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Abstract 

 

Lake ice phenology (timing of ice-on and ice-off) and thickness are changing in response to 

generally warmer climate conditions at high northern latitudes observed during recent 

decades. Monitoring changes in the lake ice cover provides valuable evidence in assessing 

climate variability in the Arctic. To enhance our understanding of the role of lake ice in the 

Arctic cryosphere and to evaluate the extent to which Arctic lakes have been impacted by the 

contemporary changing climate, development of a lake ice monitoring system at pan-Arctic 

scale is needed. While large lakes across the Arctic are currently being monitored through 

satellite observations, there are extremely sparse and mostly non-existent records tracking the 

changes in small high-latitude lakes. 

Employing a combination of spaceborne observations from synthetic aperture radar (SAR) 

and optical sensors, and simulations from the Canadian Lake Ice Model (CLIMo), this 

researched aimed to investigate changes in winter ice growth and ice phenology of lakes 

across the Arctic, focus being given to smaller lakes on the North Slope of Alaska (NSA) and 

lakes of various sizes in the Canadian Arctic Archipelago (CAA). 

To determine the changes in the fraction of lakes that freeze to bed (grounded ice) in late 

winter on the NSA from 1991 to 2011, a time series of ERS-1/2 was analysed. Results show 

a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change 

occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). This finding 

is in good agreement with the decrease in ice thickness simulated with CLIMo, a lower 

fraction of lakes frozen to the bed corresponding to a thinner ice cover. Model simulations 

over the same period as SAR acquisitions (1991-2011) indicate a trend toward thinner ice 

covers by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01). The results 

emphasize the regime shifts that these lakes are currently undergoing, including shorter ice 

seasons. The longer-term trends (1950-2011) derived from model simulations show a 

decrease in the ice cover duration by ~ 24 days consequent to later freeze-up dates by 5.9 

days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001). 
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The temporal evolution of backscatter (σ
0
) from two C-band SAR sensors – Advanced 

Synthetic Aperture Radar (ASAR) Wide Swath and RADARSAT-2 ScanSAR Wide Swath – 

was then used to investigate the potential of high temporal-frequency SAR for determining 

lake ice phenological events (e.g. freeze onset, melt onset and water-clear-of-ice). Results 

show that combined SAR observations are generally suitable for detection of important lake 

ice events timing. However, the wide range of incidence angles and to a certain extent the 

orbit differences between the observations, the wind effect, particularly during fall freeze-up, 

the low differences in σ
0
 during transition from a grounded-ice cover to melt onset of ice in 

early spring, complicate the detection of lake ice phenological events. 

In order to order to document the response of ice cover of lakes in the Canadian High Arctic 

to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-

1/2 ScanSAR Wide Swath, ASAR Wide Swath and Landsat acquisitions were analyzed. 

Results show that earlier melt onset occurred earlier for all 11 polar-desert and polar-oasis 

lakes that were investigated. With the exception of Lower Murray Lake, all lakes experienced 

earlier ice-minimum and water-clear-of-ice dates, with greater changes being observed for 

polar-oasis lakes (9-23.6 days earlier water-clear-of-ice for lakes located in polar oases and 

1.6-20 days earlier water-clear-of-ice for polar-desert lakes). Additionally, results suggest 

that some lakes may be transitioning from a perennial to a seasonal ice regime, with only a 

few lakes maintaining a perennial ice cover on occasional years. Aside Lake Hazen and 

Murray Lakes that preserved their ice cover during the summer of 2009, no residual ice was 

observed on any of the other lakes from 2007 to 2011.  

This research provides the foundation of a lake-ice monitoring network that can be built on 

with the newly launched and future SAR and multispectral missions. Additionally, this study 

shows that in response to warmer climate conditions, Arctic lakes are experiencing regime 

shifts with overall shorter ice seasons, thinner ice covers, fewer lakes that freeze to the 

bottom and more lakes that lose the perennial ice cover and experience a seasonal ice regime. 
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Chapter 1 

General Introduction 

1.1 Motivation 

Climate-driven changes have significantly altered the high-latitude environments during 

recent decades, changes that are predicted to continue or even accelerate in the near future as 

projected by global climate models (Prowse et al., 2009). In response to warmer climate 

conditions, the Arctic lake ice cover is expected to continue reducing in thickness, duration 

and extent. Thinning ice covers, shorter ice seasons and an increasing fraction of water under 

the ice (for shallow lakes that partially or completely freeze to bed in winter, particulalrly for 

lakes on the North Slope of Alaska) may affect a complex web of physical, chemical and 

ecological linkages, such as energy exchanges between the lakes and the atmosphere, shifts 

in lake algal productivity, habitat availability, thawing permafrost under lake beds, and 

methane releases to the atmosphere. Similarly, consequent to higher air temperatures, the 

lakes in the Canadian High Arctic are expected to transition from a perennial to a seasonal 

ice regime, with lakes being ice free during most summer seasons. 

Past changes in lake ice cover have mostly been identified only through non-spatially 

representative point in situ measurements, which have been almost unavailable over the last 

two decades consequent to the declining global and Canadian terrestrial monitoring network 

for lakes and lake ice (Lenormand et al., 2002; Duguay et al., 2006; Prowse et al., 2011) 

(Figure 1.1). Recent studies have shown that satellite remote sensing provides a viable 

alternative to detecting and monitoring changes within the ice cover of high-latitude lakes 

(Latifovic and Pouliot, 2007; Arp et al., 2012; Duguay et al., 2012). Without the limitations 

of the optical sensors related to polar darkness and/or cloud coverage, spaceborne synthetic 

aperture radar (SAR) has been shown to be an efficient tool for detecting changes of the 

Arctic lake ice cover (Jeffries et al., 1994; Morris et al., 1995; Duguay et al., 2002; Jeffries et 

al., 2005; Cook and Bradley, 2010; Arp et al., 2012; Surdu et al., 2014). 
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While large lakes across the northern hemisphere, including the Arctic, are now being 

monitored through satellite observations (e.g., Duguay et al., 2014), no systematic approach 

or network exists for tracking changes in the ice cover of small (shallow) lakes that cover 

vast areas of the Arctic (e.g., coastal areas of Alaska, northern Canada and Siberia). 

Moreover, only a few past investigations monitored the changes in the ice cover of lakes in 

the Canadian High Arctic, lakes of different depths and many with unknown bathymetry. 

Change detection in the ice cover of small Arctic lakes must consider spatial resolution as a 

key sensor characteristic. Additionally, a temporal resolution of the order of 1-2 days is 

needed for an accurate detection of important lake ice events for the purpose of climate 

monitoring (IGOS, 2007). 

The paucity of in situ observations in the Arctic emphasizes the need to revitalize the 

monitoring network of Arctic lakes. 

 

Figure 1.1: Lake ice observation sites from in situ observations from the Canadian Ice 

Database (1829-1999). From: Duguay et al. (2006).  
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Monitoring Arctic lakes and their ice covers is critical in improving our understanding of the 

complex interactions between lakes and the land-ocean-atmosphere system, and requires 

consistent, long-term observations of a large number of lakes. 

 

1.2 Objectives 

The overall goal of this research is to further our understanding of the response of Arctic 

lakes and their ice covers to recent high-latitude climate conditions and to provide the 

groundwork of a monitoring network for Arctic lake ice. 

Specifically, the three primary objectives are: 1) to analyze the winter ice regimes, phenology 

and thickness of shallow lakes on the North Slope of Alaska; 2) to employ SAR observations 

in ice freeze-up and break-up detection of lakes on the North Slope; 3) to monitor and 

analyze changes in ice regimes of lakes in the Canadian High Arctic using a multi-sensor 

approach. 

 

1.3 Thesis Structure 

This manuscript-based thesis consists of six chapters in order to provide relevant background 

information and to address each of the identified study objectives. The preliminary chapter 

presents the rationale and objectives of the thesis, outlining the need for monitoring of Arctic 

lakes.  

Chapter two provides a review of lake ice thermodynamics, available SAR sensors for lake 

ice monitoring, and introduces the thermodynamic lake ice model that was used as a 

complement to the spaceborne-observed lake ice conditions presented in chapters three and 

four.  

Chapter three addresses the first objective of this thesis and examines the changes in the 

grounded ice cover of the Alaskan thermokarst lakes through historical (1991-2011) C-band 

SAR observations and compares them with model simulations. 
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Surdu, C. M., Duguay, C. R., Brown, L. C., and Fernández Prieto, D. (2014). 

Response of ice cover on shallow lakes of the North Slope of Alaska to 

contemporary climate conditions (1950-2011): Radar remote sensing and numerical 

modeling data analysis. The Cryosphere, 8(1), 167-180.  

Chapter four addresses the second objective of this thesis by examining the temporal 

evolution of C-band backscatter from two different SAR sensors in order to detect freeze 

onset, melt onset and ice-off dates for lakes on the North Slope of Alaska. This was 

submitted to Remote Sensing. 

Surdu, C. M., Duguay, C. R., Kheyrollah Pour
, 
H., and Brown, L. C. (2014). Ice 

freeze-up and break-up detection of shallow lakes in Northern Alaska with 

spaceborne SAR. 

Chapter five addresses the final objective of this thesis presenting observed changes in the 

timing of the melt onset, summer ice minimum and ice-off date for 11 lakes in the Canadian 

High Arctic between 1997-2011, using both spaceborne SAR and optical observations. This 

manuscript was submitted to Limnology and Oceanography. 

Surdu, C. M., Duguay, C. R., and Fernández Prieto, D. (2014). Evidence of recent 

changes in the ice regime of High Arctic lakes from spaceborne satellite 

observations. 

The final chapter provides a summary of findings and limitations, and suggests future 

research directions. 
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Chapter 2 

Research Context 

2.1 Lakes and Lake Ice in a Changing Arctic 

Lakes of different sizes comprise 2% of the Earth’s land surface, the majority being located 

in the northern hemisphere. Depending on the location, vast surface areas of the Arctic and 

Subarctic regions are covered up to 15-40% by lakes (Duguay et al., 2003, Riordan et al., 

2006). For instance, lakes cover up to 40% of the Alaskan Arctic Coastal Plain (Sellman et 

al., 1975). With such an extended areal coverage, lakes and their ice regimes represent an 

important component of the cryosphere.  

While surface area of these lakes is known, bathymetry knowledge is extremely limited for 

most lakes and it only includes depth information for larger lakes and a few smaller lakes that 

have been previously investigated. Existing bathymetric measurements indicate that mean 

depth ranges from 1.4-2.2 m for the shallower lakes on the North Slope of Alaska to 3-10 m 

for lakes in the Canadian High Arctic. Lake Hazen, the largest lake north of 66°N reaches a 

maximum depth of 280 m. All lakes investigated in this study are located in continuous 

permafrost regions (Figure 2.1).  

In areas where lakes cover an extended surface area such as the North Slope of Alaska, 

changes in the underlying permafrost have major implications for the physical and 

biogeochemical processes of lakes. In these areas, shallow thermokarst are also associated 

with methane release into the atmosphere consequent to permafrost thaw underneath the 

water or ice surface and lake expansion (Walter et al., 2006). The shift from a grounded-ice 

regime (ice frozen to lakebed) to a floating ice regimes observed during the last two decades 

(Surdu et al., 2014), has implications for ecology, winter water use and ice transportation. 

In the Canadian High Arctic, small areas develop that are sheltered by mountains from the 

cold Arctic air currents. These areas, also known as polar oases, are controlled by a local 
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warmer microclimate, and have longer growing seasons and higher biodiversity. An 

hypothesis is that lakes located in polar oases have experienced greater changes than lakes 

located in polar desert environments. Moreover, consequent to recent warmer climate 

conditions at high latitudes, High Arctic lakes may be transitioning from a perennial ice 

cover to a seasonal ice regime.  

 

Figure 2.1: Distribution of glaciers and permafrost zones in the Canadian Arctic and 

Alaska (USA). Modified from Brown and Duguay (2011b). 
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Lakes play a fundamental role within regional and local climate acting as regional climate 

controllers and influencing seasonal evaporation patterns (Rouse et al., 2008; Vincent et al., 

2008). Lakes also provide habitat for various species of phytoplankton (Smol and Douglas, 

2007), fish and wildlife. In addition, lakes supply fresh water in areas where availability is 

limited (Jeffries et al., 1994) and support winter transportation functions (Adams and Prowse, 

1981; Leconte and Klassen, 1991; Prowse, 2009). As all components of the cryosphere are 

closely interrelated, sea ice loss contributes to warming of the adjacent land (and vice versa), 

thawing permafrost (Smith et al., 2005, 2010; Romanovsky et al., 2010; Rowland et al., 

2010), increased photosynthetic production of tundra terrestrial vegetation and longer 

growing seasons indicated by high Normalized Difference Vegetation Index (NDVI) values 

(Reed et al., 2009; Bhatt et al., 2010), and shorter ice seasons in northern lakes (Magnuson et 

al., 2000; Bonsal et al., 2006; Duguay et al., 2006; Latifovic and Pouliot, 2007; Mishra et al., 

2011).  

Forthcoming decades are predicted to result in climatic shifts, mainly as a consequence of 

increased mean air temperatures (Morris et al., 2005), and lakes are expected to respond to 

these changes and undergo physical and ecological regime shifts. Rising air temperatures are 

hypothesized to result in a shift towards an open-water regime for 3.7% of Earth’s lakes with 

areas over 0.1 km
2 

(Weyhenmeyer et al., 2011). Ice-cover changes of Arctic lakes have 

comparable trends to those of lower latitude lakes but several Arctic regions display trends 

that are more evident. The timing of ice-on and ice-off date, mean ice duration, and ice 

thickness has a demonstrated considerable seasonal, interannual and interdecadal variability. 

