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Abstract

Since its inception, Software Defined Network (SDN) has made itself a very appealing
architecture for both Data Center and Wide Area networks by offering more automated
control through programmability and simplified network operations and management with
its centralized control plane. However, extensive rollout of SDN in the production environ-
ment requires thorough validation. Thus, there is a compelling need for SDN emulators
that facilitate experimenting with new SDN-based technologies (e.g., SDN-based routing
and traffic engineering schemes). Valuable insights on these technologies can be gained
from real trace-driven experiments on an emulator platform. Accordingly, network oper-
ators can gain confidence in these technologies without jeopardizing their infrastructures
and businesses.

Mininet, the de facto standard SDN emulator, allows users to emulate an OpenFlow-
based SDN on a single server. Due to the physical resource limitations of a single machine,
Mininet fails to scale with large network size and high traffic volume. To address these lim-
itations, we developed Distributed OpenFlow Testbed (DOT), a highly scalable emulator
for SDN. DOT distributes the emulated network across multiple physical machines to scale
with large network sizes and high traffic volumes. It also provides guaranteed compute and
network resources for the emulated components (i.e., switches, hosts and links). Moreover,
DOT can emulate a wider range of network services compared to other publicly available
SDN emulators and simulators.
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Chapter 1

Introduction

Software Defined Networks (SDNs) have gained a lot of attention from the industry and
academia in the last few years. SDN promises to simplify the complexities in network
management by adopting two concepts: (i) clean separation of the control and data planes,
and (ii) a logically centralized control leveraging a global view of the network.

Improved operational efficiency, lower capital and operational expenses, and higher re-
source utilization are some key motivations behind the adoption of SDN in the industry [1].
Network equipment and service vendors have developed a number of solutions centered
around SDN [2, 3, 4, 5, 6]. Many of these networking solutions have been reported to be
deployed on large scale data center and wide area networks [43, 7].

With the growing adoption of SDN solutions, there is a compelling need for SDN em-
ulators that facilitate experimenting with new SDN-based technologies (e.g., SDN-based
routing and traffic engineering schemes). Valuable insights can be gained from real trace-
driven experiments on an emulator platform. Accordingly, network operators can gain
confidence in these technologies without jeopardizing their production networks and busi-
nesses.

In this thesis, we present a scalable SDN emulator called Distributed OpenFlow Testbed
(DOT). DOT provides guaranteed CPU time and bandwidth for the emulated components
(i.e., hosts, switches, and links). Most notably, DOT is designed for distributed deploy-
ment of an emulation from ground up. It deploys a virtual infrastructure (i.e., hosts, links,
and switches) of an emulation across multiple physical machines to scale with network size
and traffic volume. It also provides built-in support for configuring and monitoring the
emulated components.
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1.1 Motivation
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Figure 1.1: Limitation of Mininet

The necessity for a highly scalable emulator rises from the fact that network operators
tend to evaluate the performance and behavior of their network under different conditions
(e.g., different failure scenarios, with various traffic metrics, etc.). Producing close-to-real-
world emulation results for all possible scenarios is a challenging task from a resource man-
agement perspective. If the emulated components are not provided with sufficient isolated
physical resources, the resulting resource contention might end up capturing unexpected
behaviors that are different from those of real world deployment [50].

Mininet [42] is the de facto standard SDN emulator. It emulates entire network on a
single machine. To show the motivation for developing a highly scalable emulator, we use
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Mininet as a contrasting platform. Here, we present a simple experiment to provide an
insight why scalability is a major concern in emulation.

Mininet emulates an OpenFlow based SDN in a single server running all virtual com-
ponents like virtual hosts(VHs), virtual switches (VSs), and virtual links (VLs). Each
node runs as a system process, which consumes small amount of system resources. This
allows Mininet to emulate a large network. However, the amount of traffic Mininet can
emulate depends on the hardware configuration of the physical server. For example, a dual
quad-core 2.4GHz Intel Xeon E5620 processor (12-GB RAM) server can emulate 2.2Gbps
traffic, whereas a dual-core 2.1GHz Intel i5 processor (8-GB RAM) laptop can simulate
only 976Mbps traffic.

We emulated a fat-tree topology as shown in Fig. 1.1(a) with 16 hosts and 5 switches.
We started an UDP iperf server on host S and an UDP iperf client on host C, generating
traffic at 1000 Mbps rate. Then we started 7 iperf client-server pairs in the other 14 hosts
uniformly at random to introduce background traffic and measured the throughput of the
foreground traffic between S and C. Fig. 1.1(b) reports the result of this experiment.

We can see in the figure that the foreground traffic initially stays at the desired value
and gradually decreases with increase in the background traffic. This issue severely limits
the applicability of single machine emulators like Mininet. Another point worth noting
is that, during this experiment the accumulated traffic is always within the maximum
switching capacity of the physical machine (2.2 Gbps), but the foreground traffic keeps
decreasing with increase in background traffic.

Traffic can be scaled down to overcome the aforementioned limitation. However, ar-
bitrarily shrinking a network and its traffic to fit into available resources has several lim-
itations. Particularly, it fails to capture the behavior of both the forwarding plane and
control plane of SDN. A highly scalable emulator like DOT can eliminate these limitations
and produce close-to-real-world behavior of SDN-based technologies.

1.2 Challenges

The design and implementation of DOT involved overcoming many challenges that are
described briefly as follows:

3



1.2.1 Realism

Virtualized instances provisioned for emulation share the resources (CPU, Memory, Band-
width) of the underlying infrastructure. Thus, absence of proper resource allocation and
isolation might result in resource contention. This, in turn, might show unrealistic network
behavior that is manifested only during emulation. On the other hand, a real deployment
could suffer from issues that may not be apparent in the emulator. Realism ensures that
the traits and trends determined in the emulation are comparable to those in a real world
deployment.

1.2.2 Scalability

The simplest approach for network emulation is to deploy all the virtual components (i.e.,
VHs, VSs, and VLs) inside a single physical machine. However, this method affects the
performance fidelity of the emulation, thus limits both the network size and traffic volume
that can be faithfully emulated. Particularly, ensuring realism of an experiment requires
resource guarantees for all virtual components. An emulation platform that can run only
on a single machine can provide such guarantee only for a small scale emulation. Therefore,
scalability is a very attractive feature of an emulation platform for experimenting with large
network size and high traffic volume.

1.2.3 Transparency

DOT partitions the virtual infrastructure and deploys it across multiple physical machines.
In such partitioning, a virtual link might be mapped to a physical path and might pass
through one or more physical switches. Though this partitioning scheme achieves scal-
ability, it brings forth technical challenges in topology discovery for the SDN controller.
Specifically, an SDN controller (e.g., Floodlight [8]) generates periodic LLDP messages to
discover switch to switch connectivity (Details in Section 2.2). These link layer discovery
messages need to be exchanged without any modification between neighboring switches
even when they are provisioned in different physical machines. Transparency ensures that
no modification is required in the switching engine as well as in the SDN controller for the
distributed deployment of a virtual infrastructure.

4



1.3 Contributions

Our key contributions in this thesis are summarized as follows:

• DOT provides guaranteed allocation of physical resources (i.e., CPU, Memory, and
Bandwidth) to the virtual components (i.e., VHs, VSs, and VLs). We address the
problem of optimizing the embedding of the emulated topology into a physical infras-
tructure in presence of this strict resource guarantee. We formulate the embedding
problem as an Integer Linear Program (ILP). Then we propose a heuristic algorithm
that minimizes both the number of virtual links crossing the network and the required
number of physical machines.

• Our emulation platform leverages multiple physical machines to meet the resource
requirement of the emulated topology. Each physical machine hosts a partition of
the virtual topology, and we propose a technique to stitch these partitions together.
We also introduce specialized components to keep this distributed deployment hidden
from the users. As a result, all VLs (embedded inside a single physical host or passing
through the psychical switches) appear indistinguishable to the user.

• We design and develop a distributed management system that orchestrates the de-
ployment of an emulated network over a cluster of machines. Additionally, we provide
centralized access to the deployed emulation for reconfiguration, traffic generation,
and event logging through CLIs and APIs.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents an overview of SDN and
a summary of prior works and their limitations in emulating large scale SDN. Chapter 3
describes the features, design principles, architecture, and resource management schemes
of DOT. Chapter 4 provides performance evaluation of the emulator and its embedding
algorithm. We conclude in Chapter 5 by summarizing our contributions and enumerating
some possible future research directions. The Appendix describes how to install DOT and
explains the steps to run an emulation on it.
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Chapter 2

Background

In this chapter, we first briefly introduce SDN in Section 2.1. Then, we explain the topology
discovery technique used by the SDN controllers in Section 2.2. Finally, we discuss different
approaches for network emulation and list some notable SDN emulators in Section 2.3.

2.1 Software Defined Networks

SDN decouples the control logic from the network devices and places it in a central location
in the network. A simplified view of an SDN architecture is shown in Fig. 2.1. Next, we
present a brief description of different terminologies in the context of SDN.

-Forwarding Plane

An SDN forwarding device is dumb in the sense that it does not implement any rout-
ing logic. It treats all the incoming packets according to some flow rules installed by a
remote controller. If there is no matching rule, a switch contacts its controller through the
controller’s Southbound interface.

