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Abstract 

 

The soft-tissue contact between the thigh and calf during deep knee flexion results in 

tibiofemoral joint contact force reductions at angles beyond 134º of flexion (Caruntu et al., 2003; 

Zelle et al., 2009; Hirokawa et al., 2013). Many knee models that predict tibiofemoral joint 

contact forces in high flexion neglect to account for this force. Very few investigations have 

attempted to characterize thigh-calf contact force, and even fewer have directly measured thigh-

calf contact or attempted to model thigh-calf contact force and contact force location on the tibia 

(Zelle et al. 2007; Zelle et al. 2009). This study focused on the following four thigh-calf contact 

parameters: (1) maximum total thigh-calf contact force, (2) the corresponding flexion angle, (3) 

the corresponding centre of pressure, and (4) the starting angle of thigh-calf contact (the flexion 

angle at the initiation of thigh-calf contact when transitioning into a kneeling or squatting 

posture). This study addresses limitations of previous work by investigating how the thigh-calf 

contact parameters are correlated to anthropometric measures after accounting for correlations 

between body mass and contact force (by normalizing thigh-calf contact force to body mass), 

comparing parameters between sexes and activities, and presenting an equation for the average 

thigh-calf contact force and location from 30 participants as a function of percent thigh-calf 

contact flexion range (this has only been done previously for a single participant as a function of 

flexion angle).  

Anthropometric measurements from 30 healthy participants (16 male and 14 female) 

were recorded.  Instrumentation included opto-electronic markers to track dominant leg motion 

and an interface pressure mapping system to determine the thigh-calf contact force during three 
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deep flexion movements: dorsi-flexed kneeling, plantar-flexed kneeling, and plantar-flexed 

squatting. Four two-way (3 activities x 2 sexes) ANOVAs were used to compare the   mean 

values for maximum total thigh-calf contact force (in N/kg), centre of pressure at maximum total 

force (in cm), flexion angle at maximum total force (in degrees) and the starting angle of thigh-

calf contact (in degrees) between sexes and between the three activities. Pearson product-

moment correlation coefficients (R) were calculated in order to investigate the relationship 

between the anthropometric measures and the four outcome parameters. In cases where the R 

value exceeded 0.5 for one or more of the anthropometric measures for a given outcome 

parameter, predictive modeling of the outcome parameter based on anthropometric measures was 

pursued using multivariate linear regression with forward stepwise selection. A mean curve for 

thigh-calf contact force and a mean curve for centre of pressure were created for all participants 

for each activity.  Equations were fit to the mean curves to express each of the measures as a 

function of percent range of flexion after contact. 

Based on the average thigh-calf contact force curve for 30 participants, the maximum 

thigh-calf contact force occurred at maximum flexion and was 1.1 N/kg (S.D. 0.6 N/kg) during 

squatting, 2.0 N/kg (S.D. 0.7 N/kg) during dorsi-flexed kneeling and 2.2 N/kg (S.D. 0.9 N/kg) 

during plantar-flexed kneeling. The average centre of pressure, corresponding to those maximum 

total thigh-calf contact force values, was found to be closer to the epicondylar axis during 

squatting (13.7 cm, S.D. 1.6cm) than for dorsi-flexed kneeling (14.9 cm, S.D. 1.7 cm) and 

plantar-flexed kneeling (14.6 cm, S.D. 1.9 cm).  

There was a significant difference in the maximum total thigh-calf contact force, centre 

of pressure at maximum total force, and starting angle of thigh-calf contact between squatting 

and each of the two kneeling activities, however, for all outcome parameters, dorsi-flexed and 
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plantar-flexed kneeling were not significantly different. There was a significant main effect of 

sex on the starting angle of thigh-calf contact (p = 0.004), whereas, with all other outcome 

parameters, there was no sex main effect. Unlike the previous investigation that measured thigh-

calf contact (Zelle et al., 2007), there was little correlation between anthropometric measures and 

maximum total thigh-calf contact force or location of centre of pressure at maximum total thigh-

calf contact force. This discrepancy likely occurred because thigh-calf contact force was 

normalized to body mass in this study, whereas non-normalized contact force was used in the 

previous study. 

The joint reaction forces, net joint moment, and joint contact forces at the knee joint in 

the sagittal plane during static full flexion squatting were calculated for a single participant both 

with and without the addition of thigh-calf contact force. The addition of thigh-calf contact force 

into the model reduced the knee joint reaction forces by 101.09 N in the anterior-posterior 

direction and the net sagittal plane knee joint moment by 13.14 Nm at maximal flexion. Based on 

a single muscle equivalent estimate, the compressive tibiofemoral joint contact force decreased 

by 221.78 N in the longitudinal direction and 84.96 N in the anterior-posterior direction.  
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1. Introduction 
 

1.1. Rationale 

There have been many detailed studies conducted on the biomechanics of the knee joint 

during gait and at low knee joint flexion. However, limited attention has focused on the knee 

during deep flexion, such as that observed during squatting or kneeling, despite the fact that 

these deep flexion postures are common in daily living (Hefzy et al., 1998; Smith et al., 2008; 

Argenson et al., 2004). Current models that estimate tibiofemoral joint contact forces have only 

been applied to flexion angles up to 140° and have neglected to account for the contact between 

the thigh and calf which occurs during high-flexion. This results in maximum tibiofemoral joint 

contact force estimates occurring near full flexion (Hefzy et al., 1998; Nagura et al., 2002; 

Argenson et al., 2004). Excluding thigh-calf contact could mean that musculoskeletal models 

overestimate tibiofemoral joint contact forces in high flexion. This overestimation could be 

problematic in high flexion total knee replacement (TKR) testing since force requirements for 

the design and testing of TKRs are based on tibiofemoral joint contact force estimates from 

models, rather than on direct measurements (Hefzy et al., 2009).    

Very few investigations have attempted to characterize thigh-calf contact force, and even 

fewer knee joint contact force models have incorporated thigh-calf contact force. Caruntu et al. 

(2003) calculated knee joint forces during deep knee flexion using a simplified, two-dimensional 

mathematical model which took into account thigh-calf contact force. With this model, they 

showed that thigh-calf contact force produces a moment around the joint in high-flexion that is in 

the same direction as the moment created by the quadriceps’ tendon, thereby reducing the 

quadriceps muscle forces required to maintain equilibrium in comparison to when thigh-calf 
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contact was neglected. Zelle et al. (2009) used thigh-calf contact measurements from one 

participant from a previous experiment to develop a predictive equation for thigh-calf contact 

force and location during squatting. The resultant thigh-calf contact force and the contact force 

location on the tibia were expressed as functions of the knee flexion angle using a polynomial 

data-fitting technique. These equations were applicable to a flexion range of 125-155̊ for a single 

participant. The omission of anthropometric characteristics in these predictive equations was 

surprising, given correlations found during a previous investigation (Zelle et al., 2007). This 

previous investigation showed strong, significant correlations between anthropometric 

characteristics, such as thigh and calf circumference, and the maximum resultant thigh-calf 

contact force measurements and starting angle of thigh-calf contact during squatting and 

kneeling. Given the strong correlation between anthropometric characteristics and the maximum 

resultant thigh-calf contact force, it would be expected that a predictive equation for the 

magnitude of thigh-calf contact force during high-flexion, that incorporates the effects of 

anthropometric measures, would improve upon the existing model put forth by Zelle et al. (2009) 

and could be incorporated in the estimate of tibiofemoral joint contact forces.  

1.2 Purpose 

 

The main objectives of this Master’s thesis project were: 

 To compare thigh-calf contact forces between activities and sexes. 

 To determine the correlation between anthropometric measures and thigh-calf 

contact parameters 

 To develop predictive equations for thigh-calf contact force and centre of 

pressure based on anthropometric measures and flexion angle. 
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 To develop a predictive equation for starting angle of thigh-calf contact based on 

anthropometric measures. 

Covariates that were candidates for inclusion in the predictive models were: height, body 

weight, sex, distal and maximal thigh circumferences, and proximal and maximal calf 

circumferences.     

1.3 Hypotheses  

 

The following hypotheses guided the direction of this work 

1.  The maximal thigh-calf contact force will not be statistically different between three 

high flexion activities: squatting, dorsi-flexed kneeling, and plantar-flexed kneeling. 

(Zelle et al., 2007: Pollard, J. 2009)  

2. Anthropometric properties will affect thigh-calf contact force. Body weight, and all 

thigh and calf circumference measures will be significantly, positively correlated to 

maximum total thigh-calf contact force (Zelle et al., 2007). The greater the participant’s 

body weight, thigh and calf circumference, the greater the maximum total thigh-calf 

contact force.  

3. The starting angle of thigh-calf contact will differ depending on anthropometric 

characteristics and sex.  

a. All thigh and calf circumference measures will be significantly, negatively 

correlated to the starting angle of thigh-calf contact (Zelle et al., 2007). The 

larger the thigh and calf segment, the earlier the starting angle of thigh-calf 

contact. 
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b. Women will have an earlier starting angle of thigh-calf contact than men, 

meaning contact will be initiated at a lower flexion angle. Women are 

characterized by having more of a peripheral and lower body fat distribution, with 

generally larger thigh circumferences than men (Shimokata et al., 1989; Schwartz 

et al 1990; Canoy et al 2007). Furthermore, thigh circumference has been shown 

to have a strong correlation to the starting flexion angle of thigh-calf contact 

(Zelle et al., 2007). 

4.  Thigh and calf circumference will be a significant predictor of the location of the centre 

of pressure on the tibia. 

a. A participant’s maximal thigh and calf circumference will be significantly 

correlated to the location of the centre of pressure on the tibia at maximum 

total thigh-calf contact force (Zelle et al., 2007). Larger thigh and calf 

circumferences will result in a more distally located COP at maximum flexion. 

b. Women will have a more distal location of centre of pressure at maximum total 

thigh-calf contact force than men. Women generally have larger thigh 

circumferences than men (Shimokata et al., 1989), which are anticipated to result 

in larger maximal thigh-calf contact areas and a more distal centre of pressure of 

thigh-calf contact force along the y-axis of the tibia.     
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Chapter 2: Literature Review 
 

Knowledge of healthy knee kinematics and kinetics for the full range of motion is 

important for identifying possible causes of joint disease, and the development or improvement 

of treatment options, including partial and total knee arthroplasty (TKA). The knee is distinct 

from other major load-bearing joints in that the surrounding soft tissues are major contributors to 

the stability of the joint (Gray, H. 2008). Some research has been published describing the 

kinetics and kinematics of the intact knee over the flexion range from 0 ̊ to 120̊ of flexion 

(Hirokawa et al., 1993; Karrholm et al., 2000; Iwaki et al., 2000; Hill et al., 2000; Jevsevar et al., 

1993; Kutzner et al., 2010). However, limited quantitative data concerning the behaviour of the 

intact knee beyond 120̊ has been reported in literature (Dahklvist et al., 1981; Hefzy et al., 1998; 

Nagura et al., 2002; Nagura et al., 2006; Hemmerich et al., 2006; Smith et al., 2008).  

Modeling approaches for the computation of knee joint forces, have been extensively 

investigated with methods varying from two-dimensional (2D) to three-dimensional (3D); with 

only some models  simulating articular surface contact; incorporating the surrounding soft-

tissues; accounting for muscle cocontraction; or incorporating the thigh-calf contact that occurs 

during high-flexion activities. The diversity of approaches and modeling assumptions has led to 

vast differences in predictions of tibiofemoral joint contact force, even for the same activities. 

For instance, predicted knee joint forces during walking range from 1.7 to 3 times body weight 

(Komistek et al., 2005; Morrison, JB., 1970) depending on the modeling approach used in the 

literature. 

The primary aim of the research was to investigate the possibility of predicting thigh-calf 

contact force and location of centre of pressure by computing correlations between thigh-calf 
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contact parameters and anthropometric measures and comparing parameters between sexes and 

activities.  

2.1 Predicted tibiofemoral joint contact forces in deep flexion – neglecting thigh-calf 

contact 

 

There is limited information surrounding knee mechanics during deep knee flexion 

activities such as squatting or kneeling. Hefzy et al. (1998) used bi-planar radiographs to 

describe the kinematics of normal knees in-vivo during three sequential positions with 

progressively higher tibiofemoral joint flexion during kneeling and bowing positions of Muslims 

during prayer. It was observed that during high knee flexion tibiofemoral contact occurs on the 

most proximal aspect of the posterior femoral condyles. The first study to investigate the 

dynamic stress on the tibiofemoral joint during deep knee flexion was carried out by Dahlkvist et 

al. (1982). Knee joint and muscle forces were calculated during squatting and rising from a deep 

squat using EMG, a force plate and a cine film system. The estimated tibiofemoral joint contact 

forces were found to be between 3.7 and 5.6 times body weight along the long axis of the tibia. 

Most of studies that have modeled tibiofemoral joint contact forces are limited in that 

they do not consider that, during performance of high tibiofemoral joint flexion activities, a point 

is reached where the posterior thigh and calf come into contact and start to deform.  Nagura et al. 

(2002) modeled dynamic loads on normal knees during deep flexion activities such as squatting 

and kneeling. Limb position was obtained using an opto-electronic tracking system and ground 

reaction forces using a force plate. The peak tibiofemoral joint contact forces, calculated to be as 

high as 7.3 (S.D. 1.9) times body weight when rising from a full squat, occurred at 

approximately 146.3° of flexion. In addition, there was mention of contact between the thigh and 
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calf occurring when the knees were flexed beyond 140̊, although this was not taken into account 

in the estimation of tibiofemoral joint contact forces during deep knee flexion. 