However, significant trends for later freeze-up dates, earlier ice-off dates and an overall 

shorter ice seasons have occured during recent decades (Magnuson et al., 2000; Duguay et 

al., 2006; Latifovic and Pouliot, 2007; Benson et al., 2011).  
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2.1.1 Lake ice linkages to the atmosphere-ocean system 

The impact of a changing climate is reflected both by ocean and inland waters (Petoukhov 

and Semenov, 2010). In a complex system such as the Arctic, anomalies in the coupled 

ocean-atmosphere circulation may result in extreme weather conditions, with warm events 

being more severe and frequent over the last 30 years (Benson et al., 2011; Guirguis et al., 

2011) and further leading to extreme ice conditions (i.e. extremely late freeze-up, extremely 

early break-up or extremely short ice duration). The robustness of this relationship is also 

supported by the strong correlation between ice phenology trends and the autumn/spring 0°C 

isotherm dates (Bonsal and Prowse, 2003; Duguay et al., 2006). Albeit considerable 

interdecadal and interannual variability is noted, the lakes of the northern hemisphere have 

experienced changes in ice phenology (0.3-1.6 later for freeze-up, 0.5-1.9 earlier for break-

up) and overall shorter ice seasons by 0.7-4.3 days, with a steeper trend during the last 

decades - 1975-2005 (Benson et al., 2011).  

Previous ice phenology trend analyses established strong lake ice-air temperature 

interdependence whereby air temperatures (1-3 months) prior to lake ice events (Palecki and 

Barry, 1986; Robertson et al., 1992; Livingstone 1997, 1999; Duguay et al., 2006) is a useful 

indicator of freeze-up and break-up dates, often explaining 60-70 % of the variability in the 

ice timing (Livingstone, 1997). Whereas October and November climate drives lake ice onset 

of sub-Arctic lakes (e.g., Lake Kallavesi, Finland; Magnuson et al., 2000), April 

temperatures drive the break-up of Alaskan ponds (Jeffries and Morris, 2007).  

However, Weyhenmeyer et al. (2004) advanced a non-linear relationship between ice-off 

dates and temperature. Warmer temperatures in the Arctic lower troposphere have often been 

associated with horizontal air advection from lower latitudes (Comiso et al., 2008) by sub-

polar air masses. For instance, over recent decades, Alaska has experienced frequent and 

strong warm air advection from the North Pacific Ocean (Overland et al., 1997) highly 

noticeable in the western part (Trenberth, 1990). Likewise, central Arctic temperatures are 

mainly controlled by warm air advection and diabatic cooling (Serreze et al., 2011). These 
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highly synoptic/seasonal events partially explain air temperature anomalies (Turner et al., 

2007) and consequent later freeze-up and break-up (Todd and Mackay, 2003). As surface air 

temperature rises, sea ice area reduces, a greater fraction of open ocean, with a much lower 

albedo is exposed to radiative warming, thus increasing the amount of sensible heat within 

the ocean (Serreze et al., 2009). As a result, insulating ice cover forms later in the season, and 

so exchanges of energy between the atmosphere and the ocean are extended past the summer 

season (Serreze et al., 2009). The stored heat is released back into the atmosphere during late 

fall and early winter and promotes strong warming of the adjacent land within ~50 km (e.g., 

increased photosynthetic activity of vegetation measured by the NDVI) but its effects extend 

far inland – Figure 2.2; Bhatt et al., 2010). 

 

 

Figure 2.2: A 27-year trend (1982-2008) of maximum Arctic NDVI – change shown in 

percentage (%). From Bhatt et al. (2010).  

% 
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A wide array of proxy records such as pollen assemblages, marine molluscs, oxygen isotopes 

of ice cores, diatoms (Smol et al., 2005; Keatley et al., 2008; Ruhland et al., 2008; Paul et al., 

2010) and lake varved sediments (Stewart et al., 2008; Thomas and Briner, 2009; Tomkins et 

al., 2009) support the occurrence of shorter ice seasons in association with recent warmer 

temperature at high latitudes. The great sensitivity of small lakes and ponds is also illustrated 

by changes in the water balance between precipitation and evaporation (P – E) that further 

affects lakes’ physical, biological and chemical properties (Smol and Douglas, 2007; Paul et. 

al., 2010). For example, shorter ice seasons promote a longer growing period followed by the 

development of more complex and abundant periphytic diatoms in shallow water bodies 

(Smol et al., 2005; Paul et al., 2010), a diversified planktonic flora (Keatley et al., 2008) and 

an overall increased rate of primary production (Smol et al., 2005) consequent to warmer 

water temperatures and additional light availability. Paleolimnological proxies also support 

the hypothesis that shorter ice seasons also lead to changes in the chemical properties of High 

Arctic lakes (e.g., iron-rich sediments extracted from a meromictic lake on Ellesmere Island, 

Tomkins et al., 2009 or concentration changes in organic matter, Schindler and Smol, 2006). 

The Arctic region is dominated by the overwhelming presence of snow-covered sea ice that 

largely controls the surrounding environment with effects extending beyond its geographical 

area (Serreze and Barry, 2011). Recent temperature anomalies during the non-summer 

months have led to Arctic temperature amplification at the surface boundary layer, closely 

followed by decrease of the sea ice extent (Comiso et al., 2008; Serreze et al., 2007, 2009; 

Deser et al., 2010; Tivy et al., 2011). The sea ice-albedo feedback mechanism is the main 

controller of climate at high latitudes and is directly impacted by changes within the ice 

cover that imminently responds to changes in temperature, large-scale atmospheric and ocean 

circulation patterns and/or snowfall extent and depth.  

Due to the proximity of the Arctic Ocean, high latitude lakes are highly sensitive to seasonal, 

interannual and decadal/interdecadal variations in temperature and winter precipitation 

patterns. Sensitivity of lake systems and their ice cover to climate forcings arises as a result 
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of complex interactions between ocean, land and atmosphere. In conjunction with the coastal 

location of many of the Arctic lakes, lake ice phenology is also associated with regime shifts 

in atmospheric conditions and teleconnection indices (Bonsal et al., 2006; Ghanbari et al., 

2009; Wang et al., 2009) such as the Arctic Oscillation (AO), North Atlantic Oscillation 

(NAO), Pacific Decadal Oscillation (PDO), North Pacific (NP) and El Niño Southern 

Oscillation (ENSO). 

Past ice phenology of northern hemisphere lakes displayed a greater response to extreme 

phases of teleconnections. Changes in the coupled Pacific atmosphere-ocean system have the 

potential to affect climate conditions at higher latitudes (Trenberth and Hurrell, 1994), with a 

shift towards a deeper Aleutian low in the late 1970s explaining the milder conditions over 

Alaska related to a positive PNA/PDO phase and a strong El Niño (Trenberth, 1990; 

Hartmann and Wendler, 2005) and the later freeze-up and earlier break-up dates over western 

Canada (Bonsal et al., 2006). Longer open water seasons over western Canada are also 

associated with negative phases of ENSO and NP (Bonsal et al., 2006). Future changes 

within the NP circulation will likely be confined to regions south of 65°N since NP is only 

dominant south of the Bering Strait (Dickson et al., 2000). Conversely, positive NAO values 

resulted in later ice decay in northeastern Canada (Bonsal et al., 2006).  

Under projected amplified warming of polar regions, ice break-up timing of inland lakes may 

be prone to a greater change (i.e. advanced spring melt) than ice duration as ice decay 

responds to large-scale circulation forcings (Assel et al., 2003; Bonsal et al., 2006). 

2.1.2 Lake ice and snow 

The high-albedo of fresh snow (0.80-0.90) was shown to be a major driver of lake ice 

phenology, oscillations in snow duration, depth and extent having direct implications for the 

thermal regime, winter energy balance and ecology (Sturm and Liston, 2003) of lakes. Snow 

supports formation of snow ice, a unique feature of water surfaces (Sturm and Liston, 2003) 

by contributing to the thickening of the ice cover (Korhonen, 2006). Additionally, snow also 
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reduces the growth rate of the underlying lake ice because of its lower thermal conductivity 

(0.08-0.54 versus 2.24 Wm
-2 

K
-1

 for ice; Sturm, 1997) and insulating properties (half than 

that of terrestrial snow; Sturm and Liston, 2003). A thinner and denser snow layer provides 

less insulation and allows higher rates of heat flow from the lake surface to the atmosphere in 

spring (Sturm and Liston, 2003). Knowledge of the current state of Arctic snow can be used 

to predict lake ice-off dates, as break-up trends closely follow those of number of snow days 

(Jensen et al., 2007). Changes in the amount of snowfall in a certain region can also explain 

lake ice thickness and variability in the break-up date timing (Duguay et al., 2003).   

Over the past five decades, the annual pan-Arctic snow-cover extent has experienced a 

continuous decline (10% per decade since 1972; Karlsson et al., 2011) with most abrupt 

changes occurring in spring and over continental coastal regions. For the North American 

Arctic, from 1967 to 2007, the snow cover extent has declined by 12% in May (Brown et al., 

2010) and by 19.9% decade
-1 

(1979-2013) in June (Derksen et al., 2013). The continental 

coastal regions experienced an increased reduction in the snow cover extent (Radionov et al., 

2004). The variability of pan-Arctic snow extent in May and June is partially explained by 

temperature (49% and 56%), whereas a positive AO phase since the late 1980s is responsible 

for 21% of the variability in the snow cover extent (only 10% for North America, Brown et 

al., 2010). Reduced snow duration since the 1970s is also associated with earlier melting 

(Brown et al., 2010). Tedesco et al. (2009) also detected earlier snowmelt for the pan-Arctic 

region of 0.6 days decade
-1 

from 1978 to 2008. 

Whilst most regions across the Arctic experience changes that are more detectable within the 

spring snow cover, Alaska and the Canadian Arctic Archipelago undergo reduced duration of 

both autumn and spring snow cover (Brown et al., 2010). Figure 2.3 shows changes in the 

June snow cover extent between 1967-2012. 
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Figure 2.3: Anomalies in the Arctic June snow cover extent (1967-2012) shown in 

millions of square kilometers. The graph is based on data from the Rutgers University 

Global Snow Lab and was published at http://earthobservatory.nasa.gov.  

Consequent to more precipitation at high latitudes during recent decades (Callaghan et al., 

2011) as a result of increasing air temperatures, snow depth has increased in most northern 

regions, with significant changes in northern Canada and the Alaskan North Slope (Duguay 

et al., 2006; Tedesco et al., 2009). Snow depth changes have been related to earlier break-up 

dates (Vavrus et al., 1996; Morris et al., 2005). 

2.1.3 High Arctic polar-desert and polar-oasis lakes 

The High Arctic is in its majority a polar desert area with mostly barren land surfaces, 

intense and persistent coldness, and low amounts of precipitation (Woo et al., 2006). Mean 

annual temperature (1950-2011) at Alert, Nunavut (82°30’ N, 62°20’ W) is -19°C, at Eureka, 

Nunavut (79°59’ N, 85°56’ W) is -18°C, and at Resolute, Nunavut (74°41’ N, 94°49’ W) is   

-15°C. For the same period, mean total precipitation fall is 158 mm at Alert, 161 mm at 

Resolute and 79 mm at Eureka (Environment Canada, 2011). The majority of High Arctic 

lakes are situated in polar desert environments.  
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Within the dominant polar desert environment, small warmer areas have been identified. 

These fairly small regions (with surface areas ranging from 10
-2

 to 10
2
 km

2
), called polar or 

High Arctic oases (Woo and Young, 1996), are of relatively great biological production and 

diversity, with warmer soil and longer growing season (Courtin and Labine, 1977), discretely 

localized from the surrounding arid landscape of polar deserts (Svoboda & Freedman, 1981). 

Lakes with longer frost-free seasons are associated with higher primary productivity and 

more rapid nutrient cycling (Perren et al., 2003; Keatley et al., 2007; Callaghan et al., 2012). 

They are characterized by a milder microclimate (Woo and Young, 1997) that is mainly 

attributed to higher incoming radiation given by the fact that most frequently they develop in 

relatively flat coastal lowlands, exception being the thermal oasis surrounding Lake Hazen 

(France, 1993). Lake Hazen is situated in a trough, and is sheltered from the cold Arctic 

Ocean air by the Grant Land Mountains (> 2000 m) in the north and a plateau (400-900 m) in 

the south.  

Ellesmere Island contains some of the largest polar oases in the Queen Elisabeth Islands of 

Arctic Canada, including Eureka, Tanquary Fiord and Lake Hazen (Edlund and Alt, 1989). 

Other High Arctic oases have been identified on Devon Island (Bliss, 1977), Alexandra Fiord 

(Freedman et al., 1994), Polar Bear Pass (Bathurst Island), at Sherard Bay (Melville Island), 

and Mould Bay on Prince Patrick Island (Aiken et al., 1999). Given that the current analysis 

is limited by the low spatial resolution of the SAR sensors (150 m for ASAR, and 200 m for 

RADARSAT-1/2), Lake Hazen, Buchanan Lake, lake L6 on Devon Island and lake L7 on 

Bathurst Island were the only investigated lakes located in polar oases environments.  

