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Abstract

Wireless services and applications have become extremely popular and widely employed

over the past decades. This, in turn, has led to a dramatic increase in the number of

wireless users who demand reliable services with high data rates. But such services are very

challenging to provide due to radio channel impairments including multipath fading and

co-channel interference. In this regard, the use of multiple antennas in wireless systems was

proposed recently which has rapidly received great attention. Multi-antenna technology

is shown to have powerful capabilities to improve reliability via spatial diversity and to

increase data rates via spatial multiplexing as compared with traditional single-antenna

systems. Furthermore, by exploiting additional spatial dimensions, transmit beamforming

techniques can be used to manage co-channel interference in such systems.

In a rich scattering environment, multiple antennas that are located sufficiently far

apart at a transmitter experience independent fading with high probability. Therefore, the

transmitter can send redundant versions of the same data stream over these independent

channels to improve reliability. In particular, if the transmitter has access to perfect channel

state information (CSI), it can set the beamforming weights such that the received signals

from different transmit antennas combine constructively at some intended receiver(s) and

destructively at some unintended receiver(s) so that no co-channel interference is generated.

Spatial multiplexing is another powerful multi-antenna transmission technique which

aids in enhancing data rates without increasing bandwidth or transmit power. Multiple

parallel and independent channels can be established between a transmitter and a receiver

that both use multiple antennas in a rich scattering environment. Therefore, multiple

independent streams of data can be simultaneously sent over these channels within the

bandwidth of operation. This, in turn, enhances the data rate by a multiplicative factor

equal to the number of the independent streams. Water-filling is a strategy that achieves

the maximum data rate in such multiple-input multiple-output (MIMO) systems when

perfect CSI is available at both the transmitter and the receiver.

In practice, CSI can be obtained at the receiver by the use of training sequences and

its accuracy can be increased by carefully selecting sequences with good auto-correlation
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properties. The transmitter can acquire CSI by using the channel reciprocity principle in

wireless systems or by relying on a feedback path to convey the CSI from the receiver.

Due to practical limitations such as rate-limited feedback links and the delay involved in

such procedures, perfect CSI can be very challenging to obtain at the transmitter side.

This motivates the need to evaluate the effect of imperfect CSI at the transmitter (CSIT)

on the performance of transmit diversity and beamforming in multiple-input single-output

(MISO) systems and water-filling power allocation in MIMO systems.

In this thesis, transmit diversity and beamforming are studied in a MISO system with

an n-antenna transmitter, an intended single-antenna receiver, and some unintended single-

antenna receivers. Two scenarios are considered, namely, null-steering beamforming and

ε-threshold beamforming in which the allowable interference threshold at the unintended

receivers is zero and ε > 0, respectively. With perfect CSIT, null-steering beamforming

can successfully nullify interference at m unintended receivers, where m < n, and achieve a

nonzero received power at the intended receiver with a mean value that grows linearly with

n−m and is directly proportional to the power of the line-of-sight component between the

transmitter and the intended receiver. With imperfect CSIT, null-steering beamforming

based on erroneous channel estimates results in a nonzero interference at the unintended

receivers with a mean value that is interestingly independent of n. Also, it is shown that

a moderate line-of-sight component can significantly reduce the effect of estimation error

on the performance of the intended link.

Intuitively, the allowance of a small nonzero interference at the unintended receivers, as

in ε-threshold beamforming, should improve the received power at the intended receiver.

The analysis in this thesis shows that this enhancement is marginal and not worthwhile,

notably in the case of imperfect CSIT. Therefore, there is no significant loss in the perfor-

mance of the intended link if the transmitter performs null-steering beamforming instead.

In fact, the transmitter can employ additional antennas to improve the performance of the

intended link without generating significant extra interference on the unintended receivers.

Furthermore, in this thesis, the effect of channel estimation error on the performance

of water-filling power allocation in a MIMO system is explored when the transmitter and

iv



the receiver both have n antennas. At low signal to noise ratios (SNR), the gap be-

tween water-filling throughput with perfect CSIT and the throughput corresponding to

equal-power allocation with no CSIT is large asymptotically. It is thus interesting and

worthwhile to evaluate how water-filling based on erroneous channel estimates may result

in a throughput that falls between these two extremes. In this regard, it is first shown

that, at low SNR, the normalized (by 1/n) water-filling throughput with imperfect CSIT

converges to a non-random value denoted by R, almost surely as n increases. Denoting CP

as the asymptotic normalized water-filling throughput with perfect CSIT and using it as a

baseline for comparison, we then compare R with CP and find that for moderate channel

estimation errors, water-filling can still achieve significant normalized throughputs that are

close to CP. Furthermore, when the quality of channel estimation is very low, water-filling

is shown asymptotically to achieve the same throughput as equal power allocation in the

low SNR regime.
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Chapter 1

Introduction

1.1 Wireless Communication Systems

Wireless technology is undoubtedly one of the significant revolutionary advancements in

recent decades as it has enabled the transfer of information over both short and long dis-

tances without the use of wires (see Fig. 1.1). Long-range wireless services such as satellite

television, satellite radio, and satellite telephony in remote areas are only possible using

wireless technology. Mobile communications is another increasingly popular service that

wireless technology can facilitate. One of the many examples of mobile communications is

the well-known and widely-employed cellular system with more than 6.8 billion subscribers

worldwide in 2013 [1]. Remote measurement, wireless sensing, traffic control, cordless tele-

phony, mobile satellite communications, and WiFi are only a few examples of the services

that owe their existence to wireless communication technology.

Wireless systems and services have strict requirements in terms of data rate and reli-

ability. Data rate is measured by the number of bits transferred via the communication

link per unit of time and is generally desired to be as high as possible. Reliability, on the

other hand, is a parameter showing how reliable a communication link is in maintaining

a connection or providing a satisfactory quality of service. It is often quantified by the

frame error rate (the ratio of the number of corrupted data frames over the total num-
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Figure 1.1: Long-range and short-range wireless communication services; courtesy of [2]

ber of transmitted data frames). It is known that there is a tradeoff between reliability

and data rate, i.e., increasing the data rate leads to higher frame error rate (less reliable

service) and decreasing the data rate can result in a more reliable service. Since the trans-

mission medium for wireless communications is the radio channel between the transmitter

and the receiver, impairments such as small-scale and large-scale propagation effects along

with variations of the channel with time make it very challenging for wireless systems to

provide reliable and high-data-rate services.

Multipath propagation is a small-scale propagation effect in wireless channels that

occurs when the transmitted signal reaches the receiver via multiple different propagation

paths. This phenomenon is shown in Fig 1.2 for three paths only. The direct path between

the transmitter and the receiver is known as the line-of-sight path. The indirect paths
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Figure 1.2: Multipath propagation

are caused, e.g., by reflections of the radio waves from surrounding obstacles such as

buildings, cars, and mountains. The multipath components have distinct propagation

delays, amplitudes, and phase shifts with respect to each other. Such components add up

at the receiver destructively (which causes fading) or constructively, and thus generate a

combined signal that is shown to have a Rayleigh distributed magnitude and a uniformly

distributed phase (this statistical model is confirmed by practical measurements as well

[3, 4]). In the case that a strong line-of-sight component exists between the transmitter

and the receiver, a Rician distribution is a more accurate model for the received signal’s

magnitude. Multipath fading may lead to severe degradation in the performance of wireless

communication systems. For example, if the channel between a transmitter and a receiver is

in a deep fade, i.e., multipath components add up destructively at the receiver, the received

signal’s power significantly drops which results in lower signal to noise ratios (SNR) and,

in turn, higher frame error rates.

Furthermore, due to the broadcast nature of the communication medium, wireless com-

munication systems that simultaneously operate in the same frequency band and are used

in the same geographical region, may impose co-channel interference on one another. To

avoid such performance-degrading interference, distinct frequency bands (out of the limited
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frequency spectrum) are allocated to different wireless systems as regulated by the Interna-

tional Telecommunications Union (ITU). Obviously, designing wireless systems that satisfy

the rapidly growing demand for reliable and high-data-rate communications becomes more

challenging when the system can only operate in such scarce frequency bands with limited

transmit power.

1.2 Multi-antenna Wireless Systems

The use of multiple antennas in wireless systems has rapidly received considerable attention

over the past decades in both academia and industry. Multi-antenna technology is shown

to have powerful capabilities to improve reliability via spatial diversity and to increase data

rates via spatial multiplexing as compared with traditional single-antenna systems. Fur-

thermore, by exploiting additional spatial dimensions, transmit beamforming techniques

can be performed to manage co-channel interference in wireless systems. Standards such

as IEEE 802.11n WiFi, Long Term Evolution (LTE), and LTE-Advanced are examples of

wireless systems that exploit multiple antennas [3].

Multiple antennas can be used at the transmitter, receiver, or both. Different antenna

configurations are single-input single-output, multiple-input single-output (MISO), single-

input multiple-output (SIMO), and multiple-input multiple-output (MIMO). Single-input

single-output (SISO) is the traditional single-antenna system, while MISO has multiple

transmit antennas and a single receive antenna, SIMO has a single transmit antenna and

multiple receive antennas, and finally MIMO has multiple transmit antennas and multiple

receive antennas.

1.2.1 Spatial Diversity

An efficient technique to overcome the negative effects of multipath fading and enhance the

reliability of wireless channels is to exploit spatial diversity by employing multiple antennas

at the transmitter, receiver, or both [3–5]. If the antennas are located sufficiently far
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apart and the environment is rich scattering, it is very likely that the antennas experience

independent fading and, in turn, the resultant channels have a low probability of being

in a deep fade simultaneously. Thus, redundant versions of the same data stream can

be sent/received over these multiple independently faded channels (or diversity branches)

and can be combined appropriately to increase the received signal’s power, and, in turn,

decrease the frame error rate compared to a traditional single-antenna system.

Spatial diversity can be implemented as receiver diversity, transmit diversity, or both.

Receiver diversity is applicable in SIMO systems [6], while transmit diversity can be used

in MISO systems [7, 8]. For receiver diversity, various combining strategies are proposed

such as equal-gain combining, selection combining, and maximal-ratio combining [8]. For

instance, in maximal-ratio combining, the signal received in a diversity branch is rotated

and weighted appropriately according to its corresponding channel gain. This process is

performed so that all the received signals are combined coherently at the receiver and the

diversity branches with stronger received signals are further amplified. Clearly, in order

for this combining technique to work properly, perfect knowledge of the channel gains is

required at the receiver.

Due to cost and space considerations, it is not feasible in practice to use multiple

antennas at the receiver terminals. Thus, analyzing transmit diversity in MISO systems

has become more practical and popular. In MISO systems, transmit diversity can be

exploited with or without channel gain knowledge at the transmitter. In 2 × 1 MISO

systems (2 antennas at the transmitter and a single antenna at the receiver) for example,

Alamouti’s scheme can be used to exploit transmit diversity over the space and time when

the channel gains are unknown to the transmitter [9]. For a general n× 1 MISO channel,

space-time block codes and space-time trellis codes can be used at the transmitter to

achieve full diversity [10, 11]. With perfect channel gain knowledge at the transmitter,

transmit maximal-ratio combining can be employed, i.e., before transmission, the signal

at each antenna is weighted appropriately according to its corresponding channel gain so

that the received signal power is maximized [12,13]. In MIMO systems, spatial diversity is

utilized by combining the transmit and receiver diversity schemes mentioned above. In [14],

a thorough overview of the benefits of spatial diversity in wireless systems is provided.
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1.2.2 Interference Management via Beamforming

As stated earlier, co-channel interference is a major limiting factor in the performance of

wireless systems. Using additional spatial dimensions offered in MISO wireless systems,

the transmitter can perform an interference management technique known as beamforming

to effectively reduce its co-channel interference to the unintended receivers operating in the

same frequency bands in its vicinity. Such an interference management technique allows

wireless systems to reuse frequency bands to increase spectral efficiency and thus provide

higher data rates.

More specifically, taking advantage of the channel fading effect, the transmitter can set

the beamforming weights such that the received signals from different transmit antennas

combine destructively at the unintended receivers and constructively at the intended re-

ceiver. When beamforming is performed, the transmitter is required to know the exact

channel gains in order to find the best beamforming vector that achieves the maximum

signal power at the intended receiver and limits the interference at the unintended receivers.

1.2.3 Spatial Multiplexing

Spatial multiplexing is a powerful transmission technique that can be used in MIMO sys-

tems. This technique tremendously aids in enhancing data rates of wireless systems without

increasing bandwidth or transmit power [15,16].

In traditional single-antenna wireless systems, only one stream of data can be trans-

ferred at a time within the bandwidth of operation. If the transmitter and the receiver

both use multiple antennas and the environment is rich scattering, multiple parallel and

independent channels can be established between them. Therefore, multiple streams of

data can be simultaneously sent over these independent channels within the bandwidth of

operation. This, in turn, enhances the data rate by a multiplicative factor equal to the

number of independent streams, which is equal to the minimum of the number of transmit

antennas and the number of receive antennas.

Supposing that channel knowledge is only available at the receiver, the independent
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streams can be separated at the receiver by means of interference cancellation algorithms

such as maximum likelihood (ML) detection, linear zero-forcing (ZF) detection, mini-

mum mean squared error (MMSE) detection, and successive interference cancellation (SIC)

which were originally proposed in [15] for the BLAST (Bell-labs Layered Space Time Ar-

chitecture) scheme. Even though the ML detector provides the best possible performance,

its complexity is high. The linear techniques such as ZF detection and MMSE detection

sacrifice some performance to reduce complexity. On the other hand, integer-forcing (IF)

linear receivers [17, 18], offer closer performance to ML detection with a slightly more

complex architecture compared to other linear techniques such as MMSE detection.

If the transmitter also has perfect knowledge of channel gains too, water-filling power

allocation can be performed at the transmitter to achieve the maximum data rate [16,19].

In this case, knowing the channel gains, the transmitter allocates power to each individual

stream of data (eigen-direction) proportionally to its corresponding eigenvalue. In other

words, more power is allocated to stronger eigen-directions while less power is dedicated

to weaker eigen-directions.

As stated earlier, in MIMO systems spatial diversity schemes can be performed which

provide diversity gain and in turn, achieve higher reliability. In addition, spatial multi-

plexing techniques can be employed which provide spatial multiplexing gain and achieve

better data rates. In order to improve both data rate and reliability at the same time,

spatial multiplexing and spatial diversity techniques can be performed together. How-

ever, there is a fundamental tradeoff between the diversity gain and the multiplexing gain

(diversity-multiplexing tradeoff) because higher spatial multiplexing gain comes at the

price of sacrificing diversity gain and vice versa [20–22].

1.3 Importance of Channel State Information (CSI)

In wireless communication systems, it is commonly required for the receiver to have very

good knowledge of channel gains. In traditional single-antenna systems, channel gain

knowledge is exploited at the receiver to reverse the effect of multipath fading before
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performing data detection. In multi-antenna systems on the other hand, as discussed in

previous sections, perfect knowledge of channel gains is crucial at the receiver to implement

spatial diversity combining techniques such as in SIMO systems, and spatial multiplexing

techniques in MIMO systems [23–25].

A popular approach to obtain channel gain knowledge at the receiver is to use training

signals (pilot sequences) emitted by the transmitter [5]. Training signals are known by

the receiver in advance. Therefore, channel gains can be estimated using the combined

knowledge of the transmitted and the received signals. In order to have more accurate

channel estimates, pilot sequences need to have good auto-correlation properties and their

duration and location should be carefully selected [26,27]. Blind and semi-blind techniques

can also be used for channel estimation where the former does not exploit training signals

and performs estimation blindly with respect to the channel and noise characteristics,

whereas the latter combines the use of training signals and blind based techniques [28,29].

In single-antenna systems, knowledge of channel gains at the transmitter can assist the

transmitter to perform transmission rate control, power control, etc. In MISO and MIMO

systems, in addition to these benefits, such knowledge can be used for spatial diversity

combining, beamforming, and spatial multiplexing as discussed earlier. For example, when

beamforming is performed, the transmitter is required to know the exact channel gains

in order to find the best beamforming vector that achieves the maximum signal power at

the intended receiver and limits the interference at the unintended receivers. Also note

that, although much work on space-time coding requires no channel gain knowledge at the

transmitter, if the transmitter has such knowledge, better throughputs can be achieved [30].

In order to estimate channel gains at the transmitter, generally, two main techniques

can be used [5]. The first technique takes advantage of the channel reciprocity of the

wireless medium in Time Division Duplex (TDD) transmission. In TDD, typically the

same frequency band and antennas are used for forward and reverse links in different time

slots. Techniques such as using pilot sequences can be applied to estimate the channel gain

by the transmitter in the reverse link. If the duplexing time delay is not small enough, the

estimated channel gains in the forward and reverse links are not equal as the channel gain
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changes with time.

The second technique relies on a feedback link from the receiver to the transmitter

to convey the channel estimates to the transmitter. This technique can be carried out

when reciprocity principle cannot be used, as in Frequency Division Duplexing (FDD)

transmission [5]. However, in practice, there are some obstacles in obtaining perfect channel

gains at the transmitter in such cases. For example, explicitly feeding back the channel

state information (CSI) is rate-limited. Since the CSI needs to be quantized at the receiver

and sent to the transmitter over a limited-rate feedback link, the CSI conveyed to the

transmitter is not perfect anymore [31–33]. This is notably the case in MIMO systems

where the feedback requirements grow with the product of the transmit antennas and the

receive antennas, and thus as the number of antennas increase, the CSI obtained at the

transmitter through limited-rate feedback gets more inaccurate [34, 35]. Furthermore,

using feedback for conveying channel estimates involves some delay as well, which makes

the estimates outdated especially in relatively fast time-varying channels. In such channels,

more frequent feedback is required which will introduce overhead that can be prohibitive

[36].

Note that explicit feedback links can be expensive and there are open-loop wireless

systems that do not provide any protocol means for the receiver to convey CSI to the

transmitter via a feedback link [37, 38]. In such systems, an ARQ (Automatic Repeat

reQuest) feedback scheme is used for transmission rate control and by using some pilot

sequences from the ARQ feedback scheme, the CSI can be estimated at the transmitter

as well. Since these schemes are not designed for highly accurate CSI estimation, the CSI

estimates are imperfect in such cases.

In this thesis, assuming that the channel gains are perfectly known at the receiver, first,

the performance of spatial diversity, beamforming, and spatial multiplexing techniques is

studied in multi-antenna systems with perfect CSI at the transmitter (perfect CSIT).

Then, we address the case that the channel gains are imperfectly known at the transmitter

(imperfect CSIT) by modelling the channel estimation error to be Gaussian distributed

(which is a reasonable assumption in estimation methods such as maximum likelihood
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(ML) estimation [39]). This model allows us to obtain statistical closed-form results and

find how the performance is affected due to the lack of perfect CSIT.

1.4 Applications of Multi-antenna Technology

In wireless communications, co-channel interference may be imposed from one wireless

system to another, such as in cognitive radio systems [40, 41], or from a wireless user to

another user in the same wireless system, such as in heterogeneous networks [42,43]. Such

co-existence in the same frequency band is sometimes intentionally allowed and is aimed

to increase spectral efficiency. Therefore, the use of interference management techniques

(e.g. beamforming) is essential to handle the interference among such wireless users and

systems.

1.4.1 Beamforming in Cognitive Radio Systems

As stated earlier, in order to manage the co-channel interference caused by simultaneous

operation of wireless systems in the same geographical region, traditionally, distinct fre-

quency bands have been allocated to different wireless systems. But, according to radio

spectrum occupancy measurements, such a fixed spectrum allocation policy has failed to

accommodate wireless systems in an efficient manner, and has led to an under-utilization of

frequency bands both temporally and geographically [44, 45]. In other words, monitoring

of the frequency spectrum has revealed that some frequency bands are not occupied at all

times and thus are not utilized efficiently.

Motivated by these measurements and observations, there has been recent interest in

finding a new communication paradigm that allows different wireless systems to operate in

the same frequency band (as opposed to the current fixed spectrum allocation policy). This

spectrum sharing approach has the potential to increase spectral efficiency and enables

optimal accommodation of wireless services in the limited frequency spectrum. In this

regard, the idea of cognitive radio systems was introduced [46], that has evoked much
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interest in frequency regulatory bodies to provide new spectrum allocation policies in order

to support cognitive radio [44,47].

In the literature, cognitive radio frameworks mainly consist of a secondary system that

can use the licensed frequency bands originally allocated to a primary system in its vicinity

(see Fig. 1.3) [40,48–50]. This helps the secondary system to achieve better performance

and increase spectral efficiency especially when the primary system is inactive. The co-

channel interference resulting from the secondary system’s activity must be controlled such

that the primary system’s performance does not degrade severely.

A widely recognized approach to enhance secondary system’s performance in cognitive

radio systems is to exploit spatial diversity by using multiple antennas at the secondary

transmitter [51–57]. If the secondary receiver has a single antenna, this leads to a MISO

system. In such systems, with a secondary transmit power constraint, the transmit co-

variance matrix at the secondary transmitter can be chosen appropriately to satisfy the

primary interference-power constraints while maximizing the secondary received power.

As shown in [51–53], the optimal covariance matrix in a MISO system is rank-one which

implies that beamforming is optimal. Therefore, taking advantage of channel fading, the

secondary transmitter should set the beamforming weights such that the received signals

from different transmit antennas combine destructively at the primary receiver and con-

structively at the secondary receiver.