Smith et al. (2008) predicted axial tibiofemoral joint contact forces during two high 

flexion squatting activities using an electromagnetic motion tracking system and a non-

conductive force platform. The model was based on measured kinematics, anthropometrics, 

ground reaction forces and calculated kinetics. Using this reduction (single muscle equivalent) 

approach, the resultant tibiofemoral joint contact forces during high-flexion squatting were then 

compared to those present during stair climbing. The maximum average joint contact force 

during the squatting activities occurred at significantly higher flexion angles compared to those 

during stair climbing. The largest mean peak joint contact force was found during heels-up 

(dorsi-flexed) squatting, which was predicted to be approximately 3.73 times body weight. 

2.2 Predicted tibiofemoral joint contact forces in deep flexion – accounting for thigh-calf 

contact 

 

A study by Caruntu et al. (2003) was one of the first to postulate the effects of thigh-calf 

contact on the loads transmitted to the knee joint. A two-dimensional mathematical model of the 

knee was developed to determine the behavior of the knee joint and its structures when it was 

maximally flexed during a static, deep squat. The model included the tibiofemoral joint, patello-

femoral joint, quadriceps and hamstring co-contractions and used a single force acting at the 

centre of pressure to represent the distributed contact force between the thigh and calf. It was 

found that the incorporation of thigh-calf contact into the model decreased the quadriceps force 

needed to maintain equilibrium in a maximal squatting position, estimated to be 165⁰ of flexion, 



8 

 

  

from 3500N to 2800N and lowered both the predicted tibiofemoral and patello-femoral contact 

forces.  

As of yet, the most instrumental work done with regards to thigh-calf contact during 

high-flexion activities was described in two papers by Zelle and colleagues. The first paper, Zelle 

et al. (2007), directly measured thigh-calf contact force and area during high flexion activities 

and the second paper, Zelle et al., (2009), incorporated those findings into a knee joint force 

model. 

In the initial study (Zelle et al., 2007), thigh-calf contact characteristics were measured 

using a flexible pressure mapping sensor (Tekscan Conformat pressure mapping sensor, 

Tekscan, South Boston, MA, USA),  in high-flexion activities such as squatting and kneeling. In 

this investigation, the centre of pressure of the resultant thigh-calf contact force was expressed as 

a distance along the long axis of the tibia from the midpoint on the epicondylar axis of the femur 

in the tibial coordinate system. During the kneeling exercise the pressure mapping sensor was 

placed on the participant’s calf prior to the deep flexion movement. During the squatting exercise 

the sensor was manually put into place by the participant as they descended into a deep squat 

from an erect posture. During both deep flexion movements knee flexion angles were measured 

unilaterally using an infrared five-camera motion capture system. At maximal knee flexion, the 

average maximal contact forces between the thigh and calf for each leg were 0.34 times 

bodyweight during squatting and 0.30 times bodyweight during kneeling. Based on this finding, 

the authors hypothesized that during deep knee flexion, thigh-calf contact would substantially 

affect forces inside the knee. In addition, this investigation showed significant correlations 

between body weight and the maximal thigh-calf contact force (measured in Newtons) during 

both squatting (R = 0.73) and kneeling (R = 0.72) as well as a strong correlation between the 
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thigh and calf circumferences and the starting angle of thigh-calf contact (R = -0.54; -0.79 

respectively) and the maximal contact force (R = 0.73; 0.77 respectively) (Zelle et al., 2007). 

These correlations indicate that inferences on the maximum thigh-calf contact force and starting 

angle of thigh-calf contact could be made based on the participant’s anthropometrics. 

In 2009, using the thigh-calf contact force magnitude and the location of the resultant 

thigh-calf contact force obtained from one person during the previous squatting investigation 

(Zelle et al., 2007), Zelle and colleagues used two methods to predict the effect of thigh-calf 

contact on knee forces and stresses that would be placed on the polyethylene component of a 

total knee replacement, at full knee flexion. Method 1 used a combination of a rigid link segment 

model and a single muscle equivalent (quadriceps only) model (FBD) whereas, method 2 used 

finite element (FE) modeling. The inclusion of thigh-calf contact force and location in the 

calculation of knee contact forces, calculated using method 1, considerably reduced knee contact 

forces and polyethylene stresses during deep knee flexion. Additionally, the joint forces 

calculated by the FE model were in good agreement with those computed by the FBD model 

(Zelle et al., 2009). At maximum flexion, the addition of thigh-calf contact to the model 

decreased the compressive knee force from 4.89 to 2.90 times bodyweight and decreased the 

polyethylene contact stress at the tibial post from 49.3 to 28.1 MPa. In addition to these findings, 

Zelle et al. (2009) also found a strong correlation between a participant’s thigh and calf 

circumferences and the reduction in compressive tibiofemoral joint contact force at maximal 

flexion. Larger thigh and calf circumferences promoted the earlier initiation of soft-tissue contact 

during deep knee flexion which would result in a larger force reduction at maximal flexion. The 

authors concluded that, since most TKR patients have higher BMIs and larger leg circumferences 

(Gupta et al., 2006), the contact between the thigh and calf during high flexion would partly 
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compensate for the increase in knee joint contact force usually associated with obesity and 

increase in bodyweight (Zelle et al. 2009). 

Recently, Hirokawa et al. (2013) created a two-dimensional mathematical model of the 

lower limb incorporating features such as a patello-femoral mechanism, thigh-calf contact in 

high flexion and a co-contracting muscle force ratio. This model, using data from a single 

participant, determined knee joint forces in four kneeling conditions: rising with legs in parallel; 

with one foot forward; and kneeling both with and without arm assistance. The ground reaction 

force data were collected using a force platform and the angles of each joint were collected using 

a Vicon motion capture system during the required squatting and kneeling activities. Similar to 

the findings of Zelle et al. (2009), the maximum tibiofemoral joint contact force calculated was 

not at the greatest flexion angle but rather around 125.5° (+/-10.70). The maximum tibiofemoral 

joint contact force when rising from a kneeling position was determined to be approximately 4.5 

times the participant’s bodyweight. Although thigh-calf contact during the high-flexion activities 

was not directly measured, the effect of thigh-calf contact, as described by Zelle et al. (2009) was 

incorporated into the 2D model. However, the activities which provided basis for the effect of 

thigh-calf contact used in the Hirokawa et al. (2013) model were different from those measured 

in the Zelle et al. (2007) investigation (rising from deep flexion kneeling versus squatting).  

Although previous publications have included thigh-calf contact force when calculating 

tibiofemoral joint contact forces during high flexion activities (Caruntu et al., 2003; Zelle et al., 

2009; Hirokawa et al., 2013), only one investigation directly measured thigh-calf contact force 

(Zelle et al., 2007) to be used in model development (Zelle et al., 2009). Notwithstanding, the 

model in the Zelle et al. (2009) investigation was developed using data from only one of the 
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participants from the Zelle et al. (2007) investigation, which measured thigh-calf contact directly 

using a pressure mapping sensor (Tekscan, South Boston, MA, USA).   

The work in this defense has attempted to address several key limitations of previous 

studies. Thigh-calf contact parameters were compared between activities and sexes; correlations 

between anthropometric measures and thigh-calf contact parameters after accounting for 

correlations between body mass and thigh-calf contact force (by normalizing the contact force to 

body mass) were quantified; equations were fit to the mean (for 30 participants) of thigh-calf 

contact force and centre of pressure as a function of percent of flexion range after contact; and an 

equation was developed to predict starting angle of thigh-calf contact based on anthropometric 

measures. 

2.3 Interface Pressure Mapping Systems: Use and Limitations 

 

Interface pressure mapping systems (IPM) are used for a variety of pressure monitoring 

applications, such as: measuring the interface pressure between the body and a support such as a 

chair; joint contact pressure monitoring in-vivo to determine the magnitude and distribution of 

contact stress as a function of joint loading (Martinelle et al., 2006); and measuring the contact 

pressure between adjoining body segments when they make contact (Zelle et al., 2007). The 

knowledge of the patterns of contact stress and force is important in terms of assessing tissue 

viability (Stinson et al., 2002); contact stress in different injuries and treatments (Martinelle et 

al., 2006); as well as tissue modeling (Stinson et al., 2002). A resistive sensor, Tekscan 

Conformat pressure mapping sensor (model #5315, Tekscan, Boston, MA) was used in this 

investigation. Resistive sensors consist of two Mylar sheets that have electrically conductive 

electrodes that are separated by a semiconductive ink coating. When pressure is applied, the ink 
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provides a change of the electrical resistance. By measuring the changes in current flow and 

using calibration values, the applied force can be calculated (Martinelle et al., 2006).  Artifacts 

such as temperature drift, creep, bending and hysteresis may affect overall sensor behavior with 

respect to accuracy and repeatability.  These limitations must be considered when measuring a 

contact force using a pressure mapping system. Moreover, IPM systems only measure normal 

force and do not measure shear force (Fergenbaum et al., 2003).  

Sensor creep, inherent in most IPM sensor technology, is the tendency for the sensors to 

increase their reading over time, given a constant load (Martinelle et al., 2006). Generally, 

corrections for creep are made during the calibration/equilibration process (Martinelle et al., 

2006; Tekscan Inc., 1999; Stinson et al., 2002). However, this correction is most accurate if the 

time frame during the calibration and equilibrium process matches the time frame used during 

data acquisition (IScan User Manual, Tekscan Inc., Boston, MA., 1999). Stinson et al. (2002) 

studied the time required for the IPM pressure values to stabilize after an increase or change in 

pressure using participants in a seated position on an IPM. For prolonged pressure readings, 

defined as exceeding one minute in duration, there was a significant increase in both average and 

maximum pressures over time. It is important to note, however, that average and maximum 

pressure did not significantly change during the first several seconds after a change in the force 

applied, suggesting that, at least in short-duration data collections (a few seconds), creep was not 

a concern (Stinson et al., 2002). 

Sensor hysteresis is the difference in the sensor output response during loading and 

unloading, at the same applied force (Martinelle et al., 2006). In terms of a resistive sensor, in 

particular the Tekscan Confortmat pressure mapping sensor (Model#5315, Tekscan, Boston, 

MA), the effects of hysteresis are claimed to be minimal where static force is applied and in 
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applications in which the force is only increased, not decreased (IScan User Manual, Tekscan 

Inc., Boston, MA). However, if a force application includes varying load increases and 

decreases, there may be error not accounted for by calibration and equilibrium measurements. 

Pavlovic et al. (1993) reported that a sensor is more accurate during loading than unloading, 

however, during prolonged step-and-hold loading it was concluded that the sensor can 

underestimate the actual load by an average of 22% with the greatest difference being close to 

the saturation point of the pressure mat, when pressureswere significantly greater than the 

calibration values used (Pavlovic et al., 1993).  

Accuracy and repeatability testing were conducted on the Tekscan Confortmat pressure 

mapping sensor (Model#5315, Tekscan, Boston, MA) used for this Master’s thesis project. The 

methodology for IPM validation can be found in Appendix C where the sensitivity, accuracy, 

drift and hysteresis of the Tekscan Confortmat pressure mapping sensor (Model#5315, Tekscan, 

Boston, MA) were quantified. 

2.4 Application for Thigh-Calf Contact Models: High flexion Total Knee Arthroplasty 

Design Criteria. 

 

Obtaining high degrees of flexion post-operatively is culturally important, especially for 

non-Western cultures where a range of motion greater than 120º of flexion is critical for 

activities of daily living (Hemmerich et al., 2006; Acker et al., 2011). In order to facilitate this 

demand, high-flexion knee implant designs have been developed (e.g. Sigma RP-F, DePuy, 

Warsaw, IN; Nexgen LPS Flex, Zimmer, Warsaw, IN; Scorpio Flex, Stryker, Kalamazoo, MI; 

Genesis II High Flex, Smith & Nephew, Memphis, TN)  to provide a larger flexion range (ROM 

> 120⁰) after TKR than previous conventional implants (ROM < 120⁰) (Khaw et al., 2001).  
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High-flexion TKRs are designed based on the assumption that the highest forces are generated at 

maximal knee flexion angles (Nagura et al., 2002; Nagura et al., 2006).   

However, with the addition of thigh-calf contact into models used to estimate knee joint 

contact forces during deep flexion activities, the highest forces are not occurring at maximal 

flexion, as previously thought (Nagura et al., 2002; Nagura et al., 2006), but rather at 

submaximal flexion angles (Zelle et al., 2009; Zelle et al., 2011; Hirokawa et al., 2013). 

Therefore, the need for reinforcement of high-flexion implants near end-range flexion, such as 

the metal pin in the tibial post of Sigma RP-F (Depuy, Warsaw, IN, USA), is debatable. Some 

may argue that this reinforcement and overestimation allows for a built-in safety factor into 

implant design. Contrarily, this excess reinforcement, such as reinforcing the polyethylene tibial 

post using metals in order to handle the predicted, but not truly representative, highest loads 

during very deep flexion, may in fact have a long-term detrimental effect on implant longevity 

(Bal & Greenberg, 2007).  

2.5 Sex as a covariate in predicting thigh calf contact 

 

Previous publications that have measured thigh and calf contact characteristics to 

calculate thigh-calf contact force (Zelle et al., 2007) or used thigh-calf contact force to calculate 

knee joint forces during high-flexion activities (Caruntu et al., 2003; Zelle et al., 2009; Hirokawa 

et al., 2013) were non-discriminate about the participant’s sex during calculations. Previous 

publications have noted both anatomical differences (Chin et al., 2002; Hitt et al., 2003; 

MacDonald et al., 2008; Dargel et al., 2011) and differences in fat distribution patterns (Seidell 

et al., 1987; Shimokata et al., 1989; Schwartz et al 1990; Canoy et al 2007) between men and 

women. Men were shown to have a more truncal and upper body fat distribution, whereas 
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women were characterized by more of a peripheral and lower body fat distribution. Generally, 

when adjusted for age, women had larger thigh circumferences than men (Shimokata et a., 1989). 

