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Abstract

This thesis deals with statistical issues in the analysis of dependent failure time data

under complex observation schemes. These observation schemes may yield right-censored,

interval-censored and current status data and may also involve response-dependent selec-

tion of individuals. The contexts in which these complications arise include family studies,

clinical trials, and population studies.

Chapter 2 is devoted to the development and study of statistical methods for family

studies, motivated by work conducted in the Centre for Prognosis Studies in the Rheumatic

Disease at the University of Toronto. Rheumatologists at this centre are interested in study-

ing the nature of within-family dependence in the occurrence of psoriatic arthritis (PsA) to

gain insight into the genetic basis for this disease. Families are sampled by selecting mem-

bers from a clinical registry of PsA patients maintained at the centre and recruiting their

respective consenting family members; the member of the registry leading to the sampling

of the family is called the proband. Information on the disease onset time for non-probands

may be collected by recall or a review of medical records, but some non-probands simply

provide their disease status at the time of assessment. As a result family members may

provide a combination of observed or right-censored onset times, and current status infor-

mation. Gaussian copula-based models are studied as a means of flexibly characterizing

the within-family association in disease onset times. Likelihood and composite likelihood

procedures are also investigated where the latter, like the estimating function approach,

reduces the need to specify high-order dependencies and computational burden. Valid anal-

ysis of this type of data must address the response-biased sampling scheme which renders

at least one affected family member (proband) with a right-truncated onset time. This

right-truncation scheme, combined with the low incidence of disease among non-probands,

means there is little information about the marginal onset time distribution from the fam-

ily data alone, so we exploit auxiliary data from an independent sample of independent

individuals to enhance the information on the parameters in the marginal age of onset dis-

tribution. For composite likelihood approaches, we consider simultaneous and two-stage
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estimation procedures; the latter greatly simplified the computational burden, especially

when weakly, semi- or non-parametric marginal models are adopted. The proposed models

and methods are examined in simulation studies and are applied to data from the PsA

family study yielding important insight regarding the parent of origin hypothesis.

Cluster-randomized trials are employed when it is appropriate on ethical, practical,

or contextual grounds to assign groups of individuals to receive one of two or more in-

terventions to be compared. This design also offers a way of minimizing contamination

across treatment groups and enhancing compliance. Although considerable attention has

been directed at the development of sample size formulae for cluster-randomized trials with

continuous or discrete outcomes, relatively little work has been done for trials involving

censored event times. In Chapter 3, asymptotic theory for sample size calculations for

correlated failure time data arising in cluster-randomized trials is explored. When the in-

tervention effect is specified through a semi-parametric proportional hazards model fitted

under a working independence assumption, robust variance estimates are routinely used.

At the design stage however, some model specification is required for the marginal distribu-

tions, and copula models are utilized to accommodate the within-cluster dependence. This

method is appealing since the intervention effects are specified in terms of the marginal

proportional hazards formulation while the within-cluster dependence is modeled by a sep-

arate association parameter. The resulting joint model enabled one to evaluate the robust

sandwich variance, based on which the sample size criteria for right censored event times

is developed. This approach has also been extended to deal with interval-censored event

times and within-cluster dependence in the random right censoring times. The validity

of the sample size formula in finite samples was investigated via simulation for a range of

cluster sizes, censoring rates and degree of within-cluster association among event times.

The power and efficiency implications of copula misspecification are studied, along with

the effect of within-cluster dependence in the censoring times. The proposed sample size

formula can be applied in a broad range of practical settings, and an application to a study

of otitis media is given for illustration.

Chapter 4 considers dependent failure time data in a slightly different context where
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the events correspond to transitions in a multistate model. A central goal in oncology is the

reduction of mortality due to cancer. The therapeutic advances in the treatment of many

cancers and the increasing pressure to ensure experimental treatments are evaluated in a

timely and cost-effective manner, have made it challenging to design feasible trials with

adequate power to detect clinically important effects based on the time from randomiza-

tion to death. This has lead to increased use of the composite endpoint of progression-free

survival, defined as the time from randomization to the first of progression or death. While

trials may be designed with progression or progression-free survival as the primary end-

point, regulators are interested in statements about the effect of treatment on survival

following progression. One approach to investigate this is to estimate the treatment ef-

fect on the time from progression to death, but this is not an analysis that benefits from

randomization since the only individuals who contribute to this analysis are those that

experienced progression. Also assessing the treatment effect on marginal features might

lead to dependent censoring for the survival time following progression as other variables

which have both effect on progression and post-progression survival time are omitted from

the model. In Chapter 4 we consider a classical illness-death model which can be used to

characterize the joint distribution of progression and death in this setting. Inverse proba-

bility weighting can then be used to address for the observational nature of this improper

sub-group analysis and dependent censoring. Such inverse weighted equations yield con-

sistent estimates of the causal treatment effect by accounting for the effect of treatment

and any prognostic factors that may be shared between the model for the sojourn time

distribution in the progression state and the transition intensity for progression. Due to the

non-collapsibility of the Cox regression model we focus here on additive regression models.

Chapter 5 discusses prevalent cohort studies and the problem of measurement error in

the reported disease onset time along with other topics for further research.
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Chapter 1

Introduction

1.1 Overview

Interest in health research often lies in characterizing the distribution of multiple events

over a period of time. In many settings the goal is to estimate the cumulative risk of each

type of event and to examine associated covariate effects through specification and fitting

of regression models. Understanding the nature and extent of stochastic dependencies

between different types of events may also be of primary scientific interest, in which case

one must choose among a number of frameworks that can be adopted to explore these

relationships. The various approaches one can adopt for joint modeling differ in precisely

how the dependence is expressed, and the extent to which simple features of the marginal

distributions are retained. This thesis is concerned with three different problems involving

dependent failure time data. A second theme in this work is the importance of dealing

appropriately with the sampling or observation conditions to ensure valid inference. We

discuss the particular research projects in more detail in Section 1.3 and in the subsequent

chapters, but mention them briefly here.

The first problem involves the analysis of data from a family-based study of disease

onset times. Here the primary interest is in understanding the dependence structure within
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families with a view to elucidating the possible genetic basis of disease, as well as testing

hypotheses regarding the dependence structure through use of second-order models. The

biased response-dependent sampling scheme used for family studies is addressed here by

treating the probands disease onset time as right-truncated. The model and approach to

inference adopted here offers a useful framework for exploring these questions and also offers

a good basis for future analyses of genetic effects. The second problem involves the design

of cluster-randomized trials where the primary goal is to assess the effect of randomized

treatment on the time to an event of interest. The fact that there is a within-cluster

dependence is a nuisance in this setting, as it is not of scientific interest. Understanding

the extent of this association is important for designing such studies, however, since the

magnitude of the within-cluster association determines the variability of the estimators

obtained under a working independence hypothesis. While issues of response-dependent

observation are not central in this work we do explore the impact of dependent censoring

times within clusters. In both the first and second problems, copula models offer a useful

basis for analysis. The third problem addressed arises in cancer clinical trials where interest

lies in understanding the effect of treatment on progression, progression-free survival, and

overall survival. This is an area that has received a lot of attention in recent years and many

researchers are interested in understanding relationships between estimates of treatment

effect for the various endpoints. To this end we adopt a three-state illness death model as it

offers the most natural framework for studying this disease process. We focus on addressing

questions of causal analysis of the randomized treatment on the post-progression survival

time defined as the sojourn time in the “progression” state.

In the following section an overview is provided of the various approaches one can adopt

for the analysis of multiple lifetime events.
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1.2 Statistical Methods for Multivariate Failure Times

Multivariate failure times arise routinely in clinic trials and observational studies (Lawless,

2003). In such contexts, interest often lies in covariate effects on marginal features of the

responses, but understanding of the covariance structure, or more broadly the stochastic

relationship between events, is also often important. There are several frameworks for

the statistical analysis of multivariate failure time data, including intensity-based models,

partially conditional models, frailty models, copula models and robust marginal methods;

we review these, following an introduction to some notation.

Suppose that there are K types of events, and let Tik denote the time of the type k event

for individual i, k = 1, . . . , K, i = 1, . . . ,m. Let {Nik(t), 0 < t} denote the corresponding

right-continuous counting process, where Nik(t) = I(Tik ≤ t) indicates that the type k

event occurred at or before time t, dNik(t) = 1 if type k event occurs at time t, and

dNik(t) = 0 otherwise, i = 1, . . . ,m. If Cik denotes the censoring time for the type k event

for individual i, the observed time is Xik = min(Tik, Cik), and we let δik = I(Xik = Tik);

often Cik = Ci, k = 1, . . . , K. If Zik(t) is a vector of exogenous or endogenous covariates

for the type k event for individual i, {Zik(t), 0 < t} denotes the covariate process.

1.2.1 Intensity-Based Models for Multivariate Failure Times

Let Ni(s) = (Ni1(s), . . . , NiK(s))′ and Zi(s) = (Z ′i1(s), . . . , Z ′iK(s))′. The history Hi(t) =

{Ni(s), 0 ≤ s < t, Zi(s), 0 ≤ s ≤ t} at time t contains the information on the number,

times, and types of events over [0, t), along with the covariate data over [0, t].

For individual i, the intensity function for a type k event is

lim
∆t→0

P (∆Nik(t) = 1|Hi(t))

∆t
= Yik(t)λik(t|Hi(t))

where ∆Nik(t) = Nik((t+ ∆t)−)−Nik(t
−) is the number of type k events over the interval

[t, t+ ∆t), and Yik(t) = I(Nik(t
−) = 0).
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In this framework, the association between processes is incorporated through the in-

clusion of a dependence on the history for process l in the intensity for type k events,

(k 6= l). For continuous time processes where at most one event can occur at any time,

these intensity functions fully define the multivariate counting processes (Andersen et al.,

1993). While this formulation completely specifies a multivariate model, intensity-based

methods involve extensive conditioning on the process history (which includes endogenous

variables), and hence in the context of clinical trials, they are not ideal for examining

treatment effects (Kalbfleisch and Prentice, 2002).

1.2.2 Partially Conditional Models

Markov multi-state models offer an alternative approach for the analysis of multivariate

failure times. In this framework the vector-valued counting process can be represented by a

state occupied in a multistate model and the occurrence of an event can be represented as

a transition from one state to another. In general, multi-state models are defined by their

transition intensities, and hence estimation and inference regarding life history process

are based on transition intensities and transition probabilities. Let {Vi(s), 0 ≤ s} be

a multi-state stochastic process with 2K states numbered 1, . . . , 2K , and defined by the

unique values of Ni(s), and let {Zi(s), 0 ≤ s} denote the covariate process. Suppose

Y v
ij(t) = I(Vi(t

−) = j) indicates that individual i is at risk of transition out of state j

at time t, and Hi(t) = {Vi(s), 0 ≤ s < t;Zi(s), 0 ≤ s ≤ t} denotes the history of the

multi-state and covariate processes for individual i. In modulated Markov models,

λijk(t|Hi(t)) = Y v
ij(t)qjk(t) exp(Z

′

ijk(t)βjk)

where λijk(t|Hi(t)) is an intensity function and qjk(t) is a baseline transition rate.

With censored data, let Ci denote a common censoring time for individual i, Yi(t) =

I(t ≤ Ci) and Ȳ v
ij(t) = Yi(t)Y

v
ij(t). If Qjk(t) =

∫ t
0
qjk(u)du is the cumulative baseline
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transition rate, we obtain a profile likelihood estimator

dQ̂jk(u; βjk) =

∑m
i=1 Ȳ

v
ij(u)dN v

ijk(u)∑m
i=1 Ȳ

v
ij(u) exp(Z

′
ijk(u)βjk)

,

where dN v
ijk(t) = 1 if a j → k transition occurs at time t, i.e. dN v

ijk(t) = I(Vi(t
−) =

j, Vi(t) = k). Upon obtaining an estimate β̂jk we substitute into the expression above to

get dQ̂jk(u; β̂jk).

In the context of a one-sample problem, we obtain simply

dQ̂jk(u) =

∑m
i=1 Ȳ

v
ij(u)dN v

ijk(u)∑m
i=1 Ȳ

v
ij(u)

, (1.2.1)

and Q̂jk(t) =
∫ t

0
dQ̂jk(u). The Aalen-Johansen estimate (Aalen, 1978) of the transition

probability matrix P(s, t), with entries Pjk(s, t) = P (Vi(t) = k|Vi(s) = j), is then

P̂(s, t) =
∏
(s,t)

{I + dQ̂(u)} (1.2.2)

where dQ(t) is a matrix with entries dQjk(t) in (j, k), j 6= k, and the diagonal (j, j) is

−
∑

k 6=j dQjk(t).

Aalen et al. (2001) and Datta and Satten (2001) pointed out that the Aalen-Johansen

estimator of the state occupancy probabilities in the first row of P̂(0, t) are consistent,

even for non-Markov multi-state processes provided censoring is independent. Entries of

this matrix can therefore be used to estimate the marginal survival distributions.

1.2.3 Frailty Models for Multivariate Failure Times

In frailty models, latent random effects are introduced to characterize how the risk a par-

ticular individual has differs from the average member of the population with the same

covariate profile. Typically the different component failure times are assumed to be con-

ditionally independent given the frailty, but mixing over the distribution of this frailty

induces a dependence and makes these models useful for dealing with correlated data.
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Consider a conditional hazard function for a type k event (Cook and Lawless, 2007),

lim
∆t→0

P (t ≤ Tik < t+ ∆t|Tik ≥ t, uik, Zik(t))

∆t
= uikλik(t|Zik(t)) = uikλ0k(t;αk) exp(Z

′

ik(t)βk)

where uik is a frailty independent of an external covariate Zik(t), with mean 1 and variance

φk, λ0k(t;αk) is an unspecified positive function, and βk is the vector of covariate effects

for the type k event.

Multivariate frailty distributions may be specified and so we let ui = (ui1, . . . , uiK)
′

where cov(uik, uil) = φkl accommodates associations between failure times within individu-

als. For convenience, however, it is most common to specify simple models with a common

frailty and here we consider fixed covariates. In this case we let uik = ui with E(ui) = 1

and var(ui) = φ, Zi = (Z
′
i1, . . . , Z

′
iK)

′
, and suppose ui ⊥ Zi. If α = (α

′
1, . . . , α

′
K) and

β = (β
′
1, . . . , β

′
K)
′
, then under the conditional independence assumption (Tij ⊥ Tik|Zi, ui),

we get

P (Ti1 > t1, . . . , TiK > tK |Zi;α, β, φ) = Eui

[
K∏
k=1

Fk(tk|ui, Zik;αk, βk)

]

= Eui

[
K∏
k=1

exp
(
−uiΛ0k(tk;α) exp(Z

′

ikβk)
)]

where Λ0k(s;α) =
∫ s

0
λ0k(t;α)dt is cumulative baseline hazard function for type k event.

A number of distributions for ui can be specified but the most common is the gamma

distribution which gives

F(t1, . . . , tK |Zi;α, β, φ) =

∫ ∞
0

exp

(
−ui

K∑
k=1

Λ0k(tk;αk) exp(Z
′

ikβk)

)
uφ
−1−1
i eui/φ

Γ(φ−1)φφ−1 dui

=
1[

1 + φ
∑K

k=1 Λ0k(tk;αk) exp(Z
′
ikβk)

]φ−1

The joint density for (Ti1, . . . , TiK |Zi) is obtained by differentiation of the joint survivor

function.
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In frailty models, regression parameters must be interpreted conditional on the frailty,

which may not be the desired way of expressing covariate effects. Moreover, the distribu-

tional assumptions about the frailty are difficult to check, and the association structure

is largely treated as a nuisance in frailty models. Hence when association is of interest,

frailty models do not offer an ideal approach to analysis.

1.2.4 Copula Models for Multivariate Failure Times

Copula functions (Joe, 1997) offer a convenient and powerful tool to model the association

between failure times. The dependence structure induced by copula models does not

depend on the marginal models but rather is characterized by the copula model alone,

and as a result the marginal models may be constructed in any desirable way. Using the

copula model, regression parameters in models are marginally meaningful and has the same

interpretation regardless of the choice of the copula function.

A copula function in K dimensions is a multivariate distribution on [0, 1]K , whose

margins are all uniform over [0, 1]. For a K-dimensional uniform random vector U , a

copula indexed by parameter φ is,

C(u1, . . . , uK ;φ) = P (U1 ≤ u1, . . . , UK ≤ uK ;φ) .

Multivariate survival models are obtained based on such a copula as follows. The

marginal probability integral transformation of each random variable is first applied to

create a K dimensional vector of uniform random variables with Uk = Fk(Tk|Zk; θk). These

in turn are then viewed as the components of a multivariate uniform random variable

with their joint distribution governed by a given copula. Under the assumption that

P (Tk ≤ t|Z;ψ) = P (Tk ≤ t|Zk ; θk) for each k = 1, . . . , K, the joint survival function

F(t1, . . . , tK |Z) can be specified by linking all marginal survivor functions Fk(tk; θk) via

the copula as

F(t1, . . . , tK |Z;ψ) = P (T1 > t1, . . . , TK > tK |Z;ψ) = C(F1(t1|Z1; θ1), . . . ,FK(tK |ZK ; θK);φ)
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where ψ = (θ
′
1, . . . , θ

′
K , φ)

′
.

Kendall’s τ is defined as the probability of concordance among two pairs of failure

times, say (Tij, Tik) and (Ti′j, Ti′k), minus the probability of discordances, then

τ = P ((Tij − Ti′j)(Tik − Ti′k) > 0)− P ((Tij − Ti′j)(Tik − Ti′k) < 0) .

Kendall’s τ is a common association measure in this setting since it is functionally

independent of the marginal parameters. The Clayton copula is a widely used copula in

survival analysis and yields, for example, a joint survival distribution of the form

F(t1, . . . , tK |Zi;ψ) =
(
F1(t1|Z1; θ1)−φ + · · ·+ FK(tK |ZK ; θK)−φ −K + 1

)−1/φ
.

The degree of association between two failure times expressed in terms of Kendall’s τ , for

the Clayton copula, is given by τ = φ/(φ+2), where τ = 0 and τ = 1 correspond to the

cases of independence and perfect association respectively. Other copula functions within

the Archimedean family are often used and include the Frank and Gumbel-Houguaard

copulas (Nelsen, 2006).

Elliptical copulas are also often appealing (Fang et al., 1990). The Gaussian copula is a

type of elliptical copulas which has become very popular in many fields because of its easy

implementation and its convenience when obtaining conditional distributions. It also has

the attractive feature that the different pairwise associations can be specified through a

general correlation matrix. The Gaussian copula is constructed from a multivariate normal

distribution by using the probability integral transform

C(u1, . . . , uK) = ΦΣ(Φ−1(u1), . . . ,Φ−1(uK))

where Φ(·) is the cumulative distribution function of a standard normal and ΦΣ(·) is the

joint cumulative distribution function of a multivariate normal distribution with mean zero

and correlation matrix Σ. The Kendall’s τ for the Gaussian copula is τjk = 2arcsin(σjk)/π,

where σjk is the correlation coefficient of Tij and Tik.
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1.2.5 Robust Methods for Multivariate Failure Times

Wei et al. (1989) proposed semiparametric methods for multivariate failure times based on

marginal proportional hazards analyses under the working independence assumption. The

so-called WLW approach involves fitting marginal proportional hazards models for each

failure time as if they are independent, and then uses a robust covariance estimator to

account for possible correlations between the failure times.

Suppose Xik = min(Tik, Ci) and δik = I(Xik = Tik). Let Yik(t) = I(t ≤ Tik) be “at

risk” indicator for type k event for subject i, Ȳik(t) = Yi(t)Yik(t) indicate that subject i is

under observation and at risk for the type k event, and dN̄ik(t) = Ȳik(t)dNik(t) indicates

the type k event occurred and was observed at time t. Then under the Cox model with

fixed covariates, by assuming independent censoring and a common treatment effect for

each marginal model, the partial likelihood is

L(β) =
K∏
k=1


m∏
i=1

[
exp

(
Z
′

ikβ
)∑m

j=1 Ȳjk(Xik) exp
(
Z
′
jkβ
)]δik

 .

The maximum partial likelihood estimate β̂ solves the estimating equation

U(β) =
K∑
k=1

m∑
i=1

∫ ∞
0

(
Zik −

S
(1)
k (β, s)

S
(0)
k (β, s)

)
dN̄ik(s) =

m∑
i=1

Ui(β)

where S
(r)
k (β, s) =

∑m
j=1 Ȳjk(s)Z

⊗r
jk exp(Z

′

jkβ), r = 0, 1, and a⊗0 = 1, a⊗1 = a, a⊗2 = aa
′

for a vector a. This model can be extended to accommodate different regression coefficients

for each event type by use of a stratified partial likelihood (Wei et al., 1989).

Since no joint distribution of the K type events is assumed, the WLW approach involves

the computing of a robust variance estimator to account for the dependencies. Wei et al.

(1989) derived the asymptotic properties of the maximum partial likelihood estimator

√
n(β̂ − β) −→MVN(0,Q(β))
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where I(β) = E[−∂Ui(β)/∂β′], B(β) = E[Ui(β)U ′i(β)], and Q(β) = I−1(β)B(β)I−1(β)

has the usual sandwich form of robust covariance matrices with component matrices that

can be consistently estimated from the data (Wei et al., 1989); existing software such as

SAS and R can be used to obtain these estimates.

The WLW approach is similar in spirit to the use of generalized estimating equations

proposed by Liang and Zeger (1986) for dealing with longitudinal data, in which marginal

regression models are the primary focus, and the association across repeated measurements

was treated as a nuisance (GEE1). The generalized estimating equation approach does not

require one to completely specify the joint distribution of the correlated failure times, but

rather relies only on the specification of the marginal models; robust variance estimation is

also used in this approach to account for correlations. Prentice (1988) proposed a second

set of estimating equations (GEE2) which allow one to carry out simultaneous inference

about both marginal and association parameters when interest lies in the dependence

structure among the responses. GEE2 improves the efficiency of estimators by exploiting

higher order information about parameters, but the consistency of estimators from GEE2

depends on the correct specification of both the marginal and association models, while

the consistency of GEE1 estimator only depends on the correct specification of marginal

mean model; GEE1 is therefore more robust but less efficient than GEE2.

1.3 Introduction to the Topics of Research

1.3.1 Dependence Modeling for Disease Onset Times within Fam-

ilies

The focus of Chapter 2 is on characterizing the nature and extent of the within-family

association in some feature of the disease process, which is commonly used for the infer-

ence regarding the hereditary nature of disease, especially when the genetic data are not

available. This research topic is motivated by a psoriatic arthritis family study, which is
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conducted in the Centre for Prognosis Studies in Rheumatic Disease at the University of

Toronto.

Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis which

can lead to serious disability. It is often associated with joint pain, inflammation and de-

struction (Chandran et al., 2010). The Centre for Prognosis Studies in Rheumatic Disease

at the University of Toronto maintains a clinic registry of patients with psoriatic arthritis.

This cohort has been recruiting and following patients since its inception in 1976. Upon

entry to the clinic, patients undergo a detailed examination and provide serum samples.

Follow-up clinical and radiological assessments are scheduled annually and biannually to

track the changes in joint damage and functional ability, and serum samples are taken

at each clinic visit to measure the changes of markers. To date 1191 patients have been

recruited and their median follow-up is 4.838 years with a median of 6 clinical assessments.

A family study was conducted based on this registry for which the primary goal was

to discover and examine the effect of genetic factors and understand the nature of the

familial dependence in the occurrence of psoriatic arthritis. Hereditary factors are thought

to be important in psoriatic arthritis, as some studies have suggested that close blood

relatives of psoriatic arthritis patients have higher risk of developing this disease compared

to the general population. Understanding the within family association can help researchers

to discriminate genetic and environmental factors and further understand the hereditary

nature of disease process. Another interest of this family study lies in assessing ‘parent of

origin’ effect (Burden et al., 1998), which refers to father-child association in the occurrence

of disease is different than the mother-child association.

A total of 150 families were recruited for the family study by identification of affected

individuals from the clinic registry; these individuals are called the proband. The sizes

of the recruited families range from 2 to 7 individuals including the probands. Since the

probands are in the clinic registry, detailed information on their disease history is available

including demographic and genetic data, as well as the age at the onset of psoriatic arthritis.

For other family members, referred to as non-probands, the disease history is collected by
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retrospective review of medical records or patient recall. The resulting data may include

demographic and other covariate information, information on the relation to the proband,

age at onset of psoriatic arthritis (if affected), and the age at the time of contact. Since

families are selected based on the proband’s disease status, such studies feature a biased

sampling scheme. Furthermore since the disease-related information for the non-probands

is collected by retrospective review of medical records, data may be incomplete on the

onset time of affected individuals and all that may ultimately be known is their status at

the assessment time; other non-probands may be diagnosed for the first time upon contact.

Such individuals furnish current status data, and therefore the family data obtained are

a mix of right-censored and current status data. Figure 1.1 illustrates the right-truncated

onset time of probands and the mixed-type family data provided by the relatives. For this

family, since the proband (labelled 0) was born at calendar time B0 and developed the

disease at age T0 before being recruited to the clinic, their family could be selected for

inclusion into the family study. One relative of this proband was born at calendar time B1

and was found to be disease-free at the time of contact. The second relative was born at B2

and was found to have the condition at the contact time and their disease onset time was

available. The third relative was born at B3 also developed the disease prior to screening

but their onset time information is unavailable and all we know is their disease status at

the time of contact. This family therefore provides a combination of right-censored and

current status data. Another complication for the family study is that limited information

on the marginal distribution of onset time is available from the family data itself, due to

the biased sampling scheme where the probands onset time is right-truncated and due to

the low incidence of disease in the non-probands. This leads to limited information on

both the marginal onset time distribution and the association structure within families.
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Figure 1.1: Lexis diagram illustrating the mixed type family data obtained under the

biased sample scheme.

In Chapter 2 we develop copula-based models for the within-family association in the

onset time of disease which accommodate a complex dependence structure. Second-order

regression models in which dependencies are characterized by Kendall’s τ are developed to

study the within-family association in disease onset times; covariate effects can be mod-

eled on the marginal distributions as well as the within-family associations. Likelihood and

composite likelihoods are adopted for estimation and statistical inference. The proposed

methods accommodate a combination of right-censored and current status observation of

disease onset times among the non-probands. We also consider use of auxiliary data from

independent individuals by augmentating the composite likelihoods to increase precision

of marginal parameter estimates and consequently increase efficiency in dependence pa-

rameter estimation. Simultaneous and two-stage estimation procedures are considered for
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the augmented composite likelihoods, and the large sample theory for estimators under

two-stage estimation procedure is also developed. Simulation studies investigate the em-

pirical bias and relative efficiencies of estimators under different estimation procedures. An

application to a motivating family study in psoriatic arthritis illustrates the method and

provides evidence of excessive paternal transmission of risk.

1.3.2 Cluster-randomized Trials with Censored Failure Times

In Chapter 3 attention is directed towards the design of cluster-randomized trials with

censored event times. In cluster-randomized trials intervention effects are often formulated

by specifying marginal models, fitting them under a working independence assumption,

and using robust variance estimates to address the association in the responses within

clusters. We develop sample size criteria within this framework, with analyses based on

semiparametric Cox regression models fitted with event times subject to right-censoring.

At the design stage, copula models are specified to enable derivation of the asymptotic

variance of estimators from a marginal Cox regression model, and to compute the number

of clusters necessary to satisfy power requirements. Simulation studies demonstrate the

validity of the sample size formula in finite samples for a range of cluster sizes, censoring

rates and degrees of within-cluster association among event times. The power and relative

efficiency implications of copula misspecification is studied, as well as the effect of within-

cluster dependence in the censoring times. Sample size criteria and other design issues

are also addressed for the setting where the event status is only ascertained at periodic

assessments and times are interval-censored.

An illustrative example involving treatment for otitis media (Le and Lindgren, 1996;

Manatunga and Chen, 2000) is considered for illustration. Otitis media is inflammation

of the inner ear which make patients at risk of permanent damage and loss of hearing.

A common intervention involves the surgical insertion of a ventilating tube and interest

may lie in assessing an experimental post-surgery medical therapy designed to prolong the

function of the ventilating tubes. In a randomized trial (Le and Lindgren, 1996), children
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from six months to eight years of age with otitis media requiring surgical insertion of tubes

in the auditory canal are randomized to receive either two weeks of medical therapy with

prednisone and sulfamethoprim or no medical therapy (standard care). In this trial, the

child is then the unit of randomization and the time to failure of the tubes in the left and

right ears would naturally be correlated. Therefore, the proposed sample formulae could be

used for this trial to determine the required number of children to ensure the pre-specified

power.

1.3.3 Causal Analysis of Post-progression Survival in Cancer

Despite the clear need to demonstrate the effect of experimental cancer treatments on

overall survival many trials are designed with the primary analysis based on the compos-

ite endpoint of progression-free survival. The factors influencing the relationship between

treatment effects on progression-free survival and overall survival are complex and mul-

tifaceted but include the progression-free mortality rate and associated treatment effect,

the factors leading to the introduction of rescue interventions upon progression, among

others. In Chapter 4, we consider the three state illness-death model as a framework for

exploring the effect of these factors and issues of causal inference. Recent interest in the

post-progression survival prompts us to focus the effect of randomized treatment on the

sojourn time in the progression state. We focus on examining the effect of treatment on

the sojourn time distribution for state 1. We carry out this study based on an additive

model which is collapsible, determine limiting values of the integrated regression coeffi-

cients under naive analyses, define the causal quantities of interest, and develop weighted

estimating equations which render consistent estimates for the causal functions we derive.

Simulation studies have been carried out to assess the validity of the proposed weighted

estimating equations. We also extend the proposed method to a more general scenario

where a rescue intervention has been introduced upon progression.
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Chapter 2

Augmented Composite Likelihood for

Copula Modeling in Family Studies

using Biased Sampling Schemes

2.1 Introduction

Family studies are routinely designed as a cost-effective approach to investigating the

genetic basis of disease (Laird and Lange, 2006). Such studies typically employ biased

sampling schemes in which individuals in a disease registry are recruited along with con-

senting family members (Fisher, 1934; Cannings and Thompson, 1977; Burton et al., 2000;

Burton, 2003). The individual in the disease registry, called the proband, often provides

more detailed information on the disease history than their respective family members who

we refer to as non-probands. In many settings, for example, it is only known whether the

non-probands have the condition or not at the time of recruitment. Inferences regarding

the hereditary nature of disease are primarily based on the nature and extent of the within-

family association in some feature of the disease process. The importance of constructing

likelihoods which recognize the biased sampling scheme is now well-known (Thompson,
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1993; Glidden and Liang, 2002; Kraft and Thomas, 2000; Lange, 2002; Epstein et al.,

2002).

