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Abstract

Balancing the energy demand in isolated microgrids is a critical issue especially in the presence

of intermittent energy sources. Battery Energy Storage Systems (BESS) can be installed in such

circumstances to supply the demand and support the reserve requirements of the isolated

microgrid. However, due to the high installation costs of BESS, there is a need for proper

mechanisms to select such systems and size them optimally. Furthermore, since BESS are often

installed to serve multiple applications, these should be properly modeled to coordinate their

different functionalities.

In this thesis, a multi-year operational planning model is developed to determine the BESS

optimal power rating and energy capacity along with the year of installation taking into account

its coordinated operation. The model includes unit commitment formulation with renewable

energy and BESS operational constraints. The optimal planning decisions are obtained for

different BESS technologies under several scenarios of ownerships.

The uncertain patterns of solar and wind resources and system demand are considered and

several microgrid operational scenarios are created. A stochastic optimization model is

developed to determine the optimal BESS size and installation year including the different

states of the uncertain microgrid variables. The stochastic optimization model is solved using a

decomposition based two-stage iterative approach to cope with the large computational burden

of such problems.
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Chapter 1

Introduction

1.1 Motivation

Microgrids are defined as small groups of customers and generating units which can be controlled

independently and have the ability to manage the energy locally [1]. There are two modes of

operation of microgrids: grid-connected and isolated mode, and each has a different energy

management strategy [2]. One of the challenging problems in isolated microgrids is maintaining

the balance between demand and supply. Since connection to the main grid is not available in

isolated microgids, the integration of distributed generation (DG) sources such as photovoltaic

(PV), wind, and other small-scale fuel-based units is essential in order to meet the demand.

Remote microgrids mainly depend on dispatchable DG units, such as diesel generators, since

they can maintain the system reliability and operational flexibility in contrast to intermittent

renewable energy sources (RES). For example, there are about 280 communities in Canada that

have no access to the electric grid [3]. The total generation capacity in these microgrids is 615

MW, and the dominant source of energy is diesel generators; they account for more than 50% of
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the total installed capacity, as shown in Figure 1.1.

The very high cost of fuel transportation in conjunction with environmental issues make the

fuel-based DG units less favorable. According to [3], the minimum electricity tariff in these

northern and remote communities of Canada, that depend on diesel generators, is as high as

0.45 $/kWh and even reaches 2.5 $/kWh in the arctic regions, while the average electricity tariff

in the rest of Canada does not exceed 0.17 $/kWh. In order to circumvent this problem, there is

a need for more integration of RES in such remote microgrid systems. However, RES are

neither dispatchable nor predictable. Moreover, the high penetration of intermittent RES

imposes technical problems because of the fluctuations in the output power which affects the

power quality of microgids.

Energy storage systems provide a viable option in mitigating these problems. They help in

meeting the load mismatch and facilitating integration of RES [4] via storing the extra energy

from RES when demand is low and discharging the stored energy during peak load hours.

Energy storage systems can be installed to serve the power system in many other applications as

reported in [5]. In general, energy storage applications can be divided into two broad areas:

energy management applications and power quality applications. Several energy storage

technologies are available for use; however, some technologies may excel over others in some

applications because of the different inherent characteristics, as shown in Figure 1.2 [6].

Amongst the various energy storage technologies, Battery Energy Storage Systems (BESS)

have received significant attention over the last decade because of their role in improvement in

system operational aspects and reduction in cost. BESS are also suitable for microgids because

of their capability to be used for both energy management and power quality improvement

applications. This is because of their fast response, options for different energy to power ratios,

and compact size and mobility [7].
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Figure 1.1: Share of generation sources in northern and remote communities of Canada [3]

The operational strategies of BESS differ from one application to another. Therefore,

appropriate BESS technology, the optimal size, and the optimal operation strategy including

charging/discharging cycles need to be chosen carefully, so as to result in the maximum benefit

to the microgrid. To increase the benefit from BESS, more than one application can be

synthesized at the same time; however, optimal sizing of such systems is a challenging problem.

In general, the larger the installed size of BESS, the greater is the improvement in microgid

operations, in addition to a reduction in thermal generation costs. However, high installation cost

(which includes the equipment cost and some associated fixed costs) is the main barrier to the

wider deployment of BESS [8]. Therefore, the proper size of BESS need be determined in an

operational-planning framework based on cost-benefit analysis to maximize the total microgid

operational benefits at the least possible BESS installation cost.
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Figure 1.2: Energy storage technologies for different applications [6]

1.2 Literature Review

Several studies have been reported in the literature that address the problem of finding the optimal

size of energy storage systems from different perspectives and in different applications.

The optimal power rating and energy capacity of BESS is determined in [9] for a

hydrothermal power system using the multi-pass dynamic programming. The optimal size of

BESS is determined based on maximizing the ratio of fuel cost savings to the capital cost of the

installed BESS. In [10], the same approach is used to maximize the ratio of fuel cost savings

over a 20 year period to the capital cost of BESS. A time-shift technique is used to find the

initial values for the multi-pass dynamic programming which reduces the computation time.

However, in the above papers, reducing the fuel cost by load leveling is the only application of

BESS considered.
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In [11], a heuristic approach to the unit commitment (UC) problem is developed and applied

to a power system comprising thermal generators with several possible size combinations of

BESS. Different applications of BESS such as spinning reserve, load leveling, and frequency

control are studied. The BESS power and energy size corresponding to a specific application or

a combination of applications that leads to maximum fuel cost savings, is considered the optimal

solution for the problem.

Although the impact of the life-cycle cost of BESS is significant, it was not considered

in [9–11]. The operations and maintenance (O&M) cost of BESS is considered in [12] when

determining its optimal power and energy size. The model proposed in [12] aims to maximize

the savings in production cost, distribution cost, and emission cost while minimizing the BESS

life-cycle cost using the Tabu search optimization technique. The optimal capacity of BESS is

determined in [13] using the objective of maximizing the net present value (NPV) of the total

savings in distribution network costs taking into account the installation and O&M costs of

BESS. The installed BESS is utilized in multiple applications in a distribution network. The

optimization problem is solved using a non-dominated sorting genetic algorithm.

When a BESS is installed in a system that includes RES, it can be used for either energy

management applications or power quality applications, as shown in Figure 1.3.

In one of the power quality applications of BESS [14] considering a PV/Battery system,

the fluctuations of PV output power are mitigated by three methods including the installation

of BESS. The optimal size of BESS is obtained to maximize the revenue generated from the

PV/Battery system by reducing system fluctuations. The fluctuations of wind generation are

taken into consideration for BESS sizing in [15] and [16]. The main objective of [15] is to

find the optimal BESS size that maximizes the economic benefit while maintaining the output

wind power constant. Also, the voltage across the DC link is required to be within a certain

limit. However, since the capacity determined in [15] is based on peak wind generation, the
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Figure 1.3: Energy storage applications with RES

determined BESS size may be higher than required. A stochastic optimization model is proposed

in [16] to overcome this limitation and hence arrive at a more accurate BESS size to reduce power

fluctuations from wind generation.

In the context of energy management applications, sizing BESS in a PV/Battery system is

reported in [17] and [18]. Energy arbitrage and peak shaving applications are examined in [17]

considering a PV/Battery system connected to the grid. The optimal size of BESS is determined

so as to minimize the cost of net power purchased during peak hours as well as minimize the

cost of capacity degradation after each discharging process, taking the advantage of time-of-

use electricity pricing. Distributed BESS is also studied in a distribution system with high PV

penetration in [18]. The optimal size of BESS is determined in [18], at each bus, based on a

cost-benefit analysis, considering voltage regulation and peak load shaving applications.

In a wind-diesel isolated system [19], the optimal BESS size is determined so as to minimize

the fuel and operating costs of the system over a 20-year planning period, while facilitating wind

generation penetration. A two-stage approach is carried out to capture the wind variability and

load uncertainty. Several scenarios are considered corresponding to different profiles of wind
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and load. The first stage determines the BESS size that satisfies all scenarios while the second

stage identifies the optimal operation, given the optimal size determined in the first stage.

Since a stand-alone wind generation system suffers from the unpredictability of output power,

the optimal size of BESS that decreases the difference between the predicted and actual wind

generation is investigated in [20]. The BESS size is determined to smoothen the output power

fluctuations of the wind farm to within a range of ±4% of the forecast, for 90% of the operation

period. The integration of wind generation in a system that lacks generation units for reserve,

is studied in [21]. The BESS is installed to provide the reserve required for such a system.

The optimal power rating and energy capacity are determined using temporal and non-temporal

methods. Although savings in cost of reserves is achieved in the aforementioned studies, since

BESS costs are not considered in [20] and [21], the proposed methods may lead to oversizing the

BESS.

A similar application of BESS is discussed in [22] but with a flexible energy management

strategy that allows curtailing the wind generation and selling energy when the price is low. The

size of BESS is chosen based on a cost-benefit analysis in which the reduction in cost from

installing BESS is more than the cost of the unserved energy. Similarly, optimal BESS size is

determined to meet a certain specified level of power delivery from a wind farm in [23]. The

difference herein with [22] is that, it selects the capacity of BESS based on the trade-off between

lifetime and cost, including installation and O&M cost.

Another research examines the optimal BESS size and location in order to reduce the spilled

wind energy [24]. The maximum spilled power and energy is used to determine the aggregated

power and energy size of the installed BESS. The study is conducted from the perspective of

utilities and DG owners to maximize their benefits based on cost-benefit analysis.
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Hybrid systems which include both PV and wind generation are another thread of the

literature on energy storage sizing. In the context of microgrids, sizing of energy storage is

examined in [25] based on a cost-benefit analysis and unit commitment with spinning reserve

considerations. The two microgrid operational modes, grid-connected and isolated, are studied

and different BESS sizes for each mode are prescribed.

From another perspective, energy storage can be installed as a backup in order to increase

the reliability of a critical system to the desired level [26]. The optimal size is determined in

terms of power rating and energy capacity using an analytical approach to increase the

availability or reduce the mean down time of supply to a critical load. The model is extended

in [27] to an island-capable military microgrid with RES. Sequential Monte Carlo Simulation is

used to analyze the system reliability. However, the installation cost of energy storage is not

included in the proposed models. BESS sizing is proposed in [28] to enhance reliability in

microgrids, wherein the BESS installation cost and its impact on the operating cost are

considered. The optimization model is based on the UC formulation and solved as a mixed

integer linear programming (MILP) problem. The power and energy size of BESS are

determined to satisfy the reliability constraints in a grid-connected microgrid that comprises

four thermal generators and a wind turbine. In [29], a two-stage stochastic model is proposed to

determine optimal siting and sizing of BESS and help to increase the reliability of a distribution

system to a level that the customer is willing to pay for. Siting and sizing of distributed BESS,

along with a load shedding option are used to enhance the reliability. The optimal decisions are

obtained using a genetic algorithm (GA) approach, based on a cost-benefit analysis.

In [30], an approach to optimize the size of different energy storage technologies including

BESS based on power quality and energy management applications simultaneously is proposed

for a system with high penetration of RES. Discrete Fourier transform is carried out to balance

power in different time segments ranging from weeks to real-time. Each energy storage
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technology is assigned a specific operational strategy during its time segment, and the size is

determined based on the maximum energy storage requirement.

Several publications discuss optimizing DG capacity with BESS size. On the demand side

of the grid, DG owners install BESS to decrease their consumption from the grid and utilize

their hybrid systems as much as possible. For example, in [31], a method is proposed to find the

optimal size of battery banks along with the number of PV modules to be installed in a stand-

alone hybrid system to minimize the installation cost. The mismatch between the average output

power of the PV and wind generation and the load determines the required BESS size. In [32],

a GA based optimization model is proposed to select the number of components for a stand-

alone PV/wind hybrid system including PV battery chargers. Sizing a wind-PV hybrid integrated

system with battery bank is studied in [33]. The proposed sizing approach is based on factors

such as deficiency of power supply probability, relative excess power generated, probability of

un-utilized energy, and levelized energy cost. On a larger scale, the optimal DG size and BESS

capacity is addressed in isolated and grid-connected wind-solar-battery hybrid systems in [34].