2.2 Lake Ice Thermodynamics 

Energy exchanges between the various components of the cryosphere and atmosphere drive 

the overall Arctic climate. Lake ice plays an integrating role within this complex system as it 

actively interacts with the surrounding ocean and the overlying atmosphere. Since the net 

radiation Frad at the top of the atmosphere (TOA) is  



 

 

 

15 

      Frad = (1 – A) K – L          

where A is the planetary albedo, K the incoming shortwave radiation and L the emitted 

longwave energy (Serreze, 2005), this can be further integrated into the energy balance of the 

northern polar cap expressed as  

                      

   

  
 = Frad + Fwall + Fsfc                             

where ∆E / ∆t is the time change in the storage of moist static energy (the sum of  sensible 

heat, latent heat and potential energy), Fwall is the net poleward energy from north of 70°, and 

Fsfc represents the net energy flux at the Earth’s surface. If the result is negative, the 

atmosphere is losing heat versus heat gain indicated by positive values (Serreze, 2005 from 

Nakamura and Ort, 1988). In light of the above energy flux exchanges, it can be further 

stated that energy deficit or excess within a lake is highly influenced by the albedo of lake 

ice, which brings further contributions to the overall energy of the Arctic system. Lake ice 

albedo values range from 0.10 for black ice (Bolsenga, 1969) to 0.39-0.46 for white ice, 

0.35-0.58 for refrozen slush (Bolsenga, 1977) and 0.70-0.90 for ice covered by freshly fallen 

snow (Brown and Duguay, 2010). Lower lake ice albedo values can contribute to energy 

surplus contrasted by the opposite situation of higher albedo values possibly associated with 

lake energy deficit. 

The energy balance of ice integrates all the above-mentioned energy exchanges but becomes 

even more intricate since it also incorporates additional heat fluxes that one needs to consider 

when analyzing the response of lake ice cover to climate conditions. The energy balance of 

ice is described as 

(1 – α) K ↓ – I0 + L ↓ – L ↑ + QH + QE + QG + QM + QW + QP
*
 = 0 

where, α is the ice surface albedo, K ↓ is the incoming solar radiation at the surface, I0 is the 

energy flux that penetrates the ice surface, L↓ and L↑ are the incoming and outgoing 

longwave energy, QE and QH are the latent and sensible heat fluxes, QG is the conductive 
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heat, QM is the flux resulting from melting/freezing and QW is the contributing energy of 

water at the ice-water interface. The addition of QP (heat added by precipitation) to the 

formula depends on the climatic scenario (adapted from Heron and Woo, 1994).  

2.2.1 Freeze-up 

Lake ice starts forming following the decrease in the seasonal air temperatures. Ice onset is 

also driven by lake morphometry as different amounts of heat are being accumulated during 

the summer months depending on lake depth, area and volume. Once lake water reaches its 

utmost density at 3.98°C consequent to heat loss at the air-water interface, deeper warmer 

waters replace the denser surface ones (turnover) and additional cooling continues until a 

solid ice cover develops (Brown and Duguay, 2010). Without snowfall during freeze up, 

clear congelation ice starts forming (Figure 2.4a) and growth persists. Conversely, if snowfall 

occurs, ice development is either delayed (Adams, 1976) or snow ice (Figure 2.4b) forms.  

 

 

Figure 2.4: Types of ice present on shallow sub-Arctic lakes, Churchill, Manitoba: (a) 

clear (bubble-free) ice; (b) snow (white) ice. From Duguay et al. (2002). 

Snow ice only develops if the ice sheet cannot support the weight of overlying snow (snow 

submerges the ice below the water hydrostatic level); then the flooded bottom snow saturates 

(a) (b) 



 

 

 

17 

(Sturm and Liston, 2003) and forms a slush layer that later freezes as white ice (Bengtsson, 

1986; Liston and Hall, 1995). Rain infiltrations within the snow/ice cover or partial melt 

during the winter (Brown and Duguay, 2010) can also lead to white ice formation.  

2.2.2 Break-up 

Lake ice break-up follows increasing spring solar radiation and air temperatures above 

freezing. Further combination with wind stress, warmer inflows and runoff (Williams, 1965) 

can accelerate the process. The ice type (black or snow ice) and the presence/absence of a 

snow layer on the ice surface influences the ice decay process, with snow ice and snow 

increasing the surface albedo and thus resulting in delayed ice break-up (Jeffries and Morris, 

2007). The presence of snow also delays ice melt onset as solar radiation will melt snow 

prior to disintegrating the internal structure of ice crystals (Ashton 1986). Melt gradually 

accelerates as soon as snow melts and more ice is exposed to radiative warming. 

2.3 Data and Methods 

2.3.1 Optical imagery 

Optical imaging of Arctic lakes started with the launch of the first Landsat Multispectral 

Scanner (MSS) in 1972 and has continued to date through multiple Landsat sensors, Landsat 

8 being launched in February 2013 at a spatial resolution of 30 m. Monitoring ice cover can 

also be performed with the Terra/Aqua Moderate-Resolution Imaging Spectroradiometer 

(MODIS) but is limited to larger lakes given the 250-500 m spatial resolution of the sensor 

(Arp et al., 2013). The presence of clouds, prolonged darkness or low sun elevation at 

northern latitudes limits the use of optical sensors during key months for lake ice phenology, 

particularly during freeze-up. Nevertheless, optical imagery is essential for validating and 

complimenting the SAR observations whenever is available. 
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2.3.2 Synthetic Aperture Radar 

With day and night observations in all weather conditions at spatial resolutions raging from a 

few meters to 150 m, SAR sensors provide year-round acquisitions, critical for lake ice 

regimes monitoring. 

Airborne X-band and C-band SAR images acquired over shallow lake regions have been 

shown to be useful for determining the presence of floating or grounded ice (Weeks et al., 

1978; Mellor, 1982) and timing of lakes that freeze to their bed in winter (Elachi et al., 

1976). The first analysis of ERS-1 SAR data over lakes on the North Slope of Alaska was 

performed by Jeffries et al. (1994) during the ice season of 1991/1992. The study shows that 

monitoring the evolution of radar return, also referred to as radar backscatter intensity or 

sigma-nought (σ°), is useful for detecting ice onset and melt, as well as floating or grounded 

ice (ice frozen to lakebed).  

Methods developed in these earlier investigations have more recently been applied to map 

fish overwintering habitat in channels of the Sagavanirktok River, Alaska (Brown et al., 

2010), to estimate methane sources (Walter et al., 2008) or to determine winter water 

availability in Alaska (White et al., 2008). C-band SAR has been shown to be the most useful 

frequency for distinguishing floating ice from grounded ice as discrimination between the 

two different ice covers is facilitated by the high contrast displayed in SAR images 

(Kozlenko and Jeffries, 2000). Detection and analysis of Arctic lake ice conditions between 

1991-2011 from spaceborne SAR observations presented in this research used data from a 

combination of C-band SAR sensors that were in orbit during this period (Table 2.1). 
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Table 2.1: Characteristics of the SAR sensors used in this study’s lake ice cover 

investigations (1991-2011). 

 

Generally, low radar returns (-17 to -12 dB) in C-band ERS-1/2, VV polarized SAR imagery 

indicate the presence of a thin, relatively uniform ice cover at the beginning of the ice season, 

associated with specular reflection off the ice surface away from the sensor (Duguay et al., 

2002). Low radar backscatter also attests the existence of grounded ice later into the growing 

season, explained by the low dielectric contrast at the ice-lake bottom interface and the 

absorption of the radar signal into the substrate (Jeffries et al., 1994). Steady increase in σ° 

persists during the ice season, from November to April, as ice continues to grow and remains 

afloat. Maximum returns (-11 to -2 dB) or brighter (white and dark/light grey) signatures are 

associated with the presence of floating ice. Higher backscatter from floating ice is a 

combination of high difference in dielectric properties between the ice and the underlying 

liquid water, and the presence of air inclusions in the ice layer, with bubbles mainly resulting 

in volume scattering (Duguay et al., 2002). Ice decay at the end of the season is characterized 

by low radar return from the melting ice and snow, and/or ponding water that reflects the 

radar signal (Duguay et al., 2002). 

Detection of the start of ice formation, melt onset and end of the ice season can also be 

derived from analysis of the backscatter temporal evolution. At C-band, the start of ice 

  ERS-1 ERS-2 RADARSAT-1 RADARSAT-2 ASAR (Envisat) 

Launch date 17-Jul-91 21-Apr-95 04-Nov-95 14-Dec-07 30-Oct-02 

End of mission 10-Mar-00 05-Sep-11 29-Mar-13 still in orbit 08-Apr-12 

Spatial resolution 240 m 240 m 100 m 100 m 150 m 

Pixel spacing 100 m 100 m 50 m 50 m 75 m 

Polarization  VV VV HH, HV HH, VV, HV, VH VV or HH 

Revisit time 35 days 35 days 24 days 24 days 35 days 

Swath width 400 km 400 km 500 km 500 km 406 km 

Incidence angles 18-47° 19-26°  19-49° 20-46° 15-42°  
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formation over lakes is indicated by the first considerable increase in σ°. When ice has 

formed as a thin, continuous layer, the σ° intensity decreases (Duguay and others, 2002). 

Conversely, melt onset is identified by the first significant decrease in σ°, given by the 

presence of water from internal melting of ice and/or a melting snow cover, and thus 

resulting in increased absorption of the radar signal (Duguay and others, 2002). Lower σ° is 

observed during the open-water season but may vary depending on wind speed.   

2.3.3 Image segmentation 

Segmentation of the SAR images used in this research was performed with two the MAp-

Guided Ice Classification System (MAGIC) and the unsupervised K-means algorithm. 

2.3.3.1 MAGIC 

In order to map lakes/lake areas frozen to the bed (grounded ice) and those with ice afloat 

(floating ice) in the Barrow region of the Arctic Coastal Plain, image segmentation was 

performed for ERS-1/2 acquisitions extending over a 20-year period (1991-2011). 

The automated segmentation combines graduated increased edge penalty and region growing 

techniques, both incorporated in the Iterative Region Growing with Semantics (IRGS) 

algorithm and implemented in the MAp-Guided Ice Classification System (MAGIC) 

software (Clausi et al., 2010). IRGS encompasses edge strength between regions in order to 

ensure that true class boundaries are preserved. Being an unsupervised algorithm, no training 

data is required prior to segmentation and classification (Yu et al., 2012). The method, 

proved to be robust, has been fully validated and is being successfully used by Environment 

Canada’s Canadian Ice Service (CIS) for sea ice classification. The statistical and spatial 

characteristics of pixels in SAR images have been effectively modeled with IRGS and 

successfully used in a recent study to map and monitor ice cover on large northern lakes 

(Ochilov et al., 2010). Given that different ice types are present on lakes, a three-cluster 

segmentation (two floating ice classes and one grounded ice class) was used and in order to 

further verify the performance of the three-cluster segmentation, a five-cluster segmentation 
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was at times performed.  Following the input of each individual SAR image and the 

corresponding vector file of lakes included in the study area, automated image segmentation 

is performed with IRGS, and the output is a file that includes fractions for all three classes 

that were initially selected by the operator. In order to determine the total fraction of 

grounded and floating ice, visual assessment of each segmentation result against the original 

SAR image is performed, and all resulting ice classes are merged into two classes (grounded 

and floating ice) by a human operator. Once merging was completed, a two-class map was 

generated for each date of SAR imagery included in the analysis. Low-resolution (100-m 

pixels) images were segmented with IRGS and further classified as floating and grounded 

ice, respectively. The current study extends the use of IRGS in documenting and analyzing 

changes in ice cover on shallow lakes. 

The use of MAGIC at an operational level is limited by the lack of automatic labeling of the 

ice and open-water classes in the IRGS algorithm. Class labeling requires visual inspection of 

the original SAR image, assessment of initial observations against segmentation results and 

manual class merging of same-type classes. 

2.3.3.2 The unsupervised K-means 

The most common clustering method, the unsupervised K-means classification algorithm, 

has proved to be a suitable method to discriminate between ice and open water and thus 

monitor the lake ice break-up using SAR data (Sobiech and Dierking, 2013). Considering the 

large number of images analyzed in this study, the K-means algorithm was preferred over a 

fixed threshold method as it performs better given the changing ice conditions (Sobiech et al., 

2013) during the melt season. The unsupervised K-means classification is an iterative process 

in which image intensity values are divided into ‘k’ classes or clusters. Throughout the 20 

iterations performed for each segmentation, the K-means classification assigned each 

intensity value to the class with the nearest arithmetic mean (minimum-distance technique).  
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In order to reduce the inherent speckle present in SAR images, a Lee filter (Lee, 1980) with a 

kernel size of 3x3 was applied to all geocoded images. After the speckle was removed, 

regions of interest (ROIs) covering the lake areas were selected. Following ROI designation, 

image segmentation of each ROI was performed. The classification only included the pixels 

inside the ROI, all other pixels being excluded from analysis. The segmentation was set to 

five clusters that were further merged into two classes, one for open water and one for ice, 

that were next represented on a two-class map generated for each segmented image. Text 

files showing the percentage (%) or fraction of open water and ice were extracted for each 

ROI of the classified maps to quantify the amount of ice present on lakes from the start of the 

break-up process until the end of the melt season. 

2.3.4 MODIS Land/Ice Surface Temperature 

Moderate Resolution Imaging Spectroradiometer (MODIS) land/lake surface temperature 

data were acquired from 2006 to 2011. MODIS pixels were identified for each of the 14 

ROIs (lakes) shown in Figure 1 and listed in Table 1, and used in the analysis
 
of σ

0
 values in 

relation to lake surface “skin” temperature. Selection of MODIS pixels was carefully 

performed in order to avoid land contamination and included MODIS pixels closer to the 

lake areas of interest. The pixels were selected based on two criteria: first – the proximity to 

the selected SAR ROIs, and second – each 1-km MODIS pixel had to be 95% over lake. 

