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Abstract 

The thermal and dynamic properties of water bodies are important factors affecting the structure of 

the atmospheric boundary layer which stores and transports energy and mass. The storage and heat 

transfer of lakes play an essential role in energy and water exchanges with the atmosphere. At high 

latitudes, the effects of lake ice on climate mostly occur at the local/regional scale, with the degree of 

influence dependent on the magnitude, timing, location, duration of ice cover and the size of the water 

body. Ground-based lake temperature and ice observations have been used to investigate the role of 

lakes in the weather and climate, and the response of lakes to climate. However, in the last two to 

three decades, it has been observed that the number of ground-based observations, lake ice in 

particular, has been decreasing dramatically in several countries across the northern hemisphere. In 

this context, remotely sensed earth observations represent a practical tool in support of the scientific 

and operational modeling communities, permitting to monitor Lake Surface Water Temperature 

(LSWT) and ice cover.  

 Data assimilation methods have been used widely to solve the initial value problem in numerical 

weather prediction (NWP) models. There is a variety of users and applications of space-borne 

observations in NWP systems; however, not much attention has been paid on the assimilation of 

remotely-sensed LSWT data in pre-operational NWP environments for improvement of the weather 

forecast using the optimal interpolation method. This thesis aimed to demonstrate how retrieved 

remotely-sensed LSWT observations can improve the representation of lake-atmosphere interactions 

in NWP models. More specifically, LSWT observations were used to improve the representation of 

lake surface state in the High Resolution Limited Area Model (HIRLAM), a three-dimensional 

numerical weather prediction (NWP) model. 

To attain this goal, satellite-derived LSWT observations from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Along-Track Scanning Radiometer (AATSR) sensors onboard 

the Terra/Aqua and ENVISAT satellites, respectively, were first evaluated against in-situ 

measurements collected by the Finnish Environment Institute (SYKE) for a selection of large to 

medium-size lakes during the open-water season. Results show a good agreement between MODIS 

and in-situ measurements from 22 Finnish lakes, with a mean bias of -1.13 ˚C determined over five 

open water seasons (2007-2011). Evaluation of MODIS during an overlapping period (2007-2009) 

with the AATSR-L2 product currently distributed by the European Space Agency (ESA) shows a 



 

 iv 

mean bias error of -0.93 ˚C for MODIS and a warm mean bias of 1.08 ˚C for AATSR-L2. Two 

additional LSWT retrieval algorithms were applied to produce more accurate AATSR products. The 

algorithms use ESA’s AATSR-L1B brightness temperature product to generate new L2 products: one 

based on Key et al. (1997) and the other on Prata (2002) with a finer resolution water mask than used 

in the creation of the AATSR-L2 product distributed by ESA. The accuracies of LSWT retrievals are 

improved with the Key and Prata algorithms with biases of 0.78 ˚C and -0.11 ˚C, respectively, 

compared to the original AATSR-L2 product (3.18 ˚C).  

The impact of remotely-sensed LSWT observations in the analysis of lake surface state of 

HIRLAM forecasting system was then investigated. Data assimilation experiments were performed 

with the HIRLAM model. Selected thermal remote-sensing LSWT observations provided by MODIS 

and AATSR sensors were included into the assimilation. The domain of the experiments, which 

focused on two winters (2010-2011 and 2011-2012), covered northern Europe. Validation of the 

resulting objective analyses against independent observations demonstrated that the description of the 

lake surface state can be improved by the introduction of space-borne LSWT observations, compared 

to the result of pure prognostic parameterizations or assimilation of the available limited number of 

in-situ lake temperature observations. Further development of the data assimilation methods and 

solving of several practical issues were found to be necessary in order to fully benefit from the space-

borne observations of lake surface state for the improvement of the operational weather forecast.  

Lastly, the lake-specific autocorrelation function based on LSWT remotely sensed observations was 

approximated in HIRLAM. A new autocorrelation function of lake pairs was approximated and 

compared against the original function utilized in current version of HIRLAM to investigate potential 

improvements demonstrated through HIRLAM sensitivity experiments. The autocorrelation function 

is calculated based on distance and lake depth differences for each lake pairs. Results show that large 

lakes are more sensitive to the impact of the autocorrelation. These results also suggest that the high 

concentrated observations can improve the enhanced result; however, ground-based observations of 

LSWT are barely available for NWP applications. 

Overall, results from this thesis clearly demonstrate the benefits of assimilating space-borne LSWT 

observations into a weather forecasting system such as HIRLAM, and that comprehensive 

assimilation of LSWT observations can improve NWP results. 
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Preface 

In addition to a general introduction, a background chapter and a general conclusion, the thesis 

contains three journal articles that examine how retrieved remote sensing Lake Surface Water 

Temperature (LSWT) observations can improve the representation of lake-atmosphere interactions in 

a numerical weather prediction (NWP) model. The first and second papers are published in the peer-

reviewed international journal Tellus Series A: Dynamic Meteorology and Oceanography. The first 

paper presents the development of new algorithms and assessment of the accuracy of LSWT datasets 

derived from thermal remote sensing sensors to be applied in NWP models. The second paper 

presents the improvement of the High Resolution Limited Area Model (HIRLAM) NWP model 

analysis through assimilation of the developed satellite-derived LSWT observations. The third paper, 

submitted to the international journal Boreal Environment Research, investigates the potential 

improvement of the lake-specific autocorrelation function implemented in HIRLAM using the 

remotely-sensed LSWT observations studied in the previous papers. 

The work presented in this thesis is the result of a direct collaboration between the University of 

Waterloo (Professor Claude R. Duguay) and the Finnish Meteorological Institute (FMI), in Helsinki, 

Finland (Dr. Laura Rontu, Dr. Ekaterina Kourzeneva, and Mr. Kalle Eerola). Professor Duguay aided 

a great deal with the initial proposal and facilitated collaboration with FMI through North Hydrology 

project he led, funded by the Support to Science Element of the European Space Agency (ESA). This 

collaboration provided a great opportunity to work with weather forecasting specialists at FMI, which 

complemented the University of Waterloo’s expertise in remote sensing. This project provided an 

opportunity to develop the basis of a long-term collaboration with FMI. 





  

 Chapter 1

General Introduction 

1.1 Motivation 

Climate change, especially in the context of contemporary temperature rise, has become a topic of 

intensive scientific research since the mid-1980s. High northern latitude regions have been identified 

as the most vulnerable ones to recent global climate warming, where lakes occupy a significant 

fraction of the landscape. Lakes are a fundamental component of climate on the local and regional 

scales, functioning much as oceans do on the global scale (Schertzer, 1997). Therefore, monitoring 

and study of lakes hydrodynamic changes in high latitude regions are important as they contribute to 

a better understanding of lake-atmosphere interactions (role and response of lakes) in a warming 

climate.  

The thermal and dynamic properties of water bodies are important factors affecting the structure of 

the atmospheric boundary layer which stores and transports energy and mass. The heat transfer and 

storage of lakes play an essential role in energy and water exchange with the atmosphere. The 

exchanges occurring at the air/water interface are complicated as water is a fluid and thus, the heat 

transfer is not only by conduction and radiation, but also by convection and advection (Oke, 1978). 

The surface heat flux over lakes significantly depends on Lake Surface Water Temperature (LSWT). 

LSWT influences regional heat, moisture content and circulation of the atmosphere. The study of 

LSWT is important because the energy exchange between the surface and subsurface of a lake 

influences the static stability of the water column, which is essential in determining the lake 

hydrodynamics (Lofgren and Zhu, 2000).  

Another important factor in the study of lakes is ice cover since it strongly affects the thermal and 

hydrologic behavior of lakes. At northern latitudes, seasonal lake ice forms in the fall, thickens during 

the course of winter and melts in the spring. The effects of lake ice on weather and climate mostly 

occur at the local/regional scale, with the degree of influence dependent on the magnitude, timing, 

location, duration of ice cover and the size of the water body. Lake ice formation, growth, decay, 

break-up and freeze up are also influenced by climatic variables that control surface heat fluxes. 

Ground-based lake temperature and ice observations have been used to investigate the role of lakes in 

the weather and climate, and the response of lakes to climate. However, in the last two to three 

decades, it has been observed that the number of ground-based observations, lake ice in particular, 

has been decreasing dramatically in several countries across the northern hemisphere. The decline in 

the ground-based observational network limits the use of such lake data into numerical weather 
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prediction (NWP), climate and hydrologic models. As the spatial resolution of these models is 

increasing, a better description of energy exchange between the atmosphere and the earth’s surface is 

required. The development of computational methods has the ability to support the sharp reduction in 

observational practices using one-dimensional (1-D) to three-dimensional (3-D) lake models; 

however, they could have significant errors (Mironov et al., 2010; Rontu et al., 2012). In this context, 

remotely sensed earth observations represent a practical tool to support the scientific and operational 

communities to monitor LSWT and ice thermodynamic/dynamic processes. The advantage of 

remotely sensed data is that unlike much of the in-situ measurements, it can be obtained over very 

large geographic areas rather than just at a single point or a few points. 

Generally speaking, one of the main reasons that forecasting for tomorrow is not accurate enough, 

especially in lake-rich regions, is that there are not sufficient and accurate observations over lakes 

giving the information of the state of lakes for today. Mathematically speaking, NWP models have an 

initial-value problem in which the necessary initial values are known only incompletely and 

inaccurately. Therefore, new observing systems such as satellite-based observations, which provide 

continuous observations, make it obviously necessary to find new and more sophisticated methods of 

assimilating observations in NWP models. 

1.2 Objectives 

The overall goal of this research is to demonstrate how retrieved remote sensing LSWT observations 

can improve the representation of lake-atmosphere interactions in NWP models. The specific 

objectives of this thesis are to: 1) develop satellite-based observations of lakes surface state and 

evaluate with ground-based measurements, 2) apply the combination of satellite-based LSWT 

observations and a numerical lake model to define the initial state of lake surface in the High 

Resolution Limited Area Model (HIRLAM) forecasting system using optimal interpolation 

assimilation methods, and 3) investigate possible improvement of the lake-specific autocorrelation 

function in HIRLAM using the developed satellite-based LSWT observations. 

1.3 Thesis Structure 

This manuscript-based thesis consists of six chapters aimed at investigating the benefits of using 

remotely sensed lake surface state observations to improve weather forecasting. The current chapter 

presents the rationale and objectives of the thesis, outlining the need for monitoring and assimilating 

lake surface state observations in numerical weather forecasting systems.  
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Chapter 2 provides a review of evolution of NWPs, the general methods of data assimilation, 

specifically optimal interpolation. The chapter also reviews the representation of lakes in NWPs, 

more specific in HIRLAM system, and the available satellite based observations for lake studies.  

Chapter 3 addresses the first objective of the thesis by evaluating the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Along-Track Scanning Radiometer (AATSR) LSWT 

observations with in-situ measurements collected by the Finnish Environment Institute (SYKE) for a 

selection of large- to medium-size lakes over Europe. This paper is published in a thematic cluster of 

Tellus Series A: Dynamic Meteorology and Oceanography: 

Kheyrollah Pour, H., Duguay, C.R., Solberg, R., and Rudjord, Ø. (2014a). Impact of 

satellite-based lake surface observations on the initial state of HIRLAM. Part I: Evaluation of 

remotely-sensed lake surface water temperature observations. Tellus Series A: Dynamic 

Meteorology and Oceanography. 66, 21534, DOI: 10.3402/tellusa.v66.21534. 

Chapter 4 addresses the second objective by applying the evaluated LSWT products in the 

HIRLAM forecasting system. It investigates the issue of improving the analysis of the HIRLAM 

model using LSWT observations from space. This paper is published in a thematic cluster of Tellus 

Series A: Dynamic Meteorology and Oceanography: 

Kheyrollah Pour, H., Rontu, L., Duguay, C. R., Eerola, K. and Kourzeneva, E. (2014b). 

Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: 

Analysis of lake surface temperature and ice cover. Tellus Series A: Dynamic Meteorology 

and Oceanography. 66, 21395, DOI: 10.3402/tellusa.v66.21395. 

Chapter 5 investigates the potential improvement of the lake-specific autocorrelation function used 

in current version of the HIRLAM model using MODIS LSWT observations. This paper has been 

submitted to the international journal Boreal Environment Research: 

Kheyrollah Pour, H., Kourzeneva, E., Eerola, K., Rontu, L., Duguay, C. R., and Pan, F. 

Preliminary assessment of lake surface water temperature statistical properties for objective 

analysis in a NWP model using satellite observations. 

Chapter 6 presents a summary of the key findings of this research, and also includes suggestions 

for further research directions. 

Finally, research results from Chapters 3 and 4 led to further developments and the preparation of 

two additional co-authored journal publications. These were published in a thematic cluster of Tellus 
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Series A: Dynamic Meteorology and Oceanography. They are included in Appendix A and B of the 

thesis: 

Cheng, B., Vima, T., Rontu, L., Kontu, A., Kheyrollah Pour, H., Duguay, C. R., and Jouni 

Pulliainen. (2014). Evolution of snow and ice temperature, thickness and energy balance in 

Lake Orajärvi, northern Finland. Tellus A: Dynamic Meteorology and Oceanography. 66, 

21564. 

In this publication, snow and ice observations collected on a northern lake in Finland were used to 

investigate the seasonal evolution of snow and ice.  The observed snow and ice temperature from ice 

mass balance buoys (SIMB) and the MODIS observations are compared to a snow/ice model 

(HIGHTSI) and the uncertainty in snow/ice model simulations originating from precipitation was 

investigated. This project also showed the large inter-annual variability of precipitation, long-wave 

radiative flux and air temperature during the winter season.  

Eerola, K., Rontu, L., Kourzeneva, E., Kheyrollah Pour, H., and Duguay, C.R. (2014). 

Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic witer 

situation- a case study using HIRLAM model. Tellus  A: Dynamic Meteorology and 

Oceanography. 66, 23929. 

This publication followed the results from Chapter 4, which improved analysis of HIRLAM using 

Lake Ladoga as a case study. The study showed improvement of forecast (2-m air temperature and 

cloud cover) using satellite observations of lake surface state and the 1-D Flake model. 
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                                                                                          Chapter 2

Background 

2.1 Numerical weather prediction  

2.1.1 Evolution of numerical weather prediction 

Numerical weather prediction (NWP) focuses on taking current meteorological observations and 

processing them by integrating primitive-equation models to forecast the future state of weather. The 

observations are used as input to NWP through a process called data assimilation. The state of the 

weather is described as the series of grid-boxes by a set of state variables such as temperature, 

humidity, and pressure.  

At the beginning of the 20th century, weather forecasting was very imprecise and unreliable as 

observations were scarce and irregular and the theoretical physics played a relatively minor role in 

practical forecasting. Forecasting was more like an art than a science. The first explicit analysis of the 

weather prediction problem from a scientific viewpoint was undertaken when the Norwegian scientist 

Vilhelm Bjerknes set down a two-step plan for rational forecasting (Bjerknes, 1904). He used 

diagnostic and prognostic terms for these two steps. The diagnostic step required adequate 

observational data at the particular time and prognostic step was to be taken by assembling a set of 

equations for each variable describing the atmosphere such as temperature, humidity, and pressure. 

So that the idea of solving the equations to calculate future weather was promoted by Bjerknes, but he 

did not construct a detailed plan for implementing his program or attempt to carry it through a 

practical realization. The first attempt to put his idea into practice was by Lewis Fry Richardson. He 

constructed a systematic mathematical method for predicting weather and the methodology proposed 

by him is essentially that used in practical weather forecasting today (Charney, 1950).  

Numerical methods used in NWP for solving the equations have naturally evolved in the last few 

decades, partly due to research advances and partly because of changes in the available computing 

resources. The model equations in NWPs are solved at points defined by a three-dimensional spatial 

grid that covers the region of interest. NWP models of the 1950s had grid-points spaced every few 

hundreds kilometers in the horizontal direction, whereas today, models use grid-points every 1-100 

km. The resolution of models depends on the area coverage so that general circulation models 

(GCMs) have generally coarse resolution and are necessary for long-range forecasts; however, 
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regional models often called limited area models, have finer resolution and are used for short-range 

forecasts (Collins et al., 2013). 

Over time, the complexity and sophistication of NWP models increased and most of the 

improvements have been in better model resolution, numerical techniques and model physics. As the 

resolution of a model increases, more and more fine scale effects in the atmosphere from the 

underlying surface become apparent and should be taken into account. Meteorological observations 

made all over the world are used to provide the best estimate of the NWPs initial conditions. Some of 

the observations, such as the ones from weather stations, weather balloons or radio sounders, are 

taken at specific times at fixed locations (Figure 2.1). Other data, such as aircraft, ships, or satellites, 

are not fixed in space. Observations cannot be used directly to start model integration as initial 

conditions, but must be modified in a dynamically consistent way, which is referred to as data 

assimilation. 

 

Figure 2.1 Map of radiosonde locations (ECMWF report). 

2.1.2 General methods of data assimilation 

NWP models are “initial value problem” for which initial data are not available in sufficient 

quantify and with sufficient accuracy (Daley, 1991). Moreover, computed weather forecasts are of 

operational use only if they are available well ahead of verifying time. Therefore, it was essential to 

automate the process of preparing the initial fields, called objective analysis. Objective analysis 

method is the process of interpolating the available observations onto a regular grid in NWP in order 

to define the initial conditions. To do this, first guess field or background field (provided for example 

by the earlier forecast) should be blended with the observations. As the background field is consistent 
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with the physical relationship implemented by the model equations, it helps to introduce the 

dynamical consistency between the analysis and the model. In the case that there is no direct 

connection between observations and background values or there are no observations available for a 

grid-box, data assimilation method is needed to connect the observed information into a model state 

(Lynch, 2006). Therefore, observations from regions with good data will be blended to the regions 

with no or sparse data. An example of the intermittent analysis /forecast cycle is shown in Figure 2.2.  

The better objective analysis will improve the forecasting model result and therefore will improve 

the background. To achieve this, the following steps should be applied: a) the weight factor should be 

taken into account so that data should be weighted to their distance from the grid-point; b) the error in 

each type of observations should be estimated; c) the error of the background field should be 

estimated; and d) the effect of clustering data should be considered to avoid an exaggerated effect on 

the analysis value (if there are many observations in one area). 

 

Figure 2.2 Intermittent analysis/forecast cycle. Observations in a window surrounding each 
analysis time are used at the nominal analysis time. After initialization, the forecast is 
performed. A short-range forecast (6 hours) is illustrated here (Lynch, 2006).  
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2.1.3 Optimal interpolation 

Optimal Interpolation (OI) is an objective analysis procedure that incorporates all four steps listed 

above when performing an analysis. OI is based on a statistical estimation approach, which minimizes 

the analysis error. The method of optimizing the use of information in the background field and in the 

observations was first proposed by Arnt Eliassen and was developed in more detail by Gandin (1965) 

and in Chapter 5. 

In the OI method, the state of the atmosphere at a particular time will be given in terms of vector 

X of the variables at all model grid-points. The aim is to deduce the best estimate XA (vector of 

analyzed value) of X from the available data. The vector of analyzed value can be expressed as 

(Daley, 1991):  

𝑿𝑨 =   𝑿𝑩 + 𝑲[𝒀 − 𝑯 𝑿𝑩 ]          2.1 

Where XB is background model state, K is gain, or weight matrix, Y is vector of observations, and H 

is observation operator. Observation operator converts the background field into first guess values of 

the observations. The operator includes spatial interpolation to observation points and transformation 

to observed variables based on physical laws. Based on Eq. 2-1, the analysis is obtained by adding to 

the background field a weighted sum of the difference between observed and background values by 

the gain matrix K, where the K is given by: 

𝑲 = 𝑩𝑯𝑻(𝑹 + 𝑯𝑩𝑯𝑻)!𝟏          2.2 

Where B is the covariance matrix of background field error and R is the observational error 

covariance matrix. In OI, the background and observational matrices are assumed to be constant in 

time. The analysis error covariance (𝐀) is then given by:  

𝑨 = 𝑰 − 𝑲𝑯 𝑩          2.3 

2.2 Representation of lake observations in NWP 

The thermal and dynamic properties of water bodies make them important climatological 

substances. As the first law of thermodynamics states, energy can be neither created nor 

destroyed; therefore, the transmission of energy in the lake-atmosphere system is converted 

from one form to another in three different modes such as conduction, convection, and 

radiation. In the lake-atmosphere system, the amount of energy as an input is equal to the 

energy output over a long period of time (e.g., a year) and during shorter periods (e.g., hourly 

to monthly); the energy balance differs significantly based on the amount of stored energy. 
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Water stores energy well due to its high heat capacity (Oke, 1978). Due to their high heat 

capacity, lakes take much more energy input to rise their temperature in comparison to land 

surfaces, and take longer to cool down or warm up. 

In NWP models, at a minimum, the lower boundary of the model atmosphere over water 

bodies must have specified the water surface temperature. In today’s NWP models, the effect 

of lakes are either ignored or accounted for very crudely, affecting the quality of simulation 

of atmospheric boundary-layer structure. Figure 2.3 illustrates some of the processes that can 

be represented, explicitly or through parameterization, in NWP models to couple the 

atmosphere-water system. 

 

 

Figure 2.3 Physical and heat-exchange processes associated with the movement of heat and 
mass between lake and the atmosphere and within the lake (modified from Warner, 2011). 

 

Wind at the lake surface causes waves, where the wind strength is a function of wind speed and 

fetch. Wind causes the water to mix (the mixed layer) and the density of water produces different 

temperature layers within the water column (stratification). The more stable the surface water causes 
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a weaker and shallower mixing. The near surface stability depends on the vertical distribution of 

energy exchange from atmospheric incoming fluxes and the lake surface (Warner, 2011). 

The importance of a correct description of lake physical processes in weather predictions is well 

known (Niziol, 1987; Niziol et al., 1995; Zhao et al., 2012). During freezing and melting of lakes, the 

surface radiative and conductive properties as well as latent and sensible heat released from lakes to 

the atmosphere change dramatically leading to a completely different surface energy balance. Earlier 

break-up takes advantage of strong solar insolation in the high sun season and gives an earlier start to 

the heating of the lake due to the small surface albedo. Low albedo and high absorption of solar 

radiation result in a strongly positive radiation balance with small sensible and latent heat exchanges. 

The overlaying atmospheric condition becomes stable and it persists until the LSWT exceeds 

atmospheric temperature to create unstable atmosphere (transition time varies by different lake 

characteristics and latitude). With earlier break-up and heating storage, a lake reaches its maximum 

temperature and heat storage earlier (Schertzer et al., 2002) and stable to unstable atmospheric regime 

change occurs sooner. Subsequently, the period of maximum sensible and latent heat exchanges 

increases. Rouse et al. (2003) showed that the total sensible and latent heat fluxes are 9 times larger 

during unstable atmospheric condition than stable atmospheric condition in a study conducted on 

Great Slave Lake, NWT, Canada (late August-November). Peaks in sensible and latent heat fluxes are 

due to strong winds that promote larger vertical temperature and vapor pressure gradients (Blanken et 

al., 2000; Blanken et al., 2003).  

Understanding lake ice processes and the corresponding interactions with the atmosphere allow for 

better weather forecasting (Eerola et al., 2010). In most NWP models, this is often ignored or 

parameterized very roughly (Brown and Duguay, 2010) as obtaining spatially detailed in-situ 

observations such as lake surface temperature, ice thickness, or albedo are challenging, especially for 

large lakes. The influence of inland water in regional climate has been confirmed in previous studies 

using simple lake simulations. The land surface parameterizations in climate models have been 

developed to represent sub-grid scale inland surface water in terms of prescribed fractional surface 

water area (Pitman, 1991; Henderson-Sellers and Pitman, 1992; Hostetler and Giorgi, 1992; Bates et 

al., 1993; Bonan, 1995; Ljungemyr et al., 1996; Lofgren, 1997). Coe (1998) developed a terrain-based 

hydrologic model to simulate rivers, lakes, wetlands on the continental scale. Ljungemyr et al. (1996) 

developed a model for parameterization of lake temperature and lake ice thickness in atmospheric 

models and they applied the model within HIRLAM for short-range weather forecasting.  They also 

showed that replacing lake climatology within HIRLAM with modeled LSWT changed modeled low 



 

11 

 

level 2-m air temperature in Sweden by 3K. Since the cumulative effect of lakes on climate is 

important, 1-D models have also been implemented in climate models in previous studies (e.g. 

Samuelsson et al., 2010). A list of lake models most commonly used as the lake parameterization 

schemes in NWP and RCMs, and their strengths and weaknesses are summarized in Table 2.1. Some 

models assume complete mixing down to the lake bottom and characterize the entire water column by 

a single value of temperature. This assumption can reduce the computational costs; however, it 

neglects the lake thermocline, which results in large errors in the surface temperature. Other models, 

such as turbulence closure models (Tsuang et al., 2001), are based on the transport equation for 

turbulent kinetic energy and describe the lake thermocline better, but they are expensive 

computationally. Samuelsson et al. (2010) investigated the impact of lakes on the European climate 

by coupling the Freshwater Lake (FLake) model to the Rossby Centre Regional Climate Model 

(RCA3.1), and compared the simulations with those in which all lakes in the model domain were 

replaced by land. Their results showed that lakes have a warming effect on the European climate, 

especially in fall and winter.  

Although the 1-D models are able to simulate surface temperature and the thermal structure of a 

lake, they cannot simulate lateral flow in the lake and do not take into account the numerous mixing 

mechanisms present in deep and large lakes, such as mechanical mixing caused by 3-D water 

circulation, horizontal transfer of water by currents, etc. For these reasons, various attempts have been 

made over the past few years to couple 3-D lake models with atmospheric models. Recent studies 

show that atmospheric models coupled with 3-D lake models could provide more realistic local 

temperature and evaporation in comparison to simulations without lake effects (Song et al., 2004; 

Long et al., 2007; Huang et al., 2010; Dupont et al., 2011). Sophisticated 3-D lake/ocean models, 

such as the Princeton Ocean Model (POM) and the Nucleus for European Modeling of the Ocean 

(NEMO) have been shown in the past to be able to simulate water circulation in lakes and interactive 

coupling of climate models (Song et al., 2004; Dupont et al., 2011).  

The majority of previous studies have discussed the prognostic parameterization of lakes in NWP 

models (Kourzeneva et al., 2012a, b; Mironov et al., 2012), but assimilation of lake observations in 

NWP has received much less attention. Eerola et al. (2010) investigated the performance of HIRLAM 

using the FLake model as a parameterization scheme. They suggested that assimilation of lake surface 

temperature observations would likely improve the results. Rontu et al. (2012) studied the 

applicability of the prognostic and observation-based approaches of LSWT in NWP and showed that 

the lake model provides a better background for data assimilation than lake surface temperature 
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climatology. They suggested that improvement could be achieved using in-situ and space-borne 

observations of LSWT and ice cover for real-time operational NWP.  

In particular, methods to retrieve LSWT data from satellite sensors offer the opportunity to apply 

remote sensing technology for obtaining a consistent coverage of a key parameter for climate and 

hydrological research. This study demonstrates how satellite remote sensing of lakes can help 

improve weather forecasting. It also identifies existing satellite data products specific to lakes, 

discusses the limitations of the currently available remote sensing products, and describes expected 

future improvements (see Section 2.4).  

 

 

  



  

Table 2-1 Lake models most commonly used as lake parameterization schemes in NWP and RCMs. 

Study Lake Model Short description Strengths and weakness 
Hostetler (1993) 
Bates et al. (1993) 

 
 
Hostetler model 

A 1-D energy balance model that simulates the vertical 
transfer of heat as well as ice cover using ice model. It 
coupled interactively with the RCMs to simulate the 
precipitation and air temperature in the vicinity of 
water bodies 

The model is simple and flexible and insensitive to the 
lake depth for a broad range of depth value, which is 
important when coupling with RCMs, where numerous 
lakes have to be simulated. But the formulations of 
physical processes, which determine the water 
temperature, need to be improved. 

Ljungemyr et al., (1996)  
Mixed model 

A simple thermodynamic lake model used for 
parameterization of lake effects in in HIRLAM system. 
It’s a well-mixed model to simulate lake water 
temperature, ice thickness, and break –up dates. 

The model uses a simple approach but it assume a 
complete mixing down to the lake bottom and 
characterize the entire water column by a single value of 
temperature.  

Goyette et al. (2000)  
Goyette model 

The model is based on GCM mixed-layer ocean model. 
It simulates LSWT using a mixed-layer model and a 
thermodynamic ice model to simulate evolution of ice 
cover, which coupled with CRCM. 

The model use a simple mixed-layer model to estimate 
mixed-layer but the seasonal variation of mixed-layer 
depth is not considered. 

Mironov (2008) 
Kourzeneva et al. (2008) 
Mironov et al. (2010) 
Samuelsson et al. (2010) 
Eerola et al. (2010) 
Balsamo et al. (2012) 
Kheyrollah Pour et al. (2014b) 

 
 
 
FLake model 

 
A 1-D model, which is based on a two-layer water 
temperature profile. The structure of the stratified 
thermocline layer is described using the concept of 
self-similarity (assumed shape) of the temperature 
depth curve. 

 
The model is simple and not expensive but very 
sensitive to the lake depth. For deep lakes, a virtual 
bottom depth of 40-60 m is typically used in 
simulations. FLake considers the snow cover over on ice 
but the snow module needs to be improved. 

Blumberg and Mellor (1987) 
Schwab and Bedford  (1994) 
Song et al. (2004) 
Long et al. (2007) 
Huang et al. (2010) 

 
The Princeton 
Ocean Model 
(POM) 

A 3-D model, which solves the conservation equations 
of heat, mass, and momentum on staggered grids using 
the finite difference method.  POM is able to simulate 
temporal and vertical variation of currents. 

The model uses the bottom bathymetry and surface 
elevation of lakes and is widely used for major lakes 
with realistic estimation. However, it has a high 
computational cost and requires detailed input data. 

 
 
Dupont et al. (2011) 

Nucleus for 
European 
Modeling of the 
Ocean (NEMO) 
model 

A 3-D atmospheric-lake modeling system that being 
developed by Environment Canada to represent the 
complex atmosphere-lake interaction over the Great 
Lakes region. It uses two layer of ice and one layer of 
snow to simulate ice condition on Great Lakes. 

The advantage of NEMO model is its wide spread use 
and continue tuning by the scientific community, 
however, it is computationally expensive. 



  

2.3 HIRLAM forecasting system 

The numerical short-range weather forecasting system HIRLAM (Undén et al., 2002) has been used 

for operational weather prediction at the Finnish Meteorological Institute (FMI) since 1990. 

Currently, version 7.4 is implemented over the European-Atlantic domain with a 7.5-km horizontal 

grid spacing and 65 levels in vertical (Figure 2.4). HIRLAM considers five surface types within each 

grid square such as sea/lake water, ice, bare land, forest and agricultural terrain/low vegetation. 

Diagnostic fields, such as 2-m air temperature, relative humidity, and 10-m height wind are available 

for each grid-box fraction separately. In HIRLAM, the LSWTs are treated by the prognostic model 

and also data assimilation using OI method (Gandin, 1965 and Mahfouf, 1991). With increasing 

computing power, higher resolutions in limited area models become more feasible and the 

horizontal/vertical resolutions of HIRLAM improved from 55km/16 levels to 7.5km/65 levels. This 

resolution improvement allows resolving lakes with sufficient accuracy in a local weather forecast. 

 

Figure 2.4 HIRLAM v7.4 operational domain (elevation in red box). 

 

2.3.1 Treatment of LSWT in the operational HIRLAM 

The treatment of lakes became relevant when the resolution of models became high enough to resolve 

them, even smaller ones. In the HIRLAM system, sea and lakes are treated together, but there is an 

extra variable such as fraction of lake, in every grid-point. In the first implementation of HIRLAM, 

monthly climatological water surface temperature was used both over sea and lakes. However, for 
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lakes the climatology values were achieved by extrapolating the values over sea to lakes. The reason 

was that no suitable lake climatology was available at that time and, consequently, the values were 

not representative for lakes. Especially, in Scandinavia, this meant that lakes that were close enough 

to the Atlantic or Arctic oceans never froze in winter. An example of this is given in Eerola (1996) 

using Lake Inari in northern Finland (Figure 2.5). In the HIRLAM climatology, extrapolated from the 

Arctic Ocean, the lake remained free of ice all year round, but the lake water temperature never rose 

over 10oC in summer. In the real climate, the lake is ice-covered from early November to late May 

and in summer the temperature rises to 16oC. 

 

Figure 2.5 Surface temperature of Lake Inari (68.878°N, 28.101°E) in northern Finland from 
the HIRLAM climate system, and corresponding observed long-term averages as a function of 
the calendar date (Eerola, 1996). 

 

To obtain a better climatological LSWT over the Finnish lakes, a procedure called Finlake was 

created (no observed values were available in real-time). In every HIRLAM run, climatological 

LSWT pseudo observations were created for 20 lakes in Finland by linear interpolation in time from 

the climatological values of every 10 days. These pseudo observations were then used in the LSWT 

analysis. Note that in the HIRLAM surface analysis, sea observations do not affect the lakes and vice 

versa. Another problem in Finland was is Lake Ladoga (61°N, 31°E), a huge lake at the boundary of 

Finland and Russia, since no climatological values were available and it behaved totally differently 

than the smaller Finnish lakes. However, it was close enough to affect the weather; at least in eastern 
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Finland (Eerola et al., 2014). To solve this, an assumption was made that Lake Ladoga behaves in a 

way similar to the eastern part of the Gulf of Finland, when the spatial resolution of the European 

Centre for Medium-Range Weather Forecasting (ECMWF) Sea Surface Temperature (SST) analysis 

was high enough to resolve the Gulf of Finland. A few pseudo observations on the eastern part of the 

Gulf of Finland were copied to Lake Ladoga and used as lake observations there. The assumption was 

still crude; however, it was better than assuming that Lake Ladoga behaves like the Finnish lakes. 

At the same time, in other meteorological services, it was also recognized that sea climatology is 

not representative of lakes. In Germany, Deutsher Wetterdienst, a prognostic lake parameterization 

scheme started to be developed (Mironov 2008, 2010, 2012) where the FLake model was applied 

instead of the observation-based approach. In the ECMWF, time-lagged monthly mean screen-level 

temperatures from the forecast model were introduced to the LSWT analysis over the large lakes. 

Kourzeneva (2008) coupled the FLake model as a parameterization scheme in HIRLAM, and showed 

that the simulated LSWT is quite sensitive to the lake parameterization. Eerola et al. (2010) discussed 

the specific features of the implementation of FLake into HIRLAM as a parameterization scheme, and 

then Rontu et al. (2012) continued this work by integrating the data assimilation system with FLake. 

Results showed that the lake model provides a better background for data assimilation than LSWT 

climatology. 

