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Abstract

In the applications of computational aeroacoustics (CAA) involving far-field noise pre-

dictions, the most common solution strategy is the hybrid method which combines a com-

putational fluid dynamics (CFD) solver for the sound source field with an acoustic solver

for the acoustic far-field. Hybrid CAA methods provide flexibility to select the most ap-

propriate methods to compute the sound source and the acoustic fields, respectively, to

suit various aeroacoustic problems. The present study reports the development of a hybrid

large-eddy simulation (LES)-acoustic analogy method to effectively predict the noise of

viscous flow over complex geometries.

With complex geometries, difficulties arise with numerical methods based on body fitted

grids. Generating good quality body fitted grids around complex geometries is challenging

and time-consuming. Alternatively, numerical methods based on non-body conformal grids

can deal with bodies of almost any arbitrary shape. Although the present research was

initially motivated for CAA applications, most of the contributions and the novelty of the

work is in the development of efficient, easy-to-implement and more accurate non-body

conformal methods that can be used for flow over complex geometries. To date, most of

the listed work on non-body conformal methods is applied to incompressible flows. The use

of non-body conformal methods for compressible turbulent flows is still rare and immature.

Two non-body conformal grid methods are developed and assessed in this work: the

ghost-cell based immersed boundary method (GC-IBM) and the ghost-cell based cut-cell

method (GC-CCM). In both methods, the boundary conditions on the immersed boundary

are enforced through the use of “ghost cells” located inside the solid body. Variables on

these ghost cells are computed using linear interpolation schemes. The implementation

using GC-IBM is simpler; however, the exact shape of the fluid cells in the vicinity of the

solid boundary is not detailed, which results in the loss or gain of mass and momentum.

As such, sufficiently refined meshing is required in the vicinity of the solid boundary to

mitigate the error on mass conservation. The implementation using GC-CCM requires

more work; however, the underlying conservation laws is guaranteed by introducing “cut

cells”. A cell-merging approach is used to address the small-cell problem associated with
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a Cartesian cut-cell method, which, if untreated, results in the numerical instability and

stiffness of the system of equations.

The applicability of the developed non-body conformal methods is investigated in the

compressible LES framework. Turbulent flows in various complex geometric settings are

simulated using these non-body conformal methods for a wide range of Reynolds numbers

and Mach numbers. For high Reynolds number flows, the developed non-body conformal

methods employ a wall model to approximate the wall-shear stress, thus avoiding a require-

ment for severe grid resolution near the wall. No previously published work involves LES

of high Reynolds number compressible flows using a wall model and a non-body conformal

method. This research uses a simple wall model based on a wall function to approximate

the near wall behaviour, but this approach can be extended to other wall models if neces-

sary. Better wall modelling strategies should be investigated in the future. The numerical

results demonstrate that the GC-CCM is capable of capturing near-wall flows relatively

well despite the simple wall model used. GC-CCM also provides relatively accurate results

compared to other non-body conformal methods.

Returning to the original research efforts for aeroacoustic applications, the GC-CCM is

finally benchmarked for the prediction of far-field radiated noise from a flow over a circular

cylinder. Of many hybrid approaches available in CAA, Ffowcs-Williams and Hawkings

(FW-H) approach is selected to explore the far-field acoustic calculation. Comparison

of the results to the experimental data shows that the developed hybrid LES-acoustic

analogy method is capable of accurately predicting the sound spectrum for this case of

three-dimensional flow over a cylinder in the sub-critical regime. Large-eddy simulations

with more complex geometries, such as wings or high-lift systems, have not been performed

as a part of this research. Further work is encouraged in order to conclude the research

direction originally envisioned by the author.
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Chapter 1

Introduction

1.1 Background

Airframe noise is defined as the non-propulsive components of noise radiated from a flying

aircraft and it includes: the noise radiated from the wings, high-lift system (slat and

flap), landing gear, and control surfaces. Although engine noise dominates during take-off,

engines are often at flight idle during the final approach, and the airframe noise becomes

comparable to, or sometimes greater than, the engine noise. In todays aircraft industry,

noise at landing is becoming an important issue due to stringent regulations of aircraft

community noise. For low Mach number flows with rigid bodies in motion, the dominant

sound is due to surface pressure fluctuations. An understanding of the physical mechanisms

involving the sound generation is a crucial step for reducing or controlling sound emission.

Aeroacoustics is a branch of acoustics that studies: 1. noise generation by turbulent

fluid motion and/or aerodynamic forces interacting with surfaces (e.g. the airframe sur-

face) and, 2. the noise propagation into the near or far field. The computation of the

noise generation process and the sound propagation constitutes the main focus in the field

of computational aeroacoustics (CAA). Since both phenomena are fully described by the

full, time-dependent, compressible Navier-Stokes equations, i.e. the most general equa-

tion which describes the motion of fluids, one can naturally try to apply a direct approach
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where the computational domain for the full, non-linear Navier-Stokes equations extends to

the acoustic far-field. This method, however, poses limitations and challenges. The noise

generating process is also inherently unsteady, which renders steady RANS (Reynolds Aver-

aged Navier-Stokes) methods alone unsuitable. Unsteady RANS calculations are generally

insufficient as well, except when the flow is dominated by simple large-scale oscillations.

Modern turbulence simulation techniques such as DNS (Direct Numerical Simulation) or

LES (Large Eddy Simulation) offer attractive alternatives, but they are not affordable.

This is particularly the case in low Mach number flows, because there is a vast disparity

in the magnitudes of the fluid dynamic and acoustic disturbances which places a stringent

requirement on numerical accuracy. Since the acoustic far-fields are typically several or-

ders of magnitude larger in length than the fluid dynamic far field, the direct approach

can be bordering on the absurd in terms of the requirements for computing resources. It

is for these reasons that the hybrid approach is developed to decouple the computation

of flow from the computation of sound. This would involve using two different numerical

solvers - a computational fluid dynamics (CFD) solver and an acoustic solver. In the CFD

solver, LES or hybrid RANS/LES methods can be used to compute the aerodynamic noise

generation mechanism (i.e. unsteady turbulent flow-fields). The far-field sound pressure

can be calculated in the acoustic solver by integrating the time derivative of the wall pres-

sure fluctuations at the surface of the rigid body. When performing CAA computations

using the hybrid approach, efforts must be concentrated on the CFD simulation in order to

provide the accurate information to the acoustic solver. In particular, when a large-eddy

simulation (LES) technique is adopted for complex geometries, grid generation, sub-grid

scale models and near-wall treatments should be handled carefully as they are crucial in

predicting an accurate flow-field. Compared to the CFD calculations, acoustic calculations

in the acoustic solver is relatively straight forward provided that its applicability is well

justified.
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1.2 Motivation for non-body conformal grids

When dealing with complex geometries in CFD, such as wings, high-lift system, landing

gear, etc., significant effort has to be consumed on body conformal grid generation. For

these complex geometry models, difficulties arise as high-order numerical schemes are de-

sired which are also sensitive to the quality of computational grid. Generating a good

quality body conformal grid around complex geometries is a challenging and time consum-

ing task. An alternative approach is the numerical methods based on non-body conformal

grids which specify a body force in such a way that it simulates the presence of a solid

surface without altering the existing computational grid. These approaches provide a high

level of flexibility such that bodies of almost any arbitrary shape can be handled while

retaining most of the favourable properties of unstructured grids at significantly less com-

putational cost. Simple examples of a body conformal grid and a non-body conformal grid

are shown in Fig. 1.1.

(a) Body conformal grids (b) Non-body conformal grids

Figure 1.1: Representation of a 2-D cylinder geometry using a body conformal (e.g. or-
thogonal) grid and using a non-body conformal grid.

When dealing with simulations of turbulent flows in the LES framework, the challenge
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is to achieve a substantial reduction in the resource requirements for high Reynolds num-

ber near-wall flows, while maintaining a realistic description of the effects of near-wall

processes. This is because accurate LES of wall bounded flows requires a near-wall res-

olution comparable to that for DNS, thus limiting the use of LES to moderate Reynolds

numbers. One popular way to overcome this difficulty is to replace the detailed modelling

of near-wall region with a wall model to skip the direct resolution of the viscous sublayer

and buffer layer near the wall through proper parametrization. In this way the grid size can

be related just to the large eddies developing in the fluid core, resulting in the justification

of a relatively coarse near-wall grid resolution. The challenge however, with the non-body

conformal methods, is the lack of control of the grid resolution in the vicinity of the solid

boundary. The non-dimensional distance (y+) of the first grid point off the boundary can

vary dramatically depending on how the boundary cuts across the grid.

1.3 Thesis objectives

Although the present research was originally driven for the airframe noise applications, the

majority of the work contributing to this research focuses on solving the turbulent flow-

field - the noise generating mechanism. In particular, the focus is to accurately perform

LES of turbulent compressible flows in a complex geometric setting. The goal is to develop

an efficient, easy-to-implement and relatively accurate non-body conformal method that

can be used in these simulations, and to demonstrate its applicability and flexibility. The

most notable challenge is to incorporate the boundary conditions properly at the solid

boundaries that are not aligned with the grid. In this research, new ghost-cell based cut-

cell techniques are developed that are capable of capturing the flow dynamics accurately in

the vicinity of the interface. The methods are tested for a wide range of Reynolds numbers

as well as Mach numbers. To date, most of the listed work on non-body conformal method

is devoted to incompressible flows (see [76] for a list of methods developed to date). The

same for compressible viscous flows is still rare and immature [33, 83, 12]. Furthermore,

most of reported simulations of highly turbulent flows in LES with a wall model are almost

exclusively used on body fitted structured grids. Another goal of this work is to perform
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LES of high Reynolds number flows in conjunction with a wall model where the near-wall

grids are naturally coarse. To the best of the author’s knowledge, there is no previously

published work that involves LES of high Reynolds number compressible flows using a wall

model and a non-body conformal method. Lastly, the developed and validated methods

are applied to a simple aeroacoustic application where the goal is to predict the far-field

radiated noise from flow over a circular cylinder.

1.4 Outline

This dissertation is delivered in seven main chapters. Chapter 2 describes the governing

equations and large-eddy simulations formulation for describing the compressible turbulent

flows. This includes the filtering procedure and the turbulence models used in this work.

Chapter 3 describes the main elements of the numerical method to solve the governing

equations, including flux evaluations, time integration and boundary treatments. Chapter

4 introduces the new non-body conformal methods with a summary of literature review

on the topic. It carefully describes the implementation of the new methods with enough

detail in the context of high Reynolds number flows, that it can be used for LES of com-

pressible flows in conjunction with a wall model. Chapter 5 presents various test cases

involving three-dimensional flow for a wide range of Reynolds numbers and Mach numbers

in order to validate the methods introduced in Chapter 4. Last, but certainly not least,

Chapter 6 introduces the topic of aeroacoustics and the methodology with which sound

generated by turbulent flow can be computed. As a benchmark case, far-field radiated

noise prediction from flow over a circular cylinder is computed. The flow-field is computed

using the methodology developed in Chapter 4. The conclusions of this research, as well

as recommendations for future work, can be found in Chapter 7.
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Chapter 2

Mathematical Formulation

This chapter summarizes the governing equations and large eddy simulation (LES) forma-

tion used in this work for describing the compressible turbulent flows. Sec. 2.1 introduces

the compressible Navier-Stokes equations, Sec. 2.2 introduces the concept of Favre filtering

and filtered Navier-Stokes equations for turbulent flow simulations, and Sec. 2.3 discusses

the closure problems and the turbulence models to address the closure problems.

2.1 Conservation equations

The compressible Navier-Stokes equations describe the conservation of mass, momentum

and energy of any flow field. In a three-dimensional Cartesian coordinate system (xi,

i = 1, 2, 3), with t being time, these equations can be expressed in a conserved form as

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂

∂xi
(p) =

∂

∂xj
(τij) (2.2)
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∂

∂t
(ρE) +

∂

∂xj
(ρE + p)uj =

∂

∂xj
(τijui)−

∂

∂xj
(qj) (2.3)

where ρ is the fluid density, ui is the component of the instantaneous velocity in the xi

direction, p is the pressure, and ρE is the total energy per unit volume. E is defined as

E = e + 1
2
uiui where e is the specific energy. The system of equations remains unclosed

until the equation of state (EOS) is defined to relate the thermodynamic variables together.

It is assumed in the present study that the gasses under consideration obey to the perfect

gas EOS and this can be expressed as

p = ρRT (2.4)

where R and T denote the gas constant and temperature. The constitutive relation between

stress and strain rate for a Newtonian fluid is given as

τij = 2µsij −
2

3
µ
∂uk
∂xk

δij (2.5)

where µ is molecular viscosity, δij is the Kronecker delta, and sij is the strain-rate tensor.

sij is given as

sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (2.6)

qj in Eq.(2.3) is the heat-flux vector which is given as

qj = −κ ∂T
∂xj

(2.7)

where κ is thermal conductivity.
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2.2 Governing equations for LES

Although Navier-Stokes equations can be solved directly by means of direct numerical

simulation (DNS), it is not viable in most problems of engineering interest due to the com-

putational resources that are required to resolve the smallest turbulent eddies. Large-eddy

simulations (LES), on the other hand, is based on the idea of scale separation, of filtering

of the governing conservation equations. Here, the large-scale quantities are obtained from

the solution of the filtered form of the continuity, momentum and energy equations, while

the small scale quantities are modelled using a proper turbulence modelling technique. The

separation between large and small scales is obtained by applying a spatial filter to the

governing equations.

2.2.1 Spatial filtering

Let G4 be the mathematical description of the filter kernel used for this operation. For

an arbitrary function f(xi, t), the filtered variable f̄(xi, t) is then defined as

f̄(x, t) =

∫
f(x′, t)G4(x− x′)dx′ (2.8)

In most practical applications of LES using a finite-volume discretization method, the filter

is not explicitly defined in the numerical simulations since the computation of cell average

values acts as a built-in low pass filter for the governing equations. This implicit filter

is a top-hat spatial filter where the filter width 4 is given by 4 = (4x4y4z)
1/3. 4x,

4y and 4z are the control volume dimensions in the x, y and z directions, respectively.

Solution content with scales larger than this filter width is resolved, whereas the content at

sub-grid scale is left to be modelled. In the work herein, this implicit spatial filter is used.

A discussion on the relative merits of different filtering functions is beyond the scope of

this work, and it should also be noted that the specific form taken by the filtering function

is likely to be of secondary importance in any LES modelling strategy. If one desires to

study the true solution of a LES that are independent of the numerical grid, an explicit
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filter should be defined which can separate the filtering from the discretization operators.

2.2.2 Filtered conservation equations for LES

For LES of compressible flows, the notation is simplified by using a Favre filtered form f̃ ,

which is density weighted as

f̃ =
ρf

ρ̄
. (2.9)

Then, the variable can be decomposed into two components:

f = f̃ + f ′′, (2.10)

where f̃ is the resolved component and f ′′ is the unresolved component. Using this density

weighted average (Favre filtering), it yields

ρui = ρ̄
ρui
ρ̄

= ρ̄ũi. (2.11)

Similarly,

ρuiuj = ρ̄ũiuj; ρuiT = ρ̄ũiT (2.12)

such that the filtered continuity and momentum equations can be derived easily. The

use of the unweighted filter (Reynolds averaging), which is widely used for incompressible

flows, is cumbersome for compressible flow equations as one will encounter some additional

complexities when establishing suitable closure approximations.

The governing equations for LES are obtained through the application of the Favre-filter

to the governing equations for instantaneous flow quantities, Eqs. (2.1)-(2.4), as

∂

∂t
(ρ̄) +

∂

∂xi
(ρ̄ũi) = 0 (2.13)

9



∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj) +

∂

∂xi
(p̄) =

∂

∂xj
(τ̄ij + σij) (2.14)

∂

∂t
(ρ̄Ẽ) +

∂

∂xj
(ρ̄Ẽ + p̄)ũj =

∂

∂xj
(τ̄ij + σij)ũi +

∂

∂xj
(q̄j +Qj) (2.15)

p̄ = ρ̄RT̃ . (2.16)

Here, ρ̄ is the time-averaged density, ũi are the Cartesian components of the Favre-filtered

velocity, p̄ is the filtered pressure, and Ẽ is the Favre-filtered total energy. ρ̄Ẽ is the filtered

total energy per unit volume defined as

ρ̄Ẽ = ē+
1

2
ũiũi + ρ̄k̃ (2.17)

where ρ̄k̃ is the sub-grid scale turbulent kinetic energy per unit volume defined as

ρ̄k̃ =
1

2
ρ̄(ũiui − ũiũi). (2.18)

σij in Eq.(2.14) is the sub-grid scale stress tensor given as

σij = −ρ̄(ũiuj − ũiũj). (2.19)

From the above, it can also be derived that σii = −2ρ̄k̃. Qj in Eq.(2.15) is the sub-grid

scale heat flux,

Qj = −cpρ̄(ũjT − ũjT̃ ). (2.20)

The molecular viscous stress tensor τ̄ij and the molecular heat flux vector q̄j are negli-

gible in free turbulent shear flows and outside the viscous sublayer in turbulent boundary
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layers. It is also important to note that, in formulating the above equations, the commu-

tation error between the filtering operation and the spatial derivative of solution content is

ignored. When using an implicit filter, the commutation error is introduced at transition

regions of different filter width (grid size). It is shown in [72] that, in the case of non-

uniform grids, the commutation error can be large near the boundaries, where the change

in the grid spacing is largest. It is also shown in [35] that the filtering and differentiation

operations commute up to an error which is second order in the filter width. In the case of

uniform grids, there is no commutation error. The implications of non-commutation have

not been fully examined in the literature.

2.2.3 Closure problems

The Eqs. (2.13) to (2.15) are structurally similar to Eqs. (2.1) to (2.3) with the exceptions

of the sub-grid scale terms, σij, Qj, and ρ̄k̃. These terms arise from the differences between

filtered products and products of filtered variables, and this difference takes into account

the information contained at the sub-grid scale level. The closure of the system requires

modelling of these sub-grid scale terms. The challenge is to construct robust models that

will provide statistically accurate and meaningful results for the large scale flow structures.

In the following section, the closing strategies used herein are summarized and discussed.

2.3 Turbulence model

2.3.1 Conventional explicit sub-grid scale modelling

In LES, the conventional approach to model the sub-grid scale stress terms is by employing

the eddy viscosity hypothesis proposed by Boussinesq, which is mathematically analogous

to the stress and strain rate for a Newtonian fluid, Eq. (2.5). Eddy viscosity concept relies

on the assumption that the sub-grid scale term is proportional to the strain rate tensor.

This mimics, in some sense, the effects of physical viscosity which dissipates all kinetic

energy into heat at the Kolmogorov scale. In this concept, the eddy viscosity is responsible
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for balancing the dissipation rate at filtered scales against the turbulent energy transfer

from the resolved scale.

The most commonly used eddy viscosity model in LES is the Smagorinsky model [102]

which bases its assumption that the small scale eddies maintain a state of isotropy. The

extension of the standard Smagorinsky model to the compressible flows [57, 25] is used in

this work to model the eddy viscosity term. The model is

σij = 2CRρ̄42
√
s̃ij s̃ij(s̃ij −

1

3
s̃kkδij)−

2

3
ρ̄k̃δij (2.21)

where the Favre filtered strain-rate tensor s̃ij is defined as

s̃ij =
1

2
(
∂ũi
∂xj

+
∂ũj
∂xi

). (2.22)

CR is the compressible Smagorinsky constant and it is found that CR = 0.012 gives a high

correlation between the exact and modelled stresses using various measures of comparison

[25]. For the sub-grid scale turbulent kinetic energy term ρ̄k̃, Yoshizawa’s model [125] is

used

− 2ρ̄k̃ = σii = −4ρ̄CI42s̃kls̃kl, (2.23)

where CI is an additional closure coefficient, which is generally quite small ranging some-

where between 0.005 to 0.0066. For the work herein, CI = 0 is used instead because it is

physically insignificant and numerically more efficient.

The biggest advantage of this standard Smagorinsky model is the simplicity, which

renders this model still very popular; however, it is known to have some major drawbacks.