The proposed model minimizes the total cost while maintaining high power quality and system

reliability considering the two modes of operation.

To consider the uncertain nature of RES, stochastic models are reported in [35] and [36] to

optimize the size of DG and BESS. In household applications, a stochastic method based on

Monte Carlo simulation and particle swarm optimization is proposed in [35]. The optimal size

of wind generation and BESS is determined that minimizes the electricity cost for household

customers considering the uncertainty in demand, electricity price, and wind generation. In [36],

several capacities of energy storage systems, RES, diesel generators in isolated microgrids are

considered in a joint optimization model. The large number of scenarios is handled by solving

the model in a distributed optimization approach, which divides the problem into several sub-

problems.
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In view of the above discussions, there is a need to develop appropriate planning frameworks

for determining the optimal power and energy size of BESS and optimal year of installation

considering the long-term microgrid demand profile and presence of other energy resources. It

is also important to consider uncertainty in demand and RES in the BESS planning framework.

1.3 Research Objectives

The main goal of the thesis is to develop an operational-planning framework for isolated

microgrids to determine their optimal size of BESS to be installed and the optimal installation

year over a planning horizon. The specific objectives of the thesis are stated as follows:

• Develop an optimization model for microgrids considering penetration of RES and

dispatchable DG units. Different BESS technologies and their inherent characteristics and

cost parameters are considered to arrive at the optimal selection of BESS technology in

addition to the optimal power rating and energy capacity, and the optimal year of

installation. The coordination between load leveling application and reserve support

application of the BESS, to increase the benefit to the microgrid, is taken into account in

the modeling framework. The reserve provided by BESS considers the three modes of

operation: charging, discharging, and the standby mode, when providing reserve for a

microgrid.

• Develop a stochastic programming model to capture the uncertainty of solar radiation,

wind speed, and demand, using different probabilistic scenarios. Develop a

decomposition-based approach to solve the stochastic programming model and hence

determine the expected size of BESS, and the expected year of installation. The

decomposition approach will be carried out in two stages: in the first, the power and
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energy size of BESS will be determined, while in the second stage, the optimal year of

installation is obtained.

• In conjunction with the above studies for BESS sizing, also determine and examine the

optimal operational decisions of BESS and other microgrid resources.

1.4 Thesis Outline

The rest of the thesis is structured as follows: Chapter 2 presents the essential background on

microgrids, energy storage technologies and their characteristics, and the generic UC

formulation. In Chapter 3, the proposed optimization model for optimal planning of BESS,

including determination of BESS size and year of installation, is discussed. Different BESS

technologies are considered and several case studies considering isolated microgid operational

requirements are carried out. The uncertainty of PV, wind, and load is incorporated and the

model is further advanced to formulate a stochastic programming model, which is presented in

Chapter 4. A two-stage decomposition approach is formulated to solve the stochastic

programming model and hence determine the expected size and installation year of the BESS.

Finally, a summary of the thesis, the main contributions, and the potential for future work are

discussed in Chapter 5.
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Chapter 2

Background

In this chapter, a brief background to the topics relevant to this thesis is presented. An overview

of the microgrid concept is discussed in the first section. Then, energy storage systems including

different technologies, aspects, and parameters are discussed. Finally, the mathematical model

of the classical UC problem is presented.

2.1 Microgrids

The large-scale deployment of DG units in distribution systems has led to the development of

the concept of microgrids. The microgrid system comprises a group of loads and small-scale

sources of energy that operates as a single entity [1]. Each microgrid controls its resources to

meet its demand at the distribution level. These resources include dispatchable DG units such as

microturbines, fuel cells, and CHP generators, and RES such as hydro, PV and wind generation.

In addition to these components, energy storage systems are essential elements in microgrids.

Microgrids can operate as isolated systems and balance their demand via the available resources
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or they can be connected to the main grid at the point of common coupling (PCC) for bidirectional

exchange of energy. A general microgrid layout is shown in Figure 2.1.

The characteristic of microgrids is different than the conventional power system since they

have highly dynamic operations because of their dependency on DG units which are closer to

the load [37]. Consequently, microgrids are usually equipped with the state-of-art power

electronics, protection devices and reinforced by two-way communication systems in order to

accommodate the generation resources at the distribution level and maintain the system

reliability in presence of the bi-directional power flow. Controlling these components is

performed by the microgrid’s energy management system (EMS) which ensures optimizing the

microgrid operation while ensuring reliability at least cost.

Although microgrids enhance the overall system efficiency, some operational challenges may

face the microgrid operator (MGO) from the integration of intermittent resources, such as wind

and solar. The fluctuations in output power from these resources have to be mitigated to ensure

power quality and reliability standards in both grid-connected and isolated mode of operation.

Some of the challenges in microgrids and the control strategies to overcome these issues are
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discussed in [38].

The EMS in isolated microgrids is more challenging than in the grid-connected mode.

Ensuring sufficient generation and scheduling resources based on the forecasted demand and

availability of intermittent resources are important issues in isolated microgrids [39], [25]. The

high uncertainty of RES adds another degree of complexity in maintaining the isolated

microgrid’s reliability. Moreover, the lack of rotational inertia from dispatchable generators

requires additional sources and strategies to ensure the stability of the microgrid. On the other

hand, the main aim in grid-connected mode of operation is maximizing the microgrid’s benefit

from exchanging energy with the main grid [40]. Therefore, each microgrid considers these

issues in its EMS and optimizes its operation depending on the mode of operation.

Several demonstration projects have been conducted around the world to implement the

concept of microgrid. In Canada, the integration of RES to electrify the northern and remote

communities since the seventies decade can be considered as the beginning of implementing the

microgrid concept. In the 1980s and 1990s, number of wind turbines and PV units with capacity

of less than 60 kW and 5 kW respectively were installed to supply parts of the load in several

isolated microgrids in conjunction with diesel generators [41]. More isolated microgrid projects

have been developed afterwards such as the wind-diesel project in Ramea island in

Newfoundland and Labrador. Six wind turbines with a total capacity of 395 kW have been

installed to supply the Ramea isolated microgrid which has a peak demand of 1.2 MW [42].

Another example is the isolated microgrid in Kasabonika Lake First Nation community in

Ontario. The microgrid demand is supplied by diesel generators and 60 kW of wind

generation [43], [3]. In the Bella Coola remote microgrid in British Columbia, locally available

hydro and diesel generation can effectively meet the entire microgrid demand. However, a

combination of different energy storage technologies with an efficient EMS are utilized to

optimize the power generation allocation [44].
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The microgrid systems which are connected to the distribution system have also been

implemented in Canada. For example, the Fortis-Alberta microgrid comprises 3.8 MW of wind

generation and 3 MW of hydro generation to supply the load [45]. The microgrid is connected

to the main grid and operates usually in grid-connected mode. However, in the case of faults,

the microgrid may operate as an isolated system, or it can be connected to another temporary

PCC [42]. The British Columbia Hydro Boston Bar system is another example of a

grid-connected microgrid. The peak load in the microgrid is 3 MW which is supplied by the

main grid in normal cases at the PCC, which is the 69-kV/25-kV substation [42]. During the

isolated mode, the microgrid is supplied by a hydro plant of 8.64 MW. In Quebec, a 15 MW

load is connected normally to the Hydro Quebec distribution system via a 125-kV line. The

microgrid is supplied by 31 MW thermal generation units in isolated mode [42].

2.2 Energy Storage Technologies

A wide range of energy storage technologies exist today. In general, energy storage technologies

are classified into two categories based on the form of the stored energy: direct energy storage and

indirect energy storage technologies [46]. The former store the energy as electrical energy and do

not require any conversion to other forms. In contrast, the indirect energy storage technologies

require converting electrical energy from/to mechanical energy or chemical energy. Technologies

of each type are presented in Figure 2.2.

2.2.1 Direct Energy Storage Technologies: Electro-magnetic

This type of energy storage technologies includes Superconducting Magnetic Energy Storage

(SMES) and Ultra Capacitor Energy Storage (UCES). These technologies are developed versions
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Figure 2.2: Classification of energy storage technologies [46]

of the basic electrical devices: inductors and capacitors, respectively. They have the capability

to discharge high large quantities of power within a very short time. Therefore, they fit best in

power quality applications [46].

2.2.2 Indirect Energy Storage Technologies: Electro-mechanical

The mechanical energy storage technologies store the energy in the form of kinetic energy or

potential energy. The technologies of this type include Pumped Hydro Energy Storage (PHES),

Compressed Air Energy Storage (CAES), and Flywheel Energy Storage (FES).
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2.2.2.1 Pumped Hydro Energy Storage (PHES)

This is one of the earliest large-scale energy storage technologies. During low demand periods,

the charging energy is used by motors to pump water to a higher level reservoir. When energy is

required to be discharged, water is released to a lower reservoir, and the potential energy of the

released water is used to operate a hydroelectric turbine and generate electrical energy. PHES

is used for energy management applications because of its high energy capacity and low energy

cost. However, the geographic and environmental restrictions limit the installing of PHES in

some cases. Also, despite the low cost of energy, the fixed installation cost of PHES is very high

and requires longer time for cost recovery as compared with other technologies, which makes

PHES less attractive [6]. For these reasons, PHES may not be a feasible option for microgrids.

2.2.2.2 Compressed Air Energy Storage (CAES)

The other mature energy storage technology is the Compressed Air Energy Storage (CAES). In

the charging process, the CAES system compresses air in a special reservoir, and during

discharging, the compressed air is expanded by heating and then passed through a turbine to

generate electrical energy. There are two types of CAES based on the design of the compressed

air reservoir, underground or aboveground. The aboveground CAES does not require geologic

specifications and uses tanks or on-site pipes as a reservoir for the compressed air [5]. On the

other hand, the underground CAES stores the compressed air in an underground geologic

formation such as salt caverns, aquifers, and depleted natural gas fields. The installation cost of

the aboveground CAES is higher than the underground CAES since the later depends on natural

reservoir which reduces the unit cost of energy significantly. For the same reason, the capacities

and discharge time of the aboveground design are less. The aboveground CAES capacity is

typically within 3-50 MW range with discharge time of 2 to 6 hours, whereas the underground
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CAES is capable to store up to 400 MW with maximum discharge time of 26 hours depending

on the available size of the geologic formation [6]. Because of the site requirements and the

scale of energy capacities, the aboveground CAES is more suitable for microgrid applications

than the underground CAES.

2.2.2.3 Flywheel Energy Storage (FES)

FES stores energy in a rotating shaft as kinetic energy. To charge the FES, electrical energy is

used to rotate it and the rotation speed of the shaft is proportional to the stored energy. Therefore,

when FES discharges, the kinetic energy is converted to electrical energy via the generator and

the rotation speed decreases as FES discharges. FES is useful for power applications because of

its fast response time [6]. However, although FES has high power capability and fast response,

its limited energy capacity to few kWh limits its use in large scale applications [6].

2.2.3 Indirect Energy Storage Technologies: Electro-chemical

Electrical energy can be stored in the form of chemical energy. There are two different concepts

of electro-chemical energy storage, first includes all the battery technologies, including flow

batteries, while the second is a recent development, Hydrogen Energy Storage (HES).

2.2.3.1 Battery Energy Storage Systems (BESS)

The scope of this thesis is to focus on BESS because of their maturity level and their range of

application to system level issues in a microgrid. Therefore, the four main BESS technologies

will be discussed with their technical characteristics.
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Sodium Sulfur Batteries (NaS):

Several studies have been conducted to develop this technology, especially in Japan. At the

current time, NaS BESS is only available at energy to power (E/P) ratios ranging from 6 to 7 [5].