The next step was to use real LSWT observations of the Finnish Lakes. This took place in fall 

2010 when real-time in-situ observations from 27 lakes, made by SYKE (Finnish Environment 

Institute) became available. In March 2012, the FLake model was implemented into the operational 

HIRLAM at FMI. From that time, the lake state was totally handled by FLake and the analysis of 

LSWT only offered another independent analysis of LSWT that had to be solved, as discussed in 

Kourzeneva et al. (2014) and Kheyrollah Pour et al. (2014).	
  Therefore, the methods to retrieve LSWT 

data from satellite thermal remote sensing, and then assimilate these observations into analysis or 1-D 

lake models, are very promising in order to reduce errors of the lake models used in NWP systems 

and to improve HIRLAM analysis in particular. 
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2.4 Satellite remote sensing of lakes 

The decrease of cryospheric in-situ observations and limitation of lake models can be compensated by 

the use of satellite imagery. The network of in-situ observations dataset has plummeted at a time 

when there was an increase demand of lake ice observations by the modellers’ community. Over the 

past years, innovations in satellite technology and processing algorithms have generated data to 

improve earth observation. The advantage of using satellite data is that they provide: continuous 

measurements, sufficiently high spatial resolutions, accessibility to remote areas and provide global 

retrieval of observations. Several prior studies have looked into the ability of data assimilation of 

remotely sensed observations in order to improve estimation of model simulations of the land surface 

state (e.g. Houser et al., 1998; Reichle et al., 2002a,b; Slater et al., 2005) or sea ice (e.g. Lisaeter et 

al., 2003; Lindsay and Zhang 2006; Stark et al. 2008; Scott et al., 2012), with the overall objective of 

increasing the skill of weather and climate forecast. Based on previous investigations, assimilation of 

lake variables in current NWP using satellite observations has received less attention. The operational 

analysis of LSWT was developed at Met Office, UK, for NWP purposes on the Operational Sea 

Surface Temperature and Ice Analysis (OSTIA) system (Donlon et al., 2012; Fiedler at al., 2014). 

The LSWT observations used in this system are part of SST products from AATSR and MetOp-

AVHRR (Infrared Atmospheric Sounding Interferometer (IASI)). These data are based on SST 

retrievals as none of them include lake-specific processing; therefore, they introduce inaccuracies to 

the LSWT data over lakes. 

Remote sensing is widely used as a tool in lake studies such as for the determination of surface 

water temperature (e.g. Wan et al., 2002; Bussières et al., 2002; Bussières and Schertzer, 2005; Oesch 

et al., 2005; Crosman and Horel, 2009; Coll et al., 2009; Schneider et al., 2009; Arp et al., 2010; 

Reinart and Reinhold, 2008; Hulley et al., 2011; Kheyrollah Pour et al., 2012; Liu et al., 2014), 

albedo (e.g. Savacina et al., 2014a, b), ice phenology (Hall et al., 1981, 2002; Duguay and Lafleur, 

2003; Jeffries et al., 2005; Latifovic and Pouliot, 2007; Leshkevich and Nghiem, 2007; Howell et al., 

2009; Kang et al., 2010, 2012; Brown and Duguay, 2010, 2011), water transparency (e.g. Sydor, 

2006; Heim et al., 2008) and lake depth (e.g. Duguay and Lafleur, 2003). The existing remotely 

sensed data products specific to lakes in visible and infrared spectrum are summarized in Table 2.2.  

 

 



 

18 

 

Table 2-2 Most available satellite data products in visible and infrared spectrum (the grey color 
represents the existing data). 
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Terra 

 

 

MODIS 

LST (1)       
LST (5.6)       
LST (6)       
Albedo (0.5)       
Snow cover (0.5)       
Surface reflectance (0.25 & 0.5)       
Surface reflectance (1 & 5.6)       

ASTER Surface reflectance (0.013 & 0.03)       
 

 

Aqua 

 

 

MODIS 

LST (1)       
LST (5.6)       
LST (6)       
Albedo (0.5)       
Snow cover (0.5)       
Surface reflectance (0.25 & 0.5)       
Surface reflectance (1 & 5.6)       

 

Aqua/Aqua  combined 
 

MODIS 

LST (1 & 6)       
Albedo (0.5 & 1 & 5.6)       

 

Envisat 

 

AATSR 

LST (1)       
LST (6)       
Ice cover (1)       

MERIS Ice cover (0.3)       
Water optical properties (0.3)       

 

NOAA 

AVHRR LST (1)       
Albedo (1)       

AVHRR-

APP 

LST (5)       
Albedo (5) 

 

 

      
ERS-1/2 ATSR LST (1)       

Suomi-NPP VIIRS LST (0.38 & 0.75)       

 NOAA-GEOS LST (4) 15-30 minutes 
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In principle, for successful parameterization of lakes, it is necessary to describe the distribution of 

water, ice and snow over water bodies in the model domain. This description can be derived from 

observational points to the model grid. There are currently no operational NWP models, which 

include, for instance, a full prognostic treatment of lake thermodynamics (Rontu et al., 2012). Thus, 

these values usually remain unchanged during the forecast. Advanced lake models can help in this 

matter to make progress but is challenging. Mironov et al. (2010) implemented FLake into the NWP 

model COSMO (the Consortium for Small-scale Modeling) and they noted the challenge of the 

quantitative evaluation of snow and ice in the model. No method has yet been developed to estimate 

on-ice snow depth on lakes. However, Duguay et al. (2005) discussed that Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E) and the Special Sensor Microwave Imager (SSM/I) sensors 

at 37 GHz frequency becomes sensitive to snow depth when the ice is thick enough so that the 

measured brightness temperature is not influenced by the radiometrically cold water under the ice. 

The higher frequency could probably be considered in the earlier winter season when ice is thinner 

relative to the depth of emission of the microwave signal. 

2.4.1 Development of MODIS UW-L3 LSWT product  

A previous study by Rontu et al. (2012) reported the large differences between the analyzed and 

predicted LSWT fields in spring involving the FLake model into the HIRLAM system. Therefore, 

applying frequent acquisitions of LSWT satellite observations is of interest to the weather forecasting 

community. A new data set, known as MODIS UW-L3 LSWT, was developed at University of 

Waterloo (Duguay Research Group) by combining MODIS-Terra and Aqua data to produce regional 

and global scale products. This data set provides daytime and nighttime LSWT at hourly, daily, 

weekly, monthly, and yearly time scales. The new algorithm was developed because there are no 

combined Terra and Aqua LSWT products currently available. The main advantage of combining 

data from these two satellites is to increase the number of observations due to the limitation of optical 

sensors during cloudy conditions (Kheyrollah Pour et al., 2012).  

In this algorithm, first, the section of the file intersecting the region of interest is read, and then the 

latitude/longitude coordinates and time values are calculated for each pixel. The domain is split into 

approximately square tiles, which are re-projected to the Equal-Area Scalable Earth Grid (EASE-

GRID) projection. The EASE-GRID projection consists of a set of three equal-area projections and 

developed at the National Snow and Ice Data Center (NSIDC) for the distribution of snow and ice 
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products. It is intended to be a flexible tool for users of global scale gridded data. The re-projection is 

carried out by first calculating the projection coordinates of each observation and then using linear 

interpolation to calculate a value for the center of each EASE-GRID cell. Tiles of the selected regions 

of interest are then projected onto the target grid with the desired output resolution (1 km in this 

thesis) by averaging all pixels that fall into the target grid cell. The algorithm distinguishes 

daytime/nighttime average data to be able to use each of them individually if needed. As there are two 

satellites (Terra and Aqua) operating a MODIS sensor, when combined it offers the possibility of four 

observations per day (two days and two nights). To produce daily LSWT products (day/night equal 

weight average), at least one daytime and one nighttime observation is considered to keep the 

balance. For the entire domain of interest, two sets of data are produced, one containing the average 

of all observations during the day and the other containing the observation during the night. Then, the 

intermediate sum of all MODIS Terra/Aqua day/night observations for each pixel is calculated. These 

values are averaged together to produce the final lake surface temperature average with equal 

weighting between day and night values. These data, along with the day and night averages and the 

number of observations that went into producing each average, and output to a GEOTIFF file. Figure 

2.6 shows an example of monthly LSWT maps (1 km resolution) for June and July 2011 over the 

main study area of this thesis.  The differences of LSWT of lakes for June and July in this region can 

be determine from Figure 2.6. For example, the LSWT for Lake Ladoga is between 5-10 ˚C, where 

the LSWT for the same lake is between 14-21 ˚C. 

2.4.2 Limitation of optical sensors 

Optical sensors provide data with relatively high spatial and temporal resolutions, which allows the 

Earth’s surface to be covered in a high frequency of acquisition.  Despite these advantages, there are 

some limitations using optical sensors over lakes, especially in the fall and early winter when lakes 

are often covered with cloud. Data from optical sensors may not be updated for several days or, on 

occasion, clouds may not be detected by the algorithm, resulting in anomalous errors and lowering the 

temporal resolution of sensors. Therefore, upgrading the cloud cover algorithm is necessary to 

improve the optical sensors abilities to observe the Earth’s surface. Optical sensors are also limited by 

fluctuations in atmospheric conditions, calibration differences of sensors or by prolonged darkness or 

low sun elevation at northern latitudes, which can cause over- or under-estimation of ice formation 

and melt onset dates. Microwave sensors are effective instruments for monitoring lake ice, being 
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unaffected by cloud cover or low sun elevation, which cover some limitations of optical sensors; but 

the most current passive microwave satellite sensors are of very coarse resolutions. Synthetic aperture 

radar (SAR) sensors are a viable alternative or complement, but more efforts are necessary on the 

development of automated algorithms for ice cover mapping/monitoring before operational usage 

(e.g. Duguay et al., 2015).  
 

 

 

Figure 2.6 Monthly LSWT maps derived from MODIS-Aqua/Terra (1-km resolution- UW-L3) 
for (a) June and (b) July 2011 over northern Europe. 

 

The complexity of the Earth system, in which spatial and temporal variability exists on a range of 

scales, makes it necessary to consider the development of future mission portfolios. The Global 

Change Observation Mission (GCOM) is an observation program of the Japanese Aerospace 

Exploration Agency (JAXA). The spacecraft GCOM-C, which is planned for launch in 2016, will 

carry the Second-generation Global Imager (SGLI) sensor with visible/infrared (VNIR, SWIR, TIR) 

channels. The TIR1 and TIR2 channels will have a spatial resolution of 500 m. ESA’s Sentinel-3, 

which will provide atmospheric and land applications, provide data continuity for the ERS, Envisat 

and SPOT satellites. Sentinel-3 will make use of multiple sensing instruments to accomplish its 

a) b) 
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objectives; SLSTR (Sea and Land Surface Temperature Radiometer), OLCI (Ocean and Land Colour 

Instrument), SRAL (SAR Altimeter), DORIS, and MWR (Microwave Radiometer). The thermal 

sensors on Senrinal-3A and 3B with 1 km resolution allow for continuity of monitoring LSWT 

observation in a daily revisit time. Sentinel-3A is scheduled to be launched in 2015 and Sentinel- 3B 

and 3C are planned to be launched ~18 months after the first one.   
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                                                                                         Chapter 3

Impact of satellite-based lake surface observations on the initial 
state of HIRLAM- Evaluation of remotely-sensed lake surface water 

temperature observations 

3.1 Introduction 

Lake surface temperature observations collected by space-borne thermal sensors are increasingly 

being used in climate and weather-related investigations (e.g. Duguay et al., 2011, 2012a, 2013; 

Kheyrollah Pour et al., 2012; Schneider et al., 2009). Knowledge of Lake Surface Water/Ice-Snow 

Temperature (LSWT/LIST) is important for coupling the lake surface with the atmosphere in order to 

better represent exchanges of heat and moisture. Satellite remote sensing platforms can provide the 

LSWT/LIST observations required for this purpose. As thermal sensors are limited in terms of 

consistency due to the presence of cloud cover, which hinders surface observations, a scientific 

priority is to seek the best combination of tools such as space-borne observations, in-situ 

measurements, and numerical models to optimize the information content of LSWT/LIST data using 

Data Assimilation (DA) methods. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua and Terra 

Earth Observation System (EOS) satellites (2000-present) and the Along-Track Scanning Radiometer 

(AATSR) onboard the European Space Agency (ESA) environmental satellite ENVISAT (2002-

2012) have been two of the main sensors providing land and lake surface temperature observations 

since 2000.  The MODIS sensor, launched on Terra (EOS AM, 18 December 1999) and Aqua (EOS 

PM, 4 May 2002), scans the Earth surface at ±55° viewing angle from nadir in 36 bands with 16 

thermal infrared (TIR) bands located in the 3 to 15 µm range. MODIS-derived Level 2 surface 

temperature products (MOD/MYD 11-L2, Collection 5, each pixel is 1km by 1km in size) have been 

validated in various studies over lakes against in-situ measurements acquired during the open water 

season. The reported accuracies vary depending on the validation method employed (i.e. direct LSWT 

measurements with thermometers at some depth near the surface or non-contact, skin, LSWT 

measurements with thermal infrared radiometers) and the observational periods (i.e. hourly, daytime, 

nighttime or average daily).  Biases of -0.22 ˚C for daytime and -0.39 ˚C for nighttime observations 

have been reported for MODIS-Terra over Lake Tahoe (California/Nevada, USA) during 2002-2005 
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(Hook et al., 2007) and a bias of 0.1 ˚C for nighttime observations in 2000-2008 (Schneider et al., 

2009). A validation study conducted over the same lake by Hulley et al. (2011) showed a bias of -0.21 

˚C and 0.064 ˚C for daytime and nighttime observations (2002-2010 period), respectively, for both 

MODIS-Aqua/Terra L2 products. Crosman and Horel (2009) reported a bias of -1.5 ˚C between 

MODIS L2 (combined daytime and nighttime observations) and in-situ water temperature 

measurements from Great Salt Lake (Utah, USA) obtained at a depth of 0.5 m. The larger bias from 

the study of Crosman and Horel (2009) is expected since their in-situ measurements correspond to a 

bulk water temperature (0.5 m depth) rather than a surface (skin) temperature which is the quantity 

retrieved from MODIS and measured with thermal infrared radiometers deployed in the field (e.g. 

Hook et al., 2007; Schneider et al., 2009; Hulley et al., 2011). 

The AATSR, which operated on the ENVISAT satellite until April 2012, crossed the equator at 

10:00 A.M. local time for the descending orbit. AATSR acquired data in seven bands from visible to 

infrared with TIR bands centered at 10.85 and 12 µm. The sensor scanned the Earth with a dual view 

(i.e. forward view at an angle of around 55˚ and the nadir view at an angle of around 21.7˚). The 

nominal spatial resolution of the AATSR is 1 km for the nadir view and 1.5 km by 2 km for the 

forward view. Coll et al. (2009) evaluated the accuracy of LSWT retrieved with the algorithm of 

Prata (2002) (described in section 2.1.2), based on AATSR Level-1B (L1B) brightness temperature 

observations over Lake Tahoe between July-December 2002 and July 2003. The authors reported an 

average bias of -0.17 ˚C and Standard Deviation (SD) of 0.37 ˚C for both daytime and nighttime 

observations. 

The purpose of this study is to assess the accuracy of a relatively new Level 3 (L3) LSWT product 

(referred to here onward as UW-L3 LSWT), generated from the combination of Terra and Aqua 

(MOD/MYD11_L2) observations, as well as ESA’s current AATSR-L2 data product and two new 

AATSR-L2 products derived from algorithms proposed by Key et al. (1997) and Prata (2002), which 

make use of an improved lake mask over Finland. The acronym UW-L3 (University of Waterloo-

Level 3) is used to describe the MODIS LSWT product utilized in this paper as it differs from the L3 

product distributed by NASA. The UW-L3 LSWT/LIST product has previously been compared with 

surface water/ice temperature outputs from 1-D lake models (Kheyrollah Pour et al. 2012, Cheng et 

al. 2014). Kheyrollah Pour et al. (2012) showed a good agreement between daily averaged MODIS-

derived and simulated (using Canadian Lake Ice Model (CLIMo)) LSWT/LIST for different depths in 

Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, (mean bias error of less than 1 



 

25 

 

˚C) when compared over a full annual cycle or broken down into open-water and ice-cover seasons. 

Cheng et al. (2014) evaluated MODIS temperature observations with in-situ (snow and ice 

temperatures measured by an ice mass balance buoy (SIMB)) and simulated snow/ice model 

(HIGHTSI) LIST in three ice-cover seasons (2009-2012). They showed that MODIS observations 

agree with SIMB (R = 0.9, MBE = -3.1 ˚C) and HIGHTSI (R = 0.9, MBE = 3.2 ˚C) results. This 

study differs from previous investigations since it is the first time that the UW-L3 LSWT product is 

evaluated against in-situ LSWT/LIST measurements. 

The study area for this investigation covers a large domain, which encompasses many lakes in 

Finland (Figure 3.1 and Table 3.1), and therefore addresses the need of continuous lake temperature 

measurements to improve the forecast of weather phenomena in this region. This paper is the first of a 

series of two articles that describe our recent efforts aimed at improving the treatment of lake surface 

state in the HIgh Resolution Limited Area Model (HIRLAM) Numerical Weather Prediction (NWP) 

system. In the study described herein, in-situ measurements of lake water temperature collected by 

the Finnish Environment Institute (Suomen Ympäristökeskus (SYKE)) are compared to MODIS- and 

AATSR-derived LSWT products to investigate the bias of satellite observations for a selection of 

large to medium-size lakes in Finland. SYKE and satellite-derived LSWT observations are then 

applied in the analysis of the HIRLAM NWP system (Undén et al., 2002; Eerola, 2013) in Chapter 4 

using the optimal interpolation (OI) method. Chapter 4 develops the OI method and discusses analysis 

results of time-series of observed, analyzed and predicted LSWT, and ice cover obtained by applying 

MODIS/AATSR/SYKE observations and a lake parameterization scheme, the FLake model (Mironov 

et al., 2008, 2010).  

 

3.2 Data and methods 

3.2.1 Satellite observations 

The reliability of MODIS and AATSR LSWT products was assessed using in-situ water temperature 

measurements from Finnish lakes. The MODIS UW-L3 daily averaged product was evaluated against 

SYKE observations from 22 lakes over five open water seasons (2007-2011), as well as during an 

overlapping period (2007-2009) along with AATSR-L2 products. Being onboard of two satellite 
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platforms (Aqua and Terra), MODIS provides a greater temporal coverage than AATSR (Soliman et 

al., 2012). 

3.2.1.1 MODIS LSWT 

MODIS Aqua and Terra Land Surface Temperature and Emissivity (MYD/MOD 11-L2, Collection 5, 

1 km) products were acquired from the NASA Land Processes Distributed Active Archive Center (LP 

DAAC) for the period of 2007-2011. The products are generated with the generalized split window 

approach (Wan and Dozier, 1996) using the MODIS sensor radiance data (MYD/MOD021KM), the 

geolocation (MYD/MOD03), the atmospheric temperature and water profile (MYD/MOD07_L2), the 

cloud mask (MYD/MOD35_L2), the quarterly land cover (MYD/MOD12Q1), and the snow cover 

(MYD/MOD10_L2) products. The Land/Lake surface temperature retrieval in a MODIS swath is 

made by using L1B radiance data in thermal bands 31 and 32 on land or inland water under clear-sky 

conditions with a confidence of ≥ 66 % over lakes (Wan, 2005). 

MODIS UW-L3 Land Surface Temperature (LST) (Duguay et al., 2012b; Soliman et al., 2012) 

and LSWT/LIST products (Kheyrollah Pour et al., 2012) are generated from Aqua and Terra 

MYD/MOD 11-L2 data. A new algorithm was developed to create products at various temporal 

resolutions (daily, weekly, and monthly) from the combination of MODIS data from the Aqua and 

Terra satellites, which were not available otherwise. The Aqua and Terra satellite platforms follow 

the same orbit within 3 hours of each other. However, at higher latitudes, it is possible to monitor the 

same location from both sensors within an hour, considering different viewing angles. In such case, it 

is feasible to combine observations from both sensors in each pixel during an hour. For the daily-

averaged UW-L3 product, observations are separated into either a daytime bin (from 6 A.M. to 6 

P.M.) or a nighttime bin (from 6 P.M. to 6 A.M. of the next day), not by solar angle such as the 

number of hours of daylight and darkness. To ascertain a balance between daytime and nighttime 

observations in the creation of the daily averaged product, pixels must contain at least one daytime 

observation and one nighttime observation for a daily value to be calculated. For the geographical 

region of interest, two sets of data are produced, one containing the average of all daytime 

observations and the other containing those of all nighttime observations. Then, the intermediate sum 

of all MODIS Aqua/Terra daytime/nighttime observations for each pixel is calculated. These values 

are averaged together to produce the final surface temperature average with equal weighting between 

daytime and nighttime values. Daytime average, nighttime average, daily average and the number of 



 

27 

 

clear-sky observations (counts) are recorded in separate images for each pixel during the period of 

interest as GEOTIFF files (GEOTIFF refers TIFF data format, which contains geographic information 

embedded within the TIFF file). 

 

 
Figure 3.1 Location of lakes within the HIRLAM domain over Northern Europe (light blue) 
and selected lakes (dark blue) from SYKE’s in-situ measurement sites in Finland. 
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The Equal-Area Scalable Earth Grid (EASE-Grid), Lambert’s Equal Area Azimuthal projection is 

the projection selected for the UW-L3 product, based on a sphere datum with a radius of 6,371.228 

km. Each domain is split into approximately square tiles, which are re-projected to the EASE-Grid 

projection. The EASE-Grid projection consists of a set of three equal-area projections and developed 

at the National Snow and Ice Data Center (NSIDC) for the distribution of snow and ice products. It is 

intended to be a flexible tool for users of global scale gridded data. The re-projection is carried out by 

first calculating the projection coordinates of each observation, and then using linear interpolation to 

calculate a value for the center of each EASE-Grid cell. Tiles of the selected regions of interest are 

then projected onto the target grid with the desired output resolution (1 km for this study) by 

averaging all pixels that fall into the target grid cell. Local time is calculated for each EASE-Grid cell 

using UTC acquisition time and longitude of MODIS L2 products with an accuracy of ±15 minutes.  

 
Table 3-1 List of 22 selected Finnish lakes with coordinates, mean depth and statistics of the 
evaluation results for MODIS. 
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3.2.1.2 AATSR LSWT 

The current AATSR-L2 (land and lake) product distributed by ESA is generated from AATSR-L1B 

data based on the algorithm of Prata (2002). The basic algorithm for the retrieval of surface 

temperature is: 

𝑻𝒔 = 𝒂𝟎 +   𝒃𝟎𝑻𝟏𝟏 +   𝒄𝟎𝑻𝟏𝟐           3.1 

where 𝑎!, 𝑏!, and 𝑐! are coefficients that depend on the surface type (including lakes), viewing angle, 

and atmospheric water vapor. 𝑇!! and 𝑇!"  represent the brightness temperature values in channels 11 

and 12, respectively. The L2 algorithm expresses the surface temperature as a nearly linear 

combination of the brightness temperatures in each channel using only the nadir view (θ < 21.7 o); 

therefore the equation is modified as: 

𝑻𝒔 = 𝒂𝟎 +   𝒃𝟎 𝑻𝟏𝟏 − 𝑻𝟏𝟐 𝒏 + 𝒃𝟎 + 𝒄  𝟎 𝑻𝟏𝟐           3.2 

where the index n depends on the incident angle θ as follows:  

𝒏 = 𝟏/ 𝒄𝒐𝒔(𝜽 −𝒎)          3.3 

where m is an empirical constant. Coefficients for (Eq. 3.2) were determined for 13 different land 

cover classes including lakes, in which two separate sets of coefficients are specified for each class. 

For the lake class, different coefficients are given for day and night. However, in this study, only day 

coefficients are used due to the AATSR morning overpass for Finnish lakes (𝑎!= -0.0005, 𝑏!= 

2.4225, 𝑐!= -1.4344). The algorithm operates using a low-resolution (0.5o × 0.5o) map of land cover 

classes. Due to this coarse-resolution land cover type map, the algorithm misses many small to 

medium-size lakes. These lakes are often confounded with land. As a result, evaluation of this 

product was only possible for 11 of the 22 lakes monitored by SYKE. 

To improve the currently available AATSR-L2 product, two additional algorithms were 

implemented from ESA’s AATSR-L1B brightness temperature data using a finer resolution lake 

mask in order to minimize the possibility of land contamination (mixed land-water pixels) within the 

1 km spatial resolution pixels of the AATSR satellite sensor (i.e. identify pure lake water pixels 

located as close as possible to the in-situ water temperature measurement sites). For this purpose, the 

Global Lakes and Wetlands Database (GLWD) data (~1 km2 resolution) was applied over satellite 

images as the lake mask (Lehner and Doell, 2004) when selecting the pixels on each lake for 

evaluation. 
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More specifically, algorithms presented in Key et al. (1997) and Prata (2002) were applied on the 

AATSR-L1B product to derive new AATSR-L2 products (AATSR-L2-PR; PR stands for Prata 

Revised and AATSR-L2-NCC; NCC referring to the Norwegian Computing Center), and then 

evaluated against SYKE observations for the month of August 2009. The Prata algorithm described 

above (Eq. 3.2) was used to derive LSWT for each pixel from top-of-the-atmosphere cloud-free, 

calibrated and navigated day and night AATSR-L1B brightness temperatures. Regression coefficients 

for LSWT have been developed by analysis of a set of in-situ radiometric measurements made in a 

previous study on Lake Tahoe in 1999. The anticipated accuracy of the algorithm is ±0.3 ˚C (Prata, 

2002). 

In addition to the AATSR-L2-PR, AATSR-L2-NCC was generated following the algorithm 

proposed by the Key et al. (1997) for the ATSR sensor (the predecessor of AATSR). For surface 

temperature retrieval, Key’s algorithm uses both nadir and forward viewing angles, and is expressed 

as follows: 

𝑻𝒔 = 𝒂𝟎 +   𝒃𝟎𝑻𝟏𝟏  𝒏𝒂𝒅𝒊𝒓 +   𝒄𝟎𝑻𝟏𝟏  𝒇𝒐𝒓𝒘𝒂𝒓𝒅 +   𝒅𝟎𝑻𝟏𝟏  𝒏𝒂𝒅𝒊𝒓 +   𝒆𝟎𝑻𝟏𝟐  𝒇𝒐𝒓𝒘𝒂𝒓𝒅           3.4 

where 𝑎!, 𝑏!,  𝑐!, 𝑑! and 𝑒!  are coefficients derived for different temperature ranges (𝑇!!< 240 K, 240 

K < 𝑇!! < 260 K, 𝑇!! > 260 K) rather than the defined seasons to provide greater flexibility of the 

algorithm (𝑎!= -0.56158, 𝑏!= 2.23152, 𝑐!= -0.91817, 𝑑!= -0.40756, and 𝑒!= 0.09610). 

The Key algorithm has previously been implemented by Amlien and Solberg (2003) and Solberg 

et al. (2011) as part of a snow processing chain for snow surface temperature retrieval as well as 

temperature of melting snow in mountainous areas of southern Norway using ESA’s AATSR-L1B 

data. As snow, water and ice have similar emissive properties, the same approach was used for the 

retrieval of LSWT. The AATSR-L1B data are geo-corrected and corrected for radiometric drift. 

Similar to the generation of the AATSR-L2-PR product, a lake mask was also applied, defining the 

regions of surface temperature retrieval. The mask was produced from vector data provided by SYKE 

containing all large Finnish lakes. The lake mask was then eroded using a 3 × 3 kernel so that the 

lakes in the mask were somewhat smaller than the actual lakes. This was done in order to avoid 

evaluating mixed pixels, containing fractions of water and land along shorelines. 
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3.2.2 In-situ lake water temperature measurements 

There are 187,888 lakes in Finland with a surface area larger than 500 m2. The lakes cover 9 % of the 

land surface. SYKE regularly measures lake water temperature at 32 sites on a selection of these 

lakes. The water temperature measurements are recorded every morning at 8.00 A.M. local time, 

close to shore and at a depth of 0.2 m below the water surface. In this study, 22 observation sites were 

utilized. The selection of sites was based on the location of in-situ measurements to be compared with 

the satellite-derived LSWT pixel values. The measurements from SYKE are either made 

automatically (13 stations) or manually and are performed only during the open water season (ice-free 

conditions) (Rontu et al., 2012). The in-situ lake water temperature observations from SYKE were 

also assimilated into HIRLAM experimental model runs in Chapter 4.  

3.2.3 Evaluation of satellite-derived LSWT products 

The lakes were selected on the basis of their size and the ability to select a pure pixel (1 km by 1 km) 

from the satellite images. Pixels were chosen manually over each lake considering only lake water 

and to avoid land contamination. Since most of the in-situ measurements are made close to the shore, 

it was not possible to select pixels at exactly the same location as the SYKE measurements. 

Therefore, it is expected that a systematic error will result from the comparison between the satellite-

derived LSWT observations (middle of the lake) and the in-situ water temperatures (closer to shore, 

which is warmer than middle of the lake in early spring and colder in autumn). 

The Mean Bias Error (MBE), Root Mean Squared Error (RMSE), and Standard Deviation (SD) 

were calculated from the comparison of the satellite-derived LSWT from MODIS and AATSR and 

in-situ water temperature measurements from SYKE for the various time periods and sites described 

in the previous section. Before discussing the evaluation results, a few general remarks are needed 

with regards to the accuracy of the in-situ and the satellite observations.  

1. The LSWT values within each satellite pixel represent an average value over a 1-km2 

area while the in-situ water temperature measurements are limited spatially (i.e. point 

observations).  

2. The in-situ measurements were usually taken close to shore or sometimes on a river 

channel connected to the lake (see the location of in-situ and satellite pixels in Figure 

3.2). The MODIS and AATSR pixels were chosen as close as possible to the location 
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of SYKE observations, but far enough to prevent land contamination. Therefore, the 

satellite pixels and in-situ measurements are not from the exact same location. 

3. The in-situ measurements represent the lake water temperature taken at 0.2 m below 

the water surface. The satellite observations, however, provide a “skin” temperature 

of the lake water surface. Since the outgoing and incoming long-wave radiation as 

well as sensible and latent heat fluxes add or remove heat directly from the top few 

microns of the lake surface, the water temperature across the sub-layer (~2 mm) tends 

to be colder than the bulk temperature. 

4. SYKE lake water temperature measurements are made every morning at 8.00 A.M. 

local time, which is not the exact time as the satellite overpasses over the studied 

lakes. 

 
Figure 3.2 Map showing combined MODIS-Aqua/Terra LSWT of Lake Päijänne (August 19, 
2010) and the location of MODIS and SYKE observations used for comparison. 
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3.3 Results 

3.3.1 Comparison between MODIS UW-L3 product and in-situ measurements 

The quality of the daily averaged UW-L3 MODIS LSWT product was evaluated against SYKE 

temperature recordings for 22 lakes over the open water season from 2007 to 2011. The MBE, RMSE 

and the number of observations (n) for each site are summarized in Table 3.1. The MBE values for all 

22 lakes show a minimum of -0.25 ˚C for Lake Tussu and maximum of -1.87 ˚C for Lake Inari, and 

the RMSE cover the range of 1.98 to 2.39 ˚C for Lake Konnevesi and Lake Pielinen, respectively. A 

temperature map produced from the combination of MODIS-Aqua/Terra data on August 19, 2010 and 

the time series of LSWT from MODIS and SYKE data for Lake Päijänne (2007-2010) are shown in 

Figures 3.2 and 3.3, respectively, as an example of one site. Lake Päijänne was chosen to show a case 

when the location of the in-situ measurement and the satellite pixel selected are not close to each 

other (Figure 3.2). On August 19, 2010, Lake Päijänne had a mean LSWT of 16.2 ˚C (LSWTmin = 

13.2 ˚C and LSWTmax = 19.3 ˚C) as retrieved from MODIS-Aqua/Terra, over the entire lake. The 

selected pixel (61.613 N, 25.282 E) from MODIS on the same day had a temperature value of 16.8 

˚C, which was recorded to be 20.1 ˚C by SYKE. Due to the same limitation, Lake Päijänne and Lake 

Inari, both have the largest MBE of -1.84 ˚C and -1.87 ˚C (SD = 1.46 ˚C and 1.36 ˚C), respectively 

(Table 3.1).  

 

 
Figure 3.3 Time-series of MODIS-Aqua/Terra LSWT (blue) versus SYKE (red) at Lake 
Päijänne during open water season (2007-2011). 

Figure 3.4 shows a scatterplot of the MODIS-derived LSWT and in-situ measurements along a 1:1 

relation line for all 22 sites during open water season. The MBE is -1.13 and RMSE 2.17 ˚C for 8,135 
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observations available for comparison (Figure 3.4). Results from the analysis of all lake sites reveal 

that MODIS LSWT observations are on average colder than the in-situ measurements with a negative 

bias (MODIS minus in-situ). 

 

 
Figure 3.4 Scatter plot of MODIS-Aqua/Terra LSWT in comparison with SYKE water 
temperature data for all 22 Finish lakes during (2007-2011). 

3.3.2 Comparison between MODIS UW-L3 and ESA AATSR-L2 products relative to in-
situ measurements 

Daily averaged MODIS UW-L3 and AATSR-L2 LSWT products were both evaluated against in-situ 

measurements and contrasted between each other during the open water season for three years. 

MODIS LSWT observations were selected for 11 lakes for which AATSR-L2 data were also 

available during an overlapping period (2007-2009) (see Figure 3.5). MODIS provided 2,733 LSWT 

observations in total in contrast to only 569 for the AATSR-L2 product. MODIS provides more 

observations than AATSR-L2 since it is onboard of both the Aqua and Terra satellites, and the sensor 

covers a larger swath on the Earth’s surface. 
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Figure 3.5 Scatter plot of (a) MODIS-Aqua/Terra and (b) AATSR-L2 LSWT in comparison 
with SYKE water temperature data for 11 Finish lakes during open water period (2007-2009). 

 

Overall, the MODIS LSWT observations are colder (MBE = -0.93 and RMSE = 2.16 ˚C) and 

AATSR-L2 warmer (MBE = 1.08 and RMSE = 2.28 ˚C) when evaluated against in-situ 

measurements. In Figure 3.5a, most of the paired observations (dots) are located below the 1:1 

relation line showing the cold bias of MODIS observations and, in Figure 3.5b, most of the paired 
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observations (dots) are located above the line indicating the warm bias of the ESA AATSR-L2 

product. 