Some of them include: its incapability to adjust to the local flow dynamics, its incapability

of sub-grid scale energy backscatter to the resolved scales, and consequently, its limiting

behaviour near the wall which correlates relatively poorly with the exact sub-grid scale

tensor when compared to the behaviours of other turbulence models [126]. In fact, most

of the sub-grid viscosity models do not exhibit the correct behaviour in the vicinity of
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solid walls, resulting in an excessive damping of fluctuations in the near-wall region. To

correct its erroneous near-wall behaviour, this model is often used with a van Driest damp-

ing function in order to account for wall proximity. Another alternative is the dynamic

Smagorinsky model which dynamically computes the value at every grid point in space

and at every time step. The dynamic model is not considered in this work.

For the sub-grid scale heat flux term, Qj, the eddy diffusivity model is also used. The

eddy viscosity model for sub-grid scale heat flux (Qj) is given as

Qj = ρ̄cp
cR
prt
42

√
S̃klS̃kl

∂T̃

∂xj
. (2.24)

The turbulent Prandtl number Prt is chosen to be 0.4 following the work by Knight et

al. [57]. This term is less significant as their contributions are relatively negligible when

compared to the other sub-grid terms [119].

2.3.2 Implicit sub-grid scale modelling

In view of conventional explicit sub-grid scale modelling, the physical model (e.g. Smagorin-

sky eddy viscosity) for the sub-grid scale terms is held wholly responsible for the entire

energy transfer from resolved to unresolved sub-grid scales. This requires a high order

accurate numerical algorithm that minimizes numerical dissipation. In practice, however,

the significant numerical errors, such as spatial-truncation error [34, 15], contaminate the

effect of explicit sub-grid scale modelling terms. Unless the DNS solution is reached, in-

creasing the grid resolution does not improve the situation because the errors can increase

faster than the sub-grid terms when no explicit filtering is used [34]. Use of an explicit filter

operation with a proper filter to grid width ratio can reduce these errors, but the required

filter to grid ratio results in a substantial increase of computational cost for LES. A higher-

order discretization scheme minimizes the numerical dissipation and reduces these errors,

but a higher-order scheme is not practical for simulations involving complex geometries.

In view of implicit LES, numerical algorithm is held wholly responsible for the entire

energy transfer between resolved and sub-grid scales, without an employment of an explicit
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sub-grid scale model (i.e., σij = 0 and Qj = 0). In this approach, called Monotone Inte-

grated Large Eddy Simulation (MILES) [6], the dispersion and dissipation errors, arising

from the upwind numerical scheme, are used to emulate this physical residual stress such

that the sub-grid scale quantities are not explicitly modelled. It is shown by Garnier et

al. [32] that the numerical diffusion in the MUSCL scheme (which will be discussed in

Sec. 3.2.1) is larger than the diffusion of the sub-grid scale models, therefore the addition

of an explicit sub-grid scale model is often unnecessary. The filtering and residual stress

modelling are then performed implicitly by the numerical method. This method requires

monotonic schemes by definition, in which case the scheme used in this work qualifies by

virtue of the use of Riemann solvers when computing the inviscid fluxes. This will be

shown in the next chapter.

14



Chapter 3

Numerical Methods

This chapter describes the main elements of the numerical method to solve the governing

equations. Sec. 3.1 briefly summarizes the key elements involved in the finite-volume

scheme and Sec. 3.2 presents the details on the numerical flux evaluations including both

hyperbolic and elliptic components. Sec. 3.3 presents the time marching scheme employed

to integrate the coupled system of nonlinear ordinary differential equations in time. Finally,

procedures to define boundary conditions are described in Sec. 3.4

3.1 Finite-volume method

The governing equations described in the previous chapter can be written in the following

differential form:

∂U

∂t
+ ~∇ · ~F = 0 (3.1)

where U is the vector of conserved state variables and ~F is the flux vector. The flux vector

can be decomposed into an inviscid (hyperbolic) component ~F I and a viscous (elliptic)

component ~F V as
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~F = ~F I + ~F V = (F I
x − F V

x , F
I
y − F V

y , F
I
z − F V

z ) (3.2)

where the subscripts represent the coordinate direction of the Cartesian component of the

flux vector. By decomposing the flux into the inviscid (hyperbolic) term and the viscous

(elliptic) term, standard methods for each flux calculation can be used separately for the

evaluation. In particular, the high resolution shock-capturing methods can be used directly

for the inviscid flux term, while the gradients of the viscous flux can be calculated with a

conventional second-order central difference scheme.

The vectors U , F I
x , F V

x , F I
y , F V

y , F I
z and F V

z can be expressed as

U =


ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄Ẽ

 , (3.3)

FI
x =


ρ̄ũ

ρ̄ũ2 + p̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄Ẽ + p̄)ũ

 FI
y =


ρ̄ṽ

ρ̄ṽũ

ρ̄ṽ2 + p̄

ρ̄ṽw̃

(ρ̄Ẽ + p̄)ṽ

 FI
z =


ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄Ẽ + p̄)w̃

 , (3.4)
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FV
x =


0

τ̄xx + σxx

τ̄xy + σxy

τ̄xz + σxz

ũ(τ̄xx + σxx) + ṽ(τ̄xy + σxy) + w̃(τ̄xz + σxz)− (q̄x +Qx)

 ,

FV
y =


0

τ̄yx + σyx

τ̄yy + σyy

τ̄yz + σyz

ũ(τ̄yx + σyx) + ṽ(τ̄yy + σyy) + w̃(τ̄yz + σyz)− (q̄y +Qy)

 ,

FV
z =


0

τ̄zx + σzx

τ̄zy + σzy

τ̄zz + σzz

ũ(τ̄xz + σxz) + ṽ(τ̄yz + σyz) + w̃(τ̄zz + σyz)− (q̄z +Qz)

 .

(3.5)

The finite-volume method used herein starts by integrating the differential form, Eq.

(3.1) and applying the divergence theorem. The resulting integral form is written as

d

dt

∫
V

UdV +

∮
Ω

n · ~FdΩ = 0 (3.6)

where V is the control volume, Ω is the closed surface of the control volume, and n is the

unit outward vector normal to the closed surface. U = [ρ, ρu, ρv, ρw, ρE]T is the flow state

vector of the conserved variables and ~F is the flux vector. The averaged value of U within

the cell is defined by an integration over the control volume,

Ū =
1

V

∫
V

UdV. (3.7)
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The preceding equations are discretized in a Cartesian computational domain which are

then solved using a Godunov-type finite-volume method [36]. The Eq. (3.6) can be re-

written in a semi-discrete form as

dŪi,j,k
dt

= − 1

Vi,j,k

Nf∑
i=1

[~ni · ~FiAi]i,j,k (3.8)

where Nf denotes the number of cell faces and Ai denotes the surface area of face i. The

semi-discrete form represented by Eq. (3.8) is a set of coupled non-linear ODEs for cell-

averaged quantities Ūi,j,k at the (i,j,k)-indexed location, and this can be solved by an

evaluation of the flux integrals. In the flux evaluation stage, the cell interface flux F is

evaluated as a function of the discontinuous states on either side of the interface (ŪL,

ŪR). This discontinuity arose due to the piecewise approximations for Ūi,j,k in each control

volume. In the time evolution stage, the solution is evolved forward in time using an

appropriate time evolution method which updates the values for Ūi,j,k.

3.2 Flux evaluation

3.2.1 Inviscid (Hyperbolic) flux evaluation

For the inviscid fluxes ~F I , Godunov-type upwind finite-volume spatial discretization proce-

dure is applied where the solution of Riemann problem is used to evaluate the cell interface

flux. This procedure was first introduced by Godunov [36] as a method for solving non-

linear Euler equations. In his original work, piecewise constant solution states are stored

in the computational domain at each instance in time such that it permits the existence

of discontinuous solutions and leads naturally to a Riemann problem at the interface be-

tween cells. The drawback of Godunov’s original method is that it remained first-order

accurate due to the piecewise constant reconstruction of the cell value. As such, poor

accuracy in smooth regions of the flow and smeared representation of discontinuities are

inevitable. However, the achievement and the drawback of his initial work inspired new
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areas of research which directed to improve the algorithm to a high-resolution scheme and

to incorporate more efficient solutions to the Riemann problem. A brief description of

higher-order schemes and approximate Riemann solvers are discussed here.

High resolution methods

A second order scheme using a piecewise linear reconstruction and that preserves mono-

tonicity was first introduced by Van Leer [61, 117]. This method, known as Monotone

Upstream Scheme for Conservation Laws (MUSCL), makes use of a flux or a slope limiter

to constrain the state reconstruction in the vicinity of discontinuities in order to preserves

monotonicity. This concept of limiting the flux, which acts to prevent the occurrence of

numerical oscillations, was later generalized via the concept of Total Variation Diminish-

ing (TVD) by Harten [45]. TVD is a mathematical property which dictates that, as time

progresses the sum of all the differences between adjacent points must remain the same

or decrease. Thus, the amount of “variation” in a TVD scheme starts with is the maxi-

mum that it can ever achieve. This TVD-MUSCL scheme can be extended to higher order

via piecewise polynomial reconstruction. For instance, it was extended to allow for piece-

wise parabolic reconstruction via the Piecewise Parabolic Method (PPM) of Colella and

Woodward [18].

This TVD condition guarantees a stable solution, but the drawback is its strict require-

ment. As shown in [63], TVD property is not strictly required for stability. Another class

of higher order scheme was developed with a goal to find looser criteria that allows a small

increase in the total variation near extrema while still suppressing oscillations where nec-

essary. Essentially Non-oscillatory (ENO) scheme and its variations (e.g. WENO, MENO)

are based on the selection of stencils from the smoothest interpolants in order to obtain

higher resolution [44, 99, 100]. A quantitative analysis of solutions to the Euler equations

using TVD-MUSCL and ENO schemes is performed in [43], where the superiority of the

ENO schemes over the TVD-MUSCL approach is established in terms of accuracy. In this

work, the second order TVD-MUSCL sceme is used due to its simpler implementation.
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Piecewise linear reconstruction with a limiter

The inviscid flux ~F I between the two cells, (i, j) and (i+ 1, j), is given at the cell interface

(i+ 1
2
, j) as

Fi+ 1
2
,j = F (R(UL, UR)) (3.9)

where R represents the solution of the Riemann problem. The left state (L) corresponds to

information coming from the negative space direction, while the right state (R) corresponds

to information coming from the positive space direction. The left and right solution states

(ŪL, ŪR) at a midpoint of each cell interface (x) are determined by the piecewise limited

linear solution reconstruction as follows:

ŪL =Ūi,j,k + Φ~∇i,j,kŪi,j,k · (~x− ~xi,j,k)

ŪR =Ūi+1,j,k + Φ~∇i+1,j,kŪi+1,j,k · (~x− ~xi+1,j,k)
(3.10)

The limiter Φ here constrains the state reconstruction in the vicinity of discontinuities such

that the scheme reduces to first order-accuracy if local extrema are detected. This gives

a global piecewise linear approximation that is non-oscillatory in the sense that its total

variation is no greater than that of the discrete data. In the current algorithm, the slope

limiters of minmod [93], superbee [93], MC [61] and UMIST [64] are implemented for the

limited reconstruction, although other limiters would do almost equally well as long as the

solution is smooth everywhere.

Flux solvers

Given the left and right solution state vectors at a cell interface (ŪL, ŪR), which are de-

termined from the reconstruction stage, the inviscid flux F I is then evaluated by solving

the Riemann problem. An intuitive choice is to use an exact solution procedure for the

Riemann problem such as the one outlined by Gottlieb and Groth [40]. This exact solution
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is an iterative procedure, therefore, it is computationally expensive. It is also not economi-

cal since it provides the full wave configurations when the Godunov’s scheme only requires

the interface flux value and discards the rest. Furthermore, the time evolved solutions

are treated as a piecewise constant by averaging out the details of the updated solution.

This implies that the Godunov’s method itself is merely an approximation. As such, an

approximated value of the interface flux, rather than the exact value, should be sufficient.

Approximated flux value can be obtained in various ways, such as approximate Riemann

solvers (e.g. Roe [92], HLLC [45]), flux vector splitting methods ([103]), or AUSM ([66])

scheme to name a few.

In this work, the flux is formulated using an improved version of the Advection Up-

stream Splitting Method (AUSM), called AUSM+. In the original formulation of AUSM

proposed by Liou and Steffen [66] , the inviscid flux is split into a convective component

and a pressure component. The idea is to discretize the two components separately, since

the convective terms are considered scalar quantities convected by velocity u at the cell

interface, whereas the pressure terms are governed by the acoustic wave speeds. The de-

tails related to this method are given in [67], which are also summarized here. First, the

inviscid flux is written as a sum of these two components as

F I
x = F (C) + P = ũ


ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄H̃

+


0

p̄

0

0

0

 (3.11)

where the filtered total enthalpy per unit volume H̃ = Ẽ + p̄/ρ̄. Correspondingly, the

numerical flux at the cell interface F I
i+ 1

2

can be effectively written as

21



F I
i+ 1

2
= ũi+ 1

2


ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄H̃


i+ 1

2

+


0

p̄

0

0

0


i+ 1

2

= mi+ 1
2
ãi+ 1

2
Φi+ 1

2
+ Pi+ 1

2
(3.12)

where

Φi+ 1
2

=

Φi, if mi+ 1
2
≥ 0,

Φi+1, otherwise;
(3.13)

Φ = (ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, ρ̄H̃)T , and ãi+ 1
2

is the filtered interface speed of sound. Here the con-

vective flux F (C) is expressed in terms of the interface Mach number mi+1/2. This interface

Mach number is written as a sum of two individual components,

mi+ 1
2

=M+(Mi) +M−(Mi+1) (3.14)

where M is the split Mach number and the superscripts “+” and “-” are associated with

the right and left running waves. The split Mach numbers M takes the form

M±(M) =

1
2
(M ± |M |), if |M | ≥ 1,

M±
β (M), otherwise

(3.15)

with

M±
β (M) = ±1

4
(M ± 1)2 ± β(M2 − 1)2, − 1

16
≤ β ≤ 1

2
. (3.16)

Similarly, the interface pressure flux Pi+ 1
2

is written as
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Pi+ 1
2

= P+(Mi)pi + P−(Mi+1)pi+1 (3.17)

where P is the split pressure and the superscripts “+” and “-” are associated with the

right and left running waves. The split pressure P takes the form

P±(M) =

1
2
(1± sign(M)), if |M | ≥ 1,

P±α (M), otherwise
(3.18)

with

P±α (M) = 1
4
(M ± 1)2(2∓M)± αM(M2 − 1)2, −3

4
≤ α ≤ 3

16
. (3.19)

For simplicity, the interface speed of sound ãi+ 1
2

is chosen to be

ãi+ 1
2

= 1
2
(ãi + ãj) (3.20)

This method is known to be valid for a wide range of flow speeds and Mach numbers.

The results presented hereafter are produced using the AUSM+ flux function. A more

complete and detailed discussion is given in [67].

3.2.2 Viscous (Elliptic) flux evaluation

The viscous fluxes of the governing equations are elliptic in nature, therefore it should

not be upwinded. In this work, the viscous terms are discretized by using the traditional

second-order central difference scheme. The numerical viscous flux at the cell interface

F V
i+ 1

2

takes the form

F V
i+ 1

2
= F (Ui+ 1

2
, ~∇Ui+ 1

2
) (3.21)
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where Ui+ 1
2

is the solution vector at the cell interface, which is evaluated by averaging the

values of the left and right states as

Ui+ 1
2

=
UL + UR

2
. (3.22)

The gradient ~∇Ui+ 1
2

is evaluated as

~∇Ui+ 1
2

=
~∇Ui + ~∇Ui+1

2
(3.23)

where, in the case of x direction,

~∇Ui =
Ui+1,j,k − Ui−1,j,k

xi+1,j,k − xi−1,j,k

and ~∇Ui+1 =
Ui+2,j,k − Ui,j,k
xi+2,j,k − xi,j,k

. (3.24)

3.3 Time integration

The set of coupled non-linear ordinary differential equations (ODEs) given by Eq. (3.8)

can be integrated forward in time using a time-marching method. A wide variety of time-

marching methods, such as explicit methods (e.g. explicit Euler, Adams-Bashforth and

Runge-Kutta methods) and implicit methods (e.g. implicit Euler, trapezoidal, AdamsMoul-

ton and Runge-Kutta methods), are available for the integration. In this work, the linear

reconstruction used in the spatial discretization is globally second-order accurate. To main-

tain a consistent scheme in terms of accuracy, a time-marching scheme having the same

order of accuracy is used.

An explicit method of second-order Adams-Bashforth scheme is employed in this work,

i.e.

Ū
n+1
i,j,k = Ū

n
i,j,k + ∆t(3/2fn − 1/2fn−1) (3.25)

where
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fn = F (Un
i,j,k, t

n)

=
F n
i+1/2,j,k − F n

i−1/2,j,k

∆x
+
F n
i,j+1/2,k − F n

i,j−1/2,k

∆y
+
F n
i,j,k+1/2 − F n

i,j,k−1/2

∆z

(3.26)

on a three-dimensional Cartesian grid. F n
i±1/2,j,k, F

n
i,j±1/2,k and F n

i,j,k±1/2 denote the face-

averaged fluxes at the cell interfaces at the current time step n.

For an explicit time marching method such as one used in this work, the time step is

limited by the inviscid Courant-Friedrichs-Lewy (CFL) stability as well as by the viscous

von Neumann stability constraints. The exact computation of the time step that ensures

stability requires the numerical analysis of the eigenvalues of the amplification matrix of

the numerical scheme [49]. Here, a simplified analysis is followed. A stable local time step

is then taken as the minimum of the inviscid and viscous time steps as

4tn = min(CFL
4l
|~u|+ a

,
α

2

ρ4l2

max(ν, νt)
) (3.27)

where 4l is a minimum cell-face length, a is the speed of sound, ν and νt are molecular

viscosity and turbulent eddy viscosity, respectively, and α is a scaling factor.

3.4 Boundary conditions

Boundary conditions are enforced by using “ghost” cells, which form a layer of cells around

the computational domain. In this section, procedures to define boundary conditions for

the compressible Navier-Stokes equations are described.

3.4.1 Periodic boundary conditions

Assumption of periodicity of the computational domain is often used in DNS and LES of

channel flows. This is suitable for fully developed homogeneous flow, since the flow fields
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at inflow and outflow are considered as statistically the same provided that they are far

enough apart from each other. In this case, the computational domain can be regarded as

repeating itself infinitely. The domain is then folded on itself and no boundary conditions

are actually required. Using ghost cells, this can be achieved by copying flow variables of

the outflow (inflow) boundary to the ghost cells at the inflow (outflow) boundary.

3.4.2 Navier-Stokes characteristic boundary conditions

For simulations in which no periodicity is assumed, flow inlets and outlets must be treated

according to the physical boundary conditions. To avoid the appearance of spurious reflec-

tions at these open boundaries in compressible flows, the three-dimensional Navier-Stokes

characteristic boundary conditions (NSCBC), introduced by Pointsot and Lele [86], are

considered in this work to describe the non-reflecting boundary conditions. This is a gen-

eralized formulation of the characteristic analysis for the Euler equations introduced by

Thompson [110, 111] who successfully applied the one-dimensional approximation of the

characteristic boundary conditions in the multi-dimensional Euler equations. The basic

idea is to decompose the hyperbolic equations into wave modes of velocity to determine

incoming and outgoing waves of the domain. The behaviour of the outgoing waves are

determined entirely by the solutions within the boundary, whereas the incoming waves

are specified according to the boundary conditions. Poinsot and Lele [86] later included

the viscous diffusion terms to generalize the original formulation to the viscous diffusive

Navier-Stokes equations. The mathematical well-posedness and stability of the viscous

boundary conditions have also been investigated extensively [81, 24]. In this study the

NSCBC method of [86] is used for non-periodic flow cases and the strategy is summarized

below.

