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Abstract

The thermal and dynamic properties of water bodies are important factors affecting the structure of
the atmospheric boundary layer which stores and transports energy and mass. The storage and heat
transfer of lakes play an essential role in energy and water exchanges with the atmosphere. At high
latitudes, the effects of lake ice on climate mostly occur at the local/regional scale, with the degree of
influence dependent on the magnitude, timing, location, duration of ice cover and the size of the water
body. Ground-based lake temperature and ice observations have been used to investigate the role of
lakes in the weather and climate, and the response of lakes to climate. However, in the last two to
three decades, it has been observed that the number of ground-based observations, lake ice in
particular, has been decreasing dramatically in several countries across the northern hemisphere. In
this context, remotely sensed earth observations represent a practical tool in support of the scientific
and operational modeling communities, permitting to monitor Lake Surface Water Temperature

(LSWT) and ice cover.

Data assimilation methods have been used widely to solve the initial value problem in numerical
weather prediction (NWP) models. There is a variety of users and applications of space-borne
observations in NWP systems; however, not much attention has been paid on the assimilation of
remotely-sensed LSWT data in pre-operational NWP environments for improvement of the weather
forecast using the optimal interpolation method. This thesis aimed to demonstrate how retrieved
remotely-sensed LSWT observations can improve the representation of lake-atmosphere interactions
in NWP models. More specifically, LSWT observations were used to improve the representation of
lake surface state in the High Resolution Limited Area Model (HIRLAM), a three-dimensional

numerical weather prediction (NWP) model.

To attain this goal, satellite-derived LSWT observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Along-Track Scanning Radiometer (AATSR) sensors onboard
the Terra/Aqua and ENVISAT satellites, respectively, were first evaluated against in-situ
measurements collected by the Finnish Environment Institute (SYKE) for a selection of large to
medium-size lakes during the open-water season. Results show a good agreement between MODIS
and in-situ measurements from 22 Finnish lakes, with a mean bias of -1.13 °C determined over five
open water seasons (2007-2011). Evaluation of MODIS during an overlapping period (2007-2009)
with the AATSR-L2 product currently distributed by the European Space Agency (ESA) shows a
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mean bias error of -0.93 °C for MODIS and a warm mean bias of 1.08 °C for AATSR-L2. Two
additional LSWT retrieval algorithms were applied to produce more accurate AATSR products. The
algorithms use ESA’s AATSR-L1B brightness temperature product to generate new L2 products: one
based on Key et al. (1997) and the other on Prata (2002) with a finer resolution water mask than used
in the creation of the AATSR-L2 product distributed by ESA. The accuracies of LSWT retrievals are
improved with the Key and Prata algorithms with biases of 0.78 °C and -0.11 °C, respectively,
compared to the original AATSR-L2 product (3.18 °C).

The impact of remotely-sensed LSWT observations in the analysis of lake surface state of
HIRLAM forecasting system was then investigated. Data assimilation experiments were performed
with the HIRLAM model. Selected thermal remote-sensing LSWT observations provided by MODIS
and AATSR sensors were included into the assimilation. The domain of the experiments, which
focused on two winters (2010-2011 and 2011-2012), covered northern Europe. Validation of the
resulting objective analyses against independent observations demonstrated that the description of the
lake surface state can be improved by the introduction of space-borne LSWT observations, compared
to the result of pure prognostic parameterizations or assimilation of the available limited number of
in-situ lake temperature observations. Further development of the data assimilation methods and
solving of several practical issues were found to be necessary in order to fully benefit from the space-

borne observations of lake surface state for the improvement of the operational weather forecast.

Lastly, the lake-specific autocorrelation function based on LSWT remotely sensed observations was
approximated in HIRLAM. A new autocorrelation function of lake pairs was approximated and
compared against the original function utilized in current version of HIRLAM to investigate potential
improvements demonstrated through HIRLAM sensitivity experiments. The autocorrelation function
is calculated based on distance and lake depth differences for each lake pairs. Results show that large
lakes are more sensitive to the impact of the autocorrelation. These results also suggest that the high
concentrated observations can improve the enhanced result; however, ground-based observations of

LSWT are barely available for NWP applications.

Overall, results from this thesis clearly demonstrate the benefits of assimilating space-borne LSWT
observations into a weather forecasting system such as HIRLAM, and that comprehensive

assimilation of LSWT observations can improve NWP results.
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Preface

In addition to a general introduction, a background chapter and a general conclusion, the thesis
contains three journal articles that examine how retrieved remote sensing Lake Surface Water
Temperature (LSWT) observations can improve the representation of lake-atmosphere interactions in
a numerical weather prediction (NWP) model. The first and second papers are published in the peer-
reviewed international journal Tellus Series A: Dynamic Meteorology and Oceanography. The first
paper presents the development of new algorithms and assessment of the accuracy of LSWT datasets
derived from thermal remote sensing sensors to be applied in NWP models. The second paper
presents the improvement of the High Resolution Limited Area Model (HIRLAM) NWP model
analysis through assimilation of the developed satellite-derived LSWT observations. The third paper,
submitted to the international journal Boreal Environment Research, investigates the potential
improvement of the lake-specific autocorrelation function implemented in HIRLAM using the

remotely-sensed LSWT observations studied in the previous papers.
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Chapter 1

General Introduction

1.1 Motivation

Climate change, especially in the context of contemporary temperature rise, has become a topic of
intensive scientific research since the mid-1980s. High northern latitude regions have been identified
as the most vulnerable ones to recent global climate warming, where lakes occupy a significant
fraction of the landscape. Lakes are a fundamental component of climate on the local and regional
scales, functioning much as oceans do on the global scale (Schertzer, 1997). Therefore, monitoring
and study of lakes hydrodynamic changes in high latitude regions are important as they contribute to
a better understanding of lake-atmosphere interactions (role and response of lakes) in a warming

climate.

The thermal and dynamic properties of water bodies are important factors affecting the structure of
the atmospheric boundary layer which stores and transports energy and mass. The heat transfer and
storage of lakes play an essential role in energy and water exchange with the atmosphere. The
exchanges occurring at the air/water interface are complicated as water is a fluid and thus, the heat
transfer is not only by conduction and radiation, but also by convection and advection (Oke, 1978).
The surface heat flux over lakes significantly depends on Lake Surface Water Temperature (LSWT).
LSWT influences regional heat, moisture content and circulation of the atmosphere. The study of
LSWT is important because the energy exchange between the surface and subsurface of a lake
influences the static stability of the water column, which is essential in determining the lake

hydrodynamics (Lofgren and Zhu, 2000).

Another important factor in the study of lakes is ice cover since it strongly affects the thermal and
hydrologic behavior of lakes. At northern latitudes, seasonal lake ice forms in the fall, thickens during
the course of winter and melts in the spring. The effects of lake ice on weather and climate mostly
occur at the local/regional scale, with the degree of influence dependent on the magnitude, timing,
location, duration of ice cover and the size of the water body. Lake ice formation, growth, decay,
break-up and freeze up are also influenced by climatic variables that control surface heat fluxes.
Ground-based lake temperature and ice observations have been used to investigate the role of lakes in
the weather and climate, and the response of lakes to climate. However, in the last two to three
decades, it has been observed that the number of ground-based observations, lake ice in particular,
has been decreasing dramatically in several countries across the northern hemisphere. The decline in

the ground-based observational network limits the use of such lake data into numerical weather



prediction (NWP), climate and hydrologic models. As the spatial resolution of these models is
increasing, a better description of energy exchange between the atmosphere and the earth’s surface is
required. The development of computational methods has the ability to support the sharp reduction in
observational practices using one-dimensional (1-D) to three-dimensional (3-D) lake models;
however, they could have significant errors (Mironov et al., 2010; Rontu et al., 2012). In this context,
remotely sensed earth observations represent a practical tool to support the scientific and operational
communities to monitor LSWT and ice thermodynamic/dynamic processes. The advantage of
remotely sensed data is that unlike much of the in-situ measurements, it can be obtained over very

large geographic areas rather than just at a single point or a few points.

Generally speaking, one of the main reasons that forecasting for tomorrow is not accurate enough,
especially in lake-rich regions, is that there are not sufficient and accurate observations over lakes
giving the information of the state of lakes for today. Mathematically speaking, NWP models have an
initial-value problem in which the necessary initial values are known only incompletely and
inaccurately. Therefore, new observing systems such as satellite-based observations, which provide
continuous observations, make it obviously necessary to find new and more sophisticated methods of

assimilating observations in NWP models.

1.2 Objectives

The overall goal of this research is to demonstrate how retrieved remote sensing LSWT observations
can improve the representation of lake-atmosphere interactions in NWP models. The specific
objectives of this thesis are to: 1) develop satellite-based observations of lakes surface state and
evaluate with ground-based measurements, 2) apply the combination of satellite-based LSWT
observations and a numerical lake model to define the initial state of lake surface in the High
Resolution Limited Area Model (HIRLAM) forecasting system using optimal interpolation
assimilation methods, and 3) investigate possible improvement of the lake-specific autocorrelation

function in HIRLAM using the developed satellite-based LSWT observations.

1.3 Thesis Structure

This manuscript-based thesis consists of six chapters aimed at investigating the benefits of using
remotely sensed lake surface state observations to improve weather forecasting. The current chapter
presents the rationale and objectives of the thesis, outlining the need for monitoring and assimilating

lake surface state observations in numerical weather forecasting systems.



Chapter 2 provides a review of evolution of NWPs, the general methods of data assimilation,
specifically optimal interpolation. The chapter also reviews the representation of lakes in NWPs,

more specific in HIRLAM system, and the available satellite based observations for lake studies.

Chapter 3 addresses the first objective of the thesis by evaluating the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Along-Track Scanning Radiometer (AATSR) LSWT
observations with in-situ measurements collected by the Finnish Environment Institute (SYKE) for a
selection of large- to medium-size lakes over Europe. This paper is published in a thematic cluster of

Tellus Series A: Dynamic Meteorology and Oceanography:

Kheyrollah Pour, H., Duguay, C.R., Solberg, R., and Rudjord, @. (2014a). Impact of
satellite-based lake surface observations on the initial state of HIRLAM. Part I: Evaluation of
remotely-sensed lake surface water temperature observations. Tellus Series A: Dynamic

Meteorology and Oceanography. 66, 21534, DOI: 10.3402/tellusa.v66.21534.

Chapter 4 addresses the second objective by applying the evaluated LSWT products in the
HIRLAM forecasting system. It investigates the issue of improving the analysis of the HIRLAM
model using LSWT observations from space. This paper is published in a thematic cluster of Tellus

Series A: Dynamic Meteorology and Oceanography:

Kheyrollah Pour, H., Rontu, L., Duguay, C. R., Eerola, K. and Kourzeneva, E. (2014b).
Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II:

Analysis of lake surface temperature and ice cover. Tellus Series A: Dynamic Meteorology

and Oceanography. 66, 21395, DOI: 10.3402/tellusa.v66.21395.

Chapter 5 investigates the potential improvement of the lake-specific autocorrelation function used
in current version of the HIRLAM model using MODIS LSWT observations. This paper has been

submitted to the international journal Boreal Environment Research:

Kheyrollah Pour, H., Kourzeneva, E., Eerola, K., Rontu, L., Duguay, C. R., and Pan, F.
Preliminary assessment of lake surface water temperature statistical properties for objective

analysis in a NWP model using satellite observations.

Chapter 6 presents a summary of the key findings of this research, and also includes suggestions

for further research directions.

Finally, research results from Chapters 3 and 4 led to further developments and the preparation of
two additional co-authored journal publications. These were published in a thematic cluster of Tellus

3



Series A: Dynamic Meteorology and Oceanography. They are included in Appendix A and B of the

thesis:

Cheng, B., Vima, T., Rontu, L., Kontu, A., Kheyrollah Pour, H., Duguay, C. R., and Jouni
Pulliainen. (2014). Evolution of snow and ice temperature, thickness and energy balance in
Lake Orajérvi, northern Finland. Tellus A: Dynamic Meteorology and Oceanography. 66,
21564.

In this publication, snow and ice observations collected on a northern lake in Finland were used to
investigate the seasonal evolution of snow and ice. The observed snow and ice temperature from ice
mass balance buoys (SIMB) and the MODIS observations are compared to a snow/ice model
(HIGHTSI) and the uncertainty in snow/ice model simulations originating from precipitation was
investigated. This project also showed the large inter-annual variability of precipitation, long-wave

radiative flux and air temperature during the winter season.

Eerola, K., Rontu, L., Kourzeneva, E., Kheyrollah Pour, H., and Duguay, C.R. (2014).
Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic witer
situation- a case study using HIRLAM model. Tellus A: Dynamic Meteorology and
Oceanography. 66, 23929,

This publication followed the results from Chapter 4, which improved analysis of HIRLAM using
Lake Ladoga as a case study. The study showed improvement of forecast (2-m air temperature and

cloud cover) using satellite observations of lake surface state and the 1-D Flake model.



Chapter 2
Background

2.1 Numerical weather prediction

2.1.1 Evolution of numerical weather prediction

Numerical weather prediction (NWP) focuses on taking current meteorological observations and
processing them by integrating primitive-equation models to forecast the future state of weather. The
observations are used as input to NWP through a process called data assimilation. The state of the
weather is described as the series of grid-boxes by a set of state variables such as temperature,

humidity, and pressure.

At the beginning of the 20™ century, weather forecasting was very imprecise and unreliable as
observations were scarce and irregular and the theoretical physics played a relatively minor role in
practical forecasting. Forecasting was more like an art than a science. The first explicit analysis of the
weather prediction problem from a scientific viewpoint was undertaken when the Norwegian scientist
Vilhelm Bjerknes set down a two-step plan for rational forecasting (Bjerknes, 1904). He used
diagnostic and prognostic terms for these two steps. The diagnostic step required adequate
observational data at the particular time and prognostic step was to be taken by assembling a set of
equations for each variable describing the atmosphere such as temperature, humidity, and pressure.
So that the idea of solving the equations to calculate future weather was promoted by Bjerknes, but he
did not construct a detailed plan for implementing his program or attempt to carry it through a
practical realization. The first attempt to put his idea into practice was by Lewis Fry Richardson. He
constructed a systematic mathematical method for predicting weather and the methodology proposed

by him is essentially that used in practical weather forecasting today (Charney, 1950).

Numerical methods used in NWP for solving the equations have naturally evolved in the last few
decades, partly due to research advances and partly because of changes in the available computing
resources. The model equations in NWPs are solved at points defined by a three-dimensional spatial
grid that covers the region of interest. NWP models of the 1950s had grid-points spaced every few
hundreds kilometers in the horizontal direction, whereas today, models use grid-points every 1-100
km. The resolution of models depends on the area coverage so that general circulation models

(GCMs) have generally coarse resolution and are necessary for long-range forecasts; however,



regional models often called limited area models, have finer resolution and are used for short-range

forecasts (Collins et al., 2013).

Over time, the complexity and sophistication of NWP models increased and most of the
improvements have been in better model resolution, numerical techniques and model physics. As the
resolution of a model increases, more and more fine scale effects in the atmosphere from the
underlying surface become apparent and should be taken into account. Meteorological observations
made all over the world are used to provide the best estimate of the NWPs initial conditions. Some of
the observations, such as the ones from weather stations, weather balloons or radio sounders, are
taken at specific times at fixed locations (Figure 2.1). Other data, such as aircraft, ships, or satellites,
are not fixed in space. Observations cannot be used directly to start model integration as initial
conditions, but must be modified in a dynamically consistent way, which is referred to as data

assimilation.
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Figure 2.1 Map of radiosonde locations (ECMWF report).

2.1.2 General methods of data assimilation

NWP models are “initial value problem” for which initial data are not available in sufficient
quantify and with sufficient accuracy (Daley, 1991). Moreover, computed weather forecasts are of
operational use only if they are available well ahead of verifying time. Therefore, it was essential to
automate the process of preparing the initial fields, called objective analysis. Objective analysis
method is the process of interpolating the available observations onto a regular grid in NWP in order
to define the initial conditions. To do this, first guess field or background field (provided for example

by the earlier forecast) should be blended with the observations. As the background field is consistent
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with the physical relationship implemented by the model equations, it helps to introduce the
dynamical consistency between the analysis and the model. In the case that there is no direct
connection between observations and background values or there are no observations available for a
grid-box, data assimilation method is needed to connect the observed information into a model state
(Lynch, 2006). Therefore, observations from regions with good data will be blended to the regions

with no or sparse data. An example of the intermittent analysis /forecast cycle is shown in Figure 2.2.

The better objective analysis will improve the forecasting model result and therefore will improve
the background. To achieve this, the following steps should be applied: a) the weight factor should be
taken into account so that data should be weighted to their distance from the grid-point; b) the error in
each type of observations should be estimated; c) the error of the background field should be
estimated; and d) the effect of clustering data should be considered to avoid an exaggerated effect on

the analysis value (if there are many observations in one area).
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Figure 2.2 Intermittent analysis/forecast cycle. Observations in a window surrounding each
analysis time are used at the nominal analysis time. After initialization, the forecast is
performed. A short-range forecast (6 hours) is illustrated here (Lynch, 2006).



2.1.3 Optimal interpolation

Optimal Interpolation (OI) is an objective analysis procedure that incorporates all four steps listed
above when performing an analysis. Ol is based on a statistical estimation approach, which minimizes
the analysis error. The method of optimizing the use of information in the background field and in the
observations was first proposed by Arnt Eliassen and was developed in more detail by Gandin (1965)

and in Chapter 5.

In the OI method, the state of the atmosphere at a particular time will be given in terms of vector
X of the variables at all model grid-points. The aim is to deduce the best estimate X, (vector of
analyzed value) of X from the available data. The vector of analyzed value can be expressed as

(Daley, 1991):

X,= Xp+K[Y —H(Xp)] 2.1

Where Xp is background model state, K is gain, or weight matrix, Y is vector of observations, and H
is observation operator. Observation operator converts the background field into first guess values of
the observations. The operator includes spatial interpolation to observation points and transformation
to observed variables based on physical laws. Based on Eq. 2-1, the analysis is obtained by adding to
the background field a weighted sum of the difference between observed and background values by
the gain matrix K, where the K is given by:

K =BH"(R+ HBH")™1 2.2

Where B is the covariance matrix of background field error and R is the observational error
covariance matrix. In OI, the background and observational matrices are assumed to be constant in
time. The analysis error covariance (A) is then given by:

A= (I-KH)B 23
2.2 Representation of lake observations in NWP

The thermal and dynamic properties of water bodies make them important climatological
substances. As the first law of thermodynamics states, energy can be neither created nor
destroyed; therefore, the transmission of energy in the lake-atmosphere system is converted
from one form to another in three different modes such as conduction, convection, and
radiation. In the lake-atmosphere system, the amount of energy as an input is equal to the
energy output over a long period of time (e.g., a year) and during shorter periods (e.g., hourly

to monthly); the energy balance differs significantly based on the amount of stored energy.



Water stores energy well due to its high heat capacity (Oke, 1978). Due to their high heat
capacity, lakes take much more energy input to rise their temperature in comparison to land

surfaces, and take longer to cool down or warm up.