In this study, the MODIS UW-L3 Lake Surface Water Temperature/Lake Ice Surface 

Temperature (LSWT/LIST) product was used (Kheyrollah Pour et al., 2012, 2014). The 

product is generated from Aqua and Terra MYD/MOD 11- L2 data, at a spatial resolution of 

1 km. A new algorithm was developed to create products at various temporal resolutions 

from the combination of MODIS data from the Aqua and Terra satellites, which were not 

available otherwise (see Duguay et al., 2012 and Soliman et al., 2012 for details). The Aqua 

and Terra satellite platforms follow the same orbit within 3 hours of each other. However, at 

higher latitudes, it is possible to monitor the same location from both sensors within an hour, 
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considering different viewing angles. In such case, it is feasible to combine observations 

from both sensors in each pixel during an hour. The MODIS UW-L3 LSWT/LIST product 

has been evaluated against in situ temperature measurements over Finnish lakes (Cheng et 

al., 2014; Kheyrollah Pour et al., 2014) as well as one-dimensional lake models over two 

large Canadian lakes (Kheyrollah Pour et al., 2012). 

2.3.5 The Canadian Lake Ice Model (CLIMo)  

Performance of lake ice models was previously evaluated for large and small lakes. 

Comparison of two 1-D lake ice models, Hostetler (Hostetler et al., 1993) and FLake, showed 

that models simulated well ice conditions for small lakes (Martynov et al., 2010). The use the 

FLake model as a parameterization scheme in investigating the performance of the High 

Resolution Limited Area Model (HIRLAM) Numerical Weather Prediction (NWP) model 

revealed model’s limitations to simulate accurate ice conditions, freeze-up in particular. 

Assimilation of lake surface temperature (LST) would provide more reliable outputs (Eerola 

et al., 2010). Evaluation of the 1-D Freshwater Lake model (FLake) and the Canadian Lake 

ice Model (CLIMo) for Great Slave Lake and Great Bear Lake indicated that CLIMo outputs 

for ice thickness and break-up dates were generally in better agreement with in situ 

observations than the Flake simulations (Kheyrollah Pour et al., 2012). This is explained by 

the fact that unlike FLake, CLIMo considers the presence of snow on lake ice. The one-

dimensional thermodynamic ice model CLIMo was extensively tested over various lakes 

across the Arctic, such as lakes on the North Slope of Alaska (Duguay et al., 2003), a shallow 

sub-Arctic lake near Churchill, Manitoba (Brown et al., 2011a) or at the pan-Arctic scale for 

lakes of different depths (Brown and Duguay, 2011b). Overall, it was demonstrated that 

CLIMo is capable of simulating well the seasonal and interannual changes in ice thickness, 

on-ice snow depth as well as changes in freeze-up and break-up dates (Ménard et al., 2002; 

Jeffries et al., 2005; Brown and Duguay, 2011a, b). 
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CLIMo is a one-dimensional thermodynamic model employed for freshwater studies and is 

capable of simulating freeze-up and break-up dates, ice thickness and ice cover composition 

(black or snow ice). CLIMo has been modified from the 1-D sea ice model of Flato and 

Brown (1996) and calculates surface energy budget in order to derive the net flux at the ice, 

snow or open water surface. The model is based on the one-dimensional unsteady heat 

conduction equation, with penetrating solar radiation. 

   
  

  
  

 

  
  
  

  
 Fsw I0(1-)Ke

-Kz
 

where   (kg m
-3

) is the density, Cp (J kg
-1 

K
-1

) is the specific heat capacity, T (K) is the 

temperature, t (s) is the time, k (Wm
-1 

K
-1

) is the thermal conductivity, z (m) is the vertical 

coordinate, positive downward, Fsw (Wm
-2

) is the downwelling shortwave radiative energy 

flux, Io (Wm
-2

) is the fraction of shortwave radiation flux that penetrates the surface,  is the 

surface albedo, and K is the bulk extinction coefficient for penetrating shortwave radiation 

(m
-1

).  

From this, calculation of the surface energy budget can be performed. 

F0 = Flw - T
4
 (0,t) + (1-)(1-I0)Fsw + Flat + Fsens 

where F0 (Wm
-2

) is the net downward heat flux absorbed at the surface, Flw (Wm
-2

) is the 

downwelling longwave radiative energy flux,  is the surface emissivity,  is the Stefan-

Boltzman constant (5.67 x 10
-8

 Wm
-2 

K
-4

), Flat (Wm
-2

) is the downward latent heat flux, and 

Fsens (Wm
-2

) is the downward sensible heat flux (both positive downward) (Ménard et al., 

2002; Jeffries et al., 2005). 

CLIMo includes a fixed-depth mixed layer in order to represent an annual cycle. The mixed 

layer is fixed at the freezing point when ice is present. When ice is absent, the surface energy 

budget is used to calculate the temperature of the mixed layer thus representing the heat 

storage in the lake. The water column of shallow lakes is well mixed and isothermal from top 
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to bottom during the open-water season, allowing a good approximation of the effect of lake 

depth leading to fall freeze-up based on the mixed layer depth (Duguay et al., 2003).  

Growth and melt at the underside of ice are calculated from the difference between the 

conductive heat flux into the ice and the heat flux released at the upper surface of the mixed 

layer, thus 

   

  
z=h = ( 

  

  
z=h -   

 

 swI0(1-)Ke
-Kz

dz)
 

    

where hi is the ice thickness and dz is the depth of the vertical coordinate. The last term of the 

equation is the shortwave radiation that penetrates through the bottom of the ice slab, and is 

presumed to be absorbed in the mixed layer and returned to the ice underside in order to 

maintain the temperature of the mixed layer at the freezing point. Melt at the upper surface is 

calculated from the difference between the conductive heat flux and the net surface flux; any 

snow on the ice surface is melted first and the remaining heat is further used to melt ice.  

The parameterization of albedo in the model is based mainly on surface type (water, ice or 

snow), surface temperatures and ice thickness, ice composition being considered uniform. In 

order to represent an annual cycle, CLIMo considers a fixed-depth mixed layer. Duguay et al. 

(2003) provide a more detailed description of CLIMo.  

For the purpose of this research, CLIMo was forced with climate data from the Barrow 

meteorological station (1950-2011). Two snow depth scenarios were used – one that assumed 

0% snow and one that assumed a 53% snow cover depth of that present on land. The 53% 

snow depth was calculated based on existing field measurements of snow depth measured 

over land. A fixed snow density of 335 kg m
-3

 was assumed and was based on available in 

situ measurements for the Barrow region from 1991 to 2006. The mean lake depth used in 

the model was 3 m. Model outputs used in this research include ice thickness, and freeze-up 

and break-up dates. 
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2.3.6 ERA-Interim Reanalysis Data 

The ERA-Interim is the largest global atmospheric reanalysis product of the European Centre 

for Medium-Range Weather Forecasts (ECMWF). The full-resolution (~0.75° x 0.75°) 

gridded product is derived from data assimilation from a variety of sources: radiances from 

the Special Sensor Microwave Imager (SSM/I), radiosonde temperature, scatterometer ocean 

surface wind data, including recalibrated data from the European Remote Sensing (ERS-1/2) 

satellites, and until 2009 from QuickSCAT (Dee et al., 2011) and provides global coverage 

since 1979. For the purpose of this study, the 2-m near-surface temperature computed with a 

sequential data assimilation scheme, advancing forward in time using 12-hourly analysis 

cycles, was utilized. In this study, the ERA-Interim data was used to supplement the limited 

temperature records from meteorological stations in the Canadian High Arctic. 
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Chapter 3 

Response of ice cover on shallow lakes of the North Slope of Alaska 

to contemporary climate conditions (1950-2011): radar remote 

sensing and numerical modeling data analysis 

 

3.1 Introduction 

Lake ice cover has been shown to be a robust indicator of climate variability and change. 

Previous studies have identified lakes as a highly sensitive cryospheric component to climate 

conditions (Schindler et al., 1990; Robertson et al., 1992; Heron and Woo, 1994; Vavrus et 

al., 1996; Walsh et al., 1998; Magnuson et al., 2000; Hodgkins et al., 2002; Assel et al., 2003, 

Bonsal et al., 2006; Duguay et al., 2006). Climate-driven changes have significantly 

impacted high latitude environments over recent decades, changes that are predicted to 

continue or even accelerate in the near future as projected by global climate models 

(Overland et al., 2011; Dufresne et al., 2013; Koenigk et al., 2013). With projected amplified 

warming of polar regions, the ice cover of shallow Arctic lakes is expected to continue 

reducing in both thickness and duration. Although the response of lakes may be 

heterogeneous depending on latitude, lake depth and size, water composition and water 

dynamics, the majority of lakes demonstrate an overall strong response to surface air 

temperatures (Palecki and Barry, 1986). Persistent warmer air temperatures (Serreze et al., 

2000; Trenberth et al., 2007) and increased snowfall observed in the Arctic over the last 

decades (Jones et al., 2011; Arp et al., 2012), associated with amplified reduction of sea ice 

concentrations, thickness and extent (Serreze et al., 2007; Comiso et al., 2008; Walsh et al., 

2011), have accelerated during recent years (Walsh et al., 2011). These changes in the Arctic 

climate system have likely had an impact on ice phenology of lakes in coastal regions 

adjacent to the Arctic Ocean.  
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Changes in lake ice-cover could in turn have an important feedback effect on energy 

exchanges between the lake surface and the atmosphere, and on water levels and therefore on 

lake water balance, water properties and quality. As a result, water resources, food supply, 

aquatic habitat, and underlying permafrost conditions undergo changes at various spatial and 

temporal scales. Through their heat and water budgets, lakes play an important role in the 

local and regional climate of high-latitude regions. Longer open-water seasons lead to 

increased exposure to solar radiation that, through evaporation, results in extended latent heat 

release from lakes to the atmosphere, the amount of latent heat being twice of that released 

by the adjacent tundra (Mendez et al., 1998). In permafrost areas such as the North Slope of 

Alaska, changes in lake water balance, dynamics or temperature can also disturb the 

underlying permafrost layer, resulting in thaw (Romanovsky et al., 2010) with consequent 

talik formation and lateral lake water drainage, and also in carbon dioxide and methane 

release to the atmosphere (Walter et al., 2006). The presence of liquid water underneath ice 

extends fresh water availability for residential and industrial use throughout the winter. The 

changing ice cover of high-latitude lakes not only alters the physical and thermal properties 

of lakes but also affects the chemical properties and the dependent biota; warming lake water 

temperatures may lead to extinction, blooming or migration of various biological species. 

However, the magnitude to which changes within the Arctic lakes affect the dependent 

ecosystem is complex and poorly understood, and remains to be further investigated.  

In response to warmer climatic conditions and to changes in snow cover in recent decades, 

break-up dates in particular, have been occurring earlier in many parts of the northern 

hemisphere (Magnuson et al., 2000; Duguay et al., 2006). The presence of trends in lake ice 

duration may be occasionally masked by the seasonal, annual or decadal variability that is 

influenced by the intensity and duration of a climatic episode. Under warmer climate 

conditions, shallow tundra lakes, many of which are less than 3-m deep, are expected to 

develop thinner ice covers, likely resulting in a smaller fraction of lakes that freeze to their 

bed in winter, earlier ice-off dates, and overall shorter ice seasons. Shallow lakes of the 
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Alaskan Arctic Coastal Plain (ACP), and other similar regions of the Arctic (e.g., Arctic 

Siberia (Grosswald et al., 1999; Smith et al., 2005; Sobiech and Dierking, 2012)), the Hudson 

Bay Lowlands (Duguay et al., 1999; Duguay and Lafleur, 2003; Duguay et al., 2003; Brown 

and Duguay, 2011a), have likely been experiencing changes in seasonal ice thickness and 

phenology (e.g., freeze-up, break-up, and ice cover duration) over the last decades, but few 

studies have documented these changes.  

Past changes in lake ice-cover have mostly been identified only through non-spatially 

representative point in situ measurements, which have been almost unavailable over the last 

two decades following the decline of the global terrestrial monitoring network for fresh-water 

ice (Lenormand et al., 2002; Prowse et al., 2011). Recent studies have demonstrated that 

satellite remote sensing provides a viable alternative to detecting and monitoring changes of 

the ice cover on high-latitude lakes (Latifovic and Pouliot, 2007; Arp et al., 2012; Duguay et 

al., 2012). Previous remote sensing investigations indicate that optical sensors are not the 

ideal tool for comprehensive monitoring of lakes since they are limited by the presence of 

cloud cover and extended polar darkness (Hinkel et al., 2012), and in most cases, by 

moderate spatial resolution (i.e., 100-1000 m). Instead, with fewer restrictions (i.e., allowing 

imaging under cloudy and darkness conditions), spaceborne SAR has been shown to be the 

most efficient tool for detecting changes in Arctic lake ice (Jeffries et al., 1994; Morris et al., 

1995; Duguay et al., 2002; Jeffries et al., 2005; Cook and Bradley, 2010; Arp et al., 2012; 

Jones et al., 2013). Recent attempts to identify the responses of shallow lakes of the NSA to 

contemporary climate conditions exist and changes in the grounded ice fraction has been 

noticed. However, the short period covered by these studies using satellite observations, 

2003-2011 (Arp et al., 2012) and 2008-2011 (Engram et al., 2013) precludes identification of 

a trend.  

The climate trajectory in the Barrow region has taken an abrupt turn during the first decade 

of the 21st century, with mean air temperatures increasing by 1.7 °C (Wendler et al., 2013), a 

change that has been shown to alter the lake ice regimes in this coastal region. Consequent to 
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warmer air temperatures and increased precipitation (Callahan et al., 2011) during recent 

decades (Figure 3.1), the ice regimes of these shallow lakes are expected to develop thinner 

ice covers, earlier melt, and shorter ice seasons. Transition toward higher floating ice 

fractions, with more lakes maintaining liquid water underneath the ice cover and fewer lakes 

freezing to the bottom by the end of winter is also likely to occur.  