When considering boundary conditions for x direction (other directions can be handled

similarly), the governing equations (Eq. 2.1 - Eq. 2.3) can be recast in the following

characteristic form.
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∂ρ

∂t
+ d1 +

∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (3.28)

∂(ρu)

∂t
+ ud1 + ρd3 +

∂(ρu)v

∂y
+
∂(ρu)w

∂z
=
∂τ1j

∂xj
, (3.29)

∂(ρv)

∂t
+ vd1 + ρd4 +

∂(ρv)v

∂y
+
∂(ρv)w

∂z
+
∂p

∂y
=
∂τ2j

∂xj
, (3.30)

∂(ρw)

∂t
+ wd1 + ρd5 +

∂(ρw)v

∂y
+
∂(ρw)w

∂z
+
∂p

∂z
=
∂τ3j

∂xj
, (3.31)

∂ρE

∂t
+

1

2
(ukuk)d1 +

d2

γ − 1
+ (ρu)d3 + (ρv)d4 + (ρw)d5

+
∂

∂y
[(ρE + p)v] +

∂

∂z
[(ρE + p)w] =

∂(ujτij)

∂xi
− ∂qi
∂xi

.

(3.32)

The mathematical process to rewrite the governing equations to the above form is explained

in detail in [111, 86] and it is also summarized in Appendix A. The purpose of rewriting the

governing equations in this form which contains the quantities di is to specify boundary

conditions in a convenient manner. The quantities di are related to characteristic waves

given by


d1

d2

d3

d4

d5

 =


1/c2[L2 + 1/2(L5 + L1)]

(1/2)(L5 + L1)

(1/2ρc)(L5 − L1)

L3

L4

 (3.33)

27



where Li is an amplitude of characteristic wave associated with wave velocity λi. λi’s are

given by

λ1 = u− c , λ2 = λ3 = λ4 = u , λ5 = u+ c (3.34)

where c is the speed of sound, defined as c =
√

γp
ρ

. λ1 and λ5 are the velocities of the

characteristic waves moving in the negative and positive x directions, respectively, λ2 is

the velocity for entropy advection, and λ3 and λ4 are the velocities at which v and w are

advected in the x direction. If the velocity λi points out of the solution domain (outgoing

wave), the corresponding Li is computed from its definition below using one-sided derivative

approximations.

L1 = λ1(
∂p

∂x
− ρc∂u

∂x
), (3.35)

L2 = λ2(c2 ∂ρ

∂x
− ∂p

∂x
), (3.36)

L3 = λ3
∂v

∂x
, (3.37)

L4 = λ4
∂w

∂x
, (3.38)

L5 = λ5(
∂p

∂x
+ ρc

∂u

∂x
). (3.39)

If, on the other hand, λi points into the solution domain (incoming wave), the value

of the corresponding Li must be specified from the boundary conditions. To specify these

values of Li’s that are incoming waves, the technique called LODI (Local One-Dimensional

Inviscid) relation [86] is considered in this work. There is no exact simple method to specify

these values for multidimensional equations, therefore, these values are approximated by

examining a LODI relation. The LODI relation are obtained by rewriting Eqs. (3.28) -

(3.32) in terms of primitive variables and Li. Neglecting other directions, one gets
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∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0, (3.40)

∂p

∂t
+

1

2
(L5 + L1) = 0, (3.41)

∂u

∂t
+

1

2ρc
(L5 − L1) = 0, (3.42)

∂v

∂t
+ L3 = 0, (3.43)

∂w

∂t
+ L4 = 0. (3.44)

In the current work, this characteristic boundary treatment is applied to open bound-

aries where the viscosity and the heat transfer are assumed insignificant (τij ≈ 0, q ≈ 0).

The boundary treatment, using the above LODI relation, then follows the strategy of

NSCBC for the Euler equation described in [86]. The procedure involves three steps:

Step 1: For each physical boundary condition, eliminate the corresponding conservation

equations from the system of Eqs. 3.28 - 3.32. For example, if a constant pressure p is

specified at the outlet there is no need to use the energy equation Eq. (3.32).

Step 2: For each boundary condition, use the corresponding LODI relation to express

the unknown Li’s (associated with the incoming waves), as a function of known Li’s (as-

sociated with the outgoing waves). In the example of constant outlet pressure, the only

incoming wave is L1 and LODI relation, Eq. (3.41) suggests that L1 = −L5.

Step 3: Use the remaining conservation equation of the system of Eqns. 3.28 - 3.32

combined with the values of the Li’s obtained from Step 2 to compute all variables which

were not given by the boundary conditions.

The implementation of the above general theory into specific physical boundary condi-

tions at the inlet and outlet are discussed in the subsequent sections.
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Subsonic inflow

At a subsonic inflow boundary, four characteristic waves (L2, L3, L4, L5) are entering the

domain, while one (L1) is leaving the domain at the speed λ1 = u − c (Fig. 3.1(a)). The

amplitude of L1 is determined from the interior information, Eq. (3.35), while the rest of

the Li’s are determined from the physical boundary conditions. There are many physical

boundary conditions that exist and, in this work, u, v, w and ρ are chosen to be imposed

at the inlet. This leads the time derivative of these variables to be zero. By using the

LODI system Eqs. (3.40) - (3.44) (except Eq. (3.41)), the expression for the Li’s can be

determined in terms of L1. For example, Eq. (3.42) implies that L5 = L1 since the time

derivative of u is zero. Other Li’s are determined similarly as


L2

L3

L4

L5

 =


−L1

0

0

L1

 . (3.45)

With all the Li’s identified, the Eqs. (3.28) - (3.32) can now be solved at the boundary.

Subsonic non-reflecting outflow

For the non-reflecting outflow at the outlet, there are four characteristic waves (L2, L3,

L4, L5) that are leaving the domain, while one (L1) is entering the domain (Fig. 3.1(a)).

To avoid the reflection of waves, the amplitude of the incoming wave is enforced to be

zero. This can be achieved simply by setting L1 = 0. The amplitudes of other Li’s are

determined from the interior information, Eqs. (3.35) - (3.39).

Supersonic inflow

For the supersonic inflow at the inlet, all the characteristic waves are entering the domain,

including L1 (Fig. 3.1(b)). Consequently, all the amplitudes of Li’s must be specified from

the boundary, hence, all the flow variables (u, v, w, ρ and p) are imposed at the inlet.
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Figure 3.1: Characteristic wave leaving and entering the computational domain through
an inlet and an outlet plane for a) a subsonic flow, and b) a supersonic flow.

Supersonic outflow

For the supersonic outflow at the outlet, all the characteristic waves are leaving the domain

(Fig. 3.1(b)). Consequently, no boundary conditions is required to be specified at all,

and the evolution of the flow at the boundary is determined completely by the interior

information. In this case, all the Li’s are computed from the interior information.

3.4.3 Solid wall boundary conditions

On solid walls, the no-slip conditions are enforced, which is achieved by imposing flow

variables at the ghost cells using Dirichlet and Neumann conditions. Conditions of Dirichlet

type are prescribed for the velocity in order to capture the no-slip wall, while conditions

of Neumann type are prescribed for pressure and density to model the adiabatic wall. The

normal velocity (or pressure gradient) is set to be zero.

It is worth noting here that there is an alternative and perhaps more rigorous method

to impose the solid walls in compressible flow simulations, based on the characteristic wave

decomposition. This method utilizes the NSCBC method of Sec. 3.4.2, and it is also

described in [86]. The similarities and differences between the method based on Dirich-

let/Neumann conditions and the method based on the NSCBC are reported in [59], which

concludes that the latter method (based on the NSCBC) leads to a more stable and robust

scheme. The two methods, however, lead to equivalently accurate results, and this is fur-
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ther confirmed in the context of the immersed boundary method in [73]. As such, and also

due to the simpler implementation of the former method (based on Dirichlet/Neumann

conditions), the latter method is not considered in this work.

In the context of non-body conformal grid, the solid boundaries are immersed in the

Cartesian grids, resulting in cutting the Cartesian cells in a random manner and making

the implementation of boundary conditions difficult. In this approach, the challenge is to

compute the solution states at the ghost cell point such that the reconstructed solution

and the associated boundary flux satisfy the no slip wall on the immersed boundary. The

procedures, with which the solution states at the ghost cells are determined, are discussed

in detail in the next chapter.
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Chapter 4

Non-body Conformal Grid Treatment

4.1 Introduction

4.1.1 Motivation

When dealing with complex geometries in CFD, difficulties arise with the numerical meth-

ods based on body fitted grids because high-order numerical schemes are often desired

but they are sensitive to the quality of the computational grids. Generating good quality

body fitted grids around the complex geometries is challenging and time-consuming. An

alternative approach is the numerical methods based on non-body conformal grids which

specify a body force in such a way that it simulates the presence of a solid surface without

altering the existing computational grid. Most salient advantage is in its high level of

flexibility in handling highly complex geometries at significantly less computational cost.

Most notable challenge is in how to incorporate the boundary conditions properly at the

solid boundaries that are not aligned with the grid. Non-body conformal methods can be

divided into two major classes based on the specific treatment of the cells in the vicinity of

the boundary: (1) Immersed boundary methods, which enforce wall conditions indirectly

through the use of forcing functions, and (2) Cartesian cut-cell methods, which rely on the

construction of irregular grid cells near surfaces. In this research, two non-body conformal
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grid methods are studied: the ghost-cell based immersed boundary method (GC-IBM) and

the ghost-cell based cut-cell method (GC-CCM). Turbulent compressible flows in various

complex geometric settings are simulated using these non-body conformal methods in this

work. In the case of high Reynolds number flows, a wall model is employed to approximate

the wall-shear stress such that a severe grid resolution requirement near the wall is avoided.

In this chapter, the implementations of these methods are described in detail.

4.1.2 Overview of immersed boundary method (IBM)

The immersed boundary method (IBM) was first introduced by Peskin [84], and many

strategies have since been developed in order to properly impose the wall boundary con-

ditions (as well summarized in [76]). Over the years, these strategies have been tested in

a wide range of CFD applications using both finite-difference and finite-volume methods.

During the early stages of development, the effect of solid body inside a fixed mesh was

represented by including a continuous forcing function in the momentum equation. This

arrangement was successfully tested for a variety of flows in the incompressible flow solvers

at low Reynolds numbers [37, 38, 97, 55]. This approach, known as the continuous forcing

approach, has exhibited some stability and accuracy issues with highly unsteady flows at

high Reynolds numbers [58, 104]. Another approach, known as discrete forcing approach,

then gained popularity by discretizing the governing equations on a Cartesian grid without

the presence of the immersed boundaries. The discretization near the immersed bound-

aries is then adjusted in order to account for the boundaries. Mohd-Yusof [77] used a

forcing term such that the desired velocity distribution is obtained at the boundaries. This

forcing term is determined by the difference between the linearly interpolated velocities in

the boundary points and the desired boundary velocities. In this manner, errors between

the calculated velocities and the desired velocity profile on the immersed boundaries are

compensated. They implemented the method for a complex geometry in a pseudo-spectral

code while avoiding the need of a small computational time step. Fadlun et al. [26] then

applied this approach to a three-dimensional finite difference method on a staggered grid

and showed that the approach was more efficient than the continuous forcing approach.
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Tseng and Ferziger [112] extended the IBM approaches (of [26] and [118]) to achieve a

higher-order representation of the boundary using ghost cells inside the body. Ghost cells

are defined as cells in the solid body that have at least one side neighbouring with a fluid

cell. The basic idea here is to compute the flow variables in these ghost cells such that

the boundary conditions on the immersed boundary in the vicinity of the ghost cells are

satisfied. In the computation, an interpolation scheme is devised which implicitly incor-

porates the boundary conditions. This interpolation is the basic condition for IBM in the

discrete forcing approach. There are a number of options available for constructing the

interpolation schemes [70]. One simple option is the bi-linear (for 2D) or tri-linear (for 3D)

interpolation. Most of the IBM applications available in the literature are based on this

linear reconstruction and they are focused on simulating inviscid or laminar flows.

To this date, most of the listed work on IBM is devoted to incompressible flows [see

[76] for a list of methods developed to date]. The same for compressible viscous flows

is still rare and immature [33, 83, 12]. Most of the IBM applications available in the

literature are also based on the linear reconstruction, focusing on simulating inviscid or

laminar flows. Ghias et al. [33] developed a finite-difference based ghost cell method,

same principle as suggested by Tseng et al. [112], for compressible viscous flows using

a bi-linear interpolation in order to determine the ghost-cell values. Their method was

successfully tested for flows over a circular cylinder and an airfoil at low Reynolds (and

Mach) numbers where the flow feature was essentially laminar. De Palma et al. [83] also

developed an immersed boundary method for compressible viscous flows and demonstrated

its efficiency and versatility from incompressible to supersonic flow conditions. De Tullio

et al. [22] developed another variant of IBM to deal with compressible turbulent flows in

conjunction with a local grid refinement such that the first cell from the wall is located

in the viscous sublayer. High Reynolds number turbulent flows are still possible provided

that a very fine mesh is generated near the wall. The drawback is that it could lead to

erroneous predictions with a marginal grid resolution. This is because the method is not

designed to satisfy the underlying conservation laws in the vicinity of the interface, hence

it fails to capture the non-linearities of turbulent flows in the near-wall regions when the

grid resolution is not sufficiently fine.
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4.1.3 Overview of Cartesian cut-cell method

Immersed boundary method requires a sufficiently fine mesh such that the error in mass

conservation stays insignificant. The Cartesian cut-cell method, on the other hand, resorts

to a finite-volume approach thereby guaranteeing strict global and local conservation of

mass and momentum. This method uses a regular Cartesian grid for all cells, except those

which intersect the solid surface. Only the intersecting cells are then truncated or merged to

conform to the shape of the solid geometry such that the advantage of using a Cartesian grid

method is still retained. This method was first introduced for inviscid flow computations by

Clarke et al. [16] and was later applied to simulations of viscous flows [116, 114, 113, 123].

The three dimensional implementations of this method for both Euler [52] and compressible

Navier-Stokes equations [47] are then reported. Although a second-order accuracy in the

discretization was typically used for the interior cells, the order of accuracy in the vicinity

of the interface was typically decreased to one [47] or near one (≈ 1.5) [52] and, it was

for that reason that the applications were often combined with a local mesh refinement

in order to improve the accuracy. In view of foregoing, Meyer et al. [74] then developed

a second-order accurate Cartesian cut-cell method, called conservative immersed-interface

method (CIIM), which was used to solve the incompressible Navier-Stokes equations on

three-dimensional non-uniform staggered grids in the LES framework. This method has

been gaining popularity because it has shown to be efficient, conservative, second-order

accurate, and suitable for LES of wall-bounded flows. Most recently, the method has been

extended for the computation of compressible turbulent flows in large-eddy simulations

[73] and incompressible turbulent flows in large-eddy simulation in combination with a

wall model [13].

4.1.4 Wall modelling

From the LES point of view, the challenge is to achieve a substantial reduction in the

resource requirements for high Reynolds number near-wall flows, yet maintaining a realistic

description of the effects of near-wall processes. This is because accurate LES of wall

bounded flows requires a near-wall resolution comparable to that for DNS, thus limiting the
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use of LES to moderate Reynolds numbers. One popular way to overcome this difficulty is

to replace the near-wall region with a wall model to skip the direct resolution of the viscous

sublayer and buffer layer through a proper parametrization. In this way the grid size can be

related just to the large eddies developing in the fluid core, resulting in allowing relatively

coarser coarse grids near the wall. Most of reported simulations of highly turbulent flows

in LES with a wall model are almost exclusively used on body fitted structured grids.

There are only few published papers focusing on the wall modelling of LES on non-body

conformal grids [108, 94, 13]. The challenge with the non-body conformal methods is

the lack of control of the grid resolution in the vicinity of the solid boundary. The non-

dimensional distance (y+) of the first grid point off the boundary can vary dramatically

depending on how the boundary cuts across the grid. Roman et al. [94] used the immersed

boundary method where the velocity and the wall shear stress, which are the two main

components required for a wall model, are locally reconstructed based on the y+ value

of the first node off the boundary. Their method was tested in the framework of finite

difference implementation which generally does not satisfy the conservation law in the

vicinity of the boundary. Chen et al. [13] used the conservative cut-cell method of [74]

with a wall model which allowed for simpler and more conventional implementation of a

wall model than that by Roman et al. [94] for high Reynolds number flow computations.

4.2 Non-body conformal grid methods

4.2.1 Ghost-cell based immersed boundary method (GC-IBM)

This section describes the ghost-cell based immersed boundary method (GC-IBM) that is

utilized in this research. The ghost cell method achieves a higher-order representation of

the boundary in a way that is simple and flexible with the local spatial reconstruction.

Fig. 4.1 depicts an example of a Cartesian grid in two dimensions with an immersed solid

boundary. Each cell is classified as one of the following three types: fluid, solid and ghost

cells. Fluid cells F are cells whose cell centres lie outside the solid boundary, solid cells

S are cells whose cell centres lie inside but not adjacent to the solid boundary, and ghost
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cells G are cells whose cell centres lie inside and adjacent to the solid boundary. Two

layers of ghost cells inside the solid boundary are assigned in order to be consistent with

the second-order piecewise linear spatial reconstruction when computing the left and right

solution states, recall Eq. (3.10). The evaluations of cell interface fluxes then become

straightforward everywhere including in the vicinity of the boundary. The ghost cells are

identified as any cell in the solid region that has at least one immediate neighbour in the

fluid (i.e. the first layer of the ghost cells) and/or is neigh boring with a cell that has

an immediate neighbour in the fluid (i.e. the second layer of the ghost cells). For each

node of a ghost cell, a respective mirror image point I is determined by reflecting the node

across the boundary into the interior fluid domain, as shown in Fig. 4.2. Using surrounding

fluid cells, the flow variables at this image point can be obtained through an interpolation

scheme. Ensuring that the surface boundary is always exactly midway between the ghost

and image points guarantees that the interpolation scheme remains well behaved. There are

a number of options available for constructing the interpolation scheme [70] and the choice

depends on one’s interest in accuracy and cost. One simple option is a linear interpolation

where flow variables are expressed in terms of a linear (bi-linear in 2D or tri-linear in 3D)

interpolant. In the case of bi-linear interpolation, the generic flow variable at the image

point φI can be expressed as

φ(x, y) = C1xy + C2x+ C3y + C4 (4.1)

The four unknown coefficients Ci can be expressed in terms of the variables at the four

nodes surrounding the image point. Three different situations, illustrated in Figs. 4.2(a)

to 4.2(c), exist for a given image point and these have to be handled in a well-posed and

consistent manner. In the case of Fig. 4.2(a), where all four surrounding cells are fluid

cells, Eq. (4.1) can be used directly without any special treatment. The four weighting

coefficients are evaluated from the values of φ at the four fluid cells by inverting a 4 × 4

Vandermonde matrix:
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Figure 4.1: Schematic showing solid S, fluid F, and ghost G cells in the ghost-cell based
immersed boundary method.

Figure 4.2: Schematic of bi-linear interpolation points when (a) all surrounding cells are
fluid cells, (b) one surrounding cell lies inside the surface boundary, and (c) two surrounding
cells lie inside the surface boundary.
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
C1

C2

C3

C4

 =


x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1


−1 

φ1

φ2

φ3

φ4

 (4.2)

If one surrounding cell lies inside the surface boundary as illustrated in Fig. 4.2(b),

using the ghost cell point in the interpolation scheme will cause an ill-posedness problem.

The interpolation point is modified to replace the ghost point by its normal boundary

intercept (B in Fig. 4.2(b)). In this case, the last row in the Vandermonde matrix Eq.