3.3.3 Comparison between AATSR-L2-NCC, AATSR-L2-PR, and ESA AATSR-L2 
products relative to in-situ measurements 

ESA’s AATSR-L2 product as well as the new products based on the Key (AATSR-L2-NCC) and 

Prata (AATSR-L2-PR) algorithms with the finer resolution lake mask were evaluated against SYKE 

water temperature measurements during the month of August 2009 for a selection of nine lakes, when 

overlapping data were available for all three sets of satellite products (Figure 3.6). LSWT products 

generated from both the Key and Prata algorithms provide comparable results when evaluated against 

SYKE water temperature measurements with MBE (RMSE) of 0.78 (3.69) ˚C and -0.11 (2.91) ˚C, 

respectively (Figure 3.6). A MBE of 3.18 (RMSE= 5.25) ˚C was calculated for the AATSR-L2 

product over the same time period and number of lake sites. The evaluation results show small biases 

for both the Prata and Key algorithms when compared to in-situ observations, in contrast to the larger 

positive bias of the original AATSR-L2 product (Figure 3.6). 

 

3.4 Discussion 

Results reveal a good agreement between daily-averaged UW-L3 MODIS-Aqua/Terra data and in-

situ observations for the 22 lakes examined with an overall average bias of ~ -1 ˚C. The UW-L3 

MODIS-Aqua/Terra and ESA’s AATSR-L2 products were also compared for a selection of 11 lakes 

for an overlapping time period (2007-2009). AATSR-L2 showed a positive MBE of 1.08 ˚C (SD = 2 

˚C) over these lakes most likely due to the utilization of a coarse spatial resolution land cover type 

map (0.5o × 0.5o). Because of this, entire lakes or lake sections may not be classified into the proper 

land cover type in ESA’s AATSR-L2 product (Noyes et al., 2006; 2007). Open-water lake 

temperatures are colder than that of land usually from the beginning of April until August at high 

latitudes. Water has a higher heat capacity than land and therefore requires more energy to heat up 
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Figure 3.6 Comparison between AATSR-derived LSWT (AATSR-L2, AATSR-L2-NCC and 
AATSR-L2-PR products; see text for details) and SYKE in-situ water temperature 
measurements for nine lakes during open water season of August 2009. 

 

and cool down. Therefore, mix of land and lake in each pixel can result in warmer temperatures 

within each 1 km × 1 km pixel of the AATSR-L2 product. In addition, MODIS LSWT values were 

derived using daytime and nighttime acquisitions from Aqua and Terra, while AATSR LSWT 

observations were available mostly at daytime. This also provides a further explanation for the 

different biases calculated for the two LSWT products.  

In order to produce a more accurate AATSR dataset, in which land contamination effects would be 

minimized, the two new algorithms (Key and Prata algorithms described earlier) were applied along 

with the GLWD lake mask with the objective of improving the accuracy of LSWT product from 

AATSR. The newly developed AATSR products as well as ESA’s original L2 product were evaluated 

against in-situ measurements during August 2009, when overlapping data were available. The new 

AATSR products provide comparable results with MBE of 0.78 ˚C (SD =  3.61 ˚C) and MBE of -0.11 

(SD = 2.91 ˚C), with implementation of the Key and Prata algorithms, respectively. 

In a previous study, Kheyrollah Pour et al. (2012) compared the UW-L3 MODIS-Aqua/Terra 

product against LSWT (open water season) and LIST (ice season) simulated with two 1-D lake 

models for two large Canadian lakes, Great Bear and Great Slave lakes. The authors found a mean 

bias of magnitude (~ -1 ˚C) as the one from this study. Crosman and Horel (2009) also reported a bias 
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of -1.5˚C when comparing MODIS-Terra L2 (combined daytime and nighttime observations) against 

in-situ water temperature measurements (at a depth of 0.5 m) from Great Salt Lake (Utah, USA). 

Smaller biases are expected when comparison is only during daytime or nighttime and when in-situ 

observations are of surface water (skin) temperature measured with thermal infrared radiometers (e.g. 

Hook et al., 2007; Schneider et al., 2009; Hulley et al., 2011). 

Similar to the present study, the limitation of ESA’s AATSR-L2 product over lake regions has 

also been recognized by Coll et al. (2009) and Hulley et al. (2011). The authors applied the Prata 

algorithm to AATSR-L1B data acquired over Lake Tahoe (California/Nevada, USA). Coll et al. 

(2009) calculated a bias of -0.178 K during July-December 2002 and July 2003 for day and night 

observations, while Hulley at al. (2011) reported a mean bias of -0.326 K for the period 2000-2010. 

The biases reported in these two studies are close to the bias of -0.11 ˚C calculated herein, which also 

used the Prata algorithm to generate a new AATSR-L2 product (i.e. AATSR-L2-PR). 

The lakes selected for evaluation of the satellite-based LSWT products in this study ranged in 

depth between 3 and 22 m. No particular relationship was found between the mean depth and the 

magnitude of the biases calculated for the different lakes (R = -0.116 and p-value = 0.607). The could 

be due to the location of in-situ measurement sites, which are always located in the shallow section of 

the lakes, compared to the 1 km2 satellite pixels that needed to be selected further from the shore to 

avoid possible land contamination. However, in some instances, the large distance between the 

location of in-situ observations and satellite pixels can affect the statistics. Lake Päijänne and Inari 

are two examples that showed larger biases (MBE = -1.84 and SD = 1.46 ˚C and MBE = -1.87 and 

SD = 1.36 ˚C, respectively) due to the large differences between in-situ and pixel locations. 

Evaluation of the satellite products using in-situ surface water temperature measurements collected by 

buoys at the same location as the satellite pixels, further from shore, would provide a closer 

correspondence (smaller bias) between the two sets of observations. 

In addition to lake depth, the shape of the lakes of this study may also have had an impact on the 

accuracy of the retrieved LSWT when selecting the satellite pixels. Most of the lakes in Finland tend 

to be irregular in shape. They have arisen during post-glacial times and were formed mostly during 

glacier movement and scraped of rocks and soils (e.g. Tikkanen 2002; Hakala, 2004). Lake Päijänne 

is an example of a very irregular lake (MBE = -1.84 and RMSE = 2.35 ˚C for MODIS versus in-situ). 

Lake Pyhäjärvi, on the other hand, is an example of a more regular shaped lake and its bias was less 

than 1 ˚C (MBE of -0.79, RMSE: 2.04 ˚C and SD = 1.88 ˚C for MODIS versus in-situ). The shape 
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and lakeshore topography are important factors that influence the mixing of lakes (Imboden and 

Wüest, 1995). Some irregular shaped lakes may not undergo complete mixing in the spring or fall if 

there is not enough wind action as the irregular shape/lakeshore topography may block the wind and 

affect the mixing, resulting in a complex circulation pattern. Moreover, it is more challenging to 

select a pure pixel in an irregular shaped lake with many small islands, which could be missed in the 

1 km2 lake shape files applied over thermal images. 

 

3.5 Conclusion 

The accuracy of MODIS UW-L3 and AATSR-L2 products was assessed as a step prior to performing 

data assimilation experiments in the HIRLAM NWP model using LSWT as a surface state variable 

(Kheyrollah Pour et al., 2014; Kalle Eerola, personal communication, 2014). To create a AATSR 

LSWT product that can be used with greater confidence in HIRLAM analysis, algorithms presented 

by Key et al. (1997) and Prata (2002) were applied to AATSR-L1B brightness temperature data, 

which had the effect of reducing the LSWT biases to 0.79 ˚C and -0.11 ˚C, respectively. Based on the 

results presented in this study, the MODIS UW-L3 and the improved AATSR-L2 (Key algorithm) 

products were selected for integration into HIRLAM analysis using the OI data assimilation method 

in Chapter 4. During the data assimilation process, the statistical properties of the observational error 

are taken into account in the interpolation as well as in the preceding quality control of observations. 

During these experiments, all lake observations were assumed to have similar statistical properties. 

The assumed observational error standard deviation was set to 1.5 ˚C for both in-situ and remotely 

sensed LSWT observations. Observations were used to correct the background provided by FLake 

model or by previous analysis in HIRLAM. The quality control of the observations is performed prior 

to the actual analysis in two consequent phases: first observations are tested against the background, 

and then each observation is compared to the surrounding observations (see Chapter 4). 

The satellite products evaluated in this research are a promising source of LSWT data for the 

description of lake surface state in HIRLAM and are expected to improve the NWP results as they 

can provide frequent surface temperature measurements of many lakes over large geographical areas. 

The ESA’s Sentinel-3 with two satellites (first Sentinel-3A is expected to be launched in 2015, 

followed by the second one, Sentinel-3B, ~18 months after), in addition to the two MODIS sensors 

already in orbit, should generate increased interest in the assimilation of satellite-derived LSWT 
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products in operational NWP models. However, cloud cover is known to significantly impact its full 

utilization in NWP models. In this study, we took advantage of the short time interval between 

MODIS-Aqua and Terra acquisitions by combining them together and therefore increasing the 

number of observations. Further studies are still needed to assess the quality of the cloud cover masks 

used in the satellite retrieval algorithms (e.g. errors due to undetected thin clouds). In the present 

study, the outliers of LSWT due to the presence of undetected cloud cover were removed from the 

database by monitoring the error and quality control values calculated in each pixel. However, more 

robust algorithms are needed in order to improve the quality of cloud cover masks from MODIS, 

AATSR and future satellite missions. 
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                                                                                           Chapter 4

Impact of satellite-based lake surface observations on the initial 
state of HIRLAM- Analysis of lake surface temperature and ice 

cover 

4.1 Introduction 

The importance of a correct description of the lake surface state in climate (Duguay et al., 2006; 

Brown and Duguay, 2010; Samuelsson et al., 2010; Krinner and Boike, 2010; Ngai et al., 2013) and 

weather prediction (Niziol, 1987; Niziol et al., 1995, Zhao et al., 2012) is well known. Particularly 

during freezing and melting of lakes, the surface radiative and conductive properties as well as latent 

and sensible heat released from lakes to the atmosphere change dramatically leading to a completely 

different surface energy balance. Recent studies (Eerola et al., 2010; Rontu et al., 2012) have 

demonstrated the possibility of improving the description of the lake surface state in a numerical 

weather prediction (NWP) model by replacing climatological information with the objective analysis 

of observations. A good background for the analysis provided by the prognostic parameterization of 

lake temperatures using the Freshwater Lake model (FLake) (Mironov, 2008; Mironov et al., 2010) 

was also shown to be important. In fact, lake parameterizations alone seem to lead to (locally) 

improved NWP results even without the introduction of Lake Surface Water Temperature (LSWT) 

observations (Eerola et al., 2010; Rontu et al., 2012). 

However, application of thermodynamic lake parameterizations in NWP has its limitations. A 

prognostic lake parameterization encounters difficulties over lakes with poorly defined properties due 

to the complex geometry or complex topography around the lake. These are often poorly resolved by 

the NWP model; even if the parameterizations are able to treat the lake physical processes correctly 

(Semmler et al., 2012; Manrique-Suñén et al., 2013; Yang et al., 2013). The thermodynamic lake 

parameterizations work independently under each grid-box (column), thus not taking into account 

horizontal exchange on or in the lakes. Thus they are not able to handle, for example, the small-scale 

inhomogeneity or drifting ice on the large lakes. Objective analysis of remote-sensing observations 

could help the NWP model to treat the horizontal variability over lakes. 
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A possibly improved description of the initial state of the lakes is expected to lead to an improved 

weather forecast, if there is a real connection between the analyzed (based on observations) and 

predicted (seen by the atmospheric model) state of lakes. However, in present NWP models, a 

prognostic lake temperature parameterization is applied independently from the analysis (Rontu et al., 

2012). To our knowledge, results of the first studies aimed at bridging the gap between the analyzed 

and predicted state of lakes in NWP models by using the methods of Extended Kalman Filter 

(Kurzeneva, 2014) and nudging (Mironov, 2012, personal communication), have been only recently 

reported (e.g. in the third workshop on “Parameterization of Lakes in Numerical Weather Prediction 

and Climate Modelling”, http://netfam.fmi.fi/Lake12). Application of these methods requires, in 

addition to a good thermodynamic lake parameterization, that the observations on lake surface state 

are first interpolated to the NWP model grid. Hence the objective analysis of LSWT is their starting 

point. 

The aim of this paper is to determine if the inclusion of remote-sensing observations on LSWT can 

improve the analysis of lake surface state in a NWP model, compared to the description based on the 

thermodynamic lake parameterization alone. By the analyzed lake surface state (analysis, objective 

analysis), we mean here the description of LSWT and fractional ice cover over lakes at the time when 

each forecast cycle by the NWP model starts. This analysis results from application of a specialisation 

method such as Optimal Interpolation (OI, based on Gandin (1965)) to the observed variables over 

lakes. We report results from data assimilation experiments performed with the three-dimensional 

NWP model HIRLAM (High Resolution Limited Area Model), (Undén et al., 2002; Eerola et al., 

2013) run over a northern European domain for two winters (2010-2011 and 2011-2012). Our main 

attention is placed on the objective analysis of the lake surface state in winter-time conditions, over 

freezing and melting lakes. 

Our experiments focus on the use of remote-sensing observations on lakes (>6 km2) and the ways 

they can be introduced in the analysis. The influence of larger lakes on weather is expected to be 

larger than that of a multitude of smaller lakes. On the smaller lakes, there are less space-borne 

observations available because the number of pixels representative of pure open water or ice is 

limited by the surrounding land (i.e. by the within-pixel land surface contamination). We included in 

the HIRLAM analysis archived Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Advanced Along-Track Scanning Radiometer (AATSR) LSWT observations, provided by the 
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Terra/Aqua and ENVISAT satellites, and also used MERIS ice cover observations from ENVISAT 

for evaluation. We compared the result of pure prognostic parameterizations to the analysis based on 

in-situ and space-borne LSWT observations. For validation, we used additional independent satellite 

observations of LSWT and lake ice cover, as well as in-situ visual observations of freeze-up and 

break-up dates of selected lakes. We discuss in detail the maps and time-series of observed, analyzed 

and predicted LSWT and fractional ice cover, obtained in the different experiments, in order to 

understand the differences and sensitivities. In the conclusions and outlook section, we discuss the 

perspectives and practical aspects of further usage of space-borne lake observations in operational 

NWP. 

This chapter focused on improving the objective analysis of lake surface state in HIRLAM. The 

previous chapter (Chapter 3) documents the processing and evaluation of remote-sensing observations 

applied herein for the LSWT analysis. Our study is an extension of the work reported by (Eerola et 

al., 2010) and (Rontu et al., 2012). The main differences compared to these earlier studies lie in the 

extended usage of remote-sensing observations and exclusion of climatological data in the analysis.  

 

4.2 Observations  

In this study, in-situ and remote-sensing observations on lake surface state are introduced into the 

surface data assimilation system and used for comparison and validation. Table 4.1 summarizes the 

different observation types and their usage, discussed in this section. 

4.2.1 Satellite LSWT observations 

Satellite thermal infrared sensors offer a global coverage and high temporal resolution of lake 

temperature observations (shown in Chapter 3). This represents a significant advantage over in-situ 

observing systems that provide point measurements, often only close to the shoreline. In the present 

study, 70 pre-defined pixels were selected over 41 northern lakes (Figure 4.1, large image, black 

dots). The selection of a limited number of pixels, instead of using all available 1 km × 1 km 

resolution data, is a limitation which was dictated by practical reasons, and will be discussed in the 

concluding section. The satellite observations were used at the nearest analysis time within ± 3 h 

when available, i.e. under cloud-free conditions over each pixel location. A detailed description of the 
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satellite observations and of the algorithms applied for extraction and screening can be found in 

Chapter 3, only a short summary is given here. 

 

Table 4-1 Summary of observations used in this study. 

 
 

LSWT data were derived from the MODIS sensor, which operates on NASA's Terra and Aqua 

Earth Observation System (EOS) satellites (http://modis.gsfc.nasa.gov). The LSWT level 3 data, 

referred to as UW-L3 here onwards, were generated at the University of Waterloo. These data were 

evaluated using ground measurements over lakes in the same study area during the open-water season 

(Chapter 3) and over two large Canadian lakes (Kheyrollah Pour et al., 2011). For MODIS 

observations, both daytime and night-time Terra and Aqua LSWT observations were selected in order 

to maximize the amount of available input data to the analysis. Data from the AATSR, onboard the 

European Space Agency (ESA) ENVISAT satellite, were extracted over Lake Ladoga for the same 15 

pixels as for MODIS (Figure 4.1, Lake Ladoga image, red squares). Aqua and Terra satellites passed 

over our study area daily around 08-10 UTC and 20-01 UTC. AATSR observations were available 

06-08 UTC every third day in April 2011. 

4.2.2 In-situ lake water temperature observations 

Regular in-situ lake water temperature measurements are provided by the Finnish Environment 

Institute (Suomen Ympäristökeskus, SYKE). SYKE operates 32 regular lake and river water 

temperature measurement sites in Finland. The temperature of the lake water is measured every 

morning at 8.00 AM local time, close to shore, at 20 cm below the water surface. The measurements 

are either recorded automatically (13 stations) or manually and are performed only during the ice-free 

season (Rontu et al., 2012). Measurements from 27 lakes (Figure 4.1, upper left map), which are also 

used by the FMI operational HIRLAM, were included in all experiments reported in this study. 
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The operational Baltic Sea ice chart (Grönvall and Seinä, 2002) produced by FMI’s Marine 

Service also provides manually processed, satellite-based observations of water temperature and ice 

properties over Swedish lakes Vänern, Vättern and Mälaren. From these, pseudo-observations of 

LSWT have been derived since 10 January 2011 for the FMI operational HIRLAM at a few selected 

pixels in winter season approximately between 15 October and 15 May each year. In this derivation, 

ice fractions are converted to LSWT and ice flag temperatures by applying the inverse of the method 

described in section 4.3.3. These data were included in the present experiments when available, but 

their influence is not discussed herein. 

 
Figure 4.1 (a) Location of the MODIS pixels over the northern lakes. Independent lakes are 
marked with orange dots. (b) Location of 27 lakes (dark blue polygons) with SYKE 
measurement sites in Finland. (c) Detailed view of the selected MODIS and AATSR pixels over 
the lakes Ladoga (left) and Onega (right). 
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4.2.3 Data for comparison and validation 

Historical freeze-up and break-up dates from SYKE for most of the 27 Finnish lakes (Figure 4.1) 

were used for comparison with MODIS observations and HIRLAM analysis results. These freeze-up 

and break-up dates are based on visual observations from shore and represent the complete freezing 

and melting in small lakes. For the large lakes, separate freeze-up and break-up dates for the central 

open waters and coastal areas may be given by SYKE. Among the lakes discussed in this study, this 

is the case only for Lake Inari, where we used central open water dates. The visual observations are 

made independently of the water temperature measurements. These observations are made over a 

larger number of lakes in Finland than was used here, thus available for further studies. 

MODIS UW-L3 LSWT observations were prepared but withheld from the HIRLAM analysis, in 

order to be used as independent data for comparison over Lakes Bolmen and Hjälmaren in Sweden 

and Lakes Valday and Kuito in Russia (orange dots in Figure 4.1, coordinates shown in Table 4.3). 

MERIS-derived ice fraction observations for Lake Ladoga were utilized in this study for the month of 

April 2011. The ice fraction data were produced by the Norwegian Computer Center as part of the 

European Space Agency's (ESA) North Hydrology project (http://env-ic3-vw2k8.uwaterloo.ca:8080). 

MERIS was a core instrument of ESA's ENVISAT satellite platform that operated between March 

2002 and April 2012.  

 

4.3 Analysis of lake surface state 

Over water bodies in HIRLAM surface water temperature observations are treated with OI (Gandin, 

1965). The methods of OI analysis of LSWT are based on those applied for sea surface temperature 

(SST). We summarize the method briefly here, and present in the conclusions our findings concerning 

the needs of its further development. 

4.3.1 OI of LSWT 

OI analysis, integrated into the framework of HIRLAM, is applied for SST (Undén et al., 2002). More 

recently, the same method has been extended for the analysis of LSWT (Eerola et al., 2010, Rontu et 

al., 2012). In the near-surface analysis of HIRLAM, OI is applied to spread the information from 

irregularly located observations to regularly located grid-points for the initialization of the next 
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forecast cycle. This is done by correcting the background field with observations. For lakes, the 

background can be provided either by the previous analysis or by a short forecast. In the latter case, 

the background LSWT is derived from the surface temperature forecast by the lake model (FLake), 

which is incorporated in HIRLAM as a parameterization scheme. Here, the evolving three-

dimensional state of the atmosphere also influences the predicted state of lakes and hence the 

background for the LSWT analysis. A good background is especially important over lakes where 

observations are sparse or not available at all. 

The analysis at a grid-point 𝑘 is determined by a linear combination of the observed departures 

from the background 

𝒂𝒌 =   𝒃𝒌 +    𝒘𝒌𝒊
𝑵
𝒊!𝟏 (𝒚𝒊 − 𝒃𝒊)        4.1 

where 𝑎! is the analysis, 𝑏! the background and 𝑤!" are the weights given to observations 𝑖 =

1,… ,𝑁, 𝑦! the observations and 𝑏! the background values interpolated to the observation points.  

Derivation of the weights relies on the assumption that observation and background errors are 

uncorrelated. In OI, the weights 𝑤!"  in Eq. 4.1 are determined by inverting a matrix which represents 

the background and observation error covariances (Daley, 1991). For the SST and LSWT analysis 

applied in HIRLAM, the background error covariance, which to a large extent determines the 

resulting analysis, is treated by modelling the autocorrelation and standard deviation of the 

background error separately. A Gaussian autocorrelation function is applied, which depends on 

distance 

𝒈 𝝆 = 𝒆!𝟎.𝟓𝝆𝟐/𝑳𝑯
𝟐

              4.2 

where 𝑔 𝜌  is the autocorrelation function, 𝜌 is the distance and 𝐿!is a horizontal length scale (𝐿! = 

80 km). So 𝑔 𝜌  depends only on distance between the points. The observation and background error 

variances, which enter the diagonal of the matrix, are assigned prescribed constant values (we 

assumed a standard deviation error 1.5 °C for observations and 1.0°C for the background). 

The OI analysis integrated into the NWP model differs from the stand-alone analysis approach, as 

applied for SST and LSWT (e.g. by the Operational Sea surface Temperature and sea and lake Ice 

Analysis (OSTIA) (Donlon et al., 2012; Fiedler et al., 2014) in two essential aspects. In OSTIA, the 

background is always provided by the previous analysis done (e.g. on the previous day), and relaxed 

towards the LSWT climatology, which is taken from ARC-lake database (Hook at al., 2012; 
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MacCallum and Merchant, 2012). If the observations are missing for a long time or not available at 

all over some lakes, climatology gets a large weight. In the case of OSTIA, realistic lake climatology 

is available over lakes of the ARC-lake database (ca. 250 lakes worldwide, around 15 over our 

present study area). More importantly, no climatology is able to represent the current and near past 

atmospheric conditions, which basically determine the current lake temperatures. In our case, it is also 

possible to use previous analysis as the background and relax to climatology at each HIRLAM grid-

box, where a fraction of lake is detected. However, in our case, this is even more problematic, 

because our LSWT climatology was extrapolated to any lake from SST climatology instead of using 

lake climatology, which is unrealistic. This is why we prefer the background provided by the 

prognostic lake parameterization, calculated within HIRLAM for each time step at each grid-box 

which contains a lake fraction.  

Another point is that our OI method works also across the lakes, sometimes interpolating LSWT 

observations from nearby lakes if these are close enough to influence. Thus, an analyzed LSWT value 

is always available in every lake grid-point of HIRLAM. In this respect, we are again not limited by 

the choice of pre-selected large lakes, between which OSTIA can also interpolate. In HIRLAM, 

special care is taken not to mix sea and lake observations in the analysis near the sea coast. However, 

to fully benefit from the across-lake interpolation possibility, it will be necessary to derive 

autocorrelation (structure) functions, depending not only on the horizontal distance but also at least on 

the depth and possibly on the elevation differences within and between the lakes. 

4.3.2 Quality control 

In HIRLAM, quality control (QC) of the observations is performed prior to the actual analysis. QC is 

done in two consequent phases: first the observations are tested against the background, then each 

observation is compared to the surrounding observations. For the background check, a normalized 

difference ∆! between the observed value and the background value interpolated to the observation 

point is calculated as 

∆𝒊= (𝒚𝒊 − 𝒃𝒊)𝟐/(𝝈𝒃𝟐 + 𝝈𝟎𝟐)               4.3 

where 𝜎! and 𝜎! denote the background and observation error standard deviations. If ∆! is larger than 

a prescribed threshold value, the observation is rejected by the background check. The check against 

surrounding observations first excludes the observation to be checked, and then performs OI analysis 
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to this point by using the nearby observations. The difference between the analyzed and the observed 

value, again normalized by the observation and background error standard deviations, is tested against 

a prescribed threshold value. It is difficult to choose optimal criteria for this threshold. In order to 

retain a maximum number of observations, a quite liberal approach was adopted here: the threshold 

was set so that only those LSWT observations which deviated from the background by more than 10 

°C were rejected (Eq. 4.3). 

4.3.3 Treatment of ice fraction 

In HIRLAM, a diagnostic ice fraction is derived from the analyzed LSWT. Thus, neither space-borne 

nor in-situ ice concentration, ice thickness, and ice temperature observations are directly analyzed. 

The diagnostic ice fraction is estimated in a simple way: we assume that a lake grid-square is fully 

ice-covered when LSWT falls below -0.5 °C and fully ice-free when LSWT is above 0 °C. Between 

these temperature thresholds, the fraction of ice changes linearly. A range from -0.5 to 0 °C has been 

chosen to account for the variability and uncertainty of the analyzed LSWT within the model 

resolution. A corresponding ice flag value of -0.6 °C was assigned to LSWT while creating the 

background to LSWT analysis in such grid-squares, where the ice thickness predicted by FLake 

exceeded a threshold value of 1 mm. An observation ice flag value of -1.2 °C was assigned to all 

MODIS surface temperature values below -0.5 °C over lakes. These were assumed to represent full 

ice cover in their surroundings. In the case of SYKE observations the ice flag value was given to all 

measurements showing 0 °C water temperature. If we had instead assigned LSWT observations a 

missing value under the observed ice, we would have excluded from the analysis all observations 

representing ice conditions, thus letting the background (FLake or previous analysis) alone to 

determine. In the melting and freezing conditions, removal of all information about ice would give 

more weight to the water observations and most probably lead to incorrect spread of open water 

information into the near-by ice-covered part of the lake. 

This kind of procedure, which was inherited from the SST analysis and sea ice diagnostics, 

represents a simplified but non-physical way of handling ice concentration. Here a single variable, 

namely LSWT, is taken to represent in the analysis both itself, i.e. the water temperature, and another 

variable, ice cover. This is why the LSWT flag values enter the OI analysis and QC together with the 

real observations. However, the choice of the ice concentration versus LSWT range and the flag 

values is rather arbitrary. The sensitivity of the resulting LSWT and ice cover to these choices should 



 

50 

 

be systematically studied. The eventual solution of the problem could be found in assimilation of the 

observed and predicted physical properties of ice, such as ice thickness (see Section 4.6 for 

discussion). 

 

4.4 Description of the analysis-forecast system and setup of 
experiments 

All our experiments were run in the framework of HIRLAM version 7.4 (www.hirlam.org). This 

HIRLAM version incorporates fully integrated FLake model, applied as a parameterization scheme 

for prediction of lake water, ice and snow temperatures and ice thickness and snow depth over lakes 

(Rontu et al., 2012). We used a model setup with a horizontal resolution of 6.8 km over a northern 

Europe experimental domain (Figure 4.1) with 65 levels in vertical between the surface and the 10 

hPa level in the atmosphere. Four data assimilation-forecast cycles were run every day, starting at 00, 

06, 12 and 18 UTC. For the upper-air data assimilation, three-dimensional variational method was 

used. The lateral boundary conditions for the atmospheric model were provided by the fields of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) analysis. 

Three initial sets of experiments were designed to study the impact of assimilated remote-sensing 

LSWT observations over the major northern European lakes (Table 4.2). In the baseline experiment 

TRULAK (SYKE water temperature observations, FLake parameterizations), the prognostic lake 

parameterizations inside the forecast model provided the background for the LSWT analysis. This 

follows the setup of the reference HIRLAM used for the FMI operational NWP. No satellite 

observations were used in the baseline experiment, just SYKE in-situ water temperature 

measurements over Finland. In the second experiment, called NHFLAK (SYKE water temperature 

and MODIS LSWT observations, Flake parameterizations), remote-sensing LSWT observations were 

also included. In the last experiment, referred to as NHALAK (SYKE water temperature and MODIS 

LSWT observations), LSWT observations were used to correct the background provided by the 

previous analysis, which was relaxed towards “ocean-derived” LSWT climatology of the reference 

HIRLAM (Rontu et al., 2012). AATSR observations over Lake Ladoga only were included in two 

additional short experiments, called NHALAA (AATSR LSWT observations) and NHFLAA 
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(AATSR LSWT observations , Flake parameterizations), run for April 2011. SYKE in-situ water 

temperature observations from the Finnish lakes were included in all experiments. 

For the lake analysis and parameterizations, information about the lake depth and fraction of lake 

in each grid-box is needed. Lake depths were obtained from the lake data base for NWP and climate 

models (Kourzeneva et al., 2012a). Fraction of lakes was taken from the HIRLAM physiography 

description (Undén et al., 2002). The lake fraction was originally derived for HIRLAM using the 1 

km resolution Global Land Cover Characteristics (GLCC) data base (Loveland et al., 2000). For the 

Table 4-2 Definition of the HIRLAM experiments. 

 
 

very first cycle, prognostic inside-lake variables were initialized with gridded lake climatology 

(Kourzeneva et al., 2012b). The very first LSWT analysis was replaced by the reference HIRLAM 

LSWT climatology when starting each of the experiment series. Note that these two climatologies are 

different - the first is the climatology of Flake prognostic variables, the second has been extrapolated 

from SST for LSWT analysis only. 

 

4.5 Results and discussion 

4.5.1 Freeze-up and break-up dates 

Freeze-up and break-up dates interpreted from SYKE, MODIS, and MERIS observations were 

compared with the dates given by HIRLAM experiments for selected representative lakes (Table 4.3). 

Lake Lappajärvi is a regular-form, medium-size, and relatively shallow lake located in western 

Finland. SYKE water temperature measurements are available for this lake. Lakes Bolmen, 

Hjälmaren, Valday and Kuito whose MODIS observations were excluded from HIRLAM analysis, 
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resemble Lake Lappajärvi. Lake Inari in the Finnish Lapland is large, with islands, a complex 

coastline and bathymetry, and is also represented in HIRLAM analysis by SYKE water temperature 

observations. Over the large, deep and open Lakes Ladoga and Vänern the break-up and freeze-up 

processes progress differently than over smaller lakes: ice forms, cracks and drifts depending on the 

wind speed and direction. However, for simplicity, only one point is chosen to illustrate the surface 

state of these lakes here. Coordinates of the chosen locations and the mean depth of lakes are shown 

Table 4.3. A few preliminary remarks related to the accuracy of the dates are necessary before 

discussion: 

• SYKE freeze-up and break-up dates: These dates are based on visual ground-based 

observations, which are independent of the SYKE water temperature measurements used 

by the HIRLAM analysis. 

• MODIS dates: Especially during the freezing period, which is often cloudy and dark, the 

MODIS observations over a chosen location may be missing for several days, even 

weeks. During the freezing and melting periods, MODIS LSWT may oscillate from one 

measurement to another by several degrees, sometimes jumping to both sides of zero. 

Some subjective reasoning was applied when determining the dates from this 

information. 

• HIRLAM dates: In Table 4.3, the dates are shown based on the OI analysis of HIRLAM, 

which used either the prognostic temperatures from FLake (experiments NHFLAK and 

TRULAK) or the previous analysis (experiment NHALAK) as background. For various 

reasons, the analyzed temperature also has a tendency to oscillate between analysis 

cycles, which during the freezing and melting periods may lead to oscillation of the ice 

fraction. Thus, here again some subjective reasoning was needed to determine the 

freezing and melting dates. In some cases, a transition period up to three weeks is shown 

to indicate the uncertainty related to this oscillation.  

• MERIS ice fraction: Data were prepared for comparison in 2011 for Lake Ladoga. 

MERIS-derived ice fraction information was obtained from pixels, each representing an 

area of 300 m x 300 m. 

SYKE and MODIS freeze-up and break-up dates were first compared over two Finnish lakes, 

Lake Lappajärvi and Lake Inari. During lake melt, SYKE and MODIS dates differed from each other 
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by less than ten days. During freezing, the difference could be several weeks. It is possible that the 

MODIS LSWT observations on selected 1 km × 1 km pixels may indicate melting or freezing before 

the SYKE observer determines that the whole lake is unfrozen or frozen. To avoid this error, MODIS 

visible images (bands 7, 2, and 1) were used to make sure that the chosen pixel values represented 

correctly the whole lake area. The difference between SYKE and MODIS freeze-up and break-up 

dates, shown in Table 4.3 for Lake Inari and Lake Lappajärvi, was similar over the other Finnish 

lakes (not shown). The uncertainty of a lake melting date, derived from MODIS by a couple of weeks 

compared to the in-situ data could be due to the visual in-situ observation as the observer cannot 

monitor the whole area of the lake from the lake shoreline. The uncertainty of the freezing dates could 

be up to one month. 

Over Lake Ladoga, no SYKE freeze-up and break-up dates observations were available to be 

compared with MODIS. Melting dates interpreted from MERIS measurements in spring 2011 over 

Lake Ladoga (shown for pixel 9 in Table 4.3, see Figure 4.1 for the map), seem to agree with the 

dates interpreted from MODIS LSWT measurements. Thermal satellite observations from AATSR-

L1B are used to develop MERIS lake ice products to detect cloud cover, therefore both MERIS ice 

cover and MODIS temperature observations represent the surface only under clear-sky conditions. 

This limits the accuracy of the dates derived from these measurements in a similar way. 

The freezing dates given by the analysis of the experiment NHFLAK (FLake + MODIS LSWT + 

SYKE water temperature) came in general closer to the observed dates compared to the dates from 

experiment TRULAK (in the area of the analysis domain outside Finland, where no SYKE 

temperature observations are available, FLake alone was used). In spring, the analyzed melting dates 

by both TRULAK and NHFLAK were always earlier than those indicated by MODIS observations at 

the selected pixels. The largest differences between melting dates interpreted from HIRLAM analysis 

and directly from MODIS observations were more than one month when the analysis was determined 

by the Flake background alone. This was the case for TRULAK over all lakes and NHFLAK over the 

independent lakes Bolmen, Hjälmaren, Kuito and Valday. Over the Finnish lakes, SYKE temperature 

observations were available only well after melt. Thus, during the melting period, the warm FLake 

background dominated over the (sparse) MODIS observations also in NHFLAK. 

