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Abstract

The Three Dimensional Bin Packing Problem (3DBPP) is within one of the broad cate-

gories of the Bin Packing Problem. The other broad categories include the One Dimensional

and the Two Dimensional Bin Packing Problem. As we live in a three dimensional world,

the 3DBPP can model a variety of real world problems. Some of the popular applications

of the 3DBPP include the Container Loading Problem and the Pallet Packing Problem.

The objective of the 3DBPP is to minimize the number of containers or pallets used given

a certain number of items, while respecting the non-overlapping constraints along all three

dimensions. The Open Dimension Problem (ODP), is a special case of the 3DBPP, where

a given set of cargo is packed onto a single container, with one or more variable dimensions.

The Single Bin Size Bin Packing Problem (SBSBPP) is another special case, where a given

set of cargo is packed in bins of the same size, with the objective of minimizing the number

of bins used. The SBSBPP is more difficult to solve than the ODP, as items are packed in

multiple bins in the SBSBPP and in only one bin in the ODP.

In this thesis, we first propose a mixed-integer programming model for the ODP, where

the objective is to minimize the highest point within the bin. We then provide a number

of enhancements to improve the model. Later, a number of heuristics are proposed to find

good feasible solutions within reasonable computational time. Finally the solution of the

ODP is used to provide a solution to the SBSBPP.

The proposed approach is compared to well-known approaches from the literature on

a standard data set. The approach was able to give reasonably good solutions to most

instances within a given time frame, especially when the number of items per bin increases.
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Chapter 1

Introduction

In the area of Operations Research and Optimization, the Bin Packing problem (BPP)

is a well-known problem that has many real-life applications. In the problem, objects of

different attributes are to be packed in the least number of bins.

The one-dimensional version of the bin packing problem has been widely studied in

the literature. In this kind of problem, items of different weights are packed in fixed-

capacity bins. The objective is to minimize the number of bins used while respecting the

weight constraints. In the two dimensional bin packing problem, items with different length

and width properties are packed in fixed area rectangles. According to Lodi et al. [13],

applications of the two-dimensional bin packing problem include cutting and packing in the

wood, glass, and cloth industries, goods shelving in warehousing, and newspaper paging in

the publishing industry. Moreover, layout optimization is another major application.

The focus of this thesis is on the three-dimensional bin packing problem, where three-
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dimensional items cannot overlap and must fit within three-dimensional bins. The three-

dimensional bin packing problem has a variety of applications in logistics and transporta-

tion, including, but not limited to, container loading and pallet loading problems. Because

of its practical nature, the three-dimensional bin packing problem has been studied well in

the OR literature. With respect to the inclusion of practically-relevant constraints how-

ever, the research done is still at the very beginning. Heuristic approaches, in particular

meta-heuristics, are remain the most important class of algorithms for solving practical

three-dimensional bin packing problems, as they are able to provide quality solutions in a

reasonable amount of time.

The rest of this thesis is organized as follows. Chapter 2 is a detailed literature review.

It summarizes the relevant literature in the order of practical constraint types, model for-

mulations, as well as heuristic approaches. In Chapter 3, we propose an exact mathematical

model to solve the Open-Dimension Problem (ODP), and add several improvements. In

Chapter 4, a new heuristic approach called the “Stacking Heuristic” is introduced to reduce

the run-time. Furthermore, a “Layered Heuristic” is employed to solve the Single Bin-size

Bin Packing Problem (SBSBPP). In Chapter 5, we use the standard test instances from

Martello et al. [14] and compare the Layered Heuristic to some well-known algorithms

and meta-heuristics. We conclude this thesis in Chapter 6 and give some future research

directions.
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Chapter 2

Literature Review

This chapter reviews recent and relevant research on the subject of the 3DBPP. We first

examine the different constraint types that can be included in the 3DBPP, then review

exact solution methods proposed in the literature. We finally review heuristic solution

approaches for the 3DBPP.

According to Wäscher et al. [19], seven sub-categories exist within the 3DBPP. The

Single Stock-size Cutting Stock problem(SSSCSP) is suitable when the items to be loaded

are weakly heterogeneous in size and the bins are identical. The Multiple Stock-size Cutting

Stock problem(MSSCSP) is very similar to the SSSCSP, with the only difference being the

bins are weakly heterogeneous. By their definition, the term “weakly heterogeneous” means

that items or bins can be grouped into relatively few classes, for which they are identical

with respect to shape and size. The Residual Cutting stock problem(RCSP) is best used

when the item sizes are weakly heterogeneous, but the bins are highly heterogeneous. By
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definition, the term “highly heterogeneous” means only very few elements are of identical

shape and size. The Single Bin-Size Bin Packing Problem(SBSBPP) describes the situation

where the item sizes are highly heterogeneous, but the bins are identical. The Multiple

Bin-size Bin Packing problem is the same as the SBSBPP except that the bin sizes are

weakly heterogeneous. If both items and bin sizes are highly heterogeneous, it is called

a Residual Bin Packing Problem(RBPP). The Open Dimension Problem(ODP) refers to

packing items into a single container of which one or more dimensions are variable.