In NWP models, at a minimum, the lower boundary of the model atmosphere over water
bodies must have specified the water surface temperature. In today’s NWP models, the effect
of lakes are either ignored or accounted for very crudely, affecting the quality of simulation
of atmospheric boundary-layer structure. Figure 2.3 illustrates some of the processes that can
be represented, explicitly or through parameterization, in NWP models to couple the

atmosphere-water system.
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Figure 2.3 Physical and heat-exchange processes associated with the movement of heat and
mass between lake and the atmosphere and within the lake (modified from Warner, 2011).

Wind at the lake surface causes waves, where the wind strength is a function of wind speed and
fetch. Wind causes the water to mix (the mixed layer) and the density of water produces different

temperature layers within the water column (stratification). The more stable the surface water causes
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a weaker and shallower mixing. The near surface stability depends on the vertical distribution of

energy exchange from atmospheric incoming fluxes and the lake surface (Warner, 2011).

The importance of a correct description of lake physical processes in weather predictions is well
known (Niziol, 1987; Niziol et al., 1995; Zhao et al., 2012). During freezing and melting of lakes, the
surface radiative and conductive properties as well as latent and sensible heat released from lakes to
the atmosphere change dramatically leading to a completely different surface energy balance. Earlier
break-up takes advantage of strong solar insolation in the high sun season and gives an earlier start to
the heating of the lake due to the small surface albedo. Low albedo and high absorption of solar
radiation result in a strongly positive radiation balance with small sensible and latent heat exchanges.
The overlaying atmospheric condition becomes stable and it persists until the LSWT exceeds
atmospheric temperature to create unstable atmosphere (transition time varies by different lake
characteristics and latitude). With earlier break-up and heating storage, a lake reaches its maximum
temperature and heat storage earlier (Schertzer et al., 2002) and stable to unstable atmospheric regime
change occurs sooner. Subsequently, the period of maximum sensible and latent heat exchanges
increases. Rouse et al. (2003) showed that the total sensible and latent heat fluxes are 9 times larger
during unstable atmospheric condition than stable atmospheric condition in a study conducted on
Great Slave Lake, NWT, Canada (late August-November). Peaks in sensible and latent heat fluxes are
due to strong winds that promote larger vertical temperature and vapor pressure gradients (Blanken et

al., 2000; Blanken et al., 2003).

Understanding lake ice processes and the corresponding interactions with the atmosphere allow for
better weather forecasting (Eerola et al., 2010). In most NWP models, this is often ignored or
parameterized very roughly (Brown and Duguay, 2010) as obtaining spatially detailed in-situ
observations such as lake surface temperature, ice thickness, or albedo are challenging, especially for
large lakes. The influence of inland water in regional climate has been confirmed in previous studies
using simple lake simulations. The land surface parameterizations in climate models have been
developed to represent sub-grid scale inland surface water in terms of prescribed fractional surface
water area (Pitman, 1991; Henderson-Sellers and Pitman, 1992; Hostetler and Giorgi, 1992; Bates et
al., 1993; Bonan, 1995; Ljungemyr et al., 1996; Lofgren, 1997). Coe (1998) developed a terrain-based
hydrologic model to simulate rivers, lakes, wetlands on the continental scale. Ljungemyr et al. (1996)
developed a model for parameterization of lake temperature and lake ice thickness in atmospheric
models and they applied the model within HIRLAM for short-range weather forecasting. They also
showed that replacing lake climatology within HIRLAM with modeled LSWT changed modeled low

10



level 2-m air temperature in Sweden by 3K. Since the cumulative effect of lakes on climate is
important, 1-D models have also been implemented in climate models in previous studies (e.g.
Samuelsson et al., 2010). A list of lake models most commonly used as the lake parameterization
schemes in NWP and RCMs, and their strengths and weaknesses are summarized in Table 2.1. Some
models assume complete mixing down to the lake bottom and characterize the entire water column by
a single value of temperature. This assumption can reduce the computational costs; however, it
neglects the lake thermocline, which results in large errors in the surface temperature. Other models,
such as turbulence closure models (Tsuang et al., 2001), are based on the transport equation for
turbulent kinetic energy and describe the lake thermocline better, but they are expensive
computationally. Samuelsson et al. (2010) investigated the impact of lakes on the European climate
by coupling the Freshwater Lake (FLake) model to the Rossby Centre Regional Climate Model
(RCA3.1), and compared the simulations with those in which all lakes in the model domain were
replaced by land. Their results showed that lakes have a warming effect on the European climate,

especially in fall and winter.

Although the 1-D models are able to simulate surface temperature and the thermal structure of a
lake, they cannot simulate lateral flow in the lake and do not take into account the numerous mixing
mechanisms present in deep and large lakes, such as mechanical mixing caused by 3-D water
circulation, horizontal transfer of water by currents, etc. For these reasons, various attempts have been
made over the past few years to couple 3-D lake models with atmospheric models. Recent studies
show that atmospheric models coupled with 3-D lake models could provide more realistic local
temperature and evaporation in comparison to simulations without lake effects (Song et al., 2004;
Long et al., 2007; Huang et al., 2010; Dupont et al., 2011). Sophisticated 3-D lake/ocean models,
such as the Princeton Ocean Model (POM) and the Nucleus for European Modeling of the Ocean
(NEMO) have been shown in the past to be able to simulate water circulation in lakes and interactive

coupling of climate models (Song et al., 2004; Dupont et al., 2011).

The majority of previous studies have discussed the prognostic parameterization of lakes in NWP
models (Kourzeneva et al., 2012a, b; Mironov et al., 2012), but assimilation of lake observations in
NWP has received much less attention. Eerola et al. (2010) investigated the performance of HIRLAM
using the FLake model as a parameterization scheme. They suggested that assimilation of lake surface
temperature observations would likely improve the results. Rontu et al. (2012) studied the
applicability of the prognostic and observation-based approaches of LSWT in NWP and showed that
the lake model provides a better background for data assimilation than lake surface temperature

11



climatology. They suggested that improvement could be achieved using in-situ and space-borne

observations of LSWT and ice cover for real-time operational NWP.

In particular, methods to retrieve LSWT data from satellite sensors offer the opportunity to apply
remote sensing technology for obtaining a consistent coverage of a key parameter for climate and
hydrological research. This study demonstrates how satellite remote sensing of lakes can help
improve weather forecasting. It also identifies existing satellite data products specific to lakes,
discusses the limitations of the currently available remote sensing products, and describes expected

future improvements (see Section 2.4).
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Table 2-1 Lake models most commonly used as lake parameterization schemes in NWP and RCMs.

Study Lake Model

Short description

Strengths and weakness

Hostetler (1993)
Bates et al. (1993)
Hostetler model

Ljungemyr et al., (1996)
Mixed model

Goyette et al. (2000)
Goyette model

Mironov (2008)

Kourzeneva et al. (2008)
Mironov et al. (2010)
Samuelsson et al. (2010)
Eerola et al. (2010)

Balsamo et al. (2012)
Kheyrollah Pour et al. (2014b)

Blumberg and Mellor (1987)
Schwab and Bedford (1994)
Song et al. (2004)

Long et al. (2007)

Huang et al. (2010)

FLake model

The Princeton
Ocean Model
(POM)

Nucleus for
European
Modeling of the
Ocean (NEMO)
model

Dupont et al. (2011)

A 1-D energy balance model that simulates the vertical
transfer of heat as well as ice cover using ice model. It
coupled interactively with the RCMs to simulate the
precipitation and air temperature in the vicinity of
water bodies

A simple thermodynamic lake model used for
parameterization of lake effects in in HIRLAM system.
It’s a well-mixed model to simulate lake water
temperature, ice thickness, and break —up dates.

The model is based on GCM mixed-layer ocean model.
It simulates LSWT using a mixed-layer model and a
thermodynamic ice model to simulate evolution of ice
cover, which coupled with CRCM.

A 1-D model, which is based on a two-layer water
temperature profile. The structure of the stratified
thermocline layer is described using the concept of
self-similarity (assumed shape) of the temperature
depth curve.

A 3-D model, which solves the conservation equations
of heat, mass, and momentum on staggered grids using
the finite difference method. POM is able to simulate
temporal and vertical variation of currents.

A 3-D atmospheric-lake modeling system that being
developed by Environment Canada to represent the
complex atmosphere-lake interaction over the Great
Lakes region. It uses two layer of ice and one layer of
snow to simulate ice condition on Great Lakes.

The model is simple and flexible and insensitive to the
lake depth for a broad range of depth value, which is
important when coupling with RCMs, where numerous
lakes have to be simulated. But the formulations of
physical processes, which determine the water
temperature, need to be improved.

The model uses a simple approach but it assume a
complete mixing down to the lake bottom and
characterize the entire water column by a single value of
temperature.

The model use a simple mixed-layer model to estimate
mixed-layer but the seasonal variation of mixed-layer
depth is not considered.

The model is simple and not expensive but very
sensitive to the lake depth. For deep lakes, a virtual
bottom depth of 40-60 m is typically used in
simulations. FLake considers the snow cover over on ice
but the snow module needs to be improved.

The model uses the bottom bathymetry and surface
elevation of lakes and is widely used for major lakes
with realistic estimation. However, it has a high
computational cost and requires detailed input data.

The advantage of NEMO model is its wide spread use
and continue tuning by the scientific community,
however, it is computationally expensive.




2.3 HIRLAM forecasting system

The numerical short-range weather forecasting system HIRLAM (Undén et al., 2002) has been used
for operational weather prediction at the Finnish Meteorological Institute (FMI) since 1990.
Currently, version 7.4 is implemented over the European-Atlantic domain with a 7.5-km horizontal
grid spacing and 65 levels in vertical (Figure 2.4). HIRLAM considers five surface types within each
grid square such as sea/lake water, ice, bare land, forest and agricultural terrain/low vegetation.
Diagnostic fields, such as 2-m air temperature, relative humidity, and 10-m height wind are available
for each grid-box fraction separately. In HIRLAM, the LSWTs are treated by the prognostic model
and also data assimilation using Ol method (Gandin, 1965 and Mahfouf, 1991). With increasing
computing power, higher resolutions in limited area models become more feasible and the
horizontal/vertical resolutions of HIRLAM improved from 55km/16 levels to 7.5km/65 levels. This

resolution improvement allows resolving lakes with sufficient accuracy in a local weather forecast.
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Figure 2.4 HIRLAM v7.4 operational domain (elevation in red box).

2.3.1 Treatment of LSWT in the operational HIRLAM

The treatment of lakes became relevant when the resolution of models became high enough to resolve
them, even smaller ones. In the HIRLAM system, sea and lakes are treated together, but there is an
extra variable such as fraction of lake, in every grid-point. In the first implementation of HIRLAM,

monthly climatological water surface temperature was used both over sea and lakes. However, for



lakes the climatology values were achieved by extrapolating the values over sea to lakes. The reason
was that no suitable lake climatology was available at that time and, consequently, the values were
not representative for lakes. Especially, in Scandinavia, this meant that lakes that were close enough
to the Atlantic or Arctic oceans never froze in winter. An example of this is given in Eerola (1996)
using Lake Inari in northern Finland (Figure 2.5). In the HIRLAM climatology, extrapolated from the
Arctic Ocean, the lake remained free of ice all year round, but the lake water temperature never rose
over 10°C in summer. In the real climate, the lake is ice-covered from early November to late May

and in summer the temperature rises to 16°C.
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Figure 2.5 Surface temperature of Lake Inari (68.878°N, 28.101°E) in northern Finland from
the HIRLAM climate system, and corresponding observed long-term averages as a function of
the calendar date (Eerola, 1996).

To obtain a better climatological LSWT over the Finnish lakes, a procedure called Finlake was
created (no observed values were available in real-time). In every HIRLAM run, climatological
LSWT pseudo observations were created for 20 lakes in Finland by linear interpolation in time from
the climatological values of every 10 days. These pseudo observations were then used in the LSWT
analysis. Note that in the HIRLAM surface analysis, sea observations do not affect the lakes and vice
versa. Another problem in Finland was is Lake Ladoga (61°N, 31°E), a huge lake at the boundary of
Finland and Russia, since no climatological values were available and it behaved totally differently

than the smaller Finnish lakes. However, it was close enough to affect the weather; at least in eastern
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Finland (Eerola et al., 2014). To solve this, an assumption was made that Lake Ladoga behaves in a
way similar to the eastern part of the Gulf of Finland, when the spatial resolution of the European
Centre for Medium-Range Weather Forecasting (ECMWF) Sea Surface Temperature (SST) analysis
was high enough to resolve the Gulf of Finland. A few pseudo observations on the eastern part of the
Gulf of Finland were copied to Lake Ladoga and used as lake observations there. The assumption was

still crude; however, it was better than assuming that Lake Ladoga behaves like the Finnish lakes.

At the same time, in other meteorological services, it was also recognized that sea climatology is
not representative of lakes. In Germany, Deutsher Wetterdienst, a prognostic lake parameterization
scheme started to be developed (Mironov 2008, 2010, 2012) where the FLake model was applied
instead of the observation-based approach. In the ECMWF, time-lagged monthly mean screen-level
temperatures from the forecast model were introduced to the LSWT analysis over the large lakes.
Kourzeneva (2008) coupled the FLake model as a parameterization scheme in HIRLAM, and showed
that the simulated LSWT is quite sensitive to the lake parameterization. Eerola et al. (2010) discussed
the specific features of the implementation of FLake into HIRLAM as a parameterization scheme, and
then Rontu et al. (2012) continued this work by integrating the data assimilation system with FLake.
Results showed that the lake model provides a better background for data assimilation than LSWT

climatology.

The next step was to use real LSWT observations of the Finnish Lakes. This took place in fall
2010 when real-time in-situ observations from 27 lakes, made by SYKE (Finnish Environment
Institute) became available. In March 2012, the FLake model was implemented into the operational
HIRLAM at FMI. From that time, the lake state was totally handled by FLake and the analysis of
LSWT only offered another independent analysis of LSWT that had to be solved, as discussed in
Kourzeneva et al. (2014) and Kheyrollah Pour et al. (2014). Therefore, the methods to retrieve LSWT
data from satellite thermal remote sensing, and then assimilate these observations into analysis or 1-D
lake models, are very promising in order to reduce errors of the lake models used in NWP systems

and to improve HIRLAM analysis in particular.
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2.4 Satellite remote sensing of lakes

The decrease of cryospheric in-situ observations and limitation of lake models can be compensated by
the use of satellite imagery. The network of in-situ observations dataset has plummeted at a time
when there was an increase demand of lake ice observations by the modellers’ community. Over the
past years, innovations in satellite technology and processing algorithms have generated data to
improve earth observation. The advantage of using satellite data is that they provide: continuous
measurements, sufficiently high spatial resolutions, accessibility to remote areas and provide global
retrieval of observations. Several prior studies have looked into the ability of data assimilation of
remotely sensed observations in order to improve estimation of model simulations of the land surface
state (e.g. Houser et al., 1998; Reichle et al., 2002a,b; Slater et al., 2005) or sea ice (e.g. Lisaeter et
al., 2003; Lindsay and Zhang 2006; Stark et al. 2008; Scott et al., 2012), with the overall objective of
increasing the skill of weather and climate forecast. Based on previous investigations, assimilation of
lake variables in current NWP using satellite observations has received less attention. The operational
analysis of LSWT was developed at Met Office, UK, for NWP purposes on the Operational Sea
Surface Temperature and Ice Analysis (OSTIA) system (Donlon et al., 2012; Fiedler at al., 2014).
The LSWT observations used in this system are part of SST products from AATSR and MetOp-
AVHRR (Infrared Atmospheric Sounding Interferometer (IASI)). These data are based on SST
retrievals as none of them include lake-specific processing; therefore, they introduce inaccuracies to

the LSWT data over lakes.

Remote sensing is widely used as a tool in lake studies such as for the determination of surface
water temperature (e.g. Wan et al., 2002; Bussicres et al., 2002; Bussi¢res and Schertzer, 2005; Oesch
et al., 2005; Crosman and Horel, 2009; Coll et al., 2009; Schneider et al., 2009; Arp et al., 2010;
Reinart and Reinhold, 2008; Hulley et al., 2011; Kheyrollah Pour et al., 2012; Liu et al., 2014),
albedo (e.g. Savacina et al., 2014a, b), ice phenology (Hall et al., 1981, 2002; Duguay and Lafleur,
2003; Jeffries et al., 2005; Latifovic and Pouliot, 2007; Leshkevich and Nghiem, 2007; Howell et al.,
2009; Kang et al., 2010, 2012; Brown and Duguay, 2010, 2011), water transparency (e.g. Sydor,
2006; Heim et al., 2008) and lake depth (e.g. Duguay and Lafleur, 2003). The existing remotely

sensed data products specific to lakes in visible and infrared spectrum are summarized in Table 2.2.
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Table 2-2 Most available satellite data products in visible and infrared spectrum (the grey color

represents the existing data).

Visible and Infrared Spectrum

Platforms

Sensors

Products (Pixel size- km)

Revisit time

Daily
3 Days
Weekly

8 Days

16 Days

Monthly

Terra

MODIS

LST (1)

LST (5.6)

LST (6)

Albedo (0.5)

Snow cover (0.5)

Surface reflectance (0.25 & 0.5)

Surface reflectance (1 & 5.6)

ASTER

Surface reflectance (0.013 & 0.03)

Aqua

MODIS

LST (1)

LST (5.6)

LST (6)

Albedo (0.5)

Snow cover (0.5)

Surface reflectance (0.25 & 0.5)

Surface reflectance (1 & 5.6)

Aqua/Aqua combined

MODIS

LST (1 & 6)

Albedo (0.5 & 1 & 5.6)

Envisat

AATSR

LST (1)

LST (6)

Ice cover (1)

MERIS

Ice cover (0.3)

Water optical properties (0.3)

NOAA

AVHRR

LST (1)

Albedo (1)

AVHRR-
APP

LST (5)

Albedo (5)

ERS-1/2

ATSR

LST (1)

Suomi-NPP

VIIRS

LST (0.38 & 0.75)

NOAA-GEOS

LST (4)

15-30 minutes
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In principle, for successful parameterization of lakes, it is necessary to describe the distribution of
water, ice and snow over water bodies in the model domain. This description can be derived from
observational points to the model grid. There are currently no operational NWP models, which
include, for instance, a full prognostic treatment of lake thermodynamics (Rontu et al., 2012). Thus,
these values usually remain unchanged during the forecast. Advanced lake models can help in this
matter to make progress but is challenging. Mironov et al. (2010) implemented FLake into the NWP
model COSMO (the Consortium for Small-scale Modeling) and they noted the challenge of the
quantitative evaluation of snow and ice in the model. No method has yet been developed to estimate
on-ice snow depth on lakes. However, Duguay et al. (2005) discussed that Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) and the Special Sensor Microwave Imager (SSM/I) sensors
at 37 GHz frequency becomes sensitive to snow depth when the ice is thick enough so that the
measured brightness temperature is not influenced by the radiometrically cold water under the ice.
The higher frequency could probably be considered in the earlier winter season when ice is thinner

relative to the depth of emission of the microwave signal.