The flow rules in a switch can be installed by a controller prior to receiving any packet
of a particular flow. This method is known as proactive flow rule installation. In the
reactive approach, as the name suggests, a switch contacts its controller when the first
packet of a new flow arrives. The controller then installs the corresponding rule(s) in the
switch.

-Control Plane

6
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Figure 2.1: SDN Architecture

The network control logic (e.g., routing, packet filtering) of SDN is implemented in
a centralized controller. This controller maintains the flow rules of multiple forwarding
devices together, periodically collects statistics from the devices, and can make optimized
decision leveraging its network wide knowledge.

-Control Channel

The control channel is the network that carries the control traffic (e.g., OpenFlow
messages) between the switches and the controller(s). A dedicated control network can be
deployed to carry the control traffic. This type of control channel is known as out-of-band
control channel. On the other hand, in-band control channel utilizes the data network
without provisioning a separate control network.

-Southbound Interface

7



Southbound interface comprises a set of well defined APIs and the corresponding com-
munication protocol to exchange messages between a switch and a controller. Open-
Flow [23] is the de facto southbound protocol for SDN.

-Northbound Interface

The controller exposes a set of APIs for developing network applications (e.g., routing,
monitoring). Unlike southbound interface, APIs of northbound interface have not been
standardized yet.

2.2 Topology Discovery in SDN

AB D
C

SDN Controller

LLDP

Figure 2.2: Topology Discovery

Here, we explain how the layer 2 connectivity is discovered by an SDN controller.
To the best of our knowledge, all the publicly available SDN controllers (Floodlight [8],
OpenDaylight [9], POX [10], Ryu [11] etc.) use this technique.

A switch is discovered by the controller whenever the transport channel between them
is first established. The controller then discovers the physical ports of a connected switch
along with its other features using FeatureReq and FeatureRes OpenFlow messages. Next,
the controller determines the switch-to-switch adjacency by generating periodic LLDP
messages.

At first, the controller creates an LLDP message, puts it in the payload of an OpenFlow
PacketOut message, and sends it to one of its connected switches (switch A in Fig. 2.2).

8



The action field in this PacketOut message tells the receiving switch to forward the LLDP
packet to a particular port. The switch (switch B in Fig. 2.2) at the other end of this link
(if there is any) receives this packet, encapsulates it in an OpenFlow PacketIn message,
and sends the encapsulated packet to its controller. The controller then decapsulates the
packet and determines the originating switch (i.e., switch A), and discovers the switch-to-
switch adjacency (here, link A-B). Note that the LLDP messages traverse only one hop in
this technique.

2.3 Emulating SDNs

2.3.1 Network Emulation

Network emulation is a technique to validate new networking architectures and protocols
in a sandboxed environment before their deployment in a real network. Unlike simulation,
emulation runs real code (e.g., real TCP/IP protocol stack) and captures more realistic net-
work behavior. However, this technique requires more resources and might fail to capture
the actual performance if proper resources are not allocated for the emulated instances [51].

Network emulators leverage virtualization to emulate end hosts. Some of them use full
virtualization, and thus run full-fledged virtual machine (VM) as an end host on top of
a hypervisor like XEN [26], KVM [12]. DieCast [40], DOT [51, 52] are examples of such
emulators. As each VM runs its own kernel, full virtualization is resource hungry.

On the other hand, emulators like Mininet [45], NetKit [46] uses OS level virtualization.
Each VM runs as a system process known as container, which leaves very little resource
footprint. However, all of them share the same host kernel. This property restricts the
types of end hosts that can be emulated over these platforms.

2.3.2 SDN Emulators

Mininet [45], Maxinet [57] and EstiNet [56] are emulators for SDNs. Unfortunately, Mininet
emulates the entire network on a single machine, and thus fails to scale with network size
and traffic volumes [51]. Maxinet proposes to distribute Mininet over multiple machines,
but cannot provide resource guarantee. EstiNet also provides distributed emulation across
multiple machines with an added feature of time dilation. However, no details are available
regarding the technique used by EstiNet as it is a close-source commercial project.

9



Chapter 3

DOT: Distributed OpenFlow Testbed

In the previous chapter, we showed that the state-of-the-art network emulators have limi-
tations in experimenting with large scale SDNs. To address these limitations, we developed
Distributed OpenFlow Testbed (DOT). In this chapter, we present DOT, a horizontally
scalable SDN emulator that provisions virtual infrastructure across a cluster of machines.

The remainder of the chapter is organized as follows. We present the key features of
DOT in Section 3.1. In Section 3.2, we explain its system architecture. Then, we describe
how a virtual infrastructure is provisioned across multiple machines in Section 3.3. Next,
Section 3.4 shows how inter-partition traffic is transferred over physical switching fabric.
We then present our resource management scheme in Section 3.5. Finally, we provide a
summary of this chapter in Section 3.6.

3.1 DOT Features

DOT provides several attractive features that make it more usable for different classes of
network emulation. These features also make the deployment and configuration of the
emulation easier. A brief overview of DOT features is given below:

• Scalability: DOT can be deployed across multiple physical machines. It can be
horizontally scaled to meet the requirements of the emulated topology. This feature
provides DOT an edge over other emulators.

• Guaranteed performance: Our embedding algorithm provides resource guarantee
for all emulated components (i.e., VHs, VSs, and VLs). If the physical infrastructure

10



is incapable of meeting the resource requirement of the emulation, the algorithm does
not embed the request. In this way, the performance of the emulated network is kept
close to that of a real network.

• Automated Embedding and Configuration: A user provides the resources
(number of physical machines, their CPU, memory, bandwidth etc.) of the phys-
ical infrastructure and the requirements (virtual topology, etc.) of the emulation
in a configuration file. The embedding algorithm then takes this configuration file
as input, determines the optimal placement of the virtual components, and deploys
them across the cluster of machines. At the same time, DOT also configures different
parameters (e.g., propagation delay and bandwidth of the VLs, control plane of the
VSs etc.) of the deployed virtual infrastructure.

• SDN from the Ground Up: DOT supports SDN from the ground up. It creates
switching fabric using Open vSwitch [13] that has support for the OpenFlow protocol.
Additionally, DOT supports both in-band and out-of-band SDN control planes. A
user can deploy her/his preferred SDN controller(s) and sets the required parameters
(e.g., IP Address of the controller) in the configuration file. Moreover, VM images
with pre-installed popular SDN controllers (e.g., Floodlight [8], POX [10] ) are also
made available to use within the emulation.

• Transparency: DOT inter-connects different partitions of a virtual infrastructure
using IP tunnels. It introduces several specialized components to facilitate the dis-
tributed deployment and emulation. All these components are kept hidden from the
user as well as from the SDN controller(s). Thus, both of them are given the illusion
that only the requested virtual infrastructure is being emulated on DOT.

• Broader Applicability: Full fledged virtual machines (VMs) can be deployed as
end hosts on DOT. In contrast to container based emulation [42], this feature elim-
inates the dependency on the kernel of the host physical machine and allows user
to include any available OS images in the VMs. Although full fledged VMs require
more resources than containers [14], they broaden the applicability of DOT. Specif-
ically, they provide flexibility in emulating different classes of network services and
algorithms [60, 48, 37, 62, 47, 53, 34, 49, 33, 27, 35, 28, 61, 25, 29, 38]. For example,
different publicly available middlebox images [15, 16] can be used on DOT to evaluate
different technologies of Network Function Virtualization (NFV) [32].
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Figure 3.1: DOT management architecture

3.2 System Architecture

In this section, we describe the architecture and different components of DOT. We have
two types of physical machines in our system: DOT Manager and DOT Node (Fig 3.3(c)).
The DOT Nodes host the virtual instances (VMs, VSs, and VLs) of a user’s emulated
infrastructure. The operations of the DOT Nodes are orchestrated by the DOT Man-
ager. We developed a distributed management framework for instantiating, configuring
and monitoring the emulated components. We describe this framework in Section 3.2.1.
Then, we explain the software stack at each physical machine in Section 3.2.2.

3.2.1 DOT Management Architecture

The DOT management architecture (Fig. 3.1) consists of two types of components, namely
the central DOT manager, and the DOT node manager (located at DOT Node). In what
follows, we provide more details about these components.

1) DOT Central Manager. The DOT Central Manager is responsible for allocating re-
sources for the emulated network as specified by a DOT user. It has two modules, namely
the provisioning module and the statistics collection module. The provisioning module is
responsible for running an embedding algorithm that maps the emulated network compo-
nents to physical resources (e.g., servers and networks). Once the placement of the virtual
components is determined, the information is conveyed to the selected nodes. The statistics
collection module gathers diverse types of information from logging modules installed on
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each of the nodes. Finally, the information database stores testbed management informa-
tion including the current utilization of the cluster, virtual to physical resource mapping
as well as collected statistics.

2) DOT Node Manager. A DOT Node Manager is installed on each physical machine
and has two modules: host provisioning module and logging module. The host provi-
sioning module is responsible for allocating and configuring the required resources (e.g.,
instantiation of VSs, VLs, VMs and tunnels). The logging module, on the other hand, col-
lects multiple local statistics including resource utilization, packet rate, throughput, delay,
packet loss, and OpenFlow messages.

