
Parallelizing quantum circuit synthesis

by

Olivia Di Matteo

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Science
in

Physics - Quantum Information

Waterloo, Ontario, Canada, 2015

c© Olivia Di Matteo 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We present an algorithmic framework for parallel quantum circuit synthesis using meet-in-the-middle
synthesis techniques. We also present two implementations thereof, using both threaded and hybrid
parallelization techniques.

We give examples where applying parallelism offers a speedup on the time of circuit synthesis for 2-
and 3-qubit circuits. We use a threaded algorithm to synthesize 3-qubit circuits with optimal T -count
9, and 11, breaking the previous record of T -count 7. As the estimated runtime of the framework
is inversely proportional to the number of processors, we propose an implementation using hybrid
parallel programming which can take full advantage of a computing cluster’s thousands of cores. This
implementation has the potential to synthesize circuits which were previously deemed impossible due
to the exponential runtime of existing algorithms.

iii

Acknowledgements

I am very grateful to my supervisor Michele Mosca for introducing me to an interesting area of work,
and always being willing to try out new ideas. I also thank my advisory committee members Richard
Cleve, Daniel Gottesman, and Roger Melko for their useful input on my progress, and Vlad Gheorghiu
for reading through this entire thesis and providing very helpful comments.

I am lucky to have been able to consult with many senior (now former) members of our research group.
David Gosset and Vadym Kliuchnikov are indispensable, and I can’t thank them enough for helping
me understand their T -count algorithm, offering suggestions for my implementations, and simply being
around and willing to let me bounce ideas off them. Stacey Jeffery helped get me on the right track
with complexity analysis of my algorithm, in addition to providing company as an office mate.

Conversations with Erik Schnetter about MPI were very helpful while getting started, and ultimately
led to the ideas behind the hybrid parallel scheme of Chapter 6. I also thank Matt Amy, who’s original
meet-in-the-middle algorithm and code served as a starting point for my own implementation. Theo
Belaire and Gary Graham helped sanity check my code when it did strange things.

I’m grateful to my parents for encouraging me to pursue a graduate degree, and Gary for supporting
me throughout and making sure I took time to relax. Friends in the circuit synthesis group, IQC
members, and my office mates Mária and Chunhao were very supportive and provided much-needed
distractions. They also put up with my ramblings, such as “look at this pretty graph!”, “my pro-
gram found a claw!” and “all my computing jobs failed”. I’m lucky to have had my coworkers at
Udacity cheering me on from across the continent; my work there has taught me many useful things
which helped with the writing of this thesis. Finally, I thank my undergraduate supervisor Hubert
de Guise for his excellent mentorship, and for reminding me that a 50-page thesis will only get me 50%.

I acknowledge SHARCNET for use of their computing resources, and conservations with Jemmy Hu
which taught me how to make best use of their machines. Funding for this research was provided by
NSERC, the Department of Physics and Astronomy, and the Institute for Quantum Computing.

iv

Contents

1 Introduction 1
1.1 Quantum compilation . 1
1.2 Quantum circuits . 1

1.2.1 Graphically representing circuits . 1
1.2.2 Paulis, Cliffords, and universal gate sets . 2

1.3 Parallel computing . 3
1.4 Thesis objective . 5

2 Quantum circuit synthesis 6
2.1 An overview of existing algorithms . 6
2.2 Meet-in-the-middle circuit synthesis . 8
2.3 An algorithm for the T -count . 10

2.3.1 Smallest denominator exponents . 10
2.3.2 The channel representation . 11
2.3.3 Coset labels . 11
2.3.4 Finding T -optimal circuit decompositions . 12

3 Parallel collision finding 15
3.1 Overview . 15
3.2 Algorithm details . 15

3.2.1 Collisions and claws . 15
3.2.2 Collision finding . 16
3.2.3 Claw finding . 18

4 Application of parallel framework to circuit synthesis 20
4.1 Framework . 20
4.2 Runtime estimation and algorithm complexity . 21
4.3 Applications and use cases . 21

5 Implementation details and results of threaded algorithm 23
5.1 MITM for optimal T -count circuit synthesis . 23
5.2 Implementation . 24

5.2.1 Language and computer specifications . 24
5.2.2 Special techniques to make the program faster . 24
5.2.3 Program flow . 26

5.3 Results . 30
5.3.1 Timing random parallel code . 30
5.3.2 2-qubit synthesis . 30

v

5.3.2.a Controlled-Hadamard . 30
5.3.2.b Controlled-phase . 32
5.3.2.c Varying the T -count . 32

5.3.3 3-qubit synthesis . 33
5.3.3.a T -count 7 . 33
5.3.3.b A new regime: T -count 9 and T -count 11 38
5.3.3.c Varying the number of threads . 39
5.3.3.d Varying the fraction of distinguished points 40

5.4 Algorithm limitations . 41

6 Advanced implementation: hybrid parallel programming 42
6.1 Program flow . 42
6.2 Preliminary results . 43
6.3 Advantages and limitations . 45

7 What else can we do with this framework? 47

References 50

A Binary symplectic representation 52

vi

List of Figures

1.1 Quantum circuit depth . 2
1.2 Commonly used gates in quantum circuits . 3

2.1 Timeline of circuit synthesis algorithms . 7

3.1 Schematic of trail used in collision finding . 16
3.2 Trails and distinguished points . 16
3.3 Colliding trails . 17
3.4 Claw-finding trails . 19

5.1 Algorithm flowchart for OpenMP implementation . 28
5.2 Subroutine flowcharts . 29
5.3 Controlled-Hadamard . 31
5.4 Histogram of controlled-Hadamard runtimes . 31
5.5 Controlled-phase . 32
5.6 Histogram of controlled-phase runtimes . 33
5.7 Circuit series with varying T -count . 33
5.8 Synthesis times of circuits with varying T -count . 34
5.9 3-qubit circuits with T -count 7 . 35
5.10 Histogram of Toffoli synthesis times . 35
5.11 Histogram of Peres synthesis times . 36
5.12 Histogram of QOR synthesis times . 36
5.13 Histogram of negated Toffoli synthesis times . 37
5.14 Histogram of negated Fredkin synthesis times . 37
5.15 Histogram of negated Fredkin synthesis times with outliers removed 38
5.16 3-qubit circuits with T -count 9 and T -count 11 . 38
5.17 Synthesis times for T -count 9 circuit . 39
5.18 Synthesis times for T -count 11 circuit . 39
5.19 Synthesis time vs. thread count . 40
5.20 Synthesis time vs. distinguished point fraction . 40

6.1 Algorithm flowchart for hybrid OpenMP/MPI implementation. 44

vii

List of Tables

5.1 Average runtimes for 3-qubit circuits with T -count 7 . 35

6.1 Average runtimes for Toffoli synthesis with varying MPI process distribution 45

viii

Chapter 1

Introduction

1.1 Quantum compilation

Compilers are an indispensable tool for programmers. Computers do not understand a human-readable
programming language, such as C or Java, directly - they understand only a fixed set of instructions
known as assembly, or machine code. Any operation you can imagine can ultimately be broken down into
a sequence of the building blocks which comprise machine code. Writing machine code, however, is very
cumbersome and prone to errors. The task of a compiler is to “translate” from human-readable code to
machine code so that the computer can understand and execute the desired operations.

A quantum computer, once one is built, will require something akin to a compiler. The quantum
compilation process will look very different from its classical counterpart, but the underlying idea remains
the same: a quantum computer will need a translator. It may only know how to implement a fixed set of
operations both efficiently and fault-tolerantly (i.e. with proper error-correction protocols). It will thus
need a program with the ability to take any arbitrary operation it is given, and turn it into something
it can understand and implement well. This part of the compilation process is called quantum circuit
synthesis, and its implementation is the focus of this thesis.

1.2 Quantum circuits

1.2.1 Graphically representing circuits

Operations that run on a standard quantum computer are represented as unitary matrices. We commonly
organize sequences of these operations graphically in the form of circuits. These circuits are somewhat
analogous to the Boolean logic circuits of classical computers, but with operations acting on qubits rather
than bits.

Suppose we have n qubits, and we would like to execute a sequence of unitary operations on them.
Let us start with our qubits in some initial state |ψ0〉. Say we want to apply the operations {U1, . . . , Ud}
to the qubits, in that order, with Ui ∈ U(2n) (the set of 2n × 2n unitary matrices).

In matrix notation, the state vector |ψ0〉 evolves as follows:

|ψ1〉 = U1|ψ0〉 (1.1)

|ψ2〉 = U2|ψ1〉 = U2U1|ψ0〉 (1.2)

...

|ψd〉 = Ud|ψd−1〉 = UdUd−1 · · ·U2U1|ψ0〉. (1.3)

1

Instead of writing the evolution of the state in equation form, we can write it as a circuit diagram
(shown in Figure 1.1).

Figure 1.1: A simple circuit diagram acting on a register of qubits. Unitary operations U1, . . . Ud are
applied, and the resultant state is labeled below (corresponding to Eqs. (1.1-1.3)). As the circuit has d
operations, or layers, we say this circuit has depth d.

Each horizontal line in Figure 1.1 represents a qubit. A group of qubits is called a register. Unitary
operations are represented as boxes; they act only on the qubits whose lines they sit atop. Each unitary
operation can be imagined as one layer of a circuit. The number of layers in the circuit is called the
depth. Note that the ordering of the operations pictured appears reversed. Operations in the circuit are
applied in the order in which they are read, from left to right, whereas the matrix operations in Eqs. (1.1
- 1.3) operate from right to left.

1.2.2 Paulis, Cliffords, and universal gate sets

Just like machine code provides a classical computer with a fixed set of instructions, a quantum computer
has an analogous fixed set of unitary operations which can be used to implement an arbitrary operation.
Such a set is termed a universal gate set. There are many of examples of universal sets; we will focus
primarily on just one of them.

We introduce here a few very important gates which are frequently used in quantum operations: the
single-qubit Hadamard gate H; the phase gate S; the π

8 gate T ; and the 2-qubit controlled-NOT gate
CNOT. Their matrix representations and circuit diagram elements are shown in Figure 1.2.

Another group of important gates is the familiar set of single-qubit Pauli operators:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
. (1.4)

These matrices and their n-qubit tensor products form a group which we will call Pn, the n-qubit Pauli
group. We define the n-qubit Clifford group Cn as the group of operations which are the normalizer of
the Pauli group. In other words, for every P ∈ Pn, there exists a P ′ ∈ Pn such that

CPC† = (−1)bP ′, C ∈ Cn, b ∈ {0, 1}. (1.5)

Essentially Cliffords map Paulis to Paulis (up to a possible phase of -1) under conjugation.
The Clifford group can be specified using some of the gates in Figure 1.2. Its generators are

C1 = 〈H,P 〉, (1.6)

Cn = 〈H(i), S(i),CNOT(i,j)〉, i, j = 1, . . . , n, i 6= j, n ≥ 2, (1.7)

2

Figure 1.2: Commonly used quantum operations and their graphical representation in circuit diagrams.

where we borrow the notation of [1] and use subscripts to denote which qubits the gates act on.
It is well known that the Hadamard and T gate can be combined to produce arbitrarily precise

approximations of any single-qubit unitary [2]. With the addition of the 2-qubit CNOT, this becomes
universal, meaning any n-qubit gate can be written in terms of only 1- and 2-qubit gates [3, 4]. In this
thesis, we focus on this so-called “Clifford+T” universal gate set, which consists of Cn and the single-qubit
T gate [2, 5].

It is important to note that the Clifford+T set is not unique - there are other possible choices,
for example the Clifford group and the Toffoli gate [2]. A quantum computer, depending on its physical
implementation, may be very good at performing just one of these gates sets efficiently and fault-tolerantly.
At this time, many error correction and fault-tolerant protocols work efficiently with Clifford gates [6],
so the focus of many existing circuit synthesis algorithms [7, 8, 9, 10, 11, 12] has been on this set.

1.3 Parallel computing

Advances in classical computing technology have seen processing speeds increase by orders of magnitude
in the last decade or so. This is largely accomplished by making smaller chips, with smaller components
packed closer and closer together - the closer the transistors are, the less distance the information must
travel, and thus the faster the processor runs. Furthermore, placing transistors closer together allows us
to fit more of them on a chip of the same size. This trend can not continue forever, though. There is
physical limit, at the atomic level, to how close you can place two transistors together. Furthermore, a
computed bound on how fast a quantum state can change showed that there is a limit to the operation
rate of any system [13]. At some point, we simply won’t be able to make processors any faster. Our
computational problems, however, are only getting bigger. So, if we can’t make our processors faster, the
next best thing is to use more. This is the essence of parallel computing: rather than a single processor
doing all the work, work is distributed among multiple processors.

Take the simple example of image processing, for instance. Suppose we are working with an image
containing millions of pixels, and we want to apply some operation to each pixel to change the appearance
of the image (for example, changing it to gray scale, or making it brighter). One way to approach this
problem would be to use a single processor and iterate sequentially over each pixel and apply the trans-

3

formation. The parallel approach would be to send groups of pixels to different processors, and process
all the groups simultaneously. Even if the time for each parallel processor to do a single transformation
is greater than that of the single one, parallelism will outperform the single processor because everything
is processed at the same time. For example, in a video game, where images are processed and rendered
continuously at high frame rates, parallelization is essential.

Aside from graphics, parallel programming has found many uses in the scientific community. For
example, in astrophysics, simulating supernovae in large regions of space is accomplished using a grid of
processors, each assigned to a physical coordinate - differential equations are then discretely solved on the
appropriate processor in every region of space. Many linear algebra operations can also be parallelized,
such as matrix multiplication - give each processor a different row and column index to multiply together
and all new matrix entries can be computed simultaneously.