Therefore, it has the capability to discharge for more than 6 hours at rated power. In addition, the

relatively high round-trip efficiency and their long cycle life make them more valuable in energy

management applications. Moreover, NaS BESS has a capability to discharge at 5 times its rated

power for a few minutes to meet transient fluctuations in power, which is a significant feature of

the batteries in power quality applications [5].

NaS BESS also have high energy and power density [6] and does not suffer from

self-discharge effect [47]. Consequently, because of all these advantages, this technology is

considered as a mature technology and has been used in several grid-scale applications.

However, because NaS BESS operation requires high temperature, there are some concerns

about their safety [47].

Vanadium Redox Flow Batteries (VRB):

VRB BESS is a battery from the flow batteries family. It was first introduced in the 1970s [48].

Since power rating of these batteries depends on the size of the cell stack, while the volume of

the electrolyte determines the energy capacity, VRB BESS has no E/P ratio constraints [47].

The cycle life of VRB BESS is significantly high and does not depend on the depth of

discharge (DOD) [6]; hence, their lifetime is usually measured by calendar life. One of the

features of VRB BESS is that the power stack can be adjusted to the desired level, and the

power rating can be changed to suit the application, either it is power quality application such as

voltage regulation or energy management application such as energy arbitrage [48]. Researchers

are working on reducing the power density of these batteries which is one of their drawbacks.

Lead Acid Batteries (PbA):

PbA BESS are one of the most developed and mature batteries in the world, and widely used in

19



several applications since they were introduced in the early 1860s [5]. The limitations of PbA

BESS include their low power and energy density, and reliability. Also, PbA BESS have low

cycle life compared to other batteries. Despite these limitations, PbA BESS can be used in

power applications or energy applications because of their noticeable low cost and high

efficiency, beside their maturity level [47].

Lithium-ion Batteries (Li-ion):

The research on Li-ion BESS was started in the 1960s [49]. They have been used in small-scale

energy storage applications for several decades and recently in large-scale applications,

especially in the automotive sector.

The advantages of Li-ion BESS include their very high efficiency, high cycle life and fast

response time. However, Li-ion BESS are expensive compared to the other types of batteries

because of their protection and insulation requirements [50].

Since their E/P ratio is usually less than unity, Li-ion BESS are typically used in power

applications. Furthermore, it is projected that Li-ion BESS of typical size 50 kW can have a

discharge time of less than 4 hours by 2015 [6], and consequently, it can also be used for some

energy management applications.

2.2.3.2 Hydrogen Energy Storage (HES)

HES technology is a new concept of electro-chemical energy storage. It is based on converting

the electrical energy to hydrogen and oxygen via an electrolyzer. The hydrogen is stored and then

used in discharging mode to generate electrical energy using a fuel cell. HES has high energy

density and long cycle life. However, the round-trip efficiency of HES is very low as compared

with BESS [47].
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2.3 Energy Storage Systems

In order to address the differences between the various energy storage technologies and their

applications, the most important properties of energy storage systems need be understood.

2.3.1 Power and Energy Size, E/P Ratio

Unlike electrical generators, energy storage systems are not infinite sources of energy. Therefore,

the size of an energy storage system is identified by its rated power and the maximum energy

that can be stored.

The power size of an energy storage system is defined as the rate at which the energy

storage is capable of discharging/charging power continually. In normal operation, the

maximum injected/drawn power is the nameplate rating of the system, however, some types of

energy storage have the ability to discharge more power than their rated value for a short period

during contingency situations. Also, in most technologies, the charge rate is usually less than

the discharge rate.

The energy size represents the maximum amount of energy that can be stored for a certain

time. The capacity is expressed usually in kWh or MWh. It can also be represented in Ah when

the voltage across the energy storage is not assumed to be fixed.

The relationship between the power and energy size for a certain energy storage technology

is known as the E/P ratio, and it is defined as follows:

E/P =
Energy Capacity, kWh

Power Rating, kW
(2.1)

For example, in energy storage systems used for power quality applications, the E/P ratio is
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usually less than unity since the maximum discharge/charge power is more important than the

energy capacity. On the other hand, energy storage systems used in energy management

applications have an E/P ratio more than unity due to the need for large energy capacity.

2.3.2 Discharge Time

It is the maximum duration for which the energy storage can discharge at rated power, and is

expressed as follows:

Discharge Time =
Available Energy Capacity, kWh

Power Rating, kW
(2.2)

It is to be noted that while discharge time depends on the available energy capacity or the

DOD, the E/P ratio considers the entire energy capacity. In other words, if the energy storage

is allowed to utilize its full capacity, then the discharge time equals the E/P ratio, otherwise, the

discharge time is always less than the E/P ratio.

The discharge time and E/P ratio of an energy storage technology varies over a range as

shown in Figure 1.2, and depicts the range of applications that storage systems can be utilized

for. The energy storage systems that have low discharge time (seconds to few minutes) are more

suitable for power applications, while systems with high discharge times (several minutes to

hours) are better in energy management applications.

It has to be mentioned that some technologies, such as batteries, have a wider range of E/P

ratio than others, which make them better suited for both power quality and energy management

applications.
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2.3.3 Lifetime

Most energy storage technologies suffer from degradation which affects their performance and

reduce their lifetime. Three major factors affect the lifetime, and whenever one of them reaches

its limit, the energy storage system should be replaced.

(a) The calendar lifetime (years): depending on the technology, after certain years of

installation, the energy storage may not operate efficiently, even though it may not have

operated frequently.

(b) Number of cycles (cycles): when the number of charging/discharging cycles reaches its

maximum, the energy storage system should be replaced. This factor is critical in

applications requiring frequent shallow charge/discharge cycles.

(c) Total discharged energy (kWh or MWh): in applications that require deep charging and

discharging cycles, the total discharged energy determines the lifetime of energy storage.

To reduce the impact of degradation, the operation of energy storage system should be

controlled to increase its benefit at least cost. For example, in energy management applications,

where the discharged energy determines the lifetime, the energy storage may not be allowed to

discharge beyond a certain level of its energy capacity. The maximum discharge limit is

expressed as the DOD of energy storage (%). It is noted that the level of energy to which the

energy storage is charged is known as state of charge (SOC), expressed in kWh in this thesis.

Accordingly, the DOD of energy storage is defined as follows:

DOD(%) =
Energy Capacity −Minimum SOC Level

Energy Capacity
× 100 (2.3)
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Reducing the DOD has a significant impact on prolonging the lifetime of the energy storage

system [48]. However, a low value of DOD requires installing a larger size of energy storage.

Therefore, balancing the two factors is important to reduce the total energy storage cost.

2.3.4 Round-Trip Efficiency

The loss of energy due to the conversion from grids to energy storage systems and vice versa is

represented by the round-trip efficiency. It is the amount of energy that can be discharged from

energy storage for a given amount of energy charged. In some cases, the charging efficiency

associated with energy conversion in charging process is different than the discharging efficiency.

The round-trip efficiency is the multiplication of both of them. Energy storage technologies have

different range of round-trip efficiencies. Higher efficiency of a certain technology might be

available but at higher cost.

2.4 The UC Problem

The UC problem aims to find the optimal commitment schedule of the available generation

resources over a period of time to meet the demand taking into account the characteristics of

generating units and other power system constraints [51]. The optimal commitment schedule in

UC problems yields the least operation cost. Several optimization techniques and algorithms for

solving the UC problem have been discussed in [51] and [52]. The generic UC mathematical

model is presented below:
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2.4.1 Objective Function

Minimize the total operation cost of generating units over a period of time:

MIN J =

H∑
h=1

I∑
i=1

(
Fi(Ph,i)Wh,i + SUiUh,i + SDiVh,i

)
(2.4)

The cost function of the thermal generators at any hour is generally given as follows:

Fi(Pi) = aiP2
i + biPi + ci ∀i (2.5)

where a, b, and c are the cost coefficients of each generating unit in $/kW2, $/kW, and $,

respectively. Because of the nonlinearity of the cost function, the Piecewise Linear Upper

Approximation Method [53] is used in this thesis in order to formulate the UC model as a MILP

problem. In this method, the quadratic cost function in (2.5) is divided into sets of linear

functions and formulated as follows:

Fi(Pi) = Fmin
i Wi +

∑
k

Slopei,kPseti,k ∀i,∀k (2.6)

where the minimum cost Fmin
i and the slope of each set Slopei,k are constants and can be obtained

from the following relations:

Fmin
i = ai(Pi)2 + bi(Pi) + ci ∀i (2.7)

Slopei,k =

[
Fi(Psetmax

i,k ) − Fi(Psetmax
i,k−1)

][
Psetmax

i,k − Psetmax
i,k−1

] = ai(Psetmax
i,k + Psetmax

i,k−1) + bi ∀i,∀k (2.8)
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The total output power of a generating unit considering all the sets is as follows:

Pi =
∑

k

Pseti,k ∀i (2.9)

The output power bounds of each set are given as:

0 ≤ Pseti,k ≤ (Psetmax
i,k − Psetmax

i,k−1)Wi ∀i,∀k (2.10)

2.4.2 Constraints

Demand Supply Balance: This constraint ensures sufficient generation is available to meet the

demand at each hour.
I∑

i=1

Ph,i = Pdh ∀h (2.11)

Reserve Requirements: The available capacity of committed generators has to meet certain

reserve requirement. It is assumed that the reserve should be at least 10% of the demand at each

hour.
I∑

i=1

(PiWh,i − Ph,i) ≥ 0.1Pdh ∀h (2.12)

Generating Unit Limits: Each generating unit has upper and lower bounds on its power

production, as follows:

PiWh,i ≤ Ph,i ≤ PiWh,i ∀i,∀h (2.13)

Ramp Up/Down Constraints of Generating Units: The intra-hour increase/decrease in

generation satisfies the ramping limits of generating units, as follows:

Ph,i ≤ Ph−1,i + RampUpi ∀i,∀h; h , 1 (2.14)
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Ph,i ≥ Ph−1,i − RampDowni ∀i,∀h; h , 1 (2.15)

Minimum Up Time Constraints of Generating Units: When a generating unit is turned on, it must

not be de-committed before satisfying its minimum up time. These constraints are formulated as

in [54].
Gi∑

h=1

(1 −Wh,i) = 0 ∀i (2.16)

h+MinUpi−1∑
q=h

Wq,i ≥ MinUpi[Wh,i −Wh−1,i] ∀i, h = Gi + 1, ....H −MinUpi + 1 (2.17)

H∑
q=h

[
Wq,i − (Wh,i −Wh−1,i)

]
≥ 0 ∀i, h = H −MinUpi + 2, ....H (2.18)

Minimum Down Time Constraints of Generating Units: When a generating unit is turned off, the

minimum down time should be satisfied before committing it. The constraints are formulated as

follows [54]:
Li∑

h=1

Wh,i = 0 ∀i (2.19)

h+MinDni−1∑
q=h

(1 −Wq,i) ≥ MinDni[Wh−1,i −Wh,i] ∀i, h = Li + 1, ....H −MinDni + 1 (2.20)

H∑
q=h

[
1 −Wq,i − (Wh−1,i −Wh,i)

]
≥ 0 ∀i, h = H −MinDni + 2, ....H (2.21)

Generating Units Binary Coordination: To ensure proper coordination between the generator

status and the start-up/shut down binary variables, the constraint is formulated as below:

Uh,i − Vh,i = Wh,i −Wh−1,i ∀i,∀h (2.22)
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2.5 Summary

The chapter introduces some essential background topics required for this thesis. A brief

discussion about the microgrid concept, different modes of operations and operation challenges

are first presented. In the second section, the state-of-art energy storage technologies, systems

and their important properties and parameters are discussed. Finally, the basic MILP model to

solve the UC problem is presented.
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Chapter 3

Optimal Selection and Sizing of BESS

In this chapter, a mathematical model is developed that seeks to obtain the optimal power and

energy ratings of a BESS in an isolated microgrid, and the optimal year of installation within

the planning horizon. It is noted that the planning study considers only the installation of BESS,

while dispatchable DG units and RES are considered to be existed in the microgrid under study.