 Given that thigh and calf circumference has previously been shown to be significantly 

correlated to the starting flexion angle of thigh-calf contact and maximal thigh-calf contact force 

during high-flexion activities, differences in thigh and calf circumferences between the sexes 

could mean differences in thigh-calf contact area and force distribution.  
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Chapter 3: Research Design and Methodology 
 

This study had a cross-sectional design. Motion analysis and pressure data were collected 

during deep knee flexion squatting, dorsi-flexed and plantar-flexed kneeling. Motion data was 

used to determine segment positions and joint angles. Pressure data was used to determine the 

force between the thigh and the calf during these deep flexion positions. The mean thigh-calf 

contact force and centre of pressure from this study were used to estimate the effect of thigh-calf 

contact on knee joint reaction force forces, the sagittal net joint moment and the axial knee joint 

contact force in a single participant from another study. 

3.1 Participants 

 

This study was carried out at the University of Waterloo (Waterloo, Ontario), and ethics 

approval was obtained from the University Of Waterloo Office Of Research Ethics. Healthy 

volunteer participants were recruited from the university and local population. Participants 

provided informed consent to participate in the study.  

Thirty people (16 male and 14 female) participated in this investigation. The mean age of 

the participants was 27.78 years (S.D.13 years), the mean height was 172.1 cm (S.D. 8.5 cm, 

Male: 178.3 cm, S.D. 5.0 cm; Female: 165.0 cm, S.D. 5.6 cm), and the mean body mass was 77.0 

kg. (S.D.14.2 kg, Male: 82.9 kg, S.D. 13.1 kg; Female: 70.2 kg, S.D. 12.3 kg).  

Participant masses ranged from 53 kg to 112 kg which approximately span the range 

from the  5th to 95th percentile of body mass for males and females, regardless of race and age in 

the United States from 2007-2010 (C.D.C, 2010). Participant body mass index (BMI) ranged 
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from the 5th to 80th percentile for women and 7th to 80th percentile for males regardless of race 

and age in the United States from 2007-2010 (C.D.C, 2010). 

3.2 Equipment and data collection 

 

Each participant’s height, body mass, sex, and thigh and calf circumferences were 

measured prior to each data collection. The circumference of the thigh and calf was measured at 

two points along each segment. One circumference measure was measured around the largest 

point of each segment. The second thigh circumference was at approximately 90% of the 

segment length, measured distally from the greater trochanter, and was referred to as the distal 

thigh circumference.  The second shank circumference at approximately 10% of the segment 

length, measured distally from the lateral condyle of the tibia, and was referred to the proximal 

shank circumference. These percentages were used in order to establish circumference 

measurements that were as close as possible to the popliteal crease, on the back of the knee, 

while avoiding boney landmarks surrounding the knee joint. Table 3-1 defines the anatomical 

landmarks and instrumentation used to measure participant anthropometrics. 

Table 3-1: Summary of anthropometric measures taken 

Anthropometric Measure Anatomical Landmarks Instrumentation 

Height Ground to top of head when 

standing upright 

Standing weight scale with 

height rod 

Weight  Standing weight scale with 

height rod 

Maximal Thigh 

Circumference  

Widest section of thigh Measuring tape 

Distal Thigh Circumference 90% of the distance from the 

greater trochanter to the lateral 

femoral condyle going distally 

Measuring tape 

Maximal Calf Circumference Widest section of calf Measuring tape 

Proximal Calf Circumference 10% of the distance from the 

lateral tibial plateau to lateral 

malleolus  

Measuring tape 
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The knee joint centre was assumed to be the midpoint between the medial and lateral 

epicondyles of the femur, measured by bony landmark digitization (Grood & Suntay, 1983). The 

midpoint of the participant’s popliteal crease was approximated and digitized. The distance from 

the knee joint centre to the popliteal crease for each participant was calculated from a standing 

reference trial using Visual 3D V 4.85.0 (C-Motion Inc., Germantown), defined as the distance 

from the modeled knee joint centre to the digitized point on the popliteal crease in the tibial 

coordinate system. Knee flexion angles were measured unilaterally on the participant’s dominant 

leg using an optoelectronic motion capture system with six 3-camera position sensors (Northern 

Digital Incorporated, Waterloo, ON). The dominant leg was determined by asking the participant 

to step forward (Velotta et al., 2011). Infrared marker clusters, consisting of 5 markers, were 

secured to the participant’s foot, shank, and thigh on the dominant leg, and pelvis. Bony 

landmarks on each segment were digitized relative to the segment marker cluster and were used 

to define segment coordinate systems. The boney landmarks digitized relative to the pelvis were 

left and right ASIS, left and right PSIS and left and right iliac crest and the greater trochanter of 

the non-dominant femur. Landmarks digitized on the dominant femur were the greater trochanter 

and medial and lateral epicondyles of the femur. Landmarks digitized on the shank were lateral 

and medial tibial plateau and, lateral and medial malleolus. Landmarks digitized on the foot were 

lateral and medial malleolus, calcaneus and the 1st and 5th metatarsals. The motion data were 

collected at a frequency of 60Hz using First Principles Software (Northern Digital Inc., 

Waterloo, ON).  

 The distribution of contact pressure between the thigh and calf were measured using the 

Tekscan Conformat pressure mapping sensor (Model#5315, Tekscan, Boston, MA). The 
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measurable pressure range was 0.1-15 psi (0.7-103.4 kPa), which is larger than the range used in 

previous work (Zelle et al., 2007), which was 0.1-5 psi (0.7-34.5 kPa). The dimensions of the 

pressure mat were 0.62m x 0.53m, with the sensors covering an area 62.2 cmx 52.9 cm. The 

pressure mat was secured to the participant’s popliteal crease on the back of the knee using 

adhesive in such a way that it reduced possible movement while minimizing the folding of the 

pressure mapping sensor (Figure 3-1). 

 
Figure 3-1: Experimental set-up used in this investigation. The pelvis, thigh, shank and foot marker clusters are visible 

as well as the pressure mat attached just below the popliteal crease on the participant’s calf.  

   

The pressure mat sensor elements (“sensels”) are arranged into 42 rows along the x-axis and 

48 columns along the y-axis (sensel area: 103.23 mm2). The y-axis of the pressure mat was 

aligned with the long axis of the tibia when the participant was in full flexion with the 

assumption that the mat stayed aligned in this way. This assumption was confirmed by tracing 

the active sensels, using the ISCAN software (ISCAN v3.820, Tekscan, Boston, MA), during the 

first trial of each activity for each participant while the participant was in full flexion. The full 

flexion pressure tracing was then compared to subsequent trials to determine if contact area a full 
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flexion was consistent across trials.  Due to the location of the ribbon strip computer input cable, 

the pressure mat was secured to the participant’s popliteal crease so that the mid-point of the 

back of the knee was around sensel (30, 48). A visual representation of the IPM as well as a 

reference location of anatomical landmarks can be found in Figure 3-2. 

 

Figure 3-2: Depiction of Tekscan Conformat sensel array (Tekscan, Inc. Boston, MA) showing Sensel (0,0), the 

origin, and Sensel (30,48) which is the location of centre of the popliteal crease (PC). The light blue outline is a 

representation of thigh-calf contact area at full-flexion. MFC and LFC are the medial and lateral femoral 

condyles and the non-sensing area, represented by the white ring around the matrix, extends 2.6cm from the 

popliteal crease to the top column of sensels. COP is a general representation of the location of the centre of 

pressure at full-flexion.  

Thigh-calf pressure distribution was collected at 60 Hz. The pressure mapping and 

motion tracking systems were synchronized via an external trigger device which signaled both 

systems to start recording. In pilot testing, a force was applied to the mat using a force transducer 

(Chatillion CDS 200, AMTEK Test & Calibration Instruments, Largo, Florida, U.S.A.) with an 

analog output, which was collected using the same software and same sampling frequency as 

would be used to collect the kinematic data (60 Hz, First Principles, Northern Digital Inc., 

Waterloo, ON). During pilot testing, it was noted that there was a variable difference in 
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magnitude and a delay between the Tekscan Conformat pressure mapping system output data 

and the start-pulse synchronized force transducer output from First Principles software. In order 

to determine the agreement between the force output from the force transducer and the force 

output from the pressure mapping sensor, a limits of agreement method was used on pilot data 

(Altman and Bland, 1983; Bland and Altman, 1986). Limits of Agreement (LoA) methods are 

used to determine agreement between different methods measuring the same quantity (Bland and 

Altman, 1992). For LoA methodology and results, refer to Appendix B. Since the difference 

between the force transducer and IPM data was variable, it could not be corrected for.  However, 

the LoA provides an estimate of the range of differences that can be expected between the IPM-

measured force and the actual force applied. The 95% limits of agreement for the difference in 

force output between the force transducer and the IPM system were estimated to be -39.4 to 40.3 

N.  

The delay between the force transducer and the IPM system was characterized during 

pilot testing through the analysis of multiple trials of force being applied to the Tekscan 

Conformat pressure mapping system (Tekscan Inc., Boston, MA) using a force transducer via a 

curved platen (Chatillion CDS 200 Dynamometer, AMTEK Test & Calibration Instruments, 

Florida, U.S.A.). These trials were all similar to what would have been expected in the actual 

experiment in terms of load profile. The applied force and the IPM output from each of the trials 

are shown in Appendix C.  The time delay during the pilot trials was not uniform and varied 

between trials from 28 frames to 31 frames. 

During actual thigh-calf contact force data collections, the force transducer was applied 

to the IPM system, attached to the participant’s calf, during each trial before the deep flexion 

movement. The delay for each trial was calculated between the output from the force transducer 
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and the IPM. This was done by cross correlating the force transducer output and the IPM output. 

The calculated delay was then applied to the thigh-calf contact force measured by the IPM 

during squatting or kneeling by shifting the IPM output backwards by the calculated number of 

frames. In order to determine if the delay changed through a trial, the protocol with the force 

transducer was slightly altered for 13 participants from the study population and the force 

transducer was applied to the IPM system before and after the deep flexion movement. The 

delays calculated from the force transducer application before and after the deep flexion 

movement were compared and varied by no more than one frame.  

Participants performed three randomized trials of three activities: squatting, dorsi-flexed 

kneeling and plantar-flexed kneeling (Figure 3-3). The squatting activity was performed with the 

participant descending from an erect standing posture (Figure 3-3a) to a squatting posture with 

the participant’s heels up and mass balanced over the balls of the feet (Figure 3-3b).  Two 

kneeling activities were performed by descending from an erect kneeling position (Figure 3-3c) 

to a deep kneeling posture with ankles plantar-flexed (Figure 3-3d) or with the ankles dorsi-

flexed (Figure 3-3e). 

Figure 3-3: (A,B) Standing (A) to squatting (B) progression with pressure mapping sensor attached via adhesive just 

below the participant’s popliteal crease. (C,D,E) Upright kneeling (C) to either full-flexion plantar-flexed kneeling 

(D) or full-flexion dorsi-flexed kneeling (E). 
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3.4 Data analysis 

 

 Visual 3D V 4.85.0 (C-Motion Inc., Germantown, Maryland, USA) was used for filtering 

and knee joint angle calculation. Raw kinematic data was filtered using a second-order, low-pass 

Butterworth filter (dual-passed to create a fourth-order filter with zero phase shift) with an upper 

cutoff frequency of 6 Hz (Winter et al., 1990). Missing data points were interpolated using a 

third-order cubic spline in order to fit the missing frames of data up to a maximum of 10 frames 

(Howarth & Callaghan, 2010).  

A rigid link model was created with pelvis, thigh, shank and foot segments. The thigh and 

shank segments were used to calculate knee joint angles from the kinematic data. The proximal 

radius of the thigh was defined as a quarter of the distance between the femoral greater 

trochanters. The thigh coordinate system was defined proximally using the greater trochanter of 

the dominant leg and the proximal radius of the thigh which is defined using Visual 3D V 4.85.0 

(C-Motion Inc., Germantown, Maryland, USA) as a quarter of the distance between the iliac 

crests of the pelvis. Distally the thigh was defined by the medial and lateral femoral condyles. 

The positive z-axis was defined as a vector pointing proximally from the midpoint between the 

medial and lateral femoral condyles to the hip joint center, also defined in Visual 3D V 4.85.0 

(C-Motion Inc., Germantown, Maryland, USA) as a quarter of the distance between the iliac 

crests of the pelvis measured along the x-axis from the greater trochanter of the right thigh. The 

frontal plane was defined by the z-axis and the line formed between the lateral and medial 

femoral condyles. The positive y-axis was defined by a normal to the frontal plane, pointing 

anteriorly, and the positive x-axis was defined by the cross product of the y- and z-axes, pointing 
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laterally on the right leg. The shank coordinate system was defined proximally by the lateral and 

medial tibial condyles and distally by the lateral and medial malleoli. The z-axis was defined as a 

vector from the midpoint between the lateral and medial malleoli to the midpoint between the 

tibial condyles. The y-axis was defined by a normal to the z-axis, and the x-axis was defined by 

the cross product of the y- and z-axes. The x-axis was again defined as the cross product of the y- 

and z-axes. For the shank, positive z points proximally, positive y points anteriorly and positive x 

points laterally on the right leg. Knee joint angle rotations were described using a Cardan 

sequence of rotation (x,y,z) of the tibia with respect to the femur, where z is proximal/distal with 

positive pointing proximal, y axis is in the anterior/posterior direction, positive pointing 

anteriorly, and x axis is medial/lateral, positive pointing laterally on the right leg (Yeadon, 1990; 

Davis et al., 1991; Kadaba et al., 1990). 