While much work has been based on binary disease status of individuals (Ziegler et al.,

2000; Matthews et al., 2007), this response is problematic if there is considerable variation

in the age of onset and the age of individuals at the time of assessment. Specification

of multivariate models for the time of disease onset enable one to appropriately address

the fact that disease status is time-dependent. Frailty models are used extensively in this

context (Babiker and Cuzick, 1994; Yashin and Iachine, 1995; Li and Thompson, 1997; Li

et al., 1998; Zhang and Merikangas, 2000; Hsu et al., 2004; Choi et al., 2008; Choi, 2012)

but they do not yield appealing measures of within-family association. Copula functions

(Joe, 1997; Nelsen, 2006) offer a much more appealing framework for joint modeling of

disease onset times within families since they yield measures of association which are

functionally independent of parameters in the marginal distributions. Glidden and Self

(1999) formulated the conditional hazard function with a gamma distributed frailty term so

that the marginalized hazard functions satisfy the Cox model and the resulting joint model

is a Clayton-Oakes model. An approximate EM algorithm can be applied for parameter

estimation. Similarly, Hsu and Gorfine (2006) used a frailty-based approach to analyse

the family data from case-control family studies. Martinussen and Pipper (2005) also

considered the positive stable shared frailty Cox model for which the resulting marginal

hazard is still of the Cox-form.

We develop marginal models for the disease onset time distribution and use Gaussian

copula to model the role of kinship in the strength of within-family associations (Liang

et al., 1991). Covariate effects can be studied in marginal and second-order regression

models in the spirit of Prentice and Zhao (1991). Likelihood and composite likelihood

(Lindsay, 1988; Cox and Reid, 2004) are examined; each recognize the biased sampling

scheme but the latter can offer important simplifications and reduce computational burden

when large families are present. We also explore utility of auxiliary data to address the

poor precision in the onset time distribution resulting from the biased sampling scheme

and study the relative efficiency of simultaneous and two-stage estimation.
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The remainder of this chapter is organized as follows. In Section 2.2 we define notation,

formulate the joint model, and discuss the sampling scheme. Likelihood and composite like-

lihood methods for response-biased data are discussed in Section 2.3 where asymptotic and

empirical studies investigate the relative efficiency of the proposed methods. Extensions

are discussed in Section 2.4 where we handle a combination of right-censored and cur-

rent status observation schemes for non-probands (Sun, 2006). Approaches for making

use of auxiliary data from studies directed at the marginal age of onset distribution are

also discussed here and examined empirically. Two-stage estimation procedure has been

considered for this augmented composite likelihood, and the asymptotic property of this

two-stage estimator has also been established. An application to the motivating family

study on the genetic basis for psoriatic arthritis is given in Section 2.5 where important

insights are made on excessive paternal transmission of risk. Concluding remarks are given

in Section 2.6.

2.2 Second-Order Dependence Models for Disease On-

set Times in Family Studies

Let Tij denote the time of disease onset for individual j in cluster i, and Zij = (Zij1, . . . , Zijp)
′

denote a p× 1 covariate vector, j = 1, . . . ,mi. The marginal cumulative distribution func-

tion and survival functions are F (t|Zij; θ) = P (Tij ≤ t|Zij) and F(t|Zij; θ) = 1−F (t|Zij; θ)
respectively.

The full vector of event times and covariates in cluster i are denoted by Ti = (Ti1, . . . , Timi
)′

and Zi = (Z ′i1, . . . , Z
′
imi

)′ respectively and we assume Ti ⊥ Ti′ |(Zi, Zi′). Furthermore, we

assume that P (Tij ≤ t|Zi) = P (Tij ≤ t|Zij) for each j. A joint model for the event times in

cluster i can be constructed by specifying an mi dimensional copula function (Joe, 1997),

a multivariate cumulative distribution function with uniform [0, 1] marginal distributions.

That is if Uij ∼ unif(0, 1) and Ui = (Ui1, . . . , Uimi
)′, the joint cumulative distribution func-

tion C(ui1, . . . , uimi
; γ) = P (Ui1 ≤ ui1, . . . , Uimi

≤ uimi
; γ) defines a copula indexed by a
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q × 1 parameter vector γ. A joint c.d.f. for Ti|Zi is obtained by taking the probability

integral transform of Tij, setting Uij = F(Tij|Zij; θ), and defining F(ti|Zi;ψ) as

P (Ti1 > ti1, . . . , Timi
> timi

|Zi;ψ) = C(F(ti1|Zi1; θ), . . . ,F(timi
|Zimi

; θ); γ) , (2.2.1)

where ψ = (θ′, γ′)′. The Clayton copula has the form

C(ui1, . . . , uimi
; γ) =

(
u−γi1 + · · ·+ u−γimi

−mi + 1
)−1/γ

, γ ∈ [−1,∞) \ {0} , (2.2.2)

where γ is a scalar and Kendall’s τ (Nelsen, 2006; Joe, 1997) is given by τ = γ/(γ + 2),

having a range over [−1, 0) ∪ (0, 1]. This is a member of the Archimedean family (Genest

and Mackay, 1986) which has connections with frailty models (Oakes, 1989) and is invariant

to left-truncation (Manatunga and Oakes, 1996; Oakes, 2005) and as a result it has seen

considerable application in health research.

In many settings however, a single parameter is not adequate for characterizing all

pairwise associations. Nested Archimedean copulas and hierarchical Archimedean copulas

yield flexible dependence models (Fischer et al., 2009), but we here focus on the Gaussian

copula (Fang et al., 1990), a member of elliptical family which accommodates different

pairwise associations through specification of a general correlation matrix. Specifically, for

the Gaussian copula

C(ui1, . . . , uimi
; γ) = Φmi

(Φ−1(ui1), . . . ,Φ−1(uimi
); γ) , (2.2.3)

where Φ−1(·) is the inverse cumulative distribution function of a standard normal random

variable and Φmi
(· ; γ) is the joint cumulative distribution function of a mi×1 multivariate

normal random variable with mean zero and mi×mi correlation matrix Σi(γ) = Σi indexed

by a vector γ with off-diagonal entries σijk. The resulting joint survivor function for Ti|Zi
is then

P (Ti1 > ti1, . . . , Timi
> timi

|Zi;ψ) =

∫ ri1

−∞
· · ·
∫ rimi

−∞

exp
(
−s′i Σ−1

i si/2
)√

(2π)mi |Σi|
dsi1 . . . dsimi

(2.2.4)
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where Si ∼ MVNmi
(0,Σi), si is a realization, and rij = Φ−1(F(tij|Zij; θ)), j = 1, . . . ,mi.

The association between Tij and Tik conditional on (Zij, Zik) is measured by Kendall’s τ ,

given here by τijk = 2 arcsin(σijk)/π, 1 ≤ j < k ≤ mi, i = 1, . . . , n.

Flexible modeling of the within-cluster association can be achieved by specifying a

second-order regression model of the form g(τijk) = V ′ijkγ, where g(·) is a 1-1 differen-

tiable link function mapping Kendall’s τ onto the real line, Vijk is an q × 1 covariate

vector characterizing individuals j and k in cluster i and their relation, and γ is the cor-

responding q× 1 vector of coefficients. There is considerable flexibility in this formulation

in that Vijk may represent cluster-level or individual-level features, or information on the

structural relation between individuals j and k in cluster i. The Fisher transformation

g(τ) = log ((1 + τ)/(1− τ)) is a natural choice for the link function, in which case the

second-order model can be rewritten as

g(τijk) = log ((1 + τijk)/(1− τijk)) = V ′ijkγ . (2.2.5)

2.3 Likelihood and Composite Likelihood Construc-

tion under Biased Sampling

2.3.1 Maximum Likelihood Estimation and Inference

We consider the analysis of family data in which families are sampled due to the disease

status of a particular family member designated as the proband (assume there is only one

proband for each family); without loss of generality we assign this individual label 0 and

increase the dimension of the response and covariate vectors to include this individual. Let

Ti0 denote the disease onset time for the proband in family i, and Ci0 the corresponding

clinic entry time; that is the proband is sampled because Ti0 < Ci0. The mi family

members of proband i have event times Ti1, . . . , Timi
which we assume here are observed

subject to right censoring at their recruitment times Ci1, . . . , Cimi
respectively. We let
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Xij = min(Tij, Cij) and Yij = I(Tij < Cij), j = 0, . . . ,mi, where Yi0 = 1. If Zi =

(Z ′i1, . . . , Z
′
imi

)′ as before, we let Z̄i = (Z ′i0, Z
′
i)
′ denote the full vector of covariates for

family i, and similarly let Xi = (Xi1, . . . , Ximi
)′, X̄i = (Xi0, X

′
i)
′, Ci = (Ci1, . . . , Cimi

)′,

C̄i = (Ci0, C
′
i)
′, Yi = (Yi1, . . . , Yimi

)′ and Ȳi = (Yi0, Y
′
i )
′.

Under the assumption of independent and non-informative censoring, the likelihood

contribution from family i is

Li(ψ) ∝ P (X̄i, Ȳi|C̄i, Z̄i, Ti0 < Ci0;ψ) (2.3.1)

which can be expressed in terms of (2.2.1); the condition Ti0 < Ci0 reflects the unique

role of the proband in selecting the family. As a specific example of how one computes

(2.3.1) from (2.2.1), consider a family with only two family members including the proband

(i.e. mi = 1), in which the non-proband is disease-free at the recruitment time Ci1. The

contribution to the likelihood from this family under the Gaussian copula (2.2.3) can be

written as

P (X̄i, Ȳi|C̄i, Z̄i, Ti0 < Ci0;ψ) = P (Ti0, Ti1 > Ci1|C̄i, Z̄i, Ti0 < Ci0;ψ)

= P (Ti0, Ti1 > Ci1|C̄i, Z̄i;ψ)/F (Ci0|Zi0; θ)

= F−1(Ci0|Zi0; θ)

{
− ∂

∂ti0
F(ti0, Ci1|C̄i, Z̄i;ψ)

}
= F−1(Ci0|Zi0; θ)

{
− ∂

∂ti0

∫ qi0

−∞

∫ qi1

−∞
φ2(si0, si1;ψ)dsi0dsi1

}
= F−1(Ci0|Zi0; θ)

{∫ qi1

−∞
φ2(qi0, si1;ψ)dsi1 ·

(
φ−1(qi0)f(ti0|Zi0; θ)

)}

= F−1(Ci0|Zi0; θ)f(ti0|Zi0; θ)Φ

qi1 − σi01qi0√
1− σ2

i01

;ψ

 ,

where qij = Φ−1(F(tij|Zij; θ)) and φ2(si0, si1;ψ) is the density function for bivariate normal

distribution with mean zero and correlation Σi indexed by a vector γ with off-diagonal

entries σijk; ψ = (θ′, γ′)′.

The contribution to the score vector and information matrix from family i are

Si(ψ) =
∂ logLi(ψ)

∂ψ
=
∂ logP (X̄i, Ȳi|C̄i, Z̄i;ψ)

∂ψ
− ∂ logF (Ci0|Zi0; θ)

∂ψ
, (2.3.2)
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and

Ii(ψ) = − ∂2 logLi(ψ)

∂ψ∂ψ′
= −

[
∂2 logP (X̄i, Ȳi|C̄i, Z̄i;ψ)

∂ψ∂ψ′
− ∂2 logF (Ci0|Zi0; θ)

∂ψ∂ψ′

]
, (2.3.3)

respectively. The maximum likelihood estimate ψ̂ solves
∑n

i=1 Si(ψ) = 0 and
√
n(ψ̂−ψ) is

asymptotically normally distributed with mean zero and variance I−1(ψ), where I(ψ) =

E[Ii(ψ)]. The term ∂2 logF (Ci0|Zi0; θ)/∂ψ∂ψ′ subtracted in (2.3.3) represents the loss of

“information” about the marginal parameters due to the response-biased sampling scheme.

2.3.2 Composite Likelihood under Biased Sampling

When family size mi is large it can be challenging to compute and maximize the full

likelihood. We consider the use of composite likelihood (Lindsay, 1988; Cox and Reid,

2004) comprised of contributions based on lower dimensional subsets of individuals in each

family. Working with lower dimensional distributions leads to considerable simplifications

in the analytical expressions and computation. Let Sir denote the set of (r + 1)−tuples

of individuals in cluster i including the proband where the cardinality of this set is mir =

mi !/[r! (mi − r) ! ], r = 1, . . . ,mi. For example, Si1 = {(0, j), j = 1, 2, . . . ,mi}, Si2 =

{(0, j, k), 1 ≤ j < k ≤ mi} and Simi
= {(0, 1, 2, . . . ,mi)}. An element of Sir is identified

by the triple (i, r, s), s = 1, . . . ,mir. Then if D̄i = (Di0, Di1, . . . , Dimi
)′ is an (mi + 1)× 1

vector, let D̄
(r,s)
i denote the subvector containing elements of D̄i which is element (i, r, s)

of Sir. We then define a composite likelihood by

CLi(ψ) ∝
miU∏
r=miL

mir∏
s=1

P (X̄
(r,s)
i , Ȳ

(r,s)
i |C̄(r,s)

i , Z̄
(r,s)
i , Ti0 < Ci0;ψ) , (2.3.4)

where miL and miU (1 ≤ miL ≤ miU ≤ mi) determine the dimensions of the joint dis-

tributions contributing to (2.3.4). The issues in selecting composite likelihoods have been

discussed in (Lindsay et al., 2011). The composite likelihood contributions under specified

copula functions can be derived in the similar way as we described in Section 2.3.1.
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If r = miL = miU = 2, then a composite likelihood is obtained based on all triplets of

family members including the proband, as in

CL1i(ψ) ∝
∏

1≤j<k≤mi

P (W̄ijk|C̄ijk, Z̄ijk, Ti0 < Ci0;ψ) . (2.3.5)

whereWij = (Xij, Yij)
′, W̄ijk = (W ′

i0,W
′
ij,W

′
ik)
′, C̄ijk = (Ci0, Cij, Cik)

′ and Z̄ijk = (Z ′i0, Z
′
ij, Z

′
ik)
′.

This composite likelihood requires working with trivariate distributions. If r = miL =

miU = 1, an even simpler “pairwise” conditional likelihood is obtained,

CL2i(ψ) ∝
mi∏
j=1

P (W̄ij|C̄ij, Z̄ij, Ti0 < Ci0;ψ) , (2.3.6)

which only requires use of bivariate distributions, where W̄ij = (W ′
i0,W

′
ij)
′, C̄ij = (Ci0, Cij)

′

and Z̄ij = (Z ′i0, Z
′
ij)
′. The score functions arising from (2.3.5) and (2.3.6) are U(ψ) =∑n

i=1 Ui(ψ) =
∑n

i=1 ∂ logCLi(ψ)/∂ψ.

If ψ̃ denotes the maximum composite likelihood estimator from (2.3.5) or (2.3.6), then

under standard regularity conditions,
√
n(ψ̃− ψ) converges in distribution to multivariate

normal with mean vector zero, and covariance matrix

asvar(
√
n(ψ̃ − ψ)) = A−1(ψ)B(ψ)

[
A−1(ψ)

]′
, (2.3.7)

where A(ψ) = −E{∂2 logCLi(ψ)/∂ψ∂ψ′} and B(ψ) = E{Ui(ψ)U ′i(ψ)}. This can be con-

sistently estimated by

âsvar(
√
n(ψ̃ − ψ)) = A−1(ψ̃)B(ψ̃)

[
A−1(ψ̃)

]′
, (2.3.8)

where

A(ψ) = −n−1

n∑
i=1

∂2 logCLi(ψ)/∂ψ∂ψ′ , and B(ψ) = n−1

n∑
i=1

Ui(ψ)U ′i(ψ) .

For example, if the second composite likelihood (2.3.6) is adopted, then

Ui(ψ) = ∂ logCL2i(ψ)/∂ψ =

mi∑
j=1

Uij(ψ) ,
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where

Uij(ψ) =
∂

∂ψ
logP (Wi0,Wij|C̄ij, Z̄ij, Ti0 < Ci0;ψ) ,

and the A(ψ) and B(ψ) are in the forms of

A(ψ) = −
mi∑
j=1

E

{
∂2 logP (Wi0,Wij |C̄ij , Z̄ij , Ti0 < Ci0;ψ)

∂ψ∂ψ′

}
,

B(ψ) =

mi∑
j,k=1

E
{
Uij(ψ)U ′ik(ψ)

}
,

which can be estimated by

A(ψ) = −n−1
n∑
i=1

mi∑
j=1

{
∂2 logP (Wi0,Wij |C̄ij , Z̄ij , Ti0 < Ci0;ψ)

∂ψ∂ψ′

}
, (2.3.9)

B(ψ) = n−1
n∑
i=1

mi∑
j,k=1

{
Uij(ψ)U ′ik(ψ)

}
. (2.3.10)

2.3.3 Asymptotic Relative Efficiency of the Composite Likeli-

hoods

The analytical and computational advantages of composite likelihood come at the cost

of a loss in efficiency. Here we examine the asymptotic relative efficiency of composite

likelihood as a function of the strength of the within-family association.

Consider n = 100 ascertained families, comprised of two generations and made up of two

parents and two children; mi = 3. The proband is randomly selected from the four family

members, and is indexed by j = 0. The same marginal distribution is assumed for the

event times of all family members with Weibull survivor function F(tij; θ) = exp(−(λtij)
κ),

j = 0, 1, 2, 3; θ = (λ, κ)′. We let κ = 1.2 and choose λ to give a median age of 45 years

for disease onset. The clinic entry time Ci0 for the proband is normally distributed with
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mean µ = 50 and variance σ2 = 20, and families are recruited into the study only if the

proband satisfies the selection condition Ti0 < Ci0. For individual j in selected family i,

Cij is the random age of contact, assumed to follow N(µ = 60, σ2 = 10) for individuals

in the first generation and N(µ = 40, σ2 = 10) for individuals in the second generation,

j = 1, 2, 3; the age at contact for individuals in both generations are truncated at 90

years. We consider an exchangeable association structure for simplicity here based on

the Clayton copula with Kendall’s τ varying from 0.05 to 0.6, reflecting small to strong

within-family association. The second-order regression model (2.2.5) is then simplified to

log
(
(1 + τijk)/(1− τijk)

)
= γ0, 0 ≤ j < k ≤ 3.

The asymptotic relative efficiency of the composite likelihood approach is defined as the

ratio of the asymptotic variance of the estimators from the full and composite likelihood

methods. The asymptotic variance can be evaluated by I−1(ψ) based on (2.3.3) for the full

likelihood method and by the robust sandwich variance based on (2.3.7) for the composite

likelihood methods, where the required expectations are taken by Monte Carlo methods.

Figure 2.1 shows the trends of asymptotic variance of estimators and their relative effi-

ciencies under two composite likelihoods compared with the full likelihood method as a

function of the within-family association. It is apparent that the first composite likelihood

approach is nearly as efficient as the full likelihood for all parameters, although there is

some efficiency loss, especially for γ0, when there is mild within-family association. This

makes sense as the first composite likelihood exploits the trivariate distribution and fam-

ilies are of size four. Figure 2.1 also demonstrates that there is significant efficiency loss

incurred when adopting the second composite likelihood. So detailed dependence modeling

should be based on the first composite likelihood. Interestingly, when the within-family

association increases, the efficiency loss of the second composite likelihood become smaller,

especially for the second-order regression coefficient. This is valid as when family members

become more and more like each other (association close to 1), the information provide by

two family members will be similar to the information provided by all family members.
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Figure 2.1: Asymptotic variance (top row) and relative efficiency (bottom row) of the first

(CL1) and the second (CL2) composite likelihood methods compared to the full likelihood

method (Full) for all parameters as a function of the strength of the within-family associa-

tion (Kendall’s τ) for family data with response-biased sampling in the presence of random

right censoring; Clayton copula, n = 100.
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2.3.4 Finite Sample Study of Composite Likelihood Methods

Here we report on simulation studies designed to assess the validity of the likelihood and

two composite likelihoods along with the empirical relative efficiency. The parameter

settings are as in Section 2.3.3 and for the Clayton copula we let Kendall’s τ = 0.40.

To accommodate a more general within-family dependence structure, we also consider a

Gaussian copula of the form (2.2.3) involving three types of association: between-parents,

between-siblings and parent-child, with Kendall’s τ denoted by τpp, τss and τps respectively.

We set τpp = 0.1, τss = 0.4 and τps = 0.2, with the relative sizes of these measures

compatible with the setting where genetic factors may contribute to the aetiology of this

disease. A second-order regression model (2.2.5) can be used to parameterize associations,

log((1 + τijk)/(1− τijk)) = V ′ijkγ = γ0 + γ1Vijk1 + γ2Vijk2 , 0 ≤ j < k ≤ 3 , (2.3.11)

where Vijk1 = I((j, k) pair are siblings), Vijk2 = I((j, k) pair is parent− child), and Vijk =

(1, Vijk1, Vijk2)′, 0 ≤ j < k ≤ 3.

One thousand datasets of n = 1000 families were then generated and analysed with

likelihood (2.3.1) and the two composite likelihood methods (2.3.5) and (2.3.6). The es-

timates ψ̂ and ψ̃ from the full likelihood and composite likelihoods, respectively, can be

obtained by maximizing the corresponding objective functions using the ‘nlm’ function in

R (R Core Team, 2014), and the variance of estimators from full likelihood approach can

be consistently estimated by V̂ar(ψ̂) = n−1 Î−1(ψ̂), where

Î(ψ̂) = − 1

n

n∑
i=1

[
∂2 logP (X̄i, Ȳi|C̄i, Z̄i;ψ)

∂ψ∂ψ′
− ∂2 logF (Ci0|Zi0; θ)

∂ψ∂ψ′

] ∣∣∣∣∣
ψ=ψ̂

,

and the variance of estimators under the composite likelihoods approach can be estimated

by V̂ar(ψ̃) = n−1A−1(ψ̃)B(ψ̃)
[
A−1(ψ̃)

]′
, where A(ψ) and B(ψ) are expressed in formulae

(2.3.9) and (2.3.10), respectively.

The empirical properties of marginal parameter estimates and estimated second-order

regression coefficients γ are summarized in Table 2.1 for both dependence structures. For
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all three methods, the biases are negligible, the empirical standard errors (ESE) agree

with the average standard errors (ASE), and the empirical coverage probabilities (ECP)

of nominal 95% confidence intervals are all within an acceptable range. The ASEs are the

smallest for all parameters under the likelihood analysis , followed by those of the first

composite likelihood and then those of the second composite likelihood, in alignment with

expectations based on Section 2.3.3.

Table 2.1: Empirical properties of estimators based on the full likelihood, the first com-

posite likelihood (CL1) and the second composite likelihood (CL2) for family data with

response-biased sampling in the context of right censoring; for the Clayton copula Kendall’s

τ = 0.4 and for the Gaussian copula τpp = 0.1, τss = 0.4, τps = 0.2; n = 1000, nsim = 1000.

Composite Likelihood

Full Likelihood CL1 CL2

PARAMETER† BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

Clayton Copula

log λ -0.004 0.073 0.074 0.956 -0.004 0.075 0.075 0.950 -0.004 0.099 0.099 0.936

log κ 0.001 0.019 0.019 0.952 0.001 0.019 0.020 0.952 0.001 0.022 0.023 0.953

γ0 0.003 0.085 0.086 0.965 0.003 0.089 0.090 0.957 0.001 0.133 0.133 0.947

τ 0.001 0.035 0.036 0.963 0.000 0.037 0.037 0.957 -0.001 0.055 0.055 0.947

Gaussian Copula

log λ -0.000 0.041 0.041 0.947 -0.001 0.041 0.041 0.940 -0.001 0.047 0.047 0.942

log κ 0.001 0.018 0.019 0.956 0.001 0.018 0.019 0.956 0.001 0.020 0.020 0.956

γ0 -0.001 0.052 0.052 0.951 -0.002 0.054 0.054 0.952 -0.003 0.075 0.075 0.957

γ1 0.002 0.061 0.061 0.934 0.005 0.065 0.063 0.942 0.007 0.091 0.088 0.944

γ2 0.001 0.040 0.042 0.959 0.002 0.043 0.044 0.951 0.003 0.064 0.066 0.947

τpp -0.001 0.026 0.026 0.949 -0.001 0.027 0.027 0.954 -0.002 0.037 0.037 0.956

τss 0.000 0.020 0.020 0.953 0.001 0.021 0.021 0.956 0.001 0.027 0.027 0.948

τps -0.000 0.019 0.019 0.939 -0.000 0.019 0.019 0.943 -0.000 0.024 0.024 0.957

† True parameter values are log λ = −4.112, log κ = 0.182, for Clayton copula γ0 = 0.847; for Gaussian

copula γ = (0.201, 0.647, 0.205)′.
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2.4 Extensions to Deal with Observation and Sam-

pling Complications

2.4.1 Accommodation of Right-censored and Current Status Ob-

servation

Information on disease onset time for non-probands is often collected retrospectively by

a review of medical records or patient recall. For some non-probands determined to have

the disease at the time of recruitment, however, no such information is available; this

may arise when they are diagnosed for the first time upon recruitment, or if there are no

medical records available. Such individuals furnish current status data with respect to their

disease status (Sun, 2006), since all that is known is whether they have the condition at

the time of recruitment and clinical examination. We let Rij indicate that individual j in

cluster i is under a right-censored observation scheme (due to the availability of a medical

history) where Rij = 0 if the individual is under a current status observation scheme; let

Ri = (Ri1, . . . , Rimi
)′ and R̄i = (Ri0, R

′
i)
′; since the probands in a clinical registry where

detailed information is available; Ri0 = 1, i = 1, . . . , n. We let Ri = {j : Rij = 1}
and R̄i = {j : Rij = 0} to index the sets of family members whose medical history is

available or not for the ith family, respectively. For notational convenience let Xij = Cij

if j ∈ R̄i, so Xij denotes the time of the assessment for such individuals under a current

status observation scheme; as before we let Yij = I(Tij < Cij). This notation enables us to

write the likelihood as

Li(ψ) ∝ P (X̄i, Ȳi|R̄i, C̄i, Z̄i, Ti0 < Ci0;ψ) , (2.4.1)

and the analogous composite likelihoods as

CL1i(ψ) ∝
∏

1≤j<k≤mi

P (W̄ijk|R̄ijk, C̄ijk, Z̄ijk, Ti0 < Ci0;ψ) , (2.4.2)
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where R̄ijk = (Ri0, Rij, Rik)
′, and

CL2i(ψ) ∝
mi∏
j=1

P (W̄ij|R̄ij, C̄ij, Z̄ij, Ti0 < Ci0;ψ) , (2.4.3)

where R̄ij = (Ri0, Rij)
′. The composite likelihood contributions for this mixed-type family

data under the specified copula functions can be derived in the similar way as we described

in Section 2.3.1. For example, consider a family with three family members including the

proband (i.e. mi = 2), with the first member under a right censoring observation scheme

(i.e. Ri1 = 1) and the second member under a current status observation scheme (i.e.

Ri2 = 0). If Yi1 = 0 and Yi2 = 1, then the contribution to the second composite likelihood

(2.4.3) from this family can be written as

CL2i(ψ) =
2∏
j=1

P (W̄ij|R̄ij, C̄ij, Z̄ij, Ti0 < Ci0 ;ψ)

= P (Ti0, Ti1 > Ci1|Ri0 = Ri1 = 1, C̄i1, Z̄i1, Ti0 < Ci0;ψ)

× P (Ti0, Ti2 ≤ Ci2|Ri0 = 1, Ri2 = 0, C̄i2, Z̄i2, Ti0 < Ci0;ψ) ,

where

P (Ti0, Ti1 > Ci1|Ri0 = Ri1 = 1, C̄i1, Z̄i1, Ti0 < Ci0;ψ)

= F−1(Ci0|Zi0; θ) ·
{
− ∂

∂ti0
F(ti0, Ci1|C̄i1, Z̄i1;ψ)

}
,

and

P (Ti0, Ti2 ≤ Ci2|Ri0 = 1, Ri2 = 0, C̄i2, Z̄i2, Ti0 < Ci0;ψ)

= F−1(Ci0|Zi0; θ) ·
[
− ∂

∂ti0

{
F(ti0|Zi0; θ)−F(ti0, Ci2|C̄i2, Z̄i2;ψ)

}]
,

and the explicit expression of F(ti0, tij|C̄ij, Z̄ij;ψ) depends on the copula functions and

association structure. The asymptotic properties of estimators based on the full likelihood

and the composite likelihoods are similar as we developed in Section 2.3.

31



Here we conduct a simulation study to assess the performance of the methods with

right-censored and current status family data. Again we consider two-generation families

comprised of two parents and two children. A Weibull distribution is adopted for the

onset times for all family members; F(tij; θ) = exp(−(λtij)
κ), j = 0, 1, 2, 3; θ = (λ, κ)′.

The clinic entry time distribution and examination time distribution for the non-probands

are the same as in Section 2.3.3. We further generate a random binary indicator Rij

for non-probands, j = 1, 2, 3, which indicate their respective observation scheme with

probability P (Rij = 1) = P (Rij = 0) = 0.5; if Rij = 1, then a medical history is available

for this member and we observe Xij = min(Tij, Cij) and Yij = I(Tij < Cij); otherwise,

only current status data are available and we observe Yij = I(Tij < Cij) and Cij. For

within-family association structure, a Clayton copula and a Gaussian copula are considered.

For the latter, three types of associations (between-parents, between-siblings and parent-

child) are considered. The parameter settings for association structure are as in Section

2.3.4. As we discussed, although the full likelihood is more efficient than the composite

likelihood, computing and maximizing the full likelihood is very complex when the family

size is large, the within-family association structure is complex or the family data is in

mixed-type. Furthermore, the first composite likelihood is almost as efficient as the full

likelihood in most cases, which is also supported by our asymptotic relative efficiency

study. We therefore only apply the extended composite likelihoods (2.4.2) and (2.4.3) to

the mixed-type family data with ascertainment bias. Table 2.2 summarizes the empirical

properties of estimates based on the extended composite likelihood for mixed-type family

data with response-biased sampling under the exchangeable and more general within-family

structures, respectively. We find that the bias are all negligible, the empirical standard

errors (ESE) agree with the average robust standard errors (ASE), and the empirical

coverage probabilities (ECP) of nominal 95% confidence intervals are within the acceptable

range for all parameters. The ASE under the first composite likelihood are smaller than

those of the second composite likelihood approach. These findings support the validity of

the extension of our proposed composite likelihood approaches to the mixed-type family

data subject to the response-biased sampling.
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Table 2.2: Empirical properties of estimators based on composite likelihoods CL1 and CL2

for a 50:50 mix of right-censored and current status family data under response-biased

sampling; for the Clayton copula Kendall’s τ = 0.4 and for the Gaussian copula τpp = 0.1,

τss = 0.4, τps = 0.2; n = 1000, nsim = 1000.