The proposed model is based on a UC formulation with some modifications to accommodate

BESS installation decision variables. Different structures of BESS ownership are considered, as

follows:

• MGO owns and schedules the BESS.

• Third-party (investor) owns the BESS and schedules it from its own perspective.
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3.1 Mathematical Modeling Framework

3.1.1 Energy Storage System Applications

As discussed earlier, energy storage system applications can be classified into two general

categories: power quality and energy management applications. These can also be divided into

five service provisions to the grid, as shown in Table 3.1. These applications can be synthesized

to provide as much benefit to the grid as possible. However, some technical and operational

conflicts may prevent the energy storage system to be used in certain applications

simultaneously [5]. For example, the energy storage system that supports the reserves should

not be assigned to other applications that require frequent discharging cycles. Consequently,

two new parameters are introduced in this thesis that measures the performance of the BESS, as

follows:

BESS Capacity Factor (BCF) =
Total Energy Discharged by BESS, kWh

Total Energy Demand, kWh
(3.1)

BESS Reserve Factor (BRF) =
BESS Reserve Contribution, kW

Total Required Reserve, kW
(3.2)

3.1.2 Charging and Discharging Energy in BESS

BESS discharged energy is the total released energy from the battery to the microgrid before

accounting for its discharging efficiency. It quantifies the actual usage of BESS in computing

the variable O&M cost, charging cost, and discharging revenue. Although charging cost and

discharging revenue are related to the drawn/injected energy from/to the microgrid, discharged

energy can be used with considering BESS efficiency to determine the total drawn and injected

30



Table 3.1: Classification of energy storage system applications [6]

Bulk Energy Services
Electric Energy Time-shift (Arbitrage)

Electric Supply Capacity

Ancillary Services

Area Regulation
System Reserves
Voltage Support

Black Start
Load Following/Ramping Support for Renewables

Frequency Response

Transmission Systems
Transmission Upgrade Deferral
Transmission Congestion Relief

Transmission Support

Distribution Systems
Distribution Upgrade Deferral

Voltage Support

Customer Energy Management Services

Power Quality
Reliability

Retail Energy Time-Shift
Demand Side Management

energy. All these quantities can be expressed using one variable that is already defined: the BESS

power (PB). Figure 3.1 shows the energy loss in BESS because of the BESS efficiency during

charging and discharging process, while the standby loss is not considered. Because the initial

and final SOC are set to be at the same level in one operation day, the energy loss in that day can

be expressed as follows:

BESS Energy Loss = Total Energy Drawn (A) − Total Energy Injected (D) (3.3)

Since the BESS power in charging mode is negative, and the total charging energy is greater than

the total discharging energy, the total energy loss in the BESS can be given as follows:

BESS Energy Loss =
∑

h

(
− PBh ∆h

)
(3.4)
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Figure 3.1: Energy losses because of the charging and discharging efficiency

From Figure 3.1, the following relations can be obtained:

Total Energy Drawn (A) =
Total Energy Injected (D)

EffchEffdch
(3.5)

Total Energy Discharged (C) =
Total Energy Injected (D)

Effdch
(3.6)

Hence, the total energy drawn, discharged, and injected can be expressed respectively as follows:

Total Energy Drawn (A) =
1

1 − EffchEffdch

H∑
h=1

(
− PBh ∆h

)
(3.7)

Total Energy Discharged (C) =
Effch

1 − EffchEffdch

H∑
h=1

(
− PBh ∆h

)
(3.8)

Total Energy Injected (D) =
EffchEffdch

1 − EffchEffdch

H∑
h=1

(
− PBh ∆h

)
(3.9)
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where ∆h is assumed to be one hour. Note that in (3.7)-(3.9), it is inherently assumed that the

efficiencies of charging and discharging are always less than 100%. In ideal BESS, A, B, C, and

D are at the the same level.

3.1.3 BESS Ownership Structures

This thesis considers two different ownership structures of the BESS as discussed next. It will be

noted that the objective functions are significantly different as the ownership of BESS changes

because of differing perspectives of the cost.

3.1.3.1 BESS Owned and Scheduled by MGO

In this model, the MGO installs BESS to meet the increase in demand of the microgrid over

the long term. The objective is to minimize the NPV of the total cost which includes BESS

installation cost (INS), BESS O&M cost (OM), and the microgrid operational cost (MGOC).

J1 = INS + OM + MGOC (3.10)

The INS cost component of BESS comprises costs proportional to the installed power rating

($/kW) and energy capacity ($/kWh), and a fixed installation cost ($) irrespective of the size:

INS =

YT∑
y=1

[ 1
(1 + α)y

(
CpvWpy + CevWey + C f Zy

)]
(3.11)

The OM cost component comprises the fixed cost, variable cost, and replacement cost. The

fixed and replacement costs are proportional to the BESS power rating, whereas the variable cost

depends on the discharged energy from the BESS.
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OM =

YT∑
y=1

[ 1
(1 + α)y OMC f PBESSy

]
+ 365 ×

YT∑
y=1

H∑
h=1

[ 1
(1 + α)y OMCv ( Effch

1 − EffchEffdch

)(
− PBy,h

)]
+

[ 1
(1 + α)RY +

1
(1 + α)2RY + ...

]
RC PBESSy=1

+

YT∑
y=RY+1

[( 1
(1 + α)y +

1
(1 + α)y+RY + ...

)
RC

(
PBESSy−RY+1 − PBESSy−RY

)]
(3.12)

The first term of Equation (3.12) represents the fixed O&M cost of the BESS. In the second term,

the total energy discharged is used to compute the variable O&M cost. Since the model considers

one typical day per year, the variable cost is extrapolated to one year using a factor of 365. The

replacement cost of BESS is applied when the BESS’s years of operation reach its predefined

life RY. The third term of (3.12) denotes the replacement cost for a BESS installed in the first

year, while the last term represents the replacement cost if it is installed after the first year. The

replacement cost may apply several times if the BESS life is reached more than once over the

planning horizon.

The MGOC component represents the operational cost of dispatchable DG units including

their start-up and shut-down cost, taking into account the annual fuel cost escalation. The

generation cost of one typical day in a year is extrapolated to represent the cost of the

corresponding year.

MGOC = 365 ×
YT∑
y=1

H∑
h=1

I∑
i=1

[ 1
(1 + α)y

[(
1 + β

)y−1Fi
(
Py,h,i

)
Wy,h,i + SUiUy,h,i + SDiVy,h,i

]]
(3.13)

where Fi(·) is the operational cost function of a DG.
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3.1.3.2 BESS Owned and Scheduled by Third-Party (Investor)

This model investigates the benefit accrued to a third-party from installing BESS, with the

objective to maximize the profit from the energy supplied to the microgrid. The investor is

expected to bear the BESS installation cost and the O&M cost. Also, since the BESS is

assumed to be owned by a third party, the only way to charge the batteries is to purchase energy

from the microgrid. Fixed charging and discharging energy prices are assumed in this model,

θch and θdch respectively, considering a higher discharge price to generate profit. Since this is an

isolated microgrid, electricity market prices do not apply, and it is assumed that the MGO and

investor have contractual agreements for θch and θdch. The revenue from discharging and cost of

charging can be expressed as a function of the BESS discharge energy. The BESS can help in

the provision of microgrid’s reserve at fixed price θres. Since the model is carried out from the

investor’s point of view, it is assumed that the BESS owner has the right to balance the demand

based on the most profitable UC schedule to the investor. However, the microgrid is responsible

for the thermal generation cost. As mentioned earlier, the model considers one typical day per

year, and hence the discharging and reserve revenue as well as the charging cost are

extrapolated to represent the revenue/cost of one year using a factor of 365. The installation cost

and O&M cost are similar to the first model, but rate of return (RR) for an investor is considered

instead of the discount rate.

J2 =
(
DCH REV + Reserve REV

)
−

(
CH Cost + INS + OM

)
(3.14)

DCH REV = 365 ×
YT∑
y=1

H∑
h=1

[ 1
(1 + RR)y θdch

( EffchEffdch

1 − EffchEffdch

)(
− PBy,h

)]
(3.15)

Reserve REV = 365 ×
YT∑
y=1

H∑
h=1

[ 1
(1 + RR)y θres RBy,h

]
(3.16)
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CH Cost = 365 ×
YT∑
y=1

H∑
h=1

[ 1
(1 + RR)y θch

( 1
1 − EffchEffdch

)(
− PBy,h

)]
(3.17)

where INS is defined as follows:

INS =

YT∑
y=1

[ 1
(1 + RR)y

(
CpvWpy + CevWey + C f Zy

)]
(3.18)

The OM is formulated as:

OM =

YT∑
y=1

[ 1
(1 + RR)y OMC f PBESSy

]
+ 365 ×

YT∑
y=1

H∑
h=1

[ 1
(1 + RR)y OMCv ( Effch

1 − EffchEffdch

)(
− PBy,h

)]
+

[ 1
(1 + RR)RY +

1
(1 + RR)2RY + ...

]
RC PBESSy=1

+

YT∑
y=RY+1

[( 1
(1 + RR)y +

1
(1 + RR)y+RY + ...

)
RC

(
PBESSy−RY+1 − PBESSy−RY

)]
(3.19)

3.1.4 Model Constraints

3.1.4.1 Demand-Supply Balance

The demand-supply balance shall include RES and BESS. This constraint ensures sufficient

generation from dispatchable DG units and RES to meet the demand at an hour. The demand is

assumed to increase annually by a constant rate, λ.

I∑
i=1

Py,h,i + PBy,h + PVy,h + Pwy,h =
(
1 + λ

)y−1Pdh ∀y,∀h (3.20)
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3.1.4.2 Dispatchable DG Units Constraints

The dispatchable DG units constraints are similar to the ones presented in Chapter 2, and given

by constraints (2.13) to (2.22) with considering the year index y.

3.1.4.3 Microgrid Reserve Requirements

The MGO ensures a minimum reserve level of 10% of the demand plus factors accounting for

uncertainty in demand and RES forecasting errors [25], [55]. The reserve constraint is modeled

as follows:

RTHy,h + RBy,h ≥
(
0.1 + δD

)(
1 + λ

)y−1Pdh + δPV PVy,h + δW Pwy,h ∀y,∀h (3.21)

RTHy,h ≤

I∑
i=1

(
PiWy,h,i − Py,h,i

)
∀y,∀h (3.22)

RBy,h ≤ −PBy,h + min
{[

SOCy,h − EBESSy(1 − DOD)
]
Effdch,PBESSy

}
∀y,∀h (3.23)

As shown in (3.21), RB is the reserve from BESS that supports the spinning reserve from DG

units; denoted by RTH, and given by (3.22) in providing reserves for the microgrid. In (3.23),

the BESS reserve contribution is defined either by its available energy (SOC), accounting for

discharging efficiency, or its power rating. The lower value of the two, determines the maximum

reserve that can be provided by the BESS. Note that, for the sake of dimensions, the available

energy (SOC) and EBESS (given in kWh) are considered for a one hour interval, thereby making

them equivalent to be as a kW basis. The committed charging and discharging power of the

BESS is included in modeling the BESS reserve. When the BESS is discharging, it supplies a

portion of the demand, and hence the discharged power should not be reconsidered as reserve.

However, the BESS can discharge part of its energy and use the remaining as reserve. In case of
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charging, the charging power can be used as a reserve since the BESS can interrupt its charging

instantaneously, which allows the DG that is committed to supply the BESS, to be used for

supplying demand instead.

It is worth mentioning that upward and downward reserves are required in systems with high

penetration of RES to ensure maintaining the variations in RES generation and demand [56]. In

this thesis, the RES generation is assumed to be always less than the microgrid demand, and

hence only upward reserve is considered.