 An IScan Pressure Measurement System (ISCAN v3.820, Tekscan, Boston, MA) was 

used to measure contact force, area, and centre of pressure on the pressure mat. The pressure 

mapping system used in this investigation has a 2.6 cm non-sensing ring surrounding the outside 

of the sensing area. The starting angle of thigh-calf contact was defined as the flexion angle at 

which contact appeared in the first row of sensels and was over 5 mmHg (0.7 kPa) (Stinson et 

al., 2002). The raw output from the pressure mapping system is expressed as the total force for 

each data collection frame. Thigh-calf contact force was calculated by the ISCAN software using 

Equation 3-1. For the purposes of this investigation only the data from participants descending 

from an erect into a fully flexed position were used: 

 

Equation 3-1: (𝐹𝑇𝐶)𝑓 = (∑ (𝑆𝑎(𝑃𝑖)𝑓))/𝐵𝑀𝑛
𝑖=1  
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Pi represents the pressure reading in each individual sensor from P1 to Pn with n being the 

number of sensors in the contact area enclosed by the full flexion pressure tracing. Sa represents 

the surface area of an individual sensor, BM demotes participant body mass and f denotes frame 

number in Equation 3-1. Thigh-calf contact force was divided by (normalized to) each 

participant’s body mass in order to reduce variability in thigh-calf contact force for the purposes 

of modeling and to be able to compare thigh-calf contact force values from this investigation to 

those calculated in other studies. 

The centre of pressure of thigh-calf contact force along the y-axis of the tibia (COP) was 

determined in a two-step procedure. Centre of pressure coordinates on the pressure mat (X,Y) in 

sensels, were determined in the ISCAN software (ISCAN v3.820, Tekscan, Boston, MA) using 

Equation 3-2. While this equation does calculate centre of pressure, only force values are used 

because, in order to calculate pressure, the force values would each be multiplied by the area of a 

sensel.  Since all sensels have the same area, every term in this equation would include the sensel 

area, and the common factor of sensel area in the numerator would be cancelled by the common 

factor of sensel area in the denominator. The origin (0,0) is the first row/column of sensor 

elements.   

 

Equation 3-2: 𝑋 =
 ∑ (𝐶−1

𝑖=0 𝑖∗∑ 𝐹𝑖𝑗)𝑅−1
𝑗=0

∑ (𝐶−1
𝑖=0 ∑ 𝐹𝑖𝑗)𝑅−1

𝑗=0

            𝑌 =
 ∑ (𝑅−1

𝑖=0 𝑖∗∑ 𝐹𝑖𝑗)𝐶−1
𝑗=0

∑ (𝑅−1
𝑖=0 ∑ 𝐹𝑖𝑗)𝐶−1

𝑗=0

 

 

Where: 

X = the (x) coordinate, in sensels, of the centre of pressure from the origin.  

Y = the (y) coordinate, in sensels, of the centre of pressure from the origin. 

i = the (x) coordinate, in sensels, of a sensel from the origin. 

j = the (y) coordinate, in sensels, of a sensel from the origin. 
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Fij = Force at each sensel (i,j) within the contact area enclosed by the full flexion pressure tracing 

C= Total number of columns (on pressure mat) 

R= Total number of rows (on pressure mat)  

 

The Y-coordinate of the centre of pressure for each frame, calculated from Equation 3-2, 

was then subtracted from 48, in order to calculate the distance in sensels along the tibia from the 

edge of the sensels to the centre of pressure. This distance in sensels was then multiplied by 

1.016cm, the width of a sensel, in order to get this distance in centimeters. The sum of this 

distance, the distance from the knee joint centre to the popliteal crease, and the length of the non-

sensing area, 2.6cm surrounding the sensing matrix (Figure 3-2), was calculated.. This sum 

represented the distance from the joint centre to the centre of pressure in the direction of the y-

axis of the pressure mat, which was approximately parallel to the z-axis of the tibia. 

Thigh-calf contact force and COP were presented with respect to flexion angle.  In order 

to reduce variability of the flexion angles corresponding to a given thigh-calf contact force or 

centre of pressure location, and to aid in fitting an equation to the data, flexion angles normalized 

to a percentage of the flexion range between the start of thigh-calf contact and maximal flexion 

(“percent flexion range after contact”). The trial mean curves were averaged to create one mean 

curve per participant for each activity.  Participant mean curves were averaged in order to obtain 

one mean curve per activity. For thigh-calf contact force and COP, individual participant mean 

curves were used to obtain an overall mean curve and standard deviations for each activity. An 

exponential curve was then fit to the overall mean curves for thigh-calf contact force for each 

activity. For COP, a line of best fit was determined. The criterion that was used to determine the 

best fitting line was the line that minimized the sum of the squared errors of prediction.   
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The maximum total thigh-calf contact force, centre of pressure (COP) at maximum total 

force, flexion angle at maximum total force, and the starting angle of thigh-calf contact were 

identified for each individual trial. These outcome measures were then averaged across 

participant trials for each of the three activities to get four parameter means per activity per 

participant.  

 

3.4.1 Knee joint reaction forces, net joint moments, and joint contact force 

 

To determine the potential effect of thigh-calf contact forces measured in this study on 

tibiofemoral joint contact forces,  force and motion data from a full-flexion, static, squatting trial 

from a single participant (from a previous study where thigh-calf contact was not measured) 

were used. A rigid link segment model was developed in Visual 3D V 4.85.0 (C-Motion Inc., 

Germantown, Maryland, USA). Ankle forces and moments were calculated using Visual 3D V 

4.85.0 (C-Motion Inc., Germantown, Maryland, USA) in the shank coordinate system and were 

subsequently used to create free body diagrams (see Figure 3-4) that included thigh-calf contact.  

These free-body diagrams were used to calculate knee joint reaction forces and moments both 

with and without the addition of thigh-calf contact into the model. For the free body diagram 

calculations please refer to Appendix E. For Figure 3-4, Rz and Ry represent the y and z 

components of the ground reaction force, Raz and Ray represent the y and z components of the 

reaction force at the ankle, Rkz and Rky represent the y and z components of the reaction force at 

the knee, Max represents the net joint moment about the ankle, Mkx represents the net joint 

moment about the knee, FTC and COP represent thigh-calf contact force and it’s corresponding 

distance from the knee joint center along the z-axis of the tibia, and Ms represents the mass of 

the shank. Joint reaction force components are drawn in directions corresponding to the y and z 
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axes of the shank.  In calculations based on these free body diagrams, a negative calculated force 

or moment indicated that the force or moment acted in a direction opposite of the direction 

drawn in the diagram. 

 
Figure 3-4: Free body diagram of the shank during squatting at full flexion. Ground reaction forces and ankle and 

knee joint reaction forces and net joint moments are drawn in the anatomical coordinate system of the shank.  

 

 

 The centre of mass location and mass of the shank and foot were determined in Visual 

3D V 4.85.0 (C-Motion Inc., Germantown, Maryland, USA) using equations from Dempster and 

Gaughran (1967). The joint center of the knee was defined as the mid-point between the femoral 

condyles and joint center of the ankle was defined as the midpoint between the malleoli.  Thigh-

calf contact force was modeled as resultant force whose line of action was in the anterior (+Y) 

direction of the shank. The location of this force was determined from the calculated average 

centre of pressure at maximum total thigh-calf contact force. An estimate of the quadriceps 

muscle force both with and without the incorporation of thigh-calf contact into the model was 

calculated by dividing the calculated knee joint moment by the estimated moment arm of the 
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knee joint extensors, 5.91cm (Herzog, W. & Read, L.J., 1993). Knee joint contact force was 

calculated as reaction forces at the knee minus the quadriceps muscle force. 

 

 

3.5 Statistical Analysis 

 

Four two-way (3 activities x 2 sexes) ANOVAs were used to compare the   mean values 

for maximum total thigh-calf contact force (in N/kg), centre of pressure at maximum total force 

(in cm), flexion angle at maximum total force (in degrees) and the starting angle of thigh-calf 

contact (in degrees) between sexes (2 levels: male, female) and between activities (3 levels: 

squatting; dorsi-flexed kneeling and plantar-flexed kneeling). A post-hoc Tukey test was run to 

determine which activities were significantly different from others. P-values were corrected for 

multiple tests using a Bonferroni correction. Statistical significance was defined by an adjusted 

p-value (the calculated p-value multiplied by 4 as that was the number of outcome parameters) 

less than 0.05. 

Pearson product-moment correlation coefficients (R) were calculated in order to 

investigate the relationship between the anthropometric measures (maximal thigh circumference; 

distal thigh circumference; proximal calf circumference; maximal calf circumference; height) 

and the four outcome parameters (maximum total thigh-calf contact force, location of the centre 

of pressure at maximum total thigh-calf contact force, flexion angle at maximum total thigh-calf 

contact force and starting angle of thigh-calf contact). P-values were corrected for multiple tests 

using a Bonferroni correction and statistical significance was defined by an adjusted p-value (the 

calculated p-value multiplied by 4 as that was the number of outcome parameters) less than 0.05. 
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In cases where a linear relationship between an outcome parameter and an anthropometric 

measure did not exist, the relationship between the slope of the logarithm of the maximum total 

thigh-calf contact force and the anthropometric measures were also investigated; however R 

values between the slope of the logarithm of the maximum total thigh-calf contact force and 

anthropometric measures were very low in all investigated cases.  

3.5.1 Predictive Modeling: Stepwise Linear Regression 

 

In cases where the R value exceeded 0.5 for one or more of the anthropometric measures 

for a given outcome parameter, predictive modeling of the outcome parameter based on 

anthropometric measures was pursued. Data from 20 randomly selected participants (10 female 

and 10 male) for model development. Of those selected for model development the mean age of 

the participants was 27.4 years (S.D. 7.53 years), the mean height was 171.8 cm (S.D. 7.7 cm, 

Male: 175.8 cm, S.D. 7.8 cm; Female: 165.9 cm, S.D. 4.8 cm), the mean mass was 75.9 kg 

(S.D.14.7 kg, Male: 82.1 kg, S.D. 10.2; Female: 70.9 kg, S.D. 6.8 kg).  External validation was 

performed on 10 additional participants (6 males and 4 females) not included in the creation of 

the prediction models. Measured outcome measures were compared to predicted values for these 

ten participants use root mean squared error (RMSE) and R2 values. 

Multivariate linear regression with forward stepwise selection was used to develop 

predictive equations. Covariates had to meet the 0.5 significant level for entry into the regression 

model. Covariates that were candidates for inclusion in the models were: maximal thigh 

circumference; distal thigh circumference; proximal calf circumference; maximal calf 

circumference; height; and sex. In multivariate regressions, maximum total thigh-calf contact 

force, COP at maximum total thigh-calf contact force, and the starting angle of thigh-calf contact 
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were the dependent variables. Anthropometric parameters and sex were the independent 

variables.   
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4. Results 
 The results of this study are organized as follows.  First, curves for the thigh-calf contact 

force (section 4.1, Figure 4-1) and center of pressure (section 4.2, Figure 4-2) are presented for 

the full flexion range during thigh-calf contact.  Mean values of the four thigh-calf contact 

parameters are then presented (section 4.3, Table 4-1).  These are the values that were used in 

analyses of variance.  The remainder of the results section is then divided by parameter, 

presenting the ANOVA results (sections 4.4.1, 4.5.1, 4.6.1, 4.7.1)  and the correlations with 

anthropometric measures (sections 4.4.2, 4.5.2, 4.6.2, 4.7.2) for each of the four thigh-calf 

contact parameters separately. Section 4.8 shows the results from the stepwise linear regression 

models for the starting angle of thigh-calf contact during squatting and dorsi-flexion kneeling 

(Figure 4-19) and section 4.9 details the effect of thigh-calf contact force on tibiofemoral joint 

contact force.   

4.1 Thigh-Calf Contact Force as a Function of Percent Flexion Range after Contact 

 

Similar to the results found by Zelle et al. (2007), thigh-calf contact force increased 

exponentially with increasing knee flexion angles.  

Figure 4-1 shows the average thigh-calf contact force curve for each participant for 

squatting, dorsi-flexed and plantar-flexed kneeling as a function of percent flexion range after 

contact. In order to reduce the variability in flexion angles that corresponded to a given level of 

force, the flexion angle was expressed as a percentage of the range of flexion angles between the 

starting angle of thigh-calf contact and the flexion angle at maximum total thigh-calf contact 

force (“percent flexion range after contact”). The equation presented on the graphs are the 

exponential equation fitted to the mean curve for each activity. For the average thigh-calf contact 
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force curve for each participant for squatting, dorsi-flexed and plantar-flexed kneeling as a 

function of flexion angle, please refer to Appendix C.  

 

 

 

Figure 4-1: Thigh-calf contact force for squatting (A), dorsi-flexed kneeling (B), and plantar-flexed kneeling (C) for 

the full range of flexion expressed as a percent of the flexion range. Individual grey lines represent the average thigh-

calf contact force curve for individual participants for each activity, whereas the thick blue line shows the average 

relationship between thigh-calf contact force and percent flexion range after contact. The green and red lines 

represent +/-1 standard deviation from the average. The equation and R2 presented on the graphs are the exponential 

equation, represented by the dotted navy line, fitted to the mean curve for each activity. 
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4.2 Center of Pressure as a Function of Percent Flexion Range after Contact  

 

The average location of the centre of pressure of the thigh-calf contact force, measured 

distally along the long-axis of the tibia from the epicondylar axis, for all participants during the 

squatting and kneeling activities are shown in Figure 4-2.  In general, thigh-calf contact force, 

and as a result the centre of pressure, originated close to the epicondylar axis and then traveled 

distally along the long axis of the tibia with increasing flexion angle. For some participants, 

thigh-calf contact force originated closer to the muscle belly of the calf and then fluctuated along 

the long axis of the tibia.      
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Figure 4-2 Average location of thigh-calf contact force (COP) for all participants after the start of thigh-calf contact 

during (A) squatting, (B) dorsi-flexed and (C) plantar-flexed kneeling represented in terms percent flexion range after 

contact. Individual grey lines represent the average center of pressure for individual participants for each activity, 

whereas the thick blue line shows the average relationship between centre of pressure and percent flexion range after 

contact. The green and red lines represent +/-1 standard deviation from the average. The equation and R2 presented 

on the graphs are the exponential equation, represented by the dotted navy line, fitted to the mean curve for each 

activity. 
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Section 4.3 Average Thigh-Calf Contact Force Characteristics 

 

Table 4-1 depicts the average thigh-calf contact characteristics for all participants with 

thigh-calf contact force being normalized to body mass. 