2.1 Practical Constraint Types

According to Bortfeldt and Wäscher [4], most approaches proposed in the literature lack

practical value as they do not pay enough attention to constraints encountered in practice.

They summarize and categorize the types of constraints that are commonly seen when

modeling the problem. Container (Pallet)-related constraints include weight-limit and

weight distribution, where the first imposes an overall limit on the weight of the container,

and the second requires the weight of the items to be spread out as evenly as possible on

the container (pallet) floor. The second type of constraints are item-related constraints.

They include loading priorities, orientation constraints, and stacking constraints. The

loading priorities decide which items must be loaded first. The orientation constraints

can restrict the items in vertical and/or horizontal directions. The stacking constraints

restrict the way items can be placed on top of each other. The third are cargo related

constraints; they include complete shipment, and allocation constraints. The complete

shipment constraints force the loading of items belonging to the same shipment. The
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allocation constraints prohibit some items from being placed in the same container, e.g.

perfumes and foods. The fourth are positioning constraints. For example, large items are

required to be placed in the corner of a pallet. The fifth are vertical and horizontal stability

constraints as well as complexity constraints. The vertical stability constraint ensures that

items withstand gravitational force and prevents them from falling down. The horizontal

stability constraints refer to the ability of the items to withstand their inertia. For the

complexity constraints, the most prominent one is the guillotine cutting constraint. A

guillotine pattern represents a pattern that can be described and packed easily. However,

guillotine patterns are often not acceptable in pallet loading where they would require

additional operations like shrink-wrapping or inter-locking to secure the items.

2.2 Model Formulations

For the general three-dimensional bin-packing problem, Chen et al. [5] give a zero-one mixed

integer programming model that is guaranteed to lead to an optimal solution. The problem

involves placing non-uniform rectangular items into unequal-sized containers. The model

includes orientation constraints, multiple item sizes and container sizes, as well as weight

balance. However, the model was found inefficient when the number of items increased.

The number of variables and constraints grow at rates of 3n2 and 3.5n2, with n representing

the number of items.

Building onto the model proposed by Chen et al. [5], Wu et al. [20] formulated a single

container problem with variable bin height. The authors tested the algorithm on small bin
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and large bin setups. The items are of 10 different types and occasionally some items have

customized sizes. The authors consider moderate heterogeneity. After allowing the Cplex

solver to run a maximum of two hours, the result is compared to the actual stacking height

of the items, where experienced operators use rule-of-thumb to decide the packing patterns.

Although the algorithm is proven to generate better patterns than human operators, a

run-time of two hours is inappropriate for guiding on-site operations. The authors then

proposed a genetic algorithm based heuristic. The heuristic is shown to be more efficient

when packing items into large bins as opposed to small bins. Run time of the heuristic

was no more than one minute.

Up to this point the possible packing patterns discussed are referred to as orthogonal

packing patterns in the literature, see Den Boef et al. [8], in which the boxes are orthogo-

nally packed with their edges parallel to the container edges. Two special cases of packing

patterns are Guillotine and Robot Packable patterns.

According to Bortfeldt and Wäscher [4], a pattern is guillotine-cuttable if a cut parallel

to the container faces can divide the boxes into two disjoint subsets (also called cut slices)

and no box is split by the cut. The cutting of the boxes are done recursively in stages; in

each stage all cuts must be parallel. A cut slice is in the k th stage if it has depth k in

the recursion tree. Figure 2.1 shows a two-dimensional example with a two-stage guillotine

packing. In the first stage, cuts labeled 1 and 2 are performed on the boxes to form three

slices. Similarly in the second stage, cuts 3, 4, and 5 cut each slice entirely. Figure 2.2

shows a packing that is not guillotine-cuttable.
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Figure 2.1: Guillotine-Cuttable Packing.

Figure 2.2: Non Guillotine-Cuttable Packing.
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Amossen and Pisinger [1] refer to robot packing as a subset of guillotine packings.

Robots used for packing boxes in the industry are equipped with a mechanical hand to lift

the boxes. To avoid collision with already packed boxes, the packed boxes cannot be in

front of, to the right of, or above the destination of the boxes the robot is currently placing.

Each guillotine packing can be translated into a robot packing. In the three-dimensional

case, by first placing items in the bottom, rear, and left, a feasible robot packing can be

generated.

2.3 Heuristic Approaches

Because of the slow running time of exact methods, many heuristic approaches are de-

veloped to solve complex problems. In this section, we review several such approaches,

including random search, prototype column generation, extreme point-based, finite enu-

meration based, and tabu search based heuristics.