3.1.4.4 BESS Size Constraints

Power Size of BESS

In order to allow the model to optimize the power size of the BESS, the following constraints are

considered:

PBESSy = Wpy ; y = 1 (3.24)

PBESSy = Wpy + PBESSy−1 ∀y; y , 1 (3.25)

Wpy ≥ Zy ∀y (3.26)

Wpy ≤ M Zy ∀y (3.27)

To keep the linearity of the model, two variables are defined for BESS power size, PBESSy and

Wpy. The first denotes the power rating of BESS, and once the BESS is installed, it remains

constant over the plan horizon. On the other hand, while Wpy also denotes the installed BESS

size, it is used to compute the installation cost, and is active only at the year of installation;

otherwise, it is zero, as per (3.24). The constraints (3.26) and (3.27) are used to activate the

binary variable Zy when installing BESS using the big M method.
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Energy Size of BESS

Similar to the power rating, two variables are defined for energy capacity EBESSy and Wey. The

following constraints are considered:

EBESSy = Wey ; y = 1 (3.28)

EBESSy = Wey + EBESSy−1 ∀y; y , 1 (3.29)

Wey ≥ Zy ∀y (3.30)

Wey ≤ M Zy ∀y (3.31)

Energy to Power Ratio (E/P)

As mentioned in Chapter 2, the energy capacity of the BESS for a certain power rating, is

determined based on its E/P ratio, as follows:

EPR PBESSy ≤ EBESSy ≤ EPR PBESSy ∀y (3.32)

EPR and EPR are the maximum and minimum possible E/P ratio for a certain BESS technology.

The E/P ratio constraint also determines the maximum discharge time at rated power, as discussed

in Chapter 2.

Coordination of Binary Variables

To ensure limiting the activation of the binary variable associated with the BESS installation, to

only once over the planning horizon, the following constraint is considered:

YT∑
y=1

Zy ≤ 1 (3.33)
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Budget Constraint

The NPV of the BESS installation cost should not exceed the NPV of the allocated budget for

the year.

INS ≤ B0 (3.34)

3.1.4.5 BESS Operational Constraints

BESS Power and SOC Relationship

The relationship between the charging and discharging power of BESS and its SOC can be

described as follows:

PBy,h

Effdch
Zdchy,h + PBy,hEffchZchy,h = SOCy,h − SOCy,h+1 ∀y,∀h; h , 24 (3.35)

However, the equation (3.35) is not linear; therefore, the charging and discharging constraints

are formulated in [57] to linearize it using the big M method.

(a) Charging constraints:

− PBy,hEffch − M Zdchy,h ≤ SOCy,h+1 − SOCy,h ∀y,∀h; h , 24 (3.36)

SOCy,h+1 − SOCy,h ≤ −PBy,hEffch + M Zdchy,h ∀y,∀h; h , 24 (3.37)

(b) Discharging constraints:

−PBy,h

Effdch
− M

(
Zchy,h − Zdchy,h + 1

)
≤ SOCy,h+1 − SOCy,h ∀y,∀h; h , 24 (3.38)

SOCy,h+1 − SOCy,h ≤
−PBy,h

Effdch
+ M

(
Zchy,h − Zdchy,h + 1

)
∀y,∀h; h , 24 (3.39)
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Since (3.36)-(3.39) do not force the binary variables Zchy,h and Zdchy,h associated with charging

and discharging respectively, to be activated during the process, the following constraints are

also considered:

− M Zchy,h ≤ PBy,h ∀y,∀h (3.40)

M Zdchy,h ≥ PBy,h ∀y,∀h (3.41)

Initial and Final SOC

The initial and final SOC of the BESS are assumed to be 50% of the installed BESS energy

capacity. The initial SOC is formulated as follows:

SOCy,h = 0.5 EBESSy ∀y, h = 1 (3.42)

Similarly, (3.36)-(3.39) are adopted to the desired final value of SOC, i.e.,

SOCy,h+1 = 0.5 EBESSy ∀y, h = 24 (3.43)

Limits on BESS Power and SOC

The limits on BESS power and SOC are formulated respectively, as follows:

− PBESSy ≤ PBy,h ≤ PBESSy ∀y,∀h (3.44)

(1 − DOD)EBESSy ≤ SOCy,h ≤ EBESSy ∀y,∀h (3.45)

The minimum SOC limit is set based on the maximum DOD of the BESS. For example, if the

DOD is 80%, the minimum SOC level is 20% of the energy size.
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Coordination of Binary Variables

This constraint ensures that simultaneous charging and discharging of the BESS does not take

place. Also, it ensures that there is no charging or discharging if the binary variable associated

with BESS installation (Zy) has not been activated yet.

Zchy,h + Zdchy,h ≤

y∑
1

Zy ∀y,∀h (3.46)

Optimizing the BESS power and energy ratings and year of installation is formulated as a

MILP problem in the proposed models (3.10) to (3.46), and they are solved in GAMS using

CPLEX solver.

3.2 Results and Analysis

3.2.1 Microgrid Test System

The proposed model is applied to the modified CIGRE medium voltage microgrid [39] to

determine the optimal BESS plan. The controllable generating units in the microgrid are three

diesel generators, one combined heat and power (CHP) diesel, and one CHP microturbine with

a total capacity of 5,510 kW. The DG data shown in Table 3.2 are taken from [39]. The installed

PV capacity is 840 kW, and wind capacity is 1,450 kW.

The planning period in the case studies is 10 years. Forecasted demand and RES generation

profile, that comprises wind and solar PV, for one typical day are inputs to the model, as shown

in Figure 3.2 and Figure 3.3, respectively. The peak demand of the microgrid in the first year is

5,290 kW, and is assumed to increase annually by 1%. The fuel cost is considered to increase by

3% every year [48]. The discount rate considered in the planning is 8%.
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The microgrid is required to maintain an operating reserve equivalent to 10% of its hourly

demand plus a certain fraction of the forecasted RES generation and demand, to account for

forecasting error. The forecasting error parameters δD, δPV , and δW are assumed to be 3%, 9%,

13%, respectively [25].

Four BESS technologies are examined, namely, NaS, VRB, PbA, and Li-ion BESS. The

performance and cost parameters of different BESS technologies, shown in Table 3.3, are taken

from [6]. The fixed installation cost, applicable to all technologies, is assumed to be $20,000.

The maximum size for BESS is assumed as, PBESS = 6,500 kW, and EBESS = 6,500 kWh, the

options are considered to be available in multiples of 50 kW and 50 kWh, respectively.

Table 3.2: Dispatchable DG parameters [39]
i# Generator Type P (kW) P (kW) a ($/kWh2) b ($/kWh) c ($) SU ($) SD ($)

1 Diesel Generator 800 350 0 0.2881 7.5 15 5.3
2 CHP Diesel 310 60 0 0.2876 0 7.35 1.44
3 Diesel Generator 1400 600 0 0.2571 25.5 45 8.3
4 Diesel Generator 2500 1000 0.00001 0.224 45.5 95 15.3
5 CHP Microturbine 500 100 0.0318 1.8 6 0.27 0

3.2.2 BESS Owned and Scheduled by MGO

This ownership structure model is studied considering three scenarios associated with different

microgrid operational requirements, as follows:
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Figure 3.2: Demand profile for a typical day of the first planning year
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Figure 3.3: RES generation profile for a typical day of the first planning year

44



Table 3.3: BESS performance and cost parameters [6]

BESS Type NaS VRB PbA Li-ion

Cpv ($/kW) 757 2133 1407 1859
Cev ($/kWh) 372 880 275 901

OMC f ($/kW-year) 9.2 16.5 26.8 13.2
OMCv ($/Wh) 0.8 1.6 1.1 1.4

RC ($/kW) 0 720 375 1560
RY (y) 15 8 8 5

Charging efficiency 87% 83% 95% 95%
Discharging efficiency 87% 83% 95% 95%

Maximum DOD 80% 100% 80% 100%
E/P ratio range 6-8 N/A 1-5 1-4

3.2.2.1 Scenario 1: Adequate Generation Available for Secure Operation

In this scenario, generation from DG units along with the forecasted RES are at a level that allows

the microgrid’s net generation to meet the demand and reserve requirements without the need for

BESS in the entire planning horizon. Therefore, BESS is not assigned to discharge or support

reserves at any specific hours. Nevertheless, BESS may be installed to improve the microgrid

operation via leveling the load to avoid starting up expensive generators during peak demand

hours and by providing reserves.

Optimal values of BESS types are shown in Table 3.4. Note the small size of BESS selected

for all the types, because the microgrid generation is adequate, and the operation is secure (with

adequate reserves).

The microgrid operational cost before installing BESS is $59,833,790 (not in table), and

a reduction in this cost as well as in the total cost is achieved with any BESS technology, as

shown in Table 3.4. The lowest cost is obtained for PbA followed by NaS, VRB, and then Li-ion
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BESS. In this scenario, the difference in microgrid operational cost across the BESS types is not

significant, and therefore the BESS installation and O&M costs impacts the optimal selection of

the BESS technology. For example, although the largest reduction in microgrid operational cost

is observed when installing Li-ion BESS, the high installation cost and O&M cost increases the

total cost and makes Li-ion BESS the last option.

All the BESS types are selected for installation in the second year because the benefits from

installing in the first year is not larger than the reduction in NPV from deferring the installation.

The selected power rating of 500 kW is the same for all BESS. However, the energy capacity

differs based on the E/P constraints, efficiency, and the maximum DOD.

Table 3.4: Optimal installation decisions and related costs in Scenario 1

BESS Type NaS VRB PbA Li-ion

Year of Installation Year 2 Year 2 Year 2 Year 2
PBES S 500 kW 500 kW 500 kW 500 kW
EBES S 3000 kWh 650 kWh 700 kWh 550 kWh
INS $1,298,440 $1,421,896 $785,322 $1,238,897
OM $26,651 $228,279 $172,087 $530,292

MGOC $54,376,027 $54,413,735 $54,383,656 $54,368,266
Total Costs $55,701,117 $56,063,909 $55,341,065 $56,137,455

The overall operation of all the BESS technologies and their effect on the microgrid operation

follows almost the same pattern. Therefore, for the sake of conciseness, the operation of PbA

BESS is highlighted in Figure 3.4, which presents the supply-demand balance, and Figure 3.5,

which shows the reserve requirements, for a typical day in year 10. The net generation before

BESS is installed represents the forecasted RES and the total capacity of the DGs, while after

installing the BESS, the net generation excludes the power drawn to charge the BESS. In this

scenario, the net generation before installing BESS is adequate to meet the demand. Likewise,

the reserve provided by DG units is shown before and after installing the BESS. The reserve
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capacity available from DG units can maintain the security of microgrid operation. It is noted

from Figures 3.4 and 3.5 that there is a sudden increase in required reserve at hour 8 and a rapid

drop at hour 20 in year 10. The BESS power and energy ratings are governed by the reserve

requirements at hour 8. The contribution of the BESS to the reserve of the order of 485 kW at

this hour helps in avoiding starting up an expensive DG unit.

From Figure 3.4, it is noted that the microgrid demand is somewhat levelized by charging

the BESS during the periods of relatively low demand and discharging when there is an increase

in demand. The BESS should be fully charged before hour 8 to provide the required reserve;

therefore, it is charged during the early hours, when the committed generation capacity is

adequate to charge the BESS along with meeting the demand. Since the final SOC of the BESS

should be as the initial state (50%), the BESS discharges the extra stored energy in an optimal

manner. This pattern also applies to VRB, and Li-ion BESS with slight differences. However,

for NaS BESS, the specified lowest E/P ratio of 6 requires an energy capacity at least of 3000

kWh. Considering an initial SOC of 50% and discharge efficiency of 87%, the available energy

for discharge is 783 kWh, which is sufficient to meet the reserve requirement of 485 kW at the

critical hour 8 without the need for charging the BESS. Over and above, it can provide 298 kW

of power to meet the demand. However, the discharge of 298 kW is not sufficient to alter DG

schedules or reduce the microgrid operational cost at any hour, and hence the NaS BESS

remains idle during the entire day. It is noted from the studies that the BCF for VRB, PbA, and

Li-ion BESS in year 10 are 0.25%, 0.45%, and 0.26%, respectively.

