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Abstract 

Electric vehicles (EVs) have received significant attention over the past few years as a 

sustainable and efficient green transportation alternative. However, severe challenges, such as 

range anxiety, battery cost, and safety, hinder EV market expansion. A practical means to reduce 

these barriers is to improve the design of the battery management system (BMS) to accurately 

estimate the battery state of charge (SOC) and state of health (SOH) in addition to 

communicating with other powertrain components. Along with a robust estimation strategy, a 

critical requirement in developing an efficient BMS is a high fidelity battery model to predict the 

battery voltage, SOC, and heat generation profile at various temperature and power demands. 

Such a model should also be able to capture battery degradation, which is a path-dependent 

parameter that affects the battery performance in terms of output voltage, power capability and 

heat generation. In this thesis, the Li-ion battery, a proven technology for electrified vehicles, is 

studied under different operation scenarios on a plug-in hybrid vehicle (PHEV). The following 

steps have been accomplished:  

1- Development of a data-driven battery thermal model: A set of thermal characterization 

tests are conducted on Li-ion cells. Heat generation profiles of each battery are driven for 

a set of operating points including various ambient temperatures, states of charge (SOCs) 

and load profiles. A regression model is developed accordingly which is able to accurately 

predict the battery temperature during a driving or charging event.  The model shows an 

average error of 4% in temperature predictions. 

2- Development of a data-driven battery performance model for real-time on-board 

applications: An equivalent circuit model is developed based on the electrochemical 

impedance spectroscopy (EIS) tests. This model can precisely predict the battery 

operating voltage under various operating conditions. An overall 6% improvement is 

observed in voltage prediction compared to common models in the literature. Results also 

show, depending on the powertrain designer expected accuracy, that this model can be 

used to predict the battery internal resistance obtained from hybrid pulse power 

characterization (HPPC) tests.  
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3- Battery degradation studies through field tests: An electrified Ford Escape vehicle is 

tested through random and controlled driving and charging events and battery data is 

collected and analyzed to identify trends of degradation including capacity fade and power 

fade. A battery life model is recalibrated based on the measured battery capacities over the 

field test period. Although, data shortage and technical issues prevented this study from 

meeting its targeted scope, the presented analysis provides a pathway for future research.  

4- Battery lifetime modeling: fuel consumption, all-electric range and battery capacity loss 

are simulated under various scenarios including different climate control loads, ambient 

conditions, powertrain architectures and battery preconditioning. To simulate the climate 

control loads impact, a vehicle cabin thermal model is developed that incorporates the 

ambient conditions to predict the temperature profile of the cabin and the cooling/heating 

load required to regulate the temperature. Accordingly, this load is translated into 

additional load on the battery, which enables assessment of its impacts on the battery life, 

fuel consumption and vehicle range.  
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Chapter 1 

Introduction 

Over the past few decades, increasing concern about the environmental impact and non-

renewable infrastructure of fossil fuel-based transportation has highlighted the need for a long-

term transition to sustainable energy alternatives [1]. Therefore, the automotive industry has 

observed a renewed interest in electricity as an automotive propulsion technology in the recent 

decade [2]. EVs and electrified (hybrid) vehicles are superior to conventional vehicles in the 

following areas [1, 3]: 

1- Compared to an internal combustion engine (ICE) with about 20% energy efficiency, 

electric motors convert about 75% of the chemical energy stored in the battery into 

mechanical energy. Thanks to the regenerative braking system, which allows for energy 

recovery during braking, the efficiency of the electric traction system is further improved. 

2- Electric motors require less maintenance compared to ICEs as they have fewer moving 

parts. Furthermore, electric motors are able to provide high torque at low speeds; making 

the multi-speed gearboxes unnecessary for certain EVs. 

3- EVs offer a simple powertrain design, zero tailpipe emissions, and high efficiency on a 

tank-to-wheel basis. 

However, due to their higher costs, limited range, charging concerns and grid impacts [4], 

hybridized powertrains combining multiple power sources have been introduced. The most 

common type of hybrid vehicles today utilizes an ICE with an electric propulsion system. 

Compared to conventional vehicles, hybrid vehicles benefit from a smaller engine (ICE) size 

which is allowed to run at its efficient operating range, have a regenerative braking system, and 

have no idling mode, which all result in improved energy efficiency and emissions. The third 

class of electrified vehicles is the plug-in hybrid electric vehicle (PHEV) which combines the 
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characteristics of an HEV and the capability of an EV to recharge its battery from the grid. 

Therefore, a PHEV can rely solely on the electricity while it is not range limited like an EV. In 

addition, waste engine heat can be used to regulate cabin temperature, which reduces the need 

for an electric motor and avoids extra load on the battery. P/HEVs’ powertrain architecture can 

have a series, parallel or series-parallel design. In a series design, the traction power is provided 

to the wheels by the battery through the electric motor and the ICE charges the battery (through a 

generator) to maintain the battery state of charge (SOC) within a specified range. The power 

flow in a series design is shown in Figure‎1-1.  

 

Figure‎1-1. Power flow in a series HEV powertrain [5] 

In a parallel design, both the electric motor and ICE are mechanically connected to the wheel 

through a torque coupler. This design allows different operating modes: only electric (in which 

the ICE is disengaged from the coupler), only ICE (in which the electric motor freely spins), 

combined mode (in which the battery and ICE provide power) and, lastly, ICE being used for 

charging the battery in excess road load. Figure‎1-2 shows the power flow in the parallel design. 



 

3 

 

 

Figure‎1-2. Power flow in a parallel HEV powertrain [5] 

Generally, in city driving conditions, series hybrid behavior is preferable; however, during 

highway driving conditions, a parallel hybrid action is desired [6]. Therefore, the series parallel 

configuration combines the positive aspects of the series configuration independence of engine 

operation from the driving conditions with the advantage of the parallel configuration efficient 

mechanical drivetrain. The complexity of this design remains with the control tasks. Figure‎1-3 

shows the power flow in this architecture. 

 

Figure‎1-3. Power flow in a series parallel HEV powertrain [5] 

Electrified vehicles, regardless of the powertrain layout, need reliable electric energy storage. 

Currently, batteries and ultracapacitors are used for this purpose. Important factors in choosing 
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appropriate energy storage systems are energy and power density, lifetime and cost. Unlike 

conventional vehicles in which the battery is used only for starting, ignition and lighting, in 

electrified vehicles, the battery must meet certain design requirements. For example, in HEVs, 

the battery is designed to operate mostly in a narrow state of charge (SOC) range which is called 

charge sustaining (CS) mode and it is designed to match the peak power from the engine during 

acceleration. On the other hand, in PHEVs and pure EVs, the battery is designed to provide the 

vehicle with a significant all-electric range (AER) while operating in charge depleting (CD) 

mode. In addition, in these vehicles, the battery experiences deep charge and discharge cycles 

which adversely affect its lifetime. Therefore, the energy requirement and cycle life of a battery 

in these vehicles is a crucial consideration [1]. Ultra capacitors, unlike the batteries, store electric 

energy physically but not chemically; as well, they exhibit much higher power density and cycle 

life but much lower energy density. Therefore, they have been mostly utilized in mild hybrid 

vehicles in which the prime energy source is an engine or fuel cell [7, 8]. There is a variety of 

battery technology and chemistry available today. In earlier generations, nickel cadmium, lead 

acid, and nickel-metal hydride (Ni-MH) batteries were used as the power source due to their low 

price and reasonable energy density [9]. In recent years, Li-ion batteries are becoming more 

common because of their higher energy and power content. Li-ion battery technology is one of 

the core topics in the development of PHEVs and there is plenty of ongoing research to improve 

its performance, durability and safety [1, 3]. 

1.1 Problem definition and research objectives 

In this thesis, different aspects of Li-ion battery performance and behavior are studied as 

presented in the following sections. 

1.1.1 Battery Performance Modeling 

Electrical energy storage (battery) continues to be the greatest challenge to the 

commercialization of both PHEV and EV models. Beside battery price, range anxiety (fear of 

getting stranded on the road due to lack of charge) is the main concern expressed by consumers 
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[10]. Range anxiety stems from the fact that the specific energy of the battery packs (~0.25 

kWh/kg) compared to fossil fuel (~13 kWh/kg) is very low. Furthermore, refuelling (recharging) 

stations are not widely available and the charging time is rather high (depending on the method, 

full recharge times typically range from 30 minutes to almost 12 hours). With a gasoline car, 

many people are not at all affected by the range they get as refuelling is quick and easily 

accessible almost everywhere. Several surveys have been conducted on range anxiety. Accenture 

[11] conducted a survey, in 13 countries, on consumer preference concerning driving an 

electrified vehicle in which Chinese participants showed the highest tendency to buy and drive 

an EV as their future choice, while Dutch participants expressed the lowest interest. However, a 

higher range means a bigger battery size and, consequently, a higher cost vehicle. 

A determinant factor on the EV range is the battery management system (BMS). In electrified 

vehicles, the BMS plays a significant role in the battery and the whole vehicle performance, 

efficiency and safety. The BMS is actually required to respond to dynamic power demands 

dependent on driving behavior, road conditions, and electrical accessories [12]. In addition, the 

BMS is responsible for cell safety. Therefore, accurate prediction of SOC, proper management of 

current‎ and‎ temperature,‎ and‎cell‎ potential‎ balance‎ are‎BMS’‎crucial‎ tasks‎ [13]. However, the 

efficiency of a BMS is highly dependent on the fidelity of the battery model built in the BMS. 

Furthermore, on board processing power is limited. Therefore, it is imperative to have an 

accurate model that is sufficiently simple to be operated on board the BMS. Model complexity is 

dependent on application requirements. High fidelity Li-ion electrochemical models, which were 

first introduced by Doyle et al. [14], are widely used for battery design. Another type of battery 

model is the equivalent circuit model (ECM). These models are more useful for real-time 

applications (such as BMSs), in which cost and processing power is strictly limited. An ECM 

represents the complex electrochemical interactions within a battery as simple circuit 

components. Components may be added to model observed phenomena and increase accuracy, 

or may be removed to increase efficiency. ECM circuit elements, such as resistors and 

capacitors, may also be scaled to account for changes in SOC [15-18], temperature [16, 19-22], 

aging [23], and C-rate [18], which affect cell performance. 
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As a contribution to the existing models, this thesis presents a comprehensive ECM developed 

for two commercially available Li-ion cells used in PHEVs, which, compared to commonly used 

models, proves to be more efficient (up to 6%) in terms of voltage prediction. Such an 

improvement in voltage prediction can be interpreted as an additional few kilometers to the 

vehicle range.  Also, the proposed ECM has the capability to be used as an alternative to hybrid 

pulse power characterization (HPPC) tests within a limited error.  

1.1.2 Battery Thermal Characterization 

Devices with high energy density, such as Li-ion batteries, have the potential for high heat 

generation and Li-ion batteries are no exception. A single Li-ion polymer cell can undergo a 

temperature increase of 5 to 20 K at a 1C discharge rate [24], depending on cell geometry and 

assembly. Thermal management of the cells in a pack is, therefore, an important issue that must 

be considered to ensure vehicle safety, performance and cycle life.  

Depending on ambient conditions, there may be a need to remove or add heat to the battery in 

order to maintain the optimal temperature range and distribution. Non-uniform temperature 

distribution results in low charge and discharge performance and cell unbalancing, over time. 

Existing thermal management techniques include applying liquids, insulations and phase-change-

materials [25]. Essential tools in automotive pack design and thermal management are thermal 

and performance models. Such models require inputs such as system and operational parameters. 

Not all of these parameters are easy to directly quantify (e.g. heat effect and transport properties) 

because their effects cannot be isolated; thus, extensive tests are necessary to yield a clear 

understanding of heat generation and cell performance [26]. Several papers have been published 

on this topic so far; some proposing a simple one dimensional(1-D) [21, 27] approach and others 

with further details by three dimensional(3-D) [28]modeling of the heat generation inside the 

cell. However, for vehicle simulation and BMS applications, a fast and accurate heat generation 

model based on a limited number of lab tests may serve as an adequate alternative.  

In this regard, this thesis contributes to the literature by presenting a simple and accurate 

modeling approach of Li-ion cell heat generation that can be readily applied for fast simulations 
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and on-board applications.  

1.1.3 Battery Degradation 

Battery state of health (SOH) has been a hot topic since rechargeable (secondary) batteries 

were introduced to the industry. To extend the battery lifetime, the focus has been initially on 

minimizing the power consumption of the devices powered by these batteries. However, such 

methods would not be adequate, as they ignore important characteristics of the battery source 

such as the dependency of available capacity on the battery discharge rate and internal 

temperature, and the cycle aging effect [29]. In recent years, a number of researchers have 

developed models for battery SOH and degradation rate based on battery detailed 

electrochemistry coupled with thermal characteristics [30, 31]. In EV applications, battery SOH 

is known to be very much dependent on the driving and charging habit; therefore, there is a 

growing desire to evaluate the path dependence of battery degradation. This is due to the fact that 

a lab environment is far different from what the battery experiences under real operation in EVs. 

However, real-life testing is expensive and labor intensive and is associated with a very low level 

of control, which explains why, so far, it has rarely been the subject of research [32-34].  

As a contribution to the existing literature, this research presents a field study conducted on 

the Li-ion battery running in a converted EV to correlate battery degradation with real-life 

driving and charging profiles.  

1.1.4 Auxiliary Loads in EVs  

In EVs, the on-board battery provides the power not only for driving but also auxiliary loads 

such as climate control loads. Therefore, the use of a climate control system (air conditioning 

(AC) & heating) adds more challenges to the EV design. The primary task of AC is to provide 

passengers’‎thermal‎comfort‎through‎maintaining‎the‎vehicle‎cabin‎temperature‎and‎humidity‎at‎

desired levels. AC is believed to be the accessory that requires the largest quantity of power from 

the traction source. In conventional and hybrid electric vehicles (HEVs), this power is provided 

by the engine; however, in EVs, the power has to be extracted from the battery [35, 36]. It is 
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reported that, in an EV, AC may reduce the driving range up to 35%, depending on the AC usage 

frequency [37]. The loads are more significant when the climate-control systems are used in an 

initially very hot or very cold cabin at the beginning of a trip. Associated with the range 

reduction, there would be increased battery degradation for the same distance driven when 

AC/heating system is operating. Therefore, it is necessary to develop a tool for assessing the 

climate control system impact on the battery and vehicle performance. A modeling approach will 

be presented in this thesis that enables quantifying these impacts.   

1.2 Document Organization 

‎Chapter 2: presents a literature review about the fundamentals and modeling of batteries used 

in electrified vehicle and plug-in hybrid vehicle general considerations. 

‎Chapter 3: this chapter is based on the papers published and submitted  by Ehsan Samadani et 

al. [38, 39]. In this chapter, first, two commercially available Li-ion batteries are studied through 

thermal experiments. Profiles of heat generation at different operating conditions are generated 

and a data driven model for predicting the thermal ramp rate is developed. Afterwards, results of 

EIS tests conducted on the two cells are presented and, based on the observed phenomena during 

the EIS tests, an equivalent circuit model to predict the cells performance (voltage) under an 

arbitrary loading profile is developed.   

‎Chapter 4: is based on the submitted report by Ehsan Samadani et al to the Transport Canada. 

[40]. In this chapter, results of field tests with a converted EV are presented through four major 

steps. First, implementation of a system to collect, store, analyze, and report vehicle and grid 

electricity usage data. Second, development of a powertrain model of the EV that includes 

battery degradation based on the collected data. Third, a feasibility study of using the EV as a 

replacement for the conventional fleet vehicles in operation by the owner company. Fourth, 

study of the battery degradation through collected data over the course vehicle operation.  The 

study focus is to identify the degradation trends in the battery and propose a pathway for 

degradation modeling.  
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‎Chapter 5: presents a vehicle life time modeling considering temperature profiles, powertrain 

architectures, drive cycles and battery conditioning impacts.  For this purpose, a thermal model 

of the vehicle cabin is developed. This model is able to predict the cabin temperature profile 

given a certain ambient and initial condition. The model is integrated to the battery model to 

determine the extra load on the battery and resulting extra capacity loss.   

‎Chapter 6: This chapter summarizes the thesis, and highlights the main contributions of the 

research. It also contains recommendations for future works.  
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Chapter 2 

Background and literature review 

In this chapter, related background and literature on the battery modeling is presented.  

2.1 Battery Elements and Specifications 

Battery is an energy storage device consisting of one or more electrochemical cells that 

produces electrical energy from chemical energy stored in its active materials through 

electrochemical reactions. Depending on the desired nominal battery voltage and capacity Cells, 

are connected in series, parallel or both. Main components of a cell are anode, cathode and 

separator. 

2.1.1 Anode 

Upon the chemical reaction at the anode (oxidation) electrons are released and flow to the 

cathode through an external circuit. Important parameters in selecting the anode material are 

efficiency, high specific capacity, conductivity, stability, ease of fabrication and low cost. 

2.1.2 Cathode 

Cathode is the electrode in which reduction (absorbing electrons) takes place. During 

discharge the positive electrode of the cell is the cathode. During charge the situation reverses 

and the negative electrode of the cell is the cathode. The cathode is selected based on its voltage 

and chemical stability over time.  

2.1.3 Electrolyte 

Substances that release ions when dissolved in water are called electrolytes; which could 

include a wide range of acids, bases, and salts, as they all give ions when dissolved in water. The 

electrolyte completes the cell circuit by transporting the ions. The electrolyte are desired to be 

http://www.science.uwaterloo.ca/~cchieh/cact/c123/conjugat.html
http://www.science.uwaterloo.ca/~cchieh/cact/c123/salts.html
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highly conductive, non-reactive (with the electrode materials), stabile in properties at various 

temperatures, and economical.  

2.1.4 Separator 

A separator is a porous membrane inserted between electrodes of opposite charge. The key 

function of the separator is to keep the positive and negative electrodes apart to prevent electrical 

short circuits and, at the same time allow rapid transport of ionic charge carriers needed to 

complete the circuit.  Care must be taken upon selecting the separator material, as it could 

adversely affect the battery performance (by increasing electrical resistance). Following 

considerations should be observed when selecting the separator [41]: 

 Electrical insulation 

 Minimal electrolyte (ionic) resistance 

 Mechanical stability 

 Chemical resistance to degradation by electrolyte 

 Uniform in property and thickness 

 Effective in preventing migration of particles  

2.2 Battery Gloassary 

2.2.1 Battery Management System 

Battery management unit (BMU) is the central component of the battery system to ensure a 

healthy and appropriate usage of the sensitive battery cells. The BMU controls the usage of the 

battery cells by measuring variables such as voltage, current and temperature of each individual 

cell in the package. It also calculates important state variables such as SOC and power limits for 

charge and discharge of the battery. This information along with other signals (such as alarm 

signals) is sent from the BMU to the vehicles main computer which consequently is able to 
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control the propulsion of the vehicle in a qualitative manner without damaging the battery 

package [3]. 

2.2.2 State of Charge 

The state of charge (SOC) indicates the amount of charge in Amp-hours left in the battery. 

The SOC can be divided into two types: engineering-SOC (e-SOC) and thermodynamic SOC (t- 

SOC) [42]. The e-SOC is the SOC apparent to the user of the battery and is rate dependent; it is 

the state of the capacity at a certain discharge rate, so different discharge rates will result in a 

different e-SOC at the same amount of charge in the battery. The t-SOC is the SOC of a battery 

defined by the thermodynamic properties in the cell and can be determined by the open circuit 

voltage of the battery; it is the state of the useable capacity in the cell.  

2.2.3 Depth of Discharge- 

A measure of how much energy has been withdrawn from a battery, expressed as a percentage 

of full capacity. For example, a 100 Ah battery from which 30 Ah has been withdrawn has 

undergone a 30% depth of discharge (DOD). Depth of discharge is the inverse of state of charge. 

2.2.4 C-rate 

The C-rate is a measure for the current of a battery cell and is scaled to the nominal capacity 

of a cell stated by the manufacturer at reference conditions. The current level that a battery cell 

can discharge at depends on the capacity of the battery. A current of 1C means that the battery 

cell is ideally charged or discharged in one hour, C/2 in two hours and 2C in half an hour. So a 

current of 0.5C for a cell with nominal capacity of 160Ah is equal to 80A.  

2.2.5 Cell Capacity 

The useable capacity is theoretically the possible amount of charge that can be discharged 

from a fully charged cell with an infinitely small current for a given minimum cell voltage, so 

that the voltage drop over the internal resistance becomes close to zero. The true capacity is the 

useable capacity under reference temperature and is used as a measure for the capacity fading 
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determination. The 1C capacity is determined with a C-rate of 1C under reference conditions and 

is generally used to measure the capacity fading [43].  

2.2.6 Cycle 

Cycle could be defined as a period of discharge followed by a full recharge. EVs, however, 

experience regenerative braking during operation, which required a change in cycle definition. 

Some define a cycle as a period of discharge with regenerative braking followed by a full 

recharge [44] or an amount of energy discharged with regenerative braking followed by the equal 

amount recharged [43]. A better alternative to measure the usage of a battery is the charge or 

energy processed in the battery. The ambiguous definition of a cycle is hereby also avoided.  

2.2.7 Cell Open Circuit Voltage 

By definition, the open-circuit voltage (OCV) is the battery voltage under the equilibrium 

conditions, i.e. the voltage when no current is flowing in or out of the battery, and, hence no 

reactions occur inside the battery. OCV is a function of State-of-Charge and is expected to 

remain the same during the life-time of the battery. Note, however, that other battery 

characteristics do change with time, e.g. capacity is gradually decreasing as a function of the 

number of charge-discharge cycles. 

Because open circuit voltage shows a strong dependence on SOC for most batteries, it can be 

used as an estimation method.  Because the battery must be at rest (several hours) for an OCV to 

be determined, it is not practical for real-time or continuous estimation.  This poses problems for 

monitoring devices (e.g. clocks) where rest state is never realized.  Additionally, Li-ion batteries 

(such‎ as‎ those‎ used‎ in‎ vehicle‎ applications)‎ have‎ traditionally‎ shown‎ a‎ “flat”‎ OCV‎ when‎

compared with lead acid batteries which can lead to difficulty in estimation as demonstrated in 

Figure ‎2-1and Figure ‎2-2. 
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Figure ‎2-1 Li-ion battery OCV variation against SOC [45] 

 

 

Figure ‎2-2 Lead acid battery OCV variation against SOC [46] 

2.2.8 Internal Resistance 

The internal resistance is sometimes considered as the ohmic resistance of the cell, which is 

the direct voltage change after application of a current step on a cell in equilibrium [47]. Another 

definition for the internal resistance is the sum of the ohmic, activation and diffusion polarization 

resistances [48], which is the largest possible voltage drop in the cell. Nevertheless, the complete 

voltage drop will result in power dissipation in the form of heat. The voltage drop can be mainly 

categorized as: 
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IR drop  

IR drop or ohmic drop is due to the current flowing across the internal resistance of the 

battery.   

Activation polarization  

Activation polarization refers to the various retarding factors inherent to the kinetics of an 

electrochemical reaction, like the work function that ions must overcome at the junction between 

the electrodes and the electrolyte. 

Concentration polarization  

Concentration polarization takes into account the resistance faced by the mass transfer (e.g. 

diffusion) process by which ions are transported across the electrolyte from one electrode to 

another. Figure ‎2-3 depicts the typical polarization curve of a battery with the contributions of all 

three of the above factors shown as a function of the current drawn from the cell. Since, these 

factors are current-dependent, the voltage drop caused by them usually increases with increasing 

output current. The internal resistance of a battery is dependent on temperature, SOC and C-rate. 

Depending on the measurement method, different values for the internal resistance can be found 

[49]. This is caused by the time constants associated with the activation and diffusion 

polarization resistances; whether the battery electrodes are in equilibrium or not is also important 

in determining the value of the internal resistance. 
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Figure ‎2-3. Typical polarization of a battery [50]  

State of health 

The state of health (SOH) indicates the state of the battery between the beginning of life 

(BOL) and end of life (EOL) in percentages. The EOL of a battery is reached when the battery 

cannot perform according to the minimum requirements. For EVs this is defined by the battery 

manufacturers when one of the following conditions is met [51]: 

 The capacity of a battery under reference conditions has dropped to 80% compared to the 

rated capacity under reference conditions. This is known as capacity fading. 

 The maximum power delivered by the battery under reference conditions has dropped to 

80% compared to the rated power under reference conditions. This is known as power 

fading. 

Batteries in BEVs are normally oversized to have sufficient driving range, so the maximum 

power drawn from the BEV is much lower than the maximum power rating of the battery, 

therefore in BEVs generally the capacity fading criteria is taken as the SOH indicator 

2.3 Electric Vehicles Battery Types 

The batteries can either be of high energy density type or high power density type. Energy 

density is the amount of energy with regards to kg or liters. Power density provides a good 

measure on how much energy can be released due to discharge at a given time with regards to kg 

or liters. A high energy density battery is useful in applications where a longer driving distance is 

desired e.g. in a PHEV, which is intended to be driven on pure electricity for longer distances. A 

high power density battery is useful in an application where a short but intensive power pulse is 

required; e.g. in an ordinary HEV as the electric motor often only assists the combustion engine 

in short periods [50]. The first electric vehicles (EVs) developed in the nineties used lead-acid 

batteries. The range was around 100 kilometers, but since lead-acid batteries have a low energy 

density, the weight of the vehicle was high; therefore other chemistries were used in the years 
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after [52]. Due to the higher power and energy density and improved cycle life, EVs started to 

use nickel metal hydrate (NiMH).Today NiMH batteries are still used in hybrid electric vehicles 

(HEV) and plug-in hybrid electric vehicles (PHEV) for their low cost per Watt. But, due to high 

self-discharge, limited SOC operation range and low energy density, these batteries are 

unsuitable for EVs. ZEBRA or molten salt batteries are also used in EVs. These batteries have a 

low cost and high safety, but because of high operating temperature (270-350˚C)‎and‎low‎power‎

density  they are not very popular in EV applications [9]. Table ‎2-1 presents characteristics of 

different battery types used in EVs. Figure ‎2-4 also shows the Ragone plot for possible options. 

Table ‎2-1- Characteristics of battery types used in EVs [9]  

Characteristic Lead Acid NiMH ZEBRA Li-ion 

Nominal voltage 2 v 1.2 v 2.58 v 2.5 v/ 3.3 v/ 3.6 v 
Specific energy 30-45 Wh/kg 30-80 Wh/kg 90-100 Wh/kg 90-220 Wh/kg 
Energy density 60-75 Wh/L 140-300 Wh/L 160 Wh/L 280-400 Wh/L 
Specific power 180 Wh/kg 250-1000 Wh/kg 150 Wh/kg 600-3400 Wh/kg 
Cycle life 500-800 500-1000 1000 1000-8000 
Self-discharge 2-4% /month 20-30% /month 0% /month 2-5% /month 
Temperature 
range 

-20-60 ℃ -20-60 ℃ 270-350 ℃ -20-60 ℃ 

Relative costs Low Moderate Low High 

 

Today, Li-ion battery is considered as the first choice for EVs, because it is superior in energy 

density, power density, and low self-discharge and high cycle life. The disadvantages of Li-ion 

batteries‎are‎also‎the‎high‎cost‎and‎safety‎issues.‎The‎term‎‘Li-ion’‎include‎a‎number‎of‎different‎

chemistries; Table ‎2-2 shows some of the chemistries under development in EVs. Also, in 

Figure ‎2-5 a comparison is given between the best EV suitable Li-ion batteries.  
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Figure ‎2-4. The Ragone plot of various cell types capable of meeting the requirements for EV applications 

[53] .  

As an example, Lithium-iron-phosphate (LiFePO4/LFP) does not experience thermal runaway 

and has almost no fire hazards, since no oxygen is released at high temperatures [54]. LiFePO4 

cells have the lowest costs per Ah and kW [54, 55], good life span, good power capabilities and 

are extremely safe, but they have low specific energy and poor performance at low temperatures. 