A problem like image processing is called embarrassingly parallel - essentially, the entirety of the
algorithm can be run in parallel. True embarrassingly parallel problems are extremely rare, as generally
at least some of the runtime is spent initializing data serially (or waiting). Other problems contain
only certain sections which can be parallelized. The speedup one obtains depends on the degree of
parallelizability of the problem, and is determined by a relationship called Amdahl’s law [14]. Suppose
that a fraction P of a computing problem is parallelizable (the remaining 1−P must be done sequentially).
If we use N processors for a problem, Amdahl’s law tells us that the maximum possible speedup we could
expect is [15]

S(N) =
1

(1− P) + P/N
. (1.8)

If P = 1 (embarrassingly parallel), we can easily see that the speedup would be linear in the number of
processors. If P 6= 1, and we simply increase the number of processors, the limit of the speedup tends to
1/(1 − P) - this means that for some problems we will never see much of a speedup, regardless of how
many processors we use. Thus, choosing whether or not to use parallel computing is highly dependent
on the problem at hand.

There are many different types of hardware and techniques which can execute code in parallel. One
such example is the GPU (Graphical Processing Unit). These are specialized cards which contain thou-
sands of tiny processors, and are used primarily for image processing on millions of pixels. The processors
themselves are not particularly powerful, but their sheer number provides a huge advantage [16]. In the
image processing example provided above, using a GPU would be the most effective means of solving
that problem. GPUs, however, require special programming techniques and also suffer from bottlenecks
due to the time spent transferring memory between the GPU and the host computer. This is a point we
will return to in Chapter 7.

In this thesis, we focus on parallel computing using only CPUs (Central Processing Units). We will
often speak of nodes: a collection of processors, or cores. There are many different computational models
using CPUs. They differ in how the nodes are used, organized, and how the memory is shared.

A simple approach is called threading. Threading is often accomplished by placing instructions called
directives around the code we wish to run in parallel, using for example a library such as OpenMP [17].
Suppose we have a single node with 16 cores. Each core may be assigned a single thread. Generally,
all the threads are allowed to access a shared memory bank. Threads cannot pass messages between
themselves, but can exchange information using the shared memory. The number of threads, however, is
limited by the number of physical cores on the node (one can hyperthread and assign multiple threads to
each core, but this often results in poor performance).

A way around this limitation is to use a library such as MPI (Message Passing Interface) [18] which
provides a means of communication between different nodes, each of which has multiple cores. Each node
has its own memory - another node cannot access that memory, and must be sent any data it requires

4

via messages. Implementations of such programs are more complex, as one has to deal not only with the
problem at hand, but to coordinate a number of nodes and make sure all the data gets passed between
them correctly. This approach is better than simple threading, however it may not take full advantage
of the fact that each node has multiple cores.

The final approach, which we explore in Chapter 6, is hybrid programming. MPI is used to send
messages between nodes, while threading is used within each node to further subdivide the problem and
take advantage of its multiple cores. There are a multitude of ways to divide up the computation and
the message passing done by the threads [19, 20]. These techniques make use of the entire node, and are
thus advantageous for many problems.

1.4 Thesis objective

The goal of this work is to develop and implement an algorithm for quantum compilation (quantum
circuit synthesis) which leverages parallel computing techniques. Full-scale implementations of quantum
computers will emerge in the (perhaps not-so-distant) future. When this occurs, having a working
algorithm which can efficiently compile large operations on many qubits will be extremely advantageous
and will allow for faster testing, development, and progress.

This thesis is organized as follows. Chapter 2 introduces the main ideas behind quantum circuit
synthesis, and details some of the key algorithms of the field. Chapter 3 explores the framework of parallel
collision finding techniques and the advantages thereof. Chapter 4 combines the ideas of Chapters 2 and
3 and explains in detail how to apply parallel collision finding to circuit synthesis. We present a general
framework for these techniques, and provide complexity and runtime estimates of the algorithm. Chapter
5 presents a fully-functioning, threaded parallel implementation of this framework applied to a specific
synthesis algorithm. Chapter 6 details the hybrid parallel implementation, which is in progress. Finally,
in Chapter 7 we discuss the future uses and improvements of our scheme.

5

Chapter 2

Quantum circuit synthesis

Quantum circuit synthesis is an important part of the quantum compilation process. Let us return to
the analogy of classical compilers: a compiler translates human-readable code into computer-readable
code. Quantum circuit synthesis is quite similar in spirit. A quantum computer will not be able to
implement just any operation requested of it. Instead, it will understand and be able to efficiently, and
fault-tolerantly, implement only a small subset of gates: those of the so-called universal gate set.

The goal of quantum circuit synthesis is, given an arbitrary operation, to break it down, or synthesize,
an equivalent circuit using only gates from the universal set. In other words, given an arbitrary operation
U , quantum circuit synthesis is the process which constructs the sequence of operations U1, . . . , Uk from
a universal gate set G such that

Uk · · ·U1 = U. (2.1)

There are two types of synthesis: exact, and approximate. Exact synthesis constructs a sequence
U1, . . . , Uk such that Eq. (2.1) holds, and their product is exactly equal to U . On the other hand,
approximate synthesis yields a set of operators whose product is within some distance ε from the target
unitary U , where the distance between two operators is measured using some distance function. The
work presented in this thesis focuses on exact synthesis.

2.1 An overview of existing algorithms

A number of algorithms exist for circuit synthesis; they are varied in their nature and techniques, and
in what they can accomplish. Figure 2.1 is a timeline which shows the development history of such
techniques. At the beginning is one of the pillars of circuit synthesis, the Solovay-Kitaev (SK) algorithm
[21]. The SK algorithm allows one to efficiently perform approximate synthesis of a single-qubit1 operation
over a given set of gates. Synthesis is performed by recursively generating a sequence of gates which at
every step moves closer and closer to the target gate, up to a distance of ε. The complexity analysis of this
algorithm shows that it scales very well - it runs in time O(log2.71(1/ε)) and produces a sequence of gates
with length O(log3.97(1/ε)). This algorithm is also advantageous because it works over any arbitrary gate
set. Provided that [21]:

1. All gates in the set are unitary and have determinant 1,

2. For each gate in the set, its adjoint is also in the set,

1The SK algorithm can be generalized to both single qudits, as well as multiple qubits. In the qudit case, however,
the runtime scales much worse, increasing exponentially with the dimension of the system [21]. For consistency and for
comparison with the other algorithms discussed here, we restrict ourselves to the single-qubit version.

6

3. The chosen set is dense over the set of all single qubit unitaries SU(2), i.e. for any ε, an arbitrary
operation chosen from SU(2) will always be within ε of some operation in the gate set,

we can always find an approximation over it. The disadvantages, however, are just that - we can only
ever find an approximation.

Other approximation algorithms were developed which improved on the runtime of the SK algorithm.
For example, with the addition of two ancillary (i.e. extra) qubits, the algorithm in [7] can synthesize a
single-qubit operation over the Clifford+T set with onlyO(log (1/ε)) gates in timeO(log2(1/ε) log log(1/ε)).
An algorithm without ancillae was developed shortly afterward in [8]. It is a randomized algorithm, based
on some principles of number theory, which approximates single-qubit circuits to Clifford+T gates with
(heuristic) runtime polynomial in log(1/ε). The same paper also proved a bound on the T -count of
the resultant circuits. The algorithm of [9] found a means of optimally implementing Z-rotations over
Clifford+T , also with no ancillae and optimal T -count, up to an accuracy of 10−15. The resultant algo-
rithm however, took time and memory exponential in the T -count. A subsequent algorithm [10] uncovered
a means of finding these optimal T -count Z rotations efficiently. Optimizing the number of T gates is a
pertinent problem, as T gates are ‘expensive’ to implement fault-tolerantly (see Section 2.3).

Solovay-Kitaev

(Dawson & Nielsen)

2005

Clifford+T, 2 ancillae

 (KMM)

Clifford+T, Optimal T-count Z-rotations

(KMM)

Clifford+T, no ancillae

(Selinger)
Clifford+T, efficient optimal

T-count Z-rotations

(Ross and Selinger)

V-basis

(Bocharov, Gurevich, Svore)

Clifford + T

(Kliuchnikov-Maslov-Mosca (KMM))

Clifford + T

(Giles and Selinger)

An algorithm for the T-count

(Gosset, Kliuchnikov, Mosca, Russo)

Exact synthesis

Approximate synthesis Single-qubit

Multi-qubit

2013 20142012

Meet-in-the-middle

(Amy, Maslov, Mosca, Roetteler)

Figure 2.1: A timeline showing recent advances in quantum circuit synthesis. Algorithms are ordered
chronologically based on their first appearance on the arXiv.

Approximations inevitably introduce some error. In a large quantum computing protocol with many
operations, continuous approximations lead to the accumulation of these errors. We thus want to syn-
thesize the gates as precisely as possible; it is even better if we can synthesize the gates exactly. An
exact synthesis algorithm for single-qubit gates was introduced in [11]. Here the gate set is limited to
the Clifford+T set, as we can take advantage of the fact that all the matrix elements of the Clifford+T
gates are in the following ring:

Z

[
i,

1√
2

]
=

{
a+ b

√
2 + ci+ di

√
2

√
2
k

: a, b, c, d ∈ Z, k ∈ N

}
. (2.2)

As a result, any combination of these gates also has elements over this ring. Thus, given an arbitrary
operation with elements over this ring, there should be a sequence of Clifford+T gates which produce it.

The algorithm uses special properties of the ring structure to reverse-engineer, or unravel, a sequence
of H and T which produced it. The synthesis algorithm makes use of patterns in the power k of

√
2

in the denominators of matrix elements which occur after successive multiplications by H and T : when
considering the absolute value squared of the matrix elements, k increases by 1 each time the combination
(HT) is applied. A small set of combinations of H and T are precomputed and stored in a database.

7

Next, synthesis is performed by iteratively producing a sequence of H and T combinations, starting from
the value of k observed in the candidate matrix, and unraveling it all the way down to the level of the
database, in which a search for the remaining part of the sequence is done. The resultant sequence is
optimal [11].

This algorithm can indirectly perform approximate synthesis: for an arbitrary gate, use the SK algo-
rithm, or any of the above approximation algorithms to produce an approximation of the gate with all

elements over Z
[
i, 1√

2

]
. Then, use the exact synthesis method to find a decomposition of the approxi-

mated gate. The downside to this exact synthesis technique is of course that it is a single-qubit algorithm.
A conjecture was made for a similar technique for multiple qubits, but would require ancillae [11].

The need for ancillae was considered in [12]. An exact synthesis algorithm for multiple qubits was
provided, and it was proven that though ancillae are necessary, only a single one is ever required. Their
algorithm is far from optimal however - the number of gates in the synthesized circuits is of the order
O(32

n
nk) where n is the number of qubits and k is the highest denominator exponent of ring elements

in the target operation. Reference [12] also details further conditions on which operations can be exactly
synthesized without any ancillae. Due to the fact that the determinant of a product of matrices is the
product of their determinants, these exact synthesis algorithms are limited to synthesizing gates which

not only have elements over Z
[
i, 1√

2

]
but also have determinants which belong to the set of determinants

possible from combinations of gates of the universal set. For example, for 2 qubits the set is {1,−1, i,−i}.
Any 2-qubit gate which does not have a determinant here, for example the controlled-T gate, requires a
single ancilla for exact synthesis.

Finally, we note that algorithms also exist for synthesis over other universal sets. The so-called V -
basis is a universal gate set being explored as an alternative for the Clifford+T set. There are six gates in
the V -basis and they represent rotations by cos−1(−3/5) around the x, y and z axes. An approximation
algorithm for synthesizing single-qubit circuits over the V -basis (and allowing Pauli operations) was
presented in [22]. It was previously proven that decomposition over this basis could be done in time
linear in O(log(1/ε)) [23]. Two variations were presented in [22], one a randomized algorithm which
achieves this expected runtime using ≤ 12 log5(2/ε) gates, and the other a direct search which produces
circuits 1/4 to 1/3 of this length, and runs in time O(log3(1/ε) log log(1/ε)).

2.2 Meet-in-the-middle circuit synthesis

Perhaps the most important recent advance in quantum circuit synthesis is the meet-in-the-middle
(MITM) approach considered in [24]. This algorithm forms the basis of the parallel framework we later
present, so it is prudent to devote some time to understanding both how it works, and its advantages
and disadvantages.

The MITM approach relies on generating a large database of possible circuits, which is subsequently
searched through to find a solution. It begins with a gate set G - we will assume that G is a universal
set suitable for quantum computing applications. Let γ be the number of single-qubit gates in G. Recall
that in the quantum circuit formalism, we can arrange the circuit in layers; the total number of layers
in a circuit is its depth. Hence, we define the set V(n,G), where n is the number of qubits, to be the set of
all operations which constitute a single layer of depth in the circuit. Given that there are γ single-qubit
gates, using simple combinatorics we can compute an upper bound of the size of this set: |V(n,G)| ≤ γn.

Now, suppose we are presented with an arbitrary unitary operation U . The goal of circuit synthesis
is to find a set of {Ui}, i = 1, . . . , k such that

UkUk−1 · · ·U1 = U, (2.3)

where all Ui ∈ V(n,G), and the depth k is optimal.

8

The brute force approach would be to take our set V(n,G), generate all possible combinations of the
elements, from depth 1 up to depth k, and check if any of them are equal to U . The runtime of such an
algorithm would be abysmal: O(|V(n,G)|k) or O(γnk), which is exponential in both the number of qubits
and the depth. Such an algorithm would hardly scale well past small numbers of qubits and low depth.