Bischoff [2] describes a heuristic based on random search with scoring rules to find

solutions that takes limited load bearing strength into account. The scoring represents a

weighted sum of the area utilization of the loading surface and a proxy measure of the

ability of the new layer to take on additional weights. Therefore, the score obtained takes

into account how well the additional layer would fill the space available as well as how it

would affect further placements. The weight of scores given to the two components must

be specified by the user. In the sample data, all boxes are assumed to have equal density,

hence the weight of boxes depends on their volume. The sizes of the samples range from

100 items to well over 300.
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Zhu et al. [21] propose a prototype column generation strategy for the multiple con-

tainer loading problem. They first show that the pricing sub-problem of utilizing column

generation technique is NP-hard. Then they discuss the benefit of using prototypes to

approximate the pricing problem feasible solutions and substitute prototypes by feasible

columns in later iterations. In the model, they consider vertical stability constraints in both

the fully supported case and the partially supported case and formulated a set-covering

problem. To generate the prototypes, they employ a two phase method. The first phase

uses an iterative construction approach, and the second phase takes the result from the

first phase and utilizes a hill-climbing algorithm to find the best prototype column. The

algorithm is tested against the standard 700 data set generated by Bischoff and Ratcliff

[3], which can be accessed at http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

Crainic et al. [6] proposed an extreme point-based heuristic for the three-dimensional

bin packing problem. For any given packing, the extreme points, which are the corner

points generated by placing an item in the bin, can be computed in polynomial time, and

is independent of a particular packing problem. They first sort the items into clusters

according to some rules on items height, base-area and volume. Then, an extreme point

best fit decreasing heuristic is applied to the item clusters. The heuristic evaluates a

merit function of each extreme point that can accommodate a new item. The heuristic is

tested on the standard instances from Martello et al. [14] where each sample contains 20

to 100 items. The authors claim improvement over existing constructive based approaches

through the use of a new definition for corner points and item placement rules.
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Faina [9] utilizes a geometric model that reduces the general three-dimensional packing

problem to a finite enumeration scheme. First a geometric procedure is introduced to

generate a particular finite class of placings, then it is proved analytically that the set of

all feasible placings will not provide a better solution. A simulated-annealing approach

called zone3D is devised to search for an optimal solution.

Mohanty et al. [17] propose a heuristic based on fractional knapsack that maximizes

the total value of items packed in a bin. Pimpawat and Chaiyaratana [18] present a co-

operative and co-evolutionary based genetic algorithms.

Hifi et al. [12] uses a linear programming approach to solve the 3D-SBSBPP without

employing any metaheuristics. For smaller item instances, they proposed an optimization

model that chooses a subset of the entire item set that will best fit the active bin. For

larger item instances, they proposed a greedy heuristic based on item starting order to

select the items. In the method proposed, there are two phases, a selection phase and a

placement phase. The placement phase finds the largest number of items that can fit in

the current bin. Items already placed are removed from the item set, and the heuristic is

repeated until all items are placed.

The two-level tabu search (TS2 pack) heuristic of Crainic et al. [7] attempts to separate

the task of determining feasibility and optimality by making decisions at two levels. The

first level heuristic deals with the optimality of the problem and the second level heuristic

tries to find feasible packings for the items assigned to the bins. Both are tabu search

based. To generate an initial solution, the Extreme-Point-First-Fit-Decreasing EP-FFD
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heuristic proposed by Crainic et al. [6] was utilized. The EP-FFD is based on the first-fit

decreasing rule. Items are first sorted by non-increasing volume, then placed one by one

into the extreme points. If a bin is filled, a new bin is used. Upon obtaining an initial

solution, the TS2 pack heuristic will discard the bin with the worst fitness value, and

the items in it are iteratively assigned to the bins with the best fitness value. During

this procedure, the height (z-axis) constraints are relaxed, if the solution is feasible, it is

regarded as the current best and the emptied bin is discarded. If the solution is not feasible,

the first stage tabu search algorithm called ACC-TS is executed. This heuristic works on

the items-to-bins assignment without forcing the bin size constraints. Instead, it penalizes

infeasible packings that are larger than the bin size in the objective function. The inner

heuristic IG-TS is used by ACC-TS to check the feasibility and optimize the packing in

order to satisfy the bin size constraints. ACC-TS uses a local-search neighbourhood whose

size and accuracy are dynamic by means of a k-chain-moves procedure. It also includes a

diversification phase to explore new solution space. To check the feasibility of a packing,

IG-TS uses the implicit representation given by the Interval Graph approach proposed by

Fekete and Schepers [10, 11]. They defined 7 overlapping rules that can be used in IG-TS

to alternate the spatial relationship between any two items. The algorithm stops when a

packing that respects the bin dimensions is obtained or the maximum number of iterations

is reached.
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Chapter 3

The Model

In this chapter, we formally define the problem under study, provide a formulation based

on mixed-integer programming, and propose several improvements.

3.1 Problem Definition

Mixed-case pallet packing problems refer to the stacking of items, which can be weakly or

strongly heterogeneous, into pallets of fixed area. Possible objectives include minimizing

the number of pallets used, minimizing the unused space of within pallets, and maximizing

the total value of items packed. Constraints are mainly physical, related to non-overlapping

and the dimensions of the pallets, and practical, related to the packing process and the

nature of the items.
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3.2 A Grid-based formulation for the Open Dimen-

sion Problem

To model the Open Dimension Problem (ODP), the container/pallet can be divided to a

three-dimensional grid, which divides the space to many small cubes. Items can be placed

only at the corners of the cubes, thereby limiting the search space. Therefore, the problem

is tranformed to a special layout problem with height consideration. The model uses the

relative positioning concept from Meller et al. [16]. In using this approach, the cube size

setting is crucial to ensure fast execution and efficient stacking layout. If the cubes are too

large, it will greatly reduce the search space and eliminate many good packing patterns.