Table 4-1: Average thigh-calf contact characteristics for all participants. Standard deviations are expressed in 

brackets. 

Event At Start of Thigh-Calf 

Contact 

At Total Maximal Thigh-Calf Contact Force 

Outcome 

Measure 

Flexion angle (º) Flexion angle (°) Normalized Thigh-

Calf Contact Force 

(N/kg) 

Location of Centre of 

Pressure* (cm) 

 Male  Female Male Female Male Female Male Female 

Squatting 135.5 

(4.2) 

138.5 (4.3) 146.1 

(8.8) 

146.8 

(7.4) 

1.0 

(0.5)  

1.1 

(0.7) 

13.9 

(1.6) 

13.4 

(1.5) 

Dorsi-

flexed 

kneeling 

138.6 

(4.4) 

140.7 (3.7) 149.2 

(8.0) 

149.7 

(6.8) 

1.8 

(0.6)  

2.1 

(0.8) 

15.4 

(1.8) 

14.5 

(1.4) 

Plantar-

flexed 

kneeling 

138.6 

(3.4) 

140.9 (3.7) 149.4 

(7.1) 

150.6 

(6.8) 

2.2 

(0.8)  

2.2 

(0.9) 

14.8 

(1.9) 

14.3 

(2.0)  

 *The location of the centre of pressure is expressed along the long axis of the tibia with respect to 

the knee joint centre which was assumed to be the midpoint between the medial and lateral 

epicondyles of the femur, measured by bony landmark digitization. 

 

4.4 Maximum Total Thigh-Calf Contact Force 

4.4.1 Analysis of Variance for Maximum total Thigh-Calf Contact Force for Sex and 

Activity 

 

 For the maximum total thigh-calf contact force comparisons (Figure 4-3 and Table D-7), 

the ANOVA showed a main effect of activity (p <0.0001), while there was no significant main 

effect of sex (p = 0.41) and no significant sex-by-activity interaction (p = 0.76). The Tukey post-

hoc analysis showed that dorsi-flexed and plantar-flexed kneeling were not statistically different, 

however, there was a significant difference between the squatting activity and both kneeling 

activities (Table D-8).  
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Figure 4-3: Interaction plot for the two-way ANOVA on maximum total thigh-calf contact force (sex x activity). 

Significant differences between activities are denoted with an asterisk (*).Blue indicates males and red indicates 

females. 

 

4.4.2 Correlations between Anthropometric Measures and Maximum Total Thigh-

Calf Contact Force 

 

For squatting (Figure 4-4) and dorsi-flexed kneeling (Figure 4-5) only height was 

significantly correlated to maximum total thigh-calf contact force (p = 0.03 and p = 0.04, 

respectively). Maximal thigh circumference (p = 0.03) and maximal calf circumference (p = 

0.03) were both significantly positively correlated to maximum total thigh-calf contact force 

during plantar-flexed kneeling (Figure 4-6). 
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Figure 4-4: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and maximum total 

thigh-calf contact force during squatting. R values are shown in the upper right hand corner of each graph. An 

asterisk(*) denotes a significant correlation. 
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Figure 4-5: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and maximum total 

thigh-calf contact force during dorsi-flexed kneeling. R values are shown in the upper right hand corner of each graph. 

An asterisk(*) denotes a significant correlation. 
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Figure 4-6: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) with maximum total 

thigh-calf contact force during plantar-flexed kneeling. R values are shown in the upper right hand corner of each 

graph. An asterisk(*) denotes a significant correlation. 
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4.5 Center of Pressure at Maximum Total Thigh-Calf Contact Force 

4.5.1 Analysis of Variance for Center of Pressure at Maximum Total Thigh-Calf 

Contact Force for sex and activity 

 

For the centre of pressure at maximum total thigh-calf contact force (Figure 4-7 and 

Table D-3) the ANOVA showed a main effect of activity (p = 0.04), while there was no 

significant main effect of sex (p = 0.41) and no significant sex-by-activity interaction (p = 0.86) 

(see Table D-3). The Tukey post-hoc analysis showed that dorsi-flexed and plantar-flexed 

kneeling were not statistically different. However, there was a significant difference between the 

squatting activity and both kneeling activities (Table D-4).  Figure 4-7 shows the interaction plot 

for the ANOVA on the center of pressure at maximum total thigh-calf contact force. Significant 

differences found in the post-hoc analysis are denoted with an asterisk (*). 

 

 

Figure 4-7: Interaction plot for the two-way ANOVA on center of pressure at maximum total thigh-calf contact force 

(sex x activity). Significant differences between activities are denoted with an asterisk (*).Blue indicates males and 

red indicates females. 



42 

 

  

4.5.2 Correlations with Anthropometric Measures and Center of Pressure at 

Maximum total Thigh-Calf Contact Force 

 

 The correlations and R values for the anthropometric covariates and center of pressure at 

maximum total thigh-calf contact force are displayed for squatting in Figure 4-8, dorsi-flexed 

kneeling in Figure 4-9 and plantar-flexed kneeling in Figure 4-10. For all activities, no 

anthropometric covariates measured were significantly correlated to COP except for height 

during plantar-flexed kneeling. 
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Figure 4-8: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and center of 

pressure at maximum total thigh-calf contact force during squatting. R values are shown in the upper right hand 

corner of each graph. An asterisk(*) denotes a significant correlation. 
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Figure 4-9: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and center of 

pressure at maximum total thigh-calf contact force during dorsi-flexed kneeling. R values are shown in the upper right 

hand corner of each graph. An asterisk(*) denotes a significant correlation. 

R = 0.22                                                                                          

R = 0.11                                                                                          

R = 0.06                                                                                          

R = 0.17                                                                                         
R = 0.18                                                                                          
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Figure 4-10: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and center of 

pressure at maximum total thigh-calf contact force during plantar-flexed kneeling. R values are shown in the upper 

right hand corner of each graph. An asterisk(*) denotes a significant correlation. 

R = 0.29                                                                                          

R = 0.36                                                                                          

R = 0.19                                                                                          

R = -0.45*                                                                                          R = 0.29 
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4.6 Flexion Angle at Maximum Total Thigh-Calf Contact Force 

4.6.1 Analysis of Variance for Flexion Angle at Maximum Total Thigh-Calf Contact 

Force for Sex and Activity 

 For the for flexion angle at maximum total thigh-calf contact force, there were no main 

effects of sex or activity (p= 0.17, p=0.68; Table D-5). Figure 4-11 shows the interaction plot for 

the ANOVA on flexion angle at maximum total thigh-calf contact force.  

 
Figure 4-11: Interaction plot for the two-way ANOVA on flexion angle at maximum total thigh-calf contact force 

(sex x activity). Significant differences between activities are denoted with an asterisk (*).Blue indicates males and 

red indicates females. 

 

4.6.2 Correlations with Anthropometric Measures and Flexion Angle at Maximum 

total Thigh-Calf Contact Force 

 

The correlations and R values for the anthropometric covariates and flexion angle at 

maximum total thigh-calf contact force are displayed for squatting in Figure 4-12, dorsi-flexed 

kneeling in Figure 4-13 and plantar-flexed kneeling in Figure 4-14. For all activities, maximum 

thigh circumference (except during plantar-flexed kneeling), distal thigh-circumference and 
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proximal calf circumference were found to be significantly related to the flexion angle at 

maximum total thigh-calf contact force. 

  

  

 

Figure 4-12: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and flexion angle at 

maximum total thigh-calf contact force during squatting. R values are shown in the upper right hand corner of each 

graph. An asterisk(*) denotes a significant correlation. 

R = -0.49*                                                                                          

R = -0.28                                                                                         

R = -0.42*                                                                                          

R = -0.18                                                                                          R = -0.37* 
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Figure 4-13: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and flexion angle at 

maximum total thigh-calf contact force during dorsi-flexed kneeling. R values are shown in the upper right hand 

corner of each graph. An asterisk(*) denotes a significant correlation. 

 

R = -0.53*                                                                                          

R = -0.32                                                                                         

R = -0.49*                                                                                          

R = -0.2                                                                                          R = -0.36* 
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Figure 4-14: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) to flexion angle at 

maximum total thigh-calf contact force during plantar-flexed kneeling. R values are shown in the upper right hand 

corner of each graph. An asterisk(*) denotes a significant correlation. 

 

 

R = -0.46*                                                                                          

R = -0.31                                                                                         

R = -0.48*                                                                                          

R = -0.2                                                                                          R = -0.32 
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4.7 Starting Angle of Thigh-Calf Contact 

4.7.1 Analysis of Variance for the Starting Angle of thigh-calf contact for sex and 

activity 

 

 For any male during any activity, the lowest starting angle for thigh-calf contact was 126° 

of flexion, whereas the lowest starting angle was 128° for females. For all activities, thigh-calf 

contact was initiated at a lower flexion angle, on average, in men than in women. For the starting 

angle of thigh-calf contact (see Figure 4-15 and Table D-1), there was a main effect of activity (p 

= 0.010) and sex (p = 0.016), while the sex-by-activity interaction was not significant (p = 0.93).   

The Tukey post-hoc analysis showed that dorsi-flexed and plantar-flexed kneeling were not 

statistically different. However, there was a significant difference between the squatting activity 

and both kneeling activities (Table D-2).  The output from the two-way ANOVA for the flexion 

angle at maximum total thigh-calf contact force for sex and activity is found in Appendix D. 

Figure 4-15 shows the interaction plots between center of pressure at maximum total thigh-calf 

contact force and each of the thigh-calf contact parameters, where significant differences are 

denoted with an asterisk(*). 



51 

 

  

 

 

Figure 4-15: Interaction plot for the two-way ANOVA on starting angle of thigh-calf contact force (sex x activity). 

Significant differences between activities are denoted with an asterisk (*).Blue indicates males and red indicates 

females. 

4.7.2 Correlations with Anthropometric Measures and the Starting Angle of Thigh-

Calf Contact Force 

 

The correlations and R values for the anthropometric covariates and the starting angle of 

thigh-calf contact force are displayed for squatting in Figure 4-16, dorsi-flexed in Figure 4-17 

and plantar-flexed kneeling in Figure 4-18. The starting angles of thigh-calf contact force during 

all three activities were found to be significantly negatively related to all anthropometric 

parameters except for height during dorsi-flexed kneeling. 
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Figure 4-16: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and the starting 

angle of maximum thigh-calf contact force during squatting. R values are shown in the upper right hand corner of 

each graph. An asterisk(*) denotes a significant correlation  

R = -0.65*                                                                                          

R = -0.48*                                                                                         

R = -0.56*                                                                                          

R = -0.42*                                                                                          R = -0.67* 
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Figure 4-17: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and the starting 

angle of maximum thigh-calf contact force during dorsi-flexed kneeling. R values are shown in the upper right hand 

corner of each graph. An asterisk(*) denotes a significant correlation. 

R = -0.66*                                                                                          

R = -0.52*                                                                                         

R = -0.65*                                                                                          

R = -0.32                                                                                          R = -0.62* 
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Figure 4-18: Graphs showing the relationship between the anthropometric covariates (maximal thigh circumference, 

distal thigh circumference, proximal calf circumference, maximal calf circumference and height) and the starting 

angle of maximum thigh-calf contact force during plantar-flexed kneeling. R values are shown in the upper right hand 

corner of each graph. An asterisk(*) denotes a significant correlation  

 

 

 

R = -0.53*                                                                                          

R = -0.43*                                                                                         

R = -0.54*                                                                                          

R = -0.38*                                                                                          R = -0.50* 
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4.8 Stepwise Linear Regression Models for the Starting Angle of Thigh-Calf Contact 

during Squatting and Kneeling 

 

There was a lack of significant correlations between anthropometric covariates and all 

outcome parameters except starting angle of thigh-calf contact. Therefore, predictive models for 

only the starting angle of thigh-calf contact force during squatting (Equation 4-1) and dorsi-

flexed kneeling (Equation 4-2) were created. Dorsi-flexed kneeling was chosen as the 

representative kneeling activity for modeling purposes as the results from the analyses of 

variance showed that there was no significant difference in the starting angle of thigh-calf 

contact between dorsi-flexed and plantar-flexed kneeling. In the equations presented below: SSA 

represents the starting angle of thigh-calf contact during squatting, SKA represents the starting angle of 

thigh-calf contact during kneeling, SX represents sex, MTC represents maximal thigh circumference, 

PCC represents proximal calf circumference and HT represents height. In Equation 4-1, the majority of 

the starting angle variance for squatting was explained was by MTC (partial R2= 0.5, Table D-9. 

In Equation 4-2, the majority of the starting angle variance for kneeling was explained by PCC 

(partial R2= 0.39, Table D-10).  