The MITM approach offers roughly a square-root speed-up over the brute force case. Rather than
generating combinations for all k possible layers, we split Eq. (2.3) as follows:

Ud k2e · · ·U1 = U †d k2e+1
· · ·U †kU, (2.4)

V = W †U, (2.5)

where we define

V := Ud k2e · · ·U1, (2.6)

W := Uk · · ·Ud k2e+1. (2.7)

We can see here an immediate advantage: rather than generating all possible combinations of circuits up
to depth k, we only need to generate the sets up to depth

⌈
k
2

⌉
.

Let Si represent the set of combinations of V(n,G) having depth i, and let S†i be the set containing the
corresponding adjoints having depth i. Then, a solution to the synthesis problem exists if we can find
some V ∈ Sd k2e and W ∈ S†b k2c

such that Eq. (2.5) holds. In other words, a solution exists if we find

some k such that Sd k2e ∩ S
†
b k2c

U 6= ∅.
The algorithm runs as follows: we begin with i = 1, and sequentially generate the next Si by building

off the previous set one layer at a time. We take S0 = 1 and S1 = V(n,G). For each new set Si, a search

is executed to compare it with its possible ‘other halves’ - sets S†i−1U and also S†iU , taking into account
the fact that the depth k may be odd or even, respectively. The algorithm terminates if a match is found
in one of these sets; otherwise, it continues to the next level of depth, up to a specified limit k.

What is the runtime of this algorithm? For this, we look to the best classical search algorithms. The
data structure used to store the sets Si plays an important role in how long the searching process takes.
A well-chosen structure such as a binary tree or red-black tree can be completely searched for matches
from a newly generated Si in time O(|Si| log(|Si|)). Searching itself takes O(log(|Si|)) [25], and this must
be done for all |Si| elements.

Thus, at each step in the algorithm, comparing the new set with the other halves would take time
|Si| log(|S†i−1|) + |Si| log(|S†i |) ≤ 2|Si| log(|Si|), since the ith set is always larger than the (i − 1)th , and

|Si| = |S†i | [24]. Furthermore, we know that |Si| ≤ |V(n,G)|i. Thus, we obtain an upper bound of
O(|V i(n,G)| log(|V i(n,G)|)) for the ith iteration.

To obtain an upper bound for the total runtime needed to find a circuit of optimal depth k, we sum
over all depths i [24]:

TMITM =

d k2e∑
i=1

|V(n,G)|i log(|V(n,G)|i) (2.8)

≤
d k2e∑
i=1

|V(n,G)|i log(|V(n,G)|d
k
2e) (2.9)

≤ |V(n,G)|d
k
2e log(|V(n,G)|d

k
2e), (2.10)

9

where in each successive step we have used the highest exponent to generate an upper bound. Since

|V(n,G)| ≤ γn, we can rewrite the above asO(γnd
k
2e log(γnd

k
2e)). This is roughly a square root improvement

over the brute force result of O(γnk).
In [24], this framework was used to generate circuits with a number of properties, such as optimal

depth, optimal T -depth (i.e. optimizing the number of layers which contain T gates), and minimization
of specified cost functions. Some of the largest depth-optimal circuits synthesized were depth 12 for 2
qubits, 10 for 3 qubits, and 6 for 4 qubits.

The disadvantages of the MITM algorithm lie in the fact that databases must be generated and stored.
This is of course a procedure which must only be done once - subsequent executions of the program can
reuse the databases as synthesis is always taking place over the same gate set. Databases were stored
as red-black trees in binary files generated by the program. Rather than storing entire unitaries, storage
was simplified by storing only the action of each candidate unitary on an arbitrary vector ‘key’ - in a
sense, it stored a type of hash which was highly likely to be unique to each unitary [24]. Furthermore,
the databases were pruned by choosing canonical representatives of unitaries which differed only by a
global phase. For example, to synthesize the Toffoli gate, the largest database file which needed to be
generated was about 36 MB in size and took about 24 minutes to generate. Subsequent searching for
matches through the largest database took about 7.5 minutes 2. The time and space, however, are highly
dependent on the synthesis problem at hand. For example, in the case of optimal T -depth circuits,
generation of the 3-qubit Clifford group required almost four days [24]. Regardless, the principles of
MITM synthesis offer significant benefits which we take advantage of in Chapter 4.

2.3 An algorithm for the T -count

Most of the algorithms presented above synthesize circuits over the Clifford+T gate set. However, T gates
are an ‘expensive’ resource. To implement a T gate fault-tolerantly requires the addition of an ancilla
qubit, a fault-tolerant measurement procedure, and additional fault-tolerant operations of other gates
[2, 26]. The T -count of a circuit is the total number of T and T † gates it contains. Due to their ‘cost’,
it is important to have an algorithm which produces circuits with optimal T -count. Such an algorithm
was developed in [1] - it determines whether the T -count of a unitary is less than a candidate value, and
finds the corresponding circuit decomposition. We proceed by first stating a few key concepts that we
use here and in future chapters. We then go through a brief overview of how the algorithm determines
optimal T -count circuits.

2.3.1 Smallest denominator exponents

Consider an element over the ring Z
[
i, 1√

2

]
. Similar to how we can reduce simple fractions when there

are common factors, we can also reduce ring elements so that the coefficients are as small as possible.

Definition 1 (sde). The smallest denominator exponent of x, sde(x), is defined as the smallest value of
k such that

x =
a+ b

√
2 + ci+ di

√
2

√
2
k

, (2.11)

holds, where a, b, c, d are integers and k ≥ 0 [1, 11]. We also define sde(0) = 0.

The sde of a matrix with its elements over the ring is defined as the smallest sde of all its constituent
elements [1].

2Reported times are from a test run on a machine with a 2.80 GHz Intel i7, and 32 GB of RAM.

10

2.3.2 The channel representation

The channel representation is a very important tool used in the optimal T -count algorithm [1]. It
also provides an extremely convenient representation of T gates, and as a consequence was used in the
implementation discussed in Chapter 5.

Consider the conjugation of a Pauli operator by some matrix U , UPsU
†. We can expand the result

by using the fact that the Pauli operators form an operator basis:

UPsU
† =

∑
Pr∈Pn

ÛrsPr, (2.12)

where the Ûrs are the expansion coefficients. The channel representation Û of a unitary operation U is
a superoperator with these coefficients as its matrix entries:

Ûrs =
1

2n
Tr(PrUPsU

†). (2.13)

Defining N = 2n, the channel representation is essentially an N2×N2 matrix with its rows and columns
indexed by Paulis.

Channel representations have an additional useful property for our chosen gate set. When the entries

of U are from Z
[
i, 1√

2

]
, so are the entries of Û . However, since one may note that Û is Hermitian, the

entries must be over the sub-ring

Z

[
1√
2

]
=
a+ b

√
2

√
2
k

, a, b ∈ Z, k ∈ N. (2.14)

Finally, channel representations respect matrix multiplication: ÛV = Û V̂ .

2.3.3 Coset labels

Cosets are partitions of a group, built with respect to a subgroup, which divide the original group into
equal sized partitions. Any element of a coset can serve a representative for that coset. We define a coset
label that is unique for each coset and can be computed easily from any of its constituent elements. The
coset label of a circuit matrix is a means of checking its equivalency with other circuits. Computation of
the coset label of a channel representation V̂ is done according to Algorithm 1. Reference [1] proves that

two channel representations V̂ , Ŵ have the same coset label if and only if they are related by a Clifford:
Ŵ = V̂ Ĉ (in other words, they are in the same coset).

Algorithm 1 Computation of the coset label

1: Given a channel representation V̂ , rewrite V̂ so that each non-zero entry of the matrix has a common

denominator of
√

2
sde(V̂)

.
2: For each column of V̂ , look at the first non-zero entry. If a < 0, or if a = 0 and b < 0, multiply all

elements in the column by −1; otherwise, do nothing.

3: Permute the columns so that they are in lexicographical order3.

3Sorting by lexicographical order can be accomplished using any deterministic sorting algorithm. For example, in the
C++ implementation of Chapter 5, we use a combination of std::lexicographical compare in conjunction with std::sort

from the <algorithm> library.

11

2.3.4 Finding T -optimal circuit decompositions

We now review the basic framework of the algorithm and how it can be used to determine an optimal
T -count decomposition. Recall the MITM decomposition of a circuit in Eq. (2.3). Since we expect
the unitaries Ui to be part of the Clifford+T gate set, we can consider a similar decomposition which
explicitly displays the presence of T gates within the circuit U :

U = eiφC(k)T(qk)C(k−1)T(qk−1) · · ·T(q1)C(0) (2.15)

where the subscripts on the T(qi) indicate that they act on qubit qi, and φ is a global phase, which we
will soon show is irrelevant. This circuit has k T gates acting on a single qubit, thus it has T -count k.

We can rearrange this expression into a more convenient form by inserting extra Cliffords so that
every T gate is conjugated by a Clifford, like so:

U = eiφ
1∏
i=k

(
DiT(qi)D

†
i

)
D0, (2.16)

where the Di are products of the original Cliffords Ci according to Di =
∏i
j=k Cj .

Now, let’s expand a single-qubit T gate in the Pauli basis. Since there are no off-diagonal elements,
we know that it must be combination of only I and Z:

T = aI + bZ. (2.17)

Solving for coefficients a and b yields

a =
1

2

(
1 + e

iπ
4

)
(2.18)

b =
1

2

(
1− e

iπ
4

)
. (2.19)

We can extend this to multiple qubits: T(qi) = aI2n + bZ(qi), where the identity matrix has dimensions

2n × 2n and n is the number of qubits. With this, we can rewrite DiT(qi)D
†
i as

DiT(qi)D
†
i =

1

2
(1 + e

iπ
4)DiI2nD

†
i +

1

2
(1− e

iπ
4)DiZ(qi)D

†
i (2.20)

=
1

2
(1 + e

iπ
4)I2n +

1

2
(1− e

iπ
4)P, (2.21)

where P is a Pauli since the Di are Cliffords and Z(qi) is a Pauli.
We use the shorthand notation [1]

R(P) =
1

2
(1 + e

iπ
4)I2n +

1

2
(1− e

iπ
4)P (2.22)

so that we can rewrite Eq. (2.16) as

U = eiφ

(
1∏
i=k

R (Pi)

)
D0. (2.23)

The benefit of writing the equation in this form is that now, to synthesize an optimal T -count circuit,
it suffices to find a set of Paulis {Pi} and a Clifford D0 which satisfy Eq. (2.23) up to a phase. Even

12

more convenient is that, if we consider the channel representation of all the above matrices, the global
phase vanishes (as promised) [1]:

Û =

(
1∏
i=k

R̂ (Pi)

)
D̂0. (2.24)

Eq. (2.24) is the structure we will use for the rest of this thesis, and also in the implementation
presented in Chapters 5 and 6. With this expression, we will generate an optimal T -count circuit.
The process is vaguely similar to the database generation and search of the MITM algorithm presented
previously. Rather than circuit databases consisting of products in the universal gate set, we compute
databases of coset labels. A sorted coset database Dnk is defined in [1] as a list of n-qubit unitaries in
channel representation form such that:

1. All elements in Dnk have T -count k.

2. For any V̂ with T -count k, there is a unique coset label in Dnk .

3. The database is lexicographically sorted (to allow for easy binary search).

Coset databases are built as follows. Dn0 = {1}, the N2 × N2 identity matrix. Subsequent levels of

the database are built by left multiplying by a single R̂(P) to each element in the previous level, and
selectively adding only the unique new products. This has the effect, at each step, of adding a single T
gate.

Suppose we want to check if the T -count of an n-qubit circuit Û is ≤ m. The procedure for accom-
plishing this is shown in Algorithm 2 [1]. Such an algorithm not only determines the T -count, but also
the sequence of Paulis used and the terminal Clifford D0 (since we can invert Eq. (2.24) to recover its
channel representation once we know the Paulis). Efficient algorithms exist for subsequently converting
the R(Pi) back to Clifford and T gates [1, 27].

Algorithm 2 Generation of optimal T -count circuits

1: Generate all sorted coset databases from Dn0 , . . .Dndm2 e
.

2: Sequentially execute a binary search to determine if there exists an element in one of the databases
which is equal to the coset label of Û . If such an element exists in database Dni , then we have found
the T -count is i and we stop.

3: If no such element is found in the previous step, then the T -count must be greater than
⌈
m
2

⌉
. Rather

than generating further coset databases, we can perform a MITM-style search within them to find
combinations with higher T -counts. Begin at r =

⌈
m
2

⌉
+ 1. Starting with coset database Dn

r−dm2 e
,

for each V̂ , use binary search to check if there exists a Ŵ such that the coset labels of Ŵ †U and V̂
are equal. If a pair is found, then we know that the T -count is r. If no pair is found, increase r by
1 until we complete the case r = m, in which case the algorithm terminates as the T -count is larger
than m.

This algorithm, like some others examined so far [12, 24], runs in exponential time. It also has the
disadvantage of generating databases of exponential size, in both the number of qubits and the desired
T -count. Let us briefly compute its storage space and runtime.

For the storage space, the largest database has size on the order of N2dm2 e, where we recall N = 2n.
Each item in the database is an N2 × N2 matrix - therefore an upper bound on the estimate for space

13

required by the database is O(Nmpoly(m,N)), where poly indicates a polylogarithmic term. In the
implementation of [1], database generation was done in C++ and databases were stored as trees in
binary files. The largest such file generated was on the order of 4 GB.

For the runtime, the first step is to generate all the databases - this takes time O(Nmpoly(m,N)).
The next step is to execute the binary search on all the databases with the coset label of the unitary -
this takes time O(poly(m,N)) since binary search can be done in logarithmic time. Finally, to compare
the remaining steps takes time O(Nmpoly(m,N)), since we need to search through the entire database
at each iteration to find the MITM-style pair. Thus, the total runtime is equivalent to the storage time:
O(Nmpoly(m,N)), a quantity exponential in both m and the number of qubits. This algorithm is thus
impractical for circuits larger than about 3 qubits and T -count 7 (the largest case solved in [1]).