Conversely, if the cubes are too small, the search space is not reduced enough and finding

a good packing pattern may take a long time. The objective is to minimize the highest

point of all items in the bin, which should give us a tight packing by pushing all items

toward the bottom of the bin. Next we define the parameters and the decision variables.

Indices:

• i, j: indices for items, i, j ∈ N .

• s: index for the x, y, or z directions.

Parameters:

• lsi : the length of item i along direction s.

• Ls: the length of the pallet along direction s.
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Decision Variables:

• csi : the coordinate of item i along direction s.

• zsij =


1, if item i precedes item j along direction s,

0, otherwise.

• h: highest point of all items in the bin.

The formulation is:

min h

s.t.
z∑

s=x

(zsij + zsji) ≥ 1 ∀j > i, i, j ∈ N (1)

zsij + zsji ≤ 1 ∀j > i, i, j ∈ N, s ∈ {x, y, z} (2)

csi + lsi ≤ csj + Ls(1− zsij) ∀i 6= j, i, j ∈ N, s ∈ {x, y, z} (3)

0 ≤ csi ≤ Ls − lsi ∀i, i ∈ N, s ∈ {x, y, z} (4)

czi + lzi ≤ h ∀i, i ∈ N (5)

zsji ∈ {0, 1} ∀i 6= j, i, j ∈ N, s ∈ {x, y, z} (6)

h, csi ≥ 0 ∀i, i ∈ N, s ∈ {x, y, z} (7)

Constraints (1) state that there is at least one spatial relationship between any two

items. Constraints (2) enforce that an item cannot precede and follow another item in

direction s. Constraints (3) are the non-overlapping constraint given the relative positions

determined by zsij. Constraints (4) keep items within the pallets boundaries. Constraints

(5) find the maximum height of the pallet. Constraints (6) and (7) are the standard binary

and non-negativity constraints.
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When testing the grid-based model, we found that some items maybe unsupported and

are suspended in air. This is caused by the simplicity in the objective function, which

only considers minimizing the overall height of the pallet, without considering the support

needed by each item. To tackle this issue, two improved models are proposed next. The

basic idea in the first improved model is to cut the pallet space into horizontal slices, where

the filled space is increasing as we progress from the top slice to the bottom slice. Moreover,

we include a scoring rule in the objective function so that unfilled space in bottom slices is

penalized more than in top slices. The second improved model includes the newly added

constraints from the first model as well as explicit relationships between relative position

variables.

15



3.2.1 The Grid-Based Formulation with Slicing

First, let us introduce some additional parameters and decision variables, let n be the

number of slices:

Additional Indices:

• k: index for slices, k ∈ n.

Additional Parameters:

• ε: a very small number.

Additional Decision Variables:

• Bk
i =


1, if part of item i is contained in slice k,

0, otherwise.

• sk: the ceiling height of slice k.

• Sk: total used space in slice k.

The grid-based formulation with pallet space slicing is:
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min h−
n∑

k=1

(n− k)Sk

LxLy

s.t. (1), (2), (3), (4), (5), (6), (7) and

−czi + (sk − lzi )Bk
i ≤ 0 ∀i, k, i ∈ N, k ∈ {1..n} (8)

czi + LzB
k
i ≤ sk − ε+ Lz ∀i, k, i ∈ N, k ∈ {1..n} (9)

−Sk + Sk+1 ≤ 0 ∀k, k ∈ {1..n− 1} (10)
I∑

i=1

Bk
i (lxi l

y
i ) = Sk ∀k, k ∈ {1..n} (11)

n∑
k=1

Bk
i = lzi ∀i, i ∈ N (12)

Bk
i ∈ {0, 1} ∀i 6= j, i, j ∈ N, s ∈ {x, y, z} (13)

The objective function seeks to minimize the overall height of the pallet and at

the same time eliminate unfilled space in the bottom slices by giving a higher score to

filled space in bottom slices than top slices. The filled space are reduced by a factor of

LxLy to ensure the score is measured with the same unit as h in the objective function.

Constraints (8) and (9) are used to determine if all or part of an item i is contained in

slice k. Constraints (10) ensure the lower slices have a greater filled space than upper

slices. Constraints (11) calculate the filled space in each slice k. Because each slice has

unit height, constraints (12) state each item i is contained in exactly lzi slices.
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3.2.2 Grid-Based Formulation with Slicing and Relative Position

Transitivity

In this model, additional cuts are added to model the fact that if item i is above item j,

and j is above l, then item i is above item l. These constraints are:

zsij + zsjl − zsil ≤ 1 ∀i, j, l, where i 6= j 6= l, i, j, l ∈ N, ∀s, s ∈ {x, y, z} (14)

The comparison between the three models is presented in Chapter 5.
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Chapter 4

Heuristic Approaches

The direct solution of the model presented in the previous chapter take a long time to solve

for practical problems. In this chapter, we resort to heuristics to find good solutions with

shorter run times.