(4.2) is replaced by

φB(x, y) = C1xByB + C2xB + C3yB + C4. (4.3)

Dirichlet boundary conditions are employed to determine the velocity components. For

example, no-slip boundary condition (un = 0, ut = 0) is imposed at the wall and hence the

corresponding matrix to Eq. (4.2) for the case of φ = un or φ = ut becomes


C1

C2

C3

C4

 =


x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

xByB xB yB 1


−1 

φ1

φ2

φ3

0

 (4.4)

Assuming an adiabatic wall, homogeneous Neumann boundary conditions, ∂φ
∂n

= 0, are

applied for quantities such as pressure and density. With some algebra, the gradient of φ

is then expressed as

∂φ

∂n
= C1(yBnx + xBny) + C2nx + C3ny = 0 (4.5)

Consequently, the corresponding Vandermonde matrix becomes
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
C1

C2

C3

C4

 =


x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

(yBnx + xBny) nx ny 0


−1 

φ1

φ2

φ3

0

 (4.6)

If two surrounding cells lie inside the surface boundary (Fig. 4.2c), the above step repeats

for the second point, resulting in Vandermonde matrix where the third row is also replaced

by Eq. (4.3) or Eq. (4.5), depending on the boundary condition. With the flow variables

at the image point expressed in terms of the surrounding nodes and boundary values, the

flow variables at the ghost node can now be evaluated. For this, linear interpolation along

the wall-normal direction is employed, and the value at the ghost cell node is obtained as

φG = ζφI + Γ (4.7)

For a Dirichlet boundary condition, Γ = 2φB and ζ = −1. A no-slip boundary condition

reduces Eq. (4.7) for the velocities to φG = −φI . For Neumann boundary condition,

Γ = ∂φ
∂n
· ∆l and ζ = 1 where ∆l is the length of the normal segment between the image

and ghost points. An adiabatic wall then reduces Eq. (4.7) for pressure and density to

φG = φI . The values at the ghost cell are obtained from the corresponding image point and

these values are used in the computations of any cell interface flux that involves a ghost

cell at the left or right solution state. These ghost cells implicitly satisfy the boundary

conditions on the immersed interface. For three-dimensional flows, one needs to extend

the above method in a straightforward manner using a tri-linear interpolation method with

six interpolation stencils. The finite volume formulation of Eq. (3.26) can be now used

consistently, even in the vicinity of the boundary (Fig. 4.3 for a two-dimensional depiction),

to perform a wall-resolved LES.
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Figure 4.3: Treatment of a fluid cell in the vicinity of the immersed boundary when the
immersed boundary cuts across (a) the ghost cell, and (b) the fluid cell. (Fe, Fw, Fn and
Fs denote Fi+1/2,j, Fi−1/2,j, Fi,j+1/2, and Fi,j−1/2, respectively. )

4.2.2 Ghost-cell based cut-cell method (GC-CCM)

In the immersed boundary method described in Section 4.2.1, the exact shape of the fluid

cells in the vicinity of the solid boundary is not detailed and this results in the loss or gain

of mass and momentum. In the ghost-cell based cut-cell method (GC-CCM) introduced

in this research, additional work is required to the finite-volume approach outlined in

Section 4.2.1 such that the underlying conservation laws are guaranteed. This method

extends conservative cut-cell method of Meyer et al. [74] and ghost cell approach of Tseng

and Ferziger [112]. First, an additional type called cut cell C is identified (Fig. 4.4(a)).

The solid boundary is represented by a series of piecewise linear segments. Based on this

representation of the boundary, cut cells are defined as the fluid cells that are intersected

by the solid boundary. A fluid subset of a ghost cell with a volume fraction less than 0.5

of a full-sized cell is called a small-cell. The presence of small cells restricts the maximum

time step that can be used for the integration when an explicit time marching method is

applied. This results in the numerical instability and stiffness of the system of equations,

known as the “small-cell problem”. There are a number of approaches reported in the
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literature to address this problem, such as cell merging [123, 88, 87, 52], cell linking [56],

and combined merging/linking [46]. In the present work, the simple and straightforward

merging algorithm of Ye et al. [123] is extended. Here, cut cells are reshaped by merging

the small cells (merged cut-cell, Fig. 4.5(a)), or by discarding the portion that lies in

the ghost cells (non-merged cut-cell, Fig. 4.5(b)). The shape of a cut-cell depends on

the location and local orientation of the solid boundary. Each small cell is paired with

a neighbouring fluid cell which is not yet assigned to another small cell. Details of the

reshaping procedure can be found in Udaykumar et al. [114]. Fig. 4.4(b) provides an

illustration of two-dimensional Cartesian grid showing non-merged and merged cut-cells.

In contrast to the other cut-cell methods [87, 88], flow variables are not stored in the small

cells (although the ghost cells store flow variables). In contrast to Ji et al. [52], the flow

variables are not required to be at the true cut-cell centroid either. The storage locations

of the flow variables are unchanged from the Cartesian cell centre. Since the computation

of true cut-cell centroid is avoided, this approach results in a simpler algorithm than those

that require the centroid computations (e.g. [52, 47]).

The numerical scheme described in Chapter 3 should be modified in the vicinity of the

boundary such that it is consistent with the finite volume formulation and preserves the

actual volume ratio as well. This section reports an extended version of the conservative

immersed-interface method of Meyer et al. [74]. Consider a merged cell ABCDEF shown

in Fig. 4.5(a). The cell face EA is composed of two segments, EF and FA. The integral on

this face can be decomposed and approximated as

∫
EA

Fdy =

∫
EF

Fdy +

∫
FA

Fdy ≈ Fw(yE − yF )∆z + Fsw(yF − yA)∆z (4.8)

where ∆z denotes the grid step along the direction normal to the representation plane in

Fig. 4.5. The flux through each decomposed segment of the face is computed separately at

the centre of the corresponding Cartesian cell interface. To accurately estimate the fluxes

for the cut-cells, ghost cells are still defined as in the previous section. For instance, the

velocities at the two ghost cells (ūi,j−1,k, ūi+1,j−1,k) in Fig. 4.5(a) are used to compute the

right solution state for the flux Fsw. Having the flow variables at these ghost nodes, the
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Figure 4.4: (a) Schematic showing solid S, fluid F, ghost G and cut C cells in the ghost-
cell based cut-cell method. (b) An illustration of non-merged (in yellow) and merged (in
green) cells.

Figure 4.5: Schematic of a cut-cell showing various fluxes required. (a) Merged cell (b)
Non-merged cell
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piecewise linear reconstruction remains unchanged even in the vicinity of the boundary.

Ghost cells are similarly used in [87] and [88] in their calculations but it was arbitrarily

assumed that the variables in the ghost cells are equal to the values in the neighbouring

fluid cells, leading to a scheme that is relatively less accurate in the vicinity of the boundary.

Ghost cells are also similarly employed in [73] but on a single face structure rather than

being used locally for a decomposed face as suggested here.

The cell face DB is decomposed similarly; however, it is important to note that the

decomposed cell face of CB cannot be treated in the same manner as the cell face FA

because both left and right sides of CB are the ghost cells. The velocities at the ghost nodes

are previously obtained by mirroring the velocities at the image point (φG = −φI), which is

necessary when computing the flux across fluid/ghost cells to implicitly satisfy the no-slip

boundary conditions. When computing the flux, such as Fse across ghost/ghost cells, it

does not involve with any physical boundaries. Mirroring velocities of the image point is

then not necessary; hence, the ghost cells are set as φG = φI for the velocity components

in this case, over-riding the Eq. (4.7). Other variables that involve Neumann boundary

conditions (such as density and pressure) do not need any changes. The computations of

fluxes Fw, Fe and Fn to second-order accuracy are straightforward and are treated in the

same manner as any face of a fluid cell.

For a non-merged cell ABCD as shown in Fig. 4.5(b), the cell face, DA is composed of

one segment and the integral can be approximated as

∫
DA

Fdy ≈ Fw(yD − yA)∆z (4.9)

All the flux computations are treated similarly as those for the merged cell. Now the

calculation of the flux Fs on cell face AB, which lies on the solid interface, is considered.

Both inviscid and diffusive fluxes are needed on this face and they are evaluated at centre of

the face. The primitive variables on the face are imposed from the Dirichlet and Neumann

boundary conditions, and the inviscid fluxes are formed directly from these variables.

Conditions of Dirichlet type are prescribed for the velocity in order to capture no-slip

walls, while conditions of Neumann type are prescribed for pressure and density to model
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the adiabatic wall. The diffusive flux is computed from the wall-shear stress and this will

be explained later.

The overall methodology described above is extendable to three-dimensions. The fi-

nite volume formulation is maintained by taking into account face apertures (Ai,j,k with

0 ≤ Ai,j,k ≤ 1), volume fraction (αi,j,k with 0 ≤ αi,j,k ≤ 1.5) and immersed interface Γi,j,k

(Fig. 4.6). Now that all the directional fluxes are determined for each cut cell, the fluid

volume fraction αi,j,k is computed to estimate its fluid cell volume Vi,j,k = αi,j,k∆x∆y∆z.

The cell faces, Ai±1/2,j,k∆y∆z, Ai,j±1/2,k∆x∆z, and Ai,j,k±1/2∆x∆y, are determined to in-

tegrate the fluxes over the real wetted surfaces of the control volume Vi,j,k = αi,j,k∆x∆y∆z.

With reference to Fig. 4.5(a), the cell face Ai−1/2,j,k∆y∆z consists of (Ai−1/2,j,k∆y∆z)w and

(Ai−1/2,j,k∆y∆z)sw, where (Ai−1/2,j,k)w = 1, to account for the fluxes fw and fsw separately.

Other faces can be referenced similarly. The Eq. (3.26) for a cut cell is then modified as

fn = f(Un
i,j,k, t

n)

=

2∑
l=1

(Ai+1/2,j,kF̄i+1/2,j,k)l −
2∑

m=1

(Ai−1/2,j,kF̄i−1/2,j,k)m

αi,j,k∆x

+

2∑
n=1

(Ai,j+1/2,kF̄i,j+1/2,k)n −
2∑
p=1

(Ai,j−1/2,kF̄i,j−1/2,k)p

αi,j,k∆y

+

2∑
q=1

(Ai,j,k+1/2F̄i,j,k+1/2)q −
2∑
r=1

(Ai,j,k−1/2F̄i,j,k−1/2)r

αi,j,k∆z

+
C + D

αi,j,k∆x∆y∆z

(4.10)

where C and D represent the inviscid and diffusive forces across the immersed interface

Γi,j,k, equivalent to those on cell face AB in Fig. 4.5 as explained above. The diffusive flux

D in Eq. (4.10) can be calculated from the wall-shear stress as
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D = −
∫

Γi,j,k

τwdS (4.11)

The wall-shear stress τw can be solved (e.g. [74, 73]) or modelled (e.g. [13, 12, 94]),

depending on one’s demand for accuracy and computational cost. When the wall-shear

stress is to be solved, the above finite volume formulation can be used to perform a wall-

resolved LES. The mesh refinements are typically needed in this case and it is needed in

all three directions as the reduction in the turbulent scale near the wall occurs in all three

directions.

For normal cells away from the solid interface, the face aperture Ai,j,k and the vol-

ume fraction αi,j,k become unity (and no decomposition of cell face takes place) thereby

automatically reducing the Eq.(4.10) to the normal finite volume formulation, Eq. (3.26).

4.2.3 Wall modelling for non-body conforming grids

LES cannot resolve the eddies accurately unless a very fine mesh is employed. In a non-body

conformal method, the mesh refinements are needed in all three directions although the

requirements of grid resolution are much more demanding along the wall-normal direction.

This is because no grid direction is, in general, normal to the body. It is therefore necessary

to refine the grid along any direction in order to increase the grid resolution along the

normal direction. In the immersed boundary method, the wall gradients are substantially

under-predicted on coarse grids. The error from the mass conservation also increases on

coarse grids. In an effort to achieve a substantial reduction in the resolution requirements

for high Reynolds number near-wall flows while maintaining a realistic description of the

effects, the wall-shear stress, τw, is estimated using a simple wall model in this work such

that coarse grids are used. The simple wall model used in this work is analogous to the wall

functions commonly used in RANS approach, except that it is applied in the instantaneous

sense in time-accurate calculations. Other types of wall models can be easily added in this

scheme if necessary. Various wall modelling approaches are extensively investigated in [107]

with different sub-grid scale models in the context of LES on coarse body fitted grids.
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The aim of wall functions is to skip the direct resolution of the viscous sub-layer near

the wall so that the near-wall grids can be coarser to be related to the larger eddies

developing in the fluid core. To correctly approximate the near-wall behaviour, law of

the wall approximation is required to return the correct instantaneous wall-shear stress

corresponding to the known instantaneous velocity at the first node closest to the wall. The

wall-shear stress is then used to satisfy the wall boundary condition. When using the wall

function, the first node closest to the wall needs to be ideally located in the log-law region;

however, with the immersed interface which cuts the Cartesian cell in a random manner,

some nodes closest to the wall will be inevitably located in the viscous sublayer or in the

buffer layer. To account for the smooth transition between the linear and the logarithmic

region in the buffer layer, a three-layer wall model is used based on the assumption that

the near-wall layer consists of a fully viscous sublayer (y+ ≤ 5), fully turbulent superlayer

(y+ > 30) and a buffer layer in between (5 < y+ ≤ 30). The formulation is as follow [8]

u+ =


y+ if y+ ≤ 5

A ln(y+) + B if 5 < y+ ≤ 30

K−1 ln(Ey+) if y+ > 30

(4.12)

where K is the von Karman constant (K ≈ 0.42), u+ is the dimensionless resolved

velocity tangential to the wall (u+ = ut/uτ ), y
+ is the non-dimensional wall distance

(y+ = ∆huτ/ν), and uτ is the friction velocity (uτ =
√
τw/ρ). ut is the velocity compo-

nent at the node P in the wall tangential direction and ∆h is the distance of the near-wall

node P to the solid surface (Fig. 4.6(b)). The constants, E, A and B are set as E = 9.8,

A = (K−1ln(30E) − 5)/ln(6) and B = 5 − A ln(5), which are simply taken from [8]. An

iterative procedure is implemented to solve y+ since the friction velocity uτ is required to

determine y+ which, in turn, depends on the wall-shear stress. It is important to note that,

since uτ is computed using the wall-shear stress, the near-wall velocity and the wall-shear

stress are rigidly linked in this wall model. This can cause an inaccurate approximation of

the wall-shear stress if the near-wall flow separates significantly. This model also implies

the logarithmic law of the wall for the mean velocity, which is not valid in many complex
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Figure 4.6: (a) Schematic of wetted surface and immersed interface for a cut-cell (i, j, k).
(b) Schematic of bi-linear interpolation points for the tangential velocity at P in a cut-cell.

flows especially if separation is present. It is however the simplest model available and

it is still widely used especially in studies where the computational efficiency is of most

interest. In the future, better wall modelling strategies should be investigated.

In the case of body fitted methods, the near-wall node P is a computational node,

hence, the tangential velocity ut and the distance to the wall ∆h can be obtained in a

straightforward manner. In the non-body conformal methods, the wall-normal direction

does not necessarily coincide with computational nodes, hence, an interpolation procedure

is needed for the calculation of the tangential velocity at the near-wall node P . The distance

∆h is somewhat arbitrary and needs to be related to the cell volume. The definition of ∆h

used in Meyer et al. [74] is followed:

∆h = 0.5
√

(∆x · n⊥,x)2 + (∆y · n⊥,y)2 + (∆z · n⊥,z)2 (4.13)

where ∆x, ∆y and ∆z are the dimensions of the control volume (i, j, k), and, n⊥,x,n⊥,y

and n⊥,z are components of the normal vector on Γi,j,k. To compute the tangential velocity
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at P , the tangential velocities of the surrounding nodes are first computed. Using these

values, ut at P is interpolated using bi-linear (2D) or tri-linear (3D) interpolation. The

interpolation method here is similar to that described in Section 4.2.1, which is used to

express the flow variables at the image point in terms of its surrounding nodes.
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Chapter 5

LES of Compressible Flows using

Non-Body Conformal Methods

5.1 Introduction

In order to validate the methodology described in the previous chapters, various test cases

involving three-dimensional flow are performed for a wide range of Reynolds numbers as

well as Mach numbers. The test-cases are divided into two parts: 1. low to moderate

Reynolds number flow cases where wall-resolved LES is performed, and, 2. high Reynolds

number flow cases where a simple wall model is employed and the LES is performed on a

relatively coarse mesh.

All the numerical techniques described in the previous chapters are implemented in

the compressible flow solver developed in-house. The solver is written in FORTRAN-90

which has been parallelized using the OpenMP standard directives. The three-dimensional

computations in the present study involve up to 20.4 × 106 grid points and they have

been performed locally on a single CPU or in parallel on 16 CPUs (Intel Xeon at 2.6 GHz

on SHARCNET, www.sharcnet.ca). The converged results from the largest computations

(the fine grid resolution case for the supersonic flow over a cylinder) was obtained in

approximately 28 days.
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5.2 Wall-resolved LES of moderate Reynolds number

flows

For simulations involving low to moderate Reynolds number where sufficiently fine near-

wall grids are feasible, a wall-resolved LES is performed. For those cases, the error on

mass conservation stays moderate such that the use of GC-IBM (Sec. 4.2.1) is sufficient

without the need for additional work to guarantee the underlying conservation laws (i.e.

GC-CCM of Sec. 4.2.2). Three test cases are prepared here using GC-IBM with the near-

wall resolved grids. First, a three-dimensional subsonic flow (Re = 300) past a circular

cylinder has been simulated at a low Reynolds number. Second, the method is then applied

to LES of turbulent flows (Re = 6700) over a wavy surface. Lastly, the method is applied

to LES of a supersonic turbulent flow (M∞ = 2.0 and Re = 7000) over a circular cylinder.

The results of these three test cases have been published by the author in [78].

5.2.1 Subsonic flow over a cylinder

A three-dimensional flow past a circular cylinder, immersed in an unbounded uniform

flow, has been simulated at a low Reynolds number of Re = 300. The Reynolds number is

defined as Re = U∞D/ν where D is the cylinder diameter, U∞ is the free stream velocity

and ν is the kinematic viscosity. It should be noted that the cylinder wake is intrinsically

three-dimensional at this Reynolds number, therefore two-dimensional simulations are not

expected to produce flow fields that would match corresponding experiments [76]. The

simulations have been performed in a relatively large rectangular domain of 30D × 20D in

the x and y direction respectively in order to minimize the effect of the outer boundary on

the development of the wake and to ensure that the results presented here are independent

of the domain size. The flow is compressible with constant viscosity and specific heat

ratio. At the inflow, subsonic non-reflecting inflow boundary conditions are implemented.

At the three other sides of the domain (excluding the spanwise boundaries), subsonic non-

reflecting outflow conditions are used. These boundary treatments are explained in the Sec.

3.4.2. The free stream Mach number is kept at a low value of 0.2 in order to minimize the
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compressibility effect. This is because the reference experimental data and the numerical

solutions that the current results are comparing with are in the incompressible flow regime.

In order to demonstrate that the current method is also capable of providing accurate

results at a sufficiently high Mach number, a separate simulation of a supersonic flow over

a circular cylinder is also performed and this will be discussed later. In this current three-

dimensional case, the spanwise domain size was chosen to be 3D and periodic boundary

conditions are employed in this spanwise (z−) direction. This size was used and verified

by Ghias et al. [33]. The no-slip condition is imposed at the surface of circular cylinder

via the IBM methodology described in Sec. 4.2.1.

Three simulations with a different grid resolution are carried out: the coarse grid case

on a 202 × 164 × 49 Cartesian grid, the medium grid case on a 300 × 200 × 49 Cartesian

grid, and the fine grid case on a 400 × 320 × 49 Cartesian grid. In the streamwise and

cross-stream directions the grid is stretched to have a higher resolution in the vicinity of

the cylinder. Here, ∆x and ∆y in the vicinity of the circular cylinder are 0.04D for the

coarse grid (see Fig. 5.1), 0.025D for the medium grid and 0.02D for the fine grid. Their

average values of y+ corresponding to the first grid point away from the cylinder surface are

approximately 1.08, 0.50 and 0.41, respectively. In the spanwise direction ∆z is uniform.

In Fig. 5.2 the flow is visualized by isosurfaces of instantaneous z-component of vorticity

in the wake at one time instant. This highlights the large coherent flow structure in the

wake region which is similar to those observed in Ghias et al. [33].