Beamforming has been broadly investigated in the literature as a technique for inter-

ference management in MISO cognitive radio frameworks. Under perfect channel state

information at the transmitter (CSIT), [53, 54] derive optimal solutions to their associ-

ated optimization problems and subsequently evaluate the performance of beamforming,

whereas [55] takes a numerical approach to the same problem. In the realistic case of imper-

fect CSIT, [56,59] consider probabilistic interference constraints for the interfered system

and subsequently study robust beamforming numerically. In [60, 61], even though the

actual channel gains are unknown at the beamformer, the knowledge of some uncertainty

regions containing the actual gains is assumed to be available. Under such assumptions, [60]

solves the associated problem numerically while [61] solves it analytically. In this thesis,
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Figure 1.3: Cognitive radio framework; courtesy of [58]

beamforming and its performance analysis with imperfect CSIT is studied but a different

approach is taken compared to the previous works. More specifically, in this thesis, an

optimal beamforming vector is found merely based on the estimates of the channel gains

and unlike [60,61], it is not assumed that uncertainty regions containing the actual gains

are known at the beamformer.

1.4.2 Beamforming in Heterogeneous Networks

Current cellular systems are not only being used for transmission of voice but also have

become a significant means for accessing the Internet anytime and anywhere. This, in turn,

has led to the generation of high volumes of data traffic. Clearly, seamless operation of such

applications requires an underlying infrastructure that supports reliable communications

with high data rates.

Large tower-mounted macro base stations (BS) are the current cellular system’s main

component that serve as the gateways connecting mobile users to the core network. These
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BSs are roughly located based on carefully planned layouts and are almost identical in

terms of transmit power, antenna configurations, etc, creating a homogeneous network.

To decrease the total number of macro BSs that cover a geographical region, which, in

turn, decreases the total cost of BS installation, maintenance, etc, the coverage area (cell-

site) of each BS must be expanded. This leads to a greater distance between mobile users

and the BSs and thus increases large-scale propagation losses. In addition, with a bigger

cell-site, the data rate offered for each mobile user is less because the same bandwidth is

shared among a larger number of users. Therefore, macro BSs with a large cell-size do not

effectively support high demands of traffic in dense areas with more users.

The idea of heterogeneous networks has emerged to overcome the aforementioned issue

[42, 43, 62–64]. It simply suggests the deployment of additional BSs with smaller cell-sizes

(based on their range and power level are referred to as micro, pico, and femto stations)

in dense areas that overlap in coverage with a traditional macro BS (MBS) as shown in

Fig. 1.4. This brings users closer to their serving BSs and thus, intuitively, improves

coverage and overall system performance. But since the smaller BSs operate in the same

frequency band as the macro BSs, such performance improvement can be achieved only

if the excessive co-channel interference is successfully managed using techniques such as

beamforming.

1.4.3 Spatial Diversity in Massive MIMO systems

Massive MIMO, which has received considerable attention recently in academia and indus-

try, is an emerging technology that takes advantage of having a large number of antennas

at the transmitter and/or the receiver [66–68]. Massive MIMO can be enabled for ex-

ample by employing small-sized antennas when using mmWave frequency bands for radio

access in wireless systems [69]. Having such a large number of antennas potentially allows

for orders of magnitude improvement in data rates especially if suitable spatial diversity

techniques are performed.

Water-filling power allocation can provide throughputs that scale with the number of

antennas assuming perfect CSI is available at the transmitter and the receiver side. How-
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Figure 1.4: Heterogeneous network consisting of macro BSs and femto BSs; courtesy of [65]

ever, in practice, when the number of antennas is large, it becomes extremely challenging

to obtain accurate CSI especially at the transmitter. Thus, it is worthwhile to evaluate

how water-filling performs in such systems when channel estimation error is present, and

obtain the asymptotic water-filling throughput as a function of the power of the estimation

error.
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1.5 System Model and Summary of the Results

1.5.1 Performance of Beamforming with Channel Estimation Er-

ror

In Chapter 2, spatial diversity and transmit beamforming are studied in a MISO wireless

communication system. In the MISO model considered in Chapter 2, it is assumed that

a transmitter with n antennas aims to communicate with a single-antenna receiver (the

intended receiver). Since the transmitter has multiple antennas that are separated far

enough and the environment is rich scattering, it can exploit spatial diversity to increase

reliability and send a single stream of data over multiple antennas with different beam-

forming weights. The beamforming weights can be set appropriately based on the channel

gains so that, with limited transmit power P , the received power at the intended receiver

is maximized (transmit maximal-ratio combining). In such a scenario, the maximum re-

ceived power is shown to grow linearly with the number of transmit antennas in the case

of perfect CSIT.

The main contribution of Chapter 2 is to study transmit beamforming when m single-

antenna unintended receivers exist in the vicinity of the transmitter and the focus is to limit

the co-channel interference on such receivers as well as maximizing the received power at the

intended receiver. In this regard, two different scenarios of null-steering beamforming and

ε-threshold beamforming are considered in sections 2.3 and 2.4, respectively. Null-steering

beamforming simply refers to the scenario in which the unintended receivers tolerate no

interference from the transmitter, i.e., the interference at the unintended receivers is con-

strained to be 0. In ε-threshold beamforming, a small amount of interference (ε) is allowed

at the unintended receivers.

In each beamforming scenario, two separate cases of perfect CSIT and imperfect CSIT

are investigated. In each case, an optimization problem is obtained that maximizes the

received power at the intended receiver while satisfying the interference constraints and

the transmit power constraint. Unlike most related prior works which solve the associated

optimization problems numerically using suitable optimization algorithms and only pro-
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vide numerical analysis, in this thesis, a closed-form expression for the maximum received

power is derived which can then be statistically analyzed.

Null-steering Beamforming: In the null-steering beamforming scenario, Rician fad-

ing with a general K-factor (ratio of the line-of sight component’s power to the scattering

component’s power) is assumed to model the channel gains between the transmitter and

its intended receiver and Rayleigh fading is assumed to model the channel gains between

the transmitter and the unintended receivers. First, the case of perfect CSIT is examined,

and with limited total transmit power, a suitable beamforming vector is found that attains

maximum received power at the intended receiver while nullifying the interference power

at m < n unintended receivers. Then the corresponding maximum received power at the

intended receiver, Gnull is derived.

The results in the case of perfect CSIT imply that:

• When the number of transmit antennas is greater than the number of unintended

receivers (n > m), the transmitter can successfully perform null-steering beamform-

ing and achieve a nonzero value for the mean received power E[Gnull] which grows

linearly with (n − m). Intuitively, in such a case, m degrees of freedom are used

for nullifying the interference at m unintended receivers while the remaining n −m
degrees of freedom are used towards spatial diversity in the intended link. Therefore,

either a larger number of antennas or smaller number of unintended receivers leads

to higher values of E[Gnull].

• The mean received power E[Gnull] is directly proportional to the power of the line-of-

sight component represented by the K-factor. Thus, a better line-of-sight component

in the intended link provides a better performance.

• After finding the variance of Gnull, it is shown that Gnull converges in probability to

E[Gnull] as n increases. This implies that the stochastic average E[Gnull] becomes a

more precise indicator of the realization of Gnull, as the number of antennas increases.

To obtain a more realistic framework, in the next approach, imperfect CSIT is consid-
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ered with Gaussian-modeled estimation errors. Consequently, the transmitter is assumed

to ignore or be ignorant of the existence of estimation errors. Therefore, beamforming

weights are computed using the channel estimates only. Subsequently, the actual received

power at the intended receiver, Gnull, Im, and the actual interference power at the unin-

tended receivers Inull, Im, are derived.

In the case of imperfect CSIT, it is found that:

• The mean received power at the intended receiver, E[Gnull, Im], is upper bounded by

E[Gnull] obtained in the perfect CSIT case because of the detrimental effect of channel

estimation error. However, it still grows with (n−m) and a moderate K-factor can

significantly reduce the effect of estimation error on the performance.

• Since null-steering beamforming is performed based on channel estimates which are

imperfect, the interference at the unintended receivers is not zero anymore. However,

it is found that the mean interference power at the ith unintended receiver, E[Inull, Im
i ],

i = 1, . . . ,m, is independent of the number of antennas n and, in turn, it does not

grow with n. As a result, more antennas can be used to enhance the performance of

the intended link (due to spatial diversity) without increasing the average interference

power at the unintended receivers.

ε-threshold Beamforming: In the ε-threshold beamforming scenario, the same channel

gain statistics are assumed except that for tractability, we take K = 0. Also, for simplicity

in finding a closed form expression for the received power, we consider the special case that

m = 1. Note that for m > 1, the corresponding optimization problem can be formulated

as a quadratically constrained quadratic program (QCQP) which in general does not have

a closed-form solution. However, the problem can be numerically solved as shown in

[59], using techniques such as second order cone programming (SOCP), or semi definite

programming (SDP).

In this scenario, similarly to the null-steering scenario, we first examine the case of per-

fect CSIT and find a suitable beamforming vector that, with a limited transmit power (P ),

attains maximum received power at the intended receiver while satisfying the interference
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power constraint at the unintended receiver (i.e. the interference power must be less than

the threshold ε (where ε = αP for α ≥ 0). After showing the existence of such a beamform-

ing vector, its corresponding received power at the intended receiver, Gth, is found. In the

case of imperfect CSIT, beamforming weights are computed using the channel estimates

only. Subsequently, the actual received power at the intended receiver, Gth, Im, and the

actual interference power at the unintended receiver Ith, Im, are derived.

The results indicate that:

• The mean received power with perfect CSIT, E[Gth], consists of a term independent

of α (or the interference threshold ε). This term is identical to E[Gnull] which is the

corresponding null-steering result with K = 0 and m = 1, and it grows linearly with

(n− 1). Therefore, employing more transmit antennas results in higher E[Gth].

• The mean of actual received power with imperfect CSIT, E[Gth, Im], consists of a

term independent of α as well. This term is identical to E[Gnull, Im] which is the

corresponding null-steering result with K = 0 and m = 1, and it grows linearly with

(n− 1).

• The expressions for E[Gth] and E[Gth, Im] have additional terms dependent on α with

a dominant term that grows as
√
α. This allows to obtain the following tradeoffs:

– Under perfect CSIT, a small increase in α can result in a moderate improvement

in E[Gth] when the number of antennas, n, is small. Particularly, increasing α

from zero to 0.1 leads to an increase of 31% for E[Gth] when n = 2. However,

the amount of increase reduces as n gets larger.

– Under imperfect CSIT, the enhancement in E[Gth, Im] is less compared to the

perfect CSIT case.

• Under imperfect CSIT, the dominant parts of the mean actual interference power,

E[Ith, Im], are independent of n. This implies that while employing additional transmit

antennas can benefit the intended link by increasing E[Gth, Im], it results in little extra

interference on the unintended receiver.
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• Since the interfered system’s allowance of a small nonzero interference threshold

results in no significant enhancement to E[Gth, Im] compared to E[Gnull, Im], there is

no significant loss in performance to the intended link if the transmitter performs

null-steering beamforming instead of ε-threshold beamforming.

The results of this chapter have been published in [70] and [71].

1.5.2 Performance of Water-filling with Channel Estimation Er-

ror

In Chapter 3, we study spatial multiplexing in a MIMO wireless communication model

that has n antennas at the transmitter and n antennas at the receiver. The antennas are

sufficiently far apart at the transmitter and the receiver and the environment is assumed

to be rich scattering. Therefore, the corresponding n×n channel gain matrix between the

transmitter and the receiver has i.i.d. entries. By applying singular value decomposition

to the channel gain matrix, the MIMO system can be converted to multiple independent

and parallel SISO channels, over which multiple independent streams of data can be sent.

The transmit power can thus be split between these streams based on the knowledge of

the channel gain matrix at the transmitter.

We consider three different cases of i) no CSIT, ii) perfect CSIT, and iii) imperfect

CSIT and find the throughput of the MIMO system in each of these three cases. We then

perform asymptotic analysis to derive the corresponding normalized (by 1/n) throughput

as n grows large.

In the case of no CSIT, the transmitter has no knowledge of the channel gain matrix.

Therefore, the transmitter distributes the limited transmit power equally among the n

transmit antennas as this is the most reasonable way to allocate power in such a case [19].

In other words, the same amount of power is allocated to all eigen-directions regardless of

how strong their eigenvalues are (equal power allocation). Doing such a power allocation,

it is shown in [19] that, even though the channel gain matrix is random, the normalized

(by 1/n) throughput converges to a non-random value denoted by IN, almost surely as n
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increases. This result implies that the throughput scales linearly with n as n grows large

which is, intuitively, due to spatial multiplexing.

In the case of perfect CSIT, knowing the eigenvalues of the channel, the transmitter

can optimally distribute power among antennas according to water-filling power allocation

and thus achieve the maximum throughput (the capacity of the MIMO system). As found

in [19], in this case too, the normalized (by 1/n) throughput converges to a non-random

value denoted by, CP, almost surely as n increases.

At high SNR, as shown in [19], CP and IN are asymptotically equal. This implies

that there is no loss in the throughput if power is distributed equally among antennas

(which requires no CSIT) instead of performing water-filling power allocation. As the SNR

decreases, the gap between CP and IN increases and water-filling power allocation results

in better throughputs compared to equal power allocation. At low SNR, as shown in [19],

CP ≈ 4IN. Thus, at low SNR, it is crucially important how the transmitter allocates power

among antennas.

The contribution of Chapter 3 is to study the imperfect CSIT case at low SNR, and

find the throughput when the transmitter performs water-filling power allocation based on

channel estimates that are imperfect.

Note that, in the high SNR regime, as stated earlier, equal power allocation (which

requires no CSIT) provides the same asymptotic throughput as water-filling with perfect

CSIT. Hence, in that regime, it is preferable to employ equal power allocation instead of

water-filling and thus studying the effect of channel estimation error on the performance

of water-filling is of no interest.

We measure the quality of channel estimation error by a parameter called the signal

to estimation error ratio (SER), i.e., the ratio of the scattering component’s power to the

power of the estimation error. High SER corresponds to good channel estimates at the

transmitter, whereas low SER corresponds to bad estimates.

The results indicate that:

• Even though the channel gain matrix is random, at low SNR, the normalized water-
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filling throughput based on imperfect CSIT converges to a non-random value (asymp-

totic growth rate) denoted by R, almost surely as n increases.

• Since the gap between CP and IN is high at low SNR, different SER values lead to

different values of R that fall between the best-case result CP, and the worst-case

result IN. Using the asymptotic growth rate for the capacity with perfect CSIT, CP,

as a baseline for comparison, we thus can compare R with CP as a function of the

SER.

• At low SNR, for moderate values of the SER, water-filling based on erroneous channel

estimates can still asymptotically achieve significant throughputs. In particular, for

SER values such as 5 dB, 0 dB, and −5 dB, R is found to be 86%, 70%, and 52% of

CP, respectively.

• At low SNR and low SER, water-filling based on erroneous channel estimates asymp-

totically achieves the same throughput as equal power allocation.

The results of this chapter have been published in [72].

1.6 Notations

Throughout this thesis, boldface uppercase and lowercase letters denote matrices and vec-

tors, respectively.

Notations (.)∗, (.)T , and (.)† respectively refer to complex conjugate, transpose, and

conjugate transpose of a vector or a matrix.

The phase of a complex number is denoted by arg(.) and det[.] refers to the determinant

of a matrix.

For a vector y = (y1, y2, . . . , yn), we define y−m = (ym, ym+1, . . . , yn) when m ≤ n and

‖y‖ is the Euclidean norm of y.

Furthermore, In denotes the n×n identity matrix, Tr(Q) is the trace of a square matrix

Q, and Q � 0 means that Q is positive semi-definite.
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The distribution of a circularly symmetric complex Gaussian (CSCG) vector with the

mean µ and the covariance matrix Σ is written as CN (µ,Σ).

For functions p(x) and q(x) defined on some subset of real numbers, we have p(x) =

O(q(x)) as x→ 0, if and only if there exist positive numbers δ and M such that |p(x)| ≤
M |q(x)| for all |x| < δ. Furthermore, we define p(x) = Θ(q(x)), if and only if there exist

positive numbers ξ, M1, and M2 such that M1|q(x)| ≤ |p(x)| ≤M2|q(x)| for all |x| < ξ.

Finally, E[.] denotes the expectation of a random variable.
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Chapter 2

Performance of Beamforming with

Channel Estimation Error

2.1 Introduction

In this chapter, we explore spatial diversity as well as interference management via beam-

forming in MISO systems. As stated earlier, if a wireless transmitter has multiple antennas

that are separated far enough and the environment is rich scattering, independent channels

can be established between the transmit antennas and a single-antenna receiver with high

probability. Thus, a single stream of data can be sent over these independent channels

simultaneously using the same frequency band to increase the received signal’s power due

to spatial diversity.

In particular, with a transmit power constraint, the transmit covariance matrix can

be chosen such that the received power is maximized at some intended receivers and at

the same time, co-channel interference is limited at some unintended receivers operating

in the same frequency band. As shown in [51–53], the optimal covariance matrix that

achieves such a goal in a MISO system is rank-one which implies that beamforming is

optimal. Therefore, taking advantage of the variations in the channel gains over space,

the transmitter can set beamforming weights such that the received signals from different
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transmit antennas combine destructively at the unintended receivers and constructively at

the intended receiver [51–57].

In MISO systems, obtaining closed-form expressions for performance metrics such as

maximum received power at the intended receiver and the interference power at the inter-

fered receivers are undoubtedly crucial, especially in the realistic case of imperfect CSIT.

Such expressions provide remarkable insights into the impact of different parameters (such

as the estimation error’s variance) on the performance of wireless systems operating in

the same frequency band. This chapter aims to obtain such closed-form results in both

cases of perfect and imperfect CSIT. A key contribution of this chapter is to introduce an

alternative analytic approach to optimal beamforming in the perfect CSIT case which is

also applicable to the case of imperfect CSIT.

2.2 System Model

Throughout this chapter, we consider the MISO system model shown in Fig. 2.1. The

system consists of a transmitter equipped with n antennas (referred to as node Tx or

Tx for short). This multi-antenna transmitter aims to communicate with its intended

single-antenna receiver (referred to as node Rx or Rx for short). We assume that such a

communication is one-way and is from the Tx to the Rx. In addition, the total transmit

power over n antennas is denoted by P . We further consider that there are m unintended

single-antenna receivers which we refer to as Rx1, . . . ,Rxm. These unintended receivers are

subject to co-channel interference from the Tx upon its operation.

We assume that the transmit antennas, which are all located at Tx, are separated far

enough so that independent channels are established between the transmit antennas and

the single-antenna receivers. In order to perform an effective transmit beamforming, we

exploit the variations in the channel gains over space due to small-scale fading. Throughout

this chapter, we do not consider large-scale propagation effects such as path loss because

path loss does not affect the final results of this chapter except for introducing a scaling

factor.

24



Tx

Figure 2.1: MISO System model under consideration; a multi-antenna transmitter, Tx, is

in communication with its intended single-antenna receiver, Rx, and imposing co-channel

interference on m unintended single-antenna receivers, Rx1, . . . ,Rxm.

Assuming a flat-fading channel, the channel gain between the Tx and the Rx (the

intended link) over the entire frequency band is denoted by g∈ Cn×1. By splitting g into

its zero-mean scattering component u and its mean vector µ, we obtain

g = u + µ, (2.1)

where u ∼ CN (0, 2σ2In). In other words, the entries of g have a magnitude that is Rician

distributed. Note that because of the separation of the n antennas in the Tx, n independent

channels are assumed to be established between each transmit antenna in the Tx and the

antenna in the Rx.

The mean vector µ = (µ1, . . . , µn)T in (2.1) is defined as the line-of-sight vector between

the Tx and the Rx, and µl is the line-of-sight component between the Rx and the lth antenna

of the Tx. Thus, we refer to ‖µ‖2 =
∑n

l=1 |µl|2 as the line-of-sight component between the

Tx and the Rx.

Even though the line-of-sight component, ‖µ‖2, is a non-random value, we assume that

all the real and imaginary parts of µ1, . . . , µn are random variables that are identically (but
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not independently) distributed and the random point µ is uniformly located on the surface

of a (2n)-dimensional sphere with the non-random and fixed radius ‖µ‖.

We define the K-factor as the ratio of ‖µ‖2 to the total power of the zero-mean scat-

tering component u as

K =
‖µ‖2

2σ2n
· (2.2)

As shown in Fig. 2.1, the channel gain between the Tx and the ith unintended receiver

(Rxi), i = 1, . . . ,m, is denoted by hi∈ Cn×1 where hi ∼ CN (0, 2σ2
IIn). Since in reality,

a typical transmitter tends to be located closer to its intended receiver and farther away

from the unintended receivers, it is reasonable to assume that there is a line-of-sight link

between the Tx and the Rx, while no line-of-sight link is established between the Tx and the

unintended receivers. Without loss of generality, we assume that σ2
I = σ2. Furthermore,

having a rich scattering envirnment, the entries of g are assumed to be independent of the

entries of hi for i = 1, . . . ,m.