2.4.1 Development of MODIS UW-L3 LSWT product

A previous study by Rontu et al. (2012) reported the large differences between the analyzed and
predicted LSWT fields in spring involving the FLake model into the HIRLAM system. Therefore,
applying frequent acquisitions of LSWT satellite observations is of interest to the weather forecasting
community. A new data set, known as MODIS UW-L3 LSWT, was developed at University of
Waterloo (Duguay Research Group) by combining MODIS-Terra and Aqua data to produce regional
and global scale products. This data set provides daytime and nighttime LSWT at hourly, daily,
weekly, monthly, and yearly time scales. The new algorithm was developed because there are no
combined Terra and Aqua LSWT products currently available. The main advantage of combining
data from these two satellites is to increase the number of observations due to the limitation of optical

sensors during cloudy conditions (Kheyrollah Pour et al., 2012).

In this algorithm, first, the section of the file intersecting the region of interest is read, and then the
latitude/longitude coordinates and time values are calculated for each pixel. The domain is split into
approximately square tiles, which are re-projected to the Equal-Area Scalable Earth Grid (EASE-
GRID) projection. The EASE-GRID projection consists of a set of three equal-area projections and
developed at the National Snow and Ice Data Center (NSIDC) for the distribution of snow and ice
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products. It is intended to be a flexible tool for users of global scale gridded data. The re-projection is
carried out by first calculating the projection coordinates of each observation and then using linear
interpolation to calculate a value for the center of each EASE-GRID cell. Tiles of the selected regions
of interest are then projected onto the target grid with the desired output resolution (1 km in this
thesis) by averaging all pixels that fall into the target grid cell. The algorithm distinguishes
daytime/nighttime average data to be able to use each of them individually if needed. As there are two
satellites (Terra and Aqua) operating a MODIS sensor, when combined it offers the possibility of four
observations per day (two days and two nights). To produce daily LSWT products (day/night equal
weight average), at least one daytime and one nighttime observation is considered to keep the
balance. For the entire domain of interest, two sets of data are produced, one containing the average
of all observations during the day and the other containing the observation during the night. Then, the
intermediate sum of all MODIS Terra/Aqua day/night observations for each pixel is calculated. These
values are averaged together to produce the final lake surface temperature average with equal
weighting between day and night values. These data, along with the day and night averages and the
number of observations that went into producing each average, and output to a GEOTIFF file. Figure
2.6 shows an example of monthly LSWT maps (1 km resolution) for June and July 2011 over the
main study area of this thesis. The differences of LSWT of lakes for June and July in this region can
be determine from Figure 2.6. For example, the LSWT for Lake Ladoga is between 5-10 °C, where
the LSWT for the same lake is between 14-21 °C.

2.4.2 Limitation of optical sensors

Optical sensors provide data with relatively high spatial and temporal resolutions, which allows the
Earth’s surface to be covered in a high frequency of acquisition. Despite these advantages, there are
some limitations using optical sensors over lakes, especially in the fall and early winter when lakes
are often covered with cloud. Data from optical sensors may not be updated for several days or, on
occasion, clouds may not be detected by the algorithm, resulting in anomalous errors and lowering the
temporal resolution of sensors. Therefore, upgrading the cloud cover algorithm is necessary to
improve the optical sensors abilities to observe the Earth’s surface. Optical sensors are also limited by
fluctuations in atmospheric conditions, calibration differences of sensors or by prolonged darkness or
low sun elevation at northern latitudes, which can cause over- or under-estimation of ice formation

and melt onset dates. Microwave sensors are effective instruments for monitoring lake ice, being
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unaffected by cloud cover or low sun elevation, which cover some limitations of optical sensors; but
the most current passive microwave satellite sensors are of very coarse resolutions. Synthetic aperture
radar (SAR) sensors are a viable alternative or complement, but more efforts are necessary on the
development of automated algorithms for ice cover mapping/monitoring before operational usage

(e.g. Duguay et al., 2015).
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Figure 2.6 Monthly LSWT maps derived from MODIS-Aqua/Terra (1-km resolution- UW-L3)
for (a) June and (b) July 2011 over northern Europe.

The complexity of the Earth system, in which spatial and temporal variability exists on a range of
scales, makes it necessary to consider the development of future mission portfolios. The Global
Change Observation Mission (GCOM) is an observation program of the Japanese Aerospace
Exploration Agency (JAXA). The spacecraft GCOM-C, which is planned for launch in 2016, will
carry the Second-generation Global Imager (SGLI) sensor with visible/infrared (VNIR, SWIR, TIR)
channels. The TIR1 and TIR2 channels will have a spatial resolution of 500 m. ESA’s Sentinel-3,
which will provide atmospheric and land applications, provide data continuity for the ERS, Envisat

and SPOT satellites. Sentinel-3 will make use of multiple sensing instruments to accomplish its
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objectives; SLSTR (Sea and Land Surface Temperature Radiometer), OLCI (Ocean and Land Colour
Instrument), SRAL (SAR Altimeter), DORIS, and MWR (Microwave Radiometer). The thermal
sensors on Senrinal-3A and 3B with 1 km resolution allow for continuity of monitoring LSWT
observation in a daily revisit time. Sentinel-3A is scheduled to be launched in 2015 and Sentinel- 3B

and 3C are planned to be launched ~18 months after the first one.
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Chapter 3
Impact of satellite-based lake surface observations on the initial
state of HIRLAM- Evaluation of remotely-sensed lake surface water

temperature observations

3.1 Introduction

Lake surface temperature observations collected by space-borne thermal sensors are increasingly
being used in climate and weather-related investigations (e.g. Duguay et al., 2011, 2012a, 2013;
Kheyrollah Pour et al., 2012; Schneider et al., 2009). Knowledge of Lake Surface Water/Ice-Snow
Temperature (LSWT/LIST) is important for coupling the lake surface with the atmosphere in order to
better represent exchanges of heat and moisture. Satellite remote sensing platforms can provide the
LSWT/LIST observations required for this purpose. As thermal sensors are limited in terms of
consistency due to the presence of cloud cover, which hinders surface observations, a scientific
priority is to seek the best combination of tools such as space-borne observations, in-situ
measurements, and numerical models to optimize the information content of LSWT/LIST data using
Data Assimilation (DA) methods.

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua and Terra
Earth Observation System (EOS) satellites (2000-present) and the Along-Track Scanning Radiometer
(AATSR) onboard the European Space Agency (ESA) environmental satellite ENVISAT (2002-
2012) have been two of the main sensors providing land and lake surface temperature observations
since 2000. The MODIS sensor, launched on Terra (EOS AM, 18 December 1999) and Aqua (EOS
PM, 4 May 2002), scans the Earth surface at £55° viewing angle from nadir in 36 bands with 16
thermal infrared (TIR) bands located in the 3 to 15 pum range. MODIS-derived Level 2 surface
temperature products (MOD/MYD 11-L2, Collection 5, each pixel is 1km by 1km in size) have been
validated in various studies over lakes against in-situ measurements acquired during the open water
season. The reported accuracies vary depending on the validation method employed (i.e. direct LSWT
measurements with thermometers at some depth near the surface or non-contact, skin, LSWT
measurements with thermal infrared radiometers) and the observational periods (i.e. hourly, daytime,
nighttime or average daily). Biases of -0.22 °C for daytime and -0.39 °C for nighttime observations
have been reported for MODIS-Terra over Lake Tahoe (California/Nevada, USA) during 2002-2005
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(Hook et al., 2007) and a bias of 0.1 °C for nighttime observations in 2000-2008 (Schneider et al.,
2009). A validation study conducted over the same lake by Hulley et al. (2011) showed a bias of -0.21
°C and 0.064 °C for daytime and nighttime observations (2002-2010 period), respectively, for both
MODIS-Aqua/Terra L2 products. Crosman and Horel (2009) reported a bias of -1.5 °C between
MODIS L2 (combined daytime and nighttime observations) and in-situ water temperature
measurements from Great Salt Lake (Utah, USA) obtained at a depth of 0.5 m. The larger bias from
the study of Crosman and Horel (2009) is expected since their in-situ measurements correspond to a
bulk water temperature (0.5 m depth) rather than a surface (skin) temperature which is the quantity
retrieved from MODIS and measured with thermal infrared radiometers deployed in the field (e.g.
Hook et al., 2007; Schneider et al., 2009; Hulley et al., 2011).

The AATSR, which operated on the ENVISAT satellite until April 2012, crossed the equator at
10:00 A.M. local time for the descending orbit. AATSR acquired data in seven bands from visible to
infrared with TIR bands centered at 10.85 and 12 pm. The sensor scanned the Earth with a dual view
(i.e. forward view at an angle of around 55° and the nadir view at an angle of around 21.7°). The
nominal spatial resolution of the AATSR is 1 km for the nadir view and 1.5 km by 2 km for the
forward view. Coll et al. (2009) evaluated the accuracy of LSWT retrieved with the algorithm of
Prata (2002) (described in section 2.1.2), based on AATSR Level-1B (L1B) brightness temperature
observations over Lake Tahoe between July-December 2002 and July 2003. The authors reported an
average bias of -0.17 °C and Standard Deviation (SD) of 0.37 °C for both daytime and nighttime
observations.

The purpose of this study is to assess the accuracy of a relatively new Level 3 (L3) LSWT product
(referred to here onward as UW-L3 LSWT), generated from the combination of Terra and Aqua
(MOD/MYDI11 _L2) observations, as well as ESA’s current AATSR-L2 data product and two new
AATSR-L2 products derived from algorithms proposed by Key et al. (1997) and Prata (2002), which
make use of an improved lake mask over Finland. The acronym UW-L3 (University of Waterloo-
Level 3) is used to describe the MODIS LSWT product utilized in this paper as it differs from the L3
product distributed by NASA. The UW-L3 LSWT/LIST product has previously been compared with
surface water/ice temperature outputs from 1-D lake models (Kheyrollah Pour et al. 2012, Cheng et
al. 2014). Kheyrollah Pour et al. (2012) showed a good agreement between daily averaged MODIS-
derived and simulated (using Canadian Lake Ice Model (CLIMo)) LSWT/LIST for different depths in

Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, (mean bias error of less than 1
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°C) when compared over a full annual cycle or broken down into open-water and ice-cover seasons.
Cheng et al. (2014) evaluated MODIS temperature observations with in-situ (snow and ice
temperatures measured by an ice mass balance buoy (SIMB)) and simulated snow/ice model
(HIGHTSI) LIST in three ice-cover seasons (2009-2012). They showed that MODIS observations
agree with SIMB (R = 0.9, MBE = -3.1 °C) and HIGHTSI (R = 0.9, MBE = 3.2 °C) results. This
study differs from previous investigations since it is the first time that the UW-L3 LSWT product is
evaluated against in-situ LSWT/LIST measurements.

The study area for this investigation covers a large domain, which encompasses many lakes in
Finland (Figure 3.1 and Table 3.1), and therefore addresses the need of continuous lake temperature
measurements to improve the forecast of weather phenomena in this region. This paper is the first of a
series of two articles that describe our recent efforts aimed at improving the treatment of lake surface
state in the Hlgh Resolution Limited Area Model (HIRLAM) Numerical Weather Prediction (NWP)
system. In the study described herein, in-situ measurements of lake water temperature collected by
the Finnish Environment Institute (Suomen Ympéristokeskus (SYKE)) are compared to MODIS- and
AATSR-derived LSWT products to investigate the bias of satellite observations for a selection of
large to medium-size lakes in Finland. SYKE and satellite-derived LSWT observations are then
applied in the analysis of the HIRLAM NWP system (Undén et al., 2002; Eerola, 2013) in Chapter 4
using the optimal interpolation (OI) method. Chapter 4 develops the OI method and discusses analysis
results of time-series of observed, analyzed and predicted LSWT, and ice cover obtained by applying
MODIS/AATSR/SYKE observations and a lake parameterization scheme, the FLake model (Mironov
et al., 2008, 2010).

3.2 Data and methods

3.2.1 Satellite observations

The reliability of MODIS and AATSR LSWT products was assessed using in-situ water temperature
measurements from Finnish lakes. The MODIS UW-L3 daily averaged product was evaluated against
SYKE observations from 22 lakes over five open water seasons (2007-2011), as well as during an

overlapping period (2007-2009) along with AATSR-L2 products. Being onboard of two satellite
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platforms (Aqua and Terra), MODIS provides a greater temporal coverage than AATSR (Soliman et
al., 2012).

3.2.1.1 MODIS LSWT

MODIS Aqua and Terra Land Surface Temperature and Emissivity (MYD/MOD 11-L2, Collection 5,
1 km) products were acquired from the NASA Land Processes Distributed Active Archive Center (LP
DAAC) for the period of 2007-2011. The products are generated with the generalized split window
approach (Wan and Dozier, 1996) using the MODIS sensor radiance data (MYD/MODO021KM), the
geolocation (MYD/MODO03), the atmospheric temperature and water profile (MYD/MODO07_L2), the
cloud mask (MYD/MOD35 L2), the quarterly land cover (MYD/MOD12Q1), and the snow cover
(MYD/MOD10 _L2) products. The Land/Lake surface temperature retrieval in a MODIS swath is
made by using L 1B radiance data in thermal bands 31 and 32 on land or inland water under clear-sky
conditions with a confidence of > 66 % over lakes (Wan, 2005).

MODIS UW-L3 Land Surface Temperature (LST) (Duguay et al., 2012b; Soliman et al., 2012)
and LSWT/LIST products (Kheyrollah Pour et al., 2012) are generated from Aqua and Terra
MYD/MOD 11-L2 data. A new algorithm was developed to create products at various temporal
resolutions (daily, weekly, and monthly) from the combination of MODIS data from the Aqua and
Terra satellites, which were not available otherwise. The Aqua and Terra satellite platforms follow
the same orbit within 3 hours of each other. However, at higher latitudes, it is possible to monitor the
same location from both sensors within an hour, considering different viewing angles. In such case, it
is feasible to combine observations from both sensors in each pixel during an hour. For the daily-
averaged UW-L3 product, observations are separated into either a daytime bin (from 6 A.M. to 6
P.M.) or a nighttime bin (from 6 P.M. to 6 A.M. of the next day), not by solar angle such as the
number of hours of daylight and darkness. To ascertain a balance between daytime and nighttime
observations in the creation of the daily averaged product, pixels must contain at least one daytime
observation and one nighttime observation for a daily value to be calculated. For the geographical
region of interest, two sets of data are produced, one containing the average of all daytime
observations and the other containing those of all nighttime observations. Then, the intermediate sum
of all MODIS Aqua/Terra daytime/nighttime observations for each pixel is calculated. These values
are averaged together to produce the final surface temperature average with equal weighting between

daytime and nighttime values. Daytime average, nighttime average, daily average and the number of
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clear-sky observations (counts) are recorded in separate images for each pixel during the period of
interest as GEOTIFF files (GEOTIFF refers TIFF data format, which contains geographic information
embedded within the TIFF file).

Figure 3.1 Location of lakes within the HIRLAM domain over Northern Europe (light blue)
and selected lakes (dark blue) from SYKE’s in-situ measurement sites in Finland.
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The Equal-Area Scalable Earth Grid (EASE-Grid), Lambert’s Equal Area Azimuthal projection is
the projection selected for the UW-L3 product, based on a sphere datum with a radius of 6,371.228
km. Each domain is split into approximately square tiles, which are re-projected to the EASE-Grid
projection. The EASE-Grid projection consists of a set of three equal-area projections and developed
at the National Snow and Ice Data Center (NSIDC) for the distribution of snow and ice products. It is
intended to be a flexible tool for users of global scale gridded data. The re-projection is carried out by
first calculating the projection coordinates of each observation, and then using linear interpolation to
calculate a value for the center of each EASE-Grid cell. Tiles of the selected regions of interest are
then projected onto the target grid with the desired output resolution (I km for this study) by
averaging all pixels that fall into the target grid cell. Local time is calculated for each EASE-Grid cell

using UTC acquisition time and longitude of MODIS L2 products with an accuracy of =15 minutes.

Table 3-1 List of 22 selected Finnish lakes with coordinates, mean depth and statistics of the
evaluation results for MODIS.

Longitude Latitude
Lake Name (Finnish name) (Decimal Degree, WGS84) (Decimal Degree, WGS84) Mean depth (m) MBE (°C) RMSE (°C) n

1 Hauki (Haukivesi) 14.752 56.637 10 ~1.15 2.08 519
2 Inari 27.924 69.082 14 —1.87 231 244
3 Jaasj (Jdasjarvi) 26.135 61.631 10 ~1.64 2,12 412
4 Kalla (Kallavesi) 27.782 62.761 10 ~0.47 2.14 407
5 Kilpi (Kilpisjirvi) 20.815 69.006 22 —0.67 2.13 297
6 Konne (Konnevesi) 26.604 62.632 10 —1.24 1.98 382
7  Kyyve (Kyyvesi) 27.079 61.998 10 —1.14 2.16 492
8 Lange (Lingelmavesi) 24.370 61.535 10 —~1.42 2.27 349
9 Lappa (Lappajirvi) 23.670 63.147 10 ~1.24 2.20 463
10 Nasij (Nasijdarvi) 23.750 61.631 10 —1.31 2.13 428
11 Nilak (Nilakka) 26.526 63.114 10 —0.96 2.06 286
12 Oulyj (Oulujirvi) 26.965 64.450 10 -1.33 2.02 361
13 Paajl (Pddjarvil) 24.789 62.863 3 —-1.27 225 401
14 Paaj2 (Piijirvi2) 25.047 61.052 15 —~1.02 2.07 502
15 Paija (Piijinne) 25.482 61.613 10 —~1.84 235 322
16 Pesio (Pesidjirvi) 28.650 64.945 7 ~1.10 2.20 322
17 Pieli (Pielinen) 29.606 63.270 10 -0.95 2.39 367
18 Pyhaj (Pyhijirvi) 22.291 61.001 5 —0.79 2.04 420
19 Rehja (Rehja-Nuasjirvi) 28.016 64.184 10 —1.58 2.24 324
20 Saima (Saimaa) 28.115 61.337 10 ~0.78 2,12 468
21 Tuusu (Tuusulanjirvi) 25.054 60.441 3 -0.25 2.19 385
22 Unari 25.711 67.172 10 —0.92 2.28 184
Average —~1.13 2.17 8135

MBE: mean bias error, RMSE: root mean square error, 2z number of observations.
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3.2.1.2 AATSR LSWT

The current AATSR-L2 (land and lake) product distributed by ESA is generated from AATSR-L1B
data based on the algorithm of Prata (2002). The basic algorithm for the retrieval of surface

temperature is:

Ts=ag+ boT11 + ¢coT12 3.1

where ag, by, and ¢ are coefficients that depend on the surface type (including lakes), viewing angle,
and atmospheric water vapor. T;4 and T;, represent the brightness temperature values in channels 11
and 12, respectively. The L2 algorithm expresses the surface temperature as a nearly linear
combination of the brightness temperatures in each channel using only the nadir view (6 < 21.7 °);
therefore the equation is modified as:

Ts=ag+ bo(T11 — T12)" + (bo + € 0)T12 3.2

where the index n depends on the incident angle 6 as follows:

n=1/cos(0 —m) 33

where m is an empirical constant. Coefficients for (Eq. 3.2) were determined for 13 different land
cover classes including lakes, in which two separate sets of coefficients are specified for each class.
For the lake class, different coefficients are given for day and night. However, in this study, only day
coefficients are used due to the AATSR morning overpass for Finnish lakes (ay= -0.0005, by=
2.4225, co= -1.4344). The algorithm operates using a low-resolution (0.5° x 0.5°) map of land cover
classes. Due to this coarse-resolution land cover type map, the algorithm misses many small to
medium-size lakes. These lakes are often confounded with land. As a result, evaluation of this

product was only possible for 11 of the 22 lakes monitored by SYKE.