Composite Likelihood CL1 Composite Likelihood CL2

PARAMETER† BIAS ESE ASE ECP BIAS ESE ASE ECP

Clayton Copula

log λ -0.001 0.084 0.081 0.947 -0.005 0.112 0.109 0.942

log κ -0.000 0.023 0.023 0.953 -0.000 0.027 0.027 0.955

γ0 -0.001 0.102 0.100 0.944 0.002 0.149 0.148 0.958

τ -0.001 0.042 0.042 0.945 -0.001 0.062 0.062 0.948

Gaussian Copula

log λ -0.001 0.043 0.043 0.954 -0.001 0.049 0.049 0.951

log κ 0.000 0.022 0.022 0.950 0.000 0.024 0.024 0.952

γ0 0.001 0.064 0.063 0.937 -0.001 0.083 0.083 0.950

γ1 -0.000 0.073 0.073 0.951 0.003 0.096 0.097 0.950

γ2 -0.001 0.052 0.052 0.948 0.001 0.071 0.073 0.955

τpp 0.000 0.032 0.031 0.938 -0.000 0.041 0.041 0.950

τss -0.000 0.023 0.024 0.959 0.001 0.029 0.030 0.949

τps -0.000 0.022 0.021 0.937 0.000 0.028 0.027 0.942

† True parameter values are log λ = −4.112, log κ = 0.182, for Clayton copula γ0 = 0.847; for Gaussian

copula γ = (0.201, 0.647, 0.205)′.
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2.4.2 Use of Auxiliary Data on the Marginal Incidence and Two-

Stage Estimation

While it is compelling to formulate models for the onset time distribution to address

the current status nature of the data, there is limited information on the marginal onset

time distribution from the family study itself since the onset times of probands are right-

truncated and the incidence is typically low among non-probands. Auxiliary data are often

available however, which has the potential to enhance efficiency of estimation considerably

depending on the nature of the auxiliary data. Readily available auxiliary data is, for

example, the right-truncated disease onset time among individuals not selected for inclusion

in the family study; assuming participants are randomly selected and this data can be

easily incorporated as we show shortly. There may also be information available from

other clinical registries of similar psoriatic arthritis patients. Alternatively one may exploit

current status data from a cross-sectional survey (Gelfand et al., 2005) as we do in the

application.

Let F denote the set of probands in the family data and A the set of individuals in the

auxiliary sample; we consider auxiliary data of various types. In the presence of auxiliary

data, the augmented composite likelihoods corresponding to (2.4.2) and (2.4.3) become

ACL1(ψ) =
∏
i∈F

∏
1≤j<k≤mi

P (W̄ijk|R̄ijk, C̄ijk, Z̄ijk, Ti0 < Ci0;ψ)
∏
r∈A

P (Xr, Yr|Cr, Zr, Tr ∈ Br; θ) ,

(2.4.4)

ACL2(ψ) =
∏
i∈F

mi∏
j=1

P (W̄ij |R̄ij , C̄ij , Z̄ij , Ti0 < Ci0;ψ)
∏
r∈A

P (Xr, Yr|Cr, Zr, Tr ∈ Br; θ) , (2.4.5)

respectively, where Br denotes the truncation interval for individual r in the auxiliary

sample. If, for example, we consider unselected individuals from the original registry, then

individuals in the auxiliary sample have right-truncated onset times like the probands; e.g.

Br = (0, Cr) for r ∈ A . For current status data from a cross-sectional survey there is no

truncation, so Br = (0,∞). The estimator of ψ can be found by maximizing the augmented

composite likelihoods, and the asymptotic properties of this estimator are similar as we
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developed in Section 2.3.

When the unknown parameters are high dimensional, two-stage estimation can be used.

To show how, we express (2.4.4) as

ACL1(ψ) = ACL11(θ)× ACL12(ψ) (2.4.6)

where

ACL11(θ) =
∏
i∈F

P (Ti0|Ci0, Zi0, Ti0 < Ci0; θ)
∏
r∈A

P (Xr, Yr|Cr, Zr, Tr ∈ Br; θ) (2.4.7)

and

ACL12(ψ) =
∏
i∈F

∏
1≤j<k≤mi

P (Wijk|R̄ijk, C̄ijk, Z̄ijk, ti0;ψ) . (2.4.8)

The first term in (2.4.6) is only a function of θ while the second term is a function of ψ. Un-

der a two-stage estimation procedure we maximize (2.4.7) to obtain θ̆. At the second stage

we plug θ̆ into (2.4.8) and maximize it with respect to the remaining parameters to obtain

γ̆. The two-stage estimation procedure can also be used for the second composite likeli-

hood ACL2(ψ) in the similar way. The proof that the two-stage estimator ψ̆ = (θ̆ ′, γ̆ ′)′ has

an asymptotic normal distribution is given in the Appendix A along with the asymptotic

variance.

We carry out a simulation study to illustrate the performance of the two-stage estima-

tion procedure. We consider the same parameter setting of Section 2.4.1 with two types of

auxiliary data: right-truncated individual data (to mimic the PsA clinical data) and cur-

rent status data (to mimic the national PsA survey data). The same marginal distribution

is assumed for event times of all individuals from auxiliary sample and recruited family

sample. For the right-truncated auxiliary data, we let the clinic entry times Cr satisfy the

same distribution of that for the proband in the family study, which is normal distribution

with mean µ = 50 and variance σ2 = 20. Then we can generate the right-truncated event

time by Tr ∼ T |T < Cr, and the auxiliary data consist of {Tr, Cr, Yr = 1; r = 1, . . . , nA},
where nA is size of the auxiliary sample. Likewise, for the auxiliary current status sample,
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the examination time Cr is normally distributed with mean µ = 50 and variance σ2 = 20,

and Tr satisfy the Weibull distribution indexed by the vector of parameters θ and we

observe {Cr, Yr; r = 1, . . . , nA}. We generate 1000 replicates in each scenario with the

sample size for the family sample set to nF = 1000 and the size of the auxiliary sample

set to nA = 1000 or 20000. Both simultaneous and two-stage estimation procedures are

carried out and the variance of estimates under the two-stage estimation procedure can

be estimated by formula (2.A.15) in which probands are selected by simple random sam-

pling. The empirical properties of estimators are summarized in Table 2.3 for the Gaussian

copula.

We can find that when size of the auxiliary sample increases, both simultaneous and two-

stage estimation can lead to more precise estimates and that simultaneous maximization

leads to more efficient estimates than the two-stage procedure in all cases. When it is

possible to write out and is not too complex to simultaneously estimate parameters, this

method is therefore recommended. Furthermore, when there is large set of auxiliary data,

the two-stage procedure utilizing the auxiliary information is almost as efficient as that

using simultaneous estimation.

2.5 Application to the Psoriatic Arthritis Family Study

Here we consider an application to data from a family study conducted in the Centre for

Prognosis Studies in the Rheumatic Diseases at the University of Toronto. Hereditary

factors are thought to be important in psoriatic arthritis, as some studies have suggested

that close blood relatives of psoriatic arthritis patients have higher risk of developing this

disease compared to the general population. Characterizing the within-family association is

an important step towards understanding the genetic basis for disease. Particular interest

lies in assessing whether the father-child association in disease is greater or smaller than

the mother-child association - studies of this sort address the question of the so-called

“parent of origin” effect (Burden et al., 1998).
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Table 2.3: Empirical properties of estimators based on augmented composite likelihoods

ACL1 and ACL2 for mixed-type family data in the presence of right-truncated or current

status auxiliary data; Gaussian copula with Kendall’s τpp = 0.1, τss = 0.4, τps = 0.2;

nF = 1000, nsim = 1000.

Augmented Composite Likelihood ACL1 Augmented Composite Likelihood ACL2

Simultaneous Two-Stage Simultaneous Two-Stage

PARAMETER† EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Right-truncated Auxiliary Data; nA = 1000

log λ -0.002 0.041 0.042 0.956 -0.005 0.157 0.152 0.946 -0.001 0.047 0.048 0.956 -0.005 0.157 0.152 0.946

log κ 0.001 0.019 0.019 0.943 0.003 0.035 0.035 0.948 0.001 0.020 0.020 0.943 0.003 0.035 0.035 0.948

γ0 -0.001 0.062 0.062 0.952 0.005 0.132 0.131 0.917 -0.003 0.083 0.083 0.954 -0.000 0.151 0.151 0.919

γ1 0.004 0.074 0.073 0.953 -0.002 0.082 0.082 0.953 0.006 0.098 0.096 0.949 0.001 0.105 0.104 0.940

γ2 -0.000 0.051 0.052 0.952 -0.003 0.052 0.053 0.948 0.001 0.072 0.072 0.950 -0.002 0.073 0.074 0.945

τpp -0.000 0.031 0.031 0.953 0.002 0.064 0.064 0.913 -0.002 0.041 0.041 0.953 -0.001 0.074 0.074 0.917

τss 0.001 0.024 0.024 0.955 0.001 0.042 0.042 0.948 0.001 0.030 0.030 0.954 -0.001 0.048 0.049 0.955

τps -0.000 0.021 0.021 0.935 0.000 0.053 0.053 0.925 -0.001 0.027 0.026 0.948 -0.002 0.059 0.060 0.932

Right-truncated Auxiliary Data; nA = 20, 000

log λ -0.001 0.035 0.033 0.943 0.000 0.046 0.046 0.953 -0.001 0.0360 0.035 0.947 0.000 0.046 0.046 0.953

log κ -0.000 0.009 0.009 0.938 0.000 0.011 0.011 0.958 -0.000 0.009 0.009 0.938 0.000 0.011 0.011 0.958

γ0 -0.001 0.062 0.059 0.929 -0.000 0.066 0.065 0.944 -0.000 0.079 0.076 0.944 -0.001 0.082 0.081 0.941

γ1 -0.000 0.076 0.073 0.940 -0.001 0.077 0.073 0.939 0.001 0.099 0.096 0.941 0.000 0.099 0.096 0.942

γ2 0.000 0.053 0.052 0.946 0.000 0.053 0.052 0.942 0.001 0.074 0.072 0.951 0.001 0.073 0.072 0.952

τpp -0.000 0.030 0.029 0.930 -0.000 0.033 0.032 0.943 -0.000 0.039 0.038 0.944 -0.001 0.040 0.040 0.942

τss -0.001 0.024 0.023 0.949 -0.001 0.025 0.025 0.951 -0.000 0.029 0.029 0.950 -0.001 0.030 0.030 0.953

τps -0.000 0.020 0.019 0.942 -0.000 0.022 0.022 0.951 0.000 0.023 0.030 0.946 -0.000 0.026 0.026 0.954

Current Status Auxiliary Data; nA = 1000

log λ -0.001 0.030 0.030 0.949 0.000 0.038 0.038 0.944 -0.000 0.030 0.031 0.953 0.000 0.038 0.038 0.944

log κ 0.000 0.022 0.022 0.951 0.001 0.030 0.029 0.942 0.001 0.024 0.023 0.947 0.001 0.030 0.029 0.942

γ0 -0.001 0.058 0.058 0.952 -0.001 0.062 0.061 0.947 -0.003 0.076 0.074 0.948 -0.003 0.078 0.077 0.946

γ1 0.004 0.074 0.073 0.950 0.004 0.075 0.073 0.949 0.006 0.097 0.096 0.947 0.005 0.097 0.096 0.944

γ2 0.000 0.051 0.052 0.950 -0.000 0.051 0.052 0.951 0.001 0.072 0.072 0.946 0.001 0.072 0.072 0.947

τpp -0.001 0.029 0.028 0.951 -0.001 0.031 0.030 0.947 -0.002 0.037 0.037 0.949 -0.002 0.038 0.038 0.944

τss 0.001 0.023 0.023 0.954 0.001 0.024 0.024 0.943 0.001 0.028 0.029 0.950 0.001 0.029 0.030 0.949

τps -0.001 0.019 0.019 0.942 -0.001 0.021 0.021 0.947 -0.001 0.022 0.022 0.949 -0.001 0.024 0.024 0.951

Current Status Auxiliary Data; nA = 20, 000

log λ 0.000 0.009 0.009 0.947 0.001 0.010 0.010 0.951 0.000 0.009 0.009 0.946 0.001 0.010 0.010 0.951

log κ 0.000 0.022 0.021 0.936 0.001 0.028 0.027 0.946 0.001 0.024 0.023 0.938 0.001 0.028 0.027 0.946

γ0 -0.001 0.056 0.053 0.939 -0.001 0.056 0.053 0.939 -0.001 0.072 0.069 0.948 -0.001 0.072 0.069 0.948

γ1 -0.000 0.076 0.072 0.938 -0.001 0.076 0.073 0.938 0.000 0.098 0.095 0.938 0.000 0.098 0.095 0.939

γ2 0.000 0.053 0.051 0.945 0.000 0.053 0.051 0.944 0.001 0.073 0.072 0.952 0.001 0.073 0.072 0.951

τpp -0.001 0.028 0.026 0.939 -0.001 0.028 0.026 0.940 -0.001 0.035 0.034 0.947 -0.001 0.035 0.034 0.949

τss -0.001 0.023 0.022 0.952 -0.001 0.023 0.022 0.946 -0.001 0.028 0.028 0.947 -0.001 0.028 0.028 0.951

τps -0.000 0.016 0.016 0.956 -0.000 0.016 0.016 0.956 0.000 0.018 0.019 0.958 0.000 0.018 0.019 0.953

† True values for parameters: log λ = −4.112, log κ = 0.182, γ = (0.201, 0.647, 0.205)′.
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A total of 150 families were recruited for the study, which range in size from 2 to 7

individuals including the proband. The information on the onset time is of a mixed-type

as the event time is available for the proband, but for other family members it may only be

known whether they are diseased at the time of the assessment; the formulation of Section

2.4 can therefore be used in this setting. To explore the parent of origin question we adopt

a Weibull model and a piecewise-constant model for the marginal onset time distribution.

A Gaussian copula is used with a second-order regression model given by

log((1 + τijk)/(1− τijk)) = γ0 + γ1Vijk1 + γ2Vijk2 + γ3Vijk3 , (2.5.1)

where Vijk1 = I((j, k) pair are siblings), Vijk2 = I((j, k) pair is Father− Child), and Vijk3 =

I((j, k) pair is Mother− Child). The test of the null hypothesis that the association be-

tween father and child is the same as the association between mother and child is expressed

as H0 : γ2−γ3 = 0 vs. HA : γ2−γ3 6= 0. Due to the challenge of computing and maximizing

the full likelihood we focus on the composite likelihoods ACL1 and ACL2. As mentioned

earlier there is limited information on the marginal onset time distribution in the family

data alone since the onset times of the probands are all right-truncated. We therefore

make use of auxiliary data from n = 734 unselected individuals in the Psoriatic Arthritis

Toronto Cohort; these individuals all provide right-truncated onset times. The top panel

of Figure 2.2 displays contours of the negative log-likelihood for the Weibull parameters

(log λ, log κ) based on the full Toronto registry, which highlights the difficulty in estimating

the rate (λ) when all data are right-truncated.

In a second series of analyses we also integrate auxiliary data from a U.S. national

survey of the National Psoriasis Foundation conducted in 2001 and reported in Gelfand

et al. (2005). This study provides current status information on psoriatic arthritis from

n = 15, 307 respondents, 328 of which indicated they had been diagnosed with psoriatic

arthritis. The lower panel of Figure 2.2 shows the contour of the negative log-likelihood

based on the current status data from the survey of the National Psoriasis Foundation,

which also contains the point reflecting the maximum likelihood estimate of (log λ, log κ).

The absence of right-truncation in the survey data facilitates estimation and so this aux-
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iliary data plays an important role in the inferences that follow.
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Figure 2.2: Contour plots of the negative log-likelihood for the Weibull parameters

(log λ, log κ) based on unselected Toronto registry (top) and current status data from the

survey of the National Psoriasis Foundation (bottom).

As there are only 8 pairs of parents in the family data that contribute to the second

composite likelihood, it is not possible to estimate the intercept in model (2.5.1). We

therefore fix γ0 = 0 to reflect the scenario that there is no environmental familial effect on

the occurrence of psoriatic arthritis, and focus on the parent of origin hypothesis.
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We first assume parametric, weakly, and non-parametric margins for the onset time of

psoriatic arthritis; the estimated cumulative hazard functions based on the current status

data from the National Psoriasis Foundation or combinations of this current status data

with Toronto psoriatic arthritis clinical registry data are shown in Figure 2.3. We also

estimate the cumulative hazards of PsA based on the simultaneous and two-stage estima-

tion of augmented composite likelihoods. We find that the estimated cumulative hazard

functions under the Weibull margin agrees generally with the estimates based on both the

piecewise constant model and non-parametric estimation approach, which indicates that

Weibull margin is reasonable in this case. For the piecewise constant model four cut points

were chosen to be 25, 32, 40 and 48 corresponding to the 20%, 40%, 60% and 80% quantiles

of the right-truncated onset time of PsA in the clinical cohort samples giving five pieces

(PWC-5). Also the estimated cumulative hazard function for the PsA onset time based

on the augmented composite likelihood (simultaneous and two-stage) agrees well with the

non-parametric estimation. Table 2.4 summarizes the estimates for the association param-

eters based on the augmented composite likelihoods with Weibull marginal distribution or

piecewise constant model for the PsA onset time under simultaneous and two-stage estima-

tion, where the maximization is done by the function ‘nlm’ in R (R Core Team, 2014). The

variance of the two-stage estimates can be estimated by the formula (2.A.15) in Appendix

A, in which simple random sampling of the selected probands is assumed and we don’t

need to model the sampling probability.

The results are in close agreement for the augmented composite likelihood approaches

and the Weibull model leads to similar results to the piecewise constant model for the

PsA onset time. There is moderate association between siblings with Kendall’s τss around

0.21, suggesting genetic factors on the onset time of PsA. Furthermore, the estimated

Kendall’s τ for father-child association is quite different with that for mother-child, which

suggests that there might be different effect of parents on children. For the ACL1 under

a piecewise constant model with simultaneous estimation, we find τ̂fc = 0.0790 (95% CI:

-0.0165, 0.1745) whereas τ̂mc = −0.0568 (95% CI: -0.1538, 0.0402). When ACL2 was

adopted with the same model and estimation procedure, we find τ̂fc = 0.0943 (95% CI:
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Figure 2.3: Estimated cumulative hazard functions for onset of psoriatic arthritis.

0.0032, 0.1854) and τ̂mc = −0.0121 (95% CI: -0.1191, 0.0949). A Wald test of the null

hypothesis H0 : γ2 = γ3 was carried out for each model based on augmented composite

likelihoods with parametric and piecewise constant model for onset time margin and the

results are reported in Table 2.5. We can find that under the Weibull model for the onset

time, the p-values are both 0.046 under the first augmented composite likelihood when

simultaneous and two-stage estimation approaches are adopted. Similarly, the p-values are

0.049 and 0.048 when piecewise constant model is adopted for the marginal distribution of

onset time. These values are all less than the 0.05 significant level, so we reject the null
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hypothesis and conclude that father-child association in the onset time of PsA is different

than the mother-child association, and the father has greater effect on the children with

regard to the onset time to psoriatic arthritis. The corresponding p-values are all larger

than 0.05 based on the second augmented composite likelihood. This may be due to the

loss of efficiency from the second augmented composite likelihood compared to the first

augmented composite likelihood.

2.6 Discussion

Family studies are ubiquitous in research on the genetic basis for disease. Response-

biased sampling of families is used routinely to enrich samples in the hope of increasing

information about the nature and extent of within family dependence and it is widely known

that adjustments to likelihood functions or estimating equations are necessary to ensure

valid inferences. Most analyses, however, are based on a binary designation of individuals’

disease status. One purpose of this Chapter is to highlight the utility of copula models as a

way of focusing on the disease onset time and for obtaining interpretable measures of within

family dependence. Gaussian copula models, in particular, allow one to accommodate a

dependence structure which is more elaborate than a simple exchangeable association.

Composite likelihood offers a computationally convenient approach to the analysis of

clustered and censored event times which is particularly appealing when some cluster sizes

are large. Efficiency losses can be modest when the within-family associations are modest,

and these can be offset by exploitation of auxiliary data. Such data may be closely aligned

with the probands, and may correspond, for example, to individuals in the same registry

as the proband who were not sampled for inclusion in the family study, or individuals

from similar but different registries. Alternatively, if cohort studies are available furnish-

ing information on the incidence of the disease of interest, these too can be exploited. The

cross-sectional survey of Gelfand et al. (2005) yields current status data of surveyed indi-

viduals which conveys useful information on disease incidence. Of course when combining
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Table 2.4: Estimates of all parameters based on the augmented composite likelihoods

ACL1 and ACL2, using reduced second-order regression model with γ0 = 0; augmentation

samples include unselected individuals from the University of Toronto Psoriatic Arthritis

Clinic and the data from Gelfand et al. (2005).

ACL1 ACL2

Simultaneous Two-Stage Simultaneous Two-Stage

Est. S.E Est. S.E Est. S.E Est. S.E

Weibull model for onset time

γ1 0.4685 0.1046 0.4673 0.1047 0.4387 0.0936 0.4381 0.0935

γ2 0.1440 0.0929 0.1441 0.0933 0.1764 0.0895 0.1752 0.0892

γ3 -0.1270 0.0999 -0.1275 0.0998 -0.0330 0.1081 -0.0340 0.1078

τss 0.2301 0.0495 0.2295 0.0496 0.2159 0.0446 0.2156 0.0446

τfc 0.0719 0.0462 0.0719 0.0464 0.0880 0.0444 0.0874 0.0443

τmc -0.0634 0.0498 -0.0637 0.0497 -0.0165 0.0540 -0.0170 0.0538

Piecewise constant (PWC-5) model for onset time

γ1 0.4457 0.1094 0.4406 0.1097 0.4137 0.0967 0.4102 0.0965

γ2 0.1583 0.0980 0.1622 0.0977 0.1891 0.0938 0.1891 0.0933

γ3 -0.1138 0.0994 -0.1122 0.0997 -0.0242 0.1092 -0.0242 0.1088

τss 0.2192 0.0521 0.2168 0.0523 0.2039 0.0464 0.2023 0.0463

τfc 0.0790 0.0487 0.0809 0.0485 0.0943 0.0465 0.0943 0.0462

τmc -0.0568 0.0495 -0.0561 0.0497 -0.0121 0.0546 -0.0121 0.0544
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Table 2.5: Wald tests of the parent-of-origin hypothesis based on the augmented composite

likelihoods with ascertained family data, unselected individuals from the University of

Toronto Psoriatic Arthritis Clinic and NPF current satus data, using simultaneous or two-

stage estimation procedures.

ACL1 ACL2

Simultaneous Two-Stage Simultaneous Two-Stage

WEIBULL MODEL Wald Statistic 1.995 1.995 1.490 1.489

P-value 0.046 0.046 0.136 0.136

PIECEWISE CONSTANT Wald Statistic 1.967 1.976 1.478 1.481

P-value 0.049 0.048 0.140 0.139

data from disparate sources questions naturally arise about the validity of homogeneity

assumptions, but these can be tested.

The construction of the complete data likelihood involving the unknown number of

“potential probands” offers an alternative way of conceptualizing the optimization prob-

lem which obviates the need for conditioning. This can be computationally advantageous

as the number of parameters in the marginal disease onset time distributions increases,

particularly if software is available for semiparametric maximization of the likelihoods in

untruncated samples (Lawless and Yilmaz, 2011). Variance estimation via missing informa-

tion principle and the method of Louis (1982) has also proven useful with semiparametric

methods involving current status data (Mongoué-Tchokoté and Kim, 2008; McMahan et al.,

2013) and otherwise incomplete responses.

Finally we remark that we have described how to conduct tests for particular hypothe-

ses regarding within-family dependence structures which may be motivated by questions

regarding heredity. An important topic for future work is the examination of the rela-

tive power properties of these tests based on likelihood and composite likelihood using

simultaneous and two-stage estimation procedures.
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Appendix A: Asymptotic Properties following Two-

Stage Estimation with Augmented Composite Likeli-

hood

Here we prove the asymptotic properties of the two-stage estimator for the augmented

composite likelihoods proposed in Section 2.4.2. The augmented composite likelihoods

can both be expressed as the product of two functions, the first is a function only of the

marginal parameter θ as in (2.4.7), and the second is a function of (θ′, γ′)′ as in (2.4.8).

We consider a set of independent individuals P for whom there is complete data and

from which subjects are sampled for inclusion in the family study; let the number of

individual in the set P be n. In Section 2.4.2, we assume that individuals are selected

by simple random sampling and the second part of the augmented composite likelihood

is constructed based on the sampled families only. We generalized this here to deal with

sampling schemes other than simple random sampling and derive here the asymptotic

properties of the two-stage estimator using inverse probability weights to account for the

selection mechanism. We let ∆i indicate that individual i is sampled for the family study

which occurs with probability πi(α) = P (∆i = 1|Di) where Di is a vector of covariates

containing attributes which potentially influence the probability of selection. One could,

with suitable assumptions, develop optimal sampling schemes for a particular inferential

objective by specifying the elements of Di and finding the value of α that minimizes the

asymptotic variance of key parameter estimates. Alternatively one can model the selection

process of families post hoc to provide protection against dependent sampling. We let

F = {i : ∆i = 1} and F c = {i : ∆i = 0}, so P = F ∪ F c.

The estimating functions for θ and γ are

U1(θ) =
∑
i∈F

Ui1(θ) +
∑
r∈F c

Ur1(θ) =
n∑
i=1

Ui1(θ) , (2.A.1)

U2(ψ, α) =
n∑
i=1

Ui2(ψ, α) =
n∑
i=1

∆i · U∗i2(ψ)

πi(α)
, . (2.A.2)
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respectively, where

Ui1(θ) =
∂

∂θ
logP (Xi, Yi|Ci, Zi, Ti ∈ Bi; θ) ,

and for the first augmented composite likelihood (2.4.4),

Ui2(ψ) =
∆i

πi(α)
·
∑

1≤j<k≤mi

∂

∂γ
logP (Wijk|R̄ijk, C̄ijk, Z̄ijk, ti0;ψ) ,

and for the second augmented composite likelihood (2.4.5),

Ui2(ψ) =
∆i

πi(α)
·
mi∑
j=1

∂

∂γ
logP (Wij|R̄ij, C̄ij, Z̄ij, ti0;ψ) .

It is easy to show that

E[Ui2(ψ, α)] = E{E[∆i · U∗i2(ψ)/πi(α)|Di]} = E{U∗i2(ψ)} = 0 .

When α is unknown, a logistic regression model can be used to model the selection

mechanism, leading to the additional estimating equation for α given as

U0(α) =
n∑
i=1

Ui0(α) =
n∑
i

∆i − πi
πi(1− πi)

∂πi
∂α

. (2.A.3)

Let η = (α′, θ′)′ and Ū1(η) = (U ′0(α), U ′1(θ))′. We then let U(ψ) = (Ū ′1(η), U ′2(ψ)), where

ψ = (η′, γ′)′, and let ψ̆ = (η̆′, γ̆′)′ denote the solution to (2.A.4) given by

U(ψ) =

(
Ū1(η)

U2(ψ)

)
=

n∑
i=1

Ui(ψ) =
n∑
i=1

 Ūi1(η)

∆i · U∗i2(ψ)/πi(α)

 = 0 . (2.A.4)

Since

U(ψ̆) = U(ψ) +
∂U(ψ)

∂ψ′
(ψ̆ − ψ) + op

(
1√
n

)
, (2.A.5)

then
√
n(ψ̆ − ψ) =

[
− 1

n

∂U(ψ)

∂ψ′

]−1 [
1√
n
U(ψ)

]
+ op(1) , (2.A.6)
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where

− 1

n

∂U(ψ)

∂ψ′
= − 1

n

n∑
i=1

 ∂Ūi1(η)
∂η′

0

∂
∂η′

(∆i · U∗i2(ψ)/πi(α)) ∂
∂γ′

(∆i · U∗i2(ψ)/πi(α))

 . (2.A.7)

As n→∞, (2.A.7) converges in probability to

E (−∂Ui(ψ)/∂ψ′) =

 E
(
−∂Ūi1(η)

∂η′

)
0

E
(
− ∂
∂η′

(∆i · U∗i2(ψ)/πi(α))
)

E
(
− ∂
∂γ′

(∆i · U∗i2(ψ)/πi(α))
)


=

[
I11(ψ) 0

I21(ψ) I22(ψ)

]
= I(ψ) ,

From (2.A.6),
√
n(ψ̆ − ψ) is then asymptotically equivalent to[

E

(
− ∂Ui(ψ)

∂ψ′

)]−1 [
1√
n
U(ψ)

]
=

 I−1
11 (ψ) 0

− I−1
22 (ψ)I21(ψ)I−1

11 (ψ) I−1
22 (ψ)

[ 1√
n
U(ψ)

]
.

Furthermore, since

1√
n
U(ψ)→ N(0,B(ψ)) , (2.A.8)

where

B(ψ) =

(
B11(ψ) B12(ψ)

B21(ψ) B22(ψ)

)
=

 E
[
Ūi1(η)Ū ′i1(η)

]
E
[
∆iŪi1(η)U∗

′
i2 (ψ)/πi(α)

]
E
[
∆iU

∗
i2(ψ)Ū ′i1(η)/πi(α)

]
E
[
∆iU

∗
i2(ψ)U∗

′
i2 (ψ)/π2

i (α)
]


It follows that as n→∞,

√
n(ψ̆ − ψ)→ N(0, I−1(ψ)B(ψ)

[
I−1(ψ)

]′
) , (2.A.9)

and equivalently we obtain that

√
n(η̆ − η)

D−→ N(0,Σ) , (2.A.10)
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√
n(γ̆ − γ)

D−→ N(0,Γ) , (2.A.11)

where

Σ = I−1
11 (ψ)B11(ψ)

(
I−1(ψ)

)′
, (2.A.12)

Γ = I−1
22 (ψ)

{
I21(ψ)I−1

11 (ψ)B11(ψ)
(
I−1

11 (ψ)
)′ I ′21(ψ) + B22(ψ) (2.A.13)

− B21(ψ)
(
I−1

11 (ψ)
)′ I ′21(ψ)− I21(ψ)I−1

11 (ψ)B12(ψ)
}(
I−1

22 (ψ)
)′
.