Table ‎2-2- Examples of different Li-ion batteries used in EVs [4]  

Developer Chemistry Vehicle Year 

A123 Doped Lithium 
nanophosphate 

Fisker-Karma 
Vue-PHEV 
Think 

2010 
2009 
2009 Panasonic 

JCI-Saft 
Lithium nickel cobalt 
Aluminum oxide 

Toyota-PHEV 
S400-HEV 
Vue-PHEV 

2010 
2009 
2009 Hitachi Lithium cobalt oxide GM-HEV 2010 

Altair Nanotechnologies Lithium titanate spinel Phoenix 
Electric 

2008 

EnerDel Lithium manganese 
Titanate 

Think 2009 

Compact (LG) 
NEC 

Manganese spinel Volt-EV 
Nissan-EV 

2010 
2010 
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Figure ‎2-5. Comparison of suitable Li-ions for EV. The more the colored shape extends along a given 

axis, the better the performance in that direction [56]. 

2.4 Li-ion Cell Operation 

A battery cell converts chemical energy to electrical energy. This is done by oxidation at one 

electrode and reduction at the other electrode. Li-ion battery cells utilize lithium ions to store and 

provide energy. A Li‐ion battery cell consists of two electrodes, cathode and anode, with a 

separator in between, and current collectors on each side of the electrodes.  The anode is usually 

made out of graphite or a metal oxide. The cathode is made of a composite material and defines 

the name of the Li-ion battery cell. The electrolyte can be liquid, polymer or solid. The separator 

is porous to enable the transport of lithium ions. It prevents the cell from short‐circuiting and 

thermal runaway [57]. During discharge the lithium ions diffuse from the anode to the cathode 

through the electrolyte. The lithium ions will intercalate into the cathode, causing the cathode to 

become more positive. Due to the potential difference between the cathode and anode, an electric 

current will flow through the external circuit, supplying power to the load. During charging the 

opposite effect occurs. The current will cause the lithium ions to deintercalate from cathode and 

diffuse to the anode. At the anode intercalation of the lithium ions occur, charging the battery. 

These processes are shown in Figure ‎2-6 for a Li-ion cell. 
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Figure ‎2-6.Charge and discharge process in Li-ion battery [58] 

Li-ion cells are manufactured in various types of cell formats and geometries. Some of them 

are illustrated in Figure ‎2-7. 

 

Cylindrical [56] 

 

Prismatic [56] 

 

Pouch [56] 
Figure ‎2-7 Types of Li-ion cell formats: cylindrical, prismatic and pouch cell.  
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2.5 Battery Models 

A major obstacle in PHEV commercialization is the high cost of the battery pack.  To address 

this issue, different solutions such as energy density improvements, reduction of material cost, 

etc. could be considered.  To come up with an optimal solution, one approach is to develop 

battery models. Battery modeling, in fact, provides information on battery charging/discharging 

and transient behavior and health status of the battery (battery degradation) as a function of 

different stress factors (temperature, discharge rate, etc.). EV designer use battery models for 

sizing the required battery and predict the battery performance.  Battery models are also used for 

on-line self-learning performance and SOC estimation in BMS [59-61]. Common battery models 

used in the automotive applications are reviewed in the following sections.   

2.5.1 Electrochemical Models 

Battery modeling based on electrochemical equations provides a deep understanding of the 

physical and chemical process inside the battery and makes it useful when designing a cell, but 

high computational time makes these models improper for applications with high dynamics. The 

first electrochemical modeling approach to porous electrodes with battery applications was 

presented by Newman and Tiedemann in 1975 [62].  In the porous electrode theory, the electrode 

is treated as a superposition between the electrolytic solution and solid matrix, the matrix itself is 

modeled as microscopic spherical particles where lithium ions diffuse and react on the sphere 

surface.  This approach was expanded to include two composite models and a separator by Fuller 

et al. in 1994 [63]. This model was later adapted for Ni-MH batteries [64], and then Li-ion 

batteries [27].    

2.5.2 Equivalent Circuit Models 

Equivalent circuit-based modeling (ECM) is suitable for automotive real time applications 

(such as BMS design), since it does not need deep understanding of electrochemistry of the cell 
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and at the same time it is well capable of simulating the battery dynamics. ECMs simulate the 

battery as a circuit often composed of resistors, capacitors, and other elements.  There is a wide 

selection of models depending with tradeoffs of accuracy and time required. A large capacitor or 

ideal voltage source is selected to represent the open-circuit voltage (OCV), with the remainder 

of the circuit representing battery internal resistance and dynamic effects (e.g. terminal voltage 

relaxation).  Generally, each observed phenomena is modeled with an individual circuit 

component.  For example, the bulk electrolyte resistance is represented with a simple resistor, R0.  

To keep the model simple, similar phenomena (e.g. concentration and electrochemical 

polarization effects) could be grouped, although this decreases model accuracy. Resistances of 

other components such as electrodes and separator are additive, and included in R0. Other 

phenomena including the polarization effect of the battery are usually represented by capacitors 

and resistors in parallel.  In addition, diffusion effects are represented by a Warburg element. In 

the following, common ECMs used in PHEV applications are presented. 

 Simple Resistance (Rint) Model- the Rint model as shown in Figure ‎2-8 is the simplest 

equivalent circuit battery model. It includes an ideal voltage source and resistance Ro.  Ro is 

usually defined as a function of SOC and temperature and operation modes (charge, discharge) 

calculated from HPPC tests [65].   

 

Figure ‎2-8 Rint model equivalent circuit diagram 

 RC Model- The resistor capacitor (RC) model shown in Figure ‎2-9, consists of three 

resistors and two capacitors.  Rt, Re, and Rc represent the resistance across the terminal, bulk 
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solution, and surface respectively. Cb represents‎the‎battery’s‎ability‎to‎chemically‎store‎charge.‎‎

Cc, which has a small value, represents battery surface effects [65]. 

  

Figure ‎2-9 RC model equivalent circuit diagram 

 

 Thevenin Model- Thevenin Model circuit structure is shown in Figure ‎2-10. E0 describes the 

battery’s‎ open‎ circuit‎ voltage.‎ R0 describes‎ battery’s‎ internal‎ resistance.‎ I‎ (t)‎ is‎ the‎ battery’s‎

charge or discharge current‎and‎U‎(t)‎is‎the‎battery’s‎terminal‎voltage.‎The‎RC‎circuit‎describes‎

the battery polarization [66]. 

 

Figure ‎2-10 Thevenin model equivalent circuit diagram [66] 

 DP Model- Although a single RC component is capable of modeling polarization (like 

Thevenin), but, it becomes less accurate at the end of charge or discharge. The DP model shown 

in Figure ‎2-11 improves the polarization characteristics by simulating the concentration and 

electrochemical polarization effects separately. Rpa and Rpc represent electrochemical and 



 

24 

 

concentration polarization respectively. Cpa and Cpc characterize the transient response during 

power transfer for electrochemical and concentration polarization respectively [65]. 

 

Figure ‎2-11 DP model equivalent circuit diagram [65]. 

 

EDP Model- The expanded dual polarization (EDP) is shown in Figure ‎2-12. The model 

components and their corresponding EIS features are also shown in Figure ‎2-13. Ro corresponds 

to the cell bulk resistance (conductivity of the electrolyte, separator, and electrodes). Cpa and Rpa 

correspond to the semi-circle at high frequencies representing the SEI layer resistance. Cpc and 

Rpc correspond to the semi-circle at medium frequencies representing the faradic charge-transfer 

resistance and double-layer capacitance. Also, the Warburg element corresponds to the low 

frequencies representing  the diffusional effects of lithium ion between the active material and 

electrolyte, (straight line at the very end in Figure ‎2-13. ) [19]. The combination of Rct and W 

are‎referred‎to‎as‎“faradic‎impedance,”‎reflecting‎kinetics‎of‎the‎cell‎reactions.‎ 

  

Figure ‎2-12 Expanded DP model equivalent circuit diagram 
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Figure ‎2-13 EDP model components correlated with EIS results [19] 

 

2.6 Battery Degradation Modeling 

Modeling of degradation is mainly based on the aging experiments and measurements and the 

complexity of the model depends on the number of stress factors and degradation mechanisms to 

be incorporated in the modeling. It is worth to mention that each battery type experiences a 

specific degradation mechanism and not all stress factors have similar impact on different battery 

chemistries.  

To date, assessment and understanding of battery performance in EVs primarily relies on lab 

testing. Similar to standard driving schedule tests and analyses, these tests and duty cycle 

analyses have constraints in their validity to real-life operation. A main issue in both cases is that 

even under specific driving cycles or duty cycles; energy consumption strongly depends on 

uncontrolled ambient operating conditions. On the other hand, conducting drive cycle analysis 

using trip data collected from real-life vehicle operation is a challenging task [67]. Although 

quite helpful in evaluating battery state of health (SOH), very limited effort has been put into 

field testing with detailed data collection and analysis, mainly because such testing is costly and 

virtually no control[32].   
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2.7 Degradation Mechanisms of Li-ion Cells 

The other aspect of batteries as traction sources is the battery durability and life which is of 

much concern in PHEVs. As the battery ages, it becomes less able to store and supply energy. 

The‎former‎is‎known‎as‎“capacity‎fade”‎and‎the‎latter‎as‎“power‎fade”.‎Knowledge‎about‎battery‎

durability is also of much importance from the customer point of view, i.e. knowing how far the 

battery will operate properly over a reasonable period without needing a replacement and 

additional costs. Of course, it strongly depends on the operating conditions and the environment 

that the battery is exposed to.  

In PHEV applications, the battery lifetime by convention is defined as the time period that the 

battery loses 20% of its initial capacity [66]. Batteries are designed for 8-10 years of service. 

However, battery lifetime is affected by several factors. High power imposed on the battery 

during acceleration and braking, which could be up to ten times higher than the average power 

demand, as well as driving behavior, extreme ambient temperature and charging habit all are 

known to be significant factors on the battery state of health (SOH). To improve the battery 

performance and lifetime prediction models these effects should be carefully taken into account 

[67]. Also thermal heating of the cell can significantly reduce the lifetime of a battery. 

Li-ion cells undergo degradation in terms of capacity and power capability as result of 

continuous usage and also during the storage time. The performance degradation during cycling 

occurs much faster than storage under the same conditions. In the following, normal and 

accelerated degradation mechanisms for cycling and storage will be described. 

2.7.1  Degradation under Storage (i.e. Calendar Aging) 

Even under storage status, the active anode material is exposed to the electrolyte through the 

porous SEI layer, and side reactions enhance this SEI layer. High SOCs or high temperatures 

result in more severe capacity fading and resistance growth (power fading) in the cell as well. 

Therefore, to slow down the electrochemical processes and improve battery life, Li-ion cells 

need to be stored under optimal conditions (40% SOC and 15°C [68]).  
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2.7.2 Degradation during Cycling 

Capacity fading primarily occurs on the electrode/electrolyte interphase under influence of 

intercalation and deintercalation of lithium ions. Ideally, loss of lithium ions and active material 

are the only mechanisms that degrade a Li-ion cell. But, in practice, other degradation 

mechanisms accelerate the capacity fading. Power fading is also coupled to capacity fading. The 

growth of the SEI layer results in the internal impedance rise of the battery cell and the 

deformation of the electrodes in a lower conductivity. As a result the power fading occurs due to 

the loss of active material. Capacity fading can be divided into four stages as shown in 

Figure ‎2-14. During‎ stage‎ “A”,‎ on‎ the‎ interphase‎ of‎ the‎ anode‎ with‎ the‎ electrolyte‎ of‎ the‎

separator a Solid Electrolyte Interphase (SEI) film will form as a side reaction; this results in the 

fast decrease of capacity. This stage does not last for many cycles because as the cell is cycled 

more, the side reaction rate will gradually decay [69]. A schematic of a Li-ion cell with SEI layer 

is given in Figure ‎2-15.  

 

Figure ‎2-14. The general shape for capacity versus cycle number [70]. 
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Figure ‎2-15.Schematic of SEI film layer in Li-ion battery [71] 

In the stage B, anode is the limiting electrode [69]. Due to the SEI film layer formed on the 

anode, less active material is available and less lithium ions are intercalated into the anode during 

charging. As a result the loss rate of lithium ions will be slower, and the SEI layer protects the 

anode from reduction reactions with the electrolyte. During continuous intercalation and 

deintercalation the SEI layer cracks and more active material will be exposed. This will cause 

more side reactions and the SEI layer will continue to grow, leading to a less porous SEI layer 

and loss of lithium ions.  

In stage C, the degradation rate of the active cathode material is higher than the loss of lithium 

ions. On the cathode/electrolyte interphase layer similar to the SEI layer is formed, which is 

named the Solid Permeable Interphase (SPI) [72]. This layer will also grow due to cycling and 

limit the active cathode material. The anode is however still the limiting electrode in this stage, 

as there is still more active cathode material available than lithium ions. 

In stage D, due to the high degradation rate of the cathode, the cathode becomes the limiting 

electrode.‎Less‎active‎cathode‎material‎is‎available‎than‎the‎amount‎of‎‘cycle‎able’‎lithium‎ions‎

[69]. Not all the lithium ions that were intercalated into the anode during charging can be 

intercalated into the cathode during discharge. Hence, more and more lithium ions are stuck 

inside the anode. The cathode will be fully intercalated during discharge, which raises the active 
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cathode material loss rate. These added effects cause an accelerated capacity fading and the 

capacity will rapidly decrease. 

The severity of these stages is not the same for different types of Li-ion cells. For example, 

for LiFePO4, the main capacity fading mechanism cells is the loss of lithium ions by the lithium 

ion consuming SEI film later formation, which also results in a loss of active anode material 

[44]. Loss of cathode material happens at a lower rate for LiFePO4 cells, since neither cycling 

nor temperature change enhances the formation of the SPI layer [72]. This causes LiFePO4 cells 

to have a much higher cycling life compared to other chemistries.  

2.8 Accelerated Degradation during Cycling 

Stress factors like extreme temperatures, large C-rates and high SOC have negative impact on 

the cell capacity and cause accelerated degradation. In the following each of these stress factors 

will be described. 

Depth of Discharge- The cycle life of a cell is strongly dependent on the DOD. Figure ‎2-16 

shows typical curve of cycle number against the DOD. The deeper the discharge, the more 

intercalation and deintercalation takes place in the electrodes. The loss of lithium ions and active 

electrode material is higher for larger DOD cycles. At high DODs, additional degradation 

mechanisms can occur resulting in decomposition and dissolution of cathode material and 

capacity fading [73]. DOD has no influence on the capacity fading of LiFePO4 cells, but the 

charge or energy processed is the determining factor [74]. 

C-rate- High currents generate more heat and cause the temperature of the cell to rise invoking 

the high temperature degradation mechanisms. High currents also cause local over potential of 

the electrodes; it means that the maximum voltage for the cell is reached at an earlier stage at 

certain areas of the cell.  High C-rates will also cause the SEI layer on the anode to crack faster. 

More active anode material is exposed and the SEI layer will restore itself, reducing lithium ions 

from the battery cell process. High C-rates will furthermore cause additional strain on the 
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electrode materials, resulting in increased deformation and loss of active material [73]. These 

effects will all result in capacity and power fading. 

 

Figure ‎2-16. Cycle life vs. ΔDoD curve for different battery cell chemistries[75] 

 

Temperature- Li-ion cells have an optimal temperature operating range (Figure ‎2-17); 

outside this range the battery cell undergoes severe loss of capacity. High and low temperatures 

have different effect on the battery life. 

 

Figure ‎2-17. Example-Battery cell’s temperature range for optimal cycle life [76] 

At low temperature, due to the higher activation energy needed for the chemical reactions 

and lower ion diffusion; there will be a loss of capacity and deliverable power. However, when 

the temperature is restored to nominal level, the capacity and power capabilities will be 
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recovered. Under normal discharge, low temperature on its own does not have any permanent 

influence on capacity fading, but during charging, lithium plating is likely to happen because the  

intercalation rate at the anode is inherently slower than the deintercalation rate [77].  

High temperature, in the long term, may cause severe damages to the cell. As is shown in 

Figure ‎2-18 increasing temperatures results in higher capacity fading.  Due to high temperatures 

the SEI layer will slowly break down and dissolve into the electrolyte. The active material of the 

anode will be partly exposed to the electrolyte again, causing the side reactions. The damaged 

SEI layer will be restored due to the side reactions or a precipitation of the dissolved SEI 

particles will take place. Also parts of the cathode can dissolve into the electrolyte and 

incorporated into the SEI layer. As a result the intercalation at the anode will be more difficult 

and the ionic conductivity will be lowered. The same degradation mechanism happens at the 

cathode side with the SPI layer. Another degradation mechanism is the deformation of the anode 

and cathode. Detailed discussion of high temperature effect is available in [73].  

 

Figure ‎2-18. The accelerated capacity fading due to high temperatures [78] 

 

State of Charge- At higher SOC battery cell is more reactive, which will accelerate 

degradation of the cell. At high SOC the anode will be highly energized and self-discharge will 

also be higher and the SEI layer will grow faster. Furthermore, electrolyte oxidation occurs at 
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high SOC, leading to impedance increase [79]. These effects result in capacity and power fading. 

During storage for a long time, high SOC will have more profound effect. In case of overcharge 

or over discharge, other degradation mechanisms come into play: 

Overcharge- When the cell is charged over the specified voltage, a small increase in capacity 

is initially obtained, but the cycle life is strongly reduced. This effect is stronger as the end of 

charge voltage increases. During overcharge electrical energy is pumped into the battery, but 

more intercalation can hardly take place. This will be represented by a sharp increase of internal 

resistance and the temperature [51]. Decomposition of the binder and electrolyte, forming 

insoluble products, blocking the pores of the electrodes, and causing gas generation subsequently 

may take place [80].  

Over discharge- When the cell is discharged under the specified cut-off voltage, two 

degradation mechanisms severely damage the cell. 1- Corrosion of the copper current collectors 

on the anode side of the cell
 
 and dissolution into the electrolyte resulting in loss of contact with 

anode and power fade  [81]. 2- Decomposition of the SEI layer on the anode. The high anode 

potential will cause dissolution of the SEI layer. Upon recharge the exposed active material will 

cause side reactions to restore the SEI layer and reducing lithium ions, causing capacity fading 

[82].  

2.9 Duty cycle & Drive cycle 

In the analysis of the driving and charging data, terminologies such as drive cycle, duty cycle, 

and‎driving‎pattern‎are‎frequently‎used.‎A‎“drive‎cycle”‎refers‎to‎a‎history‎of‎driving,‎typically‎

represented by a speed‎versus‎time‎curve.‎A‎“duty‎cycle”‎refers‎to‎a‎history‎of‎power‎usage‎of‎a‎

device,‎typically‎depicted‎by‎a‎power‎versus‎time‎curve.‎A‎“driving‎pattern”‎is‎used‎to‎describe‎a‎

driving condition, taking into account both road condition (e.g., road type) and driving behavior. 

Also, the duration between two successive stop is called driving pulse or micro trip which is 

represented in Figure ‎2-19. Among popular standard drive cycles used in vehicle design and 

development are, urban dynamometer driving schedule (UDDS), US06 and highway fuel 
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economy test cycle (HWFET), which represent city driving, aggressive driving (high speeds & 

accelerations) and highway driving respectively [81].   

 

Figure ‎2-19- Schematic of a driving cycle broken down into a series of sequential isolated “driving pulses” 
or “micro trip” 

2.10 PHEV and HEV Considerations 

Degree of hybridization (DOH)- DOH refers to the hybridization ratio and is defined as the 

ratio of peak power of electric powertrain to the peak power of the whole powertrain. DOH, in 

fact, indicates if a PHEV is designed to operate primarily in All-Electric mode or blended mode. 

High DOH means the PHEV has larger electric motors and is capable of handling high power 

demands relying mainly on the battery. Although a higher DOH results in fewer amounts of 

emissions, higher petroleum displacement and efficient usage of the engine (fewer cold starts), it 

is associated with higher energy storage requirement and higher costs.  

Charge sustaining (CS) and Charge depleting (CD)- HEVs are designed to operate in the 

charge sustaining mode (CS); i.e. the vehicle control system keeps the battery run within a 

narrow SOC range (e.g. 50%). This strategy results in an improved battery life as deep discharge 

cycles are inhibited. PHEVs have an additional mode called charge depleting (CD) in which the 

battery is the only energy source for the vehicle motion. Once the battery reaches a minimum 

SOC (e.g. 30%) the vehicle switches to CS and operate like a hybrid. The SOC range for CD 

mode is mostly determined by the impact on battery life (usually 95%-30%). From a vehicle 
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perspective, it is also important to quantify the sensitivity of vehicle fuel economy to CS 

operation at different SOCs.  

Charge depleting range- Charge depleting range or all-electric range (AER) refers to the 

distance a PHEV can travel in CD mode. If the battery and electric motors are big enough, the 

engine is not used at all (or very sparingly) otherwise the engine is used more frequently (in case 

of a blended mode PHEV).  Clearly, a fleet of PHEVs with higher AER can displace more 

gasoline and produce fewer emissions; however, a higher initial cost would be expected.  

Fuel Economy- Fuel economy is described as the miles per gallon (MPG) or liter per 100 

kilometers. In case of PHEVs, electrical consumption (kWh/100 mi) should be also reported to 

the customer. Environmental protection agency (EPA) has defined the term equivalent miles per 

gallon (MPGe) unit [82] to combine electrical and gasoline consumption numbers. MPGe is 

defined as:  

𝑀𝑃𝐺𝑒 =
𝑚𝑖𝑙𝑒𝑠 𝑑𝑟𝑖𝑣𝑒𝑛

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

 (‎2-1) 

 

One gallon of gasoline is assumed to be equal to 33.7 kWh of electric energy. Using 

following formula, fuel economy (in MPG) and electrical consumption can be combined to yield 

the MPGe:  

𝑀𝑃𝐺𝑒 =
100

𝐸𝐶
33.7

+
100
𝐹𝐸

 
(‎2-2) 

 

Due to the dual operating mode, estimating the fuel economy of PHEVs is challenging. In 

fact, depending on the operation mode, PHEVs deliver very different fuel economy range. 

Therefore, a test procedure is needed to capture and combine both modes together [83]. Such test 

relies on the utility factor (UF) curve. UF is defined as the ratio of the distance driven in CD 

mode to the total distance. Overall PHEV fuel consumption is described in Equation (‎2-3), where 

FC represents the PHEV fuel consumption characteristics, and the UF is a function of the 
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depletion distance, AER [84]. 

𝐹𝐶 = 𝑈𝐹(𝐴𝐸𝑅) × 𝐹𝐶𝐶𝐷 + (1 − 𝑈𝐹(𝐴𝐸𝑅)) × 𝐹𝐶𝐶𝑆 (‎2-3) 

 

There are two extremes for the UF; zero, meaning the vehicle totally operates under CS mode 

and one, when the AER is big enough to fully cover the average daily range driven by the 

vehicle. In the past, EPA used the city test (UDDS) and highway fuel economy test (HFET) for 

fuel economy measurement. However, these cycles often tend to overestimate the fuel economy 

as they do not reflect the real-life operating characteristics; e.g. driving in cold and hot 

temperatures or with higher aggressiveness.  To improve this, in 2008, EPA suggested using a 5-

cycle test procedure, including UDDS, HFET and three additional drive cycles and each portion 

of the test was assigned a different weighting [84]. However, running five cycles for CD and CS 

multiple times is not economical. Therefore, EPA replaced this test procedure with a modified 

version of UDDS and HFET test results as described in the Equations (‎2-4) and (‎2-5). The city 

test equation refers to the Federal Test Procedure (FTP) that consists of one cold start and one 

hot start UDDS.  

𝐶𝑖𝑡𝑦 𝑀𝑃𝐺 =
1

0.003259 +
1.1805
𝐶𝑖𝑡𝑦 𝑀𝑃𝐺

 
(‎2-4) 

 

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑀𝑃𝐺 =
1

0.001376 +
1.3466

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑀𝑃𝐺

 
(‎2-5) 

 

Combined fuel economy is calculated by weight averaging of city and highway MPG values 

(usually 55% for city and the 45% for highway). [84]. 
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Chapter 3 

Modeling of Battery Thermal Behavior and 

Performance  

The focus of this chapter is on proposing a battery model suitable for vehicle modeling 

purposes. In the first part, thermal characterization and a thermal ramp model developed for a Li-

ion pouch cell is presented. In the second part, a dynamic model of a cell performance based on 

Electrochemical Impedance Spectroscopy (EIS) tests conducted on a similar cell is proposed and 

validated. 

The‎following‎section‎is‎based‎on‎previously‎published‎work‎of‎“Thermal Behavior of Two 

Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles.” by‎“Samadani et.al”‎[38] and 

is reproduced by permission from Society of Automotive Research (SAE) editorial office. This 

thesis author specific contribution‎ to‎ this‎ paper‎ is‎ to:‎ “prepare‎ all‎ the‎ graphics‎ and‎ results,‎

prepare the final manuscript. This paper is co-authored by Dr. Fowler and Dr. Fraser as 

supervisors. Also, L. Gimenez, W. Scott and S. Farhad contributed in assisting with cell 

experimental testing and preliminary data analysis. 

3.1 Thermal Characterization 

Depending on ambient conditions, there may be a need to remove or add heat to the battery in 

order to maintain the optimal temperature range and distribution. Non-uniform temperature 

distribution results in low charge and discharge performance and cell unbalancing over time. 

Existing thermal management techniques include applying liquids, insulations and phase-change-

materials [25]. Essential tools in automotive pack design and thermal management are thermal 

and performance models. Such models require inputs such as system and operational parameters. 

Not all of these parameters are easy to directly quantify (e.g. heat effect and transport properties) 

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8090/1/02-0055.pdf
http://papers.sae.org/2014-01-1840/
http://papers.sae.org/2014-01-1840/
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because their effects cannot be isolated; thus extensive tests are necessary to yield a clear 

understanding of heat generation and cell performance [26]. However, a simple model based on a 

limited number of lab tests may serve as an adequate alternative. In this section, the heat 

generation and temperature distribution over the cell surface in two different commercial PHEV 

pouch cells are evaluated through detailed thermal performance tests. The main objective is to 

provide a baseline performance model that can be modified to account for ageing in later studies. 

It should be noted that cycling required for testing will age the cell (affecting subsequent test 

behavior). Therefore, to minimize these unwanted effects, a fractional factorial design of 

experiments was employed to determine the minimum number of tests required to characterize 

thermal performance. Temperature and heat generation trends were identified by statistical 

analysis of the collected data and an empirical model was developed to predict the temperature 

and heat generation of the new cells under different loads and ambient temperatures.  

3.1.1 Experimental setup 

The thermodynamics of Li-ion cells is complicated due to the complexity and diversity of 

materials involved. To obtain a reliable prediction of the temperature profile, the total heat 

generation must be evaluated. Therefore, the temperature variation and heat dissipation of cells 

under a variety of loading conditions must be measured to provide a baseline for simple but high 

fidelity models of batteries at higher scales (module, pack) [26]. In this study, two commercial 

Li-ion pouch cells utilized in electric vehicles with similar energy densities (mass basis) are 

characterized.‎The‎cells’‎specifications‎are‎described‎in‎Table ‎3-1.  

Table ‎3-1: Prismatic Pouch Cell Specifications 

Parameter Cell 1 Cell 2 

Cathode Material LiFePO4 LiMn2O4 
Li(NMC)O2 

Anode Material Graphite Graphite 

Electrolyte Organic 
Carbonate  

Organic 
Carbonate 

Rated Capacity 
range (Ahr) 

18-21 14-17 

Dimensions (mm) 7.25 x 160. x 227 5.27 x 164 x 250. 
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Nominal Voltage 
(V) 

3.3 3.7 

Mass (g) 496 376 

The experiments were led by another member of the research group, but, they are represented 

here for clarity. A MACCOR 4200TM Tester was used to cycle the batteries at various C-rates in 

accordance with the Nested Face Centered Design of Experiments (see latter NFCD section). 

The tester has 16 channels that have a current control range of 100 mA – 15 A and a voltage 

control of 0.0 V to 5.0 V. Eight channels were combined in parallel (to allow a total maximum 

current of 120 A) for each cell, which was tested using a 4-wire parallel connection (2 low gauge 

wires deliver current, 2 high gauge wires measure voltage). The accuracy of the eight combined 

channels for each cell is ±0.1 A and ±1.0 mV. Figure ‎3-1and Figure ‎3-2 depict the cell test setup 

inside thermal chamber. The current-voltage data was logged every second or every change 

greater than 1 mV. The system directly tracks the charge and discharge capacity based on 

automatic integration of the current-time data.  