14

Chapter 3

Parallel collision finding

3.1 Overview

The parallel collision finding algorithm we adapt to circuit synthesis was developed by van Oorschot and
Wiener in 1996 [28]. Their initial application was cryptographic in nature: how does one find collisions
within a hash function, or an encryption function? Parallel collision finding offers an elegant, distributed,
and scalable means of finding collisions in large spaces, many of which are exponential in size. For
example, the space size of the double DES encryption scheme is 2112, a number far too great to simply
brute force with one processor, but manageable using parallel techniques [29].

The initial framework has a multitude of uses, from cryptography, to physics, and to mathematics.
Any large search problem in which one is searching for a collision can benefit from these techniques, if the
problem at hand can be framed in the formulation that follows. In this chapter, we provide an overview
of the algorithm, the time-memory tradeoffs on which it depends, and the runtime estimate.

3.2 Algorithm details

3.2.1 Collisions and claws

In what follows, for the purpose of example let us consider f and g to be hash functions. Their spaces
have size Nf and Ng, and they are many-to-one (otherwise there would be no collisions to find). Let their
domains be Df and Dg, and ranges Rf and Rg respectively.

We begin by defining the objects for which we are searching.

Definition 2. Let f be a hash function, and x, y be elements in Df . The elements x and y are said to
be a collision if

f(x) = f(y), x 6= y. (3.1)

Definition 3. Let f and g be (different) hash functions, and x ∈ Df , y ∈ Dg. Let Rf = Rg. The
elements x and y are said to be a claw if

f(x) = g(y). (3.2)

In essence, a collision is a pair of elements in the domain of a function which map to the same element.
A claw, on the other hand, is an instance of two elements which cause the two separate functions map to
the same element.

15

3.2.2 Collision finding

Parallel collision finding is essentially a series of random walks through the hash space, which (hopefully)
collide at some point. Suppose we have some hash function f ; if f is a ‘good’ hash function, given an
arbitrary input, the output should be roughly random. Repeatedly applying f to a given input, say x0,
produces a “trail” of random points in the space:

Figure 3.1: Basic structure of a trail; an initial value is hashed repeatedly, which is equivalent to a random
walk through the hash space.

Now, we must define a stopping condition for these random walks. A certain fraction of the points in
the space are denoted as distinguished points; if at any point in the walk, xi is found to be distinguished,
then the trail terminates. These terminal points are generally chosen as having some easily distinguishable
property (for example, if we convert the xi to binary strings, we might denote all strings starting with a
certain number of 0 bits as distinguished). A complete trail will now look similar to Figure 3.2.

..
.

Figure 3.2: Trails stop when they hit a distinguished point (or reach a specified maximum iteration limit).

At the beginning of the algorithm, a number of processors set out, with randomly chosen starting
points, to generate trails. A location common to all processors is used to store the collection of trails in
which unique distinguished points are found. As a trail is completely deterministic we need only store

16

the starting point, ending point, and number of steps in between.
The fraction of points which are marked as distinguished is a time-memory tradeoff. Suppose we

denote a fraction θ of the points as distinguished. Therefore on average, a trail will have to take 1/θ steps
before it finds a distinguished point, if the function is roughly random. The value of θ is chosen according
to the computational resources available. More distinguished points means more storage space but less
time required for each trail to terminate. Fewer distinguished points take up less space but each trail
may have to run for a longer time. When searching through small spaces, there may be enough memory
available to let all the points be distinguished; on the other extreme, some spaces may be so large that
even storing a small fraction of the distinguished points is enough to consume all the allotted RAM. A
means of choosing this parameter wisely is discussed in [28]. Unfortunately, it is possible for cycles to
occur, as well as for trails to go a very long time without finding anything. Thus, an iteration limit is
generally set (as some function of θ) in order to guarantee no processes are wasting unnecessary time on
trails that may not end.

Now, suppose a processor finds a distinguished point, tries to store it, and sees that there is already
a trail with the same distinguished end point in storage. There are two possibities:

1. The two trails started at the same place, and thus ended at the same place.

2. The two trails merged, i.e. there is a collision.

This second possibility is exactly what we’re looking for, and is shown graphically in Figure 3.3. We can
see that x1 and y3 are a collison of f , since

f(x1) = f(y3). (3.3)

..
.

..
.

Figure 3.3: A depiction of the collision between two trails, f(x1) = f(y3). The trails move forward
together after the collision at point x2 = y4 and thus terminate at the same distinguished point xd = yd′ .

What the processor does next is trace back through the sequence of both trails, and find the point
where they collided. We start with the longer of the two trails, and apply f to the initial value a number
of times equal to the difference in trail lengths (in the case of the example, we would apply f twice to

17

arrive at y2). Then, the two trails apply f simultaneously (in the example, the short trail will compute
x1 and the longer y3). The results are tested for equality at the end of each step - if we find two equal
values, we’ve found a collision and the problem is solved (here, we’d eventually find x2 = y4).

The authors of [28] produced an estimate of a runtime for this algorithm. They suppose that, though
there were many collisions, only one such collision is the solution to the problem at hand (i.e. the
golden collision). There are also many different versions of f , all of which contain a golden collision (for
example, if f was an encryption function and our goal was to find a collision in encrypted messages,
perhaps we might denote different keys as leading to different versions of f). Let m be the number of
processors, and let w be the number of distinguished points that the memory can hold. Simulations run
in [28] with varying values of w and Nf showed that the best achievable runtime was when they choose
θ = 2.25

√
w/Nf and generated 10w distinguished points per version of f before choosing a new one. The

runtime was

Tcol =

2.5

√
N3
f

w

1

m

 τ, (3.4)

where τ is the amount of time required for a single iteration of f in a trail. They estimate that on average,
0.45Nf/w functions must be tried before finding a solution.

We note that in theory this algorithm depends inversely on the number of processors used; it is also
inversely proportional to the square root of memory available to store distinguished points. This implies
that more processors and more memory should make the algorithm run faster. However, in practice the
time spent accessing the shared memory causes a bottleneck [28].

3.2.3 Claw finding

Finding claws rather than collisions is largely the same idea, however we must now consider two functions,
f and g. Rather than randomly walking just over an element of the domain, we represent each step in
the trail as a pair (xi, bi), where bi is a flag which tells us whether to use function f or g in the next step.
Trails begin by choosing x0 and b0 at random. Every subsequent step must first compute the result of
the function f or g. This result is then used to deterministically derive a new bi so that it ‘knows’ which
function to perform in the next step. The result is also used to determine the next xi such that is it in
the proper domain corresponding to bi. This deterministic step is termed a reduction function.

Execution of the algorithm is very similar to the collision case. An example of two trails merging to
produce a claw is shown in Figure 3.4. Here, we find that f(x1) = g(y3), and then the trails continued
on to end at the same distinguished point.

An estimate for the runtime of claw finding is also provided in [28]. Let our functions f and g be hash
functions on spaces of size Nf and Ng respectively. Let g be a function over a larger space Ng = cNf for
some constant c ≥ 1, c ∈ Z. If Ng is larger than Nf , we divide Ng into c chunks of size Nf and execute
searches over each set sequentially.

Note that the search is not executed just over a space of size Nf . Now the space has size 2Nf , because
at each step, we have an element of f or g and a flag which can take one of two values. We can apply
the result of Eq. (3.4) directly to these parameters:

Tclaw =
Ng

Nf

(
2.5

√
(2Nf)3

w

1

m

)
τ (3.5)

= 2.5 ∗
√

8Ng

√
Nf

w

1

m
τ (3.6)

18

..
.

..
.

Figure 3.4: Finding a claw between two trails, f(x1) = g(y3). Similar to the collision case, the trails
move forward together after the claw occurs at x2 = y4. This is because the next step is completely and
deterministically determined from the previous step using a reduction function.

≈ 7Ng

√
Nf

w

1

m
τ (3.7)

where τ is now the runtime of a whole step in the trail, and where we added the prefactor Ng/Nf because
the process must be repeated for each of the c subsets of g. Once again we see that the runtime depends
inversely on the number of processors and inversely on the square root of available memory. This equation
will be important for us later in Chapters 4 and 5 when we analyze the runtime of the parallelized circuit
synthesis algorithm.

19

Chapter 4

Application of parallel framework to
circuit synthesis

In this chapter we combine the ideas of the previous two chapters. We show how the parallel claw finding
algorithm of Chapter 3 can be applied to the MITM circuit synthesis algorithm of Chapter 2 to produce
a new framework for parallel quantum circuit synthesis.

4.1 Framework

We begin with an arbitrary quantum circuit U on n qubits, which can be implemented over a universal
gate set G = {G1, G2, . . . , GN}, where the Gi are unitary matrices. We can write U as

Uk · · ·U1 = U, (4.1)

where the Ui are depth 1 unitaries from G for i = 1, . . . k, as in the MITM approach, and k is the depth
of the circuit. Our goal is, given U , to recover the set of {Ui} such that Eq. (4.1) holds.

We use the MITM approach to rewrite Eq. (4.1) by splitting it in half:

Ud k2e · · ·U1 = U †d k2e+1
· · ·U †kU. (4.2)

We propose the following new method for circuit synthesis, using the time-memory tradeoffs offered
by parallel search techniques to synthesize our circuits. Let

V := Ud k2e · · ·U1, (4.3)

W := U †d k2e+1
· · ·U †kU (4.4)

be the LHS and RHS of Eq. (4.2) respectively. We use the parallel claw finding method presented in
Chapter 3 to execute a search over unitaries (circuit matrices) of type V and W . Our goal is to find a
pair (V,W) that satisfy Eq. 4.2, i.e. they are a claw.

Let the function g be a function which produces a circuit matrix of type V , and function f one which
produces a circuit matrix of type W . Parallel collision search over the possible circuits is executed as
follows. First, we define a means of hashing a circuit matrix of type V or W to a simple data type, such
as an integer or a string. Then, we require a means of converting the latter back to a matrix.

To perform claw finding, we begin with a number of processors. Each processor chooses a random
starting point and flag and uses its data to generate a new matrix of type V or W . The resultant matrix

20

is then hashed down to a new value and flag. This process continues until a distinguished point is found,
and the remainder of the algorithm proceeds exactly as the claw finding introduced in Chapter 3. The
idea is that if two matrices V and W are the solution to the circuit synthesis problem, they will have
identical matrix products and must hash to the same value - thus, they constitute a claw and can be
found by the parallel search technique.

4.2 Runtime estimation and algorithm complexity

We can use Eq. (3.7) to compute an estimate for the runtime of this algorithm. If the size of the set of
depth 1 gates is ζ, then the size of the spaces of V and W are

Ng = ζd
k
2e (4.5)

Nf = ζb
k
2c (4.6)

Then, the runtime can be approximated as

Tframe ≈ ζd
k
2e

√
ζb

k
2c

w

1

m
τ (4.7)

= ζd
k
2e+ 1

2b k2c
√

1

w

1

m
τ (4.8)

We can recover the dependence on the number of qubits by noting that ζ ≤ γn where γ is the number
of single-qubit gates in G. Since the most time is spent performing matrix multiplication and we are
working with unitaries of size 2n × 2n, τ ≈

⌈
k
2

⌉
23n . Thus, we obtain the final expression

Tframe ≈ 23nγn(d
k
2e+ 1

2b k2c) 1√
w

1

m

⌈
k

2

⌉
. (4.9)

Recall that m is the number of processors, and that w is the number of distinguished points that the
memory can hold. Of course, this algorithm is still exponentially dependent on n and the circuit depth.
However, it has the advantage of depending inversely on the number of processors and memory, just
like the parallel collision finding framework. Thus, if we have enough processors and memory available
for distinguished point storage, leveraging parallelization may help us synthesize larger circuits more
efficiently. Large scale implementations with thousands of processors may even counteract a significant
amount of the exponential dependence, provided we can efficiently deal with storage and communication
between processors.

4.3 Applications and use cases

A very important point to consider is that the aforementioned algorithm can be applied to any MITM
circuit synthesis problem. It suffices only to find a means of uniquely mapping combinations of gates
to simple elements in a space which is easy to perform a random walk over (and designing suitable
hash/reduction functions).

We chose, for simplicity of initial implementation, to apply it to synthesizing circuits with optimal
T -count. This is the work of Chapters 5 and 6. Other possibilities include but are not limited to:

• the Clifford+T framework of the original MITM framework,

21

• synthesis algorithms using different universal gate sets,

• approximate synthesis algorithms.

Similar to the parallel collision finding techniques it is built upon, this framework is extremely versatile
and has the potential to improve many of the existing synthesis algorithms.

22

Chapter 5

Implementation details and results of
threaded algorithm

5.1 MITM for optimal T -count circuit synthesis

We implemented the optimal T -count synthesis algorithm within the parallel framework. Our rationale
is explained in Section 5.2.2. For now, we provide the structure of the problem.

We begin with a circuit U on n qubits. As per Eq. (2.24), we can rewrite the decomposition of U
using the channel representation as

R̂(Qt) ̂R(Qt−1) · · · R̂(Q1)Ĉ = Û , (5.1)

where Ĉ is some Clifford, and t is the T -count of U . Using the MITM approach of [24], we split Eq. (5.1)
in half:

̂R(Qd t2e) · · · R̂(Q1)Ĉ = ̂R(Qd t2e+1)
† · · · R̂(Qt)†Û (5.2)

V̂ Ĉ = Ŵ , (5.3)

where we have relabeled the products of R̂(Qi) as V̂ and Ŵ for convenience. It is known that if the coset

labels of V̂ and Ŵ are the same, then there exists a Clifford C such that the above holds [1].
We can apply parallel collision finding to this situation by generating sequences of Paulis to produce

candidates V̂ and Ŵ , and use their coset labels to compute the next point and flag in the trail. This
way, if a collision event occurs, it will be because we found two coset labels which were equal. If such a
situation was the result of a claw, then we have found both V̂ and Ŵ , and as a consequence can recover
Ĉ = V̂ †Ŵ .