 

 

 

Figure 3.1: 1950-2011 annual mean air temperature and total precipitation (rain and 

snowfall) as recorded at the National Weather Service station, Barrow, AK. The dashed 

lines indicate the trend for annual mean air temperature (2.9 °C increase in 62 years, α 

= 0.001) and for annual total precipitation (639 mm increase in 62 years, α = 0.001). 

The objectives of this study are to identify changes in the maximum ice thickness of Arctic 

shallow lakes as derived from both SAR satellite observations and numerical modeling 

scenarios during recent decades, to report observed and simulated changes in the ice 

phenology of these lakes from 1950 to 2011, and to determine potential ice regime trends 

during recent decades. To achieve these goals, this study (1) analyzes and reports monthly 
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changes in the fraction of lakes that froze to the bed in winter between 1991 and 2011, (2) 

evaluates the rate of change of late winter maximum ice thickness during the past two 

decades, (3) presents the identified changes in lake ice thickness and duration as derived 

from a numerical lake ice model (1950-2011), and (4) correlates SAR-detected changes 

within the lake ice cover with model-simulation results (1991-2011). 

 

3.2 Background 

Airborne X-band and C-band SAR images acquired over shallow lake regions have been 

shown to be useful for determining the presence of floating or grounded ice (Weeks et al., 

1978; Mellor, 1982) and timing of lakes that freeze to their bed in winter (Elachi et al., 

1976). The first analysis of ERS-1 SAR data over lakes on the North Slope of Alaska was 

performed by Jeffries et al. (1994) during the ice season of 1991/1992. The study shows that 

monitoring the evolution of radar return, also referred to as radar backscatter intensity (σ°), is 

an efficient tool in detecting ice onset and melt, as well as floating or grounded ice. The low 

temporal resolution of the ERS sensors, a repeat cycle of 35 days would not be suitable for 

the determination of freeze-up and break-up dates. However, considering that this study 

focuses on the determination of grounded and floating ice during the ice growth season, this 

is not a significant issue since high temporal resolution is not necessary (i.e., ERS 

observations still allow for the monitoring monthly changes in the fraction of floating and 

grounded ice, and appropriate comparison between years). In order to complement these 

observations and be able to simulate freeze-up and break-up dates with a daily temporal 

resolution, CLIMo was employed. 

Similar work by Jeffries et al. (1996) used SAR coupled with a numerical lake ice model to 

determine the timing of maximum ice thickness and the number of lakes on the North Slope 

of Alaska that freeze to their bottom, and estimate the depth of these lakes. These results are 

summarized below. Likewise, Duguay et al. (1999) and Duguay and Lafleur (2003) 
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evaluated the presence of floating and grounded lake ice, and the timing of maximum ice 

thickness, with ERS-1 SAR observations of the Hudson Bay Lowlands, near Churchill, 

Manitoba. Methods developed in these earlier investigations have more recently been applied 

to map fish overwintering habitat in channels of the Sagavanirktok River, Alaska (Brown et 

al., 2010), to estimate methane sources (Walter et al., 2008) or to determine winter water 

availability in Alaska (White et al., 2008). Providing that discrimination between floating and 

grounded ice is facilitated by the high contrast displayed in SAR images, C-band SAR has 

been shown to be the most useful frequency for distinguishing between the two different ice 

cover conditions (Engram et al., 2013). 

Generally, low radar returns (-17 to -12 dB) in C-band ERS-1/2, VV polarized SAR imagery 

indicate the presence of a thin, relatively uniform ice cover at the beginning of the ice season, 

associated with specular reflection off the ice-water interface (Duguay et al., 2002). Low 

radar backscatter also attests the existence of grounded ice later into the growing season, 

explained by the low dielectric contrast at the ice-lake bottom interface and the absorption of 

the radar signal into the substrate (Jeffries et al., 1994). Steady increase in radar backscatter 

persists during the ice season, from November to April, as ice continues to grow and remains 

afloat. Maximum returns (-11 to -2 dB) are associated with the presence of floating ice. 

Higher backscatter from floating ice is a combination of high difference in dielectric 

properties between the ice and the underlying liquid water (Weeks et al., 1978), and the 

presence of air inclusions in the ice layer. The higher radar return could also be explained by 

the presence of smaller tubular bubbles formed during freeze-up or of larger ebullition 

spherical bubbles, resulting in a double-bounce effect (Mellor et al., 1982). Ice decay at the 

end of the season is characterized by low radar returns from the melting ice and snow, and/or 

ponding water that reflect the radar signal in a direction away from the sensor (Duguay et al., 

2002).  
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3.3 Study Area 

The study focuses on a region that encompasses 402 lakes, near Barrow (71°31’ N, 156°45’ 

W) on the NSA (Figure 3.2), an area that is dominated by the ubiquitous presence of shallow 

thermokarst lakes, lakes being reported to cover up to 40% of the coastal plain (Sellmann et 

al., 1975; Hinkel et al., 2005).  

 

Figure 3.2: Sub-region of the Alaskan Arctic Coastal Plain, near Barrow (71°17’ N, 156 

°46’ W). The satellite view of Barrow was provided by NASA, Landsat program 2011, 

Landsat TM L1T scene (ID: LT50790102011170GLC00). Publisher: USGS. Acquisition 

date: 9 June 2011. 

The area is dominated by a polar marine climate, with cold air temperatures and high-

velocity winds. The current mean annual air temperature (1921-2011) recorded at Barrow is -

12 °C and the mean annual precipitation fall is 845 mm (106 mm liquid precipitation and 739 



 

 

 

34 

mm snowfall). The east, east-northeast prevailing wind has a mean annual speed of 19.1 km 

h
-1 

(National Climate Data Center, 2012). Summer air temperatures are usually highest in 

July, with a mean air temperature of 4.4 °C, and lowest in February, with a mean of -26.6 °C. 

The area of lakes investigated in this study ranges from 0.1 to 58 km
2
. Despite the unknown 

bathymetry for the majority of these lakes, using a numerical ice-growth modelling approach, 

Jeffries et al. (1996) determined that 23% of the lakes may be deeper than 2.2 m, 10% with 

depths ranging from 1.5 m to 2.2 m, 60% between 1.4 m and 1.5 m, and 7% less than 1.4 m.  

A considerable number of lakes on the Alaskan ACP freeze to their bed each ice season 

(Mellor, 1982), and are ice free for only eight to ten weeks per year (Jeffries et al., 1996). Ice 

formation, mostly a function of lake morphometry and air temperature, commences in mid-

September (Jeffries et al., 1994; Liston et al., 2002; Jones et al., 2009) or early October 

(Hinkel et al., 2003) and attains a maximum growth rate in November (Jones et al., 2009) 

that is followed by a slower growth rate until early March or later (Jeffries et al., 1996), when 

many shallow lakes freeze to the bottom. Depending on lake water depth, the timing of 

maximum ice thickness varies and can occur any time between late April (Jeffries et al., 

1996) and May (Jones et al., 2009). Changes in air temperature, snowfall timing and snow 

depth prior to and during all months of freeze-up (ice-on) and break-up (ice-off) affect the 

timing of these ice events. However, maximum ice thickness is primarily driven by changes 

in the April air temperature and it happens earlier by six days following higher air 

temperatures and is delayed by seven days if lower April air temperatures occur. Changes in 

snow depth do not affect the timing of maximum ice thickness (Morris et al., 2005).  

April air temperature (monthly mean of the 2-m air temperature) was shown to also strongly 

affect the ice decay of central Alaskan lakes, with a ±1 °C change in air temperature resulting 

in an advance or delay of break-up dates by ±1.86 days (Jeffries and Morris, 2007). Ice 

break-up of lakes on the North Slope of Alaska, is driven by changes in air temperatures and 

the presence of an insulating snow cover, ice break-up that may commence as early as April 

and last until June (Hinkel et al., 2003) or even July (Hinkel et al., 2012), when lakes become 
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completely ice free. Field measurements indicate that snow was still present on lakes during 

the month of April (Jeffries et al., 1994; Sturm and Liston, 2003) hence ice break-up 

commences after the disappearance of the snow cover on top of lakes in late April or May. 

 

3.4 Data and Methods 

3.4.1 SAR-image processing 

A time series of a total of 79 SAR images from 1991 to 2011, between December and early 

May, standard low resolution (100-m pixel size and 240 m spatial resolution) ERS-1/2 (C-

band, 5.3 GHz), VV polarized (vertical transmit and vertical receive), ascending and 

descending passes, was radiometrically calibrated and geocoded with the MapReady software 

(v2.3.17) provided by the Alaska Satellite Facility (ASF). Following calibration and 

geocoding, each individual image was segmented in order to derive the ice cover fractions 

for both floating and grounded (bedfast) ice.  

In order to ensure that the images used in the analysis were not affected by possible melt at 

the end of the ice season, daily air temperatures recorded at the Barrow meteorological 

station were also taken into consideration in order to confirm that air temperatures values 

prior to and at the time of SAR acquisitions were below 0° C. Optimum radar images – not 

affected by possible melt at the end of the ice season – are acquired during April (Mellor, 

1982), also coinciding with the approximate timing of maximum ice thickness in this study 

area. As SAR imagery was not consistently available on the same date during the 20 years of 

study, assessment of differences in the grounded ice fraction between images acquired a few 

weeks apart was also performed. April to early May imagery was selected to derive the 

fraction of lakes frozen to the bed since images acquired later in the season may be affected 

by the presence of wet snow or ponding water on the ice surface and therefore result in 

erroneous results (Hall et al., 1994). Evaluation of differences between the ascending and 
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descending pass acquisitions at a two-day interval showed a difference of 1.5% to 2% in the 

fraction of grounded ice. The higher fraction of grounded ice was consistently noticed in the 

descending pass images, acquired two days after the ascending pass. The differences in the 

grounded ice fraction observed in the overlapping ascending and descending images are 

attributed to the right-looking ERS geometry. The SAR looking geometry of ERS – from the 

east in ascending mode and from the west in descending mode – limits the identification of 

the exact same ground features in overlapping images due to the angle of illumination. Issues 

such as foreshortening and layover are known to result in possible deformations in area 

where the topographic slope is greater than 10°. Considering that the study area is a coastal 

plain, such deformations are likely minimum and the difference in the grounded ice fraction 

is associated with the illumination differences.  

ERS imagery (December to March) was not available on a monthly basis during the 20-year 

period. However, SAR acquisitions during April were available for each year included in the 

study, except for 1996, 2002 and 2004 when images acquired on 3 May, 2 May, and 6 May 

were used to obtain the late-winter grounded ice fractions.  

In order to map lake areas frozen to the bed and those with ice afloat in the Barrow region of 

the ACP, image segmentation was performed for 79 ERS-1/2 acquisitions extending over a 

20-year period (Figure 3.3 shows segmentation results of late winter images).  
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62% 46% 42% 20 April 1992 21 April 1993 29 April 1994 

Floating ice	

Grounded ice	

14 April 1995 3 May1996 19 April 1997 51% 53% 42% 

39% 34% 51% 23 April 1998 24 April 1999 22 April 2000 

28 April 2001 2 May 2002 17 April 2003 48% 57% 40% 



 

 

 

38 

 

 

 

 

Figure 3.3: Image segmentation results of ERS-1/2 SAR images acquired near the time 

of maximum ice thickness for lakes near Barrow, from 1992 to 2011. The fraction of 

grounded ice for each date is also shown. Data source: Alaska Satellite Facility. All SAR 

images are copyright ESA (1992-2011). 

45% 51% 39% 17 April 2004 21 April 2005 22 April 2006 

26 April 2007 5 April 2008 25 April 2009 41% 31% 29% 

28% 26% 29 April 2010 16 April 2011 
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The automated segmentation combines graduated increased edge penalty and region growing 

techniques, both incorporated in the Iterative Region Growing with Semantics (IRGS) 

algorithm and implemented in the MAp-Guided Ice Classification System (MAGIC) 

software (Clausi et al., 2010). The method, proved to be robust, has been fully validated and 

is being successfully used by Environment Canada’s Canadian Ice Service (CIS) for sea ice 

classification. The statistical and spatial characteristics of pixels in SAR images have been 

effectively modeled with IRGS and successfully used in a recent study to map and monitor 

ice cover on large northern lakes (Ochilov et al., 2010). Given that different ice types are 

present on lakes, a three-cluster segmentation (two floating ice classes and one grounded ice 

class) was used and in order to further verify the performance of the three-cluster 

segmentation, a five-cluster segmentation was at times performed.  Following the input of 

each individual SAR image and the corresponding vector file of lakes included in the study 

area, automated image segmentation is performed with IRGS, and the output is a file that 

includes fractions for all three classes that were initially selected by the operator. In order to 

determine the total fraction of grounded and floating ice, visual assessment of each 

segmentation result against the original SAR image is performed, and all resulting ice classes 

are merged into two classes (grounded and floating ice) by a human operator. Once merging 

was completed, a two-class map was generated for each date of SAR imagery included in the 

analysis. Low-resolution (100-m pixels) images were segmented with IRGS and further 

classified as floating and grounded ice, respectively. The current study extends the use of 

IRGS in documenting and analyzing changes in ice cover on shallow lakes. 