3.2.2 DOT Software Stack

Host OS

Hypervisor

VM 

GS

VM VM

VS VS

Figure 3.2: Software stack of a DOT node

A DOT node contains VSs and VMs that are responsible for emulating an OpenFlow
network. As shown in Fig. 3.2, these virtual components along with the hypervisor, and
host operating system compose the software stack of a DOT node. Specifically, a DOT
node contains the following components:

• Hypervisor: This layer allows to provision multiple VMs on a single physical ma-
chine. It also allows to connect VMs to virtual switches using virtual interfaces.

• Virtual Machine (VM): Virtual machines are under users’ control. A user can
deploy OpenFlow controllers or applications (e.g., traffic generation scripts for testing
purposes, Web servers etc.) on these VMs.

• Virtual Switch (VS): Virtual switches are used for emulating OpenFlow switches
that belong to the emulated network. Their forwarding rules are populated by the
user (or possibly by a controller deployed by the user).

• Gateway Switch (GS): Gateway Switch is a special switch created on each physical
machine. Its role is to forward packets between virtual switches located at different
physical machines. Gateway switches are completely transparent to a DOT user.
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3.3 Provisioning a Virtual Infrastructure
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Figure 3.3: Provisioned Virtual Infrastructure

In this section, we explain how DOT distributes the virtual infrastructure across a clus-
ter of machines. Our embedding algorithm (described in Section 3.5) considers the resource
capacity of each DOT node and finds an embedding that minimizes physical bandwidth
usage and the number of physical machines. The embedding algorithm partitions the
emulated network and maps each partition to a particular physical machine.

When the algorithm embeds virtual links, two cases may arise due to partitioning. If
the virtual link connects two virtual switches embedded in the same physical machine,
then this link is provisioned inside that machine, and hence we call it an intra-host virtual
link. In turn, a virtual link connecting two virtual switches residing at different physical
machines (hereafter called a inter-host virtual link) is mapped onto a path passing through
the physical network.

Fig. 3.3(a) illustrates an example of an emulated network consisting of 6 VSs, 7 VLs,
and 2 VMs. This topology is embedded into 2 physical hosts (Fig. 3.3(b)). Specifically,
VSs A, B, and C are allocated in DOT Node 1 and D, E, and F in DOT Node 2. Virtual
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links a, b , f , and g are examples of intra-host virtual links, whereas links c , d, and e are
inter-host virtual links.

An intra-host virtual link is emulated by instantiating two virtual Ethernet interfaces
(veth(s)) within the same physical machine (using Linux add ip link command). The
virtual link bandwidth and delay are emulated using the tc and netem commands, respec-
tively.

For inter-host virtual links, we create a particular switch called the Gateway Switch
(GS) in each physical node for forwarding inward and outward traffic. The process of
embedding a inter-host virtual link goes through three steps as follows:

1. We create virtual IP links (with the Linux command add ip link) to attach each
virtual switch with the gateway switch. In Fig. 3.3, for the inter-host link e, a segment
e′ is created between virtual switch B and GS1 in DOT Node 1 and another segment
e′′ is created between virtual switch E and GS2 in DOT Node 2.

2. Next, a GRE tunnel is created between the physical hosts. A unique identifier is
assigned to each inter-host virtual link. In Fig. 3.3, for inter-host virtual link e the
identifier 3 is assigned. The GRE tunnel tags every packet forwarded through it with
the corresponding identifier. This allows the GS at the other end of the tunnel to
uniquely identify the virtual switch that sent the packet.

3. After setting up the tunnels, static flow-entries are created in the GSs at the physical
hosts to knit the segments of e together.

An emulated network in DOT also includes a separate (out-of-band) management net-
work. Each VM is equipped with a virtual management interface. This interface is attached
to a management switch (MS1 and MS2 in Fig. 3.3(b)) of the respective physical host. The
management network allows direct access (using ssh) to the VMs and ensures that man-
agement traffic does not interfere with emulation traffic in any way that affects the outcome
of an experiment.

3.4 Traffic Forwarding

In this section, we show how the traffic is forwarded between two remote VMs running on
DOT platform. This will provide a precise idea how transparency is ensured by DOT.
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Figure 3.4: Traffic Forwarding

Let us start with a very high level description of the forwarding technique. Whenever
a GS receives a packet from one of the segments, it encapsulates the packet within a GRE

header, tags this packet with the identifier of the segment, and unicasts it to the destination
physical machine. The receiving GS (at the other end of the tunnel) decapsulates the
packet, inspects the tag, and forwards the packet to the corresponding segment. We pre-
install forwarding rules in the GSs to enable the aforementioned mechanism.

Fig. 3.4 explains a scenario where a packet is sent from VM2 to VM1 through the path
F → E → B → A. The switch F first receives the packet and then queries the SDN
controller about the route. Here, we assume that it is the first packet of a flow. Now,
after detecting the route, the SDN controller installs the forwarding rules at the VSs along
the path, particularly at F,E,B, and A. Recall from Section 3.3, the SDN controller is
unaware of the responsible GSs for forwarding this packet and does not install any rule in
them.

After receiving the forwarding rule, F forwards the packet to E. Now, E forwards the
packet through segment e′′ thinking that it will go to switch B. However, in reality, this
packet reaches GS2. Now, GS2 inserts the cross-host virtual link identifier for e (here 3)
in the key field of the GRE header and forwards the packet through the tunnel.
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Next, GS1 receives this packet from the tunnel and looks at the key field in the GRE
header. Based on the value of the key (here, 3), GS1 selects the segment e′ and sends
this packet towards switch B. Now, B perceives that it receives this packet directly from
E. The tunneling scheme is completely hidden from the VSs also. Next, B forwards the
packet to A, and finally A delivers it to VM1.

3.5 Resource Management

In this section, we address the problem of finding the optimal mapping of an emulated
network onto the physical infrastructure. We first formulate the emulated network embed-
ding problem as an Integer Linear Program (ILP). Then, we propose a heuristic algorithm
that minimizes both translation overhead and the number of active servers.

3.5.1 Problem Formulation

Table 3.1: Notations
Ñ Set of physical hosts
R Set of resource types

c̃rp Capacity of physical host p ∈ Ñ for resource type r ∈ R
b̃p Bandwidth of network interface of physical host p ∈ Ñ
δ̃pq Propagation delay between physical host p and q

G = (N,E) The virtual infrastructure to be emulated
N The set of virtual switch
E The set of virtual links
H The set of VMs
cri Resource required by a virtual switch i ∈ N for resource type r ∈ R
be Bandwidth of virtual link e ∈ E
δe Propagation delay of virtual link e ∈ E
zei Boolean variable indicating a switch i ∈ N is one of the ends of link e ∈ E
vhi Boolean variable indicating a VM h ∈ H is attached to a virtual switch i ∈ N
grh Resource required by a VM h ∈ H for resource type r ∈ R

Let Ñ denote the set of physical hosts and R = {1...d} the set of resource types (i.e.,
CPU, memory and disk) offered by each of them. Each physical host p ∈ Ñ has a capacity
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c̃rp for resource type r ∈ R. We denote by b̃p the bandwidth of the network interface of

physical host p ∈ Ñ . Let δ̃pq denote the propagation delay between physical hosts p and q.

In our model, we assume that the physical infrastructure has full bisection bandwidth
(e.g., VL2 [39]) and that there is a single path between each pair of nodes. These assump-
tions simplify the virtual link embedding process. Now, in order to check whether it is
possible to embed a virtual link onto a path between two physical hosts p and q, it suffices
to check whether there is enough residual bandwidth at the server level. In other words,
since the network has full bisection bandwidth, we do not need to check the available
bandwidth at the upper layers of the data center network topology.

We model the emulated network as an undirected graph G = (N,E) where N is the
set of virtual switches and E is the set of virtual links connecting them. A virtual switch
i ∈ N has a requirement cri for each resource type r ∈ R. Every virtual link e ∈ E is
characterized by its bandwidth be and propagation delay δe. We define zei as a Boolean
variable that indicates whether virtual switch i is one of the ends of link e.

Furthermore, we define H as the set of VMs, and vhi as a Boolean variable that indicates
whether or not VM h is attached to virtual switch i. We denote by grh the resource
requirement of VM h ∈ H for each resource type r ∈ R. The notations are summarized
in Table 3.1.

The problem of emulated network embedding boils down to finding an assignment
matrix X = [xip]|N |×|Ñ | and a binary vector Y = 〈yp〉p∈Ñ , where xip and yp are Boolean
variables. The variable xip is equal to 1 if virtual switch i is assigned to physical host p.
The variable yp indicates whether or not physical host p is active (i.e., hosting at least
one of the emulated network components). In the following, we focus on computing the
resources that need to be allocated in order to accommodate the emulated network to be
embedded.