We can estimate the runtime of this algorithm as follows. Let g be the function representing the
generation of the LHS V̂ of Eq. (5.2). Let f represent the generation of the RHS Ŵ . The sizes of the
spaces are

Ng = 4nd
t
2e, (5.4)

Nf = 4nb
t
2c. (5.5)

We can apply Eq. (3.7) directly. Ignoring the prefactor of 7, we find that the runtime is of the order

Ttcount ≈ 4nd
t
2e

√
4nb

t
2c

w

1

m
τ (5.6)

23

= 2n(2d
t
2e+b t2c) 1√

w

1

m
τ. (5.7)

Here τ is the time it takes to go through a single iteration of a trail. The most expensive operations in a
trail are the multiplication of

⌈
t
2

⌉
channel representations. As these matrices are of size 4n × 4n, we can

overestimate this runtime as

τ ≈
⌈
t

2

⌉
(4n)3 . (5.8)

In reality, some shortcuts are made when left-multiplying by a Pauli channel representation (see Section
5.2.2 for details). However, the multiplication by the circuit matrix Û still constitutes a full matrix
multiplication so we stick with the above τ as our function estimate.

Putting this all together, we obtain

Ttcount ≈ 2n(6+2d t2e+b t2c) 1√
w

1

m

⌈
t

2

⌉
. (5.9)

In cases where the T -count is even, this collapses to

Ttcount ≈ 2n(6+3 t
2) 1√

w

1

m

t

2
. (5.10)

5.2 Implementation

5.2.1 Language and computer specifications

We implemented this algorithm on Linux using C++11. The code and documentation is located at
https://github.com/glassnotes/Circuit-Synthesis. Development was done on SHARCNETs’ Orca
cluster 1. This first implementation uses OpenMP [17] parallelization meaning that the number of threads
in tandem was limited by the number of cores in each node of the cluster

The code was compiled with gcc version 4.8.1 and -O3 compiler optimizations. We used version 3.1 of
OpenMP. It also makes use of Boost 1.57.0 header libraries 2 [30]. The code was tested on AMD Opteron
processors which have 4 cores and processing speeds of 2.2GHz. On Orca, Opteron processors are grouped
into sockets containing three processors, totalling 12 cores each. Each full node contains two sockets,
leaving us with a total of 24 cores available per node. All processors in a node have access to a shared
memory of 32 GB (in which we can store a common set of distinguished points). Orca also contains a
subcluster of slightly faster Intel Xeon processors, but these only have 16 cores per node. There are also
two subsets of Xeon nodes with different processing speeds, and it was not possible to specify which one
to use so the processing speed would not be a constant across all trials. We thus chose the Opteron nodes
for consistency, and ease of access due to the fact that there are many more Opteron nodes than there
are Xeon nodes.

5.2.2 Special techniques to make the program faster

As previously mentioned, there were a number of reasons why we chose to implement optimal T -count
synthesis. Designing a function which can randomly select elements of the Clifford group is not a trivial
task [31]. Consequently, performing a random walk over the Clifford+T set is also not trivial. Performing
a random walk over the integers or binary strings, however, is quite simple, and can be done using any

1Documentation for Orca can be found on SHARCNETs webpage at https://www.sharcnet.ca/my/systems/show/73.
2We used Boost as there was no implementation of dynamic bitsets in standard C++11. Boost.MPI was also used in the

implementation of Chapter 6

24

https://github.com/glassnotes/Circuit-Synthesis
https://www.sharcnet.ca/my/systems/show/73

generic hash function. Thus, the key reason we chose initially to implement the optimal T -count algorthm
was because of the interconnection between products of Pauli matrices and binary strings. The output of
the T -count algorithm is a sequence of Paulis {Qi} and C such that Eq. (5.1) is satisfied. Each Pauli, or
combination thereof, has a representation as a binary string using binary symplectic representation (see
Appendix A for details). This means we have a 1-to-1 map from a sequence of {Qi} to the integers. One
then simply needs to execute a parallel search over the integers. This also greatly simplifies the storage
of distinguished points, since we only need to store a single integer, rather than an array of Paulis, or
worse, a matrix.

Another reason was due to the structure of the channel representations: such matrices have a very

regular, sparse structure. Any given row in a channel representation R̂(Qi) contains either a single 1 on
the diagonal, or two entries which are either ±1/

√
2. To save both time and space, I implemented an

algorithm akin to sparse matrix multiplication. Instead of storing the entire matrix, I stored a single
vector with all the non-zero elements of the matrix in sequence, as well as a vector of vectors containing
the positions of the elements in each row (which contain only 1 or 2 elements each). This way, we
need only multiply and sum specific elements rather than iterating over entire rows and columns which
had mostly empty entries. We note that in theory, this matrix multiplication can also be parallelized.
However, for this implementation we are limited by hardware - all the cores in the node are being used
to search for distinguished points. Parallelizing the matrix multiplication would add another layer of
parallelization and require the cores to hyperthread, which would likely result in poor performance.

A final advantage is that the size of the space can be reduced by noting that not every sequence of t
Paulis has exactly T -count t. If any of the following occur, the T -count may be reduced:

1. Some Qi is the identity Pauli I2n .

2. Two adjacent Paulis Qi and Qi+1 are identical.

3. Two identical Paulis are separated by Paulis with which they commute.

The reasons are as follows:

1. It is easy to see that R(I2n) = I2n would ‘disappear’, meaning that there will be one less term in
the sequence. As each R(Qi) effectively represents a single T gate, the T -count would be reduced
to t− 1.

2. One can check that, if two Paulis are identical, then R(Q)R(Q) produces a Clifford gate [1], which
does not contribute to the T-count.

3. Suppose the algorithm produces a sequence like

R(Qt) · · ·R(P)R(Q5)R(Q4)R(P)R(Q2) · · · (5.11)

and that P commutes with both Q4 and Q5. Now, if P and Q5 commute, then so do R(P) and
R(Q5). We can then interchange them and obtain the same effective matrix product. We can do
the same for Q4 as well - however, this would mean that this product is equivalent to a product
where two adjacent Paulis are now identical - thus, the original product did not have T -count t.

In the implementation, Pauli sequences are constructed one n-qubit Pauli at a time from the output
of a 160-bit SHA-1 hash value. For each additional Pauli we add, the algorithm checks that none of the
above three criteria are satisfied. If the candidate Pauli satisfies any of them, then it is discarded and the
next Pauli is chosen instead. If we run out of bits to use from the original SHA-1 hash, the hash is run

25

through SHA-1 again to generate more. This checking process does add some extra work, but it has the
benefit of reducing the size of the search space and eliminating much of the redundancy that would occur
if we allowed identical Paulis or identities. We note that this set of conditions may not be exhaustive,
but that these restrictions alone result in a significant decrease in run-time 3.

5.2.3 Program flow

Let us look back to Chapter 1.3, where different parallel techniques were discussed. The simplest technique
to implement is parallelization via threading. Hence, as a first implementation and for proof of principle,
we implemented the program using the OpenMP threading library on a single node. The general structure
of this version of the algorithm is shown in Figure 5.1. Necessary subroutines are presented in Figure 5.2.
The algorithm itself is presented in Algorithm 3.

The program takes as input a circuit (which it converts to a matrix), the desired T -count, a number of
threads, and a string to indicate what fraction of the points in the space are designated as distinguished
(this is usually a string of 0s, such as “000” to indicate that integers are distinguished if the first part of
their binary representation is equal to this string).

All spawned threads can access shared memory. A C++11 STL unordered map is used to store the
set of found distinguished points. Distinguished points are stored as objects of a struct which contains
the first integer and flag (an integer or character which indicates which side of Eq. 5.2 to perform), the
last (distinguished) integer and flag, and the number of steps in between. A boolean variable common to
all threads is used to keep track of whether or not a claw has been found.

Circuits are read in in text format and then converted to a matrix over elements of the ring Z
[
i, 1√

2

]
(both the ring elements and the matrix are classes). The channel representation of the initial matrix is
then computed (channel representations are also a class, separate from the original matrix class).

Once all initialization has taken place, OpenMP threads are spawned and the execution proceeds in
parallel. Each thread chooses a random initial integer and flag and proceeds to make a trail - these trails
end either at a distinguished point, or stop after some predetermined number of iterations (to avoid trails
self-looping endlessly).

Trails are produced as follows. For an n-qubit circuit of T -count k, a random walk is executed over

the space of the integers from 0 to 4nb
k
2c − 1. The binary representation of each integer forms a unique

sequence of Paulis. If the T -count is odd, we divide the larger space into subsets of this size and execute
the search sequentially over them.

The initial flag tells us whether to generate the LHS or RHS of Eq. (5.2). The channel representations
of these matrices are computed, as is their product. We then compute the coset label of this product,
convert it to a unique bit string, and hash it using SHA-1. This is because it is highly unlikely that two
different coset labels will have the same SHA-1 hash value - thus if two separate trails produce the same
hash at some point, it is highly likely that they had the same coset label, and may have collided (or
produced a claw).

We then use a reduction function to convert the hash into a new integer and flag, for the next iteration
of the trail. A reduction function is analogous to the opposite of a hash function - it deterministically
takes a hash value to a (different) element in the domain of the hash function. The reduction function
used by the program is very simple. It takes a SHA-1 value as a hexadecimal string, and sums a sequence
of bit shifts performed on the decimal representation of the characters in the string. This produces
an integer, the modulus of which is taken such that the integer is within the size of the space we are

3In some of the very first versions of the code, synthesis of the Toffoli gate took regularly around 45 minutes. After
eliminating the redundancy, and adding in sparse matrix multiplication, it now takes less than 5 minutes on average (see
Section 5.3).

26

Algorithm 3 OpenMP algorithm

1: Input: circuit, T-count, num threads, distinguished string

2: found distinguished points ← {}
3: claw found ← false
4: num steps ← 0
5: function id ← 0
6: subset id ← 0
7: #pragma omp parallel (num threads)

8: while claw found is false do
9: start int, start flag← a random initial integer and flag

10: trail end ← result of trail starting from start int, start flag

11: if trail end contains a distinguished point then
12: matching point ← NULL

13: #pragma omp critical {
14: search for it in found distinguished points

15: if no match exists in found distinguished points then
16: add the point to found distinguished points

17: else
18: matching point ← match from found distinguished points

19: end if
20: }
21: if matching point is not NULL then
22: check for collision/claw
23: if collision event was a claw then
24: claw found ← true
25: else
26: discard trail end and restart loop
27: end if
28: else
29: discard trail end and restart loop
30: end if
31: end if
32: (atomic) num steps++
33: if num steps reached max iteration limit then
34: if T-count % 2 == 0 then
35: (atomic) function id ++
36: (atomic) num steps ← 0
37: else
38: subset id ++
39: if subset id > maximum subset identifier then
40: (atomic) subset id ← 0
41: (atomic) function id++
42: end if
43: end if
44: end if

45: end while
46: Output: collection of Qi and Ĉ which satisfy Eq. (5.2), if found.

27

Figure 5.1: Flowchart of the program execution for the OpenMP optimal T-count implementation. See
Figure 5.2 for expansions of the yellow, purple, and blue subroutines.

28

(a) Subroutine used to generate a sequence of
Pauli matrices from a binary string.

(b) Subroutine used to compute the coset label
of a given Pauli sequence.

(c) Subroutine used to hash a coset label and generate the
next pair in a trail.

Figure 5.2: Subroutines used in Figure 5.1 and Figure 6.1.

29

searching. We check if the new integer is a distinguished point by comparing the first few digits of
its binary representation to the input string indicating the distinguishing condition. If they match we
terminate the trail and return the distinguished point. If not, we continue on with the next iteration of
the trail.

Valid distinguished points must be added to the shared memory, which is a costly operation. For
one, this occurs in a ‘critical’ code block, meaning that only a single thread may read and modify the
shared memory at a time. Each thread must search through the current set to see if a distinguished
point with the same value already exists in it. If not, it must be added. If it is already present, then the
distinguished point information from the set is copied and the thread exits the critical section.

If a thread finds a match, it proceeds to check if the two trails merge due to a claw. Checking this
involves tracing through the execution of both trails from their beginnings to a point where the coset
label is equal, a technique which was introduced in Chapter 3. If a claw is not found, then the thread
discards its current trail, and begins a new one. If one is found, then the communal boolean variable is
set to true so that each thread knows to terminate before starting its next iteration.

We keep track of the number of trails of for two reasons. First, when the T -count is odd, the larger
space is partitioned into chunks the size of the smaller space. After a specified number of trails are
generated, we switch to a new subset by dumping the stored distinguished points and resetting the trail
counter.

Second, we try a different reduction function after a specified number of trails are generated (usually
10 times the number of possible distinguished points in the space [28]). To vary the reduction function,
we include an ID value which gets incorporated into the bit shift sequence before the modulus is taken.
Different versions are required to “scramble” the mappings around. Sometimes the mappings are bad,
either many self-loops were created, or some elements mapped to themselves and trails would go nowhere.

