=

[
f, adk−1

f g
]
, k ≥ 1.

C.5 Distributions

Distributions are generalization of vector fields on manifolds and are defined in the following
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Definition C.23. Let M be a smooth manifold. A choice of k-dimensional linear subspace

Dp ⊆ TpM at each point p ∈M is called a distribution on M . A distribution D is called

smooth if for each p ∈ M , there exists a neighbourhood U of p and smooth vector fields

f1, · · · , fk such that,

(∀q ∈ U) D(q) = span {f1(q), · · · , fk(q)} .

the vector fields f1, · · · , fk are called local generators around p. •

Definition C.24. A point p ∈M is a regular point of the distribution D if there exists

a neighbourhood U containing p for which dim(D(q)) is constant for all q ∈ U . In this

case, D is said to be nonsingular on U . •

If p is a regular point of a distribution D with dim(D(p)) = k, then there exist k

linearly independent local generators around p, and we will write D = span {f1, · · · , fk}

on the domain of definition of the generators.

we defined integral curves associated to vector fields. Since, distributions are gener-

alization of vector fields the natural question is whether there exist a submanifold whose

tangent space at each point is the distribution at that point. In general, the answer is more

complicated than the case of vector fields and the distribution must satisfy a nontrivial

necessary condition, called involutivity, introduced in the following definition

Definition C.25. A distribution D on M is called involutive if the lie bracket of any

pair of smooth vector fields Y1 and Y2 is a vector field in D, i.e.,

Y1 ∈ D, Y2 ∈ D → [Y1, Y2] ∈ D.

•
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The following lemma provides a tractable way of checking involutivity for a distribution

Lemma C.26. A distribution D with local generators f1, · · · , fk is involutive if and only

if

[fi, fj] ∈ D, ∀i, j ∈ 1, · · · , d.

The intersection of smooth distribution D1 and D2, D1 ∩D2, defined by

(D1 ∩D2)(p) := D1(p) ∩D2(p),

may fail to be a smooth distribution. The next lemma guarantees conditions for smooth-

ness.

Lemma C.27. Let p be a reqular point of the smooth distributions D1 and D2. If p is also

a regular point of D1∩D2 then there exist a neighbourhood U of p such that the restriction

of D1 ∩D2 to U is smooth.

Definition C.28. If D is a distribution, the involutive closure of D, written inv(D),

is a distribution containing D with the property that if D̂ is an involutive distribution

containing D, then inv(D) ⊆ D̂ •

If D is a nonsingular distribution on a manifold M , D⊥ is the orthogonal complement

of D obtained from the orthogonal structure on the tangent bundle TM . The nonsingular

distribution D⊥ is a subbundle of TM and satisfies,

(∀p ∈M), TpM = D(p)⊕D⊥(p).

If D is a distribution defined ona manifold M and N ⊂ M is a submanifold we will
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consider the subbundles TN + D and TN ∩ D of TM |M defined for each p ∈ N by

TpN +D(p) and TpN ∩D(p), respectively.

Lemma C.29 (Lemma 2.4.56, [67]). Let N ⊂M be an n-dimensional submanifold of the

m-dimensional manifold M . Let p ∈ N be a regular point of a d-dimensional distribution

D on M . Suppose there exists an open neighbourhood V of p in N such that k = dim(TqN∩

D(q)) is constant for all q ∈ V . Then, there exists a neighbourhood U of p in V such that

TN ∩D is smooth on U .
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D Control systems

Teh control systems considered in this thesis are control-affine system modeled by equations

of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui =: f(x) + g(x)u (D.1)

where x ∈ Rn denotes the state, u = (u1, · · · , um) ∈ Rm is the control input, and f : Rn →

Rn and gi : Rn → Rn, i ∈ {1, · · · ,m}, are smooth.