- Resources required by virtual switches

The amount of resources (i.e., CPU, memory, disk) required to accommodate a virtual
switch depends on many factors including number and capacity of virtual links connected
to it, number of forwarding rules and the amount of traffic it carries. According to the
experiments we have conducted, we found that, among these factors, the most determining
one is the amount of traffic crossing the virtual switch. Hence, we consider the virtual
switch requirements to be proportional to the sum of bandwidth capacities of all virtual
links connected to it. Accordingly, the required resources can be expressed as:

cri =
∑
e∈E

zei beρr (3.1)
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where ρr is determined empirically through experiments. It is worth noting that it is part of
our future work to develop more sophisticated models to capture the relationship between
virtual resource requirements and the amount of physical resources to be allocated. It is
then straightforward to update our formulation by replacing Eq. 3.1 with the new model.

Furthermore, we should also consider resources required for running the VMs attached
to the virtual switches. Indeed, a VM has to reside in the same physical host as the virtual
switch to which it is attached. Therefore, we must ensure that there is enough resources in
the physical machine to host the virtual switch and its attached VMs. Thus, when embed-
ding a virtual switch, we consider the aggregated resource requirement that encompasses
its own requirements and that of its attached VMs. Let ĉri denote the aggregated resource
requirement of virtual switch i for resource type r. It can be expressed as:

ĉri = cri +
∑
h∈H

∑
i∈N

vhi g
r
h (3.2)

- Resources required by gateway switches

DOT requires to install a Gateway Switch in each of the active physical hosts to forward
the traffic towards other physical nodes. Hence, we need to account for the resources
required by the Gateway switch. In our experiments, we found that these resources (mainly
CPU) are proportional to the bandwidth capacities of all virtual links going outward from
the physical machine (i.e., virtual links connecting two virtual switches hosted by two
different machines). Let f r

p denote the requirement of a gateway switch located at host
p for resource type r ∈ R . Hence, we can estimate resource requirement for gateway
switches located on physical host p. It can be written as follows:

f r
p =

∑
i∈N

∑
j∈N

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzei zej beρr (3.3)

- Translation overhead

Packets sent from one physical machine to another undergo encapsulation at the gate-
way switch. In order to minimize this translation overhead, we need to minimize the
number of virtual links using physical network interfaces. In other words, whenever possi-
ble, we try to place communicating virtual switches within the same physical host. Thus,
translation overhead can be written as:

CT =
∑
i∈N

∑
j∈N

∑
p∈Ñ

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzeizej (3.4)
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- Number of used physical nodes

The number of physical nodes used to embed emulated networks can be expressed as
follows:

CE =
∑
p∈Ñ

yp (3.5)

Minimizing this number is important for different reasons. First, this allows to reduce
resource fragmentation, and thereby makes room for more emulated networks to be em-
bedded. Second, using less physical nodes results in reduced energy consumption.

- Objective function

Given the system model described above, the objective of our optimization problem is to
minimize the translation overhead and the number of used physical nodes (Eq. 3.4 and 3.5).
It can be written as follows:

C = αCT + βCE (3.6)

In Eq. 3.6, α and β are weights used to adjust the importance of individual objectives.
Furthermore, the following constraints must be satisfied :∑

p∈Ñ

xip = 1, ∀i ∈ N (3.7)

xip ≤ yp ∀i ∈ N, p ∈ Ñ (3.8)

f r
p +

∑
i∈N

xipĉ
r
i ≤ c̃rp ∀p ∈ Ñ , r ∈ R (3.9)

∑
i∈N

∑
j∈N

∑
q∈Ñ

∑
e∈E

xip(1− xjp)xjqzeizejbe ≤ b̃p ∀p ∈ Ñ (3.10)

xip(1− xjp)xjqzeizejδe ≥ δ̃pq ∀i, j ∈ N, p, q ∈ Ñ , e ∈ E (3.11)

xip ∈ {0, 1} ∀i ∈ N, p ∈ Ñ (3.12)

yp ∈ {0, 1} ∀p ∈ Ñ (3.13)

Constraint 3.7 guarantees that each virtual switch is assigned to exactly one physical host.
We also ensure that a physical node is active if it hosts at least one virtual switch (Eq.
3.8). Furthermore, Eq. 3.9 ensures that physical host capacities are not exceeded. Con-
straint 3.10 indicates that the sum of bandwidth requirements of inter-host virtual links us-
ing the same network interface should not exceed its bandwidth capacity. Finally, Eq. 3.11
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ensures that if a virtual link is mapped onto a path between two different physical nodes,
its delay requirement is satisfied.

This optimization problem is NP-hard as it generalizes the Multi-dimensional Bin-
packing Problem [31]. Hence, in the following, we provide a simple yet effective heuristic
to solve it.

3.5.2 Heuristic solution

In this section, we present the heuristic algorithm used by DOT for embedding emulated
networks. The goal is to find a feasible mapping that minimizes the translation overhead
and the number of used physical hosts as dictated by the objective function (Eq. 3.6). This
is illustrated by Algorithm 1. This embedding algorithm guarantees maximum bandwidth
requirement of each link, and thus it is oblivious of traffic type.

Algorithm 1 Emulated Network Embedding

1: Ña ← Set of active physical hosts
2: Nu ← N {Set of unassigned switches}
3: while Nu 6= ∅ do
4: Sort Nu in decreasing order according to Ri (Eq. 3.17)
5: i← first node in Nu

6: Ñ(i)← hosts Ña satisfying resource requirements of i.
7: if Ñ(i) 6= ∅ then
8: Sort Ñ(i) in decreasing order according to Fip (Eq. 3.20)
9: p← first node in Ñi

10: else {Need to switch on a physical machine}
11: Activate physical host p that satisfies resource requirement of i, and if not possible

set p = −1.
12: end if
13: if p 6= −1 then
14: Ña ← Ña ∪ {p}
15: Assign virtual switch i to physical machine p
16: Nu ← Nu \ {i}
17: else
18: return the emulated network is not embeddable
19: end if
20: end while
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Given an emulated network, virtual switches are selected one by one according to some
policy. Each selected switch is assigned to one of the active hosts that satisfies the switch
requirements in terms of CPU, memory, disk, bandwidth and propagation delay (between
the virtual switch under consideration and previously embedded ones). A new host is
turned on if active nodes are not able to satisfy these requirements. However, the whole
emulated network is rejected if there is no feasible embedding for all of its components. In
the following, we provide more details on the policies used to decide the embedding order
of virtual switches and to designate the hosting physical machines.

- Virtual switch selection. In order to decide on the embedding order of the virtual
switches, we define multiple guiding policies. For instance, it is intuitive that virtual
switches with high connectivity are difficult to embed. Hence, it is better to embed them
first since this might increase chances to embed their neighbors within the same physical
machine, resulting in less number of inter-host links. Thus, we define the degree ratio of
virtual switch i as:

RD
i =

∑
e∈E

zei

max
j∈N

∑
e∈E

zej
(3.14)

The second policy we define to characterize a virtual switch is the resource ratio given
by:

RC
i = wb

∑
e∈E

zei be

max
j∈N

∑
e∈E

zej be
+
∑
r∈R

wr
ĉri

max
j∈N

ĉrj
(3.15)

The intuition here is that it is always more difficult to accommodate high resource de-
manding virtual switches. Hence, the need to consider their embedding first. The resource
ratio value may be adjusted using the weights wb and wr that should reflect the scarcity
of the resource.

Furthermore, we also try to embed first virtual switches whose neighbors are already
embedded. This increases the likelihood that they are hosted within the same machine,
and thereby reduces the number of inter-host links and the consumed physical bandwidth
as well. We define this locality ratio as:
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RN
i =

∑
j∈N

∑
e∈E

∑
p∈Ñ

zei z
e
jxjp∑

j∈N

∑
e∈E

zei z
e
j

(3.16)

Finally, switch selection is based on the ranking computed as the weighted sum of the
aforementioned ratios as follows:

Ri = γDRD
i + γBRB

i + γNRN
i (3.17)

In Eq. 3.17, γD, γR and γN are weights used to adjust the influence of each factor.

Algorithm 1 evaluates Ri for all unembedded virtual switches and selects to embed first
the one providing the highest value. In the next step, we select the physical machine that
is going to host the selected virtual switch.

- Physical host selection.

Once the virtual switch to be embedded is selected, the hosting physical machine is
chosen based on two criteria. The first criterion is to select the host with lowest residual
capacity computed for each host p as follows:

FR
ip =

∑
r∈R

wr

min
q∈Ñ

uriq

urip
(3.18)

In Eq. 3.18, uriq is the estimated residual capacity for resource r in physical node q when it
is hosting virtual switch i. Minimizing residual capacities of physical machines results in
less resource fragmentation and higher machine utilization.

Furthermore, in order to minimize the number of inter-host links, we try to place
selected virtual switch at a physical node hosting the maximum number of its neighbors,
i.e., maximizing the locality ratio:

FN
ip =

∑
j∈N

∑
e∈E

x̃jpz
e
i z

e
j

max
q∈Ñ

∑
j∈N

∑
e∈E

x̃jqz
e
i z

e
j

(3.19)

In Eq. 3.19, i is the selected virtual switch and p is a physical node. Finally, machine
selection is based on its ranking computed as the weighted sum of the aforementioned
ratios, as follows:

Fip = λRFR
ip + λNFN

ip (3.20)
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In Eq. 3.20, λR and λN are the weights of each factor in the selection criterion. Specifically,
the physical machine p with the highest Fip is selected to host the virtual switch i.