In cases when the inclusion of MODIS observations to NHFLAK did not change the analyzed 

state of lakes significantly, the reasons may have been due to the fact that: 1) MODIS data were 
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seldom or not at all available for analysis, 2) the prognostic parameterizations were good and agreed 

with MODIS, or 3) the difference between MODIS and Flake was so large that the observations were 

rejected by the quality control while comparing the background and observations. Rejections were, 

however, uncommon in autumn and when the lakes were frozen (between the dates shown in Table 

4.3), but became more frequent at the end of May with rising lake water temperatures after the ice 

melt. It is possible that the FLake background dominates in the analysis over the large lakes because 

the information brought by the selected MODIS pixels is simply insufficient there (see also Section 

4.5.2). 

The NHALAK experiment combined SYKE water temperature and MODIS LSWT observations 

with the background given by the previous analysis, which had been relaxed towards the LWST 

climatology. This experiment, which was run only for January-May 2012, followed the observations 

more closely than the prognostic experiments TRULAK and NHFLAK, but only when observations 

were available on the lake or close to it (i.e. when the effect of background field was small). 

Elsewhere, the analysis tended towards the (wrong ocean-derived) climatology, possibly resulting in a 

completely useless description of lake surface state [not shown in Table 4.3, see an example in Rontu 

et al. (2012)]. Over Lakes Lappajärvi and Inari, NHALAK improved the analysis so that the melting 

dates became closer to the SYKE temperature observation. Over Lakes Ladoga and Vänern, the dates 

became closer to the MODIS observations. In spring, interpretation of the point values over the large 

lakes may be affected by the uneven melting and drifting ice. The NHALAK melting dates over the 

selected lakes seem to agree with MODIS observations within about one week. The agreement is 

better than in the case of NHFLAK, whose analysis was dominated by the FLake parameterizations. 

Freezing dates from NHALAK were available only over a few lakes because this experiment was 

started in the middle of winter. 

4.5.2 April 2011 comparison 

For visual comparison of the full-resolution satellite observations with the NWP analysis during melt, 

MODIS (daytime and nighttime) and AATSR (morning) LSWT, as well as MERIS ice fraction on 12 

April 2011 were mapped (Figure 4.2) and compared with the HIRLAM analysis and background by 

experiments NHFLAK and NHFLAA (Figure 4.3). In April, the ice cover on Lake Ladoga started to 

break, which makes comparison of observations and simulations both interesting and challenging due 

to the moving ice on the lake. 
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Table 4-3 Freezing and melting dates of selected lakes given by observations (SYKE and 
MODIS) and analyses by experiments (TRULAK, NHALAK, NHFLAK as defined in 
Table 4.2) 

 
 

MERIS estimation of ice fraction (Figure 4.2b) agrees well with the MODIS visible image (Figure 

4.2a), indicating an area consisting of a mixture of ice and water (MERIS: values between 0 and 54% 
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ice fraction) in the northeastern part and, to a lesser extent, in the southwestern part of the lake. On 

the northeastern part of Ladoga, MODIS daytime observations (between 08 and 10 UTC) show 

temperatures just above 0 °C and around 2-3 °C lower at night-time (between 20 and 01 UTC) 

(Figures 4.2d and e). The daytime MODIS observations show warmer temperatures compared to 

AATSR (Figure 4.2c). The AATSR observations were available earlier in the morning (06-08 UTC) 

than MODIS. Thus the stronger heating of the surface by solar radiation at noon may explain the 

difference.  

 
Figure 4.2 Surface temperature on 12 April 2011: (a) MODIS visible image, light blue 
represents snow/ice and dark blue indicate open water area (b) MERIS ice fraction, (c) AATSR 
surface temperature (between 8 and 10 AM local time), (d) MODIS daytime surface 
temperature (between 10 AM and 12 PM local time) and (e) MODIS nighttime (between 10 PM 
and 3 AM local time). 
 

The ice fraction from HIRLAM (Figure 4.3, left column) was derived from the analysis of LSWT 

(for the method, see Section 4.3.3), which was based on the combination of MODIS (experiment 

NHFLAK) or AATSR (experiment NHFLAA) observations (Figure 4.4) and the background field by 

FLake. For comparison, the ice fraction diagnosed from the +6h ice thickness forecast by FLake 

parametrization is shown (Figure 4.3, middle column). In this diagnosis, the lake within each grid 
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square is assumed to be either completely ice-covered or completely ice-free, i.e. no fractional ice is 

assumed. Both the analyzed and predicted ice patterns differ from those of the mid-day and night-

time satellite observations (Figure 4.2). According to the background forecast, Lake Ladoga should 

have been almost ice-free during the day, while at night and in the morning the northern part seems 

frozen. Similarly, the analysis indicates a frozen lake at night (based on MODIS) and early morning 

(based on AATSR) but partially melted during the day. 

Three technical comments are needed for understanding the possible reasons of the difference 

between the analysis and the satellite observation. First, the horizontal resolutions of the model and 

satellites are different: 7 km for HIRLAM (the boxes visible on the maps in Figure 4.3 represent grid 

squares), 1 km for MODIS and AATSR, and 300 m for MERIS. Thus we would not expect HIRLAM 

to represent all details of the ice cover detected by the satellites. Second, the diagnostic ice fraction of 

the HIRLAM analysis is derived from the analyzed LSWT in a very simple ad-hoc way (Section 

4.3.3). Consequently, all HIRLAM ice fractions are derived from temperatures between the freezing 

temperature and an artificially set lower limit of - 0.5 °C. This is not the same variable as the MERIS 

ice fraction, which can represent physically realistic ice properties within its 300 m × 300 m pixels. In 

addition, the method involves unphysical ice flag temperatures (see section 4.3.3), which may enter 

the analysis together with the real observations, thus adding uncertainty to the resulting analysis. 

Third, the LSWT analysis of the HIRLAM experiment NHFLAK over Ladoga is based on a selection 

of observed LSWT from a maximum of 15 MODIS or AATSR pixels (see Figures 4.1 and 4.4), 

combined with the FLake +6h forecast which is used as the background. This means that over Lake 

Ladoga, the largest part of the information from the ca. 30000 theoretically possible MODIS pixels 

remains unused in the analysis at the ca. 600 HIRLAM grid-squares, and the result is compared to 

~300000 MERIS pixels. 

Of the 15 possible MODIS pixels, 14 were available and accepted for the analysis at 00 UTC on 

12 April (MODIS observation at 23 UTC, 11 April 2011, Figure 4.4a). They all show the flag value 

of ice, assumed for MODIS when the observed LSWT is below -0.5 °C. Twelve hours later, at 12 

UTC on 12 April (MODIS observations at 9 and 11 UTC, Figure 4.4b) the analysis input also 

included 14 observed values, the most northeastern one (pixel 8) indicating unfrozen conditions and 

the other temperatures slightly under the freezing point. AATSR observations assimilated at 06 UTC  
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Figure 4.3 HIRLAM ice fraction (0-1) on 12 April 2011, diagnosed from LSWT: (a) analysis, (b) 
background and (c) their differences. NHFLAK (SYKE, FLake, MODIS) at 00 UTC (upper 
panel) and at 12 UTC (middle panel), and NHFLAA (SYKE, MODIS) at 06 UTC (lower panel). 
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indicated that the northeastern (pixel 1) and western (pixel 6) areas may have been unfrozen, while 

the remaining 15 pixels were frozen (Figure 4.4c). 

AATSR observations were extracted for the chosen 15 pixels and applied for HIRLAM analysis 

on the 5-6 days in April 2011 when they were available. AATSR observations always represent 

morning conditions. An example of their influence in the experiments NHFLAA (with FLake 

background) and NHALAA (with previous analysis background), as compared to the influence of  

 
Figure 4.4 LSWT observations used for HIRLAM analysis over Lake Ladoga on 12 April 2011: 
(a) MODIS for NHFLAK (SYKE, FLake, MODIS) at 00 UTC, (b) MODIS for NHFLAK at 12 
UTC and (c) AATSR for NHFLAA (SYKE, FLake, AATSR) at 06 UTC. 

 

MODIS observations in the experiments NHFLAK (with FLake background) and NHALAK (with 

previous analysis background), is shown in Figure 4.5 for the centre of Lake Ladoga at pixel 7 during 

April 2011. The background given by FLake (experiment NHFLAA) and by the previous analysis 

(NHALAA), which was relaxed towards climatology, was very different. FLake would indicate 

melting during the first week of the month, while the MODIS and AATSR observations pointed to 

melting during the last week. Both MODIS and AATSR provided enough observations to modify the 

analysis accordingly, so that the analyses indicated melting closer to the end of April. Without 

observations and FLake (i.e. relying on climatology only), melting would have occurred after the end 

of April. 
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Only those days when observations were available are shown in Figure 4.5. When observations are 

sparse, the Flake background dominates the analysis outcome. The behaviour of FLake may vary 

between individual grid-columns because of their different lake depths. For large lakes such as 

Ladoga, an approximate bathymetry is available in HIRLAM  (Kourzeneva et al., 2012). However, to 

a large extent, the conditions over the lake remain homogeneous, also from the point of view of the 

atmospheric forcing. This means that the background for LSWT analysis, given by FLake, also 

contains little horizontal variability. In addition, the analysis at each grid-point is influenced by all 

nearby observations, whose values and availability may vary in time. Over Lake Ladoga, these nearby 

observations consisted of the selected 15 pixels, each of which would have an influence to some 

extent over the whole lake, according to Eq. 4.2. 

The different behaviour of MODIS observations during day and night contributed to an unrealistic 

jumping of the HIRLAM NHFLAK analysis from frozen to unfrozen conditions: during the day 

unfrozen conditions prevailed, during the night the lake seemed frozen. This was typical during the 

melting period over Lake Ladoga, also over the other lakes (not shown). Jumping of the MODIS 

observations between sequential observations is confirmed by Figure 4.5. AATSR may suffer less 

from this feature, perhaps because observations at the selected pixels were quite sparse in time but 

representing always the similar morning conditions. Also the lake parameterization may contribute to 

the unrealistic oscillation across the freezing temperature (e.g., by absorbing solar radiation too 

effectively during daytime.) 

The reason for the difference between the cold nighttime and warm daytime MODIS lake surface 

temperatures remains to be understood. At night, water on ice may refreeze due to long-wave 

radiative cooling of the surface. In this case, the MODIS temperature would not represent that of the 

lake, but the temperature of the refrozen melt water on ice. One could also speculate on the possibility 

of formation of fog during the night over the melting ice. This type of fog, perhaps quite impossible 

to distinguish from the underlying surface in the satellite image, would show colder temperature than 

the surface, due to the long-wave cooling of the upper boundary of the fog layer. 

4.5.3 Melting of Lake Lappajärvi 

Features of the OI analysis over a medium size lake are illustrated by an example of the melting of 

Lake Lappajärvi in HIRLAM experiments NHFLAK (with FLake background) and NHALAK (with 

previous analysis background) in spring 2012. Over Lake Lappajärvi, SYKE temperature 
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observations were included in a slightly different location (closer to the shore) than MODIS. Figure 

4.6 shows more details of the OI analysis during the melt period at the MODIS and SYKE points of 

Lake Lappajärvi. 

FLake parameterization in the NHFLAK experiment suggests open water already around 10 April, 

while MODIS indicates a complete break-up (water clear of ice) around the first day of May (Figures 

4.6b and 4.6d). Analysis of the experiment NHFLAK indicates water clear of ice a few days earlier 

(24 April) than that of the experiment NHALAK (28 April) (Figures 4.6b and 4.6a). The visible 

MODIS-Aqua images (Figure 4.7) indicate that Lake Lappajärvi is clear of ice on 1 May but still ice-

covered on 25 April. The SYKE observer recorded 2 May as the water clear of ice date for Lake 

Lappajärvi (see Table 4.3). SYKE temperature measurements started only on 10 May when the water 

temperature had already reached 3 °C (Figures 4.6c and 4.6d). 

 
Figure 4.5 Analysis (red), background (black) and observation (blue) of LSWT in the grid point 
nearest to pixel 7 over central Ladoga during April 2011 in the experiments (a) NHFLAA 
(SYKE, FLake, AATSR), (b) NHFLAK (SYKE, FLake, MODIS), (c) NHALAA (SYKE, 
AATSR) and (d) NHALAK (SYKE, MODIS). Only times when MODIS observations were 
available are shown. No data are rejected here. 
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The analysis of NHALAK followed MODIS observations more closely than that of NHFLAK, 

which was influenced by the warmer background suggested by FLake. SYKE temperature 

measurements were not available before 10 May, entering the NHALAK analysis only well after the 

observed ice break-up. When there were no MODIS observations over Lake Lappajärvi, the previous 

analyses that were applied as background in NHALAK would have converged to the climatological 

values, which still represented ice-covered conditions. If break-up was interpreted from NHALAK 

analyses based on the observations at the SYKE point alone, it would have occurred two weeks later 

than when MODIS observations were included. In general, melting of Lake Lappajärvi could be 

described realistically due to the MODIS observations both with and without FLake 

parameterizations. FLake alone would have led to too early and OI, based only on the (missing) 

SYKE water temperature measurements and climatology, to too late melting of this lake in the 

HIRLAM analysis. This is because a lake grid-point is assumed to retain its state given by the 

background field when there are no observations available to correct it. 

 
Figure 4.6 Same as in Fig. 5 but over Lake Lappajärvi (15 March _ 31 May 2012) in the 
experiments (a) NHALAK (SYKE, MODIS) and (b) NHFLAK (SYKE, FLake, MODIS) for the 
selected MODIS pixel (23.70 E, 63.22 N), (c) NHALAK (SYKE, MODIS) and (d) NHFLAK 
(SYKE, FLake, MODIS) for the SYKE measurement point (23.67 E, 63.15 N). 
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The reason of the too-early warming of lakes by FLake (noted also in Section 4.5.2 and in Table 

4.3) requires further study. One possible reason may be related to the missing of snow on lake ice. In 

these experiments snow parameterization was included in FLake, as in the reference HIRLAM v.7.4, 

but in fact snow never accumulated on lake ice in the model. This was due to a technical error that has 

lately been corrected. 

The rather large variation of MODIS LSWT observations from day to day (Figure 4.6), which may 

result from unsuccessful removal of the signals due to high-level clouds during preprocessing of the 

data, poses a problem to the quality control within the HIRLAM analysis system. On the other hand, 

FLake reached unrealistically high LSWT after the melt of ice on Lake Lappajärvi. Around 25 May, 

many MODIS and some SYKE observations were rejected in the background check by the quality 

control, which was not correct in this case. Relations between the adjacent observations of different 

types (SYKE and MODIS) on the lake and its neighbourhood would require further study. In the 

present experiments, all lake observations were assumed to have similar statistical properties. For 

example, the assumed observational error standard deviation was set to 1.5 °C for both in-situ and 

remote-sensing LSWT observations. This value is supported by the evaluation study in Chapter 3, 

where a standard deviation of around 1.8 °C was estimated for the satellite measurements for selected 

22 Finnish lakes during open water season when SYKE temperature observations were available.  

 
Figure 4.7 MODIS-Aqua visible images over Lake Lappajärvi on 25 April (left, 8:30-12:10 
UTC, light blue color represent snow/ice) and 1 May (right, 9:50-11:30 UTC, black color 
represents open water), 2012.  
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4.5.4 Validation of analysis over independent lakes 

MODIS UW-L3 LSWT observations were derived but withheld from the HIRLAM analysis over four 

lakes in Sweden and Russia (see Section 4.2.3). The Russian Lake Kuito and Lake Valday are chosen 

for comparison between analyses and observed MODIS LSWT (Figure 4.8). These two lakes were 

chosen for illustration because they are located far enough from the nearest lakes included in the 

analysis, so that analyses on them are not significantly influenced by the nearby observations. The 

results for the Swedish Lake Hjälmaren and Lake Bolmen (not shown) confirm the results presented 

here. The analyses of the three main experiments TRULAK, NHFLAK and NHALAK (Table 4.2) 

were compared to MODIS observations during January to May 2012 when results from all 

experiments were available. MODIS observations with the ice flag -1.2 °C (indicating measured 

temperatures below -0.5 °C) were excluded from the set of validation observations. Over these lakes, 

the analysis by TRULAK and NHFLAK is interpreted directly from the FLake forecast, thus this 

validation measures the quality of FLake, not that of the analysis method. Similarly, as observations 

were not applied, validation of NHALAK compares the available climatology to MODIS 

observations. 

 
Figure 4.8 Comparison of LSWT derived by MODIS with LSWT analysed by experiments 
NHFLAK (SYKE, FLake, MODIS; red), NHALAK (SYKE, MODIS; blue) and TRULAK 
(SYKE, FLake; green) for (a) Lake Valday and (b) Lake Kuito. 
 

We can see in Figure 4.8 that the analyses based on different backgrounds - NHALAK on the 

previous analysis relaxed towards climatology, TRULAK and NHFLAK on the 6-hour forecast by 

FLake - started to diverge as soon as the observed LSWT clearly rose above the freezing point. 
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Typically, NHALAK analyses remained significantly colder than MODIS observations, while 

TRULAK and NHFLAK tended to be significantly warmer. According to the applied climatology, 

these lakes normally stay ice-covered longer than was observed in spring 2012. Relaxation of the 

NHALAK towards such a climatology forced the analyses towards freezing temperatures when no 

observations were available to correct the situation. The warm bias of FLake led the analyses 

TRULAK and NHFLAK to too high analysed LSWT. This bias has been detected earlier in this study 

as well as by Eerola et al. (2010) and Rontu et al. (2012). 

 

4.6 Conclusions and outlook 

We have reported the first steps in utilizing satellite-based observations to define the initial state of 

lake surfaces in a NWP model. We have applied the HIRLAM surface analysis by introducing new 

lake observations. While not focusing on optimization of the analysis methods for LSWT and lake 

ice, we did however detect their limitations and provided suggestions for improvements. Many 

questions will require further investigation on the road towards a completely integrated lake data 

assimilation system for NWP. 

In our experiments, we included MODIS and AATSR temperature observations over lakes in 

HIRLAM. When temperatures below freezing were detected, LSWT was given an ice-flag value, 

otherwise the observation was assumed to represent the measured LSWT. A limited number of 70 

MODIS pixels over 41 large- and medium-size Scandinavian, Karelian and Baltic lakes and a sample 

of AATSR data over Lake Ladoga were selected for the analysis input. Pre-processing of these data 

for the analysis is described in Chapter 3. To understand the sensitivity of the resulting LSWT 

analysis to the new data, the analyzed LSWT and diagnosed lake ice concentration were compared 

with those by the experiments where space-borne observations were not included. The initial states of 

every forecast-analysis cycle of each experiment were validated, mostly qualitatively, against locally 

recorded freezing and melting dates of the lakes as well as against independent satellite LSWT and 

ice cover observations. Introduction of space-borne observations led to an improvement of the 

description of lake surface state, especially during the melt period when in-situ LSWT observations 

were not yet available and the prognostic lake parameterizations suffered of a significant warm bias. 

During the freezing period, when the sun was low and weather typically cloudy, only few thermal 
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satellite data were available. In the conditions of well-mixed lake water, typical of the freezing 

period, the Flake prognostic parameterizations also worked reasonably well, making the additional 

observations less necessary in autumn. 

The background LSWT for the optimal interpolation analysis was provided either by the 

prognostic lake parameterizations of the Freshwater Lake model integrated in HIRLAM, or by the 

previous analysis backed up by climatology. FLake provides background for the LSWT analysis at 

every HIRLAM grid-point containing a lake fraction. In the case of sparse and missing observations, 

this ensures on average a better result than an analysis that uses the previous analysis as background, 

especially when the lake is frozen and the background relaxes to climatology. However, in cases 

where a sufficient quantity of good (satellite-based) observations was regularly available, the analysis 

using the previously analyzed LSWT as the background followed observations closer than when the 

background LSWT was diagnosed from the predicted FLake lake temperature. 

In a case study, MERIS ice fraction over Lake Ladoga was found to qualitatively agree with the 

ice fraction derived from the HIRLAM lake temperature analysis. Due to the finer spatial resolution 

of MERIS observations, they provided a more detailed picture than the HIRLAM analysis. However, 

MERIS is an optical sensor whose data coverage is limited by the presence of clouds. Ice cover 

observations derived from passive microwave sensors do not suffer from this problem. However, they 

are presently of a coarse spatial resolution (ca 10 km) and would thus only represent large lakes. The 

Interactive Multisensor Snow and Ice Mapping System (IMS) product (4 km resolution) could be the 

other alternative, which utilizes a variety of multi-sourced datasets such as passive microwave, visible 

imagery, operational ice charts and other ancillary data (Helfrich et al., 2007; Ramsay, 1998). IMS 

data has been shown to be an effective product for lake ice (Brown and Duguay, 2012; Duguay et al., 

2011, 2012, 2013; Kang et al., 2012) and sea ice (Brown et al., 2014) phenology studies. 

In the long term, for a direct assimilation of ice concentration from optical sensors, some 

spatialisation methods such as OI should be used. However, solutions for several theoretical and 

technical problems need to be found. The error distribution of the ice concentration is probably non-

Gaussian and needs application of specific methods (Lisaeter et al., 2003; Qin et al., 2009; Simon and 

Bertino, 2009). For the background, the FLake ice fraction can at the moment only be 0 or 1. This 

means that it is only known if the lakes in the grid-box are ice-covered or not. Such information is in 

principle qualitative, when defined within the relatively coarse resolution of the NWP model. 
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Methods to assimilate qualitative information are poorly developed in NWP. For example, an 

algorithm for assimilation of remotely sensed snow extent (Drusch et al., 2004) uses a quite simple 

and ad-hoc approach. When utilizing LSWT and ice cover observations together, it will be necessary 

to ensure their consistency in the resulting analysis. Experience from simplified methods, where the 

observed ice fraction is converted to temperature, which is then treated by the OI algorithm together 

with SST (Canadian Meteorological Centre), may also be helpful. In addition to the horizontal 

spacialisation, methods to assimilate ice information with respect to the prognostic variables of FLake 

(such as ice thickness) should be developed. 

Extended application of remote-sensing LSWT measurements is a novel feature in this paper, 

compared to the previous studies (Eerola et al., 2010; Rontu et al., 2012). However, significantly 

more data, potentially available from satellites, still remain unused with the approach of predefined 

pixels over the lakes (70 pixels used in this study versus several tens of thousands pixels covered by 

the satellite measurements). By using the fine-resolution land-cover information available in the NWP 

model, it is possible to classify if a satellite pixel (with known coordinates) is located over a lake 

resolved by the model. Thus, it would be possible to utilize high-resolution near-real time satellite 

LSWT/ice cover observations without pre-selection of pixels. Methods to reduce the amount of input 

data over large lakes (thinning, screening, creation of super-observations) should be developed and 

applied in order to avoid giving too much weight to the large amount of mutually correlated satellite 

data compared to possible in-situ measurements, and also in order to keep the amount of input data 

reasonable compared to the resolution of the NWP model. Certain preprocessing of these data, 

including cloud clearance, identification of missing data, and estimation of the measurement error in 

each pixel would be preferable before entering the OI quality control within the model. 

Improvement of the operational analysis of remote-sensing LSWT measurements in NWP models 

requires development of the optimal interpolation methods. Derivation of the autocorrelation 

functions (structure functions), which take into account lake depth and elevation, as well as 

calculation of observation error statistics of different measurement types is believed to be important. 

Practical questions should be resolved in the future, such as: how to obtain near-real-time daily 

observational data of reasonable volume in a universal format; how to introduce more than selected 

pixel observations into the analysis; how to improve the quality control before and within the NWP 

application. For the operational NWP models, the analysis of the transient surface properties is 
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crucial, but handling of the observational data and computations should be highly optimized in order 

to allow timely production of the full three-dimensional weather forecast. Input information should be 

processed without manual intervention, but well enough to allow only reliable observations to 

influence the analysis. 

It is worth mentioning that presently, the analyzed state of the lake surface creates no feedback to 

the FLake parameterization, which is coupled to the atmospheric model during the forecast run. Thus, 

the improved LSWT analysis remains as a possibly useful independent by-product of the NWP 

model. In order to really utilize the space-borne and in-situ observations on lake surface state for the 

improvement of the weather forecast and prediction of lake temperatures, methods to connect the 

analyzed LSWT and ice cover to the prognostic in-lake variables are needed. Such methods for NWP 

models are currently under development (Kurzeneva, 2014).  

To conclude, it has been learned that space-borne LSWT observations are beneficial for the 

description of lake surface state in HIRLAM. Satellite observations provide frequent observations 

over large areas. The large spatial coverage of satellite-based data at a high resolution is a major 

advantage but also an application challenge when compared to in-situ measurements. 
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                                                                                        Chapter 5

Preliminary assessment of lake surface water temperature 
statistical properties for objective analysis in a NWP model using 

satellite observations 

 

5.1 Introduction 

 

The importance of energy exchange processes between the Earth’s surface and the atmosphere is 

increasingly being recognized in weather forecasting. The surface heat, moisture and momentum 

fluxes, which provide the coupling between the atmosphere and the Earth’s surface, depend not only 

on atmospheric conditions but also on surface characteristics, in which inland water bodies are known 

to play an important role on lake-rich areas. The importance of a correct description of inland water 

(lake) surface state in climate (Duguay et al. 2006, Brown and Duguay 2010, Krinner and Boike 

2010, Samuelsson et al. 2010, Ngai et al. 2013) and weather prediction (Niziol 1987, Niziol et al. 

1995, Zhao et al. 2012) models is well known. Particularly during freezing and melting of lakes, the 

surface radiative and conductive properties as well as the latent and sensible heat released from lakes 

to the atmosphere change dramatically, leading to a completely different surface energy balance. By 

affecting the surface fluxes, lakes modify the structure of atmospheric boundary layer.  

Lake Surface Water Temperature (LSWT) is a critical variable to measure, assimilate and predict in 

numerical weather prediction (NWP) models, because it is directly related to the heat fluxes. The 

quality of observation-based lake surface state description (result of the numerical analysis) depends 

to a large extent on the availability and selection of the observations influencing each grid-point of a 

NWP model. Obtaining reliable observations on lakes in real-time, especially at high latitudes, is 

challenging. Satellite-based observations are the only realistic way of getting frequent observations 

over large areas. However, various types of satellite observations collected over lakes represent 

different scales and have different accuracies, depending on the observing system, and they are 

irregularly distributed in space and time. Considering the various sources of information, a number of 

necessary processes have to be considered prior to and during assimilation of the observations into the 
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NWP model grid. Quality control, filtering systematic errors and interpolation of the observations in 

time and space require knowledge of the statistical properties and error characteristics of the 

observations and model background.  

A correct description of the lake surface state started to be relevant in NWP models when the 

horizontal resolution of models became high enough to resolve lakes, even the smaller ones. For 

example, in the first implementation - with a horizontal resolution of ca. 50 km - of the High 

Resolution Limited Area Model (HIRLAM; Undén et al. 2002), applied since 1990 for the numerical 

short-range weather forecast over northern Europe, monthly climatological water surface temperature 

was used both over sea (Sea Surface Temperature or SST) and lakes. The LSWT climatology was 

achieved by extrapolating the SST values to lakes as no suitable climatological data for lakes were 

available. The analysis of SST observations by the method of successive corrections (Cressmann 

1959) followed in early 1990s by utilizing pseudo observations created from ECMWF SST analysis 

(Chelton 2005). The first improvement to the treatment of LSWT over the Finnish lakes was to use 

real lake climatology (Eerola et al. 2010). Daily climatological LSWT pseudo observations were 

created for 20 lakes in Finland based on long-term statistics of measurements. The pseudo 

observations were applied for the LSWT analysis instead of real observations but using similar 

methods as for SST over the sea. To avoid drifting far from realistic values, the background (first 

guess) SST and LSWT values, given by the analysis of the previous forecast cycle, were still relaxed 

towards the (extrapolated) SST climatology and the statistical properties derived for SST were used 

everywhere. In addition, the fractional ice cover over the sea and lakes was diagnosed from SST and 

LSWT in the same way. 

 It was obvious that the SST climatology cannot be used to represent LSWT (Eerola 1996, Eerola 

et al. 2010).  Instead of the observation-based approach, a prognostic lake parametrization for NWP 

and climate models, the Freshwater Lake Model (FLake), was developed (Mironov 2008, Mironov et 

al. 2010). FLake was implemented to the HIRLAM forecast model (Kourzeneva et al. 2008, Eerola et 

al. 2010) utilizing external data sets on lake depth (Kourzeneva et al. 2012a) and climatology of the 

predicted variable (Kourzeneva et al. 2012b). At the same time, in-situ lake water temperature 

observations from 27 Finnish lakes were implemented into the operational HIRLAM LSWT analysis 

(Eerola et al. 2010, Rontu et al. 2012), based on real-time in-situ measurements by SYKE (Finnish 

Environment Institute) and application of the method of optimal interpolation (OI, Gandin 1965). 
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FLake now provides the background LSWT for the analysis, but the analysis does not influence the 

prognostic FLake. The approach and its limitations have been studied and discussed by Kheyrollah 

Pour et al. (2014b) and Kourzeneva (2014).	
  

Work to develop the analysis of LSWT continued also elsewhere. An operational stand-alone 

analysis of LSWT was developed at U.K. Met Office for NWP purposes in the Operational Sea 

Surface Temperature and Ice Analysis (OSTIA) system (Donlon et al. 2012, Fiedler at al. 2014). The 

LSWT observations used in OSTIA are part of Sea Surface Temperature (SST) products from 

AATSR and MetOp-AVHRR (Infrared Atmospheric Sounding Interferometer (IASI)). These data are 

based on SST retrievals as none of them include lake-specific processing. On the other hand, the 

background LSWT for the large lakes (ca. 248 globally) in OSTIA is backed up by lake climatology 

(Fiedler et al. 2014). 

  Numerical methods, which are essential to solve the problem of initial analysis, were developed 

by several groups of meteorologists for atmospheric models (Panofsky 1949, Gilchrist and Cressman 

1954, Bergthorsson and Döös 1955, Cressman 1959). The OI  (also called as statistical interpolation), 

introduced by Eliassen (1954) and Gandin (1965), was applied for the upper air analysis in 

operational numerical weather prediction systems (e.g. Lorenc 1981, Hollingsworth and Lönnberg 

1986, Lönnberg and Hollingsworth 1986, Daley 1991) until the early 2000s. OI is based on the idea 

of minimizing the mean analysis error in the statistical sense. It is still applied for the analysis of the 

near-surface variables such as SST, LSWT, soil and screen-level temperature (Thiebaux 1975, Julian 

and Thiebaux 1975, Sattler and Huang 2002, Donlon et al. 2012). In NWP models, it is applied both 

for the definition of the analyzed value in the grid-point and for the quality control of the 

observations. The OI method relies on the knowledge of the statistical properties and error estimates 

of the observations and the background (e.g. the short forecast) variables. Structure (autocorrelation) 

functions, depending on distance (and possibly on other characteristics) between the observations and 

between observations and grid-points, are derived for determination of the weight of individual 

observations in the analysis. 

 In the current version of HIRLAM, the model used in this study, the autocorrelation function used 

for LSWT is represented in the form of an exponential function depending on the distance and is the 

same as that of SST. The length scale (influence radius) has been set to work properly for SST. 

However, this has never been studied for lakes using LSWT observations. The depth of the lake is a 
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major factor determining the thermal regime of lakes (Walsh et al. 1998), in addition to size, shape, 

and elevation. Therefore, it is of interest to derive and evaluate the impact of function, depending not 

only on the horizontal distance but also at least on depth differences, and possibly elevation 

differences between lakes. 

In this paper, we seek answers to several questions concerning the improvement of the 

autocorrelation function used in the analysis of LSWT. Can the current autocorrelation function be 

improved using LSWT observations instead of the current assumption based on SST? Can lake depth 

differences influence the function beside lake distances? Are LSWT data obtained from thermal 

satellite remote sensing sensors appropriate for calculation of the autocorrelation function? How 

sensitive is the resulting objective analysis of LSWT in HIRLAM to the choice of autocorrelation 

function? To answer these questions, the spatial coherence of LSWT observations derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) for lakes located in Scandinavia and 

Karelia was first investigated (Section 3.1). Empirical autocorrelation function were fitted to the 

observational data and a new influence radius for The HIRLAM model was approximated (Section 

3.2). Simultaneously, the sensitivity of HIRLAM LSWT analysis to the formulation of 

autocorrelation function was tested in numerical simulation experiments (Section 4). To our 

knowledge, this is the first study of its kind, which could lead to future improvement of LSWT 

autocorrelation function not only in HIRLAM system, but also in any other analysis system of 

LSWT.  

5.2 Data and methods 

5.2.1 Autocorrelation function for objective analysis of LSWT by optimal 
interpolation  

Data assimilation is the process of using all variable information to define as accurately as possible 

the initial state of the atmospheric variables. The information contains both observations and model 

state. To do this, first guess field or background field provided by the earlier forecast is blended with 

the observations. As the background field is produced by the forecast model and therefore is 

physically consistent, this helps maintain the dynamical consistency between the analyzed model 

variables. In the case when there is no direct connection between observations and background values 

or there are no observations available for a grid-box, data assimilation methods give the possibility to 
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use information from other meteorological variables. The purpose of data assimilation is to provide 

the best possible analysis (initial value) of model variables in grid-points. In the case when there are 

no observations available that influence the value in the grid-point, the analysis is the same as the first 

guess value. A improved objective analysis result a better forecast, and eventually an improved 

background field.  

Optimal Interpolation (OI) is one objective analysis procedure that uses weighting factors and 

observational errors. The weight of an observation depends on the distance between the observations 

and the grid-point and the distance between observations to each other, and the error of each type of 

observation is taken into account. The method was introduced into the field of meteorology by 

Gandin (1965). In this paper, we are concerned with properties of the statistical information 

incorporated into the OI objective analysis in the form of autocorrelation function of the LSWT 

variables. This method gives the state of LSWT at a particular time at all model grid-points.  The aim 

is to deduce the best estimate (analyzed value) from the available data. The analyzed value (𝑓!  (𝑟!)) 

can be expressed as:  

𝒇𝑨 𝒓𝒊 = 𝒇𝑩 𝒓𝒊 +    𝑾𝒌
𝑲
𝒌!𝟏 𝒇𝑶 𝒓𝒌 − 𝒇𝑩 𝒓𝒌 ,                𝒊 = 𝟏,… , 𝐈         5.1 

where  𝑓 is the value of the surface variable (LSWT) at the analyzed grid-point defined by its radius-

vector 𝑟! (the arrow sign is omitted for simplicity), I is the number of grid-points, 𝑓!  (𝑟!) is the 

background value of 𝑓 at 𝑟!, and 𝑓!  (𝑟!) and 𝑓!   𝑟!   are the observed and background values, 

respectively, at the observation point 𝑟!. K is the number of influencing observations and 𝑊! are the 

weights given to each observation increment [𝑓! 𝑟! − 𝑓!(𝑟!)] in the analysis at the grid-point 𝑟!. 