4.1 The Stacking Heuristic

This heuristic attempts to solve the problem sequentially by solving the grid-based for-

mulation with slicing for small subsets of items. The main idea can be described as the

following:

(1) select a small subset of the items to be packed,

(2) solve the grid-based formulation with slicing to optimality or within a time limit,

(3) fix the position of the previously selected items,

19



(4) Pick a new subset and solve the model with the previous items fixed,

(5) repeat until all items are packed.

The success of this approach greatly depends on the choice of the item subsets. Gen-

erally speaking, we want to save the smaller items for later iterations so that they can be

used to fill in the fragmented spaces created by the larger items. However, we also do not

want to pack all the large items first, because that will create too many fragmented spaces.

An optimal method to split the items into small subsets is yet to be determined.

The objective function needs to be changed so that items that are closer to the

origin of the x-y plane will get a higher score. This change should eliminate some of the

fragmented spaces since all items are being pushed toward the origin. Figure 4.1 provides

an illustration of the heuristic approach. The example used has 80 objects. Each item

subset contains 16 objects, therefore a total of 5 iterations are performed. Each sub-figure

demonstrates the resulting packing generated after each iteration.

The model could be enhanced by trying to eliminate fragmented space. This is acheved

by pusing all items towards the origins and minimizing the zxji and zyji coordinates of items.
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Figure 4.1: Illustrations of using the Stacking Heuristic to pack 80 items in
5 iterations.
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4.2 A Layered Heuristic for SBSBPP

So far we have only considered building a single pallet. However, in reality we must

respect the height limit of the pallets. We introduce a divider item to the previous models.

This involves the use of “divider” items at specific positions along the z-axis. Figure 4.2

illustrates the idea by placing thin slices along the vertical axis. After the dividers are

created to separate all the pallets, we are ready to place all the items from the bottom up

using the stacking heuristic.

Figure 4.2: An illustration of the Layered Heuristic using
10 Dividers.
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Chapter 5

Numerical Testing

The code was implemented in Matlab, with Cplex as the solver. The code was run on a

computer with an Intel Core i7 4770 cpu and 8 gigabyte of ram.

5.1 Comparison and Visualization of the Formulations

in Chapter 3

All three models presented in Chapter 3 are tested on a sample problem with 30 items

and a pallet of size 6 × 6 × 15. The items vary in sizes, including 1 × 1 × 1, 2 × 1 × 1,

1 × 2 × 2, 2 × 2 × 1, 2 × 1 × 2, 2 × 2 × 2, 3 × 2 × 2, 2 × 2 × 3, 3 × 3 × 2, 3 × 3 × 3,

4 × 2 × 2. A computational time limit of 200 seconds is used for the Cplex solver. The

packing patterns generated using the grid-based formulation are illustrated in figures 5.1

and 5.2. It is obvious that although the overall height is minimized, the entire packing is
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not very compact, and several items are fully or half suspended in the air.

Figure 5.1: Packing generated by the grid-based for-
mulation; front 45 degree view.

Figure 5.2: Packing generated by the grid-based for-
mulation; rear 45 degree view.
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Figure 5.3 and 5.4 display the packing obtained using the grid-based formulation

with slicing. The packing still has the same height as in Figure 5.1 and 5.2. However, the

unfilled space is eliminated completely in the bottom five slices. There is only one item

not being fully supported.

Figure 5.3: Packing generated by the grid-based for-
mulation with slicing; front 45 degree view.

Figure 5.4: Packing generated by the grid-based for-
mulation with slicing; back 45 degree view.

One disadvantage of the first improved formulation is the increased computational

time. Whereas the original model takes less than 20 minutes to find the last solution, the

improved model takes more than 3 hours.

25



The effect of adding the transitivity constraints is counter intuitive. It takes longer

to find a good solution. The increase in run time comes from the large size of the added

constraints, which is the order of the number of items cubed. One advantage is that

Cplex takes only few iterations to find a feasible solution. Figure 5.5 displays the resulting

packing.

Figure 5.5: Packing generated by the grid-based for-
mulation with slicing and transitivity constraints.

5.2 Testing the Layered Heuristic

In this section, we test the layered heuristic of section 4.3 on the standard instances from

Martello et al. [14]. A total of 9 different item classes are generated, with each item class

containing 10 instances. For the first five classes, the bin dimensions are Width(W ) =

Height(H) = Depth(D) = 100 and five types of items are uniformly randomly generated
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with their sizes in different intervals. The items are generated with wj, hj, dj as the width,

height and depth of each item j, as follows:

Type 1: wj ∈ [1, 1
2
W ], hj ∈ [2

3
H,H], dj ∈ [2

3
D,D],

Type 2: wj ∈ [2
3
W,W ], hj ∈ [1, 1

2
H], dj ∈ [2

3
D,D],

Type 3: wj ∈ [2
3
W,W ], hj ∈ [2

3
H,H], dj ∈ [1, 1

2
D],

Type 4: wj ∈ [1
2
W,W ], hj ∈ [1

2
H,H], dj ∈ [1

2
D,D],

Type 5: wj ∈ [1, 1
2
W ], hj ∈ [1, 1

2
H], dj ∈ [1, 1

2
D],

Item classes k ( k = 1, 2, 3, 4, 5) are then generated by giving type k 60% probability

and other types 10% probability each.