To improve the currently available AATSR-L2 product, two additional algorithms were
implemented from ESA’s AATSR-LIB brightness temperature data using a finer resolution lake
mask in order to minimize the possibility of land contamination (mixed land-water pixels) within the
1 km spatial resolution pixels of the AATSR satellite sensor (i.e. identify pure lake water pixels
located as close as possible to the in-situ water temperature measurement sites). For this purpose, the
Global Lakes and Wetlands Database (GLWD) data (~1 km? resolution) was applied over satellite
images as the lake mask (Lehner and Doell, 2004) when selecting the pixels on each lake for

evaluation.
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More specifically, algorithms presented in Key et al. (1997) and Prata (2002) were applied on the
AATSR-L1B product to derive new AATSR-L2 products (AATSR-L2-PR; PR stands for Prata
Revised and AATSR-L2-NCC; NCC referring to the Norwegian Computing Center), and then
evaluated against SYKE observations for the month of August 2009. The Prata algorithm described
above (Eq. 3.2) was used to derive LSWT for each pixel from top-of-the-atmosphere cloud-free,
calibrated and navigated day and night AATSR-L1B brightness temperatures. Regression coefficients
for LSWT have been developed by analysis of a set of in-situ radiometric measurements made in a
previous study on Lake Tahoe in 1999. The anticipated accuracy of the algorithm is +0.3 °C (Prata,
2002).

In addition to the AATSR-L2-PR, AATSR-L2-NCC was generated following the algorithm
proposed by the Key et al. (1997) for the ATSR sensor (the predecessor of AATSR). For surface
temperature retrieval, Key’s algorithm uses both nadir and forward viewing angles, and is expressed

as follows:

Ts=ag+ boT11nadir + €oT11 forward + Q0T 11 nadir + €0T12 forward 34

where ag, by, ¢g, dy and eg are coefficients derived for different temperature ranges (T1,< 240 K, 240
K < Ty <260 K, T;1 > 260 K) rather than the defined seasons to provide greater flexibility of the
algorithm (ay=-0.56158, bg=2.23152, cy=-0.91817, dy=-0.40756, and ex= 0.09610).

The Key algorithm has previously been implemented by Amlien and Solberg (2003) and Solberg
et al. (2011) as part of a snow processing chain for snow surface temperature retrieval as well as
temperature of melting snow in mountainous areas of southern Norway using ESA’s AATSR-L1B
data. As snow, water and ice have similar emissive properties, the same approach was used for the
retrieval of LSWT. The AATSR-L1B data are geo-corrected and corrected for radiometric drift.
Similar to the generation of the AATSR-L2-PR product, a lake mask was also applied, defining the
regions of surface temperature retrieval. The mask was produced from vector data provided by SYKE
containing all large Finnish lakes. The lake mask was then eroded using a 3 % 3 kernel so that the
lakes in the mask were somewhat smaller than the actual lakes. This was done in order to avoid

evaluating mixed pixels, containing fractions of water and land along shorelines.
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3.2.2 In-situ lake water temperature measurements

There are 187,888 lakes in Finland with a surface area larger than 500 m”. The lakes cover 9 % of the
land surface. SYKE regularly measures lake water temperature at 32 sites on a selection of these
lakes. The water temperature measurements are recorded every morning at 8.00 A.M. local time,
close to shore and at a depth of 0.2 m below the water surface. In this study, 22 observation sites were
utilized. The selection of sites was based on the location of in-situ measurements to be compared with
the satellite-derived LSWT pixel values. The measurements from SYKE are either made
automatically (13 stations) or manually and are performed only during the open water season (ice-free
conditions) (Rontu et al., 2012). The in-situ lake water temperature observations from SYKE were

also assimilated into HIRLAM experimental model runs in Chapter 4.

3.2.3 Evaluation of satellite-derived LSWT products

The lakes were selected on the basis of their size and the ability to select a pure pixel (1 km by 1 km)
from the satellite images. Pixels were chosen manually over each lake considering only lake water
and to avoid land contamination. Since most of the in-situ measurements are made close to the shore,
it was not possible to select pixels at exactly the same location as the SYKE measurements.
Therefore, it is expected that a systematic error will result from the comparison between the satellite-
derived LSWT observations (middle of the lake) and the in-situ water temperatures (closer to shore,

which is warmer than middle of the lake in early spring and colder in autumn).

The Mean Bias Error (MBE), Root Mean Squared Error (RMSE), and Standard Deviation (SD)
were calculated from the comparison of the satellite-derived LSWT from MODIS and AATSR and
in-situ water temperature measurements from SYKE for the various time periods and sites described
in the previous section. Before discussing the evaluation results, a few general remarks are needed
with regards to the accuracy of the in-situ and the satellite observations.

1. The LSWT values within each satellite pixel represent an average value over a 1-km’
area while the in-situ water temperature measurements are limited spatially (i.e. point
observations).

2. The in-situ measurements were usually taken close to shore or sometimes on a river
channel connected to the lake (see the location of in-situ and satellite pixels in Figure

3.2). The MODIS and AATSR pixels were chosen as close as possible to the location
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of SYKE observations, but far enough to prevent land contamination. Therefore, the
satellite pixels and in-situ measurements are not from the exact same location.

3. The in-situ measurements represent the lake water temperature taken at 0.2 m below
the water surface. The satellite observations, however, provide a “skin” temperature
of the lake water surface. Since the outgoing and incoming long-wave radiation as
well as sensible and latent heat fluxes add or remove heat directly from the top few
microns of the lake surface, the water temperature across the sub-layer (~2 mm) tends
to be colder than the bulk temperature.

4. SYKE lake water temperature measurements are made every morning at 8.00 A.M.
local time, which is not the exact time as the satellite overpasses over the studied

lakes.

(@)
Satellite pixel location

Temperature (°C)
MODIS-Terra/Aqua LWST

Paijanne lake_19 August, 2010
B 13.2-15.9

[ 15.9 -16.2

[ 116.2-17.4

[ 17.04 -17.9

179 -19.3

Figure 3.2 Map showing combined MODIS-Aqua/Terra LSWT of Lake Péijinne (August 19,
2010) and the location of MODIS and SYKE observations used for comparison.
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3.3 Results

3.3.1 Comparison between MODIS UW-L3 product and in-situ measurements

The quality of the daily averaged UW-L3 MODIS LSWT product was evaluated against SYKE
temperature recordings for 22 lakes over the open water season from 2007 to 2011. The MBE, RMSE
and the number of observations (n) for each site are summarized in Table 3.1. The MBE values for all
22 lakes show a minimum of -0.25 °C for Lake Tussu and maximum of -1.87 °C for Lake Inari, and
the RMSE cover the range of 1.98 to 2.39 °C for Lake Konnevesi and Lake Pielinen, respectively. A
temperature map produced from the combination of MODIS-Aqua/Terra data on August 19, 2010 and
the time series of LSWT from MODIS and SYKE data for Lake Péijdnne (2007-2010) are shown in
Figures 3.2 and 3.3, respectively, as an example of one site. Lake Pédijinne was chosen to show a case
when the location of the in-situ measurement and the satellite pixel selected are not close to each
other (Figure 3.2). On August 19, 2010, Lake Piijanne had a mean LSWT of 16.2 °C (LSWT, =
13.2 °C and LSWTux = 19.3 °C) as retrieved from MODIS-Aqua/Terra, over the entire lake. The
selected pixel (61.613 N, 25.282 E) from MODIS on the same day had a temperature value of 16.8
°C, which was recorded to be 20.1 °C by SYKE. Due to the same limitation, Lake Péijinne and Lake
Inari, both have the largest MBE of -1.84 °C and -1.87 °C (SD = 1.46 °C and 1.36 °C), respectively
(Table 3.1).
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Figure 3.3 Time-series of MODIS-Aqua/Terra LSWT (blue) versus SYKE (red) at Lake
Piijanne during open water season (2007-2011).

Figure 3.4 shows a scatterplot of the MODIS-derived LSWT and in-situ measurements along a 1:1

relation line for all 22 sites during open water season. The MBE is -1.13 and RMSE 2.17 °C for 8,135
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observations available for comparison (Figure 3.4). Results from the analysis of all lake sites reveal
that MODIS LSWT observations are on average colder than the in-situ measurements with a negative

bias (MODIS minus in-situ).
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Figure 3.4 Scatter plot of MODIS-Aqua/Terra LSWT in comparison with SYKE water

temperature data for all 22 Finish lakes during (2007-2011).

3.3.2 Comparison between MODIS UW-L3 and ESA AATSR-L2 products relative to in-

situ measurements

Daily averaged MODIS UW-L3 and AATSR-L2 LSWT products were both evaluated against in-situ
measurements and contrasted between each other during the open water season for three years.
MODIS LSWT observations were selected for 11 lakes for which AATSR-L2 data were also
available during an overlapping period (2007-2009) (see Figure 3.5). MODIS provided 2,733 LSWT
observations in total in contrast to only 569 for the AATSR-L2 product. MODIS provides more
observations than AATSR-L2 since it is onboard of both the Aqua and Terra satellites, and the sensor

covers a larger swath on the Earth’s surface.
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Figure 3.5 Scatter plot of (a) MODIS-Aqua/Terra and (b) AATSR-L2 LSWT in comparison
with SYKE water temperature data for 11 Finish lakes during open water period (2007-2009).

Overall, the MODIS LSWT observations are colder (MBE = -0.93 and RMSE = 2.16 °C) and
AATSR-L2 warmer (MBE = 1.08 and RMSE = 2.28 °C) when evaluated against in-situ
measurements. In Figure 3.5a, most of the paired observations (dots) are located below the 1:1

relation line showing the cold bias of MODIS observations and, in Figure 3.5b, most of the paired
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observations (dots) are located above the line indicating the warm bias of the ESA AATSR-L2

product.

3.3.3 Comparison between AATSR-L2-NCC, AATSR-L2-PR, and ESA AATSR-L2

products relative to in-situ measurements

ESA’s AATSR-L2 product as well as the new products based on the Key (AATSR-L2-NCC) and
Prata (AATSR-L2-PR) algorithms with the finer resolution lake mask were evaluated against SYKE
water temperature measurements during the month of August 2009 for a selection of nine lakes, when
overlapping data were available for all three sets of satellite products (Figure 3.6). LSWT products
generated from both the Key and Prata algorithms provide comparable results when evaluated against
SYKE water temperature measurements with MBE (RMSE) of 0.78 (3.69) °C and -0.11 (2.91) °C,
respectively (Figure 3.6). A MBE of 3.18 (RMSE= 5.25) °C was calculated for the AATSR-L2
product over the same time period and number of lake sites. The evaluation results show small biases
for both the Prata and Key algorithms when compared to in-situ observations, in contrast to the larger

positive bias of the original AATSR-L2 product (Figure 3.6).

3.4 Discussion

Results reveal a good agreement between daily-averaged UW-L3 MODIS-Aqua/Terra data and in-
situ observations for the 22 lakes examined with an overall average bias of ~ -1 “C. The UW-L3
MODIS-Aqua/Terra and ESA’s AATSR-L2 products were also compared for a selection of 11 lakes
for an overlapping time period (2007-2009). AATSR-L2 showed a positive MBE of 1.08 °C (SD =2
°C) over these lakes most likely due to the utilization of a coarse spatial resolution land cover type
map (0.5° x 0.5°). Because of this, entire lakes or lake sections may not be classified into the proper
land cover type in ESA’s AATSR-L2 product (Noyes et al., 2006; 2007). Open-water lake
temperatures are colder than that of land usually from the beginning of April until August at high

latitudes. Water has a higher heat capacity than land and therefore requires more energy to heat up
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Figure 3.6 Comparison between AATSR-derived LSWT (AATSR-L2, AATSR-L2-NCC and
AATSR-L2-PR products; see text for details) and SYKE in-situ water temperature
measurements for nine lakes during open water season of August 2009.

and cool down. Therefore, mix of land and lake in each pixel can result in warmer temperatures
within each 1 km % 1 km pixel of the AATSR-L2 product. In addition, MODIS LSWT values were
derived using daytime and nighttime acquisitions from Aqua and Terra, while AATSR LSWT
observations were available mostly at daytime. This also provides a further explanation for the
different biases calculated for the two LSWT products.

In order to produce a more accurate AATSR dataset, in which land contamination effects would be
minimized, the two new algorithms (Key and Prata algorithms described earlier) were applied along
with the GLWD lake mask with the objective of improving the accuracy of LSWT product from
AATSR. The newly developed AATSR products as well as ESA’s original L2 product were evaluated
against in-situ measurements during August 2009, when overlapping data were available. The new
AATSR products provide comparable results with MBE of 0.78 °C (SD = 3.61 °C) and MBE of -0.11
(SD =2.91 °C), with implementation of the Key and Prata algorithms, respectively.

In a previous study, Kheyrollah Pour et al. (2012) compared the UW-L3 MODIS-Aqua/Terra
product against LSWT (open water season) and LIST (ice season) simulated with two 1-D lake
models for two large Canadian lakes, Great Bear and Great Slave lakes. The authors found a mean

bias of magnitude (~ -1 °C) as the one from this study. Crosman and Horel (2009) also reported a bias
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of -1.5°C when comparing MODIS-Terra L2 (combined daytime and nighttime observations) against
in-situ water temperature measurements (at a depth of 0.5 m) from Great Salt Lake (Utah, USA).
Smaller biases are expected when comparison is only during daytime or nighttime and when in-situ
observations are of surface water (skin) temperature measured with thermal infrared radiometers (e.g.
Hook et al., 2007; Schneider et al., 2009; Hulley et al., 2011).

Similar to the present study, the limitation of ESA’s AATSR-L2 product over lake regions has
also been recognized by Coll et al. (2009) and Hulley et al. (2011). The authors applied the Prata
algorithm to AATSR-L1B data acquired over Lake Tahoe (California/Nevada, USA). Coll et al.
(2009) calculated a bias of -0.178 K during July-December 2002 and July 2003 for day and night
observations, while Hulley at al. (2011) reported a mean bias of -0.326 K for the period 2000-2010.
The biases reported in these two studies are close to the bias of -0.11 °C calculated herein, which also
used the Prata algorithm to generate a new AATSR-L2 product (i.e. AATSR-L2-PR).

The lakes selected for evaluation of the satellite-based LSWT products in this study ranged in
depth between 3 and 22 m. No particular relationship was found between the mean depth and the
magnitude of the biases calculated for the different lakes (R =-0.116 and p-value = 0.607). The could
be due to the location of in-situ measurement sites, which are always located in the shallow section of
the lakes, compared to the 1 km” satellite pixels that needed to be selected further from the shore to
avoid possible land contamination. However, in some instances, the large distance between the
location of in-situ observations and satellite pixels can affect the statistics. Lake Pdijanne and Inari
are two examples that showed larger biases (MBE = -1.84 and SD = 1.46 °C and MBE = -1.87 and
SD = 1.36 °C, respectively) due to the large differences between in-situ and pixel locations.
Evaluation of the satellite products using in-situ surface water temperature measurements collected by
buoys at the same location as the satellite pixels, further from shore, would provide a closer
correspondence (smaller bias) between the two sets of observations.

In addition to lake depth, the shape of the lakes of this study may also have had an impact on the
accuracy of the retrieved LSWT when selecting the satellite pixels. Most of the lakes in Finland tend
to be irregular in shape. They have arisen during post-glacial times and were formed mostly during
glacier movement and scraped of rocks and soils (e.g. Tikkanen 2002; Hakala, 2004). Lake Piijéanne
is an example of a very irregular lake (MBE = -1.84 and RMSE = 2.35 °C for MODIS versus in-situ).
Lake Pyhédjérvi, on the other hand, is an example of a more regular shaped lake and its bias was less

than 1 °C (MBE of -0.79, RMSE: 2.04 °C and SD = 1.88 °C for MODIS versus in-situ). The shape
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and lakeshore topography are important factors that influence the mixing of lakes (Imboden and
Wiiest, 1995). Some irregular shaped lakes may not undergo complete mixing in the spring or fall if
there is not enough wind action as the irregular shape/lakeshore topography may block the wind and
affect the mixing, resulting in a complex circulation pattern. Moreover, it is more challenging to
select a pure pixel in an irregular shaped lake with many small islands, which could be missed in the

1 km” lake shape files applied over thermal images.

3.5 Conclusion

The accuracy of MODIS UW-L3 and AATSR-L2 products was assessed as a step prior to performing
data assimilation experiments in the HIRLAM NWP model using LSWT as a surface state variable
(Kheyrollah Pour et al., 2014; Kalle Eerola, personal communication, 2014). To create a AATSR
LSWT product that can be used with greater confidence in HIRLAM analysis, algorithms presented
by Key et al. (1997) and Prata (2002) were applied to AATSR-L1B brightness temperature data,
which had the effect of reducing the LSWT biases to 0.79 °C and -0.11 °C, respectively. Based on the
results presented in this study, the MODIS UW-L3 and the improved AATSR-L2 (Key algorithm)
products were selected for integration into HIRLAM analysis using the OI data assimilation method
in Chapter 4. During the data assimilation process, the statistical properties of the observational error
are taken into account in the interpolation as well as in the preceding quality control of observations.
During these experiments, all lake observations were assumed to have similar statistical properties.
The assumed observational error standard deviation was set to 1.5 °C for both in-situ and remotely
sensed LSWT observations. Observations were used to correct the background provided by FLake
model or by previous analysis in HIRLAM. The quality control of the observations is performed prior
to the actual analysis in two consequent phases: first observations are tested against the background,
and then each observation is compared to the surrounding observations (see Chapter 4).

The satellite products evaluated in this research are a promising source of LSWT data for the
description of lake surface state in HIRLAM and are expected to improve the NWP results as they
can provide frequent surface temperature measurements of many lakes over large geographical areas.
The ESA’s Sentinel-3 with two satellites (first Sentinel-3A is expected to be launched in 2015,
followed by the second one, Sentinel-3B, ~18 months after), in addition to the two MODIS sensors

already in orbit, should generate increased interest in the assimilation of satellite-derived LSWT
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products in operational NWP models. However, cloud cover is known to significantly impact its full
utilization in NWP models. In this study, we took advantage of the short time interval between
MODIS-Aqua and Terra acquisitions by combining them together and therefore increasing the
number of observations. Further studies are still needed to assess the quality of the cloud cover masks
used in the satellite retrieval algorithms (e.g. errors due to undetected thin clouds). In the present
study, the outliers of LSWT due to the presence of undetected cloud cover were removed from the
database by monitoring the error and quality control values calculated in each pixel. However, more
robust algorithms are needed in order to improve the quality of cloud cover masks from MODIS,

AATSR and future satellite missions.
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Chapter 4
Impact of satellite-based lake surface observations on the initial
state of HIRLAM- Analysis of lake surface temperature and ice

cover

4.1 Introduction

The importance of a correct description of the lake surface state in climate (Duguay et al., 2006;
Brown and Duguay, 2010; Samuelsson et al., 2010; Krinner and Boike, 2010; Ngai et al., 2013) and
weather prediction (Niziol, 1987; Niziol et al., 1995, Zhao et al., 2012) is well known. Particularly
during freezing and melting of lakes, the surface radiative and conductive properties as well as latent
and sensible heat released from lakes to the atmosphere change dramatically leading to a completely
different surface energy balance. Recent studies (Eerola et al., 2010; Rontu et al., 2012) have
demonstrated the possibility of improving the description of the lake surface state in a numerical
weather prediction (NWP) model by replacing climatological information with the objective analysis
of observations. A good background for the analysis provided by the prognostic parameterization of
lake temperatures using the Freshwater Lake model (FLake) (Mironov, 2008; Mironov et al., 2010)
was also shown to be important. In fact, lake parameterizations alone seem to lead to (locally)
improved NWP results even without the introduction of Lake Surface Water Temperature (LSWT)
observations (Eerola et al., 2010; Rontu et al., 2012).