Considering the system model described above, the first goal is to study null-steering

beamforming in Section 2.3, which is the case that the unintended receivers Rx1,Rx2, . . . ,Rxm

tolerate no co-channel interference from the Tx. Then, we take one step further and in

Section 2.4, we examine ε-threshold beamforming which is the case that the interference

constraint is relaxed to some extent, i.e., co-channel interference less than a certain thresh-

old ε is allowed at the unintended receivers. For tractability, in the analysis in Section 2.4,

we take K = 0 and m = 1.

It is worth noting that we do not consider bidirectional communication between the

transmitter and the intended receiver. To facilitate the reverse communication in the

intended link and at the same time satisfy the interference constraints, the intended receiver

also needs to employ multiple antennas and thus perform beamforming effectively.
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2.3 Null-steering Beamforming

In this section1, we focus on characterizing a suitable beamforming vector at the Tx so

that with a limited transmit power P , the received power at the intended receiver Rx is

maximized while the interference power at each of the unintended receivers Rx1, . . . ,Rxm,

is nullified. We investigate two separate cases of perfect CSIT and imperfect CSIT in the

sequel.

2.3.1 Perfect CSIT

We first study the perfect CSIT case, i.e., we assume that perfect knowledge of the channel

gain vectors g, and hi, i = 1, 2, . . . ,m, is available at the Tx. Accordingly, we formulate

an optimization problem based on the system model. We then solve the optimization

problem to find the optimal beamforming vector, and subsequently find the maximum

received power at the Rx.

Problem Formulation

We denote the signal transmitted by the Tx at the discrete time instant k by the n × 1

vector s[k]. Therefore, the received signal at the Rx at time instant k can be expressed as

r[k] = gT s[k] + o[k], where o[k] is the additive white Gaussian noise at the Rx. Similarly,

we have ri[k] = hi
T s[k] + oi[k] as the received signal at Rxi, for i = 1, 2, . . . ,m, at time

instant k, where oi[k] is the additive white Gaussian noise at Rxi.

Let Q = E[s[k]s†[k]] be the transmit covariance matrix of the Tx. Since we aim to

perform null-steering to divert all the interference from each unintended receiver, the op-

timization problem can then be formulated as (P0)

Gnull = max gTQg∗ (2.3)

subject to: hi
TQhi

∗ = 0, for all i = 1, . . . ,m,

Tr(Q) ≤ P, Q � 0, (2.4)

1The results presented in this section have been published in [70].
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where the optimization (2.3) is over the transmit covariance matrix Q. In P0, gTQg∗ is

the received power at the Rx that is aimed to be maximized and hi
TQhi

∗ is the received

power at the ith unintended receiver Rxi that is aimed to be nullified. Also, in (2.4), the

transmit power of the Tx is restricted to P .

Since we aim to study transmit beamforming, the covariance matrix Q in problem P0

should be rank-one [51–53]. Thus Q can be expressed as Q = xx† where x ∈ Cn×1 is

called the beamforming vector. Consequently, by replacing Q = xx† in P0, we obtain the

equivalent optimization problem over the beamforming vector x as (P1)

Gnull = max |xTg|2 (2.5)

subject to: |xThi|2 = 0, for all i = 1, . . . ,m, (2.6)

‖x‖2 ≤ P,

where the optimization (2.7) is over the beamforming vector x. We further refer to the

m constraints in (2.6) as the null-steering constraints. Therefore, the focus now is to find

a suitable beamforming vector x that satisfies the m null-steering constraints and, at the

same time, maximizes the received power at the Rx.

It is worth noting that, beamforming is performed here at each discrete time instant

k based on the corresponding channel knowledge at that instant. Consequently, the null-

steering constraints (2.6) are satisfied at each time instant k and thus are characterized as

the peak interference power constraint [73].

In the case that no unintended receiver is present (m = 0), the transmit beamforming

problem above simply reduces to the transmit maximal-ratio combining that maximizes

the received power at the Rx over the vector x. The average received power in this case

grows linearly with the number of transmit antennas n.
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Solving the Optimization Problem

The problem P1 can be rewritten as (P2)

Gnull = max |xTg|2 (2.7)

subject to: xTH = 0, (2.8)

‖x‖2 ≤ P,

where H∈ Cn×m and its ith column is the vector hi for all i = 1, 2, . . . ,m.

The singular value decomposition (SVD) of H yields H = UΣ1/2V, where U∈ Cn×n

and V∈ Cm×m are unitary matrices and Σ∈ Cn×m is diagonal. Therefore, we can express

the null-steering constraint xTH = 0 as xTUΣ1/2V = 0, which is further reduced to

xTUΣ1/2 = 0. Defining xTU = zT , where z = (z1, . . . , zn)T is a new coordinate system,

we obtain zTΣ1/2 = 0 as the equivalent null-steering constraint.

Note that due to the statistical independence of vectors hi for all i, the realizations of

hi for all i are linearly independent with high probability and thus H is full-rank which

leads to Σ being full-rank as well. Therefore, satisfying the constraint zTΣ1/2 = 0 yields

the elimination of m dimensions (assuming m < n).

Furthermore, we find the new transmit power constraint as ‖z‖2 = ‖x‖2 ≤ P and the

new objective function |xTg|2 = |xTUU−1g|2 = |zT g̃|2, where g̃ = U−1g is the rotated

version of the vector g. Thus, a new formulation for P2 in terms of the new coordinate

system z, can be expressed as (P3)

Gnull = max |zT g̃|2 (2.9)

subject to: zTΣ1/2 = 0 (2.10)

‖z‖2 ≤ P. (2.11)

Having g = u + µ from (2.1), we obtain

g̃ = U−1g = U−1u + U−1µ = ũ + µ̃. (2.12)

It is crucial to point out the following important facts regarding the rotations of the channel

gain vectors:

29



1. Note that the random point µ is uniformly located on the surface of a (2n)-dimensional

sphere with the non-random and fixed radius ‖µ‖. This point is then rotated by the

rotation matrix U−1. Therefore, the new random point µ̃ is also uniformly located

on the same sphere, which implies ‖µ̃‖2 = ‖µ‖2, and all the real and imaginary parts

of µ̃1, . . . , µ̃n are also identically (but not independently) distributed.

2. Since the rotation matrix U−1 is a unitary matrix, the zero-mean CSCG-distributed

vector u is statistically invariant under rotation and thus we have ũ ∼ CN (0, 2σ2In).

Denoting the optimal solution to P3 as zopt, maximization of the received power |zT g̃|2

in (2.9) yields arg(zopti ) = − arg(g̃i), for i = 1, . . . , n. Therefore, making (2.11) tight in the

constraint, we obtain

zopt =

√
P (0, . . . , 0, g̃m+1, . . . , g̃n)†√∑n

l=m+1 |g̃l|2
· (2.13)

Note that if n ≤ m, we will have zopt = 0 which is not interesting. Therefore, in the sequel,

we use the assumption that m < n.

Maximum Received Power at the Intended Receiver Rx

Having zopt as in (2.13), the maximum received power at the Rx is

Gnull = |g̃Tzopt|2 = P
n∑

l=m+1

|g̃l|2 = P
n∑

l=m+1

|ũl + µ̃l|2, (2.14)

where ũl is the lth entry of the rotated vector ũ. Conditioning on µ̃, the random variable

Gnull/Pσ2 has non-central chi-square distribution with 2(n − m) degrees of freedom (see
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[74]). Thus, the expected value of Gnull in (2.14) can be derived as

E
[
Gnull

]
= Eµ̃

[
E
[
Gnull|µ̃

]]
= PEµ̃

[
E

[
n∑

l=m+1

(Re (ũl) + Re (µ̃l))
2 |µ̃

]]

+ PEµ̃

[
E

[
n∑

l=m+1

(Im (ũl) + Im (µ̃l))
2 |µ̃

]]

= PEµ̃

[
n∑

l=m+1

E
[
(Re (ũl) + Re (µ̃l))

2 |µ̃
]]

+ PEµ̃

[
n∑

l=m+1

E
[
(Im (ũl) + Im (µ̃l))

2 |µ̃
]]

= PEµ̃

[
n∑

l=m+1

(
σ2 + Re (µ̃l)

2)]+ PEµ̃

[
n∑

l=m+1

(
σ2 + Im (µ̃l)

2)]

= 2Pσ2 (n−m) + PEµ̃

[
n∑

l=m+1

Re (µ̃l)
2 +

n∑
l=m+1

Im (µ̃l)
2

]
. (2.15)

Suppose we are given a random point µR = (Re(µ̃1), Im(µ̃1), . . . ,Re(µ̃n), Im(µ̃n)) uni-

formly distributed on a (2n)-dimensional sphere with radius ‖µ‖. Define X = Re(µ̃1)

as the projection of µR to its first coordinate. According to [75], X has the following

probability distribution function

fX(x) =

(√
‖µ‖2 − x2

)2n−3

c
, (2.16)

for −‖µ‖ ≤ x ≤ ‖µ‖, where c =
√
π‖µ‖2n−2Γ(n− 1

2
)/Γ(n) is an appropriate scaling factor

in which Γ(n) is the Gamma function. Consequently, we can find

E[X2] =
1

c

∫ ‖µ‖
−‖µ‖

x2
(√
‖µ‖2 − x2

)2n−3

dx =
2‖µ‖2nΓ(3/2)Γ(n)

‖µ‖2n−2Γ(1/2)Γ(n+ 1)
=
‖µ‖2

2n
,

using the fact that (see [76])∫ ‖µ‖
0

x2
(√
‖µ‖2 − x2

)2n−3

dx =
‖µ‖2n Γ(3/2)Γ(n− 1/2)

2 Γ(n+ 1)
.
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Therefore following from (2.15) and knowing that the entries of µR are identically dis-

tributed, we find

E[Gnull] = 2Pσ2(n−m) +
P‖µ‖2(n−m)

n

= 2Pσ2(n−m)(K + 1), (2.17)

in terms of the K-factor defined in (2.2). As shown in (2.17), the expected value of the

maximum received power at the Rx grows linearly with (n−m) and is directly proportional

to the K-factor.

The variance of Gnull in (2.14) can be expressed as (see [77])

Var[Gnull] = Varµ̃[E[Gnull|µ̃]] + Eµ̃[Var[Gnull|µ̃]]. (2.18)

From (2.14), we have

E
[
Gnull|µ̃

]
= PE

[
n∑

l=m+1

(Re (ũl) + Re (µ̃l))
2 |µ̃

]
+ PE

[
n∑

l=m+1

(Im (ũl) + Im (µ̃l))
2 |µ̃

]

= 2Pσ2 (n−m) + P

(
n∑

l=m+1

Re (µ̃l)
2 +

n∑
l=m+1

Im (µ̃l)
2

)
.

Thus, we can write

Varµ̃[E[Gnull|µ̃]] = P 2Varµ̃

[
n∑

l=m+1

Re (µ̃l)
2 +

n∑
l=m+1

Im (µ̃l)
2

]
= 2P 2(n−m)Var[X2] + 2P 2(n−m)(2n− 2m− 1)Cov[X2, Y 2], (2.19)

where as stated earlier, (X, Y ) = (Re(µ̃1), Im(µ̃1)). Knowing Var[X2] = E[X4] − E2[X2]

and finding from (2.16) that

E[X4] =
(2n− 1)‖µ‖4

4n2(n+ 1)
,

we derive

Var[X2] =
(n− 2)‖µ‖4

4n2(n+ 1)
.
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Furthermore, since

Var
[
‖µ‖2

]
= 2nVar[X2] + 2n(2n− 1)Cov[X2, Y 2] = 0,

we obtain

Cov[X2, Y 2] =
Var[X2]

1− 2n
.

Consequently, we find the first term of (2.18) as

Varµ̃[E[Gnull|µ̃]] = P 2m‖µ‖4 (n−m)(n− 2)

n2(n+ 1)(2n− 1)

= 4P 2K2σ4m
(n−m)(n− 2)

(n+ 1)(2n− 1)
. (2.20)

in terms of the K-factor.

From (2.14), we have

Var[Gnull|µ̃] = P 2Var

[
n∑

l=m+1

(Re(ũl) + Re(µ̃l))
2 +

n∑
l=m+1

(Im(ũl) + Im(µ̃l))
2|µ̃

]

= P 2Var

[
n∑

l=m+1

(Re(ũl) + Re(µ̃l))
2|µ̃

]
+ P 2Var

[
n∑

l=m+1

(Im(ũl) + Im(µ̃l))
2|µ̃

]

= P 2σ4Var

[
1

σ2

n∑
l=m+1

(Re(ũl) + Re(µ̃l))
2|µ̃

]

+ P 2σ4Var

[
1

σ2

n∑
l=m+1

(Im(ũl) + Im(µ̃l))
2|µ̃

]
(2.21)

= 2P 2σ4

(
n−m+

2

σ2

n∑
l=m+1

Re(µ̃l)
2

)
+ 2P 2σ4

(
n−m+

2

σ2

n∑
l=m+1

Im(µ̃l)
2

)
,

which is found knowing that given µ̃, the random variable 1
σ2

∑n
l=m+1(Re(ũl) + Re(µ̃l))

2 in

(2.21) is chi-square distributed with n−m degrees of freedom (see [74]).

Therefore, recalling E[Re(µ̃l)
2] = E[Im(µ̃l)

2] = ‖µ‖2/2n, for l = m + 1, . . . , n, we find

the second term of (2.18) as

Eµ̃

[
Var
[
Gnull|µ̃

]]
= 4P 2σ4(n−m) +

4P 2σ2‖µ̃‖2(n−m)

n

= 4P 2σ4(n−m)(1 + 2K), (2.22)
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in terms of the K-factor.

By replacing (2.20) and (2.22) in (2.18), we obtain

Var[Gnull] = 4P 2σ4(n−m)

(
m(n− 2)

(n+ 1)(2n− 1)
K2 + 2K + 1

)
.

Using Chebychev’s inequality [77], we have for every ζ > 0

Pr
[∣∣Gnull − E[Gnull]

∣∣ ≥ ζE[Gnull]
]
≤ Var[Gnull]

ζ2E2[Gnull]
· (2.23)

Since

Var[Gnull]

E2[Gnull]
=

m(n−2)
(n+1)(2n−1)

K2 + 2K + 1

(n−m)(K + 1)2
,

converges to zero as n → ∞, therefore Gnull converges to E[Gnull] in probability as n

increases. Thus, E[Gnull] becomes a more precise indicator of the realization of Gnull when

the number of antennas increases.

Performance Evaluation

Summarizing the results obtained in this section in the case of perfect CSIT, we can point

out the following facts:

1. When the number of transmit antennas is greater than the number of unintended

receivers (n > m), the transmitter can successfully perform null-steering beamform-

ing and achieve a nonzero value for the mean received power E[Gnull] which grows

linearly with (n − m). Intuitively, in such a case, m degrees of freedom are used

for nullifying the interference at m unintended receivers while the remaining n −m
degrees of freedom are used towards spatial diversity in the intended link. Therefore,

either a larger number of antennas or smaller number of unintended receivers leads

to higher values of E[Gnull].

2. The mean received power E[Gnull] is directly proportional to the power of the line-of-

sight component represented by the K-factor. Thus, a better line-of-sight component

in the intended link provides a better performance.
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3. Since the ratio Var[Gnull]/ζ2E2[Gnull] approaches zero as n grows large for any ζ > 0,

the stochastic average E[Gnull] becomes a more precise indicator of the realization of

Gnull as the number of antennas increases.

2.3.2 Imperfect CSIT

As previously discussed in Section 1.3, obtaining perfect CSIT is very challenging in prac-

tice. Thus, a more general and realistic scenario is to consider the case when the channel

gain vectors are not perfectly known at the Tx which happens due to nonzero channel

estimation errors. In this section, we address the case of imperfect CSIT by modelling the

channel estimation error to be Gaussian distributed (which is a reasonable assumption in

estimation methods such as maximum likelihood (ML) estimation [39]). This model allows

us to obtain statistical closed-form results and find how the performance is affected due to

the lack of perfect CSIT.

With ML estimation [39], the estimated channel gain vectors are expressed as

ĝ = g + w, ĥi = hi + wi, (2.24)

where g and hi for i = 1, . . . ,m are the actual channel gain vectors. w and wi, are the

estimation error vectors which are distributed as CN (0, 2σ2
eIn), for i = 1, . . . ,m and are

independent for all i. Furthermore, we assume that the actual channel gains and their

respective estimation errors are independent.

Throughout this chapter, we denote the ratio of the scattering component’s power to

the power of the estimation error as γ = σ2/σ2
e and interchangeably refer to it as the signal

to estimation error ratio (SER).

We assume that the Tx does not have a priori knowledge of the error vectors or σ2
e ,

or any uncertainty regions containing the actual channels. Therefore, uncertainty analysis

can not be performed. Instead, we find an optimal beamforming vector using the estimates

of channel gains instead of the actual channel gains. Consequently, we derive the received

power at the Rx (respectively interference power at Rx1, . . . ,Rxm) corresponding to this
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beamforming vector and refer to it as the “actual” received power (respectively interference

power). Then, we analyze the effect of channel estimation error on these results. Intuitively,

estimation error leads to extra interference at the unintended receivers Rx1, . . . ,Rxm and

less received power at the Rx compared to the corresponding values in the case of perfect

CSIT. Therefore, the results in the case of perfect CSIT are upper bounds for the results

obtained in this section in the case of imperfect CSIT.

Problem Formulation

Having the estimated channel gain vectors in (2.24), we obtain the following optimization

problem (P4) under the system model described in Section 2.2

max |xT ĝ|2

subject to: |xT ĥi|2 = 0, for all i = 1, . . . ,m, (2.25)

‖x‖2 ≤ P.

P4 has the same form as P1 in Section 2.3.1 with estimated channel gains instead. There-

fore, to solve P4 we follow the same approach as in Section 2.3.1 and obtain the optimal

solution as

zopt =

√
P
(

0, . . . , 0, ˜̂gm+1, . . . , ˜̂gn

)†
√∑n

l=m+1 | ˜̂gl|2
, (2.26)

where ˜̂gm+1 denotes the (m+ 1)th entry of ˜̂g.

Actual Interference Power at Rx1, . . . ,Rxm

Because of nonzero estimation errors, the interference power at each unintended receiver is

not zero anymore. We denote the actual interference power at the ith unintended receiver

as Inull, Im
i and derive it as follows

Inull, Im
i = |hi

Txopt|2 = |(ĥi −wi)
Txopt|2 = |wi

Txopt|2,
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for i = 1, 2, . . . ,m. Note that in the derivation of Inull, Im
i above, we use (2.24) and the

fact that according to (2.25), for the optimal beamforming vector xopt, ĥi
T
xopt = 0 for

i = 1, 2, . . . ,m. Therefore,

Inull, Im
i = |wi

Txopt|2 = |w̃i
Tzopt|2,

where w̃i is the rotated version of wi which is also distributed as CN (0, 2σ2
eIn). Hence,

using (2.26), we obtain

Inull, Im
i =

P
∣∣∣∑n

l=m+1
˜̂g∗l w̃il

∣∣∣2
‖˜̂g−m‖2

=
P
(∑n

l=m+1
˜̂g∗l w̃il

)(∑n
r=m+1

˜̂grw̃ir
∗
)

‖˜̂g−m‖2

=

P
∑n

l=m+1 | ˜̂gl|2|w̃il|2 + P
∑n

l,r
l 6=r

˜̂gl ˜̂g
∗
r w̃il

∗w̃ir

‖˜̂g−m‖2
,

where
∑n

l,r
l 6=r

is a shorter notation for
∑n

l=m+1,l 6=r
∑n

r=m+1 and w̃il is the lth entry of w̃i.

Taking into account that the entries of w̃i (the error vector corresponding to the ith

unintended link) and ˜̂g are independent for all i, the expected value of Inull, Im
i can then be

derived as

E[Inull, Im
i ] = P

n∑
l=m+1

E

[
| ˜̂gl|2

‖˜̂g−m‖2

]
E[|w̃il|2] + P

n∑
l,r
l 6=r

E

[
˜̂gl ˜̂g
∗
r

‖˜̂g−m‖2

]
E[w̃i

∗
l ]E[w̃ir].

Since E[w̃il] = 0 and E[|w̃il|2] = 2σ2
e for every i and l, we obtain

E[Inull, Im
i ] = 2Pσ2

e

n∑
l=m+1

E

[
| ˜̂gl|2∑n

l=m+1 | ˜̂gl|2

]
= 2Pσ2

e E

[∑n
l=m+1 | ˜̂gl|2∑n
l=m+1 | ˜̂gl|2

]
= 2Pσ2

e , (2.27)

for i = 1, 2, . . . , n.

Maximum Received Power at the Intended Receiver Rx

Using the actual channel gain vector g, the actual received power at the Rx can be expressed

as

Gnull, Im = |gTxopt|2 = |ĝTxopt −wTxopt|2 = |˜̂gTzopt − w̃Tzopt|2, (2.28)
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which is derived using (2.24).

We can find (see Appendix A) a lower bound on E[Gnull, Im] as

E[Gnull, Im] ≥ 2Pσ2(n−m)

(
K + 1− σ2

e

σ2
+
σ4
eσ

2(1−K) + σ6
e

σ2 (σ2 + σ2
e)

2 +
σ2
e

(σ2 + σ2
e)(n−m)

)
= 2Pσ2(n−m)

(
K + 1− 1

γ
+

1−K + 1
γ

(1 + γ)2 +
1

(n−m)(1 + γ)

)
, (2.29)

with equality when K = 0 (Rayleigh fading).