The worst case running time of this algorithm is O(|N |2 log |N |+ |N ||Ñ | log |Ñ |), where
N and Ñ are the number of virtual switches and active physical hosts, respectively. The
while loop at line 3 takes at most |N | rounds, and the worst case complexity of the two
sorts at lines 4 and 8 are O(|N | log |N |) and O(|Ñ | log |Ñ |), respectively.

3.6 Summary

DOT is a horizontally scalable SDN emulator supporting emulation of a wider class of
network services compared to other publicly available SDN emulators and simulators. To
emulate a large scale SDN, DOT partitions the virtual infrastructure and deploys each
partition in separate physical machine. Our embedding algorithm ensures resource guar-
antee of the virtual infrastructure and aims to optimize physical resource allocation. It
rejects an embedding request, if it fails to satisfy its resource requirement. DOT uses IP
tunneling to forward the inter-physical machine traffic. Introduction of gateway switch in
each physical machine keeps this tunneling hidden from the SDN controller, thus ensuring
transparency.
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Chapter 4

Implementation and Evaluation

In this chapter, we first describe the properties of the testbed where the subsequent experi-
ments are run in Section 4.1. Section 4.2 compares DOT with Mininet in terms of resource
guarantee. In Section 4.3, we evaluate the performance of our embedding heuristic. We
demonstrate the capabilities of DOT in reproducing results from a number of networking
research papers in Section 4.4. Finally, we present a summary of our evaluation in Sec-
tion 4.5.

4.1 Implementation Details and Testbed Setup

All software components used in DOT are open source. For emulating virtual switch, we
use Open vSwitch version 1.9. We use Linux tc command to simulate bandwidth limit and
link delay on the virtual links. We use KVM [12] for machine virtualization and Libvirt
1.0.0 [17] library to provision VMs. Each VM runs tiny core Linux [18] that offers a
minimalistic flavor of Linux and has a very small resource footprint. We use Floodlight [8]
controller for the experiments in this thesis. However, any existing OpenFlow controller
(e.g., POX [10], OpenDaylight [9]) can be deployed on DOT.

We developed a management module in C++ that processes the input network topol-
ogy and provides an efficient embedding using the proposed heuristic (Algorithm 1).
We choose the values of α and β as 1 and 100, respectively. The rest of the param-
eters (γD, γB, γN , λR, and λN) are all set to 1. This module is publicly available at
https://github.com/dothub/dot.
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We have deployed DOT on 10 physical machines organized in two racks. Each of the
machines has dual quad-core 2.4 GHz Intel Xeon E5620 processor and 12-GB of RAM.
The DOT manager has been deployed on a separate host connected to the same network.
All machines run Ubuntu 12.04 as the host OS.

4.2 Resource Guarantee
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Figure 4.1: DOT vs. Mininet

In our first experiment, we deployed the fat-tree topology shown in Fig. 1.1(a) on DOT
(spanning two physical hosts) and performed similar experiment as in Fig. 1.1(b). We
started an UDP iperf server on host S and an UDP iperf client (sending at 1000 Mbps)
on host C. Then we started 7 iperf client-server pairs on the other 14 hosts and measured
the throughput of the traffic between C and S. The result of the experiment is shown in
Fig. 4.1. As we can see from the figures, and unlike Mininet, foreground traffic in DOT is
not affected by the background traffic. The embedding process of DOT ensures that every
physical host has enough resources to accommodate the compute, memory, and bandwidth
requirements of embedded virtual hosts and switches.
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Table 4.1: Characteristics of the simulated ISP Topologies
Topology # of Switch # of Link
AS-1221 108 306
AS-1239 315 1944
AS-1755 87 322
AS-3967 79 294
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Figure 4.2: Number of physical hosts

4.3 Performance of Embedding Algorithm

Here, we evaluated the performance of our proposed heuristic algorithm against that of
First Fit bin packing heuristic [44]. We embedded four ISP topologies (Table 4.1) from the
RocketFuel repository [54]. We computed the number of physical hosts required to embed
these topologies. The result is shown in Fig. 4.3. For AS-1221, FF requires 14 hosts whereas
our heuristic requires only 8 hosts. For AS-1239, FF requires 36 hosts and our approach
requires only 23 hosts. Similarly, for the other topologies our heuristic consistently requires
much less number of physical hosts than FF.

To show the effectiveness of our proposed heuristic over FF, we measure the number
of cross-host links and total bandwidth of cross-host links for each physical host. If a
host has fewer cross-host links then we have to provision less compute resources for the
gateway switch (Eq. 3.4) and as a result more virtual switches can be embedded on the
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Figure 4.3: Number of inter-host virtual links
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Figure 4.4: Amount of inter-host bandwidth

same physical host leading to a more compact embedding. Fewer cross-host links also
indicate that the embedding process is able to embed highly connected portions of input
topology on the same physical host.

Fig. 4.3 reports the average, minimum, and maximum number of cross-host links for
both FF and our proposed heuristic. We can see from the figure that for all four topologies
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our proposed heuristic produces embedding configurations that require much less cross-
host links than FF. For AS-1221, AS-1239, AS-1755, and AS-3967 the reduction in average
number of cross-host links is 37%, 8.3%, 37.2%, and 38.3%, respectively. The maximum
number of cross-host links over all physical hosts for AS-1221, AS-1239, AS-1755, and AS-
3967 is 38, 103, 42, and 36, respectively for FF. However, for our proposed heuristic the
maximum is only 21, 81, 21, and 18, respectively, which corresponds to up to 50% reduction.
The number of links of AS-1239 is extremely high (1944 links). Hence, average node degree
for each node is also high. For this reason, neighboring nodes cannot be always embedded
in the same physical host due to resource unavailability (CPU, memory, and bandwidth).
As a result, the number of cross-host links cannot be significantly reduced. However, a
point to be noted here is that our heuristic improves upon the FF approach while using
less number of physical hosts.

Fig. 4.3 reports the average, minimum, and maximum percentage of physical bandwidth
used by cross-host links for both FF and our proposed heuristic. We can see from this figure
that for all four topologies our proposed heuristic produces embedding configurations that
require much less cross-host link bandwidth than FF. For AS-1221, AS-1239, AS-1755,
and AS-3967 the reduction in average amount of cross-host link bandwidth proportion is
42.3%, 8%, 38% and 40%, respectively. The maximum percentage of cross-host link over
all physical hosts for AS-1221, AS-1239, AS-1755, and AS-3967 is 39, 98.8, 41.4, and 48.4,
respectively for FF. However, for our proposed heuristic the maximum is only 19.5, 83.2,
18.3, and 15.6, respectively. Our proposed heuristic can achieve up to 50% reduction. For
AS-1239, FF produces embedding with 36 physical nodes with a maximum bandwidth
usage of 98%. However, our heuristic embeds the same topology with only 23 physical
hosts and bounds the maximum bandwidth usage within 83%.

4.4 Reproducing Network Experiments on DOT

We demonstrate the functional capabilities of DOT by reproducing results from a number
of networking research papers, by running the corresponding experiments on our platform.
For this purpose, we have chosen to reproduce results from the following research works:
(i) relation between the number of states and memory usage of Bro [15] intrusion detection
system [36], (ii) network link utilization monitoring in SDN using FlowSense [59] , and (iii)
throughput characteristics of a data center network topology by scheduling the flows using
best fit approach in Hedera [24].
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Figure 4.6: Link Usage Measurement using FlowSense

4.4.1 Performance of Bro IDS

The authors reported a linear growth of memory usage of Bro with increasing number
of internal states. To reproduce the results we took the approach described in [22]. We
instantiated two virtual hosts in DOT connected to a single switch. We run Bro on one of
the virtual hosts, and run nmap [19], a security scanner that can scan range of ports on a
destination host.

Fig. 4.4 shows results for memory usage of Bro. We changed the number of scanned
ports from 1 to 10000, in increments of 500, and report the memory consumption by
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Bro. We compute the memory consumption in the same way as [22], i.e., from the minor
page faults caused by Bro. Fig. 4.4 shows a linear growth in memory usage of Bro with
increasing number of connections it needs to keep track of. This linear growth conforms
with the original paper [36], as well as with the results reported in [22].

4.4.2 Network Monitoring using FlowSense

For the network monitoring experiment, we setup a similar scenario as described in the
original paper [59]. We connected two SDN virtual switches and connected one and two
hosts to the switches, respectively. Then we played a time varying traffic similar to the
one described in the original paper [59]. We implemented the FlowSense algorithm as a
module in Floodlight. We measured the utilization of the link between the two switches
and reported the utilization against time.

Then in Fig. 4.4, we report the utilization of the link connecting the two switches.
FlowSense was able to properly capture the shape of the traffic along the link and was able
to reproduce the results from the original paper.

4.4.3 Evaluating Hedera

For the final experiment, we reproduce results on the impact of scheduling flows using
Hedera. We implemented the global first fit flow scheduling policy from the Hedera paper
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in Floodlight controller. Our experiments were run on a three level multi-rooted tree
topology. The three levels correspond to the edge, aggregate, and core switches in the
network. Each edge switch (8 of them) has two virtual hosts connected to it. We measured
the throughput of flows by using a Stride pattern as described in the original paper.