As noted from Figure 3.5 and additional studies, all BESS technologies provide reserves

during the hours 7-11, 13-15, 19-22, and 24. The amount of reserve provided differs depending

on the installed size of the BESS and the available energy, as well as the strategy of discharging

and charging. For example, NaS BESS provides more reserve than other BESS technologies

since the stored energy is kept as reserve, while the DG units are used to supply the demand.
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Consequently, NaS BESS has the largest BRF amongst all the types, which is 36% in year 10,

while VRB, PbA, and Li-ion BESS have 30%, 26%, and 30%, respectively. It also can be noticed

that the PbA BESS is used more in load leveling than in providing reserves, compared to other

BESS technologies.
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Figure 3.4: Supply and demand of year 10 in Scenario 1 (PbA BESS)

3.2.2.2 Scenario 2: Adequate Microgrid Generation with Unsecure Operation

In this scenario, a case is examined where the microgrid net generation without BESS is sufficient

to supply the demand but does not satisfy the reserve requirements. The RES profile is assumed

to be reduced by 50%. The BESS is required to be installed since the DG reserve capacity cannot

meet the reserve requirements. As mentioned earlier, the BESS that is used in reserve support

application may not be required to discharge as long as the reserve is not used. However, BESS
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Figure 3.5: Reserve of year 10 in Scenario 1 (PbA BESS)

can be used for load leveling if its operation does not conflict with the main aim, which is to

support the system reserve.

The reserve is required to be supported by the BESS at hours 8-11 and 20. The size of the

installed BESS should be at least sufficient to provide reserve at hours when DG units cannot

provide the required reserve. However, the optimal size can be increased to save microgrid

operational cost by load leveling, as in the first scenario.

The main results of this scenario are presented in Table 3.5. As expected, the optimal size of

all the BESS technologies are larger than those in Scenario 1 because of the increase in microgrid

operational requirements.

The microgrid operational cost without installing BESS is $67,843,870 (not in table), but

the reserve constraint however is not satisfied, starting from the third year. The selected BESS

reduces the cost and helps the microgrid to meet its required reserves. Installing PbA BESS

yields the lowest microgrid operational cost, and its low installation cost renders the total cost

to be the lowest compared to other technologies, which makes it the optimal choice for this

scenario.
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It is noted from Table 3.5 that all BESS are selected to be installed in the first year, except for

the Li-ion BESS which is deferred to the second year to reduce the NPV of its installation cost.

The optimal power rating is 950 kW for all the technologies, while the energy capacity depends

on the E/P ratio, efficiency, and the maximum DOD.

Table 3.5: Optimal installation decisions and related costs in Scenario 2

BESS Type NaS VRB PbA Li-ion

Year of Installation Year 1 Year 1 Year 1 Year 2
PBES S 950 kW 950 kW 950 kW 950 kW
EBES S 5700 kWh 1300 kWh 1600 kWh 1150 kWh
INS $2,647,731 $2,954,028 $1,663,565 $2,419,582
OM $58,957 $475,520 $367,125 $1,008,962

MGOC $60,367,811 $60,507,907 $60,326,068 $61,262,709
Total Costs $63,074,500 $63,937,455 $62,356,758 $64,691,253

Adequate net generation is observed in Scenario 2, as shown in Figure 3.6. Because of the

small energy capacity of VRB, PbA, and Li-ion BESS as compared to the NaS BESS, these

technologies require recharging after the critical hours (8-11) to supply the reserve requirement

at hour 20. The BCF of NaS BESS is less than other BESS technologies, it is 0.58% in year 10,

while VRB, PbA, and Li-ion BESS are about 0.69%, 1.61%, and 1.09% in year 10, respectively.

It is noted that the microgrid operation is insecure, in terms of not having adequate reserves,

before installing the BESS, as demonstrated in Figure 3.7. The reserve provided by DG units

drops during the peak hours. Therefore, the BESS mainly supports the reserve provision of the

microgrid. Since all BESS technologies suffer from energy losses when charging and

discharging, it is preferred that these are only used as reserve provision, and less for meeting the

energy needs, in this scenario, while DG units supply the demand. In such a case, the reserve

provided by any type of BESS is more than that from DG units. The BRF of NaS, VRB, PbA,

and Li-ion BESS are 70%, 67%, 69%, and 66% respectively, in year 10.
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3.2.2.3 Scenario 3: Inadequate Microgrid Generation

This scenario considers a significant shortage in RES to the order of 90% over the plan horizon.

Consequently, microgrid generation without BESS is lower than the demand, which also implies

that the microgrid reserve is not sufficient. In this scenario, the BESS should be committed to

discharge at peak hours to mitigate the mismatch between the microgrid generation and demand.

At the same time, it should have the ability to meet the entire required reserve during these hours

to ensure secure operation.

The microgrid operational cost before installing BESS is $90,978,640 (not in table), with

total unserved energy of 315 kWh, occurring in years 8 to 10. Also, the required reserve is not

met at some hours, starting from the first year itself. Therefore, BESS is required to be installed

in the first year, as shown in Table 3.6.

Since more charging/discharging cycles are required, the microgrid operational cost is

clearly affected by the efficiency of BESS technology. Since NaS and VRB BESS have lower

efficiencies, the reduction in microgrid operational cost with these systems is less than that with

PbA and Li-ion BESS. Although the efficiency of PbA and Li-ion BESS are similar, the

selected size of PbA BESS is significantly larger than the Li-ion BESS because of its lower

installation cost.

The energy capacity of NaS BESS is significantly large compared to the rest because of the

E/P ratio constraint. As a result, the available capacity of the already committed DG units is used

to charge the BESS during the first hours. The BESS then discharges all day without charging,

until the late hours when the demand decreases again, while the smaller capacity of other BESS

technologies requires their frequent charging. Figure 3.8 shows the supply-demand balance in

case of PbA BESS. The BCF in year 10 for NaS, VRB, PbA, and Li-ion BESS are 2.28%, 2.75%,

3.81%, and 2.37%, respectively, which are higher than in the previous scenarios.
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Table 3.6: Optimal installation decisions and related costs in Scenario 3

BESS Type NaS VRB PbA Li-ion

Year of Installation Year 1 Year 1 Year 1 Year 1
PBES S 1050 kW 1300 kW 1850 kW 1250 kW
EBES S 6300 kWh 2550 kWh 3050 kWh 1950 kWh
INS $2,924,491 $4,663,796 $3,205,278 $3,796,944
OM $68,482 $657,055 $714,644 $2,347,525

MGOC $67,986,054 $70,800,594 $66,274,379 $67,178,570
Total Costs $70,979,027 $76,121,445 $70,194,301 $73,323,039

Figure 3.9 shows the reserve requirements in case of PbA BESS. The negative value of DG

reserve before installing BESS means that even if the RES is increased by that value, RES

generation will be used to supply the demand, while controllable DG units supply the demand

at their maximum power ratings, implying that the microgrid operates without any reserve until

further increase in generation.

The BESS dominates the share of reserve provided to the microgrid, the BRF for NaS, VRB,

PbA, and Li-ion BESS are 73%, 78%, 65%, and 74%, respectively. It is noted that the BRF with

PbA BESS in this scenario is lower than that in Scenario 2, although the required reserve has

increased. This is because of two factors: first, the stored energy in the PbA BESS is mainly

used for discharging in this scenario, as evident from its large BCF; hence, the SOC level is

always low. Second, in order to compensate the loss of energy from BESS operational cycles,

the MGO has to commit and schedule more DG units, thereby increasing the reserve capacity

available from them.
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3.2.3 BESS Owned and Scheduled by Third-Party (Investor)

The ownership structure model in this case (discussed in Section 3.1.3.2) aims to determine the

maximum amount of energy that can be exchanged with the microgrid for a certain discharge

price (¢/kWh). The BESS size is determined from an optimistic viewpoint to capture the

maximum profit for an investor. Although in reality, the BESS may not discharge this amount of

energy to the microgrid, this study seeks to find the minimum acceptable discharge price for the

investor that recovers the installation and operating cost of the BESS.

The model considers the RES profile of the third scenario, where RES availability is low

and therefore in the most favourable condition for the investor. The revenue is accrued from

supplying energy to the microgrid and from providing reserve, while the installation and O&M

cost is paid by the third party. Since the system is isolated, hourly market prices are not

applicable, and it is assumed that the charge price is fixed at 1 ¢/kWh, while the discharge price

is varied in the range 2.5 ¢/kWh and 37.5 ¢/kWh. The price of BESS reserve is assumed to be

0.6 ¢/kW [5]. The rate of return for the investor is considered to be 14%.

As shown in Figure 3.10, different BESS technologies are examined to investigate the profit

for the investor over a range of discharge prices. It is shown that PbA BESS is the best choice for

the third party since the minimum acceptable discharge price that generates profit is 12.5 ¢/kWh,

which is the lowest across the BESS technologies. The PbA BESS is followed by NaS, Li-ion,

and VRB BESS with a minimum acceptable discharge price of 15 ¢/kWh, 20 ¢/kWh, and 25

¢/kWh, respectively. The optimal power and energy size of BESS and the installation year at the

minimum discharge prices that generates profit, are presented in Table 3.7.
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Table 3.7: Optimal installation decisions at the minimum profit point (investor’s perspective)

BESS Type NaS VRB PbA Li-ion

Year of Installation Year 1 Year 1 Year 1 Year 1
PBES S 1050 kW 1050 kW 1050 kW 1100 kW
EBES S 6300 kWh 2050 kWh 2550 kWh 1500 kWh
θdch 15 ¢/kWh 25 ¢/kWh 12.5 ¢/kWh 20 ¢/kWh

DCH REV $2,975,273 $3,870,797 $2,233,353 $3,304,285
Reserve REV $317,816 $239,963 $245,932 $203,715

CH Cost $262,058 $224,752 $197,970 $183,063
INS $2,770,570 $3,564,605 $1,928,596 $2,996,842
OM $68,627 $120,216 $167,469 $100,085

Total Profit $191,834 $201,186 $185,249 $228,010
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3.3 Summary

A new mathematical model was proposed in this chapter for determining the optimal year of

installation and sizing of BESS in isolated microgrids. The model takes into consideration the

optimal BESS operation for any microgrid condition. Two BESS ownership structures are

considered.

In the first structure, the BESS is owned and scheduled by the MGO. Three scenarios of RES

profiles are considered to examine the BESS optimal installation and operation. When BESS is

not assigned for a certain application, it is mainly used to enhance total microgrid operation via

load leveling and helping the DG units to meet the required reserves. However, when the BESS

is assigned to support the microgrid operation for a certain application during certain hours, the

proposed model coordinates between satisfying the microgrid requirements and enhancing the

total microgrid operation. The size and year of installation are determined based on the optimal

BESS operation which is affected by the inherent characteristics of BESS technology.

The second ownership structure studies the optimal installation decisions when the BESS

is installed by a third party and scheduled from its perspective of profit maximization. The

maximum size of BESS that the investor is willing to install for a certain discharge price is

determined for various technologies. Also, a minimum acceptable discharge price for each BESS

technology is determined at which the installation would make profit for the investor.

Since the optimal BESS installation decisions depends mainly on the specific microgrid

operation considered, the optimal BESS size and corresponding operation may not be optimal

for other scenarios. Therefore, a stochastic model should be developed to consider wider range

of possible microgrid operation scenarios as will be discussed in next chapter.
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Chapter 4

A Decomposition Based Approach to

Stochastic Optimal Planning of BESS

The uncertain nature of RES and demand in microgrids imposes more challenges in energy

storage planning. The selection of the optimal type of BESS technology and the optimal size

will be investigated in this chapter considering the uncertain behavior of the microgrid demand,

wind and PV profiles. Unlike the deterministic model, the size of the problem is large, and thus,

it cannot be solved in a single stage. Therefore, a decomposition based approach is proposed that

determines the planning decisions in two stages. In the first stage, the optimal BESS power and

energy ratings are determined, while the second stage identifies the optimal year of installation

for the determined size. Numerical results and a comparison between the four types of BESS

technologies is presented.
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4.1 Mathematical Model for Stochastic Optimal Planning of

BESS

The proposed planning model seeks to determine the optimal BESS power and energy ratings as

well as the installation year considering uncertainty in demand, and in the output from RES.