However, application of thermodynamic lake parameterizations in NWP has its limitations. A
prognostic lake parameterization encounters difficulties over lakes with poorly defined properties due
to the complex geometry or complex topography around the lake. These are often poorly resolved by
the NWP model; even if the parameterizations are able to treat the lake physical processes correctly
(Semmler et al., 2012; Manrique-Sufién et al., 2013; Yang et al., 2013). The thermodynamic lake
parameterizations work independently under each grid-box (column), thus not taking into account
horizontal exchange on or in the lakes. Thus they are not able to handle, for example, the small-scale
inhomogeneity or drifting ice on the large lakes. Objective analysis of remote-sensing observations

could help the NWP model to treat the horizontal variability over lakes.
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A possibly improved description of the initial state of the lakes is expected to lead to an improved
weather forecast, if there is a real connection between the analyzed (based on observations) and
predicted (seen by the atmospheric model) state of lakes. However, in present NWP models, a
prognostic lake temperature parameterization is applied independently from the analysis (Rontu et al.,
2012). To our knowledge, results of the first studies aimed at bridging the gap between the analyzed
and predicted state of lakes in NWP models by using the methods of Extended Kalman Filter
(Kurzeneva, 2014) and nudging (Mironov, 2012, personal communication), have been only recently
reported (e.g. in the third workshop on “Parameterization of Lakes in Numerical Weather Prediction
and Climate Modelling”, http://netfam.fmi.fi/Lakel2). Application of these methods requires, in
addition to a good thermodynamic lake parameterization, that the observations on lake surface state
are first interpolated to the NWP model grid. Hence the objective analysis of LSWT is their starting

point.

The aim of this paper is to determine if the inclusion of remote-sensing observations on LSWT can
improve the analysis of lake surface state in a NWP model, compared to the description based on the
thermodynamic lake parameterization alone. By the analyzed lake surface state (analysis, objective
analysis), we mean here the description of LSWT and fractional ice cover over lakes at the time when
each forecast cycle by the NWP model starts. This analysis results from application of a specialisation
method such as Optimal Interpolation (OI, based on Gandin (1965)) to the observed variables over
lakes. We report results from data assimilation experiments performed with the three-dimensional
NWP model HIRLAM (High Resolution Limited Area Model), (Undén et al., 2002; Eerola et al.,
2013) run over a northern European domain for two winters (2010-2011 and 2011-2012). Our main
attention is placed on the objective analysis of the lake surface state in winter-time conditions, over

freezing and melting lakes.

Our experiments focus on the use of remote-sensing observations on lakes (>6 km?) and the ways
they can be introduced in the analysis. The influence of larger lakes on weather is expected to be
larger than that of a multitude of smaller lakes. On the smaller lakes, there are less space-borne
observations available because the number of pixels representative of pure open water or ice is
limited by the surrounding land (i.e. by the within-pixel land surface contamination). We included in
the HIRLAM analysis archived Moderate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Along-Track Scanning Radiometer (AATSR) LSWT observations, provided by the
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Terra/Aqua and ENVISAT satellites, and also used MERIS ice cover observations from ENVISAT
for evaluation. We compared the result of pure prognostic parameterizations to the analysis based on
in-situ and space-borne LSWT observations. For validation, we used additional independent satellite
observations of LSWT and lake ice cover, as well as in-situ visual observations of freeze-up and
break-up dates of selected lakes. We discuss in detail the maps and time-series of observed, analyzed
and predicted LSWT and fractional ice cover, obtained in the different experiments, in order to
understand the differences and sensitivities. In the conclusions and outlook section, we discuss the
perspectives and practical aspects of further usage of space-borne lake observations in operational

NWP.

This chapter focused on improving the objective analysis of lake surface state in HIRLAM. The
previous chapter (Chapter 3) documents the processing and evaluation of remote-sensing observations
applied herein for the LSWT analysis. Our study is an extension of the work reported by (Eerola et
al., 2010) and (Rontu et al., 2012). The main differences compared to these earlier studies lie in the

extended usage of remote-sensing observations and exclusion of climatological data in the analysis.

4.2 Observations

In this study, in-situ and remote-sensing observations on lake surface state are introduced into the
surface data assimilation system and used for comparison and validation. Table 4.1 summarizes the

different observation types and their usage, discussed in this section.

4.2.1 Satellite LSWT observations

Satellite thermal infrared sensors offer a global coverage and high temporal resolution of lake
temperature observations (shown in Chapter 3). This represents a significant advantage over in-situ
observing systems that provide point measurements, often only close to the shoreline. In the present
study, 70 pre-defined pixels were selected over 41 northern lakes (Figure 4.1, large image, black
dots). The selection of a limited number of pixels, instead of using all available 1 km x 1 km
resolution data, is a limitation which was dictated by practical reasons, and will be discussed in the
concluding section. The satellite observations were used at the nearest analysis time within + 3 h

when available, i.e. under cloud-free conditions over each pixel location. A detailed description of the
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satellite observations and of the algorithms applied for extraction and screening can be found in

Chapter 3, only a short summary is given here.

Table 4-1 Summary of observations used in this study.

Variable Source of observation Spatial coverage Temporal coverage Usage
LSWT MODIS (1 km?) 70 pixels (41 lakes) 2010.11.01-2012.05.31 Objective analysis
LSWT AATSR (1 km?) 15 pixels (Lake Ladoga) April 2011 Objective analysis
LSWT FMI Marine Services® Swedish lakes™" Oct.—May, 2010-2012 Objective analysis
Lake water temperature SYKE measured 27 Finnish lakes 2010.11.01-2012.05.31 Objective analysis
Freeze-up/break-up dates SYKE visual observation 27 Finnish lakes 2010.11.01-2012.05.31 Evaluation

Ice fraction MERIS (300 m?) Lake Ladoga April 2011 Evaluation

“FMI Marine Services =partly manual interpolation of remote-sensing and ship observations on SST and properties of ice cover.
Swedish lakes = Vinern, Vittern and Milaren.

LSWT data were derived from the MODIS sensor, which operates on NASA's Terra and Aqua
Earth Observation System (EOS) satellites (http://modis.gsfc.nasa.gov). The LSWT level 3 data,
referred to as UW-L3 here onwards, were generated at the University of Waterloo. These data were
evaluated using ground measurements over lakes in the same study area during the open-water season
(Chapter 3) and over two large Canadian lakes (Kheyrollah Pour et al., 2011). For MODIS
observations, both daytime and night-time Terra and Aqua LSWT observations were selected in order
to maximize the amount of available input data to the analysis. Data from the AATSR, onboard the
European Space Agency (ESA) ENVISAT satellite, were extracted over Lake Ladoga for the same 15
pixels as for MODIS (Figure 4.1, Lake Ladoga image, red squares). Aqua and Terra satellites passed
over our study area daily around 08-10 UTC and 20-01 UTC. AATSR observations were available
06-08 UTC every third day in April 2011.

4.2.2 In-situ lake water temperature observations

Regular in-situ lake water temperature measurements are provided by the Finnish Environment
Institute (Suomen Ympéristokeskus, SYKE). SYKE operates 32 regular lake and river water
temperature measurement sites in Finland. The temperature of the lake water is measured every
morning at 8.00 AM local time, close to shore, at 20 cm below the water surface. The measurements
are either recorded automatically (13 stations) or manually and are performed only during the ice-free
season (Rontu et al., 2012). Measurements from 27 lakes (Figure 4.1, upper left map), which are also

used by the FMI operational HIRLAM, were included in all experiments reported in this study.
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The operational Baltic Sea ice chart (Gronvall and Seind, 2002) produced by FMI’s Marine
Service also provides manually processed, satellite-based observations of water temperature and ice
properties over Swedish lakes Vénern, Vittern and Maélaren. From these, pseudo-observations of
LSWT have been derived since 10 January 2011 for the FMI operational HIRLAM at a few selected

pixels in winter season approximately between 15 October and 15 May each year. In this derivation,

ice fractions are converted to LSWT and ice flag temperatures by applying the inverse of the method

described in section 4.3.3. These data were included in the present experiments when available, but
their influence is not discussed herein.
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Figure 4.1 (a) Location of the MODIS pixels over the northern lakes. Independent lakes are
marked with orange dots. (b) Location of 27 lakes (dark blue polygons) with SYKE
measurement sites in Finland. (c) Detailed view of the selected MODIS and AATSR pixels over
the lakes Ladoga (left) and Onega (right).
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4.2.3 Data for comparison and validation

Historical freeze-up and break-up dates from SYKE for most of the 27 Finnish lakes (Figure 4.1)
were used for comparison with MODIS observations and HIRLAM analysis results. These freeze-up
and break-up dates are based on visual observations from shore and represent the complete freezing
and melting in small lakes. For the large lakes, separate freeze-up and break-up dates for the central
open waters and coastal areas may be given by SYKE. Among the lakes discussed in this study, this
is the case only for Lake Inari, where we used central open water dates. The visual observations are
made independently of the water temperature measurements. These observations are made over a

larger number of lakes in Finland than was used here, thus available for further studies.

MODIS UW-L3 LSWT observations were prepared but withheld from the HIRLAM analysis, in
order to be used as independent data for comparison over Lakes Bolmen and Hjidlmaren in Sweden
and Lakes Valday and Kuito in Russia (orange dots in Figure 4.1, coordinates shown in Table 4.3).
MERIS-derived ice fraction observations for Lake Ladoga were utilized in this study for the month of
April 2011. The ice fraction data were produced by the Norwegian Computer Center as part of the
European Space Agency's (ESA) North Hydrology project (http://env-ic3-vw2k8.uwaterloo.ca:8080).
MERIS was a core instrument of ESA's ENVISAT satellite platform that operated between March
2002 and April 2012.

4.3 Analysis of lake surface state

Over water bodies in HIRLAM surface water temperature observations are treated with OI (Gandin,
1965). The methods of OI analysis of LSWT are based on those applied for sea surface temperature
(SST). We summarize the method briefly here, and present in the conclusions our findings concerning

the needs of its further development.

4.3.1 Ol of LSWT

OI analysis, integrated into the framework of HIRLAM, is applied for SST (Undén et al., 2002). More
recently, the same method has been extended for the analysis of LSWT (Eerola et al., 2010, Rontu et
al., 2012). In the near-surface analysis of HIRLAM, OI is applied to spread the information from

irregularly located observations to regularly located grid-points for the initialization of the next
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forecast cycle. This is done by correcting the background field with observations. For lakes, the
background can be provided either by the previous analysis or by a short forecast. In the latter case,
the background LSWT is derived from the surface temperature forecast by the lake model (FLake),
which is incorporated in HIRLAM as a parameterization scheme. Here, the evolving three-
dimensional state of the atmosphere also influences the predicted state of lakes and hence the
background for the LSWT analysis. A good background is especially important over lakes where

observations are sparse or not available at all.

The analysis at a grid-point k is determined by a linear combination of the observed departures

from the background

ap= b+ ZLiwi i — b)) 4l
where aj is the analysis, b, the background and wy; are the weights given to observations i =

1, ..., N, y; the observations and b; the background values interpolated to the observation points.

Derivation of the weights relies on the assumption that observation and background errors are
uncorrelated. In OI, the weights wy; in Eq. 4.1 are determined by inverting a matrix which represents
the background and observation error covariances (Daley, 1991). For the SST and LSWT analysis
applied in HIRLAM, the background error covariance, which to a large extent determines the
resulting analysis, is treated by modelling the autocorrelation and standard deviation of the
background error separately. A Gaussian autocorrelation function is applied, which depends on

distance

9(p) = e™05"/Li 42

where g(p) is the autocorrelation function, p is the distance and Lyis a horizontal length scale (Ly =
80 km). So g(p) depends only on distance between the points. The observation and background error
variances, which enter the diagonal of the matrix, are assigned prescribed constant values (we

assumed a standard deviation error 1.5 °C for observations and 1.0°C for the background).

The OI analysis integrated into the NWP model differs from the stand-alone analysis approach, as
applied for SST and LSWT (e.g. by the Operational Sea surface Temperature and sea and lake Ice
Analysis (OSTIA) (Donlon et al., 2012; Fiedler et al., 2014) in two essential aspects. In OSTIA, the
background is always provided by the previous analysis done (e.g. on the previous day), and relaxed

towards the LSWT climatology, which is taken from ARC-lake database (Hook at al., 2012;
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MacCallum and Merchant, 2012). If the observations are missing for a long time or not available at
all over some lakes, climatology gets a large weight. In the case of OSTIA, realistic lake climatology
is available over lakes of the ARC-lake database (ca. 250 lakes worldwide, around 15 over our
present study area). More importantly, no climatology is able to represent the current and near past
atmospheric conditions, which basically determine the current lake temperatures. In our case, it is also
possible to use previous analysis as the background and relax to climatology at each HIRLAM grid-
box, where a fraction of lake is detected. However, in our case, this is even more problematic,
because our LSWT climatology was extrapolated to any lake from SST climatology instead of using
lake climatology, which is unrealistic. This is why we prefer the background provided by the
prognostic lake parameterization, calculated within HIRLAM for each time step at each grid-box

which contains a lake fraction.

Another point is that our OI method works also across the lakes, sometimes interpolating LSWT
observations from nearby lakes if these are close enough to influence. Thus, an analyzed LSWT value
is always available in every lake grid-point of HIRLAM. In this respect, we are again not limited by
the choice of pre-selected large lakes, between which OSTIA can also interpolate. In HIRLAM,
special care is taken not to mix sea and lake observations in the analysis near the sea coast. However,
to fully benefit from the across-lake interpolation possibility, it will be necessary to derive
autocorrelation (structure) functions, depending not only on the horizontal distance but also at least on

the depth and possibly on the elevation differences within and between the lakes.

4.3.2 Quality control

In HIRLAM, quality control (QC) of the observations is performed prior to the actual analysis. QC is
done in two consequent phases: first the observations are tested against the background, then each
observation is compared to the surrounding observations. For the background check, a normalized
difference A; between the observed value and the background value interpolated to the observation

point is calculated as
A= (yi — by)?/ (0} + 0) 4.3
where 03, and g denote the background and observation error standard deviations. If A; is larger than

a prescribed threshold value, the observation is rejected by the background check. The check against

surrounding observations first excludes the observation to be checked, and then performs OI analysis
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to this point by using the nearby observations. The difference between the analyzed and the observed
value, again normalized by the observation and background error standard deviations, is tested against
a prescribed threshold value. It is difficult to choose optimal criteria for this threshold. In order to
retain a maximum number of observations, a quite liberal approach was adopted here: the threshold
was set so that only those LSWT observations which deviated from the background by more than 10

°C were rejected (Eq. 4.3).

4.3.3 Treatment of ice fraction

In HIRLAM, a diagnostic ice fraction is derived from the analyzed LSWT. Thus, neither space-borne
nor in-situ ice concentration, ice thickness, and ice temperature observations are directly analyzed.
The diagnostic ice fraction is estimated in a simple way: we assume that a lake grid-square is fully
ice-covered when LSWT falls below -0.5 °C and fully ice-free when LSWT is above 0 °C. Between
these temperature thresholds, the fraction of ice changes linearly. A range from -0.5 to 0 °C has been
chosen to account for the variability and uncertainty of the analyzed LSWT within the model
resolution. A corresponding ice flag value of -0.6 °C was assigned to LSWT while creating the
background to LSWT analysis in such grid-squares, where the ice thickness predicted by FLake
exceeded a threshold value of 1 mm. An observation ice flag value of -1.2 °C was assigned to all
MODIS surface temperature values below -0.5 °C over lakes. These were assumed to represent full
ice cover in their surroundings. In the case of SYKE observations the ice flag value was given to all
measurements showing 0 °C water temperature. If we had instead assigned LSWT observations a
missing value under the observed ice, we would have excluded from the analysis all observations
representing ice conditions, thus letting the background (FLake or previous analysis) alone to
determine. In the melting and freezing conditions, removal of all information about ice would give
more weight to the water observations and most probably lead to incorrect spread of open water

information into the near-by ice-covered part of the lake.

This kind of procedure, which was inherited from the SST analysis and sea ice diagnostics,
represents a simplified but non-physical way of handling ice concentration. Here a single variable,
namely LSWT, is taken to represent in the analysis both itself, i.e. the water temperature, and another
variable, ice cover. This is why the LSWT flag values enter the OI analysis and QC together with the
real observations. However, the choice of the ice concentration versus LSWT range and the flag
values is rather arbitrary. The sensitivity of the resulting LSWT and ice cover to these choices should

49



be systematically studied. The eventual solution of the problem could be found in assimilation of the
observed and predicted physical properties of ice, such as ice thickness (see Section 4.6 for

discussion).

4.4 Description of the analysis-forecast system and setup of

experiments

All our experiments were run in the framework of HIRLAM version 7.4 (www.hirlam.org). This

HIRLAM version incorporates fully integrated FLake model, applied as a parameterization scheme
for prediction of lake water, ice and snow temperatures and ice thickness and snow depth over lakes
(Rontu et al., 2012). We used a model setup with a horizontal resolution of 6.8 km over a northern
Europe experimental domain (Figure 4.1) with 65 levels in vertical between the surface and the 10
hPa level in the atmosphere. Four data assimilation-forecast cycles were run every day, starting at 00,
06, 12 and 18 UTC. For the upper-air data assimilation, three-dimensional variational method was
used. The lateral boundary conditions for the atmospheric model were provided by the fields of the

European Centre for Medium-Range Weather Forecasts (ECMWF) analysis.

Three initial sets of experiments were designed to study the impact of assimilated remote-sensing
LSWT observations over the major northern European lakes (Table 4.2). In the baseline experiment
TRULAK (SYKE water temperature observations, FLake parameterizations), the prognostic lake
parameterizations inside the forecast model provided the background for the LSWT analysis. This
follows the setup of the reference HIRLAM used for the FMI operational NWP. No satellite
observations were used in the baseline experiment, just SYKE in-situ water temperature
measurements over Finland. In the second experiment, called NHFLAK (SYKE water temperature
and MODIS LSWT observations, Flake parameterizations), remote-sensing LSWT observations were
also included. In the last experiment, referred to as NHALAK (SYKE water temperature and MODIS
LSWT observations), LSWT observations were used to correct the background provided by the
previous analysis, which was relaxed towards “ocean-derived” LSWT climatology of the reference
HIRLAM (Rontu et al., 2012). AATSR observations over Lake Ladoga only were included in two
additional short experiments, called NHALAA (AATSR LSWT observations) and NHFLAA
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(AATSR LSWT observations , Flake parameterizations), run for April 2011. SYKE in-situ water

temperature observations from the Finnish lakes were included in all experiments.