Definition D.1. A closed connected submanifold S ⊆ Rn is controlled-invariant for (D.1)

if there exists a smooth feedback ū : S → Rm such that S is invariant for the closed-loop

system ẋ = f(x) + g(x)ū(x). •

Definition D.2. Given an open set U ⊆ Rn, a regular static feedback, denoted (α, β),

on U for control system (D.1) is a relation u = α(x) + β(x)v where α : U → Rm and

β : U → GL (m,R) are smooth mappings. •

Definition D.3. Two control systems, ẋ = f + gu and ˙̂x = f̂ + ĝû, are feedback equiv-

alent on an open set U ⊆ Rn if there exist a regular static feedback (α, β) on U and a

map Ξ ∈ Diff(U) such that f̂ = Ξ?(f + gα) and ĝ = Ξ?(gβ). •

Consider an LTI control system which is a special case of (D.1)

ẋ = Ax+Bu

where x ∈ X is the state of the system and u ∈ U is the control input. In the following

we introduce two important vector spaces in its state space X .
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Definition D.4. Let V be a subspace of the state space X . This subspace V is called

(A,B)-invariant if there exist a state feedback F : X → U such that

(A+BF )V ⊆ V .

The state feedback F is called a friend of V . •

Intuitively, a subspace V is (A,B)-invariant if one can find a state feedback control

u = Fx such that the solutions of ẋ = (A + BF )x with x0 ∈ V remains in V for all

future time. The following result establishes a relation between the friend of two nested

(A,B)-invariant subspaces.

Lemma D.5 ([62], Lemma 5.7). Let both R and V be (A,B)-invariant subspaces and

suppose R ⊂ V . If F0 is a friend of R there exists a mutual friend F of R and V such

that

F |R = F0|R

An important subclass of (A,B)-invariant subspaces of an LTI control system is intro-

duced in the following

Definition D.6. A subspace R is a controllability subspace of the pair (A,B) if there

exist maps F and G such that

R = ImBG+ (A+BF ) ImBG+ · · ·+ (A+BF )n−1 ImBG. (D.2)

•

If R is a controllability subspace the pair

((A+BF )|R , BG)
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is controllable. The following result shows that the matrix G can be removed from the

characterization of the controllability subspace R. This result is used in the proof of

Theorem 3.2.2.

Proposition D.7 (Proposition 5.2., [91]). A subspace R is a controllability subspace if

and only if there is an F such that

R = ImB ∩R + (A+BF ) ImB ∩R + · · ·+ (A+BF )n−1 ImB ∩R

Theorem D.8 ([92], Theorem 5.4). Consider an LTI system

ẋ = Ax+Bu,

where x ∈X is the state and u ∈ U is the control input. Every subspace V ⊆X contains

a unique supremal controllability subspace denoted by R?.
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E Set stability

Here we review some basic notions of set stability.

Definition E.1.

1. A closed set S, invariant for ẋ = f(x), is called stable if for all ε > 0 there exists a

neighbourhood N (S) such that for all t ≥ 0, φ (t,N (Γ1)) ⊂ Bε(Γ1).

2. A closed set S, invariant for ẋ = f(x), is called an attractor for if there exists a

neighbourhood N (S) such that limt→∞ ‖φ(t, x0)‖S = 0 for all x0 ∈ N (S)

3. A closed set S is asymptotically stable for ẋ = f(x) if it is stable and attractive.

•

Definition E.2. ([28]).

1. The set S2 is stable relative to S1 for the dynamical system ẋ = f(x) if, for all ε > 0

there exists a neighbourhood N (S2) such that for all t ≥ 0, φ (t,N (S2) ∩ S1) ⊂

Bε(S2) ∩ S1.

2. The set S2 is an attractor relative to S1 for the dynamical system ẋ = f(x) if there

exists a neighbourhood N (S2) such that dist(φ(t, x0), S2) → 0 as t → ∞ for all

x0 ∈ N (S2) ∩ S1

3. The set S2 is asymptotically stable relative to S1 for (3.1) if it is stable and attractive

relative to S1 for the dynamical system ẋ = f(x).

•
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