As γ → ∞, the lower bound on E[Gnull, Im] in (2.29) approaches the result E[Gnull] in

the case of perfect CSIT found in Section 2.3.1. Therefore, we can write

E[Gnull, Im] ≤ E[Gnull] = 2Pσ2(n−m)(K + 1), (2.30)

with equality when γ =∞.

Performance Evaluation

Summarizing the results obtained in this section in the case of imperfect CSIT, we can

point out the following facts:

1. The closed form expression in (2.27), shows how the two parameters P and σ2
e con-

tribute to E[Inull, Im
i ], which is the average interference power at the ith unintended

receiver. Interestingly, E[Inull, Im
i ] in (2.27), does not depend on the number of an-

tennas n for i = 1, 2, . . . ,m. Thus, for a fixed P and σ2
e , n can be increased to

improve the intended link’s performance (due to spatial diversity) without increasing

the average interference power at the unintended receivers.

2. In the case that the estimation is very erroneous, σ2
e grows larger and thus E[Inull, Im

i ]

in (2.27) increases. To prevent such an increase in the average interference, the

transmit power P can be decreased (note that E[Inull, Im
i ] is directly proportional to

P and σ2
e). Since E[Inull, Im

i ] is insensitive to n, the Tx gets the freedom to employ

additional antennas to compensate for its performance loss due to the reduction of

P without resulting in an increase in E[Inull, Im
i ].
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3. In the case of Rayleigh fading between the Tx and the Rx (K = 0), the lower bound

on E[Gnull, Im] in (2.29) becomes tight and we obtain

E[Gnull, Im] = 2Pσ2(n−m)

(
1− 1

γ
+

1

γ(1 + γ)
+

1

(n−m)(1 + γ)

)
. (2.31)

4. When K = 0, according to (2.31), if γ � 1, the mean received power E[Gnull, Im]

approaches the best-case result (E[Gnull]) in (2.30). Particularly, for γ = 0 dB, γ = 4

dB, and γ = 6 dB, the mean received power E[Gnull, Im] is 2.5 dB, 1.8 dB, and 1.1

dB away from E[Gnull] respectively when n = 10. This result can be observed in Fig.

2.2 that plots E[Gnull, Im] in (2.31) versus n for K = 0, P = 1, m = 2, σ = 1, and

different values of γ. In Fig. 2.2, the solid line is E[Gnull] which is the upper bound

of E[Gnull, Im].

5. when K 6= 0, according to the lower bound in (2.29), for K � 1
γ

the estimation error

can be dominated by K and thus the mean received power E[Gnull, Im] approaches the

upper bound E[Gnull]. Fig. 2.3 plots the lower bound of E[Gnull, Im] versus n for P = 1,

m = 2, σ = 1, K = 6 dB, and different values of γ. This choice of the K-factor is

reasonable according to measurements conducted on wireless channels [78]. As it is

seen in this figure, for γ = 0 dB, K = 6 dB leads to 0.97 dB difference between the

lower bound and the upper bound when n = 3, and 1.47 dB difference when n = 10.

These differences are regardless of σ2. Furthermore, as γ increases in Fig. 2.3, the

lower bound of E[Gnull, Im] approaches the upper bound.

2.4 ε-threshold Beamforming

In Section 2.3, we studied null-steering beamforming which is the case when the receivers

Rx1, . . . ,Rxm tolerate no interference from the Tx. Subsequently, under such a condition

and with perfect CSIT, we derived the maximum received power at the Rx and showed that

its expected value grows linearly with (n−m). Intuitively, if a small nonzero interference

(say ε) is allowed at the unintended receivers, a higher maximum received power is antici-

pated at the Rx. In this section2, we find such a tradeoff between the interference threshold
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Figure 2.2: E[Gnull, Im] in dB versus n, for K = 0 and different values of γ when P = 1

and σ = 1. Since m = 2, at least n = 3 antennas are needed for successful null-steering.

ε and the maximum received power at the Rx in the perfect CSIT case. Furthermore, we

examine the case of imperfect CSIT as well and similarly to Section 2.3, we formulate the

degradation in the performance due to channel estimation errors.

The system model considered in this section is similar to the model in Section 2.2 except

that in this section, for simplicity and tractability, we study the special case that K = 0

and m = 1. In other words, we assume that there is only one unintended receiver (Rx1)

and g ∼ CN (0, 2σ2In). Note that for m > 1, the corresponding optimization problem can

2The results presented in this section have been published in [71].
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Figure 2.3: Upper bound and lower bound of E[Gnull, Im] in dB versus n, for K = 6 dB

and different values of γ when P = 1 and σ = 1.

be formulated as a quadratically constrained quadratic program (QCQP) which in general

does not have a closed-form solution. However, the problem can be numerically solved as

shown in [59], using techniques such as second order cone programming (SOCP), or semi

definite programming (SDP).

2.4.1 Perfect CSIT

Here, we examine the case of perfect CSIT and find the maximum received power at the

Rx while the interference power at Rx1 is limited to the threshold ε = αP (α ≥ 0).
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Problem Formulation

When the Tx has perfect knowledge of the channel gain vectors g and h1, the optimization

problem is formulated as (P5)

Gth = max |xTg|2 (2.32)

subject to: |xTh|2 ≤ ε (2.33)

‖x‖2 ≤ P. (2.34)

where the optimization (2.32) is over the beamforming vector x. Therefore, the focus is

to find a suitable beamforming vector x that with the power limited to P (according to

(2.34)) satisfies the interference constraint (2.33) and at the same time, maximizes the

received power at the Rx.

Solving the Optimization Problem

To solve P5, we apply a rotation matrix U ∈ Cn×n that rotates the channel gain vector h

to ‖h‖e1, where e1 is the unit vector in the direction of the first coordinate of h. In other

words, we have Uh = (‖h‖, 0, . . . , 0). Thus, we can express the constraint |xTh|2 ≤ ε in

(2.33) as |xTh|2 = |(xTU−1)(Uh)|2 ≤ ε. Defining xTU−1 = yT , where y = (y1, . . . , yn)T is

a new coordinate system, we obtain |xTh|2 = ‖h‖2|y1|2 ≤ ε.

Consequently, applying a change of coordinates according to the rotation U, we get a

new formulation for P5 in terms of y expressed as (P6)

Gth = max |yT g̃|2

subject to: ‖h‖2|y1|2 ≤ ε,

‖y‖2 ≤ P.

In P6, the vector g̃ = Ug is a rotated vector and we have g̃ ∼ CN (0, 2σ2In). Fur-

thermore, the entries of g̃ are independent of the entries of h. P6 implies that only y1

contributes to the interference power at Rx1. Using |y1| as a slack variable, we can convert
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P6 to the equivalent problem (P7)

Gth = max |yT g̃|2 (2.35)

subject to: |y1| ≤
√
ε

‖h‖
,

‖y−1‖2 ≤ P − |y1|2. (2.36)

Using the triangle inequality and Cauchy-Schwarz inequality, we can write |yT g̃| in (2.35)

as

|yT g̃| ≤ |y1g̃1|+ |y−1T g̃−1| ≤ |y1||g̃1|+ ‖y−1‖‖g̃−1‖. (2.37)

The upper bound on the right hand side of (2.37) can be achieved when arg(y1) = − arg(g̃1)

and y−1 = κg̃∗−1, where κ is a constant. Furthermore, the upper bound can be maximized

when the constraint (2.36) is tight. Therefore, the objective function in (2.35) is written

as

f(y) = |yT g̃|2 =
(
|y1||g̃1|+

√
P − |y1|2 ‖g̃−1‖

)2

.

Denoting the optimal solution to P7 as yopt, we thus obtain y−1
opt =

g̃∗−1

‖g̃−1‖

√
P − |y1|2

(by making (2.36) tight) and in the sequel, we find |yopt1 | by maximizing f(y) over |y1| ≤
√
ε

‖h‖ .

Maximization of f(y) over |y1| yields the two following cases:

1. Case 1; when ‖h‖2 ≤ ε
P
‖g̃‖2
|g̃1|2 : In this case, we obtain |yopt1 | = |g̃1|

‖g̃‖

√
P . Thus,

the optimal solution to P7 becomes yopt = g̃∗

‖g̃‖

√
P and consequently, the maximum

received power at the Rx is found to be Gth = P‖g̃‖2.

2. Case 2; when ‖h‖2 > ε
P
‖g̃‖2
|g̃1|2 : In this case, we obtain |yopt1 | =

√
ε

‖h‖ , and thus y−1
opt =

g̃∗−1

‖g̃−1‖

√
P − ε

‖h‖2 . Therefore, the maximum received power at the Rx is found to be

Gth =

(√
ε|g̃1|
‖h‖ +

√
P − ε

‖h‖2 ‖g̃−1‖
)2

.

To obtain the solution to the original optimization problem P5, we can use the fact that

x = UTy, and find xopt = UTyopt.
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Maximum Received Power at the Intended Receiver Rx

Considering the two different cases for the optimal solution, the maximum received power

at the Rx can be expressed compactly as

Gth = P‖g̃‖2 · 1{
‖h‖2≤ ε

P
‖g̃‖2
|g̃1|2

} +

(
|g̃1|
√
ε

‖h‖
+

√
P − ε

‖h‖2
‖g̃−1‖

)2

· 1{
‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}. (2.38)

Since 1{
‖h‖2> ε

P
‖g̃‖2
|g̃1|2

} 6= 0 implies that ε < P‖h‖2|g̃1|2/‖g̃‖2 < P‖h‖2, we have the expansion

(√
P − ε

‖h‖2

)
· 1{

‖h‖2> ε
P
‖g̃‖2
|g̃1|2

} =
√
P

(
1− ε

2‖h‖2P
−O

(( ε
P

)2
))
· 1{

‖h‖2> ε
P
‖g̃‖2
|g̃1|2

}.
(2.39)

Thus, having P as a fixed constant and ε ≥ 0 as a variable, we can write the second term

in (2.38) as(
|g̃1|
√
ε

‖h‖
+

√
P − ε

‖h‖2
‖g̃−1‖

)2

· 1{
‖h‖2> ε

P
‖g̃‖2
|g̃1|2

} (2.40)

=

(
P‖g̃−1‖2 +

√
ε

(
2|g̃1|‖g̃−1‖
‖h‖

√
P

)
− ε
(
‖g̃−1‖2 − |g̃1|2

‖h‖2

)
−O

(( ε
P

) 3
2

))
· 1{

‖h‖2> ε
P
‖g̃‖2
|g̃1|2

}.
(2.41)

We can find the expected value of Gth in (2.38) using E[Gth] = Eg̃

[
Eh

[
Gth|g̃

]]
. There-

fore,

E[Gth] = PEg̃

[
Eh

[
‖g̃‖2 · 1{

‖h‖2≤ ε
P
‖g̃‖2
|g̃1|2

}|g̃
]]

+ Eg̃

[
Eh

[(
|g̃1|
√
ε

‖h‖
+

√
P − ε

‖h‖2
‖g̃−1‖

)2

· 1{
‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}|g̃
]]

. (2.42)

Using the expansion in (2.41) and knowing that the entries of g̃ and h are independent,
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we obtain

E[Gth] = PEg̃

[
‖g̃‖2Pr

{
‖h‖2 ≤ ε

P

‖g̃‖2

|g̃1|2
|g̃
}]

+ PEg̃

[
‖g̃−1‖2Pr

{
‖h‖2 >

ε

P

‖g̃‖2

|g̃1|2
|g̃
}]

+ 2
√
PεEg̃

|g̃1|‖g̃−1‖Eh

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖
|g̃


− εEg̃

(‖g̃−1‖2 − |g̃1|2
)
Eh

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖2
|g̃


−O

(( ε
P

) 3
2

)
. (2.43)

The random variable ‖h‖2/σ2 is chi-square distributed with 2n degrees of freedom (see [74]).

Therefore,

Pr
{
‖h‖2 > u

}
=

(
1 +

u

2σ2
+

u2

(2σ2)22!
+ . . .+

un−1

(2σ2)n−1(n− 1)!

)
e−

u
2σ2 ,

where u is a positive real number (see [74]), and thus using the series expansion of e−
u

2σ2

with u = ε
P
‖g̃‖2
|g̃1|2 for a fixed g̃, we find

Pr

{
‖h‖2 >

ε

P

‖g̃‖2

|g̃1|2
|g̃
}

= 1− 1

n!

(
‖g̃‖2

|g̃1|2

)n ( ε

2Pσ2

)n
+O

(( ε
P

)n+1
)
. (2.44)

Therefore, by (2.44), we can derive

Eg̃

[
‖g̃−1‖2 · Pr

{
‖h‖2 >

ε

P

‖g̃‖2

|g̃1|2
|g̃
}]

= E
[
‖g̃−1‖2

]
− E [f1 (g̃)]O

(( ε
P

)n)
, (2.45)

and

Eg̃

[
‖g̃‖2 · Pr

{
‖h‖2 ≤ ε

P

‖g̃‖2

|g̃1|2
|g̃
}]

= E [f2 (g̃)]O
(( ε

P

)n)
, (2.46)

where f1, f2 are suitable functions of the entries of g̃.

Furthermore, knowing that ‖h‖2/σ2 is chi-square distributed and thus E
[

1
‖h‖

]
=
√

2 Γ(n+ 1
2

)

σΓ(n)(2n−1)

45



(see [74]), for a fixed g̃, we can write

Eh

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖
|g̃

 = E

[
1

‖h‖

]
− 2−n

σΓ(n)

∫ ε
Pσ2

‖g̃‖2

|g̃1|2

0

xn−
3
2 e−

x
2 dx

=

√
2 Γ(n+ 1

2
)

σΓ(n)(2n− 1)
− 2−n

σΓ(n)

∫ ε
Pσ2

‖g̃‖2

|g̃1|2

0

xn−
3
2

(
1 +

∞∑
n=1

(−1)n(xn)

2n

)
dx,

(2.47)

which after caclulating the integral on the right hand side of (2.47), results in

Eg̃

Eh

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖
|g̃

 =

√
2 Γ(n+ 1

2
)

σΓ(n)(2n− 1)
−O

(( ε
P

)n− 1
2

)
. (2.48)

Using the same approach as above, since E
[

1
‖h‖2

]
= 1

2(n−1)σ2 (see [74]), we obtain

Eg̃

Eh

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖2
|g̃

 =
1

2(n− 1)σ2
−O

(( ε
P

)n−1
)
. (2.49)

Therefore, by (2.48) and (2.49), we can derive

Eg̃

|g̃1|‖g̃−1‖E

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖
|g̃

 =

√
2 Γ(n+ 1

2
)

σΓ(n)(2n− 1)
E [|g̃1|‖g̃−1‖]

− E [f3 (g̃)]O

(( ε
P

)n− 1
2

)
, (2.50)

and

Eg̃

(‖g̃−1‖2 − |g̃1|2
)
E

1
{‖h‖2> ε

P
‖g̃‖2
|g̃1|2

}

‖h‖2
|g̃

 =
E [‖g̃−1‖2 − |g̃1|2]

2(n− 1)σ2

− E [f4 (g̃)]O

(( ε
P

)n−1
)
, (2.51)

respectively, where f3, f4 are suitable functions of the entries of g̃.

Thus, following from (2.43) and using (2.46)–(2.51), the expected value of Gth can be

written as

E[Gth] = PE
[
‖g̃−1‖2

]
+
√

2Pε
Γ(n+ 1

2
)

σΓ(n)(n− 1
2
)
E [|g̃1|]E [‖g̃−1‖]

+ ε
E [|g̃1|2]− E [‖g̃−1‖2]

2(n− 1)σ2
−O

(( ε
P

) 3
2

)
. (2.52)
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The random variable, ‖g̃−1‖2/σ2 is chi-square distributed and the random variable, ‖g̃−1‖/σ
is chi distributed both with 2(n− 1) degrees of freedom. Therefore, we have (see [74])

E
[
‖g̃−1‖2

]
= 2(n− 1)σ2

E [‖g̃−1‖] =
√

2σ
Γ(n− 1

2
)

Γ(n− 1)

E
[
|g̃1|2

]
= 2σ2

E [|g̃1|] =
√

2 Γ

(
3

2

)
σ.

Thus, replacing the above quantities in (2.52), we obtain

E[Gth] = 2Pσ2(n− 1) + 2
√

2Pε σ

(
Γ
(

3
2

)
Γ(n− 1

2
)Γ
(
n+ 1

2

)
Γ(n)Γ(n− 1)

(
n− 1

2

) )− ε(n− 2

n− 1

)
−O

(( ε
P

) 3
2

)
,

= 2Pσ2(n− 1) + 2
√

2αPσ

(
Γ
(

3
2

)
Γ(n− 1

2
)Γ
(
n+ 1

2

)
Γ(n)Γ(n− 1)

(
n− 1

2

) )− αP (n− 2

n− 1

)
−O

(
α

3
2

)
,

(2.53)

where ε = αP . Note that each term in E[Gth] above is deliberately chosen to be the product

of P and a unitless quantity. These unitless quantities in turn are expressed in terms of the

unitless ratio α = ε/P , to show explicitly how increasing the tolerable interference ratio α

affects E[Gth].

Performance Evaluation

Summarizing the results obtained in this section in the case of perfect CSIT, we can point

out the following facts:

1. When the interference threshold is zero (α = 0) as in Section 2.3.1, the result in

(2.53) reduces to the result in (2.17) (note that K = 0 and m = 1 in this section).

Thus, the first term in (2.53), which corresponds to such null-steering beamforming

approach, is referred to as the null-steering result.

2. If we exclude the higher order terms in (2.53) (the terms of order α
3
2 and higher),

we obtain a second order approximation of E[Gth] in
√
α (throughout this chapter,

second order approximation refers to second order approximation in
√
α).
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3. Fig. 2.4 plots the mean received power E[Gth] in (2.42) (the exact value) and its

second order approximation versus n for P = 1 and σ = 1. Fig. 2.5 plots E[Gth] in

(2.42) and its second order approximation versus α for P = 1 and σ = 1. As shown in

the figures, the second order approximations track well the exact values. Therefore,

the second order approximation of E[Gth] is accurate for α at least as large as 0.5.

4. As n increases, the terms
Γ(n− 1

2
)Γ(n+ 1

2)
Γ(n)Γ(n−1)(n− 1

2)
and n−2

n−1
in (2.53), both converge to 1.

Particularly, for n = 10, we have
Γ(n− 1

2
)Γ(n+ 1

2)
Γ(n)Γ(n−1)(n− 1

2)
= 0.97 and n−2

n−1
= 0.89. Therefore,

for large n, the second order approximation of E[Gth] can be written as

E[Gth] ' 2Pσ2(n− 1) + 2
√

2αPσ Γ

(
3

2

)
− αP. (2.54)

We are interested in finding tradeoffs between the interference threshold, ε = αP ,

and the mean received power at the Rx, i.e., E[Gth]. In other words, we aim to study

the improvement in E[Gth] as α grows slightly larger than zero. In (2.54), since n

is sufficiently large, for small α the first term is clearly dominant. Thus, a small

increase in α from zero results in a slight relative increase in E[Gth]. Therefore, when

the number of antennas is large, a nonzero interference threshold does not lead to a

significant gain in E[Gth] compared to the null-steering result. This fact can also be

observed in Fig. 2.4 as the gap between the the performance for α = 0 (null-steering

result) and the performance corresponding to different values of α decreases as n

increases.

5. On the other hand, for smaller values of n, since the first term in the second order

approximation of (2.53) is not dominant, an increase in α from zero does lead to a

moderate increase in E[Gth]. As shown in Fig. 2.5, for n = 2, n = 4, and n = 6, the

change of α from 0 to 0.1 leads to an increase of 1.2 dB (31%), 0.5 dB (11%), and

0.3 dB (6%) in E[Gth] respectively.

2.4.2 Imperfect CSIT

In the realistic case of imperfect CSIT, we assume that the Tx ignores or is ignorant of

the existence of estimation errors. Therefore, beamforming weights are computed using
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the channel estimates. Subsequently, the actual received power at the Rx, Gth, Im, and the

actual interference power at Rx1, Ith, Im, are derived and then statistically analyzed.

Problem Formulation

Since only the estimated channel gains are available at the Tx, the optimization problem

considered in this section has the same formulation as P5 in Section 2.4.1 but with the

estimated channel gains instead. With ML estimation [39], the estimated channel gain

vectors ĝ and ĥ can be expressed as

ĝ = g + w, ĥ = h + v, (2.55)

where g and h are the actual channel gain vectors, and w and v, are the estimation

error vectors which are distributed as CN (0, 2σ2
eIn) and are independent. Furthermore, we

assume that the actual channel gains and their respective estimation errors are independent.

Therefore, we obtain P8 as

max |xT ĝ|2

subject to: |xT ĥ|2 ≤ ε, (2.56)

‖x‖2 ≤ P.

Solving the Optimization Problem

To solve P8, we can follow the same approach as in Section 2.4.1 and similarly, exploit U
′

as a rotation matrix to obtain an equivalent optimization problem as follows (P9)

max |yT ˜̂g|2

subject to: ‖ĥ‖2|y1|2 ≤ ε, (2.57)

‖y‖2 ≤ P.

Similarly to Section 2.4.1, solving P9 yields the following two cases:
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1. Case 1; when ‖ĥ‖2 ≤ ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, we obtain the optimal solution to P9

as yopt =
˜̂g
∗

‖˜̂g‖

√
P .