Equation. 4-1: 𝑆𝑆𝐴 = 151.96376 + 5.38390𝑆𝑋 + 0.04321𝑀𝑇𝐶 − 1.10174𝑃𝐶𝐶 +
11.18526𝐻𝑇 

Equation. 4-2: SKA = 171.87+4.15SX+0.33MTC-1.47PCC 

The above equations were based on 20 randomly selected participants. Using data from 

the remaining 10 participants, the starting angle of thigh-calf contact, computed by the SSA and 

SKA models (Equation. 1 and 2), were compared to the mean values for each participant and 

each activities. Figure 4-19 shows the comparison between mean starting angle of thigh-calf 

contact and predicted values in comparison to perfect agreement for both squatting (R2=0.71; 

RMSE=5.1°) and kneeling (R2=0.6; RMSE= 4.6°). 
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Figure 4-19: External validation performed on 10 additional participants not included in the creation of the prediction 

model showing the comparison between measured starting angle of thigh-calf contact force and predicted values. 

Each data point represents one participant for a given activity. Squatting values are shown in blue, kneeling values 

are shown in red and the green line represents perfect agreement.  
 

4.9 The Effect of Thigh-Calf Contact Force on Tibiofemoral Joint Contact Force. 

 

With the addition of thigh-calf contact force into the rigid link segment model inverse 

dynamics analysis, reduced the knee joint reaction force during static, full-flexion squatting 

decreased in the anterior-posterior direction from Rky= 3.21 N/kg to Rky=  2.19 N/kg. The net 

joint moment about the knee also decreased with the addition of thigh-calf contact force from 

86.88 Nm to 73.75 Nm which in turn caused an approximate decrease in the compressive 

tibiofemoral joint contact force by 2.23 N/kg in the longitudinal direction and 0.85 N/kg in the 

anterior-posterior direction (Appendix E).  
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5. Discussion 
 

 This investigation involved the measurement and analysis of total thigh-calf contact 

force, flexion angle, and thigh-calf contact centre of pressure during transitions into high flexion 

postures (squatting and kneeling).  Four thigh-calf contact parameters were identified: maximum 

total thigh-calf contact force, centre of pressure at maximum total thigh-calf contact force, the 

knee joint flexion angle at maximum total contact force, and the starting angle of thigh-calf 

contact. To the author’s knowledge, this is the first investigation that has investigated the effect 

of kneeling type (dorsi-flexed versus plantar-flexed kneeling) and sex on thigh-calf contact based 

on data from several participants during squatting and two types of kneeling. The main 

objectives of this Master’s thesis work were to compare thigh-calf contact forces between 

activities and sexes, to determine the correlation between anthropometric measures and thigh-

calf contact parameters and to develop predictive equations for thigh-calf contact force and 

centre of pressure based on anthropometric measures and flexion angle and a predictive equation 

for starting angle of thigh-calf contact based on anthropometric measures.  All objectives were 

met with the exception of developing predictive equations for thigh-calf contact force and center 

of pressure based on anthropometric measures and flexion angle.  Instead, equations were fit to 

the thigh-calf contact force and centre of pressure data as a function of percent flexion range 

after contact because the anthropometric parameters had few or no significant correlations with 

the maximum total thigh-calf contact force or the corresponding center of pressure. 

This investigation addressed four main hypotheses: that thigh-calf contact force 

characteristics would not differ between the squatting and kneeling activities; that 

anthropometric characteristics would affect maximum total thigh-calf contact force; the starting 
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angle of thigh-calf contact would differ depending on anthropometric characteristics and sex and 

that thigh and calf circumference would be a significant predictor of the location of centre of 

pressure on the tibia.   

5.2 Comparison between Activities 

 

For all outcome parameters, except the flexion angle at maximum total thigh-calf contact 

force, the squatting activity was found to be significantly different from the kneeling activities, 

whereas no significant differences were found between dorsi-flexed and plantar-flexed kneeling. 

In contrast, Zelle et al., (2007) reported that maximum total thigh-calf contact force between 

squatting and dorsi-flexed kneeling were comparable in both trend and magnitude. The average 

flexion angle at maximum total thigh-calf contact force obtained by the participants in this 

investigation for squatting and kneeling (146.5°, S.D.8.2°; 149.4°,S. D. 7.5°, for squatting and 

dorsiflexion kneeling respectively) were  lower than values reported by Zelle et al., (2007) 

(151.8°+/-4.4; 156.4°+/-3.4, for squatting and dorsiflexion kneeling). The average maximum 

total thigh-calf contact force values measured in this current investigation were also found to be 

lower in both squatting and kneeling than those found by Zelle et al., (2007).  Since the 

relationship between thigh-calf contact force and flexion angle appears to be exponential, a small 

difference in flexion angle near full flexion could mean a large change in thigh-calf contact 

force. Given that the average maximal flexion angle for this investigation was lower than those 

found by Zelle et al., (2007) it is uncertain if the differences in outcome parameters between 

squatting and kneeling activities observed in this investigation would remain if participants had 

reached greater flexion angles. It is important to note, however, that even at submaximal flexion 
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angles there were differences in thigh-calf contact force between squatting and kneeling at the 

same flexion angle for the same participant (Appendix C, Figure D-1).  

5.3 Correlations between Anthropometric Measures and Maximum Total Thigh-Calf 

Contact Force 

 

There were a few significant relationships between the anthropometric measures as well 

as between the outcome parameters. There was a high degree of multicollinearity between the all 

of the limb circumference measures (P<0.0001), although the results from the multicollinearity 

analysis showed that all anthropometric measures had a variance inflation factor (VIF) number 

of under 20. It can be assumed that weak dependencies might be starting to affect the regression 

estimates, however, these VIF numbers are not high enough to have a fair amount of numerical 

error (Belsey, Kuh, and Welsch., 1980). 

Zelle et al., (2007) found significant positive correlations between body mass, maximum 

thigh and calf circumference and non-normalized maximum total thigh-calf contact force for 

both dorsi-flexed kneeling and squatting. Those findings agree with the significant positive 

correlations found between maximum thigh and calf circumference mass-normalized maximum 

total thigh-calf contact force during plantar-flexed kneeling in the current study.  However, there 

were no significant correlations between anthropometric measures and mass-normalized 

maximum total thigh-calf contact force during squatting or dorsi-flexed kneeling. Given the 

differences in average maximal flexion angle at maximal thigh-calf contact force between 

investigations, the discrepancy in findings between this investigation and the previous 

investigation (Zelle et al., 2007) might indicate that anthropometric parameters have a greater 

influence on thigh-calf contact force at greater knee joint flexion angles. It is more likely, 
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however, that this discrepancy is due to differences in the normalization of total thigh-calf 

contact force between the two studies. The current investigation found strong significant 

relationships between participant mass and all lower limb circumference measures. As such, 

thigh-calf contact force was normalized to participant body mass (N/kg) in order to decrease the 

effect of multicollinearity between anthropometric measures. It is possible that all thigh and calf 

circumference measurements correlated with maximum total thigh-calf contact force in the 

previous investigation (Zelle et al., 2007) simply because the circumferences were significantly 

correlated to mass.  

5.4 Correlations between Anthropometric Measures and Center of Pressure at Maximal 

Total Thigh-Calf Contact Force 

 

The location of COP at maximal total thigh-calf contact force, was not determined by any 

measured anthropometric parameter, with the exception of a significant relationship between 

height and plantar-flexed kneeling. The location of COP at maximal total thigh-calf contact force 

may be determined by other parameters not included in this investigation, such as trunk position 

at maximum total thigh-calf contact force, or tissue compression. Correlations between centre of 

pressure and anthropometric parameters have not been calculated in previous literature.   

5.5 Starting Angle of Thigh-Calf Contact, Maximum Flexion Angle Reached, and Range of 

Flexion after Start of Contact 

 

Thigh-calf contact was initiated at a lower flexion angle, on average, in men than in 

women for all activities (p= 0.02).  There was large variation in the average maximal flexion 

angle across all activities between participants (Appendix C, Figure C-1). Average maximum 

flexion angle obtained was significantly positively correlated to the starting angle of thigh-calf 
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contact for all activities (squatting R=0.60, p= 0.002; dorsi-flexed kneeling R=0.63, p=0.0008; 

plantar-flexed kneeling R=0.70, p<0.0001). As such, participants who had a higher starting angle 

of thigh-calf contact were also likely to higher maximal flexion during both squatting and 

kneeling. Furthermore, most anthropometric parameters were, significant or not, negatively 

correlated to both starting angle of thigh-calf contact and the flexion angle at maximum total 

thigh-calf contact force in all activities. This finding means that as anthropometric parameters 

increased, both the starting angle of thigh-calf contact and the maximum flexion angle obtained 

tended to decrease.  

5.6 Effect of Thigh-Calf Contact on Tibiofemoral Joint Contact Force 

 

The net joint force calculated without the incorporation of maximum total thigh-calf 

contact force, for the single participant during heels up squatting (3.20 N/kg) lay within, albeit on 

the lower end, of the range of values reported in previous literature of 2 to 7 N/kg (Dahlkvist et 

al.,1982; Nagura et al.,2006; Smith et al., 2008). Force requirements used in the design and 

testing of TKRs are based on tibiofemoral joint contact force estimates calculated from knee 

joint models that have neglected to account for the contact between the thigh and calf during 

high-flexion, resulting in maximum tibiofemoral joint contact forces being estimated near full 

flexion (Hefzy et al., 1998; Nagura et al., 2002; Argenson et al., 2004). Based on a single muscle 

equivalent estimate, the compressive tibiofemoral joint contact force decreased by 221.78 N in 

the longitudinal direction and 84.96 N in the anterior-posterior direction. As such, current thigh-

flexion TKRs may be subjected to significantly less load at full flexion than what was previously 

assumed and the need for reinforcement of high-flexion implants near the end range of flexion, 
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such as the metal pin in the tibial post of Sigma RP-F (Depuy, Warsaw, IN, USA) should be 

revisited.    
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Chapter 6: Summary, Conclusions, and Recommendations for 

Future Work 
 

6.1 Summary 

 

This Master’s thesis project was motivated by a fundamental lack of understanding of 

thigh-calf contact during deep flexion activities. Very few investigations have attempted to 

characterize thigh-calf contact force, and even fewer knee joint contact force models have 

incorporated thigh-calf contact force into tibiofemoral joint contact force calculations during 

high-flexion. To the author’s knowledge, the only previous publication that had attempted to 

model thigh-calf contact force and contact force location on the tibia was conducted by Zelle et 

al. (2009), using data from a single participant and neglecting to account for the possible effect 

of anthropometrics on thigh-calf contact force.  

The purposes of this Master’s thesis project was to compare thigh-calf contact forces 

between activities and sexes and to determine the correlation between anthropometric measures 

and thigh-calf contact parameters. This work was guided by four key hypotheses pertaining to 

thigh-calf contact characteristics.  

The first hypothesis was that maximum total thigh-calf contact force would not be 

significantly different between the three activities. This hypothesis was incorrect. The average 

maximum total thigh-calf contact force during squatting (1.1 N/kg+/- 0.6) was significantly 

lower than those found during the dorsi-flexed (2.0 N/kg+/-0.7) and plantar- flexion kneeling 

(2.2 N/kg +/- 0.9). For all thigh-calf contact parameters, except flexion angle at maximum total 

thigh-calf contact force, there was a main effect of activity (maximum total thigh-calf contact 

force p<0.0001, center of pressure at maximum total thigh-calf contact force p=0.01, starting 
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angle of thigh-calf contact p=0.02). Tukey post-hoc analysis indicated that the squatting activity 

was significantly different from the kneeling activities (Appendix D).  

The second hypothesis postulated that body weight, thigh and calf-circumference will be 

significantly, positively correlated to maximum total thigh-calf contact force. Maximum total 

thigh-calf contact force, normalized to participant mass, were only significantly positively 

related to anthropometric parameters during plantar-flexed kneeling.  

 The third hypothesis postulated that a participant’s thigh and calf circumference would be 

significantly, negatively correlated to the starting angle of thigh-calf contact and that women 

would have an earlier starting angle of thigh-calf contact than men. The first part of this 

hypothesis was proven correct in that all lower limb circumference measures were significantly 

negatively correlated to the starting angle of thigh-calf contact for all activities. This finding 

means that, as anthropometric parameters increased, the starting angle of thigh-calf contact 

tended to decrease. For all activities, thigh-calf contact was initiated at a lower flexion angle, on 

average, in men than in women, contrary to the hypothesis (p=0.02).  

 The fourth hypothesis postulated that thigh and calf circumference would be significant 

predictors of the location of the centre of pressure at maximum total thigh-calf contact force. 

Given the lack of significant correlations between centre of pressure at maximum total thigh-calf 

contact force and any anthropometric measures, thigh and calf circumference measures were not 

significant predictors of COP at maximum total thigh-calf contact force. In general, the average 

COP at maximal thigh-calf contact force was more distal in men than in woman, however this 

difference was not significant (p=0.1). 
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This investigation generated important information on thigh-calf contact force and COP 

for the range of flexion after thigh-calf contact initiation and at maximum total thigh-calf contact 

force. To the author’s knowledge, this is the first investigation to characterize the effect of 

kneeling type (dorsi-flexed versus plantar-flexed kneeling) and sex on thigh-calf contact 

parameters and to provide equations for the mean total thigh-calf contact force and mean COP 

for the full range of flexion after initial thigh-calf contact based on data from more than a single 

participant (30 participants in this study) during squatting and kneeling.  

The major findings of the work in this Master’s thesis project are summarized below. 

1. The maximum total thigh-calf contact force were both significantly lower during the 

squatting activity than during the kneeling activities (Appendix D, Table D-7). 

2. The starting angle of thigh-calf contact was significantly lower in squatting compared 

to kneeling (Appendix D, Table D-1).  