 

Figure ‎3-1: Battery cycling test bench 

CSZ Thermal 

Chamber 

MACCOR 

cycler 

NI FieldPoint 

Module 
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Figure ‎3-2: Battery setup in thermal chamber 

The temperature across the surface of the cells was measured by 12 Omega® T-type 30 gauge 

thermocouples for each cell, 6 on each face (Figure ‎3-3). These wires are connected to three 

different National Instruments TC-120‎ FieldPoint™‎ modules‎ which‎ record‎ 8‎ internally‎

calibrated temperature measurements (accuracy ±0.15 K) at 5 second intervals. These 

measurements are stored through a custom LabVIEW-based data system.  The cells are inside a 

Cincinnati SubZero MicroClimate® 1.2 chamber that can keep the temperature within ±0.5 K of 

the set point (narrower ranges near room temperature). The cells are enclosed in a jig that applies 

some compression on the batteries. The jigs consist of two 4 mm thick inner aluminum plates (to 

simulate pack fins that distribute heat across the surface) and a 5 mm thick acrylic enclosing to 

prevent heat dissipation through convection. 

Ambient temperature and C-rate are taken as the control variables (Table ‎3-2).  To reduce the 

time, cost, and degradation impacts, a design of experiment (DOE) algorithm called Nested Face 

Centered Design (NFCD) [85] was applied to determine the minimum number of required tests 

(Figure ‎3-4).‎ “A”‎ refers‎ to‎ the‎ ambient‎ temperature‎ (in‎ °C)‎ and‎ “B”‎ to‎ the‎C-rate (hr-1).  To 

improve accuracy of analysis, the NFCD center-point condition (shaded in Table ‎3-2) was 

repeated 7 times.  

The cycles follow the same procedure: first the cell is fully discharged at a constant C-rate of 

Battery 

cells 
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1C and then at the constant cut-off voltage until the C-rate is reduced to C/20. The cells are then 

rested until thermal and chemical equilibrium is reached; equilibrium here is defined practically 

as a change in voltage smaller than 5 mV over a period of half an hour or a total rest time 

exceeding 2 hours. The cell is then fully charged from 0% to 100% SOC via constant current (C-

rate specified by the NFCD) and then constant voltage at the upper voltage limit until C/20. The 

cell is rested again until equilibrium is achieved and then discharged at constant current 

(specified by the NFCD) and then at the cut-off voltage until a C-rate of C/20. The cell is 

allowed to rest once more and then the procedure is repeated for a different charge and discharge 

current.   

 

Figure ‎3-3: Thermocouple placement on cell surface 

In‎ some‎ instances‎ at‎ low‎ temperatures,‎ the‎ current‎ limits‎ exceeded‎ the‎ manufacturer’s‎

operating specifications for one of the batteries. In these cases the cell was cycled at the 

minimum current, then at the halfway point between the min current and the limit, and finally at 

the limit. The heat generation was then estimated based on these results and the model 

developed.  

Table ‎3-2: Resulting test points from NFCD 

Factor Min (-) Mid points Max (+) 

A (ºC) -10 1.25 12.5 23.75 35.0 

B (hr
-1

) Dis 0.50 1.50 2.50 3.50 4.50 

Chg 0.30 0.80 1.30 1.80 2.30 
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Figure ‎3-4: A two factor NFCD used for thermal studies 

3.1.2 Analysis of results 

The analysis is split into three sub-sections. The temperature distribution is examined first to 

evaluate the accuracy of using a mean temperature in representing the data. Heat generation is 

analyzed in the second section. The cell efficiencies are examined in the third section, Greater 

emphasis is placed in the second section due to its greater relevance to automotive applications. 

Temperature Distribution 

In order to quantify the heat generated, it is often assumed that the heat generation inside the 

cell is homogeneous, i.e. the heat is conducted very quickly so that only very small temperature 

variations exist. However, commercial batteries contain different heterogeneous (diverse in 

character) materials with different heat transport and generation properties, some of which are 

known to be anisotropic (direction dependent, such as LiFePO4). Further, the asymmetric 

arrangement of the different material layers may cause asymmetric heat distributions in at least 

one dimension. 

Statistical analysis of surface temperature variations across thermocouples placements, makes 

it possible to determine whether the temperature (and, subsequently, heat generation) is 

uniformly or normally distributed. If this is the case, then a mean heat generation rate for the cell 

as a whole can be assumed rather than determining localized rates (as would be required for 

complex heterogeneous systems). 

As previously mentioned, 32 cycles were conducted for each cell with 12 thermocouple 
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readings every 5 seconds throughout the cycle. In order to decrease the computational time and 

complexity of the analysis, the statistical analysis presented only considers instantaneous 

measurements‎at‎0%,‎50%,‎and‎100%‎SOC‎for‎all‎cycles.‎These‎‘snapshots’‎must‎be considered 

with the error of the thermocouples in mind (±0.15 K accounting for systematic errors) as well as 

naturally occurring temperature distributions within the chamber (which correspond to the 

temperature measurements at the initial SOC at the beginning of each charge/discharge step). 

Statistics for the 12 thermocouple placements were calculated at each snapshot. The 

difference between mean and median, the coefficient of skewness and the standard deviation are 

of particular interest. The former two are indicators of the presence and relevance of a skewed 

distribution which could point out short-comings in using the mean temperature to represent the 

entire cell. The latter quantifies the magnitude of spread among the recorded temperature values. 

The coefficient of skewness was also calculated [86] according to: 

𝛾1 =
√𝑛(𝑛 − 1)

𝑛 − 2

1
𝑛
∑ (𝑇𝑖 − 𝜇)

3𝑛
𝑖=1

(√
1
𝑛
∑ (𝑇𝑖 − 𝜇)

2𝑛
𝑖=1 )

3 
(‎3-1) 

Where n is 12 (thermocouple temperatures)‎and‎μ‎is‎the‎mean‎temperature‎between‎these‎12‎

readings. The coefficient of skewness should be 0 for any centralized distribution (e.g. normal, 

Laplace, student t-distribution, uniform) [87]. Any deviation from that value will be the result of 

a skew, with the sign indicating the direction of the skew. Based on the statistical analysis, it can 

be stated that the mean is generally an accurate and centered representation of the temperature 

distribution and that the heat generation is either uniform, normally distributed with a small 

variance, or that at least the surface materials are conductive enough to keep the surface 

temperature of the battery even (such that it is unlikely that there would be large temperature 

variations within a single cell). Therefore the subsequent heat generation analysis will utilize the 

mean temperature in order to quantify the heat generated by the battery. Details of the statistical 

analysis can be found in Appendix A. 
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Heat generation 

The main objective of the thermal experiments is to calculate the heat generated during each 

cycling period. The total heat generated according to the theory can be expressed by: 

𝑄̇𝑔𝑒𝑛 = 𝐼(𝑉𝑂𝐶 − 𝑉) + 𝑇𝐼
𝑑𝑉𝑂𝐶
𝑑𝑇

 (‎3-2) 

Where, VOC represents the open circuit voltage; I, is the current applied and V the cell 

terminal voltage. The first and second terms on the right hand side (RHS) of Equation (‎3-2) 

represent the irreversible and reversible heat generation, respectively. However, the term 
dVOC

dT
 is 

difficult to measure and the difference between open circuit potential and applied voltage is not 

easily determinable. Hence, using the recorded cell surface temperatures, it would be more 

practical to apply energy balance to calculate the generated heat: 

𝑄̇𝑔𝑒𝑛 = 𝑚𝐶𝑝
𝑑𝑇𝑐𝑒𝑙𝑙
𝑑𝑡

+ ℎ𝐴(𝑇𝑐𝑒𝑙𝑙 − 𝑇∞) (‎3-3) 

Where,‎ ‘m’‎ is‎ the‎ cell‎mass(kg). Cp, is the specific heat(
kJ

kgK
) ;‎ and‎ ‘h’‎ is‎ the‎ overall‎ heat‎

transfer coefficient(
W

m2K
). The first term on RHS of Equation (‎3-3) refers to the portion of heat 

generated that is translated into the cell temperature change and the second term is the heat 

rejected to ambient (simplified) where heat loss through radiation is assumed to be small and is 

incorporated within the overall heat transfer coefficient. It is necessary to first estimate the 

overall heat transfer coefficient of the cells. Examining the cell temperature curves during the 

rest periods (i.e. after charging or discharging, when the current is zero) it can be noted that the 

cell temperature approaches the ambient temperature at the end of rest. The temperature 

(cooling) curves during these periods can be used for estimating the heat transfer coefficient. 

During the rest period no heat is generated as the current is zero, hence Equation (‎3-3) is 

simplified to: 

∫mCp
dTcell
dt

= ∫hA(Tcell − T∞) (‎3-4) 

Integrating over the rest period time results in:  
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∫
dTcell

Tcell − T∞
=

Tend of rest

T0

hA

mCp
trest 

(‎3-5) 

 

Considering the initial conditions: t= 0  and T = T0, and allowing 
hA

mCp
= ∝ the cell 

temperature at any point of the rest period (trest) can be expressed as: 

Tcell = T∞ + (T0 − T∞) exp (−∝ trest) (‎3-6) 

Cell temperature at the end of each rest period was compared against the measured values in 

the tests and‎using‎least‎square‎linear‎regression‎in‎MATLAB,‎α‎was‎estimated‎as‎8.5 × 10−4 (s-

1) for Cell 1 and 11 × 10−4 (s-1) for Cell 2. As an example, modeled cooling curves are plotted 

against the measurements for the 23.75 ℃ ambient temperatures for Cell 1 in Figure ‎3-5. Given 

that the mass ratio (
mBatt1

mBatt2
= 1.32) and‎ the‎ respective‎ α‎ coefficient‎ ratio‎ (

∝Batt2

∝Batt1
= 1.29) are 

almost equivalent we can determine that both cells have similar overall heat transfer coefficients 

and therefore dissipate heat at similar rates. This is not surprising since the cells have similar 

geometry and contain materials with similar properties (e.g. both have copper and aluminum 

current collectors and thin plastic enclosing).‎It‎must‎also‎be‎noted‎that‎α‎coefficients‎are‎time-

averaged over the duration of the rest period and may vary along with fluctuations of air 

circulation patterns in the thermal chamber. 



 

45 

 

 

Figure ‎3-5: LiFePO4 Cell temperature changes during rest period at 23.75 °C- measured against fitted values 

Having estimated suitable values for the heat loss coefficient, the charge and discharge 

periods where heat is generated can now be analyzed. Figure ‎3-6 through Figure ‎3-9 show the 

cell temperature profile at high-mid-low chamber temperatures and lowest and highest C-rates 

for charge and discharge tested. At lower temperatures the cells experience higher temperature 

rise due to increased cell resistance and therefore decreased efficiency can be expected. 

Increasing the C-rate also results in higher temperature increase over the test cycle as dictated by 

Equation (‎3-2) (as well as a decrease in the charge and discharge capacity). The next step in the 

analysis is to calculate the heat generation rate and also the accumulated generated heat which is 

simply calculated based on Equation (‎3-2).  
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Figure ‎3-6: LiFePO4 cell temperature changes during discharge cycles 

 

 

Figure ‎3-7: LiFePO4 cell temperature changes during charge cycles 
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Figure ‎3-8: LiMn2O4 cell temperature changes during discharge cycles  

 

Figure ‎3-9: LiMn2O4 cell temperature changes during charge cycles  
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𝑄𝑎𝑐𝑐 = ∫ 𝑄𝑔𝑒𝑛̇
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑜𝑐

𝑠𝑜𝑐 0% 𝑜𝑟 100%

𝑑𝑡 (‎3-7) 

Figure ‎3-10 through Figure ‎3-13 show the accumulated heat of the cell at different ambient 

temperatures and C-rates. Both cells generated more heat in lower temperatures which results in 

a less efficient operation. Also, it is observed that the heat generation is linear between 95% -

20% SOC, the operating range of PHEVs. However the end regions exhibit increased heat 

generation rates (0-10% for discharge and 95-100% for charge). This jump in the heat generation 

is related to increased resistance, possibly from mass transport or side reactions occurring in the 

cells at very high and very low SOCs. This region is increased at lower temperatures and higher 

SOCs, suggesting mass transport limitations are the cause of the increased resistance. 

 

Figure ‎3-10: LiFePO4 cell cumulative heat during discharge cycles 
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Figure ‎3-11: LiFePO4 cell  cumulative heat  during charge cycles 

 

Figure ‎3-12: LIMn2O4 cell cumulative heat during discharge cycles 
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Figure ‎3-13: LiMn2O4 cell cumulative heat during charge cycles 

Battery efficiencies 

A significant factor in reducing the operating cost and increasing the service life of all hybrid 

and electric vehicles is to maximize utilization of the energy stored in the battery. In this regard, 

ensuring its efficiency remains at a specified performance level is important, not only for 

calculations‎of‎true‎cost‎of‎‘fuel’‎(electrical‎energy)‎and‎range‎prediction,‎but‎also‎for‎end‎of‎life‎
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[88] which will be employed in this section. It is believed that some, if not all, efficiencies 

decrease through the lifetime of the battery (with ageing). It is therefore possible that these 

efficiencies could be measured on-board as a diagnostic tool for determining the SOH of the 

battery.  In order to establish a baseline for the batteries, the effects of temperature and C-rate 
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discussed.  

Electrical Efficiency: sometimes referred to as energy efficiency, it is defined as the ratio of 

electrical energy that can be removed from the battery to the electrical energy supplied:  
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𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 =
∫(𝑉𝐼)𝑑𝑖𝑠𝑑𝑡

∫(𝑉𝐼)𝑐ℎ𝑔𝑑𝑡
 (‎3-8) 

This efficiency is not observed carefully by vehicle manufacturers but it has important 

implications to the vehicle driver. Essentially, it tells the driver how much usable electrical 

energy is available based on the previous charge, allowing for an accurate calculation of energy 

(fuel) costs. This efficiency was determined over the entire range of SOC, including the constant 

voltage portions of the charge and discharge. In practice, the actual electrical efficiency observed 

will vary according the usable SOC window within each vehicle application as well as the drive 

cycle intensity. 

Electrical efficiency of the two cells is reported in Table ‎3-3 and Table ‎3-4. In moderate and 

high temperatures both cells show to have high electrical efficiency. At low temperatures, both 

cells experience decreased electrical efficiency though the impact on the LiFePO4 cell is 

significantly greater. In vehicular applications, this effectively translates into a reduced range in 

cold weather (as well as higher electricity cost per mile). Increasing the C-rate also decreases the 

electrical efficiency suggesting more intense drive cycles will also provide reduced range, 

though the impact may not as significant as observed with temperature. 

 

Table ‎3-3 Electrical efficiency of the LiFePO4 cell 

Chamber 
Temperature 
(°C) 

Discharge C-rate (Charge C-rate is ½ of the 
discharge) 

0.5 1.5 2.5 3.5 4.5 

-10.00 78.61 
 

 73.40 
 

 68.79 

   1.25  81.36 78.21 75.88  

 12.50 93.46 88.50 85.36 82.84 80.87 

 23.75  91.85 89.72 87.67  

 35.00 97.33  93.23  89.67 
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Table ‎3-4 Electrical efficiency of the LiMn2O4 cell 

Chamber 
Temperature 
(°C) 

Discharge C-rate (Charge C-rate is ½ of the 
discharge) 

0.5 1.5 2.5 3.5 4.5 

-10.00 89.60  87.80*  85.89* 

   1.25  89.91 88.91* 88.16*  

 12.50 96.67 93.63 91.14 89.31 89.13* 

 23.75  94.97 93.44 91.68  

 35.00 97.91  95.00  92.17 
* The cell was not cycled at the labeled C-rates because these lie beyond manufacturer’s‎

allowable cycling specifications for that temperature. Instead, it was cycled at the limiting 

C-rate (where the column states 3.5 or 4.5), or half-way between the limit and the 0.5 C-

rate (where the column states 2.5). 

 

 

 Coulombic efficiency: defined as the ratio of the discharged capacity to the Ah needed to in 

order to bring the battery to the discharge initial state (SOC), expressed as follows:  

𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 =
∫ 𝐼𝑑𝑖𝑠𝑑𝑡

∫ 𝐼𝑐ℎ𝑔𝑑𝑡
 (‎3-9) 

Where, Idis and Ichg refer to the discharge and charge current respectively and the SOC is the 

same at the beginning of discharge and at the end of charge.  

Several factors affect the coulombic efficiency, such as charge and discharge current and 

charging method (constant voltage/power/current). The occurrence of secondary chemical 

reactions (especially at high SOCs) also significantly reduces the coulombic efficiency; i.e. 

charging at high SOCs is less efficient [89]. It is therefore possible to examine coulombic 

efficiency in order to estimate the extent of electrochemical side reactions occurring in the cells. 

Coulombic and electrical efficiency are related to each other through the voltage efficiency 

which is defined as the ratio of the average voltage during discharge to the average voltage 

during charge[88]: 

𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 × 𝜂𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (‎3-10) 

The coulombic efficiency of the cells over the range of 0% to 100% SOC was found to be 

99% or higher for all instances except for cell 1 at 0.5C and -10°C where it was 97.58%. The 

cells show a high coulombic efficiency which is reasonable as both cells were fresh at the time of 
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testing. No effect of C-rate or temperature was observed suggesting that the electrical 

inefficiency is entirely caused by decreased voltage efficiency. 

Thermal loss: Knowing the electrical energy input/output and heat generated, the thermal 

losses of the module under cycling can be measured. Thermal loss is a metric that reflects the 

ability of a cell is able to produce useful work and is determined by  

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑠𝑠 (%) = (1 −

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛
𝑜𝑢𝑡

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛
𝑜𝑢𝑡

+ 𝐻𝑒𝑎𝑡𝑔𝑒𝑛 
)  × 100 

(‎3-11) 

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑛/𝑜𝑢𝑡 refers to the energy measured at the battery terminals (= ∑V × I × t) during a 

charge or discharge cycle. A part of the energy fed into the battery by the charger converts to the 

thermal‎loss‎and‎is‎denoted‎by‎‘Heatgen’‎in‎Equation (‎3-11). This energy is equivalent to Qacc as 

defined in Equation (‎3-7).  

Table ‎3-5and Table ‎3-6 show the thermal loss calculated for the LiFePO4 cell in discharge and 

charge modes. The thermal loss is inversely correlated with the temperature. The cell shows the 

best performance at 35°C but it is known that higher temperature cycling corresponds to rapid 

ageing, so this may not be the best cycling temperature. The thermal loss correlation with C-rate 

is positive. However, some values during the charge indicate negative (decreasing) correlation 

because the constant voltage portion of the charge took a long time at low current, so the cell was 

allowed to cool and thus a lower than expected heat was generated at the end of the step. These 

points are marked on the LFP tables by an asterisk. The thermal loss is also greater during 

discharge than during charge (comparing amongst the same C-rates). This supports the idea that 

vehicles should have adequate heat management systems on the road, and not necessarily during 

charge.  
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Table ‎3-5: Thermal loss (%) of LiFePO4 cell during discharge 

 
 

0.5 1.5 2.5 3.5 4.5 

-10.00 12.96  12.94  11.45 

   1.25  8.79 8.82 8.76  

 12.50 5.52 6.83 6.89 6.46 6.42 

 23.75  4.43 4.66 4.58  

 35.00 1.05  2.98  3.35 

 

Table ‎3-6: Thermal loss (%) of LiFePO4 cell during charge 

 

 

0.3 0.8 1.3 1.8 2.3 

-10.00 4.81*  1.69*  0.91* 

   1.25  4.45* 3.77* 3.72*  

 12.50 8.58 
 
 
expla 

7.07 4.47* 3.3* 2.58* 

 23.75  1.45 2.29 2.23  

 35.00 0.39  1.5  2.04 

Table ‎3-7 and Table ‎3-8 show the thermal loss calculated for the LiMn2O4 cell in charge and 

discharge modes. The values in red show the modified C-rates applied on the cell according to 

the test limits recommended by the manufacturer. LiMn2O4 cells have an overall lower thermal 

loss than the LiFePO4 cell, but, in terms of dependence on the temperature, similar trends can be 

observed.  

Table ‎3-7 Thermal loss (%) of LiMn2O4 cell during discharge 

 

 

0.5 1.5 2.5 3.5 4.5 

-10.00 5.69  0.86*  1.22* 

5.91 5.89 

   1.25  1.5* 1.77* 2.0*  

2.76 3.18 2.9 

 12.50 

2.11 2.66 2.61 2.51 

3.56* 

1.77 

 23.75  2.61 2.13 1.92  

 35.00 1.35  1.95  1.7 
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Table ‎3-8 Thermal loss (%) of LiMn2O4 cell during charge 

 

 

0.3 0.8 1.3 1.8 2.3 

-10.00 

1.13 

 0.38*  0.51* 

0.62 3.85 

   1.25  0.75* 0.78* 0.82*  

0.64 1.83 1.47 

 12.50  1.43*  

0.01 0.46 0.38 0.31 

 23.75  0.47 0.86 0.18  

 35.00 0.02  0.36  0.89 

 

Model development 

Efficient and safe operation of the battery relies on the efficiency of the vehicle battery 

thermal management system (BTMS). The BTMS designer must be able to predict the amount of 

heat generation and temperature fluctuation of the battery during a driving or charging cycle. For 

this purpose, a thermal model is required to enable prediction of battery temperature changes 

according to the battery thermodynamic and chemical status. Based on the observed trends in the 

cell surface temperature and the heat generation profiles, it is possible to develop a model to 

predict the temperature changes and generated heat in the cell as a function of SOC, cell 

temperature, ambient temperature and C-rate. A multiple linear regression analysis was 

performed on the data of heat generation for charge and discharge separately. Results of 

regressions on the cell #1 (LiFePO4) are presented here. A quadratic fit presented in Equation 

(‎3-12) including the interaction terms between the SOC, C-rate, cell temperature and the ambient 

temperature, was applied to the data of heat generation rate.  

𝑄̇𝑔𝑒𝑛 = 𝑏1 + 𝑏2𝐶𝑟𝑎𝑡𝑒 + 𝑏3𝑇𝑐𝑒𝑙𝑙 + 𝑏4𝑆𝑂𝐶 + 𝑏5𝐶𝑟𝑎𝑡𝑒
2 + 𝑏6𝑆𝑂𝐶

2 + 𝑏7𝑇𝑐𝑒𝑙𝑙
2 + 𝑏8𝐶𝑟𝑎𝑡𝑒 × 𝑆𝑂𝐶 + 𝑏9𝐶𝑟𝑎𝑡𝑒 × 𝑇𝑐𝑒𝑙𝑙

+ 𝑏10𝑆𝑂𝐶 × 𝑇𝑐𝑒𝑙𝑙 + 𝑇𝑎𝑚𝑏 

(‎3-12) 

The temperature change will be calculated as: 

𝑑𝑇

𝑑𝑡
= [𝑄̇𝑔𝑒𝑛 − ℎ𝐴(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏)]/𝑚𝐶𝑝    (‎3-13) 
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The term ℎ𝐴(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) is the heat rejection to the ambient. Table ‎3-9 and Table ‎3-10 

show the values of regression parameters. The R2 value from this analysis was determined to be 

0.98 for discharge (0.94 for charge) which implies that the model is well able to explain the 

variability in the data. Significant parameters are identified as those having a P-value of less than 

0.05. In discharge, SOC and interaction of SOC with C-rate and temperature are found to be 

insignificant; hence, could be dropped to further simplify the model. In charge, a linear equation 

with no interaction terms fits the data pretty well.  

Table ‎3-9 Results of regression analysis on the heat generation rate during discharge of LiFePO4 cell 

Parameter Coefficient Standard Error P-Value 

Crate 17.76155376 2.002466417 4.80179E-16 

Tcell 0.673897479 0.090246009 2.70729E-12 

SOC 1.15132144 9.495374757 0.903617912 

Crate
2
 0.507951653 0.038145608 3.68856E-29 

SOC
2
 11.09065208 1.163086743 6.43565E-18 

Tcell
2
 0.000228554 8.33169E-05 0.006654842 

Crate x SOC -0.108429712 0.488451157 0.824557664 

Crate x Tcell -0.061778332 0.005791103 3.34412E-21 

SOC x Tcell -0.044569604 0.031712953 0.161499694 

Tamb -0.732070097 0.10786538 1.3568E-10 

R2: 0.98     Adjusted R2: 0.97 
 

Table ‎3-10 Results of regression analysis on the heat generation rate during charge of LiFePO4 cell 

Parameter Coefficient Standard Error P-Value 

Crate 0.750183 0.048531 1.42E-37 

Tcell 0.376412 0.018508 1.47E-53 

SOC -0.54216 0.135544 8.51E-05 

Tamb -0.37593 0.018423 8.98E-54 

R2: 0.94     Adjusted R2: 0.93 

 

It should be noted that in the regression analysis, adding more terms will always result in a 

higher value of R
2
. However, a high value of R

2
 does not necessarily imply a more accurate 

model. To avoid such a misinterpretation, another metric, called adjusted R
2
 should be taken into 
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account. If adjusted R square is significantly lower than R square, this normally means that some 

explanatory variable(s) are missing. Also, if adding a new term results in a decreased adjusted 

R
2
, it implies that that term is not significant [90]. Two other diagnostic tools were also used in 

this regression analysis: residual plots and normal probability plot. In general, the scatter plot of 

the residuals will be disordered if the regression is good. A trend means that the residuals are not 

independent (see Figure ‎3-14). An increasing trend suggests that the error variance increases 

with the independent variable; while a distribution with a decreasing trend indicates that the error 

variance decreases with the independent variable. Such trends indicate that the assumption of 

constant variance (which is assumed in a regression analysis) is not true and the regression is not 

reliable [88]. Finally, in a reliable regression model, the normal probability plot should be close 

to a line of 45ᵒ slope.  

 

 

Figure ‎3-14 Residuals showing a trend (variable variance) [88] 

To illustrate the model performance, a comparison is made between the experimental and the 

simulated temperature profile of cell #1 at 2.5 C-rate and 23.75ᵒC ambient and shown in 
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Figure ‎3-15.  Also, in Figure ‎3-16, simulated temperature profile of the cell #1 during charging at 

12.5ᵒC and 1.75 C-rate is compared against the measurements. The average error in both cases is 

less than 3%. 

 

 

Figure ‎3-15 Temperature profile of cell #1 (LiFePO4) during discharge at 2.5 C-rate and 23.75 ᵒC ambient 

 

 

Figure ‎3-16 Temperature profile of cell #1 (LiFePO4) during discharge at 1.75 C-rate and 12.5 ᵒC ambient 
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For drive cycle simulations, Equation (‎3-12) and (‎3-13) were implemented in 

Matlab/Simulink as the battery thermal sub model and integrated to the whole battery model. 

Figure ‎3-17 and Figure ‎3-18 show the model validation against experiment with US06 drive 

cycle at 35ᵒC and 12.5ᵒC. maximum error of 6% and root meat square error (RMSE) of 3% was 

observed.  

 

Figure ‎3-17 Temperature profile of cell #1 (LiFePO4) under US06 profile and 12.5 ᵒC ambient 

 

r  

Figure ‎3-18 Temperature profile of cell #1 (LiFePO4) under US06 profile and 35 ᵒC ambient 
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3.2 Modeling of Battery Performnce Based on EIS Tests 

The following section is based on the paper titled “Empirical Modeling of Li-ion Batteries 

Based on Electrochemical Impedance Spectroscopy Tests” by‎“Samadani et.al”‎published in the 

Journal of Electrochimica ACTA [39]. This thesis author specific contribution to this paper is to 

analyze the data, prepare the graphics and results and write the final manuscript. This paper is 

co-authored by Dr. Fowler and Dr. Fraser as supervisors. Also, L. Gimenez, W. Scott and S. 

Farhad contributed in collection of some of the experimental data and preliminary data analysis.  