For the lake analysis and parameterizations, information about the lake depth and fraction of lake
in each grid-box is needed. Lake depths were obtained from the lake data base for NWP and climate
models (Kourzeneva et al., 2012a). Fraction of lakes was taken from the HIRLAM physiography
description (Undén et al., 2002). The lake fraction was originally derived for HIRLAM using the 1
km resolution Global Land Cover Characteristics (GLCC) data base (Loveland et al., 2000). For the

Table 4-2 Definition of the HIRLAM experiments.

Experiment Period Observations Background
TRULAK 2010.11.01-2012.05.31 SYKE® FLake+6 h®
NHFLAK 2010.11.01-2012.05.31 SYKE®+MODIS" FLake+6 h®
NHALAK 2012.01.01-2012.05.31 SYKE®+MODIS" previous analysis
NHFLAA 2011.04.01-2011.04.30 SYKE®+AATSR! FLake+6 h®
NHALAA 2011.04.01-2011.04.30 SYKE®+AATSR Previous analysis

*SYKE = Measured LSWT over 27 lakes in Finland.

®MODIS =MODIS observations in 70 pixels.

‘FLake+6 h = Freshwater Lake model parameterisations within HIRLAM, 6 h forecast.
YAATSR = AATSR observations over Lake Ladoga only.

very first cycle, prognostic inside-lake variables were initialized with gridded lake climatology
(Kourzeneva et al., 2012b). The very first LSWT analysis was replaced by the reference HIRLAM
LSWT climatology when starting each of the experiment series. Note that these two climatologies are
different - the first is the climatology of Flake prognostic variables, the second has been extrapolated

from SST for LSWT analysis only.

4.5 Results and discussion

4.5.1 Freeze-up and break-up dates

Freeze-up and break-up dates interpreted from SYKE, MODIS, and MERIS observations were
compared with the dates given by HIRLAM experiments for selected representative lakes (Table 4.3).
Lake Lappajarvi is a regular-form, medium-size, and relatively shallow lake located in western
Finland. SYKE water temperature measurements are available for this lake. Lakes Bolmen,

Hjédlmaren, Valday and Kuito whose MODIS observations were excluded from HIRLAM analysis,
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resemble Lake Lappajérvi. Lake Inari in the Finnish Lapland is large, with islands, a complex

coastline and bathymetry, and is also represented in HIRLAM analysis by SYKE water temperature

observations. Over the large, deep and open Lakes Ladoga and Vinern the break-up and freeze-up

processes progress differently than over smaller lakes: ice forms, cracks and drifts depending on the

wind speed and direction. However, for simplicity, only one point is chosen to illustrate the surface

state of these lakes here. Coordinates of the chosen locations and the mean depth of lakes are shown

Table 4.3. A few preliminary remarks related to the accuracy of the dates are necessary before

discussion:

SYKE freeze-up and break-up dates: These dates are based on visual ground-based
observations, which are independent of the SYKE water temperature measurements used
by the HIRLAM analysis.

MODIS dates: Especially during the freezing period, which is often cloudy and dark, the
MODIS observations over a chosen location may be missing for several days, even
weeks. During the freezing and melting periods, MODIS LSWT may oscillate from one
measurement to another by several degrees, sometimes jumping to both sides of zero.
Some subjective reasoning was applied when determining the dates from this
information.

HIRLAM dates: In Table 4.3, the dates are shown based on the OI analysis of HIRLAM,
which used either the prognostic temperatures from FLake (experiments NHFLAK and
TRULAK) or the previous analysis (experiment NHALAK) as background. For various
reasons, the analyzed temperature also has a tendency to oscillate between analysis
cycles, which during the freezing and melting periods may lead to oscillation of the ice
fraction. Thus, here again some subjective reasoning was needed to determine the
freezing and melting dates. In some cases, a transition period up to three weeks is shown
to indicate the uncertainty related to this oscillation.

MERIS ice fraction: Data were prepared for comparison in 2011 for Lake Ladoga.
MERIS-derived ice fraction information was obtained from pixels, each representing an

area of 300 m x 300 m.

SYKE and MODIS freeze-up and break-up dates were first compared over two Finnish lakes,
Lake Lappajarvi and Lake Inari. During lake melt, SYKE and MODIS dates differed from each other
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by less than ten days. During freezing, the difference could be several weeks. It is possible that the
MODIS LSWT observations on selected 1 km x 1 km pixels may indicate melting or freezing before
the SYKE observer determines that the whole lake is unfrozen or frozen. To avoid this error, MODIS
visible images (bands 7, 2, and 1) were used to make sure that the chosen pixel values represented
correctly the whole lake area. The difference between SYKE and MODIS freeze-up and break-up
dates, shown in Table 4.3 for Lake Inari and Lake Lappajérvi, was similar over the other Finnish
lakes (not shown). The uncertainty of a lake melting date, derived from MODIS by a couple of weeks
compared to the in-situ data could be due to the visual in-situ observation as the observer cannot
monitor the whole area of the lake from the lake shoreline. The uncertainty of the freezing dates could

be up to one month.

Over Lake Ladoga, no SYKE freeze-up and break-up dates observations were available to be
compared with MODIS. Melting dates interpreted from MERIS measurements in spring 2011 over
Lake Ladoga (shown for pixel 9 in Table 4.3, see Figure 4.1 for the map), seem to agree with the
dates interpreted from MODIS LSWT measurements. Thermal satellite observations from AATSR-
L1B are used to develop MERIS lake ice products to detect cloud cover, therefore both MERIS ice
cover and MODIS temperature observations represent the surface only under clear-sky conditions.

This limits the accuracy of the dates derived from these measurements in a similar way.

The freezing dates given by the analysis of the experiment NHFLAK (FLake + MODIS LSWT +
SYKE water temperature) came in general closer to the observed dates compared to the dates from
experiment TRULAK (in the area of the analysis domain outside Finland, where no SYKE
temperature observations are available, FLake alone was used). In spring, the analyzed melting dates
by both TRULAK and NHFLAK were always earlier than those indicated by MODIS observations at
the selected pixels. The largest differences between melting dates interpreted from HIRLAM analysis
and directly from MODIS observations were more than one month when the analysis was determined
by the Flake background alone. This was the case for TRULAK over all lakes and NHFLAK over the
independent lakes Bolmen, Hjdlmaren, Kuito and Valday. Over the Finnish lakes, SYKE temperature
observations were available only well after melt. Thus, during the melting period, the warm FLake

background dominated over the (sparse) MODIS observations also in NHFLAK.

In cases when the inclusion of MODIS observations to NHFLAK did not change the analyzed
state of lakes significantly, the reasons may have been due to the fact that: 1) MODIS data were
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seldom or not at all available for analysis, 2) the prognostic parameterizations were good and agreed
with MODIS, or 3) the difference between MODIS and Flake was so large that the observations were
rejected by the quality control while comparing the background and observations. Rejections were,
however, uncommon in autumn and when the lakes were frozen (between the dates shown in Table
4.3), but became more frequent at the end of May with rising lake water temperatures after the ice
melt. It is possible that the FLake background dominates in the analysis over the large lakes because
the information brought by the selected MODIS pixels is simply insufficient there (see also Section
4.5.2).

The NHALAK experiment combined SYKE water temperature and MODIS LSWT observations
with the background given by the previous analysis, which had been relaxed towards the LWST
climatology. This experiment, which was run only for January-May 2012, followed the observations
more closely than the prognostic experiments TRULAK and NHFLAK, but only when observations
were available on the lake or close to it (i.e. when the effect of background field was small).
Elsewhere, the analysis tended towards the (wrong ocean-derived) climatology, possibly resulting in a
completely useless description of lake surface state [not shown in Table 4.3, see an example in Rontu
et al. (2012)]. Over Lakes Lappajarvi and Inari, NHALAK improved the analysis so that the melting
dates became closer to the SYKE temperature observation. Over Lakes Ladoga and Vénern, the dates
became closer to the MODIS observations. In spring, interpretation of the point values over the large
lakes may be affected by the uneven melting and drifting ice. The NHALAK melting dates over the
selected lakes seem to agree with MODIS observations within about one week. The agreement is
better than in the case of NHFLAK, whose analysis was dominated by the FLake parameterizations.
Freezing dates from NHALAK were available only over a few lakes because this experiment was

started in the middle of winter.

4.5.2 April 2011 comparison

For visual comparison of the full-resolution satellite observations with the NWP analysis during melt,
MODIS (daytime and nighttime) and AATSR (morning) LSWT, as well as MERIS ice fraction on 12
April 2011 were mapped (Figure 4.2) and compared with the HIRLAM analysis and background by
experiments NHFLAK and NHFLAA (Figure 4.3). In April, the ice cover on Lake Ladoga started to
break, which makes comparison of observations and simulations both interesting and challenging due
to the moving ice on the lake.
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Table 4-3 Freezing and melting dates of selected lakes given by observations (SYKE and
MODIS) and analyses by experiments (TRULAK, NHALAK, NHFLAK as defined in
Table 4.2)

Melting 2010 Freezing 2010/11 Melting 2011 Freezing 2011/12 Melting 2012
Lappajirvi, Finland 23.67E 63.14N Mean depth 7 m
SYKE 20100504 20101122 20110503 20111231 20120502
MODIS 20100505 20101105 20110501 20111203 20120429
TRULAK - 20101108 20110418 20111217 20120424
NHFLAK - 20101117 20110421 20111213 20120424
NHALAK - - - - 20120429
Inari, Finland 28.10E 68.87N Mean depth 14 m
SYKE 20100603 20101126 20110603 20111230 20120531
MODIS 20100512 20101106 20110515 20111201 20120527
TRULAK - Before 20101101 20110506 20111121 20120509
NHFLAK - 20101107 20110507 20111125 20120507
NHALAK - - - - 20120526
Ladoga,* Russia 32.50E 60.82N Mean depth 33 m
MODIS 20100513 20110115 20110508 20120125 20120501
MERIS - - 20110509 - -
TRULAK - 20101206-20110111 2011040416 20120123 2012040113
NHFLAK - 20101213-20110101 20110430 20120127 20120428
NHALAK - - - 20120128 20120511
Viinern,” Sweden 13.75E 59.15N Mean depth 50 m
MODIS 20100410 20110206 20110409-0429 Partial ice Partial ice
TRULAK - 20101108 20110410-0430 Almost no ice Almost no ice
NHFLAK - 20101223 20110412 Almost no ice Almost no ice
NHALAK - - - Almost no ice Almost no ice
Bolmen, Sweden 13.69E 56.87N Mean depth 5 m
MODIS 20100409 20101130 20110328 20120115 20120223
TRULAK - 20101127 20110320 20120123 20120312
NHFLAK - 20101127 20110321 20120123 20120312
NHALAK - - - 20120206 20120226
Hjilmaren, Sweden 15.85E 59.24N Mean depth 10 m
MODIS 20100418 20101121 20110414 20110108 20120326
TRULAK - 201011081202 20110408 20120108-0130 20120316
NHFLAK - 20101128 20110404 20120119 20120325
NHALAK - - - 20120203 20120329
Kuito, Russia 31.42E 65.14N Mean depth 19 m
MODIS 20100514 20101115 20110519 20111121 20120513
TRULAK - 20101105 20110425 20111129 20120417
NHFLAK - 20101108 20110427 20111122-29 20120417
NHALAK - - - - 20120516
Valday, Russia 33.31E 57.99N Mean depth 14 m
MODIS 20100507 20101122 20100508 20111122 20120412
TRULAK - 20101127 20110403 20111225 20120327
NHFLAK - 20101202 20110404 20111225 20120329
NHALAK - - - - 20120420

“Ladoga, pixel 9, see Fig. 1 for map.

"Viinern, pixel 4.

MERIS estimation of ice fraction (Figure 4.2b) agrees well with the MODIS visible image (Figure

4.2a), indicating an area consisting of a mixture of ice and water (MERIS: values between 0 and 54%
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ice fraction) in the northeastern part and, to a lesser extent, in the southwestern part of the lake. On
the northeastern part of Ladoga, MODIS daytime observations (between 08 and 10 UTC) show
temperatures just above 0 °C and around 2-3 °C lower at night-time (between 20 and 01 UTC)
(Figures 4.2d and e). The daytime MODIS observations show warmer temperatures compared to
AATSR (Figure 4.2¢). The AATSR observations were available earlier in the morning (06-08 UTC)

than MODIS. Thus the stronger heating of the surface by solar radiation at noon may explain the

difference.
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Figure 4.2 Surface temperature on 12 April 2011: (a) MODIS visible image, light blue
represents snow/ice and dark blue indicate open water area (b) MERIS ice fraction, (¢c) AATSR
surface temperature (between 8 and 10 AM local time), (d) MODIS daytime surface
temperature (between 10 AM and 12 PM local time) and (¢) MODIS nighttime (between 10 PM
and 3 AM local time).

The ice fraction from HIRLAM (Figure 4.3, left column) was derived from the analysis of LSWT
(for the method, see Section 4.3.3), which was based on the combination of MODIS (experiment
NHFLAK) or AATSR (experiment NHFLAA) observations (Figure 4.4) and the background field by
FLake. For comparison, the ice fraction diagnosed from the +6h ice thickness forecast by FLake

parametrization is shown (Figure 4.3, middle column). In this diagnosis, the lake within each grid
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square is assumed to be either completely ice-covered or completely ice-free, i.e. no fractional ice is
assumed. Both the analyzed and predicted ice patterns differ from those of the mid-day and night-
time satellite observations (Figure 4.2). According to the background forecast, Lake Ladoga should
have been almost ice-free during the day, while at night and in the morning the northern part seems
frozen. Similarly, the analysis indicates a frozen lake at night (based on MODIS) and early morning

(based on AATSR) but partially melted during the day.

Three technical comments are needed for understanding the possible reasons of the difference
between the analysis and the satellite observation. First, the horizontal resolutions of the model and
satellites are different: 7 km for HIRLAM (the boxes visible on the maps in Figure 4.3 represent grid
squares), 1 km for MODIS and AATSR, and 300 m for MERIS. Thus we would not expect HIRLAM
to represent all details of the ice cover detected by the satellites. Second, the diagnostic ice fraction of
the HIRLAM analysis is derived from the analyzed LSWT in a very simple ad-hoc way (Section
4.3.3). Consequently, all HIRLAM ice fractions are derived from temperatures between the freezing
temperature and an artificially set lower limit of - 0.5 °C. This is not the same variable as the MERIS
ice fraction, which can represent physically realistic ice properties within its 300 m % 300 m pixels. In
addition, the method involves unphysical ice flag temperatures (see section 4.3.3), which may enter
the analysis together with the real observations, thus adding uncertainty to the resulting analysis.
Third, the LSWT analysis of the HIRLAM experiment NHFLAK over Ladoga is based on a selection
of observed LSWT from a maximum of 15 MODIS or AATSR pixels (see Figures 4.1 and 4.4),
combined with the FLake +6h forecast which is used as the background. This means that over Lake
Ladoga, the largest part of the information from the ca. 30000 theoretically possible MODIS pixels
remains unused in the analysis at the ca. 600 HIRLAM grid-squares, and the result is compared to

~300000 MERIS pixels.

Of the 15 possible MODIS pixels, 14 were available and accepted for the analysis at 00 UTC on
12 April (MODIS observation at 23 UTC, 11 April 2011, Figure 4.4a). They all show the flag value
of ice, assumed for MODIS when the observed LSWT is below -0.5 °C. Twelve hours later, at 12
UTC on 12 April (MODIS observations at 9 and 11 UTC, Figure 4.4b) the analysis input also
included 14 observed values, the most northeastern one (pixel 8) indicating unfrozen conditions and

the other temperatures slightly under the freezing point. AATSR observations assimilated at 06 UTC
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Analysis Background Differences
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Figure 4.3 HIRLAM ice fraction (0-1) on 12 April 2011, diagnosed from LSWT: (a) analysis, (b)
background and (c) their differences. NHFLAK (SYKE, FLake, MODIS) at 00 UTC (upper
panel) and at 12 UTC (middle panel), and NHFLAA (SYKE, MODIS) at 06 UTC (lower panel).
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indicated that the northeastern (pixel 1) and western (pixel 6) areas may have been unfrozen, while

the remaining 15 pixels were frozen (Figure 4.4c¢).

AATSR observations were extracted for the chosen 15 pixels and applied for HIRLAM analysis
on the 5-6 days in April 2011 when they were available. AATSR observations always represent
morning conditions. An example of their influence in the experiments NHFLAA (with FLake

background) and NHALAA (with previous analysis background), as compared to the influence of

(a)

NHFLAK at 00 UTC

(b)

NHFLAK at 12 UTC

NHFLAA at 06 UTC

-0.1

0.0

-1.2]

Figure 4.4 LSWT observations used for HIRLAM analysis over Lake Ladoga on 12 April 2011:
(a) MODIS for NHFLAK (SYKE, FLake, MODIS) at 00 UTC, (b) MODIS for NHFLAK at 12
UTC and (c) AATSR for NHFLAA (SYKE, FLake, AATSR) at 06 UTC.

MODIS observations in the experiments NHFLAK (with FLake background) and NHALAK (with
previous analysis background), is shown in Figure 4.5 for the centre of Lake Ladoga at pixel 7 during
April 2011. The background given by FLake (experiment NHFLAA) and by the previous analysis
(NHALAA), which was relaxed towards climatology, was very different. FLake would indicate
melting during the first week of the month, while the MODIS and AATSR observations pointed to
melting during the last week. Both MODIS and AATSR provided enough observations to modify the
analysis accordingly, so that the analyses indicated melting closer to the end of April. Without
observations and FLake (i.e. relying on climatology only), melting would have occurred after the end

of April.
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Only those days when observations were available are shown in Figure 4.5. When observations are
sparse, the Flake background dominates the analysis outcome. The behaviour of FLake may vary
between individual grid-columns because of their different lake depths. For large lakes such as
Ladoga, an approximate bathymetry is available in HIRLAM (Kourzeneva et al., 2012). However, to
a large extent, the conditions over the lake remain homogeneous, also from the point of view of the
atmospheric forcing. This means that the background for LSWT analysis, given by FLake, also
contains little horizontal variability. In addition, the analysis at each grid-point is influenced by all
nearby observations, whose values and availability may vary in time. Over Lake Ladoga, these nearby
observations consisted of the selected 15 pixels, each of which would have an influence to some

extent over the whole lake, according to Eq. 4.2.

The different behaviour of MODIS observations during day and night contributed to an unrealistic
jumping of the HIRLAM NHFLAK analysis from frozen to unfrozen conditions: during the day
unfrozen conditions prevailed, during the night the lake seemed frozen. This was typical during the
melting period over Lake Ladoga, also over the other lakes (not shown). Jumping of the MODIS
observations between sequential observations is confirmed by Figure 4.5. AATSR may suffer less
from this feature, perhaps because observations at the selected pixels were quite sparse in time but
representing always the similar morning conditions. Also the lake parameterization may contribute to
the unrealistic oscillation across the freezing temperature (e.g., by absorbing solar radiation too

effectively during daytime.)