For the Hedera experiment, the result reported in Fig. 4.4, does not exactly conform to
the values of throughput. However, as the figure shows, the throughput follows the same
shape as described in the original Hedera paper.

4.5 Summary

Experimental results show that DOT overcomes scalability issues of Mininet and guaran-
tees the required resources for the emulated network. Moreover, the proposed embedding
algorithm performs significantly better than a first fit strategy. Compared to the first fit
strategy, our algorithm introduces about 50% lesser cross-host links and requires about
50% lesser bandwidth on physical links. Finally, DOT is able to replicate the results of
three prominent networking research papers.
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Chapter 5

Conclusion

Since its inception, SDN has made itself a very appealing networking architecture for
both data center and Wide Area networks by offering more automated control through
programmability and simplified network operations and management with its centralized
control plane. Moreover, NFV has been receiving a lot of attention from the industry as
well for the last few years. Many companies are trying to claim their share of this SDN and
NFV market with their products and solutions [20]. However, extensive rollout of these
new technologies in production environments with confidence requires thorough validation.
Thus, a network emulator facilitating all the domain specific features is a dire necessity.

Emulating SDN was the major driving force behind development of DOT. However,
full virtualization with KVM also made DOT a competent candidate for evaluating NFV
solutions. We envision DOT as a comprehensive emulation platform for such newer network
technologies and services. Next, we outline the contributions of this thesis (Section 5.1)
and briefly describe potential research avenues that can be pursued from here (Section 5.2).

5.1 Summary of Contributions

The contributions of this thesis are listed below:

• We address the scalability issues for emulating a large scale SDN and design a dis-
tributed emulator DOT to overcome them. DOT allocates guaranteed resources to all
virtual components of an emulation during provisioning. We formulate the problem
of optimal allocation of physical resources to the virtual components as an ILP. Then,
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we design an efficient yet simple heuristic to solve the NP-hard embedding problem.
We also design very simple but novel inter-physical machine traffic forwarding tech-
nique to ensure transparency and minimize the number of broadcast messages in the
physical switching fabric.

• We develop our emulation platform with several open source tools. A user can deploy
an emulation and later can interact with it from a central location in the network
(i.e., from the DOT Manager). DOT is available as an open source software at
www.dothub.org. In addition to the source code, this portal provides installation
scripts to easily deploy our platform on a cluster of machines. Moreover, it also
contains a comprehensive tutorial to explain the steps to run network emulations on
DOT.

• Experimental results show that DOT is able to overcome scalability issues and to
guarantee the required resources for the emulated network. Moreover, we present
the performance of our heuristic by showing its superiority over First Fit approach.
While embedding a virtual infrastructure on DOT, our algorithm uses less physical
resources. Finally, we provide our experience in reproducing results of known network
experiments by running them on DOT. These results are comparable to the results
reported in the original papers.

5.2 Future Works

Here, we present the following possible extensions to the thesis work:

• Hybrid network: In addition to Open vSwitch, DOT can be easily extended to
include other virtual switch stacks (e.g., Quagga [21]) which support traditional
routing protocols like BGP, OSPF, etc. This feature will facilitate users to experiment
with both OpenFlow and non-OpenFlow protocols on the same platform. Thus, the
user can compare and contrast an SDN solution with its traditional counterpart with
ease.

• Physical switch integration: Physical switches can be included in an emulated
network in DOT. This feature enables flexible experimental setup to aid gradual
rollout of SDN technology in the production network by emulating one part of the
network in DOT while keeping the other parts running on actual hardware.
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• Multi-tenant Testbed: DOT can be extended to provide access to multiple users
to run simultaneously their emulations on the same physical infrastructure. This can
create an opportunity of a new multi-tenant testbed with inherent support for SDN
and NFV. We envision virtualization at the core of such testbed. Several standard
techniques used by the cloud providers (e.g., VM migration and consolidation) can
be leveraged in this emulation as a service domain to better utilize the underlying
physical infrastructure. Per user namespace isolation (e.g., two users can use the
same name for their VMs without noticing each other), performance and completion
time guarantee for each emulation, and physical failure mitigation are some notable
challenges for providing this service. It is worth mentioning that none of the ex-
isting publicly available testbeds (e.g., GENI [30], OFELIA [55], Emulab [58], etc.)
supports all of these features.

• Time dilation: Recall from Section 3.5, DOT embedding fails when there is no
sufficient physical resources to meet the requirement of an emulation. For such
situations of resource scarcity, the technique of time dilation has been proposed by
Gupta et al. [41]. Specifically, time dilation slows down the time of a VM by altering
time management mechanism of the hypervisor. In other words, a VM maintains a
separate virtual time which is not synchronized with the time of its host machine.
When the time is slowed down, a VM perceives more resources (particularly, CPU
and bandwidth) than their actual allocation. Obvious downside of this approach is
that the emulation takes longer time to finish. For an SDN emulator, maintaining
virtual time only for the VMs is not sufficient. The switching fabric and the remote
control plane of SDN should be dilated alongside. Incorporating time dilation in
DOT is another potential extension to this thesis.
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Appendix A

Installation

DOT runs on a set of physical machines. One of these physical machines orchestrates the
whole emulation process. We call this physical machine the DOT Manager. The other
physical machines are called DOT Nodes. These machines contain virtual switches and
virtual machines used to build the emulated topology. The recommended platform for
DOT Nodes and the DOT Manager is Ubuntu 12.04.4 LTS. The kernel 3.5.0-54-generic.

The DOT Manager must be setup before any DOT Node. The username for all DOT
Nodes must be same. We recommend using a separate physical machine for DOT Manager.

A.1 DOT Manager Installation

DOT Manager runs the DOT embedding and provisioning modules. It also provides cen-
tralized access to the deployed VMs in different DOT nodes. To setup a DOT manager,
the guideline below must be followed:

• Launch a new terminal and enter into privileged mode:

sudo -s

• Download and extract the following script:

wget http://dothub.org/downloads/dot_scripts_1_0.tar.gz

tar xvzf dot_scripts_1_0.tar.gz
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• Change the installation script privileges, run the script and follow the on-screen
instructions:

chmod a+x dot_manager_install.sh

./dot_manager_install.sh

A.2 DOT Node Installation

A DOT node utilizes Open vSwitch, libvirt and KVM to emulate a given topology. Hosts in
the emulated topology are instantiated as VMs running either Tiny Core or Ubuntu. This
image is preconfigured to assign IP addresses from the 10.254.0.0/16 subnet to the primary
interface (i.e., eth0). The lowest 16 bits of the IP address are set equal to the lowest 16 bits
of the MAC address of the primary interface to ensure uniqueness. Guidelines to setup a
DOT Node are as follows:

• Launch a new terminal and enter into privileged mode:

sudo -s

• Download and extract the following script:

wget http://dothub.org/downloads/dot_scripts_1_0.tar.gz

tar xvzf dot_scripts_1_0.tar.gz

• Change the installation script privileges, run the script and follow the on-screen
instructions:

chmod a+x dot_manager_install.sh

./dot_node_install.sh

The script creates a user account that is used for emulation purposes. The default
username is dot. To use the default username just press ENTER when prompted for a
username, otherwise enter a valid username of your preference. A password for the DOT
user is also needed. The script will also prompt for user details (e.g., full name, address,
location, etc.). One can choose the default value just by pressing ENTER at each prompt.
However, one must press the Y key when asked for permission to create the DOT user
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account. If the script is able to successfully install all required components, it will inform
that the installation is successful and will prompt to reboot the machine.

After configuring all DOT Nodes, copy the ssh key of the DOT Manager to them by
following these instructions:

wget http://dothub.org/downloads/dot_scripts_1_0.tar.gz

sudo -s

tar xvzf dot_scripts_1_0.tar.gz

chmod a+x dot_manager_keycopy.sh

./dot_manager_keycopy.sh
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Appendix B

Tutorial: Emulating a topology on
DOT

In this chapter, we describe the methods to emulate an SDN topology on DOT with
an example. Here, we also describe the emulation configuration file and introduce DOT
console and APIs to deploy, monitor, and control an emulation.

B.1 Sample Setup

B.1.1 Physical Environment

The physical environment should contain a dedicated machine for deploying the DOT
Manager and one or more machines for deploying the DOT Node(s). The DOT configu-
ration file should contain the hostname, IP address and resource (CPU, memory, disk and
interface bandwidth) capacities of each machine.

For example, in Fig. B.1, three machines are connected using a physical switching
fabric. Here, rsg-pc145 is used as the DOT Manager and rsg-pc161, rsg-pc146 are used
as DOT Nodes.
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Figure B.1: Physical Environment

B.2 Deploying Logical Topology

A logical topology usually consists of virtual switches, virtual links and virtual machines.
DOT Manager distributes the logical topology across the DOT Nodes by considering avail-
able physical resources. You should specify the bandwidth and delay of a virtual link
connecting two virtual switches. Moreover, you have to provide the resource requirements
(CPU, memory, disk and interface bandwidth) for each VM in the DOT configuration
file. The Fig. B.2 shows a logical topology with three switches, two links and five virtual
machines.