For item classes 6 to 8, the items are generated as follows:

Class 6: wj, hj, dj uniformly distributed in [1, 10],

Class 7: wj, hj, dj uniformly distributed in[1, 35],

Class 8: wj, hj, dj uniformly distributed in [1, 100], and

Class 9 consists of diffcult full bin solutions at optimality with an optimal solution of 3

bins. The items are generated by cutting the bins into smaller parts. Bin 1 and 2 are cut

into bn
3
c items each, and Bin 3 is cut into n− bn

3
c items, where n is the number of items.

The Layered heuristic is set up so that each iteration considers 10 items. For an instance

of 100 items, 10 iterations were needed. The results are summarized in Table 5.1. The

columns “Average”, “Min”, and “Max” represent the average, minimum, and maximum

number of bins required by each of the item classes, respectively. Each item class contains
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10 instances. Given that there are 100 items, it is clear that each bin contains on average

4 to 5 items except for item class 6 and 7. However, in real life scenarios each pallet should

contain about 50 to 100 items. Therefore we increased the volume of the bins by a factor

of 10 and re-run the tests to see how the algorithm performs in a more realistic setting.

The results are summarized in Table 5.2.

10-item subsets
Average Min Max

Class 1 29.4 26 32
Class 2 28.3 25 31
Class 3 28.8 25 33
Class 4 59.2 53 66
Class 5 17.9 13 22
Class 6 1 1 1
Class 7 2 2 2
Class 8 22.4 17 32
Class 9 5.3 5 6

Table 5.1: Performance of the Layered Heuristic: 10-item subsets,
1000 seconds, bin dimension 100× 100× 100.

After enlarging the bins by a factor of 10, the impact of going from 10-item subsets

to 20-item subsets is compared in Table 5.2. The former setting needs 10 iterations to

place all the items whereas the latter setting requires 5 iterations. By considering 20 items

per iteration, we expect to find better solutions, which is clear from the Table 5.2, as on

average 0.08 less bins are used. However, we should keep in mind that as the size of item

subset doubles, the run-time required to find an optimal solution would increase. The

computational time limit given to both settings are the same, which is 1000 seconds.
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10-item subsets 20-item subsets
Average Min Max Average Min Max

Class 1 3.3 3 4 3 3 3
Class 2 3.1 3 4 3 3 3
Class 3 3 3 3 3 3 3
Class 4 5.1 5 6 5 4 6
Class 5 2 2 2 2 2 2
Class 6 1 1 1 1 1 1
Class 7 1 1 1 1 1 1
Class 8 2.3 2 3 2.2 2 3
Class 9 1.3 1 3 1.2 1 3
Overall 2.46 2.38

Table 5.2: Performance of the Layered Heuristic: 10-items subsets
V.S 20-item subsets, 1000 seconds, bin dimension 215× 215× 215.

10-item subsets 10-item subsets with ordering
Average Min Max Average Min Max

Class 1 3.3 3 4 3.3 3 4
Class 2 3.1 3 4 3 3 3
Class 3 3 3 3 3 3 3
Class 4 5.1 5 6 4.8 4 5
Class 5 2 2 2 2 2 2
Class 6 1 1 1 1 1 1
Class 7 1 1 1 1 1 1
Class 8 2.3 2 3 2.2 2 3
Class 9 1.3 1 3 1.3 1 3
Overall 2.46 2.4

Table 5.3: Performance of the Layered Heuristic: 10-item subsets
V.S. 10-item subsets with ordering, 1000 seconds, bin dimension
215× 215× 215.
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Next we test the effect of ordering items. Intuitively, it is preferred to place larger items

first so that smaller items can fill the spaces created between the larger items. Therefore

the items are sorted in descending order of their volume. This is the same item-selection

strategy as in Hifi et al. [12]. We gave each setting a run-time of 1000 seconds over and

the result is summarized in Table 5.3. Ordering the items produced better solutions for

classes 2, 4, and 8.

10-item subsets 500 seconds 1000 seconds 2000 seconds
Average Min Max Average Min Max Average Min Max

Class 1 3.1 3 4 3.3 3 4 3.1 3 4
Class 2 3.1 3 4 3 3 3 3 3 3
Class 3 3 3 3 3 3 3 3 3 3
Class 4 4.7 4 5 4.8 4 5 4.8 4 5
Class 5 2 2 2 2 2 2 2 2 2
Class 6 1 1 1 1 1 1 1 1 1
Class 7 1 1 1 1 1 1 1 1 1
Class 8 2.1 2 3 2.2 2 3 2.1 2 3
Class 9 1.3 1 2 1.3 1 3 1.2 1 2

Overall 2.37 2.4 2.36

Table 5.4: Performance of the Layered Heuristic: 10-item subsets, comparison of
running time of 500s, 1000s, 2000s, bin dimension 215× 215× 215.

Different running-time settings are compared in Table 5.4. The items are sorted in

descending order of their volumes. Using 10-item subsets, the obtained results are very

interesting. First, the 500-second setting outperformed the 1000-second setting, and the

2000-second setting outperformed the 500-second setting by a small margin. This is due

to the nature of the heuristic.