5.3 Results

5.3.1 Timing random parallel code

I would like to take a moment to make an important point, before presenting the results of the synthesis
runs. This algorithm is random. This algorithm also runs in parallel. Even for the same circuit, every
time the algorithm runs, the output sequence of operations may be different if there are Paulis within it
that commute (and thus multiple solutions to the problem). Even two runs with the same initial seed
may take different amounts of time if there are slight differences in how the threads run and interact with
the central distinguished point storage.

Benchmarking the algorithm is difficult. In the results which follow below, we present the timed
results of 100 separate trials for each set of parameters. Timing begins immediately before the OpenMP
threads are spawned, and ends once the claw has been found. We present the average values for each
circuit, as well as the standard deviation, and use histograms to plot the distributions. We also offer
comparison with runtimes from some previous algorithms. These runtimes are not directly comparable
as this algorithm is ultimately different from its predecessors. The times are meant to offer a rough
comparison, and be a goal to strive for and improve on.

5.3.2 2-qubit synthesis

5.3.2.a Controlled-Hadamard

The first 2-qubit circuit we synthesized was the controlled-Hadamard gate, shown in Figure 5.3. This
circuit is small, having only T -count 2. The previously reported synthesis time in [24] was 0.5s. The

30

machine they used was very different, and used a single quad-core Intel i5 processor with speed 2.80GHz,
and 16GB RAM (we note the difference in clock speed with our AMD Opteron nodes at 2.2GHz).

To test the claw finder, we ran 100 trials on one of the Opteron nodes using the same parameters (8
threads, 1/4 of points distinguished). The average time taken was 0.3783s, with a standard deviation of
0.7643s. Memory usage of the program was negligible and not reported by the SHARCNET job scheduler
for most jobs - it was always less than 1 GB when reported. The Paulis Q1 and Q2 we obtained were

Q1 = I ⊗ Y, Q2 = Z ⊗ Y. (5.12)

We note that these Paulis commute, so many of the trials found the Paulis in the other order.

H

Figure 5.3: Circuit diagram of the controlled-Hadamard gate. This operation has T -count 2.

The distribution of runtimes is shown in Figure 5.4. We note that most of the runtimes fall below
the 0.25s mark. Recall that the algorithm requires multiple versions of the reduction function - outliers
1 second and above occur when the algorithm does not find a claw within the designated number of
iterations on the first reduction function. A second (or third) reduction function must sometimes be
tried, a process which takes some time as the central storage location must be reset before threads can
add new distinguished points to it.

Average: 0.3783s

Std. dev.: 0.7643s

0

5

10

15

20

25

30

35

40

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Time (s)

C
o

u
n

t

Synthesis times for controlled−Hadamard (T−count 2)

Figure 5.4: Distribution of runtimes for synthesizing the controlled-Hadamard gate with 8 threads and
1/4 of the search space marked as distinguished points. The outliers at the high end of the runtime occur
when a claw is not found in the first reduction function tried.

In the case of the longest-running trial, 4.977s, the claw was found 4 times, and 2 different reduction
functions were tried. Finding multiple instances of the claw takes more time because each processor that
finds a claw must follow through to the end of its execution by tracing through the two trails, and output
its results.

31

5.3.2.b Controlled-phase

A similar experiment was done with the controlled-phase gate (C-S), shown graphically in Figure 5.5.
The C-S gate has T -count 3.

S

Figure 5.5: Circuit diagram of the controlled-phase gate. This operation has T -count 3.

We use Eq. (5.2) and divide it as follows:

R̂(Q2)R̂(Q1)Ĉ = R̂(Q3)†Û (5.13)

The size of the space being searched on the RHS of this equation is 42 = 16, as generation of the RHS
involves the creation of only a single Pauli (and then multiplication by the target operation U). The
LHS on the other hand requires generation of two Paulis - the space is therefore of size 42·2 = 256, 16
times larger than the RHS. We note that in reality, the techniques from Section 5.2.2 will decrease these
sizes, but they are still necessary here to divide the larger space into subsets. To perform the claw finding
algorithm, we partition the larger space into 16 chunks; each of these subsets is searched sequentially. As
a result, program execution for C-S and any odd-depth circuit takes slightly longer as some of the subsets
may have no solutions and the algorithm must generate a designated number of trails before continuing.

The Paulis which were found to constitute the C-S gate are

Q1 = Z ⊗ Z, Q2 = Z ⊗ I, Q3 = I ⊗ Z. (5.14)

The distribution of runtimes is shown in Figure 5.6. The average runtime was 0.9386s, with a standard-
deviation of 1.2902s.

5.3.2.c Varying the T -count

To test the limits of the 2-qubit version of the algorithm, we designed a series of circuits from T -count 2
up to T -count 15. They consisted solely of Hadamard and T gates - a series of examples is given in Figure
5.7. For each T -value, we ran 100 trials, taking 1/8 of the points designated as distinguished, using 16
threads of the Opteron nodes. The results are depicted in Figure 5.8. In this plot, we see precisely the
exponential increase in runtime predicted by the algorithm. For 2 qubits runtime begins to skyrocket at
around T -count 10.

32

Average: 0.9386s

Std. dev.: 1.2902s

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Time (s)

C
o

u
n

t

Synthesis times for controlled−phase (T−count 3)

Figure 5.6: Distribution of runtimes for synthesizing the controlled-phase gate with 8 threads and 1/4 of
the search space marked as distinguished points. Synthesis takes longer for odd T -counts because each
subset of the divided space must be searched sequentially for a fixed period of time.

Figure 5.7: Examples of 2-qubit circuits synthesized with varying T -count (denoted by t). These circuits
consist only of H and T gates. The T gates are added one at a time, with layers of T gates separated by
Hadamards on each qubit.

5.3.3 3-qubit synthesis

5.3.3.a T -count 7

Some of the largest circuits that were previously synthesizable with the T -optimal algorithm are a small
number of 3-qubit circuits with T -count 7. We tested five such circuits: the Toffoli gate, the negated
Toffoli gate, the Fredkin gate (controlled swap), the Peres gate, and the Quantum OR gate. Gates are
depicted in Figure 5.9.

Synthesis using the original MITM algorithm took about 415s for the Toffoli gate [24]. As the
algorithms perform different tasks (the original algorithm outputs a sequence of Cliffords rather than
Paulis, and does not consider optimal T -count), we use this timing only as a rough means of gauging the
success of the algorithm.

All trials were run with the same set of parameters on the same type of nodes on SHARCNETs’ Orca.
We used 16 threads rather than the full 24 due to the increased wait time of getting a full nodes worth of

33

0.6162 4.9751 1.318 7.3992 8.0579 10.0984 20.736 27.452 32.8713 209.0949 360.5866 760.7354
1611.8994

16133.2199

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

2 3 4 5 6 7 8 9 10 11 12 13 14 15

T−count

T
im

e
 (

s
)

Average synthesis time for 2−qubit circuits with varying T−count

R^2 = 0.9251

−1

0

1

2

3

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15

T−count

lo
g

1
0

(T
im

e
)

(s
)

Figure 5.8: Average synthesis time with varying T -count for 2-qubit circuits. The upper plot displays the
exponential increase in time taken as the T -count increases. This is clearer in the lower plot which shows
the log transform of the data, producing an expected roughly linear trend with T -count. The equation
of the line is 0.2867t− 0.8061, where t is the T -count. As an indicator of how well it fits the data, we can
compute its coefficient of determination (R2 value). We find that R2 = 0.9251, which is reasonably close
to 1, indicating a satisfactory goodness of fit.

cores on Orca. All runs were done with 1/8 of the points designated as distinguished. RAM usage was
about 1.3GB per run. Average times for each circuit are shown in Table 5.1.

Time-distribution histograms are shown in Figures 5.10-5.15. The results from these trials are in-
triguing - the distribution of times is much wider than that of the 2-qubit circuits, though in most cases
there are distinguishable clusters of times towards the lower end of the scale. An unusual case was the
Fredkin gate - there were 7 cases which took over 45 minutes to complete. Recall that for odd T -counts,
the larger space is partitioned into chunks. For the Fredkin, there were possible solutions to the problem
in the first chunk searched, as well as the sixth. The Pauli sequences found contained many commuting
operators, which led to multiple solutions. A solution in the first chunk was found by 93 of the trials.
The remaining 7 were unfortunate and did not find the solution initially, and ran until they found it in
the sixth chunk, thus taking a significantly greater amount of time as they had to search sequentially
through subsets of the space where there was no solution. As a result we show two histograms for the
Fredkin gate: Figure 5.14 which contains all the data, and Figure 5.15 which contains the 93 points which
found the solution in a reasonable amount of time.

34

(a) Toffoli (b) Peres

X X

X

X

X

(c) Quantum OR

(d) Fredkin

X X

(e) Negated Toffoli

Figure 5.9: Circuit diagrams for the five 3-qubit circuits with T -count 7 which we synthesized.

Circuit Average time (s) Standard deviation (s)

Toffoli 267.3684 174.6607

Negated Toffoli 280.2070 188.9637

Peres 270.3597 183.1228

Fredkin 387.9245 735.8697

Fredkin (without outliers) 191.2257 148.6447

Quantum OR 241.1220 165.3518

Table 5.1: Average runtimes for the five 3-qubit circuits. All trials were run using 16 threads on an Orca
AMD Opteron node, and 1/8 of the points were designated as distinguished. The case of the Fredkin
gate saw some extreme outlier times (over 3000s), hence we present the results both with and without
these outliers.

Average: 267.3684s

Std. dev.: 174.6607s

0

1

2

3

4

5

6

7

8

9

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Time (s)

C
o

u
n

t

Synthesis times for Toffoli (T−count 7)

Figure 5.10: Distribution of synthesis times for the Toffoli (T -count 7, 16 threads, 1/8 points distin-
guished).

35

Average: 270.3597

Std. dev.: 183.1228s

0

1

2

3

4

5

6

7

8

9

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Time (s)

C
o

u
n

t

Synthesis times for Peres (T−count 7)

Figure 5.11: Distribution of synthesis times for the Peres (T -count 7, 16 threads, 1/8 points distinguished).

Average: 241.1220s

Std. dev.: 165.3518s

0

1

2

3

4

5

6

7

8

9

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Time (s)

C
o

u
n

t

Synthesis times for Quantum OR (T−count 7)

Figure 5.12: Distribution of synthesis times for the Quantum OR (T -count 7, 16 threads, 1/8 points
distinguished).

36

Average: 280.2070s

Std. dev.: 188.9637s

0

1

2

3

4

5

6

7

8

9

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Time (s)

C
o

u
n

t

Synthesis times for negated Toffoli (T−count 7)

Figure 5.13: Distribution of synthesis times for the negated Toffoli (T -count 7, 16 threads, 1/8 points
distinguished).

Average: 387.9245s

Std. dev.: 735.8697s

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

Time (s)

C
o

u
n

t

Synthesis times for Fredkin (T−count 7)

Figure 5.14: Distribution of synthesis times for the Fredkin gate (T -count 7, 16 threads, 1/8 points
distinguished).

37

Average: 191.2257s

Std. dev.: 148.6447s

0

1

2

3

4

5

6

7

8

9

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Time (s)

C
o

u
n

t

Synthesis times for Fredkin without outliers (T−count 7)

Figure 5.15: Distribution of synthesis times for the Fredkin gate with outliers removed (T -count 7, 16
threads, 1/8 points distinguished).

5.3.3.b A new regime: T -count 9 and T -count 11

The limit of the optimal T -count algorithm for 3-qubit circuits was T -count 7. Using the parallel al-
gorithm, we have successfully synthesized a circuit with T -count 9, as well as T -count 11. The circuits
consist of a Toffoli gate with appended controlled-Hadamards, as shown in Figure 5.16. As a consequence
of the procedure for generation of “good” Pauli sequences as discussed in Section 5.2.2, successful syn-
thesis of these algorithms is convincing evidence that these circuits do indeed have T -count 9 and 11, and
not lower (otherwise, suitable sequences of Paulis may not have been found).

H H

H

Figure 5.16: Our T -count 9 and 11 circuits of choice: a Toffoli (T -count 7), followed by a controlled-
Hadamard (T -count 2), and a Toffoli followed by two controlled-Hadamards.

The mean synthesis time for the T -count 9 circuit was 2728.179s, or about 45 minutes. Virtual
memory usage was reported as 1.3GB. The runtime varied greatly, as is depicted in Figure 5.17. We also
see the time increase nearly 10-fold from the T -count 7 circuit, from less than 5 minutes to 45 minutes.
This is not surprising, given the exponential runtime of this algorithm.

38

Average: 2728.1790s

Std. dev.: 1743.0910s

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Time (s)

C
o

u
n

t

Synthesis times for Toffoli + controlled−Hadamard (T−count 9)

Figure 5.17: The distribution of synthesis times for a Toffoli and a controlled Hadamard (totaling T -count
9). The data was generated using 16 threads with 1/8 of the points distinguished.

Synthesis of the T -count 11 circuit was significantly more time-consuming. The average run time
is over 15 hours; the fastest took just under 28 minutes, while the longest took over 41 hours. From
Figure 5.18 we can see that the distribution of runtimes is fairly evenly spread over this range. To fully
understand the distribution of runtimes we will have to generate a much larger set of data.

Average: 55366.53s
Std. dev.: 32939.45s

0

1

2

3

4

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000

Time (s)

C
o

u
n

t

Synthesis times for Toffoli + two controlled−Hadamards (T−count 11)

Figure 5.18: The distribution of synthesis times for a Toffoli and two controlled Hadamard (totaling
T -count 11). The data was generated using 16 threads with 1/8 of the points distinguished. This plot
shows the results of 97/100 separate trials which finished within the 48h allotted run time.