The reason for the difference between the cold nighttime and warm daytime MODIS lake surface
temperatures remains to be understood. At night, water on ice may refreeze due to long-wave
radiative cooling of the surface. In this case, the MODIS temperature would not represent that of the
lake, but the temperature of the refrozen melt water on ice. One could also speculate on the possibility
of formation of fog during the night over the melting ice. This type of fog, perhaps quite impossible
to distinguish from the underlying surface in the satellite image, would show colder temperature than

the surface, due to the long-wave cooling of the upper boundary of the fog layer.

4.5.3 Melting of Lake Lappajarvi
Features of the OI analysis over a medium size lake are illustrated by an example of the melting of

Lake Lappajarvi in HIRLAM experiments NHFLAK (with FLake background) and NHALAK (with

previous analysis background) in spring 2012. Over Lake Lappajirvi, SYKE temperature
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observations were included in a slightly different location (closer to the shore) than MODIS. Figure
4.6 shows more details of the OI analysis during the melt period at the MODIS and SYKE points of
Lake Lappajérvi.

FLake parameterization in the NHFLAK experiment suggests open water already around 10 April,
while MODIS indicates a complete break-up (water clear of ice) around the first day of May (Figures
4.6b and 4.6d). Analysis of the experiment NHFLAK indicates water clear of ice a few days earlier
(24 April) than that of the experiment NHALAK (28 April) (Figures 4.6b and 4.6a). The visible
MODIS-Aqua images (Figure 4.7) indicate that Lake Lappajarvi is clear of ice on 1 May but still ice-
covered on 25 April. The SYKE observer recorded 2 May as the water clear of ice date for Lake
Lappajarvi (see Table 4.3). SYKE temperature measurements started only on 10 May when the water

temperature had already reached 3 °C (Figures 4.6c and 4.6d).

#Station: 7019 Lad07 Coord: 60.94 31.55 #Station: 7019 Lad07 Coord: 60.94 31.55
277 T 277 B e 48 By e st
ANALYSIS [ | ANALYSIS | |
BACKGROUND + BACKGROUND +
276 a) NHFLAA OBSERVATION — 276 — b) NHFLAK OBSERVATION _
REJECTED REJECTED
275 — 275 — —
+ T
+ T . + +HE
274 - - 274 = 4 N
+ " _ﬁ;lw |
+ = o} Fobth W L+t m [

272

e
T.
".'*
b
i
.
L.

opp Ll v 0 [

277 T L . o o e 277 T T
ANALYSIS M ANALYSIS ]

BACKGROUND  + BACKGROUND  +

276 I €) NHALAA OBSERVATION _ | d) NHALAK OBSERVATION |
REJECTED 276 = REJECTED

275 - 275 |- a

274 - 274 |- a

L
273 = = B 273 [ a5

13
(T
L4
LK
o
i
Ty
o
Ly

PP I R B [ [

Figure 4.5 Analysis (red), background (black) and observation (blue) of LSWT in the grid point
nearest to pixel 7 over central Ladoga during April 2011 in the experiments (a) NHFLAA
(SYKE, FLake, AATSR), (b) NHFLAK (SYKE, FLake, MODIS), (¢) NHALAA (SYKE,
AATSR) and (d) NHALAK (SYKE, MODIS). Only times when MODIS observations were
available are shown. No data are rejected here.
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The analysis of NHALAK followed MODIS observations more closely than that of NHFLAK,
which was influenced by the warmer background suggested by FLake. SYKE temperature
measurements were not available before 10 May, entering the NHALAK analysis only well after the
observed ice break-up. When there were no MODIS observations over Lake Lappajérvi, the previous
analyses that were applied as background in NHALAK would have converged to the climatological
values, which still represented ice-covered conditions. If break-up was interpreted from NHALAK
analyses based on the observations at the SYKE point alone, it would have occurred two weeks later
than when MODIS observations were included. In general, melting of Lake Lappajérvi could be
described realistically due to the MODIS observations both with and without FLake
parameterizations. FLake alone would have led to too early and OI, based only on the (missing)
SYKE water temperature measurements and climatology, to too late melting of this lake in the
HIRLAM analysis. This is because a lake grid-point is assumed to retain its state given by the

background field when there are no observations available to correct it.
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Figure 4.6 Same as in Fig. 5 but over Lake Lappajirvi (15 March _ 31 May 2012) in the
experiments (a) NHALAK (SYKE, MODIS) and (b) NHFLAK (SYKE, FLake, MODIS) for the
selected MODIS pixel (23.70 E, 63.22 N), (¢) NHALAK (SYKE, MODIS) and (d) NHFLAK
(SYKE, FLake, MODIS) for the SYKE measurement point (23.67 E, 63.15 N).

62



The reason of the too-early warming of lakes by FLake (noted also in Section 4.5.2 and in Table
4.3) requires further study. One possible reason may be related to the missing of snow on lake ice. In
these experiments snow parameterization was included in FLake, as in the reference HIRLAM v.7.4,
but in fact snow never accumulated on lake ice in the model. This was due to a technical error that has

lately been corrected.

The rather large variation of MODIS LSWT observations from day to day (Figure 4.6), which may
result from unsuccessful removal of the signals due to high-level clouds during preprocessing of the
data, poses a problem to the quality control within the HIRLAM analysis system. On the other hand,
FLake reached unrealistically high LSWT after the melt of ice on Lake Lappajirvi. Around 25 May,
many MODIS and some SYKE observations were rejected in the background check by the quality
control, which was not correct in this case. Relations between the adjacent observations of different
types (SYKE and MODIS) on the lake and its neighbourhood would require further study. In the
present experiments, all lake observations were assumed to have similar statistical properties. For
example, the assumed observational error standard deviation was set to 1.5 °C for both in-situ and
remote-sensing LSWT observations. This value is supported by the evaluation study in Chapter 3,
where a standard deviation of around 1.8 °C was estimated for the satellite measurements for selected

22 Finnish lakes during open water season when SYKE temperature observations were available.

01/05/12

Figure 4.7 MODIS-Aqua visible images over Lake Lappajirvi on 25 April (left, 8:30-12:10
UTC, light blue color represent snow/ice) and 1 May (right, 9:50-11:30 UTC, black color
represents open water), 2012.
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4.5.4 Validation of analysis over independent lakes

MODIS UW-L3 LSWT observations were derived but withheld from the HIRLAM analysis over four
lakes in Sweden and Russia (see Section 4.2.3). The Russian Lake Kuito and Lake Valday are chosen
for comparison between analyses and observed MODIS LSWT (Figure 4.8). These two lakes were
chosen for illustration because they are located far enough from the nearest lakes included in the
analysis, so that analyses on them are not significantly influenced by the nearby observations. The
results for the Swedish Lake Hjélmaren and Lake Bolmen (not shown) confirm the results presented
here. The analyses of the three main experiments TRULAK, NHFLAK and NHALAK (Table 4.2)
were compared to MODIS observations during January to May 2012 when results from all
experiments were available. MODIS observations with the ice flag -1.2 °C (indicating measured
temperatures below -0.5 °C) were excluded from the set of validation observations. Over these lakes,
the analysis by TRULAK and NHFLAK is interpreted directly from the FLake forecast, thus this
validation measures the quality of FLake, not that of the analysis method. Similarly, as observations

were not applied, validation of NHALAK compares the available climatology to MODIS

observations.
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Figure 4.8 Comparison of LSWT derived by MODIS with LSWT analysed by experiments
NHFLAK (SYKE, FLake, MODIS; red), NHALAK (SYKE, MODIS; blue) and TRULAK
(SYKE, FLake; green) for (a) Lake Valday and (b) Lake Kuito.

We can see in Figure 4.8 that the analyses based on different backgrounds - NHALAK on the
previous analysis relaxed towards climatology, TRULAK and NHFLAK on the 6-hour forecast by

FLake - started to diverge as soon as the observed LSWT clearly rose above the freezing point.
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Typically, NHALAK analyses remained significantly colder than MODIS observations, while
TRULAK and NHFLAK tended to be significantly warmer. According to the applied climatology,
these lakes normally stay ice-covered longer than was observed in spring 2012. Relaxation of the
NHALAK towards such a climatology forced the analyses towards freezing temperatures when no
observations were available to correct the situation. The warm bias of FLake led the analyses
TRULAK and NHFLAK to too high analysed LSWT. This bias has been detected earlier in this study
as well as by Eerola et al. (2010) and Rontu et al. (2012).

4.6 Conclusions and outlook

We have reported the first steps in utilizing satellite-based observations to define the initial state of
lake surfaces in a NWP model. We have applied the HIRLAM surface analysis by introducing new
lake observations. While not focusing on optimization of the analysis methods for LSWT and lake
ice, we did however detect their limitations and provided suggestions for improvements. Many
questions will require further investigation on the road towards a completely integrated lake data

assimilation system for NWP.

In our experiments, we included MODIS and AATSR temperature observations over lakes in
HIRLAM. When temperatures below freezing were detected, LSWT was given an ice-flag value,
otherwise the observation was assumed to represent the measured LSWT. A limited number of 70
MODIS pixels over 41 large- and medium-size Scandinavian, Karelian and Baltic lakes and a sample
of AATSR data over Lake Ladoga were selected for the analysis input. Pre-processing of these data
for the analysis is described in Chapter 3. To understand the sensitivity of the resulting LSWT
analysis to the new data, the analyzed LSWT and diagnosed lake ice concentration were compared
with those by the experiments where space-borne observations were not included. The initial states of
every forecast-analysis cycle of each experiment were validated, mostly qualitatively, against locally
recorded freezing and melting dates of the lakes as well as against independent satellite LSWT and
ice cover observations. Introduction of space-borne observations led to an improvement of the
description of lake surface state, especially during the melt period when in-situ LSWT observations
were not yet available and the prognostic lake parameterizations suffered of a significant warm bias.

During the freezing period, when the sun was low and weather typically cloudy, only few thermal
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satellite data were available. In the conditions of well-mixed lake water, typical of the freezing
period, the Flake prognostic parameterizations also worked reasonably well, making the additional

observations less necessary in autumn.

The background LSWT for the optimal interpolation analysis was provided either by the
prognostic lake parameterizations of the Freshwater Lake model integrated in HIRLAM, or by the
previous analysis backed up by climatology. FLake provides background for the LSWT analysis at
every HIRLAM grid-point containing a lake fraction. In the case of sparse and missing observations,
this ensures on average a better result than an analysis that uses the previous analysis as background,
especially when the lake is frozen and the background relaxes to climatology. However, in cases
where a sufficient quantity of good (satellite-based) observations was regularly available, the analysis
using the previously analyzed LSWT as the background followed observations closer than when the

background LSWT was diagnosed from the predicted FLake lake temperature.

In a case study, MERIS ice fraction over Lake Ladoga was found to qualitatively agree with the
ice fraction derived from the HIRLAM lake temperature analysis. Due to the finer spatial resolution
of MERIS observations, they provided a more detailed picture than the HIRLAM analysis. However,
MERIS is an optical sensor whose data coverage is limited by the presence of clouds. Ice cover
observations derived from passive microwave sensors do not suffer from this problem. However, they
are presently of a coarse spatial resolution (ca 10 km) and would thus only represent large lakes. The
Interactive Multisensor Snow and Ice Mapping System (IMS) product (4 km resolution) could be the
other alternative, which utilizes a variety of multi-sourced datasets such as passive microwave, visible
imagery, operational ice charts and other ancillary data (Helfrich et al., 2007; Ramsay, 1998). IMS
data has been shown to be an effective product for lake ice (Brown and Duguay, 2012; Duguay et al.,

2011, 2012, 2013; Kang et al., 2012) and sea ice (Brown et al., 2014) phenology studies.

In the long term, for a direct assimilation of ice concentration from optical sensors, some
spatialisation methods such as OI should be used. However, solutions for several theoretical and
technical problems need to be found. The error distribution of the ice concentration is probably non-
Gaussian and needs application of specific methods (Lisaeter et al., 2003; Qin et al., 2009; Simon and
Bertino, 2009). For the background, the FLake ice fraction can at the moment only be 0 or 1. This
means that it is only known if the lakes in the grid-box are ice-covered or not. Such information is in

principle qualitative, when defined within the relatively coarse resolution of the NWP model.
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Methods to assimilate qualitative information are poorly developed in NWP. For example, an
algorithm for assimilation of remotely sensed snow extent (Drusch et al., 2004) uses a quite simple
and ad-hoc approach. When utilizing LSWT and ice cover observations together, it will be necessary
to ensure their consistency in the resulting analysis. Experience from simplified methods, where the
observed ice fraction is converted to temperature, which is then treated by the OI algorithm together
with SST (Canadian Meteorological Centre), may also be helpful. In addition to the horizontal
spacialisation, methods to assimilate ice information with respect to the prognostic variables of FLake

(such as ice thickness) should be developed.

Extended application of remote-sensing LSWT measurements is a novel feature in this paper,
compared to the previous studies (Eerola et al., 2010; Rontu et al., 2012). However, significantly
more data, potentially available from satellites, still remain unused with the approach of predefined
pixels over the lakes (70 pixels used in this study versus several tens of thousands pixels covered by
the satellite measurements). By using the fine-resolution land-cover information available in the NWP
model, it is possible to classify if a satellite pixel (with known coordinates) is located over a lake
resolved by the model. Thus, it would be possible to utilize high-resolution near-real time satellite
LSWT/ice cover observations without pre-selection of pixels. Methods to reduce the amount of input
data over large lakes (thinning, screening, creation of super-observations) should be developed and
applied in order to avoid giving too much weight to the large amount of mutually correlated satellite
data compared to possible in-situ measurements, and also in order to keep the amount of input data
reasonable compared to the resolution of the NWP model. Certain preprocessing of these data,
including cloud clearance, identification of missing data, and estimation of the measurement error in

each pixel would be preferable before entering the OI quality control within the model.

Improvement of the operational analysis of remote-sensing LSWT measurements in NWP models
requires development of the optimal interpolation methods. Derivation of the autocorrelation
functions (structure functions), which take into account lake depth and elevation, as well as
calculation of observation error statistics of different measurement types is believed to be important.
Practical questions should be resolved in the future, such as: how to obtain near-real-time daily
observational data of reasonable volume in a universal format; how to introduce more than selected
pixel observations into the analysis; how to improve the quality control before and within the NWP

application. For the operational NWP models, the analysis of the transient surface properties is
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crucial, but handling of the observational data and computations should be highly optimized in order
to allow timely production of the full three-dimensional weather forecast. Input information should be
processed without manual intervention, but well enough to allow only reliable observations to

influence the analysis.

It is worth mentioning that presently, the analyzed state of the lake surface creates no feedback to
the FLake parameterization, which is coupled to the atmospheric model during the forecast run. Thus,
the improved LSWT analysis remains as a possibly useful independent by-product of the NWP
model. In order to really utilize the space-borne and in-situ observations on lake surface state for the
improvement of the weather forecast and prediction of lake temperatures, methods to connect the
analyzed LSWT and ice cover to the prognostic in-lake variables are needed. Such methods for NWP

models are currently under development (Kurzeneva, 2014).

To conclude, it has been learned that space-borne LSWT observations are beneficial for the
description of lake surface state in HIRLAM. Satellite observations provide frequent observations
over large areas. The large spatial coverage of satellite-based data at a high resolution is a major

advantage but also an application challenge when compared to in-situ measurements.
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Chapter 5
Preliminary assessment of lake surface water temperature
statistical properties for objective analysis in a NWP model using

satellite observations

5.1 Introduction

The importance of energy exchange processes between the Earth’s surface and the atmosphere is
increasingly being recognized in weather forecasting. The surface heat, moisture and momentum
fluxes, which provide the coupling between the atmosphere and the Earth’s surface, depend not only
on atmospheric conditions but also on surface characteristics, in which inland water bodies are known
to play an important role on lake-rich areas. The importance of a correct description of inland water
(lake) surface state in climate (Duguay et al. 2006, Brown and Duguay 2010, Krinner and Boike
2010, Samuelsson et al. 2010, Ngai et al. 2013) and weather prediction (Niziol 1987, Niziol et al.
1995, Zhao et al. 2012) models is well known. Particularly during freezing and melting of lakes, the
surface radiative and conductive properties as well as the latent and sensible heat released from lakes
to the atmosphere change dramatically, leading to a completely different surface energy balance. By

affecting the surface fluxes, lakes modify the structure of atmospheric boundary layer.

Lake Surface Water Temperature (LSWT) is a critical variable to measure, assimilate and predict in
numerical weather prediction (NWP) models, because it is directly related to the heat fluxes. The
quality of observation-based lake surface state description (result of the numerical analysis) depends
to a large extent on the availability and selection of the observations influencing each grid-point of a
NWP model. Obtaining reliable observations on lakes in real-time, especially at high latitudes, is
challenging. Satellite-based observations are the only realistic way of getting frequent observations
over large areas. However, various types of satellite observations collected over lakes represent
different scales and have different accuracies, depending on the observing system, and they are
irregularly distributed in space and time. Considering the various sources of information, a number of

necessary processes have to be considered prior to and during assimilation of the observations into the
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NWP model grid. Quality control, filtering systematic errors and interpolation of the observations in
time and space require knowledge of the statistical properties and error characteristics of the

observations and model background.

A correct description of the lake surface state started to be relevant in NWP models when the
horizontal resolution of models became high enough to resolve lakes, even the smaller ones. For
example, in the first implementation - with a horizontal resolution of ca. 50 km - of the High
Resolution Limited Area Model (HIRLAM; Undén et al. 2002), applied since 1990 for the numerical
short-range weather forecast over northern Europe, monthly climatological water surface temperature
was used both over sea (Sea Surface Temperature or SST) and lakes. The LSWT climatology was
achieved by extrapolating the SST values to lakes as no suitable climatological data for lakes were
available. The analysis of SST observations by the method of successive corrections (Cressmann
1959) followed in early 1990s by utilizing pseudo observations created from ECMWF SST analysis
(Chelton 2005). The first improvement to the treatment of LSWT over the Finnish lakes was to use
real lake climatology (Eerola et al. 2010). Daily climatological LSWT pseudo observations were
created for 20 lakes in Finland based on long-term statistics of measurements. The pseudo
observations were applied for the LSWT analysis instead of real observations but using similar
methods as for SST over the sea. To avoid drifting far from realistic values, the background (first
guess) SST and LSWT values, given by the analysis of the previous forecast cycle, were still relaxed
towards the (extrapolated) SST climatology and the statistical properties derived for SST were used
everywhere. In addition, the fractional ice cover over the sea and lakes was diagnosed from SST and

LSWT in the same way.

It was obvious that the SST climatology cannot be used to represent LSWT (Eerola 1996, Eerola
et al. 2010). Instead of the observation-based approach, a prognostic lake parametrization for NWP
and climate models, the Freshwater Lake Model (FLake), was developed (Mironov 2008, Mironov et
al. 2010). FLake was implemented to the HIRLAM forecast model (Kourzeneva et al. 2008, Eerola et
al. 2010) utilizing external data sets on lake depth (Kourzeneva et al. 2012a) and climatology of the
predicted variable (Kourzeneva et al. 2012b). At the same time, in-situ lake water temperature
observations from 27 Finnish lakes were implemented into the operational HIRLAM LSWT analysis
(Eerola et al. 2010, Rontu et al. 2012), based on real-time in-situ measurements by SYKE (Finnish

Environment Institute) and application of the method of optimal interpolation (OI, Gandin 1965).
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FLake now provides the background LSWT for the analysis, but the analysis does not influence the
prognostic FLake. The approach and its limitations have been studied and discussed by Kheyrollah
Pour et al. (2014b) and Kourzeneva (2014).