In Table 5.5, we test on 20-item subsets and see that the solution improves as running

time increases.
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20-item subsets 500 seconds 1000 seconds 2000 seconds
Average Min Max Average Min Max Average Min Max

Class 1 3.2 3 4 3 3 3 3 3 3
Class 2 3.2 3 4 3 3 3 3 3 3
Class 3 3.2 3 4 3 3 3 3 3 3
Class 4 4.9 4 5 5 4 6 4.9 4 5
Class 5 2 2 2 2 2 2 2 2 2
Class 6 1 1 1 1 1 1 1 1 1
Class 7 1 1 1 1 1 1 1 1 1
Class 8 2.4 2 3 2.2 2 3 2.1 2 3
Class 9 1.2 1 2 1.2 1 3 1.2 1 2

Overall 2.46 2.38 2.36

Table 5.5: Performance of the Layered Heuristic: 20-item subsets, comparison of
running time of 500s, 1000s, 2000s, bin dimension 215× 215× 215.
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5.2.1 Comparing the Layered Heuristic to Algorithm 864 by

Martello et al. [15]

Martello et al. provide an implementation of their algorithm, Algorithm 864, available

at Professor Pisinger’s project webpage. In this section, we test the layered heuristic

against Algorithm 864 for bins of dimension 100× 100× 100 and 215× 215× 215, given a

computational time of 1000 seconds. The results are summarized in Table 5.6. Algorithm

864 outperformed the layered heuristic by an average of 0.58 bins.

Layered Heuristic Algorithm 864
Average Min Max Average Min Max

Class 1 29.4 26 32 27.5 25 30
Class 2 28.3 25 31 26.4 24 29
Class 3 28.8 25 33 29 26 33
Class 4 59.2 53 66 59.2 52 66
Class 5 17.9 13 22 17.3 13 21
Class 6 1 1 1 1 1 1
Class 7 2 2 2 2.1 2 3
Class 8 22.4 17 32 19.9 18 28
Class 9 5.3 5 6 6.7 5 8
Overall 21.59 21.01

Table 5.6: Layered Heuristic V.S. Algorithm 864, 1000 seconds, bin
dimension 100× 100× 100.

Next, we compare both algorithms using enlarged bins with dimension 215×215×215.

The results are summarized in Table 5.7. In this case, the layered heuristic does better

and saves an average of 1.26 bins over Algorithm 864. From the two summary tables, it is

clear that the layered heuristic is more efficient when the average number of items per bin

is larger. In this section, we have showed that using the standard testing instances, the
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Layered Heuristic compares well to algorithm 864.

Layered Heuristic Algorithm 864
Average Min Max Average Min Max

Class 1 3 3 3 4.9 4 5
Class 2 3 3 3 4.7 4 5
Class 3 3 3 3 4.9 4 5
Class 4 5 4 6 6.5 6 7
Class 5 2 2 2 3.5 3 4
Class 6 1 1 1 1 1 1
Class 7 1 1 1 1 1 1
Class 8 2.2 2 3 3.9 3 4
Class 9 1.2 1 3 2.4 2 4
Overall 2.38 3.64

Table 5.7: Layered Heuristic V.S. Algorithm 864, 1000 seconds, bin
dimension 215× 215× 215.
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Chapter 6

Conclusion

In this thesis, the three dimensional bin packing problem is formulated, and solved. We

start with an integer programming formulation for the Open Dimension Problem (ODP)

where only one bin is assumed to hold all items, and then provide an enhancement to the

model through the slicing approach.

Given the long computational times, the model is only able to pack small number of

items. We use this idea in a heuristic approach where small subsets of items are solved

sequentially. In the first iteration, we find the optimal placement of the first group of items.

In the second iteration, the position of the items in the first subset is fixed and the second

subset is placed. This process is repeated until all items are packed.

Finally, to use the solution of the ODP model to solve the SBSBPP, we introduce

the Layered Heuristic, where we put very thin dividers of height 0.01 in the single bin at

standard bin heights, so that the single bin will later be divided into several standard-
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sized bins. This Layered Heuristic is compared to the approach of Martello et al using the

standard test instance generator. It was found to perform well when the expected number

of items per bin is large, which is the case for practical problems.
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APPENDICES
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Appendix A

Detailed Numerical Results

The numbered columns represent the index of each instance in a given class of items. The

“Subtotal” column gives the total bins used for each item class. Each row gives the bins

used to pack each item instance for a given class.
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Layering 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 28 31 32 29 32 26 28 30 27 31 294
Class 2 27 29 30 28 31 28 25 26 28 31 283
Class 3 25 30 33 29 31 26 26 28 29 31 288
Class 4 53 55 62 56 62 66 59 61 58 60 592
Class 5 16 20 22 18 21 13 14 18 19 18 179
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 2 2 2 2 2 2 2 2 2 2 20
Class 8 20 22 22 21 17 23 19 24 24 32 224
Class 9 6 5 5 5 6 6 5 5 5 5 53

Total 1943

Pisinger 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 26 29 30 27 28 25 25 29 26 30 275
Class 2 25 26 27 25 29 28 24 24 27 29 264
Class 3 27 32 33 30 30 26 26 27 28 31 290
Class 4 52 55 62 56 62 66 59 61 58 61 592
Class 5 16 18 21 18 21 13 14 17 15 20 173
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 2 2 2 3 2 2 2 2 2 2 21
Class 8 18 18 19 19 18 20 18 20 21 28 199
Class 9 7 6 7 7 6 7 5 8 7 7 67