As pointed out in section ‎2.5.2, equivalent circuit models (ECMs) are used in the real-time 

applications such as BMS. ECMs utilize equivalent circuit components to predict the terminal 

characteristics of the batteries (current and voltage). There exist several approaches in the 

literature for modeling batteries in the electrical domain. In [91], a Li-ion battery model capable 

of predicting runtime and I-V performances of the battery is proposed. However, temperature 

variation is not taken into account in their calculation; something which is critical for the battery 

models to consider for lifetime and safety considerations [59, 92]. In  [59, 93], dynamic models 

are proposed for Li-Ion batteries which consider the cell temperature. However, these models do 

not dynamically update the model parameters based on cell temperature variations due to self-

heating.  

In this chapter, an approach is proposed to design a dynamic electrical battery model for use 

in real-time BMS. The novelty of this approach is that the model parameters are dynamically 

updated based on SOC and cell temperature. The proposed empirical model is based on observed 

phenomena during electrochemical impedance spectroscopy (EIS) tests on two commercially 

available Li-Ion batteries at various battery SOCs and temperatures. This model can precisely 

predict the battery operating voltage in electrified vehicles at various operating conditions. 

Results also show, depending on the designer expected accuracy, this model can be used to 

predict the battery internal resistance obtained from hybrid pulse power characterization (HPPC) 

tests. In total, this simple battery model can be employed as a real-time model in electrified 

vehicle battery management system design. 
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3.2.1 Experiment Setup and Tests Procedure 

To be clear for the reader, the experiments are explained in this section. Two commercial Li-

ion pouch cells already described in Table ‎3-1 were characterized by HPPC and EIS tests over a 

range of temperatures and SOCs.  

A MACCOR 4200
TM

 battery cycler was employed for this test and to discharge the cells to the 

desired SOC. This cycler has 16 channels with a current control range of 0.1 – 15 A and a 

voltage control of 0.0 – 5.0 V for each channel. Eight channels were combined in parallel to 

achieve the maximum current of 120 A using a 4-wire parallel connection, where two low gauge 

wires deliver current and two high gauge wires measure voltage. The accuracy of the eight 

combined channels for each battery was ±0.1 A and ±1.0 mV. The current-voltage data was 

logged every second or every change in 1 mV. The HPPC tests were preceded by a full charging 

at 1C constant current, followed by constant voltage charging until the current decreased to C/20.  

The batteries were then rested until equilibrium was reached. Equilibrium was defined as a 

change in voltage smaller than 5 mV over a period of half an hour or a total rest time longer than 

2 hours. Afterwards, the batteries were discharged to each test SOC at a rate of 1C, and the 

HPPC current profile including a 10 s 5C discharge pulse, a 40 s rest and a 10 s 3.75C 

regenerative (charge) pulse was applied and the battery voltage response was measured. The 

equipment located at the right in is SubZero MicroClimate® 1.2 temperature control chamber 

that maintains the battery temperature within ±0.5 K of the set point. The battery was enclosed in 

a vice that simulates a battery pack enclosure (two 4 mm thick inner aluminum plates, which 

simulate pack fins that distribute heat across the battery surface, inserted between two 5 mm 

thick acrylic plates, which simulate battery casing). 

Figure ‎3-19 illustrates the experimental setup for the EIS test. This test was performed using a 

METROHM AutoLAB PGSTAT 302 galvanostat/potentiostat with a current range of ±2 A and a 

voltage range of ±10 V. The measurement range for the frequency response analysis is 10 µHz to 

1 MHz. The current and voltage accuracy ranges were set to ±10 µA and ±1.0 mV respectively. 

To achieve the desired SOC, the battery is fully discharged at a 1C constant current to reach the 
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cut-off voltage and then at the constant cut-off voltage until the current rate is reduced to C/20. 

The batteries are then rested until equilibrium is reached; then, the battery is charged to the 

desired SOC by coulomb counting at 1.25C current. 

 

Figure ‎3-19: Experimental setup for the EIS test. 

The EIS tests were obtained by scanning 51 points logarithmically spaced between 5 kHz and 

5 mHz using a two electrode configuration with the reference and counter electrodes being the 

same. The two, rather than three, electrode configuration was chosen due to the difficulty of 

placing the third electrode within a sealed commercial pouch cell. The frequency range was 

chosen based on analysis of the pertinent parts of the Nyquist plots, and extended to 100 µHz for 

some scans at lower temperatures to confirm the presence of the Warburg tail. For the 

galvanostatic scans, the baseline current is set to 0 A and the pulse amplitude set to 300 mA. The 

batteries were then reconnected to the MACCOR cycler and discharged to the next desired SOC. 

Both EIS and HPPC tests were performed at the states of charge of 10%, 30%, 60%, and 90% for 

temperatures of 12.5°C, 23.75°C and 35°C. It should be noted that even though the battery might 

be exposed to very low or high ambient temperatures in vehicle operation (e.g. aggressive 

driving), the BTMS regulates the battery temperature to the optimum range (25-40°C [94]) very 

quickly to prevent adverse effects on the cell performance (charge acceptance, power and energy 

capability), cycle life, and safety [95]. Therefore this study does not consider extreme 

temperatures.  The third phase of experiments was measuring the cell response voltage to the 

current profile of standard drive cycles (US06, UDDS, and HWFET). For this purpose, a model 

EIS 

machine 
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of an extended range electric vehicle (EREV), initially developed by UWAFT [96] in Autonomie 

software, was used to determine the battery current profile under each of the targeted drive 

cycles. The main components of the powertrain of this vehicle are listed in Table ‎3-11. The 

battery pack consists of three parallel strings each including 105 batteries in series (315 batteries 

in total). Each drive cycle was applied on the vehicle model and the resulting battery pack 

current profile was scaled to a cell level. Afterwards, the cell was cycled under the obtained 

current profile for a full discharge by the MACCOR cycler and the voltage response was 

recorded. 

Table ‎3-11 Powertrain components specifications of the EREV modified Chevrolet Malibu used in the 
Autonomie model [45, 96] 

Component Option 

Engine GM LE9 Engine (E85) 

2.4 L E85 engine provided by GM 

Generator TM4 Motive (105 kW) 

ESS (Battery) Battery Pack (19.7 kWh @ 346 V) 

Motor TM4 Motive (206 kW) 

Final drive Borg Warner eGearDrive 

Chassis 2013 Malibu 

Power convertor New Eagle DCDC Converter 

Electrical accessory The average power draw from accessories was assumed to be 1500 W 

 

3.2.2 Establishment of the Equivalent Circuit 

The observed trends in the Nyquist plots are presented in Figure ‎3-20 through Figure ‎3-25. 

The number of RC pairs required to describe a cell response is determined from impedance 

analysis. For instant, charge transfer reaction is usually modeled by a single RC pair [97]. The 

circuit structure is also dependent on cell age and operating conditions. For example, at very low 

temperatures additional elements may be required to account for increased resistance as a result 

of frozen electrolyte or slow solid diffusion.[98].  
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Figure ‎3-20 EIS test results of battery #1 with LiFePO4 cathode 12.5 ᵒC 

 

 
 

Figure ‎3-21 EIS test results of battery #1 with LiFePO4 cathode 23.75 ᵒC 
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Figure ‎3-22 EIS test results of battery #1 with LiFePO4 cathode 35 ᵒC  

 

 
 

Figure ‎3-23 EIS test results of battery #1 with LiMn2O4 

& Li(NMC)O2cathode cathode 12.5 ᵒC  
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Figure ‎3-24 EIS test results of battery #1 with LiMn2O4 

& Li(NMC)O2cathode cathode 23.75 ᵒC  

 

 

 
Figure ‎3-25 EIS test results of battery #1 with LiMn2O4 

& Li(NMC)O2cathode cathode 35 ᵒC  

Careful investigation of these plots reveals that at most two semicircles with center-points off 

the x-axis and a straight line exist in the impedance spectrums. Figure ‎3-26 shows, two examples 

where the response curve includes two semicircles.  
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battery #1 with LiFePO4 cathode  battery #2 with LiMn2O4 

& Li(NMC)O2cathode  

Figure ‎3-26 Examples of the EIS plots showing two semicircles justifying the need for CPE element in the 
circuit structure 

The second semicircle appears at lower temperatures and states of charge for both batteries 

studied. These semi-circles represent polarization due to a slow charge transfer reaction in 

electrodes and the straight line accounts for the polarization due to slow mass diffusion in the 

electrolyte and active electrode materials [99]. The semicircles may originate from: distributed 

electrode reactivity, electrode inhomogeneity, roughness or fractal geometry, or current and 

potential distributions across the electrode [99]. A semicircle with the center-point not on the x-

axis can be modeled by a parallel resistor and imperfect capacitor, or constant phase element 

(CPE). The straight line can be modeled by a Warburg impedance element [96]. The proposed 

circuit is shown in Figure ‎3-27.  
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Figure ‎3-27. Proposed equivalent circuit in frequency domain 

Because the CPE is a non-intuitive electrical circuit component and cannot be easily 

transformed from the frequency to time domain, the CPE was approximated by a perfect 

capacitor. Also, it has been shown that the Warburg impedance can be simplified to multiple 

parallel RC pairs (as a limiting case, a single RC pair) [100]. In this study, the Warburg element 

is replaced by two RC pairs as shown in Figure ‎3-28. In this fashion, the circuit is simplified to 

the one shown in Figure ‎3-28. The model parameters were determined by an EIS equivalent 

circuit solver (Z-man), which uses a genetic mutation algorithm to change model parameters 

until the model estimate best approximates measured values. Each circuit component is a 

function of SOC and temperature. For each circuit component, this function was determined 

through a curve fitting process including all EIS tests points (at various temperatures and SOCs). 

VOC

R1

C1

R2

C2

C3 C4

R3

R4 R5
VBattery

I

V1 V2 V3

V4 V5

 

Figure ‎3-28. Simplification of the proposed circuit for time domain solution. 

3.2.3 Parameters Fitting 

The equivalent circuit parameter values were determined using Z-man software. Z-man uses 
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the Levenberg-Marquardt algorithm (LMA), or damped least squares method, to minimize the 

error between the parameter assigned and empirical values. The parameters of an ECM are 

generally a function of temperature and SOC. In case of high degrees of freedom in the model, 

due to highly fluctuating trends in the parameters, the designer should try different fittings by 

changing initial values using his interpretation and judgment to choose a proper fitting. Also, 

imposing restrictions on the parameters would help reduce the degrees of freedom and obtain a 

smooth trend for each parameter.   

After parameters were determined, they were exported to Microsoft Excel for cross-

comparison.  Select data series were then re-evaluated using Z-man software in the event that a 

parameter was an outlier. Like most numerical minimization methods, the LMA is an iterative 

process and requires an initial guess[101].  When possible, the value of the initial guess was 

determined from the previous fitted parameter value.  For the initial guess for the first parameter 

of a series (e.g. guess SOC0), the Z-man‎ software’s‎ search‎ heuristic‎method‎was‎ used.‎ ‎ This‎

heuristic is an evolutionary approach of the particle swarm optimization algorithm.  After all 

parameters have been fit, they were exposed to cross analysis. When a parameter fit exceeded an 

order of magnitude of a previous value, all parameters for that temperature and state of charge 

were re-evaluated using the heuristic evolutionary approach until complying with the parameter 

series. In the event that the parameter series did not have aligning fits, the entire series was re-

evaluated. As an example, Figure ‎3-29 and Figure ‎3-30 show fitted values of R1 (Ohmic 

resistance) for both batteries at three temperatures.  
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Figure ‎3-29. Fitted values of R1 for battery #1 Figure ‎3-30 Fitted values of R1 for battery #2 

 

3.2.4 Determination of the Voltage Response in Time Domain 

The terminal voltage of the battery can be determined from the simplified equivalent circuit 

shown in Figure ‎3-28 as Equation (‎3-14). 

𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑉𝑂𝐶 − 𝑉1 − 𝑉2 − 𝑉3 (‎3-14) 

V1 is‎ the‎ instantaneous‎ change‎ of‎ the‎ battery‎ voltage‎ determined‎ from‎ the‎ Ohm’s‎ law‎ in‎

Equation (‎3-15).  

𝑉1 = 𝑅1𝑖 (‎3-15) 

V2 and V3 are the time dependent voltage of the battery. V2 and its corresponding time 

constant are determined from Equations (‎3-16) and (‎3-17) respectively. 

𝑉2 = 𝑅2𝑖(1 − 𝑒
−𝑡/𝜏1) (‎3-16) 

𝜏1 = 𝑅2𝐶1 (‎3-17) 

V3 is complex and can be determined from the system of ordinary differential equations in 

Equation (‎3-18). 
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{
  
 

  
 𝜏2

𝑑𝑉3
𝑑𝑡

= −𝑉3 + 𝑉4 + 𝑉5 + 𝑅3𝑖                       

𝜏3
𝑑𝑉4
𝑑𝑡

= (
𝑅4
𝑅3
) 𝑉3 − (

𝑅4
𝑅3
+ 1)𝑉4 − (

𝑅4
𝑅3
)𝑉5

𝜏4
𝑑𝑉5
𝑑𝑡

= (
𝑅5
𝑅3
)𝑉3 − (

𝑅5
𝑅3
) 𝑉4 − (

𝑅5
𝑅3
+ 1)𝑉5

 (‎3-18) 

𝜏2, 𝜏3, and 𝜏4 are defined as follows:  

𝜏2 = 𝑅3𝐶2 (‎3-19) 

𝜏3 = 𝑅4𝐶3 (‎3-20) 

𝜏4 = 𝑅5𝐶4 (‎3-21) 

The solution of Equation (‎3-18) employs transformation into the Laplace domain:. 

{
 
 
 
 
 

 
 
 
 
 ℒ[𝑉3] =

1

(𝜏2𝑠 + 1)
ℒ[𝑉4] +

1

(𝜏2𝑠 + 1)
ℒ[𝑉5] +

(𝑅3𝑖)

(𝜏2𝑆 + 1)

1

𝑠
     

ℒ[𝑉4] =
(
𝑅4
𝑅3
)

(𝜏3𝑠 + (
𝑅4
𝑅3
+ 1))

ℒ[𝑉3] −
(
𝑅4
𝑅3
)

(𝜏3𝑠 + (
𝑅4
𝑅3
+ 1))

ℒ[𝑉5]

ℒ[𝑉5] =
(
𝑅5
𝑅3
)

(𝜏4𝑠 + (
𝑅5
𝑅3
+ 1))

ℒ[𝑉3] −
(
𝑅5
𝑅3
)

(𝜏4𝑠 + (
𝑅5
𝑅3
+ 1))

ℒ[𝑉4]

 (‎3-22) 

After simplification of Equation (‎3-22), V3 is obtained as Equation (‎3-23). To take Laplace 

inverse from the right side of Equation (‎3-23), this equation should be written as Equation 

(‎3-24). 

𝑉3 = (𝑖)ℒ
−1

[
 
 
 
 
 
 
 

(
𝑅3
𝜏2
) 𝑠2 + (

𝑅3 + 𝑅5
𝜏2𝜏4

+
𝑅3 + 𝑅4
𝜏2𝜏3

) 𝑠 + (
𝑅3 + 𝑅4 + 𝑅5

𝜏2𝜏3𝜏4
)

𝑠 (𝑠3 + (
1
𝜏2
+
1 +

𝑅4
𝑅3

𝜏3
+
1 +

𝑅5
𝑅3

𝜏4
)𝑠2 + (

1
𝜏2𝜏3

+
1
𝜏2𝜏4

+
1 +

𝑅4
𝑅3
+
𝑅5
𝑅3

𝜏3𝜏4
)𝑠 +

1
𝜏2𝜏3𝜏4

)

]
 
 
 
 
 
 
 

 (‎3-23) 

𝑉3 = (𝑅3 + 𝑅4 + 𝑅5)𝑖ℒ
−1 [

1

𝑠
−

𝐴

(𝑠 + 𝑟1)
−

𝐵

(𝑠 + 𝑟2)
−

𝐶

(𝑠 + 𝑟3)
] (‎3-24) 
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Where, r1, r2 and r3 in Equation (‎3-24) are the three real roots of Equation (‎3-25) as it appeared 

in the denominator of Equation (‎3-23). These three real roots are obtained from Equations (‎3-26) 

to (‎3-28). 

𝑠3 + (
1

𝜏2
+
1 +

𝑅4
𝑅3

𝜏3
+
1 +

𝑅5
𝑅3

𝜏4
)𝑠2 + (

1

𝜏2𝜏3
+

1

𝜏2𝜏4
+
1 +

𝑅4
𝑅3
+
𝑅5
𝑅3

𝜏3𝜏4
)𝑠 +

1

𝜏2𝜏3𝜏4
 (‎3-25) 

𝑟1 =
𝑎

3
+

(

 
 2

3
(𝑎2 − 3𝑏)0.5𝑐𝑜𝑠 (

𝑎𝑟𝑐𝑐𝑜𝑠 (
2𝑎3 − 9𝑎𝑏 + 27𝑐
2(𝑎2 − 3𝑏)1.5

)

3
)

)
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𝑟2 =
𝑎

3
+

(

 
 2

3
(𝑎2 − 3𝑏)0.5𝑐𝑜𝑠 (

𝑎𝑟𝑐𝑐𝑜𝑠 (
2𝑎3 − 9𝑎𝑏 + 27𝑐
2(𝑎2 − 3𝑏)1.5
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3
)
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𝑟3 =
𝑎

3
+
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3
(𝑎2 − 3𝑏)0.5𝑐𝑜𝑠 (
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2𝑎3 − 9𝑎𝑏 + 27𝑐
2(𝑎2 − 3𝑏)1.5

) − 2𝜋

3
)

)

 
 

 (‎3-28) 

Where, a, b, and c are obtained from the following equations: 

𝑎 =
1

𝜏2
+ (1 +

𝑅4
𝑅3
)
1

𝜏3
+ (1 +

𝑅5
𝑅3
)
1

𝜏4
 (‎3-29) 

𝑏 =
1

𝜏2𝜏3
+

1

𝜏2𝜏4
+ (1 +

𝑅4
𝑅3
+
𝑅5
𝑅3
)
1

𝜏3𝜏4
 (‎3-30) 

𝑐 =
1

𝜏2𝜏3𝜏4
 (‎3-31) 

A, B, and C in Equation (‎3-24) are determined from Equation (‎3-32) and (‎3-33). 

𝐴 =
𝜏3𝜏4𝑅3𝑟1 +

1
𝑟1
(𝑅3 + 𝑅4 + 𝑅5) − (𝑅3 + 𝑅5)𝜏3 − (𝑅3 + 𝑅4)𝜏4

(𝑅3 + 𝑅4 + 𝑅5)(𝜏2𝜏3𝜏4)(𝑟1 − 𝑟2)(𝑟1 − 𝑟3)
 (‎3-32) 

𝐵 =
𝜏3𝜏4𝑅3𝑟2 +

1
𝑟2
(𝑅3 + 𝑅4 + 𝑅5) − (𝑅3 + 𝑅5)𝜏3 − (𝑅3 + 𝑅4)𝜏4

(𝑅3 + 𝑅4 + 𝑅5)(𝜏2𝜏3𝜏4)(𝑟2 − 𝑟1)(𝑟2 − 𝑟3)
 (‎3-33) 
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𝐶 =
𝜏3𝜏4𝑅3𝑟3 +

1
𝑟3
(𝑅3 + 𝑅4 + 𝑅5) − (𝑅3 + 𝑅5)𝜏3 − (𝑅3 + 𝑅4)𝜏4

(𝑅3 + 𝑅4 + 𝑅5)(𝜏2𝜏3𝜏4)(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)
 

(‎3-34) 

After determination of r1, r2, r3, A, B, and C and taking Laplace inverse from Equation (‎3-24) , 

V3 is determined as: 

𝑉3 = (𝑅3 + 𝑅4 + 𝑅5)𝑖[1 − 𝐴𝑒
−𝑟1𝑡 − 𝐵𝑒−𝑟2𝑡 − 𝐶𝑒−𝑟3𝑡] (‎3-35) 

Substituting Equations (‎3-15), (‎3-16) and (‎3-35) into Equation (‎3-14), the battery voltage is 

determined as Equation (‎3-36) 

𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦(𝑡) = 𝑉𝑂𝐶 − 𝑅1𝑖 − 𝑅2𝑖(1 − 𝑒
−𝑡/𝜏1) − (𝑅3 + 𝑅4 + 𝑅5)𝑖[1 − 𝐴𝑒

−𝑟1𝑡 − 𝐵𝑒−𝑟2𝑡 − 𝐶𝑒−𝑟3𝑡] (‎3-36) 

In Equation (‎3-36), the battery current is positive on discharge and negative in change. This 

equation is suitable to determine the voltage response when a constant current is drawn from the 

battery. However, under a drive cycle operation, the battery current profile shows high 

fluctuations due to instantaneous changes in the power demand. Therefore, Equation (‎3-36) 

should be modified to account for the effect of a time varying current profile on the battery 

voltage. For this purpose, the current profile is binned into constant current segments. The 

voltage response for the first bin is calculated form Equation (‎3-37) where the battery starts from 

equilibrium state.  

𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦,1(𝑡) = 𝑉𝑂𝐶 − 𝑅1𝑖1 − 𝑅2𝑖1 (1 − 𝑒
−
𝑡
𝜏1)

− (𝑅3 + 𝑅4 + 𝑅5)𝑖1[1 − 𝐴𝑒
−𝑟1𝑡 − 𝐵𝑒−𝑟2𝑡 − 𝐶𝑒−𝑟3𝑡]               (0 ≤ 𝑡 < 𝑡1) 

(‎3-37) 

For other segments, the voltage response is considered to be a function of the current applied 

in that segment as well as the current applied in previous segments; therefore, Equation (‎3-37) is 

modified to Equation (‎3-38), where, the term 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦,𝑗(𝑡) refers‎to‎the‎battery‎voltage‎at‎time‎“t”‎

in‎ the‎ segment‎ “j”‎ and 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦,𝑗−1(𝑡),‎ refers‎ to‎ the‎ battery‎ voltage‎ at‎ the‎ time‎ “t”‎ due‎ to‎ the‎

current‎applied‎ in‎ the‎previous‎segment‎ ‘j-1’.‎“𝑖𝑗 − 𝑖𝑗−1”‎ is‎ the‎difference‎between‎ the‎applied‎

current in the two adjacent segments.  
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𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦,𝑗(𝑡) = 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦,𝑗−1(𝑡) − 𝑅1(𝑖𝑗 − 𝑖𝑗−1) − 𝑅2(𝑖𝑗 − 𝑖𝑗−1) (1 − 𝑒
−
(𝑡−𝑡𝑗−1)

𝜏1 )

− (𝑅3 + 𝑅4 + 𝑅5)(𝑖𝑗 − 𝑖𝑗−1)[1 − 𝐴𝑒
−𝑟1(𝑡−𝑡𝑗−1) − 𝐵𝑒−𝑟2(𝑡−𝑡𝑗−1)

− 𝐶𝑒−𝑟3(𝑡−𝑡𝑗−1)]                 (𝑡𝑗−1 ≤ 𝑡 < 𝑡𝑗) & (𝑗 ≥ 2) 

(‎3-38) 

Where the values of VOC, R1, R2, R3, R4, R5, A, B, C, 1, r1, r2, r3 were updated with the 

current state of charge of the battery obtained from Equation (‎3-39). 

Δ(𝑆𝑂𝐶) = −
𝑖𝑗Δ𝑡

𝑄𝐵𝑎𝑡𝑡𝑒𝑟𝑦
 (‎3-39) 

The model parameters are a function of temperature and SOC. Therefore, a 2-D look up table 

was created which updates the parameters according to the instantaneous SOC and temperature. 

The temperature is updated by a thermal sub model which predicts the cell temperature changes 

according to its losses and convection to the ambient already presented in the section ‎3.1.  

3.2.5 Results and Discussion 

Verification of the proposed model is accomplished in two stages. First, the ability of the 

model is evaluated for prediction of the battery internal resistances obtained from HPPC tests. 

Second, the model is studied under standard drive cycles for output potential difference 

predictions in a hypothetical EREV. The focus of this section will be the battery with a LFP 

cathode, and the model validation is performed mainly for the LFP battery. It should be noted 

that the SOC window considered for the simulations is 10 to 90 % due to two observations: first, 

the HPPC test does not provide reliable results at extreme SOCs, and second, the BMS is 

designed to limit the battery from being over charged or discharged.  

Cell 1 (LFP Cathode) 

To verify the accuracy of the proposed empirical model, the model was run under HPPC 

current profile (as shown in ) and the resultant battery internal resistances were compared with 

those obtained from a Thevenin model [65] as well as HPPC tests.  The Hybrid Pulse Power 

Characterization (HPPC) test, recommended by the U.S. Department of Energy FreedomCAR 
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battery test manual [102], is used for cell characterization in terms of  internal resistance and 

power capability at different SOCs and temperatures. 

 

Figure ‎3-31 : HPPC test- pulse power characterization profile 

Several studies have utilized the HPPC method to fit a simple RC circuit or internal resistance 

(Rint) model for simplicity and ease of implementation [12, 103, 104]. Another study employs a 

simple RC model to predict the mean pack behavior and a Rint model to simulate differences 

between the individual cells [105]. EIS provides an alternative approach to defining the circuit 

parameters[22, 106]. Unlike the HPPC test, EIS does not assume that battery response is 

unaffected by pulse duration or that there is no significant time delay between input and 

response. These assumptions have been shown to be false through examination of Nyquist plots 

used in EIS studies [22, 107]. In addition, the HPPC test, when compared to EIS, has been shown 

to impose more stress on the battery [108]. Lastly, compared to HPPC, EIS test facility is much 

more economical; therefore, it would be desirable to verify the possibility of replacing HPPC test 

with EIS. 

Results of comparison for the battery with LFP cathode at temperatures of 12.5°C, 23.75°C 

and 35°C are shown in Figure ‎3-32. It is observed that the proposed model better matches the 

experimental results than the Thevenin model. An average error of 20 % is observed in values 
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predicted by the proposed empirical model.   Further investigations also revealed that the 

empirical model can predict the charge resistances of both batteries with an average error of 

about 13%. Charge and discharge error may be reduced by increasing the number of EIS tests 

(e.g. from four SOCs to eight). Additionally, replacing the perfect capacitors C1 and C2 with 

CPEs would incorporate the effects of:  distributed electrode reactivity, electrode inhomogeneity, 

roughness or fractal geometry, and the current and potential distributions across the electrode, 

which could further reduce model error.  
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Figure ‎3-32. Comparison of discharge resistances obtained from HPPC tests and modeling for the battery 
with LFP cathode at different temperatures. 

The model was further evaluated by simulating the cell voltage profile over three standard 

drive cycles (US06, UDDS, and HWFET).  The cycle current profiles were separately 

aggregated and applied to the proposed, Thevenin, and simple resistance (Rint) models. Resulting 

battery voltages were compared with the experimental data over a 90% to 10% SOC range. The 

voltage obtained from the model and experiment for this battery at operating temperature of 

35°C is shown in Figure ‎3-33. As seen in this figure, there is an excellent agreement between the 

model and experiment. At this temperature, the highest error was observed during the US06 

drive cycle with an average error of 1.2% and the maximum instantaneous error of 5.3%.  
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HWFET 

Figure ‎3-33. Comparison of the battery voltage obtained from the empirical model and experiment for the 
battery with LFP cathode at 35°C standard EPA drive cycles. 
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This battery was also studied at operating temperatures of 23.75°C and 12.5°C. The average 

and maximum instantaneous errors of the model for voltage predication under US06, UDDS, and 

HWFET drive cycles are listed in Table ‎3-12. At all temperatures studied, the highest errors 

belong to the US06 drive cycle. For this drive cycle, at temperatures of 23.75°C and 12.5°C, the 

average error was about 2.1% and 5.4% and the maximum instantaneous error was about 6.8% 

and 22.1%, respectively. Model error increases at lower operating temperatures. This could be 

due to the assumption of replacing the CPE element to the perfect capacitor in the equivalent 

circuit.  Table ‎3-12 further presents a comparison between the proposed model and two simpler 

models; Thevenin and simple resistance (Rint) model. All three models show best performance in 

higher temperatures and city driving conditions. It can be observed that the Rint model has the 

biggest error since the polarization characteristic has been ignored. The Thevenin model shows a 

better dynamic performance in following the experimental data, and its maximum error rate is 

less than 6% at high temperatures following a city drive cycle. The proposed model offers an 

improvement of up to 6% in terms of average and maximum error in voltage predictions; which 

is still significant for EV applications in terms of extending the allowable battery discharge 

window and the vehicle range.  
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Table ‎3-12. Average and maximum errors of the proposed empirical model for voltage prediction of the 
battery with LFP cathode in various drive cycles over 90% to 10% SOC.  