 

3.4.2 Lake-ice modeling 

The lake ice model CLIMo was used to derive lake ice-thickness, freeze-up and break-up 

dates. CLIMo was forced using data obtained from the online archives of the National 

Climate Data Center (mean daily 2-m air temperature, relative humidity, wind speed, cloud 
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cover fraction, snow depth) from the Barrow meteorological station, for the period 1950-

2011. As meteorological data was not available for all years prior to 1950, the model was 

forced with available data from 1950 onward. In order to capture the typical observed 

variability in snow depth on Arctic coastal lakes, simulations were performed with two 

scenarios: one that assumed that no snow was present on the ice surface (0%) and a second 

one that assumed a 53% snow cover depth, calculated as a fraction from the total snow depth 

measured over land. The mean lake depth specified in the lake model simulations was 3 m. 

This model has been extensively tested over various lake regions, including the North Slope 

of Alaska (Duguay et al., 2003). CLIMo results presented in the study were in good 

agreement with both ERS-1 SAR observations and in situ measurements during the winter of 

1991-1992. For example, the simulated ice-on date was 19 September, while satellite 

observations indicated that freeze-up occurred between 11-20 September 1991 (Jeffries et al., 

1994). Similarly, the latest ice-off date simulated with CLIMo in a no-snow scenario was 14 

July 1992 and the SAR-derived one was 15 July 1992 (Zhang and Jeffries, 2000), only one 

day apart. Maximum ice thickness simulations (165-221 cm) in snow depth scenarios ranging 

from zero to 100% displayed differences of 5-6 cm when compared to field measurements 

(159-216 cm) during 19-29 April (Jeffries et al., 1994). More recently, the model has been 

further evaluated for a shallow lake near Churchill, Manitoba (Brown and Duguay, 2011a), 

and at the pan-Arctic scale for lakes of various depths (Brown and Duguay, 2011b). Analysis 

of model performance at the pan-Arctic scale showed that the average absolute error for 

determining ice-on and ice-off dates was less than one week when compared to field 

observations on 15 lakes in northern Canada. The mean maximum ice thickness difference 

between simulations and in situ measurements for three sites was 12 cm (6.5%). 

Wind redistributes snow, resulting in a thinner and denser snow layer over lakes than over 

land (Sturm and Liston, 2003), with a reported average fraction of 52% between the snow 

depth measured over lake ice and the snow depth measured over land at the Barrow weather 

station (Zhang and Jeffries, 2000). Considering the wide fluctuations in snow cover fraction 
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associated with its redistribution during the winter season and accounting for wide variations 

observed in snow density (198-390 kg m
-3

) in this area (Sturm and Liston, 2003), model 

simulations for the snow scenario were performed with a 53% snow depth fraction and a 

fixed snow density of 335 kg m
-3

. The calculated snow depth fraction over lakes and model 

input for snow density was based on available field measurements in the Barrow region from 

1991 to 2006.  

 

3.5 Results 

3.5.1 SAR-data analysis 

A 20-year time series of ERS-1/2 SAR images (1991-2011) – with acquisition dates between 

mid-December and late April for all but three years (1996, 2002 and 2004) when April 

images were not available and early May acquisitions were used instead (Table 3.1) – was 

analyzed.  

The results show not only an expected inter-annual variability but also a gradual transition 

toward higher floating ice fractions, particularly noticed during recent years. The observed 

fraction of grounded ice, calculated as a monthly mean, gradually increased during the 

winter, from a December mean of 15% to a mean of 43% in April, when ice is most likely to 

grow to its maximum thickness. 

Assessment of grounded ice fractions during the winter seasons (1991-2011) with available 

ERS imagery indicates a gradual trend toward lower fractions of grounded ice in all months 

of observations in the image time series. The greatest change was observed to occur in April, 

with maximum deviation values (±15-18%) from the monthly mean of 43% calculated from 

all years (1992-2011) and a standard deviation of 9.83. The highest positive deviation was 

observed in 1992 (more grounded ice) and the highest negative value in 2011 (less grounded 

ice). 
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Table 3.1: Dates of ERS-1/2 acquisitions used for image segmentation in order to 

determine the monthly fraction of grounded ice (1991-2011).  

 

  Day and month of SAR acquisition 

Year December January February March April May 

1991 30-Dec 
     1992 16-Dec 20-Jan 13-Feb 17-Mar 20-Apr 

 1993 25-Dec 25-Jan 10-Feb 17-Mar 21-Apr 
 1994 10-Dec 21-Jan 17-Feb 16-Mar 29-Apr 
 1995 15-Dec 16-Jan 22-Feb 11-Mar 14-Apr 
 1996 

 

04-Jan 23-Feb 
  

03-May 

1997 20-Dec 
 

08-Feb 
 

19-Apr 
 1998 24-Dec 24-Jan 12-Feb 19-Mar 23-Apr 
 1999 

 

28-Jan 
  

24-Apr 
 2000 28-Dec 13-Jan 17-Feb 23-Mar 08-Apr 
 2001 13-Dec 

  

24-Mar 28-Apr 
 2002 

 

17-Jan 
   

02-May 

2003 18-Dec 
 

06-Feb 
 

17-Apr 
 2004 18-Dec 17-Jan 21-Feb 11-Mar 

 

06-May 

2005 22-Dec 22-Jan 10-Feb 17-Mar 21-Apr 
 2006 

   

16-Mar 22-Apr 
 2007 22-Dec 

  

22-Mar 26-Apr 
 2008 27-Dec 12-Jan 

 

22-Mar 10-Apr 
 2009 31-Dec 15-Jan 19-Feb 26-Mar 09-Apr 
 2010 

 

16-Jan 20-Feb 25-Mar 29-Apr 
 2011 

 

20-Jan 
 

17-Mar 16-Apr 
         26-Mar     

 

The transition toward lower fraction of grounded ice during late winter (April) correlates 

well with the trend toward thinner ice covers as indicated by model simulations during the 

same period (r = 0.75, p < 0.001; Figure 3.4).    
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Figure 3.4: Monthly fractions of lakes frozen to the bed as derived from analysis of 

available ERS images and simulated ice thickness on day of ERS acquisition (1991 to 

2011) – (a) December, (b) January, (c) February, (d) March and (e) April. 

 

The trend accentuated from 2006 onward (as observed in Figure 3.5), has also been reported 

in a similar study from an adjacent region of the NSA (Arp et al., 2012). Trend detection was 

performed using the Mann-Kendall test, a method often used for detecting the presence of 

temporal trends in long-term lake ice observations (Futter, 2003, Duguay et al., 2006). Trend 

magnitude (slope) was estimated with Sen’s method (Sen, 1968; Duguay et al., 2006; 

Noguchi et al, 2011).  
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Figure 3.5: Late winter (April/May) floating and grounded ice fractions from 1992 to 

2011 resulting from segmentation of ERS-1/2 images. 

Statistical analysis of SAR data over the 20-year period, indicates a decrease of 22% in the 

fraction of lakes that freeze to the bed in April (1.1% year
-1

, α = 0.01). The maximum 

number of lakes froze to their beds in 1992 when the fraction of grounded ice was 62%, as 

opposed to 2011 when a minimum fraction of 26% of bedfast ice was noticed. The 2011 

lowest April fraction of grounded ice was also observed with Envisat Advanced Synthetic 

Aperture Radar (ASAR) imagery from 2003 to 2011 (Arp et al., 2012).  

3.5.2 Model results 

The performance of CLIMo versus field-measured ice-on, ice-off dates, and thickness and 

against ice-on and ice-off dates from satellite observations was previously shown to agree 

well (Duguay et al., 2003). To further demonstrate the good agreement of CLIMo with in situ 

measurements, model results were statistically compared to observed mean ice thickness 

during several years with available field data. Accurate ice thickness simulations are 

dependent on using representative snow cover depths and densities over lakes for model runs. 
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Data on ice thickness, snow cover depth, and rarely, snow density over lakes is available for 

a selection of lakes near Barrow for the 1978/79 (Imikpuk Lake, Ikroavik Lake and West 

Twin Lake; Mellor, 1982) and 1991/1992 (Ikroavik Lake, Emaiksoun Lake and Emikpuk 

Lake; Jeffries et al., 1994) ice seasons. The Mean Bias Error (MBE) with both snow 

scenarios (0% and 53%) compared to in situ measurements was +8 cm (4%), indicating that 

CLIMo generates reliable ice thickness simulations for lakes in the Barrow region. 

The longer historical-trend analysis (1950-2011) of maximum ice thickness derived from 

CLIMo simulations indicates the development of thinner ice covers on the Alaskan shallow 

lakes. Model runs with two different climate scenarios (0% and 53% snow cover depth), 

forced with data from the Barrow meteorological station, show a significant decline (α = 

0.001) in the maximum ice thickness of a total of 21 cm (no-snow cover) and 38 cm (53% 

snow cover depth) for the period 1950-2011. Simulated maximum ice thickness with 0% and 

53% snow cover depth respectively, ranged from 196 cm and 140 cm in 2011 to 238 cm and 

209 cm (α = 0.001) in 1976. The ice thickness simulated with CLIMo using a snow depth of 

53% correlates well with the SAR-derived ice cover fractions for lakes frozen to the bed 

versus lakes with floating ice (r = 0.75, α < 0.001), a thinner ice cover corresponding to a 

lower fraction of lakes frozen to the bed and thicker ice indicating a higher grounded ice 

fraction (Figure 3.6). For the overlapping years with the ERS-1/2 SAR images (1991-2011), 

model simulations with no-snow and 53% snow depth scenarios show a decline in the 

maximum ice thickness by 18-22 cm (α = 0.01).  
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Figure 3.6: SAR-derived fraction of grounded ice and simulated ice thickness from 

CLIMo on day of ERS acquisitions from 1992 to 2011. 

Additionally, CLIMo simulations indicate that, in response to warmer climatic conditions as 

reflected by the increase in annual mean air temperature and total precipitation during recent 

decades, the duration of the ice cover has reduced, with later freeze-up dates by 5.9 days and 

break-up dates occurring earlier in the season by 18.6 days with 0% snow cover and by 17.7 

days with the 53% snow cover depth scenario from 1950 to 2011 (Figure 3.7).  
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Figure 3.7: CLIMo-simulated freeze-up and break-up dates from 1950 to 2011. 

Trendlines are also shown. 

During the 62-year period, CLIMo indicates a decrease in the duration of the ice seasons by a 

total of 24.8 days (2.5 days/decade) in the absence of a snow cover and by 23.6 days (2.6 

days/decade) with 53% snow cover depth. Statistically, freeze-up and break-up, and the 

duration of the ice season trends, with both snow cover depth scenarios, are equally 

significant at the α = 0.001 level. For the period of the ERS imagery analysis (1991-2011), 

model simulations indicate later ice-on dates by 14.5 days (α = 0.05), earlier ice-off dates by 

5.3 days (α > 0.1) with the no-snow scenario and no change in the ice-off dates (α > 0.1) with 

the 53% snow depth scenario. 
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3.6 Discussion 

3.6.1 Ice cover changes: 1950-2011 

Analysis of ice-thickness trends from CLIMo simulations during the 1950-2011 period 

indicates a trend toward thinner ice covers for the Alaskan lakes under study, a trend that is 

more evident with 53% snow cover depth conditions and that indicates a decrease of a total 

of 38 cm in ice thickness, at a rate of 0.6 cm year
-1

.  

Albeit inter-decadal and inter-annual variability is noted, trend analysis of ice phenology 

from 1950 to 2011 indicates a slight change in freeze-up dates, ice onset occurring later in 

the season by 5.9 days and a significant advancement of ice melt by 17.7 to 18.6 days (0% 

and 53% snow depth scenarios). These results are supported by similar findings that show a 

significant trend toward later ice-on and earlier ice-off dates, and overall shorter ice seasons 

of lakes across the northern hemisphere, a trend accentuated during recent decades 

(Magnuson et al., 2000; Duguay et al., 2006; Benson et al., 2011). Shorter ice seasons have 

been mainly attributed to the advance of break-up days earlier in the spring (Bonsal et al., 

2006), earlier ice-off being associated with higher spring air temperatures and earlier snow 

melt onset (Duguay et al., 2006). CLIMo simulations for the 1950-2011 period suggest that 

the length of the ice season has declined by 23.6-24.8 days (53% and 0% snow cover depth 

scenarios). In a 53% snow cover depth scenario, the shortest ice seasons were identified to 

have occurred in recent years, with 1998 being the year when lakes were ice free for a total of 

101 days, followed by 2006 (ice free for 98 days) and 2009 (ice free for 97 days). Using the 

same climate scenario (53% snow depth), model simulations show that 1955, 1960 and 1965 

(51, 52, and 59 days respectively) were the years when lakes had the most extended ice 

coverage. To support the strong correlation previously shown to exist between ice-off dates 

and ice-cover duration (Duguay et al., 2006), shorter ice seasons occurred in all years of early 

ice-off dates in both snow cover depth scenarios but not all years with reduced ice duration 

had later ice-on dates.  
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3.6.2 Ice cover changes: 1991-2011 

3.6.2.1 SAR-observed changes 

During the 20-year period of SAR analysis, a specific temporal pattern in the evolution of the 

grounded ice fraction for individual lakes on a yearly basis was not observed. Considering 

that the fraction of grounded ice is strongly dependent on climate conditions, the inter-annual 

variability of air temperatures and that of the snow cover impacts is being reflected by the 

variations in the yearly bedfast ice fraction. For example, the climatic conditions of a cold 

winter (1991/1992) and a warm winter (2010/2011) season, differed largely. The ice-growing 

season (October to April) of 1991/1992 was characterized by lower mean air temperatures (-

22 °C) and reduced total snowfall (561 mm) as opposed to the higher winter mean air 

temperatures (-17.7 °C) and greater amount of total snowfall (1199 mm) of 2010/2011. The 

observed fraction of lakes frozen to the bed was greater during the colder ice season, with 

values ranging from a minimum of 18% in December to a maximum of 62% in April. 