5.3.3.c Varying the number of threads

Another way of profiling the algorithm is to vary the number of threads. The runtime of the program
should be roughly inversely proportional to the number of threads. In reality, memory access bottlenecks
may reduce the possible benefits of adding more threads. We used 1, 2, 4, 8, and 16 threads to test the

39

synthesis of the Toffoli circuit. As usual, 100 trials were run for each different thread count. As shown
in Figure 5.19, the synthesis is inversely proportional to the number of threads increases. This strongly
indicates that the algorithm scales as we claimed.

500

1000

1500

1 2 4 8 16

OpenMP threads

T
im

e
 (

s
)

Average synthesis time for Toffoli with varying number of threads

Figure 5.19: Variation in Toffoli synthesis times with the number of OpenMP threads. The runtime scales
roughly inversely with the number of threads when all other parameters remain constant.

5.3.3.d Varying the fraction of distinguished points

The fraction of points designated as distinguished was the key parameter of the time-memory tradeoff
utilized by our algorithm. The effect of varying this parameter was investigated for the Toffoli gate, for
fractions of 1/2, 1/4, 1/8, 1/16, and 1/32. Each trial was run 100 times, and with 16 threads as usual.
The results are plotted in Figure 5.20, and are somewhat intriguing.

300

400

500

600

700

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Distinguished point fraction

T
im

e
s
 (

s
)

Average synthesis time for Toffoli with varying distinguished point fraction

Figure 5.20: Variation in Toffoli synthesis average when the fraction of distinguished points is changed.
We see that lower fractions lead to a definite increase in average synthesis time, while higher fractions
show inconclusive variation.

40

We can see that lower fractions of distinguished points lead to a significant increase in average synthesis
time. One can intuitively understand this by noting that more operations must be performed on average
during each trail, and these operations are nontrivial multiplications of N2 ×N2 matrices. The increase
in time at 1/4 suggests there may be an optimal fraction of distinguished points, however the decrease
in average time when the fraction is 1/2 is difficult to explain.

One possibility is that the search space of the Toffoli is too small for there to be any detrimental effect
from having too many distinguished points. More distinguished points should mean more storage space
is required. However, the memory used, as reported by SHARCNET, was the same: 1.3GB regardless of
the fraction of distinguished points set. It is plausible that the storage of distinguished points is fairly
negligible, compared to storage of large channel representation matrices by all the threads. For larger
circuits, though, choosing the distinguished fraction wisely will be much more important. Future work
will involve fine-tuning the choice of this parameter based on the size of the problem.

5.4 Algorithm limitations

First and foremost, our algorithm is limited to the number of cores within a node. Orca has nodes with
16 and 24 cores; other machines have nodes with 8 cores, some even 32 cores. Either way, the level of
parallelism needed to solve problems larger than 3 qubits and T -count 11 exceeds the resources of a single
node. We propose a solution in Chapter 6.

The bottleneck at the distinguished point set is also a problem with the algorithm - only one thread
can access the shared set at a time. Each time, the thread must search the set for a potential match,
and add a distinguished point to it if one is not found. This could potentially result in many idle threads
waiting for their turn to access the set, all of which is time that could have been spent generating new
points or checking for a collision. A means to alleviate this issue is also suggested in Chapter 6.

Ultimately, the achieved runtime depends on the time-memory tradeoff chosen by the programmer.
Even within such constraints however, the end result may still be highly variable. In the long run, our
algorithm may outperform its counterparts [1, 24] due to a few reasons. First of all, it does not rely
on precomputed databases. Databases take significant time to generate as well as many GB to store,
in the case of [1, 24]. Though we could in theory make use of databases in the parallel algorithm, it is
questionable whether they would be advantageous. They would take time to generate, and they would
also have to be accessed by many threads at the same time. A possible database would have to consist of

products of Paulis R̂(Qi) only, and not the coset label, as the computation of the RHS of Eq. (5.2) would
still require multiplication by the circuit matrix Û which is different for every circuit we wish to synthesize.

Computing the products of R̂(Qi) are not causing any bottleneck for the program as they use the sparse-
like algorithm as discussed in Section 5.2.2 - thus there would likely be no significant benefit to using a
database to store these. Furthermore, and this leads to our second point, the current implementation
already synthesizes some circuits faster on average, and this is achieved without databases. Finally, the
algorithm can synthesize optimal T -count circuits with a higher T -count than previously possible, even
on only 16 threads. This shows great promise for the large-scale implementation of Chapter 6.

41

Chapter 6

Advanced implementation: hybrid
parallel programming

As was mentioned in Chapter 5, using only OpenMP for parallelization limits the number of threads to
the number of cores of a single node. In order to wrangle the hundreds, or thousands of cores needed to
synthesize larger circuits, we must allow communication between nodes. In this chapter, we present the
“advanced” version of the algorithm which uses the Message Passing Interface (MPI) to communicate
between nodes, and OpenMP within each node.

6.1 Program flow

The general structure of the program is shown in Figure 6.1. All subroutines and procedures are identical
to the threaded version, but the organization of processes is different. A number of MPI processes are
spawned at the beginning of the program runtime. Each process should be attached to its own node
in order to take full advantage of available resources. Processes are divided into three types: Workers,
Collectors, and Verifiers.

Workers do the bulk of the work, as they continuously generate trails and distinguished points. Unless
they are notified of a claw being found, a Worker executes the steps in Algorithm 4. Workers make use
of the hybrid programming idea. In each step, the node’s MPI process spawns a number of OpenMP
threads which each generate a trail. The distinguished points that are found by Workers are sent to
Collector processes. This is where the distinguished points are processed and stored. Each Collector
stores a different subset of the distinguished points, so the Workers must send distinguished points to the
right location.

Algorithm 4 MPI Worker subroutine

while claw has not been found do
create an empty container for distinguished points
spawn OpenMP threads
each OpenMP thread runs a trail and produces a distinguished point
each thread stores a distinguished point in the container and terminates
the master MPI process of the current node sends distinguished points to appropriate Collectors

end while

When a Collector receives distinguished points, it attempts to insert them into the local set. As in
the original algorithm, points which are not found in the set are added, and duplicates are tested for

42

Algorithm 5 MPI Collector subroutine

found distinguished points ← {}
while claw has not been found do

receive distinguished points from Worker
for each distinguished point do
matching point ← NULL

search for distinguished point in found distinguished points

if no match exists in found distinguished points then
add the point to found distinguished points

else
matching point ← match from found distinguished points

Send pair of distinguished points to a Verifier
end if

end for
end while

claws. The steps executed by the Collectors are shown in Algorithm 5.
Two points which are candidates for a claw are sent by the Collector to a dedicated Verifier node -

each Collector may have many Verifier nodes associated to it. The Verifiers step through the two trails
and check if there is a claw. If a claw is found, the Verifier outputs the solution and signals to the other
processors to abort execution. The steps of the Verifiers are shown in Algorithm 6.

Algorithm 6 MPI Verifier subroutine

while claw has not been found do
receive pair of distinguished points from Collector
if trails merge and claw is found then

alert other processes that claw is found
terminate

end if
end while

6.2 Preliminary results

The algorithm is still in development, as a proper termination sequence has yet to be implemented.
However we can, for the time being, test the synthesis time by using mpi abort to terminate the execution
once any Verifier finds a claw. We tested the algorithm using 64 MPI processes on Orca, using the AMD
Opteron nodes. In each case, we tried differing numbers of Workers, Collectors, and Verifiers. MPI calls
were made using Boost’s compiled library Boost.MPI [32]. As it is very difficult to get access to entire
nodes (see Section 6.3), it was not possible to spawn many OpenMP threads per MPI process on the
Workers. The number of OpenMP threads was either 1 or 2 per process. We tried using 2 threads simply
to investigate the possibility of hyperthreading on the Opteron nodes. The hybrid communication scheme
used is master only [19, 20], meaning that when Workers send their distinguished points to Collectors,
only a single process per node sends all the data at once (rather than each OpenMP thread sending data
separately as it is generated).

The results are presented in Table 6.1. We can see that changing the number of Verifiers and Collectors
has a noticeable impact on the average runtime. The best case was with 40 Workers, 8 Collectors, 16

43

F
ig

u
re

6
.1

:
P

ro
gr

am
fl

ow
o
f

th
e

p
ro

d
u

ct
io

n
-r

ea
d

y
ve

rs
io

n
of

th
e

al
go

ri
th

m
.

M
u

lt
ip

le
W

or
ke

r
n

o
d

es
se

a
rc

h
fo

r
d

is
ti

n
g
u

is
h

ed
p

o
in

ts
.

O
p

en
M

P
is

u
se

d
w

it
h

in
ea

ch
n

o
d

e
to

ta
ke

ad
va

n
ta

ge
of

th
e

m
u

lt
ip

le
co

re
s.

F
ou

n
d

p
oi

n
ts

ar
e

d
is

tr
ib

u
te

d
v
ia

M
P

I
to

va
ri

o
u

s
C

o
ll

ec
to

r
n

o
d

es
,

ea
ch

o
f

w
h

ic
h

co
n
ta

in
s

a
lo

ca
l
se

t
of

d
is

ti
n

gu
is

h
ed

p
oi

n
ts

,
w

h
ic

h
ar

e
in

d
ep

en
d

en
t

fr
om

th
os

e
o
f

th
e

ot
h

er
C

o
ll

ec
to

rs
.

E
ac

h
C

ol
le

ct
o
r

h
as

a
re

la
ti

v
el

y
sm

a
ll

n
u

m
b

er
of

V
er

ifi
er

s
a
t

it
s

d
is

p
os

al
.

W
h

en
m

at
ch

in
g

p
ai

rs
of

d
is

ti
n

gu
is

h
ed

p
o
in

ts
ar

e
fo

u
n

d
,

th
e

p
ai

r
is

se
n
t

to
a
n

id
le

V
er

ifi
er

to
d

et
er

m
in

e
w

h
et

h
er

o
r

n
o
t

th
er

e
is

a
cl

aw
.

44

Verifiers, and 1 thread each; this value was still higher than that using only OpenMP and 16 threads.
This hybrid algorithm is not yet optimized in the sense that it may not send distinguished points from
Worker to Collector in the most optimal way. It is also not taking full advantage of the multiple cores
per MPI process, being limited to only 1 or 2 threads.

Workers send distinguished points to Collectors sequentially. On the Worker, all distinguished points
meant for a single Collector are gathered and sent as one unit. The same is done for the next Collector,
until we have sent out all the data. More threads would mean larger packages of distinguished points
would be reaching a Collector with each message. This makes the messages less “wasteful”, in a sense,
as there is a higher throughput of distinguished points for the same amount of messages. On the other
hand, the Collector will take longer to process each package of distinguished points, so messages for other
Workers may have to wait longer before they can be handled.

One interesting point to note is that in some cases we see what looks like the negative consequences
of hyperthreading. For example, in the case of 48 Workers and 40 Workers, using 1 thread rather than 2
appears to be more advantageous. However, what is more interesting is there are other cases when we see
the opposite effect (such as for 28 Workers). Looking only at the variation for a single thread count, we
can see that there is clearly an ideal number of Workers for a given number of Collectors and Verifiers.
When we utilize a hybrid model, the multiple threads in a sense function as additional Workers. For the
case of 28 Workers, it’s possible that having 28 × 2 = 56 processors generating points is more balanced
than simply having 28, when we have only 12 Collectors and 24 Verifiers. Similarly, for the case of 40
Workers, perhaps just 40 processors generating points is better than the 40∗2 = 80, for only 8 Collectors
and 16 Verifiers. The number of Workers, Collectors, and Verifiers is thus a large tradeoff, the optimality
of which must be explored in future work where hyperthreading does not occur.

Table 6.1: Average runtimes for Toffoli synthesis with varying numbers of Workers, Collectors, Ver-
ifiers, and OpenMP threads. Each run used a total of 64 MPI processes; the number of OpenMP
threads per Worker was varied. All results are averages of 100 separate trials, with 1/8 of the points
marked as distinguished.

Workers Collectors Verifiers Threads Average time (s) Standard deviation (s)

48 4 12 2 793.1940 798.9989

40 8 16 2 551.2930 487.7952

28 12 24 2 697.9576 654.8881

16 16 32 2 1165.3257 812.2001

48 4 12 1 595.9559 547.3147

40 8 16 1 492.7831 457.8875

28 12 24 1 739.1256 a 564.2923

16 16 32 1 1122.4231 b 778.2605

a Due to an issue with the SHARCNET system, 3 of the jobs did not run at all. One job exceeded
the 1hr maximum time limit it was allotted; thus, this result is the average of 96 trials rather than
the standard 100.

b Also due to an issue with the SHARCNET system, only 89 trials were successful.

6.3 Advantages and limitations

Evidently, a major advantage of this more advanced implementation is the ability to use multiple nodes.
The algorithm also scales appropriately for larger circuit scenarios (e.g. if we know we will have twice as
many distinguished points, we can add twice as many Workers, and twice as many Collectors).

45

Having multiple Collectors should help ease the bottleneck normally encountered when a number of
threads are using a single shared memory to store distinguished points. In addition, each shared set
of distinguished points is smaller overall, so less time will be wasted searching through each set to find
a match. Furthermore, adding in the Verifiers means that Collectors are always available to process
distinguished points, in contrast to the previous algorithm where a single thread does all the work of
finding a distinguished point, adds it to the set, and checks if there is a collision.

Our hybrid implementation does have some limitations. The first is the sheer complexity of the
programming itself. One point of pain has been designing an effective termination sequence so that
when a Verifier finds a claw, it can notify the other processes without causing a deadlock (leaving some
processes waiting endlessly for messages that will never arrive because the processor that should have
sent them has already terminated). Future work will involve using MPI debugging programs to analyze
the flow of message passing in the program, and ensure that all processors terminate in a timely manner.