Furthermore, the asymptotic variance of the two-stage estimator can be consistently

estimated by Σ̂ and Γ̂, where

Σ̂ = Î −1
11 (ψ̆)B̂11(ψ̆)

(
Î −1

11 (ψ̆)
)′

, (2.A.14)

Γ̂ = Î−1
22 (ψ̆)

{
Î21(ψ̆)Î −1

11 (ψ̆)B̂11(ψ̆)
(
Î −1

11 (ψ̆)
)′
Î ′21(ψ̆) + B̂22(ψ̆)

− B̂21(ψ̆)
(
Î −1

11 (ψ̆)
)′
Î ′21(ψ̆)− Î21(ψ̆)Î −1

11 (ψ̆)B̂12(ψ̆)

}(
Î −1

22 (ψ̆)
)′

. (2.A.15)

with these expressions easily calculated based on the sample. For example,

Î22(ψ̆) = − 1

n

n∑
i=1

∆i

πi(α̂)

∂U∗i2(ψ)

∂γ′
∣∣
ψ=ψ̆

,

B̂22(ψ̆) =
1

n

n∑
i=1

∆i

π2
i (α̂)

U∗i2(ψ)U∗
′

i2 (ψ)
∣∣
ψ=ψ̆

,

Î11(ψ̆) = − 1

n

n∑
i=1

∂Ūi1(η)

∂η′
∣∣
η=η̆

.
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Chapter 3

Sample Size and Robust Marginal

Methods for Cluster-Randomized

Trials with Censored Event Times

3.1 Introduction

Cluster-randomization is employed in clinical trials when it is appropriate on ethical (Ed-

wards et al., 1999), practical (Torgerson, 2001), or contextual (Silverman et al., 1999)

grounds to assign groups of individuals (e.g. families, schools, hospitals, or communities)

to receive one of two or more interventions to be compared. In studies aiming to reduce the

spread of infectious disease, for example, prevention strategies are most naturally admin-

istered to large groups of individuals (e.g. municipalities), and the resulting evidence of

impact thereby reflects direct effects (susceptibility), indirect effects (infectiousness of oth-

ers), as well as the effect of herd immunity (Hayes et al., 2000). Cluster-randomization also

offers a way of minimizing contamination across treatment groups, and can often enhance

compliance (Donner and Klar, 1994; Moerbeek, 2005). In some fields of research, the units

providing the response are paired or otherwise grouped, as is the case in ophthalmology or
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audiology. In such settings interventions that are administered and act through the blood

stream (e.g. medications) necessitate randomizing individuals and the units providing the

response are clustered within individuals. The many advantages of cluster-randomization

have led to its increased use in recent years in diverse areas of research including health

promotion (Cameron et al., 1999), education for disease management (Shah et al., 2001),

clinical research (Martin et al., 2004), and health policy and program evaluation (Camp-

bell et al., 2000). Donner and Klar (2000) give a thorough account of the practical and

methodological issues in the conduct of cluster-randomized trials.

While much of the methodological work on cluster-randomized trials to date has been

for continuous or binary responses, in many settings interest lies in evaluating the effect

of an intervention in delaying or preventing the occurrence of an event. In patients with

insulin-dependent diabetes mellitus, for example, interest may lie in the effect of medical

therapies on the time to severe vision loss in each eye (Lee et al., 1992); such times are

correlated within individuals due to shared exposure to blood sugar levels, blood pressures,

and other systemic features. Chronic otitis media is a condition arising in children char-

acterized by poor drainage of fluid from the inner ear. A common intervention involves

the surgical insertion of a ventilating tube and interest then may lie in assessing an exper-

imental post-surgery medical therapy designed to prolong the function of the ventilating

tubes. The child is then the unit of randomization (Le and Lindgren, 1996; Manatunga

and Chen, 2000), and the times to failure of the tubes in the left and right ears would

naturally be correlated. Settings involving time to event responses with larger cluster sizes

include studies of fall prevention in retirement homes (Lord et al., 2003), studies of primary

care practices and survival in patients with depression (Bogner et al., 2007), and studies

of pediatric clinics and time to discontinuation of breast-feeding (Kramer et al., 2001).

Cox regression models involving random effects, or frailty terms, are widely used for

analysing correlated time to event data (Bellamy et al., 2004; Glidden and Vittinghoff,

2004). In this framework failure times are typically considered to be independent condi-

tional on a latent variable representing unexplained differences between clusters and the

association among responses within clusters arises by marginalizing over the random ef-
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fects. There are several important limitations of this approach for the analysis of event

times in cluster-randomized trials. First, specification of a proportional hazard model

given cluster-level random effects is unappealing when the treatment indicator is fixed at

the cluster level (Neuhaus et al., 1991; Neuhaus and Kalbfleisch, 1998). Second, regression

coefficients reflect the multiplicative effects of the intervention, conditional on the latent

variable; the proportional hazards assumption does not hold in the marginal model ob-

tained by integrating out the random effects, making the interpretation of the intervention

effect challenging. Third, while the dependence within clusters is accommodated in the

marginal joint distribution, the association is not modeled in an appealing way. Simple

measures of within-cluster dependence do not in general arise from the random effects

formulation with censored failure time data, so it is difficult to extract useful informa-

tion for the design of future similar trials. Methods involving intervention effects specified

based on marginal Cox models feature none of these limitations and are therefore much

more appealing. For large numbers of small groups of correlated failure time, Lee et al.

(1992) developed very useful methods for robust inference about regression coefficients in

marginal Cox models fitted under a “working independence” assumption, similar in spirit

to the working independence assumption adopted when clustered categorical data are anal-

ysed via generalized estimating equations (Zeger and Liang, 1986) or when multivariate

failure time data are analysed by the marginal approach of Wei et al. (1989). Robust

“sandwich” variance estimates provided by Lee et al. (1992) ensure valid inference when

there is within-cluster dependence in event times. The simple marginal interpretation of

intervention effects and use of robust variance estimation make this a useful and simple

framework for the analysis of event times in cluster-randomized trials.

A considerable amount of attention has been directed at the development of sample size

formulae for the cluster-randomized trials with continuous and discrete outcomes (Corn-

field, 1978; Donner et al., 1981; Donner and Klar, 1994; Lee and Dubin, 1994; Hayes and

Bennett, 1999), but relatively little work has been done for trials involving censored event

times; in what follows the term sample size is used to mean the number of clusters. Jahn-

Eimermacher et al. (2013) developed sample size criteria based on a frailty model for the
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within-cluster dependence, but as mentioned earlier the frailty approach is unappealing for

use in cluster-randomized trials. Manatunga and Chen (2000) derived sample size formula

for bivariate event times under a parametric proportional hazards model with exponen-

tial margins. Jung (2007) proposed a simulation-based sample size calculation procedure

involving a weighted rank test for clustered survival data, which allows variable cluster

size. Moerbeek (2012) studied the effect of sample size on precision of parameter estimates

and statistical power for clustered randomized trials with discrete event times based on a

generalized linear mixed model. Xie and Waksman (2003) adapted the usual sample size

criteria for log-rank tests by the introduction of a design effect involving the average cluster

size and the intraclass correlation coefficient of the censoring (i.e. status) indicator of the

response times. While the formula is relatively simple, the sample size criterion is based

on an approximation of the asymptotic distribution of regression coefficients. More impor-

tantly, since the intraclass correlation coefficient in their design effect is for the censoring

indicators rather than the underlying failure times, its magnitude is driven by both the

dependence in the failure times within clusters as well as the within-cluster dependence in

the censoring times. As a result, the event times may be independent within clusters, for

example, but the censoring indicators may be highly correlated within clusters if the cen-

soring times are dependent. Moreover, the correlation in the censoring indicators depends

on both the administrative censoring time and the distribution of the random censoring

time, so any plans to modify a study by extending follow-up or attempting to reduce loss

to follow-up will render the measure of within-cluster dependence invalid.

We derive sample size criteria for cluster-randomized trials with censored time to event

responses when the intervention effect is specified through a marginal semiparametric pro-

portional hazards model fitted under a working independence assumption and robust vari-

ance estimates are used as in Lee et al. (1992). Of course at the design stage a fully

parametric model is required so a Weibull proportional hazard model is adopted to accom-

modate trend in the marginal hazard. Within-cluster dependence is conveniently modeled

using copula functions (Joe, 1997; Nelsen, 2006) since intervention effects may be speci-

fied in terms of the marginal distributions and within-cluster dependence is modeled by a
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separate association parameter. The resulting joint model is used to evaluate the compo-

nents of the robust variance formula (Lee et al., 1992) for a variety of practical settings,

and our approach does not involve any approximations apart from the usual ones used in

large sample theory. We also study the effect of copula misspecification and the impact

of within-cluster dependence in the random right censoring times. Sample size criteria are

also developed for cluster-randomized trials with interval-censored event times which arise

when the events are only detectable upon periodic inspection (e.g. radiographic examina-

tion, based on blood tests, urinalysis, etc.).

The remainder of this chapter is organized as follows. In Section 3.2 we define notation

and review the robust marginal method of Lee et al. (1992). The asymptotic distribution

of the test statistic is then derived to facilitate the development of sample size criteria, and

simulation studies are carried out to validate the derivations. In Section 3.3 we explore

the impact of misspecification of the copula function and the impact of within-cluster

dependence in the censoring times. Design criteria for cluster-randomized trials with type

II interval-censored failure times are developed in Section 3.4. Section 3.5 contains an

illustrative example, and concluding remarks and topics for future research are given in

Section 3.6.

3.2 Sample Size for Trials With Clustered Event Times

Subject to Right-Censoring

3.2.1 Notation and Robust Marginal Methods

We consider the setting in which n clusters, each comprised of J individuals, are randomly

assigned to receive either an experimental or standard intervention. We let Tij denote

an event time of interest for individual j in cluster i, j = 1, . . . , J , i = 1, . . . , n, and

assume interest lies in examining the effect of the experimental intervention by fitting a

Cox regression model. Let Zi be a binary covariate where Zi = 1 indicates that cluster i
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is assigned to the experimental intervention and Zi = 0 otherwise; we let P (Zi = 1) = p.

It is possible to generalize the methods that follow to accommodate a p × 1 cluster-level

covariate vector as we discuss in Section 3.6.

Suppose the plan is to observe individuals over the interval (0, C†] where C† is an

administrative censoring time, and let C∗ij denote a random (possibly latent) time of with-

drawal from the study for individual j in cluster i with survivor function G∗(s) = P (C∗ij ≥
s). Then Cij = min(C∗ij, C

†) denotes the resultant right-censoring time. We then let

Xij = min(Tij, Cij), Y
†
ij(t) = I(t ≤ Tij), Yij(t) = I(t ≤ Cij), and Ȳij(t) = Yij(t)Y

†
ij(t) be

an indicator for individual j in cluster i is under observation and at risk of the event at

time t; thus here, and in what follows, quantities with a vinculum (overbar) are observable

in the presence of right censoring. Let Nij(t) = I(Tij ≤ t) indicate that individual j in

cluster i experienced the event at or before time t, and dNij(t) = I(Tij = t). When viewed

as a random function of time, {Nij(s), 0 < s} is a right-continuous stochastic process.

If dN̄ij(t) = Ȳij(t)dNij(t) and N̄ij(t) =
∫ t

0
dN̄ij(s), then {N̄ij(s), 0 < s} is the observed

counting process for individual j in cluster i. Finally we let N̄i(t) = (N̄i1(t), . . . , N̄iJ(t))′,

Ȳi(t) = (Ȳi1(t), . . . , ȲiJ(t))′ and let {Ȳi(·), N̄i(·), Zi} denote the data from cluster i.

Marginal proportional hazard models are based on the assumption that given Zi, Tij

has a hazard function of the form

λij(t|Zi) = λ0(t;α) exp(Ziβ) (3.2.1)

where λ0(t;α) is a baseline hazard function indexed by a vector of parameters α, and β

is a scalar regression coefficient; let θ = (α′, β)′. The marginal Cox regression model is

obtained by leaving λ0(t;α) of an unspecified form, making it a semiparametric model.

Lee et al. (1992) considered the semiparametric Cox model and proposed estimation

of β under a working independence assumption by which observations in each cluster are

treated as independent of one another. This gives a partial score function for β, written

as U(β) =
∑n

i=1 Ui(β), where
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Ui(β) =
J∑
j=1

∫ ∞
0

{
Zi −

S1(t; β)

S0(t; β)

}
dN̄ij(t) , (3.2.2)

with Sr(t; β) =
∑J

j=1 Srj(t; β), Srj(t; β) = n−1
∑n

i=1 Ȳij(t)Z
r
i exp(Ziβ), r = 0, 1, Z0

i = 1

and Z1
i = Zi; the root of U(β) = 0 is β̂, the estimate.

If the marginal Cox regression model is correctly specified, n−1/2U(β) is asymptotically

normally distributed with mean zero and variance (Lee et al., 1992)

B = E[U2
i (β)] , (3.2.3)

estimated by

B̂ =
1

n

n∑
i=1

U2
i (β)

∣∣∣∣
β=β̂

.

Lee et al. (1992) showed that β̂ is consistent with n1/2(β̂−β)
D−→ N(0,Γ) asymptotically,

where Γ = B/A2 and

A = −E[∂Ui(β)/∂β] . (3.2.4)

Note that (3.2.4) can be consistently estimated by

Â = − 1

n

n∑
i=1

∂Ui(β)/∂β

∣∣∣∣
β=β̂

,

and so robust inferences are based on Γ̂ = B̂/Â2 for a given sample.

3.2.2 Sample Size Calculations via Copula Models for Clustered

Failure Times

While the robust analyses based on marginal Cox models in the previous section can be

carried out once data are collected, model assumptions are required to derive the sample
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size (number of clusters) based on large sample theory. In the context of clustered event

time data, copula functions offer a convenient way of constructing joint distributions with

proportional marginal hazards (Joe, 1997; Nelsen, 2006). In what follows we use J to

denote the dimension of the multivariate vector to coincide with the size of the clusters in

the previous section.

A copula function in J dimensions is a multivariate distribution on [0, 1]J whose margins

are uniform over [0, 1] (Nelsen, 2006). Thus for a J−dimensional uniform random vector

U = (U1, . . . , UJ)′, the joint probability function

C(u1, . . . , uJ ;φ) = P (U1 ≤ u1, . . . , UJ ≤ uJ ;φ) ,

defines a copula indexed by the parameter φ. The family of Archimedean copulas (Genest

and Mackay, 1986) can be written as

C(u1, . . . , uJ ;φ) = H−1 (H(u1;φ) + · · ·+H(uJ ;φ);φ) ,

whereH : [0, 1]→ [0,∞) is a continuous, strictly decreasing and convex generator function

satisfying H(1;φ) = 0. Kendall’s τ , a widely used measure of association with event time

data can be written as

τ = 1 + 4

∫ 1

0

H(u;φ)

H′(u;φ)
du

for Archimedean copulas.

If Ti = (Ti1, . . . , TiJ)′ is a J×1 vector of failure times, a joint model for Ti|Zi is obtained

via the probability integral transforms Uij = F(Tij|Zi; θ), j = 1, . . . , J , and linking all

marginal survivor functions via the copula as

F(ti|Zi;ψ) = P (Ti1 > ti1, . . . , TiJ > tiJ |Zi;ψ) = C(F(ti1|Zi; θ), . . . ,F(tiJ |Zi; θ);φ) ,

(3.2.5)

where F(·|Zi; θ) is the survivor function for Tij given the covariate Zi and ψ = (θ′, φ)′.

Since Kendall’s τ is invariant to monotonic transformations, it also measures the associ-

ation between the event times defined by the conditional (given Zi) probability integral

transform(Genest and Mackay, 1986).
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The Clayton copula is widely used in survival analysis and has generator function

H(u;φ) = φ−1(u−φ − 1), and then yields a joint survivor function for Ti|Zi of the form

F(ti|Zi;ψ) =
(
F(ti1|Zi; θ)−φ + · · ·+ F(tiJ |Zi; θ)−φ − (J − 1)

)−1/φ
. (3.2.6)

The Frank copula with generator H(u;φ) = − log((exp(−φu) − 1)/(exp(−φ) − 1)) and

the Gumbel copula with generator H(u;φ) = (− log u)φ, are two other members of the

Archimedean family that we consider shortly.

Returning to the issue of sample size determination, we consider the null and alternative

hypotheses H0 : β = β0 = 0 and HA : β 6= β0 respectively, where βA denotes the clinically

important effect of interest. Under a two-sided test at the γ1 level of significance, the

number of clusters required to ensure 1 − γ2 power to reject H0 at βA can be determined

based on a Wald test. The asymptotic robust variance of this Wald statistic involves the

variance of the score statistic B and the information A. To derive the expressions for

these two quantities (3.2.3) and (3.2.4), we evaluate their asymptotic expressions under a

fully specified parametric model at the design stage. The variance of the score statistic

also depends on the within-cluster association of failure times and the form of the joint

distribution is implied by the copula function (3.2.5). Explicit expressions for (3.2.3) and

(3.2.4) are given in (3.A.9) and (3.A.10) of Appendix A. Note that (3.A.9) is derived for

a more general case, in which censoring times are also correlated within clusters, but if

we further assume independent within-cluster censoring times, then (3.A.13) can be used

instead. Let Γ = B/A2 denote the asymptotic variance of the estimator β̂, then the

required sample size (number of clusters) is

n ≥
{
zγ1/2
√

Γ0 + zγ2
√

ΓA
βA

}2

(3.2.7)

where zu is the 100(1− u)% percentile of the standard normal distribution and Γ0 and ΓA

are the asymptotic variances of β̂ evaluated under the null and alternative hypotheses.
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3.2.3 Empirical Validation of Sample Size Formula under Cor-

rect Model Specification

We consider a two-arm cluster-randomized trial with equal allocation probabilities where

the binary treatment indicator takes the value Zi = 1 if cluster i is randomized to the

experimental intervention and Zi = 0 otherwise; and P (Zi = 1) = P (Zi = 0) = 0.5.

We assume Tij|Zi has a proportional hazards structure as in (3.2.1), where the cumulative

baseline hazard is of a Weibull form with Λ0(t;α) =
∫ t

0
λ0(s;α)ds = (λ0t)

κ and α = (λ0, κ)′.

The parameter κ accommodates a decreasing (κ < 1), constant (κ = 1) or increasing

(κ > 1) hazard; here we focus on the cases with κ = 0.75 and 1.0 to reflect modest

decreasing trend in risk and constant risk. If the plan is to observe individuals over(0, C†],

without loss of generality we let C† = 1 denote the administrative censoring time. The

parameter λ0 is then chosen as the solution to P (Tij > C†|Zi = 0) = pa to give the desired

administrative censoring rate for the control group, where pa = 0.2, A random censoring

time for the jth individual in cluster i is denoted by C∗ij and assumed to be exponentially

distributed with rate ρ; we assume here that Cij ⊥ Cik|Zi so censoring is independent

within clusters. The effective right censoring time is then Cij = min(C∗ij, C
†) and the value

ρ which solves P (Tij > Cij|Zi = 0) = p0 gives p0, the net censoring rate in the control

arm; we consider p0 = 0.2 to correspond to the case of strictly administrative censoring

and p0 = 0.5 to correspond to the case of 30% random and 20% administrative censoring.

Suppose the within-cluster association in the failure time is induced by the Clayton

copula with parameter φ, so the joint survivor function for Ti = (Ti1, . . . , TiJ)
′

is given by

(3.2.6), where J is the cluster size. The copula parameter is chosen to give Kendall’s τ of

0.05, 0.1, and 0.25 for small, mild and moderate within-cluster associations, respectively.

We consider cluster sizes of J = 2, 5, 20, and 100 which represent from small to large

cluster sizes. For each parameter combination, we compute the required number of clusters

(n) based on (3.2.7) to give power 1−γ2 = 0.8 using a two-sided test with a type I error rate

γ1 = 0.05. We then generate the corresponding clustered event times and (independent)

censoring times, fit the marginal Cox model and obtain the robust variance estimate derived
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by Lee et al. (1992) to test the null hypothesis of no treatment effect. We report empirical

standard error (ESE) and average robust standard error (ASE) for β̂, empirical rejection

rate (REJ%) defined as the percentage of samples in which the null hypothesis H0 : β = 0

is rejected by a two-sided Wald test at the nominal 5% level, and the empirical coverage

probability (ECP%) of nominal 95% confidence intervals for β (the proportion of simulated

samples for which the nominal 95% confidence interval contained the true value of β). Since

the empirical coverage probability is the complement of the empirical rejection rate when

β = 0, we do not report it in this case; see Table 3.1.

For each parameter configuration we generate 2000 samples, so the half-width of a

95% confidence interval for the type I error rate would be approximately 1.96(0.05 ×
0.95/2000)1/2 = 0.01 and one could expect the empirical rejection rate to fall outside the

range [0.04, 0.06] in one out of twenty settings by chance; by similar arguments one would

expect the empirical coverage probability to fall within the range 94% and 96% nineteen

times out of twenty. If the nominal power 0.80 is correct then the empirical power would

be expected to fall outside the range [0.78, 0.82] for one out of every twenty configurations.

From Table 3.1, it is apparent that the empirical rejection rates under β = 0 are within the

acceptable range for most cases. Under the alternative hypothesis the empirical coverage

probabilities are within the acceptable range of 94-96%, and the empirical rejection rates

are broadly compatible with the nominal level. It is worth remarking that for different

values of the shape parameter κ, the required sample size does not change dramatically

(see Table 3.1); this makes sense as the expected number of events is the same for these

values of the shape parameter, so the required sample size to ensure pre-specified power

should be approximately the same. All of these findings support the validity of the derived

sample size formula.
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Table 3.1: Sample size estimation and empirical properties of estimators under cluster-

randomized designs when within-cluster association between event times is induced by the

Clayton copula; βA = log 0.8, pa = 0.2, nsim = 2000.

20% Censoring (p0 = 0.2) 50% Censoring (p0 = 0.5)

β = 0 β = βA β = 0 β = βA

J τ n ESE ASE REJ% ESE ASE ECP% REJ% n ESE ASE REJ% ESE ASE ECP% REJ%

κ = 0.75

2 0.05 433 0.078 0.079 4.8 0.080 0.081 95.2 80.3 677 0.078 0.079 5.1 0.083 0.081 94.8 78.0

0.10 464 0.080 0.079 5.4 0.081 0.081 95.0 79.0 708 0.078 0.079 4.5 0.080 0.081 95.9 79.0

0.25 556 0.077 0.079 5.1 0.081 0.081 94.2 79.8 803 0.079 0.079 4.8 0.081 0.081 94.5 78.8

5 0.05 211 0.081 0.079 5.2 0.083 0.080 94.1 78.0 309 0.079 0.079 5.3 0.081 0.081 95.0 78.4

0.10 262 0.080 0.079 5.4 0.083 0.080 94.0 79.0 359 0.079 0.079 4.4 0.082 0.081 95.0 79.7

0.25 409 0.080 0.079 5.0 0.079 0.080 94.8 79.2 511 0.081 0.079 5.5 0.081 0.081 94.8 79.1

20 0.05 100 0.080 0.078 5.4 0.080 0.079 95.0 78.3 125 0.080 0.078 5.8 0.082 0.080 94.4 80.2

0.10 160 0.079 0.079 4.9 0.078 0.079 95.2 81.0 185 0.077 0.079 4.7 0.082 0.080 94.5 78.5

0.25 335 0.081 0.079 5.7 0.081 0.080 95.0 81.5 365 0.078 0.079 4.8 0.079 0.080 95.0 81.8

100 0.05 71 0.079 0.078 5.8 0.080 0.078 94.1 81.2 76 0.080 0.078 6.0 0.080 0.078 94.1 80.7

0.10 133 0.079 0.079 4.9 0.081 0.079 94.1 79.0 139 0.079 0.079 4.6 0.080 0.079 94.3 81.6

0.25 316 0.081 0.079 6.0 0.080 0.080 94.9 80.0 326 0.081 0.079 5.8 0.080 0.080 95.3 79.8

κ = 1.0

2 0.05 433 0.077 0.079 4.5 0.080 0.081 95.3 79.5 676 0.079 0.079 4.5 0.082 0.081 94.6 77.6

0.10 464 0.080 0.079 5.3 0.081 0.081 95.0 77.1 708 0.079 0.079 5.7 0.081 0.081 95.0 78.6

0.25 556 0.081 0.079 5.6 0.082 0.081 94.2 78.0 801 0.078 0.079 5.0 0.083 0.081 94.7 77.1

5 0.05 211 0.079 0.079 4.7 0.080 0.080 95.5 79.2 309 0.079 0.079 4.8 0.081 0.081 94.8 78.5

0.10 262 0.081 0.079 5.8 0.082 0.080 94.2 80.0 359 0.078 0.079 5.2 0.081 0.081 95.2 78.5

0.25 409 0.081 0.079 5.8 0.083 0.080 94.3 79.2 509 0.080 0.079 5.2 0.082 0.081 94.4 78.7

20 0.05 100 0.078 0.079 4.9 0.079 0.079 94.8 79.8 125 0.081 0.078 5.6 0.078 0.080 95.8 79.8

0.10 160 0.079 0.079 4.4 0.080 0.080 95.1 79.0 185 0.079 0.079 5.0 0.080 0.080 94.8 78.2

0.25 335 0.081 0.079 5.5 0.081 0.080 94.3 79.1 363 0.080 0.079 5.1 0.082 0.080 94.5 79.5

100 0.05 71 0.080 0.078 5.4 0.080 0.078 94.3 80.5 76 0.078 0.078 5.2 0.077 0.078 95.3 80.3

0.10 133 0.079 0.079 4.8 0.079 0.079 95.0 80.2 138 0.080 0.079 5.2 0.081 0.079 94.2 79.5

0.25 316 0.080 0.079 5.1 0.080 0.080 94.7 79.8 324 0.079 0.079 4.7 0.082 0.080 94.1 78.5
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3.3 Asymptotic Calculations Investigating Design Ro-

bustness and Relative Efficiency

3.3.1 Robustness of Power to Misspecification of the Copula

Function

Choosing a suitable copula at the design stage is challenging, so here we explore the sen-

sitivity of study power to misspecified copula functions. We consider the same parameter

configurations as in Section 3.2.3, where κ = 0.75 and the administrative censoring rate is

pa = 0.2. The sample size is estimated under the Clayton copula with Kendall’s τ = 0.1

and 0.25 with βA = log 0.8. Under the derived number of clusters, we construct the corre-

sponding power curves under the Frank or Gumbel copula functions with the same value of

Kendall’s τ . Figure 3.1 shows these power curves for different copula functions for J = 20

under different net censoring rates (p0 = 0.2, 0.5 and 0.7) in the control arm. When the

censoring rate is mild and due strictly to administrative censoring (p0 = 0.2), misspecifi-

cation of the copula function impacts power but use of the Clayton copula ensures power

is maintained under the Frank or Gumbel copula functions. When the net censoring rate

increases to 50%, the impact of copula misspecification is negligible, however when the net

censoring rate increases to 70%, the impact on power is again appreciable; in this case, the

Clayton copula leads to samples sizes which are too small. These findings suggest that the

misspecification of copula functions can have significant impact on study power and the

impact depends on the censoring rate. The findings are broadly similar for cluster sizes of

J = 2, 5 and 100.

To examine the effect of copula misspecification more fully we next consider the asymp-

totic relative efficiencies of the estimators through the functions

AREF :C =
asvarF (β̂)

asvarC(β̂)
, AREG:C =

asvarG(β̂)

asvarC(β̂)
, and AREF :G =

asvarF (β̂)

asvarG(β̂)
, (3.3.1)

where asvar() denotes an asymptotic variance and ‘C’, ‘F’, and ‘G’ denote the Clayton,
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Figure 3.1: Power curves for different copula functions when sample size is estimated based

on the Clayton copula with τ = 0.10 (left column) and τ = 0.25 (right column) under 20%

(top row), 50% (middle row) and 70% (bottom row) net censoring for the control arm;

κ = 0.75, βA = log 0.8, pa = 0.2, J = 20.
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Frank and Gumbel copulas, respectively. We set κ = 0.75 and β = log 0.8 and set the

control administrative censoring rate to pa = 0.2 at C† = 1; again λ0 is found to satisfy

P (Tij > C†|Zij = 0) = pa. The random censoring times are assumed to be independently

exponentially distributed with rate ρ, which is selected to ensure a net censoring rate for

the control arm through the constraint P (Tij > Cij|Zi = 0) = p0, where p0 ranges from 0.2

to 0.8. Figure 3.2 displays the contour plots of the asymptotic relative efficiencies in (3.3.1)

as a function of the degree of within-cluster association in the event times (Kendall’s τ)

and the net censoring rate (p0) for both J = 20 (left panels) and J = 100 (right panels); we

restrict attention to values of Kendall’s τ ranging from 0 to 0.4 to cover realistic scenarios.

For J = 20, if the net censoring rate is less than 40%, the Gumbel copula leads to a more

efficient estimator, followed by the Frank copula and then the Clayton copula; the Clayton

copula should therefore be used for the sample size calculations to ensure adequate power

among this set of copulas. If the net censoring rate in this setting is higher than 40-50%,

the Gumbel copula should be adopted at the design stage since it yields the estimator with

the greater variance. The trend is broadly similar for J = 100.

Both Figure 3.1 and Figure 3.2 show that the proposed formula for calculating required

sample size is sensitive to both the copula function and censoring rate. A simple pragmatic

approach to deal with this sensitivity is to consider a class of copula functions and a range

of administrative and random censoring rates. The required sample sizes can be computed

for each configuration by (3.2.7) and the largest sample size can then be chosen to ensure

the pre-specified power requirements are met for any copula model and censoring pattern

among those considered.

3.3.2 Impact of Uncertainty in the Strength of Within-Cluster

Dependence

As other sample size formulae for cluster-randomized trials, the derived sample size formula

requires specification of the within-cluster dependence, which is measured by Kendall’s τ for

clustered event times here. Of course there may be uncertainty in the value of Kendall’s τ ,
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Figure 3.2: Contour plots of the asymptotic relative efficiencies in (3.3.1) for estimators

defined as the solution to (3.2.2) when clustered failure times are generated based on

different copula functions; κ = 0.75, β = log 0.8, pa = 0.2.
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and we recognize that it is unlikely in the clinical literature to report the values of Kendall’

τ . Here we investigate the impact of misspecified values of Kendall’s τ on study power.

We consider a two-arm cluster-randomized trial design with equal allocation probabilities,

and the parameter settings for the marginal distribution of failure time and the censoring

time are same as in Section 3.2.3. We let κ = 0.75, the administrative censoring rate for

the control group be pa = P (Tij > C†|Zij = 0) = 0.2 and the net censoring rate for the

control group be p0 = P (Tij > Cij|Zij = 0) = 0.5. The required number of clusters is

calculated to ensure 80% power to detect β = log 0.8 based on a two-side Wald test at the

5% significant level under Clayton, Frank and Gumbel copulas, respectively, and assuming

there is no misspecification of copula functions. Lacking of knowledge on the strength

of within-cluster dependence, we let Kendall’s τ = 0, 0.1, 0.25 or 0.4 when calculate the

sample size based on (3.2.7). Under the calculated number of clusters, we construct the

corresponding power curves when the true value of Kendall’s τ varies from 0 to 0.6 for

small cluster size (J = 2) and large cluster size (J = 100). Figure 3.3 shows these power

curves as a function of the true values of Kendall’s τ when the sample size is estimated

based on the assumed degree of within-cluster dependence under different copulas. From

this figure, we can find that the extent of the within-cluster dependence has big effect on

the sample size calculation or power no matter which copula functions are adopted. By

comparing the curves in the top panel with those in the bottom panel, we can find that

the impact of the uncertainty in the strength of the within-cluster dependence is more

serious when the cluster size is large. Furthermore, if the assumed value of Kendall’s τ is

less than the true value, the proposed sample formula leads to underestimated sample size

which leads to insufficient power to detect the clinically significant effect. However, if the

assumed value of Kendall’s τ is larger than the true value of the strength of within-cluster

dependence, overestimated sample size is obtained by the proposed formula which results

in larger power to detect the clinically effect of interest. Therefore, the largest plausible

value of Kendall’s τ will lead to the largest sample size within a given copula family and

at a given censoring rate. We recommend that if there is uncertainty about the strength

of within-cluster dependence, one can specify the possible and meaningful largest value of
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Kendall’s τ to estimate the sample size to ensure the pre-specified power requirements are

met.