Weights are defined as a solution of the following system of linear equation: 

𝑾𝒋
𝑲
𝒋!𝟏 𝝁 𝒓𝒋, 𝒓𝒌 +   𝑾𝒌𝜼 =   𝝁 𝒓𝒊, 𝒓𝒌 ,        𝒌 = 𝟏,… ,𝐊         5.2 

where 𝜇 𝑟! , 𝑟! is the normalized autocorrelation function of the analyzed value between points 𝑟! and 

𝑟! and 𝜂 is the normalized observational error: 

𝜼 =   
𝝈𝒇
𝟐

𝒇𝟐
     5.3 

where 𝜎!is an observational error and 𝑓 is a variance of the analyzed value (LSWT). Therefore, the 

autocorrelation function (or the structure function in some notations) is used in OI to calculate the 

interpolation weight of different observations. 
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Here, a mathematical definition of the structure function and the autocorrelation function is given 

according to Gandin (1965).  If 𝑟! and 𝑟! are two observation points on the surface, then the mean 

square difference of 𝑓 at 𝑟! and 𝑟!is defined as the structure function b! 𝑟!, 𝑟! : 

𝐛𝒇 𝒓𝟏, 𝒓𝟐 = [𝒇 𝒓𝟏 − 𝒇 𝒓𝟐 ]𝟐     5.4 

where the bar denotes averaging and the function is considered for deviations of 𝑓 from its mean 

value 𝑓 which being defined as 

𝒇 𝒓 =   𝒇 𝒓 −   𝒇   𝒓             5.5 

Another important characteristic of the statistical structure of this field is the correlation function, 

which is defined as the mean product of the values of two LSWT values at two observation points. If 

these two elements are identical, it is called autocorrelation function: 

𝒎𝒇 𝒓𝟏, 𝒓𝟐 = 𝒇 𝒓𝟏   𝒇(𝒓𝟐)          5.6 

There is a simple relationship between the structure function and the autocorrelation function for 

the same elements so that: 

𝒃𝒇 𝒓𝟏, 𝒓𝟐 =   𝒎𝒇 𝒓𝟏, 𝒓𝟏 +   𝒎𝒇 𝒓𝟐, 𝒓𝟐 − 𝟐𝒎𝒇 𝒓𝟏, 𝒓𝟐         5.7 

If the field is homogeneous and isotropic, the structure function and autocorrelation functions do 

not depend on the location of each observational point 𝑟!and 𝑟! but only on distance between them 

(𝜌), so we use 𝜌 onward instead of the pair of 𝑟!and 𝑟!. 

The normalized autocorrelation function 𝜇! 𝜌  is defined as  

𝝁𝒇 𝝆 = 𝒎𝒇  (𝝆)
𝒎𝒇  (𝟎)

              5.8 

From Eq. 5.7 we can derive the expression:  

𝒃𝒇 ∞ = 𝟐𝒎𝒇  (𝟎)           5.9 

and also: 

𝒃𝒇 𝝆 = 𝒃𝒇   ∞ − 𝟐𝒎𝒇  (𝝆)           5.10 

Consequently, 𝜇! 𝜌  can be calculated as: 

𝝁𝒇 𝝆 = 𝟐  𝒎𝒇  (𝝆)
𝒃𝒇  (𝝆)!𝟐  𝒎𝒇  (𝝆)

                  5.4 
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5.2.2 Determination of autocorrelation function  

The structure function and the autocorrelation function may be calculated from observations. In our 

case, the determination of the functions needs a reliable and homogeneous observational network to 

determine a distance-dependent function for horizontal distance or differences between depth of lakes 

in all available observation points (vertical distance) or both. In this study, the LSWT observations 

derived from MODIS sensors are used to calculate the autocorrelation function, not only distance-

dependent but also lake-depth dependent. To calculate the function, LSWT values at 74 observational 

points (pixels) are selected over 44 lakes. The calculations are performed for the period covering 

summer (June-July-August) 2010-2011 when lakes were free of ice and snow. Data are used at each 

observation period successively and the structure function and the autocorrelation function are 

determined according to Eq. 5.4 and 5.6. 

First, the coordinates of each of the selected pixels are defined and the horizontal distance between 

these points (𝜌) is calculated. The value of 𝜌 is then compared with the limit of the gradations of 𝜌, in 

order to determine to which gradation the calculated value of 𝜌 refers. The gradations of 𝜌 are design 

as categories (14 categories) of lakes observational point (lake pairs) within each 100km distances 

from 100-1300km and 1300km above due to the low number of lake pairs in the last category. After, 

the calculated 𝑏!   (𝜌)  and 𝑚!  (𝜌) are recorded for the first and second observation points in this 

gradation in each distance categories, the second observation point is replaced by the third 

observation point and then the fourth, etc.  

As the next step, the normalized autocorrelation function (𝜇!(𝜌))  is calculated. It is essential to 

consider the normalized observational error (𝜂) when calculating the autocorrelation function (Eq. 

5.3). The normalized autocorrelation function with consideration of normalized observations error is 

calculated as follow: 

𝝁𝒇 𝝆 = 𝝁𝒇 𝝆
𝟏!  𝜼𝒇

         5.5 

5.2.3 Approximation of LSWT autocorrelation function in HIRLAM 

5.2.3.1 Dependence on distance 

The HIRLAM system uses a homogeneous anisotropic analytical approximation of the 

autocorrelation function (Rodriguez et al. 2002) for SST. Currently, the same function is also used for 
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lakes in the HIRLAM forecasting system. It is defined as a Gaussian function representing 

dependence on the horizontal distance: 

𝝁 𝝆 = 𝒆!𝟎.𝟓𝝆𝟐/𝑳𝑯
𝟐

                      5.6 

where   𝐿! is a horizontal length scale (influence radius). So, 𝜇 𝜌  only depends on the distance 

between lake pairs. The value for LH  is defined as 80 km, which is a tuning value selected to give 

more weights on the near-by observations; however, this follows a pragmatic approach. The same 

value for LH  is also applied in HIRLAM for lakes and, to our knowledge, no statistical methods are 

used to adjust this value to be relevant for lakes.  

In this study,  𝑏!  (𝜌) and 𝑚!  (𝜌) are calculated for each lake pair and for each distance categories 

from the approach described in section 2.1 using MODIS-derived LSWT observations. Then 𝜇! 𝜌  is 

calculated from Eq. 5.11 and 5.12 and an exponential function is derived from the regression of 

𝜇! 𝜌  values against distance. 

5.2.3.2 Dependence on lake depth 

The autocorrelation function was examined to understand the influence of lake depth beside distance. 

Lake depths are categorized in 10-m intervals (5 categories) from the minimum depth differences (0 

m when lake pairs had a similar depth) to the maximum of 50 m. The normalized autocorrelation 

function is calculated for each depth category (including distance categories) separately in order to 

understand the influence of lake depth in the static intervals. The calculations are performed during 

two summers 2010-2011 (JJA). The hypothesis is that the influence decreases from category one 

(lake depth differences between 0-10m) to category five (lake depth differences between 40-50m).  

5.2.4 Satellite-derived observations  

The LSWT observations (UW-L3 dataset described below) are derived from the thermal remote 

sensing sensor MODIS aboard the Aqua and Terra satellites.  MODIS pixels were extracted from 44 

Scandinavian lakes (> 6 km2) of various depths (Figure 5-1). Lakes of dissimilar sizes and shapes 

over northern Europe were chosen. The LSWT observations derived from MODIS are at a grid 

resolution of 1 km × 1 km. For most of the lakes, one pixel was selected to represent the observation 

points; however, for large lakes, more pixels were chosen (e.g. nine pixels for Lake Onega and fifteen 

pixels for Lake Ladoga, in Russia). 



 

77 

 

 
Figure 5.1 Location of lakes within the HLRAM domain over northern Europe. The colors 
correspond to different lake depth classes (in meters). 

 

MODIS Aqua and Terra Land Surface Temperature and Emissivity (MOD11-L2, collection 5, 1 

km) data were acquired from the NASA Land Processes Distributed Active Archive Center (LP 

DAAC). These data were produced using the generalized split window approach (Wan and Dozier 

1996) and the MODIS sensor radiance data product (MOD021KM), the geolocation product 

(MOD03), the atmospheric temperature and water profile (MOD07-L2), the cloud mask (MOD35-

L2), the quarterly land cover (MOD12Q1), and snow product (MOD10-L2) (Wan, 2005). 

The MODIS science team generates Land Surface Temperature (LST) and Emissivity data. 

MODIS Terra was launched on 18 December 1999 (EOS AM) and MODIS Aqua (EOS PM) on 4 

May 2002. They scan the Earth with ±55° from Nadir in 36 bands within the thermal infrared (TIR) 

in the range of 3 to 15 µm. MODIS-derived LST products (MOD/MYD 11-L2, Collection 5, 1-km) 

has been validated using a radiance-based approach in the mid and south US states. The bias of L2 
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MODIS LST observations from LST estimates obtained with a radiative transfer model ranged from 

−0.8 to 0.1 K, with a general tendency of underestimation of LST values from MODIS (Wan 2008). 

MODIS LSWT have been used and evaluated in various studies over lakes using in-situ observations 

and the reported accuracy varies between validation methods and the observation periods (Wan et al. 

2002, Oesch et al. 2005, Hook et al. 2007, Reinart and Reinhold 2008, Crosman and Horel 2009, 

Schneider et al. 2009, Hulley et al. 2011, Liu et al. 2014). 

The UW-L3 MODIS dataset has been developed for LSWT (Kheyrollah pour et al. 2012, 2014a) 

from both Terra and Aqua satellites (the algorithm’s details can be found in Kheyrollah Pour et al. 

2014a). Both day-time and night-time observations are used to maximize the number of observations. 

However, there are some limitations using thermal sensors over lakes, especially in late summer and 

fall when the lakes are covered by cloud cover and thin clouds may not be detected by the cloud mask 

algorithm. Therefore, additional filtering (the negative temperature values are removed as only open 

water season was used in this study) is applied to avoid the odd values due to the undetected thin 

clouds for this study.  

 

5.3 Result 

5.3.1 Statistics of satellite-derived LSWT observations 

The histogram of LSWT observations in JJA 2010-2011 is shown in Figure 5-2, upper panel. A 

statistical one-sample t-test was applied to determine if data are normally distributed as it is requeied 

to estimate a autocorrelation function. It is important to test the normality to prove the homogeneity 

of data and ensure that data are not influenced by the annual cycle. The details statistics are 

summarized in Table 5-1. Results show that data are normally distributed in summer (statistically 

significant at the 0.04 significance level) with a small skewness (= 0.058). In addition, the Q-Q plot 

(Figure 5-2, lower panel) shows the validity of the distribution assumption for the data based on mean 

and standard deviation of data. As plot shows, points are falling approximately on a straight line, 

which supports the normal distribution of the data. As the graph shows, the theoretical distribution fit 

and data distribution agree and the points fall near the fit line. 



 

79 

 

                                      

 
Figure 5.2 Histogram and normal Q-Q plot of MODIS LSWT observations (oC) for JJA 2010-
2011. 
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Table 5-1 Statistics of MODIS LSWT data (oC) in June 2010. 
LSTW (°C)-JJA 2010-2011 Statistic Std. Error 

 Mean 14.3646 0.23122 

95% Confidence 
Interval for Mean 

Lower Bound 13.9084  

Upper Bound 14.8208  

Sig. 0.04  

Median 14.1000  

Variance 9.837  

Std. Deviation 3.13644  

Minimum 7.23  

Maximum 21.21  

Range 13.98  

Skewness 0.058 0.179 
 

5.3.2 Estimation of the autocorrelation based on LSWT observations 

5.3.2.1 Dependency on distance 

The LSWT autocorrelation depending on distance between the measurement points was calculated 

first during three months (JJA) of summer 2010 and 2011. The observations were those derived from 

MODIS pixels (74 pixels) from 44 lakes. The 𝑏!(𝜌)  and 𝑚!  (𝜌) were computed from approach 

described in section 2.1 (Eq. 5.4 and 5.6) for all observation pairs in 14 different mentioned 

categories  (2701 lake pairs for n=74).  

The distribution of points in each distance category is shown in Figure 5-3 for both 𝑏!   (𝜌)  and 

𝑚!  (𝜌). After calculating  𝑏!  (𝜌) and 𝑚!  (𝜌) for each lake pair (in each specified distance category) 

using MODIS-derived LSWT observations, the normalized autocorrelation function is calculated 

from Eq. 5.11 and 5.12 for each lake pair and an exponential function is derived from the regression 

of 𝜇! 𝜌  values against distance.  
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Figure 5.3 The distribution of points in each distance category for (a) the structure function 
(𝒃𝒇  (𝝆))  and (b) autocorrelation function (𝒎𝒇  (𝝆)) and the standard deviations from MODIS 
LSWT observations pairs for summer (JJA) 2010-2011. 

 

 

The normalized autocorrelation function is calculated considering observations error for all lake 

pairs for each category shown in Figure 5-4. The function is approximated as: 
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𝝁𝒇 𝝆 = 𝒆!𝒄𝝆     5.7 

where c1 is 0.001 km-1. 

In the case of the Gaussian function (Eq. 5.13), the correlation for the zero distance is assumed to 

be one (a perfect correlation). Therefore, based on the estimated function (Eq. 5.14), the best 

correlation value is calculated for lake pairs with the zero distance (fitting equation in Figure 5-4). 

Correlations decrease more rapidly for distances of less than 300 km and are smoother for distances 

above 800 km. It verifies that the correlation magnitude of radius influence is high for distances of 

less than 300 km and decreases. 

To estimate which LH value in Eq. 5.13 fits best for calculation of autocorrelation relevant for 

lakes, LH is plotted with different values (80, 300, 400 and 500 km) in Figure 5-4, together with the 

autocorrelation calculated from LSWT observations and the calculated values from fitting equation. 

Based on the results, the candidate radius for the best fit with LSWT observations correlation is 

selected between 300-500 km. This range of LH is estimated from LSWT observations during 

summer. To understand the seasonal behavior of the correlation, µμ! ρ  is also calculated during fall 

(September-October). The results show that the correlation of LSWT of lake pairs is weaker in 

comparison with summer (not shown) suggesting that data were not normally distributed during fall. 

As freeze onset on most of the lakes in this region occurs around mid-October, a filter was applied to 

remove LSWT below zero degrees, which consequently reduced the number of observations. To 

study the sensitivity of L! in HIRLAM autocorrelation function, two sets of HIRLAM sensitivity 

experiments were designed and tested in the next chapter. 
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Figure 5.4 The autocorrelations for MODIS LSWT observations pairs for summer (JJA) 2010-
2011 in comparison with the default Gaussian autocorrelation (Eq. 5.13) function with different 
assumed length scale. 

 

5.3.2.2 Dependency on lake depth 

The lake depth effect is examined in this section with the hypothesis that the correlation of LSWT of 

lake pairs decrease when lake depth differences increase. However, the magnitude of the influence of 

lake depth on correlations should not be as big as distance. The lake depth differences were 

categorized in 10 m intervals from 0 m (when lake pairs have similar depth) to 50 m shown in 

different colors in Figure 5-1. Figure 5-5 shows the normalized autocorrelation in all 5 lake depth 

categories. The magnitude of the influence of lake depth is significantly less than that of distance; 

however, still conspicuous as shown in Figure 5-6.  

Lakes with larger depth differences (30-50 m depth differences) correlate less in comparison to 

lakes with less depth differences. Figure 5-6 shows that lakes with moderate depth differences (10-30 

m depth differences) have a close correlation as lakes with almost the same depth (0-10 m depth 

differences); however, their correlation is a bit higher in shorter distances. Result from Figure 5-6 

confirmed that the larger is the depth differences, the smaller is the autocorrelation. Conversely the 
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magnitude of differences is not absolutely significant especially for lakes with smaller depth 

differences (0-30 m), which can be explained by frequency and error of observations. 

 

 

 

 

 

                                        
 

Figure 5.5 The calculated normalized autocorrelation function from MODIS LSWT 
observations pairs in 5 different lake categories for summer (JJA) 2010 and 2011. 
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Figure 5.6 The normalized autocorrelation function derived from MODIS LSWT observations 
in summer (JJA) 2010-2011.  

 

5.4 Sensitivity experiments with HIRLAM 

Two sets of HIRLAM sensitivity experiments were designed to test the sensitivity of the LSWT 

analysis to the selection of observations and application of different autocorrelation functions (Table 

5-2). In this experiment, the lake depth differences were not considered. Results were compared to 

those of experiment NHFLAK (Kheyrollah Pour et al. 2014b). The study period is chosen from the 1st 

of May to the 31st of August 2011. In the LAKEREF and LAKE300 experiments, only MODIS 

observations were included into the analysis and SYKE observations (in-situ water temperature 

observations on 20cm below water) were handed as passive, while NHFLAK contained both SYKE 

and MODIS observations. The length scale 𝐿! in the autocorrelation function (Eq. 5.13) was given 

the default value of 80 km in the experiments LAKEREF and NHFLAK, and 300 km in LAKE300. 

The selection of the 𝐿! of 300 km was based on the preliminary result that LSWT may have larger 

length scale than the reference value of 80 km. 

Comparison between LAKEREF and NHFLAK allows estimating the uncertainty related to the 

choice of observations while keeping the autocorrelation function fixed. This comparison illustrates 
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also the properties of the remote sensing and local lake water temperature measurements during 

summer. It shows how the HIRLAM quality control treats the different observations during the OI 

analysis.  Comparison between LAKE300 and LAKEREF allows understanding the impact of 

autocorrelation function formulation alone and the passive SYKE observations can be used as 

independent data for validation.  

Table 5-2 Definition of the HIRLAM experiments. 

Experiment Observations Background Length scale  (km)                 
LAKEREF MODIS2 FLake+6h3      80   
LAKE300 MODIS2 FLake+6h3      300   
NHFLAK SYKE1 & MODIS2 FLake+6h3      80   
1SYKE = Measured LSWT over 27 lakes in Finland; 2MODIS = MODIS observations in 70 pixels; 3FLake+6h 
= Freshwater Lake Model parameterizations within HIRLAM, 6h-forecast 

 

The setup of the sensitivity experiments was similar to that described by Kheyrollah Pour et al. 

(2014b). All experiments were run in the framework of HIRLAM version 7.4 (wwww.hirlam.org). 

This HIRLAM version incorporates fully integrated FLake model (Rontu et al. 2012), which provided 

the background for LSWT analysis in all three experiments. The lateral boundary conditions for the 

atmospheric model were provided by the fields of the European Centre for Medium-Range Weather 

Forecasts (ECMWF) analysis. Only the surface data assimilation was applied in the sensitivity 

experiments LAKEREF and LAKE300, where the upper air analysis was replaced by the 

interpolation of the ECMWF analysis in the sensitivity experiments. In the baseline experiment 

NHFLAK, three-dimensional variational data assimilation was applied for upper air analysis. 

Figure 5-7 shows an example of time-series of the analyzed LSWT for July 2011 by the three 

experiments for four different lake locations: a) medium size lake where both MODIS and SYKE 

observations are available for assimilation (Lappajärvi, SYKE 23.67°E, 63.15°N; MODIS 23.6983°E 

63.2204, b) a large lake with only MODIS observations available (Ladoga, MODIS pixel 30.939°E, 

60.818°N in the central western part of the lake), c) a small lake with only SYKE observations 

available (Kuivajärvi, 23.86°E, 60.79°N), d) a small lake in the Eastern Finland with no own 

observations (Kolkonjärvi, 28.144°E, 62.004°N).     

In all cases, the comparison shows that the differences between the experiments LAKEREF and 

LAKE300 is minor in comparison with the difference between them and NHFLAK. This is due to the 
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different selection of observations entering the experiments: only MODIS for the sensitivity 

experiments, both MODIS and SYKE for NHFLAK. The impact of the different formulation of the 

autocorrelation function is largest at Lake Ladoga, where it may reach ca. 0.5 oC. At Lake Ladoga, 

the typical difference between NHFLAK and the sensitivity experiments is less than one degree. At 

the other lakes shown this difference is up to two degrees. This is because only MODIS observations 

were available over Lake Ladoga in all three experiments while over the other lakes also  SYKE 

observations influenced the result of NHFLAK. 

Another feature shown by this example is the quite large difference between the observed and 

analyzed values. Figure 5-8 shows another view to the Lake Lappajärvi analysis and observation 

usage for the experiments LAKE300 (MODIS only) and NHFLAK (MODIS + SYKE). In LAKE300 

(also in NHFLAK for the MODIS observation location, not shown) the MODIS observations are less 

frequently available and show much more variability than the SYKE observations. Consequently, a 

significant part of the MODIS observations are rejected by the HIRLAM quality control before the 

actual LSWT analysis (Figure 5-8, top panel). In this case, all rejections were done by the test against 

background, not by the OI quality control against nearby observations. There are no rejections in the 

case of SYKE observations (Figure 5-8, bottom panel). In both cases, the resulting analysis seems to 

be dominated by the background, i.e. by the FLake short forecast but the more abundant and 

consistent SYKE observations are able to influence the result more than the MODIS observations.	
  

Note that SYKE and MODIS observations are not representing exactly the same temperature. MODIS 

measures skin temperature of lakes’ surface while SYKE measurements represent water temperature 

at a depth of 20 cm below the water surface. 
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Figure 5.7 Analyzed by the experiments LAKEREF (anREF), LAKE300 (an300) and NHFLAK 
(anNHF) LSWT (K) over four lakes: (a) Lappajärvi, (b) Ladoga western pixel, (c) Kuivajärvi, 
and (d) Kolkonjärvi. The red dots show observations by SYKE in (a) and (c), by MODIS in (b). 
There are no observations in (d). In (b), original MODIS observations before HIRLAM quality 
control are shown. 
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Figure 5.8 Analysis, background, used and rejected LSWT observations for the locations of 
MODIS (top panel) and SYKE measurement (bottom panel) at lake Lappajärvi, June 2011. 
Legend is included in the figures. 
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In the experiments LAKEREF and LAKE300, SYKE observations were imported to HIRLAM as 

passive observations, i.e. excluded from the analysis but included in the quality control and available 

for validation. Figures 5-9a and b compare the maps of available and rejected MODIS observations 

versus the potentially available SYKE observations on one of the days when MODIS observations 

were rejected at Lake Lappajärvi. The comparison shows that MODIS observations were rejected by 

the background test over a large area over western Finland while the more homogeneous SYKE 

observations would have covered the whole country. The analysis based on MODIS and FLake was 

up to five degrees warmer than indicated by the SYKE observations, while in the NHFLAK the 

corresponding difference was about half of this (not shown).    

 
Figure 5.9 Map of a) used (black) and rejected by the background check (blue) of MODIS 
observations in the experiment, and b) potentially available SYKE observations (cyan) in the 
experiment LAKE300 at 12UTC 22th July 2011. The color code is also given in the title of the 
figures. 
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5.5 Summary and outlook 

This study investigated for the first time an approach for calculating the autocorrelation function 

derived from satellite-based LSWT observations. MODIS LSWT observations were derived for 44 

Scandinavian lakes (74 pixels) within the HIRLAM domain in two summers (JJA) 2010 and 2011. 

The current autocorrelation function used in HIRLAM is not based on observations and is generated 

for SST and consequently the length scale (𝐿! = 80 km) is set to work properly for SST. Moreover, 

the function has been developed depending only on distance between lakes. Here, we estimated the 

autocorrelation function based on observations not only dependent on horizontal distance but also 

accounting for lake depth differences for each lake pair. The estimated length scale calculated from 

observations would be between 300 and 500 km. In addition, LSWT may be correlated between 

different lakes only due to the similar surface energy balance in similar weather conditions, i.e. only 

via the atmosphere and air-water interaction. Within the same (large) lake, also horizontal and vertical 

mixing connects the temperatures in a similar way as in sea. There is no reason why the statistical 

properties of lake and sea temperatures should be generally similar. 

Autocorrelation functions were also estimated for 5 depth categories in summer (JJA) when lakes 

were free of snow and ice. Results based on LSWT observations show that the autocorrelation 

function is distance as well as lake depth differences dependence. The same result was obtained for 

fall when autocorrelation function was estimated for September-October; however, the correlation of 

LSWT of lake pairs was weaker than in summer. The number of observations used in fall to calculate 

the autocorrelation function was significantly less than the number of observations used in summer 

due to the increase of number of days with cloud cover. Moreover, data were filtered when 

temperatures were below zero in order to remove possible snow/ice cover temperature measurements, 

knowing that most of the lakes in this area start freezing around mid-October.  

Two sets of HIRLAM sensitivity experiments were designed and run for a preliminary assessment 

of the sensitivity of the LSWT analysis to the selection of observations and application of different 

autocorrelation functions with default (80 km) and a new length scale (300 km). These preliminary 

examples suggest that the resulting LSWT analysis in HIRLAM is not highly sensitive to the 

formulation of the autocorrelation function of OI. This is true at least in the conditions where the 

background (short forecast) dominates over the highly variable and sparse MODIS observations. The 

quality control by OI is in practice rarely applied in HIRLAM LSWT analysis due to the preliminary 
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quality control by first guess, which already removes the unreliable observations from the analysis. 

Thus the autocorrelation function may not influence the selection of observations. 

The impact of the autocorrelation was the largest for large lakes, with a good coverage of satellite 

LSWT measurements availability, which suggests future examination of the effect of a stand-alone OI 

system (like OSTIA) that focuses on large lakes and derives the background from the previous 

analysis cycle instead of the short forecast by the model. These results also suggest that the in-situ 

observations (like SYKE) can improve the result (for example repeating the analysis using 5-years of 

SYKE observations); however, they may not be available in real-time.  

This study was the first step toward improving the autocorrelation function used in analysis of 

LSWT by using satellite observations. Remote sensing provides data with a spatial coverage better 

than in-situ measurements. The combination of more years of data and checking the quality of data in 

a more systematic approach before feeding into the autocorrelation calculation could be an option for 

future improvement of lake surface state in NWP models. Moreover, combining different satellite 

observations such as VIIRS (the Visible Infrared Imaging Radometer Suite on the Suomi-NPP 

satellite) or EUMETSAT’s MetOp-AVHRR (the Advanced Very High Resolution Radiometer on 

board of MetOp-A, B, and C) could be another option for future improvement. ESA’s Sentinel-3 will 

provide atmospheric and land applications with multiple sensing instruments such as SLSTR (Sea and 

Land Surface Temperature Radiometer) to monitor LSWT. The thermal sensors on Sentinal-3A and 

3B with 1 km resolution will allow for continuity of LSWT observations on a daily revisit time. 

Sentinel-3A is scheduled for launch in 2015 and Sentinel- 3B is planned for launch ~18 months after. 

The Global Change Observation Mission (GCOM) is an observation program of the Japanese 

Aerospace Exploration Agency (JAXA), which is planned for launch in 2016 and will carry the 

Second-generation Global Imager (SGLI) sensor which will provide thermal data at a spatial 

resolution of 500 m.  

The results suggest an adaptation of HIRLAM’s autocorrelation function for lakes by increasing 

the influence radius; on the other hand, it is important to note that this function is calculated only 

during summer. Seasonal changes should be taken into account when calculating the autocorrelation 

function in the future. Results further indicate that lake depth has to be considered in the function, 

however a future investigation is needed to identify more thoroughly the lake depth effect. A 
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systematic exploration of this method, especially for lake depth and size, is needed in order to 

improvement the autocorrelation function suitable for lakes in NWP models.  
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                                                                                       Chapter 6

General Conclusion 

6.1 Overall summary 

The overall aim of this research was to demonstrate the benefits of assimilating space-borne LSWT 

observations into a weather forecasting system such as HIRLAM model. There is a variety of users 

and applications of space-borne observations in NWP systems; however, not much attention has been 

paid on the assimilation of satellite derived LSWT observations in pre-operational NWP models for 

improvement of the weather forecast. A correct description of the lake surface state started to be 

relevant in NWP models when the horizontal resolution of models became high enough to resolve 

lakes, even the smaller ones. Here, we showed how retrieved remotely-sensed LSWT observations 

can improve lake surface state in HIRLAM, therefore, improve the forecast results such as 2-m air 

temperature and cloud cover. This work is not only a contribution to lake satellite observation studies 

involving optimization of the analysis methods using data assimilation in a NWP model, but also 

extends to mathematical aspect of the optimal interpolation assimilation using LSWT data. The 

research context (Chapter 2) provided an overview of the evolution of NWP models from subjective 

to object analysis using mathematical or statistical models. In that chapter, the term data assimilation 

and the technique of statistical interpolation were discussed. The chapter also reviewed the 

representation of lakes in the HIRLAM system, and available satellite-based observations for lake 

studies.  

The accuracy of the satellite observations used in this work was assessed in Chapter 3 prior to 

performing data assimilation experiments (Chapter 4), showing that incorrect observations can have a 

negative influence that can spread over a large area in the model, and potentially affect the entire 

model solution. Results revealed a good agreement between daily-averaged UW-L3 MODIS-

Aqua/Terra data and in-situ observations for the 22 lakes examined with an overall average bias of    

~ -1 ˚C. The quality control of the observations also was performed prior to the actual analysis in 

NWP models in two consequent phases: first observations were tested against the background, and 

then each observation was compared to the surrounding observations, which was discussed in Chapter 

4.  
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A correct description of lakes surface state such as LSWT and ice cover is essential during 

freezing and melting of lakes as the surface radiative and conductive properties as well as latent and 

sensible heat released from lakes to the atmosphere change dramatically, leading to a completely 

different surface energy balance. Introduction of space-borne observations led to an improvement of 

the description of surface state during the melting period, when in-situ observations were not yet 

available and the prognostic lake parameterization suffered from a significant warm bias. 

Improvement of the operational analysis of remote-sensing LSWT measurements in NWP models 

requires development of OI methods. Derivation of an autocorrelation function, which takes into 

account lake depth as well as calculation of observation error statistics of different measurement 

types, was presented in Chapter 5. The autocorrelation function determines the weights for the 

individual observations in the analysis and quality control by OI. The length scale of the 

autocorrelation function determines from how large an area around each point the observations are 

allowed to influence. In the current version of HIRLAM, the autocorrelation function, represented in 

the form of an exponential function, depends on the distance and was generated for SST. The 

influence radius is set to work properly for SST. The autocorrelation function and influence radius 

specific for lakes was approximated directly from LSWT observations and illustrated a larger radius 

for lakes in comparison with the default value. The HIRLAM sensitivity experiments with adjusted 

radius showed quite large differences between the observed and analyzed values for large lakes and 

they are more sensitive to the impact of the autocorrelation function. 

Overall, this thesis has shown the utility of optical sensors for monitoring LSWT and ice cover on 

lakes and those space-borne LSWT observations are beneficial for the description of lake surface 

state in HIRLAM. Satellite observations provide frequent observations over large areas. The large 

spatial coverage of satellite-based data at moderate resolution is a major advantage but when 

compared to in-situ measurements. 

 

6.2 Limitations 

Despite the advantages of using optical sensors for monitoring LSWT and ice cover, there are some 

limitations, especially in the fall and early winter when lakes are often covered with cloud. Data from 

optical sensors may not be updated for several days or, on occasion, clouds may not be detected by 
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the algorithm, resulting in anomalous errors and lowering the temporal coverage of sensors. 

Therefore, upgrading the cloud cover algorithm is necessary to improve the optical sensors’ abilities 

to observe the Earth’s surface. Optical sensors are also limited by fluctuations in atmospheric 

conditions, calibration differences of sensors or by prolonged darkness or low sun elevation at 

northern latitudes, which can cause over- or under-estimation of ice formation and melt onset dates.  

Regarding assimilation of remote-sensing LSWT observations in HIRLAM, pre-defined pixels 

were selected over various lakes; however, significantly more data were potentially available from 

satellites, which still remain unused. By using the relatively fine-resolution land cover information 

available in the NWP model, it is possible to classify if a satellite pixel (with known coordinates) is 

located over a lake resolved by the model. Thus, it would be possible to utilize near-real time satellite 

LSWT/ice cover observations without pre-selection of pixels.  

Finally, toward improving the current version of HIRLAM’s autocorrelation function it has been 

found that the number of observations is not satisfactory. The number of observations has a 

significant influence on the accurate estimation of a autocorrelation function. Remote sensing 

provides data with a good spatial coverage, however, observations derived from satellite sensors are 

limited to the overpass time in comparison with in-situ observations. In-situ observations can provide 

more frequent data but they are rarely available and limited in area. Therefore, combination of various 

sensors and in-situ observations would be the best solution considering the error of each observing 

system. 

 

6.3 Future Directions 

There is a great potential for future research regarding satellite remote sensing of lake surface 

temperature. Optical sensors provide data with moderate spatial and temporal resolutions, which 

allows the Earth’s surface to be covered in a high frequency of acquisition.  

For operational NWP models, the analysis of the transient surface properties is crucial, but 

handling of the observational data and computations should be highly optimized in order to allow 

timely production of the full three-dimensional weather forecast. Input information should be 

processed without manual intervention, but well enough to allow only reliable observations to 

influence the analysis. 
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Presently, the analyzed state of the lake surface creates no feedback to the FLake parameterization 

in HIRLAM, which is coupled to the atmospheric model during the forecast run. Thus, the improved 

LSWT analysis remains as a possibly useful independent by-product of the NWP model. In order to 

really utilize the space-borne and in-situ observations on lake surface state for the improvement of the 

weather forecast and prediction of lake temperatures, methods to connect the analyzed LSWT and ice 

cover to the prognostic in-lake variables are needed. Such methods for NWP models are currently 

under development. 

Finally, in order to fully improve the autocorrelation function suitable for lakes in NWP models, 

more work is needed. An interesting research avenue is the systematic exploration of this method, 

especially for lake depth, elevation, and size.  
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Appendix A 

Evolution of snow and ice temperature, thickness and energy 
balance in Lake Orajärvi, northern Finland 

 

Bin Cheng1, Timo Vihma1, Laura Rontu1, Anna Kontu1, Homa Kheyrollah Pour2, Claude 
Duguay2 and Jouni Pulliainen1 

 

1 Finnish Meteorological Institute 
2 Interdisciplinary Centre on Climate Change and Department of Geography & 

Environmental Management, University of Waterloo, Waterloo, Canada 
 

Abstract 
The seasonal evolution of snow and ice on Lake Orajärvi, northern Finland, was investigated for three 

consecutive winter seasons. Material consisting of numerical weather prediction model (HIRLAM) 

output, weather station observations, manual snow and ice observations, high spatial resolution snow 

and ice temperatures from ice mass balance buoys (SIMB), and Moderate Resolution Imaging 

Spectroradiometer (MODIS) lake ice surface temperature observations was gathered.  A snow/ice 

model (HIGHTSI) was applied to simulate the evolution of the snow and ice surface energy balance, 

temperature profiles, and thickness. The weather conditions in early winter were found critical in 

determining the seasonal evolution of the thickness of lake ice and snow. During the winter season 

(Nov. – Apr.), precipitation, longwave radiative flux, and air temperature showed large inter-annual 

variations. The uncertainty in snow/ice model simulations originating from precipitation was 

investigated. The contribution of snow to ice transformation was vital for the total lake ice thickness. 