Though it is the simplest to implement, the master only model with OpenMP threading may not
be the most efficient means of communication. In the Workers, threads are spawned, distinguished
points are generated and stored, and then all threads are killed before any data is sent. This process
happens repeatedly throughout the program execution, and is inefficient in a number of ways. First of
all, there is a certain amount of overhead required in spawning OpenMP threads [19, 20]. Second, it
may take time before distinguished points are able to be sent to a Collector. Many Workers are sending
to the same Collector simultaneously, and these messages are queued up and received sequentially. If a
node is waiting to send to a Collector, it is wasting valuable time that could be spent generating more
distinguished points. It may be more efficient to use a hybrid model which balances the computation
and communication, as suggested in [19, 20]. We could spawn a set of OpenMP threads only once and
have them generate distinguished points continuously. Communication could be executed by a handful
of designated threads (for example, when a certain number of distinguished points have been generated
and stored in the shared memory of the node). In this model, there would never be an instance where
all the threads on a Worker node are idle simultaneously, waiting to communicate with a Collector. The
downside to this model, however, is its complexity to implement.

Another limitation is the amount of hardware required: a large set of full, dedicated nodes. To run
this hybrid program in the best possible way requires each MPI process to be tied to a single node, with no
other processes running on that node except for the set of OpenMP threads we spawn. It proved difficult
to get access to individual nodes on the SHARCNET platform due to the large user base and long wait
times. To that end, we are looking into obtaining an allocation on an IBM Blue Gene/Q, located at the
University of Toronto 1. The machine itself has over 65,000 cores, of which we are guaranteed at least
1,024.

1Documentation for the Blue Gene/Q can be found at http://wiki.scinethpc.ca/wiki/index.php/BGQ

46

http://wiki.scinethpc.ca/wiki/index.php/BGQ

Chapter 7

What else can we do with this
framework?

Let us summarize the key results of this work. We have merged two algorithms (meet-in-the-middle circuit
synthesis, and parallel collision finding) to develop a framework for parallel quantum circuit synthesis. An
implementation using OpenMP and just 16 concurrent processors has already proved this technique to be
beneficial. We synthesized many known circuits faster on average than the previous meet-in-the-middle
algorithm. Furthermore, we synthesized two 3-qubit circuits with optimal T -count 9 and 11, which were
previously not possible. We have high hopes for the hybrid OpenMP/MPI implementation which is under
development, and future work will involve analyzing and improving this technique such that it becomes
a scalable means of synthesizing even larger circuits than the ones shown in previous chapters.

Parallel quantum circuit synthesis is a framework that can be applied to several other quantum circuit
synthesis methods, and there are many more different improvements one can make to the implementations
presented in Chapters 5 and 6. We list a few of them here.

1. Approximate circuit synthesis
Not every unitary matrix has elements over the ring Z[i, 1√

2
]. Many commonly used quantum op-

erations would not be synthesizable over our gate set, e.g. the rotations performed in the quantum
Fourier transform, or the 2-qubit controlled-T gate 1.

Although there are existing algorithms for approximate synthesis, in future work (i.e. my PhD
work) we plan to investigate the possibility of building a new method that fits within the parallel
framework. One can imagine the program execution to be very similar, but we could call a candidate
circuit matrix distinguished if it is within ε of some finite set of target unitaries.

2. Synthesis over arbitrary bases
We mentioned in Chapter 2 the work done to synthesize circuits of the V -basis. Depending on the
physical implementation of a quantum computer, gate sets other than the Clifford+T set may be
more conducive. It may thus be useful to extend the implementation of the synthesis algorithm to
other gate sets, and perhaps let the user choose the one most pertinent to their application.

In an ideal world, we would let the user specify a gate set rather than them choosing from a fixed
set. However, much of the implementation currently depends on the nice properties of optimal

1Despite having its elements within the designated ring, the controlled-T gate does not satisfy the determinant conditions
discussed in Chapter 2 [12]

47

T -count synthesis - the user would need to rewrite the routines to work within their own basis (e.g.
determine the mapping from integers and hashes to elements from their sets). One possibility would
be to release a template of the implementation, and have the user fill in the specific details of their
gate set.

3. Extending parallelism to harness GPUs
Recent advances in GPU technology have led to commercial sale of devices with thousands of cores
2. Looking ahead to the future synthesis of very large circuits, this is on the order of cores we will
need. Harnessing the capabilities of a GPU may be a useful area to investigate. We considered the
possibility of using NVIDIA’s CUDA libraries for the implementations presented above, but we did
not implement it at this time for a number of reasons, stated below.

The original idea was to launch one trail per GPU core. However, all cores may take varying
amounts of time to run. When launching a CUDA program (called a kernel), we would have to
copy all the memory from the CPU to the GPU at the beginning, and then the resultant distin-
guished points back at the end once all threads have terminated. Copying memory from CPU
to GPU (and vice-versa) is a slow and thus “expensive” operation computationally, and should
be minimized, so constantly copying distinguished points back and forth would likely hinder the
performance of the algorithm. Furthermore, if we launch groups of many threads at a time, many
threads will be idle at any given time, particularly if one of the trails goes into a self-loop and has
to reach the maximum iteration limit before terminating. The program would have wait until all
threads have completed before transferring the results back to the CPU.

Another idea we considered was, instead of having one trail per GPU core, use standard MPI and
just use CUDA to do the intensive matrix multiplication in parallel. However, this would be even
more expensive memory wise, as we would have to copy memory back and forth to the GPU at each
step after we multiply matrices. Furthermore, many of the matrices in the current implementation
are class objects, and all their elements are class objects as well. This would make memory copying
a difficult task, as we would have to copy the objects recursively, or layer by layer. CUDA 6.0 (and
higher versions) have implemented a Unified Memory scheme which does this [33], but finding a
powerful enough research cluster with both thousands of CPUs and a GPU running CUDA 6.0 or
greater is not altogether easy.

The final reason is hardware. Anyone with a handful of CPUs can run one of the current versions
of the algorithm. However, using GPU acceleration would require researchers to have dedicated,
expensive hardware. Furthermore, if we use CUDA, that hardware would have to be NVIDIA.
This is an unnecessary limitation on the user base of such an algorithm. Using OpenGL instead of
CUDA may be a way to circumvent this problem.

Still, GPU acceleration is a possibility for the future. Currently, the best option would user-optional
modularization of the matrix multiplication for the GPU.

Overall, the current prototypes show great promise for synthesis of very large, previously unmanage-
able circuits. We provided two implementations (OpenMP and hybrid OpenMP/MPI) of a single circuit

2See, for example, the NVIDIA GTX Titan Z, a powerful desktop graphics card with nearly 6,000 cores, just waiting
to tackle a scientific computing problem if you have 3,340$ to spare. http://www.nvidia.com/gtx-700-graphics-cards/

gtx-titan-z/.

48

http://www.nvidia.com/gtx-700-graphics-cards/gtx-titan-z/
http://www.nvidia.com/gtx-700-graphics-cards/gtx-titan-z/

synthesis problem (optimal T -count), but there are many more possibilites. Future work on this topic
will focus on further developing a versatile tool: a packagable application that any other researcher can
use out of the box to synthesize their circuits on hardware of their choice.

49

Bibliography

[1] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo (2014) Quantum Info. Comput. 14 (15-16)

[2] M. A. Nielsen and I. L. Chuang Quantum computation and quantum information. Cambridge Uni-
versity Press, Cambride, 2000.

[3] A. Barenco et. al (1995) Phys. Rev. A 52 (5) 3457-3467

[4] D. P. DiVincenzo (1995) Phys. Rev. A 51 (2) 1015-1022

[5] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan (1999) http://arxiv.org/abs/
quant-ph/9906054

[6] D. Gottesman (1998) Phys. Rev. A 57 (1) 127-137

[7] V. Kliuchnikov, D. Maslov and M. Mosca (2013) Phys. Rev. Lett. 110 190502

[8] P. Selinger (2015) Quantum Info. Comput. 15 (1-2) 159-180.

[9] V. Kliuchnikov, D. Maslov, and M. Mosca (2012) http://arxiv.org/abs/1212.6964

[10] N. J. Ross and P. Selinger (2014) http://arxiv.org/abs/1403.2975

[11] V. Kliuchnikov, D. Maslov, M. Mosca (2013) Quantum Info. Comput. 13 (7-8) 607-630

[12] B. Giles and P. Selinger (2013) Phys. Rev. A 87 032332.

[13] L. B. Levitin and T. Toffoli (2009) Phys. Rev. Lett. 103 160502

[14] G. M. Amdahl (1967) AFIPS (Spring) joint computer conference (483-485)

[15] J. L. Gustafson (1988) Commun. ACM 31 (5) 532-533

[16] Udacity’s Intro to Parallel Programming online course, built in conjunction with NVIDIA, provides
an excellent overview of the ideas behind GPU programming (and many other common parallel pro-
gramming techniques), and was a very useful resource. https://www.udacity.com/course/cs344

[17] http://openmp.org/wp/

[18] http://www.mpi-forum.org/

[19] R. Rabenseifner (2003) Hybrid Parallel Programming: Performance Problems and Chances in Pro-
ceedings of the 45th CUG Conference. (CUG SUMMIT 2003), May 12-16, Columbus, Ohio, USA.

50

http://arxiv.org/abs/quant-ph/9906054
http://arxiv.org/abs/quant-ph/9906054
http://arxiv.org/abs/1212.6964
http://arxiv.org/abs/1403.2975
https://www.udacity.com/course/cs344
http://openmp.org/wp/
http://www.mpi-forum.org/

[20] R. Rabenseifner, G. Hager, and G. Jost (2009) Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-Core SMP Nodes in Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP 2009), Feb 18-20, Weimar, Germany.
pp. 427-236.

[21] C. M. Dawson and M. A. Nielsen (2005) Quantum Info. Comput. 6 (1) 81-95

[22] A. Bocharov, Y. Gurevich and K. M. Svore (2013) Phys. Rev. A. 88 012313

[23] A. W. Harrow, B. Recht and I. L. Chuang (2002) J. Math. Phys. 43 4445

[24] M. Amy, D. Maslov, M. Mosca, and M. Roetteler (2013) IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. 32 (6), 818

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein Introduction to Algorithms, 2nd edition.
The MIT Press (2001).

[26] D. Gottesman and I. L. Chuang (1999) Nature 402 390-393

[27] S. Aaronson and D. Gottesman (2004) Phys. Rev. A 70 052328

[28] P. C. van Oorschot and M. J. Wiener (1999) J. Cryptology 12 (1) 1-28

[29] P. C. van Oorschot and M. J. Wiener (1996) Advances in Cryptology - CRYPTO ’96, Lecture Notes
in Computer Science 1109 229-236

[30] http://www.boost.org/users/history/version_1_57_0.html

[31] R. Koenig and J. A. Smolin (2014) http://arxiv.org/abs/1406.2170

[32] http://www.boost.org/doc/libs/1_51_0/doc/html/mpi.html

[33] http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

[34] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane (1997) http://arXiv:quant-ph/

9608006

51

http://www.boost.org/users/history/version_1_57_0.html
http://arxiv.org/abs/1406.2170
http://www.boost.org/doc/libs/1_51_0/doc/html/mpi.html
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://arXiv:quant-ph/9608006
http://arXiv:quant-ph/9608006

Appendix A

Binary symplectic representation

Binary symplectic representation is a conveninent tool used in quantum information to represent Pauli
matrices as binary matrices (or strings) [34]. In general, a single-qubit Pauli can be written in the form
ZaXb. For convenience, we note this as (a|b). From this we obtain the correspondence

I ∼ (0|0) , X ∼ (0|1) , Z ∼ (1|0) , Y ∼ (1|1) . (A.1)

The left side of the bar represents the ‘Z’ component, and the right side the ‘X’ component.
We can represent multi-qubit Paulis in a similar way. A general n-qubit Pauli has the form Za1Xb1 ⊗

· · · ⊗ZanXbn . Its binary symplectic representation is (a1 · · · an|b1 · · · bn). For example, X ⊗Y ⊗Z would
be represented as (011|110).

In the implementation of the synthesis algorithm, we used binary symplectic representation to map
Paulis to the integers. For example, for the Pauli X ⊗ Y ⊗ Z above, we would take its representation
011110 and convert it to an integer: 30. To execute a random walk through the space of possible products
of R(Qi) then, it suffices to randomly walk over the integers, and the corresponding products of Paulis
are easy to extract.

52

	Introduction
	Quantum compilation
	Quantum circuits
	Graphically representing circuits
	Paulis, Cliffords, and universal gate sets

	Parallel computing
	Thesis objective

	Quantum circuit synthesis
	An overview of existing algorithms
	Meet-in-the-middle circuit synthesis
	An algorithm for the T-count
	Smallest denominator exponents
	The channel representation
	Coset labels
	Finding T-optimal circuit decompositions

	Parallel collision finding
	Overview
	Algorithm details
	Collisions and claws
	Collision finding
	Claw finding

	Application of parallel framework to circuit synthesis
	Framework
	Runtime estimation and algorithm complexity
	Applications and use cases

	Implementation details and results of threaded algorithm
	MITM for optimal T-count circuit synthesis
	Implementation
	Language and computer specifications
	Special techniques to make the program faster
	Program flow

	Results
	Timing random parallel code
	2-qubit synthesis
	Controlled-Hadamard
	Controlled-phase
	Varying the T-count

	3-qubit synthesis
	T-count 7
	A new regime: T-count 9 and T-count 11
	Varying the number of threads
	Varying the fraction of distinguished points

	Algorithm limitations

	Advanced implementation: hybrid parallel programming
	Program flow
	Preliminary results
	Advantages and limitations

	What else can we do with this framework?
	References
	Binary symplectic representation