3.3.3 Impact of Within-Cluster Dependence in the Random Cen-

soring Times

Although the assumption of independent censoring times within clusters is commonly, the

factors inducing the association in the failure times within clusters may also induce an

association in the censoring times. Here we examine the impact of within-cluster depen-

dence in the censoring times on study power. We consider a trial designed to have 80%

power to detect β = log 0.8 based on a two-sided Wald test at the 5% significance level

under the assumption that random censoring times are independent within clusters and a

Clayton copula model is used for the response. In this case, the minimal required sam-

ple size is estimated under the within-cluster independent censoring assumption (3.2.7) in

which (3.A.13) is used to compute B. We then calculate the theoretical power when the

within-cluster censoring times are correlated and (3.A.9) is used to compute B. We let

κ = 0.75, pa = 0.2, and consider J = 2 and J = 20 with net censoring rates ranging from

0.2 to 0.8. The Clayton, Frank and Gumbel copula functions are considered for jointly

modeling the distribution of the censoring times within clusters. While it is more general

to allow different degrees of within-cluster associations for the failure and censoring times,

for parsimony we restrict attention to the case that the value of Kendall’s τ is the same

for the failure times (τ) and censoring times (τc).

Figure 3.4 suggests that the naive assumption of within-cluster independence in the

censoring times can lead to sample sizes which are too small and hence studies with inade-

quate power. As the net censoring rate increases (and hence the proportion of event times

censored by the random censoring time increases) this effect becomes more pronounced.

For example, for J = 20 and τ = 0.25, the power is 0.8 for all the copula functions when

p0 = 0.2 since in this case there is no dependent random censoring time. However, when

the net censoring rate increases to 80%, the power decreases to 0.756, 0.765 and 0.766
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Figure 3.3: Power curves as a function of true values of Kendall’s τ when the sample size

is estimated based on the assumed value of Kendall’s τ under different copula functions.
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Figure 3.4: Power implications of within-cluster association in the random censoring times

under joint censoring models induced by different copula functions where the within-cluster

association in the failure and censoring times are constrained to be the same (τ = τc); the

original sample size is computed based on a Clayton copula model for the failure times and

the assumption of independent censoring times; κ = 0.75, βA = log 0.8, p0 = 0.2.
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under the Clayton, Frank and Gumbel copula models for the censoring times. Further, if

we compare the left panel to the right panels of Figure 3.4, we find that when the associa-

tion in the censoring times increases, the power implications of ignoring the within-cluster

dependence become more serious for all copula functions. The power is also more seriously

impacted with larger cluster sizes; compare the top panels to the respective bottom panels

of Figure 3.4.

Although it is not the focus of our interest, we also examine the effect of misspecifying

the shape of the baseline hazard function in the marginal event time distribution in the

setting where the administrative and random censoring rates are correct; this ensures that

the expected number of events is comparable in the assumed and true parameter settings,

but would mean, naturally, that the times of the events would be misspecified. The details

on how this was investigated, along with the associated findings, are given in Appendix C.

We find that there is negligible impact on power of misspecifying the shape parameter in

this setting when there is only administrative censoring. When the event times are subject

to random censoring there can be an increase or decrease in the power compared to the

nominal level, and the extent of the effect depends on the copula function modeling the

within-cluster dependence; this is not surprising since it is well-known that the different

copula functions model the association between event times differently over the range of

possible values.

3.4 Sample Size for Clustered Interval-Censored Event

Times

3.4.1 Estimating Equations and Sample Size Criteria

Interval-censored event times arise when it is only possible to determine whether events

have occurred at periodic assessments (Sun, 2006). In rheumatology studies, for example,

interest lies in the time to the development of joint damage, but the extent of joint damage
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is only possible to determine when patients undergo radiographic examination (Gladman

et al., 1995). In this case the time of joint damage will only be known to fall between

the time of the first radiograph showing evidence of damage and the time of the preceding

radiographic examination. Other examples include trials aiming to evaluate osteoporosis

treatments for the prevention of asymptomatic fractures, studies of the development of

new metastatic lesions, and studies in nephrology on the development of kidney stones.

We assume again that Tij|Zi follows a proportional hazards model (3.2.1) with a q × 1

parameter α indexing the baseline hazard and β the regression parameter of interest. The

marginal survivor function F(t|Zi; θ) = P (Tij ≥ t|Zi; θ) is then indexed by a (q + 1) × 1

parameter θ = (α′, β)′. In the present setting, we consider a cluster-randomized trial in

which the plan is to observe each individual at R pre-specified assessment times a1, . . . , aR;

we let a0 = 0 and aR+1 = ∞. Under this observation scheme we observe Yijr = I(ar−1 <

Tij ≤ ar), r = 1, . . . , R + 1. The response data provided by individual j in cluster i is

Yij = (Yij1, . . . , YijR)′, where Yij,R+1 = 1 −
∑R

r=1 Yijr, and Yi = (Y ′i1, . . . , Y
′
iJ)′ contains all

response data from cluster i, i = 1, . . . , n. Let µij = (µij1, . . . , µijR)′ where

µijr = E[Yijr|Zi; θ] = P (ar−1 < Tij ≤ ar|Zi; θ) = F(ar−1|Zi; θ)−F(ar|Zi; θ) , r = 1, . . . , R.

Like Kor et al. (2013), we consider the following generalized estimating equations for

the parameters θ, under a working independence assumption, with the presumption that

a robust variance estimator will be used at the time of analysis to account for the within-

cluster dependence of the event times,

U(θ) =
n∑
i=1

Ui(θ) =
n∑
i=1

[
Ui(α)

Ui(β)

]
=

n∑
i=1

D′iV
−1
i (Yi − µi) , (3.4.1)

where µi = (µ′i1, . . . , µ
′
iJ)′ is a JR × 1 vector, Di = [∂µi/∂α

′, ∂µi/∂β] is a JR × (q + 1)

matrix of derivatives of the mean, and Vi is a JR× JR working covariance matrix. Under

the working independence assumption, Vi is block diagonal with R × R block diagonal

matrices Vij = Cov(Yij, Y
′
ij|Zi), j = 1, . . . , J , which account for the correlation of responses

at different assessment times within individuals, i.e.
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Vi =


Vi1

. . .

ViJ

 =


Cov(Yi1, Y

′
i1|Zi) 0

. . .

0 Cov(YiJ , Y
′
iJ |Zi)

 , (3.4.2)

and the (r, s)th entry of Vij is

Cov(Yijr, Yijs|Zi) =

{
µijr(1− µijr), r = s ;

−µijrµijs, r 6= s .
(3.4.3)

Note that if the marginal regression models are correctly specified, n−1/2U(θ) is asymp-

totically multivariate normal with mean zero and covariance given analogously to (3.2.3)

by

B = E[Ui(θ)Ui(θ)
′] , (3.4.4)

estimated as

B̂ =
1

n

n∑
i=1

Ui(θ)U
′
i(θ)

∣∣∣∣
θ=θ̂

.

The estimator θ̂ is the root of U(θ) = 0 and is consistent for θ with n1/2(θ̂−θ) D−→ N(0,Γ)

asymptotically, where Γ = A−1B[A−1]′, and A = −E[∂Ui(θ)/∂θ
′]. Again the matrix A can

be consistently estimated by

Â = − 1

n

n∑
i=1

∂Ui(θ)/∂θ
′
∣∣∣∣
θ=θ̂

. (3.4.5)

Model assumptions are required to derive the sample size formula based on the above

asymptotic variance formula for clustered interval-censored data. Copula functions can be

used to construct the joint distribution with any specified marginal properties. Consider a

cluster-randomized trial in which the treatment is randomly allocated to clusters. Suppose
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we aim to test whether the treatment has an effect on the time to a certain event. The

null hypothesis is H0 : β = β0 = 0, and the alternative hypothesis is HA : β 6= β0, and let

βA denote the clinically important effect.

As in Section 3.2, the limiting distribution of a Wald statistic can be used to select

the required sample size (number of clusters) for a two-sided test with significance level γ1

and power 1 − γ2. The key point is to derive the formulae for A = E[−∂Ui(θ)/∂θ′] and

B = E[Ui(θ)U
′
i(θ)], and hence the form of Γ = A−1B[A−1]′, so the required sample size can

be obtained based on Ψ = Γq+1,q+1, the element from the covariance matrix; the formulae

are outlined in Appendix B. The resulting sample size n necessary to detect the effect of

treatment with the specified power is

n ≥
{
zγ1/2
√

Ψ0 + zγ2
√

ΨA

βA

}2

, (3.4.6)

where Ψ0 and ΨA are the elements of Γ computed under the null and alternative settings. At

the design stage of clinical trials, to estimate the required number of clusters, specifications

of the effect of interest βA, cluster size J , inspection times a1, . . . , aR, parametric baseline

hazard function, and especially the joint distribution for clustered event times are required.

3.4.2 Empirical Validation of Sample Size Formula for Clustered

Interval-Censored Event Times

Here we examine the performance of the proposed sample size formula for clustered interval-

censored data. Consider an equal allocation cluster-randomized trial with binary treatment

covariate Zi, P (Zi = 1) = P (Zi = 0) = 0.5. Assume that Tij follows the proportional

hazards model given by (3.2.1) with Weibull baseline cumulative hazard Λ0(s) = (λ0s)
κ,

where α = (log λ0, log κ)′, q = 2, and θ = (α′, β)′, j = 1, . . . , J, i = 1, . . . , n; we consider

cluster sizes of J = 2, 5, 20 and 100. Suppose κ = 0.75 and choose λ0 so that P (Tij > 1|Zi =

0) = pa to give a specified administrative censoring rate; we set pa = 0.2. Suppose the

plan is to assess each individual R times over the interval [0, 1] at pre-specified assessment
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times a1, . . . , aR evenly spaced over the observation interval, i.e. ar = r/R, r = 1, . . . , R,

with R = 2, 4 or 12. Let Yij = (Yij1, . . . , YijR)
′

denote the event information provided by

individual j in cluster i, where Yijr = I(ar−1 < Tij ≤ ar).

Suppose the within-cluster association in the underlying failure times is induced by

the Clayton copula with Kendall’s τ of 0.05, 0.10, and 0.25 for small, mild and moderate

within-cluster association respectively. For each parameter combination, we estimate the

sample size (number of clusters) by (3.4.6) given βA = log 0.8, the type I error rate γ1 = 0.05

and power 1 − γ2 = 0.8. After obtaining the required minimum sample size, we generate

the corresponding covariate Zi and clustered response Yi. Parameter estimate are then

obtained via the estimating equation (3.4.1). For each parameter combination, nsim = 2000

datasets are simulated and analysed to yield 2000 estimates of β and respective robust

variance estimates. The empirical standard error (ESE), average robust standard error

(ASE), empirical rejection rate (REJ%) and 95% empirical coverage probability (ECP%)

are summarized in Table 3.2.

The empirical rejection rate is close to the nominal type I error rate when β = 0 and

close to the nominal power when β = log 0.8, with the latter supporting the validity of

the sample size formula. The empirical biases (not shown) are all negligible, so it is not

surprising that the empirical coverage probabilities are all compatible with the nominal

95% level. As the number of assessments increases, the required sample size is found to

decrease, but the extent of this decrease from the case of R = 4 to R = 12 is quite small,

particularly when cluster sizes are large. To clearly understand the impact of the number of

assessments on the efficiency, we computed the asymptotic relative efficiency of estimators

for the marginal parameters, defined as

AREr,k =
asvar(θ̃k)

asvarr(θ̂k)
,

where asvar(θ̃k) is the asymptotic variance of θk for R = 100; this value is large enough

to mimic the case that the event times are known precisely; i.e. the case of clustered

right-censored event times. The term asvarr(θ̂k) represents the asymptotic variance of θ̂k
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Table 3.2: Sample size estimation and empirical properties of estimator β̂ under cluster-

randomized design for interval-censored data when the Clayton copula is used to induce

the within-cluster association between event times; κ = 0.75, βA = log 0.8, pa = 0.2,

nsim = 2000.

β = 0 β = log 0.8 β = 0 β = log 0.8

J τ R n ESE ASE REJ% ESE ASE REJ% ECP% J τ R n ESE ASE REJ% ESE ASE REJ% ECP%

2 0.05 2 458 0.081 0.079 5.6 0.083 0.081 79.0 94.3 20 0.05 2 103 0.078 0.079 4.8 0.078 0.079 80.6 95.7

4 440 0.078 0.079 4.9 0.080 0.081 81.3 95.4 4 101 0.079 0.079 5.5 0.080 0.080 78.7 94.9

12 433 0.079 0.079 5.1 0.081 0.081 79.6 95.4 12 101 0.079 0.078 5.6 0.080 0.079 78.9 95.1

0.10 2 490 0.079 0.079 4.6 0.080 0.081 78.5 95.6 0.10 2 164 0.080 0.079 4.7 0.080 0.079 78.9 94.8

4 471 0.079 0.079 5.2 0.081 0.081 78.0 94.9 4 161 0.080 0.079 4.9 0.080 0.080 80.1 94.8

12 465 0.080 0.079 5.2 0.082 0.081 79.8 94.6 12 160 0.080 0.079 5.3 0.080 0.080 78.5 95.1

0.25 2 584 0.077 0.079 4.2 0.079 0.080 78.1 95.5 0.25 2 342 0.080 0.079 5.3 0.080 0.080 79.0 95.1

4 564 0.080 0.079 5.7 0.082 0.081 80.9 94.3 4 337 0.081 0.079 5.7 0.081 0.080 79.4 94.8

12 557 0.081 0.079 5.0 0.082 0.081 80.0 94.4 12 336 0.078 0.079 4.9 0.079 0.080 79.4 95.3

5 0.05 2 222 0.076 0.079 4.8 0.078 0.080 82.2 95.7 100 0.05 2 72 0.080 0.078 5.1 0.082 0.079 79.7 93.5

4 214 0.080 0.079 5.6 0.082 0.081 79.5 94.3 4 71 0.078 0.079 4.6 0.078 0.079 79.7 95.5

12 212 0.079 0.079 5.7 0.081 0.080 79.6 94.4 12 71 0.076 0.078 4.6 0.077 0.078 81.3 95.3

0.10 2 272 0.080 0.079 5.4 0.082 0.080 80.0 93.9 0.10 2 135 0.080 0.079 5.4 0.080 0.079 80.1 94.9

4 265 0.080 0.079 5.4 0.081 0.080 79.1 94.4 4 134 0.080 0.079 5.5 0.080 0.079 81.5 94.9

12 262 0.080 0.079 5.5 0.082 0.080 78.6 94.9 12 133 0.081 0.079 5.7 0.081 0.079 79.4 94.8

0.25 2 422 0.079 0.079 4.8 0.079 0.080 81.1 95.1 0.25 2 320 0.079 0.080 4.9 0.079 0.080 81.0 95.4

4 413 0.079 0.079 5.3 0.079 0.080 79.7 95.3 4 317 0.079 0.079 4.3 0.079 0.080 82.0 95.4

12 409 0.081 0.079 5.1 0.082 0.080 79.5 95.0 12 316 0.081 0.079 5.4 0.082 0.080 79.2 94.3

for the case R = r, corresponding to clustered interval-censored failure time data, where

k = 1, 2, 3.

Figure 3.5 shows the trend of asymptotic relative efficiency for estimators of the marginal

parameters with cluster sizes of J = 2, 5, and 20, respectively. From these figures, we note

that when the number of assessments increases to R = 8, the asymptotic relative efficien-

cies for both λ0 and β are close to 1 in all cases considered. This also supports the empirical

findings that the number of clusters required decreases very little when the number of as-

sessments increases from R = 4 to 12. Figure 3.5 also shows that the impact of the number

of assessments is more severe for small cluster sizes, which agrees with what we found from

Table 3.2. As one might expect, however, the number of assessments seriously affects the
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efficiency of the estimator for the trend parameter κ, so when the entire marginal distri-

bution is of interest, increasing the number of assessments certainly can improve efficiency

for some features of the distribution. There is of course a trade-off between the statisti-

cal goals of precision and power and the economic and other costs. The development of

optimal design criteria which enables one to weigh the merits of increasing the number of

clusters or the number of follow-up assessments to be scheduled, subject to prespecified

budgetary constraints represents an important area of future research.

3.5 Illustrative Example Involving Treatment for Oti-

tis Media

Otitis media is inflammation of the inner ear which puts patients at risk of permanent

damage and loss of hearing. We illustrate the steps in trial design by considering the

study discussed in Manatunga and Chen (2000) in which children from six months to

eight years of age with otitis media requiring surgical insertion of tubes in the auditory

canal are randomized to receive either two weeks of medical therapy with prednisone and

sulfamethoprim or no medical therapy (standard care). The trial is conceived based on the

data in Le and Lindgren (1996) in which all children except one had bilateral inflammation

and so we consider clusters of size two with J = 2. In the absence of information on the

trend we set κ = 1. The median time to failure of the inserted tube was estimated to

be seven months, assuming 30 days per month yields λ0 = − log 0.5/210 ≈ 0.0033. As in

Manatunga and Chen (2000) we set τ = 0.56 to reflect moderate to strong within-child

association in the failure times. Since follow-up is planned for 1.5 years we set C† = 540 and

anticipate an administrative censoring rate of 17% for the control arm. To accommodate

study withdrawal we adopt an exponential model for loss to follow-up to give a net rate

of censoring in the control arm of 40% or 60%. Note that this setting is slightly different

than the setting discussed in Section 3.3 where different individuals within each cluster had

different censoring times; here the clusters are defined by children and the times to failure
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Figure 3.5: Asymptotic relative efficiency of estimators for marginal parameters for clus-

tered interval-censored event times as a function of the number of assessments, degree of

dependence and copula function.
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of the left and right tubes would be censored at a common time. The formula in Appendix

A can be easily modified to address this by defining G̃(·) as the survival distribution for the

cluster-level censoring time and replacing G(s, t) by G̃(max(s, t)) in (3.A.9). Under Clayton,

Frank and Gumbel copulas, we compute the number of children required to randomize to

ensure 80% power to detect a 30, 40 or 50% reduction in the marginal hazard for failure

based on a two-sided test at the 5% level. The results displayed in Table 3.3 provide a

simple illustration of how the most conservative copula depends on the rate of censoring.

When the net censoring is expected to be 40% the Clayton copula yields the largest sample

size but when it is 60%, the Frank copula yields the largest sample sizes.

Table 3.3: Number of clusters (children) required for otitis media study under Clayton,

Frank and Gumbel copulas for different clinically important treatment effects and net

censoring rates.

exp(β) = 0.7 exp(β) = 0.6 exp(β) = 0.5

Cens % Clayton Frank Gumbel Clayton Frank Gumbel Clayton Frank Gumbel

40% 366 357 347 181 177 172 101 99 96

60% 521 530 519 258 263 259 144 147 145

3.6 Discussion

We derived sample size formulae for cluster-randomized trials involving right- and interval-

censored event times in which the analysis is based on a marginal proportional hazards

assumption. For right-censored data, we derived expressions for the asymptotic robust

variance of the Wald statistic based on the approach of Lee et al. (1992) and for clustered

interval-censored data we likewise adopted the structure of Kor et al. (2013). Both of

these frameworks invoke a working independence assumption, so robust variance estimation

is required to ensure valid inference in the presence of within-cluster association. The

simulation studies conducted confirm that the formulae are valid. Code for computing the
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required sample size is available in R from the authors upon request. Robustness of these

formulae to the misspecification of copula functions and to within-cluster dependence in

the censoring times is also investigated using large sample theory for clustered failure times

in the context of right-censored data.

As in other sample size formula for cluster-randomized trials, the derived formulae

require specification of the degree of within-cluster dependence, measured in the failure time

setting by Kendall’s τ . A good approximation to the degree of within-cluster dependence

is important (Korendijk et al., 2010), so it is therefore customary to rely on estimates

reported in the literature. We recognize that it is unlikely that values of Kendall’s τ would

be reported in the clinical literature and so we recommend the conduct of small pilot

studies. More recently there has been increased interest in planning trials with adaptive

sample size re-estimation. This is carried out in its simplest form by having an internal

pilot study, after which blinded data are used to estimate unknown parameters; these new

estimates are then used to revise sample size calculations. This is a generally important

area of research as these methods increase efficiency. We have developed such methods in

another context (Cook et al., 2009) and plan to study this in the present setting in future

work.

We have focussed on settings with a single binary treatment indicator, but the pro-

posed methods extend naturally to deal with trials where analyses control for cluster-level

covariates. A two-dimensional covariate vector would arise if one designed a three-armed

trial, in which case one might specify Zi = (Zi1, Zi2)′ where Zi1 and Zi2 indicate assign-

ment to the first and second experimental treatments respectively and Zi1 = Zi2 = 0 if

cluster i is assigned to the control intervention. More generally, other multidimensional

descriptive cluster-level covariates can be incorporated into the analyses, but at the design

stage their joint distribution would have to be specified to facilitate computation of the

matrix expectations in the robust variance formula; see Appendix A and B. Individual level

covariates can also be controlled for in the analysis in principle, but assumptions would

again be required regarding their joint distribution, and in particular the extent to which

these covariates are dependent within clusters.
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In principle, the method we develop could be adapted for use in the setting where the

number of clusters is fixed, and the goal is to determine the number of individuals within

each cluster necessary to achieve the desired power. A practical setting where this may

be a more appealing framework would be a health promotion study in which clinics are

randomized to deliver one of two smoking cessation programs. If there are a fixed number

of clinics available to take part, but patients are continually being referred to these clinics,

it is natural to want to know how many patients should be recruited from these clinics to

ensure adequate power to detect a specified effect of an experimental cessation program.

As pointed out by Hemming et al. (2011), it is important to note that the limiting robust

standard deviation of estimators obtained under the working independence assumption

decreases as the cluster size increases, but it does not decrease to zero; i.e. there is a

positive limiting value. As a result, for a given number of clusters, minimal clinically

important effect, and type I error rate, there is a limit to the power that can be achieved

by increasing the cluster size. Conversely, for a given number of clusters, power and

type I error rate, there is a limit to how small the clinically important effect can be with

increasing cluster sizes. In situations where small clinically important effects are specified,

it may therefore be necessary to select the number of clusters and the cluster size in concert

to ensure practical and statistical constraints are met.

When the clustered event times are interval-censored data, our sample size formula is

derived based on the assumption that all the assessments on each individual are available.

Individuals may of course prematurely drop-out of studies leading to missed assessments.

In this case the response vectors are incompletely observed, but modifications to the es-

timating functions are straightforward if assumptions about the withdrawal process are

made.
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Appendix A: Limiting Distribution of the Wald Statis-

tic based on Clustered Event Time Data

In what follows we consider the setting in which Zi is a fixed binary treatment indicator

and assume that the marginal distribution of Tij, the event time for individual j in cluster

i, satisfies the proportional hazard assumption with

λij(t|Zi) = λ0(t;α) exp(Ziβ) ,

where λ0(t;α) is the baseline hazard function indexed by a vector α and β is the coefficient

of interest, j = 1, . . . , J , i = 1, . . . , n. If C† is an administrative censoring time, the plan

is to observe over (0, C†], but C∗ij is a random censoring time with survivor function G∗(c),
representing a possible early withdrawal time. The net censoring time for individual j

in cluster i is then Cij = min(C∗ij, C
†), with survivor function G(c). In counting process

notation we let {Nij(t), 0 < t} denote the right-continuous counting process for Tij, where

Nij(t) = I(Tij ≤ t) indicates that the event occurred at or before time t for individual j in

cluster i. Then dNij(t) = 1 if individual j in cluster i experiences the event at time t, and

dNij(t) = 0 otherwise. Let Ȳij(t) = Yij(t)Y
†
ij(t) be the indicator that the jth individual in

cluster i is under observation and at risk of event at time t, where Y †ij(t) = I(Tij ≥ t) and

Yij(t) = I(Cij ≥ t).

Under working independence assumption, the partial score function for β is

U(β) =
n∑
i=1

J∑
j=1

∫ ∞
0

Ȳij(t)

(
Zi −

∑J
j=1 S1j(t; β)∑J
j=1 S0j(t; β)

)
dNij(t) ,

where Srj(t; β) = n−1
∑n

i=1 Ȳij(t)Z
r
i exp(Ziβ), r = 0, 1 and Z0

i = 1 and Z1
i = Zi.

Lee et al. (1992) show that the score function is asymptotically equivalent to a sum of

independent identically distributed terms

n−1/2U(β) = n−1/2

n∑
i=1

J∑
j=1

ζij
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where

ζij =

∫ ∞
0

Ȳij(t)(Zi −W (t))dMij(t) ,

where we suppress the functional dependence on β in the terms

W (t) =
J∑
j=1

s1j(t; β)/
J∑
j=1

s0j(t; β) ,

with srj(t; β) the limit of Srj(t; β), and

Mij(t) = Nij(t)−
∫ t

0

Ȳij(u) exp(Ziβ)λ0(u)du

where {Mij(t), 0 < t} is a martingale. By the Central Limit Theorem, n−1/2U(β) converges

to a normal random variable with mean 0 and variance B, where

B = n−1

n∑
i=1

Var(ζi·) =
J∑

j,k=1

Cov (ζij, ζik) =
J∑

j,k=1

E(ζijζik) , (3.A.1)

where ζi· =
∑J

j=1 ζij, i = 1, . . . , n.

The root of U(β) = 0 is a consistent estimator β̂ with n1/2(β̂ − β)
D−→ N(0,Γ), where

Γ = B/A2 and A = −E[∂Ui(β)/∂β]. The sample size formula is derived based on this

limiting distribution with the B and A computed based on parametric models. We give the

results of these derivations in the following two sections under the assumption of dependent

within-cluster censoring times and independent censoring within clusters.

General Derivation of B

We first consider a general case in which the censoring times could be correlated within

clusters. Assume (Ci1, . . . , CiJ)′ ⊥ Zi and let G(u) = P (Cij ≥ u) be the survivor function

for the censoring time Cij, and G(s, t) = P (Cij ≥ s, Cik ≥ t) denote the joint survivor
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function for the censoring times (Cij, Cik) within cluster i; both are assumed common

across the two groups. The joint survivor function G(s, t) describes the association between

within-cluster censoring times.

To derive an expression for (3.A.1) we first consider the case where j = k and note

E
[
ζ2
ij

]
= E

[∫ C†

0

Ȳij(s)(Zi −W (s))2λij(s)ds

]

= EZi

[
EY †ij(s)|Zi

{
EYij(s)|Y †ij(s),Zi

[∫ C†

0

Ȳij(s)(Zi −W (s))2λij(s)ds

]}]

= EZi

[
EY †ij(s)|Zi

{∫ C†

0

G(s)Y †ij(s)(Zi −W (s))2λij(s)ds

}]

= EZi

[∫ C†

0

G(s)P (Tij ≥ s|Zi)(Zi −W (s))2λij(s)ds

]

= EZi

[∫ C†

0

G(s)(Zi −W (s))2fj(s|Zi)ds

]
(3.A.2)

where fj(s|Zi) is the conditional density of the event time for individual j in cluster i. And

EZi
[·] depends on the trial allocation probability.

For j 6= k, since

E[ζijζik] = E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dMij(s)dMik(t)

]
,

and Prentice and Cai (1992) have shown that

dMij(s)dMik(t) = dNij(s)dNik(t)− dNij(s)Ȳik(t)dΛik(t)

− Ȳij(s)dΛij(s)dNik(t)− Ȳij(s)Ȳik(t)dΛij(s)dΛik(t) ,
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then

E[ζijζik] = E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]
− E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dΛik(t)

]
− E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dNik(t)

]
+ E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dΛik(t)

]
. (3.A.3)

The first term in (3.A.3) is then computed as

E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]
= EZi

[
EY †ij(s),Y †ik(t)|Zi

{
EdNij(s),dNik(t)|Y †ij(s),Y †ik(t),Zi

[
EYij(s),Yik(t)|Zi,Y

†
ij(s),Y †ik(t),dNij(s),dNik(t)

{
∫∫

(0,C†]2
Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

}]}]
= EZi

[
EY †ij(s),Y †ik(t)|Zi

{
EdNij(s),dNik(t)|Y †ij(s),Y †ik(t),Zi

[
∫∫

(0,C†]2
G(s, t)Y †ij(s)Y

†
ik(t)(Zi −W (s))(Zi −W (t))dNij(s)dNik(t)

]}]
= EZi

[
EY †ij(s),Y †ik(t)|Zi

{∫∫
(0,C†]2

G(s, t)Y †ij(s)Y
†
ik(t)(Zi −W (s))(Zi −W (t))

× P (Tij = s, Tik = t|Y †ij(s), Y
†
ik(t), Zi)dsdt

}]
= EZi

[ ∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt
]

(3.A.4)

where fjk(s, t|Zi) is the pairwise conditional density for (Tij, Tik) obtained through the

specification of a copula function. Using the same strategy for the remaining terms of

(3.A.3) we obtain,
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E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dNij(s)dΛik(t)

]
(3.A.5)

= EZi

[ ∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)eZiβdsdt

]
,

E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dNik(t)

]
(3.A.6)

= EZi

[ ∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)eZiβdsdt

]
,

and

E

[∫∫
(0,C†]2

Ȳij(s)Ȳik(t)(Zi −W (s))(Zi −W (t))dΛij(s)dΛik(t)

]
(3.A.7)

= EZi

[ ∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)eZiβdsdt
]
.

where Fjk(s, t|Zi) is the pairwise conditional survivor function for (Tij, Tik) obtained through

the specification of a copula function. Plugging (3.A.4 - 3.A.7) into (3.A.3), we obtain

E[ζijζik] = EZi

{∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt (3.A.8)

−
∫∫

(0,C†]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)eZiβdsdt

−
∫∫

(0,C†]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)eZiβdsdt

+

∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)eZiβdsdt

}
.

Therefore, by plugging (3.A.2) and (3.A.8) into the general form of B (3.A.1), the
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asymptotic variance of n−1/2U(β) can then be calculated as

B =
J∑
j=1

EZi

[∫ C†

0

G(s)(Zi −W (s))2fj(s|Zi)ds

]
(3.A.9)

+
∑
j 6=k

[
EZi

{∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt

−
∫∫

(0,C†]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)eZiβdsdt

−
∫∫

(0,C†]2
G(s, t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)eZiβdsdt

+

∫∫
(0,C†]2

G(s, t)(Zi −W (s))(Zi −W (t))Fjk(s, t|Zi)λ0(s)eZiβλ0(t)eZiβdsdt

}]
.