Work to develop the analysis of LSWT continued also elsewhere. An operational stand-alone
analysis of LSWT was developed at U.K. Met Office for NWP purposes in the Operational Sea
Surface Temperature and Ice Analysis (OSTIA) system (Donlon et al. 2012, Fiedler at al. 2014). The
LSWT observations used in OSTIA are part of Sea Surface Temperature (SST) products from
AATSR and MetOp-AVHRR (Infrared Atmospheric Sounding Interferometer (IASI)). These data are
based on SST retrievals as none of them include lake-specific processing. On the other hand, the
background LSWT for the large lakes (ca. 248 globally) in OSTIA is backed up by lake climatology
(Fiedler et al. 2014).

Numerical methods, which are essential to solve the problem of initial analysis, were developed
by several groups of meteorologists for atmospheric models (Panofsky 1949, Gilchrist and Cressman
1954, Bergthorsson and D66s 1955, Cressman 1959). The Ol (also called as statistical interpolation),
introduced by Eliassen (1954) and Gandin (1965), was applied for the upper air analysis in
operational numerical weather prediction systems (e.g. Lorenc 1981, Hollingsworth and Lonnberg
1986, Lonnberg and Hollingsworth 1986, Daley 1991) until the early 2000s. OI is based on the idea
of minimizing the mean analysis error in the statistical sense. It is still applied for the analysis of the
near-surface variables such as SST, LSWT, soil and screen-level temperature (Thiebaux 1975, Julian
and Thiebaux 1975, Sattler and Huang 2002, Donlon et al. 2012). In NWP models, it is applied both
for the definition of the analyzed value in the grid-point and for the quality control of the
observations. The OI method relies on the knowledge of the statistical properties and error estimates
of the observations and the background (e.g. the short forecast) variables. Structure (autocorrelation)
functions, depending on distance (and possibly on other characteristics) between the observations and
between observations and grid-points, are derived for determination of the weight of individual

observations in the analysis.

In the current version of HIRLAM, the model used in this study, the autocorrelation function used
for LSWT is represented in the form of an exponential function depending on the distance and is the
same as that of SST. The length scale (influence radius) has been set to work properly for SST.

However, this has never been studied for lakes using LSWT observations. The depth of the lake is a
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major factor determining the thermal regime of lakes (Walsh et al. 1998), in addition to size, shape,
and elevation. Therefore, it is of interest to derive and evaluate the impact of function, depending not
only on the horizontal distance but also at least on depth differences, and possibly elevation

differences between lakes.

In this paper, we seek answers to several questions concerning the improvement of the
autocorrelation function used in the analysis of LSWT. Can the current autocorrelation function be
improved using LSWT observations instead of the current assumption based on SST? Can lake depth
differences influence the function beside lake distances? Are LSWT data obtained from thermal
satellite remote sensing sensors appropriate for calculation of the autocorrelation function? How
sensitive is the resulting objective analysis of LSWT in HIRLAM to the choice of autocorrelation
function? To answer these questions, the spatial coherence of LSWT observations derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) for lakes located in Scandinavia and
Karelia was first investigated (Section 3.1). Empirical autocorrelation function were fitted to the
observational data and a new influence radius for The HIRLAM model was approximated (Section
3.2). Simultaneously, the sensitivity of HIRLAM LSWT analysis to the formulation of
autocorrelation function was tested in numerical simulation experiments (Section 4). To our
knowledge, this is the first study of its kind, which could lead to future improvement of LSWT
autocorrelation function not only in HIRLAM system, but also in any other analysis system of

LSWT.

5.2 Data and methods

5.2.1 Autocorrelation function for objective analysis of LSWT by optimal

interpolation

Data assimilation is the process of using all variable information to define as accurately as possible
the initial state of the atmospheric variables. The information contains both observations and model
state. To do this, first guess field or background field provided by the earlier forecast is blended with
the observations. As the background field is produced by the forecast model and therefore is
physically consistent, this helps maintain the dynamical consistency between the analyzed model
variables. In the case when there is no direct connection between observations and background values

or there are no observations available for a grid-box, data assimilation methods give the possibility to
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use information from other meteorological variables. The purpose of data assimilation is to provide
the best possible analysis (initial value) of model variables in grid-points. In the case when there are
no observations available that influence the value in the grid-point, the analysis is the same as the first
guess value. A improved objective analysis result a better forecast, and eventually an improved

background field.

Optimal Interpolation (OI) is one objective analysis procedure that uses weighting factors and
observational errors. The weight of an observation depends on the distance between the observations
and the grid-point and the distance between observations to each other, and the error of each type of
observation is taken into account. The method was introduced into the field of meteorology by
Gandin (1965). In this paper, we are concerned with properties of the statistical information
incorporated into the OI objective analysis in the form of autocorrelation function of the LSWT
variables. This method gives the state of LSWT at a particular time at all model grid-points. The aim
is to deduce the best estimate (analyzed value) from the available data. The analyzed value (f; (7))

can be expressed as:

fard) = fer) + Tica Wi lfo(r) — fer)l,  i=1,..,1 5.1

where f is the value of the surface variable (LSWT) at the analyzed grid-point defined by its radius-
vector 1; (the arrow sign is omitted for simplicity), I is the number of grid-points, fg (1;) is the
background value of f at r;, and fp (1) and fp (1) are the observed and background values,
respectively, at the observation point 1. K is the number of influencing observations and W}, are the
weights given to each observation increment [fy (1) — fg(7%)] in the analysis at the grid-point ;.

Weights are defined as a solution of the following system of linear equation:

Z]I-‘ZI W; u(r]-, )+ Win= u(ryr), k=1,..,K 5.2
where u(r;, 1 )is the normalized autocorrelation function of the analyzed value between points r; and

r; and 1 is the normalized observational error:

n== 53

where oris an observational error and j; is a variance of the analyzed value (LSWT). Therefore, the

autocorrelation function (or the structure function in some notations) is used in OI to calculate the

interpolation weight of different observations.

73



Here, a mathematical definition of the structure function and the autocorrelation function is given

according to Gandin (1965). If ry and r, are two observation points on the surface, then the mean

square difference of f at r; and 1,is defined as the structure function bs(ry,12):

bf(T1.T2) = [f(r1) - f(rz)]z 54
where the bar denotes averaging and the function is considered for deviations of f from its mean

value f which being defined as

fo) = f@) - f@ 5.5
Another important characteristic of the statistical structure of this field is the correlation function,
which is defined as the mean product of the values of two LSWT values at two observation points. If

these two elements are identical, it is called autocorrelation function:

ms(ry,12) = f@ry) f@rz) 5.6
There is a simple relationship between the structure function and the autocorrelation function for

the same elements so that:
bp(ry,12) = mp(ry,11) + mp(ra, 12) — 2mp(ry,73) 5.7
If the field is homogeneous and isotropic, the structure function and autocorrelation functions do

not depend on the location of each observational point ryand 7, but only on distance between them

(p), so we use p onward instead of the pair of ryand r,.
The normalized autocorrelation function s (p) is defined as

my (p) 5.8

us(p) = my )

From Eq. 5.7 we can derive the expression:

bf() = 2mg (0) 5.9
and also:
bs(p) = by () — 2ms (p) 5.10

Consequently, ts(p) can be calculated as:

2my (p) 5.4

#r(P) = )
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5.2.2 Determination of autocorrelation function

The structure function and the autocorrelation function may be calculated from observations. In our
case, the determination of the functions needs a reliable and homogeneous observational network to
determine a distance-dependent function for horizontal distance or differences between depth of lakes
in all available observation points (vertical distance) or both. In this study, the LSWT observations
derived from MODIS sensors are used to calculate the autocorrelation function, not only distance-
dependent but also lake-depth dependent. To calculate the function, LSWT values at 74 observational
points (pixels) are selected over 44 lakes. The calculations are performed for the period covering
summer (June-July-August) 2010-2011 when lakes were free of ice and snow. Data are used at each
observation period successively and the structure function and the autocorrelation function are

determined according to Eq. 5.4 and 5.6.

First, the coordinates of each of the selected pixels are defined and the horizontal distance between
these points (p) is calculated. The value of p is then compared with the limit of the gradations of p, in
order to determine to which gradation the calculated value of p refers. The gradations of p are design
as categories (14 categories) of lakes observational point (lake pairs) within each 100km distances
from 100-1300km and 1300km above due to the low number of lake pairs in the last category. After,
the calculated by (p) and my (p) are recorded for the first and second observation points in this
gradation in each distance categories, the second observation point is replaced by the third

observation point and then the fourth, etc.

As the next step, the normalized autocorrelation function (fif(p)) is calculated. It is essential to
consider the normalized observational error (1) when calculating the autocorrelation function (Eq.
5.3). The normalized autocorrelation function with consideration of normalized observations error is

calculated as follow:

~ us(p)
Br(p) = #nf 5.5

5.2.3 Approximation of LSWT autocorrelation function in HIRLAM

5.2.3.1 Dependence on distance

The HIRLAM system uses a homogeneous anisotropic analytical approximation of the

autocorrelation function (Rodriguez et al. 2002) for SST. Currently, the same function is also used for
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lakes in the HIRLAM forecasting system. It is defined as a Gaussian function representing

dependence on the horizontal distance:

pu(p) = e 050"/t 5.6

where Ly is a horizontal length scale (influence radius). So, u(p) only depends on the distance
between lake pairs. The value for Ly is defined as 80 km, which is a tuning value selected to give
more weights on the near-by observations; however, this follows a pragmatic approach. The same
value for Ly is also applied in HIRLAM for lakes and, to our knowledge, no statistical methods are

used to adjust this value to be relevant for lakes.

In this study, bs (p) and mf (p) are calculated for each lake pair and for each distance categories
from the approach described in section 2.1 using MODIS-derived LSWT observations. Then fif(p) is

calculated from Eq. 5.11 and 5.12 and an exponential function is derived from the regression of

fir(p) values against distance.

5.2.3.2 Dependence on lake depth

The autocorrelation function was examined to understand the influence of lake depth beside distance.
Lake depths are categorized in 10-m intervals (5 categories) from the minimum depth differences (0
m when lake pairs had a similar depth) to the maximum of 50 m. The normalized autocorrelation
function is calculated for each depth category (including distance categories) separately in order to
understand the influence of lake depth in the static intervals. The calculations are performed during
two summers 2010-2011 (JJA). The hypothesis is that the influence decreases from category one
(lake depth differences between 0-10m) to category five (lake depth differences between 40-50m).

5.2.4 Satellite-derived observations

The LSWT observations (UW-L3 dataset described below) are derived from the thermal remote
sensing sensor MODIS aboard the Aqua and Terra satellites. MODIS pixels were extracted from 44
Scandinavian lakes (> 6 km?) of various depths (Figure 5-1). Lakes of dissimilar sizes and shapes
over northern Europe were chosen. The LSWT observations derived from MODIS are at a grid
resolution of 1 km % 1 km. For most of the lakes, one pixel was selected to represent the observation
points; however, for large lakes, more pixels were chosen (e.g. nine pixels for Lake Onega and fifteen

pixels for Lake Ladoga, in Russia).
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Figure 5.1 Location of lakes within the HLRAM domain over northern Europe. The colors
correspond to different lake depth classes (in meters).

MODIS Aqua and Terra Land Surface Temperature and Emissivity (MOD11-L2, collection 5, 1
km) data were acquired from the NASA Land Processes Distributed Active Archive Center (LP
DAAC). These data were produced using the generalized split window approach (Wan and Dozier
1996) and the MODIS sensor radiance data product (MODO021KM), the geolocation product
(MODO03), the atmospheric temperature and water profile (MODO07-L2), the cloud mask (MOD35-
L2), the quarterly land cover (MOD12Q1), and snow product (MOD10-L2) (Wan, 2005).

The MODIS science team generates Land Surface Temperature (LST) and Emissivity data.
MODIS Terra was launched on 18 December 1999 (EOS AM) and MODIS Aqua (EOS PM) on 4
May 2002. They scan the Earth with £55° from Nadir in 36 bands within the thermal infrared (TIR)
in the range of 3 to 15 pm. MODIS-derived LST products (MOD/MYD 11-L2, Collection 5, 1-km)

has been validated using a radiance-based approach in the mid and south US states. The bias of L2
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MODIS LST observations from LST estimates obtained with a radiative transfer model ranged from
—0.8 to 0.1 K, with a general tendency of underestimation of LST values from MODIS (Wan 2008).
MODIS LSWT have been used and evaluated in various studies over lakes using in-situ observations
and the reported accuracy varies between validation methods and the observation periods (Wan et al.
2002, Oesch et al. 2005, Hook et al. 2007, Reinart and Reinhold 2008, Crosman and Horel 2009,
Schneider et al. 2009, Hulley et al. 2011, Liu et al. 2014).

The UW-L3 MODIS dataset has been developed for LSWT (Kheyrollah pour et al. 2012, 2014a)
from both Terra and Aqua satellites (the algorithm’s details can be found in Kheyrollah Pour et al.
2014a). Both day-time and night-time observations are used to maximize the number of observations.
However, there are some limitations using thermal sensors over lakes, especially in late summer and
fall when the lakes are covered by cloud cover and thin clouds may not be detected by the cloud mask
algorithm. Therefore, additional filtering (the negative temperature values are removed as only open
water season was used in this study) is applied to avoid the odd values due to the undetected thin

clouds for this study.

5.3 Result

5.3.1 Statistics of satellite-derived LSWT observations

The histogram of LSWT observations in JJA 2010-2011 is shown in Figure 5-2, upper panel. A
statistical one-sample t-test was applied to determine if data are normally distributed as it is requeied
to estimate a autocorrelation function. It is important to test the normality to prove the homogeneity
of data and ensure that data are not influenced by the annual cycle. The details statistics are
summarized in Table 5-1. Results show that data are normally distributed in summer (statistically
significant at the 0.04 significance level) with a small skewness (= 0.058). In addition, the Q-Q plot
(Figure 5-2, lower panel) shows the validity of the distribution assumption for the data based on mean
and standard deviation of data. As plot shows, points are falling approximately on a straight line,
which supports the normal distribution of the data. As the graph shows, the theoretical distribution fit

and data distribution agree and the points fall near the fit line.
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Figure 5.2 Histogram and normal Q-Q plot of MODIS LSWT observations (°C) for JJA 2010-
2011.
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Table 5-1 Statistics of MODIS LSWT data (°C) in June 2010.

LSTW (*C)-JJA 2010-2011 Statistic | Std. Error
Mean 14.3646 0.23122
95% Confidence Lower Bound 13.9084
Interval for Mean Upper Bound 14.8208
Sig. 0.04
Median 14.1000
Variance 9.837
Std. Deviation 3.13644
Minimum 7.23
Maximum 21.21
Range 13.98
Skewness 0.058 0.179

5.3.2 Estimation of the autocorrelation based on LSWT observations

5.3.2.1 Dependency on distance

The LSWT autocorrelation depending on distance between the measurement points was calculated
first during three months (JJA) of summer 2010 and 2011. The observations were those derived from

MODIS pixels (74 pixels) from 44 lakes. The bs(p) and ms (p) were computed from approach
described in section 2.1 (Eq. 5.4 and 5.6) for all observation pairs in 14 different mentioned

categories (2701 lake pairs for n=74).

The distribution of points in each distance category is shown in Figure 5-3 for both bf (p) and
my (p). After calculating by (p) and my (p) for each lake pair (in each specified distance category)

using MODIS-derived LSWT observations, the normalized autocorrelation function is calculated
from Eq. 5.11 and 5.12 for each lake pair and an exponential function is derived from the regression

of fis(p) values against distance.
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Figure 5.3 The distribution of points in each distance category for (a) the structure function
(bs (p)) and (b) autocorrelation function (m; (p)) and the standard deviations from MODIS
LSWT observations pairs for summer (JJA) 2010-2011.

The normalized autocorrelation function is calculated considering observations error for all lake

pairs for each category shown in Figure 5-4. The function is approximated as:
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Be(p) =e P 5.7
where ¢, is0.001 km™.

In the case of the Gaussian function (Eq. 5.13), the correlation for the zero distance is assumed to
be one (a perfect correlation). Therefore, based on the estimated function (Eq. 5.14), the best
correlation value is calculated for lake pairs with the zero distance (fitting equation in Figure 5-4).
Correlations decrease more rapidly for distances of less than 300 km and are smoother for distances
above 800 km. It verifies that the correlation magnitude of radius influence is high for distances of

less than 300 km and decreases.

To estimate which Ly value in Eq. 5.13 fits best for calculation of autocorrelation relevant for
lakes, Ly is plotted with different values (80, 300, 400 and 500 km) in Figure 5-4, together with the
autocorrelation calculated from LSWT observations and the calculated values from fitting equation.
Based on the results, the candidate radius for the best fit with LSWT observations correlation is
selected between 300-500 km. This range of Ly is estimated from LSWT observations during
summer. To understand the seasonal behavior of the correlation, fig(p) is also calculated during fall
(September-October). The results show that the correlation of LSWT of lake pairs is weaker in
comparison with summer (not shown) suggesting that data were not normally distributed during fall.
As freeze onset on most of the lakes in this region occurs around mid-October, a filter was applied to
remove LSWT below zero degrees, which consequently reduced the number of observations. To
study the sensitivity of Ly in HIRLAM autocorrelation function, two sets of HIRLAM sensitivity

experiments were designed and tested in the next chapter.
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Figure 5.4 The autocorrelations for MODIS LSWT observations pairs for summer (JJA) 2010-
2011 in comparison with the default Gaussian autocorrelation (Eq. 5.13) function with different
assumed length scale.

5.3.2.2 Dependency on lake depth

The lake depth effect is examined in this section with the hypothesis that the correlation of LSWT of
lake pairs decrease when lake depth differences increase. However, the magnitude of the influence of
lake depth on correlations should not be as big as distance. The lake depth differences were
categorized in 10 m intervals from 0 m (when lake pairs have similar depth) to 50 m shown in
different colors in Figure 5-1. Figure 5-5 shows the normalized autocorrelation in all 5 lake depth
categories. The magnitude of the influence of lake depth is significantly less than that of distance;

however, still conspicuous as shown in Figure 5-6.

Lakes with larger depth differences (30-50 m depth differences) correlate less in comparison to
lakes with less depth differences. Figure 5-6 shows that lakes with moderate depth differences (10-30
m depth differences) have a close correlation as lakes with almost the same depth (0-10 m depth
differences); however, their correlation is a bit higher in shorter distances. Result from Figure 5-6

confirmed that the larger is the depth differences, the smaller is the autocorrelation. Conversely the
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magnitude of differences is not absolutely significant especially for lakes with smaller depth

differences (0-30 m), which can be explained by frequency and error of observations.
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Figure 5.5 The -calculated normalized autocorrelation function from MODIS LSWT
observations pairs in 5 different lake categories for summer (JJA) 2010 and 2011.
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Figure 5.6 The normalized autocorrelation function derived from MODIS LSWT observations
in summer (JJA) 2010-2011.

5.4 Sensitivity experiments with HIRLAM

Two sets of HIRLAM sensitivity experiments were designed to test the sensitivity of the LSWT
analysis to the selection of observations and application of 