4.1.1 Objective Function

The objective is to minimize the NPV of the total costs including the BESS installation cost,

O&M cost, and microgrid operational cost.

J3 = INS + OM + MGOC (4.1)

Two variable cost components, proportional to the installed power and energy ratings of the

BESS, Cpv and Cev respectively, are considered in the installation cost, in addition to the fixed

cost (C f ) which does not depend on the size. The NPV of the BESS installation cost is formulated

as follows:

INS =

YT∑
y=1

[ 1
(1 + α)y Zy

(
CpvPBESS + CevEBESS + C f )] (4.2)

In the O&M cost, an annual fixed cost (OMC f ) and the replacement cost (RC) are considered

proportional to the BESS size. The O&M variable cost (OMCv) depends on the energy discharged
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by the BESS. The NPV of the total expected operational cost of the BESS is given as follows:

OM =

YT∑
y=1

[ 1
(1 + α)y OMC f PBESS Zcy

]
+ 365 ×

S∑
s=1

ρs

YT∑
y=1

H∑
h=1

[ 1
(1 + α)y OMCv ( Effch

1 − EffchEffdch

)(
− PBs,y,h

)]
+

YT∑
y=RY

[( 1
(1 + α)y +

1
(1 + α)y+RY + ...

)
RC PBESS Zy−RY+1

]
(4.3)

The binary variable Zcy in (4.3), denoting the presence of BESS in the system from year y

onwards, is determined from the binary variable Zy which denotes the BESS installation decision

at year y. Accordingly, Zcy is given as:

Zcy =

y∑
n=1

Zn ∀y (4.4)

The NPV of the expected operational cost of the microgrid is given as follows:

MGOC = 365 ×
S∑

s=1

ρs

YT∑
y=1

H∑
h=1

I∑
i=1

[ 1
(1 + α)y

[(
1 + β

)y−1Fi
(
Ps,y,h,i

)
Ws,y,h,i

+SUiUs,y,h,i + SDiVs,y,h,i

]] (4.5)

where Fi(·) is the operational cost function of a DG. It is to be noted that some of the variables in

(4.3) and (4.5) have an additional index denoting the scenario. This is to capture the uncertainty in

various parameters which are modeled in this work using probability distribution functions. Each

uncertain scenario has an associated probability ρs, in (4.3) and (4.5) and the optimal decisions

are now determined for every scenario, year, and hour while minimizing the expected costs.
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4.1.2 Model Constraints

As mentioned earlier, the variables in each of the constraints discussed below are now specified

for a scenario of uncertainty, in addition to its other indices.

Demand-Supply Balance: This ensures sufficient generation from DG units and RES to meet the

microgrid demand at an hour.

I∑
i=1

Ps,y,h,i + PBs,y,h + PVs,y,h + Pws,y,h = Pds,y,h ∀s,∀y,∀h (4.6)

Dispatchable DG units Constraints: These are similar to the ones presented in Chapter 2, and

given by constraints (2.13) to (2.22) with considering the indices s and y.

Microgrid Reserve Requirements: The MGO ensures a minimum reserve level of 10% of the

demand plus factors accounting for uncertainty in demand and RES forecasting errors [25], [55].

The reserve constraint is modeled as follows:

RTHs,y,h + RBs,y,h ≥
(
0.1 + δD

)
Pds,y,h + δPV PVs,y,h + δW Pws,y,h ∀s,∀y,∀h (4.7)

RTHs,y,h ≤

I∑
i=1

(
PiWs,y,h,i − Ps,y,h,i

)
∀s,∀y,∀h (4.8)

RBs,y,h ≤ −PBs,y,h + min
{[

SOCs,y,h − Zcy EBESS(1 − DOD)
]
Effdch, PBESS

}
∀s,∀y,∀h (4.9)

The above set of equations (4.7)-(4.9) are quite similar to those in Chapter 3, equations

(3.21)-(3.23) excepts for the presence of scenarios of uncertainty in the present ones.
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BESS Operational Constraints:

The relationship between the charging and discharging power of the BESS and its SOC can be

described as follows:

PBs,y,h

Effdch
Zdchs,y,h + PBs,y,hEffchZchs,y,h = SOCs,y,h − SOCs,y,h+1 ∀s,∀y,∀h; h , 24 (4.10)

The initial and final SOC of the BESS are assumed to be 50% of the installed energy capacity.

The initial SOC is formulated as:

SOCs,y,h = 0.5 EBESS Zcy ∀s,∀y, h = 1 (4.11)

The final status of SOC is implemented by replacing SOCs,y,h+1 in (4.10) to the desired level of

SOC (i.e. 50% of the energy capacity), as follows:

PBs,y,h

Effdch
Zdchs,y,h + PBs,y,hEffchZchs,y,h = SOCs,y,h − (0.5 EBESS Zcy) ∀s,∀y, h = 24 (4.12)

To prevent simultaneous charging and discharging, the following constraint is considered.

Zchs,y,h + Zdchs,y,h ≤ Zcy ∀s,∀y,∀h (4.13)

The BESS power and SOC limits are formulated as follows:

(1 − DOD)EBESS Zcy ≤ SOCs,y,h ≤ EBESS Zcy ∀s,∀y,∀h (4.14)

− PBESS Zcy ≤ PBs,y,h ≤ PBESS Zcy ∀s,∀y,∀h (4.15)
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BESS Sizing Constraints:

This constraint ensures that Zy is only activated once during the planning horizon, denoting the

year of installation, as follows:
YT∑
y=1

Zy ≤ 1 (4.16)

To activate Zy when BESS is installed, the following constraint is considered.

PBESS ≤ M
YT∑
y=1

Zy (4.17)

The energy capacity of the BESS for a certain power rating, is determined based on its energy to

power ratio, as follows:

EPR PBESS ≤ EBESS ≤ EPR PBESS (4.18)

Budget Constraint:

The NPV of the installation cost should not exceed the NPV of the allocated budget for the year.

INS ≤ B0 (4.19)

The planning problem formulated in (4.1)-(4.19) is a stochastic mixed integer non-linear

programming (MINLP) model, and has been referred to as Optimal Power and Energy Sizing

(OPES) model in the subsequent sections of this chapter.
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4.2 Proposed Decomposition Approach for Solving the

Stochastic BESS Planning Problem

The MINLP model presented in Section 4.1 is computationally very challenging, particularly

because of the presence of large number of probabilistic scenarios. Therefore, the problem is

decomposed into two stages. Stage-I determines the BESS power and energy ratings based on

the terminal year. Then, the OPES model is solved in Stage-II with fixed PBESS and EBESS for the

entire planning period to determine the BESS year of installation.

It is to be noted that fixing the binary variable (Zy) at unity in Stage-I and the BESS ratings

(PBESS and EBESS) in Stage-II allows solving the problem as a MILP model. Equations (4.10)

and (4.12) are linearized using the same approach presented in (3.36)-(3.41) but considering the

scenario index in the variables.

The proposed decomposition approach is solved iteratively, as shown in Figure 4.1. In Stage-

I, the OPES model determines the optimal BESS size assuming that the BESS is installed at the

terminal year. Consequently, the installation cost is discounted to the terminal year which allows

installing large power and energy ratings of BESS. Although the budget is adequate for a large

BESS, the size is optimized considering the BESS effect on microgrid operations.

Stage-II solves the OPES model considering the entire planning period and fixing the BESS

size determined at the terminal year. The BESS can either be installed at an earlier year of

the planning horizon to incur higher the benefits or can be deferred to reduce the NPV of the

installation cost. The OPES model in Stage-II seeks the optimal year of installation that yields

minimum cost with maximum benefit. If the budget is not sufficient for installation of BESS

for the given size, the OPES model defers the year of installation to reduce the NPV and hence

meet the budget constraint. Furthermore, if for any of the considered scenarios, the operational
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constraints are not satisfied, then the selected BESS size is not feasible.

In such a case, the BESS size is reduced by tightening the budget constraint to allow installing

the BESS at an earlier year. This is performed iteratively by limiting the budget based on the

installation cost of the BESS size determined in the terminal year.

Infeasible solution in the first iteration of the OPES model implies that the allocated budget

is less than the installation cost required for the minimum BESS size in the terminal year. In any

other iteration, an infeasible solution is obtained when the installation cost cannot be reduced

further, which means the BESS size required for the terminal year is at its minimum level.

Therefore, if the installation cost of the minimum BESS size required for the terminal year does

not meet the budget constraint at an earlier year, where a BESS is also required, then the

problem is infeasible because of violating the microgrid operation requirements.

4.3 Results and Analysis

4.3.1 Microgrid Test System

The proposed decomposition based approach is applied to the same microgrid test system used

in Chapter 3. In order to account for the uncertainty, several probabilistic states of demand, wind

and PV generation are considered at each hour. Each of these uncertain parameters are modeled

considering a normal probability distribution function, with five uncertain states for the demand

and wind generation, and three uncertain states for PV generation [58]. Therefore, for each hour,

there are 75 scenarios with a probability associated with it. The deviation level in [58] is slightly

increased here to account for a wider range of uncertainties, as shown in Table 4.1. Figure

4.2, Figure 4.3, and Figure 4.4 shows the deviation of the states from the forecasted profile, for

demand, wind and PV generation, respectively.
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Figure 4.1: Schematic for the decomposition based stochastic optimal planning of BESS
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Table 4.1: Probability distribution functions of the uncertain states
Demand Probability Wind Probability PV Probability

High state +6% 0.05 +6% 0.1
Mid-high state +3% 0.15 +3% 0.15 +4% 0.15

Forecasted value Nominal 0.6 Nominal 0.5 Nominal 0.7
Mid-low state -3% 0.15 -3% 0.15 -4% 0.15

Low state -6% 0.05 -6% 0.1
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Figure 4.2: Hourly demand states for a typical day of the first planning year

67



0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

kW

Time (Hour)

Forecasted Value
High State
Mid-high State
Mid-low State
Low State

Figure 4.3: Hourly wind generation states for a typical day of the first planning year
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Figure 4.4: Hourly PV generation states for a typical day of the first planning year
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4.3.2 Case Studies

Two distinct cases of BESS planning are considered as follows:

(a) Case-1: No budget limit - The available budget for BESS installation is sufficient to install

a large size of BESS at any year. Stage-I determines the optimal size for BESS, both PBESS

and EBESS, while Stage-II determines the optimal year of installation considering the entire

planning horizon.

(b) Case-2: Imposition of budget limit - When considering a limited budget, the BESS size and

installation year may not be obtained in a single iteration as in Case 1. Therefore, several

iterations may be required to arrive at an optimal solution. In this case, a budget limit of $1.3

million is considered.

4.3.2.1 NaS BESS

The optimal decisions are presented in Table 4.2. In Case 1, the optimal power rating (PBESS)

obtained in Stage-I is 550 kW, and considering the range of the E/P ratios available for NaS

BESS, the installed EBESS cannot be less than 3,300 kWh. In Stage-II, NaS BESS is

recommended to be installed in the first year. This is because of the large energy capacity and

power rating, which necessitates installation in the first year so as to accrue the microgrid

benefit. Furthermore, NaS BESS does not require replacement within the 10-year plan horizon,

which reflects on its low O&M cost and allows earlier installation. The total expected cost

before installing BESS is $59,201,654 (not in table) which is reduced by 5.01% after installing

the NaS BESS.