B.3 How to use DOT

B.3.1 Create the configuration file

An emulated topology can be specified using a configuration file. Here, we explain its
format and content. We continue with the example presented above. Each section of this
configuration file is explained below:
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Figure B.2: Logical Topology

The first section specifies a user defined name for the emulation. Note that we follow
the standard convention of putting section name in parenthesis as [SectionName]

[EmulationName]

example_wan

The next section specifies the physical topology. The first line in this section states the
number of the physical machines, and the subsequent lines describe their properties. Each
physical machine is described using a tuple: <node type, hostname, IP address, CPU

(number of cores), memory (MB), disk (GB), interface name, interface bandwidth

(Mbps)>. For the DOT Manager, the node type is manager and for the DOT Nodes, it is
node. For the manager, information about CPU, memory, disk, interface, and bandwidth
is not required. Modify this section according to your physical infrastructure.

[PhysicalTopology]

#First line: Number of physical machines

#Then, each line specifies a tuple:

#type name ip cpu memory disk external_interface bandwidth
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3

manager rsg-pc145 192.168.10.106

node rsg-pc161 192.168.10.223 4 512 8 eth0 1024

node rsg-pc146 192.168.10.71 5 512 8 eth0 1024

The estimated propagation delay between two physical machines can be provided in the
following section. The first line indicates the number of pairwise delays that are mentioned
in the subsequent lines. Each line mentions the hostnames of the physical machines and
the propagation delay (in ms) between them. If the delay for any pair is omitted, then a
default value of 0 ms is considered.

[PhysicalTopologyDelay]

#Pairwise delay between any physical vms

#If no delay between a pair is specified, default value will be considered

#Default value of delay is 0

#First line: Number of pair of machines have delay

#Next, each line specifies a tuple

#machine1, machine2, delay (ms)

0

The next section presents the logical topology. The number of switches and links are
specified in the first line. Each subsequent line describes the properties of a bidirectional
logical link by a tuple: <switch 1, switch 2, bandwidth (Mbps), propagation delay

(ms)>. Each switch is prefixed with letter s followed by a number (between 1 and the total
number of switches).

[LogicalTopology]

#First line: Number of switches, number of links

#Each switch is represented by ’s#’

#Switch # should start with 1

#Next, each line specifies a bidirectional link with the following format:

# s# s# bandwidth delay

3 2

s1 s2 499 150

s1 s3 500 100
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The following section specifies the VM images used for provisioning the end hosts. The
first line indicates the number of images. Each subsequent line describes the properties
of a image by a tuple: <image id, type, name>. Each image is prefixed with letter i
followed by a number (between 1 and the total number of images).

[Images]

#Number of images

#each line image id, type, location

2

i1 tc base_tc.qcow2

i2 ubuntu base_lubuntu_mini.qcow2

The following section describes the virtualization platform to be used with DOT. Cur-
rently, DOT supports KVM hypervisor with Libvirt Virtualization API. Do not change
the values of the Hypervisor and Library. The NetworkFile key points to the network
configuration file used by DOT to connect a VM to an Open vSwitch instance.

[VirtualMachineProvision]

#Start marker of this section. Don’t remove

Hypervisor=kvm

Library=lib-virt

NetworkFile=resources/provisioning/libvirt/libvirt_network.xml

#End marker of this section. Don’t remove

Then, the configuration for the VMs are provided. The first line specifies the number
of VMs to be instantiated by DOT. Subsequent lines describe the connection between the
VMs and switches. Each line also contains the vCPU (virtual CPU) requirement (number
of cores), the memory (MB), the interface bandwidth (Mbps), and the image to be used
for provisioning the VM. A VM is prefixed with letter h followed by a number (between 1
and the total number of hosts). The MAC and IP addresses of the VMs are automatically
generated from their identifiers using a predefined rule. For example, VM with identifier
h1 is assigned the MAC address 00 : 00 : 00 : 00 : 00 : 01 and IP address 10.254.0.1.

[VirtualMachines]

#First line: Number of VMs

#Each switch is represented by ’h#’

#VM# should start with 1
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#Next, each line specifies

#a VM, the switch it is attached, CPU, B/W(Mbps), Memory(MB) and image:

# VM# s# CPU B/W Memory i#

5

h1 s1 1 300 64 i1

h2 s2 2 400 512 i2

h3 s3 1 300 64 i1

h4 s1 2 400 64 i1

h5 s2 1 300 512 i2

The number of SDN controllers and their IP addresses and port numbers are provided
in the following section. Each controller is prefixed with c and a number (between 1 and
the total number of controllers).

You can emulate both in-band and out-of-band control plane using DOT. The out-of-
band SDN controller should be reachable from all DOT Nodes.

In addition, both POX and Floodlight controllers are pre-loaded in the supplied Ubuntu
image with DOT. Thus, any VM using this image can run an SDN controller. In this
configuration, c1 is an in-band controller hosted by h2. This is specified by using the IP
address 10.254.0.2. Remember that DOT assigns IP and MAC addresses based on the
name of the VM, which in this case is h2. The in-band controller will not be initialized
automatically and needs to be started separately once the emulated network is deployed
(explained in the subsequent section).

[Controllers]

#First line: Number of controllers

#Each controller is represented by ’c#’

#Controller # should start with 1

#Next, each line a tuple:

# c# ip port

2

c1 10.254.0.2 6633

c2 192.168.10.106 6633

Switch to controller association is specified in the next section. The first line mentions
the number of switches and each subsequent line indicates the controller of a switch.
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[Switch2Controller]

#First line: Number of switches

#Next, each line specifies a switch and its controller

# s# c#

3

s1 c2

s2 c2

s3 c2

The next section specifies the credentials (username) to access the DOT nodes from
the DOT manager.

[Credentials]

#User name of the dot nodes

UserName=dotuser

In the final section, OFVersion parameter is used to configure the OpenFlow protocol
version of the virtual switches. Currently, DOT supports OpenFlow version 1.0 and 1.3.
Thus, OFVersion parameter should be set either to 1.0 or 1.3.

[OtherConfig]

#

OFVersion=1.0

B.3.2 Run DOT Manager

The DOT manager deploys the emulated topology on the physical machines. It deploys
the logical topology only if there is a feasible embedding satisfying resource and delay
constraints. Otherwise, it exits by showing that the embedding is not possible. To deploy
the logical topology, go to the root directory of the DOT installation in the DOT Manager
and run the following commands:

root@rsg-pc145:~/dot#./run.sh ExampleWANConf1.0.txt

Turn the Dubug mode on:

root@rsg-pc145:~/dot#./run.sh ExampleWANConf1.0.txt -d
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B.3.3 Introduction to DOT Console

DOT provides centralized access to the emulated topology from the DOT manager. You
can run the following commands (in privileged mode) to start a utility console.

root@rsg-pc145:~/dot# cd ongoing_emulation

root@rsg-pc145:~/dot/ongoing_emulation# ./dot_console

Now you are at the DOT manager utility console. To get the list of available commands
type help:

dot>help

For connecting to VM: connect h#

For disconnecting a VM: disconnect h#

For detaching a link: detach s# s#

For reattaching a link: attach s# s#

Ping: ping h# h#

For sending ping between all pair of hosts: PingAll

For running command in a host: run [-b] [-s] h# command/scriptfile

For monitoring a switch: monitor [-s] start/stop s#

For monitoring a controller: monitor [-c] start/stop c#

For cleaning DOT: clean all

To exit: quit

Connecting to a VM:

dot>connect h2

Connecting h2

A console window for the VM will pop up. You can test the connectivity using ping. Press
ctrl+alt to release the mouse pointer from the VM terminal window and change focus to
the DOT manager.

Disconnecting from a VM:

dot>disconnect h2

Disconnecting h2

Purging all VMs and Switches:
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dot>clean all

Cleaning 192.168.10.71 ....

.......

Quitting DOT console

To exit the DOT console:

dot>quit

Do you want to disconnect all VMs? [Y/n]

Disconnecting h2

Exiting....

Entering n to the highlighted prompt (see figure below) will keep the connections to
the VMs intact. Otherwise, all connections will be teared down. Note that exiting the
DOT console does not shut down the VMs.

dot>quit

Do you want to disconnect all VMs? [Y/n]

Exiting....

B.3.4 Configuring Management interface of a VM

Each VM is equipped with an interface (eth1) attached to the management network. This
interface facilitates remote access to the VM directly from the DOT Manager. All DOT
console commands except connect, disconnect, attach, detach assume that the management
interface is operational.