Drive cycle 

Average error (%) Maximum error (%) 

Proposed 

model 
Thevenin Rint 

Proposed 

model 
Thevenin Rint 

@ 35 (ᵒC) 

US06 1.2 1.4 3.8 5.3 5.9 12.9 

UDDS 0.6 0.8 0.8 2.5 3.7 3.9 

HWFET 1.1 1.3 1.4 3.6 4.1 7.5 

 @ 23.75 (ᵒC) 

US06 2.1 2.2 3.2 6.8 8.2 12.9 

UDDS 1.2 1.5 1.6 4.2 5.3 5.6 

HWFET 1.8 1.9 1.9 4.5 4.6 7.7 

 @ 12.5 (ᵒC) 

US06 5.4 5.7 6.1 22.1 22.8 23.8 

UDDS 2.3 3.1 3.8 10.4 11.5 13.1 

HWFET 4.6 4.7 5.1 13.7 14.3 15.2 

 

Cell 2 (Composite LMO & NMC Cathode) 

Figure ‎3-34 illustrates the results of the discharge resistances obtained from HPPC tests 

through modeling and experiment for the battery with composite LMO & NMC cathode. As 

before, the results corresponding to the empirical model, as compared to the Thevenin model, 

better follow the experimental with the empirical model resistances averaging 12 % error. An 

average error of 10 % is observed in the predicted charge resistances for this battery. The 

proposed model can be further evaluated if drive cycle test data is made available for the LMO & 

NMC battery. 
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Figure ‎3-34.  Comparison of discharge resistances obtained from HPPC tests and modeling for the battery 
with composite LMO & NMC cathode at different temperatures. 
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3.2.6 Impact of convection coefficient on the temperature profile 

One important design criteria of battery operation is that the battery temperature stays smooth 

and within a controllable range to maintain optimal performance. In this section, the sensitivity 

of the battery temperature rise to the convection coefficient is investigated. For this purpose, the 

battery model (DPW) is run under different convection coefficient ranging from 1h (2 W/m
2
K), 

corresponding to the natural convection, to 10h (~20 W/m
2
K) resembling a mild forced 

convection condition. As the plots in Figure ‎3-35 suggest, a convection coefficient value of 7.5h 

(15 W/m
2
K) would result in a saturated temperature profile with minimum fluctuation over 

different drive cycles; which is an affordable value and could be fulfilled by using a fan. Also, in 

Figure ‎3-35 (4) effect of the convection coefficient on the battery maximum temperature rise 

under different drive cycles is illustrated. This plot reassures the feasibility of designing a 

thermal management unit for the cells with minimal temperature fluctuations.  
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(1) (2) 

 
 

(3) (4) 

Figure ‎3-35 Simulation of temperature profile under EPA drive cycles; (1)-(3): Impact of convection 
coefficient on the temperature, (4) maximum temperature change as a function of convection coefficient 

 

3.3 Conclusions 

In this chapter two experimental studies on Li-ion battery were presented. First, thermal 

behavior of two commercial Li-ion cells (LiMn2O4 and LiFePO4) was studied through a 

comprehensive set of charge and discharge cycling tests at different ambient temperatures. A 

design of experiment algorithm (called NFCD) was utilized to determine the minimum required 

test points (ambient temperatures and C-rates). Energy efficiency and columbic efficiency of the 

cells were determined for each testing condition. Results agree with the belief that the Li-ion 
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cells have a better performance at higher temperatures. The temperature distribution of the cells 

was found to be approximately uniform within the confines of the experimental error. Also, heat 

generation of the cells was calculated assuming natural convection mechanism for heat rejection 

to the ambient. It is planned to validate the calculated heat generation against the theoretical heat 

generation inside the cell. Finally, a statistical model of the temperature and also cumulative 

generated heat was developed for each cell (charge and discharge). 

In the second section, a simple real-time empirical model for voltage prediction of Li-ion 

batteries was developed based on the observed phenomena at various battery states of charge and 

temperatures under EIS test. It was shown that this model can precisely predict the battery 

voltage during various drive cycles of electrified vehicles. The model was compared with both 

the simple resistance and Thevenin models and up to 6% improvement in the battery voltage 

prediction was observed. The model was also evaluated in terms of predicting the HPPC test 

results. The investigations confirmed the model capability in following the HPPC test trends 

within about 20% error. This error can be significantly reduced by using CPEs instead of perfect 

capacitors in the equivalent circuit model. In this condition, the effects of distributed electrode 

reactivity, electrode inhomogeneity, and distributed current and potential across the electrode 

could be considered. This model is desirable to designers as an alternative method for the HPPC 

test, as this test imposes stress to the battery and its setup is expensive for high capacity batteries 

and battery packs. Although the model developed was based on data of two commercial Li-ion 

batteries, this modeling approach is applicable to model Li-ion batteries of different chemistries. 

  



 

85 

 

Chapter 4 

Battery Characterization through Field Tests 

The‎following‎section‎is‎mainly‎based‎on‎the‎paper‎titled‎“Modeling‎and‎Evaluation‎of‎Li-Ion 

Battery‎Performance‎Based‎on‎the‎Electric‎Vehicle‎Field‎Tests”‎by‎“Samadani et.al”‎published‎

by the Society of automotive Engineer (SAE). This thesis author specific contribution to this 

paper is conducting the experiment, analyzing the data, preparing the graphics and results and the 

final manuscript. This paper is co-authored by Dr. Fowler and Dr. Fraser as supervisors. Also, L. 

S. Farhad assisted with advice in the data analysis. 

Although Li-ion battery offers many advantages such as high specific power and capacity, 

their performance and reliability in actual EV application need to be further verified. In this 

context, a systematic approach is required to enable assessment of the operational requirements 

specific to EV applications. This chapter describes the results of a research conducted for the 

Burlington Hydro as a part of its GridSmartCity
TM

 project [109]. The results are based on the 

field‎ test‎conducted‎on‎an‎electrified‎Ford‎Escape‎2009‎which‎ is‎ a‎part‎of‎Burlington‎Hydro’s‎

fleet and is equipped with three packs of cylindrical Li-ion battery (LiFePO4) including an 

overall 20 modules in series. Through monitoring various performance and utilization parameters 

of an EV, this study provides practical in-situ data on EV operation and grid electricity 

requirements and helps addressing the following key technical issues of EVs and their 

connection to the grid: 

 Charging and charge management; 

 Applicability as a fleet vehicle; 

 Vehicle performance modeling; and; 

 Li-ion battery degradation modeling. 

As the ultimate objective of this study, an attempt has been made to bridge the gap between 

laboratory studies and real life environment and to study the battery degradation in real-life 
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conditions. There are many factors that affect the Li-ion battery performance and health. Also, in 

EV applications, battery health is known to be very much dependent on the driving and charging 

habit. Therefore, there is a growing desire to evaluate the path dependence of battery 

degradation. This is due to the fact that lab environment is far different from what the battery 

experiences under real operation in EVs and relying solely on the results of lab testing may cause 

a great mislead in estimating the battery state of health (SOH) and remaining life. However, real-

life testing is expensive  and labor intensive and is associated with a very low level of control ; 

therefore it has not been the subject of researches very much so far [32]. In the following 

sections, the data management system installed on the vehicle, and the powertrain and battery 

characterization and modeling are presented. 

4.1 Data Management System and Battery Packs  

Figure ‎4-1 shows the converted EV under study. There are three packs of Li-ion battery 

installed on the vehicle; including a total of 20 battery modules in series. Figure ‎4-2 shows a 

schematic of the battery packs locations in the vehicle. Each module contains 6serisesx49parallel 

IFR18650e cylindrical Valence cells. The data management system consists of a data logger 

installed in the vehicle, a cellular network data connection for data collection, and processing 

scripts that convert the logged data into monthly usage reports. The data logger unit records data 

from the battery, powertrain, and GPS. A list of recorded signals that are necessary for modeling 

of vehicle performance and battery degradation is presented in Table ‎4-1. The data logger is 

installed beneath the front passenger seat and connects to the vehicle controller area network bus 

(CANBus). The global positioning system (GPS) unit is mounted on the ceiling of the passage 

cabin near the central mirror to reduce the possibility of poor satellite acquisition.  The data 

recording unit (DRU) and modem are located beneath the front passenger seat. The data logger is 

powered by the existing 12V battery in the vehicle.Figure ‎4-3 shows the data recorder unit seat 

and Figure ‎4-4 shows the data logger connection and shut down wire in vehicle.  The‎ ‘shut‎

down’‎wire‎ is‎used‎ to‎automatically‎power-off the recorder and its peripherals after 4 hours of 

inactivity. The cellular antenna that enables wireless data transmission is located on top of the 
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car.  

  

Figure ‎4-1 Converted Ford Escape (EV-ACX2.5) Figure ‎4-2. integration of multiple batteries 
packs [110] 

Table ‎4-1 Data logging signals 

Component Recorded Signal significance 

Battery  

 Voltage & current 

 SOC 

 Temperature 

 Verify vehicle energy use and 
regenerative braking 

 Verify battery health status as 
both extreme temperature and 
SOCs are known to escalate 
degradation 

Electric motor  
 Voltage & current 

 Speed 

 Torque 

 Monitor powertrain energy use 

Vehicle   Speed & Acceleration  Monitor vehicle performance 

 

  

Figure ‎4-3: Data recorder unit 
Figure ‎4-4: Data logger connection and shut down 

wire 
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4.2 Results and Analysis 

4.2.1 Individual Event Analysis 

In this section, an individual trip analysis for the EV-ACX2.5 is presented. The relevant drive 

cycle of this trip is illustrated in Figure ‎4-5.  This trip, occurring on November 25, 2011, is 

actually the longest recorded trip of 106 kilometers and is summarized in Table ‎4-2. This specific 

trip is chosen to be displayed here because it shows the quality and quantity of the data collected 

from the vehicle, and because it contains a large set of driving conditions that demonstrate some 

of the performance characteristics of the vehicle (range, acceleration, etc.). According to 

Table ‎4-2, EV-ACX 2.5 is driven for 2 hours and 16 minutes with a battery SOC initially at 

100% and decreasing to 2%. The peak speed is 125 kph, during highway driving. The average 

speed is 46.9 kph. During the trip the outside temperature was 5
0
C. The total energy used by EV-

ACX 2.5 is 23.68 kWh and the cost of the trip at a rate of 11 cents per kWh was $2.60, which is 

the price that Burlington Hydro is currently paying for the EV-ACX2.5. This trip includes both 

highway and city driving. Figure ‎4-5 shows the drive cycle and Figure ‎4-6 shows the 

acceleration profile for this trip. As Table ‎4-3 suggests, this drive cycle is close to US06 drive 

cycle in terms of aggressiveness. 

  

Figure ‎4-5: Drive cycle for longest recorded trip 
with EV-ACX2.5 

Figure ‎4-6: Acceleration profile for longest 
recorded trip with EV-ACX2.5 
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Table ‎4-2 Cycle details, November 25, 2011 

Trip Time 2 hour,16 min 
 

Trip Distance 106 km 

Starting SOC 100 % 

Ending SOC 2 % 

Total Energy -23.68 kWh 

Cycle Average Speed 46.92 kph 

Cycle Peak Speed 125 kph 

Average Positive Acceleration 0.59 m/s2 

Peak Positive Acceleration 3.43 m/s2 

Trip Cost (at $ 0.11/kWh) 2.60 CAD 

Cost per km (at $0.11/kWh) 0.024 CAD/km 

Outside Temperature +5 0C 

 

Table ‎4-3: Acceleration comparison between Nov25 drive cycle and standard drive cycles 

Cycle Maximum acceleration (m/s2) Average acceleration (m/s2) 

UDDS 1.47 0.55 

HWFET 1.43 0.19 

US06 3.75 0.67 

Nov25-EV-ACX2.5 3.43 0.59 

Figure ‎4-7 and Figure ‎4-8 show the battery voltage and current profiles for the trip. The 

minimum battery voltage is 350 V and the maximum battery voltage is 414 V. It can be observed 

that there is a decreasing trend in the battery terminal voltage which is a result of continuous 

loading on the battery packs during driving. The peak battery discharge current is -195 A and the 

peak battery regenerative braking current is 100 A. Thus, the peak battery discharge power is -

68.25 kW and peak regenerative braking charge power is 43.88 kW. Figure ‎4-9 also shows the 

SOC profile of the battery for this trip. There is a drastic reduction in SOC between 1000 sec to 

3000 sec because during this time span, the vehicle was highway driven with very high speed of 

120 kph. After 3000 sec, a fluctuating trend in the SOC curve is observed which is due to the in-

city driving condition where regenerative braking frequently occurs. 
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Figure ‎4-7: Battery voltage profile for longest 
recorded trip with EV-ACX2.5 

Figure ‎4-8: Battery current profile for longest 
recorded trip with EV-ACX2.5 

 

 

Figure ‎4-9: Battery SOC profile for longest recorded trip with EV-ACX2.5 

 

Figure ‎4-10 depicts the battery maximum and minimum temperature profiles (as measured 

over all of the battery modules) as a function of time for this trip. It is very well known that the 

heat generation from a battery is due to resistive (I
2
R) losses and the enthalpy changes due to 

electrochemical reactions during discharge or charge. Heat generation rate from a battery module 

depends on several parameters like battery temperature, initial and final state of charge, charge 

and discharge rate and profile and also on chemistry and construction. The EV-ACX2.5 uses 20 

passively cooled battery modules located in three packaged locations on the vehicle. It is evident 

that these different locations are causing significant differences in cell temperature over the drive 

cycle. These differences may cause differential cell ageing, which can be monitored. Since the 

data loggers collect battery voltage, current, and temperature at the module level, degradation 
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models can be validated at that level to identify the extent of the differential ageing as data 

continues to be collected. It can be seen from Figure ‎4-10 that the battery minimum temperature 

has a minimum value of 15
0
C and a maximum value of 30

0
C, while the battery maximum 

temperature has a range of 25
0
C to 39

0
C. It can be also observed that there is a drastic change in 

temperature between 1000 sec to 3000 sec; this is due to the fact that the vehicle was in 

continuous operation and all three battery packs continuously generated heat. 

 

 

Figure ‎4-10: Battery temperature profile for longest recorded trip with EV-ACX2.5 

 

4.2.2 Energy and Cost Analysis of EV-ACX 2.5  

Table ‎4-4 shows the energy and cost analysis of EV-ACX2.5 for the monthly data collected 

between October 2011 and February 2012. It gives a monthly record of the total distance 

travelled by EV-ACX2.5, the energy used during driving, the cost of driving, the energy required 

for charging, and the charging cost. 
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Table ‎4-4: Energy and cost analysis of EV-ACX2.5 (October 2011-February 2012) 

Month 
Distance 
travelled 

(km) 

Driving 
Energy 
(kWh) 

Cost of driving 
(@ 0.11 $/kWh) 

Charging 
Energy 
(kWh) 

Charging Cost 
(Charging on 220 V) 

(@ 0.11 $/kWh) 

Oct-2011 100.8 19.6 $2.156 24.4 $2.684 

Nov-2011 308.2 65.5 $7.205 80.6 $8.866 

Dec-2011 149.3 37.4 $4.114 47.6 $5.236 

Jan-2012 121.0 28.6 $3.146 35.1 $3.861 

Feb-2012 113.3 27.9 $3.069 34.9 $3.839 

Total  792.6 179 $19.69 222.6 $24.48 

During its time in Burlington, the EV-ACX2.5 is driven for 792.6 kilometers over five 

months. The project team needs to have Burlington Hydro dramatically increase EV-ACX2.5 

driving to get the battery data for degradation analysis. The total vehicle energy consumption 

(charging energy) in the last five months is 222.6 kWh and the cost of charging is $24.48. 

Detailed Monthly Report for EV-ACX 2.5  

In Figure ‎4-11 a detailed monthly vehicle report for November 2011 is presented. The key 

metrics contained in this report are distance travelled, hours in operation, hours spent charging, 

total driving and charging energy, time-of-use for vehicle charging, an energy usage path 

breakdown (from the grid to the powertrain), vehicle energy efficiency plotted against ambient 

temperature, and a histogram of battery SOC for the start and end of each recorded trip.  The 

“Distance”‎ section‎ shows‎ how‎many‎ kilometers‎ the‎ vehicle was driven in gasoline mode and 

electric mode. This is a general report format that can accommodate hybrids, but since the EV-

ACX 2.5 is a pure EV, all 308 kilometers are in electric mode. 

The‎“Time”‎section‎contains‎a‎breakdown‎of‎the‎time‎the‎vehicle spent ON and OFF. ON is 

further broken down into driving hours (vehicle is in motion) and idling hours (vehicle is ON but 

is not in motion). OFF hours are further broken down into charging hours (vehicle is plugged in 

and battery is charging) and resting hours (vehicle is either plugged in and battery is full, or 

vehicle is not plugged in). The‎ “Driving‎ Energy”‎ section‎ shows‎ how‎ much‎ energy‎ is‎ being‎

consumed by the vehicle during ON hours. Again, because this is a pure EV there is no gasoline 

energy consumption. Both gasoline and electric energy consumption are expressed in Wh/km 

and Lequivalent/100km (Le) for easy comparison. Total driving energy for the month, in kWh, is 
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also shown. 

The‎“Charging‎Energy”‎ section‎provides‎both‎ the‎ total‎ charging‎ energy‎used in the month, 

and‎a‎percentage‎breakdown‎of‎how‎those‎kWh‎were‎obtained.‎In‎Ontario’s‎time-of-use (TOU) 

pricing system electricity charges per kWh vary depending on the time of day and time of year. 

Prices increase as the time moves from off-peak to mid-peak to on-peak, so it is desirable to plan 

activities such that the vehicle can be charged off-peak as much as possible. This section also 

shows the percentage of charging energy obtained from 110V, 220V, and DC quick charge 

stations. It is important to note that the breakdowns in this section are in kWh (energy), not hours 

(time). The‎“Energy‎Path”‎section‎shows‎where‎energy‎is‎consumed‎in‎the‎vehicle.‎The‎charger‎

energy‎is‎that‎energy‎consumed‎by‎the‎vehicle’s‎on-board charger in converting grid electricity 

from AC to DC energy that is compatible with the vehicle battery. The powertrain energy is the 

battery energy consumed by the vehicle to operate. The regenerative energy is the energy 

recovered by the regenerative braking system, resulting in reduced powertrain energy. All values 

are given per kilometer travelled for that month. 

The‎“Temperature”‎section‎plots‎the‎vehicle energy consumption in Whkm
-1

 against ambient 

temperature for each recorded trip. This plot is useful for demonstrating the effects of ambient 

temperature (and the resulting vehicle climate control energy consumption) on energy efficiency. 

The‎“Battery‎Charge”‎section‎is‎a‎histogram‎of‎battery‎SOC at the start and end of each trip. It 

provides an at-a-glance view of the typical battery SOC utilization. The monthly reports for 

October 2011, December 2011, January 2012, and February 2012 are provided in Appendix D. 
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Figure ‎4-11: ACX 2.5 November 2011 monthly report [111]  
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Comparison between EV-ACX 2.5 and HEVs 

In order to compare the energy consumption and energy cost of the EV-ACX 2.5 with that of 

Burlington‎ Hydro’s‎ other‎ fleet‎ vehicles,‎ drive‎ cycles‎ from‎ two‎ of‎ Burlington‎ Hydro’s‎ Ford‎

Escape Hybrid (2008 and 2009 model years) fleet vehicles were recorded over four months, 

between November 2011 and February 2012. Table ‎4-5 summarizes the monthly distance travel, 

fuel consumption, and the equivalent energy use in kWh for the HEVs. The equivalence ratio of 

9.7 kWh per litre is used for gasoline [104] It is seen that HEV #4 has the most utilization of the 

two HEVs and yields the richest data set. Therefore further analysis was performed based on the 

HEV #4 recorded data to compare the energy usage and cost with EV-ACX2.5. The results are 

reported in Table ‎4-6. 

Table ‎4-5: Distance travelled and energy consumption by fleet vehicles 

Month 

HEV #3 HEV#4 

Distance 
travelled 

(km) 

Fuel 
(L) 

Equivalent 
Energy 
(kWh) 

Distance 
(km) 

Fuel 
(L) 

Equivalent 
Energy 
(kWh) 

Nov.2011 252.8 21.9 212.43 742.9 51.09 495.57 

Dec.2011 - - - 793.48 53.15 515.57 

Jan. 2012 150 10.2 98.94 1214 80 776 

Feb.2012 104.5682 8.8618 85.95 769.16 50.61 490.917 

 

Table ‎4-6: Energy and cost comparison between EV-ACX2.5 and HEV#4 

Month 

HEV#4 ACX 2.5 

Distance 
travelled 

(km) 

Fuel 
(L) 

Equivalent 
Energy 
(Kwh) 

(kWh=Lx9.7) 

Cost 
(@11cent 

/kWh) 

Distance 
(km) 

Energy (kWh) 
(kWh=Lx9.7) 

Cost 
(@11cent 

/kWh) 

Nov-2011 742.9 51.09 495.57 $54.51 308.2 65.5 $7.205 

Dec-2011 793.48 53.15 515.57 $56.71 149.3 37.4 $4.114 

Jan-2012 253.53 80 160.923 $17.70 121 28.6 $3.146 

Feb-2012 769.16 50.61 490.917 $54 113.3 27.9 $3.069 

Total 3519.54 234.85 2278 $182.92 691.8 159.4 $17.53 

Economy 0.0512 ($/km) 0.025 ($/km) 

 

From Table ‎4-6, it is observed that the EV-ACX2.5 has travelled a much shorter distance over 

the last four months as compared to the HEV#4. Over four months, the HEV #4 is driven for 
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3519.54 km while the EV-ACX2.5 is driven for only 691.8 km. It is clearly seen that there is a 

huge difference in energy consumption, distance travelled, and cost of driving. The total fuel 

consumption over four months of the HEV #4 is 234.85 liters and the equivalent energy 

consumption is 2278 kWh, while for EV-ACX2.5 the energy consumption is 159.4 kWh. The 

cost of driving for HEV for four months is $182.92 while for EV-ACX2.5 it is $17.53. So the 

cost per km for HEV#4 is $0.0512 while for EV-ACX2.5 it is only $0.025. Hence, if EV-

ACX2.5 is driven for same km as HEV#4 (3519.54km), the cost of driving is only $87.98, which 

is much lower than HEV#4 driving cost ($182.92) and there is a saving of $94.94.So it is clear 

that EV-ACX2.5 is cheaper in operation as compared to HEV. 

4.3 Vehicle Powertrain Modeling 

The converted EV was modeled in PSAT [112] based on the available specifications of the 

vehicle (see Table ‎4-7). The powertrain configuration used in the model is shown in Figure ‎4-12. 

As‎the‎high‎voltage‎battery‎and‎traction‎motor‎have‎the‎most‎influence‎on‎the‎model’s‎accuracy,‎

the reliability of the model developed for these components should be evaluated. To do this, 

some trip data collected from the vehicle were used for calibrating the battery and electric motor 

performance maps. In PSAT, the Li-ion battery is modeled as a charge reservoir and an 

equivalent circuit. The battery is represented by an open circuit voltage source and an internal 

resistance which accounts for the charging and discharging modes. The amount of charge that 

the battery is able to hold is assumed to be constant (no degradation). In Figure ‎4-13, the battery 

model structure is shown. The model takes the current as an input and calculates the output 

voltage. Once the model is calibrated, it will be validated against other sample road tests to 

verify its capability.  
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Table ‎4-7 Key specifications for the electrified Ford Escape 

Specification Value 

Mass (Empty) 1814 kg 

Motor Peak Power 90 kW 

Motor Peak Efficiency 98% at 4000 RPM 

Motor Peak Torque 239 Nm 

Battery Module Nominal 
Voltage 

19.2 V 

Battery Module Energy 
Density 

89 Wh/kg 

Battery Module Nominal 
Capacity 

69 Ah 

Total Battery Pack Energy 
Capacity 

25 kWh 

Typical Range for a full 
discharge 

100 km 

 

 

Figure ‎4-12 Drivetrain configuration of the converted EV in PSAT [111] 

 

Figure ‎4-13 Top level of the battery model in PSAT 

In the first step, a drive cycle that is representative of the expected driving conditions is 

needed to be developed. To achieve a comprehensive set of data, this cycle should cover a wide 
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range of driving conditions such as various driving behaviors (aggressive, gentle), driving 

environment (highway, city), battery SOC (full to near zero) and motor torque/speed. For this 

purpose, the data of two trips were aggregated. These trips were made in a winter day and 

encompass both city and highway driving. The resulting drive cycle is called drive cycle #1 and 

shown in Figure ‎4-14.  

 

Figure ‎4-14. Drive cycle #1 Synthesized for calibrating the battery model 

Relevant statistics of drive cycle #1 are given in Table ‎4-8. The battery and electric motor 

data corresponding to drive cycle #1 was analyzed to derive battery open circuit voltage (OCV) 

map, battery internal resistance map and electric motor efficiency. 

Table ‎4-8 drive cycle #1 statistics 

Cycle Duration (sec) 11693 

Cycle Distance (km) 149 

Speed (kph) 
Max:124.3 

Average: 46 

Acceleration (
m

s2
) 

Max: 5.3 

Average: 0.38 

Deceleration (
m

s2
) 

Max: -4.97 

Average: -0.45 
 

4.3.1 Estimation of the Battery OCV and Internal Resistance  

If lab testing is not available, the battery OCV can be estimated from the road test data. For 
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this purpose, a scatter plot of battery voltage should be employed. As an example, the battery 

voltage profile during a sample driving and corresponding charging profile is illustrated in 

Figure ‎4-15.  

 

 

Driving; SOC 91-35 % 

 

Charging; SOC 35-99 % 

Figure ‎4-15: Sample battery pack voltage profile 

By selecting the minimum load points in the voltage-SOC scatter plot, (where the battery 

current < C/20), and fitting a polynomial curve, the approximated value of the battery OCV at 

various SOC can be estimated. This method was applied on the drive cycle #1 battery data. To 

verify the accuracy of this estimation method, a test was conducted to measure the OCV in a 

more realistic way. In this test, through in-city driving, the battery was drained from fully 

charged state to almost 0% SOC in intervals of 10% SOC followed by 2 hours rest at each SOC. 
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The initial battery voltage once the vehicle is on after each resting time represents approximately 

the real OCV. Figure ‎4-16, illustrates a comparison between the measured values of the OCV 

and the estimated ones from drive cycle #1. Overall, less than 5% discrepancy was observed 

between the two curves.  

 

Figure ‎4-16: Comparison of OCVs estimated from the road test and measured after 2hr resting time. 

Once the OCV is determined, the internal resistance of the battery pack can be estimated from 

Eq. 1: 

𝑟𝑖𝑛𝑡 =
|𝑉 − 𝑂𝐶𝑉|

𝐼
 

(‎4-1) 

Where, V and I are the recorded voltage and current applied/drawn from the battery pack, 

respectively. To estimate the internal resistances from the road test, a scatter plot of resistances 

vs. SOC is to be obtained using Eq. 1 and then the redundant data (outliers) filtered out. To 

improve the battery resistance estimation, different trips data were combined and a rich pool of 

data was created. Figure ‎4-17 illustrates the derived internal resistances for each battery string. It 

should be noted that each battery module includes six strings of battery cells in series and each 

string contains 49 cells in parallel resulting in a total of 240 cells in each battery module.  
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Figure ‎4-17: Internal resistance of the battery module derived from data of drive cycle #1 

It should be noted that the procedure presented here is solely based on the road test data; 

while for measuring the battery resistance in the lab, standard tests are available and all the 

parameters are controlled. In a real-life situation, there is almost no control over the 

circumstantial factors. Also, the estimation presented here is limited to the specific environment 

in which the vehicle is tested. Therefore, to obtain the battery internal resistance from the road 

test data under different ambient temperatures, the vehicle road test data in different seasons is 

required. Considering the battery aging, namely, the calendar life and cycling life, associated 

with this waiting time that may increase the battery internal resistance, one may not be able to 

fully differentiate the effect of aging and the ambient temperature.  