The time-averaged surface pressure and skin friction coefficient are provided in Fig. 5.3

with the available body-conforming numerical [89] and measurement data [109, 23]. It is

important to note that, the computations of these quantities are based on the evaluation

of surface pressure and wall shear stress, and they are not trivial to compute in the non-

body conforming method. This is because different interpolations to estimate the surface

pressure or wall shear stress yields a slightly different coefficients. The discrepancies are

less significant for a grid with a higher resolution near the wall. In the current solver, for

simplicity at the expense of minor accuracy sacrifice, the pressure is taken from the cell

centre of the nearest fluid cell whose distance to the immersed boundary varies between

the size of the fluid cell. Shear stress at the surface is also computed in a straightforward
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Figure 5.1: The rectangular Cartesian grid domain of a coarse case and a close up view of
the grid around the cylinder in the x-y plane. Every third grid point is shown.

Figure 5.2: Isosurfaces of transverse vorticity magnitude at an instant of time in the vicinity
of the circular cylinder (Re = 300)
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manner by using the tangential (to the immersed boundary) component of the velocity (ut)

at this cell centre and its local distance to the boundary (∆n) via τw = µ∆ut
∆n

. Comparing

the results in Fig. 5.3, it shows that, while the coarse grid solution may not be in a

good agreement with the other two, medium and fine grid solutions do show an excellent

agreement with the measurement and hence confirms the validity of the current approach.

For a quantitative study, drag and lift coefficients are computed and compared to the

established data. Integrating the computed surface pressure and shear stress fields over

the cylinder surface at each time step, the total force on the surface is evaluated. Then, the

drag and lift coefficients are computed according to the expressions: CD = FD/(
1
2
ρ∞U∞

2A)

and CL = FL/(
1
2
ρ∞U∞

2A), where FD and FL are the drag and lift forces, respectively, and

A = D · lspanwise

(a) Pressure distribution (b) Friction distribution

Figure 5.3: Distribution of pressure and skin-friction coefficient along the surface of the
cylinder at Re = 300.

The variation of CD and CL as a function of non-dimensional time are plotted in Fig. 5.4

for the medium grid case. Their time averaged drag coefficient, the root mean square of

the lift coefficient, and the Strouhal number are summarized in Table 5.1 along with other

corresponding numerical and experimental results for a comparison. The lift variation is

used to compute the vortex shedding Strouhal number defined as St = fD/U∞, where f

is the vortex shedding frequency. This simulation serves to demonstrate that the current
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Figure 5.4: Temporal variation of drag and lift coefficient for the medium mesh case.

methodology is capable of resolving thin boundary layers around the immersed boundary.

5.2.2 Flow over a wavy surface

Next, LES is employed to simulate the turbulent flows over a wavy boundary. This is an

interesting test case because the geometrical configuration is fairly simple, and yet the flow

pattern is complicated. The flow is subject to the effects of alternating convex and concave

curvatures. Important dynamical features of a turbulent flow over wavy topography can

be revealed by studying the instantaneous flow fields. When the flow speeds up to its

maximum magnitude at just downstream of the crest, it separates and starts to form a small

recirculation zone which grows as the flow slows down. Here, the flow can be categorized

into regions that have unique characteristics. These include the outer region, recirculation

region, boundary layer region, shear layer region, separation region, and reattachment

region ([10]). Studies of this test case are still rare to date. Using an incompressible flow

solver, several efforts have been made on a body-fitted mesh employing a DNS (see [106]

and literature cited therein) or LES [127]. On a non-body conformal mesh, [112] and [2]
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Table 5.1: Comparison of time averaged drag coefficient CDp and CDf
, root-mean-square

of lift coefficient CL(rms), mean back pressure coefficient CPb, and Strouhal number St
with other simulations and experiments.

Case CDp CDf
CD CL(rms) CPb St

present case (coarse) 1.07 0.14 1.21 0.47 -0.94 0.20
present case (medium) 1.15 0.18 1.33 0.53 -0.99 0.21

present case (fine) 1.14 0.19 1.33 0.55 -0.99 0.21
[89] (radial polar grid) - - 1.28 0.50 -1.01 0.195

[2] (incompressible IBM) - - 1.27 0.42 - 0.21
[123] (incompressible IBM) - - 1.38 0.65 -1.22 0.21

[33] (compressible IBM) - - 1.23 -1.00 0.21
[122] (measurement) - - 1.22 - -0.96 0.203

successfully performed LES of turbulent flow over a wavy surface using an IBM approach.

For compressible flows, there is one publication [106] which reported the DNS results for

turbulent flows over wavy wall geometries on a body-fitted mesh. They employed high

order convection (6th-order WENO) and diffusion (4th-order central difference) schemes.

To the best of author’s knowledge, it has not been tested on a non-body conformal mesh

using compressible flow formulations. Obtaining an accurate representation of the detailed

flow dynamics in the case of non-body conforming method is extremely challenging because

the dynamics of the flow is strongly influenced by the physics of the small scale eddies that

are developing close to the wall primarily due to the wall shear stress. A proper evaluation

of sub-grid scale terms in the vicinity of immersed boundaries has a substantial effect

on the accuracy and efficiency of the overall method. In the case of simulating a plane

channel flow using a compressible LES solver, a higher order spatial scheme is generally

favoured over a low order scheme as the latter (when using the Smagorinsky model) is

overly dissipative near the wall [41]. The latter issue can be avoided with a finer resolution

of grid as a coarse resolution grid tests the employed discretization scheme more severely.

In this work, a second-order scheme is used with the standard Smagorinsky model as a

subgrid-scale model. It is well known that this model, as well as most of subgrid viscosity

models, does not exhibit the correct behaviour in the vicinity of solid walls. To alleviate

the problem, the van Driest damping function is added here in order to artificially reduce
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the eddy viscosity near the wall. Three different grid resolutions (coarse, medium, fine) are

employed here in order to study the grid sensitivity to solutions. The basic configurations

are similar to that of a channel flow except that the bottom boundary wall mimics the

transverse ripples given by yw = a cos(2πx
λ

) where a = 0.1 is the amplitude of the wave and

λ is the wavelength. The non-dimensional size of the computational domain is 4 × 2 × 2 in

the x−, y− and z− directions respectively. The wavelength has the size of λ = 2 and the

average height of the channel h is such that h = λ. The lower wall has two full sinusoidal

shapes. The coarse grid employs 160 × 165 × 80 cells (Fig. 5.5). This grid resolution

is finer than the resolution with which the grid independent solutions were achieved in a

similar work in the corresponding incompressible LES framework [2]. The medium and

fine grids here employ 200 × 305 × 80 and 250 × 385 × 80 cells, respectively. In

all cases, grid stretching is utilized in the wall normal (y−) direction (on both the upper

and lower walls) to resolve the near wall layer as in the plane channel flow. To ensure

proper resolution of the thin boundary layers at the bottom wall, a very fine and uniform

wall-normal grid spacings are used in the vicinity of the wavy boundary such that ∆y/h is

0.004, 0.002 and 0.0015 for the coarse, medium and fine grid cases, respectively. After the

solutions are obtained their corresponding average y+ values on the first grid cell adjacent

to walls are found to be 0.47, 0.17 and 0.13. In the streamwise and spanwise directions

the grid spacings (∆x and ∆z) are uniform. The upper and lower boundary walls are solid

no-slip walls. The Reynolds number based on the mean velocity and the average height of

the channel is set to be approximately 7000. A similar configuration was used in the LES

study in [10, 2].

The initial flow at a Mach number of 0.2 is given in the channel. Then the periodic

boundary conditions are employed in the streamwise and spanwise directions. To ensure

that global mass conservation based on bulk velocity is satisfied, the total mass flow rates

going out of and coming into the domain are first computed. To make the mass flow

rate out equal to the mass flow rate coming in, all the outlet velocity components at

the downstream outlet plane are corrected by the ratio of these two mass flow rates.

Fig. 5.6 shows the isolines of mean streamwise velocity normalized by bulk velocity, Ub.

A qualitative observation reveals that the dominant flow structures are well captured in
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Figure 5.5: The computational domain and the underline grids (coarse case) for flow over
a wavy boundary in the X-Y plane. Every fifth grid point is shown.

the present simulation. The recirculation zone, characterized by large oscillations in the

mean velocity, appears behind the crest followed by a strong velocity gradient on the hill as

anticipated. This recirculating area, however, appears to be excessively large for the coarse

mesh case when compared to the medium/fine mesh case as well as the work by others

[14, 2, 10]. The locations of predicted mean (time- and spanwise-averaged) separation

and reattachment point, defined as locations where wall shear stress vanishes, are given in

Table 5.2 for both cases in comparison with other reference work. In the case of coarse

mesh, it is believed that the dynamics of the reattaching flow is altered by the persistence

of small-scale structures in the simulations obtained with the Smagorinsky’s model. This

was verified by Suksangpanomrung et al. [105], who found in their comparisons of different

subgrid scale models in the LES framework, that small scale structures were much more

prominent in the reattachment region for the Smagorinsky model. This is remedied by

the high resolution mesh which reduces the effect of turbulence model by resolving smaller

scale eddies.

For the purpose of conducting quantitative comparison with the DNS data [14], mean

streamwise velocity profiles, at nine locations in one wavelength of the topography, are

shown in Fig. 5.7. These probing stations are located in the second half of the domain in

the streamwise direction (x/λ=1.1 to 1.9), after the flow passes the first crest. The overall

agreement with the DNS data is reasonably good. In particular, the differences between
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(a) coarse grid LES

(b) medium grid LES

(c) fine grid LES

Figure 5.6: Contours of mean streamwise velocities normalized by bulk velocity Ub. (dotted
line: zero mean velocity.)
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Table 5.2: Locations of separation and reattachment point (x/λ) from the preceding wave
crest

Case Separation point Reattachment point

present case (coarse) 0.14 0.73
present case (medium) 0.14 0.63

present case (fine) 0.14 0.58
Cherukat [14] 0.14 0.59

Balaras [2] 0.145 0.61
Calhoun [10] 0.14 0.61

the medium/fine grid and the DNS data are very small near the bottom wall. The coarse

grid solutions show to have the back-flow which persists further away from the bottom wall

due to its larger recirculation zone. From the outer region to the top wall, all three results

show virtually no difference. A detailed comparisons of the mean velocities (streamwise

and wall-normal) in the vicinity of the crest and trough are shown in Fig. 5.8. At the

trough, the maximum mean back-flow velocities for both coarse and medium grids are over-

predicted when compared to the DNS data due to the largely/slightly (for coarse/medium

grid) over-predicted size of the recirculation zone. The fine grid results showed nearly no

back-flow as the flow is nearly reattached. Despite the usage of the standard Smagorinsky

model the turbulent intensity profiles shown in Fig. 5.9 agree reasonably fine with the DNS

data near the wall. Away from the wall the turbulence is dissipated rapidly and as the

grid is coarsened. An accurate turbulent spectrum can be obtained via more sophisticated

turbulence models. Overall, a higher resolution grid provides a better prediction of the

recirculation zone, and hence improves the overall quality of the mean flow-field.

5.2.3 Supersonic flow over a cylinder

Here, a supersonic flow past a circular cylinder at Re = 7000 and M∞ = 2.0 is presented.

The objective here is to demonstrate the robustness of the proposed immersed boundary

method for higher Mach number flows. A preliminary work on the equivalent test case

is reported by de Tullio and Iaccarino [21] where the authors briefly discussed the results
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(a) coarse grid LES

(b) medium grid LES

(c) fine grid LES

Figure 5.7: Profiles of mean streamwise velocities at locations for x/λ=1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1,7, 1.8, and 1.9 (−: DNS [14]). Every third grid point is shown.
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(a) streamwise (b) wall-normal

Figure 5.8: Mean streamwise and wall-normal velocities at crest and trough; (−: DNS [14];
♦/4/�: coarse/medium/fine grid LES at trough; �/N/�: coarse/medium/fine grid LES
at crest).

(a) streamwise (b) wall-normal

Figure 5.9: Streamwise and wall-normal RMS values; (−: DNS [14]; ♦/4/�:
coarse/medium/fine grid LES at trough; �/N/�: coarse/medium/fine grid LES at crest).
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qualitatively with their pressure contours. There are a few other previously reported

experimental and numerical work on supersonic and turbulent flow over a cylinder which

were focused on high Reynolds numbers above 1.6×105 [30, 83, 9] using a two-dimensional

IBM-RANS approach (in the case of numerical work). With the current (conventional) LES

approach, in the absence of treatments such as a wall model and/or local grid refinement,

work on such a highly turbulent flow is not competitive due to an extremely large number

of grid cells required.

The simulations have been performed in the domain of 14D × 14D × 3D in the x,

y and z direction respectively. The rest of the geometrical configurations are basically the

same from the subsonic case presented earlier. Three non-uniform Cartesian grids have

been employed for the computations: the coarse case on a 400× 200× 40 grid, the medium

case on a 600 × 300 × 40 grid, and the fine case on a 850 × 600 × 40 grid. The ∆x and ∆y

in the vicinity of the circular cylinder are 0.02D for the coarse grid, 0.01D for the medium

grid and 0.005D for the fine grid. Their average values of y+ corresponding to the first grid

point away from the cylinder are 4.36, 2.63 and 1.63, respectively. At the inlet, supersonic

inflow boundary conditions are applied. For all other boundaries (excluding the spanwise

boundaries) non-reflecting outflow conditions are applied. To include the effect of the

turbulence, the standard Smagorinsky turbulence model is used again in conjunction with

the van Driest damping function. All the simulations are performed in a three-dimensional

domain but the results showed no three-dimensional cylinder wake. Fig. 5.10 provides a

Mach number contours from the fine grid solution. Upstream of the cylinder, a bow shock

is formed behind which the flow becomes subsonic. From right ahead of the cylinder, this

subsonic flow travels along the cylinder surface and accelerates to form a supersonic region.

This supersonic region is separated from the subsonic recirculation region that is directly

behind the cylinder as shown by a long symmetric tail shock. The time-averaged surface

pressure coefficient distributions along the surface of the cylinder are provided in Fig. 5.11.

The drag coefficients based on the pressure coefficient for coarse, medium and fine grids are

0.929, 0.930, and 0.927, respectively. In spite of the inadequate resolution in the boundary

layer region indicated by its near-wall y+ values, the coarse grid solution converges well

to the two other finer grid solutions. In all cases, the solutions clearly show all the flow
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Figure 5.10: Mach number contours for a supersonic flow past a cylinder for M∞ = 2.0
and Re = 7000 (fine case).

features associated with a supersonic flow past a cylinder.

5.3 LES of high Reynolds number flows using a wall

model

For simulations involving high Reynolds number the wall-shear stress, τw, is estimated

using a simple wall model such that a coarse mesh can be used. LES is then performed

on non-body conformal grids. In the LES with wall models, explicit sub-grid scale models

are strongly affected by the discretization errors in the large near-wall cells, and therefore

cannot account properly for the turbulence in this region. Since the numerical diffusion

in the shock-capturing scheme (such as the MUSCL scheme) is larger than the diffusion

of the sub-grid scale models [32], the addition of an explicit sub-grid scale model is often

unnecessary. An alternative approach of turbulence modelling technique is the implicit

LES (or, MILES [6], Sec. 2.3.2) where the truncation error of the numerical discretization

itself functions as a sub-grid scale model with no explicit modelling. The use of the MILES

approach also further simplifies the numerical implementation. The accuracy and the
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Figure 5.11: Distribution of pressure coefficient along the surface of the cylinder for M∞ =
2.0 and Re = 7000.

performance of this implicit LES with the second order cut-cell method for turbulent flows

has been well proven by Meyer et al. [75].

In the following LES simulations, the near-wall grid cells are relatively coarse due to

the constraint imposed by the wall function. The usage of the wall functions dictates the

near-wall grid resolution, and hence, a conventional grid convergence study is difficult to

be applied when wall functions are employed. With variations of grid resolution, however,

consistent results can be obtained as long as the constraint of the wall model with respect

to the coupling position is satisfied [13]. For this reason, the order of accuracy is not

investigated here. The order of accuracy in the vicinity of the boundary for GC-IBM and

S-CCM is well discussed by others [112, 33, 52].

The selected test cases are: turbulent flow through an inclined channel, highly turbulent

flow (Re = 11200) over a wavy surface, and a supersonic turbulent flow (ReD = 2×105 and

M∞ = 1.7) over a circular cylinder. The simulations are performed on three different types

of non-body conformal grids: GC-IBM (Sec. 4.2.1), GC-CCM (Sec. 4.2.2) and a standard

cut-cell method (namely S-CCM), and their performances are compared. S-CCM is a

conventional cut-cell method similar to the cut-cell reconstruction procedure as described
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in Ji et al. [52]. All small cells are assigned to their largest neighbour fluid cells and those

cells are combined into a single cell as in the proposed method, but the difference here is

that there is no face decomposition on merged cells. Instead, the flow variables are stored

at the true cut-cell centroid, which always lies inside the fluid region, and the fluxes of

these variables are estimated at the midpoints of the faces bounding the cut-cell. The

centroid of a cut-cell is computed as follows:

cm =

∑ng

i=1 Vici∑ng

i=1 Vi
(5.1)

where cm are the coordinates of the centroid of the cut-cell; ci and Vi are the coordinates

of the centroid and the volume, respectively, of the i-th component cells comprising the

cut-cell; and, ng is the number of the component cells in the cut-cell. The results of these

three test cases have been reported by the author in [79].

5.3.1 Inclined channel flow at high Reynolds number

The first test case is the turbulent flow through a plane channel that is inclined at β=0◦,

10◦ and 30◦ with respect to the grid (Fig. 5.12(a)). A plane channel case with β=0◦, where

the wall boundary aligns exactly with the cell interface, is undertaken as a precursor to

the 10◦ and 30◦ inclined channel flow cases in order to examine the performance of the

current solver as well as the wall model on the coarse near-wall grids. As the immersed

boundary aligns with the cell interface, the three methods that are evaluated here (GC-

CCM, GC-IBM and S-CCM) collapse into a single wall-conforming case. The numerical

parameters are chosen with reference to the work of Hoyas et al. [50] who investigated

channel flow at the Reynolds number of Reτ = 20001 based on the channel half width h

and the friction velocity uτ . These values are adopted for the present study. The LES

results using wall models at the equivalent Reynolds number are recently reported by a

1The respective values of the alternative Reynolds number based on the bulk velocity is found to be
Reb = 46618.
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Figure 5.12: Computational set-up and the underline grids (red cells : ghost; green cells :
solid; line: immersed interface) for the inclined turbulent channel flow. Every grid point
is shown.

few others for the incompressible flows (e.g. [13, 94]). The periodic boundary conditions

are employed in the streamwise and spanwise directions. To ensure that the global mass

conservation is satisfied in the streamwise direction, the total mass flow rates going out

(Mout) of, and coming in (Min) to the domain are matched. To enforce the matching, all

the outlet velocity components at the downstream interface are multiplied by the ratio

Min/Mout at every timestep. In the wall-normal direction, a simple wall model is used at

both top and bottom interfaces. Having the plane channel with β=0◦ as a base reference

case, the channel is then inclined at 10◦ and 30◦, respectively, in order to test the reliability

under a dramatic variation of wall distance y+.

First, a channel size of 2πh × 2h × πh is immersed in a domain of 2πh × 2.5h × πh

for β=0◦. The mesh employs 40 × 40 cells in the streamwise (x−) and spanwise (z−)

directions, respectively. In the y− direction, wall-normal in this case, 40 cells (32 cells

inside the fluid phase) are chosen such that the y+ value corresponding to the first grid

point away from the wall lies in the logarithmic layer (y+ > 30). In all directions, the grid

spacings (∆x, ∆y and ∆z) are uniform. Results for the mean velocity are compared with

the DNS results of Hoyas et al. [50] in Fig. 5.13(a). Wall distances are non-dimensionalized

based on the wall units ν/uτ and the friction velocity uτ from DNS of [50]. The first grid

cell adjacent to the wall lies in the log-layer (y+ = 61) as expected. The behaviour of the
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mean velocity is slightly under-predicted near the wall, but beyond y+ > 400 the solution

from the current solver agrees well with the DNS profile for this wall-conforming case. The

velocity fluctuation intensities are shown in Fig. 5.13(b). The peak values for u′+ and w′+

are surprisingly well captured while the same peak value for v′+ is under-predicted near the

wall. From the results presented here, it can be concluded that the current MILES solver

in conjunction with a simple wall function yields reasonably good results for a turbulent

channel flow.