If there is a functional DHCP server in the physical network, then the management
interfaces can get their required configurations from it. If there is no DHCP server in the
network, follow these instructions to configure eth1 for each VM:

dot>connect h2

Then, in the console window of each VM, manually assign IP Address to eth1. For
example, to assign IP Address 192.168.10.3 to eth1 of h2:
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ubuntu@h2:~$sudo ifconfig eth1 192.168.10.3 netmask 255.255.255.0

Note the IP Address assigned to the management interface should be in the same subnet
as that of the DOT Manager. To check whether the management interface is operational,
run pingAll command in the DOT Console:

dot>pingAll

Pinging h1->h2

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

PING h2 (10.254.0.2): 56 data bytes

64 bytes from 10.254.0.2: seq=0 ttl=64 time=307.990 ms

64 bytes from 10.254.0.2: seq=1 ttl=64 time=151.388 ms

64 bytes from 10.254.0.2: seq=2 ttl=64 time=151.460 ms

64 bytes from 10.254.0.2: seq=3 ttl=64 time=151.416 ms

--- h2 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 151.388/190.563/307.990 ms

Pinging h1->h3

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

PING h3 (10.254.0.3): 56 data bytes

64 bytes from 10.254.0.3: seq=0 ttl=64 time=202.410 ms

64 bytes from 10.254.0.3: seq=1 ttl=64 time=100.570 ms

64 bytes from 10.254.0.3: seq=2 ttl=64 time=100.561 ms

64 bytes from 10.254.0.3: seq=3 ttl=64 time=100.675 ms

It is recommended to run a DHCP server (e.g., dnsmasq) in the physical network to
avoid this manual configuration after each provisioning of the emulated network. Note
the primary interface of a VM (i.e., eth0), which is attached to the data network, is pre-
configured by DOT during provisioning. So, this interface does not require any manual
configuration.

B.3.5 Running SDN Controller

The configuration file explained before assumes that the SDN controller is deployed at the
DOT Manager (Check Controllers and Switch2Controller sections of the configuration
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file). However, even in the absence of a SDN controller, the VMs should be reachable from
each other, i.e., the pingAll command should be successful. Any SDN controller can be
used with DOT. Next, we will explain how to use two opensource SDN controllers: POX
and Floodlight with DOT.

To use POX with DOT, follow these instructions to install it in the DOT Manager.
Next, navigate to the POX root directory and run the following command:

./pox.py forwarding.l2_learning

On the other hand, to use Floodlight with DOT, use these instructions to install it in
the DOT Manager. Then, go to the floodlight root directory and run the following:

java -jar target/floodlight.jar

Now, run pingAll command in the DOT Console to verify the packet forwarding using
SDN controller:

dot>pingAll

Pinging h1->h2

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

PING h2 (10.254.0.2): 56 data bytes

64 bytes from 10.254.0.2: seq=0 ttl=64 time=307.990 ms

64 bytes from 10.254.0.2: seq=1 ttl=64 time=151.388 ms

64 bytes from 10.254.0.2: seq=2 ttl=64 time=151.460 ms

64 bytes from 10.254.0.2: seq=3 ttl=64 time=151.416 ms

--- h2 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 151.388/190.563/307.990 ms

Pinging h1->h3

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

PING h3 (10.254.0.3): 56 data bytes

64 bytes from 10.254.0.3: seq=0 ttl=64 time=202.410 ms

64 bytes from 10.254.0.3: seq=1 ttl=64 time=100.570 ms

64 bytes from 10.254.0.3: seq=2 ttl=64 time=100.561 ms

64 bytes from 10.254.0.3: seq=3 ttl=64 time=100.675 ms
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B.3.6 Logging

DOT is capable of logging the OpenFlow messages exchanged between the SDN controller
and the switches. By using start commands, you can start monitoring specific switch or
controller.

To start switch (e.g., s1) monitoring:

monitor -s start s1

To start controller (e.g., c1) monitoring:

monitor -c start c1

Later, you can stop all monitoring using the stop commands. These log messages will
be stored in the log directory of the DOT Manager.

To stop switch (e.g., s1) monitoring:

monitor -s stop s1

To stop controller (e.g., c1) monitoring:

monitor -c stop c1

Additionally, you can run tcpdump to capture packets in the end hosts. For example,
to log all packets at eth0 of h1, you can run the following command in the DOT Console:

run -b h1 ’sudo tcpdump -i eth0 > dump001’

In this example, the log messages will be stored at the file name dump001.

B.3.7 DOT APIs

DOT provides a number of Python APIs. After deploying a virtual infrastructure, a user
can write a script to emulate different network behaviors. The following code snippet shows
how to simulate link failure using DOT APIs:
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from ongoing_emulation.api.dot import Dot

emu = Dot()

emu.load()

result = emu.ping(’h1’, ’h2’)

print result

emu.detach(’s1’, ’s2’)

result = emu.ping(’h1’, ’h2’)

print result

emu.attach(’s1’, ’s2’)

result = emu.ping(’h1’, ’h2’)

print result

B.3.8 Running a control application: UDP Blocker

Here, we will show how to run a simple firewall in DOT using Floodlight controller. To
enable the firewall run the following command:

root@rsg-pc145:~# curl http://localhost:8080/wm/firewall/module/enable/json

The default behavior of this firewall module is to discard every packet which can be
observed from running ping command in the DOT console:

dot>ping h2 h1

pinging h1

Warning: Permanently added ’h2,192.168.10.3’ (ECDSA) to the list of known hosts.

PING h1 (10.254.0.1) 56(84) bytes of data.

From h2 (10.254.0.2) icmp_seq=10 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=11 Destination Host Unreachable

To allow all packets through s1 and s2 use the following commands:

root@rsg-pc145:~# curl -X POST -d ’{"switchid": "1"}’

http://localhost:8080/wm/firewall/rules/json

root@rsg-pc145:~# curl -X POST -d ’{"switchid": "2"}’

http://localhost:8080/wm/firewall/rules/json

Now, h1 becomes reachable from h2
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dot>ping h2 h1

pinging h1

Warning: Permanently added ’h2,192.168.10.3’ (ECDSA) to the list of known hosts.

PING h1 (10.254.0.1) 56(84) bytes of data.

From h2 (10.254.0.2) icmp_seq=1 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=2 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=3 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=4 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=5 Destination Host Unreachable

From h2 (10.254.0.2) icmp_seq=6 Destination Host Unreachable

64 bytes from h1 (10.254.0.1): icmp_req=7 ttl=64 time=1331 ms

64 bytes from h1 (10.254.0.1): icmp_req=8 ttl=64 time=331 ms

Next, run an iperf UDP server at h2. This command is run in background (using -b
flag) so that subsequent commands can be issued in the console.

dot>run -b h2 iperf -s -u

Warning: Permanently added ’h2,192.168.10.3’ (ECDSA) to the list of known hosts.

------------------------------------------------------------

Server listening on UDP port 5001

Receiving 1470 byte datagrams

UDP buffer size: 160 KByte (default)

------------------------------------------------------------

Then, run an iperf UDP client at h1. This client sends UDP datagram to the iperf server
running at h2.

dot>run h1 iperf -c h2 -u -t 10 -i 1

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

------------------------------------------------------------

Client connecting to h2, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 110 KByte (default)

------------------------------------------------------------

[ 3] local 10.254.0.1 port 53980 connected with 10.254.0.2 port 5001

[ 3] local 10.254.0.2 port 5001 connected with 10.254.0.1 port 53980

[ 3] 0.0- 1.0 sec 128 KBytes 1.05 Mbits/sec

53



[ 3] 1.0- 2.0 sec 129 KBytes 1.06 Mbits/sec

[ 3] 2.0- 3.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 3.0- 4.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 4.0- 5.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 5.0- 6.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 6.0- 7.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 7.0- 8.0 sec 129 KBytes 1.06 Mbits/sec

[ 3] 8.0- 9.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 9.0-10.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec

[ 3] Sent 893 datagrams

[ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.040 ms 0/ 893 (0%)

[ 3] WARNING: did not receive ack of last datagram after 10 tries.

As the firewall does not block any traffic, the iperf client is able to communicate with
the iperf server.

Now, apply the following firewall rules in the DOT Manager to block UDP traffic
between h1 and h2. Note that IP Addresses of h1 and h2 are 10.254.0.1 and 10.254.0.2,
respectively.

root@rsg-pc145:~# curl -X POST -d ’{"src-ip": "10.254.0.1/32",

"dst-ip": "10.254.0.2/32", "nw-proto":"UDP", "action":"DENY" }’

http://localhost:8080/wm/firewall/rules/json

root@rsg-pc145:~# curl -X POST -d ’{"src-ip": "10.254.0.2/32",

"dst-ip": "10.254.0.1/32", "nw-proto":"UDP", "action":"DENY" }’

http://localhost:8080/wm/firewall/rules/json

Finally, again run the iperf client at h1.

dot>run h1 iperf -c h2 -u -t 10 -i 1

Warning: Permanently added ’h1,192.168.10.2’ (RSA) to the list of known hosts.

------------------------------------------------------------

Client connecting to h2, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 110 KByte (default)
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------------------------------------------------------------

[ 3] local 10.254.0.1 port 45632 connected with 10.254.0.2 port 5001

[ 3] 0.0- 1.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 1.0- 2.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 2.0- 3.0 sec 129 KBytes 1.06 Mbits/sec

[ 3] 3.0- 4.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 4.0- 5.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 5.0- 6.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 6.0- 7.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 7.0- 8.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 8.0- 9.0 sec 128 KBytes 1.05 Mbits/sec

[ 3] 9.0-10.0 sec 129 KBytes 1.06 Mbits/sec

[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec

[ 3] Sent 893 datagrams

[ 3] WARNING: did not receive ack of last datagram after 10 tries.

Here, the output does not contain any report from the iperf server. This confirms
that the UDP traffic between h1 and h2 is blocked.

To disable the firewall:

root@rsg-pc145:~# curl http://localhost:8080/wm/firewall/module/disable/json
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