Stage-I decisions in Case 2 are identical to that in Case 1 to allow installing the largest

possible size. Contrary, Stage-II shows different results in Case 2; the installation is deferred to
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the fourth year in order to meet the budget limit. Figure 4.5 demonstrates the impact of limiting

the budget on the planning decisions in Stage-II. The line in the figure represents the NPV of the

installation cost for the determined BESS size from Stage-I. The optimal year of installation in

Case 1 is selected to be in the first year, while when imposing the budget limit, the selected size

of BESS can only be installed after the third year to meet the budget constraint. This decision

leads to a feasible solution of OPES in Stage-II which is considered as the optimal solution for

Case 2. The reduction of total expected cost in Case 2 is about 3.72% from the case of no BESS

installed. It can be noted that the total cost in Case 1 is less than that in Case 2 by $764,613

because of the smaller BESS size as well as the later installation year in Case 2.

Table 4.2: NaS BESS planning decisions
Case 1 Case 2

Iteration 1 Iteration 1

ST
A

G
E

-I

PBESS 550 kW 550 kW
EBESS 3300 kWh 3300 kWh

INS at YT $770,731 $770,731
OM at YT $2,351 $2,351

MGOC at YT $4,705,860 $4,705,860
Total costs at YT $5,478,941 $5,478,941

Model status integer optimal integer optimal
Solving time (sec) 693 693

ST
A

G
E

-I
I

Year of installation 1 4
INS $1,540,694 $1,223,053
OM $34,101 $20,988

MGOC $54,659,587 $55,754,954
Total costs $56,234,382 $56,998,995

Model status integer optimal integer optimal
Solving time (sec) 43,259 43,270
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Figure 4.5: The impact of imposing budget limit on NaS BESS installation

4.3.2.2 VRB BESS

A single iteration is required to obtain the optimal solution for VRB BESS in Case 1, while Case

2 requires two iterations to arrive at a feasible OPES solution, as shown in Table 4.3.

In Case 1, the determined ratings for VRB BESS are 550 kW and 800 kWh. The second year

is the optimal installation year for VRB BESS. The total expected cost in Case 1 is $56,902,473.

In Case 2, the size obtained from Stage-I in the first iteration is similar to the selected in Case

1. However, the selected BESS size in the first iteration can only be installed after year 4 in

Case 2 to meet the budget limit, as shown in Figure 4.6. The OPES model in Stage-II does not

yield a feasible solution, and hence a second iteration is required to revise the determined size

in Stage-I. The new iteration budget (BITR) in Stage-I is reduced to be less than $878,748. The

revised BESS size in the second iteration is reduced by 50 kW and 50 kWh. The OPES model in

Stage-II reveals that the optimal installation year for VRB BESS is year 4.
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It is noted that the BESS O&M cost is stepped down significantly in Case 2 since the

replacement cost in Case 1, which is about $251,783, is not applicable because of the late

installation year. However, the microgrid operational cost in Case 2 is increased by $1,410,751

because of the smaller BESS size and the deferred installation from year 2 to year 4. As a result,

the total cost in Case 2 is increased by $850,994 than that in Case 1. The total expected cost

before installing VRB BESS is reduced by 3.88% and 2.45% in Case 1 and Case 2, respectively.

Table 4.3: VRB BESS planning decisions
Case 1 Case 2

Iteration 1 Iteration 1 Iteration 2

ST
A

G
E

-I

PBESS 550 kW 550 kW 500 kW
EBESS 800 kWh 800 kWh 750 kWh

INS at YT $878,748 $878,748 $808,967
OM at YT $4,293 $4,293 $3,902

MGOC at YT $4,717,470 $4,717,470 $5,317,853
Total costs at YT $5,600,511 $5,600,511 $6,130,722

Model status integer optimal integer optimal integer optimal
Solving time (sec) 664 664 24,131

ST
A

G
E

-I
I

Year of installation 2 - 4
INS $1,626,500 - $1,283,730
OM $251,783 - $34,797

MGOC $55,024,190 - $56,434,941
Total costs $56,902,473 - $57,753,467

Model status integer optimal integer infeasible integer optimal
Solving time (sec) 3,935 4 17,253

4.3.2.3 PbA BESS

In the two considered cases, a single iteration is required to obtain the optimal solution for PbA

BESS, as shown in Table 4.4. In Case 1, the optimal ratings for PbA BESS are 900 kW and 1200

kWh, while the optimal year of installation is year 2. Figure 4.7 shows that the BESS of the

determined size meets the budget limit if it is installed in year 3, which is found to be feasible

OPES solution.
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Figure 4.6: The impact of imposing budget limit on VRB BESS installation

The PbA BESS has the lowest total expected cost across the BESS technologies in both

cases. The impact of imposing the budget is not significant compared to the results obtained for

other BESS technologies. The total expected cost in Case 1 and Case 2 are $56,183,506 and

$56,518,472, respectively, and the reduction in total expected cost from the case of no BESS are

5.1% and 4.53%, respectively.

4.3.2.4 Li-ion BESS

The optimal decisions for Li-ion BESS are shown in Table 4.5. In Case 1, the optimal Li-ion

BESS ratings are 650 kW and 850 kWh. The optimal installation year is 2. Four iterations are

required to obtain the optimal solution in Case 2. In the first iteration, the determined BESS

size from Stage-I cannot be installed earlier than year 6, as shown in Figure 4.8, which yields

an infeasible solution and requires revising the size. In the second iteration, the iteration budget

limit BITR in Stage-I is determined to be less than $923,700. Therefore, the size is reduced in the
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Table 4.4: PbA BESS planning decisions
Case 1 Case 2

Iteration 1 Iteration 1
ST

A
G

E
-I

PBESS 900 kW 900 kW
EBESS 1200 kWh 1200 kWh

INS at YT $748,660 $748,660
OM at YT $11,382 $11,382

MGOC at YT $4,635,201 $4,635,201
Total costs at YT $5,395,243 $5,395,243

Model status integer optimal integer optimal
Solving time (sec) 1,415 1,415

ST
A

G
E

-I
I

Year of installation 2 3
INS $1,385,717 $1,283,071
OM $310,373 $276,960

MGOC $54,487,417 $54,958,441
Total costs $56,183,506 $56,518,472

Model status integer optimal integer optimal
Solving time (sec) 3,960 3,277
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Figure 4.7: The impact of imposing budget limit on PbA BESS installation
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second iteration and then the third iteration since a feasible solution cannot be obtained from the

OPES model in Stage-II. The final revised Li-ion BESS ratings in iteration four are 550 kW and

750 kWh. Stage-II reveals that year 4 is the optimal year of installation for Li-ion BESS.

Although the installation of Li-ion BESS is deferred from year 2 to year 4, same as VRB

BESS, the O&M of Li-ion BESS does not decrease significantly since the replacement cost is

assumed to be every five years of operation, which is applied in Case 1 and Case 2. The difference

in the total expected cost between the two cases is $344,619. The reduction in total expected cost

after installing the Li-ion BESS is about 3.42% and 2.84% for Case 1 and Case 2, respectively.

Table 4.5: Li-ion BESS planning decisions
Case 1 Case 2

Iteration 1 Iteration 1 Iteration 2 Iteration 3 Iteration 4

ST
A

G
E

-I

PBESS 650 kW 650 kW 650 kW 600 kW 550 kW
EBESS 850 kWh 850 kWh 800 kWh 750 kWh 750 kWh

INS at YT $923,700 $923,700 $902,834 $838,913 $795,859
OM at YT $4,062 $4,062 $4,058 $3,742 $3,430

MGOC at YT $4,691,479 $4,691,479 $4,697,747 $4,761,881 $4,843,207
Total costs at YT $5,619,242 $5,619,242 $5,604,639 $5,604,536 $ 5,642,496

Model status integer optimal integer optimal integer optimal integer optimal integer optimal
Solving time (sec) 2,463 2,463 387 550 1,114

ST
A

G
E

-I
I

Year of installation 2 - - - 4
INS $1,709,705 - - - $1,262,928
OM $689,764 - - - $494,210

MGOC $54,775,655 - - - $55,762,605
Total costs $57,175,124 - - - $57,519,743

Model status integer optimal integer infeasible integer infeasible integer infeasible integer optimal
Solving time (sec) 3,306 4 4 3 2,173

4.4 Summary

In this chapter, a decomposition-based approach is proposed to determine the expected year of

installation and sizing of BESS in isolated microgrids. The proposed stochastic model considers
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Figure 4.8: The impact of imposing budget limit on Li-ion BESS installation

the uncertainty of microgrid variables: solar radiation, wind speed, and load, using different

probabilistic scenarios. The optimal BESS plan decisions and operations are determined to

achieve maximum reduction in microgrid operating cost from the BESS applications, load

levelling and reserve, at the least installation cost.

Since the stochastic problem is large, the proposed decomposition approach determines the

optimal decisions in two stages. The budget limit affects the solution and may not yields feasible

solution. Therefore, the approach considers relaxing the budget constraint to ensure the optimal

decision, then the budget constraint is imposed in the model in steps until arriving at a feasible

solution that meets the budget limit.

Two case studies are conducted to examine the impact of the available budget on the four

BESS technologies. Results show the feasibility and effectiveness of the proposed approach to

determine the BESS power and energy size along with the installation year.
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Chapter 5

Conclusions

5.1 Summary

The optimal planning decisions of BESS installation are addressed in this thesis for isolated

microgrids. The proposed optimization models determine the BESS power and energy size and

the year of installation over the planning horizon based on the optimal scheduling of the BESS

and microgrid resources. Some common BESS technologies are examined, considering their

inherent characteristics to compare between the different options. In Chapter 1, the motivations

and objectives of the research are presented. This is followed by a review of literature

addressing the energy storage systems sizing problem. In Chapter 2, an overview of the

microgrid concept, the technical issues in grid-connected and isolated microgrids and real

examples of microgrids are discussed. Then, energy storage technologies and their

characteristics, and the main properties of energy storage systems are presented. This chapter

also presents the generic UC model formulation. In Chapter 3, the novel optimization model to

determine the BESS size and installation year is proposed considering different scenarios of
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RES profiles and BESS ownership structures. In Chapter 4, the uncertainty of microgrid

demand, PV, and wind generation are considered. A novel decomposition based approach is

proposed to solve the stochastic planning problem and hence obtain the expected BESS size and

installation year in two stages. The approach is solved iteratively to ensure utilizing the

allocated budget.

5.2 Contributions

The main contributions of this thesis are as follows:

• A new optimization model is proposed to determine the optimal power and energy ratings

and installation year of BESS for isolated microgrids considering four different BESS

technologies. The optimal decisions minimize the NPV of total costs taking into

consideration the optimal BESS operation. The BESS is modeled to enhance the

microgrid operation by levelling the load and also providing the reserve to the microgrid

in conjunction with the spinning reserve from DG units.

• The microgrid reserve is modeled to allow the BESS to support the DG units in providing

the required reserves. Three modes of operation of the BESS, charging, discharging, and

standby, are considered when providing the reserve.

• Several scenarios considering different BESS ownership structures are examined. The

objective functions are modeled to include the corresponding BESS energy costs in

addition to the BESS installation cost or the microgrid operational cost.

• A new approach to determine the minimum acceptable discharge price for third-party

investors in BESS is proposed, and the optimal sizing is determined considering investor
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profit maximization as the objective.

• A novel decomposition-based approach is proposed to solve the stochastic planning

problem for BESS and hence determine the expected size and installation year for BESS

under uncertainty. The proposed approach is solved in two stages to ensure the

convergence of the stochastic optimization problem. The power and energy ratings are

determined in the first stage, while the installation year is determined in the second stage.

The approach ensures utilizing the allocated budget effectively by performing several

iterations.

5.3 Future Work

• The model can be modified to include the seasonal impact of demand, PV, and wind

profiles. However, the computation time will increase in proportion with the resolution of

the considered profiles.

• Sizing BESS in smart microgrids considering demand response and plug-in electric

vehicles is a potential extension of this work.

• Consideration of the dissipation factor in modeling BESS life cycle and considering the

standby loss.

• The stochastic model can be improved by considering a larger range of uncertainties, and

also compare with Monte Carlo Simulation.
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