(a) Mean velocity profiles (b) Velocity fluctuation intensities

Figure 5.13: Plane channel flow for β = 0◦.

For the channel case where β=10◦, the rectangular domain is changed to 2πh×3.625h×
πh in order to contain the inclined channel. The mesh employs 40 and 40 cells in the x−
and z− directions, and 58 cells in the y− direction such that the grid spacing remains

unchanged from the plane channel case where β=0◦. For β=30◦, the rectangular domain

is changed to 2πh × 6.125h × πh and the mesh employs 65 and 40 cells in the x− and

z− directions, and 98 cells in the y− direction. In both cases, the current methodology is

tested severely due to the variation of the near-wall y+ value along the streamwise direction.

The streamwise distributions of the near-wall y+ value are shown in Fig. 5.14(a). In the

case of β=10◦, the near-wall y+ value fluctuates between local maximum and minimum

values, whereas in the case of β=30◦, the near-wall y+ value gradually increases until

its local maximum value (i.e. volume fraction of a merged-cell ≈ 1.5) is reached. The
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Figure 5.14: (a) Streamwise distribution of near-wall y+ value for β = 10◦ and 30◦, and
(b) illustration of near-wall y+ variation and wall-normal line.

resulting profiles for the mean velocity and velocity fluctuation intensities in the wall-

normal direction from all three methods are shown in Figs. 5.15 and 5.16. The profiles at

two different streamwise locations - one where a small near-wall y+ value (in the viscous

sub-layer region) is detected, and the other where a large near-wall y+ value (in the log-law

region) is detected - are presented. Since the wall-normal line does not always coincide

with the computational nodes (Fig. 5.14(b)), the points in the profiles are computed from

linear interpolation of the nearby nodes. At both inclination angles, the overall results

confirm that the predicted mean velocity and velocity fluctuation intensity profiles from

GC-CCM agree well with the DNS results with a similar accuracy as that for the β=0◦

case. The GC-IBM and the S-CCM, however, perform poorly to match with the DNS data.

The wall functions in these methods under-predict the wall-shear stress, thereby severely

under-predicting the mean velocity near the wall. This under-prediction is related to the

over-predicted streamwise velocity fluctuation intensity (u′+).
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Figure 5.15: Plane channel flow for β = 10◦; (a) Mean velocity profiles U+, (b) velocity
fluctuation intensity u′+, (c) velocity fluctuation intensity v′+, and (d) velocity fluctuation
intensity w′+. line DNS; � GC-CCM (small near-wall y+); � GC-CCM (large near-wall
y+); ◦ GC-IBM (small near-wall y+); • GC-IBM (large near-wall y+); 4 C-CCM (small
near-wall y+); N C-CCM (large near-wall y+).
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Figure 5.16: Plane channel flow for β = 30◦; (a) Mean velocity profiles U+, (b) velocity
fluctuation intensity u′+, (c) velocity fluctuation intensity v′+, and (d) velocity fluctuation
intensity w′+. line DNS; � GC-CCM (small near-wall y+); � GC-CCM (large near-wall
y+); ◦ GC-IBM (small near-wall y+); • GC-IBM (large near-wall y+); 4 C-CCM (small
near-wall y+); N C-CCM (large near-wall y+).
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5.3.2 Turbulent flow over a wavy Surface

The turbulent flow over a wavy boundary is an appropriate validation test case as the

geometrical configuration is fairly simple, and yet, the flow pattern is complicated that it

exhibits various flow structures at the convex and concave curvatures. Shortly after the

wave crest, the flow speeds up to its maximum magnitude and then separates to form a

recirculation zone at the downstream side of the wave. It then develops a turbulent shear

layer over the recirculation zone. The flow-field can be categorized into several regions with

unique characteristics and they are: the outer region, recirculation region, boundary layer

region, shear layer region, separation region and reattachment region [10]. It is important

to properly resolve the separated shear layer as this region plays an important role in the

turbulent production. Typically, a flow structure in this test case requires careful grid res-

olutions with a grid clustering in the vertical direction to effectively resolve the boundary

layer and the shear layer. An adequate streamwise resolution of the flow is also important

particularly in the separation region due to the fact that the reattachment position (and

so is the entire flow) is highly sensitive to the location of separation. The main difficulty

in using DNS or LES for a complex wall-bounded flow at a high Reynolds number is the

demand for a tremendous grid resolution. In general, it is crucial to have a fine mesh reso-

lution in order to accurately predict these flow features. Most statistical turbulence models

have difficulties in predicting these flow features or even the reattachment length. Using a

body fitted mesh, several efforts have been directed to DNS (see [106] and literature cited

therein) and to wall-resolved LES [127] for incompressible flows. For compressible flows,

Sun et al. [106] reported their DNS results for turbulent flows over wavy wall geometries

on a body fitted mesh using high-order convection and diffusion schemes. Obtaining an

accurate representation of the detailed flow dynamics on a non-body conformal mesh is

extremely challenging because the cells are cut at different angles in the regions where the

most interesting phenomena such as separation and reattachment take place. Using the

non-body conformal method, some have successfully performed LES of incompressible tur-

bulent flow over a wavy surface using an IBM approach [112, 2]. The DNS study of higher

Reynolds number (Re = 11200) flow over the wavy surfaces is also reported in Niceno and

Kuhn [80]. For compressible flows, wall resolved LES results of turbulent flow over a wavy
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surface at Re = 6700 using a GC-IBM approach are reported by the author in [78]. To the

best of the author’s knowledge, there has not been a reported work which incorporated a

wall model in this type of simulations.

In this type of flow, the flow dynamics is strongly influenced by the small-scale eddies

that are developing close to the wall. When the wall-shear stress is approximated by

the wall model using the information from the outer flow, it can compensate the lack of

resolution in near-wall region even with a relatively coarse near-wall mesh in the context

of LES. The basic configurations in the test case are similar to that of a plane channel

flow except that the bottom boundary wall mimics the transverse ripples given by yw =

a cos(2πx
λ

) where a = 0.1 is the amplitude of the wave and λ is the wavelength (Fig. 5.17).

The average height of the channel h is such that h = λ and the lower wall has two full

sinusoidal waves. The size of the computational domain is 2h × 1h × 1h in the streamwise

(x), vertical (y) and spanwise (z) directions, respectively. The Reynolds number based on

the bulk velocity Ub and half channel height is 11200. Since the wall-function approach is

used, coarse grids are employed where the flow domain is discretized by 180× 50× 40 cells

in the streamwise, vertical and spanwise direction, respectively. In all directions, the grid

spacings (∆x, ∆y and ∆z) are maintained uniform. The comparison of the grid spacings

from the current work and the grid spacings from the equivalent work by [80] in DNS is

given in Table 5.3. The initial flow at a Mach number of 0.2 is given in the channel. The

periodic boundary conditions are employed in the streamwise and spanwise directions, and

wall models are used at the immersed interface and the top wall. To enforce the mass flow

rate out of the computational domain equal to the mass flow rate into the computational

domain, all the streamwise outlet velocity component at the downstream outlet plane is

corrected by the ratio of inflow and outflow mass flow rates, similar to the technique used

in the turbulent channel flow test case.

The large-eddy simulations are performed using three different non-body conformal for-

mulations as before: the proposed cut-cell method (GC-CCM), ghost cell based immersed

boundary method (GC-IBM), and standard cut-cell method (S-CCM). Fig. 5.18 shows the

isolines of the mean streamwise velocity obtained from each method. All quantities are

normalized with the bulk velocity Ub and averaging of flow variables is carried out over
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Figure 5.17: The computational domain and the underline grids (red cells : ghost; green
cells : solid; line: immersed interface) for the flow over a wavy boundary. Every grid point
is shown.

Table 5.3: The best approximations of locations of separation and reattachment points
(x/λ) from the preceding wave crest.

Case ∆x ∆y ∆z Separation point Reattachment point

Current cut-cell method h/45 h/25 h/20 0.23 0.60
Standard GC-IBM h/45 h/25 h/20 0.17 0.77
Standard cut-cell h/45 h/25 h/20 0.23 0.77

DNS [80] h/128 h/256 h/128 n/a n/a
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the spanwise direction and in time. A qualitative observation reveals that the dominant

flow structures are reasonably well captured with GC-CCM. The strong velocity gradients

on the hill (between 0.6 < x/h < 1.0) and the recirculation area reported in Niceno and

Kuhn [80] can be seen in Fig. 5.18(a). This recirculation area, characterized by large os-

cillations in the mean velocity, appears to be excessively large when GC-IBM and S-CCM

are adopted. The strong velocity gradients on the hill before and after the recirculating

zone are also not visible with these two methods. The locations of the predicted mean sep-

aration and reattachment points are best approximated and given in Table 5.3. Although

it is not possible to measure these locations precisely from this non-body conformal coarse

mesh, it is evident that GC-IBM predicts an early flow separation and also a much delayed

flow reattachment point compared to the current method. The numerical results of mean

streamwise profiles are plotted against the DNS results [80] in Fig. 5.19(a). The profiles

at the five probing stations in a wavelength of the topography (x/h = 0.00, 0.25, 0.50, 0.75

and 1.00) are selected and plotted for evaluations. x/h = 0.00 and x/h = 1.00 are at the

wave crests, x/h = 0.50 is at the wave trough, and x/h = 0.25 and x/h = 0.75 are at the

inflection points of the wall profile. Streamwise vortices are a dominant turbulent struc-

ture near the wavy wall. The results confirm that the mean streamwise velocity profile

obtained from GC-CCM agrees well with that from DNS despite the coarse grid employed.

It can be deduced from the good agreement of the mean streamwise velocity profiles that

the predicted separation and reattachment points also agree reasonably well with the DNS

results (which are not quantified in Niceno and Kuhn [80]). Using GC-IBM and S-CCM in

conjunction with wall functions, the resulting coarse grid LES solutions under-predict the

mean velocity near the wall, similar to what has been observed in the inclined turbulent

channel flow. The vertical velocity profiles (Fig. 5.19(b)) obtained with GC-CCM also

show a reasonably good agreement with the DNS results except at the location x/h = 0.50

where large discrepancies are observed. With the employment of wall functions, obtaining

a precise match of the velocity profiles at x/h = 0.50 with LES is nearly impossible since

the law-of-the-wall does not hold anymore in this recirculation region. The coarse grid LES

with a wall model from GC-IBM and S-CCM heavily under-predicted the vertical velocity

at all probing stations, demonstrating the poor performance caused not only by the wall
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functions but also by their immersed boundary and cut-cell techniques. Fig. 5.19(c) and

5.19(d) show the comparisons of the streamwise and vertical normal stresses from all three

methods. All three methods predict marginally when compared against DNS results with

GC-IBM showing particularly poor results for the streamwise normal stresses. Generally,

all the predictions at x/h = 0.50 exhibit the largest discrepancy from the DNS.

5.3.3 Supersonic flow over a circular cylinder

Lastly, a supersonic flow past a circular cylinder at ReD = 2 × 105 and M∞ = 1.7 is

presented in order to demonstrate the robustness of the proposed formulation for higher

Mach number flows. With D being the diameter of the circular cylinder, the simulations

have been performed in the domain of [−10D, 10D] × [−8D, 8D] × [0, 3D] in the x

(streamwise), y (cross-streamwise) and z (spanwise) direction respectively. The cylinder is

centred at the origin. At the inflow, all velocity components and density are imposed, and

pressure is calculated from the equation of state. At the outflow and the lateral boundaries,

non-reflecting outflow conditions based on wave decomposition are used. In the spanwise

direction a periodic boundary condition is employed. These boundary treatments are

explained in the Sec. 3.4.2. The flow domain is discretized by 400× 200× 40 cells in the

streamwise, cross-streamwise and spanwise directions respectively. In the streamwise and

cross-streamwise directions the grid is stretched to cluster points near the surface of the

cylinder in order to provide a higher resolution in the vicinity of the cylinder (Fig. 5.20).

∆x and ∆y in the vicinity of the circular cylinder are 0.02D.

The LES is conducted using the three different non-body conformal formulations again.

Fig. 5.21 provides a Mach number contours from GC-CCM. A bow shock is formed ahead

of the cylinder across which the on-coming supersonic becomes subsonic. This subsonic

flow travels along the cylinder surface and accelerates to form a supersonic region. The

supersonic region is separated from the subsonic recirculation region that is contained

inside the long symmetric tail shock starting from directly behind the cylinder. Fig. 5.22

provides a local view of the Mach number contours around the cylinder from each of the

three methods. A qualitative observation of these contours reveals that the three methods
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(a) GC-CCM

(b) GC-IBM

(c) S-CCM

Figure 5.18: Contours of mean streamwise velocity normalized by bulk velocity Ub. (dotted
line: zero mean velocity) 78



Figure 5.19: Profiles of (a) mean streamwise velocity, (b) mean vertical velocity, (c) stream-
wise normal stress, and (d) vertical normal stress at different streamwise locations (�:
GC-CCM, ◦: GC-IBM, 4: C-CCM, −: DNS [80]).
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Figure 5.20: Local view of the grid (red cells : ghost; green cells : solid; line: immersed
interface) for the supersonic turbulent flow past a cylinder. Every grid point is shown.

provide virtually indistinguishable results. The results of computations are summarized

and compared with the corresponding experimental data [4] and the RANS results [83] in

Table 6.1. The separation point is given in θ which denotes the clockwise angle measured

from the leading edge of the cylinder. The y+ value corresponds to the first grid point

away from the cylinder surface and it varies across the cylinder surface in the given range.

Behind the cylinder where flow has separated, y+ values are extremely small because the

friction velocity is extremely small. The drag coefficient is computed according to the

expression: CD = FD/(
1
2
ρ∞U∞

2A) where FD is the drag forces and A = D · lspanwise. The

time-averaged surface pressure coefficient distributions along the surface of the cylinder are

provided in Fig. 5.23 along with the experimental data of [4]. All three methods show a

good agreement with the experimental data despite the coarse grids used in the simulations.

Overall, the differences in the results between the three methods are minimum in this

high Mach number and turbulent test case. The main reason is, the previous test-cases

showed evident differences in the velocity profiles and the turbulence quantities, but such
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Figure 5.21: Close up view of the Mach contour maps for the supersonic turbulent flow
past a cylinder for ReD = 2× 105, M∞ = 1.7 (GC-CCM only).

Figure 5.22: Local view of the Mach number contour for the supersonic turbulent flow past
a cylinder for ReD = 2× 105, M∞ = 1.7.
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Table 5.4: Simulation of supersonic turbulent flow over a circular cylinder. The separation
point θs, the drag coefficient CD, and the average y+ are compared against the experimental
data of [4].

Case y+ range Separation point θs CD

GC-CCM 0.4 to 98 116◦ 1.39
GC-IBM 0.5 to 95 116◦ 1.26
S-CCM 0.3 to 98 117◦ 1.40

Experimental [4] n/a 112◦ 1.43
RANS-IBM (fine) [83] n/a 111◦ 1.39

Figure 5.23: Distribution of pressure coefficient along the surface of the cylinder for ReD =
2× 105, M∞ = 1.7.
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sensitive quantities are typically not available in this test-case at a high Mach number. An

accurate prediction of the friction drag requires an accurate prediction of wall shear-stress,

and it was seen in the previous test-cases that the prediction of wall shear-stress varies with

the non-body conformal method used. This, however, is not important for the cylinder at

this high Mach number, as the main contribution to the aerodynamic drag is the pressure

drag with the frictional drag contributing less than 0.5% [4].

5.4 Conclusions

For flows involving low to moderate Reynolds numbers, the ghost-cell immersed boundary

method (GC-IBM) of Tseng and Ferziger [112] is extended in order to perform LES of

compressible flows. Despite the use of the standard Smagorinsky turbulence model (in

conjunction with the van Driest damping function), the results agree reasonably well with

the DNS data. The finer mesh results are consistent with the results reported in the

literature while the coarse mesh results fail to correctly predict the recirculation zone. The

GC-IBM is successfully applied to perform LES of compressible turbulent flow associated

with wavy wall geometries. To demonstrate the robustness of the current method for

higher Mach number flows, it is tested with a supersonic flow over a cylinder at a moderate

Reynolds number. The GC-IBM nicely captures the qualitative behaviour of the supersonic

flow in the vicinity of the cylinder. This result demonstrates the validity and flexibility of

the GC-IBM algorithm in the compressible LES framework.

For the flows involving high Reynolds numbers, this work develops the ghost-cell based

cut-cell method (GC-CCM), which is built upon the conservative Cartesian cut-cell method

of Meyer et al. [74] and the GC-IBM of Tseng and Ferziger [112]. For merged cells, cell

faces are decomposed, and additional fluxes based on adjacent cells are calculated in order

to accurately capture the near-wall flow behaviour. The proposed method is assessed

on grids with coarse near-wall resolution and applied to perform LES of high Reynolds

number flows in conjunction with a wall model. A simple wall function approach is used

to approximate the wall-shear stress, and the discretization error is used to model the sub-

grid scale turbulence (MILES), although both of these models can be replaced by others
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if desired. The results confirm that the proposed method agrees well with the reference

data despite the coarse near-wall resolution. The method represents the flow physics in

the vicinity of the solid boundary more accurately than the other non-body conformal

methods compared in this work. It can be concluded that the proposed GC-CCM, with

the combination of a wall model, is a viable approach that renders relatively accurate

results for compressible flows at high Reynolds numbers.
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Chapter 6

Computational Aeroacoustics

6.1 Introduction

6.1.1 Motivation and objectives

The sound generated by fluid flow (aeroacoustic noise) originates from many sources, in-

cluding jet flow, spinning blades, wind, and flow around bodies of various geometrical

shape. A good understanding of sound generating mechanism and the ability to predict

that sound accurately and reliably is a necessary step in reducing or controlling the noise.

In this chapter, far-field radiated noise prediction from flow over a circular cylinder is

studied as a benchmark case. A promising strategy is to develop a hybrid approach which

combines a flow solver for computing the sound source field with an acoustic solver for the

acoustic far-field. For the flow solver, the large-eddy simulation (LES) methodology, with

the non-body conformal method developed in the earlier chapter, is employed to accu-

rately represent the flow generating mechanism. The flexibility of the non-body conformal

method in handling the complex geometries can easily extend the geometry of cylinder into

wings, high-lift systems or landing gears. The acoustic solver can be any of the extended

Kirchhoff method, acoustic analogies or the linearized Euler equations (LEE). In this chap-

ter, the methodologies considered in this work for the acoustic calculation is described and
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a numerical result from a benchmark case is reported.

6.1.2 Hybrid approach in computational aeroacoustics

The full, time-dependent and compressible Navier-Stokes equations, which describe the

motion of fluids, also describe the propagation of acoustic waves, as these waves propagate

by means of adiabatic compression and decompression of fluid. The numerical computation

of these sound sources and sound propagation constitutes the main focus in the field of

Computational Aeroacoustics (CAA).

(a) Direct Approach (b) Hybrid Approach

Figure 6.1: Numerical approaches for far-field aeroacoustics problems. The grids illustrate
the computational domain.

For a far-field noise prediction, the intuitive numerical approach is to extend the com-

putational domain from the noise source to the receiver region, and solve the full Navier-

Stokes equations using modern turbulence simulation techniques such as DNS or LES.

This approach is called a direct approach (Fig. 6.1(a)). Unfortunately, this approach poses

limitations and challenges when the goal is to perform a far-field noise prediction. For

instance, a CFD calculation, where the domain extends from an airplane (noise source) in

the air to a house on the ground (receiver), requires a prohibitive computer storage that

it is bordering on the absurd. The difficulties arise from the fact that the nature of the
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aeroacoustics problem is substantially different from those of traditional fluid dynamics

problems. Some of the difficulties are:

1. Amplitude Disparity - Acoustic wave involves extremely small pressure fluctuations,

but the noise source region involves pressure changes that are several orders of mag-

nitude higher. While dealing with such high pressure changes, the propagation of

acoustic waves must be handled simultaneously. This requires a numerical scheme

to have an extremely high order of accuracy to minimize the numerical dispersion

and dissipation. With a conventional level of accuracy, it is almost certain that the

numerical error will overtake the magnitudes of acoustic waves.