At the seasonal time scale, the ice bottom growth was 50 – 70 % of the total ice growth. The SIMB is 

suitable for monitoring snow and ice temperatures and thicknesses. The Mean Bias Error (MBE) 

between the SIMB and borehole measurements was -0.7 cm for snow thicknesses and 1.7 cm for ice 

thickness. The temporal evolution of MODIS surface temperature (three seasons) agrees well with 

SIMB and HIGHTSI results (correlation coefficient, R=0.81).  The HIGHTSI surface temperatures 

were, however, higher (2.8 °C ≤ MBE ≤ 3.9 °C) than the MODIS observations. The development of 

HIRLAM by increasing its horizontal and vertical resolution and including a lake parameterization 
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scheme improved the atmospheric forcing for HIGHTSI, especially the relative humidity and solar 

radiation. Challenges remain in accurate simulation of snowfall events and total precipitation.  

 

1 Introduction 
Lake ice cover has wide ranging impacts on hydrology (Walsh et al., 2005), lake biology and ecology 

(Prowse and Brown, 2010), local weather and climate (Rouse et al., 2008; Brown and Duguay, 2010), 

recreation, and transportation. Lake ice is also a sensitive indicator of climate change (e.g., Brown 

and Duguay, 2010). During the last decades, climate warming has been more significant at high 

latitudes than over other regions of the globe, and this has caused remarkable decreases in lake ice 

thickness (Surdu et al., 2014) and phenology (freeze-up and break-up dates, and ice cover duration). 

According to Prowse et al., (2011), long-term observational records (from 1840s to 2005) for the 

Northern Hemisphere show that freeze-up (ice-on) dates have been occurring later by 10.7 d / 100 

years and break-up earlier by 8.8 d/100 years. According to climate model scenarios, lake ice will 

decline at an even faster rate during the next 100 years (e.g. Brown and Duguay, 2011). 

The processes controlling lake ice thickening are the energy balance at the snow surface (or bare 

ice surface, if there is no snow on top of ice), energy balance at the ice bottom, heat conduction 

through ice and snow, penetration of shortwave radiation into snow and ice, as well as formation of 

snow ice and superimposed ice. From the point of view of modelling, all these processes include 

uncertainties. Considering the surface energy balance, downward longwave radiation is a challenge 

for models particularly at high latitudes due to the common presence of mixed-phase clouds and 

strong temperature and humidity inversions (Tjernström et al., 2008). Downward solar radiation is 

also very sensitive to cloud cover and cloud properties, and a good parameterization of surface albedo 

is a major challenge (Pirazzini, 2009). Furthermore, the modelled near-surface temperature, humidity, 

wind speed, and the turbulent fluxes of sensible and latent heat often have large errors over snow and 

ice surfaces, where stable stratification prevails (Atlaskin and Vihma, 2012). The energy balance at 

the ice bottom controls the bottom growth and melt of ice: if the upward conductive heat flux in the 

ice exceeds the heat flux from the lake water to ice bottom, the ice grows. Due to very limited number 

of observations on the heat fluxes at the ice bottom, the model parameterizations are not on a solid 

basis. The ice growth is, however, not only due to bottom growth. In addition, superimposed ice may 

form, typically at the snow-ice interface, due to refreezing of surface melt water or rain, and snow ice 
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may form due to refreezing of flooding slush on the ice surface (Semmler et al., 2012). According to 

Archimedes Law, snow ice formation takes place when the snow mass is large enough to depress the 

ice below its hydrostatic water level. To better understand the physical processes involved in snow 

and ice mass balance in lakes, we need to carry out more research on the modelling of lake ice 

thermodynamics.  

Precipitation is an essential process for lake ice thickening, as it strongly affects the surface 

albedo, snow thickness, and formation of superimposed ice and snow ice. Snowfall usually increases 

surface albedo, but rain strongly reduces it. Accumulation of snow insulates the lake ice from the 

atmosphere, and controls the formation of the snow ice and ice growth rate (Morris et al., 2005). 

Several studies have, however, revealed that climate and numerical weather prediction (NWP) models 

as well as atmospheric reanalyses have large uncertainties in both the amount and phase of 

precipitation at high latitudes (Bosilovich et al., 2008; Jakobson and Vihma, 2010). The accuracy of 

modelled precipitation is usually not known, as precipitation measurements at high-latitudes are 

sparse. Furthermore, the spatial distribution of snow thickness is often strongly affected by re-

distribution of snow by wind (Duguay et al., 2003; Leonard and Maksym, 2011). The climate 

modelling community has started to take this process into account for ice sheets (Lenaerts and van 

den Broeke, 2012) but, to our knowledge, not in a lake environment.  

Besides the importance of atmospheric forcing on lake ice, the lake ice cover information is, in 

turn, important for weather and climate locally. Lakes affect the air temperature: in autumn, winter, 

and spring, the effect strongly depends on the presence of lake ice (e.g. Brown and Duguay, 2010). In 

addition, lake-induced snowfall is common in winter over and downwind of large open lakes, for 

example the North American Great Lakes (Niziol, 1987) and Lake Ladoga. The occurrence and 

amount of snowfall is very sensitive to the existence of lake ice (Wright et al., 2013). Recently, the 

parameterization of lake ice thickness, temperature and snow cover on ice in NWP models has also 

received increased attention, along with development of assimilation methods for lake water surface 

temperature and ice cover observations (e.g. Eerola et al., 2010; Rontu et al., 2012).  

The evaluation and further improvement of lake ice models is dependent on the availability of 

accurate observations. Although the freeze-up and break-up of ice in large lakes can be monitored 

reasonably well via satellite remote sensing (Duguay et al., 2012, 2013), similar success has yet to be 

achieved in the estimation of snow thickness on lake ice. Limited success has been obtained, 
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however, in the estimation of lake ice thickness for very large lakes on the basis of satellite passive 

microwave observations (Kang et al., 2010) as well as in the estimation of the temperature of lake ice 

and the overlying snow cover from thermal remote sensing (Kheyrollah Pour et al., 2012). 

Furthermore, over the past two decades the number of in-situ ice observations has significantly 

decreased (e.g. Duguay et al., 2006; Prowse et al., 2011). This calls for the development of novel 

approaches for measuring or estimating the thickness of lake ice and snow on-ice as well as their 

temperature regime.  

 In this paper, we simulated the seasonal evolution of lake ice and its snowpack on Lake Orajärvi, 

in Sodankylä, Finnish Lapland. We applied a high-resolution thermodynamic snow/ice model, forced 

in various experiments with in-situ observations and the NWP model HIRLAM (High-Resolution 

Limited-Area Model). The snow/ice model results were compared against buoy observations on snow 

and ice mass balance and temperature profiles, as well as satellite observations of Lake Ice/Snow 

Surface Temperature (LIST). Our objectives are to: (1) investigate the performance of a new 

prototype snow/ice mass-balance buoy in over-winter measurements on a boreal lake; (2) understand 

how snow and ice mass balance responds to atmospheric forcing during three different winters 

(among others, what is the relative importance of inter-annual variability in precipitation and the 

energy fluxes melting snow and ice, and how the temporal evolution of these variables affects the 

observed and modelled snow and ice mass balance); and (3) identify the main sources of uncertainty 

in modelling the seasonal evolution of lake ice.  

 

2 Study area and observations  

2.1 Research site  

Lake Orajärvi (67.36N, 26.83E) is located in Sodankylä about 8 km east from the Finnish 

Meteorological Institute (FMI) Arctic Research Centre, some 120 km north of the Arctic Circle (Fig. 

A.1). The surface area of the lake is 11 km2. The average water depth is 4.4 m and maximum depth is 

11 m.  The ice season lasts 6 -7  months (from November/December to May/June), and the maximum 

ice thickness usually reaches more than 50 cm in late April, just before the onset of ice melt. Snow is 

present on the ice surface every winter season but its spatial distribution is variable across the lake.  
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Figure A.1 Geography map of lake Orajärvi in Sodankylä. The symbols in right panel: ○: 
regular snow and ice thicknesses measurement site; □: SIMB site and, *: Sodankylä weather 
station. 

 

2.2 Manual measurements  

Snow and ice thicknesses have been measured on Lake Orajärvi since the winter season 2009/2010. 

The measurements are made every second week when the ice is thick enough (for safety reasons), 

usually through November to April, at approximately the same three sites on the lake. The 

measurement sites are located at a distance of 400 m from the closest shore and 200 m from a snow 

mobile route crossing the middle of the lake (Fig. A.1. The measured variables are snow and ice 

thickness (total ice and granular ice), freeboard (the height difference between the ice surface and the 

water level) and ice layering. The measurements follow the standard procedures of the Finnish 

Environmental Institute. In addition, a snow pit with profiles of snow grain size, temperature, density, 

and layer structure is recorded at one of the three sites each time. 

When ice is formed but still thin, heavy snowfall events may result in flooding, formation of a 

slush layer, and re-freezing to snow-ice. However, if the early winter is very cold and ice gets thick 

rapidly, the snow load may not be heavy enough to create slush, and the insulation effect of snow will 

reduce the ice growth from the ice bottom. To fully detect these processes, one would need to install a 

monitoring system, initially in the open water, to measure the ice formation and growth as well as 

snow accumulation. Unfortunately, such a system is not yet available.  
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The snow and ice thickness showed striking inter-annual differences in early winter compared to 

those in later spring (Fig. A.2). For example, the ice thickness was 24 cm, 39 cm and 14 cm in early 

December, i.e. Julian day (JD) 341 (7 Dec),  JD 343 (9 Dec) and JD 342 (8 Dec) in 2009, 2010 and 

2011, respectively, and the corresponding snow thickness was 5 cm, 14 cm and 6 cm, respectively.  

In winter 2010/2011, the thicker ice in the early winter season was most probably formed due to 

the combined effects of lack of snowfall and very low temperatures during the early winter. These 

three winter seasons demonstrated that once the freeboard is negative (flooding), it is followed by an 

increase in ice thickness due to snow-ice formation. In mid-winter, the decrease in snow thickness is 

correlated with an increase in ice thickness. The ice thickness reaches its maximum value toward the 

end of the season (late April) before melt starts. 

Unfortunately, we have in-situ observations neither on ice thickness during the melting seasons 

nor on the break-up dates in Lake Orajärvi. The break-up dates observed by the Finnish 

Environmental Institute on Lake Unari, located some 50 km southwest of Lake Orajärvi, are JD 507 

(22 May), JD 505 (20 May) and JD 510 (25 May) for these winter seasons, respectively (shown in 

Fig. A.7 as a reference). The area of Lake Unari is 29 km2, almost three times that of Orajärvi, but 

there is a large island in the middle and many small inlets. The maximum water depth is 20 m for 

Lake Unari and 11 m for Lake Orajärvi, but the average depth of the two lakes is the same within 1 

m. 

 

2.3 Buoy observations 

In order to make long term sustainable snow and ice measurements, a prototype ice mass balance 

buoy developed by the Scottish Association for Marine Science (SAMS) was tested in winters 

2009/2010 and 2011/2012. The SAMS Ice Mass Balance Buoy (SIMB) consists of a high-resolution 

ice thermistor chain (2 cm sensor interval with a total of 240 sensors); data logger compartment; a 

GPS and iridium data transmission board; flush memory data card and high-capacity alkaline 

batteries. The SIMB measures the vertical temperature profile from water through ice and snow up to 

the air. In addition, the SIMB is equipped with heating elements to run a 1-2 minute long heating 

cycle mode once a day. 
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Figure A.2 Measurements of mean snow (red) and ice thickness (blue), and freeboard (black) on 
Lake Orajärvi for:  a) 2009/2010; b) 2010/2011 and c) 2011/2012 winter seasons.  

 

The air/snow interface can be identified based on the fact that a number of sensors located in the 

air have approximately the same temperature (i.e. vertical temperature gradient is small). Based on 

the same principle, the sensors located in water yield similar temperatures near the bottom of the ice. 

The snow/ice interface location can be estimated by investigating the temperature perturbations due to 

the sensor heating. In air, the heating cycles lead typically to a temperature rise of 2 °C, in ice and 

water the typical value is about 0.2 °C at least (Jackson et al., 2013). Additionally, since the heat 

conductivities of snow and ice are different, the temperature gradients in snow and ice are expected to 

be different. Piecewise linear temperature profiles in snow and ice can, accordingly, be measured 
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during cold conditions. The evolution of snow and ice thickness can finally be inferred based on all 

these analyses. The SIMB was designed for Polar ocean deployment. This is the first time that the 

system was deployed in an Arctic lake in Finland. 

The Orajärvi test trial in winter 2009/2010 was not a complete success. The measurements 

suffered from sensors malfunction from time to time and only partial vertical temperature profiles 

were obtained. After some major technical innovations and software updates, the SIMB was re-

deployed in winter 2011/2012 and successfully operated through the whole winter season. At the time 

of the initial deployment (19 December 2011), the snow thickness was 16 cm and ice thickness was 

14 cm, and lake water flooding occurred. The SIMB operated continuously until 13 April 2012 before 

it was recovered. In addition to regular snow and ice measurements (Fig. A.2c), measurements were 

made when the buoy was visited four times for recording the snow thickness and once for ice 

thickness (Fig. A.3b) before the SIMB was recovered.  

 

Figure A.3 (a) The SIMB measured snow and ice temperature fields. The number of sensors 

counts downward from surface to bottom. The snow/ice interface is marked as a black line. (b) 

SIMB data derived snow and ice thicknesses applying snow/ice interface as zero reference level. 

The symbols are snow and ice thicknesses measured near the SIMB site (▲) and at regular 

measurement sites (ο). 

Figure A.3 shows SIMB measured snow and ice temperatures and thicknesses. For clarity, we plot 

temperature in snow and ice only, not showing air and water temperatures. The evolving upper and 

lower boundaries in Figure A.3a represent the evolution of the snow surface and ice bottom along the 
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thermistor sensor string. The figure also shows the evolution of granular ice thickness: in the 

beginning of January sensor 180 was in snow, but at the end of the campaign it was 32 cm below the 

snow/ice interface, indicating the accumulated thickness of snow ice and superimposed ice (the 

observations do not allow distinguishing between them). The detected maximum bottom ice growth 

was about 12 cm (distance between sensor 194 and 188) during the SIMB deployment period. In 

Figure A.3b, the snow/ice interface is set as a reference level to account for the thickness of snow and 

ice. The independent in-situ snow and ice thickness measurements are plotted in Figure A.3b for 

comparison. The agreement is reasonably good, especially for the ice thickness evolution (MBE = 1.7 

cm). The agreement between the SIMB-based snow thickness evolution and the regular in-situ 

measurements is not as good (MBE = -6.7 cm) most probably due to the spatial differences of snow 

distribution (c.f. Fig. A.2). However, for the measurements near the SIMB site, the agreement is 

better (MBE = -0.7 cm).  

We need to emphasise that the absolute air-snow and ice-water interfaces can be estimated 

reasonable well by looking at the thermistor temperature readings. The large uncertainty comes from 

the detection of the snow-ice interface. Any inaccuracy from this interface detection will eventually 

affect the snow and ice thickness estimation because we use it as a reference level. One could 

consider placing a segment (e.g. 20 cm) of the thermistor string horizontally at the ice surface during 

the SIMB deployment. A clear mark of the initial snow-ice interface location would minimize the 

error in snow-ice interface detection later on.  

2.4 Satellite observations 

Space-borne LIST observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

aboard the Terra and Aqua satellites operated by NASA (http://modis.gsfc.nasa.gov) were derived for 

comparison of the in-situ observed and HIGHTSI-simulated snow/ice surface temperatures during the 

ice season. MODIS day-time and night-time observations at 1 km spatial resolution were utilized. For 

Lake Orajärvi, MODIS overpass times are mostly between 10:00-12:00 and 20:00-22:00 for both 

ascending and descending modes. In the case of overlapping acquisition times between the Aqua and 

Terra satellites, the observations were averaged. MODIS data were processed through an algorithm 

developed in the University of Waterloo (UW-L3 data, see Kheyrollah Pour et al., 2012 for details). 

For lake Orajärvi, there were about 12 such pixels available that were not contaminated by the 

surrounding land area. A single (1 km by 1 km) pixel was selected, centred on the location where the 
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in-situ (buoy) temperature measurements were made during the study period (2009 – 2012) to 

represent the lake surface skin temperature within the hour of in-situ observations. MODIS 

observations are available only during clear-sky conditions, due to the limitation of optical sensors 

during cloudy days. The time series of MODIS LIST observations for the pixel of interest is 

compared with the SIMB and HIGHTSI model results (see section 5.1 below). 

Note that although MODIS observations were included in the optimal interpolation surface 

analysis in the HIRLAM experiment NHFLAK (Homa Kheyrollah Pour, personal communication, 

2014), they did not directly influence the HIRLAM forecasts, which were applied as atmospheric 

forcing data for HIGHSTI in the present study. This is because, in this HIRLAM experiment, the lake 

surface state was provided by FLake parameterization during the atmospheric forecast (see Rontu et 

al., 2012 for further explanation of relations between analyzed and predicted lake variables in 

HIRLAM). This means that our HIGHTSI results were not influenced by the MODIS observations 

even indirectly via the atmospheric forcing, hence the MODIS temperatures can be used as 

independent observations for the evaluation of LIST simulated from HIGHSTI and for comparison 

with in-situ observations. 

 

3 Thermodynamic snow and ice model  

A high-resolution thermodynamic snow and ice model was used to calculate the evolution of snow 

and ice thicknesses. The HIGHTSI model was initially used to calculate seasonal snow and sea ice 

thermodynamics (Launiainen and Cheng, 1998; Vihma et al., 2002; Cheng et al., 2003, 2006, 2008). 

The model has been further developed to investigate snow and ice thermodynamics in lakes (Yang et 

al., 2012, 2003; Semmler et al., 2012). 

The snow and ice temperature regimes are solved by the partial-differential thermal heat 

conduction equations applied for snow and ice layers, respectively. The surface temperature is 

defined as the upper boundary condition solved by the Norton iterative method from a detailed 

surface heat/mass balance equation. The turbulent surface fluxes are parameterized taking the thermal 

stratification of the atmospheric surface layer into account. Downward short- and longwave radiative 

fluxes are either parameterized, taking into account cloudiness, or prescribed by observations or NWP 

model output. The penetration of solar radiation into the snow and ice is parameterized according to 
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surface albedo, and optical properties of snow and ice. The surface temperature is also used to 

determine whether surface melting occurs. At the lower boundary, the ice growth/melt is calculated 

on the basis of the difference between the ice-water heat flux and the conductive heat flux in the ice. 

At the snow-ice interface, the snow-to-ice transformation processes through re-freezing of flooded 

lake water or melted snow are considered in the model (Saloranta, 2000, Cheng et al., 2003).  

In the HIGHTSI model, we deal with snow (thickness hs), slush, snow/ice (thickness Hsi), 

superimposed ice (thickness Hsu), columnar ice (thickness Hi), and lake water. The snow thickness is 

affected by precipitation, snow melting and flooding slush (thickness hsL) formation. The density of 

snow (ρs) is parameterized according to Anderson (1976).  The slush is formed by lake water flooding 

slush (thickness hsL) and snow melting. The density of slush (ρsL) is calculated as a function of density 

of snow, ice (ρi) and water (ρw) (Saloranta, 2000), and its value is very close to that of water density.  

Snow-ice is formed by refreezing of flooding slush. The flooding slush is a result of isostatic 

imbalance of overload snow on top of total ice floe. The superimposed ice is formed via refreezing of 

melt water or rain. For fresh lake water, we assume that the densities of snow-ice (ρsi) and 

superimposed ice (ρsu) are the same and remain constant. The total ice floe is composed of freezing 

lake water (columnar ice) and formation of snow-ice and superimposed ice (granular ice). The ice and 

water densities are constants. The freeboard is defined as the distance between the ice surface and 

water level. When the freeboard tends to be negative, the flooding slush starts to form, and in freezing 

conditions it is transformed to snow-ice. Table A.1 shows the calculation of freeboard and new slush 

formation in terms of different snow/ice compositions. The melting slush is created by surface and 

sub-surface snow melting and this part of slush is allowed to be re-frozen to create superimposed ice 

before the onset of ice melt. For the sake of simplicity, snow-ice and superimposed ice are assumed to 

form at snow-ice interface (Saloranta, 2000; Cheng et al., 2003; Semmler et al., 2012). For lake 

conditions, the snow-ice and superimposed ice can be regarded as the same kind of meteoric ice since 

they both are formed by fresh water, but for sea conditions, the snow-ice is different from 

superimposed ice because it is formed by salty slush. The formation of a slush layer due to heavy 

snow load needs water paths, which may consist of thermal cracks or drilling holes. 

If the conductive heat flux at the ice bottom is larger (smaller) than the heat flux from the lake, the 

ice grows (melts) from the bottom. In this study, the heat flux from the lake was prescribed to a small 
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value of 1.5 W/m2 for the freezing season, increasing to 5 W/m2 after the onset of ice melt, because 

penetrating solar radiation heats the lake water below ice. 

Table A.1 Calculation of freeboard in terms of various snow/ice compositions present in lake. 

; ; 0 ice/water  

;  

 

snow, ice/water  

;

; 

;  

snow, flooding 

slush and 

ice/water 

;

; 

; 

snow,  snow-ice  

and ice/water 

;

; 

;   

snow, flooding 

slush,  snow-ice 

and ice/water 

B is the buoyancy; ws is the total snow water equivalent in (m).HsLn is the new slush formation. 

 

4 Modelling strategy 

4.1 Atmospheric forcing  

In this study, local weather station observations and NWP model HIRLAM forecasts were applied as 

atmospheric forcing for the HIGHTSI experiments. 

 

4.1.1 Weather station data  

The weather station nearest to the lake was located at the FMI Arctic Research Centre, about 8 km 

from Lake Orajärvi. Due to the distance, the conditions over the lake were not necessarily identical to 

wiwib Hf ρρρ )( −= )( iwiHB ρρ −= =sLH

wiissib HhHf ρρρ )( +−= )( iwiHB ρρ −×=

)()( wswsLn BwsH ρρρ +−×=

wiisLsLsssLib HhhhHf ρρρρ )( +++−+=

)()( sLwsiiwi HHB ρρρρ −×+−×=

)()( sLwswsLn BwsH ρρρρ −+−×=

wiisisisssiib HHhHHf ρρρρ )( ++−+=
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those observed at the weather station, but the spatial variations are expected to be small as the terrain 

is almost flat. From this point of view, the weather station data are as representative as the HIRLAM 

forecasts with a grid spacing of 7.5 – 16 km (Section 4.1.2). In any case, the variability of weather 

conditions in the region is dominated by synoptic-scale patterns. The variables measured at the 

weather station consisted of 10-minute averages of 2-m air temperature (Ta, measured with a PT100 

sensor), relative humidity (Rh, Vaisala HMP45D sensor), and 10-m wind speed (Va, Vaisala WAA25 

sensor). The total cloudiness (CN) was measured by a laser ceilometer (Vaisala CT25K), and daily 

total precipitation (PrecT) was measured by a Vaisala all-weather precipitation gauge VRG101. The 

downward global shortwave (Qs) and longwave (Ql) radiative fluxes were measured with Kipp & 

Zonen CM11 pyranometers and pyrgeometers. All the original measurements were averaged to 

hourly values and used as external forcing for the ice model. Snow accumulation on land was 

measured using a Campbell SR50 automatic snow depth sensor every 10 minutes. The data were then 

averaged to daily means. Snow thickness on land showed large inter-annual variations. The snow 

season began on JD280 (7 Oct), JD297 (24 Oct) and JD 321 (17 Nov) for winters 2009/2010, 

2010/2011 and 2011/2012, respectively. The corresponding snow-season-average snow thicknesses 

were 45 cm, 39 cm and 53 cm and the snowmelt onset dates were JD 454 (30 Mar) 2010, JD 457 (2 

Apr) 2011 and JD 478 (23 Apr) 2012. Table A.2 shows the observed seasonal average weather station 

data for the three winters. For the ice growth season (November to April), striking inter-annual 

differences are seen in the air temperature, longwave radiation and precipitation. In May and June, in 

addition to these variables, the wind and shortwave radiation also differ inter-annually. 

4.1.2 HIRLAM forecasts 

The HIRLAM NWP model forecasts were utilized in this study as atmospheric forcing. HIRLAM is a 

short-range NWP model (Undén et al., 2002) developed by an international consortium of 11 

European countries (http://hirlam.org).  Forcing fields for the first winter (2009/2010) were extracted 

from the operational HIRLAM archive (3 and 6 h forecasts, see below). The operational model 

applied version 7.2, with the standard surface data assimilation and four-dimensional atmospheric 
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Table A.2 The seasonal (Nov. – Apr.) mean values of observed weather data as well as Bias, 
Root Mean Square Error (RMSE) and correlation coefficient (R) between hourly time series of 
HIRLAM forecasts and in-situ observed wind, temperature, humidity, downward shortwave 
and longwave radiation and precipitation for winters 2009/2010; 2010/2011 and 2011/2012. 

Winter  Va 

(m/s) 

Ta 

(°C) 

Rh 

(%) 

Qs 

(W/m2) 

Ql 

(W/m2) 

Precipitation  

Total (mm) 

Precipitation  

Snow (mm) 

09/10 Mean 

(Nov. – 

Apr.) 

2.3 -9.2 86 42 250 Sum 

(Nov. – 

Apr.) 

192 Sum 

(Nov. – 

Apr.) 

168 

10/11 2.3 -10.4 85 46 237 131 110 

11/12 2.3 -6.8 87 41 261 271 218 

09/10 Bias 

(Cal. – 

 Ob.) 

1.1   -0.2    12.8     -9.8    -6.3 (Nov. – 

Apr.) 

99 (Nov. – 

Apr.) 

67 

10/11 0.5    -0.3     7.3     -8.6    -2.2 18 4.8 

11/12 0.8    -0.1     6.4     -8.1    -4.5 32 5.3 

09/10 RMSE 1.7     3.4    18.2     69.3    24.4   

10/11 1.2     3.7    14.2     74.5    22.6 

11/12 1.3     3.5    13.4     67.5    30.2 

09/10 Corr. 

Coeff. 

R 

0.78     0.94     0.29     0.74     0.89  

h 

0.64    

d 

0.83   

 h   

0.66  

d 

0.85 

10/11 0.77     0.93     0.60     0.74     0.88 0.45 0.68 0.51 0.74 

11/12 0.78     0.92     0.48     0.73     0.81 0.58   0.82 0.59   0.82 

The correlation coefficient (R) between time series of hourly (h) and daily (d) accumulated HIRLAM and in-situ 
observed total and snow precipitations are given. 

 

data assimilation. A horizontal resolution of 15 km and 60 levels in vertical were used, with the 

lowest model level centred at 32 m. For winters 2010/2011 and 2011/2012, dedicated HIRLAM 

model runs were performed for a northern domain (experiment NHFLAK Homa Kheyrollah Pour, 

personal communication, 2014). These experiments were run with the HIRLAM version 7.4 including 

renewed surface parameterizations and the Freshwater Lake (FLake) parameterization on lakes. The 

model resolution was 7 km/65 levels, with the lowest model level centred at the height of ca. 12 m.  

The lateral boundary conditions for the HIRLAM experiments were obtained from ECMWF analyses, 

but for the operational HIRLAM of winter 2009/2010 they were derived from ECMWF forecasts. 

From the three-dimensional HIRLAM output, the lowest model level wind speed (Va), air temperature 

(Ta) and relative humidity (Rh) were extracted for the grid point nearest to Lake Orajärvi using 3-hour 

forecasts.  Snow precipitation as well as the downward shortwave (Qs) and longwave (Ql) radiative 
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fluxes were averaged during the first six-hour forecasts, and taken to represent the conditions at the 

same time as the extracted temperature, humidity and wind. All values were linearly interpolated to 

one-hour interval for the input of ice model experiments. Note that we did not use the diagnostic 2-m 

temperature and humidity, neither the diagnostic 10-m wind for forcing. Thus the model-based 

atmospheric data represents somewhat larger-scale conditions than the local synoptic observations to 

which they are compared in the next section. 

4.1.3 Comparison of weather station data and HIRLAM forecasts 

Comparisons between in-situ measurements and HIRLAM forecasts were made. In the different 

HIRLAM versions, the lowest model level variables represent average conditions between the surface 

and ca. 64 m in version 7.2 (winter 2009 – 2010) and ca. 25 m in version 7.4 (winters 2010/2011 and 

2011/2012). The profiles of wind speed, temperature and water vapour in the surface layer were 

calculated accordingly based on the Monin-Obukhov similarity theory. It was essential to use the 

same formulae (Launiainen, 1995) as applied in HIGHTSI when deriving the turbulent surface fluxes 

from the HIRLAM model level variables. The results were then compared with the observed 2-m air 

temperature and humidity, and 10-m wind speed. HIRLAM modelled total and snow precipitations 

(in water equivalent, WE) were compared with observed values. A threshold temperature of 0.5 °C 

was used to extract snow precipitation (PrecS) from the observed total precipitation (Yang et al., 

2012). The monthly mean differences between HIRLAM forecasts and weather station observations 

are shown in Figure A.4. The seasonal statistical error analyses are given in Table A.2. 

In general, the agreement between HIRLAM and observations seems better in 2010/2011 and 

2011/2012 than in 2009/2010, especially concerning air relative humidity (Fig. A.4h, i, Table A.2). 

Winter 2011/2012 was relatively warm in Sodankylä compared to the other two winters. Errors in air 

temperature were variable, the monthly biases ranging from -2 to 1.5 °C, with the largest cold biases 

in November – January and the largest warm biases in February – April. Shortwave radiation had a 

negative bias in every season before May. The total precipitation (PrecT) was overestimated by 

HIRLAM in 2009/2010, particularly for May. The exact reason for this large bias (127 mm) still 

remains unknown. In general, the pointwise validation of simulated and observed precipitation in 

winter time contains uncertainties due to several reasons related to areal representativeness of the 

measurements and model results as well as to the known problems of snowfall measurement due to 

wind effect. In this study, however, the bias of PrecT are mostly less than 20 mm WE. In spring, the 
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bias of PrecT is slightly larger (20 – 30 mm WE). The HIRLAM snow precipitation (PrecS) agrees 

better with observed values. The biases are mostly well under 20 mm WE. The bias of accumulated 

snow precipitation (Nov. – Apr.) is much smaller compared with the corresponding accumulated total 

precipitation indicating that HIRLAM PrecS is pretty reliable for ice modelling. For all seasons, the 

correlation coefficients between HIRLAM modelled and in-situ observed wind speed, air 

temperature, shortwave and longwave radiative fluxes as well as the daily accumulated precipitation 

are quite good (Table A.2). 

Despite the dominance of positive biases in air relative humidity and precipitation, the downward 

shortwave and longwave radiation were underestimated on average. The new HIRLAM version is 

known to predict less low clouds in spring than the previous one, which may be reflected in the 

improved scores in the last two springs for the relative humidity, total precipitation, and shortwave 

radiation (Figure A.4).   

4.2 HIGHTSI Experiments  

The HIGHTSI experiments are listed in Table A.3. The initial snow and ice conditions were set 

according to the available in-situ observations. For each of the three winters, two experiments were 

performed including the snow pack on lake ice: one forced by the weather station data (SL 

experiments, c.f. Tab.3) and another by HIRLAM forecasts (SH experiments). Model experiments 

without snow (L and H) were also carried out. In L and H runs, the external precipitation forcing was 

set to be zero so the ice growth is purely in response to the weather forcing of wind, temperature, 

moisture, and cloudiness. The purpose of these model runs was to demonstrate the importance of 

winter precipitation as external forcing on snow and ice modelling. 

 

5 Results 

5.1 Surface temperature and energy budget 

For the SL modelling experiments, the HIGHTSI simulated surface temperatures were compared with 

MODIS LIST observations over Lake Orajärvi (Fig. A.5 and A.6, and Table A.4). The coverage of 

MODIS observations was relatively good in time, with the exception of a few longer cloudy periods. 
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Figure A.4 The monthly mean differences between HIRLAM forecasts and weather station 

observations for wind speed (Va), air temperature (Ta), relative humidity (Rh), total 

precipitation (PrecT), snow precipitation (PrecS), as well as shortwave (Qs) and longwave (Ql) 

radative fluxes for winters 2009/2010, 2010/2011 and 2011/2012.  Note the PrecT has the same y-

axis [-20 40], but for May of 2009/2010, the difference was 127 mm. 

 

The comparison indicates that under cold conditions, MODIS and HIGHTSI temperatures are of the 

same order of magnitude. The satellite observations tend to show lower surface temperature during 

cold dark nights (-2.8 °C ≤ Mean Bias Error (MBE) ≤ -3.9 °C). Differences of the same magnitude 

have been reported by Kheyrollah Pour et al. (2012) in a comparison between MODIS and FLake 

modelled surface temperatures over several ice seasons (2002-2010) on Great Bear Lake and Great 

Slave Lake, Northwest Territories, Canada.  Under melting conditions in spring, the MODIS surface 
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temperatures are higher than those estimated by HIGHTSI. However, MODIS and HIGHTSI surface 

temperatures agree better in terms of temporal variation. A summary of the statistical indices is 

presented in Table A.4.  In Figure A.5c, SIMB data are also compared with HIGHTSI and MODIS 

during winter 2011/2012. The cross-comparison is shown in scatterplots in Figure A.6. 

Table A.3 The names of HIGHTSI modelling experiments. 

Forcing 2009/2010 2010/2011 2011/2012 

with snow 

local in-situ observation 0910SL 1011SL 1112SL 

HIRLAM forecasts 0910SH 1011SH 1112SH 

no snow 

local in-situ observation 0910L 1011L 1112L 

HIRLAM forecasts 0910H 1011H 1112H 

SL: snow considered with local weather forcing; SH: snow considered with HIRLAM forecasts 
forcing; L: no snow with local weather forcing; H:  no snow with HIRLAM forecasts forcing. The 

numbers (0910, 1011 and 1112) in front character represent the annual winter seasons. 

 

In most cases, the MODIS surface temperatures were lower than the SIMB measurements and 

HIGTSI results during winter 2011/2012 (Figure A.5a, b; Table A.4). The agreement between 

HIGHTSI and SIMB surface temperature is better, particularly during warm conditions (temperature 

> -10 °C). For temperatures lower than -10 °C, the HIGHTSI surface temperature was usually higher 

than SIMB values.  