2. Case 2; when ‖ĥ‖2 > ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, we obtain |yopt1 | =

√
ε

‖ĥ‖ , and y−1
opt =

˜̂g−1
∗

‖˜̂g−1‖

√
P − ε

‖ĥ‖2 .

Actual Interference Power at the Unintended Receiver Rx1

Denote the optimal solution to P8 as xopt. Then, using (2.55), the actual interference

power at Rx1 can be written as

Ith, Im = |hTxopt|2 = |ĥTxopt − vTxopt|2 = |‖ĥ‖yopt1 − ṽTyopt|2

= ‖ĥ‖2|yopt1 |2 + |ṽTyopt|2 − ‖ĥ‖yopt1 ṽ†yopt∗ − ‖ĥ‖yopt1

∗
ṽTyopt, (2.58)

where ṽ is the rotated version of v and thus it is also distributed as CN (0, 2σ2
eIn).

The first term in (2.58) is equal to the interference threshold ε = αP because (2.57)

is tight in the constraint. The remaining terms in (2.58) are introduced by the estima-

tion error v. Calculating the expected value of the actual interference power Ith, Im (see

Appendix B), for ε = αP , we find

E[Ith, Im] = 2Pσ2
e + ε−O

(( ε
P

)n)
= 2Pσ2

e + αP −O (αn) . (2.59)

Actual Received Power at the Intended Receiver Rx

Using (2.55), the actual received power at the intended receiver Rx is

Gth, Im = |gTxopt|2 = |ĝTxopt −wTxopt|2 = |˜̂gTyopt − w̃Tyopt|2

= |˜̂gTyopt|2 + |w̃Tyopt|2 − ˜̂g
T
yoptw̃†yopt∗ − ˜̂g

†
yopt∗w̃Tyopt, (2.60)

where w̃ is the rotated version of w and thus it is also distributed as CN (0, 2σ2
eIn).
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Calculating the expected value of the actual received power Gth, Im (see Appendix C),

for ε = αP , we find

E[Gth, Im] = Q+
√
αR + αT +O

(
α

3
2

)
, (2.61)

where

Q = 2P (n− 1)σ2

(
1− 1

γ
+

1

γ(1 + γ)
+

1

(n− 1)(1 + γ)

)
, (2.62)

R = 2
√

2Pσ
Γ
(

3
2

)
Γ
(
n− 1

2

)
Γ
(
n+ 1

2

)
Γ(n)Γ(n− 1)

(
n− 1

2

) (
γ

1 + γ

) 3
2

, (2.63)

T = P

(
−1 +

1

n− 1
− 1

(1 + γ)2
− γ

(n− 1)(1 + γ)2
+

2n− 3

(n− 1)(1 + γ)

)
, (2.64)

and γ = σ2/σ2
e is the signal to estimation error ratio (SER). Note that in the case of no

channel estimation error (γ =∞), (2.61) is equal to (2.53).

Performance Evaluation

Summarizing the results obtained in this section in the case of imperfect CSIT, we can

point out the following facts:

1. In (2.59), the first term is equal to the actual mean interference power at Rx1 for null-

steering beamforming (α = 0) as derived in Section 2.3. In the case of a relatively

small α, for sufficiently large n, the first two terms in (2.59) which are independent

of n, become dominant. Therefore, similarly to the null-steering scenario, the Tx

can employ more antennas to improve the intended link’s performance (due to spa-

tial diversity) without increasing the average interference power at the unintended

receiver.

2. The empirical average of the actual interference at the unintended receiver (the exact

E[Ith, Im]) and the second order approximation of E[Ith, Im] in (2.59) are plotted versus

n in Fig. 2.6. As shown, the approximation tracks well the exact value and is

effectively insensitive to n. Even though the acceptable interference threshold is

51



ε = αP , because of channel estimation inaccuracy, E[Ith, Im] has an extra dominant

term, according to (2.59), which is proportional to the power of the estimation error.

Therefore, more accurate estimation of the channel gains result in interference power

closer to the intended threshold ε.

3. The mean received power at the Rx found with perfect CSIT in (2.53) is an upper

bound for the actual received power at the Rx derived in (2.61). In other words, as

γ → ∞, (2.61) converges to (2.53). Fig. 2.7 plots E[Gth, Im] and the second order

approximation of the analytic result in (2.61) for α = 0 versus n for different values

of γ, when P = 1 and σ = 1. As shown in the figure, the analytic result tracks well

the exact value. Furthermore, for a fixed n, as γ increases, E[Gth, Im] increases to

approach the upper bound (the w/o error performance).

4. As n increases, the second order approximation of (2.61) converges to

E[Gth, Im] ' 2Pσ2

1 + γ
+ 2Pσ2

(
1− 1

γ
+

1

γ(1 + γ)

)
(n− 1)

+ 2
√

2αP σ Γ

(
3

2

)(
γ

1 + γ

) 3
2

− αP
(

1 +
1

(1 + γ)2

)
. (2.65)

Fig. 2.8 and Fig. 2.9 plot the exact E[Gth, Im] in (2.61) and its second order approxi-

mation versus n for different values of γ and α when P = 1 and σ = 1. As shown in

the figures, the second order approximation tracks well the exact value in each case.

Furthermore, according to these figures, for small n, E[Gth, Im] increases moderately

as α increases but for larger values of n, the increase of α leads to a small relative

increase in E[Gth, Im]. In other words, with the increase of n, the gap between the

performance for α = 0 (the null-steering result) and the performance corresponding

to different values of α decreases.

Fig. 2.10 and Fig. 2.11 plot the exact E[Gth, Im] in (2.61) and its second order

approximation versus α for n = 5 and n = 9 respectively, when P = 1 and σ =

1. According to the figures, the second order approximation tracks well the exact

E[Gth, Im] for different values of γ. Furthermore, E[Gth, Im] does not significantly

improve with the increase in α, the improvements in the case of imperfect CSIT
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are less compared to the perfect CSIT case, and the improvements decrease as the

number of antennas increases.

2.5 Summary and Conclusions

In this chapter, we have studied beamforming in order to manage and limit the interference

from a typical transmitter to some unintended receivers while improving the performance

of the intended link between the transmitter and its own receiver. An optimal beamform-

ing vector has been characterized for the both scenarios of null-steering beamforming and

ε-threshold beamforming under the condition that the respective desired interference con-

straint is satisfied. Subsequently, closed form expressions for the average received power

at the intended receiver are derived in both scenarios in the case of perfect CSIT and

imperfect CSIT.

Intuitively, the allowance of a small nonzero interference at the unintended receivers as

in the ε-threshold beamforming scenario, should improve the received power at the intended

receiver. But the analysis in this thesis has shown that this enhancement is marginal and

not worthwhile, notably in the case of imperfect CSIT. More specifically, when the inter-

ference threshold of the unintended receiver is a small value relative to the transmit power

P , ε-threshold beamforming does not lead to a significant increases in the average received

power at the intended receiver compared to the null-steering result. Therefore, there is

no significant loss in the performance of the intended link if the transmitter performs

null-steering beamforming instead of ε-threshold beamforming.

For the null-steering beamforming scenario, we have shown that the mean received

power at the intended receiver grows with the number of antennas minus the number

of unintended receivers. Therefore, it can be enhanced either by employing additional

antennas or by reduction in the number of unintended receivers.

Thus, the transmitter can perform null-steering beamforming and use a large number of

antennas to increase the received power at the intended receiver and boost its performance

(due to spatial diversity) instead of relying on the interference threshold to improve the
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performance. In this way, since the average interference power is only 2Pσ2
e and is inde-

pendent of n, using more antennas does not significantly impact the unintended receivers.

In fact, if the estimation error variance 2σ2
e is small enough, the imposed average interfer-

ence power may even be less than the interference threshold ε regulated by the unintended

receiver (regardless of the number of antennas).

Furthermore, the mean received power at the intended receiver is directly proportional

to the power of the line-of-sight component of the intended link for the null-steering scenario

and as shown in Fig. 2.2, in the case of imperfect CSIT, a moderate line-of-sight component

can significantly reduce the effect of estimation error on the performance of the intended

link.

An application of null-steering beamforming can be for example in cognitive radio sys-

tems. In such systems, the secondary transmitter can employ multiple antennas and thus

perform null-steering beamforming to nullify the co-channel interference at the primary re-

ceivers. Therefore, the concurrent operation of the secondary system in the same licensed

frequency band does not degrade the performance of the primary system. Furthermore,

by using additional secondary antennas, not only the performance of the primary system

remains unchanged but also the performance of the secondary system is improved.
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Figure 2.4: The exact value of E[Gth] in the case of perfect CSIT and its second order

approximation versus n for different values of α when P = 1 and σ = 1. For different

values of α from zero to 0.5, the approximation tracks well the exact value.

For a fixed n, as α increases, E[Gth] increases, i.e., intentionally allowing additional inter-

ference to Rx1 provides additional received power at the Rx.

With the increase of n, the gap between the null-steering result (performance for α = 0)

and the performance corresponding to other values of α decreases, which implies that

for large n, a nonzero interference threshold does not lead to a significant gain in E[Gth]

compared to the null-steering result.
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Figure 2.5: The exact value of E[Gth] in the case of perfect CSIT and its second order

approximation versus α for different values of n when P = 1 and σ = 1. The approximation

tracks well the exact value.

E[Gth] increases as α increases. Smaller n leads to a higher increase in E[Gth]. For n = 2,

n = 3, n = 4, n = 6, and n = 9, the increase in E[Gth] is 1.2 dB (31%), 0.7 dB (16%), 0.5

dB (11%), 0.3 dB (6%), and 0.2 dB (4%) respectively, when α increases from 0 to 0.1.
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Figure 2.6: The exact value of E[Ith, Im] in dB and its second order approximation versus

n for different values of α and γ when P = 1 and σ = 1. The second order approximation

tracks well the exact value and it is insensitive to n.
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Figure 2.7: The exact value of E[Gth, Im] in the case of imperfect CSIT and its second order

approximation versus n for different values of γ when α = 0, P = 1, and σ = 1. The

second order approximation tracks well the exact value.

For a fixed n, as γ increases, E[Gth, Im] increases to approach the upper bound (the w/o

error performance).
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Figure 2.8: The exact value of E[Gth, Im] in the case of imperfect CSIT and its second order

approximation versus n for different values of α and γ when P = 1 and σ = 1. The second

order approximation tracks well the exact value. Left: γ = 3 dB, Right: γ = 6 dB.

59



2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

Number of antennas (n)

E
[G

th
,I

m
] 

in
 d

B

 

 

exact value

second order approximation

α = 0

α = 0.01

α= 0.1

α= 0.5

Figure 2.9: The exact value of E[Gth, Im] in the case of imperfect CSIT and its second order

approximation versus n for different values of α when γ = 10 dB, P = 1, and σ = 1. The

second order approximation tracks well the exact value.

For a fixed n, as α increases, E[Gth, Im] increases.

With the increase of n, the gap between the performance for α = 0 (the null-steering

result) and the performance corresponding to different values of α decreases.
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Figure 2.10: The exact value of E[Gth, Im] in the case of imperfect CSIT and its second order

approximation versus α for different values of γ and n = 5, when P = 1 and σ = 1. The

second order approximation tracks well the exact value of E[Gth, Im] for different values

of γ. The exact E[Gth, Im] does not improve significantly with the increase in α. The

improvements in the case of imperfect CSIT are less compared to the perfect CSIT case

(w/o error performance).
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Figure 2.11: The exact value of E[Gth, Im] in the case of imperfect CSIT and its second

order approximation versus α for different values of γ and n = 9, when P = 1 and σ = 1.

The second order approximation tracks well the exact value of E[Gth, Im] for different values

of γ. The exact E[Gth, Im] does not improve significantly with the increase in α.
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Chapter 3

Performance of Water-filling with

Channel Estimation Error at Low

SNR

3.1 Introduction

In this chapter1, we address spatial multiplexing in MIMO systems and explore its capa-

bility to increase data rate (throughput) of wireless systems without increasing bandwidth

or transmit power. As stated earlier, in a rich scattering environment, an n × n MIMO

system can be decomposed into n parallel and independent channels over which multiple

streams of data can be simultaneously sent within the bandwidth of operation. Thus,

by multiplexing over these channels an n-fold increase in the data rate can be obtained

[15,16,19].

With perfect CSIT, water-filling power allocation can achieve the maximum through-

put of a MIMO system with very small probability of error (which is referred to as the

capacity of the system) [16, 19]. When no CSIT is available, equal power allocation can

be performed, i.e., the transmitter can distribute the transmit power equally among the

1The results presented in this chapter have been published in [72].
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transmit antennas as this is the most reasonable way to allocate power in such a case [19].

In [19], having n transmit and n receive antennas in a rich scattering environment, the

capacity of a MIMO system with perfect CSIT and the throughput with no CSIT at all were

found using water-filling and equal power allocation, respectively and were shown to scale

linearly with n as n grows large (intuitively due to spatial multiplexing). Note that MIMO

systems with a large number of antennas (also known as Massive MIMO or Very Large

MIMO) and their capacity scaling results have been under extensive investigation recently

[66–68]. The constant multiplier associated with such linear scaling (the asymptotic growth

rate) in [19], were derived by using the limiting distribution of the eigenvalues of the

channel gain matrix as n grows large. It was shown in [19] that at low SNR, water-filling

with perfect CSIT provides significant throughput improvement asymptotically over equal

power allocation.

In reality, it requires significant effort to obtain CSIT within a reasonable accuracy, es-

pecially at low SNR and in addition, the transmitter may have no a priori reliable knowledge

of the accuracy of channel estimates either. Thus, it is interesting and worthwhile to find

the throughput achieved in MIMO systems if the transmitter performs water-filling based

on erroneous channel estimates only and to compare such a throughput with the through-

put achieved by water-filling based on perfect CSIT and thus to evaluate the performance

loss as a function of the channel estimation error. In this regard, we derive the throughput

achieved by water-filling with imperfect CSIT and show that at low SNR, it scales linearly

with n as n → ∞ with a proportionality constant that is not random, but is given by R.

Then we compare R with CP which is the asymptotic growth rate for the throughput of

water-filling based on perfect channel gains (best-case scenario) as a function of the signal

to estimation error ratio (SER).

The results obtained in this thesis indicate that at low SNR, for moderate values of

the SER, water-filling based on erroneous channel estimates can still achieve significant

throughputs asymptotically. In particular, for SER values such as 5 dB, 0 dB, and −5 dB,

R is found to be 86%, 70%, and 52% of CP, respectively. In addition, we show that, at low

SER, water-filling based on erroneous channel estimates achieves the same throughput as
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equal power allocation asymptotically in the low SNR regime.

Extensive research such as [79–83] has been conducted prior to this work to find the

capacity of MIMO systems at low SNR. The authors in [79] found the capacity in the

case that the transmitter has no CSI, whereas, [80], and [81] addressed the cases of perfect

CSIT, and statistical CSIT as well. On the other hand, in works such as [82, 83], the

capacity of MIMO systems was derived at low SNR, assuming both the transmitter and

the receiver have no CSI. Note that in this chapter, we do not aim to find the capacity

of a MIMO system such as in the works outlined above and furthermore, we do not claim

that water-filling is optimal. Instead, we derive the throughput of a MIMO system if the

transmitter performs water-filling (which is the optimal power allocation strategy with

perfect CSIT) based on erroneous channel estimates only. We evaluate the asymptotic

behaviour of such a throughput and compare it to the capacity with perfect CSIT in order

to understand how much throughput is lost due to channel estimation error.

In [84], the authors derived a lower bound on the ergodic capacity of a MIMO system

given the erroneous channel estimates and the power of the channel estimation error (2σ2
e)

at the transmitter and the receiver (since the channel gains change in each time slot, an

estimation of 2σ2
e can be found based on observed channel gains in previous time slots).

They showed that a strategy that achieves such a lower bound to be a modified water-

filling over spatial (antenna) and temporal (fading) domains. In other words, at every

time slot, new water-filling is performed based on new channel gains. In this thesis, unlike

in [84], a quasi-static fading model is assumed as opposed to ergodic fading, i.e., the channel

gains are fixed for the entire duration of transmission. Furthermore, we assume that the

transmitter has no a priori knowledge of error variance 2σ2
e and that it only knows the

channel estimates based on which it performs water-filling.

As the SNR goes to 0, which is the very low SNR regime, and with perfect CSIT, the

water-filling solution reduces to allocating all the transmit power to the strongest eigen-

direction. This happens intuitively because all the other eigen-directions will be above

the water-filling level and thus no transmit power will be allocated to them. Now, while

the SNR under consideration here is low (which makes it practically sound), we do not
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take the limit of SNR→ 0. Thus, in this case, more than one eigen-direction is used, i.e.,

the transmit power is distributed among multiple eigen-directions. Additionally, with no

CSIT, the strongest eigen-direction is not even known, and all eigen-directions should be

used. Indeed, in our scheme, as the SER becomes small enough, all the eigen-directions

are in fact used (even at low SNR) and water-filling based on imperfect CSIT gives the

same throughput as equal power allocation.

Note that, in the high SNR regime, as shown in [19], equal power allocation (which

requires no CSIT) provides the same asymptotic throughput as water-filling with perfect

CSIT. Hence, in that regime, it is preferable to employ equal power allocation instead of

water-filling and thus studying the effect of channel estimation error on the performance

of water-filling is of no interest.

3.2 System Model

Throughout this chapter, we consider the point-to-point MIMO model with flat-fading

channels shown in Fig. 3.1. The system consists of a transmitter, Tx for short, and a

receiver, Rx for short, each equipped with n antennas. We assume that the communication

is one-way and is from Tx to the Rx in a rich scattering environment.

Denoting the complex baseband signal transmitted at the Tx by the n× 1 vector s, the

received vector at the Rx can be expressed as

r = Hs + z,

where z is the n × 1 additive white Gaussian noise vector at the Rx. We assume that

the entries of z are i.i.d. and zero-mean CSCG-distributed with variance N , i.e., z ∼
CN (0, NIn). For simplicity, we take N = 1. Furthermore, H is the channel gain matrix

whose entries are i.i.d. and zero-mean CSCG-distributed with variance 2σ2, i.e., σ2 per

real dimension.

We assume that the channel is quasi-static fading, i.e., as far as the Tx is concerned,

H is fixed for the duration of the transmission. As stated in Section 1.3, since known
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Tx

Figure 3.1: MIMO system model under consideration; a multi-antenna transmitter, Tx, is

in communication with a multi-antenna receiver, the Rx, in a rich scattering environment.

pilot sequences can be sent from the Tx to the Rx for channel estimation [5, Chap. 3.9],

it is reasonable to assume that H is perfectly known at the Rx. If there is a feedback

link available from the Rx to the Tx, the channel gain knowledge can be forwarded to the

Tx. Also, in bi-directional systems that perform time division duplexing (TDD), using the

reciprocity properties of the channel, the channel gain knowledge can be obtained at the

Tx as well.

We denote the total transmit power over n antennas as P , i.e., E
[
s†s
]
≤ P which

can be equivalently written as Tr(Q) ≤ P where Q = E[ss†] is the transmit covariance

matrix [16]. In addition, we measure the SNR as ρ = P/N = P .

In the MIMO system described above, since the channel gain matrix H is known at the

Rx, the mutual information between the Tx and the Rx can be written as

I(s; r) = H(r)−H(r|s) = H(r)−H(z),

where H(r) is the entropy of the vector r [85]. For a fixed H, among all input distributions

of s with a given covariance matrix Q, the Gaussian distribution s ∼ CN (0,Q) maximizes

H(r) and thus I(s; r). Therefore, we obtain [16]

I(s; r) = log det
[
In + HQH†

]
, (3.1)
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which is equal to the data rate (throughput) that can be transmitted over the channel with

arbitrarily small error probability. The mutual information in (3.1) depends on how the

Tx chooses the input covariance matrix Q which is based on the knowledge of the channel

gain matrix H at the Tx (i.e. CSIT). We consider the three different cases of no CSIT,

perfect CSIT, and imperfect CSIT based on the availability of CSIT at the Tx.

3.3 Analysis of No CSIT and Perfect CSIT cases

3.3.1 Throughput with No CSIT

When the Tx has no knowledge of the channel gain matrix H, we assume that it distributes

the total transmit power P equally over n transmit antennas as this is the most reasonable

way to allocate power in such a case [4]. Therefore, the input covariance matrix Q is equal

to the normalized identity matrix, i.e., Q = P In/n. Thus, denoting {λ1, λ2, . . . , λn} as

the eigenvalues of HH†, following from (3.1), the mutual information with equal power

allocation is

IN
n = log det

[
In + HQH†

]
= log det

[
In +

PHH†

n

]
=

n∑
i=1

log

(
1 +

P

n
λi

)
, (3.2)

where the logarithm is with respect to base 2. Therefore, IN
n above is the throughput of

the MIMO system with equal power allocation.