The expression for A is likewise computed as,

A = E

{
J∑
j=1

∫ ∞
0

Ȳij(t)

[
(
∑

k s2k(t;β)) (
∑

k s0k(t;β))− (
∑

k s1k(t;β))2

(
∑

k s0k(t;β))2

]
dNij(t)

}
(3.A.10)

= EZi

{
J∑
j=1

∫ C†

0

[
(
∑

k s2k(t;β)) (
∑

k s0k(t;β))− (
∑

k s1k(t;β))2

(
∑

k s0k(t;β))2

]
G(t)fj(t|Zi)dt

}
,

where

s0k(t; β) = E
(
Ȳik(t) exp(Ziβ)

)
= EZi

(
G(t)Fk(t|Zi) exp(Ziβ)

)
(3.A.11)

and

s1k(t; β) = s2k(t; β) = E
(
Ȳik(t) exp(Ziβ)Zi

)
= EZi

(G(t)Fk(t|Zi) exp(Ziβ)Zi) . (3.A.12)

Having expressions for B and A the asymptotic variance of β̂ can then be obtained and

used for power and sample size calculations.
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Derivation of B When Censoring Times are Independent Within

Clusters

In the special case in which the censoring times are independent within clusters, the term

A is unaffected. The computation of E[ζijζik] for j 6= k and hence the derivation of B is

however affected. In this case we obtain

B =
J∑
j=1

EZi

[∫ C†

0

G(s)(Zi −W (s))2fj(s|Zi)ds

]
(3.A.13)

+
∑
j 6=k

[
EZi

{∫∫
(0,C†]2

G(s)G(t)(Zi −W (s))(Zi −W (t))fjk(s, t|Zi)dsdt

−
∫∫

(0,C†]2
G(s)G(t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂s

)
λ0(t)eZiβdsdt

−
∫∫

(0,C†]2
G(s)G(t)(Zi −W (s))(Zi −W (t))

(
−∂Fjk(s, t|Zi)

∂t

)
λ0(s)eZiβdsdt

+

∫∫
(0,C†]2

G(s)G(t)Fjk(s, t|Zi)(Zi −W (s))(Zi −W (t))λ0(s)eZiβλ0(t)eZiβdsdt

}]
,

where the pairwise survivor function of the censoring times G(s, t) in (3.A.9) is simply

replaced by G(s)G(t) under the independent within-cluster censoring assumption.
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Appendix B: Limiting Distribution of Wald Statistics

with Clustered Interval-Censored Data

We assume again that Tij|Zi satisfies the proportional hazards assumption in (3.2.1) with

marginal distribution indexed by θ = (α′, β)′ where α is a q×1 parameter vector. Consider

a trial in which individuals are event-free at a0 = 0, and are scheduled to be observed at

R assessment times a1, . . . , aR over (0, C†] where aR = C† and aR+1 = ∞. Let Yij =

(Yij1, . . . , YijR)′ denote the event time information provided by individual j in cluster i,

where Yijr = I(ar−1 < Tij ≤ ar) indicates that the event was determined to have occurred in

(ar−1, ar]; let Yi = (Y ′i1, . . . , Y
′
iJ)′. Adopted the strategy in Kor et al. (2013), the estimating

function for parameter θ can be written as

U(θ) =
n∑
i=1

Ui(θ) =
n∑
i=1

D′iV
−1
i (Yi − µi) ,

where µi = E[Yi|Zi] is the conditional mean of Yi|Zi, Di = ∂µi/∂θ
′, and Vi is the working

matrix. Under the working independence assumption, Vi is a block diagonal matrix with

the blocks Vij = Cov(Yij, Y
′
ij|Zi), j = 1, . . . , J , which accounts for the negative dependence

between responses at different assessment times for each individual; that is

Vi =


Cov(Yi1, Y

′
i1|Zi) 0

. . .

0 Cov(YiJ , Y
′
iJ |Zi)

 . (3.B.1)

As stated in Section 4, the estimator θ̂ is the root of U(θ) = 0 and has asymptotically

normal distribution,

n1/2(θ̂ − θ)→ N(0,Γ) ,

where Γ = A−1B [A−1]
′
. Hence the asymptotic distribution for β is

n1/2(β̂ − β)→ N(0,Ψ) , (3.B.2)
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where Ψ = Γ[q + 1, q + 1].

The null and alternative hypotheses are H0 : β = β0 = 0 and HA : β 6= β0 respectively,

and let βA be the clinically important effect of interest. To derive the expression for A and

B we note that

A = E[−∂Ui(θ)/∂θ′] = EZi
[D′iV

−1
i Di] ,

B = E[Ui(θ)U
′
i(θ)] = E[D′iV

−1
i (Yi − µi)(Yi − µi)′V −1

i Di] = EZi
[D′iV

−1
i WiV

−1
i Di] ,

where Wi = Cov(Yi, Y
′
i |Zi) is the full covariance matrix of Yi which accounts for both

the within-cluster association between Yij and Yik, j, k = 1, . . . , J , and the association

within-individuals over time (i.e. between Yijr and Yijs, r, s = 1, . . . , R) such that

Wi =


Cov(Yi1, Y

′
i1|Zi) Cov(Yi1, Y

′
i2|Zi) · · · Cov(Yi1, Y

′
iJ |Zi))

Cov(Yi2, Y
′
i2|Zi) · · · Cov(Yi2, Y

′
iJ |Zi)

. . .
...

Cov(YiJ , Y
′
iJ |Zi)

 . (3.B.3)

Note that

Cov(Yij , Y
′
ij |Zi) =



Cov(Yij1, Yij1|Zi) Cov(Yij1, Yij2|Zi) · · · Cov(Yij1, YijR|Zi)

Cov(Yij2, Yij2|Zi) · · · Cov(Yij2, YijR|Zi)
. . .

...

Cov(YijR, YijR|Zi)


,

(3.B.4)

where

Cov(Yijr, Yijr|Zi) = µijr(1− µijr) , and Cov(Yijr, Yijs|Zi) = −µijrµijs , (3.B.5)

j = 1, . . . , J . The covariance between Yij and Y ′ik, j 6= k, is more involved and makes use
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of the copula assumptions. Specifically,

Cov(Yij, Y
′
ik|Zi) = E[YijY

′
ik|Zi]− µijµ′ik (3.B.6)

=



E[Yij1Yik1|Zi] E[Yij1Yik2|Zi] · · · E[Yij1YikR|Zi]

E[Yij2Yik2|Zi] · · · E[Yij2YjkR|Zi]
. . .

...

E[YijRYikR|Zi]


− µijµ′ik ,

where

E[YijrYiks|Zi] = F(ar−1, as−1|Zi)−F(ar−1, as|Zi)−F(ar, as−1|Zi) + F(ar, as|Zi) ,
(3.B.7)

can be calculated based on the copula model. By plugging (3.B.4) and (3.B.6) into (3.B.1)

and (3.B.3), we obtain the expression for Vi and Wi, and hence we can obtain A and B.

Based on the asymptotic property of the Wald statistic (3.B.2), we derive the sample size

criteria (3.4.6).
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Appendix C: Impact of Misspecification of Marginal

Distribution

We further explore the effect of misspecification here by considering whether there is any

impact of misspecifying the extent of trend in the baseline hazard function on sample size,

when the expected number of events is correctly specified. We assume that the marginal

distribution of Tij|Zi is of the proportional hazards form (3.2.1), where the baseline hazard

is λ0(s;α)ds = dΛ0(s;α) with Weibull cumulative hazard Λ0(s;α) = (λ0s)
κ, α = (λ0, κ)′.

As in Section 3.2, we focus on the test of H0 : β = 0 vs. HA : β 6= 0 and let βA denote

the minimal clinically important effect of interest. The sample size is determined to ensure

100(1− γ2)% = 80% power to reject H0 at βA, given the type I error rate 100γ1% = 5%.

If the administrative censoring rate pa and net censoring rate p0 are correctly specified

but there is no useful pilot data on what κ values are appropriate, one might use κ = 1.0 to

compute the required number of clusters by (3.2.7) at βA = log 0.8. To explore sensitivity

of the power to the parameter κ, with the derived number of clusters we next examine the

theoretical power at different values of κ under an administrative censoring rate of pa = 0.2

and net censoring rate of p0 = 0.2 or 0.5 for the control group, we consider values of κ

ranging from 0.5 to 1.5 and examine the impact of misspecification under the Clayton,

Frank, and Gumbel copula functions. Figure 3.6 and Figure 3.7 show the power of such

test when the sample size is calculated based on formula (3.2.7) by using κ = 1.0 for 20%

and 50% net censoring rates, respectively. Settings with cluster sizes of 2 and 100 and weak

(τ = 0.1) and moderate (τ = 0.25) degrees of within cluster association are considered. As

can be seen from Figure 3.6, when there is only administrative censoring there is no impact

on power from misspecification of κ; all power functions are horizontal lines with value 0.8

for all copula models. When there is random censoring, Figure 3.7 indicates the effect of

misspecifying the shape parameter. The effect of κ misspecification is smaller when J = 2

than when J = 100. Moreover the power is more robust to misspecification of the shape

parameter under the Clayton copula than it is under the Frank and Gumbel copulas.
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Figure 3.6: Theoretical power as a function of κ for trials designed with the correct values

of pa = p0 = 0.2 but sample size is determined under the assumption κ = 1.
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Figure 3.7: Theoretical power as a function of κ for trials designed with the correct values

of pa = 0.2 and random censoring yielding a 50% net censoring rate (p0 = 0.50), but sample

size is determined under the assumption κ = 1.
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Chapter 4

Assessment of Treatment Effects on

Post-Progression Survival under an

Additive Hazards Model

4.1 Introduction

4.1.1 Background

While the ultimate goal in therapeutic cancer studies is the reduction in mortality, phase III

trials are routinely designed based on the primary response of progression-free survival time.

The rationale for this composite endpoint is two-fold. First, improvements in standard of

care have led to longer survival times making it infeasible to detect clinically meaningful

treatment effects in an cost-effective and timely manner. If treatment effects are similar for

overall and progression-free survival times, there is a potential for increased power, reduced

sample size requirements, or shorter trial duration based on since progression is often

observed prior to death (Freemantle et al., 2003). Second, the occurrence of progression

and other intermediate events often prompts treatment crossover or use of subsequent line
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therapies (Dancey, 2014); this can happen in as many as 50-60% of patients in trials in renal

cell carcinoma (Rini et al., 2008). The dynamic response-dependent changes in therapy

post-randomization appropriately made to optimize the care of individual patients, make

it challenging to interpret the effect of randomized interventions on overall survival (Hotte

et al., 2011).

Progression-free survival time is often implicitly viewed as a surrogate for overall sur-

vival and there is increasing understanding of the pitfalls of such assumptions (D’Agostino,

2000; Freemantle and Calvert, 2007); see also Fleming et al. (2009). In light of this, many

researchers have examined the literature to assess the plausibility of this assumption. Buyse

et al. (2007) reported that progression-free survival time is a reasonable surrogate for over-

all survival in colorectal cancer, a position reaffirmed by Sidhu et al. (2013) in the context

of modern standard of care. For other tumour types, however, progression-free survival has

not proven to be a valid surrogate endpoint for overall survival (Buyse et al., 2010). Amir

et al. (2012) note that the association between findings based on progression-free survival

and overall survival may be weaker in settings where individuals live a relatively long time

following progression. Viewed more generally, progression-free survival is a composite end-

point, and as with any such response a clear and complete interpretation of the associated

treatment effects is challenging. Booth and Eisenhauer (2012) give a critical discussion of

the utility of progression-free survival as an endpoint in phase III trials.

Despite the ultimate goal of improving survival, accelerated approval is often considered

based on progression-free survival which in turn raises questions about what can be said

about effects on overall survival in this setting. Broglio and Berry (2009) consider a

decomposition of the therapeutic effect on overall survival into an effect on progression and

an effect on post-progression survival. Matulonis et al. (2014) raise the idea of examining

treatment effects on post-progression survival with a view to understanding differences

between progression-free survival and overall survival; see also Finkelstein and Schoenfeld

(2014).

94



4.1.2 Framework and Notation

0 1

2

Alive and
Progression−Free Progression

Dead

Figure 4.1: An illness-death model for joint consideration of progression and death.

The three state illness-death model depicted in Figure 4.1 provides a useful framework

for considering the possible experiences of individuals following recruitment to a study

in the setting of semi-competing risks (Xu et al., 2010). If we let Tk denote the time of

entry to state k, T1 is the time to progression (TTP), overall survival time (OS) is T2, the

progression-free survival (PFS) time is T = min(T1, T2), and the post-progression survival

time (PPS) is defined as W1 = T2− T1 among those individuals for whom T1 < T2. We let

{Z(s), 0 < s} represent a three-state stochastic process in which state 0 is occupied at time

s by an individual who is alive and progression-free (i.e. s < min(t1, t2)), state 1 is occupied

by an individual who has progressed but is alive (i.e. t1 ≤ s < t2), and the absorbing state

2 is entered upon death and occupied thereafter (t2 ≤ s). We also let Nk(s) = I(Tk ≤ s)

indicate that state k has been entered by time s, k = 1, 2, let N(s) = (N1(s), N2(s))′, and

define {N(s), 0 < s} as a bivariate counting process. Progression through the states in

Figure 4.1 can therefore be equivalently represented by the times T1 and T2, the multistate

process {Z(s), 0 < s}, or the bivariate counting process {N(s), 0 < s}.

We let X1 denote a binary indicator taking the value 1 for individuals given an exper-

imental therapy and 0 if they receive standard care. We consider the setting of a clinical
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trial where X1 is determined by balanced randomization. Fixed covariates measured at the

time of randomization are represented by X2, and time-varying internal covariates poten-

tially responsive to X1 and dependent on X2 and {N1(s), 0 < s} are represented by X3(s);

we let X(−1)(s) = (X ′2, X
′
3(s))′ and X(s) = (X1, X

′
2, X

′
3(s))′. In the absence of censoring

the process history is denoted by H(t) = {(N(s), X(s)), 0 < s < t}.

Transitions between the states are governed by intensity functions defined as

lim
∆t↓0

P (∆Nk(t) = 1|H(t))

∆t
= I(Z(t−) = 0) · λ0k(t|H(t)) , k = 1, 2, (4.1.1)

for transitions out of state 0, and

lim
∆t↓0

P (∆N2(t) = 1|H(t))

∆t
= I(Z(t−) = 1) · λ12(t|H(t)) , (4.1.2)

for transitions from state 1 to 2 (Andersen et al., 1993). The intensity is defined condition-

ally on the history so it accommodates stochastic dependencies and hence plays a key role

in the formation of models aiming to advance scientific understanding of complex process

dynamics. In particular the intensities can be used to understand mechanisms by which

treatments have their effect; if {X3(u), 0 < u} is responsive to treatment one can examine

treatment effects on this marker process and model the effect of the marker process and

treatment on the transition intensities, thereby estimating indirect and direct effects. In a

similar spirit, for 1→ 2 transitions the intensity can incorporate information on the time

to progression or other aspects of the process history.

In clinical trials, however, the aim is generally to make causal statements about the

effect of an experimental treatment on a marginal feature of a disease process. Therefore

while recognizing these complexities are present, simple hazard-based models are typically

adopted. The cause-specific hazards for the first event are denoted by h0k(t|X1) where

lim
∆t↓0

P (∆Nk(t) = 1|Z(t−) = 0, X1)

∆t
= I(Z(t−) = 0) · E{λ0k(t|H(t))|Z(t−) = 0, X1}

= I(Z(t−) = 0) · h0k(t|X1) , k = 1, 2. (4.1.3)
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In (4.1.3) the conditional expectations are taken with respect to {X(−1)(s), 0 < s < t}.
It is important to note that these models do not presume the absence of any fixed or time-

varying covariates, nor do they presume that these factors have no effect; rather these are

typically specified as partially conditional “working models” for the purpose of assessing a

treatment effect.

Models for (4.1.3) are easily and commonly fitted by cause-specific competing risk

analyses. When components of X2 or {X3(s), 0 < s} are shared across the 0→ 1 and 0→ 2

intensities (or even if the distinct covariates are correlated), the usual strategy of censoring

individuals for T1 upon this earlier occurrence of T2 induces a form of dependent censoring

for T1 which explains the general reluctance of trialists to adopt standard competing risks

analyses in the evaluation of randomized therapies.

The risk of death following progression may be compared between treatment arms based

on the sojourn time distribution in state 1 of Figure 4.1. For the purpose of the following

calculations we presume there is only a baseline variable X2 in addition to X1. The

history of the process is then greatly simplified and we can define the survivor function for

W1|X,T1 < T2, where W1 = T2−T1 and X = (X1, X2)′, and denoted by P (W1 ≥ s|X,T1 <

T2) as∫ ∞
0

exp

(
−
∫ t1+s

t1

λ12(u|t1, X)du

)
λ01(t1|X) exp (−(Λ01(t1|X) + Λ02(t1|X)) dt1 .

The survivor function for W1|X1, T1 < T2 can then be obtained as

P (W1 ≥ s|X1, T1 < T2) = EX2|X1,T1<T2 {P (W1 ≥ s|X,T1 < T2)} . (4.1.4)

Then hazard function for the post-progression survival time given only the treatment in-

dicator X1 can then be obtained by

h12(s|X1, T1 < T2) =
d

ds

[
− logP (W1 ≥ s|X1, T1 < T2)

]
. (4.1.5)

Our interest here is primarily on inference regarding the effect of treatment on the

post-progression survival time W1 through study of (4.1.5).
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The remainder of this chapter is organized as follows. In Section 2 we specify a simple

additive intensity model for the illness-death process and derive the limiting values of

estimators under naive analyses of the sojourn time distribution in state 1. We define

the parameters reflecting the causal effect by re-deriving the limiting values in the case

where confounding and dependent censoring have been addressed and show how to obtain

consistent estimates of these through use of inverse probability weights. Simulation studies

are carried out in Section 3 to investigate the finite sample properties of estimators. An

extension is given in Section 4 to deal with the introduction of rescue interventions at the

time of progression. Concluding remarks are made in Section 5.

4.2 Causal Issues on Post-Progression Survival

4.2.1 Notation and Setting

To illustrate the issues we first consider a simple model involving a treatment indicator

and a single binary covariate X2 and let X = (X1, X2)′. Also assume that there are no

unmeasured confounders. Due to balanced randomization, X1 ⊥ X2 and P (X1 = 1) =

P (X1 = 0) = 0.5. We suppose the trial is planned so that individuals are to be observed

over (0, A] where A is an administrative censoring time. We let R denote a random non-

informative censoring time withR ⊥ (T1, T2) giving a net censoring time C = min(R,A). In

the framework of additive intensity functions (Aalen, 1989), we assume that the parametric

function in (4.1.1) is of the form

λ0k(t|H(t)) = X ′α0k(t) = α0k0(t) + α0k1(t)X1 + α0k2(t)X2 , (4.2.1)

where α0k(t) = (α0k0(t), α0k1(t), α0k2(t))′, k = 1, 2, and

λ12(t|H(t)) = X ′α12(s) , (4.2.2)

where α12(s) = (α120(s), α121(s), α122(s))′ and s = B1(t) = t − t1 is the time since entry

to state 1. The corresponding cumulative intensity functions are Λ0k(t|X) = X ′A0k(t)
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and Λ12(s|X) = X ′A12(s), where Ajk(u) = (Ajk0(u), Ajk1(u), Ajk2(u))′ and Ajkl(u) =∫ u
0
αjkl(v)dv, l = 0, 1, 2, 0 ≤ j < k ≤ 2.

Suppose we now have a sample of m independent individuals. If Yi(t) = I(t ≤ Ci) then

Ȳi(t) = Yi(t) · I(t ≤ min(Ti1, Ti2)) indicates that individual i is under observation and at

risk of transition out of state 0 at time t. Let S0k denote the set of all observed unique

0→ k transition times, k = 1, 2, and S12 be the set of all observed unique 1→ 2 transition

times. We define

X(t) =


Ȳ1(t) Ȳ1(t)X11 Ȳ1(t)X12

Ȳ2(t) Ȳ2(t)X21 Ȳ2(t)X22

...
...

...

Ȳm(t) Ȳm(t)Xm1 Ȳm(t)Xm2

 , Ik(t) =


Ȳ1(t)dN1k(t)

Ȳ2(t)dN2k(t)
...

Ȳm(t)dNmk(t)

 , (4.2.3)

The cumulative coefficients A0k for 0 → k transitions given (X1, X2) are estimated

nonparametrically by

Â0k(t) =
∑

u∈S0k: u<t

dÂ0k(u) , k = 1, 2 , (4.2.4)

where

dÂ0k(u) = (X′(u)X(u))−1X′(u)Ik(u) , (4.2.5)

The asymptotic properties of this nonparametric estimate have been established under

regularity conditions discussed by Aalen et al. (2008); Martinussen and Scheike (2007).

Under these conditions as m→∞,

m1/2(Â0k(t)− A0k(t))
D−→ Uk ,

where Uk is a Gaussian martingale with covariance function

Φk(t) =

∫ t

0

φk(u)du , (4.2.6)
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with

φk(t) =
{
E[Ȳi(t)X

⊗2
i ]
}−1

E[Ȳi(t)X
⊗2
i X ′iα0k(t)]

{
E[Ȳi(t)X

⊗2
i ]
}−1

,

where Xi = (1, Xi1, Xi2)′, X⊗2
i = XiX

′
i. A uniformly consistent estimator of the variance

function is (Aalen, 1989; Aalen et al., 2008)

Φ̂k(t) = m

∫ t

0

(X′(u)X(u))−1X′(u)diag(dNk(u))X(u)(X′(u)X(u))−1 (4.2.7)

Nonparametric estimates of the cumulative coefficients for 1 → 2 transitions given

(X1, X2) and their uniformly consistent variance estimator can be similarly defined with

Ȳi1(t) = Yi(t) · I(Zi(t
−) = 1) replacing Ȳi(t); see Aalen et al. (2001) for a discussion about

the use of additive intensity models for multistate processes. The cumulative coefficients

can be consistently estimated by the “aalen” function in the R package timereg (R Core

Team, 2014).

4.2.2 Randomization and Collapsibility of Aalen’s Model

Randomization plays an important role in the evaluation of intervention effects in clinical

trials. Randomization eliminates biases that may arise in how treatment decisions are

made by allocating individuals to treatment groups by random manipulation of treatment.

This renders the treatment indicator independent with known, unknown, and unmeasured

confounders making many comparisons between treatment groups objective and valid.

The Cox regression model (Cox, 1972) is commonly used in clinical trials where treat-

ment effects are summarized and interpreted in terms of hazard ratios. The Cox model

has some particularly restrictive properties however. As pointed out by Ford et al. (1995)

two Cox models with different sets of covariates cannot both be valid; see also Lawless

(2003). Moreover Greenland et al. (1999) and Hernán (2010) point out that hazard ratios

from Cox models do not lend themselves to a causal interpretation even if treatment is

randomly assigned at the beginning of the study. This problem arises because the in-

dependence property between treatment and fixed potential confounders, guaranteed at
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the beginning of the study by randomization, is lost because risk sets are changing over

time and are only comprised, at time t say, of the improper subgroup (Yusuf et al., 1991)

of individuals who have not yet failed. Aalen’s model (Aalen, 1989), in which covariates

act additively on the linear scale is collapsible (Martinussen and Vansteelandt, 2013) and

independence is retained between treatment and baseline variables as time passes since

X1 ⊥ X2|T ≥ t if X1 ⊥ X2|T = 0 (Aalen et al., 2015). It is for this reason we adopt the

framework of additive models in this study.

It is important to distinguish between parametric functions that are being estimated in

different settings so we use α for the parameters in the true intensities and β for the para-

metric functions we wish to estimate; parameters corresponding to limiting values under

naive analyses are denoted by γ. We focus primarily on the coefficient of the treatment

indicator. Because the Aalen model is collapsible we let

hβ0k(t|X1) = EX2{λ0k(t|H(t))|X1, Z(t−) = 0} = β0k0(t) + β0k1(t)X1 ,

denote the cause-specific hazards for transitions out of state 0, where β0k0(t) = α0k0(t) +

α0k2(t)E{X2|Z(t−) = 0} and β0k1(t) = α0k1(t).

When considering treatment effects on post-progression survival the issues are slightly

more challenging. Figure 4.2 is a Lexis diagram illustrating the induced dependent cen-

soring of the post-progression survival time W1 arising from the omission of X2 from the

transition models. In addition there is an association induced between X1 and X2 upon

restricting attention to individuals who progressed so the benefit of randomization is lost in

this subgroup of individuals. To see this, note that for a naive analyses of post-progression

survival,

hγ12(s|X1) = E{h12(s|X1, X2)|X1, T1 < min(C − s, T2),W1 ≥ s}

= γ120(s) + γ121(s)X1 , (4.2.8)

where

γ120(s) = α120(s) + α122(s)E{X2|X1 = 0, T1 < min(C − s, T2),W1 ≥ s} , (4.2.9)
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and

γ121(s) = α121(s) + α122(s)

{
E{X2|X1 = 1, T1 < min(T2, C − s),W1 ≥ s}

− E{X2|X1 = 0, T1 < min(T2, C − s),W1 ≥ s}
}
, (4.2.10)

where E{X2|X1, T1 < min(T2, C − s),W1 ≥ s} is computed by

P (W1 ≥ s|X1, X2 = 1)P (T1 < min(T2, C − s)|X1, X2 = 1)P (X1, X2 = 1)∑
x2
P (W1 ≥ s|X1, X2 = x2)P (T1 < min(T2, C − s)|X1, X2 = x2)P (X1, X2 = x2)

.

The fact that γ121(s) 6= α121(s) reflects the confounding arising by conditioning on the

collider event of “progression” (Aalen et al., 2015).
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Figure 4.2: Lexis diagram illustrating the time scale time since randomization and time

since progression; omission of X2 from the 0 → 1 and 1 → 2 transiton models renders T1

and W1 dependent and hence C − T1 is a dependent censoring time for W1 even if C is

completely independent of {Z(s), 0 < s}.

102



To conceive of the causal effect of X1 on W1 we conceptualize a “trial” in which X1

is rendered independent of X2 among individuals who have progressed within the planned

study period (0, A], perhaps through re-randomization. When X1 ⊥ X2|T1 < min(T2, A)

we may re-derive the limiting values of the coefficients under this setting as

hβ12(s|X1) = EX2|T1<min(T2,A),W1≥s {α120(s) + α121(s)X1 + α122(s)X2}

= β120(s) + β121(s)X1 , (4.2.11)

where

β120(s) = α120(s) + α122(s)P(X2 = 1|T1 < min(T2, A),W1 ≥ s) , (4.2.12)

β121(s) = α121(s) , (4.2.13)

and the symbols E and P denote expectations and probabilities relevant for the setting

where X1 ⊥ X2|T1 < min(T2, A). Note that

P(X2 = 1|T1 < min(T2, A),W1 ≥ s) =
∑
x1

P(X1 = x1, X2 = 1|T1 < min(T2, A),W1 ≥ s)

(4.2.14)

where P(X1 = x1, X2 = 1|T1 < min(T2, A),W1 ≥ s) is given by

P (W1 ≥ s|X1 = x1, X2 = 1)P †(X1 = x1)P †(X2 = 1)∑
x1

∑
x2
P (W1 ≥ s|X1 = x1, X2 = x2)P †(X1 = x1)P †(X2 = x2)

=
P (W1 ≥ s|X1 = x1, X2 = 1)P (X2 = 1|T1 < min(T2, A))∑

x1

∑
x2
P (W1 ≥ s|X1 = x1, X2 = x2)P (X2 = x2|T1 < min(T2, A))

,

where P †(X1) and P †(X2) indicates the new marginal distribution of X1 and X2 after the

randomization upon entry to the progression state. Also note that

P (X2 = x2|T1 < min(T2, A)) =
∑
x1

P (X1 = x1, X2 = x2|T1 < min(T2, A)) (4.2.15)

where P (X1 = x1, X2 = x2|T1 < min(T2, A)) is obtained as

P (T1 < min(T2, A)|X1 = x1, X2 = x2)P (X1 = x1, X2 = x2)∑
x1

∑
x2
P (T1 < min(T2, A)|X1 = x1, X2 = x2)P (X1 = x1, X2 = x2)
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and P (T1 < min(T2, A)|X1, X2) is the cumulative incidence function for T1 evaluated at

time A. By plugging (4.2.14) and (4.2.15) into (4.2.12) and (4.2.13), we can calculate the

limiting values of β12(s).

4.2.3 Inverse Weighting Methods

Note that naive analysis in which we fit W1|X1 without weights leads to estimates which

are consistent for γ12(s). Inverse weighting can be used to account for both the confound-

ing arising from the conditioning on the collider (progression) as well as the dependent

censoring arising by the omission of X2 in the model for W1|X1. Let Yi1(s) = I(Ti1 <

min(Ti2, Ci − s)) indicate that individual i made the transition to state 1 and did so early

enough that the sojourn in state 1 was not censored prior to s, let Yi2(s) = I(Wi1 ≥ s) indi-

cate they remained in state 1 for a duration of at least s units, and let Ỹi(s) = Yi1(s)Yi2(s),

i = 1, . . . ,m. Letting dNi2(s) = I(Wi1 = s), we define

X(s) =


Ỹ1(s) Ỹ1(s)X11

Ỹ2(s) Ỹ2(s)X21

...
...

Ỹm(s) Ỹm(s)Xm1

 , I(s) =


Ỹ1(s)dN12(s)

Ỹ2(s)dN22(s)
...

Ỹm(s)dNm2(s)

 .

The cumulative coefficients for the model ofW1|X1, denoted here byB12(s) = (B120(s), B121(s))′,

can be nonparametrically and consistently estimated by

B̂12(s) =
∑

u∈S12: u<s

dB̂12(u) , (4.2.16)

where S12 is the set of unique observed times for W1, and

dB̂12(s) = (X′(s)W(s)X(s))
−1 X′(s)W(s)I(s) ,
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and W(s) is a diagonal weight matrix of the form

W(s) =



Ỹ1(s)
π1(s)

0 0 · · · 0 0

0 Ỹ2(s)
π2(s)

0 · · · 0 0

...
. . .

...

0

0 0 Ỹm(s)
πm(s)


.

The terms 1/πi(s) are individual specific weights which account for both the dependent

censoring and confounding issues and are given by

πi(s) = P (Xi1|Xi2, Ti1 < min(Ti2, A)) · P (Ti1 ≤ Ci − s|Xi1, Xi2, Ti1 < min(Ti2, A)) .

(4.2.17)

The first term in (4.2.17) accounts for the confounding induced by the association between

X1 and X2 arising from restricting attention to individuals who progressed. The second

term in (4.2.17) accounts for the dependent censoring of W1 arising because of the associa-

tion between T1 and W1 arising from the omission of X2. Thus while unweighted analysis of

W1|X1 gives estimates consistent for γ12(s), use of inverse weighting gives estimates which

are consistent for β12(s).