To better understand the inter-annual evolution of snow and ice in Lake Orajärvi, the monthly 

means for various surface heat fluxes are calculated from 0910SL, 1011SL and 1112SL experiments 

(Table A.5). For a seasonal cycle, the net solar radiation (Qsnet) remains small before daytime melting 

season starts in April. The net longwave (Qlnet) cooling dominates during the winter season. In early 

winter the turbulent heat fluxes were small, but when spring came the sensible heat flux increased 

because of positive air temperatures exceeding the lake surface temperature, which remained at or 

below 0 °C until the ice break-up (the air temperatures were observed over land, but we assume that 

they well represent conditions over the small lake). The upward conductive heat flux (Fc) represents 

the near surface snow/ice temperature gradient. When ice was thin, the larger Fc indicates more heat 
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Figure A.5 The HIGHTSI (experiments SL, c.f. Table A.4) modelled (red line) and MODIS 

observed LIST (blue dots) for winter (a) 2009/2010; (b) 2010/2011 and (c) 2011/2012. The SIMB 

measured surface temperature is given as the green line in (c). 
 

lost from the ice bottom to the snow surface and, as a results, greater ice growth. The net surface heat 

flux (Fnet) indicates the overall heat gain and loss of the surface layer. In early winter, the heat gain of 

the surface layer results from rapid ice growth at ice bottom. In late spring, the heat gain of the 

surface layer results from strong solar heating (i.e. surface melting starts). 

The surface energy balance in early winter 2010/2011 differed from the other seasons. The strong 

longwave cooling (Table A.4), associated with large Fc created rapid ice growth in early winter (note 

that the Fnet in Nov. - Dec. was almost 2-3 times larger than other seasons). The modelled ice 

thickness (c.f. Fig. A.7), described in the next section, indeed shows thicker ice in mid-December  
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Figure A.6 The comparison of surface temperature: (a) MODIS versus HIGHTSI (SL 
experiments, c.f. Table A.4); (b) MODIS versus SIMB, and (c) HIGHTSI versus SIMB for 
winter 2011/2012.  

 

(JD350) of 2010/2011 season compared with other seasons. Comparing the surface energy budget of 

2009/2010 against 2011/2012, we see that in 2011/2012 the net surface heat flux Fnet was smaller than 

in 2009/2010, which may be partly explained by slightly thinner ice in winter 2011/2012. In May, the 

smaller heat gain by the surface layer may have resulted in slower surface melting and consequently 

delayed break-up for winter 2011/2012. 

 

Table A.4  Mean Bias Error (MBE), standard deviation (std), Root Mean Square Error 
(RMSE) and correlation coefficient (R) of HIGHTSI (experiments SL, c.f. Table A.4) modelled 
surface temperature, as well as SIMB and MODIS observations.  

Winter Results compared MBE std RMSE R n 

2009/2010    HIGHTSI – MODIS   2.9 4.5 5.4 0.93 277 

2010/2011    HIGHTSI – MODIS   2.8 5.1 5.8 0.89 416 

 

2011/2012 

HIGHTSI – MODIS   3.9 4.9 6.5 0.88 375 

MODIS  –  SIMB -3.1 4.6 5.5 0.9 253 

HIGHTSI –  SIMB      0.03  2.8 3.8 0.91 757 

 

5.2 Snow and ice evolution  

The time series of modelled snow and ice thickness as well as freeboard are presented in Figure A.7. 

For winter 2009/2010, snow was modelled well until JD400 (4 Feb) for experiments 0910SL and 
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0910SH. The large variations in snow depth between days JD400 (4 Feb) and JD450 (26 Mar) were 

not well captured by the model owing to the failure to capture the large snowfall between JD418 (22 

Feb) and JD427 (3 Mar). The modelled timing of snowmelt onset agreed well with observations but 

the melting rates were slower than observed. The differences between modelled snow thickness in 

0910SL and 0910SH were large in December and March. Although, the HIRLAM total accumulated 

snow precipitation has a 67 mm positive bias during the season (Fig. A.4m), a cold HIRLAM Ta bias 

and smaller Ql made 0910SH produce thicker ice.  

For winter 2010/2011, the bias of HIRLAM seasonal accumulated snow precipitation was only 4.8 

mm; therefore the 1011SL and 1011SH modelled snow thicknesses were close to each other. Again, 

the large errors of modelled snow thickness occurred during rapid snowfall period from JD329 (25 

Nov) – JD 343(9 Dec).  The 1011SH produced more ice than 1011SL towards the end of the March 

(JD450); the difference between modelled ice thicknesses actually started already in the early season 

(November) due to too small Ql and a large cold bias in HIRLAM.  

For winter 2011/2012, the modelled snow accumulations in SL and SH experiments were 

improved compared with results of previous winter seasons. The maximum observed snow thickness 

was often underestimated. The observed snow precipitation was larger than HIRLAM forecasts 

before March (c.f. Fig. A.4o) making the snow pack thicker in 1112SL than 1112SH (although the 

bias of HIRLAM seasonal accumulated snow precipitation was 5.7 mm due to the compensation 

effect). In this winter, the first snow-day on land was late, i.e. 17 November versus 7 and 24 October 

for the two other winters. However, the SL and SH gave quite similar ice growth in early November 

because of no snow on ice. The difference of SL and SH modelled ice thickness in the rest of the 

season was due to the appearance of snow in SL and SH experiments and differences in other weather 

forcing variables. 

For each spring, the snowmelt onset dates calculated by SL and SH experiments were close to 

each other. Compared to the observed snowmelt onset on land, the agreements were very good, i.e. 30 

March (observed) versus 1 April (calculated) for 2009/2010, 2 April (both observed and calculated) 

for 2010/2011, and 23 April (both observed and calculated) for 2011/2012. The earlier onset of 

modelled snow melt was consistent with the earlier modelled breakup date. 
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Table A.5 HIGHTSI (experiments SL, c.f. Table A.3) modelled monthly mean surface heat 
fluxes for 3 winter seasons. Qsnet: net shortwave radiative flux at surface; Qlnet: net longwave 
radiative flux; Qh: sensible heat flux; Qle: latent heat flux; Fc: surface conductive heat flux; Fnet: 
net surface heat flux, i.e. the sum of Qsnet, Qlnet, Qh, Qle and Fc. All fluxes are positive toward 
surface (heat gain). 

Year Month Qsnet Qlnet Qh Qle Fc Fnet 
W/m2 

09/10 11 0.1     -5.7    1.1    -0.6     6.9 2.0   
12 0.01      -19.4 2.2    -0.01    21.4 4.2 
01 0.12      -17.9 1.9    -0.9    19.5 2.8 
02 2.2         -17.9 -4.2 -1.7    16.8 -4.8 
03 9.0       -35.0 5.6    -1.8    13.9 -8.3 
04 11.4    -29.6   10.4    -3.2   13.3 2.2 
05 23.9    -7.3    12.4     4.4     9.9 43.3 

10/11 11 0.2   -29.2     0.1    -0.6   40.2 11.0 
12 0.01         -23.8 -1.6 -1.0    34.3 8.0 
01 0.16      -19.1 1.8    -0.02   21.1 4.0 
02 2.3        -22.8 -1.6 -0.9    18.1 -5.1 
03 9.3   -43.7    14.7    -1.7   13.4 -8.0 
04 13.5      -31.2   12.7 -1.8   12.4 5.7 
05 26.9   -17.4    18.2     3.9     7.8 30.9 

11/12 11 0.4          -15.9 3.9     2.2 9.1 -0.3 
12 0.01      -11.9 5.2     1.1     8.8 3.3 
01 0.26         -10.6 -1.1 -1.6    10.4 -2.5 
02 2.5         -15.9 -1.0 -1.3    10.6 -5.0 
03 11.2      -34.6 9.3    0.8     8.6 -6.3 
04 20.9     -30.6   5.9    -2.4     7.1 0.9 
05 25.9    -27.3   24.7    -0.1     7.3 30.5 

 

The validation of freeboard modelling is a challenge. In this study, the rapid change of freeboard 

was often underestimated. In HIGHTSI, the freeboard is calculated according to Table A.1. In reality 

when snow is flooded, the lake water maybe merged upward due to the capillarity suction effect. We 

were not able to consider this micro scale process in HIGHTSI. On the other hand, HIGHTSI 

reproduced reasonably well the transformation of snow to ice; the model experiments revealed that 

the total ice formation would be largely underestimated if freezing is allowed only at the ice bottom 

(c.f. Table A.6) 
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Figure A.7 HIGHTSI modelled snow thickness (upper lines), ice thicknesses (lower lines) and 
freeboard (middle lines) compared to in-situ observations for 2009/10 (a), 2010/11 (b) and 
2011/12(c). The zero reference level is the snow-ice interface. The model runs were based on 
atmospheric forcing from weather station data (red lines) and HIRLAM forecasts (blue lines). 
The observations are given as black circles and their standard deviations are marked as vertical 
bars. The observed ice break-up dates of Lake Unari are indicated by red circles. 

 

The modelled maximum ice thicknesses as well as accumulated ice bottom growth (columnar ice) 

and percentage of snow to ice transformation (granular ice) for the three winters are given in Table 

A.6 for the SL and SH experiments. For SL experiments, the bottom growth (Fig. A.8) lasted until 26 

March in winter 2009/2010, but the ice thickness increased mainly during early winter (December - 

January). For winter 2010/2011, the pronounced bottom growth occurred until 1 March followed by a 

slight thickness increase until 26 March, but most of the growth occurred between November and 

early January. For winter 2011/2012, the bottom growth was more significant in November and early 
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December. Afterwards, it slowed down until 14 February and continued with a very small increase 

until 6 March, which was in good agreement with the SIMB measurements (Fig. A.3).  The bottom 

ice growth for the SH experiments showed similar variation compared to SL experiments for winters 

2009/2010 and 2010/2011. For winter 2011/2012, the SH run produced more bottom growth than the 

SL run.  During the cold winter 2010/2011, snow precipitation was small and ice growth mainly took 

place at the ice bottom, whereas for the mild winter 2011/2012, the majority of ice growth was due to 

snow-ice and superimposed ice formation. 

An ice core sample collected on 12 April 2012 (Fig. A.9) indicated the total ice thickness was 

about 57 cm, of which 24 cm (42%) was columnar ice and 33 cm (58%) was granular ice (snow-ice 

and superimposed ice). Compared to the initial deployment of the SIMB on 19 December 2011, when 

the ice thickness was 14 cm, the ice bottom growth until 12 April 2012 was 10 cm, which is in line 

with the SIMB detection (see section 2.3, Fig. A.3a). The 1112SL experiment yielded total ice 

thicknesses in good agreement with the observations during the growth season, and the observed and 

modelled maxima occurred within 5 days of each other. 

Table A.6 The seasonal maximum ice thickness (Himax), ice bottom growth and percentage of 
snow to ice transformation for SL and SH experiments and Himax for L and H experiments for 
three ice seasons.  

  2009/2010 2010/2011 2011/2012 

SL Himax 

(cm) 

66 81 57 

SH 75 89 55 

SL Columnar ice 

(cm) 

36 56 27 

SH 39 67 31 

SL Granular ice 

(%) 

46% 30% 53% 

SH 48% 24% 44% 

L Himax 

(cm) 

120 132 96 

H 123 135 99 

 

The modelled snow and ice temperature fields for SL experiments (Fig. A.10) revealed that the 

snow-ice interface remained cold during the winter season, which ensured freezing of slush to form 
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snow-ice. After the snowmelt onset, the ice surface temperature was also low, leading to re-freezing 

of surface snowmelt to form superimposed ice. 

The modelled and observed vertical snow and ice temperature profiles at selected time steps are 

shown in Figure A.11. Considering the surface temperature, the large discrepancy between 

observations and model results on 23 January (Fig. A.11b) was associated with inaccuracy of the 

SIMB snow thickness (Fig. A.3b). Under cold conditions, the snow and ice temperatures were 

modelled quite well. With warm conditions, the modelled and observed temperature differences in 

snow and ice were larger. This could be due to the error of modelled snow thickness as well as the 

unknown effect of solar transmission into snow and ice. The agreement between modelled and 

observed temperature was better in ice than in snow. On 8 April, sub-surface melting was captured by 

the model run (Fig. A.11g). The SIMB observations did not detect this phenomenon, but showed 

temperatures increasing towards the surface, with erroneous positive values due to solar heating of the 

sensors. 

5.3. Lake ice simulations using different precipitation scenarios  

Precipitation introduces a large uncertainty on snow and ice evolution in a lake. The uncertainty 

originates not only from the strong snow insulation effect, but also from the intensity and timing of 

snowfall associated with the synoptic-scale patterns and hydrostatic imbalance between snow cover 

and underlying ice floe. To demonstrate the uncertainty related to precipitation forcing, we carried out 

a few model experiments without snow. We used the same initial ice thickness (0.01 m) for each L 

and H experiments, which all covered the period from the beginning of November to the end of May.  

For each winter season, L and H modelled ice thickness (Fig. A.12) yielded a fairly similar ice 

evolution. For each season, the modeled maximum ice thicknesses in L and H experiments were close 

to each other (Table A.6), whereas for SL and SH experiments the seasonal maximum ice thicknesses 

differed from each other. The differences of modelled ice thickness between SL and SH and L and H 

experiments are shown in Figure A.13. The differences between modelled ice thickness using in-situ 

and HIRLAM forcing without snow are much smaller than the corresponding differences between 

model experiments with snow taken into account, particularly in early winter season (Nov. – Dec.). 
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Figure A.8 The HIGHTSI modelled ice bottom growth for (a) 0910SL (red) and 0910SH (blue); 
(b) 1011SL (red) and 1011SH (blue), and (c) 1112SL (red) and 1112SH (blue).  

 

This demonstrates the central role of the uncertainty in precipitation forcing. During the melt 

season, the differences of modeled ice thickness between SL and SH and L and H are getting large. 

These differences are partly due to differences in radiative forcing. Compared to in-situ observations, 

the monthly mean HIRLAM longwave radiative fluxes were 7 to 10 W/m2 smaller during the winter 

months (November – February) and 3 to 5 W/m2 larger in spring (March – May). The HIRLAM 

shortwave radiative fluxes were 4 to 7 W/m2 larger in spring (March – May). 
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Figure A.9 Ice core sample collected on 12 April 2012 when the SIMB was recovered.  

 

The impact of precipitation is closely linked to formation of snow-ice and superimposed ice (Table 

A.1). The increase of snowfall makes the snow-load heavier, promoting negative ice freeboard, which 

is the basis for snow-ice formation. Rain and sleet falling on snow favour snow-slush for 

superimposed ice formation. In winter 2011/2012, for example, a number of model sensitivity 

experiments indicated that when the snow precipitation was 50% of the original observed value, the 

maximum ice thickness only increased from 57 cm to 58 cm, but the proportions of granular and 

columnar ice changed a lot: from 53 to 20% for granular ice and from 47 to 80% for columnar ice. If 

the snow precipitation increased to 1.5 times of its original value, while keeping all other forcing 

factors equal, the model run ends up with 66 cm maximum ice thickness and the proportions of 

granular and columnar ice were 71% and 29%, respectively. We emphasize that these proportions are 

strongly associated with precipitation patterns as well as variations in air temperature during the 

winter season. The sensitivity tests merely demonstrated the impact of snow precipitation on granular 

and columnar ice formation. A more in-depth investigation would have required a large number of 

model runs taking into account different combinations of external forcings. This is a topic that we 

plan to pursue in a follow-up study.  
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Figure A.10 HIGHTSI (SL experiments, c.f. Table A.3) modelled snow and ice temperatures for 
winter seasons 2009/2010, 2010/2011, and 2011/2012. For sake of clarity, snow and ice 
temperatures have the same vertical scales but different temperature grey scales. 
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Figure A.11 The comparison of 1112SL modelled (red line) and SIMB observed (dot-blue line) 
vertical temperature profiles within snow and ice at selected UTC time steps. A normalized 
coordinate, i.e. height/(hs+Hi) is used in the y axis (0 is surface and 1 is ice bottom). 

 

 

Figure A.12 HIGHTSI modelled ice evolution without taking snow into account, using in-situ 
weather station data (solid line) and HIRLAM forecasts (dotted line) as external forcing. The 
winter seasons are 2009/2010 (red), 2010/2011 (black), and 2011/2012 (blue).  
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Figure A.13 The differences of modeled ice between model runs (without snow: solid lines; with 
snow: dotted line) using in-situ weather station data and HIRLAM forecasts as external forcing. 
a) 2009/2010; b) 2010/2011 and c) 2011/2012. 

 

6 Conclusions 

The evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi was 

investigated during three successive winter seasons (2009 – 2012). A prototype ice mass balance 

buoy (SIMB) was deployed to monitor snow and ice temperature profiles and thicknesses. The 

evolution of snow and ice in Lake Orajärvi was simulated by HIGHTSI model with external forcing 

data from in-situ weather station observations and HIRLAM NWP model forecasts. The performance 

of HIRLAM forecasts was assessed against weather station observations. The HIGHTSI results were 

validated using lake snow and ice measurements.  



 

128 

 

Our successful deployment of the SIMB buoy and data analyses suggest that this system is a 

reliable instrument set-up for monitoring snow and ice temperatures and thicknesses in an Arctic lake. 

The SIMB-based snow and ice thicknesses were in a reasonably good agreement with manual 

borehole measurements in cold conditions. The SIMB measurements clearly indicated that snow to 

ice transformation took place at the snow/ice interface. Challenges remain for warm conditions, in 

particular when the snow and ice are close to isothermal. In such situations, the detection of snow and 

ice thickness based on the temperature profile is likely to be uncertain. Additionally, the solar heating 

may cause errors in the readings of the uppermost temperature sensors during the melting season. 

Although the SIMB is still largely a prototype system for snow and ice monitoring (Jackson, et al, 

2013), its relatively low cost and compact design make this device competitive. We have also 

successfully deployed SIMB buoys for snow and ice monitoring also on sea ice in the Arctic, 

Antarctic, and the Baltic Sea.   

MODIS surface temperature observations are a promising data source for optimal interpolation 

surface analyses in operational NWP (Kalle Eerola, personal communication, 2014). Under clear-sky 

conditions, space-borne thermal remote sensing data can also be used to retrieve large-scale ice 

thickness during the growth season (Yu and Rothrock, 1996, Mäkynen, et al., 2013). The MODIS 

snow/ice (skin) surface temperatures were compared to those modelled with HIGHTSI and measured 

with the SIMB. Compared to simulated and in-situ LIST data, MODIS showed 2.8-3.9°C lower 

temperatures, with the largest differences during cold dark nights. These results are in line with those 

previously reported by Kheyrollah Pour et al. (2012).  

The weather conditions in early winter are critical in determining the seasonal evolution of the 

thickness of lake ice and snow. During the freezing season, the most important forcing factors that 

lead to inter-annual variations in lake ice conditions are air temperature, precipitation and net 

longwave radiative flux. These are the essential external forcing factors for ice growth.  A first-order 

estimate for the effect of air temperature on ice thickness can be obtained from an analytical solution 

for ice growth (Leppäranta, 1993).  Such an estimate, however, does not take in to account the effects 

of precipitation and the individual terms of the surface energy balance to the snow and ice thickness, 

which were addressed in this study.  Our results for the rate of bottom growth in early winter were 

comparable to previous studies (Launiainen and Cheng, 1998), being of the order of 1 to 2 cm day-1.  

Before ice melt onset, the growth rate of superimposed ice was, however, of the same order of 
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magnitude as the bottom growth in the early winter. The timing of superimposed ice formation agreed 

reasonable well with in-situ observations carried out in a similar snow and ice environment on land-

fast ice in the Baltic Sea (Granskog et al., 2006) and in an Arctic fjord (Nicolaus et al., 2003).   

The largest external uncertainty originated from precipitation. This was revealed by HIGHTSI 

experiments in which snow on ice was not taken into account. Without precipitation, the model 

experiment forced by HIRLAM forecasts and in-situ observation yielded very similar seasonal ice 

evolution in terms of the early season ice growth and the maximum ice thickness. With external 

forcing including precipitation, the simulated ice thickness differed a lot between the experiments 

forced by HIRLAM and in-situ observations.  

Improvements to the HIRLAM NWP model were made by increasing the horizontal and vertical 

resolution and including the FLake parameterization. The forcing fields in 2010/2011 and 2011/2012, 

based on the improved HIRLAM, were indeed better for the relative humidity and solar radiation 

compared with those in 2009/2010. The HIRLAM weather forcing time series correlated reasonable 

well with in-situ observations of wind speed, air temperature, shortwave and longwave radiative 

fluxes and daily accumulated total and snow precipitations. The increase of snow depth over lake ice 

is not easy to model well. Large errors originate from the uncertainty of the external forcing related to 

the wind impact to the in-situ precipitation observations and inaccurate NWP precipitation forecasts. 

The accuracy of HIRLAM total precipitation, its division between rain and snowfall, as well as 

prediction of individual precipitation events requires further improvements. Further efforts are also 

needed to implement in models the recent advances in physics of snow and ice albedo and related 

feedbacks, effects of aerosol deposition on snow and ice, and transmittance of snow and ice (Vihma 

et al., 2013). 

It is vitally important to include calculation of snow to ice transformation in the lake ice 

modelling. Ice growth from the bottom accounted only for a portion of the total ice thickness of the 

lake examined in this study. At the seasonal time scale, bottom growth constituted about 50 – 70 % of 

the total ice growth; the percentage strongly depends on the amount of total snow precipitation as 

well as the air temperature regimes. 

During the melting season, HIGHTSI modelled ice thickness driven by HIRLAM and by in-situ 

observations tend to differ from each other. The downward shortwave radiative flux and surface 

albedo play important roles on surface melting. Due to safety regulations, we do not have sufficient 
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in-situ observations on lake ice for investigation of the lake ice melting process. Although HIGHTSI 

reproduced well the observed timing of snow melt onset, the redistribution of melting water runoff 

rather than to re-freezing remains unknown and needs to be investigated in the future. We also expect 

further development of SIMB to improve the accuracy and reliability of the observations during 

melting seasons. 
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Appendix B 

Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an 
anticyclonic winter situation - a case study using a limited area model 

 
Kalle Eerola1, Laura Rontu1, Ekaterina Kourzeneva1, Homa Kheyrollah pour2, 

and Claude Duguay2 

 

1Finnish Meteorological Institute, Helsinki, Finland; 
2University of Waterloo, Waterloo, Ontario, Canada, 

 

Abstract 
At the end of January 2012, a low-level cloud from partly ice-free Lake Ladoga caused very variable 

2-metre temperatures in Eastern Finland. The sensitivity of the High Resolution Limited Area Model 

(HIRLAM) to the lake surface conditions was tested in this winter anticyclonic situation.The lake 

appeared to be (incorrectly) totally covered by ice when the lake surface was described with its 

climatology.  Both parametrisation of the lake surface state by using a lake model integrated to the 

NWP system, and objective analysis based on satellite observations, independently resulted in a 

correct description of the partly ice-free Lake Ladoga. In these cases, HIRLAM model forecasts were 

able to predict cloud formation and its movement as well as 2-metre temperature variations in a 

realistic way. Three main conclusions were drawn. First, HIRLAM could predict the effect of Lake 

Ladoga on local weather, when the lake surface state was known. Second, the current parametrisation 

methods of air-surface interactions led to a reliable result in conditions where the different physical 

processes (local surface processes, radiation and turbulence) were not strong, but their combined 

effect was important. Third, these results encourage work for a better description of the lake surface 

state in NWP models by fully utilising satellite observations, combined with advanced lake 

parametrisation and data assimilation methods. 
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1 Introduction 
At the end of January 2012, a local newspaper ‘Etelä-Saimaa’, published in Southeastern Finland (in 

Finnish), reported on an outstanding weather phenomenon. During a couple of days, the air 

temperature had been varying by as much as 17°C within a small area. For instance, in Imatra a 

temperature of -11°C was observed, while in Parikkala (60 km northeast of Imatra), the temperature 

at the same time was -28°C. According to the duty meteorologist of the Finnish Meteorological 

Institute interviewed by the newspaper, the large variability was due to a low cloud, which originated 

from partly ice-free Lake Ladoga. It was predicted that this situation would not last very long, 

because Lake Ladoga was about to freeze. The newspaper noted that Lake Ladoga, which is the 

largest lake in Europe (17 700 km2, located in Russia between 30°E-35°E and 60°N-62°N) influences 

the weather of Eastern Finland because it is large and so close. What made the phenomenon 

interesting was that the low-level cloud, spread by the wind, only covered a small area at a given 

time. This created the large and at that time unpredicted variability in the observed temperature both 

in space and time. 

We used this winter case to study the sensitivity of a Numerical Weather Prediction (NWP) model 

to the description of the lake surface state. The purpose of this work was to study the impact of partly 

ice-free Lake Ladoga on cloudiness and temperature in a winter anticyclonic situation and to answer 

the question: can a NWP model predict correctly the evolution of clouds and the consequent large 2-

metre temperature variability, if it is provided with a correct description of the lake surface state? As 

the NWP model, we used the High Resolution Limited Area Model (HIRLAM, Undén et al., 2002, 

Eerola et al., 2013), where different possibilities to handle the air-lake interactions were available. In 

this kind of situation the balance between different surface-related processes is subtle. Thus this case 

provided a good test-bench for the model. 

At the northern and middle latitudes, lakes regularly freeze during the winter. However, due to 

their large heat capacity they often stay ice-free late in the autumn and early winter. Their influence 

on local weather depends on the synoptic situation and on the lake surface conditions (open water, 

partly or totally ice-covered). Heavy snowstorms caused by the ice-free lakes are well documented, 

especially for the North American Great Lakes area (e.g. Niziol et al., 1995; Vavrus et al., 2013; 

Wright et al., 2013). Cordeira and Laird (2008) even documented two cases, where snowstorms 

developed over a lake mostly covered by ice. The authors stated that despite of the decreased 
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turbulent fluxes from the surface, a variety of ice-cover conditions and meso- and synoptic-scale 

factors supported the development of snowstorms.  Based on earlier studies, Niziol et al. (1995) listed 

several factors, which have been noticed to be important in the evolution of lake-induced snowfall in 

this area, the most important being the air-lake temperature difference. Other influencing factors 

included the cloud-top inversion height and strength, the differences in temperature and surface 

roughness between the lake and surrounding land surfaces, as well as the orographic lift downwind of 

the lake. In Scandinavia, Andersson and Gustafsson (1990), Andersson and Gustafsson (1994), and 

Gustafsson et al., (1998) discussed the influence of the Baltic Sea, whose size is comparable to that of 

the Great Lakes, on convective snowfall over the ice-free water surface. According to these authors, 

favourable factors for the development of precipitating convective cloud bands are the ice-free 

conditions, suitable topography on the upwind and downwind coasts, a large temperature difference 

between water and air, and an optimal wind direction which allows for the longest fetch. 

Skillful forecasters in Finland know by experience that Lake Ladoga or even smaller lakes may 

enhance snowfall in autumn or early winter. However, to the authors’ knowledge, there are no 

documented cases where lakes would have caused heavy snowstorms at the Scandinavian high 

latitudes. One possible explanation is the small probability for the outbreaks of very cold air during 

autumn, when large lakes are still warm enough. Lakes in the Scandinavian-Karelian region are 

numerous but small and often shallow, with rather flat topography around them. Later in winter most 

of them freeze quickly due to their small size and shallowness. Because of this, the air-lake 

temperature differences remain moderate. 

Meteorologically the case described in the newspaper differed from the severe snowstorm cases. 

This was a stable anticyclonic situation, with high surface pressure, cold clear-sky winter weather, 

weak winds, and a sharp surface-based temperature inversion. Only light snowfall was detected. 

However, over ice-free water a large temperature difference between the air and lake prevailed. In a 

cold winter-time anticyclonic situation, the near-surface air temperature is largely controlled by the 

cloud cover. In this case, the partly ice-free Lake Ladoga generated a low-level cloud, which spread 

far into Eastern Finland. Locally, under the cloud cover, temperature rose but under the clear sky it 

remained low. Such synoptic cases have not been popular in the scientific literature. As a synthesis, 

based on existing lake-effect literature, Laird et al. (2003) showed a general picture of favourable 

situations for different lake-effect phenomena as a function of wind speed and air-water temperature 
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difference. Widespread cloud coverage requires strong surface wind and a large enough air-water 

temperature difference. In weak-wind situations, like this case, shoreline cloud bands can occur. In 

cases where the air-water temperature difference exceeds 10°C in weak-wind situations, even 

mesoscale vortex events have been observed. 

HIRLAM (Undén et al., 2002, Eerola et al., 2013) has recently been used in several studies with 

the aim of improving the treatment of lakes and their influence on local weather. The Freshwater 

Lake model FLake (Mironov, 2008, Mironov et al., 2012) was implemented into HIRLAM by 

Kourzeneva et al. (2008) in order to predict lake temperature as well as the evolution of lake ice and 

its snow cover.  From the analysis side, interpolation of in-situ and remote sensing observations of 

Lake Surface Water Temperature (LSWT) into HIRLAM has been applied by Eerola et al. (2010), 

Rontu et al. (2012), and Kheyrollah Pour et al. (2014b). In this study, we present and discuss results 

from three HIRLAM experiments where the state of lakes was described in different ways. The first 

experiment relied on climatological lake surface conditions according to a method still applied in 

many large-scale operational NWP systems. In the second experiment, the prognostic lake 

parametrisation by FLake was used to predict the evolving state of the lake during the atmospheric 

forecast. In the third experiment, satellite observations were used for the analysis of LSWT and the 

diagnosis of lake ice concentration (LIC). During the forecast they were kept unchanged. 

A standard verification of the NWP results against regular weather observations is sometimes 

insufficient to show the benefits of model improvements. This is because such a validation collects 

statistics from a large variety of situations so that the different effects become hidden behind the 

averages. A careful analysis of well-chosen cases can provide more information about the physical 

processes and their interactions. Here we report a case study in a situation where the extreme cloud 

and temperature variations lasted only a couple of days and the influence of Lake Ladoga extended 

only to Eastern Finland. We focus on the most striking 24-hour period, when a low-level cloud 

moved across the domain. Because the influence of lakes (even large lakes) on weather and climate is 

local, depending on local conditions and the weather parameter in question, we restrict ourselves to 

the closest observations around Lake Ladoga. In addition, we present results of statistical validation 

against observations during two weeks of the prevailing anticyclonic weather in January--February 

2012. 
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This paper is structured as follows: After this introduction, the weather situation is described in 

Section 2. Special attention is paid to the cloud and temperature variability. Section 3 describes the 

HIRLAM NWP system, focusing on the surface-related parametrisations and surface data analysis. 

Also the setup of the three different experiments is described. The results are presented and discussed 

in Section 4. The movement of the lake-originated cloud and its influence on temperature is 

described. The surface energy balance is analysed over open water and snow-covered land. In 

addition, statistical verification results in the vicinity of the lake are shown and discussed. Finally, the 

results are summarised in Section 5. 

 

2 Weather situation 

During the last week of January and first week of February 2012, a strong anticyclone extended 

from Russia to Finland. Figure B.1 shows the weather situation in Europe on 28 January. In Eastern 

Finland, the highest measured mean sea level pressure in 40 years, 1063 hPa, was recorded during 

this period. A cold continental winter-time air mass prevailed, with 850 hPa level temperatures 

between -10 and -15°C in the last week of January and decreasing below -20°C during the first week 

of February. Typically, this kind of anticyclonic situation is characterised by clear-sky conditions, 

weak wind, strong and sharp surface-based inversion in temperature, and low 2-metre temperatures.  

Especially in Eastern Finland, very cold temperatures were recorded, with a minimum of -37.5°C at 

Konnunsuo (WMO station number 02733) on 5 February. 

In this case, temperature and cloudiness in Eastern Finland were very variable both in time and 

space, illustrated by the example in Figure B.2, which shows 2-metre temperatures at the Konnunsuo 

(02733) and Tohmajärvi (02832) stations for the period from 24 January to 5 February. Their 

locations are marked in Figure B.3 with red and blue dots, respectively. Tohmajärvi is situated about 

150 km northeast of Konnunsuo. On top of the diurnal cycle, with an amplitude of approximately 

10°C, caused by solar radiation, there were remarkable irregularities. At the more northern station 

Tohmajärvi, the regular diurnal cycle was disturbed during the night of 28 January, having very small 

night-time cooling. In the evening on 28 January and the following night the temperature dropped by 

about 16°C and remained low until the end of the period.  At the more southern station Konnunsuo a 

rapid warming of 15°C took place in the daytime on 29 January. Here the warmer period lasted 

several days, except for the night of 29 January, before the temperature dropped again on 1 February. 
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Figure B.1 General weather situation in Europe on 28 January 2012 12 UTC. Mean sea level 
pressure (contours) and 2-m temperature (shaded) are based on ECMWF analysis. The boxes 
show selected observed temperatures. The black rectangle box shows the area of interest of this 
study. (Source: Finnish Meteorological Institute) 

 

The temperature drop between 31 January and 1 February was 21°C, from -11°C to -32°C. The 

reason for the irregular temperature variations was the changing cloudiness. During 28-29 January, 

the low-level cloud deck of a length of ca. 200 km and a width of 50-100 km, originating from the 

ice-free northern part of Lake Ladoga, moved from north to south over Southeastern Finland, as 

shown in Figure B.3. The clouds caused a rise of temperature first in the north (e.g. at the station 

Tohmajärvi), while by morning of 29 January the cloud had moved southwards, affecting the 

temperature there (e.g. at Konnunsuo).  Based on observations and a series of satellite images 

acquired between 29 and 31 January (not shown), the cloud moved so that it affected the temperature 

only at Konnunsuo, while at Tohmajärvi the temperature kept the regular diurnal cycle with an 

amplitude of about 10°C. On the first days of February, the cloud occasionally affected the 

temperature at Konnunsuo. For instance, on 3 February the warm night temperature followed by 

quick cooling in the afternoon can be explained by changes in the cloud cover. 

The cloud developed over Lake Ladoga because the lake was still partly ice-free. Compared to the 

nearby lakes, Lake Ladoga is very large and deep, with maximum and mean depths of 222 m and 
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Figure B.2 Observed 2-m temperature at two stations, Konnunsuo (02733) and Tohmaja¨ rvi 
(02832) in Eastern Finland from 24 January to 5 February 2012. The distance between stations 

is about 150 km. 

 
 
52 m, respectively. The northern parts are the deepest while the southern parts are relatively shallow. 

Lake Ladoga remains free of ice until early winter, when all other nearby lakes are already frozen. 

This was the case also at the end of January 2012. The northern parts of the lake were open but the 

shallow southern parts were covered by fractional ice, as seen in the MODIS/Terra satellite image 

(Figure B.4) on 28 January. A sequence of satellite images reveals that freezing advanced gradually in 

the cold air-mass until the whole lake was completely frozen around 5 February (not shown). This 

was later than on average in some years the freezing of Lake Ladoga already begins during the second 

half of December. 