Total 1891

Lower Bound 1 2 3 4 5 6 7 8 9 10 Subtotal

Type 1 22 28 27 26 25 24 23 26 23 27 251
Type 2 22 24 26 24 26 26 21 22 23 27 241
Type 3 23 24 27 24 27 25 22 24 23 28 247
Type 4 51 51 61 56 61 64 57 60 57 58 576
Type 5 12 15 15 13 15 10 10 13 12 14 129
Type 6 1 1 1 1 1 1 1 1 1 1 10
Type 7 1 1 1 1 1 1 1 1 1 1 10
Type 8 18 17 17 16 13 18 14 17 18 28 176
Type 9 3 3 3 3 3 3 3 3 3 3 30

Total 1670

Table A.1: Layered Heuristic V.S. Algorithm 864, 1000 seconds, bin
dimension 100× 100× 100, detailed results.
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Stacking 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 3 4 4 3 3 3 3 3 3 4 33
Class 2 3 3 3 3 3 3 3 3 3 4 31
Class 3 3 3 3 3 3 3 3 3 3 3 30
Class 4 5 5 6 5 5 5 5 5 5 5 51
Class 5 2 2 2 2 2 2 2 2 2 2 20
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 3 2 2 2 3 2 2 3 23
Class 9 3 1 1 2 1 1 1 1 1 1 13

Total 221

Pisinger 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 5 5 5 5 5 5 4 5 5 5 49
Class 2 4 5 5 5 5 5 5 4 5 4 47
Class 3 5 5 5 5 5 5 4 5 5 5 49
Class 4 6 6 7 6 6 7 6 7 7 7 65
Class 5 4 3 3 4 4 3 3 3 4 4 35
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 4 4 4 4 3 4 4 4 4 4 39
Class 9 4 3 2 2 2 3 2 2 2 2 24

Total 328

Lower Bound 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 2 3 3 3 3 2 2 2 2 3 25
Class 2 2 2 2 2 2 2 2 2 2 3 21
Class 3 2 2 3 2 3 2 2 2 2 3 23
Class 4 3 3 4 4 4 4 4 4 4 4 38
Class 5 2 2 2 2 2 1 1 2 2 2 18
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 2 2 2 2 2 2 2 2 20
Class 9 3 1 1 1 1 1 1 1 1 1 12

Total 177

Table A.2: Layered Heuristic V.S. Algorithm 864, 1000 seconds, bin
dimension 215× 215× 215, detailed results.
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10-item subset 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 3 4 4 3 3 3 3 3 3 4 33
Class 2 3 3 3 3 3 3 3 3 3 4 31
Class 3 3 3 3 3 3 3 3 3 3 3 30
Class 4 5 5 6 5 5 5 5 5 5 5 51
Class 5 2 2 2 2 2 2 2 2 2 2 20
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 3 2 2 2 3 2 2 3 23
Class 9 3 1 1 2 1 1 1 1 1 1 13

Total 221

20-item subset 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 3 3 3 3 3 3 3 3 3 3 30
Class 2 3 3 3 3 3 3 3 3 3 3 30
Class 3 3 3 3 3 3 3 3 3 3 3 30
Class 4 4 5 5 5 5 6 5 5 5 5 50
Class 5 2 2 2 2 2 2 2 2 2 2 20
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 3 2 2 2 2 2 2 3 22
Class 9 3 1 1 1 1 1 1 1 1 1 12

Total 214

Table A.3: Performance of the Layered Heuristic: 10-item subset
V.S 20-item subset, bin dimension 215× 215× 215, detailed results.
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10 per group 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 3 4 4 3 3 3 3 3 3 4 33
Class 2 3 3 3 3 3 3 3 3 3 4 31
Class 3 3 3 3 3 3 3 3 3 3 3 30
Class 4 5 5 6 5 5 5 5 5 5 5 51
Class 5 2 2 2 2 2 2 2 2 2 2 20
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 3 2 2 2 3 2 2 3 23
Class 9 3 1 1 2 1 1 1 1 1 1 13

Total 221

10 per Group with Ordering 1 2 3 4 5 6 7 8 9 10 Subtotal

Class 1 3 3 4 3 4 3 3 3 3 4 33
Class 2 3 3 3 3 3 3 3 3 3 3 30
Class 3 3 3 3 3 3 3 3 3 3 3 30
Class 4 4 4 5 5 5 5 5 5 5 5 48
Class 5 2 2 2 2 2 2 2 2 2 2 20
Class 6 1 1 1 1 1 1 1 1 1 1 10
Class 7 1 1 1 1 1 1 1 1 1 1 10
Class 8 2 2 3 2 2 2 2 2 2 3 22
Class 9 3 1 1 1 1 1 1 1 1 2 13

Total 216

Table A.4: Performance of the Layered Heuristic: 10-item subset
V.S 10-item with ordering, bin dimension 215× 215× 215, detailed
results.
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