Noteworthy is also the fact that the fraction of grounded ice observed in April 1992 (62%) 

was the highest among all years of available SAR data. In addition to inter-annual variability 

of the grounded ice fraction, inter-lake differences were observed during the 20 years of 

available SAR data. For instance, the shallower West Twin Lake (71°16’ N, 156°29’ W, 1.2 

m maximum depth), located close to the Beaufort Sea, developed bedfast ice during all years 

of observations, whereas the deeper Ikroavik Lake (71°13’ N, 156°37’ W, 2.1 m maximum 

depth), further from the Arctic coast, maintained a floating ice cover throughout all winter 

seasons.  

Ice regimes of shallow coastal lakes on the NSA correlate with the distance from the coast, 

with lakes closer to the coast in this study area preserving their ice cover later into the season 

(Hinkel et al., 2012). The discrepancies in ice regimes of these lakes may therefore be 

attributed to temperature gradients or snow-cover redistribution within the area and that are 

associated with the distance from the coast. Ice regimes are also related to lake depth, with 
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deeper lakes maintaining liquid water underneath the ice (Jeffries et al., 1996) in the deeper 

areas of the lakes while shallower water near the coast could freeze to bed. 

3.6.2.2 Simulated changes 

Ice growth and downward thickening is strongly influenced by snow cover over lake ice 

(Vavrus et al., 1996; Ménard et al., 2002; Gao and Stefan, 2004), which influences the 

vertical conductive heat flow from the ice to the atmosphere through heat loss at the air-snow 

interface (Jeffries et al., 1999). A thinner and denser snowpack provides less insulation and 

allows higher rates of heat flow to the atmosphere (Sturm and Liston, 2003). Thus, the 

accentuated reduction of ice thickness and number of lakes that freeze to the bottom from 

2006 onwards may be associated with deeper snow resulting from increased winter 

precipitation (Callahan et al., 2011), a consequence of higher air temperatures (Schindler and 

Smol, 2006; Kaufman et al., 2009, Walsh et al., 2011). From 1991 to 2011, simulated ice 

thickness declined by 18-22 cm (no-snow and 53% snow depth scenarios). Consequently, 

thinner ice covers are linked to the noticeable trend toward fewer lakes freezing to the bed 

during the past 20 years, as observed from the analysis of SAR data (Fig. 6). Since ice cover 

conditions are better captured assuming a 53% snow depth atop lakes versus no-snow cover 

when compared to available field measurements, analysis of overlapping CLIMo and SAR 

results indicate a closer agreement between the ice thickness and the fraction of grounded ice 

during the former scenario, with slight discrepancies in 1994, 1997, 2001 and 2010. The 

disagreement between model simulations and SAR observations is possibly associated with 

the timing of snow accumulation during the winter season, greater snow depth at the time of 

ice formation leading to thinner ice.  

From 2006 onwards, model simulations indicate smaller changes in ice thickness whereas 

satellite observations indicate a significant reduction of the grounded ice fraction. One 

hypothesis to consider when explaining the considerable SAR-derived changes in grounded 

ice and the small changes in simulated ice thickness from 2006 onwards is the yearly 
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variation in ice thickness. Minimum changes in ice thickness should occur, once a threshold 

is reached, thinner ice covers are reflected by the higher fractions of floating ice. Increasing 

lake water levels at the time of freeze-up or greater lake depths are aspects to also consider in 

explaining the differences between the changes in grounded ice and those in ice thickness. 

Since calculated P – E values do not indicate higher water levels from 2006 to 2011 changes 

in lake depth may explain the minor ice thickness changes. However, considering the lack of 

data on lake bathymetry, this hypothesis needs to be further investigated. 

3.6.3 Teleconnections and lake-ice regimes 

Air temperature changes at high latitudes are often related to the decreasing extent of sea ice, 

which allows more radiation to be absorbed by the Arctic ocean, heat that is later released to 

the atmosphere. Additionally, changes in the air temperature are also associated with large-

scale atmospheric and oceanic circulations. Previous analysis of teleconnection patterns that 

affect the northern hemisphere climate and weather reveals that lake ice conditions are partly 

driven by these large-scale circulations and exhibit stronger correlations with spring 

(January-April) climatic indices (Bonsal et al., 2006). For western Canada, the strongest 

correlation between teleconnections and ice phenology was associated with the Pacific North 

American (PNA), a positive phase of the PNA being highly correlated with earlier break-up 

dates (r = -0.74) and vice versa (Bonsal et. al., 2006). To articulate this relationship, one third 

of the variability in northern hemisphere winter temperatures variability of previous decades 

can be explained by the positive phase of the North Atlantic Oscillation (NAO; Hurell, 

1996). Likewise, a shift of the Pacific Decadal Oscillation (PDO) in 1976 toward a positive 

phase contributed to increased northward advection of warm air (Morris et al., 2005), which 

is highly noticeable in Alaska, being well reflected by the recent increased warming of the 

area (Hartmann and Wendler, 2005). The PDO shift is also reflected in the CLIMo 

simulations that indicate a transition toward thinner ice covers from 1976 onward. Given that 

El Niño years have been associated with up to ten days shorter ice seasons for lakes in 

western Canada (Bonsal et al., 2006), the fact that the longest open-water season occurred 
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during an extreme El Niño year (1998) is associated with considerable warmer air 

temperatures recorded that year at the Barrow meteorological station. 

3.6.4 Water levels and lake-ice regimes 

In response to warmer climate conditions during recent decades, the spatial distribution and 

the surface area of Arctic lakes has been noted to change. In ice-rich permafrost areas such as 

the NSA, changes in air temperature alter the frozen ground layer that, by thawing, may 

result in the appearance of new water bodies or increasing surface areas of the existing lakes 

as a result of thermally induced lateral expansion (Jones et al., 2011). Alternatively, as many 

lakes in this area have low water volumes, lake water levels will rapidly respond to changes 

in the water budget, expressed as total precipitation (P) minus evaporation (E), P-E. 

Calculated water balance during the ice-free season also includes spring snow-water 

equivalent (SWE). Thus, a negative water balance (P<E) results in reduced lake levels and/or 

intermittent lake disappearance (Smol and Douglas, 2007) with lakes disappearing during dry 

seasons and refilling during wetter seasons. Hinkel at al. (2007) showed that from 1975 to 

2000, over 25% of lakes on the western ACP experienced shoreline retreat through lateral 

drainage, the lake area change not being strongly supported by climate conditions during the 

period of analysis. This may be seen in the case of Sikulik Lake (71°18’ N, 156°40’ W) that 

appears to have experienced fluctuating water levels during the 20-year period as indicated 

by the differences in radar returns from this lake in late winter (Figure 3.8).  

As radar returns for this lake were similar to those of the adjacent land, the assumption made 

was that the lake drained in most years and that it may have filled in 2000 and 2002, both 

years with a positive water balance. Lake water levels are greatly controlled by precipitation 

and evaporation rates during the summer season when lakes are exposed to energy exchanges 

with the atmosphere and variations in the lake water balance can be explained by fluctuations 

in the P-E (Bowling et al., 2003). In the case of Arctic lakes, the overall lake water balance is 
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generally negative, as the high evaporation during summer is not compensated by higher 

amounts of precipitation (Rovansek et al., 1996). 

(a)                (b)           (c)           (d)   

 

Figure 3.8: Late winter (April/May) differences in radar returns from Sikulik Lake – 

(a) 1992, (b) 2000, (c) 2001 and (d) 2002. 

 

Positive values of the P-E index are associated with lower annual mean air temperatures and 

wetter conditions during the ice-free season while lower water levels are recorded during 

warm and dry years (Labrecque et al., 2009). Extreme P-E values (i.e., 1993, 2010, 2011 - 

warm years, and 1995, 2005 - cold years) correlate well with the grounded ice fraction, lower 

grounded ice fraction being strongly related to the positive P-E values, and higher grounded 

ice values matching well those of negative P-E. During the years of extreme P-E values, 

grounded ice fractions also correlate with mean air temperatures (r = 0.68, p < 0.0010). 

Additional periodic recharge through ground water, spring snowmelt and river inflows, or 

lateral drainage and ice melt within the underlying permafrost (Young and Woo, 2000) can 

occur and consequently affect lake water balance, and thus explaining the discrepancies 

between lake water levels and ice conditions. These are tentative explanations and the 

relationship between water balance and grounded ice fraction needs to be further 

investigated. 
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3.7 Summary and Conclusions 

This study aimed to detect changes in ice thickness, the fraction of lakes/lake areas freezing 

to the bed versus those developing a floating ice cover and phenology (freeze-up and break-

up dates, and ice cover duration) of Arctic shallow lakes near Barrow, in a sub-region of the 

North Slope of Alaska. The methods employed were image segmentation of ERS-SAR 

images acquired over the region from 1991 to 2011 and simulations with two different snow 

depth scenarios (0% and 53%) of a numerical lake model forced with climate data from the 

Barrow meteorological station between 1950-2011.  

A trend toward an increasing number of lakes that maintain liquid water underneath the 

floating ice atop in all months of available SAR imagery (December to early May), and 

thinner ice covers during the winter months was identified from ERS analysis and CLIMo 

simulations. Statistical analysis showed that in the case of thermokarst lakes near Barrow, the 

fraction of bedfast ice as extracted from the analysis of ERS-1/2 SAR data (1991-2011) 

correlates well with the thickness of the ice layer simulated with CLIMo. The most 

significant decrease in grounded ice was noticed to occur in late winter, grounded ice that 

considerably declined since 2006 and reached its lowest in 2011. Model outputs indicate 

thinner ice covers by 18 to 22 cm (1991-2011) and by 21 to 38 cm (1950-2011), and 

extended duration of the ice season – a function of later ice-on and earlier ice-off dates – by a 

total of 23.6 days (1950-2011) with a 53% snow depth scenario. 

SAR data provides the opportunity to effectively monitor Arctic lakes and assess the degree 

of changes in winter lake ice growth in response to climate conditions. Low-resolution ERS 

imagery allows an adequate detection of the rate at which lakes freeze to their bed for the 

duration of the ice season and of the grounded ice fraction at the end of winter, thus 

providing a valuable data set. The use of satellite sensors that provide higher temporal 

coverage, such as ASAR Wide Swath (2002-2012), would further improve the investigation 

of ice regimes of high-latitude lakes. Future satellite missions of the European Space Agency 
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(Sentinel-1a/b), the National Aeronautics and Space Administration (Surface Water and 

Ocean Topography – SWOT) and the Canadian Space Agency (the RADARSAT 

constellation) are planned for launch in 2013, 2019 and 2018, respectively. These missions 

will not only continue the C-band SAR operational applications (Sentinel-1a/b and the 

RADARSAT constellation) and enable accurate monitoring of water levels (SWOT) but also 

provide increased temporal resolution, thus ensuring frequent, long-term SAR acquisitions 

for the Arctic regions. 
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Chapter 4 

Ice freeze-up and break-up detection of shallow lakes in Northern 

Alaska with spaceborne SAR 

 

4.1 Introduction 

Freshwater lakes are a ubiquitous feature of the Arctic landscape. In the lake-rich coastal 

Northern Alaskan tundra, shallow thermokarst lakes cover up to 40% of the land area (Sellman 

et al., 1975; Li et al., 2000). During recent decades (1991-2011), these lakes have experienced a 

shift from a grounded-ice to a floating-ice regime – with 22% less lakes freezing to the lakebed, 

thinner ice covers by 21-38 cm, and shorter ice seasons as a result of later ice-on dates by 14.5 

days and earlier ice-off dates by 5.3 days (Surdu et al., 2014). In an Arctic climate that 

experiences increasing surface air temperatures (Screen and Simmonds, 2010; IPCC, 2013), 

higher amounts of snowfall from October to May (1936-2009) in most regions (AMAP, 2012), 

reduced snow-cover duration (by 3.9 days per decade (1972-2008); AMAP, 2012) and 

decreased spring snow-cover extent (by 14% in May and 46% in June, from 1967 to 2008; 

Brown et. al., 2010), thaw lakes are undergoing noticeable changes (Arp et al., 2011; Surdu et 

al., 2014). 

Changes in the ice cover of these Arctic lacustrine ecosystems affect the underlying permafrost 

by promoting thaw of formerly perennially frozen sediment and leading to talik development, as 

a result of a regime shift from grounded to floating ice (Ling and Zhang, 2003). Thinner ice 

covers, earlier timing of lake ice-off dates, and longer open-water seasons influence summer 

water temperature, lake-water balance, aquatic biota, and water availability for residential and 

industrial use. The overall shorter ice seasons of lakes on the Alaskan North Slope (Surdu et al., 

2014) may also impact ice-road transportation in the region during winter. If the recently 

investigated changes continue, it is anticipated that Alaska will lose 29% of its ice roads by 2050 

(Stephenson et al., 2011). 
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The ice cover of Arctic lakes has been identified to be very responsive to near-surface air 

temperatures, particularly during the break-up season (Hinkel et al., 2012). Given the 

bathymetry-related reduced heat capacity of smaller and shallower lakes, the response of these 

lakes to changes in air temperatures is rapid. Lakes on the coastal North Slope of Alaska (NSA) 

strongly reflect this sensitivity (Jeffries et al., 1996). 