 

3 The model and methodology 

The HIRLAM NWP system used in this study comprises an upper air and surface data assimilation 

system, a forecast model with a comprehensive set of physical parametrisations, and methods for pre- 

and post-processing observations and forecasts Undén et al., 2002, Eerola et al., 2013). This study 

was based on the latest reference HIRLAM (version 7.4, released in March 2012). In that version the 
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freshwater lake parametrisation based on FLake (Mironov, 2008, Mironov et al., 2012) may be 

applied for prediction of lake variables. For the atmospheric data assimilation, we used for simplicity 

the three-dimensional variational method (3DVAR) instead of the default four-dimensional 

variational analysis (4DVAR). We describe here briefly surface data assimilation and the 

parametrisation of atmospheric and surface processes relevant to this study. 

 

      

Figure B.3 NOAA AVHRR thermal IR images over Finland and Karelia on 28 January 06 UTC 
(a) and on 29 January 00 UTC (b) 2012. The low-level cloud cover, shown with dark-grey 
shades, spreads first northward (a) and later westward (b) from Lake Ladoga. In the single-
channel images, the cloud over Lake Ladoga cannot be distinguished from the dark water 
surfaces. The stations Konnunsuo and Tohmajärvi, referred to in Fig. B.2, are marked with red 
and blue dots, respectively. 
 
 

The method of optimal interpolation [(OI, e.g. Daley (1991)] is used for the analysis of LSWT and 

sea surface temperature (SST) at initial time of each forecast. LIC and sea ice concentration (SIC) are 

traditionally treated together with LSWT and SST using simple relations to convert from one to 

another (Rontu et al., 2012; Kheyrollah Pour et al., 2014b). For the current study, LSWT and LIC are  
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Figure B.4 MODIS-Terra colour composite image over Lake Ladoga on 28 January 2012 9:20 
UTC. The dark colour in the norther part of the lake shows the ice-free part. South of it, an 
area of fractional ice can be seen. The white plume of the low-level cloud cover on the 
northeastern part of the lake is spreading northward. 
 
 
of special interest. Only few conventional observations of LSWT are available regularly, so 

climatological information on LSWT/LIC is traditionally used in NWP models. Early versions of 

HIRLAM used this climatological information in the form of ‘pseudo observations’ (Rontu et al., 

2012). Technically, the possibility of using satellite or any other extra observations of LSWT/LIC is 

available for numerical experiments. In the case when FLake is not applied, the background for the 

LSWT analysis is provided by the previous analysis, relaxed to climatology.  If FLake is applied, 

LSWT from its short forecast is used as the background. However, the analysed LSWT does not 

directly influence the next forecast of the lake variables by FLake as this would require development 

and application of more advanced data assimilation methods (Rontu et al., 2012; Kheyrollah Pour et 

al., 2014b). 

The HIRLAM surface scheme is based on the method of mosaic tiles (Avissar and Pielke, 1989). 

Each surface type is handled independently and the tiles affect each other only through the 

atmosphere. The total vertical turbulent and radiative fluxes in a grid square are obtained as weighted 

averages of fluxes over different surface types. Five surface types are defined: water, ice, bare land, 

forest, and agricultural terrain/low vegetation. The water and ice tiles may consist of sea or lake. For 

the three land surface types and sea ice, prognostic parametrisation is based on a two-layer ISBA 
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scheme (Interactions between Surface-Biosphere-Atmosphere) (Noilhan and Planton, 1989; Noilhan 

anf Mahfouf, 1996), modified according to Golvik and Samuelsson (2010) to improve interactions 

related to forest, snow, and ice. 

Over land and ice the surface temperature is determined by the surface energy balance consisting 

of net radiation fluxes, heat flux from the underlying surface, and turbulent fluxes at the surface.  

Over sea, SST and ice cover given by the surface analysis are kept constant during the forecast and 

the ice surface temperature is predicted using a simple thermodynamic parametrisation based on 

Golvik and Samuelsson (2010). Over lakes, LSWT and LIC are treated in a similar way if the FLake 

parametrisation is not applied (experiments OLD and NHA described below). If FLake is used 

(experiment TRU), the mean lake water, ice, and snow temperatures as well as the lake ice depth are 

prognostic variables. At every time step, the lake surface temperature, which interacts with the 

atmosphere, is diagnosed from the uppermost predicted temperature (snow, ice or water). 

The turbulent heat and momentum fluxes are treated separately in the surface layer (the lowest 

model layer) and above it. In the surface layer, stability functions by Louis (1979) and predefined 

roughness values are applied for calculation of the fluxes over each surface type, with own prognostic 

surface temperature and moisture.  Above the surface layer, a scheme based on turbulent kinetic 

energy approach (Cuxart et al., 2000) is applied, using the grid-averaged surface fluxes as the lower 

boundary condition. 

The weather parameters discussed in this study are the screen-level (or 2-metre) air temperature 

and the fractional low-level cloud cover. In HIRLAM, the screen-level temperature is estimated from 

the predicted temperature on the lowest model level (about 12 m above the surface) and the surface 

temperature, taking into account the surface layer stability. It is calculated separately for each surface 

type in a grid-box and the grid-scale value is obtained as an area-weighted average. The surface 

temperatures in the tiles are very sensitive to the radiative and heat transfer properties of the surface, 

which may be completely different for land, water, ice, and snow. In the current meteorological 

situation, the long-wave radiation was crucial for the evolution of the screen-level temperature. The 

net long-wave radiation flux at the surface depends on the surface temperature and on the long-wave 

radiation emitted by the (moist) air and clouds towards the surface. The basic prognostic variables, 

affecting the cloud-radiation interactions in HIRLAM, are the in-cloud specific liquid water and ice 

content as well as the air temperature and humidity at the level of clouds. The three-dimensional 



 

141 

 

diagnostic cloud fraction is derived from the relative humidity (Sundqvist et al., 1993; Sundqvist, 

1989). The amount of low clouds is defined by taking the maximum total cloud cover from all levels 

from the surface to the level of about 750 hPa or about 2500 m. Details of the radiation, cloud and 

turbulence parametrisations applied in HIRLAM can be found in Undén et al., (2002). 

For this study we defined three HIRLAM experiments: OLD, TRU, and NHA, which differed 

from each other only in the way how lake surface state was described. The first experiment OLD 

represented a traditional large-scale NWP system, where LSWT and LIC were determined by their 

climatological values. This was achieved by picking up LSWT values from the ECMWF analyses to 

be used as observations in the surface analysis (Eerola et al., 2010). Over selected large lakes, 

including Lake Ladoga, these analyses contained LSWT estimated from time-lagged simulated 

screen-level temperatures (G-P. Balsamo, personal communication). LIC was derived diagnostically 

from LSWT, as discussed earlier. LSWT and LIC were kept unchanged during the forecasts. 

The second experiment TRU used the prognostic lake parametrisation by FLake. No observations 

on or close to Lake Ladoga were introduced into the LSWT analysis. Thus the lake surface state was 

totally determined by FLake. This experiment was similar to TRULAK in Kheyrollah Pour et al., 

(2014b). In the third experiment NHA, satellite data from the Moderate Resolution Imaging 

Spectrometer (MODIS), operating on NASA's Terra and Aqua satellites were used (Kheyrollah Pour 

et al., 2014a, b). MODIS observations were introduced at 15 pre-selected locations over Lake Ladoga 

as in the experiment NHALAK in (Kheyrollah Pour et al., 2014b). 

The experiments were run independently of each other.  Experiment TRU was run through the 

whole winter 2011-2012 and experiment NHA from the beginning of January 2012 to the end of May 

2012.  Experiment OLD was run for a shorter period containing the second half of January 2012. Four 

data assimilation-forecast cycles per day were initiated at 00, 06, 12 and, 18 UTC, but longer 

forecasts of 27 hours lead time started only from analyses at 00 and 12 UTC. The experiments were 

run over a Nordic domain shown on the upper right corner of Figure B.5a, using a horizontal 

resolution of ca. 7.5 km and 65 levels in vertical.  The density of levels was highest in the boundary 

layer: 20 levels were used within the lowest one kilometre. Lateral boundary conditions of the 

atmospheric variables were provided by the ECMWF analyses. 
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4 Results and discussion 

We analysed, evaluated and validated results of the three HIRLAM experiments between 25 January 

and 5 February, discussing in detail the results for one 27-hour forecast starting from the analysis at 

28 January 00 UTC. This short (one day) period was challenging to the HIRLAM model, and would 

be as difficult to any other NWP-model, because of the quick changes in local cloud cover and 2-

metre temperature. The predicted synoptic-scale features, such as location and strength of the 

anticyclone, were similar in all experiments. Therefore, the contrasting weather forecasts for Eastern 

Finland by the experiments were due to the differently simulated description of the state of Lake 

Ladoga. 

4.1 Simulated ice concentration on Lake Ladoga 

Figure B.5 shows LSWT and LIC according to the three experiments at 00 UTC on 28 January, i.e. at 

the initial (analysis) time of the forecasts in question. In OLD, Lake Ladoga was completely frozen, 

according to the climatology. In TRU and NHA, the northern part of the lake was ice-free as in reality 

(Figure B.4). In TRU, the lake model FLake predicted the northern parts of Lake Ladoga as ice-free. 

In NHA, the satellite observations used in the analysis allowed to describe most of the lake as ice-

free. None of the experiments could describe well the area of fractional ice seen in Figure B.4 over 

the southern part of Lake Ladoga. In NHA, the simple relations for the diagnosis of ice fraction based 

on analysed LSWT and the usage of only 15 satellite pixels in the analysis were insufficient to resolve 

the fractional ice zone.  FLake does not predict ice concentration, so in TRU, LIC was diagnosed to 

be 0 or 1 at every grid-point based on predicted ice thickness. 

In TRU, the frozen area over Lake Ladoga increased slightly during the forecast, but even at the 

end of the forecast at 29 January 03 UTC most of the northern part of Lake Ladoga was still ice-free 

(not shown). In NHA, Lake Ladoga became totally ice-covered on 30 January and in TRU one day 

later. In reality, the ice concentration increased gradually from south to north during the last weeks of 

January and first week of February, and, according to the satellite images, the whole lake, except 

narrow leads, could be considered frozen by 6 February (not shown). It is worth noting that FLake, 

running without any support from observations but online-coupled to the weather forecast by 

HIRLAM, was able to predict the state of Lake Ladoga quite accurately. 
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4.2 Predicted cloud cover and temperature in Eastern Finland 

Figure B.6 shows the 6-hour forecasts of low-level cloud cover and screen-level temperature by the 

three experiments. In OLD, there was only very little low-level cloudiness close to Lake Ladoga. In 

TRU and NHA, clouds were forecast over the northern part of the lake, in NHA also further to the 

south, due to the larger ice-free part of Lake Ladoga compared to TRU (Figure B.5).  The cloud 

spread towards northwest with the prevailing weak southeastern wind. Compared to the satellite 

image (Figure B.3a), the cloud was located almost correctly in both experiments (TRU and NHA), 

only slightly shifted towards west. The corresponding charts for 24-hour forecasts are shown in 

Figure B.7. 

 

Figure B.5 Simulated ice concentration (%, scale at bottom) and surface water temperature 
(8C, scale on the right) on 28 January 00 UTC from the three experiments: OLD (a), TRU (b), 
and NHA (c). The red dots marked with 1 and 2 in (a) show the two observation stations: 
1=Ilomantsi, 2=Joensuu (discussed in Sections 4.2 and 4.3). Point L over Lake Ladoga shows 
the grid-point discussed in Section 4.3. The embedded small map in (a) shows the whole 
integration area of the experiments and the red rectangle box the area of interest of this study. 

 

 According to the satellite images, the cloud moved first towards northwest, then towards west 

where the plume was narrower than earlier (Figure B.3b). This was well reproduced by TRU and 

NHA, while OLD had no sign of these clouds (Figure B.7, upper panels). Even the shape and 

direction of movement of the cloud cover were well predicted by TRU and NHA. It is important to 

note that the clouds do not necessarily appear immediately at the spot of maximum evaporation over 

the lake. The evolution and balance of the large-scale dynamical processes and local forcing influence 
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the fetch over water, modify evaporation and mixing, advect the moisture, and create conditions for 

cloud microphysical processes. The task of a NWP model is to simulate all these processes. 

 

Figure B.6 Six-hour forecasts of instantaneous low-level cloud cover (octas, upper panels) and 
screen-level temperature (8C, lower panels) from the three experiments OLD (left), TRU 
(middle), and NHA (right). The analysis time (starting time of the forecasts) is 28 January 00 
UTC. The red dots denote the two observation stations, Ilomantsi and Joensuu (see Fig. B.5). 
 

The low-level cloudiness affected the predicted screen-level temperature (Figures B.6 and B.7, 

lower panels). OLD predicted uniformly cold temperatures, as could be expected in such 

meteorological situation under clear sky and over snow- or ice-covered surface. In TRU and NHA, 

the air temperature was higher both over Lake Ladoga and over the cloudy land areas northwest of the 

lake. Over the lake, the temperature followed the ice distribution, as could be expected. 
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Figure B.7 Same as Fig. B.6 but for 24-hour forecasts. 

 

Relations between the predicted and observed temperature and low-level cloudiness were studied in 

detail by comparing the observations and forecasts at two weather stations, Ilomantsi Mekrijärvi 

(02939, marked as 1 in Figure B.5a, hereafter Ilomantsi) and Joensuu Linnunlahti (02928, marked as 

2, hereafter Joensuu). The distance between the stations is only about 60~km. Note that these stations 

are different than those chosen for illustration of the temperature fluctuations during the whole 

anticyclonic period in Figure B.2. The cloud passed the weather stations at slightly different times, 

thus motivating us to compare this timing in different experiments. The closest predicted grid-point 

values from the three forecasts were chosen for comparison. 
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The observed low-level cloud cover and temperature at Ilomantsi and Joensuu are shown in 

Figures B.8a and B.9a as a function of time, respectively. As observed at Ilomantsi, the sky was 

covered by low clouds from 06 UTC to 15 UTC, while at Joensuu the sky was cloudy from 03 UTC 

up till 18 UTC. As a consequence, at Ilomantsi the temperature rose from -28°C to -18°C in 12 hours 

when the sky became cloud-covered. Because of the clouds, the temperature change was not, at least 

entirely, due to the normal daily cycle driven by the solar radiation. When the cloud disappeared after 

15 UTC, the temperature dropped from -18°C below -30°C. At Joensuu, the temperature was around -

15°C all day due to the cloudiness, i.e. in the early morning hours it was 15°C warmer than at the 

nearby Ilomantsi. During the cloudy phase, the cloud base height varied at Ilomantsi from 30 m to 

120 m and at Joensuu from 70 m to 180 m. At Joensuu also fog was reported. Both stations reported 

light snowfall, but the amount was too small to be detected in the precipitation measurements. 

The corresponding forecasts (Figures B.8b-d) and 9b-d) reveal the striking differences between the 

experiments: there was no low-level cloud in OLD, neither at Joensuu nor at Ilomantsi. Much more 

realistic cloud cover was predicted by both TRU and NHA. Looking more closely at the forecasts at 

Ilomantsi (Figure B.8), the duration of the cloudy period was underestimated by these experiments. 

When there were clouds, the cloud base heights (diagnosed from the existence of liquid or ice water 

within the model's vertical resolution) were predicted well by both TRU and NHA: while the 

observed values at 09, 12, and 15 UTC were 60, 90, and 120 m, the predicted values were 66, 66 m, 

and no cloud in TRU, and 66, 66, and 105 m in NHA. The heights of cloud tops varied between 240 

and 290 m in TRU and between 270 and 360~m in NHA. To summarise, NHA predicted more clouds 

than TRU and they were thicker. This difference was also seen in the values of vertically integrated 

cloud condensate.  This is the sum of specific liquid and ice content, in this case consisting mostly of 

liquid. In TRU the values varied between 9-13 gm-2 and in NHA between 11-22 gm-2 when the cloud 

was present. The vertical distribution of cloud condensate revealed that it was in both experiments 

concentrated in the lower atmosphere, indicating that only low-level clouds were predicted. For the 

cloud condensate and the height of low cloud tops we had no observations for verification. 
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Figure B.8 Observed and predicted 2-m air temperature (8C, blue line, left y-axis) and 
instantaneous low-level cloud cover (octas, green bar, right y-axis) at Ilomantsi (WMO station 
number 02939): Observed (a), predicted by OLD (b), predicted by TRU (c), and predicted by 
NHA (d). 
 
 

At Joensuu (Figure B.9), the low-level cloud cover and the sky clearing were forecast correctly by 

TRU and NHA. However, both experiments predicted similarly the cloud base heights somewhat too 

low, giving values between 60 and 100 m, while observations indicated values between 70 and 180 

m. The cloud tops were higher in NHA, between 270 and 360 m, than those in TRU, which predicted 

values between 200 and 290 m. Thus the clouds were thicker in NHA than in TRU, as was the case at 

Ilomantsi. The vertically integrated cloud condensate varied in TRU between 8-24-2 and in NHA 

between 12-37 gm-2, which are all realistic values for shallow boundary layer clouds. As at Ilomantsi, 

the TRU and NHA cloud condensate was concentrated in the lower atmosphere indicating that only 

low-level clouds were predicted. 
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Figure B.9 As Fig. B.8 but at Joensuu (WMO station number 02928). 

 

The thicker cloud in NHA compared to TRU both at Ilomantsi and Joensuu was indicated also by 

the downward long-wave radiation (LWD). LWD values were constantly around 165 Wm-2 in the 

clear-sky experiment OLD while the maximum values by TRU and NHA at Ilomantsi were in the 

afternoon 207 Wm-2 and 222 Wm-2, respectively. The corresponding values for Joensuu were 231 

Wm-2 and 263 Wm-2. 

The amplitude of screen-level temperature at Ilomantsi was forecast rather similarly too small by 

all experiments (Figure B.8). The maximum daytime temperatures were reasonable and the cooling in 

the evening was predicted correctly, although the night minimum temperature remained several 

degrees too high. At Joensuu, the temperature in OLD was too low by 5-10°C during the whole 

forecast due to the unpredicted clouds (Figure B.9). In TRU and NHA, the temperatures were quite 

well predicted, especially at noon and in the afternoon, thanks to the good low-level cloud forecast. 
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However, in the morning of 28 January both experiments predicted too cold temperatures by 5°C, 

presumably due to inaccurate prediction of the cloud evolution during the first hours of the 

simulations. The cooling in the evening and at night in TRU and NHA was well predicted, although 

the observed minimum temperatures were again not reached. 

The cold morning temperature on 29 January at Ilomantsi (Figure B.8) remained unpredicted, 

although no experiment showed clouds. Atlaskin and Vihma (2012) reported that all NWP models 

have problems in predicting cold enough temperatures in the stable boundary layer situations, where 

they show increasing bias with decreasing temperature and strengthening temperature inversion. In a 

review of the results from the Global Energy and Water Exchange (GEWEX) Atmospheric Boundary 

Layer Studies (GABLS), Holtslag et al., 2013 reported an obvious result from their studies that 

operational models typically have too much mixing in stable conditions, which strongly impacts 

diurnal cycle of temperature and other near-surface variables. They also stated that coupling between 

the atmosphere and the land surface is the key for a good representation of the diurnal cycle of the 

boundary layer variables. Next, in Section 4.3, we analyse in detail the surface energy balance and 

cloudiness in order to understand the differences between experiments. 

In summary, our experiments showed that a precise forecast of the cloud cover was crucial to 

improve the temperature forecast. Only those experiments, which relied on realistic ice conditions 

over Lake Ladoga, were able to predict the clouds and their movement. This in turn improved the 

temperature forecasts. Provided with these forecast maps by HIRLAM, a forecaster would predict the 

variations of temperature in Eastern Finland. 

4.3 Boundary layer and conditions over land and lake 

So far we have discussed the influence of frozen or unfrozen Lake Ladoga on the near-surface 

temperature and cloudiness in Eastern Finland. In this section, we illustrate the simulated boundary 

layer structure and surface energy balance with examples at two locations: one at a point over the 

central part of Lake Ladoga and one over land at Ilomantsi. The 24-hour predicted temperature and 

dew-point (Figure B.10a) and wind speed (Figure B.10b) profiles are shown for point L over Ladoga 

(see the map in Figure B.5) in the lowest 2 km layer. Above the atmospheric boundary layer, the 

results of three experiments - OLD over ice, NHA over open water and TRU over a freezing surface - 

were in agreement with each other. Above the inversion, the atmosphere was very dry, as 

characterised by the large dew point deficit Δ = T – Td ≈ 20°C. The maximum wind speed was 
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reached at the top of the inversion layer. However, inside the boundary layer, the experiments showed 

remarkable differences in the profiles. 

In experiment OLD (ice-covered lake surface), the surface-based temperature inversion was 

strong, about 15°C between the surface and the ca. 300-metre level.  The wind was very weak close 

to the surface, where the smallest Δ ≈ 2.5°C was suggested by the model. These profiles over ice 

resemble those of the snow-covered land surface (not shown).  This experiment assumed frozen Lake 

Ladoga, which excluded the source of moisture, available for the experiments TRU and NHA. We 

can assume that there was not enough humidity for formation of clouds in the shallow stable 

boundary layer of OLD, where mixing was also reduced.  There may have been a small probability of 

local ice fog formation just above the ice. 

 

Figure B.10 Twenty-four-hour predicted temperature (solid line) and dew point (dotted line) (a) 
and wind speed (b) profiles at the grid-point over Lake Ladoga marked with L in Fig. B.5 from 
three experiments: OLD (red), TRU (green) and NHA (blue). The valid time of the profiles is 29 
January 00 UTC. 
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NHA (open water) profiles represent conditions over an ice-free lake surface.  Due to the large 

temperature difference between water and air, the turbulent fluxes were strong, causing strong mixing 

in the planetary boundary layer. The mixed layer was the thickest and warmest among the three 

experiments but still reached only the height of ca. 300 m, where it was capped by an elevated 

inversion. The near-surface turbulence lifted the inversion from surface to the top of the relatively 

shallow boundary layer. This is typical for anticyclonic conditions, where a large-scale descending 

motion is prevailing. The wind maximum at the top of the capping inversion showed only a minor 

difference from the mean wind speed in the boundary layer. The boundary layer temperature profile 

indicated neutral or slightly unstable conditions. Moisture evaporated from the lake was mixed to the 

whole boundary layer. However, the relatively weak wind shear reduced the simulated mixing 

somewhat. All this favoured cloud formation but not sufficiently to trigger deep convection and 

snowfall. 

In experiment TRU, lake properties were handled by the prognostic parametrisation by FLake, 

which was coupled to the atmospheric model at every time step. Therefore, in any grid-box 

containing a fraction of lake, water temperature or ice depth evolved during the forecast. At the grid-

point L, Lake Ladoga became frozen during this forecast about 12 hours before the time of the 

predicted wind, temperature and humidity profiles shown in Figure B.10. As seen in Figure B.11, the 

surface (now ice) temperature started to decrease after freezing at noon, but there was not enough 

time for the surface-based temperature inversion to build to the strength shown by OLD. Hence, the 

profiles were between those predicted by NHA and OLD. However, evaporation from the lake and 

mixing started to decrease immediately after the freezing (Figure B.11). Some of the neighbouring 

grid-boxes still remained ice-free, therefore influencing the profiles in L. No cloud was predicted by 

TRU in this grid-box. 

Figure B.11 shows the evolution of the latent and sensible heat, net short-wave and long-wave 

radiation fluxes together with the predicted lake temperatures at the grid-point L. The figure is based 

on one forecast from experiment TRU, initiated from 28 January 00 UTC analysis. Note that in 

HIRLAM convention all fluxes are denoted positive towards the surface, both from above and below. 

At the beginning of the forecast the lake was ice-free. LSWT by FLake was close to zero, indicating 

that water was close to freezing. Due to the cold air mass above, the latent and sensible heat fluxes 

were quite large and negative, -70 Wm-2 and -150 Wm-2, respectively, thus directed from the lake to 
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the atmosphere. Turbulent mixing in the boundary layer was reduced by the prevailing stable 

conditions and moderate wind shear. However, the moisture flux was sufficient for the formation of 

the low cloud over Lake Ladoga. This cloud then propagated downstream and dramatically affected 

the screen level temperatures far from the lake. 

 

Figure B.11 Predicted surface fluxes (unit Wm-2, left y-axis), averaged over 3 hours, 
and temperatures of ice and water (unit °C, right y-axis) during 28 January 2012 at the 
grid-point over Lake Ladoga marked with L in Fig. B.5 as given by the experiment 
TRU. No clouds were predicted by TRU at this location. All fluxes are denoted positive 
towards the surface, both from above and below. 
 
 

Energy balance over the water or ice surface is the sum of the turbulent heat fluxes, the net long-

wave and short-wave radiation fluxes and the heat transfer from below. The transfer from below, 

estimated by FLake in the experiment TRU, was very small before and after freezing. During the day, 

when there was still no ice, the water surface heat balance was negative (fluxes directed from the lake 

to the atmosphere). This resulted in ice formation. When ice appeared, its surface heat balance was 

still negative, and the ice surface temperature started to drop very fast. Hence, the turbulent heat 

fluxes decreased and approached zero in the stable surface layer. During the night, the surface lost 

heat only due to the net long-wave radiation. The ice depth continued to increase, and the ice 

temperature continued to drop. At the end of the forecast, the ice temperature had decreased almost to  
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-5°C. During the next day, the increased albedo of the now ice-covered lake surface would lead to 

less absorption of the solar radiation and further cooling of the surface. 

At a point over land, the surface energy balance evolved differently under the clear sky and low 

clouds. The fluxes and surface temperatures at Ilomantsi from TRU (Figure B.12) are shown for the 

same period as the temperature and cloud cover in Figure B.8c. Of the Ilomantsi grid square, 41 % 

was covered by frozen (small) lakes, while the rest was mainly snow-covered forest. On midday 28 

January, the low clouds were forecast by HIRLAM. At that time the net short-wave flux towards the 

surface was only one third (ca. 50 Wm-2) of that at the clear-sky grid-point over Lake Ladoga (Figure 

B.11). The net long-wave radiative flux was small and negative, ca. -20 Wm-2 and thus directed from 

the surface to air.  In this situation, the long-wave cooling was prevented by the low-level cloud 

cover. A small sensible heat flux (ca. -15 Wm-2) was negative and thus directed from the surface to 

air. 

The surface temperature in the snow-covered forest reached a maximum value of ca.-22°C in the 

afternoon (Figure B.12). The ice surface temperature, predicted by FLake for the lake part of the grid-

box, was much higher during the whole period, with a maximum value of ca. -13°C. In the evening, 

when the cloud disappeared, the net long-wave cooling increased and approached value of -60 Wm-2. 

This was less than half of the corresponding value at the grid-point over Lake Ladoga (Figure B.11). 

However, it was sufficient to cause a decrease of the forest snow and lake ice surface temperatures, 

since the long-wave flux was only compensated by the smaller heat flux from the snow-covered soil 

or lake ice. It is known that both in the model and in the nature, even a rather thin layer of snow is 

sufficient to insulate the relatively warm soil (or thin lake ice) from the air. As seen in Figure B.8a, 

cooling of the surface led to cooling of the near-surface air, which continued the whole night, as 

correctly suggested by experiment TRU. 
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Figure B.12 As in Fig. B.11 but for Ilomantsi and temperature of forest surface instead of 
LSWT. Cloudy time period is shown with shading. Ice temperature represents the local small 
lakes in the Ilomantsi grid-box. Note that the scale in the y-axis is different to Fig. B.11. 
 
 

In this section we diagnosed the boundary layer and surface conditions of the HIRLAM forecasts. 

There were no flux observations for the validation of the simulated surface energy balance. However, 

according to the resulting temperature and cloud forecasts, the winter-time boundary layer over water 

and snow was described well by HIRLAM. 

4.4 Objective verification 

Strictly speaking, the influence of lakes on weather and climate is not local but is spread to the 

surroundings of the lake. Scott and Huff (1996) reviewed several earlier studies and concluded that 

the influence of the Great Lakes extends over a distance from 10 km to more than 100 km, depending 

on the weather parameter and also on the lake in question. The influence can be different on different 

sides of the lake. These authors used a 80 km wide zone when estimating the size of climatological 

lake-effect of several weather parameters. 
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In the current case, the maximum influence of Lake Ladoga can be estimated to extend as far as 

the lake-originated cloud was spread by the wind. In the upwind direction the influence extent would 

be small. Based on Figure B.3, the cloud was detected at least 250 km to the west and northwest of 

the lake.  The predicted wind direction over Lake Ladoga at the height of the low clouds in all 

experiments was from southeast, turning later more towards east and a low-level jet was predicted at 

the height of 250-300 m (not shown). Hence, the observing stations on the western side of Lake 

Ladoga up to 250 km were selected, ten stations in total, for the objective verification. Exactly the 

same observations were included in the verification of different experiments. The validation time 

period was from 25 January to 5 February. 

The bias and rms-error of 2-metre temperature forecasts as a function of forecast length are shown 

in Figure B.13. The values at the initial time are analysis errors and are therefore not comparable to 

the forecast errors. Typically to the short-range 2-metre temperature forecasts, there was no large 

growth in the bias or rms-error with the forecast length. The differences between experiments were 

large, but similar at all forecast lengths. Concerning the bias, OLD had the largest negative error, of 

the order -2°C or more. In NHA the bias was of the order -0.5°C and in TRU even less. Because the 

only difference between experiments was the state of Lake Ladoga, it is evident that the correct ice 

conditions of Lake Ladoga improved the temperature forecasts also when measured with objective 

scores and averaged over a longer time period. 

The large negative bias of OLD may look surprising, because normally in cold situations NWP 

models typically have difficulties to predict cold enough temperatures (Atlaskin and Vihma, 2012). 

The explanation is seen in Figure B.14, which shows the scatterplot of observed vs. predicted 

temperatures in different experiments. In all experiments, the extremely cold temperatures below -

30°C were predicted too warm, as expected. The large negative bias in OLD was seen mainly in the 

observed temperature range -12°C to -18°C, which was typical for the cloudy conditions. In the 

observed cloudy conditions, OLD predicted too little cloud and hence too cold screen-level 

temperatures in this temperature range. Within the temperature range -20°C to -30°C (presumably 

clear-sky cases) the results were rather similar in all experiments. Far from Lake Ladoga the 

differences in verification scores of all parameters between experiments were very small (not shown). 

The time-series of observations and forecasts indicated that largest differences between forecasts 

took place during the last week of January, i.e. time when the ice conditions of Lake Ladoga were 



 

156 

 

different in different experiments (not shown). The coldest period in Eastern Finland was observed 

during the first week of February. Lake Ladoga was then almost frozen in reality and completely 

frozen in all experiments. During this period, the temperature forecasts by different experiments were 

close to each other (not shown). 

 

Figure B.13 Bias and rms-error of 2-m temperature as a function of forecast length for the 
period from 25 January to 5 February and averaged over 10 observing stations westwards and 
closer than 250 km from Lake Ladoga. Forecasts from 00 UTC and 12 UTC analysis are 
included in the statistics. 
 

Summarising the results of objective verification, we conclude, that the correct description of the 

ice conditions over Lake Ladoga improved the temperature verification scores against measured 

temperatures in the vicinity of Lake Ladoga during the anticyclone period in January - February 2012. 

The verification also showed that the known inability of HIRLAM (and presumably also other NWP 

models) to predict very cold near-surface temperatures in the stable clear-sky cases still remains, 

independently of the surface description. 
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Figure B.14 Scatterplot of observed temperature vs. predicted temperature for the same 10 
stations as in Fig. B.13 for OLD (a), TRU (b) and NHA (c). The time period is from 25 January 
to 5 February and +06-, +12-, +18- and +24-hour forecasts are included. Colours show the 
number of cases at each point as shown in the legend. 
 
 
5 Summary 

This study was inspired by a note in a local newspaper on 31 January 2012 about exceptional 

temperature fluctuations in the Southeastern Finland. According to the note, the reason of the 

observed temperature fluctuations was a cloud spread from Lake Ladoga. For the duty forecaster this 

situation was challenging, because a correct forecast of formation and movement of the cloud was 

necessary in order to predict the local temperatures. This case was also related to a series of studies, 

aimed at improving the treatment of lake effects in the HIRLAM NWP system. 

Earlier, most of the studies on the effect of lakes on local weather have focused on severe 

convective snowfall cases. This case represents anticyclonic winter conditions, which typically means 

clear sky, stable stratification and cold near-surface temperatures. In such conditions the individual 

processes may not be strong, but their subtle balance and interactions determine the weather, in this 
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case the temperature variability. Thus, this case was a good test-bench for the physical 

parametrisations of HIRLAM, in particular for testing the sensitivity of the model to the description 

of the changing lake surface state. 

We ran three experiments, which differed from each other only in the way the state of Lake 

Ladoga was described: based on climatology (experiment OLD), on a lake model (TRU) or on the 

analysis of satellite observations (NHA). Experiments based either on the assimilated satellite 

observations or on the prognostic lake parametrisation alone, indicated freezing of Lake Ladoga in the 

last days of January, which was in accordance with the observations. 

When given the correct Lake Ladoga surface conditions, in one way or another (experiments TRU 

and NHA), the forecast model was able to predict the cloud formation and movement in a realistic 

way. Physically reasonable surface energy balance, predicted under clear and cloudy conditions, 

ensured a realistic prediction of the near-surface weather conditions. This made it possible for 

HIRLAM to forecast correctly also the 2-metre temperature variations, which was confirmed by 

comparison with the observations. However, even small errors in timing of the cloud movement were 

found to make the temperature forecasts less accurate. 

The period with strongly varying temperatures, due to the distribution of clouds, lasted only a few 

days. Objective verification scores were computed using the observations within a distance of about 

250~km downstream (westwards) of Lake Ladoga over the whole anticyclonic period (two weeks). 

They revealed a clear improvement of the 2-metre temperatures, predicted by the experiments with a 

correct state of Lake Ladoga, as compared to the climatology-based experiment. The influence of 

Lake Ladoga was visible neither in the scores of the other surface-related parameters nor in the 

temperatures over a large area or over a long validation period. 

In this study, we arrived at three main conclusions. First, the encouraging message was that 

HIRLAM could predict the effect of Lake Ladoga on local weather in this meteorological case, if the 

lake surface state was known.  Second, the current parametrisation methods of atmospheric processes 

and air-surface interactions may lead to realistic description of the evolving anticyclonic boundary 

layer conditions, with the subtle balance between processes due to the large scale atmospheric 

motion, local surface properties, radiation and turbulence. Third, these results encourage work 

towards a better description of the lake surface state in NWP models by fully utilizing satellite 

observations, combined with advanced lake parametrization and data assimilation methods. 
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