2. Spatial Disparity - Acoustic far-field is typically several orders of magnitude larger

in length than the noise generating flow field of interest. The allowable grid size

for calculating the acoustic waves can be much coarser (than the grid size required

for the CFD flow field), however, to compute the solution accurately over such long

propagation distances, a uniform grid should be taken in the entire domain in order

to reduce the truncation error. This enforces the grid size to match that for the CFD

flow field throughout the entire domain. This can be extremely costly.

As an alternative, hybrid approaches (Fig. 6.1(b)) became popular for far-field aeroa-

coustic predictions. In this approach, the computation of flow decouples from the prop-

agation of sound. The computation of noise source is first obtained using a conventional

CFD technique. The propagation of sound is then computed in a separate acoustic solver

with the source field data as an input. Of many acoustic solvers in the hybrid approaches,

the most common ones are the extended Kirchhoff approach, the Ffowcs-Williams and

Hawkings (FW-H) approach, and the Linearized Euler Equations (LEE) approach. LEE is

the most rigorous but also the most computationally expensive method, as it has to solve

a group of linearized equations on a continuous computational mesh that covers the whole

acoustic field of interest. The biggest advantage is that it accounts for non-uniform mean

flow and treats the convection and rarefaction effects that have an important influence on

the propagation of acoustic waves. When the flow conditions outside the source zone are
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assumed such that it is quiescent and homogeneous, a simple integral approach such as the

Kirchhoff approach or the Ffowcs-Williams and Hawkings approach would suffice. These

approaches solve only scalar equations at discrete locations in directions corresponding to

the observer positions, therefore, they are very efficient computationally. Of the two inte-

gral approaches, the more popular method is the Ffowcs-Williams and Hawkings (FW-H)

method which is based on the Lighthill’s Acoustic Analogy. Several papers [7, 101] have

reported the superiority of the FW-H approach over the Kirchhoff approach. In the fol-

lowing section, the derivation of Lighthill’s acoustic analogy, FW-H equations, and their

integral formulations are briefly explored from the fundamental equations. The assump-

tions along the derivation process will be emphasized, and the limitations in their usage

will be discussed.

6.2 Acoustic analogy

6.2.1 Lighthill’s acoustic analogy

Aeroacoustics became an important issue in the 1950s with the development of commercial

jet powered aircrafts. The need to reduce the noise from jet engines puts a focus on the

lack of understanding of the underling mechanisms. This stimulated James Lighthill [65]

to develop his theory for aeroacoustic sound generation where he proposed how to obtain

this source term from within the Navier-Stokes equations. This is the foundation for a field

of research, Aeroacoustics. In classical acoustics, the mass and momentum equations are

first reduced to the Euler equations after assuming that there is no dissipation and no heat

conduction (adiabatic process). This can lead to the assumption of constant entropy (isen-

tropic flow) throughout the entire flow field. Also, sound perturbations are so small that

their contribution to the convection velocity of the flow is negligible in many cases. This

means that sound can, in essence, be described by the linearized Euler equations. Further

assuming that the fluid is homogeneous and quiescent, a homogeneous wave equation can

be derived. The derivations are readily available in textbooks on fundamental acoustics.

With the classical acoustic wave equations, the limitation is the lack of models for sound
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generation, i.e. there is no source term present in the wave equation. The acoustic field is

generated in a quiescent fluid by an imposed external force f(t), and assumes this external

force induces linear perturbations of the quiescent fluid state. Evidently, sound generation

from within the fluid itself - by turbulent and/or unsteady vortical flow processes that are

described in the Navier-Stokes equations - cannot be treated unless it is somehow obtained

by other means which is incorporated as an external force.

The idea of Lighthill’s acoustic analogy is to reformulate the mass and momentum

equations in a form of wave equation, but without introducing the above assumptions or

simplifications. The result is an inhomogeneous wave equation whose source term con-

tains all the nonlinearities, viscous stress and entropy gradients (that are neglected in the

derivation of the classical wave equations). In his theory, sound is generated by unsteady

flows through the nonlinear interaction of velocity fluctuations, entropy fluctuations, as

well as viscous stress. In the free space, in the case of jet noise in particular, this is true.

The theory is based on the underlying assumption that the space is split into two parts:

the source field and the sound field (see Fig. 6.2). In the source field, the nonlinearities,

viscous stress and entropy gradients take place to generate the noise. In the sound field,

the generated noise propagates into the homogeneous and quiescent fluid. This is the part

where the fluctuating pressure (or density) field satisfies the homogeneous wave equation.

Figure 6.2: Two fields in Lighthill’s acoustic analogy: Source Field and Sound Field.

A brief derivation of Lighthill’s acoustic analogy is explained below. Similar to the

derivation of the classical wave equation, the starting point is the exact form of mass and

momentum equations (i.e. Eq. 2.1 and Eq. 2.2):
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∂ρ

∂t
+
∂ρui
∂xi

= 0 (6.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂p

∂xi
− ∂τij
∂xj

= 0 (6.2)

Subtract ∂
∂xi

of momentum equation from ∂
∂t

of continuity equation:

∂2ρ

∂t2
=

∂2

∂xi∂xj
(ρuiuj + pδij − τij) (6.3)

Assuming that the source region is embedded in a surrounding homogeneous fluid with

no mean flow (characterized by the mean pressure p0, mean density ρ0 and mean sound

speed c0), it then follows a similar procedure as in the derivation of the classical wave

equation. Substituting ρ = ρ0 + ρ′ and p = p0 + p′, and subtracting c2
0∇2ρ′ to obtain an

inhomogeneous wave equation:

∂2ρ′

∂t2
− c2

0

∂2ρ′

∂xi∂xi
=

∂2

∂xi∂xj
(ρuiuj + (p′ − c2

0ρ
′)δij − τij)

=
∂2Tij
∂xi∂xj

(6.4)

The left-hand side of the equation represents the acoustic-field while the right-hand side

represents the source-field. Tij is called the Lighthill stress tensor, which takes care of

the sound generating fluid motion. It is a departure of a linear wave motion through a

quiescent fluid. Lighthill stated that this acoustic source is a quadrupole source. The

Lighthill stress tensor Tij = ρuiuj + (p′ − c2
0ρ
′)δij − τij contains three identifiable terms:

• ρuiuj is the Reynolds stress. In isentropic turbulent flows, this is the only significant

term.

• (p′ − c2
0ρ
′)δij represents the deviations from adiabatic changes of state that occur
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when, for instance, there is heat release from chemical reactions (combustions). For

isentropic flow, this term is zero.

• τij is the viscous stress. This term is associated with viscous dissipation of motion

and is usually negligible.

This is an analogy because it represents the full complex fluid motion as a linear wave

equation for a quiescent fluid, plus a source term which is from the unsteady turbulent

flow. In other words, it assumes that the source field and the acoustic field are independent

(uncoupled). This is the main limitation of this theory, which is further discussed in the

next section.

6.2.2 Limitations in Lighthill’s theory

In Lighthill’s theory, it is assumed that the source term is known and unaffected by the

acoustic field. This is called a one-way coupling of the flow and sound (Fig. 6.3(a)). This

is a good approximation when the splitting of space in two parts, the sound field and the

source field, is valid. For this to be valid, sound must be produced in a free space with no

acoustic reflections which can influence the sound generation. Sound perturbations also

must be so small that their contribution (while propagating) to the convection velocity of

the flow is negligible. The latter is the same underlying assumption that is applied in the

classical acoustics, however, in the application of aeroacoustics this sometimes fails. In

some situations where acoustic waves are reflected back to the source region, a modulation

of the source process is possible which can lead to a positive (unstable) feedback loop. This

phenomenon, referred to as a self-sustained oscillator, results in the creation of distinct

tones, “whistling”. This is not accounted for in the Lighthill’s theory. In some engineering

practice, knowledge about whistles is important as they can produce high sound levels.

Cavity noise belongs to this case where the practical example includes such as sunroof

buffeting. Another limitation is the assumption that the fluid motion and mean flow

gradients do not affect the sound generation and propagation (which is also assumed in

the classical acoustics) (Fig. 6.3(b)). The theory is derived for the case where sources are
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embedded in a quiescent flow (zero mean flow velocity U0 and constant fluid state p0, ρ0 and

c0). In reality, this may not be true. A strong mean flow can lead to curved propagation

paths and to a frequency change, called Doppler shift, in the emitted sound. In this case,

an acoustic solver based on Linearized Euler Equation (LEE) is useful.

(a) One-way coupling (b) No mean flow gradients

Figure 6.3: Limitations in Lighthill’s theory.

6.3 Curle’s equation

In the derivation of Lighthill’s acoustic analogy, a turbulent flow is assumed to be the

quadrupole source only, which is driven by the unsteady flow in free space. The contribution

to the sound field from this quadrupole source is generally small and negligible at low Mach

numbers [65]. In most practical applications turbulence is generated by the presence of solid

body in the flow. It is not hard to find examples of noisy flows that involve aerodynamic

forces interacting with solid objects. Airframe noise is an important component of overall

noise during an aircraft landing. In the automotive industry, wind noise is also an important

area since flow past components, such as side-view mirrors, A-pillars or windshield wipers,

can be noisy. Other examples include the noise from wind turbines, fans in rotating

machines, and helicopter rotors. The presence of a solid object in the flow enhances noise

radiation in two ways: 1) by creating noisy flow features such as unsteady separation and

vortex shedding, and 2) by imposing a boundary inhomogeneity that promotes efficient

conversion of flow energy to acoustic energy.
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It is possible to include the effect of a solid object within the acoustic analogy through

the use of mathematical control surfaces. Curle [20] extended the Lighthill’s analogy to

include the effects of solid boundaries. Consider a volume of fluid V outside a closed

control surface S (see Fig. 6.4). The function f is defined such that f < 0 is the volume

interior to the solid surface, and f > 0 is the volume exterior to the surface. Bypassing

the mathematical rigours, the integral solution can be written as [39]:

ρ(x, t) =
1

c2
0

∫ ∫
V

Tij
∂2G

∂yi∂yi
d3y dτ − 1

c2
0

∫ ∫
S

njpij
∂G

∂yi
d2y dτ (6.5)

where G is the Green’s function and nj are components of the outward pointing (into

the fluid) unit normal of the surface S. The derivation is well documented in Curle’s

original paper [20]. If the solid body is small relative to the acoustic wavelength, the effect

of the body on sound propagation is negligible, and Curle’s surface integral predicts a

compact dipole which, at low Mach numbers, dominates the quadrupole radiation. For

this acoustically compact case, the free-space Green’s function can be used and the above

equation becomes Curle’s solution to the Lighthill equation. The integral solution takes

the following form in the acoustic far field:

Figure 6.4: The definition of the solid surface as f(x) = 0. The surface integral is taken
over the surface S of the body and the volume integral over the part of space V where
Lighthill’s quadrupole term gives a contribution.
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ρ(x, t) ≈ 1

4πc3
0

∫
S

ri
r2

∂

∂t
njpij(y, t−

r

c0

) d2y

+
1

4πc3
0

∫
V

rirj
r3

∂2

∂t2
Tij(y, t−

r

c0

) d3y (6.6)

where r = |x− y| is the distance between an observer’s position x and a source position y,

and ri = xi − yi.

If the solid object is not acoustically compact, its presence is felt by the acoustic

waves, resulting in a more complex scattering field. To account for the surface reflection of

acoustic waves, the correct hard-wall boundary condition must be satisfied by the acoustic

components of the flow. This can be achieved in two ways. If the source field is obtained

from a compressible flow calculation (with a high-order accurate scheme), the appropriate

acoustic boundary condition is naturally satisfied. Curle’s solution is then valid even

though it utilizes the free-space Green’s function. If, on the other hand, the source field

is from a less expensive incompressible flow calculation (or compressible flow calculation

with a low-order scheme), acoustic boundary conditions need to be imposed when solving

Eq. 6.5 which necessitates the use of Green’s function tailored to the specific geometry

in consideration. Analytical Green’s functions for hard-wall boundaries are unavailable

except for the simplest geometries. For complex geometries, the exact Green’s functions

can be computed using a boundary element method - a numerical method that is actively

used in many engineering applications for acoustics.

6.4 Ffowcs-Williams and Hawkings equation for mov-

ing bodies

Curle showed that the effect of a rigid body can be incorporated in Lighthill’s acoustic

analogy as an additional source term. This approach has been generalized by Ffowcs-

Williams and Hawkings who derived a very general formulation valid for any moving body
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enclosed by a surface S(t). This is achieved by an elegant and efficient utilization of

generalized functions (see Section C.2.8 Surface Distributions in [91]). Although originally

meant to include the noise generation by moving bodies (such as propeller noise) into the

Lighthill’s theory, it is now the most widely used starting point for theories of flow induced

noise.

The original paper [31] that presents the FW-H equation was difficult to understand, as

considerable mathematical maturity was required to follow the author’s reasoning in the

derivation. Taking advantage of their hard work, the final equation in a differential form

is considered and presented here. Consider again a closed, non-deformable surface defined

by f(x, t) = 0, moving along a velocity vector v (see Fig. 6.5). FW-H equation can be

written as follows:

(
1

c2
)
∂2p′

∂t2
−∇2p′ =

∂

∂t
[ρ0vnδ(f)]− ∂

∂xi
[pniδf ] +

∂2

∂xi∂xj
[H(f)Tij] (6.7)

(monopole) (dipole) (quadrupole)

Figure 6.5: The definition of the moving surface as f(x, t) = 0.
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where p′ is the perturbation (acoustic) pressure, c is the ambient speed of sound, ρ0 is the

ambient density and p is the local pressure on the surface. p′ = c2, ρ′ = c2(ρ− ρ0) and p′

can only be interpreted as the acoustic pressure if ρ′/ρ0 � 1. The Heaviside and the Dirac

delta functions are denoted as H(f) and δ(f). Again, Tij is the Lighthill stress tensor

where all the nonlinearities from the equations of conservation of mass and momentum are

lumped in. The above formulation is called the impermeable surface FW-H formulation.

It is important to mention that there are two variations of the FW-H formulations -

the impermeable surface FW-H and the permeable surface FW-H. The latter is not to be

discussed in this work, although it is worth mentioning briefly. The great advantage of

the permeable FW-H formulation comes when one wants to account for the quadrupole

source term. In that formulation, the control surface is a fictitious surface (not a solid

body as shown in Fig. 6.4) which encloses some volume surrounding the solid body. This

allows one to avoid the expensive volume integration for quadrupole source because the

surface integration of this fictitious control surface includes the quadrupole noise source.

The details about the permeable FW-H can be found in the original paper by FW-H [31]

as well.

The three source terms in the FW-H equation, as indicated in the Eq. 6.7, have physical

meanings. This is helpful in understanding the noise generation. The first source term is

purely of geometrical nature and it describes the noise generation by the fluid displaced by

the moving body. The associated field is called thickness noise and it has a monopole-type

contribution. In the case of helicopter (propeller) noise, this is the dominant noise source.

The second term depends on the normal surface stresses due to the pressure distribution.

This is generated by the force that acts on the fluid as a result of the presence of the solid

body. The associated field is called loading noise and it has a dipole-type contribution. In

the case of airframe noise (in the absence of thickness noise), this is the dominant noise

source. The third term is the contribution of the Lighthill stress tensor which accounts for

that such as nonlinear effects, as explained previously in Sec. 6.2.1. This quadrupole term

is a volume source and requires computationally expensive volume integration outside of

the surface integration. This distinct separation of the three terms is useful in numerical

computations because not all terms must be computed at all times if a particular source
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does not contribute to the sound field. For instance, the contribution to the sound field

from the Lighthill’s stress tensor, the quadrupole source, is generally small and negligible

at low Mach numbers. It only becomes non-negligible at high Mach numbers. For subsonic

flows, quadrupole type radiation is also relatively inefficient in the presence of a monopole

or dipole noise source as well. This can be shown by the scaling argument that relates the

acoustic intensity I of the noise source to the convection velocity. Lighthill [65] showed that

I ∼ M8 for the quadrupole sources, where M indicates the Mach number. Later, Curle

[20] had also shown that I ∼ M6 for dipole sources and I ∼ M4 for monopole sources.

This implies:

Iquad.
Idi.

∼ Idi.
Imono.

∼M2 (6.8)

Neglecting the insignificant quadrupole term, the Eq. 6.7 can, in principle, be solved if

the pressure distribution along the surface is known. By using a free field Green’s function,

Farassat [29] developed various versions of integral forms of the FW-H equation. Farassat’s

final formulation is presented below after bypassing the mathematical details:

p′(x, t) = p′Thickness(x, t) + p′Loading(x, t) (6.9)

where

4πp′Thickness(x, t) =

∫
f=0

[
ρ0v̇n

r(1−Mr)2
+

ρ0vnr̂iṀi

r(1−Mr)3

]
ret

dS

+

∫
f=0

[
ρ0cvn(Mr −M2)

r2(1−Mr)3

]
ret

dS, (6.10)
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4πp′Loading(x, t) =

∫
f=0

[
ṗcosθ

cr(1−Mr)2
+

r̂iṀipcosθ

cr(1−Mr)3

]
ret

dS

+

∫
f=0

[
p(cosθ −Mini)

r2(1−Mr)2
+

(Mr −M2)pcosθ

r2(1−Mr)3

]
ret

dS (6.11)

The subscript ret denotes evaluation at retarded time, τ = t− r/c0. r̂ is the unit radiation

vector and n is the surface normal vector. r̂i is the component of unit radiation vector in

each direction. Note that cosθ = n · r̂ and Mr = M · r̂. The dot · refers to a time derivative

of the variable.

This formulation is called the Formulation 1A of Farassat [27]. Other formulations of

the solutions are also available which might be easier to handle in certain applications,

see [27, 28]. It is important to be reminded that this formulation utilizes the free-space

Green’s function. The hard-wall boundary condition must be satisfied in order to use this

formulation. Once its applicability is well justified, the Ffowcs-Williams and Hawkings

equation is then ready to be used in conjunction with the CFD solutions.

6.5 Sound generated by flow over a circular cylinder

6.5.1 Benchmark case (Re=90,000)

The objective of this work is to calculate the far-field sound generated from low Mach

number flow around a three-dimensional circular cylinder in the sub-critical regime using

the Lighthill’s acoustic analogy. As a benchmark based on the experimental work of Revell

et al. [90], a flow with a Reynolds number of Re = 90, 000 and a free-stream Mach number

of M = 0.2 is simulated. The simulation is conducted in three-dimensional computational

domains to account for the effects of the inherently three-dimensional flow at this Reynolds

number. For low Mach number flows such as this case, the coupling between sound and

flow fluctuations can usually be neglected. Thus, the source of noise can be computed

separately from the acoustic field. Under this assumption, the far-field sound is computed

using the FW-H approach. The collected flow-field data is input to the acoustic solver
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to solve the Formulation 1A of Farassat (Eq. 6.10 and Eq. 6.11), provided that the noise

source is verified to be acoustically compact, i.e., the cylinder body is small relative to the

acoustic wavelength associated with the vortex shedding.

For this benchmark case, the Formulation 1A of Farassat can be further simplified.

Since the cylinder is stationary, the monopole sound source term (Eq. 6.10) yields zero.

In this case, most of the noise is generated by the unsteady pressure fluctuations on the

cylinder wall, contributing mostly to the dipole noise source term. At the current Mach

number, the contribution from the quadrupole source in the turbulent wake region is also

insignificant in the presence of the dipole source according to Eq. 6.8; hence it is also

neglected. Starting from Eq. 6.11 and further simplifying for the case of a non-moving

surface and neglecting the insignificant terms, the acoustic pressure in the far-field can be

written as

4πp′Loading(x, t) =
1

c0

∫
f=0

[
∂p
∂τ
cosθ

r

]
ret

dS (6.12)

In the current acoustic solver, Eq. 6.12 is used for the far-field noise prediction. The

subscript “ret” denotes evaluation at retarded time τ = t−r/c0, and θ is the angle between

the radiation vector and the surface normal n (see Fig. 6.5). The retarded term in Eq. 6.12

must be interpolated in time at the observer position to find the values at the retarded

time for the integration. This operation is necessary because the sampling at emission

time from the source does not coincide with the sampling at receiving time. An accurate

estimate of the derivative can be obtained using the Stirling formula, which is based on

simple numerical differentiation theory. The formulation, given in [120], is as follows:

∂p′

∂τ
=

pτ+1 − pτ−1

2τ
+

∆τ

τ
[pτ+1 − 2pτ + pτ−1]

+
[3∆τ 2 − 1][pτ+1 − 3pτ + 3pτ−1 − pτ−2]

12τ
(6.13)
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The computed noise predictions are compared with the experiment of Revell et al. [90]

and other available numerical work [19, 82].