4.3.2 Model Testing and Validation 

The estimated battery OCV and internal resistance are employed to model the battery pack in 

PSAT software. To simplify the modeling, a cell level model is up scaled linearly to represent a 

pack (unbalancing and cell-to-cell variations are ignored). Figure ‎4-18 shows the SOC curves 

obtained from the model and the road test data (drive cycle #1). As seen in this figure, the model 

is able to track the experimental SOC curve with an error of about 3.8%. There are some 

discrepancies in the in-city portion of the SOC curve, which is related to the regenerative control 

strategies. However, as long as the model is able to track the SOC changes and the battery 
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energy consumption, these discrepancies do not significantly affect the modeling accuracy. The 

total energy processed in the battery was also examined using the following formula: 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 =∑(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑉𝑜𝑙𝑡) × 𝑡𝑖𝑚𝑒   (‎4-2) 

Our studies also indicated that the battery model is able to track the total energy drawn from 

the battery pack with an error of less than 2.3%.  

 

Figure ‎4-18: SOC versus time; obtained from the model and drive cycle #1 

In addition, based on the scatter plot of torque-speed of the electric motor, the braking control 

strategy is modified in order to match the maximum regenerative energy produced by the motor 

at different speeds with the test data. Figure ‎4-19 shows the power flow of the motor calculated 

from the model and experiment. An average error 4% was observed in the results. 
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Figure ‎4-19: Power Flow into the Electric Motor, model and drive cycle #1 (first 8000 sec) 

As shown in Figure ‎4-20, inputs to the motor are the voltage and current coming from the 

battery and the outputs are in terms of torque and speed; therefore the overall efficiency of the 

motor is calculated as follows: 

 

Figure ‎4-20. Inputs and Outputs to the Electric Motor 

 

𝜂 =
∑(𝑇𝑜𝑟𝑞𝑢𝑒×𝑆𝑝𝑒𝑒𝑑)

∑(𝐶𝑢𝑟𝑟𝑒𝑛𝑡×𝑉𝑜𝑙𝑡𝑎𝑔𝑒)
= {

91.7 %  (𝑚𝑜𝑑𝑒𝑙)
        90 %     (𝑒𝑥𝑝𝑟𝑖𝑚𝑒𝑛𝑡)

 

The model slightly overestimated the efficiency of the electric motor.  

Figure ‎4-21 compares the vehicle acceleration from the model and test data under Nov25 

drive cycle. The model is able to predict the vehicle acceleration with an average 6% error. The 

model was then tested with another drive cycle called drive cycle #2. Drive cycle #2 which is 

mostly representative of highway driving in a winter day is shown in Figure ‎4-22 and relevant 

statistics are presented in  
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Figure ‎4-21. Vehicle Longitudinal Acceleration; drive cycle #1 (first 8000 
sec) 

 

 

Figure ‎4-22: Drive cycle #2 used for testing the model 

Figure ‎4-23 shows the SOC curve obtained from the model and test data of drive cycle #2. 

The model is able to simulate the SOC experimental curve for the drive cycle #2 with an error of 

less than 5%. The battery model is also able to track the total energy drawn from the battery pack 

with an error of less than 4.6%. Figure ‎4-24 show the power flowing flow of the motor 

calculated from the model and experiment. An average 8% error was observed in the results. 
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Figure ‎4-25 compares the vehicle acceleration from the test data and the model under the test 

drive cycle. The model is able to predict the vehicle acceleration with an average 7% error 

Table ‎4-9: Statistics of test drive cycle #2  

Cycle duration (sec) 2623 

Cycle distance (km) 98.7 

Speed (kph) 
max average 

124 84.6 

Acceleration (
m

s2
) 6.44 0.34 

Deceleration (
m

s2
) -5.41 -0.33 

Ambient Temperature 2 ℃ 

 

 

Figure ‎4-23: SOC versus time; obtained from the model and field test related to drive cycle #2. 
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Figure ‎4-24. Input Power from Electric Motor; Test Drive Cycle(Dec7-
Part1) 

 

 
Figure ‎4-25. Vehicle Longitudinal Acceleration; Test Drive Cycle(Dec7-

Part1) 

To further examine the battery model fidelity, a drive cycle with different environmental and 

driving conditions was used for validation. A trip made in a summer day in Waterloo (Ontario, 

Canada) was used for this purpose. The characteristics of this drive cycle (called drive cycle #3) 

are listed in Table ‎4-10. The data is representative of a round trip consisting of the city and 

highway driving. The corresponding drive cycle is also illustrated in Figure ‎4-26. The battery C-

rate histogram during the trip is also depicted in Figure ‎4-27. The maximum C-rate that the 

battery experiences, is equal to two, which is normal for an electric vehicle. The low value of C-
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rate in EVs ensures the battery will not undergo accelerated degradation due to high C-rates.  

Table ‎4-10: Drive Cycle #3 Specification 

Trip Duration (sec) 3600  

Trip Distance (km) 75.8 

Average Speed (kph) 75.1 

Maximum Speed (kph) 118.5 

Average Acceleration (m/s2) 
Positivie:0.11  
Negative: 0.13 
 

SOC Changes (%) 91-36 

Battery Energy Economy (kWh/km) 0.19 

Total Battery Capacity (Ahr) 36.35 

Battery Average Temperature (0C 
)  

28-35.8 

Ambient Temperature (0C) 
) 
 
 
 

+29.4 

 

 

Figure ‎4-26: Drive cycle #3 
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Figure ‎4-27: Frequency of the Battery pack C-rates for the drive cycle #3 

The modeled battery SOC is compared against the test data in Figure ‎4-28. The model shows 

up to 10% overestimation in tracking the SOC. One reason could be related to the coulomb 

counting algorithm that the current model is based on. In fact, SOC depends not only on the 

accumulative charge processed in the battery but also on the rate of change of the current. This is 

due to the fact that the available capacity of the battery is a function of the discharge rate and a 

robust SOC estimation algorithm should be able to take this into account to give the driver in 

time warning of the available capacity. Also, temperature is an important parameter that affects 

the available capacity of the battery. To improve the SOC algorithm, one might need to 

incorporate the effect of temperature by measuring the battery capacity at different ambient 

temperature. Finally, for this study, road grade impact is ignored. Taking the road grade effect on 

the required power from the battery into account, might improve the SOC calculations. However, 

the current model is quite powerful in estimating the total and accumulated discharged and 

regenerated energy in the battery back over the drive cycle as demonstrated in Figure ‎4-29.  
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Figure ‎4-28: Battery SOC Validation Against drive cycle #3 

 

 

 Discharged energy 
 Regenerated Energy 

Figure ‎4-29: Battery Model Validation against Test Data over Drive cycle #3 

Battery Thermal Behavior 

The performance, life, and safety of Li-ion batteries are affected by their operation 

temperature. Therefore, for designing the battery pack for EVs, it is important to take into 

account the thermal behavior of these batteries. In this section, the thermal behavior of the 
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battery pack based on the field test data and the thermal model developed with consideration of 

the effect of the battery reversible and irreversible heat generations is studied. The pack is cooled 

by a fan with a flow of air which is assumed to be divided in parallel so that the same amount of 

air passes through each module of the pack. Therefore, it is enough to model one single module 

to obtain the temperature profile of the whole pack. The cell temperature at each time step is a 

function of the generated heat and the rejected heat by forced convection. However the BMS on 

this vehicle turns the fan on once the module temperature exceeds 40℃ . Considering the 

weather conditions in Waterloo, such a situation rarely happens and therefore it is reasonable to 

ignore the forced convection in the battery pack thermal modeling. The heat generation rate 

inside the Li-ion cell can be determined from Eq. 2 [26]. 

𝑄̇𝑔𝑒𝑛 = 𝑄̇𝑔𝑒𝑛,reversible + 𝑄̇𝑔𝑒𝑛,𝑖𝑟reversible = 𝑅𝑖𝑛𝑡𝐼
2 + 𝐼𝑇

𝑑(𝑂𝐶𝑉)

𝑑𝑇
 

(‎4-3) 

Where, Q̇gen, is the rate of heat generation in the battery pack, I, is the current drawn from the 

battery pack, and Rint, is the internal resistant of the battery pack obtained from Eq. 1. In Eq. 2, 

the rate of heat generation is expressed as the summation of two terms. The first term represents 

the irreversible heat generation, which is always exothermic and the second term is the reversible 

heat generation, which can be exothermic or endothermic. In this term, the coefficient of 

d(OCV)/dT for a single cell at various SOC are adopted from [48] and plotted in the Figure ‎4-30.  

 

Figure ‎4-30: The coefficient of d(OCV)/dT versus SOC for the single cell of the battery back under study 
[48]. 

It is noted that this coefficient should be multiplied by the number of series cells in the battery 
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pack before using in Equation (‎4-3). The reversible heat calculated based on this coefficient is 

plotted versus SOC in Figure ‎4-31. It is observed that at high SOCs the reversible heat has a 

cooling effect. Once the heat generation is determined from Eq. 2, the temperature of the battery 

pack is determined from the energy balance equation neglecting any losses: 

𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑄̇𝑔𝑒𝑛 

(‎4-4) 

where, Cp, is the specific heat capacity (~ 800 kJ/kg [113]) and m, is the total weight of the 

battery pack. 

 

Figure ‎4-31: Reversible heat generated during drive cycle #3 

Figure ‎4-32 represents the battery pack temperature during the drive cycle #3 based on the 

model and field test data. Figure 20 also shows the error in the battery pack temperature 

prediction based on the thermal model developed. As seen in Figures. 19 and 20, the model is 

well able to track the measured battery pack temperature with the maximum error of 3%. It is 

noted that the battery faces ~8 °C temperature increase during the entire drive cycle #3. During 

this driving event a total heat of 𝑄𝑔𝑒𝑛 = 𝑄𝑖𝑟𝑟 + 𝑄𝑟𝑒𝑣 = 1200 𝑘𝐽 is generated (~2.5% of the total 

discharged energy) and the reversible and irreversible heats have a share of ~10% (112 kJ) and 

90% (1088 kJ) accordingly. 
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Figure ‎4-32: Validation of the battery pack thermal 
model for drive cycle #3. 

Figure ‎4-33: Modeling error in predicting the battery 
pack temperature over drive cycle #3 

 

4.3.3 Case study- Testing the proposed ECM with a Real-life drive cycle 

In this section, performance of the proposed ECM in Chapter 3 is evaluated with a real-life 

drive cycle (drive cycle #3-Figure ‎4-26). For this purpose, it is assumed that the battery pack on 

the research EV is comprised of the battery cells for which the ECM was developed. As these 

cells are different from the original battery cells on the research EV (cylindrical Valence 

batteries, LiFeMgPO4) in terms of geometry and chemistry, a different thermo-electrical 

performance would be expected from the new battery pack. Therefore, the first step in this 

analysis would be scaling the battery current profile according to the specifications of the new 

battery cells. 

The cells arrangement in the new pack is assumed to be 3𝑝 × 105𝑠. As the vehicle dynamics 

and power demand over the test drive cycle remains the same, the new battery pack would have 

to provide the same power requirement (but a different current and voltage profile). Afterwards, 

the Autonomie model of the vehicle has to be modified to take the power profile as the input. It 

is worth to mention that in Autonomie, the input is the drive cycle and based on the 

instantaneous difference between the actual speed and the desired speed, a PI controller 

determines the adjustments to the torque demand signal in the driver sub-model. Therefore, for 

the current analysis, the controller (in the driver sub-model) was modified to take the battery 
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power difference as its decision criteria. Also, the PI controller was upgraded to a PID controller 

to increase the accuracy of the model in following the power profile fluctuation as shown in 

Appendix C. the simulated battery power is plotted against the experimental data in Figure ‎4-34. 

An average error of 5% was observed in the simulated power profiles. 

 

Figure ‎4-34 Battery power profiles under test drive cycle operation 

The resulting current profile is shown in Figure ‎4-35  

 

Figure ‎4-35 Profile of battery current of the drive cycle #3  
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The DPW was then run with this current profile. Figure ‎4-36 illustrates the simulated SOC 

profile against the measured values. The temperature profile is also compared against the original 

battery temperature profile in Figure ‎4-37. It is observed that the battery cells in the assumed 

pack experience much lower temperature (< 2℃) increase during the driving cycle, which is due 

to the different heat transfer boundary conditions and chemistry. Also, the effect of convection 

coefficient on the temperature profile is shown in Figure ‎4-38. As can be seen a 10h heat transfer 

coefficient would be able to keep the battery temperature profile uniform.  

 

Figure ‎4-36 Battery SOC power profiles under test drive cycle operation 

 



 

115 

 

 

Figure ‎4-37 Profile of battery temperature during the tests drive cycle 

 

 

Figure ‎4-38 Tests drive cycle and relevant battery performance profiles 

 

4.3.4 Overall Powertrain Efficiency of EV-ACX2.5 

To evaluate the overall powertrain efficiency of the EV-ACX2.5 vehicle, the efficiency of 

each component must be first calculated. The main components involved in vehicle energy 

conversion, from the wall to the wheel, are the charging station, AC/DC convertor (on-board 

vehicle charger), the vehicle battery, and the electric traction motor. The efficiency of each 
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component is simply defined as the ratio of the output energy to the input energy and the overall 

efficiency is equal to the product of all component efficiencies. Table ‎4-11 shows the input and 

output energy measurement points for each component in the EV powertrain. As the amount of 

energy being fed from the charging station was not available at the time of writing this report,   

although, assuming the loss through the wall charger to be near zero is a reasonable assumption. 

calculations were performed considering the AC/DC convertor input current and voltage as 

the input to the powertrain. Data for charging and driving from October 2011 to February 2011 

has been aggregated to calculate the average powertrain efficiency.  

Table ‎4-12 summarizes results of the efficiency calculations. The powertrain efficiency on 

average is found to be 77%, which is the fraction of the input energy resulting in useful work at 

the wheels. This is notable when compared to an internal combustion engine vehicle, where the 

engine efficiency itself is less than 40% not to mention drivetrain losses in the transmission, 

torque converter, and final drive. However, it should be noted that calculations on powertrain 

efficiency suffer from limitations. This is due to the fact that the electric motor torque reported 

by CAN signals is not based on a sensor measurement, as the electric motors are not equipped 

with torque sensors, but derived from lookup tables programmed by the manufacturer.  

The motor efficiency is obtained through dynamometer tests for a given voltage, current, and 

speed‎and‎the‎manufacturer‎uses‎this‎efficiency‎to‎calculate‎and‎transmit‎the‎“estimated”‎torque‎

over CAN. 

Table ‎4-11: Input and output of each component in the EV powertrain 

Component Input Output 

AC/DC 
Convertor 

Alternative current and voltage 
(during charge event) 

DC and voltage 
(during charge event) 

Battery 
Current and voltage coming from the AC/DC 

convertor (during charge event) 
Current and voltage during discharging 

event (during driving) 

Electric Motor 
Current and voltage provided by the battery 

(during driving) 
Angular velocity and torque 

(during driving) 
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Table ‎4-12: Monthly efficiency of the EV-ACX2.5 powertrain 

Month AC/DC convertor 

Efficiency (%) 

Battery 

Efficiency (%) 

Electric Motor 

Efficiency (%) 

Overall efficiency 

(%) October, 2011 91.36 98 87 78 

November, 2011 91.37 97 85 75.3 

December, 2011 91.39 99 85.4 77 

January, 2012 91.36 99 87 78 

February, 2012 91.37 98 86.2 77.1 

 

4.3.5 Energy Requirement of EV-ACX2.5 as a Fleet Vehicle 

To perform a more in-depth comparison between EV-ACX2.5 and fleet performance, the EV 

PSAT model was run‎through‎all‎of‎ the‎collected‎‘HEV‘‎drive‎cycles‎from‎HEV‎vehicles‎over‎

three months (November, December, January) to yield the amount of energy required as if the 

EV was used as a fleet vehicle by Burlington Hydro. For this purpose, first the HEV drive cycles 

were defined and saved as velocity-time data sheets; afterwards a script written in Matlab called 

and ran the PSAT model for each of the drive cycles and updated the consumed energy value 

accordingly. Results are shown in Table ‎4-13. The results are based on the assumption that the 

battery was fully charged at the beginning of each trip. The consumed energy reported in 

Table ‎4-13 is calculated by integrating instantaneous power drawn from the battery (as was 

simulated by PSAT) over each trip.  On average, the EV-ACX2.5 is able to complete all of the 

HEV cycles using only 60% of the energy used by the HEV. This is equal to a 64% cost saving 

as is represented in Table ‎4-14. The cost of HEV fuelling is calculated based on average monthly 

price of gas in Burlington-Hamilton area [106]. It is also of interest to perform a well-to-wheel 

life cycle analysis and compare the emissions of the EV with the HEV. For this purpose a 

validated model of the HEV needs to be developed. This task can be considered for future 

analysis.  
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Table ‎4-13: Energy saving of EV-ACX2.5 as a fleet vehicle based on the HEV drive cycles 

Month 
Distance 
driven by 

HEVs (km) 

Consumed 
Energy by HEVs 

(KWh) 

Consumed 
energy by EV-
ACX2.5 as a 
fleet (KWh) 

Energy Saving 
(%) 

Novemebr,2011 995.7 708 259 63.4 

Decemebr,2011 793.48 514.1 206 60 

January,2012 1364 873 374.7 57 

    Average: 60% 

Table ‎4-14 Cost saving of EV-ACX2.5 as a fleet vehicle based on the HEV drive cycles 

Month 
Fuel 

consumed 
by HEVs 

Average 
gasoline 
price ($) 

[106] 

Cost of 
HEVs 

fueling 
($) 

Cost of EV-
ACX2.5 as a 

fleet ($) 

Cost saving 
(%) 

November,2011 73 1.186 86.6 28.5 67 

December,2011 53 1.165 61.7 22.6 63 

January,2012 90 1.21 109 41.2 62 

 Average: 64% 

4.3.6 Studies on Battery Degradation  

A major objective of field testing and data collection from the EV-ACX2.5 was to analyze 

and model the battery degradation as a function of operation parameters. As pointed out earlier, 

different parameters affect the battery degradation; among them, driving and charging behavior 

and battery temperature profile are of high significance. Trends of capacity fade and power fade 

as indicators of degradation can be identified from the test data provided that the data are 

collected over a reasonably wide range of time (that visualize a degradation trend) and under 

regular daily vehicle operation. Note that by regular driving it is assumed that a vehicle travels 

20-25 thousand kilometer annually on average. The other metric is the charge/discharge 

efficiency, which, is an indicator of the amount of energy required/delivered to fulfil a similar 

power demand profile. As battery ages, with reference to a similar charge input, it would deliver 

less energy (resulting in a reduced electric range) or consumes more energy to reach to a target 

SOC. In EVs, battery capacity is the determinant factor of vehicle performance and usability. 

Therefore, capacity fade is taken as the main criteria for battery life studies. 
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 Driving experience with the EV-ACX2.5  

The collected driving and charging data of the vehicle revealed that this vehicle had not been 

utilized to the maximum capacity but mostly experienced partial charges and discharges. For the 

purpose of demonstration, a summary of the vehicle usage over January, 2012 till October, 2012 

is represented in Table ‎4-15.  

Table ‎4-15 EV-ACX2.5 usage over January 2012- October 19, 2012 

Distance driven (km) 
number of trips 

(>5 km) 

number of charging 

events (>5 min) 

Total charge in 

(kWhr) 

1208 80 58 263 

Considering the 25 kWhr Li-ion battery pack installed on the vehicle, it is observed that the 

battery has gone through less than 11 equivalent full discharges over ten months which is not a 

significant value. The total distance driven is only 1208 (km) which confirms very light usage of 

the vehicle. Figure ‎4-39 and Figure ‎4-40 show the distribution of charging and driving events 

over 10 months.  

 
 

Figure ‎4-39 Histogram of charge data (over Jan-Oct, 2012) 

According to the figures, most of the driving events cover in city routes with less than 10 km 

length and more than 70% of the charging events started at an initial SOC greater than 60%. 

There are also gaps observed in the driving events history, meaning that the vehicle has been out 

of operation for days (even more than a week). Such a halt in operating the vehicle slows down 

the process of degrading the battery. Although not adequate, the collected data can be yet used to 
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propose methods for identifying the battery degradation. 

  

  

 

Figure ‎4-40: Trips distance driven by EV-ACX2.5 

Power fade 

The battery polarization curve provides useful information to identify the power fade trend. 

The polarization curve shows how the battery voltage and current change during charge and 

discharge events. From this curve an estimate of the internal resistance of the battery can be 
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obtained; internal resistance is the parameter that directly represents the power-fade inside the 

battery. It is expected that after a sufficiently large time period, the polarization curve slope will 

change and show a growth in internal resistance. In order to investigate how the battery internal 

resistance has changed over one year of operation, data from three drive cycles driven on 

November 25, 2011, December  7, 2011 and October 05, 2012 have been used to generate the 

polarization curve by making scatter plots of voltage versus charge processed (Figure ‎4-41) and 

fitting a polynomial curve. The average battery temperature range was 20-35 
º
C for the 

November 25 drive cycle, 20-47 ºC for October 5 and 15-38 ºC for December 7. The high 

temperature changes in the December 7 and November 25 drive cycles are due to the aggressive 

driving, which results in higher discharge currents and heat generation as well. As shown in 

Figure ‎4-42 as the battery ages, its polarization curve will have a greater slope, i.e. for the same 

amount of charge processed, the battery will experience a higher voltage decrease. Also, the 

highest discrepancy in the fitted voltage profile was observed to be at 63 Ahr (~ 90% DOD) 

showing 6% increase in the bulk internal resistance. 

However, care should be taken when interpreting such polarization curves; because the 

polarization not only depends on the battery SOH, but also on the battery operating temperature. 

Therefore, unless one could differentiate the temperature and SOH impacts on the polarization 

curve, the observed decrease in the voltage could not be solely translated as resistance increase in 

the battery. Therefore, to enable a comparison of battery polarization curves that yields an 

indication of power fade, the test data should be collected from trips with identical battery 

operating temperatures. Again, dynamometer testing in a controlled environment is much 

preferred for this purpose. Other option is implementing an active thermal management for the 

battery pack which is able to keep the battery temperature in a narrow operating range. In 

addition, driving behavior which directly affects the current demand from the battery is the other 

significant parameter on the polarization curve. For a reasonable comparison, polarization curves 

over similar driving events (in terms of average and maximum speed and acceleration) should be 

compared against each other. 
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Figure ‎4-41 selected drive cycles for comparing the polarization curves 
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Figure ‎4-42 Battery polarization curve for three selected trips with EV-ACX2.5 

Charge efficiency 

To calculate the charge efficiency, the first step is to classify drive cycles and charge cycles 

according to some predefined characterising parameters. For example, a drive cycle can be 

identified by the average velocity and acceleration, maximum velocity and acceleration, the ratio 

of battery regenerative to propelling power and temperature profile. A charge cycle also, can be 

identified by the initial SOC, charging power, and battery temperature profile. Once the events 

are classified, loss metrics could be defined as suggested in the following: 

For charge data: variation of battery charging capability over time: 

processed)energy net ()
timecharging

storedEnergy
( f  

(‎4-5) 

For driving data: variation of discharged energy per km driven under similar drive cycles: 

)processedenergy net ()
drivenDistance

energydischargedBattery
( f  

(‎4-6) 

The data collected over a ten month period is used here for charge/discharge efficiency 
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analysis. Constraints for extracting similar charge and driving data are presented in Table ‎4-14. 

Similar charge and driving events extracted accordingly are illustrated in Figure ‎4-43 and 

Figure ‎4-44. It is expected to see a decreasing trend in both figures (as discussed earlier). 

Figure ‎4-44 shows an overall decrease, however, due to the limited data points used for 

classification and measurement error this trend is not very obvious in these plots. A large data 

pool (over a time span of 2-3 years) should result in the expected trend.  

Table ‎4-16 Extraction of similar charge and driving events  

 charge driving 

Range 

observed 

 

Maximum cell temperature: 19ᵒC-
43ᵒC 
Initial SOC: 1%-99% 

 

maximum cell temperature: 24ᵒC-47ᵒC 
Average speed: 5-85 (kph 
Average positive acceleration: 0.95 −

0.27 (
𝑚

𝑠2
) 

Regenerative to discharged energy ratio:              
0.0037-0.95 

Selected 

range 

 

Maximum temperature: 28ᵒC -35 
ᵒC 
Initial SOC: 80%-90% 

Maximum temperature: 26ᵒC -32 ᵒC 
Average speed: 25-30 (kph) 

Average acceleration: 0.5-0.7 (
𝑚

𝑠2
) 

Regenerative energy to discharged energy:  
                                                 0.08-0.13 

 

 

Figure ‎4-43 Charge input over time for  10 similar charging events 
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Figure ‎4-44 Energy discharged per km driven for  6 similar driving events 

 

Considerations- With this suggestion it is assumed that the SOC reported on the CAN is 

calculated based on an adaptive algorithm which is able to incorporate the effect of different 

parameters on capacity (such as discharging rate and temperature). However, there are always 

uncertainties with the road test data as there is no control on the weather conditions and traffic 

(such as stops at red lights), it is not possible to drive exactly the same trips and evaluate the 

capacity trends. To get the most accurate determination of capacity fade, it is necessary to run 

capacity measurement experiments in a controlled environment. A test station could be 

developed to enable cycling the battery under a set of pre-defined duty cycles allowing better 

observation of the capacity degradation. 

Capacity Fade 

In order to calculate the capacity fade it is required that a baseline capacity value be 

established when the battery is new, and that a standard procedure be developed for measuring 

the capacity of the battery as time progresses. The suggested method for measuring the battery 

capacity on vehicle is as following: 
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1- Fully charge the battery; Burlington was asked to leave the charger plugged in from the 

night before the testing day. 

2- Drive the car; starting from the parking lot including a city and a highway range, should 

not cover more than 90-95 km (3-4 % SOC) otherwise the battery dies on the road 

3-bring the car back to the parking and drive it down to 1% SOC.  

4- Leave the car in the parking spot with lights, AC, and radio on. When the car shuts off the 

battery is dead. 

6- Plug in the charger at least for 7-8 hr., when the battery is fully charged data logger stops 

recording, afterwards the available capacity can be measured by measuring the charging time and 

current into the battery from the recorded data. 

Depending on the availability of the vehicle and collected data two approaches c considered 

for modeling the battery capacity degradation.  

Approach 1- If the vehicle is available over a period of at least one year, an empirical life 

model of the battery could be developed. Such a model would be based on observed correlations 

between the SOH measured points and operating parameters (energy processed C-rate, etc.). 

However, considering the typical 10-year life time of the EV batteries, a minimum two-year 

testing without interruption seems unavoidable. It is also necessary to operate the EV under a 

systematic fashion and keep the battery running under similar conditions. Following table shows 

the important parameters in the model development: 

Table ‎4-17 Important parameters in the battery degradation field test 

Variables How is going to be treated 

Driving profile Drive daily on a similar route with similar traffic and driving style 

Charging profile Start at the same time of the day , without interruption 

Initial State of charge Start all the trips from fully charge state 

Ambient Temperature Record as an independent variable 

Capacity Measure 2-3 times in a month to observe changes 

Energy processed (in and out) Measure over the entire time period 
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Any interruption will change the battery usage profile and impacts the model accuracy. 

Figure ‎4-29 illustrates the proposed structure for modeling capacity fade as a function of 

processed energy, assuming two capacity measurements per month. 