3.3.2 Capacity with Perfect CSIT

In this scenario, H is perfectly known at the Tx. Thus, based on the the knowledge of H,

the Tx can maximize the mutual information in (3.1) over the transmit covariance matrix

Q. The maximum mutual informarion obtained is referred to as the capacity of the MIMO

system with perfect CSIT which can be derived as

CP
n = max

Q:Tr(Q)≤P
log det

[
In + HQH†

]
.
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Figure 3.2: Water-filling power allocation

Let the singular value decomposition of the channel matrix H be H = UΣ1/2V† with

Σ = diag (λ1, λ2, . . . , λn). We can write

log det
[
In + HQH†

]
= log det

[
In + UΣ1/2V†QVΣ1/2U†

]
= log det

[
In + Σ1/2V†QVΣ1/2

]
. (3.3)

It is shown in [16] that in order to maximize (3.3) over Q, the matrix V†QV = D in (3.3)

must be diagonal with the ith diagonal entry

Dii =

(
νn −

1

λi

)+

,

where (x)+ = max(0, x) and i = 1, 2, . . . , n. Dii above is the power allocated to the ith

stream and is found according to the water-filling power allocation where the water-filling

level νn satisfies (Fig. 3.2)

n∑
i=1

(
νn −

1

λi

)+

= P. (3.4)

Therefore, the capacity with perfect CSIT is the mutual information achieved by using

Q = VDV† and water-filling power allocation and thus following from (3.3), it is equal to

CP
n = log det

[
In + Σ1/2DΣ1/2

]
=

n∑
i=1

(log (λiνn))+, (3.5)
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where νn satisfies (3.4).

Alternatively, recalling the model r = Hs + z in Section 3.2 and applying the singular

value decomposition H = UΣ1/2V†, we can write

r = Hs + z = UΣ1/2V†s + z = UΣ1/2s̃ + z,

where s̃ = V†s. Denoting r̃ = U†r and z̃ = U†z, we can write

r̃ = Σ1/2s̃ + z̃,

where z̃, the noise vector multiplied by a unitary matrix, has the same distribution as z.

Thus, the MIMO system can be decomposed into n parallel independent SISO channels

with total transmit power limited to P , where the ith channel has the input s̃i, the output

r̃i, noise z̃i, and channel gain
√
λi. Thus, multiplexing over these parallel channels results

in an n-fold increase in the data rate.

3.4 Water-filling Throughput with Imperfect CSIT

As previously discussed in Section 1.3, obtaining perfect CSIT is very challenging in prac-

tice. Thus, a more general and realistic scenario is to consider the case when the channel

gain are not perfectly known at the Tx which happens due to nonzero channel estimation

errors. In this section, we address the case of imperfect CSIT by modelling the channel

estimation error to be Gaussian distributed. This model allows us to obtain statistical

closed-form results and find how the performance is affected due to the lack of perfect

CSIT.

With ML estimation [39], the estimated channel gain matrix Ĥ is expressed as

Ĥ = H + E, (3.6)

where E is the channel estimation error matrix that has i.i.d. and zero-mean CSCG-

distributed entries with variance 2σ2
e . Furthermore, E and H are independent.
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Throughout this chapter, we refer to the ratio γ = σ2/σ2
e as the signal to estimation

error ratio (SER). Intuitively, channel estimation error leads to degradation in the perfor-

mance of water-filling in the MIMO system especially at low SNR. We aim to quantify this

degradation in what follows.

From (3.6), the entries of Ĥ are i.i.d. and zero-mean CSCG-distributed with variance

2σ2 + 2σ2
e . Thus, the entries of Ĥ and H are joint complex Gaussian distributed with

correlation coefficient equal to σ/
√
σ2 + σ2

e . The actual channel gain matrix H can then

be written as [86]

H = ηĤ + X, (3.7)

where η = γ/(1 + γ), Ĥ and X are independent, and the entries of X are i.i.d. and

zero-mean CSCG-distributed with variance 2σ2/(1 + γ).

In this chapter, as stated earlier, we do not aim to find the capacity of the MIMO

system with imperfect CSIT as the Tx does not know the quality of channel estimation or

the SER. Instead, we assume that the Tx performs water-filling power allocation merely

based on erroneous channel estimates. As a consequence, the throughput obtained in such

case is upper bounded by the capacity of the MIMO system with perfect CSIT as obtained

in Section 3.3.2

Note that the Tx only knows the channel estimate matrix Ĥ which can be decomposed

as Ĥ = ÛΣ̂
1/2

V̂† where Σ̂ = diag
(
λ̂1, λ̂2, . . . , λ̂n

)
with {λ̂1, λ̂2, . . . , λ̂n} as the eigenvalues

of ĤĤ†. Thus, water-filling power allocation yields the transmit covariance matrix Q̂ =

V̂D̂V̂† where D̂ is an n× n diagonal matrix with the ith diagonal entry

D̂ii =

(
ν̂n −

1

λ̂i

)+

, (3.8)

as the power allocated to the ith stream and the water-filling level ν̂n satisfies

n∑
i=1

(
ν̂n −

1

λ̂i

)+

= P. (3.9)

Therefore, following from (3.1), the water-filling throughput can be derived as

Rn = log det
[
In + HQ̂H†

]
. (3.10)
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Knowing H = ηĤ + X from (3.7), Eq. (3.10) can be written as

Rn = log det

[
In +

(
ηĤ + X

)
Q̂
(
ηĤ + X

)†]
= log det

[
In + η2ĤQ̂Ĥ† + ηĤQ̂X† + ηXQ̂Ĥ† + XQ̂X†

]
. (3.11)

Replacing Q̂ = V̂D̂V̂† and Ĥ = ÛΣ̂
1/2

V̂† in (3.11), we find

Rn = log det
[
In + η2ÛΣ̂

1/2
D̂Σ̂

1/2
Û† + ηÛΣ̂

1/2
D̂V̂†X†

+ηXV̂D̂Σ̂
1/2

Û† + XV̂D̂V̂†X†
]

= log det
[
In + η2Σ̂

1/2
D̂Σ̂

1/2
+ ηΣ̂

1/2
D̂V̂†X†Û

+ηÛ†XV̂D̂Σ̂
1/2

+ Û†XV̂D̂V̂†X†Û
]

= log det
[
In + η2Σ̂D̂ + ηΣ̂

1/2
D̂K† + ηKD̂Σ̂

1/2
+ KD̂K†

]
, (3.12)

where K = Û†XV̂.

Defining the matrices

Y = In + η2Σ̂D̂, (3.13)

L = ηKD̂Σ̂
1/2

+ ηΣ̂
1/2

D̂K†, (3.14)

T = KD̂K†, (3.15)

Eq. (3.12) can be written as

Rn = log det [Y + L + T]

= log det Y + log det
[
In + Y−1/2 (L + T) Y−1/2

]
. (3.16)

3.5 Asymptotic Growth Rates

The throughputs IN
n , CP

n , and Rn presented in sections 3.3 and 3.4, are random variables

because the channel gain matrix H and its estimate Ĥ are random. However, in [19],

using Theorem IV.I, it is proved that the normalized throughputs IN
n /n and CP

n /n con-

verge to non-random values almost-surely as n → ∞, i.e., IN
n /n → IN and CP

n /n → CP.
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Furthermore, for the special case that the entries of H have unit variance (2σ2 = 1), the

proportionality constants (the asymptotic growth rates) IN and CP were derived.

In this section, we first state the result of Theorem IV.I in [19] for arbitrary σ and

σe. Then, we find IN and CP for an arbitrary σ. Subsequently, we show the almost-sure

convergence of the normalized water-filling throughput with imperfect CSIT, Rn/n, as

n→∞ at low SNR and derive R, the asymptotic growth rate for the throughput.

Let G be an n×n matrix that has i.i.d. and zero-mean CSCG-distributed entries with

unit variance. According to Theorem IV.I in [19], the normalized (scaled by 1/n) empirical

eigenvalue distribution of GG†, converges to a limit which has the density

g(λ) =

 1
π

√
1
λ
− 1

4
0 ≤ λ ≤ 4

0 else.
(3.17)

and the largest eigenvalue of GG† converges to

lim
n→∞

λmax(GG†)

n
= 4,

almost surely. As stated earlier, the entries of H are i.i.d. and zero-mean CSCG-distributed

with variance 2σ2. Therefore, H is equal in distribution with
√

2σG [77] and consequently

the eigenvalues of HH† are scaled versions (by 2σ2) of the eigenvalues of GG†. Thus, the

normalized empirical eigenvalue distribution of HH† converges to a limit as well and the

limit has a density which is a scaled version of g(λ) in (3.17) as follows

h(λ) =

 1√
2σπ

√
1
λ
− 1

8σ2 0 ≤ λ ≤ 8σ2

0 else.
(3.18)

In addition, almost surely, we have

lim
n→∞

λmax(HH†)

n
= 8σ2.

Following the same approach as above, since the entries of Ĥ are i.i.d. and zero-mean

CSCG-distributed with variance 2σ2 + 2σ2
e , Ĥ is equal in distribution with

√
2 (σ2 + σ2

e)G

and the eigenvalues of ĤĤ† are scaled versions (by 2σ2 + 2σ2
e) of the eigenvalues of GG†.
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Thus, the normalized empirical eigenvalue distribution of ĤĤ† converges to a limit with

density

ĥ(λ) =


1√

2(σ2+σ2
e)π

√
1
λ
− 1

8(σ2+σ2
e)

0 ≤ λ ≤ 8(σ2 + σ2
e)

0 else,
(3.19)

and almost surely

lim
n→∞

λmax(ĤĤ†)

n
= 8(σ2 + σ2

e).

3.5.1 No CSIT

Here, we analyze the behaviour of the normalized throughput IN
n /n as n grows large. Since

the empirical distribution of λi/n in (3.2) converges to a limit with density h(λ) in (3.18),

as n → ∞, following from (3.2) and using the Law of Large Numbers (LLN) [77], we

have [19]

IN
n

n
=

1

n

n∑
i=1

log

(
1 + P

λi
n

)
→ IN,

where

IN = E [log (1 + Pλ)] =

∫ 8σ2

0

log(1 + Pλ)h(λ)dλ. (3.20)

As P → 0, following the same approach as in [19], a first-order approximation gives

IN ≈ P log e

∫ 8σ2

0

λh(λ)dλ = 2Pσ2 log e, (3.21)

which is in bits/sec/Hz as opposed to the result in equation (12) of [19] which is obtained

in nats/sec/Hz. Furthermore, a factor of 2σ2 appears in (3.21) which is due to the fact

that the channel gain matrix H has entries with variance 2σ2.

3.5.2 Perfect CSIT

As stated earlier, in the perfect CSIT case, νn is the water-filling level that asymptotically

scales as Θ(1/n) [19]. We define ν = n×νn as the scaled (by n) version of νn, and consider

74



the limit limn→∞ ν = ν? as the asymptotic scaled water-filling level in the perfect CSIT

case.

To find the asymptotic throughput, as in [19], we relabel νn as ν× 1
n

and then incorporate

the 1/n factor with λi. Thus, we can write the water-filling constraint in (3.9) as

n∑
i=1

(
νn −

1

λi

)+

=
n∑
i=1

(
ν

n
− 1

λi

)+

=
1

n

n∑
i=1

(
ν −

(
λi
n

)−1
)+

= P.

As stated earlier, the empirical distribution of {λi/n} converges to the density h(λ) in

(3.18). Thus, using the LLN, we obtain

1

n

n∑
i=1

(
ν −

(
λi
n

)−1
)+

→
∫ 8σ2

0

(
ν? − 1

λ

)+

h(λ)dλ = P, (3.22)

as n→∞. From the constraint above, we can find ν?.

Similarly, (3.5) can be expanded as

CP
n

n
=

1

n

n∑
i=1

(log (νnλi))
+ =

1

n

n∑
i=1

(
log
((ν

n

)
λi

))+

=
1

n

n∑
i=1

(
log

(
ν

(
λi
n

)))+

→ CP,

as n→∞, where

CP =

∫ 8σ2

0

(log (ν?λ))+ h(λ)dλ. (3.23)

In (3.23) and (3.22), following the same approach as in [19], we can find dCP/dP = log e/ν?

and ν? → 1/8σ2 as P → 0 respectively, and thus obtain the first-order approximation

CP ≈ 8σ2P log e. (3.24)

Hence, as previously shown in [19], knowing (3.21) and (3.24), we obtain

CP

IN
≈ 4,

as P → 0, i.e., at low SNR, availability of perfect CSIT provides significant performance

improvement for the MIMO system asymptotically compared to the no CSIT scenario.
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3.5.3 Imperfect CSIT

The empirical distribution of λ̂i/n converges to a limit with density as in (3.19). Thus, by

relabeling ν̂n as ν̂/n, and using the LLN along with (3.19), we can rewrite the water-filling

constraint in (3.9) as

1

n

n∑
i=1

ν̂ −( λ̂i
n

)−1
+

→
∫ 8(σ2+σ2

e)

0

(
ν̂? − 1

λ

)+

ĥ(λ)dλ = P, (3.25)

as n→∞, where ν̂? = limn→∞ ν̂ is the asymptotic scaled water-filling level in the imperfect

CSIT case.

Next, we find the asymptotic behaviour of the normalized water-filling throughput

Rn/n as n→∞. Since Σ̂ and D̂ are diagonal with the ith diagonal entry respectively as

λ̂i and (3.8), the matrix Y in (3.13) is diagonal and the first term in (3.16) is thus

log det Y = log det
[
In + η2Σ̂D̂

]
=

n∑
i=1

log(1 + η2(λ̂iν̂n − 1)+). (3.26)

Relabeling ν̂n as ν̂/n in (3.26), we get the normalized result

1

n
log det Y =

1

n

n∑
i=1

log

(
1 + η2

(
ν̂
λ̂i
n
− 1

)+)
, (3.27)

which converges to

1

n
log det Y →

∫ 8(σ2+σ2
e)

0

log(1 + η2(ν̂?λ− 1)+)ĥ(λ)dλ, (3.28)

as n→∞, where ν̂? is found from (3.25).

Denoting Li,j as the entry in the ith row and the jth column of the matrix L, for

i, j = 1, . . . , n, we find from (3.14)

Li,j = η

√
λ̂jD̂jjKi,j + η

√
λ̂iD̂iiK

∗
j,i. (3.29)

Using (3.8), we can write

Li,j = η

√
λ̂j

(
ν̂n −

1

λ̂j

)+

Ki,j + η

√
λ̂i

(
ν̂n −

1

λ̂i

)+

K∗j,i,
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and relabeling ν̂n as ν̂/n, we find

Li,j = η

√
λ̂j
n

ν̂ −( λ̂j
n

)−1
+

Ki,j√
n

+ η

√
λ̂i
n

ν̂ −( λ̂i
n

)−1
+

K∗j,i√
n
. (3.30)

To analyze the asymptotic behaviour of Li,j above, we should point out the following facts:

1. The empirical distribution of λ̂j/n for any j = 1, 2, . . . , n, converges to a limit with

density as in (3.19) as n→∞. Thus, λ̂j/n in (3.30) and consequently (ν̂ − (λ̂j/n)−1)+

scale as Θ(1) for all j.

2. The entries of K = U†XV are i.i.d. and zero-mean CSCG-distributed with variance

2σ2/(1+γ) that does not depend on n. This is because U and V are unitary matrices

(obtained from the singular value decomposition of Ĥ) and the entries of X are i.i.d.

and zero-mean CSCG-distributed with variance 2σ2/(1 + γ).

Therefore, because of the above facts and having the
√
n term in the denominator of Li,j

in (3.30), for any i, j = 1, 2, . . . , n, Li,j → 0 as n→∞.

For the matrix T in (3.15), we have

Ti,j =
n∑
l=1

(
ν̂n −

1

λ̂l

)+

Ki,lK
∗
j,l =

1

n

n∑
l=1

ν̂ −( λ̂l
n

)−1
+

Ki,lK
∗
j,l, (3.31)

which is obtained by relabeling ν̂n as ν̂/n. Because of the factor of 1/n in the expression

of Ti,j above, using the LLN, as n→∞, Ti,j converges to its expected value as

Ti,j → E

[(
ν̂? − 1

λ̂

)+

Ki,lK
∗
j,l

]
. (3.32)

Since Ĥ → (U,V) → K is a Markov chain, thus K and Ĥ are independent given U and

V. Therefore, we can write

E

[(
ν̂? − 1

λ̂

)+

Ki,lK
∗
j,l

]
= E

[
E

[(
ν̂? − 1

λ̂

)+

Ki,lK
∗
j,l|U,V

]]

= E

[
E

[(
ν̂? − 1

λ̂

)+

|U,V

]
E
[
Ki,lK

∗
j,l|U,V

]]
. (3.33)
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The water-filling level ν̂? was chosen in (3.9) such that (3.9) holds for each realization of

Ĥ. Thus,

E

[(
ν̂? − 1

λ̂

)+

|U,V

]
= P . (3.34)

Hence, from (3.32), (3.33), and (3.34) we obtain

Ti,i → PE[|Ki,l|2] =
2Pσ2

1 + γ
, (3.35)

for i = 1, 2, . . . , n, and

Ti,j → PE[Ki,l]E[K∗j,l] = 0,

for i, j = 1, 2, . . . , n, and i 6= j.

Although, elementwise, off-diagonal entries Zi,j of Z = In + Y−1/2 (L + T) Y−1/2 for

i, j = 1. . . . , n, i 6= j obtained before are such that Zi,j → 0 as n → ∞, this does not

necessarily imply that det Z →
∏n

i=1 Zi,i as n → ∞. This is because the effect of off-

diagonal entries of Z may not necessarily be neglected since the number of these entries

are increasing with n. However, for a fixed n, as P → 0, the off-diagonal entries of Z vanish

and thus det Z→
∏n

i=1 Zi,i. For example, it is easy to verify by cofactor expansion for an

n×n matrix A with constant entries and ε→ 0 that det[In + εA] =
∏n

i=1(1+εAi,i)+O(ε2).

Therefore, knowing (3.35), in the low SNR regime, we obtain

det Z ≈
n∏
i=1

Zi,i = det

[
In +

2Pσ2Y−1

1 + γ

]
,

as n→∞. Thus, using (3.13) and using the LLN, we can write

1

n
log det Z→

∫ 8(σ2+σ2
e)

0

log

(
1 +

2Pσ2/(1 + γ)

1 + η2(λν̂? − 1)+

)
ĥ(λ)dλ. (3.36)

Hence, from (3.28) and (3.36), we find Rn/n → R as n → ∞, i.e., at low SNR, Rn scales

linearly with n as n → ∞ with a proportionality constant (the asymptotic growth rate)

that is not random and is given by R as

R ≈
∫ 8σ2(1+1/γ)

0

log
(
1 +

(
γ2/(1 + γ)2

)
(λν̂? − 1)+

)
ĥ(λ)dλ

+

∫ 8σ2(1+1/γ)

0

log

(
1 +

2Pσ2/ (γ + 1)

1 + (γ2/(1 + γ)2) (λν̂? − 1)+

)
ĥ(λ)dλ, (3.37)

where ν̂? satisfies (3.25).
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3.6 Performance Evaluation

As shown earlier, the throughput achieved by water-filling with imperfect CSIT scales

linearly with n as n→∞, at low SNR, with a proportionality constant that is not random,

but is given by (3.37). Eq. (3.37) gives an insight on how the water-filling throughput

depends on the parameters of the system such as γ, P , and σ.

Using (3.37), one can evaluate the effect of channel estimation error on the performance

of water-filling power allocation at low SNR. For a fixed σ, when γ = ∞ dB (high SER),

the second term in (3.37) is zero and

R =

∫ 8σ2

0

(log (λν̂?))+ h(λ)dλ = CP,

which is the asymptotic growth rate for water-filling with perfect CSIT as found in (3.23).

Furthermore, for a fixed σ and γ = −∞ dB (low SER), the first term in (3.37) is zero and

as P → 0 we have

R ≈
∫ ∞

0

log
(
1 + 2Pσ2

)
ĥ(λ)dλ ≈ 2Pσ2 log e

∫ ∞
0

ĥ(λ)dλ

= 2Pσ2 log e,

which is equal to IN in (3.21). This result implies that, at low SER, water-filling based

on erroneous channel estimates achieves the same throughput as equal power allocation

asymptotically in the low SNR regime. This is intuitively because at low SER, the density

ĥ(λ) in (3.19) is defined over a wider range and therefore, all the eigenvalues are very likely

to be large, which results in power being allocated equally among all eigen-directions.

Note that since we assume that the channel is quasi-static, where the channel gain

matrix H is fixed for the entire duration of the transmission, the meaningful notion op-

erationally is the instantaneous throughput. In addition, for large n, we have a channel

hardening effect at low SNR, i.e., the asymptotic normalized throughput in (3.37) does not

depend on the realization of H. Thus, for large n, averaging the instantaneous normalized

throughput over multiple realizations would give the same result.
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Figure 3.3: Actual and asymptotic (analytic) normalized throughputs IN
n /n, CP

n /n, and

Rn/n versus n for different values of γ when P = −20 dB and σ = 1.

3.7 Numerical Results

In this section, we provide numerical results when σ = 1 and P = −20 dB.

Fig. 3.3 shows the convergence of the actual normalized throughputs (averaged over

multiple realizations) IN
n /n, CP

n /n, and Rn/n to the asymptotic (analytic) results IN, CP,

and R presented in (3.20), (3.23), and (3.37), respectively, as n increases. For n = 50,

Fig. 3.4 illustrates the actual (averaged over multiple realizations) and the asymptotic

normalized throughputs versus the SER.