6.5.2 Flow-field prediction

MILES (Sec. 2.3.2) is employed to compute the unsteady flow-field using the ghost-cell

based cut-cell method (Sec. 4.2.2) in conjunction with the wall function (Sec. 4.2.3). The

computational domain size is 30D×20D×2.5D in the x (streamwise), y (cross-streamwise)

and z (spanwise) directions, respectively, and the cylinder is immersed in the domain with

centre at (x, y) = (10D, 10D) (Fig. 6.6). The grid employs 300 × 200 × 25 cells. In the

x and y directions, the grid is stretched to cluster points in the vicinity of the cylinder

to provide higher resolution. ∆x and ∆y in the vicinity of the cylinder is 0.02D while

uniform grid spacing is applied in the z direction. This spatial mesh resolution near the

wall yields y+ values in the range of 0.3 to 164. At the inflow, subsonic non-reflecting inflow

boundary conditions are implemented. At the three other sides of the domain (excluding

the spanwise boundaries), subsonic non-reflecting outflow conditions are used.

Figure 6.6: The rectangular Cartesian grid domain and a close up view of the grid around
the cylinder in the x-y plane (Re = 90, 000). Every grid point is shown.

Fig. 6.7 shows portions of the time histories of CL and CD. It illustrates difficulties

experienced by the computations near this critical Reynolds number. Relative to the earlier
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test case of flow over a cylinder at Re = 300 (Sec. 5.2.1), an amplitude modulation of the

lift forces is observed, mainly due to the strong occurrence of the irregular vortex break-up

along the cylinder span, leading to a three-dimensional vortex shedding. Comparing the

mean quantities against the experimental analysis [11], the current CFD predicts well with

St = 0.207 and CD = 1.33 (Table 6.1). It can be noted that the unsteady RANS results

by Cox et al. [19] generally over-predicts St and under-predicts CD with some variations

depending on the turbulence model used. The current results are comparable to the wall-

resolved 3D-LES results by Orselli et al.1 [82]. In order to show the three-dimensional

flow structures in the cylinder wake, the isosurfaces of transverse vorticity magnitude in

the wake at one time instant is illustrated in Fig. 6.8.

Figure 6.7: Temporal variation of drag and lift coefficient (Re = 90, 000).

6.5.3 Acoustic prediction

For sound calculation, the experimental data by Revell et al. [90] is used as a benchmark

case. Their work used a free jet flow over a circular cylinder placed inside an anechoic

1incompressible, wall-resolved LES on 5.4 million hexahedral-type volume cells. The present work
employs 1.5 million Cartesian volume cells.
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Table 6.1: Comparison of obtained St and CD with experimental data and other numerical
data. For RANS predictions, Cox et al. [19] used a compressible flow solver (CFL3D) and
an incompressible flow solver (CITY3D).

Case St CD

Experimental data [11] 0.18-0.20 0.98-1.35
RANS SST (comp. solver) [19] 0.227 0.804
RANS k-ε (comp. solver) [19] 0.233 0.625

RANS k-ε (incomp. solver) [19] 0.296 0.582
3D-LES [82] 0.191 1.08

present 3D-LES w/ wall function 0.207 1.33

Figure 6.8: Isosurfaces of transverse vorticity magnitude at an instant of time in the vicinity
of the circular cylinder (Re = 90, 000).
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wind tunnel to obtain aerodynamic quantities and far-field acoustic spectra. Their smooth

circular cylinder with a diameter of D = 0.019m, measured under Re = 89, 000 and

M = 0.2 is considered here. The span length of the cylinder is L = 26.3D (0.5m).

The location of the microphone is 90 ◦ from the free-stream direction and is 128D away

from the mid-span of the cylinder. The unsteady surface pressures are recorded at every

2×10−6s which is equivalent to a sampling rate of 500 kHz. On the order of 500 timesteps

per acoustic period is generally sufficient to ensure an adequate temporal resolution [19].

The appropriate time step should be related to resolving the highest frequency from the

range of interest, and this poses an extremely stringent resolution requirement on lower

frequencies. In this particular benchmark case, high-frequency noises (quadrupole source)

are neglected. The sound source is due to the pressure fluctuation on the cylinder surface,

which sheds a vortex at a Strouhal number of 0.2 (≈ 722 Hz). The dipole directivity pattern

is assumed (such that there is no complex scattering field) because the cylinder cross

section is acoustically compact. As the wavelength corresponding to the shedding frequency

(≈ 0.47m) is indeed large compared with the diameter of the cylinder (0.019m), this

approximation is actually very good in this flow condition. The applicability of Formulation

1A of Farassat for this benchmark case is also justified.

The chosen sampling rate (500 kHz) yields approximately 690 timesteps per shedding

cycle for the noise at this frequency. The CFD simulation is run to obtain approximately

60 shedding cycles (i.e. 690 × 60 = 41400 total timesteps). Due to computational cost

limitations, a shorter cylinder span of Ls = 2.5D is used in the CFD simulation as opposed

to L = 26.3D used in the experiment. The time history of surface pressures is processed

through the Fast Fourier Transform (FFT) for a spectral analysis. In order to account

for the additional sound pressure level (SPL) generated due to the longer span of the

cylinder, SPL for the simulated span (Ls) must be corrected. In this work, the acoustic

correction method proposed by Kato et al. [54] is used. The basic idea is to estimate a

SPL correction (SPLc) for the short cylinder span (Ls), which can be added to account for

the longer span. Sound pressure level correction for the long span can be made by adding

10log(L/Ls) if a coherence length of the surface pressure fluctuations along the cylinder

span, Lc, is determined to be less than the simulated span, i.e. Lc ≤ Ls. If Lc > L, then
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20log(L/Ls) must be added. The SPL to be corrected for the long span, L is given by

SPLc =


10 log( L

Ls
) (Lc ≤ Ls),

20 log(Lc

Ls
) + 10 log( L

Lc
) Ls < Lc < L,

20 log( L
Ls

) L ≤ Lc.

(6.14)

Lc is the spanwise coherence length, which is also a function of frequency (Lc = Lc(ω)).

The first expression assumes that the fluctuating pressure for spanwise distance beyond

Ls is not correlated, whereas the third expression assumes a perfect correlation of the

fluctuating pressure along the cylinder span L. According to Kato et al. [54], the degree of

coherence of the fluctuating surface pressure along the cylinder span can be represented by

an equivalent coherence length, Lc(ω), which is the only unknown value of the corrected

method. This study simply follows the work of Orselli et al. [82] where the Lc(ω) for

St = 0.20, 0.38 and 0.76 are found to be 7.86D, 0.56D and 0.074D respectively. Near the

von Karman vortex shedding frequency (St ≈ 0.207), Lc = 7.86D falls within the range

Ls < Lc(ω) < L of Kato’s formulation (Eq. 6.14). For the other two frequencies (St = 0.38

and 0.76), Lc is lower than Ls, indicating that other frequencies (higher than St = 0.20)

falls in the range, Lc ≤ Ls. Thus, at the vortex shedding frequency, the sound spectrum

is corrected by adding a value of SPLc(St = 0.20) = 15.0dB after using the second

expression in Eq. 6.14. At higher frequencies, the sound is corrected by adding SPLc(St =

0.20) = 10.1dB due to the first expression. The uncorrected and corrected sound spectra

are presented and compared with the experimental results in Fig. 6.9. Comparison of

the experimental and the numerical spectra at the vortex shedding frequency (St = 0.20)

shows that the predicted peak of SPL after the acoustic correction (≈ 101.3dB) matches

well with corresponding value of Revell et al. [90] (≈ 98.4dB). Overall, the present acoustic

computations agree well with the experimental data.
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(a) Uncorrected

(b) Corrected

Figure 6.9: Comparison of predicted and measured sound pressure level for a microphone
located 128D away from the cylinder and at 90◦ from the stagnation point.
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6.6 Conclusions

Of many hybrid approaches available in computational aeroacoustics, the Ffowcs-Williams

and Hawkings (FW-H) approach is selected for the far-field acoustic calculation. Once the

applicability is justified, this integral approach becomes a powerful tool for an acoustical

prediction in terms of efficiency and accuracy. Because the fundamental equations are

reduced to an inhomogeneous wave equation where the integral formulation is known,

prediction of wave propagation is simple.

As a benchmark, prediction of far-field noise generated from low Mach number flow

around a circular cylinder in the sub-critical regime is performed using the FW-H approach.

The flow-field is obtained by LES using the GC-CCM and a wall-function, as similarly

demonstrated in the previous chapter. Due to limitations on computational resources,

a shorter cylinder span is used in the CFD computations. To account for the additional

sound level generated by the longer span, the acoustic correction method proposed by Kato

et al. [54] is applied. The computed sound spectrum agrees well with the corresponding

experimental data of Revell et al. [90]. The results demonstrate that the developed hybrid

LES-acoustic analogy method, where the flow-field is computed using the GC-CCM and

a simple wall-function, can predict the sound spectrum quite accurately for the case of

a three-dimensional flow around a cylinder in the sub-critical regime. For future studies,

similar LES simulations with more complex geometries, such as wings, high-lift system or

landing gear, should be carried out for the airframe noise predictions.
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Chapter 7

Conclusions and Recommendations

7.1 Summary

In the present study, a hybrid LES-acoustic analogy method for computational aeroacous-

tics has been developed. The intention here is to develop CFD and acoustic methodologies

for an accurate prediction of far-field noise that results from flow over complex geome-

tries. Generating high quality body fitted grids around complex geometries is challenging

and time-consuming. As an alternative, numerical methods based on non-body conformal

grids are developed and assessed; these methods can deal with bodies of almost arbitrary

shape. Two non-body conformal grid methods are proposed and assessed in this work:

the ghost-cell based immersed boundary method (GC-IBM) and the ghost-cell based cut-

cell method (GC-CCM). The applicability of these methods is investigated extensively in

the compressible LES framework. The developed methods are tested for a wide range of

Reynolds numbers as well as Mach numbers. The test cases include flows over a cylinder, a

wavy surface, and through an inclined turbulent channel. For high Reynolds number flows,

a wall model is employed to approximate the wall-shear stress and avoid a requirement for

severe grid resolution near the wall. The successfully developed CFD methodology for a

sound source is then used in an aeroacoustic application to predict the far-field radiated

noise. The test case used here is the prediction of sound generated by flow over a circular
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cylinder. Several approaches can be used in the acoustic solver for the sound propaga-

tion. Of many hybrid approaches available in the computational aeroacoustics, the Ffowcs

Williams-Hawkings (FW-H) acoustic analogy is selected to explore the far-field acoustic

calculation due to its versatility and efficiency. The numerical results are compared to the

experimental data and predict the sound spectral quite accurately.

7.2 Contributions

Although the research is driven to achieve an accurate far-field acoustic prediction, the

majority of the work contributing to this research is focused on solving the turbulent flow-

field, that is, the noise source. In particular, the focus is to accurately perform LES of

turbulent compressible flows in a complex geometric setting using non-body conformal

methods. As such, the research is mainly dedicated to develop efficient, easy-to-implement

and relatively accurate non-body conformal methods that can be used for flow over complex

geometries.

First, the original ghost-cell based immersed boundary method (GC-IBM) of Tseng and

Ferziger [112] is extended for compressible turbulent flows. The treatment of the ghost

cells comes from the proper boundary conditions enforced on the immersed boundary

through image points in the fluid region. This method is successfully applied to LES

of compressible turbulent flow associated with wavy wall geometries. The results agree

reasonably well with the DNS data. In order to demonstrate the robustness of the current

method for higher Mach number flows, a supersonic flow over a cylinder at a moderately

high Reynolds number is simulated. The results nicely capture the qualitative behaviour

of the supersonic flow in the vicinity of the cylinder and demonstrate the validity and

flexibility of the GC-IBM algorithm in the compressible LES framework.

Second, a new method called ghost-cell based cut-cell method (GC-CCM) is developed.

This method utilizes both ghost cells and cut cell methodologies. For improved accuracy

near the wall, cell faces are decomposed and the fluxes are evaluated through each face

component. The presented methodology does not require storing information at the centre
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of small cut cells and at the centroid of merged cells, as in previous cut cell approaches.

A simple wall-function approach is used to approximate the wall-shear stress and the

discretization error is used to model the sub-grid scale turbulence (implicit LES), although

both of these models can be replaced by others if desired. The results confirm that the

proposed method agrees well with the reference data despite the employment of coarse

grids. It represents the flow physics in the vicinity of the solid boundary more accurately

than the other non-body conformal methods compared in this work.

Last, but certainly not least, prediction of far-field noise generated from flow around

a circular cylinder in the sub-critical regime is performed using the Ffowcs Williams and

Hawkings (FW-H) approach. The unsteady flow-field, i.e., the sound-generating mecha-

nism, is provided by performing LES using the GC-CCM and a wall-function. To reduce

the computational cost, a shorter cylinder span is used in the CFD simulations than that

used in the reference experimental work by Revell et al. [90]. The sound level is then cor-

rected using an acoustic correction method to account for the longer cylinder span. Both

CFD and acoustic results agree well with the corresponding experimental data.

7.3 Recommendations for future work

The present study shows the proposed non-body conformal grid method to be efficient,

easy-to-implement and relatively accurate compared to other non-body conformal meth-

ods. To conclude whether they are also accurate compared with the body-fitted grid

formulations, one needs to analyze the performance of the proposed method against body-

fitted grids. One such comparative study has been carried out by Meyer et al. [75], who

showed that their cut-cell formulation and the equivalent body-fitted formulation result in

similar accuracies for turbulent statistics and mean integral quantities. It will be important

to conduct a similar study with the current method where a wall model is in place.

The current study uses a simple wall model based on a wall function. The accuracy

can be further improved using a more sophisticated wall model. It will be important to

assess the effect of a wall model and to compare the numerical results using various wall
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models.

In order to achieve the research goal that the author ultimately envisioned, namely, an

accurate airframe noise prediction, similar LES simulations with more complex geometries,

such as wings, high-lift system or landing gear, should be performed. Using the acoustic

solver, their far-field noise should be predicted and compared to the existing data.
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Appendix A

Navier-Stokes Characteristic

Boundary Condition

A.1 Characteristic analysis for x-direction

Although the system of governing equations (2.1 - 2.3) are written in terms of conservative

variables, they can also be written in terms of primitive variables. Let Ũ be the conservative

variable vector (as defined in Eq. 3.3) and U be the primitive vector, [ρ, u, v, w, p]T . The

two systems are related by

∂Ũ

∂t
= P

∂U

∂t
where P =

∂Ũ

∂U
. (A.1)

P is the Jacobian matrix. Similarly,

∂Fk
∂xk

= Qk
∂U

∂xk
where Qk =

∂Fk
∂U

. (A.2)

where k denotes x, y or z directions.

For characteristic analysis for x-direction,
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∂Ũ

∂t
+
∂Fx
∂x

+ C̃ = 0 where C̃ =
∂Fy
∂y

+
∂Fz
∂z

+ D̃. (A.3)

This can be written in terms of primitive variable as

∂U

∂t
+ Ax

∂U

∂x
+ C = 0 where C = Ay

∂U

∂y
+ Az

∂U

∂z
+D. (A.4)

Ak = P−1Qk, C = P−1C̃ and D = P−1D̃.

Let li and ri are left and right eigenvectors of Ax such that

lTi Ax = λil
T
i , Axri = λiri , i = 1, ...,m (A.5)

where eigenvalues λi are given by det(Ax− λI) = 0 and the left and right eigenvectors are

mutually orthogonal as lTi · rj = δij.

A diagonalizing similarity transformation is generated for Ax by forming the matrix S

such that its columns are the right eigenvectors rj. S−1 is the left eigenvectors lTi . The

similarity transformation is then

S−1AxS = Λ (A.6)

where Λ is the diagonal matrix of eigenvalues. Applying this transformation to Eq. A.4

gives

S−1∂U

∂t
+ ΛS−1∂U

∂x
+ S−1C = 0 (A.7)

whose m components are

lT
∂U

∂t
+ λil

T
i

∂U

∂x
+ lTi C = 0 , i = 1, ...,m (A.8)
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To make the boundary condition analysis more convenient, the ith component of the

vector L is

Li ≡ λil
T
i

∂U

∂xi
. (A.9)

The Eq. A.7 can then be rewritten as

S−1∂U

∂t
+ L+ S−1C = 0 (A.10)

or, in the component form of Eq. A.11 as

lT
∂U

∂t
+ Li + lTi C = 0 , i = 1, ...,m (A.11)

Eigenvalues of Ax in Eq. A.4 are

λ1 = u− c , λ2 = λ3 = λ4 = u , λ5 = u+ c (A.12)

where c is the speed of sound, c2 = γp
ρ

. Eigenvalues of λ1 and λ5 are the velocities of

the sound waves moving in the negative and positive x directions, λ2 is the velocity for

entropy advection, while λ3 and λ4 are the velocities at which v and w are advected in the

x direction.

The left eigenvectors are written as

lT1 = (0, 1,−ρc, 0, 0),

lT2 = (c2,−1, 0, 0, 0),

lT3 = (0, 0, 0, 1, 0),

lT4 = (0.0.0.0.1),

lT5 = (0, 1, ρc, 0, 0).

(A.13)
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The quantities Li from Eq. A.9 are formed as

L1 = λ1(
∂p

∂x
− ρc∂u1

∂x
),

L2 = λ2(c2 ∂ρ

∂x
− ∂p

∂x
),

L3 = λ3
∂v

∂x
,

L4 = λ4
∂w

∂x
,

L5 = λ5(
∂p

∂x
+ ρc

∂u

∂x
).

(A.14)

These definitions may be inverted to give

∂ρ

∂x
=

1

c2

[
L2

u
+

1

2
(
L5

u+ c
+
L1

u− c
)

]
,

∂u

∂x
=

1

2ρc

(
L5

u+ c
− L1

u− c

)
,

∂v

∂x
=
L3

u
,

∂w

∂x
=
L4

u
.

∂p

∂x
=

1

2

(
L5

u+ c
+
L1

u− c

)
,

(A.15)

Then, SL can be written as

d ≡ SL =


1/c2[L2 + 1/2(L5 + L1)]

(1/2)(L5 + L1)

(1/2ρc)(L5 − L1)

L3

L4

 =


d1

d2

d3

d4

d5

 (A.16)
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The Eq. A.10 can be multiplied by the similarity transformation matrix S on both

sides, where the above SL can be substituted to rewrite the primitive equations in the

form. Multiplying the governing equations in the primitive form by the Jacobian matrix

P to give

∂ρ

∂t
+ d1 +

∂(ρv)

∂y
+
∂(ρw)

∂z
= 0,

∂(ρu)

∂t
+ ud1 + ρd3 +

∂(ρu)v

∂y
+
∂(ρu)w

∂z
=
∂τ1j

∂xj
,

∂(ρv)

∂t
+ vd1 + ρd4 +

∂(ρv)v

∂y
+
∂(ρv)w

∂z
+
∂p

∂y
=
∂τ2j

∂xj
,

∂(ρw)

∂t
+ wd1 + ρd5 +

∂(ρw)v

∂y
+
∂(ρw)w

∂z
+
∂p

∂z
=
∂τ3j

∂xj
,

∂ρE

∂t
+

1

2
(ukuk)d1 +

d2

γ − 1
+ (ρu)d3 + (ρv)d4 + (ρw)d5

+
∂

∂y
[(ρE + p)v] +

∂

∂z
[(ρE + p)w] =

∂(ujτij)

∂xi
− ∂qi
∂xi

.

(A.17)
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