 

Figure ‎4-45 Test plan provided that the vehicle is available for systematic usage 

Based on this plan, the model will be of the following structure: 

Cn = Cn−1 − f(Whr, T̅) (‎4-7) 

Where, Cn is‎the‎battery‎capacity‎at‎stage‎“n”.‎T̅ is the average battery operating temperature 

over‎two‎successive‎capacity‎measurement‎stage.‎“Whr”‎is‎the‎total‎energy‎processed‎in‎and‎out‎

of the battery over two successive capacity measurement stage. According to this model, the 

battery capacity in each measurement stage shows a decrease compared to the previous 

measurement, which is a function of the processed energy in the battery and the average ambient 

temperature.  

 

Approach 2- If the vehicle is not available for a systematic driving/charging, the data of 

random operation of the vehicle still could be used for validation and identification of a battery 

life model. For this purpose, the battery capacity should be measured and recorded from time to 

time over the course of vehicle operation. To simulate the corresponding capacity fade, the 

battery operation profiles (including current, temperature and SOC) over this period are collected 

and fed to the battery life model chronologically. Comparing the simulated capacity fade curve 

with the measured curve, the model parameters can be calibrated and validated.  

Considerations  

We should be aware that the only parameter that can be fairly kept constant during the driving 
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is the drive cycle (v-t) profile but not the C-rate profiles. The reason is that as the battery ages, 

more energy will be wasted as heat (due to resistance growth) and therefore to cover a similar 

driving distance more energy would be discharged from the battery in total, and, the c-rate 

profile would also change over time.  

Also, SOH measurement itself impacts the battery health. When running life tests in the lab, 

the degradation effects associated with SOH (capacity) test is minimized by using a very low C-

rate profile to the battery. In case of field testing, two solutions can be considered: 1) running the 

vehicle with very low c-rates (e.g. 10-15 kph) and cycle the battery down to zero percent SOC, 

which is a time consuming procedure. 2) Minimize the frequency of SOH measurement tests; to 

limit the number of full discharge & charge cycles minimize the SOH test impacts. But, from the 

modeling aspect, decreasing the number of SOH tests results in a less reliable model 

development as fewer response points will be available.   

 It should be noted that a model described in the approach 1 would be valid for only one 

specific duty cycle. As there are infinite combinations of driving and charging profiles possible 

in reality, it would be best to employ multiple test vehicles, each with a different duty cycle.  

Due to the technical issues, the vehicle operation was interrupted several times during the 

course of the project. Also, as the operation data histogram showed, the vehicle was not used 

very much by the company staff. Therefore, it was decided to bring the vehicle to Waterloo and 

drive it in a daily fashion. A route containing in-city and highway driving as presented earlier in 

Figure ‎4-26 was chosen for this purpose and two graduate students involved in the project drove 

the vehicle every day. After each driving, the vehicle was taken to the charge station for a full 

recharge and finally back to the parking lot for the next day driving. The tests were repeated 

every day for four months until again the vehicle went inoperable and tests were halted. During 

the test period, the battery capacity was measured and recorded twice a month (~ every 15 days). 

Results of capacity tests over four months of continuous test are presented in Table ‎4-18 and 

plotted in Figure ‎4-46. As in real life vehicle operation, the current profile is continuously 

changing; it makes more sense to express the battery capacity in terms of the capability in 
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delivering or storing electric energy (Wh) rather than electric charge (Ahr). Therefore, both 

capacities are plotted in Figure ‎4-46. Over the four months the battery pack has gone through 91 

equivalent cycles (full discharge followed by a full charge) and lost 6% of its capacity. This is a 

fairly high amount of degradation which could be due to the inefficiency of the custom-designed 

BMS resulting in cell balancing or thermal management issues.  

 

Table ‎4-18 Capacity measurement, Dec.7, 2011 

test # Energy 
capacity (kwh) 

Charge 
capacity (Ah) 

Net processed 
energy (kwh) 

Capacity 
fade (%) 

Equivalent cycle 
number 

1 
(reference) 

24.31 60.19 0 0 0 

2 23.98 59.69 210.62 0.83 8 

3 23.83 59.34 440.55 1.44 18 

4 23.50 58.61 640.93 2.69 26 

5 23.26 57.83 935.89 4.04 37 

6 23.14 57.75 1275.36 4.23 51 

7 23.05 57.54 1616.48 4.60 65 

8 23 57.03 1991.23 5.50 80 

9 22.86 56.66 2283.54 6.20 91 

 

  

Figure ‎4-46 ACX2.5 battery capacity profile during four months test 

As discussed earlier, temperature plays an important role on the battery degradation. It is quite 

important to verify whether the observed degradation has been due to the extreme temperature 

conditions. As Figure ‎4-47 shows, the maximum and minimum temperature of the battery pack 
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over the four months of testing is mostly in the range of 10ᵒC-35ᵒC which is a modest range and 

does not impose accelerated degradation. Therefore, the observed degradation could be attributed 

to normal cycling and a life model could be calibrated accordingly.  

 

Figure ‎4-47 Battery pack maximum and minimum temperature during each event (Over July-October) 

Battery Degradation Modeling and calibration 

To model the battery degradation over a drive cycles or charge cycles, a life model is required 

which is able to capture the effect of different variables such as SOC, C-rate, temperature. The 

extended‎Ning’s‎model‎provides such capabilities and was used for the current studies.‎Ning’s‎

model models the higher currents present in vehicle powertrain applications, and also takes into 

account the degradation under constant voltage charging operation [114]. Ning’s‎ model‎

incorporates‎ porous‎ electrode‎ theory,‎ concentrated‎ solution‎ theory,‎ Ohm’s‎ law,‎

intercalation/deintercalation kinetics, and transport in both the solid phase and electrolyte phase 

[114]: 

𝑗𝑝𝑎𝑟𝑎 = 𝑗𝑝𝑎𝑟𝑎
0 𝑒𝑥𝑝 (

𝛼𝑐𝐹

𝑅𝑇
𝜂) 

(‎4-8) 

Where, 𝑗𝑝𝑎𝑟𝑎, is the local parasitic reaction current density. More details about this model can 
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be found in the paper published by Ning et al. [114]. The model was extended by Stevens [115] 

to include considerations for DOD and discharge rate, and calibrated using the results of the very 

high discharge/charge rate (> 4C-rate) tests. The modified model is presented in Table ‎4-19. 

There are two tuning parameters in the model, z1 and z2; which account for accelerated 

degradation due to temperature and SOC.  

Table ‎4-19 Extended Ning life model [115] 

𝑗𝑝𝑎𝑟𝑎 =∝𝑇𝑒𝑚𝑝
𝑛,𝑎𝑣𝑒∝𝑆𝑂𝐶

𝑛,𝑎𝑣𝑒 𝑗𝑝𝑎𝑟𝑎
0 𝑒𝑥𝑝 (

𝛼𝑐𝐹

𝑅𝑇
𝜂) 

∝𝑇𝑒𝑚𝑝
𝑛,𝑎𝑣𝑒= 0.01 ∗ (∝𝑇𝑒𝑚𝑝

𝑛 )
𝑧1
+ 0.99 ∗ ∝𝑇𝑒𝑚𝑝

𝑛−1,𝑎𝑣𝑒
 

∝𝑆𝑂𝐶
𝑛,𝑎𝑣𝑒= 0.01 ∗ (1 + 𝛽1 ∗ ∝𝑆𝑂𝐶

𝑛 )𝑧2 + 0.99 ∗ ∝𝑆𝑂𝐶
𝑛−1,𝑎𝑣𝑒

 

∝𝑇𝑒𝑚𝑝
𝑛 = 𝑒𝑥𝑝 (

−40498

𝑅𝑇
(
1

𝑇
−
1

𝑇𝑜
)) 

∝𝑆𝑂𝐶
𝑛 = 𝑒𝑥𝑝 (

−100

𝑎𝑏𝑠(60 − 𝑆𝑂𝐶)
) 

 

Based on this model, a degradation Simulink block was developed and added to the battery 

model in PSAT. Also, the voltage and SOC calculations were modified to include the modeled 

degradation effect (capacity fade affects the SOC, and power fade affects the voltage). 

Simulations with the original model and the battery profiles showed to be overestimating the 

capacity fade. One reason is that this model was developed based on very high C-rate tests, 

which is the case in hybrid vehicles. Using the road tests results and a least square optimization 

algorithm in Matlab, the tuning parameters were recalibrated to get a better match between the 

capacity fade curves. Resulting capacity fade curve is shown in Figure ‎4-48. The model 

parameters are presented in Table ‎4-20. The model shows capability in following the general 

trend of capacity loss. One an extensive road test data, covering a broader range of battery SOH 

(e.g. 2-3 years of vehicle operation), were available, it would be possible to further evaluate and 

validate the model.   
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Figure ‎4-48 Simulated capacity fade using the calibrated life model 

Table ‎4-20 Model parameters calibrated with road test data  

Parameter Value 

β1 2 

Z1 0.1 

Z2 2 

J
o
para 8x10

-9
 

αc 0.5 

4.4 Conclusion 

In this chapter, results of Li-ion battery field test were presented. A converted Ford Escape 

powered by Li-ion battery packs was instrumented by a data logger and the powertrain and 

battery data under driving and charging was collected through the CANBus. A model of the EV 

powertrain was developed in PSAT and calibrated based on the road test data. The battery OCV 

and internal resistance were estimated and a simple battery model including a voltage source and 

charge/discharge resistance was developed accordingly. It was shown that the battery OCV can 

be estimated with an acceptable accuracy from the driving data. The model was then validated 

against several drive cycles and profiles of SOC, charge and discharge energy and battery 

temperature were nicely compared with the experimental data. The reversible heat showed to 

have a portion of 10% in the total heat during a sample driving event in a summer day. The 
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collected data from the EV were also used to identify the degradation trend sin the battery. 

Power fade, capacity fades and charge efficiency were studied through the data as three 

degradation metrics. A battery life model was also calibrated using the observed capacity 

degradation over a four-month testing period. Validation of the model will be possible once more 

data points are available. It was initially intended to develop an empirical life model of the 

battery. Due to the limited data, the degradation study did not meet its targeted goal. However, 

sample analysis was presented as a pathway for future studies. 
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Chapter 5  

Modeling of Battery Lifetime in Hybrid 

Vehicle Operation 

This chapter presents a study on the Li-ion battery operation in a PHEV through simulations. 

The objective is to evaluate impacts of climate control load as well as thermal preconditioning of 

the battery under different drive cycles on the vehicle range and battery life. 

The following section is mainly based on the paper titled “Evaluation of Air Conditioning 

Impact on the Electric Vehicle Range and Li-Ion Battery Life” by‎“Samadani et.al”‎published by 

the Society of automotive Engineer (SAE). This thesis author specific contribution to this paper 

is‎ to:‎ “conduct the modeling, prepare the graphics and results and the final manuscript. This 

paper is co-authored by Dr. Fowler and Dr. Fraser as supervisors.  

5.1 Range Anxiety and Auxiliary loads in PEVs 

HEVs have already been introduced into the market as an alternative to conventional vehicles. 

However, to move away from fossil fuel energy sources, a demand for PHEV systems with all-

electric range (AER) is increasing [116]. However, when it comes to making a purchase 

decision, consumers express concerns; anxiety about the range capability of the EVs (especially 

in harsh climates) besides initial costs and charging issues lies on the top of the list. The range of 

an EV or charge depleting range (CD) in a PHEV, is limited by the available capacity of the on-

board battery, and directly related to the battery size and restricted by the vehicle weight and cost 

constraints.  

In this regard, climate control loads are known to strongly aggravate the EV range. In a PHEV 

equipped with electric climate control system, the battery provides the driving power as well as 

auxiliary loads demands. The vehicle climate control system, i.e. air conditioning (A/C) and 

http://papers.sae.org/2014-01-1853/
http://papers.sae.org/2014-01-1853/
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heating, is responsible for providing sufficient thermal loads to quickly regulate a comfortable 

cabin temperature requested by the vehicle occupants. Such requirement would be more critical 

in case the vehicle has passed a period of hot or cold thermal soak.  A/C is believed to be the 

main accessory requiring the largest quantity of power from the traction source resulting in a 

reduced AER and increased dependence on fossil fuel. It is reported that in an EV, A/C may 

reduce the driving range up to 35%, depending on the AC usage frequency [37]. Associated with 

the charge-depleting (CD) range reduction, there would be increased battery wear for the same 

distance driven when AC/heater system is operating, thanks to the higher C-rates imposed on the 

battery. As a solution, thermal preconditioning of the cabin and battery using off-board power 

(e.g. grid power) has been introduced to alleviate these impacts [117]. Regulating the battery 

initial temperature and reducing the higher transient thermal loads, preconditioning also helps the 

battery operate in its optimum temperature range (~20-35ᵒC) and yield best capacity and power 

performance [95], which would result in an optimized battery life and AER. 

In this chapter, EV range capability, and battery performance and life of a PHEV are studied 

under different climate scenarios and operating conditions. A thermal model of cabin 

temperature is developed that simulates the interior temperature profile of the cabin. The model 

incorporates the ambient conditions, solar load, and the vehicle speed and is able to predict the 

required cooling (heating) load to cool down (warm up) the cabin from an initial state to a 

desired state. A model of a series PHEV and a parallel PHEV developed in Autonomie are used 

for the simulations.  The thermal model is coupled with the vehicle models to yield the battery 

SOC at the end of the simulation, resulting AER and battery life degradation.  

5.2 Cabin Thermal Model 

To estimate the extra power required by the AC (heating) system, first the temperature profile 

of the cabin during a driving event needs to be determined. Therefore, a thermal model of the 

cabin was developed. The model incorporates the effect of solar radiation on the outer surface of 

the vehicle body, forced convection between the ambient and the outer body, conduction heat 

transfer through the body, natural heat transfer between the interior body and the cabin air, heat 
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transfer between the internal cabin components and the cabin air and also the load added by the 

passengers. A schematic of the thermal loads acting on the vehicle cabin is illustrated in 

Figure ‎5-1. Afterwards, the cooling power required by the compressor is calculated. Finally, the 

cooling power will be translated to the additional current (load) on the battery using the 

compressor performance look-up tables. 

 

Figure ‎5-1 Vehicle cabin and thermal loads acting on the cabin air 

Figure 5-2 illustrates a diagram of a typical vehicle AC system. The compressor is the main 

components in terms of energy consumption.  

 

Figure 5-2 schematic of the AC system [118] 
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A variable speed electric compressor with the specifications presented in Table ‎5-1 and an 

electric fluid heater [119] installed on the research EV (presented in Chapter 4) are assumed for 

the simulations.  

Table ‎5-1 Specifications of the variable speed electric compressor [120] 

Compressor type Brushless DC Variable Speed 

Refrigerant R134a 

Voltage Range 135-315V DC 

Evaporator Temperature 
Range 

-23.3°C to 12.8°C 

Maximum Compression Ratio 8:1 

A brief description of the thermal model is presented here. Detailed explanations can be found 

at [121]. Equation (‎5-1) summarizes the thermal loads on the cabin internal air:  

 

Thermla loads = Q̇natural conv + Q̇components + Q̇passenger + αQ̇solar (‎5-1) 

Where, Q̇natural conv is the natural convection heat transfer between the inner side of the cabin 

and the cabin air; Q̇components is the heat transfer between the cabin internal components and the 

cabin air; Q̇passenger is the heat transfer between the passengers and the cabin air; αQ̇solar is the 

solar load which is absorbed by the cabin air and 𝛼, is the weighting factor to account for the part 

of the solar load which is absorbed by the cabin air (the rest absorbed by the cabin internal 

component). Detailed description of the thermal loads can be obtained from [121, 122]. 

Considering a steady state for the dry air mass in the cabin;  

ṁAC + ṁinf = ṁcir (‎5-2) 

Where, ṁAC is the air mass flow through the evaporator, ṁcir is the recirculated air mass flow 

from the cabin to the evaporator and ṁinf is the infiltration air through the door and windows 

gaps. Assuming a wind speed of 6 km/h, the cabin air change per hour (ACH) for an ordinary 

sedan is 1.2 [123] and the value of ṁinf is calculated accordingly. Also, the water vapor mass 

changes inside the cabin are calculated from the following equation: 
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dWair 

dt
= (ṁairW) AC + (ṁairW) inf − (ṁairW) cir + ṁvap, passenger (‎5-3) 

Where, W: absolute humidity, (kg water/ kg dry air). ṁvap, passenger: Vapor added from the 

passengers exhale. According to the Equation (‎5-3), cabin vapor mass changes as a result of the 

humidity addition by the air flowing through the AC blower, infiltration air flow, passengers 

exhale and the vapor leaving the cabin through the recirculated air (from the cabin to the AC 

cycle). The instantaneous cabin temperature is estimated based on the cabin air enthalpy, which 

is calculated from the energy balance:  

dHair
dt

=  
thermal loads + (𝑚̇H) AC + (𝑚̇H) inf − (𝑚̇H) cir

mair
 (‎5-4) 

Where: Hair: Enthalpy of moist air. (𝑚̇H) AC: Enthalpy flow through the evaporator to the 

cabin 

(𝑚̇H) inf: Enthalpy flow from the ambient to the cabin through the unsealed doors & windows 

(𝑚̇H) cir: Enthalpy flow from the cabin to the AC cycle through recirculation 

And finally the cabin air temperature is calculated based on the moist air enthalpy & 

temperature relation: 

𝑇𝑎𝑖𝑟 =
𝐻𝑎𝑖𝑟 − 2501𝑊𝑎𝑖𝑟

1.006 + 1.805𝑊𝑎𝑖𝑟
 (‎5-5) 

Several parameters are required to be set before running the thermal model, such as the 

dimensions and thermodynamic properties of the vehicle cabin (as well as the windows and 

doors), weather conditions (solar load, humidity and temperature) and the AC running mode (i.e. 

circulation coefficient). For the current analysis, those parameters that are not easily measurable 

from the vehicle are borrowed from the literature for a regular sedan. The cabin dimensions and 

thermodynamic properties used for the simulations are also presented in Table ‎5-2. 
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Table ‎5-2 Baseline vehicle dimensions and thermodynamic properties assumed for simulation 

Cabin 3 (m
3
) 

Wind shield 1.2x0.6x0.01 (m
3
) 

Thermal conductivity: 1.4 (
𝑊

𝑚𝐾
) 

Rear shield 1 x0.6x0.01 (m
3
) 

Thermal conductivity: 1.4 (
𝑊

𝑚𝐾
) 

Side wind 0.4x0.4x0.01 (m
3
) 

Thermal conductivity: 1.4 (
𝑊

𝑚𝐾
) 

Cabin internal component Equivalent area: 7 (m
2
) 

Equivalent mass: 210 kg 

Convective heat transfer coefficient: 100 (
𝑊

𝑚2𝐾
) 

Specific heat capacity: 1.67 (
𝑘𝐽

𝑘𝑔𝐾
) 

A fuzzy controller, shown in Figure ‎5-3 is also designed to control the AC (blower) air mass 

flow rate to the cabin based on the instantaneous cabin temperature difference with the set point. 

Due to the lack of field test data on the AC system components and to simplify the calculations, 

it was assumed that the AC system is running under steady state condition and the air 

temperature at the evaporator exit is 5 ℃ . However, once such data is available, a model of the 

AC could be developed to account for the transient loads. For the heating scenarios, a 

temperature of  22 ℃ is assumed at the inlet vent. 

 

Figure ‎5-3 Fuzzy controller to determine the blower mass flow rate 
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5.3 Climate Scenarios  

Three climate scenarios are assumed; each incorporating an ambient temperature condition 

and initial battery pack temperature (Table ‎5-3). Scenario1 represents the average ambient 

conditions in Toronto, Canada during June month with an average temperature of 25 (℃). 

Scenario 2 represents a summer day in Arizona, the hottest area in the US. In scenario 3, a winter 

day of Toronto in February month with an average ambient temperature of −8 (℃) is assumed. 

Although ambient conditions have daily and annual variations, the present work neglects 

temperature variation due to variable ambient conditions.  

Table ‎5-3 Scenarios considered for simulating the temperature profile of vehicle cabin 

Scenario 1-June, Toronto,  2-July, Arizona February, Toronto 

Number of passengers 2 2 2 

Solar irradiation 
0.6 ( 

kW

m2 ) 1.1  (
kW

m2 ) 0.2  (
kW

m2 ) 

Ambient temperature 23 (℃) 35 (℃) −5 (℃) 

Ambient Relative humidity 80 (%) 35 (%) 80(%) 

Initial battery temperature 
23 (℃) 

35‎(ᵒC) −5 (℃) 
25‎(ᵒC)‎

(Preconditioning) 
5(℃) 

(Preconditioning) 

Initial cabin air temperature 42 (℃) 55 (℃) −5 (℃) 

Initial cabin components temperature 47 (℃) 60 (℃) −5 (℃) 

Initial cabin air humidity 60 (%) 30 (%) 60(%) 

Drive cycle Test drive cycle 

5.4 Results- Thermal model and A/C impacts 

For the purpose of demonstration, the corresponding cabin temperature profile for scenario 1 

and scenario 2 is plotted in Figure ‎5-4. The fuzzy controller determines the blower air flow rate 

based on the difference observed between the cabin air temperature and the desire point. 

Therefore, in the beginning of the simulation, the blower is set on maximum flow rate and the 

cabin temperature experiences a sudden decrease in the first 100 second and converges to a 
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steady state afterwards. Figure ‎5-5 illustrates the profile of cabin air absolute humidity during 

this simulation. As expected, decreasing the cabin air temperature results in a decrease in 

humidity content of the air until a certain value is reached. Scenario 3 is used for degradation 

studies in the next sections.  

  

Figure ‎5-4. Cabin temperature profile- Test derive 
cycle 

Figure ‎5-5. Profile of cabin absolute humidity 
under test drive cycle 

Profile of the blower flow rate and the compressor current are plotted in Figure ‎5-6.Assuming 

an ideal evaporator, the enthalpy change of air passing through the evaporator is equal to the 

enthalpy change of the refrigerant and is assumed as the required cooling capacity (watt) from 

the compressor. This cooling capacity is then translated into the required current by the 

compressor. This is actually the extra load on the battery, which is shown in Figure ‎5-7.   

 
 

Figure ‎5-6. Profile of air flow through the blower Figure ‎5-7. Profile of compressor current under test 
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drive cycle 

5.5 Vehicle Simulations 

For the current study, vehicle models initially developed by UWAFT [96] in Autonomie are 

used. The models include an E85 series extended range EV (EREV) as the baseline, and a pre-

transmission parallel architecture. Both models are conversions of Malibu 2013. These 

architectures are illustrated in Figure ‎5-8 and Figure ‎5-9. Model inputs and the main powertrain 

components (which are assumed similar in all configurations) are described in Table ‎5-4. Each of 

these configurations creates a unique environment for the battery by allowing a different SOC 

range and power demand on the battery. Unlike the NiMH batteries of the current CS hybrids, 

which are operated over a small window (around 50% SOC), the batteries used in PHEVs 

operate over a large SOC window. Starting from a certain high SOC (e.g. 90%), the vehicle 

operates in a charge-depleting (CD) or an EV mode until a low SOC is reached. The battery 

manufacturer sets the lower SOC operation limit for the battery based on life considerations. For 

the PHEV cases SOC window of 90%-30% is assumed which is equivalent to a 40 mile AER. 

Each configuration contains a battery model consisting of the equivalent circuit model and the 

thermal ramp rate model presented earlier in Chapter 3. The battery pack is modeled by a linear 

scale up of a cell neglecting the effect of cell to cell variation and unbalancing.  

 

Figure ‎5-8 Graphical presentation of the EREV series architecture 
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Figure ‎5-9 Graphical presentation of the pre-transmission parallel architecture 

Table ‎5-4 Component specifications and model inputs used in the Autonomie model of EREV [96] 

Component Option 

Engine GM LE9 Engine (E85) 
2.4L E85 engine provided by GM. 

Generator TM4 Motive (105kW) 

ESS (Battery) A123 Battery Pack, (19.7kWh @ 346V) 

Electric motor TM4 Motive (206kW) 

Final drive Borg Warner eGearDrive 

Chassis 2013 Malibu 

Power convertor New Eagle DCDC Converter 

Electrical accessory The average power draw from accessories was assumed to be 1500W 
 Frontal area  2.06 (m

2
) 

Vehicle mass 2003.7 (kg) 

Battery SOC window 90%-30% 

Battery thermal management Natural air cooling 

Drag coefficient, Cd  0.25 

 

5.5.1 CD range and Fuel consumption  

CD range and fuel consumption of each configuration were simulated considering the effect 

of climate control loads and battery thermal preconditioning. Results show that the climate 

control loads has a relatively large impact on CD range reduction; on the other hand, battery 

thermal preconditioning plays a significant role on minimizing on range reduction due to the 
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climate control loads. The EV operation (CD mode) also represents the maximum battery usage 

and is a good indicator of the maximum temperature rise that the battery would undergo during 

vehicle operation.  

Figure ‎5-10 and Figure ‎5-11 represent the CD range and battery temperature rise as a function 

of minimum SOC in the baseline model (Series PHEV) (operating under UDDS drive cycle) 

assuming no additional loads or preconditioning. The initial module temperature is set at five 

levels (-5ᵒC to 35ᵒC). It is observed that the EV range and final module temperature have a semi-

linear correlation with‎ΔSOC.‎ 

  

Figure ‎5-10 AER results for different minimum SOC Figure ‎5-11 Battery temperature at the end of AER 

Figure ‎5-12 through Figure ‎5-15 presents the effect of climate control loads and 

preconditioning on CD range and fuel economy. For fuel economy calculations, a utility factor 

(UF) of 0.75 was assumed and the fuel consumption was calculated based on Equations (‎2-3) 

through (‎2-5). Also, a 30% critical SOC was assumed.  

In the series PHEV, fuel consumption is increased due to heating loads by 39% and the CD 

range is reduced by 20%. Also, applying A/C reduces the fuel economy by 65% and the CD 

range by 12%. Thermal preconditioning improves the situation by reducing the initial climate 

control system load. In case of heating, thermal preconditioning improves the fuel economy by 

6% and the CD range by 11%; where, in case of A/C, the corresponding values are 1.5 % and 

2%.  

15 20 25 30 35 40
25

30

35

40

45

50

Critical SOC (%)

C
h

a
rg

e
 d

e
p

le
ti

n
g

 r
a
n

g
e

 (
M

il
e
)

 

 

-5 ºC 

0 ºC 

12.5 ºC 

23 ºC 

35 ºC 

15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

Critical SOC (%)

C
h

a
rg

e
 d

e
p

le
ti

n
g

 f
in

a
l 
te

m
p

e
ra

tu
re

 (
ºC

)

 

 

-5 ºC

0 ºC

12.5 ºC

23 ºC

35 ºC



 

145 

 

In case of parallel PHEV, using heat increases fuel consumption by 25% and decreases the 

CD range by 19%. Using A/C increases fuel consumption by 40% and decreases the CD range 

by 18%. Compared to no thermal preconditioning, thermal preconditioning with heat decreases 

fuel consumption by 4% and increases the CD range by 9%. and thermal preconditioning with 

A/C decreases fuel consumption by 3% and increases the CD range by 7%.  

  

Figure ‎5-12 Series PHEV (EREV)  CD range 
assumming 30% critical SOC 

Figure ‎5-13 Series PHEV (EREV) fuel consumption 
assumming 30% critical SOC 

 

 
 

Figure ‎5-14 Parallel PHEV CD range assumming 
30% critical SOC 

Figure ‎5-15 Parallel PHEV fuel consumption 
assumming 30% critical SOC 

5.5.2 Degradation simulation   

In this section, battery capacity fade is simulated under several operating conditions. The 

common definition for battery end-of-life (EOL) is when battery remaining capacity has reached 
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70% to 80% of beginning-of-life capacity. As an example, a 5% capacity loss per year results in 

80% remaining capacity after 4 years.  For the current analysis, a daily duty cycle is assumed as 

shown in Figure ‎5-16 that includes a morning trip starting at 8:00 AM with a distance of 30 km 

followed by a rest period till 4:30 PM and same driving back to the garage and finally a charge 

cycle and rest up to the next day. For scenarios with thermal preconditioning, the battery is 

assumed to be warmed up or cooled down over a 25-minute period. The test drive cycle used for 

current analysis consists of a city and highway driving and is illustrated in Figure ‎5-17. 