Based on the figures, water-filling with imperfect CSIT monotonically interpolates be-

tween water-filling with perfect CSIT and equal power allocation. Furthermore, one can

compare the result for water-filling with imperfect CSIT with the result for water-filling

80



−15 −13 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11 13 15

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

SER (γ) in dB

N
o

rm
a

li
z
e

d
 t

h
ro

u
g

h
p

u
ts

 

 

Water−filling with perfect CSIT

Equal power allocation

Water−filling with imperfect CSIT

Actual

Asymptotic

Figure 3.4: Actual and asymptotic (analytic) normalized throughputs IN
n /n, CP

n /n, and

Rn/n versus γ, when P = −20 dB, σ = 1, and n = 50.

with perfect CSIT as a function of the SER. Particularly, with imperfect CSIT and for

SER values such as 5 dB, 0 dB, and −5 dB, R is 86%, 70%, and 52% of CP, respectively.

In other words, at low SNR, water-filling based on erroneous channel estimates can still

achieve significant throughputs asymptotically for moderate values of the SER. Further-

more, at very low SER, water-filling based on erroneous channel estimates achieves the

same throughput as equal power allocation.

For imperfect CSIT, the gap between the actual and the asymptotic (analytic) results

in the figures is very small. When P is above −15 dB, the approximation in (3.37) starts

to deviate notably. However, numerically, we find that at higher SNR values, the same

conclusion holds that moderate SER of 5 dB provides performance close to CP.
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3.8 Summary and Conclusions

Water-filling power allocation is known to achieve the capacity of an n× n MIMO system

with perfect CSIT. More specifically, knowing the eigenvalues of the channel, the trans-

mitter can optimally distribute power among antennas according to water-filling power

allocation and thus achieve the maximum throughput (the capacity of the MIMO system).

Furthermore, in a rich scattering environment, such capacity has been shown to scale lin-

early with n as n grows large (intuitively due to spatial multiplexing). In other words, the

normalized (by 1/n) throughput converges almost surely to a non-random value denoted

by, CP, as n increases. This result has been derived by using the limiting distribution of

the eigenvalues of the channel gain matrix as n grows large.

On the other hand, in the case of no CSIT, where the transmitter has no knowledge of

the channel gain matrix, equal power allocation can be performed, i.e., the transmitter can

distribute the transmit power equally among antennas. In other words, the same amount

of power is allocated to all eigen-directions regardless of how strong their eigenvalues are.

Doing such a power allocation, it has been shown that the normalized (by 1/n) throughput

converges to a non-random value denoted by IN, almost surely as n increases.

At high SNR, CP and IN are asymptotically equal which implies that there is no loss in

the throughput if power is distributed equally among antennas (which requires no CSIT)

instead of performing water-filling power allocation. As the SNR decreases, the gap be-

tween CP and IN increases and water-filling power allocation results in better throughputs

compared to equal power allocation. Thus, at low SNR, it is crucially important how the

transmitter allocates power among antennas.

Furthermore, in reality, obtaining CSIT within a reasonable accuracy requires signifi-

cant effort, especially at low SNR and in addition, the transmitter may have no a priori

reliable knowledge of the accuracy of channel estimates either. Motivated by these, in

this chapter, we have theoretically evaluated the performance loss of water-filling power

allocation due to channel estimation error at the transmitter as a function of the signal

to estimation error ratio (SER). In this regard, we have derived the throughput achieved

in MIMO systems if the transmitter performs water-filling based on erroneous channel
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estimates only and have shown that even though the channel gain matrix is random, at

low SNR, the normalized water-filling throughput based on imperfect CSIT converges to a

non-random value denoted by R, almost surely as n increases. Subsequently, using CP as a

baseline for comparison, we have compared R with CP as a function of the SER and have

found that at low SNR, for moderate values of the SER, water-filling based on erroneous

channel estimates can still achieve significant throughputs asymptotically. In particular,

for SER values such as 5 dB, 0 dB, and −5 dB, R is found to be 86%, 70%, and 52% of

CP, respectively.

In addition, we have shown that at low SNR and low SER, water-filling based on er-

roneous channel estimates asymptotically achieves the same throughput as equal power

allocation. This result implies that at low SNR, water-filling power allocation does not

perform worse than equal power allocation even when the channel estimates are very erro-

neous. The asymptotic analysis in this chapter, which is valid when the number of antennas

is very large, can be applied to evaluate the throughput results in the massive MIMO sce-

nario that has received considerable attention recently in the academia and industry.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

Multi-antenna technology offers powerful capabilities to improve data rates of wireless

systems via spatial multiplexing as well as to increase the reliability of wireless commu-

nications via spatial diversity. Furthermore, by exploiting additional spatial dimensions,

transmit beamforming techniques can be used to manage co-channel interference, which is

a major limiting factor in the performance of wireless systems.

In Chapter 2, transmit diversity and beamforming were studied in a MISO setting with

an n-antenna transmitter, an intended single-antenna receiver, and m unintended single-

antenna receivers. Two scenarios were considered, namely, null-steering beamforming and

ε-threshold beamforming in which the allowable interference threshold at the unintended

receivers is zero and ε > 0, respectively. In each beamforming scenario, two separate cases

of perfect CSIT and imperfect CSIT were investigated, and in each case, an optimization

problem was obtained that maximizes the received power at the intended receiver while

satisfying the interference constraints at the unintended receiver and the transmit power

constraint.

With perfect CSIT, null-steering beamforming was shown to successfully nullify inter-

ference at m unintended receivers, where m < n, and achieve a nonzero received power
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at the intended receiver with a mean value that grows linearly with n−m and is directly

proportional to the power of the line-of-sight component between the transmitter and the

intended receiver. With imperfect CSIT, null-steering beamforming based on erroneous

channel estimates was shown to result in a nonzero interference at the unintended re-

ceivers with a mean value that is interestingly independent of n. Also, it was shown that

a moderate line-of-sight component can significantly reduce the effect of estimation error

on the performance of the intended link.

Intuitively, the allowance of a small nonzero interference at the unintended receivers as

in ε-threshold beamforming should improve the received power at the intended receiver.

According to the analysis in Chapter 2, this enhancement is marginal and not worthwhile,

notably in the case of imperfect CSIT. More specifically, it was shown that when the in-

terference threshold of the unintended receiver is a small value relative to the transmit

power, ε-threshold beamforming does not lead to a significant increases in the average

received power at the intended receiver compared to the null-steering result. Therefore,

there is no significant loss in the performance of the intended link if the transmitter per-

forms null-steering beamforming instead. In fact, according to the analysis, the transmitter

can employ additional antennas to improve the performance of the intended link without

generating significant extra interference on the unintended receivers.

In general, co-channel interference may be imposed from one wireless system to an-

other, such as in cognitive radio systems, or from a wireless user to another user in the

same wireless system, such as in heterogeneous networks. Such co-existence in the same

frequency band is sometimes intentionally allowed with the objective to increase spectral

efficiency. Therefore, the use of interference management techniques such as beamforming

is essential to handle the interference among such wireless users and systems.

In cognitive radio systems, the secondary transmitter can employ multiple antennas and

perform null-steering beamforming to nullify its co-channel interference at some primary

receivers. In this case, if the variance of the channel estimation error at the secondary

transmitter is small enough, the imposed average interference at the primary receivers can

be kept less than the interference threshold regulated by the primary system. Therefore, the
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concurrent operation of the secondary system in the same frequency band as the primary

system does not degrade the performance of the primary system severely. Furthermore,

since the average interference power at the primary receivers is independent of the number

of secondary antennas, the secondary system can use a larger number of antennas to boost

its performance without significantly impacting the primary system’s performance.

Beamforming can also be used in heterogenous networks such as a cellular network

consisting of macrocells and some smaller cells to manage co-channel interference among

them. If each base station (BS) is equipped with multiple antennas, it can perform null-

steering beamforming to transmit to its associated user while null-steering towards the users

with which it is interfering the most. Consequently, the amount of interference imposed on

each mobile user is decreased. Therefore, the signal to interference and noise ratio (SINR)

corresponding to that mobile user increases accordingly, and, intuitively, the coverage

probability and the achievable rate are expected to increase. Moreover, in such cases, the

performance improvement offered by increasing the number of antennas at each BS can

be examined. As the number of antennas increases, a BS has more degrees of freedom for

null-steering. With n antennas, a macro BS can null-steer towards (n − 1) mobile users.

Subsequently, a tradeoff between the number of antennas and the performance of such a

cellular network can be obtained analytically.

In Chapter 3, we studied spatial multiplexing in an n× n MIMO wireless model. It is

known that water-filling power allocation achieves the capacity of such a MIMO system

with perfect CSIT. In fact, in a rich scattering environment, such capacity was shown to

scale linearly with n as n grows large. In other words, the normalized (by 1/n) throughput

converges almost surely to a non-random value, denoted by CP, as n increases. This result

was derived by using the limiting distribution of the eigenvalues of the channel gain matrix

as n grows large. On the other hand, in the case of no CSIT, where the transmitter has

no knowledge of the channel gain matrix, equal power allocation can be performed, i.e.,

the transmitter can distribute the transmit power equally among antennas. Doing such a

power allocation, it was shown that the normalized (by 1/n) throughput converges to a

non-random value denoted by IN, almost surely as n increases.
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At high SNR, CP and IN are asymptotically equal which implies that there is no loss

in throughput if power is distributed equally among antennas (which requires no CSIT)

instead of performing water-filling power allocation. As the SNR decreases, the gap be-

tween CP and IN increases and water-filling power allocation results in better throughputs

compared to equal power allocation. Thus, at low SNR, how the transmitter allocates

power among antennas is crucially important.

Considering the fact that in reality, obtaining CSIT within a reasonable accuracy re-

quires significant effort, especially at low SNR, we evaluated the performance loss of water-

filling power allocation due to channel estimation error at the transmitter as a function

of the SER. In this regard, we derived the throughput achieved in MIMO systems if the

transmitter performs water-filling based on erroneous channel estimates only and showed

that even though the channel gain matrix is random, at low SNR, the normalized water-

filling throughput based on imperfect CSIT converges to a non-random value denoted by

R, almost surely as n increases. Subsequently, using CP as a baseline for comparison, we

compared R with CP as a function of the SER and found that at low SNR, for moderate

values of the SER, water-filling based on erroneous channel estimates can still achieve

significant throughputs asymptotically. In particular, for SER values such as 5 dB, 0 dB,

and −5 dB, R is found to be 86%, 70%, and 52% of CP, respectively.

In addition, we showed that at low SNR and low SER, water-filling based on erroneous

channel estimates asymptotically achieves the same throughput as equal power allocation.

This result implies that at low SNR, water-filling power allocation does not perform worse

than equal power allocation even when the channel estimates are very noisy.

The asymptotic analysis in Chapter 3, which is valid when the number of antennas

is very large, can be applied to evaluate the throughput results in the massive MIMO

scenario that has received considerable attention recently in academia and industry. In

practice, when the number of antennas is very large, it becomes extremely challenging

to obtain accurate channel estimates at the transmitter. Thus, our results in the case of

imperfect CSIT can give an insight on how water-filling performs in such systems when

channel estimation error is present.
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4.2 Directions for Future Work

The imperfect CSI analysis presented in this thesis can be applied to evaluate the perfor-

mance of interference channels, where multiple transmit and receive user pairs communicate

using the same radio resources. The interference channel is a good model for communi-

cation in cellular networks for example. Interference alignment is a proposed cooperative

strategy for interference management in interference channels. By coordinating their trans-

missions, users can align their interfering signals in time, frequency, or space. This can

provide substantial performance improvements assuming perfect CSI is available [87]. How-

ever, with channel estimation error, the same improvements are not guaranteed and thus

it is important to evaluate the robustness of such a strategy to channel imperfections.

Throughout this thesis, the channel gains were assumed to be fixed for the entire

duration of transmission and thus, it was not considered how rapidly the channel gains

change with time. In scenarios such as mmWave communications, the wavelength is very

small which leads to quick variations in channel gains with time (e.g. a slight movement

of the transmitter can result in a dramatic change in channel gains) [69]. There has been

recent interest in using mmWave bands for the radio access of the 5th generation of mobile

systems [88] and WiGig local area networks [89]. Thus, it would be worthwhile to consider

such rapid channel fluctuations in the model as well. Having such a channel model, the

two-dimensional space-time water-filling scheme proposed in [90] is shown to achieve better

throughputs than the one-dimensional spatial water-filing scheme that was considered in

Chapter 3. Thus, a possible direction for future work is to evaluate the performance of

space-time water-filling approach with imperfect CSIT and investigate how the throughput

results are affected accordingly.

In Chapter 3, we assumed that the environment is rich scattering and the antennas

are far apart so that the entries of the channel gain matrix H are independent. However,

in practice, these assumptions may not be valid. This is because in reality the antennas

can not be spaced very far apart and thus they will experience coupling. Furthermore, the

propagation environment is not necessarily rich scattering. Therefore, the entries of H are

not independent anymore and are thus correlated [19]. In such a case too, using appropriate
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models, the performance of equal power allocation, water-filling power allocation with

perfect CSIT, and water-filling power allocation with imperfect CSIT can be examined

and compared similarly to the approach in Chapter 3.
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Appendix A

Derivation of E[Gnull, Im]

In this appendix, we derive the expected value of the actual received power at the Rx in

the case of null-steering beamforming with imperfect CSIT.

Using (2.26), Gnull, Im in (2.28) can be written as

Gnull, Im = P

∣∣∣∣∣‖˜̂g−m‖ −
∑n

l=m+1 w̃l
˜̂g∗l

‖˜̂g−m‖

∣∣∣∣∣
2

= P
n∑

l=m+1

| ˜̂gl|2 − P
n∑

l=m+1

w̃l ˜̂g
∗
l − P

n∑
l=m+1

w̃∗l
˜̂gl +D + E, (A.1)

where

D =
P
∑n

l=m+1 |w̃l|2| ˜̂gl|
‖˜̂g−m‖2

2

,

E =

P
∑n

l,r
l 6=r

w̃lw̃
∗
r
˜̂g∗l

˜̂gr

‖˜̂g−m‖2
·

The expected value of the first three terms in (A.1) are easy to find since we know

E

[
n∑

l=m+1

|g̃l|2
]

= 2σ2(n−m)(K + 1),

E

[
n∑

l=m+1

| ˜̂gl|2
]

= E

[
n∑

l=m+1

|g̃l|2
]

+ E

[
n∑

l=m+1

|w̃l|2
]

= 2σ2(n−m)

(
K + 1 +

σ2
e

σ2

)
,
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and

E

[
n∑

l=m+1

w̃l ˜̂g
∗
l

]
= E

[
n∑

l=m+1

w̃l(g̃l + w̃l)
∗

]
= E

[
n∑

l=m+1

|w̃l|2
]

= 2σ2
e(n−m),

E

[
n∑

l=m+1

w̃∗l
˜̂gl

]
= E

[
n∑

l=m+1

w̃∗l (g̃l + w̃l)

]
= E

[
n∑

l=m+1

|w̃l|2
]

= 2σ2
e(n−m).

Conditioning on the rotation matrix U = Um
′
. . .U1

′
and the entries of ˜̂g, we can write

the expected value of the last two terms in (A.1) as

E[D] = EU[E˜̂g[E[D|U, ˜̂g]]],

E[E] = EU[E˜̂g[E[E|U, ˜̂g]]].

Therefore, we obtain

E[D] = P
n∑

l=m+1

EU

[
E˜̂g

[
E

[
|w̃l|2|˜̂gl|2

‖˜̂g−m‖2

∣∣∣∣∣U, ˜̂g
]]]

= P
n∑

l=m+1

EU

E˜̂g

 E
[
|w̃l|2|U, ˜̂gl

]
|˜̂gl|2

‖˜̂g−m‖2

∣∣∣∣∣∣U
 , (A.2)

and

E[E] = P
n∑
l,r
l 6=r

EU

[
E˜̂g

[
E

[
w̃lw̃

∗
r
˜̂g∗l

˜̂gr

‖˜̂g−m‖2

∣∣∣∣∣U, ˜̂g
]]]

= P

n∑
l,r
l 6=r

EU

E˜̂g

 E
[
w̃l|U, ˜̂gl

]
E
[
w̃∗r |U, ˜̂gr

]
˜̂g∗l

˜̂gr

‖˜̂g−m‖2

∣∣∣∣∣∣U
 . (A.3)

Since we have g̃l = µ̃l + ũl and g̃l + w̃l = ˜̂gl, we can write

E
[
|w̃l|2|U, ˜̂gl

]
= E

[
|w̃l|2|U, g̃l + w̃l = ˜̂gl

]
= E

[
|w̃l|2|U, ũl + w̃l = ˜̂gl − µ̃l

]
.

Now, define X = ũl + w̃l and Y = −σ2
e

σ2 ũl + w̃l. Random variables X and Y are

independent since they are zero-mean CSCG-distributed and satisfy E[XY ] = 0. Writing
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w̃l in terms of X and Y as w̃l = σ2
e

σ2+σ2
e
X + σ2

σ2+σ2
e
Y and knowing E [|Y |2|U] = 2σ2

e(1 + σ2
e

σ2 ),

we obtain

E
[
|w̃l|2|U, ˜̂gl

]
= E

[∣∣∣∣ σ2
e

σ2 + σ2
e

X +
σ2

σ2 + σ2
e

Y

∣∣∣∣2
∣∣∣∣∣U, X = ˜̂gl − µ̃l

]

=
σ4
e

(σ2 + σ2
e)

2
E
[
|X|2|U, X = ˜̂gl − µ̃l

]
+

σ4

(σ2 + σ2
e)

2
E
[
|Y |2

∣∣U]

=
σ4
e |˜̂gl − µ̃l|2

(σ2 + σ2
e)

2
+

2σ2σ2
e

σ2 + σ2
e

· (A.4)

Following the same arguments as above, we can show that

E
[
w̃l|U, ˜̂gl

]
=
σ2
e

(
˜̂gl − µ̃l

)
σ2 + σ2

e

, (A.5)

E
[
w̃∗r |U, ˜̂gr

]
=
σ2
e(

˜̂gr − µr)∗

σ2 + σ2
e

. (A.6)

Therefore, following from (A.2) and using (A.4), we obtain

E[D] =
Pσ4

e

(σ2 + σ2
e)

2

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl − µ̃l|2|˜̂gl|2

‖˜̂g−m‖2

∣∣∣∣∣U
]]

+
2Pσ2σ2

e

σ2 + σ2
e

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl|2

‖˜̂g−m‖2

∣∣∣∣∣U
]]

=
Pσ4

e

(σ2 + σ2
e)

2

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl|4

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.7)

+
Pσ4

e

(σ2 + σ2
e)

2

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl|2|µ̃l|2

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.8)

− Pσ4
e

(σ2 + σ2
e)

2

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl|2 ˜̂glµ̃l

∗

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.9)

− Pσ4
e

(σ2 + σ2
e)

2

n∑
l=m+1

EU

[
E˜̂g

[
|˜̂gl|2 ˜̂g∗l µ̃l

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.10)

+
2Pσ2σ2

e

σ2 + σ2
e

,
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and following from (A.3) and using (A.5) and (A.6), we find

E[E] =
Pσ4

e

(σ2 + σ2
e)

2

n∑
l,r
l 6=r

EU

E˜̂g

 (˜̂gl − µ̃l)
(

˜̂gr − µ̃r
)∗

˜̂g∗l
˜̂gr

‖˜̂g−m‖2

∣∣∣∣∣∣U


=
Pσ4

e

(σ2 + σ2
e)

2

n∑
l,r
l 6=r

EU

[
E˜̂g

[
|˜̂gl|2|˜̂gr|2

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.11)

+
Pσ4

e

(σ2 + σ2
e)

2

n∑
l,r
l 6=r

EU

[
E˜̂g

[
˜̂g∗l

˜̂grµ̃lµ̃r
∗

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.12)

− Pσ4
e

(σ2 + σ2
e)

2

n∑
l,r
l 6=r

EU

[
E˜̂g

[
|˜̂gl|2 ˜̂grµ̃r

∗

‖˜̂g−m‖2

∣∣∣∣∣U
]]

(A.13)

− Pσ4
e

(σ2 + σ2
e)

2

n∑
l,r
l 6=r

EU

[
E˜̂g

[
|˜̂gr|2 ˜̂g∗l µ̃l

‖˜̂g−m‖2

∣∣∣∣∣U
]]

. (A.14)

Combination of corresponding terms in E[D] and E[E] ((A.7) with (A.11), (A.8) with

(A.12), (A.9) with (A.13), and (A.10) with (A.14)), yields

E[D + E] =
Pσ4

e

(σ2 + σ2
e)

2EU

[
E˜̂g

[
‖˜̂g−m‖4

‖˜̂g−m‖2

∣∣∣∣∣U
]]

+
Pσ4

e

(σ2 + σ2
e)

2EU

E˜̂g


(∑n

l=m+1
˜̂g∗l µ̃l

)(∑n
r=m+1
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− Pσ4
e

(σ2 + σ2
e)

2EU

E˜̂g


(∑n

l=m+1 |˜̂gl|2
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∗
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− Pσ4
e

(σ2 + σ2
e)

2EU
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(∑n

l=m+1 |˜̂gl|2
)(∑n
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)
‖˜̂g−m‖2
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+
2Pσ2σ2

e

σ2 + σ2
e

,
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which can be simplified as

E[D + E] =
Pσ4

e

(σ2 + σ2
e)

2EU

[
E˜̂g

[
‖˜̂g−m‖2

∣∣∣U]]

+
Pσ4

e

(σ2 + σ2
e)

2EU

E˜̂g


(∑n

l=m+1
˜̂g∗l µ̃l

)(∑n
r=m+1

˜̂g∗r µ̃r
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‖˜̂g−m‖2

∣∣∣∣∣∣U


− 2Pσ4
e

(σ2 + σ2
e)

2EU

[
E˜̂g

[
n∑

r=m+1

˜̂grµ̃r
∗

∣∣∣∣∣U
]]

+
2Pσ2σ2

e

σ2 + σ2
e

.