Therefore, under the regularity conditions (Aalen, 1989; Aalen et al., 2008), this in-

verse weighted estimator of the cumulative coefficient for W1|X1 under the additive model

satisfies following asymptotic properties,

m1/2(B̂12(s)−B12(s))
D−→ U ,

where U is a Gaussian martingale with covariance function

Φ(s) =

∫ s

0

φ(u)du ,

φ(u) =
{
E
[
Ỹi(u)Wi(u)X⊗2

i

]}−1

E
[
Ỹi(u)W 2

i (u)X⊗2
i X ′iα12(u)

]{
E
[
Ỹi(u)Wi(u)X⊗2

i

]}−1

,
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and Xi = (1, Xi1)′ and Wi(s) = Ỹi(s)/πi(s) is the (i, i) component of W(s). A uniformly

consistent estimator of the variance function is

Φ̂(s) = m

∫ s

0

(X′(u)W(u)X(u))−1X′(u)W(u)diag(dNi2(u))W′(u)X(u)(X′(u)W(u)X(u))−1 .

(4.2.18)

Furthermore, note that

π(s) = P (X1|X2, T1 < min(T2, A))P (T1 ≤ C − s|X1, X2, T1 < min(T2, A))

=
H(s|X1, X2)P (X1|X2)∑

x1
P (T1 < min(T2, A)|X1 = x1, X2)P (X1 = x1|X2)

,

where

H(s|X1, X2) = P (C − T1 ≥ s, T1 < min(T2, A)|X1, X2)

= P (A− T1 ≥ s, A ≤ R, T1 < min(T2, A)|X1, X2)

+ P (R− T1 ≥ s, A > R, T1 < min(T2, A)|X1, X2)

= P (T1 < min(T2, A− s)|X1, X2)G(A)

+ P (T1 + s ≤ R < A, T1 < min(T2, A)|X1, X2)

=

∫ A−s

0

G(t1 + s)λ01(t1|X1, X2) exp (−(Λ01(t1|X1, X2) + Λ02(t1|X1, X2))) dt1 ,

and G(r) is the survivor function for random censoring time R.

By fitting separate cause-specific additive hazards models for 0→ 1 and 0→ 2 transi-

tions given (X1, X2) we can obtain consistent estimates of dΛ̂0k(u|X1, X2), k = 1, 2. This

enables us to estimate the cumulative incidence function for T1 at A by

ĈIF 1(A|X1, X2) =
∑

u∈S01: u<A

d̂Λ01(u|X1, X2) exp
(
−[Λ̂01(u|X1, X2) + Λ̂02(u|X1, X2)]

)
.

The survivor function of the random censoring time R is likewise easily estimated non-

parametrically by the Kaplan-Meier method (Kaplan and Meier, 1958) using ‘survfit’ in
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R to give Ĝ(u). We can then estimate H(s|X1, X2) for each distinct event time s ∈ S12 by

Ĥ(s|X1, X2), where

Ĥ(s|X1, X2) =
∑

u∈S01: u<A−s
Ĝ(u+ s)d̂Λ01(u|X1, X2) exp

(
−(Λ̂01(u|X1, X2) + Λ̂02(u|X1, X2))

)
.

(4.2.19)

In addition, the conditional probability of P (X1|X2) can be consistently estimated by

P̂ (X1 = x1|X2 = x2) =

∑
i I(Xi1 = x1, Xi2 = x2)∑

i I(Xi2 = x2)
(4.2.20)

as required, but if we are in the setting of a randomized trials simpler marginal estimate

are apparent. The inverse weights are then consistently estimated by

π̂i(s) =
Ĥ(s|X1 = xi1, X2 = xi2) · P̂ (X1 = xi1|X2 = xi2)∑
x1
ĈIF 1(A|X1 = x1, X2 = xi2)P̂ (X1 = x1|X2 = xi2)

. (4.2.21)

4.3 Simulation Study of Treatment Effects on Post-

Progression Survival

Consider a randomized trial with study window (0, A], where without loss of generality we

set A = 1. We consider a binary treatment indicator X1 realized by randomization upon

accrual. The binary covariate X2 with probability P (X2 = 1) = 0.5 has an effect on all

transitions. Suppose the 0 → k transition intensities are of the form (4.2.1), k = 1, 2 and

the 1 → 2 transition intensity is of the form (4.2.2). We assume the baseline intensities

are of the Weibull form (i.e. Ajk0(u) = (λjku)κjk ; 0 ≤ j < k ≤ 2) and we let κ01 =

κ12 = 1 and κ02 = 1.25. We set (α011, α012)′ = (−1.2, 0.6)′, (α021, α022)′ = (−0.5, 0.3)′

and (α121, α122)′ = (−1.0, 0.6)′ to reflect the scenario that the treatment has significant

effect on reducing the risk of both progression and death, while the risk of progression and

death is higher for individuals with X2 = 1; the coefficients of both the treatment and

auxiliary variable are constant. As before, we let Tk denote the time of 0 → k transition,
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k = 1, 2, and let W1 denote the sojourn time in state 1. We determined the value of λjk

to satisfy the constraints P (min(T1, T2) < A) = p0, P (T1 < T2|min(T1, T2) < A) = p1 and

P (T1 + W1 < A|T1 < min(T2, A)) = p2, where p0 is the probability of transition out of

state 0 before administrative censoring A, p0 × p1 is the cumulative incidence function of

T1 evaluated at A, and p0 × p1 × p2 is the probability of transition 1→ 2 occurring before

the administrative censoring time. We set p0 = 0.75 and p1 = p2 = 0.6. We let the random

censoring time R be gamma distributed with mean µ and variance φ, and set φ = 0.04 and

choose µ such that P (R < A) = π = 0.2.

One thousand datasets of size m = 2000 were then generated and we fit the additive

model for W1|X1 under naive analysis (no weights) and using inverse weighting by (4.2.16).

The limiting values of cumulative intercept and cumulative treatment coefficient under

naive analyses and with inverse weighting have been calculated based on (4.2.9 - 4.2.10)

and (4.2.12 - 4.2.13), respectively and these are used to assess the agreement between the

calculations and the empirical results.

The empirical properties of estimates of the cumulative intercept and cumulative coef-

ficient of treatment for the sojourn time in state 1 are summarized in Table 4.1 at different

time points under naive analysis and analyses using inverse weighting. We find that the

biases under naive analysis are significant when compared to the limiting causal value∫ s
0
β12(u)du. We also note that the 95% empirical coverage probabilities are lower than the

acceptable range, with the performance getting worse as time increases. These support

our theoretical finding that naive analysis of the post-progression survival cannot provide

a consistent estimate of the causal effect of treatment. The biases of estimates obtained

by inverse weighting methods (with true or non-parametrically estimated weights) are all

negligible. This confirms that the weight proposed adjusts for confounding and dependent

censoring and the resulting inverse weighting method can provide consistent estimate of the

causal effect of treatment on the post-progression survival. When using inverse weighting,

the empirical standard error (ESE) and average computed standard error (ASE) are in

close agreement and the 95% empirical coverage probability are all within the acceptable

range.
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Table 4.1: Empirical estimates of cumulative intercept and cumulative treatment coefficient

for sojourn time in state 1 at different time points under naive analysis and with inverse

weighting in the presence of random censoring time; m = 2000, nsim = 1000.

INVERSE WEIGHTING METHOD

NAIVE METHOD TRUE WEIGHT ESTIMATED WEIGHT

TIME TRUE

(W1) VALUE BIAS† ECP† BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

Cumulative Intercept

0.1 0.1894 -0.0013 0.953 -0.0056 0.0182 0.0184 0.932 -0.0013 0.0188 0.0190 0.951 -0.0013 0.0188 0.0190 0.951

0.2 0.3778 -0.0003 0.947 -0.0087 0.0273 0.0275 0.935 -0.0001 0.0281 0.0284 0.953 -0.0001 0.0281 0.0284 0.951

0.3 0.5654 0.0003 0.958 -0.0120 0.0362 0.0358 0.931 0.0004 0.0371 0.0369 0.965 0.0005 0.0371 0.0369 0.959

0.4 0.7522 -0.0000 0.946 -0.0158 0.0442 0.0441 0.924 -0.0001 0.0451 0.0454 0.951 -0.0000 0.0452 0.0454 0.946

0.5 0.9380 0.0026 0.953 -0.0164 0.0533 0.0531 0.934 0.0024 0.0544 0.0545 0.957 0.0025 0.0545 0.0545 0.956

0.6 1.1229 0.0022 0.950 -0.0196 0.0636 0.0629 0.928 0.0021 0.0646 0.0645 0.953 0.0022 0.0647 0.0645 0.953

0.7 1.3069 0.0008 0.953 -0.0234 0.0739 0.0746 0.932 0.0007 0.0748 0.0763 0.954 0.0008 0.0748 0.0763 0.955

0.8 1.4900 0.0026 0.954 -0.0235 0.0898 0.0901 0.941 0.0025 0.0901 0.0918 0.961 0.0026 0.0903 0.0919 0.958

Cumulative Coefficient of Treatment

0.1 -0.1000 0.0020 0.957 0.0158 0.0263 0.0267 0.913 0.0021 0.0262 0.0264 0.948 0.0018 0.0264 0.0264 0.947

0.2 -0.2000 0.0009 0.961 0.0290 0.0378 0.0396 0.903 0.0010 0.0379 0.0392 0.959 0.0005 0.0381 0.0393 0.953

0.3 -0.3000 0.0004 0.954 0.0431 0.0504 0.0512 0.874 0.0007 0.0510 0.0507 0.951 -0.0001 0.0515 0.0507 0.950

0.4 -0.4000 0.0008 0.948 0.0583 0.0616 0.0625 0.873 0.0013 0.0621 0.0619 0.945 0.0003 0.0630 0.0620 0.945

0.5 -0.5000 -0.0044 0.952 0.0682 0.0734 0.0745 0.863 -0.0024 0.0742 0.0738 0.952 -0.0037 0.0756 0.0739 0.948

0.6 -0.6000 -0.0019 0.956 0.0861 0.0844 0.0879 0.841 -0.0001 0.0849 0.0870 0.951 -0.0017 0.0867 0.0872 0.949

0.7 -0.7000 -0.0000 0.963 0.1035 0.1011 0.1037 0.834 0.0011 0.1011 0.1024 0.961 -0.0008 0.1035 0.1026 0.953

0.8 -0.8000 -0.0029 0.954 0.1164 0.1235 0.1242 0.845 -0.0008 0.1244 0.1226 0.950 -0.0033 0.1275 0.1231 0.947

BIAS† and ECP† are evaluated based on the limiting values of naive analysis.

When we compute the sample variance estimates for a given dataset using estimated

weights, we did not account for the variability from the weights. Therefore the variance of

the estimates of cumulative coefficients for W1|X1 under inverse weighting method while

using the estimated weights is estimated by m−1Φ̃(s), where

Φ̃(s) =

∫ s

0

(X′(u)Ŵ(u)X(u))−1X′(u)Ŵ(u)diag(dNi2(u))Ŵ′(u)X(u)(X′(u)Ŵ(u)X(u))−1 ,

and Ŵ(s) is the estimated diagonal weight matrix with the (i, i) component Ỹi(s)/π̂i(s),

where π̂i(s) is the nonparametric estimate of πi(s) obtained by (4.2.21), i = 1, . . . ,m. While
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this may lead to an inappropriate estimate of the variance, empirical standard errors are

actually in close agreement with the average standard errors in most cases and the coverage

probability is in agreement with the nominal level. These results are consistent with Wu

and Cook (2014) who justify this through the application of Newey (1994).

Figure 4.3 contains plots of the naive and adjusted limiting values as well as the av-

erage estimated values under unweighted and weighted analyses (with true and estimated

weights). The results illustrate close agreement between the theoretical and empirical

performance.
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Figure 4.3: Limiting values and empirical estimates of cumulative intercept and cumulative

treatment coefficient under the naive analysis and with inverse weighting methods (True

weights and estimated weights) in presence of random censoring; m = 2000, nsim = 1000.
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Figure 4.4 provides a graphical summary of the bias and variability of naive analysis

and inverse weighting methods at three times post progression: s = 0.2, 0.4 and 0.6. The

estimates of the intercept (top panel) and coefficient (bottom panel) illustrate that naive

analyses lead to a biased estimates, while inverse weighting method results in consistent

estimates of the effects. The inverse weighting method with estimated weight performs

nearly as well as that with true weights. Also when the time increase, the variabilities of

estimates increase for all methods. This is to be expected as fewer individuals contribute

to the analyses when time increase due to the death or censoring.

To investigate the small sample property, we carry out a similar simulation study in

which the parameter settings are same as before, but with sample size m = 500 and the

simulation repeats nsim = 2000 times. Table 4.2 summarizes the empirical properties

of estimates of the cumulative intercept and cumulative coefficient of treatment for W1

at different time points under naive analysis and analyses using inverse weighting. We

still find that the naive analysis is biased when comparing to the limiting causal value∫ s
0
β12(u)du, but the biases are not as significant as they are when the sample size is large

(see Table 4.1). The 95% empirical coverage probabilities are a slightly lower than the lower

limit of the acceptable range [0.94, 0.96]. The biases of estimates obtained by the inverse

weighting methods (with true or estimated weights) are all negligible and the empirical

coverage probabilities of nominal 95% confidence intervals are all within the acceptable

range. Furthermore, although we did not account for the variability from the weights

by using the estimated weights, the empirical standard errors are in general close to the

average standard errors and the coverage probability is in agreement with the nominal

level. These results might reflect that the proposed inverse weighting method performs

well for small sample size.
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Figure 4.4: Boxplot for estimates of cumulative intercept (top panel) and treatment effect

(bottom panel) at times 0.2, 0.4 and 0.6 under naive analysis (NAIVE), inverse weighting

method with true weights (IPW-TRUE) and by inverse weighting with estimated weights

(IPW-EST) in the presence of random censoring; m = 2000, nsim = 1000.
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Table 4.2: Empirical estimates of cumulative intercept and cumulative treatment coefficient

for sojourn time in state 1 at different time points under naive analysis and with inverse

weighting in the presence of random censoring time; m = 500, nsim = 2000.

INVERSE WEIGHTING METHOD

NAIVE METHOD TRUE WEIGHT ESTIMATED WEIGHT

TIME TRUE

(W1) VALUE BIAS† ECP† BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

Cumulative Intercept

0.1 0.1894 0.0003 0.942 -0.0040 0.0368 0.0368 0.935 0.0003 0.0375 0.0380 0.944 0.0003 0.0376 0.0380 0.943

0.2 0.3778 -0.0013 0.946 -0.0097 0.0550 0.0549 0.938 -0.0012 0.0561 0.0567 0.952 -0.0011 0.0563 0.0567 0.952

0.3 0.5654 -0.0009 0.953 -0.0131 0.0700 0.0715 0.936 -0.0007 0.0714 0.0737 0.954 -0.0006 0.0716 0.0738 0.952

0.4 0.7522 -0.0004 0.951 -0.0162 0.0869 0.0882 0.937 -0.0004 0.0884 0.0907 0.951 -0.0002 0.0888 0.0908 0.950

0.5 0.9380 0.0025 0.949 -0.0166 0.1052 0.1062 0.935 0.0022 0.1069 0.1090 0.950 0.0024 0.1074 0.1092 0.951

0.6 1.1229 0.0025 0.943 -0.0193 0.1264 0.1261 0.933 0.0021 0.1282 0.1292 0.943 0.0023 0.1290 0.1293 0.943

0.7 1.3069 0.0018 0.943 -0.0224 0.1494 0.1497 0.936 0.0012 0.1510 0.1530 0.945 0.0014 0.1515 0.1532 0.949

0.8 1.4900 0.0040 0.946 -0.0221 0.1871 0.1812 0.931 0.0032 0.1889 0.1845 0.946 0.0033 0.1892 0.1847 0.949

Cumulative Coefficient of Treatment

0.1 -0.1000 -0.0009 0.956 0.0130 0.0527 0.0532 0.952 -0.0007 0.0523 0.0526 0.952 -0.0015 0.0529 0.0528 0.954

0.2 -0.2000 0.0005 0.953 0.0286 0.0791 0.0791 0.944 0.0018 0.0785 0.0785 0.954 0.0000 0.0802 0.0791 0.950

0.3 -0.3000 -0.0000 0.951 0.0426 0.1016 0.1023 0.944 0.0017 0.1010 0.1015 0.953 -0.0007 0.1039 0.1025 0.947

0.4 -0.4000 -0.0012 0.961 0.0563 0.1227 0.1253 0.935 0.0019 0.1222 0.1242 0.959 -0.0018 0.1266 0.1257 0.950

0.5 -0.5000 -0.0058 0.956 0.0668 0.1468 0.1494 0.935 -0.0020 0.1468 0.1480 0.953 -0.0075 0.1529 0.1500 0.946

0.6 -0.6000 -0.0045 0.952 0.0835 0.1766 0.1767 0.932 -0.0008 0.1762 0.1744 0.950 -0.0087 0.1847 0.1776 0.942

0.7 -0.7000 -0.0048 0.956 0.0987 0.2067 0.2086 0.930 0.0003 0.2062 0.2058 0.954 -0.0095 0.2405 0.2153 0.947

0.8 -0.8000 -0.0082 0.954 0.1110 0.2521 0.2507 0.935 -0.0014 0.2537 0.2470 0.947 -0.0156 0.2847 0.2599 0.943

BIAS† and ECP† are evaluated based on the limiting values of naive analysis.

4.4 Causal Inference on Post-Progression Survival when

a New Treatment is Assigned at Progression

4.4.1 Notation and Setting

Here we consider a more complex clinical trial, where a new treatment may be assigned

upon progression. Physicians contemplating the introduction of such a new treatment will
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typically make the decision based on the course of the disease for a patient. Marker values

reflected in X3(s) could influence this decision; patients with poor prognosis based on

their marker value at the time of progression could be more likely to receive a potentially

helpful rescue medication. We consider a simpler setting in which the introduction of

rescue medication is influenced by whether the patient rapidly progressed from state 0

to state 1. To this end we let D = I(T1 < min(T2, A/2)) be an indicator for early

progression, so D = 1 if individual progressed in the first half of planned observation

window and D = 0 otherwise. Here we redefine X3 as an indicator of whether a rescue

treatment is introduced at progression and let the probability of assigning new treatment

depend on D; specifically we let P ∗1 (X3 = x3) = P (X3 = x3|D = 1, T1 < min(T2, A))

and P ∗0 (X3 = x3) = P (X3 = x3|D = 0, T1 < min(T2, A)), x3 = 0 or 1. In general

P ∗1 (X3 = 1) > P ∗0 (X3 = 1), because individuals progress sooner might be at higher risk of

death and physicians tend to be more likely to assign rescue treatment X3 to those people.

The intensity function for 1→ 2 transitions in this setting becomes

λ12(t|H(t)) = α120(s) + α121(s)X1 + α122(s)X2 + α123(s)X3 , (4.4.1)

where X1 is a binary treatment indicator, X2 is a single binary covariate and X =

(X1, X2, X3)′. Also we assume here that there are no unmeasured confounders. As dis-

cussed in Section 4.2.2, omission of X2 from the transition models could lead to dependent

censoring of the post-progression survival time W1. Moreover in the setting with a new

treatment assigned at the progression time, X3 and X1 are dependent and so X3 is another

confounder. For a naive analyses of post-progression survival in this setting we obtain

hγ12(s|X1) = E{h12(s|X1, X2, X3)|X1, T1 < min(C − s, T2),W1 ≥ s}

= γ120(s) + γ121(s)X1 , (4.4.2)
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where

γ120(s) = α120(s) + α122(s)E[X2|T1 < min(T2, C − s),W1 ≥ s,X1 = 0]

+ α123(s)E[X3|T1 < min(T2, C − s),W1 ≥ s,X1 = 0] , (4.4.3)

γ121(s) = α121(s) + α122(s)

{
E[X2|T1 < min(T2, C − s),W1 ≥ s,X1 = 1]

− E[X2|T1 < min(T2, C − s),W1 ≥ s,X1 = 0]

}
+ α123(s)

{
E[X3|T1 < min(T2, C − s),W1 ≥ s,X1 = 1]

− E[X3|T1 < min(T2, C − s),W1 ≥ s,X1 = 0]

}
, (4.4.4)

E[X2|T1 < min(T2, C − s),W1 ≥ s,X1] and E[X3|T1 < min(T2, C − s),W1 ≥ s,X1] are

computed by∑
x3

F(s|X1, X2 = 1, X3 = x3)P (T1 < min(T2, C − s), X3 = x3|X1, X2 = 1)P (X1, X2 = 1)∑
x3

∑
x2

F(s|X1, X2 = x2, X3 = x3)P (T1 < min(T2, C − s), X3 = x3|X1, X2 = x2)P (X1, X2 = x2)
,

and∑
x2

F(s|X1, X2 = x2, X3 = 1)P (T1 < min(T2, C − s), X3 = 1|X1, X2 = x2)P (X1, X2 = x2)∑
x2

∑
x3

F(s|X1, X2 = x2, X3 = x3)P (T1 < min(T2, C − s), X3 = x3|X1, X2 = x2)P (X1, X2 = x2)
,

respectively, where F(s|X1, X2, X3) = P (W1 ≥ s|X1, X2, X3) is the survival function of

W1|X which can be obtained from (4.4.1). Note that

P (T1 < min(T2, C − s), X3|X1, X2)

=
1∑
r=0

P (T1 < min(T2, C − s), X3, D = r|X1, X2)

=
1∑
r=0

P (X3|D = r, T1 < min(T2, A))P (T1 < min(T2, C − s), D = r|X1, X2)

= P ∗1 (X3)P (T1 < min(T2, C − s, A/2) |X1, X2)

+ P ∗0 (X3)P (T1 < min(T2, C − s), T1 ≥ A/2 |X1, X2) .
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We can therefore show that γ121(s) 6= α121(s) reflecting the confounding arising by both

conditioning on the collider event of “progression” and omission of new treatment X3.

To conceive of the causal effect of X1 on W1 in this setting we conceptualize a “trial”

in which the treatment is rendered independent of both X2 and X3 among individuals who

have progressed within the planned study period (0, A] perhaps through re-randomization.

When X1 ⊥ (X2, X3)|T1 < min(T2, A), we could derive the limiting values of the coefficients

under this setting as

hβ12(s|X1) = E(X2,X3)|T1<min(T2,A),W1≥s {α120(s) + α121(s)X1 + α122(s)X2 + α123(s)X3}

= β120(s) + β121(s)X1 , (4.4.5)

where

β120(s) = α120(s) + α122(s)P(X2 = 1|T1 < min(T2, A),W1 ≥ s)

+ α123(s)P(X3 = 1|T1 < min(T2, A),W1 ≥ s) , (4.4.6)

β121(s) = α121(s) . (4.4.7)

and the symbols E and P denote expectations and probabilities relevant for the setting

where X1 ⊥ (X2, X3)|T1 < min(T2, A). Note that

P(X2 = 1|T1 < min(T2, A),W1 ≥ s)

=
∑
x1

∑
x3

P(X1 = x1, X2 = 1, X3 = x3|T1 < min(T2, A),W1 ≥ s) (4.4.8)

where P(X1 = x1, X2 = 1, X3 = x3|T1 < min(T2, A),W1 ≥ s) is given by

F(s|X1 = x1, X2 = 1, X3 = x3)P †(X1 = x1)P †(X2 = 1, X3 = x3)∑
x1

∑
x2

∑
x3

F(s|X1 = x1, X2 = x2, X3 = x3)P †(X1 = x1)P †(X2 = x2, X3 = x3)

=
F(s|X1 = x1, X2 = 1, X3 = x3)P (X2 = 1, X3 = x3|T1 < min(T2, A))∑

x1

∑
x2

∑
x3

F(s|X1 = x1, X2 = x2, X3 = x3)P (X2 = x2, X3 = x3|T1 < min(T2, A))

(4.4.9)
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where P †(X1) and P †(X2, X3) represent the new marginal distribution of X1 and (X2, X3)

following the randomization upon entry to the progression state. Moreover note that

P (X2 = x2, X3 = x3|T1 < min(T2, A))

=
∑
x1

P (X1 = x1, X2 = x2, X3 = x3|T1 < min(T2, A))

=

∑
x1

P (T1 < min(T2, A), X3 = x3|X1 = x1, X2 = x2)P (X1 = x1, X2 = x2)∑
x1

∑
x2

∑
x3

P (T1 < min(T2, A), X3 = x3|X1 = x1, X2 = x2)P (X1 = x1, X2 = x2)
(4.4.10)

where P (T1 < min(T2, A), X3 = x3|X1 = x1, X2 = x2) is obtained as

1∑
r=0

P (T1 < min(T2, A), X3 = x3, D = r|X1 = x1, X2 = x2)

= P ∗1 (X3 = x3)P (T1 < min(T2, A/2) |X1 = x1, X2 = x2)

+ P ∗0 (X3 = x3)P (A/2 ≤ T1 < min(T2, A) |X1 = x1, X2 = x2)

Therefore by plugging (4.4.9) and (4.4.10) into (4.4.8), we can calculate P(X2 = 1|T1 <

min(T2, A),W1 ≥ s). Similarly, we can calculate P(X3 = 1|T1 < min(T2, A),W1 ≥ s) and

then the limiting values of β12(s).

4.4.2 Use of Inverse Weights with Rescue Therapy

Since the naive analyses in which fittingW1|X1 without weights leads to estimates which are

consistent to γ12(s). Inverse weighting can be used to account for the both the dependent

censoring by the omission of X2 and the confounding arising from the conditioning on

the collider (progression) and omitting X3 in the model for W1|X1. The nonparametric

weighted estimates for the cumulative intercept and coefficient are of the same form as

(4.2.16), but with different weight function as we need to further adjust for the confounding

arising from omission of X3 in this setting. Let the new weight be 1/ηi(s), where

ηi(s) = P (Ti1 ≤ Ci − s|Ti1 < min(Ti2, A), Xi1, Xi2, Xi3)P (Xi1|Xi2, Xi3, Ti1 < min(Ti2, A)) ,

(4.4.11)
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where the first term in (4.4.11) accounts for the dependent censoring of W1 arising because

of the association between T1 and W1 when omitting X2. The second term in (4.4.11)

accounts for the confounding induced by the association between X1 and X2 arising from

restricting attention to individuals who progressed and by the association between X1 and

X3. Therefore use of inverse weighting gives estimates consistent for β12(s), while the un-

weighted analysis of W1|X1 gives biased estimates, but consistent for γ12(s). Furthermore,

note that

η(s) =
P (T1 < C − s, T1 < min(T2, A), X3|X1, X2)P (X1|X2)∑
x1
P (T1 < min(T2, A), X3|X2, X1 = x1)P (X1 = x1|X2)

, (4.4.12)

where

P (T1 < C − s, T1 < min(T2, A), X3|X1, X2)

= P (T1 < A− s, A ≤ R, T1 < min(T2, A), X3|X1, X2)

+ P (T1 < R− s, R < A, T1 < min(T2, A), X3|X1, X2)

=
∑
r

P (T1 < min(T2, A− s, A), X3, D = r|X1, X2) · G(A)

+
∑
r

P (T1 < R− s, R < A, T1 < min(T2, A), X3, D = r|X1, X2)

=
{
P ∗1 (X3)P (T1 < min(T2, A− s, A/2)|X1, X2)

+ P ∗0 (X3)P (A/2 ≤ T1 < min(T2, A− s, A)|X1, X2)
}
· G(A)

+ P ∗1 (X3)P (T1 < min(T2, R− s, A/2), R < A|X1, X2)

+ P ∗0 (X3)P (A/2 ≤ T1 < min(T2, A,R− s), R < A|X1, X2)

= P ∗1 (X3)Q1(s|X1, X2) + P ∗0 (X3)Q2(s|X1, X2) ,

and

Q1(s|X1, X2) =

∫ min(A−s,A
2

)

0
G(t1 + s)λ01(t1|X1, X2) exp

(
− (Λ01(t1|X1, X2) + Λ02(t1|X1, X2))

)
dt1 ,

(4.4.13)

Q2(s|X1, X2) =

∫ A−s

min(A−s,A
2

)
G(t1 + s)λ01(t1|X1, X2) exp

(
− (Λ01(t1|X1, X2) + Λ02(t1|X1, X2))

)
dt1 .

(4.4.14)
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Similarly we obtain that

P (T1 < min(T2, A), X3|X2, X1) = P ∗1 (X3)L1(X1, X2) + P ∗0 (X3)L2(X1, X2) ,

where

L1(X1, X2) = CIF1(A/2 |X1, X2) , (4.4.15)

L2(X1, X2) = CIF1(A|X1, X2)− CIF1(A/2 |X1, X2) . (4.4.16)

Then η(s) can be written as

η(s) =

{
P ∗1 (X3)Q1(s|X1, X2) + P ∗0 (X3)Q2(s|X1, X2)

}
P (X1|X2)∑

x1

{
P ∗1 (X3)L1(X1 = x1, X2) + P ∗0 (X3)L2(X1 = x1, X2)

}
P (X1 = x1|X2)

Note that in Section 4.2.3 we showed that P (X1 = x1|X2 = x2) can be consistently

estimated by (4.2.20), and the cumulative incidence function for T1 can be estimated by

ĈIF 1(u|X1, X2) =
∑

t∈S01: t<u

d̂Λ01(t|X1, X2) exp
(
−[Λ̂01(t|X1, X2) + Λ̂02(t|X1, X2)]

)
.