3. The centre of pressure at maximum total thigh-calf contact force during full flexion 

was closer (but not significantly so) to the epicondylar axis during squatting than 

during the kneeling activities (Appendix D, Table D-3). 

4. All measured anthropometric parameters, except height, were positively correlated 

with non-normalized maximum total thigh-calf contact force (in Newtons) for all 

activities. However, when thigh-calf contact force was normalized to participant body 

mass, the anthropometric parameters were only significantly positively related to 

maximum total thigh-calf contact force during plantar-flexed kneeling.  

5. There was very little correlation between measured anthropometric parameters and 

the COP at maximum total thigh-calf contact force for both squatting and kneeling. 
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6. At maximal total thigh-calf contact force, the addition of thigh-calf contact force into 

the model changed the tibiofemoral contact force from 23.54 N/kg to 17.08 N/kg. 

6.2 Study Limitations 

 

The use of optoelectronic markers to track the motion of palpable landmarks may have 

introduced some uncertainty. Soft tissue artifact can affect the estimation of joint angles. 

Whenever possible, areas of severe soft tissue deformation were avoided when placing markers.  

In general, interface pressure mapping systems (IPM), such as the Tekscan Conformat 

pressure mapping sensor (model #5315, Tekscan, Boston, MA, used in this investigation) are 

prone to artifacts such as temperature drift, creep, bending and hysteresis with respect to 

accuracy and repeatability.  Resistive IPM systems have been found to introduce creep in the 

measurement of static forces by varying the static force measurements by -10% to +20% (Morin 

et al., 2000) although comparable average pressures are achieved during the first few seconds of 

an application of force (Stinson et al., 2002) as was the case in this investigation. Steps were 

taken to minimize and quantify these artifacts by calibrating the IPM system using conditions 

similar to what would be experienced during actual data collection (IScan User’s Manual., 1999). 

The accuracy of the sensor in measuring a known applied load is calculated in Appendix B.  The 

active sensing units on the Tekscan Conformat (model #5315, Tekscan, Boston, MA) are located 

2.6cm away from the top of the sensor, leaving a non-sensing space between the popliteal crease 

and the first row of sensels. This distance was added to the calculation of centre of pressure of 

thigh-calf contact force, however the effect of the distribution of force within this sensing area 

was not included; and the lack of force measurements in this area decreased the total measured 

force, resulting in an underestimation of the overall thigh-calf contact force. A sensitivity 
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analysis was performed on the effect of the missing 2.6cm of thigh-calf contact on thigh-calf 

contact force and can be found in Appendix B.  

Thigh-calf contact pressures create tissue deformation which may act to distribute the axial 

load in multiple directions. However the IPM system used to measure thigh-calf contact force in 

this investigation was only capable of measuring pressure normal to the IPM. Although the 

posterior thigh and calf are not flat when a person is standing upright, the contact force between 

the segments in high flexion causes the soft tissue on the segments to deform to a reasonably flat 

surface. It was assumed that the dominant component of the thigh-calf contact force was 

perpendicular to the long axis of the tibia, normal to the IPM system, and that other components 

of the thigh-calf contact force were negligible.  

Heel-gluteal contact forces were not measured in this study; however, some participants did 

exhibit heel-gluteal contact near full flexion. This contact force would further affect the 

calculated tibiofemoral joint contact force, at and near full flexion.   

 There were no significant correlations between anthropometric measures and mass-

normalized maximum total thigh-calf contact force in any activity except maximal thigh-

circumference during plantar-flexed kneeling. There may be other body measures that would 

better explain the variance in thigh-calf contact force and centre of pressure. Another possibility 

is that the precise mechanics of deep knee flexion postures may be participant specific which in 

turn may cause thigh-calf contact characteristics to be too individualized to be able to develop 

predictive models for a wide population range.   
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6.3 Recommendations for Future Work 

  

Recommendations for future work pertaining to characterizing and modeling thigh-calf contact 

parameters are listed below: 

1.  Use a measurement tool capable of measuring the entire contact area. The IPM system 

used in this investigation had a non-sensing area of 2.6cm surrounding the sensing matrix, 

so that contact forces between the popliteal crease and the edge of the sensing area could 

not be measured. 

2. Investigate the change in thigh-calf contact force characteristics over prolonged deep 

flexion postures. Soft tissues may show viscoelastic behaviour like relaxation or creep 

(Holzapfel, G., 2000). It remains to be seen how the deformation of the soft tissues of the 

thigh and the calf would affect thigh-calf contact force characteristics over prolonged deep 

flexion postures.   

3. Include the contact between the heel and the gluteal muscles evident for some participants 

during deep flexion activities. 

4. Determine the effect of tissue composition on thigh-calf contact characteristics.  
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Appendix 

Appendix A: Tekscan pressure mat calibration. 

 

Conditioning, equilibration and calibration were carried out using a gas-powered air 

compressor connected to a calibration jig (PB100B Tekscan, Tekscan Inc.), consisting of a 

control panel connected to an air bladder sandwiched between a wooden scaffold (Figure A-1). 

The pressure mat was placed in the wooden scaffold under the air bladder to ensure an equal 

distribution of pressure. The control panel toggle controls the inflow of air to and from the air 

bladders and the analog gauge on the wooden scaffold tells how much pressure is currently in the 

air bladder.  

 

Figure A-1: Calibration and equilibration equipment showing the air compressor, 

control panel and pressure mat in the wooden scaffold.   
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First, the device was conditioned by loading and unloading the pressure mat. 

Conditioning has been shown to lessen the effects of drift and hysteresis (IScan User’s Manual., 

1999). Conditioning was accomplished by cycling pressure from 0 to 15 psi (103.4 kPa), using 

the air bladder, over the entire sensor ten times.  

Equilibration and calibration were carried out in accordance with the manufacturer’s 

recommendations (Tekscan IScan User’s Manual, 1999) Equilibration is a process which 

attempts to minimize the variation between individual sensor elements (sensels) when a uniform 

pressure is applied. This process was accomplished by applying a uniform pressure at 7.5 psi 

(51.7 kPa), via the air bladder in the calibration jig, across the entire sensing area of the pressure 

mat for 15 seconds. Ideally, each element within the sensor should have produced a uniform 

output. When this was not the case, the software determined a unique scaling factor for that 

sensel to compensate for the slight variation and this scaling factor was then applied for 

subsequent trials.   

The application of a normal force to an active sensor results in changes in the resistance 

of each sensing element in inverse proportion to the force applied. Calibration is the method by 

which the digital output from the application of a normal force to an active sensor element is 

converted to force. In order to minimize the effect of drift on the IPM system’s output, the sensor 

calibration was performed in a time frame similar to that which will be used in the application of 

the system (Tekscan IScan User’s Manual, 1999). Therefore the loading rate (2.5 psi/sec) and 

duration over which the full load was applied (3 seconds) to the pressure mat were similar to 

those expected in the actual experiment. Two different loads, 7.5 psi (51.7 kPa) and 15 psi (103.4 

kPa), were applied to the pressure mat using the calibration jig and analog gauge, each for 15 

seconds.  
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A 2-point power law interpolation was then performed by the IScan software (Tekscan, 

Boston, MA) based on the two known calibration loads, using the equation: 𝑦 = 𝑎𝑥𝑏 where a 

and b  are the calibration coefficients, x is the raw output of pressure mat (equilibrated raw 

output), and y is the pressure in units of PSI.   

Appendix B: Tekscan Validation 

In order to assess the validity of the Tekscan Conformat System several tests were 

performed in order to determine the accuracy of the system in measuring an applied force, the 

synchronicity of the system with signals collected in First Principles, the presence of a non-

sensing area within the thigh-calf contact area and hysteresis. 

B.1 Accuracy 

Pilot testing aimed to quantify the accuracy of the system in measuring an applied force, 

taking into account a delay in the IPM system.. Ten trials each of loading and unloading between 

0 and 300 N and 0 and 400 N were carried out.  Force was applied to the Tekscan Conformat 

pressure mapping system (Tekscan Inc., Boston, MA) using a force transducer via a curved 

platen (Chatillion CDS 200 Dynamometer, AMTEK Test & Calibration Instruments, Largo, 

Florida, U.S.A.). The analog output from the force transducer was sampled at a frequency of 60 

Hz through the Optotrak Data Acquisition Unit (ODAU) using First Principles software 

(Northern Digital Inc., Waterloo, ON). The pressure mat output was sampled at 60Hz, using 

ISCAN software (ISCAN v3 820, Tekscan Inc., Boston, MA). Data collection was 

synchronously started using an external trigger that sent a low-to-high signal (5 v) to the ISCAN 

software (ISCAN v3 820, Tekscan Inc., Boston, MA) and a high-to-low signal to First Principles 

software (Northern Digital Inc., Waterloo, ON). During force application, the pressure mat lay 

on a participant’s thigh in order to attempt to mimic thigh-calf contact (Figure B-1).  
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Figure B-1: Experimental set-up involving the application of a force transducer to the IPM while 

it rests over a participant’s thigh. 

 

The loading rates (2.5-5 psi/sec), maximum loads (300N or 400N), were all similar to 

those expected in the actual experiment, based on previous pilot testing. The applied force (blue 

curves) and the IPM output (orange curves) from each of the 20 trials are shown in Figure B-2.  

In order to determine the accuracy of the IPM in measuring the known applied load, the delay 

between the two systems was first quantified and corrected for, and then a limits of agreement 

analysis (Bland & Altman, 2007). was carried out to determine the agreement between the 

known load and the delay-removed IPM data. 

For each trial, the delay between the output from the force transducer and the IPM was 

determined by cross correlating the force transducer output and the IPM output (MATLAB 

R2014b, The MATHWORKS Inc., Natick, MA). This analysis showed that the time delay was 
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not uniform and varied between trials from 28 frames to 31 frames (indicated in the bottom right 

corner of the graph for each trial in Figure B-2). The delay value was used to determine how 

many frames to shift the IPM output in order to match up with the force transducer output, and 

by proxy the kinematic data.
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Figure B-2: Plots showing the difference between the force transducer output (blue) and the pressure mat data (orange). The shifted pressure mat data, after delay calculation (grey), 

are also displayed. 
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In order to determine the agreement between the magnitudes of the force output from the 

force transducer and the delay-removed force output from the pressure mapping sensor, a limits 

of agreement analysis was used (Altman and Bland, 1983; Bland and Altman, 1986). Limits of 

Agreement (LoA) define the agreement between different methods measuring the same quantity 

(Bland and Altman, 1992 and Woodall, 2005).  The LoA provide an upper and lower limit within 

which 95% of the differences between the force outputs from the IPM system and the force 

transducer can be expected to fall.  

 The LoA method applied was appropriate for situations when there is repeated data, 

either as repeated pairs of measurements on the same participant and the true value of the 

measured quantity may be changing (Bland & Altman, 2007). In the case of this investigation, all 

pairs of data points for all the trials for the force transducer and pressure mapping system were 

taken into account. Since a single factor ANOVA showed a trial effect, each trial was treated 

separately and a pooled variance was used (Bland & Altman, 2007). Figure B-3 shows a Bland-

Altman plot of differences between the force transducer and IPM system against the average of 

the two measurements. The 95% limits of agreement for the difference between the force 

transducer and the IPM system were estimated to be -39.4 to 40.3 N. As can be seen in Figure B-

3, some trials were found to be significantly above the LoA. Those trials in particular were trials 

2, 11 and 19 from Figure B-2. As can be seen in Figure B-2, in those trials the shifted pressure 

mat data was still slightly delayed in some locations in comparison to the force transducer 

output. This would cause huge differences between the measured values and shifted pressure mat 

values during periods of force loading or unloading. 
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Figure B-3: Scatter Bland-Altman plot of difference between methods against the average of the two measurements. 

The red and green lines represent the calculated upper and lower 95% limits of agreement. 
 

B.2 Effect of Non-Sensing Area 

The length of the thigh-calf contact are along the y-axis of the IPM at maximal flexion is 

approximately 20cm. Given that there was a non-sensing area of 2.6cm, equivalent to 

approximately two columns of sensels, the IPM measurement could be potentially be missing 

10% of thigh-calf contact area, or even more, given that the thigh-calf contact area becomes 

more narrow (less rows per column) as the measurements become more distal on the calf. A 

sensitivity analysis was performed to determine the difference in force, normalized to participant 

mass, between the IPM output and a hypothetical full sensing matrix without a non-sensing area. 

The force at the starting angle of thigh-calf contact and the maximum total force were taken from 

all activity trials from four different participants, chosen at random from the study population. In 

the hypothetical case, it was assumed that instead of a non-sensing area, there were two columns 

of sensels with the same dimensions of the sensels on the rest of the pressure mat.  The force 

distribution on each column of these sensels was assumed to be identical to the last column 

before the non-sensing area (closest to the popliteal crease). The resulting force including the 
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measured sensels and the two columns of hypothetical sensels was calculated and then 

normalized to participant mass. For the four participants, the average difference in force at the 

starting angle of thigh-calf contact was 0.0006 N/kg (S.D. 0.006) and the average difference in 

force for maximum total force was 0.39 N/kg (S.D.  0.07).  

B.3 Effect of Hysteresis 

In order to determine the effect of hysteresis, the IPM system was placed inside a custom 

calibration jig with an air bladder. With the assistance of an air compressor, pressure was applied 

to the IPM system, increasing in1 psi (6.9 kPa) increments increasing pressure from 1psi to 10psi 

(68.9 kPa) and then decreasing in 1 psi increments pressure from 10psi to 1psi. The results from 

the hysteresis analysis can be found in Figure B-4 and were converted to force by multiplying the 

pressure by the total area of all the sensels on the pressure mat. 