The second term in E[D + E] above is positive. Thus, a lower bound on E[D + E] can be

obtained as

E[D + E] ≥ Pσ4
e

(σ2 + σ2
e)

2EU

[
2σ2(n−m)

(
K + 1 +

σ2
e

σ2

)]
− 2Pσ4

e

(σ2 + σ2
e)

2EU

[
n∑

r=m+1

E
[
µ̃r|2

]]

+
2Pσ2σ2

e

σ2 + σ2
e

,

which is found knowing that E˜̂g[˜̂grµ̃r
∗|U] = E [|µ̃r|2] for each r. Note that the above lower

bound is tight when K = 0 (‖µ‖ = 0).

Therefore, since from Section 2.3,
∑n

r=m+1 E [|µ̃r|2] = ‖µ‖2(n−m)/n = 2σ2(n−m)K,

we derive

E[D + E] ≥ 2Pσ4
eσ

2(n−m) (K + 1 + σ2
e/σ

2)

(σ2 + σ2
e)

2 − 4Pσ4
eσ

2(n−m)K

(σ2 + σ2
e)

2 +
2Pσ2σ2

e

σ2 + σ2
e

.

Thus, a lower bound on E[Gnull, Im] can be found as

E[Gnull, Im] ≥ 2Pσ2(n−m)

(
K + 1− σ2

e

σ2
+
σ4
eσ

2(1−K) + σ6
e

σ2 (σ2 + σ2
e)

2 +
σ2
e

(σ2 + σ2
e)(n−m)

)
= 2Pσ2(n−m)

(
K + 1− 1

γ
+

1−K + 1
γ

(1 + γ)2 +
1

(n−m)(1 + γ)

)
,

with equality when K = 0 (‖µ‖ = 0) where γ = σ2

σ2
e
.
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Appendix B

Derivation of E[Ith, Im]

In this appendix, we derive the expected value of the actual interference power at Rx1 in

the case of ε-threshold beamforming with imperfect CSIT, with the following two different

cases to consider:

1. Case 1; when ‖ĥ‖2 ≤ ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, the optimal solution to P8 in Section

2.4.2 is yopt =
˜̂g
∗

‖˜̂g‖

√
P . Therefore, replacing yopt in (2.58), the actual interference

power at Rx1 is

Ith, Im
1 =

P‖ĥ‖2|˜̂g1|2

‖˜̂g‖2
+

P

‖˜̂g‖2

∣∣∣∣∣
n∑
i=1

ṽi ˜̂g
∗
i

∣∣∣∣∣
2

− P ˜̂g
∗
1‖ĥ‖
‖˜̂g‖2

n∑
i=1

ṽ∗i
˜̂gi −

P ˜̂g1‖ĥ‖
‖˜̂g‖2

n∑
i=1

ṽi ˜̂g
∗
i . (B.1)

Consequently, we can write

E

[
Ith, Im

1 · 1{
‖ĥ‖2≤ ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = PE˜̂g

[
|˜̂g1|2

‖˜̂g‖2
Eĥ

[
‖ĥ‖2 · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

(B.2)

+ PE˜̂g

[
Eĥ

[
|ṽ1|2 · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

(B.3)

+ Pn(n− 1)E˜̂g

[
˜̂g
∗
1
˜̂g2

‖˜̂g‖2
Eĥ

[
ṽ1ṽ
∗
2 · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

(B.4)

− 2PE˜̂g

[
|˜̂g1|2

‖˜̂g‖2
Eĥ

[
‖ĥ‖ṽ∗1 · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
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(B.5)

− 2P
n∑
i=2

E˜̂g

[
˜̂g1

˜̂g
∗
i

‖˜̂g‖2
Eĥ

[
‖ĥ‖ṽi · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

, (B.6)

96



where the term (B.2) corresponds to the first term of (B.1), the terms (B.3) and (B.4)

correspond to the second term of (B.1), and the terms (B.5) and (B.6) correspond

to the last two terms of (B.1).

Because of spherical symmetry, we have

Eĥ

[
ṽiṽ
∗
j · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]

= 0,

and

Eĥ

[
‖ĥ‖ṽi · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]

= 0,

for all i, j = 1, 2, . . . , n where i 6= j, which results in the terms (B.4), (B.5), and (B.6)

being zero.

Since the random variable ‖ĥ‖2/σ2 is chi-square distributed with 2n degrees of free-

dom, knowing its probability distribution function , we can write

Eĥ

[
‖ĥ‖2 · 1{‖ĥ‖2≤ ε

P }
]

=
σ2 + σ2

e

2nΓ(n)

∫ ε

P (σ2+σ2e)

0

xn+1e−
x
2 dx

=
σ2 + σ2

e

2nΓ(n)

∫ ε

P (σ2+σ2e)

0

xn+1

(
1 +

∞∑
n=1

(−1)n(xn)

2n

)
dx

=
4(σ2 + σ2

e)

(n+ 2)Γ(n)

(
ε

2P (σ2 + σ2
e)

)n+2

+O

(( ε
P

)n+3
)
.

Consequently, the term (B.2) is found to be

E˜̂g

[
|˜̂g1|2

‖˜̂g‖2
Eĥ

[
‖ĥ‖2 · 1{

‖ĥ‖2≤ ε
P
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| ˜̂g1|2

}|˜̂g
]]

= E
[
f5(˜̂g)

]
O

(( ε
P

)n+2
)
,

where f5 is a suitable function of the entries of ˜̂g.

Therefore, we derive

E

[
Ith, Im

1 · 1{
‖ĥ‖2≤ ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = PE˜̂g

[
Eĥ

[
|ṽ1|2 · 1{

‖ĥ‖2≤ ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

+O

(( ε
P

)n+2
)
.

(B.7)
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2. Case 2; when ‖ĥ‖2 > ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, the optimal solution to P8 in Section

2.4.2 is yopt1 =
√
εe−j arg(

˜̂g1)

‖ĥ‖ and y−1
opt =

˜̂g
∗
−1

‖˜̂g−1‖

√
P − ε

‖ĥ‖2 . Therefore, replacing yopt in

(2.58), the actual interference power at Rx1 can be written as

Ith, Im
2 = ε+

∣∣∣∣∣∣
√
ε

‖ĥ‖
e−j arg(˜̂g1)ṽ1 +

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

ṽi ˜̂g
∗
i

∣∣∣∣∣∣
2

−
√
εe−j arg(˜̂g1)

 √ε
‖ĥ‖

ej arg(˜̂g1)ṽ∗1 +

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

ṽ∗i
˜̂gi


−
√
εej arg(˜̂g1)

 √ε
‖ĥ‖

e−j arg(˜̂g1)ṽ1 +

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

ṽi ˜̂g
∗
i

 .

Consequently, we can write

E

[
Ith, Im

2 · 1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = εE˜̂g

[
Eĥ

[
1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

+ εE˜̂g

[
Eĥ

[
|ṽ1|2

‖ĥ‖2
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

+ E˜̂g

[
Eĥ

[
|ṽ2|2

(
P − ε

‖ĥ‖2

)
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

. (B.8)

Note that in the derivation of (B.8), similarly to the previous case, we use the fact

that some terms are zero due to spherical symmetry.

Using (2.44) with ĥ in place of h, we can write

εE˜̂g

[
Eĥ

[
1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

= ε−O
(( ε

P

)n)
,

and knowing that ṽ1 is equal in distribution with ṽ2, we find

E

[
Ith, Im

2 · 1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = ε+ PE˜̂g

[
Eĥ

[
|ṽ2|2 · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]
−O

(( ε
P

)n)
.

(B.9)
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Thus, by combining (B.7) and (B.9) for ε = αP , we obtain

E[Ith, Im] = Eĥ

[
Ith, Im

1 · 1{
‖ĥ‖2≤ ε

P
‖˜̂g‖2
| ˜̂g1|2

}]+ Eĥ

[
Ith, Im

2 · 1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}]
= PE

[
|ṽ1|2

]
+ ε−O

(( ε
P

)n)
= 2Pσ2

e + αP −O (αn) .
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Appendix C

Derivation of E[Gth, Im]

In this appendix, we derive the expected value of the actual received power at the Rx in

the case of ε-threshold beamforming with imperfect CSIT, with the following two different

cases to consider:

1. Case 1; when ‖ĥ‖2 ≤ ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, the optimal solution to P8 in Section

2.4.2 is yopt =
˜̂g
∗

‖˜̂g‖

√
P . Therefore, replacing yopt in (2.60), the actual received power

at the Rx is

Gth, Im
1 = P‖˜̂g‖2 +

P

‖˜̂g‖2

∣∣∣∣∣
n∑
i=1

w̃i ˜̂g
∗
i

∣∣∣∣∣
2

− P
n∑
i=1

w̃∗i
˜̂gi − P

n∑
i=1

w̃i ˜̂g
∗
i .

Thus, using (2.44) with ĥ in place of h, we obtain

E

[
Gth, Im

1 · 1{
‖ĥ‖2≤ ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = E˜̂g

[
Gth, Im

1 · Pr

{
‖ĥ‖2 ≤ ε

P

‖˜̂g‖2

| ˜̂g1|2
|˜̂g

}]
= E

[
f6(˜̂g)

]
O
(( ε

P

)n)
, (C.1)

where f6 is a suitable function of the entries of ˜̂g.

2. Case 2; when ‖ĥ‖2 > ε
P
‖˜̂g‖2

| ˜̂g1|2
: In this case, the optimal solution to P8 in Section

2.4.2 is yopt1 =
√
εe−j arg(

˜̂g1)

‖ĥ‖ and y−1
opt =

˜̂g
∗
−1

‖˜̂g−1‖

√
P − ε

‖ĥ‖2 . Therefore, replacing yopt in
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(2.60), the actual received power at the Rx can be written as

Gth, Im
2 =

(
| ˜̂g1|
√
ε

‖ĥ‖
+

√
P − ε

‖ĥ‖2
‖˜̂g−1‖

)2

+

∣∣∣∣∣∣w̃1

√
εe−j arg(˜̂g1)

‖˜̂h‖
+

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

w̃i ˜̂gi
∗

∣∣∣∣∣∣
2

−

(
˜̂g1

√
εe−j arg(˜̂g1)

‖˜̂h‖
+

√
P − ε

‖ĥ‖2
‖˜̂g−1‖

)
w̃∗1√εej arg(˜̂g1)

‖˜̂h‖
+

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

w̃∗i
˜̂gi


−

(
˜̂g
∗
1

√
εej arg(˜̂g1)

‖˜̂h‖
+

√
P − ε

‖ĥ‖2
‖˜̂g−1‖

)
w̃1

√
εe−j arg(˜̂g1)

‖˜̂h‖
+

√
P − ε

‖ĥ‖2

‖˜̂g−1‖

n∑
i=2

w̃i ˜̂gi
∗

 . (C.2)

Denote the first term in (C.2) as A. Thus, we obtain

E

[
A · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = 2P (n− 1)
(
σ2 + σ2

e

)
+ 2
√

2Pε(σ2 + σ2
e)

Γ
(

3
2

)
Γ(n− 1

2
)Γ
(
n+ 1

2

)
Γ(n)Γ(n− 1)

(
n− 1

2

)
− ε
(
n− 2

n− 1

)
−O

(( ε
P

) 3
2

)
, (C.3)

which is derived following the same approach as in Section 2.4.1 with ĥ in place of

h and knowing

E
[
‖˜̂g−1‖2

]
= E

[
n∑
i=2

|g̃i + w̃i|2
]

= E

[
n∑
i=2

|g̃i|2
]

+ E

[
n∑
i=2

|w̃i|2
]

= 2(n− 1)
(
σ2 + σ2

e

)
.
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Denoting the second term in (C.2) as B, we obtain

E

[
B · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = εE˜̂g

|w̃1|2Eĥ

1
{‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}

‖ĥ‖2
|˜̂g


+ E˜̂g

[∑n
i=2 |w̃i|2|˜̂gi|2

‖˜̂g−1‖2
Eĥ

[(
P − ε

‖ĥ‖2

)
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

+ E˜̂g

[∑n
i=2,i 6=j

∑n
j=2 w̃

∗
i w̃j

˜̂gi ˜̂g
∗
j

‖˜̂g−1‖2
Eĥ

[(
P − ε

‖ĥ‖2

)
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

+
√
εE˜̂g

w̃∗1ej arg(˜̂g1)
∑n

i=2 w̃i
˜̂g
∗
i

‖˜̂g−1‖
Eĥ


√
P − ε

‖ĥ‖2

‖ĥ‖
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g


+
√
εE˜̂g

w̃1e
−j arg(˜̂g1)

∑n
i=2 w̃

∗
i
˜̂gi

‖˜̂g−1‖
Eĥ


√
P − ε

‖ĥ‖2

‖ĥ‖
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
 . (C.4)

Therefore, using the same argument as in (2.39), (2.48), and (2.49) with ĥ in place

of h, and knowing that the last two terms in (C.4) are equivalent due to spherical

symmetry, we find

E

[
B · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = εE
[
|w̃1|2

]
E

[
1

‖ĥ‖2

]

+ E

[∑n
i=2 |w̃i|2|˜̂gi|2

‖˜̂g−1‖2

]
E

[(
P − ε

‖ĥ‖2

)]

+ E

[∑n
i=2,i 6=j

∑n
j=2 w̃

∗
i w̃j

˜̂gi ˜̂g
∗
j

‖˜̂g−1‖2

]
E

[(
P − ε

‖ĥ‖2

)]

+ 2
√
εE
[
w̃∗1e

j arg(˜̂g1)
]
E

[∑n
i=2 w̃i

˜̂g
∗
i

‖˜̂g−1‖

]
E

[√
P

‖ĥ‖

]

+O

(( ε
P

) 3
2

)
.

Let

W =

∑n
i=2 |w̃i|2|˜̂gi|2

‖˜̂g−1‖2
, V =

∑n
i=2,i 6=j

∑n
j=2 w̃

∗
i w̃j

˜̂gi ˜̂g
∗
j

‖˜̂g−1‖2
·
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Following the same approach as in Appendix A to find (A.2) and (A.3) (with ‖µ‖2 = 0

and m = 1), we can find

E[W + V ] =
2σ4

e

σ2 + σ2
e

(n− 1) +
2σ2σ2

e

σ2 + σ2
e

· (C.5)

Furthermore, recall from Appendix A that Y = −σ2
e

σ2 g̃i + w̃i is independent of ˜̂gi =

g̃i + w̃i for any i. Thus, writing w̃i in terms of ˜̂gi and Yi as w̃i = σ2
e

σ2+σ2
e

˜̂gi + σ2

σ2+σ2
e
Yi,

we obtain

E
[
w̃∗1e

j arg(˜̂g1)
]

= E

[
w̃∗1

˜̂g1

|˜̂g1|

]
= E˜̂g1

[
E

[
w̃∗1

˜̂g1

|˜̂g1|
|˜̂g1

]]
= E˜̂g1

[
˜̂g1

|˜̂g1|
E
[
w̃∗1|˜̂g1

]]

= E

[
˜̂g1

|˜̂g1|

(
σ2
e

σ2 + σ2
e

˜̂g
∗
1 +

σ2

σ2 + σ2
e

Y ∗1

)]

=
σ2
e

σ2 + σ2
e

E
[
|˜̂g1|
]

=
√

2 Γ

(
3

2

)
σ2
e√

σ2 + σ2
e

,

and

E

[∑n
i=2 w̃i

˜̂g
∗
i

‖˜̂g−1‖

]
= E

∑n
i=2

˜̂g
∗
iE
[
w̃i|˜̂gi

]
‖˜̂g−1‖


= E

∑n
i=2 E

[(
σ2
e

σ2+σ2
e

˜̂gi + σ2

σ2+σ2
e
Yi

)
˜̂g
∗
i

]
‖˜̂g−1‖


=

σ2
e

σ2 + σ2
e

E

[∑n
i=2 |˜̂gi|2

‖˜̂g−1‖

]
=

σ2
e

σ2 + σ2
e

E
[
‖˜̂g−1‖

]
=

√
2σ2

e Γ(n− 1
2
)√

σ2 + σ2
e Γ(n− 1)

·

Therefore, knowing

E

[
1

‖ĥ‖

]
=

√
2 Γ
(
n+ 1

2

)√
σ2 + σ2

e Γ(n) (2n− 1)
,

and

E

[
1

‖ĥ‖2

]
=

1

2(n− 1) (σ2 + σ2
e)
,
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by using (2.48) and (2.49) with ĥ in place of h, we obtain

E

[
B · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] =
2Pσ2

e

σ2 + σ2
e

(
σ2
e(n− 1) + σ2

)
+ 2
√

2PεΓ

(
3

2

)
σ4
e Γ
(
n− 1

2

)
Γ
(
n+ 1

2

)
(σ2 + σ2

e)
3
2 Γ(n− 1)Γ(n)

(
n− 1

2

)
+

εσ2
e

σ2 + σ2
e

(
1

n− 1
− σ2

e

σ2 + σ2
e

− σ2

(n− 1) (σ2 + σ2
e)

)
+O

(( ε
P

) 3
2

)
. (C.6)

Denoting the third term in (C.2) as C, we find

−E
[
C · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = εE˜̂g

|w̃1|2Eĥ

1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}
‖ĥ‖2

|˜̂g


+
√
εE˜̂g

 |˜̂g1|
∑n

i=2 w̃
∗
i
˜̂gi

‖˜̂g−1‖
Eĥ


√
P − ε

‖ĥ‖

‖ĥ‖
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g


+
√
εE˜̂g

w̃∗1ej arg(˜̂g1)‖˜̂g−1‖Eĥ


√
P − ε

‖ĥ‖2

‖ĥ‖
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g


+ E˜̂g

[
n∑
i=2

˜̂giw̃
∗
i Eĥ

[(
P − ε

‖ĥ‖2

)
· 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}|˜̂g
]]

,

which can be written as

−E
[
C · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = εE
[
|w̃1|2

]
E

[
1

‖ĥ‖2

]

+
√
εE
[
|˜̂g1|
]
E

[∑n
i=2 w̃

∗
i
˜̂gi

‖˜̂g−1‖

]
E

[√
P

‖ĥ‖

]

+
√
εE
[
w̃1e

−j arg(˜̂g1)
]
E
[
‖˜̂g−1‖2

]
E

[√
P

‖ĥ‖

]

+ E

[
n∑
i=2

˜̂giw̃
∗
i

]
E

[
P − ε

‖ĥ‖2

]

+O

(( ε
P

) 3
2

)
.
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Therefore, we derive

−E
[
C · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}] = 2Pσ2
e(n− 1)− ε (n− 2)σ2

e

(n− 1) (σ2 + σ2
e)

+
2
√

2Pε σΓ
(

3
2

)
Γ
(
n+ 1

2

)
Γ
(
n− 1

2

)√
γ(1 + γ)Γ(n)Γ (n− 1)

(
n− 1

2

) +O

(( ε
P

) 3
2

)
. (C.7)

Thus, combining (C.3), (C.6), and (C.7) and knowing that the fourth term in (C.2)

is equal in distribution with C, we can write

E

[
Gth, Im

2 · 1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}] = E

[
A · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}]
+ E

[
B · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}]
+ 2E

[
C · 1{

‖ĥ‖2> ε
P
‖˜̂g‖2
| ˜̂g1|2

}]
= Q+

√
ε

P
R +

ε

P
T +O

(( ε
P

) 3
2

)
, (C.8)

where having γ = σ2/σ2
e ,

Q = 2P (n− 1)σ2

(
1− 1

γ
+

1

γ(1 + γ)
+

1

(n− 1)(1 + γ)

)
,

R = 2
√

2Pσ
Γ
(

3
2

)
Γ
(
n− 1

2

)
Γ
(
n+ 1

2

)
Γ(n)Γ(n− 1)

(
n− 1

2

) (
γ

1 + γ

) 3
2

,

T = P

(
−1 +

1

n− 1
− 1

(1 + γ)2
− γ

(n− 1)(1 + γ)2
+

2n− 3

(n− 1)(1 + γ)

)
.

Therefore, combining (C.1) and (C.8), we find that the actual received power at the Rx

has the expected value given by

E[Gth, Im] = E

[
Gth, Im

1 · 1{
‖ĥ‖2≤ ε

P
‖˜̂g‖2
| ˜̂g1|2

}]+ E

[
Gth, Im

2 · 1{
‖ĥ‖2> ε

P
‖˜̂g‖2
| ˜̂g1|2

}]
= Q+

√
ε

P
R +

ε

P
T +O

(( ε
P

) 3
2

)
= Q+

√
αR + αT +O

(
α

3
2

)
,

for ε = αP .
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