(4.4.17)

By (4.4.17), we can consistently estimate L1(X1, X2) and L2(X1, X2) using

L̂1(X1, X2) = ĈIF 1(A/2 |X1, X2) , (4.4.18)

L̂2(X1, X2) = ĈIF 1(A|X1, X2)− ĈIF 1(A/2 |X1, X2) , (4.4.19)

respectively. Furthermore, a function of the form

V (u|X1, X2) =

∫ u

0

G(t1 + s)λ01(t1|X1, X2) exp (−(Λ01(t1|X1, X2) + Λ02(t1|X1, X2))) dt1

can be estimated by

V̂ (u|X1, X2) =
∑

t∈S01:t<u

Ĝ(t+ s)d̂Λ01(t|X1, X2) exp
(
−(Λ̂01(t|X1, X2) + Λ̂02(t|X1, X2))

)
,

(4.4.20)
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as we discussed in Section 4.2.3. Therefore, Q1(s|X1, X2) and Q2(s|X1, X2) can be esti-

mated by

Q̂1(s|X1, X2) = V̂
(
min(A− s, A/2)|X1, X2

)
(4.4.21)

Q̂2(s|X1, X2) = V̂ (A− s|X1, X2)− V̂
(
min(A− s, A/2)|X1, X2

)
(4.4.22)

In order to estimate P ∗1 (X3 = x3) and P ∗0 (X3 = x3), consider the estimating function

Ur(µr) =
m∑
i=1

I(Ti1 < min(Ti2, A))I(Di = r)I(Ti1 < Ci)

G(Ti1)
(Xi3 − µr) , (4.4.23)

where µr = E[Xi3|Ti1 < min(Ti2, A), Di = r]; r = 0, 1. This estimating function can be

shown to be unbiased, so solving Ur(µr) = 0 provides a consistent estimate of µr. Doing

so gives

P̂ ∗1 (X3 = 1) = µ̂1 =

∑m
i=1 I(Ti1 < min(Ti2, A))I(Di = 1)I(Ti1 < Ci)Xi3/Ĝ(ti1)∑m
i=1 I(Ti1 < min(Ti2, A))I(Di = 1)I(Ti1 < Ci)/Ĝ(ti1)

, (4.4.24)

and

P̂ ∗0 (X3 = 1) = µ̂0 =

∑m
i=1 I(Ti1 < min(Ti2, A))I(Di = 0)I(Ti1 < Ci)Xi3/Ĝ(ti1)∑m
i=1 I(Ti1 < min(Ti2, A))I(Di = 0)I(Ti1 < Ci)/Ĝ(ti1)

. (4.4.25)

By plugging (4.2.20), (4.4.18 - 4.4.19), (4.4.21 - 4.4.22) and (4.4.24 - 4.4.25) into (4.4.12),

we obtain a consistent estimate for ηi(s).

4.4.3 Simulations with Response-Dependent Introduction of Res-

cue Therapy

A simulation study is carried out to assess the validity of the inverse weighting approach

developed here. The parameter settings are the same as Section 4.3. In addition we let

P ∗1 (X3 = 1) = P (X3 = 1|D = 1, T1 < min(T2, A)) = 0.75 and P ∗0 (X3 = 1) = P (X3 =

1|D = 0, T1 < min(T2, A)) = 0.25. We set α123 = −0.8, reflecting the scenario that the
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new treatment also has a strong effect on reducing the risk of death following progression.

We generate one thousand datasets of size m = 1000 individuals and fit the additive model

for W1|X1 under a naive analysis (4.2.4) and using inverse weighting by (4.2.16) but with

weights 1/ηi(s), (4.4.12). The limiting values of cumulative intercept and cumulative treat-

ment coefficient under the naive analyses and with inverse weighting have been calculated

based on (4.4.3 - 4.4.4) and (4.4.6 - 4.4.7), respectively and these are used to assess the

agreement between the calculations and the empirical results.

Table 4.3: Empirical estimates of cumulative intercept and cumulative treatment coefficient

for sojourn time in state 1 at different time points under naive analysis and with inverse

weighting in the presence of random censoring; a new treatment X3 is assigned at the

progression time; m = 1000, nsim = 1000.

INVERSE WEIGHTING METHOD

NAIVE METHOD TRUE WEIGHT ESTIMATED WEIGHT

TIME TRUE BIAS† ECP† BIAS ESE ASE ECP BIAS ESE ASE ECP BIAS ESE ASE ECP

Cumulative Intercept

0.1 0.1949 0.0001 0.949 -0.0065 0.0259 0.0263 0.936 0.0000 0.0273 0.0275 0.948 -0.0000 0.0273 0.0275 0.949

0.2 0.3875 0.0015 0.948 -0.0124 0.0377 0.0393 0.936 0.0016 0.0395 0.0413 0.948 0.0014 0.0394 0.0413 0.946

0.3 0.5778 0.0018 0.956 -0.0204 0.0493 0.0508 0.925 0.0018 0.0513 0.0536 0.956 0.0016 0.0512 0.0536 0.960

0.4 0.7658 0.0022 0.958 -0.0294 0.0593 0.0622 0.913 0.0024 0.0618 0.0660 0.963 0.0022 0.0614 0.0661 0.964

0.5 0.9517 0.0035 0.953 -0.0390 0.0718 0.0741 0.893 0.0040 0.0748 0.0795 0.961 0.0037 0.0743 0.0796 0.961

0.6 1.1354 0.0051 0.952 -0.0489 0.0870 0.0872 0.888 0.0057 0.0920 0.0946 0.957 0.0054 0.0916 0.0947 0.959

0.7 1.3169 0.0071 0.951 -0.0577 0.1050 0.1027 0.884 0.0078 0.1115 0.1121 0.950 0.0075 0.1108 0.1122 0.955

0.8 1.4964 0.0055 0.949 -0.0692 0.1222 0.1224 0.895 0.0055 0.1296 0.1337 0.960 0.0051 0.1285 0.1339 0.962

Cumultive Coefficient of Treatment

0.1 -0.1000 -0.0008 0.948 0.0184 0.0386 0.0386 0.933 -0.0003 0.0384 0.0381 0.951 -0.0006 0.0386 0.0382 0.951

0.2 -0.2000 -0.0028 0.944 0.0349 0.0585 0.0572 0.903 -0.0022 0.0581 0.0567 0.945 -0.0028 0.0578 0.0569 0.954

0.3 -0.3000 -0.0032 0.945 0.0523 0.0747 0.0733 0.889 -0.0028 0.0757 0.0733 0.941 -0.0038 0.0756 0.0736 0.947

0.4 -0.4000 -0.0048 0.954 0.0676 0.0867 0.0887 0.894 -0.0036 0.0885 0.0899 0.960 -0.0050 0.0889 0.0904 0.960

0.5 -0.5000 -0.0059 0.954 0.0823 0.1053 0.1045 0.880 -0.0042 0.1088 0.1082 0.955 -0.0058 0.1102 0.1089 0.955

0.6 -0.6000 -0.0058 0.943 0.0977 0.1258 0.1219 0.876 -0.0039 0.1327 0.1286 0.948 -0.0064 0.1350 0.1296 0.948

0.7 -0.7000 -0.0081 0.949 0.1111 0.1468 0.1421 0.863 -0.0059 0.1569 0.1516 0.950 -0.0100 0.1596 0.1527 0.949

0.8 -0.8000 -0.0058 0.950 0.1290 0.1688 0.1679 0.884 -0.0002 0.1820 0.1809 0.958 -0.0068 0.1861 0.1822 0.947

BIAS† and ECP† are evaluated based on the limiting values of naive analysis.
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Table 4.3 summarized the empirical properties of estimators of the cumulative inter-

cept and cumulative coefficient of treatment for the sojourn time in state 1 at differ-

ent time points under naive analysis and with inverse weighting (true weights and non-

parametrically estimated weights). We find that naive analysis leads to biased estimates

of causal value
∫ t

0
β12(s)ds and hence result in poor coverage probabilities with the em-

pirical coverage worsening as time increase. These support our theoretical finding that

naive analysis of the post-progression survival cannot provide a consistent estimate of the

causal effect of treatment. The biases of estimates obtained by inverse weighting (with

true or non-parametrically estimated weights) are all negligible. This confirms that the

weight proposed adjusts for the confounding and dependent censoring and the method for

estimating the weights yields consistent estimation of the causal effect of treatment on the

post-progression survival. The ESE and ASE under the inverse weighting methods are in

close agreement and the 95% empirical coverage probabilities are all within the acceptable

range. As in Section 4.3, we did not account for the variability from the weights when we

compute the sample variance estimates for the inverse weighting method with estimated

weights.

Figure 4.5 provides a graphical summary of the bias and variability of estimates of

cumulative intercept (top panel) and cumulative treatment coefficient (bottom panel), re-

spectively, under naive analysis and with inverse weighting at three times post progression:

s = 0.2, 0.4 and 0.6. These figures further illustrate that naive analysis is not appropriate

and results in biased estimates while suitable inverse weighting leads to consistent estima-

tion of the causal effects; the variability of estimates increases with increasing time for all

methods.

122



−
0

.3
−

0
.2

−
0

.1
0

.0
0

.1
0

.2
0

.3

NAIVE IPW−TRUE IPW−EST NAIVE IPW−TRUE IPW−EST NAIVE IPW−TRUE IPW−EST

E
M

P
IR

IC
A

L
 B

IA
S

s = 0.2 s = 0.4 s = 0.6

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

NAIVE IPW−TRUE IPW−EST NAIVE IPW−TRUE IPW−EST NAIVE IPW−TRUE IPW−EST

E
M

P
IR

IC
A

L
 B

IA
S

s = 0.2 s = 0.4 s = 0.6

Figure 4.5: Boxplot for estimates of cumulative intercept (top panel) and treatment effect

(bottom panel) at times 0.2, 0.4 and 0.6 under naive analysis (NAIVE), inverse weighting

method with true weights (IPW-TRUE) and by inverse weighting with estimated weights

(IPW-EST) in the presence of random censoring; new treatment X3 is assigned at the

progression time; m = 1000, nsim = 1000.
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4.5 Discussion

We have considered the issues in the assessment of treatment effects on survival following

progression in cancer clinical trials. The goal of this work was to consider the influence of

two major factors leading to problems in the analyses of post-progression survival. One is

the effect of baseline prognostic values and their associated confounding effects on post-

progression survival, and the dependent censoring process that results from their omission.

The second is the complication arising from the response-dependent introduction of rescue

therapy upon progression. In this Chapter, only single binary covariate is considered and

we also assume there are no unmeasured confounders. Further work will then involve the

explanation of the role of time-varying markers which may be associated with progression

and death following progression, as well as the decision to introduce rescue therapy. The

additive model was used because it is collapsible and because the time-varying coefficients

can reflect complex causal effects which are not possible to represent in a parsimonious

way. Location-scale models or models based on time-transforms (Geraci and Jones, 2015)

could also be explored.

The Granger school of causal inference (Granger, 1988) offers a framework for studying

causal effects which is congruent with the general intensity-based approaches for the anal-

ysis of life history data (Aalen et al., 2012), but these tools and approaches are not aligned

with the approach typically adopted for causal analysis of data from randomized trials.

Thus there is an apparent tension between the need to provide an adequate representa-

tion of a complex dynamic process and the need to express simple marginal causal effects.

This is well known, but we have considered the issue from the specific setting of an illness

death model to simplify the discussion and make observations pertinent to phase III cancer

clinical trials where the aim is to better understand the relation between treatment effects

on progression-free survival and overall survival. In particular we have directed efforts at

understanding the effect of the randomized treatment on post-progression survival.
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Chapter 5

Remarks and Future Research

5.1 Overview

In this thesis new statistical methods have been developed for analysing dependent failure

time data in both the observational and clinical trial settings. In Chapter 2, we focus on

characterizing the nature and extend of the within-family dependence structure to investi-

gate the hereditary nature of disease process. Copula functions and second-order regression

models are used to model the within-family association and composite likelihood methods

have been considered for estimation and inference for event time data subject to a mixture

of right-censoring and current status observation schemes. The biased sampling scheme

and low incidence rate mean that the family data does not provide much information about

the marginal onset time distribution, so we develop methods which exploit auxiliary infor-

mation. A two-stage estimation procedure has also been developed along with a derivation

of the asymptotic properties of the resulting estimators. We have found that use of aux-

iliary data can improve the estimation efficiency and in settings where there is a lot of

auxiliary data the two-stage estimation procedure can yield relatively efficient estimators

compared to those obtained from simultaneous estimation.

The design of cluster-randomized clinical trials with censored responses was addressed
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in Chapter 3, contributing a useful advance given the relatively little amount of work

that has been carried out in this setting (Zhong and Cook, 2015). We propose a novel

way to derive the sample size formulae for cluster-randomized trials involving right- and

interval-censored event times, in which analysis is based on a marginal proportional hazards

assumption. Copula functions are used to facilitate the derivation of asymptotic variance

of estimators from the Cox regression model, and based on this we developed sample size

criteria. Validity of the proposed sample size formulae was assessed by comprehensive sim-

ulation studies. We also examine the robustness of these formulae to the misspecification

of copula functions and within-cluster dependence in the censoring process.

In Chapter 4 attention was directed at causal inference regarding randomized treatment

effects on post-progression survival in the context of a three-state illness-death model. We

carry out this study based on an additive model, determine limiting values of the integrated

regression coefficients under naive analyses, define the causal quantities of interest, and

develop weighted estimating equations which render consistent estimates for the causal

functions we derive. Much additional work can be done in this setting and so in addition

to offering a useful contribution in itself it lays the ground-work for much further research

relevant to helping scientists understand the relation between treatment effects based on

different endpoints in cancer trials.

In the following sections the contributions of the various chapters are reviewed and

topics of further research are outlined. The final section deals with research ideas in

settings with another form of response-dependent sampling, arising in prevalent cohort

studies.

5.2 Ongoing Work in Family-Based Designs

There are a number of areas of future research planned based on the family study design.

An immediate goal is the development of statistical methods incorporating nonparametric

and semiparametric methods for estimating the marginal disease onset time distribution.

126



The approach to nonparametric estimation depends on the nature of the data to be used

for the estimation of the marginal parameters as well as whether the intention is to use two-

stage or simultaneous estimation. Use of the pooled-adjacent-violators algorithm (PAVA)

is natural if only current status data are to be used in a two-stage procedure, but other-

wise more general methods for nonparametric estimation are required such as Turnbull’s

algorithm (Turnbull, 1976). The two-stage method of analysis requires adaptation of the

variance formulae but the large sample properties of estimators from isotonic regression

(Barlow et al., 1972) can be exploited to achieve this.

Another important extension is to integrate the assessment of genetic variables to study

how these might alter the marginal onset time distribution or the structure of the within-

family dependence. If this is to be carried out by regression analyses it will necessarily

be restricted to individuals from the Toronto cohort as there are no genetic data available

from individuals participating in the survey of the National Psoriasis Foundation; other

PsA cohorts for which genetic data are available could be used however, along with any

family members that are genotyped. A variety of marginal regression models can be consid-

ered including parametric proportional hazards or location-scale models, semiparametric

proportional hazards models, or additive models. Simultaneous and two-stage estimation

procedures can be adopted in this regression setting as well.

A particularly exciting avenue for further exploration is the use of auxiliary data for

which there is no genotype information when interest lies in testing genetic effects. This

data can be used in the computation of score tests in which parameter estimates are only

required under the null hypothesis; in this case data from individuals in the National Pso-

riasis Foundation survey may be used to improve efficiency in estimation of the parameters

under the null hypothesis. It is anticipated that the gain in precision in the estimates of

the marginal parameters under the null hypothesis should translate to increased power of

tests for genetic associations; following initial estimation of the marginal parameters under

the null hypothesis the score test will be applied only to patients having genetic data.

The robustness and computational appeal of pairwise likelihood is similar in spirit to
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the appeal of the robustness from estimating function methodology. We intend to explore

the use of second-order estimating functions for modeling the within family association

structure and have carried out some preliminary work examining conditional GEE2 meth-

ods. Use of auxiliary data from the National Psoriasis Foundation survey can also be used

to introduce weights based on the cumulative incidence of disease and to obviate the need

for conditioning, and score tests will also be developed in this framework.

5.3 Ongoing work in Cluster-Randomized Trials

In Chapter 3, we focus on sample size calculations for cluster-randomized trials with cen-

sored event times, but restricted attention to the setting in which cluster sizes are fixed

at a common value, denoted by J . While this is often reasonable, cluster sizes routinely

vary in cluster-randomized trials. When planning studies in this case it is perhaps most

common to use formula derived for fixed cluster sizes, but to use the anticipated average

cluster size J̄ =
∑n

i=1 Ji/n in the formula in place of J (Donner, 1984; Xie and Waksman,

2003; Jahn-Eimermacher et al., 2013). When cluster sizes vary and the response is con-

tinuous, use of the average size in the formula derived for common cluster sizes can lead

to inadequate power; the loss in power can be small, however, if the cluster size tends to

be large and the intraclass correlation coefficient is small (Manatunga et al., 2001; Van

Breukelen et al., 2007). Manatunga et al. (2001) developed a refinement to the usual sam-

ple size formula for continuous outcomes to deal with variable cluster sizes, which involves

adding a correction term (a function of the coefficient of variation of the cluster size) to

the formula based on a common cluster size. Van Breukelen et al. (2007) investigated the

consequences of unequal versus equal cluster sizes in terms of the precision of treatment

effects estimators in cluster-randomized trials with continuous outcomes. They provide

a formula for the approximate relative efficiency of the estimators, which can be used to

adjust an initial estimate of the number of clusters required based on a common cluster

size. Candel and Van Breukelen (2010) extended this approach to varying cluster size with
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binary outcomes when the analysis is based on the mixed logistic regression. We are not

aware of any methods for dealing with variable cluster sizes for event time responses, and

so extensions to deal with this represent an important area of future research.

Another important area to be developed is the development of adaptive sample size

estimation in cluster-randomized trials. The nature and extent of within-cluster depen-

dence is often unknown at the design stage. Methods that involve exploitation of interim

data for blinded estimation of dependence parameters may enable researchers to commence

studies when there is uncertainty about the extent of within-cluster dependence but refine

the design as data are collected. There is currently much interest in adaptive clinical trial

design and this represents an important area of future work related to the contributions of

Chapter 3.

5.4 Ongoing Work for Cancer Clinical Trials

The issue of causal inference on transition intensities arises in many other settings involving

multistate models. A setting of particular interest is in health promotion studies where

interest lies in examining intervention effects on behaviour change in health promotion

studies. In this setting individuals are randomized to one or two or more interventions and

interest lies in how transition rates may differ between randomized groups. The effects of

interventions on the rate of change from the initial state are protected by randomization,

but any comparisons between groups in transition rates beyond the first state at the first

time point are susceptible to the kind of confounding we consider here. Inverse probability

weighted estimating equations can be used in this context as well. Another setting is in

the analysis of second and subsequent gap times in recurrent event analysis (Cook and

Lawless, 2007). In this case it is generally appreciated that it is important to model the

dependence in successive gap times through use of random effect or copula-based models,

but inverse weighting can of course be used. Lin and Ying (2001) discuss non-parametric

estimation of the joint distribution of gap times for the development of inverse weighted
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estimating equations for estimation of marginal second gap time distributions.

Further work in this area is warranted and much related work on causal inference has

bearing on analysis from randomized trials in settings with complications due to missing

data, censoring, selection effect or conditioning. Our attention has focussed in fixed con-

founders or confounders introduced at the single time of progression. Marker data are

routinely available at least intermittently, and the observed values are often highly influen-

tial in treatment decision making. Further work which deals with this type of time varying

marker data is under way.

Finally we note that while we have developed a specific framework for thinking about

the causal analysis of treatment effects on post-progression survival we have not fully

exploited it to obtain an estimate of the effect of the randomized treatment on overall

survival. Another avenue for exploration is the use of the multistate models for the purpose

of estimating the transition intensities in each treatment arm separately, removing the

confounding effects from conditioning on the collider of progression and the introduction

of rescue medication. These can then be used to construct an estimate of the survival

probability for each arm and treatment comparisons can be made based on these. Careful

thought is required to decide how precisely to remove the confounding effects however as it

is important that the resulting estimates and treatment contrasts have clear meaning and

contextual relevance. This too is ongoing work.

5.5 Measurement Error for Age of Onset in Prevalent

Cohort Studies

Prevalent cohort studies of chronic diseases involving screening populations and sampling

individuals with the condition of interest for prospective follow-up (Zelen and Feinleib,

1969). Examples of such studies include cancer screening trials (Zelen, 2004), studies of HIV

prevalence (Lagakos et al., 2006) and studies of dementia (Wolfson et al., 2001; Asgharian
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et al., 2002). The prevalent cohort design features a form of response-dependent sampling,

however, in the sense that diseased individuals with long survival times are preferentially

selected for inclusion into the cohort (Cox and Miller, 1965; Zelen and Feinleib, 1969; Zelen,

2004); some authors refer to the resulting data as “length-biased”.

Two broad frameworks are commonly used to address the sampling in the likelihood

construction: conditional framework and unconditional framework. The conditional frame-

work is based on the fact that individuals who died before the time of screening cannot be

sampled, and so the survival times among sampled individuals are left-truncated by the

time from disease onset to enrollment. Parametric, nonparametric (Wang, 1991) and semi-

parametric (Kalbfleisch and Lawless, 1991; Keiding and Moeschberger, 1992; Wang et al.,

1993) methods based on this framework has been well established. The unconditional

framework is based on the density of the survival times derived under the prevalent cohort

sampling scheme. That is, if the disease incidence is stationary, the onset times follow a

time homogeneous Poisson process, and the resulting left truncation times have a constant

density. If the probability an individual is sampled is proportional to their survival time,

the density of times subject to this sampling scheme can be derived and used for likelihood

construction. Nonparametric (Vardi, 1982, 1989; Asgharian et al., 2002; Huang and Qin,

2011) and semiparametric estimation methods (Wang, 1996; Luo and Tsai, 2009; Tsai,

2009) have been established for length-biased data. Both conditional and unconditional

analyses make use of the retrospectively reported times of disease onset, with the latter

further based on the assumption of a stationary (Poisson) incidence process.

However, there is often considerable error and uncertainty in the retrospectively re-

ported onset times. This is particularly true for onset times related to disease featuring

cognitive impairment or mental health disorders. In some settings the reported times may

better represent times of symptom onset, rather than the actual start of the disease pro-

cess which may lead to underestimation of disease duration. In other settings the errors

may lead to earlier or later reported onset times. Therefore we are interested in examin-

ing the impact of measurement error in the retrospectively reported onset time for both

the conditional and unconditional frameworks, and proposing methods to correct for this
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measurement error.

Consider a population and a chronic disease such that at any time an individual in the

population is in one of three states: alive and disease-free (D0), alive with disease (D1),

and dead (D2). For individuals who develop the disease, the path is D0 → D1 → D2 and

interest often lies in the distribution of the survival time with the disease, or equivalently

the sojourn time distribution for state D1. For individual i, let Vi0 be the calendar time

of disease onset and Vi1 be the calendar time of death (time of entry to state D2); then

Ti = Vi1 − Vi0 denotes the time of interest. Consider a study starting at calendar time

R (recruitment time), when individuals in the population are screened for the disease of

interest and those who are diseased are to be recruited into the study. Figure 5.1 shows a

hypothetical situation in the prevalent cohort study, where calendar time is represented on

the horizontal axis. Individuals who are sampled must have developed the disease of interest

at some point over the calendar time interval [A,R], and be still alive at the recruitment

time R. Those who develop the disease over [A,R] but die before the recruitment time

cannot, of course, be selected for inclusion in the sample. Those who develop the disease

after the recruitment time are also not eligible for recruitment. The times Wi = R − Vi0
and S = Vi1 − R are called the backward and forward recurrence times for individual i

respectively, and Ti = Wi+Si is the survival time of interest. To accommodate incomplete

follow-up, let Ci denote the right censoring time for individual i from disease onset, and

Xi = min(Ti, Ci) denote the survival time from disease onset; δi = I(Ti1 < Ci) is a indicator

of whether death is observed.

Let fT (t; θ) and FT (t; θ) be the so-called population (unbiased) probability density and

survivor functions for Ti, where a p × 1 parameter vector θ indexes the distribution. The

relevant density function for the observed left-truncated survival data for individual i is

f(ti|vi0, Ti > R− vi0; θ) =
fT (ti; θ)

FT (R− vi0; θ)
. (5.5.1)

We now consider the distribution of the onset times over the interval [A,R] in the target

population. Let f0(v0)dv0 = P (v0 ≤ V0 ≤ v0 + dv0|A ≤ V0 ≤ R) be the probability an
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Figure 5.1: Diagram of calendar times and study times of disease onset, left-truncation

and survival.

onset time occurs in an interval [v0, v0 + dv0] given it happens over [A,R]. We assume

T ⊥ V0, so that the distribution of the survival time since disease onset does not depend

on onset time.

Then the conditional and unconditional likelihoods for right-censored left-truncated

survival data are

LC(θ) ∝
n∏
i=1

f(xi|vi0, Ti > R− vi0; θ) =
f δiT (xi; θ)F1−δi

T (xi; θ)

FT (R− vi0; θ)
, (5.5.2)

and

LF (θ) ∝
n∏
i=1

f(vi0, xi|A ≤ V0 ≤ R, V1 ≥ R; θ) =
n∏
i=1

f ∗0 (vi0; θ)
f δiT (xi; θ)FT (xi; θ)

1−δi

FT (R− vi0; θ)
,

(5.5.3)

respectively, and we can write

LF (θ) = LM(θ)× LC(θ) ,

where LM(θ) =
∏n

i=1 f
∗
0 (vi0; θ), and

f ∗0 (vi0; θ) =
f0(vi0)FT (R− vi0; θ)∫ R
A
f0(u)FT (R− u; θ)du

,
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which is the sample onset time density for individuals who satisfy the inclusion criterion.

The details can be found in Zhong and Cook (2014).

The estimators θ̂C and θ̂F can be found by maximizing the conditional (5.5.2) and

unconditional (5.5.3) likelihoods respectively when parametric models are applied. Further,

the resulting estimators have asymptotic normal distributions, so
√
n(θ̂C − θ)

D−→ N(0, I−1
C ) ,

√
n(θ̂F − θ)

D−→ N(0, I−1
F ) ,

where IC and IF are the Fisher information matrices for conditional and unconditional

likelihoods.

Both the conditional and unconditional analyses make use of the reported onset time,

and the latter requires the additional assumption of a stationary disease incidence process.

For individuals determined to have the disease at the time of assessment, the disease may

have begun several years earlier, making accurate recall of the onset time difficult. There

may therefore be considerable uncertainty about the reported onset time and the difference

between the true onset time and the reported onset time represents recall, reporting, or

measurement error; we will henceforth use the term measurement error. Both the condi-

tional and unconditional approaches to the analysis of prevalent cohort data will in general

lead to biased estimators in the presence of measurement error. Let V0 be the exact disease

onset time which is not observed and U0 be the retrospectively reported disease onset time.

A classical error model (Carroll et al., 2006) leads to

U0 = V0 + ε (5.5.4)

where ε ∼ N(0, σ2) is random measurement error, and A ≤ V0 ≤ R. Notice that diseased

individuals who are still alive at the recruitment time and selected into the study need to

report their onset time retrospectively, and their reported onset time should also satisfy

the condition A ≤ U0 ≤ R. In this case the sample distribution of U0 given V0 becomes

a truncated normal distribution, with density function written as g(u0|v0;φ), suppressing

the condition A ≤ U0 ≤ R,

g(u0|v0;φ) =
fε(u0 − v0;φ)

Fε(R− v0;φ)− Fε(A− v0;φ)
(5.5.5)
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where fε(·;φ) and Fε(·;φ) are the density and cumulative distribution functions of ε with

parameter φ = log σ, where σ is the standard deviation; we let ψ = (θ′, φ)′ denote the

vector of all parameters. The impact of this measurement error in both frameworks for

parametric and nonparametric settings is investigated in Zhong and Cook (2014).

A ‘correct’ likelihood approach (Zhong and Cook, 2014) can be used to account for the

measurement error in the onset time and will yield unbiased estimators of the parameters

of interest if the component model assumptions are correctly specified. Such a likelihood

should be based on the reported onset time and the (possibly censored) survival time,

which will require explicit modeling of the measurement error process. Let h(v1|u0) be the

density function of the calendar time of death given the reported onset time, i.e

h(v1|u0;ψ) = P (v1|u0, A ≤ U0, V0 ≤ R, V1 ≥ R;ψ)

=

∫ R
A
fT (v1 − v0; θ)g(u0|v0;φ)f0(v0)dv0∫ R

A
FT (R− v0; θ)g(u0|v0;φ)f0(v0)dv0

(5.5.6)

The ‘correct’ conditional likelihood for right-censored left-truncated data is of the form

L∗C(ψ) =
n∏
i=1

{(∫ R
A fT (vi1 − vi0; θ)g(ui0|vi0;φ)f0(vi0)dvi0∫ R
A FT (R− vi0; θ)g(ui0|vi0;φ)f0(vi0)dvi0

)δi

×

(∫ R
A FT (vi1 − vi0; θ)g(ui0|vi0;φ)f0(vi0)dvi0∫ R
A FT (R− vi0; θ)g(ui0|vi0;φ)f0(vi0)dvi0

)1−δi }
. (5.5.7)

Similarly, the joint density of the observed onset time and calendar time of death is

h(v1, u0;ψ) = P (v1, u0|A ≤ U0, V0 ≤ R, V1 ≥ R; ) =
P (u0, A ≤ V0 ≤ R, V1 ≥ R) h(v1|u0;ψ)

P (A ≤ U0 ≤ R,A ≤ V0 ≤ R, V1 ≥ R)

=

∫ R

A
FT (R− v0; θ)g(u0|v0;φ)f0(v0)dv0∫ R

A
FT (R− v0; θ)f0(v0)dv0

h(v1|u0;ψ) . (5.5.8)

where the last equality is derived by (5.5.5).

The ‘correct’ unconditional likelihood can then be constructed as follows,

L∗F (ψ) = L∗M(ψ)× L∗C(ψ) , (5.5.9)

135



where

L∗M(ψ) =

(
n∏
i=1

∫ R
A
FT (R− vi0; θ)g(ui0|vi0;φ)f0(vi0)dvi0∫ R

A
FT (R− vi0; θ)f0(vi0)dvi0

)
. (5.5.10)

Since L∗M(ψ) might contain the information about parameters we are interested in,

the ‘correct’ unconditional likelihood might be more efficient than the ‘correct’ conditional

likelihood. Further, when the underlying onset time is a stationary process, then we can let

f0(v0) = (R−A)−1 and let A→ −∞ to obtain both ‘correct’ likelihoods for length-biased

data.

The maximum likelihood estimators θ̂∗C and θ̂∗F under (un)conditional likelihoods can

be easily found by maximizing (5.5.7) and (5.5.9) respectively and have asymptotic normal

distribution as n→∞ such that

√
n(ψ̂∗C − ψ)

D−→ N(0, I∗−1
C ) ,

√
n(ψ̂∗F − ψ)

D−→ N(0, I∗−1
F ) ,

where I∗C and I∗F are information matrices based on conditional (L∗C) and unconditional

(L∗F ) likelihoods function.

A simulation study has been carried out to examine the performance of ‘correct’ like-

lihoods in the presence of measurement error in disease onset time; see Zhong and Cook

(2014) for details. Based on the simulation study, we can find that the proposed ‘correct’

likelihood approach adjusts the measurement error well and yields consistent estimators.

The methods we proposed to correct for measurement error are based on the parametric

model. It is of interest to investigate what the limiting value of standard nonparametric

estimators is for both the conditional and unconditional frameworks. The modest increase

in the standard error of the Weibull shape and scale parameters that arises when φ is

estimated suggests it is promising to consider nonparametric estimation in the corrected

conditional and unconditional settings. Extending the corrected likelihoods to accommo-

date misspecification of the onset times is also of interest for both frameworks. We focused
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on the classical error model in this study, but other measurement error models are also of

interest; often individuals will report later onset times since their views on disease onset

may be more closely tied to the onset of symptoms than the actual disease. Methods to

correct for this kind of measurement error are also important and are under development.
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