 

Figure B-4: Hysteresis analysis showing the difference between the actual applied force (blue), to the measured 

force during a linearly increasing force condition (orange), and a linearly decreasing force condition (green).  

 

The hysteresis analysis shows general agreement between the applied load and the load 

measured by the IPM system in the increasing pressure condition, especially at forces below 350 
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N. The Tekscan Conformat system (Tekscan, Boston, MA), as with most IPM systems, are 

known for experiencing hysteresis in the decreasing pressure conditions (Pavlovic et al., 1993). 

The results of the hysteresis analysis show better agreement between the actual applied force and 

the force measured by the IPM system during the increasing pressure condition than during the 

decreasing condition below 350 N. Given that all force values measured from participants in this 

investigation were below 400 N, only the data from the portion of the deep flexion movement 

where the participant was descending into maximal flexion (increasing thigh-calf contact force) 

were used.    

A paired t-test determined that the differences between the actual applied force and 

increasing force values from the pressure mat were not statistically significant (p= 0.2) with a 

95% confidence interval from -9.7 N to 2.74 N. In terms of the thigh-calf contact measurements 

taken during this investigation, the calculated confidence interval would encompass the true 

population parameter 95% of the time. Meaning that the measured force from the IPM system 

will lie within -9.7 N to 2.74 N from the true applied force 95% of the time. When comparing the 

actual applied force to the pressure mat output from the descending force condition, the paired t-

test determined that the differences were also not statistically significant (P=0.08) with a 95% 

confidence interval of this difference from -3.7 N to 44.2 N. When comparing the differences 

between the increasing and decreasing force conditions from the pressure mat the paired t-test 

determined that the differences were statistically significant (P=0.02) with a confidence interval 

of 2.9 N to 27.9 N.  
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Appendix C: Mass-Normalized Thigh-Calf Contact Force and COP with Respect to 

Absolute Flexion Angle 

 The thigh-calf contact force, normalized to body mass, was presented in Figure 4-1, 

earlier in this document.  The flexion angles that corresponded to thigh-calf contact forces in that 

figure were normalized to percent flexion range after contact.  In order to show the variation in 

absolute flexion angles that were measured in this study, Figure C-1 shows thigh-calf contact 

force for squatting, dorsi-flexed and plantar-flexed kneeling with knee flexion expressed in 

degrees. 
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Figure C-1: Thigh-calf contact force for (A) squatting (B) dorsi-flexed and (C) plantar-flexed kneeling for the full 

range of flexion in degrees. Individual colours represent the average thigh-calf contact force curve for individual 

participants. 
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The center of pressure, normalized to body mass, was presented in Figure 4-2, earlier in 

this document.  The flexion angles that corresponded to center of pressure in that figure were 

normalized to percent flexion range after contact.  In order to show the variation in absolute 

flexion angles that were measured in this study, Figure C-2 shows the center of pressure of thigh-

calf contact for squatting, dorsi-flexed and plantar-flexed kneeling with knee flexion expressed 

in degrees. 
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Figure C-2: Center of pressure for (A) squatting (B) dorsi-flexed and (C) plantar-flexed kneeling for the full range of 

flexion in degrees. Individual colours represent the average thigh-calf contact force curve for individual participants. 
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Appendix D: ANOVA Outputs 

The following tables show the analysis of variance output and post hoc tests for total 

maximal thigh-calf contact force, centre of pressure at maximum total force, flexion angle at 

maximum total force and the starting angle of thigh-calf contact respectively where significant P 

values are denoted with an (*). Note that the sum of squares values for activity, sex and 

activity*sex are Type 1 sum of squares. For the post hoc tables trial 1 represents the squatting 

activity whereas trials 2 and 3 represent dorsi-flexed and plantar-flexed kneeling. 

Table D-1: ANOVA table values for the starting angle of thigh-calf contact where significant values are denoted with 

an asterisk (*).  These results were described in Section 4.3 and discussed in Section 5.3. 

Source Degrees of 

Freedom 

Sum of Squares Mean Square F Value Pr > F 

Model 5 299.70 59.94 3.32 0.03* 

Error 84 1518.29 18.07 - - 

Corrected Total 89 1817.99 - - - 

Activity 2 145.31 72.65 4.02 0.01* 

Sex 1 151.66 151.66 8.39 0.016* 

Activity*Sex 2 2.74 1.37 0.08 0.93 

 

Table D-2: Post Hoc Tukey test showing least squares means for starting angle of thigh-calf contact for effect of trial. 

Trial Tukey Letter: Differences for Alpha = 0.05 

Squatting A 

Dorsi-Flexed Kneeling B 

Plantar-Flexed Kneeling B 
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Table D-3: ANOVA table values for the centre of pressure at maximum total force where significant values are denoted 

with an (*)  

Source Degrees of 

Freedom 

Sum of Squares Mean Square F Value Pr > F 

Model 5 36.40 7.28 2.32 0.2 

Error 84 263.93 3.14 - - 

Corrected Total 89 300.33 - - - 

Activity 2 26.99 13.50 4.30 0.04* 

Sex 1 8.48 8.48 2.70 0.41 

Activity*Sex 2 0.93 0.46 0.15 0.86 
 

Table D-4: Post Hoc Tukey test showing least squares means for the centre of pressure at maximum total force for 

effect of trial. 

Trial Tukey Letter: Differences for Alpha = 0.05 

Squatting A 

Dorsi-Flexed Kneeling B 

Plantar-Flexed Kneeling B 

Table D-5: ANOVA table values for the flexion angle at maximum total force where significant values are denoted 

with an (*)  

Source Degrees of 

Freedom 

Sum of Squares Mean Square F Value Pr > F 

Model 5 236.29 47.26 0.76 0.58 

Error 84 5189.45 61.78 - - 

Corrected Total 89 5425.74 - - - 

Activity 2 224.62 112.31 1.82 0.17 

Sex 1 10.76 10.76 0.17 0.68 

Activity*Sex 2 0.91 0.45 0.01 0.99 
Table D-6: Post Hoc Tukey test showing least squares means for the flexion angle at maximum total force for effect 

of trial. 

Trial Tukey Letter: Differences for Alpha = 0.05 

Squatting A 

Dorsi-Flexed Kneeling A 

Plantar-Flexed Kneeling A 
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Table D-7: ANOVA table values for the maximum total thigh-calf contact force where significant values are denoted 

with an (*)  

Source Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F Value Pr > F 

Model 5 23.12 4.62 7.94 <0.0001* 

Error 84 48.91 0.58 - - 

Corrected Total 89 72.03 - - - 

Activity 2 22.41 11.20 19.24 <0.0001* 

Sex 1 0.39 0.39 0.67 0.41 

Activity*Sex 2 0.32 0.16 0.27 0.76 
 

Table D-8: Post Hoc Tukey test showing least squares means for maximum total force for effect of trial. 

Trial Tukey Letter: Differences for Alpha = 0.05 

Squatting A 

Dorsi-Flexed Kneeling B 

Plantar-Flexed Kneeling B 

 
 Table D-9: Summary of the forward selection regression for the starting angle of thigh-calf contact during squatting 
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Table D-10: Summary of the forward selection regression for the starting angle of thigh-calf contact during dorsi-

flexed kneeling 

 

Appendix E: Free Body Diagrams 

The following FBD and equations show how sagittal-plane knee joint reaction forces and 

net joint moments were determined with respect to the shank anatomical coordinate system.  

These forces and moment were calculated both with and without the incorporation of the average 

maximum total thigh-calf contact force (Figure 4-1).  

 
Figure E-1: Free body diagram of the shank for the external forces and moments during squatting at full flexion with 

respect to the anatomical coordinate system of the shank. For the purposes of this diagram forces and moments were 

assumed to act in a positive direction. 
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The foot segment analysis did not change between the two scenarios.  The calculation of the 

segment masses (foot and shank) and the solving of the static equilibrium equations for the foot 

were completed in Visual 3D V 4.85.0 (C-Motion Inc., Germantown, Maryland, USA). The 

values calculated are listed below as “Known”. 

Ray = Reaction force at the ankle along the y-axis in the shank coordinate system 
Raz = Reaction force at the ankle along the z-axis in the shank coordinate system 
Rky = Reaction force at the knee along the y-axis in the shank coordinate system 
Rkz = Reaction force at the knee along the z-axis in the shank coordinate system 
M= Mass of subject 
Ma = Net ankle joint moment about the x-axis in the shank coordinate system 
Mk = Net knee joint moment about the x-axis in the shank coordinate system 
ms = Mass of the shank 
FTC = Thigh-calf contact force (acts parallel to the y-axis of the shank) 
COPTC = Distance between the thigh-calf contact center of pressure and the knee joint along the 
z axis of the shank. 
Fg y,z: Force of gravity in the y and z directions  
Ankle = Ankle coordinates in the x, y and z direction in the global coordinate system. Where +z 
is proximal, +y points anteriorly and +z points laterally. 
Knee = Knee coordinates in the x, y and z direction 
CM = Centre of mass in the x, y and z coordinates 
FQ= Estimate of the quadriceps force 
FQy,z= Estimate of the quadriceps force in the y and z direction 
MAPT = Moment arm of patella tendon calculated from Herzog, W. & Read, L. (1993) 
Θ = Angle of shank  
FA= Knee joint flexion angle 
Φ = Line of action of patella tendon relative to x axis of tibia; calculated from Herzog, W. & 
Read, L. (1993) based on knee joint flexion of 149.63°  
FTFy,z = Tibiofemoral joint contact force in the y and z direction 
ay,z = Acceleration in the y and z directions (zero) 
 

Known  
 
M = 99.5 kg 
 
Coordinates expressed in global coordinate system: 
Ankle = (0.88, 0.938, 0.12) 
Knee = (0.60, 1.046, 0.36) 
CM = (0.73, 0.99, 0.25) 
 
Forces and moments expressed in shank coordinate system: 
Ray = -355.85 N 
Raz = 258.66 N 
Ma = 43.41 Nm 
 
ms = 4.62 kg (Dempster, W.T. & Gaughran, G.R., 1967)  
FTC = 101.09 N 
COPTC = 0.13 m 
Θ = 36.6° 
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Using the values above, the reaction forces in the y and z directions at the knee were calculated 

in the shank coordinate system both with and without the incorporation of thigh-calf contact 

force. Moment arm estimations were calculated from Herzog, W. & Read, L. (1993) 

Y-Direction Z-Direction 
 

ΣFy = ms ay = 0 ΣFz = ms az = 0 

- Ray + Fgy + Rky + FTC = 0 + Raz – Fgz + Rkz = 0 

Rky = + Ray - Fgy - FTC Rkz = - Raz + Fgz  

   
 

Without FTC 

 

Rky = (355.85) – (45.32cos36.6°) – 0  Rkz = - 258.66 + (45.32sin36.6°) 

Rky = 319.47 N = 3.21 N/kg   Rkz = -231.64 N = 2.33 N/kg 

 

   

 

With FTC 

 

Rky = (355.85) – (45.32cos36.6) – 101.09  Rkz = -258.66 + (45.32sin36.6°) 

Rky = 218.38 N = 2.19 N/kg    Rkz = -231.64 N = 2.33 N/kg 

Moment Arm Calculations 

dRay = ||Anklez – CMz || = ||(0.88, 0.938, 0.12)- (0.73, 0.99, 0.25) || = 0.205 m 

dRky = ||Kneez – CMz || = || (0.60, 1.046, 0.36)-(0.73, 0.99, 0.25)|| = 0.179 m 

dFTC = ||dRky – COPFTC || = ||0.17- 0.13|| = 0.049 m 

ΣMCOM = ICOM a 

+Ma - MRay – MFTC + Mk – MRky = 0 

Mk = - Ma + MRay + MFTC + MRky 

Without FTC 

Mk = -43.41 + (0.205*355.85N) + 0 + (0.179*319.47N) = 86.88 Nm 

With FTC 

Mk = -43.41 + (0.205*355.85N) + (0.049*101.09) + (0.179*218.38N) = 73.75Nm 
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Estimation of Quadriceps and Tibiofemoral Joint Contact Force 

FQ = Mk / MAPT  

FQz = FQsinΦ 

FQy = FQcosΦ 

 

FTF = Rk – FQ 

FTFy = Rky – FQy 

FTFz = Rkz – FQz 

 

MAPT = B0 +B1 (FA) + B2 (FQ)2 + B3(FA)3    (Herzog, W. & Read, L., 1993) 

MAPT = (0.471*101) + ((0.42*10-1)*149.63) - ((0.896*10-3)149.632) + ((0.447*10-5)*(149.633) 

MAPT = 0.0591 m  

 

Φ = A0 +A1 (FA) + A2 (FQ)2 + A3(FA)3     

Φ = (-0.744*102) - ((0.575*10-1)*149.63) - ((0.475*10-2)149.632) + ((0.309*10-4)*(149.633) 

Φ = 85.84° 

 

Without FTC 

FQ = 86.88 Nm / 0.0591m = 1469.99 N 

 

FQz = 1469.99sin85.84° = 1466.13 N 

FQy =1469.99 cos85.84° = 106.64 N 

 

FTFy = 319.47 N – 106.64 N = 212.83N = 2.14 N/kg 

FTFz = -231.647 N – -1466.13 N = -1697.77 N = -17.06 N/kg 

 

With FTC 

FQ = 73.75 Nm / 0.0591 m = 1247.64 N 

 

FQz = 1247.64 N sin85.84° = 1244.35 N 

FQy = 1247.64 N cos85.84° = 90.51 N 

 

FTFy = 218.38 N -90.51 N = 127.87 N = 1.28 N/kg  

FTFz = -231.64 N – 1163.21 N = -1475.99 N = -14.83 N/kg 