 

Figure ‎5-16 Vehicle daily duty cycle assumed for simulations 

 

Figure ‎5-17 The test drive cycle collected from the converted EV road tests 

Charging is assumed to happen at nights and between the two trips with a level two charging 

with 30A current and 240V voltage and the battery is fully charged at the beginning of each trip.  

The degradation model presented in ‎Chapter 4 is used to simulate the decrease in the ability of 
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the battery to hold charge. Impact of climate control loads and preconditioning is incorporated in 

the simulations. When the battery is preconditioned, it is exposed to a different temperature 

range; therefore, the degradation rates will be different compared to a non-preconditioned case. 

Also, in case of preconditioning, due to the temperature dependent available capacity, the battery 

will experience a different depth of discharge (DOD) each day, which results in a different 

degradation rate. Battery temperature rise results from multiple factors, namely battery thermal 

mass, heat generation rate while driving, and rate of active cooling. A general comment on 

preconditioning could be as follows: Battery packs with small battery thermal mass, high heat 

generation rates, and limited or no active cooling while driving, likely to experience a large 

temperature rise while driving and benefit most from pre-cooling will be those. In Figure ‎5-18 , 

the yearly percent of capacity loss for the series PHEV is presented at various ambient 

temperatures, with and without climate control loads and preconditioning. Following observation 

could be made: 

 

Figure ‎5-18 Annual battery capacity loss rate in the series PHEV 

 The‎ −5°C‎ ambient‎ case‎ reduces‎ fade‎ by‎ 53%‎ relative‎ to‎ 23°C‎ ambient.‎ Thermal‎ pre-

heating at -5°C ambient increases battery capacity loss by almost 5%. However at such 

low temperatures, the small fade rates are relatively insignificant. 
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 The 35°C ambient case with no preconditioning increases capacity fade rates by 43% 

(relative to 23°C ambient).  

 At hot ambient conditions (35°C), the most benefit from thermal pre-cooling is obtained; 

which the capacity-fade rate is decreased by ~2%.  

 Heating and cooling load show a significant impact on the battery health. At −5°C, 

heating load result in ~25% increased degradation and at 35°C, ~22% capacity loss rate is 

accelerated.  

Figure ‎5-19 shows battery degradation rates for the parallel PHEV. Generally, similar trends 

are observed. At 35°C ambient, thermal preconditioning reduces capacity-loss rate by 3% and 

the A/C loads adds a 17% on the capacity loss rate while heating results in a ~25% extra capacity 

loss rate.  The two vehicle platforms each derive slightly different benefits from pre-cooling, 

partly‎due‎to‎the‎size‎of‎each‎vehicle’s‎battery and partly due to the control strategies each layout 

employs.  

 

Figure ‎5-19 Battery capacity loss rate in the Parallel PHEV 

5.6  Conclusions 

In this chapter, impact of AC and heating loads on the Li-ion battery performance and 
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degradation and vehicle electric range and fuel consumption was studied. A Thermal model of 

the vehicle cabin was developed to predict the cabin temperature profile and required cooling/ 

heating load according to the set point. A model of Li-ion battery consisting of an equivalent 

circuit and a regressive thermal model presented in ‎Chapter 3 was coupled with the cabin 

thermal model. The integrated model enables predicting the additional required power by the 

A/C or heating system from the battery. It was observed that climate control loads significantly 

increase fuel consumption and decrease CD range in PHEVs. To reduce these negative impacts, 

off-board powered thermal preconditioning of the battery and vehicle cabin was shown to be an 

efficient way. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions and Contributions 

In this thesis, Li-ion battery performance was studied through lab tests and in-situ vehicle 

field measurements. Experiments included EIS tests and cycling tests at cell level and also in-situ 

measurements from a converted electric vehicle (EV).  Following conclusions could be made: 

6.1.1 Thermal studies 

Two commercially available battery cells were tested under a comprehensive set of charge 

and discharge cycling tests and different ambient temperatures (-10ᵒC to 35ᵒC). The battery cells 

were put in a jig to simulate battery pack condition in a vehicle. The energy efficiency and 

columbic efficiency of the cells were determined for each testing condition. Results agreed with 

the belief that the Li-ion cells have a better performance at higher temperatures. The temperature 

distribution of the cells was also found to be approximately uniform across the cell thickness. 

Heat generation of the cells was calculated assuming a natural convection mechanism for heat 

rejection to the ambient air. A thermal ramp rate model was then developed for each cell and 

operating mode using linear regression method. The model is able to predict the heat generation 

rate and the cell temperature rise according to the cell SOC, load (current) profile and ambient 

temperature. The model can be easily integrated with the battery model in Autonomie and is very 

useful in powertrain design and drive cycle simulations, as it eliminates the need for a detailed 

fundamental model with high computing cost.  
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6.1.2 EIS Tests and Modeling 

A major objective in this research was to develop a battery performance model that could be 

used for real-time applications, such as vehicle on-board BMS. For this purpose, the battery cells 

were‎ studied‎ under‎ a‎ set‎ of‎ electrochemical‎ impedance‎ spectroscopy‎ (EIS)‎ tests.‎ The‎ cells’‎

response was measured over a frequency range of 10 µHz to 1 MHz at different temperatures 

and SOCs. Based on the observed phenomenon from the frequency plots, an equivalent circuit 

model was proposed and developed for both cells. The proposed model offers an improvement of 

up to 6% in terms of average and maximum error in voltage predictions; which is still significant 

for EV applications in terms of extending the allowable battery discharge window and the 

vehicle range. In addition, the model capability in predicting HPPC test charge and discharge 

resistances was verified. It was observed that this model could be used as an alternative to the 

HPPC test within 20% error. The model shows the best performance at high temperatures which 

could be due to experimental errors at lower temperatures as a result of cell self-heating. This 

model is fast and easy to implement and is useful for hybrid powertrain design.  

6.1.3 Field tests 

Field tests were conducted with an electrified Ford Escape 2009 (EV-ACX2.5), belonging to 

Burlington Hydro Company. The objectives of the field testing included three phases as follows. 

Energy analysis 

A study was conducted on the feasibility and advantages of replacing the conventional 

(gasoline) fleet vehicles with the converted research EV. For this purpose, a data management 

system was programmed and installed to collect and analyze operation data of baseline fleet 

vehicles and EV-ACX2.5.  Data of interest included charging and discharging events of EV-

ACX2.5 and drive cycles of the fleet vehicles. Each vehicle was instrumented with a data logger 

that recorded and transmitted the data to a server. Having analyzed the data, detailed monthly 

reports were generated for EV-ACX2.5 over a five-month period, which enabled tracking of the 

vehicle’s‎total‎distance‎travelled, energy consumption, efficiency, and charging times. The main 
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results are summarized as follows:  

 Over five months of operation (October 2011-February 2012), the EV-ACX2.5 

travelled 792.6 kilometers and used 222.6 kWh of grid electricity during charging, 

which yielded an average energy efficiency of 281 Wh/km. 

 In comparison with fleet vehicles, it was found that the EV-ACX2.5 is more than 

50% cheaper to operate in terms of energy economy (km/$). 

Powertrain Modeling and Fleet Analysis 

The collected data were used to develop a powertrain model for the EV-ACX2.5 using PSAT 

software. The model was then validated using real-life drive cycles collected during the vehicle 

operation. Powertrain efficiency was also calculated through this model. It was observed that the 

EV-ACX2.5 was operating with 77% energy efficiency on average, which confirms the 

superiority of EVs to the conventional vehicles. The performance of the EV-ACX2.5 was also 

evaluated as a fleet vehicle. This task was performed by running the EV-ACX2.5 PSAT model 

under‎the‎HEVs’‎drive‎cycles‎to‎find‎out‎the‎EV-ACX2.5 energy requirement for the same trips. 

Results showed the EV-ACX2.5 can save almost 60% energy compared to the fleet vehicle.  

Degradation studies 

The collected data from the EV were also used to identify the degradation trends in the battery 

pack. Power fade, capacity fade and charge efficiency fade were identified through the data as 

three degradation metrics. A battery life model was also calibrated using the observed capacity 

degradation over a four-month testing period. Validation of the model will be possible once more 

data points are available. It was initially intended to develop an empirical life model of the 

battery. Due to the limited data, the degradation study did not meet its targeted goal. However, 

the analysis presented could be used as a pathway for future studies.   
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6.1.4 Vehicle lifetime studies 

‎Chapter 5 described a battery life analysis under a different scenario, which included climate 

control loads and battery preconditioning. Two PHEV powertrain architectures, including a 

series and a parallel design, were developed in Autonomie. Assuming a similar battery pack for 

both layouts, it was found that climate control system loads have a considerable impact on fuel 

consumption (up to a 65% increase) and charge depletion (CD) range (up to a 20% decrease) in 

PEVs. Off-board powered thermal preconditioning of a vehicle cabin and battery pack is an 

effective way to reduce the negative impact of climate control system loads. It was observed that 

thermal preconditioning can provide a moderate reduction in fuel consumption (up to 6%) and 

partially restores CD range (up to 11%) which translates to several kilometers of CD range. Also, 

in hot (35°C) ambient conditions, a pre-cooling of electric-drive vehicle batteries was observed 

to reduce capacity fade by 3% and climate control loads accelerated the capacity fade by 22% to 

25%. All in all, off-board powered thermal preconditioning benefits both the consumer (via CD 

range extension) and vehicle manufacturers (via improved battery life and reduced warranty 

services). 

Overall, this thesis contribution was to address the performance of the Li-ion battery in 

electrified vehicles and the direct and indirect impact of temperature on the battery performance 

and degradation. Fast and accurate models of battery performance and heat generation were 

developed for use in powertrain design and a degradation study through field tests was 

attempted. The indirect impact of temperature, i.e. climate control loads and preconditioning 

impacts, on the vehicle range and battery life, was modeled through coupling these models with 

a thermal model of a vehicle cabin. 

6.2 Recommendations 

The presented study provides a framework for model based design of PHEVs focusing on Li-

ion battery. There are a number of potential extensions and recommendations that could be 

considered for future research: 
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6.2.1 Thermal testing 

In the current analysis, the convective heat transfer coefficient was assumed to be at its 

natural convection value. However, the chamber fan turns on and off to control the chamber, 

which results in a varying convective heat transfer coefficient during cycling. Therefore, it would 

be beneficial to use a calorimeter to measure the cell heat transfer coefficient with a higher 

accuracy at different states (natural and forced convection).  

The‎ regression‎ models‎ are‎ limited‎ to‎ the‎ parameters’‎ range‎ in‎ the‎ tests.‎ In‎ the‎ thermal‎

characterization tests, C-rates were chosen to vary from 0.5 to 4.5 in discharge. In a real case of 

battery operation on a PHEV, C-rate could vary from values very close to zero up to 5. 

Therefore, it would be desirable to add more testing points to further widen the range as well as 

increase the homogeneity of the test domain.  

The analysis and validation were based on cell level. However, single cell characteristics may 

not be linearly scaled to a module or pack level system. For example, the resistance observed 

from a single cell would include contact resistance where the cell tabs are bolted to the test 

cables. In a production battery pack, the tabs would be welded to a bus bar, thereby changing the 

resistance characteristics. Evaluating the internal resistance of a full battery pack would improve 

the fidelity of the model and yield more accurate vehicle simulation results. Therefore, pack level 

testing should be planned and carried out in future research.  

It would be also desirable to repeat the thermal tests with different boundary conditions; i.e. a 

water cooling case versus forced air cooling and no cooling to enable the analysis of different 

battery thermal management strategies. 

6.2.2 EIS testing  

In the presented analysis, the regression models developed for each of the equivalent circuit 

model parameters are based on a limited number of test points, which would affect the regression 

capability in predicting the points that are far from the test points. Considering that the Li-ion 
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battery has a highly nonlinear dynamic, it is recommended that the EIS tests be repeated at more 

SOCs (especially between 30%-60%). In addition, as the battery ages, its electrochemical 

impedance spectra undergoes a shifts to the right and expansion resulting in the circuit 

parameters (resistance and capacitor values) to change [30]. Therefore, it would be necessary to 

consider the aging in the model development to reflect a more realistic perspective of the battery 

behavior in vehicle simulations.  

The proposed model was based on the data of three positive temperatures (12.5ºC, 23.75ºC 

and 35ºC). Due to the limited availability of the EIS machine at the time of this research and 

uncertainty in the collected data, the low temperatures (1.25ºC and -10ºC) were ignored in the 

model development. It would be reasonable to repeat the tests at these temperatures to 

incorporate the low temperature battery response in the model development. 

6.2.3 Field testing 

While field testing provides a valuable opportunity to analyze the battery pack behavior under 

real-life operation, it is highly associated with uncertainty. There are several uncontrolled 

parameters while the vehicle is in operation or even in idle mode. In such situations, relying on a 

single vehicle for developing a battery life model adds more limitations to the analysis. 

Therefore, if circumstances permit, it is recommended to get a number of electrified vehicles 

instrumented and data logged. Additionally, as the battery aging happens over a 5-10 year period 

(battery manufacturer set point) and considering the nonlinear nature of battery degradation, data 

logging should be conducted over a wide time span so that the battery experiences different 

stages of aging. This way, model development and calibration tasks could be carried out with a 

higher accuracy. To improve the fleet study, the following studies are suggested: 

 Develop a validated model of a baseline fleet vehicle in PSAT (once the powertrain 

data through CAN Bus is accessible). 

 Comparison between the EV-ACX2.5 and the fleet vehicle, in terms of emissions and 

energy consumption over standard and real-life drive cycles. 
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Suggested improvements to the EV PSAT model are:  

 For vehicle level simulations, temperature-dependent models for other major 

powertrain components, such as electric motors, should be created to more accurately 

model how total vehicle efficiency changes with temperature. Accurate representation 

of the entire vehicle is required to accurately predict vehicle range, performance, and 

overall energy consumption. As the vehicle model matures, it will also serve as a 

platform for developing vehicle control systems, torque splitting strategies and other 

optimization algorithms. 

6.2.4  Battery lifetime modeling 

In‎ the‎ presented‎ study‎ of‎ auxiliary‎ loads’‎ impact‎ on‎ the‎ battery,‎ lack‎ of‎ experimental‎ data‎

made the author make some simplifying assumptions. Among these assumptions, the evaporator 

exit temperature was assumed a constant conveying steady state operation. However, to better 

quantify the loads imposed by the climate control system, a model of A/C system and heating 

system would be necessary, provided that technical data is available. In addition, validation of 

the climate control model requires a wind tunnel and an instrumented vehicle would be necessary 

for measuring the cabin temperature profile under different ambient conditions.  

It is suggested that the battery degradation be analyzed under different control strategies. 

There is always a trade-off between the fuel replacement and battery degradation; i.e. high 

battery discharge results in better fuel economy but accelerates the battery capacity loss. There is 

different control strategies proposed for PHEVs, so far. Among these strategies, thermostat 

control, load-following control and cost based on control are three popular methods, which each 

provide a unique environment and load profile for the battery [39].  
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Appendix-A 

Statistical Analysis of Cell Temperature Distribution 

Investigating the coefficients of skew for each of the examined readings reveals different distribution 

behavior for each cell (A 1and A 2). 

 

A 1: Skew coefficient for experiments performed with Cell 1. The color code indicates SOC (blue=0%, red=50%, 
black=100%) and marker code indicates discharge and charge c-rate (charge: x=0.25, *=1.25, o=2.25; discharge: 

diamond=0.5, square=2.5, +=4.5) 

 

A 2: Skew coefficient for experiments performed with Cell 2. The color code indicates SOC (blue=0%, red=50%, 
black=100%) and marker code indicates discharge and charge c-rate (charge: x=0.25, *=1.25, o=2.25; discharge: 

diamond=0.5, square=2.5, +=4.5 

 

For cell 1, over half of the sampled points there is evidence of a skewed distribution as the coefficient 

values fall outside the 90% confidence interval bounds with n=12. These confidence bounds are ±1.049 

(in both batteries) and were obtained by fitting and extrapolating a table of 90% confidence bounds for 
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the skewness coefficient [20]. In contrast, all of the coefficients for cell 2 fall between the bounds 

suggesting the presence of a centered distribution. 

Given that a large number of beginning-, middle-, and end-of-step skew coefficients fall outside the 

confidence bounds, and that these skew coefficients are neither consistently positive nor negative, it can 

be assumed that the observed skew in the temperature distributions is caused by factors other than the 

heat generation of the cell. Since cell 1 was on the bottom shelf of the chamber, it was a further distance 

from the chamber circulation fan. It is therefore possible that the location increases the likelihood of non-

uniform temperature variations. This hypothesis is endorsed by the low difference between the mean and 

the median for cell 1. 

The average difference between the mean and median of the temperature readings (A 3 and A 4) is 

−0.014K/−0.0075K‎for‎the‎charge‎and‎discharge‎steps‎of‎cell‎1‎and‎0.089K/0.030K‎for‎the‎same‎steps‎of‎

cell 2, respectively. The difference between mean and median rarely exceeded ±0.15K at the end or 

middle of step for both cells. This difference was consistently of greater magnitude for cell 2, centered at 

0.05K, but this is still well within the margin of error. Further, the analysis of skew coefficients suggests 

there‎is‎no‎skewed‎distribution‎at‎any‎point‎for‎this‎cell.‎The‎standard‎deviation‎(σ)‎of‎the‎temperatures‎

shows no consistent effect of chamber temperature or charge/discharge C-rate on the temperature spread. 

This‎suggests‎evenly‎distributed‎heating‎of‎the‎cell.‎The‎average‎σ‎was‎calculated‎to‎be‎0.227‎K/0.368‎K‎

for charge/discharge of cell 1 and 0.221K/0.302K for the charge/discharge of cell 2. While this 

temperature spread is higher than the error in the thermocouples, it is not greater than the chamber 

temperature‎control‎range‎(±0.5K).‎Further,‎the‎larger‎values‎of‎σ‎(above‎0.5K)‎almost‎all‎correspond‎to‎

the initial SOC of the charge or discharge step, with the value decreasing as the step is carried out (with 

two minor exceptions). This suggests the influence of environmental factors on the temperature 

distribution causes greater spread than any internal differences in the heat generation rate. 
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A 3: LiFePO4 cell temperature mean-median difference throughout the experiments. The color code indicates SOC 
(blue=0%, red=50%, black=100%) and marker code indicates discharge and charge c-rate (charge: x=0.25, *=1.25, 

o=2.25; discharge: diamond=0.5, square=2.5, +=4.5) 

 

A 4: LiMn2O4 cell temperature mean-median difference throughout the experiments. The color code indicates SOC 
(blue=0%, red=50%, black=100%) and marker code indicates discharge and charge c-rate (charge: x=0.25, *=1.25, 

o=2.25; discharge: diamond=0.5, square=2.5, +=4.5) 
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Appendix-B 

Derived Regression Models for the Circuit Parameters 

Battery #1 (LFP Cathode): 

if (8.5<=temp)&&(temp<16.5) 

R1= -1.1924E-11*SOC^4 + 3.4367E-09*SOC^3 - 2.9815E-07*SOC^2 + 8.3662E- 06*SOC^1 + 9.0340E-04; 

R2=-7.3164E-12*SOC^4 + 5.8531E-10*SOC^3 - 2.0011E-09*SOC^2 - 7.9285E-07*SOC^1 + 1.6792E-03; 

C1= -7.2415E-07*SOC^4 + 1.9663E-04*SOC^3 - 1.6592E-02*SOC^2 + 4.7056E-01*SOC^1 + 1.8084E+01; 

C2= -9.3682E-05*SOC^4 + 2.2157E-02*SOC^3 - 1.7448E+00*SOC^2 + 5.1351E+01*SOC^1 + 3.6988E+01;     

R3=-2.8547E-09*SOC^3 + 4.0633E-07*SOC^2 - 1.6189E-05*SOC^1 +    9.2442E-04; 

R4=7.6329E-11*SOC^4 - 1.4614E-08*SOC^3 + 9.3078E-07*SOC^2 - 2.1735E-05*SOC^1 + 5.0689E-04; 

C3= -1.3139E-03*SOC^4 + 2.8153E-01*SOC^3 - 2.1037E+01*SOC^2 + 5.9944E+02*SOC^1 + 9.4176E+03; 

R5=-8.2231E-09*SOC^3 + 1.3670E-06*SOC^2 - 7.0295E-05*SOC^1 + 4.6949E-03; 

C4=-1.3881E-02*SOC^4 + 2.7501E+00*SOC^3 - 1.8106E+02*SOC^2 + 4.5201E+03*SOC^1 + 2.5236E+04; 

elseif (16.5<=temp)&&(temp<32) 

R1=-7.3624E-12*SOC^4 + 9.8197E-10*SOC^3 - 5.5139E-08*SOC^2 + 3.4816E-06*SOC^1 + 6.9355E-04; 

R2=5.3921E-12*SOC^4 - 1.1286E-09*SOC^3 + 1.1558E-07*SOC^2 - 8.4552E-06*SOC^1 + 8.7765E-04; 

C1= -1.2508E-06*SOC^4 + 1.9713E-04*SOC^3 - 1.1057E-02*SOC^2 + 4.6085E-01*SOC^1 + 1.8513E+01; 

C2=2.3234E-05*SOC^4 - 6.0979E-03*SOC^3 + 4.0664E-01*SOC^2 + 1.8484E+00*SOC^1 + 4.4622E+02; 

R3=4.8039E-12*SOC^4 - 1.4603E-09*SOC^3 + 1.6947E-07*SOC^2 - 9.1099E-06*SOC^1 + 4.5446E-04; 

R4=-4.4560E-12*SOC^4 + 6.4079E-10*SOC^3 + 9.0600E-10*SOC^2 - 2.5548E-06*SOC^1 + 2.5477E-04; 

C3=2.9485E-03*SOC^4 - 6.5496E-01*SOC^3 + 4.5311E+01*SOC^2 - 9.8769E+02*SOC^1 + 2.1574E+04; 

R5=2.7156E-10*SOC^4 - 6.5474E-08*SOC^3 + 5.6005E-06*SOC^2 - 1.9843E-04*SOC^1 + 4.7122E-03; 

C4=-4.4313E-04*SOC^4 + 1.2049E-01*SOC^3 - 1.5526E+01*SOC^2 + 9.4699E+02*SOC^1 + 5.4311E+04; 

 elseif (31<=temp)&&(temp<45) 

R1= 1.3499E-09*SOC^3 - 2.6207E-07*SOC^2 + 1.5019E-05*x + 6.5366E-04; 

R2= -8.2144E-10*SOC^3 + 1.5712E-07*SOC^2 - 9.7821E-06*x + 2.9033E-04; 

R3= 1.2436E-10*SOC^3 - 2.5186E-08*SOC^2 + 1.5903E-06*x + 1.1561E-04; 

R4= 9.2859E-09*SOC^3 - 8.4466E-07*SOC^2 + 1.8849E-05*x + 1.5014E-04; 

R5= -3.2258E-08*SOC^3 + 4.6544E-06*SOC^2 - 2.1509E-04*x + 5.3658E-03; 

C1= 3.2702E-04*SOC^4 - 5.7252E-02*SOC^3 + 2.8252E+00*SOC^2 - 1.4737E+01*x + 7.3334E+01; 
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C2= 5.5117E-02*SOC^3 - 1.0919E+01*SOC^2 + 6.4710E+02*x + 3.8183E+02; 

C3= 2.4611E-01*SOC^3 - 2.3601E+01*SOC^2 + 6.6653E+02*x + 6.7549E+04; 

C4= -2.2639E-01*SOC^3 + 1.9599E+01*SOC^2 - 1.6303E+02*x + 9.9379E+04; 

end 

 

Battery #2, (LMO & NMC Cathode): 

if (temp>=8)&&(temp<=18) 

    R1= 7.0808E-08*SOC^2 - 5.8329E-06*x + 1.3915E-03; 

    R2= 4.2228E-08*SOC^2 - 3.7060E-06*x + 8.5987E-04; 

    C1= 1.1364E-02*SOC^2 - 9.1497E-01*x + 4.4608E+01; 

    C2 = -1.8337E-03*SOC^3 + 2.3421E-01*SOC^2 - 7.1334E+00*x + 2.7454E+02; 

    R3=-8.0898E-09*SOC^3 + 1.5283E-06*SOC^2 - 1.0322E-04*x + 2.9054E-03; 

    R4=-3.1205E-09*SOC^3 + 5.6908E-07*SOC^2 - 3.1298E-05*x + 6.9424E-04; 

    C3= 1.2041E-01*SOC^3 - 2.6735E+01*SOC^2 + 1.5754E+03*x - 2.4632E+03; 

    R5= -4.3900E-08*SOC^3 + 6.5245E-06*SOC^2 - 2.7019E-04*x + 6.5161E-03; 

    C4= 5.3293E-01*SOC^3 - 8.0547E+01*SOC^2 + 3.3463E+03*x + 2.5908E+04; 

else if (temp>=18)&&(temp<=28) 

   R1= -2.6762E-10*SOC^4 + 5.1171E-08*SOC^3 - 3.2003E-06*SOC^2 + 7.5197E-05*x + 4.8916E-04; 

   R2=-1.8426E-11*SOC^4 + 1.2486E-09*SOC^3 + 1.1699E-07*SOC^2 - 9.4292E-06*x + 6.9954E-04; 

   C1=-1.6493E-05*SOC^4 + 3.1013E-03*SOC^3 - 1.8869E-01*SOC^2 + 4.4103E+00*x - 1.0525E+01; 

   C2=-9.2389E-05*SOC^4 + 1.6293E-02*SOC^3 - 9.6568E-01*SOC^2 + 2.3868E+01*x + 1.9789E+01; 

   R3=-4.1093E-09*SOC^3 + 8.7954E-07*SOC^2 - 6.1557E-05*x + 1.4540E-03; 

   R4=8.3556E-11*SOC^4 - 1.7391E-08*SOC^3 + 1.2093E-06*SOC^2 - 3.1617E-05*x + 3.9427E-04; 

   C3=1.5092E-02*SOC^4 - 2.9776E+00*SOC^3 + 1.9159E+02*SOC^2 - 4.5309E+03*x + 6.5452E+04; 

   R5=-1.4079E-10*SOC^4 - 9.9293E-09*SOC^3 + 3.5492E-06*SOC^2 - 1.5901E-04*x + 4.5593E-03; 

   C4=-6.2102E-02*SOC^4 + 1.2514E+01*SOC^3 - 8.4189E+02*SOC^2 + 2.1587E+04*x - 1.0310E+05; 

else if (temp>28) 

   R1= -3.1405E-09*SOC^3 + 4.6714E-07*SOC^2 - 1.8254E-05*x + 1.2772E-03; 

   R2= 2E-10*SOC^4 - 4E-08*SOC^3 + 3E-06*SOC^2 - 8E-05*x + 0.0008; 

   C1= -1.5376E+00*SOC^2 + 3.1609E+02*x - 2.8505E+03; 

   C2= 5.2240E-03*SOC^3 - 3.7153E+00*SOC^2 + 5.5959E+02*x + 1.4230E+03; 

   R3=-4.4305E-09*SOC^3 + 6.6673E-07*SOC^2 - 2.5507E-05*x + 3.9728E-04; 
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   R4= -7.1244E-08*SOC^3 + 8.8381E-06*SOC^2 - 2.6090E-04*x + 4.4370E-03; 

   C3=1.7719E-01*SOC^3 - 3.5050E+01*SOC^2 + 1.7530E+03*x + 7.3067E+04; 

   R5=1.6885E-09*SOC^3 + 5.3492E-07*SOC^2 - 4.3545E-05*x + 1.0523E-03; 

   C4= 1.0117E+00*SOC^3 - 1.1603E+02*SOC^2 + 3.5250E+03*x + 3.7591E+04; 

End 
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Appendix-C 

Modification on the driver model in Autonomie to take in the power demand as 

input 

 

C 1: driver sub-model- top level 

 

 

C 2: Torque demand estimator  
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Appendix-D 

Monthly Report of EV-ACX2.5  

 

October 2011 

 



 

B-2 

 

December 2011 

 



 

B-3 

 

January 2012 

 



  

February 2012 

 

 

 

 

 