Previous studies showed that even though both complete-freeze-over and water-clear-of-ice 

dates are highly synchronous with the 0°C fall and spring isotherm dates, a stronger correlation 

exists between the timing of water-clear-of-ice dates and surface air temperatures (Duguay et al., 

2006); lake ice decay is sensitive to synoptic weather conditions (Palecki and Barry, 1986), 

including changes in air temperature, snow and/or wind. The effect of air temperature on lake ice 

is smaller during freeze-up than it is during break-up, as freeze-up is also dependent on lake 

morphometry (depth, area and volume), wind speed, and non-climatic variables such as 

elevation or latitude. Recent warming at higher latitudes is likely to result in later ice freeze 

onset (FO), and earlier water-clear-of-ice (WCI) dates for lakes across the Arctic. 

Lake ice phenology has been investigated with both optical and SAR data. Limited by the coarse 

spatial resolution (e.g., 250-500 m MODIS optical data), low sun elevation and presence of the 

cloud cover, optical sensors do not allow lake ice monitoring year round at high latitudes. To 

overcome these limitations, SAR monitoring provides a feasible alternative. With a history of 

over two decades, SAR systems have demonstrated their ability to monitor ice phenology of 

Arctic and sub-Arctic lakes through analysis of the backscatter temporal evolution, at C-band 

(Jeffries et al., 1994, 1996; Morris et al., 1995; Duguay et al., 2002; Duguay and Lafleur, 2003; 

White et al., 2008; Cook et al., 2010; Geldsetzer et al., 2010; Geldsetzer et al., 2013) and Ku-

band frequencies (Howell et al., 2009).  

High temporal resolution spaceborne observations are a prerequisite for studying the impact of 

climate variability and change on Arctic lake ice covers (IGOS, 2007). Previous satellite 

missions (e.g. ERS-1/2, ENVISAT, RADARSAT-1/2) alone did not provide the required high 

temporal frequency. This work is the first attempt to combine SAR observations from two 

different satellite sensors to detect ice phenological events on shallow Arctic lakes. The primary 

purpose of this study is to explore the potential of high temporal frequency (2-5 days) C-band 

SAR to detect lake ice events, in light of future Earth Observation satellite missions that will 
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provide frequent acquisitions at high latitudes. More specifically, the objectives of this study are: 

1) to evaluate the ability of combined ENVISAT ASAR and RADARSAT-2 observations for 

detecting the timing of the initial ice formation (freeze onset), melt onset and end of the ice 

season (ice-off) of shallow lakes in a sub-region of the Alaskan Arctic Coastal Plain by 

employing an ice phenology algorithm based on “tracking” of the temporal evolution of 

backscatter; 2) to analyze the temporal variability in ice phenology from 2005 to 2011 of lakes, 

with overlapping observations between 2009-2011 prior to the end of the ENVISAT mission in 

early 2012; and 3) to asses SAR-observed lake ice parameters against results obtained with a 

numerical lake ice model.   

 

4.2 Study Area 

The lakes of interest are located in the vicinity of Barrow, on the North Slope of Alaska (NSA), 

USA, (71°31’ N, 156°45’ W), a coastal region bounded by ocean waters to the west (Chukchi 

Sea), north and east (Beaufort Sea) (Figure 4.1). Thermokarst lakes, mostly shallow (~3 m 

deep), are the predominant feature of the region and lie atop of a continuous permafrost layer. 

The ice cover of these lakes, many of which freeze entirely to the lakebed during winter, has 

been observed to be present for the most part of the year, lakes being ice free for only 6-16 

weeks during the warmer summer months (Jeffries et al., 1994, 1996). Between 2005-2011, 

recorded annual mean air temperature at Barrow was -10°C and mean annual precipitation was 

1,545 mm. 
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Figure 4.1: Map of the Alaskan North Slope, near Barrow, indicating the location of study 

lakes (dark blue) and the MODIS pixels used for extraction of lake surface temperature 

(red). The 5 June 2009 ASAR image is copyright ESA. 

 

4.3 Data and Methods 

4.3.1 Synthetic Aperture Radar (SAR) 

This study used available C-band time series of ASAR Wide Swath (2005-2011) and 

RADARSAT-2 ScanSAR Wide A (2009-2011) images. While the RADARSAT-2 mission 
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continues to deliver data, the ENVISAT mission carrying the C-band ASAR sensor ceased in 

April 2012. The overlapping ASAR and RADARSAT-2 observation period (2009-2011) 

provides a higher temporal sampling frequency (2-5 days) than from a single satellite mission, 

thus enabling a more precise detection of lake-ice events. Ascending and descending, VV- and 

HH-polarized ASAR acquisitions were used from 2005 to 2011 (536 scenes). In order to 

maximize the temporal frequency, overlapping HH-polarized RADARSAT-2 observations from 

2009-2011 (213 acquisitions) were also included in the analysis.  

In order to avoid false detection of ice parameters because of the relatively low signal-to-noise 

ratio (reduced ice-water contrast) of the HV-RADARSAT-2 imagery (Geldsetzer et al., 2010), 

backscatter values were solely extracted from HH acquisitions. The two sensors provide 

observations at a spatial resolution of ~ 150 m for ASAR and 100 m for RADARSAT-2. Pixel 

spacing is 75 m x 75 m for ASAR and 50 m x 50 m for RADARSAT-2. Following radiometric 

calibration and geocoding of the images using the Next ESA SAR Toolbox (NEST) software, 

the inherent speckle present in SAR images was reduced using an adaptive Enhanced Lee filter 

with a kernel size of 3x3. In order to capture a wide range of lakes with different physical 

properties and situated in various locations of the NSA – shallow (e.g. West Twin Lake – max 

depth – 1.2 m)/deep (e.g. Imikpuk Lake – max depth 3.1 m) (Mellor, 1982), small/large (e.g. 

surface area of 2.7 km
2
 for Unknown Lake I, 5.2 km

2
 for Ikroavik Lake, 57.7 km

2
 for Lake 

Sungovoak), inland/coastal, central/peripheral, eastern/western, northern/southern, with 

floating/grounded ice – 14 sample lakes or regions of interest (ROIs) were selected for analysis. 

The number of pixels within each ROI ranged from 323 to 6131 (Table 4.1). Selection of lakes 

of different depths was based on previous in situ observations for several lakes in this region 

(Mellor, 1982). Backscatter values (σ
0
) of selected ROIs were extracted using the ENVI 

software, version 5.0. Following σ
0 

extraction, the median σ
0 

of each ROI was calculated and 

was used as a unique value for the ice phenological event observed on the date of the SAR 

acquisition; ranges of dates for important ice events for the 14 lakes were also provided. The 

terminology used for the purpose of this study applies to the entire area of the investigated lakes.  

σ
0
 was extracted from the 14 SAR ROIs and used to detect the beginning, the melt onset and the 

end of the ice season, by analyzing its temporal evolution. Differences in radiometric calibration 

of the two SAR sensors result in generally lower RADARSAT-2 mean σ
0
 values by -3.56 dB, 
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likely explained by the differences in incidence angle (θ) and orbit between the images. C-band 

σ
0
 between the freeze-up and break-up periods is controlled by ice thickness, snow and/or snow 

ice, the presence or absence of bubbles (particularly during freeze-up), and by the large 

difference between the dielectric constant (ε') of ice (3.2) and ε' of water (80) (Hall et al., 1994; 

Jeffries et al., 1994; Geldsetzer et al., 2013).  

Table 4.1: List of the 14 sample lakes (ROIs), number of ASAR and RADARSAT-2 SAR 

pixels encompassed in each ROI and lake type.  

ROI # Lake Name 
Number of 

ASAR pixels 

Number of 

RADARSAT-2 pixels 
Lake type 

1 Ikroavik Lake 567 2098 coastal/central 

2 Unnamed Lake A 328 1224 coastal/peripheral 

3 Unnamed Lake B 390 1442 northern 

4 Lake Sungovoak 6131 23148 large 

5 Lake Tusikvoak 3833 14416 deep 

6 Unnamed Lake C 465 1730 shallow 

7 Unnamed Lake D 323 1234 western 

8 Sukok Lake 2913 10985 floating ice cover 

9 Unnamed Lake E 622 2352 eastern 

10 Unnamed Lake F 372 1410 inland/peripheral 

11 Unnamed Lake G 299 1103 inland/central 

12 Unnamed Lake H 599 2232 southern 

13 Unnamed Lake I 290 1094 small 

14 Tractor Lake 813 3100 grounded ice cover 

 

At C-band, the start of ice formation over lakes is indicated by the first considerable increase in 

σ
0
 (Morris et al., 1995). FO detection is complicated by the low σ

0
 contrast between the open 

water and the newly formed ice (Cook and Bradley, 2010), by the σ
0
 sensitivity to wind speed 

and direction as well as the ice structure and thickness, roughness of the ice interface, all 

resulting in higher returns, and snow wetness (Geldsetzer et al., 2013), resulting in lower returns. 

On shallow lakes, the transition from an ice cover with minimum air inclusions (bubbles) at the 

beginning of the ice season to an ice layer with increased bubble density as ice growth 

progresses complicates the σ
0
 analysis during freeze-up. As a result, the σ

0 
oscillations during ice 

formation make detection of a continuous ice cover (complete freeze-over) uncertain. Given the 

limitations associated with deriving an accurate date of complete freeze-over, ice cover duration, 
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calculated from the date of complete freeze-over to the break-up date, was not computed. The 

current study considers the first significant σ
0
 up-turn as the FO date for the selected ROIs. Once 

ice has reached its maximum ice thickness, high radar returns have been observed from a 

floating ice cover while grounded ice, or ice frozen to the lakebed, is indicated by low σ
0
 

(Jeffries et al., 1994). 

Melt onset (MO) is identified by the first significant decrease in σ
0 

given by the presence of 

water from internal melting of ice and/or a melting snow cover, and thus resulting in increased 

specular (Duguay et al., 2002; Howell et al., 2009). Following initial melt water drains off the 

ice surface and leaves a rough surface that results in high radar returns. Thaw and re-freeze 

events of ice and snow during the break-up period result in high fluctuations of σ
0
. Low σ

0 
is 

observed at the end of the ice season when water becomes clear of ice. High winds over the lake 

surface can also result in high σ
0
 during the open-water season. The current analysis 

acknowledges the differences in backscatter as a result of the wide range of beam positions 

(incidence angles) but in order to increase the precision in detecting the initial ice decay and end 

of the ice season through more frequent acquisitions, the current analysis includes radar 

backscatter acquired at all available incidence angles. Incidence angles ranged between 15-42° 

for ASAR and 20-46° for RADARSAT-2.  

In order to avoid false starts, a threshold is applied to the σ
0
 values detected during stable ice 

winter conditions, calculated as the average of each SAR pixel from 1 January (DOY1) to 31 

March (DOY90). For FO, an increase of 5.5 dB for ASAR, and an increase of 6.5 dB for 

RADARSAT-2 change in σ
0 

was required to occur for two consecutive dates. This threshold is 

higher than that selected for MO (4 dB for ASAR and 5 dB for RADARSAT-2) in order to 

minimize FO detection errors associated with higher σ
0
 from wind-roughened cracks, rafting and 

ridge formation (Howell et al., 2009). For detection of ice-off conditions, the applied σ
0
 

threshold was a decrease of 7.5 dB for ASAR and a drop of 8.5 dB for RADARSAT-2. A similar 

approach was employed in detection of ice phenology parameters for Great Bear Lake and Great 

Slave Lake through analysis of the temporal evolution of Ku-band σ
0 

(Howell et al., 2009). 

In order to evaluate the SAR observations for the detection of ice-off dates using the threshold 

method described above, segmentation of available SAR images on the derived mean ice-off 

date for all lakes was performed. The unsupervised K-means classification algorithm was used to 
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determine if ice was present on lakes on the date when ice-off was indicated by the σ
0 

analysis. 

This common clustering method provides suitable discrimination between lake ice and water in 

SAR imagery during the break-up season (Sobiech and Dierking, 2013). Following subsequent 

iterations of individual image segmentation, each intensity value is assigned to the class with the 

nearest arithmetic mean. The final segmentation result provides a two-class map (ice and open 

water), with fractions (%) for each class. The final segmentation result provides a two-class map 

(ice and open water), with fractions (%) for each class (Figure 4.2).  
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Figure 4.2:  K-means image segmentation process of SAR images: (a) original SAR image, 

(b), K-means segmentation results (one open-water class and two ice classes) and (c) two-

class map (ice in light blue and open water in dark blue). 
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4.3.2 Lake Ice Modeling 

The one-dimensional Canadian Lake Ice Model (CLIMo) was used to provide some basis of 

comparison as to the general ice dates that should be expected from SAR observations. CLIMo 

was previously tested over freshwater Arctic lakes, including those located in the area of this 

study (Ménard et al., 2002; Duguay et al., 2003; Jeffries et al., 2005; Brown and Duguay, 2011a; 

Surdu et al., 2014). Optimal model simulations were obtained for ice phenology of shallow 

lakes. Previous studies showed that the model performs very well if driven with data 

representative of the lakes’ climate (Duguay et. al., 2003; Brown and Duguay, 2011a). If the 

model is forced with local climate data, the model provides a first guess of potential values of 

freeze-up and break-up. The model was driven with climate data acquired from the nearby 

meteorological station of Barrow. While the spatial variability within a lake or a region is shown 

by SAR observations, variability values lack for CLIMo, as the one-dimensional model only 

provides one ice-on and one ice-off date. 

Along with energy balance components, on-ice snow depth, and composition of the ice cover 

(clear ice and snow ice proportions), the model also simulates lake-ice thickness and annual 

complete-freeze-over (ice-on) and water-clear-of-ice (ice-off) dates. However, in order to better 

capture the ice conditions over freshwater lakes, parameterization of snow conductivity and 

surface albedo has been modified in the model (Duguay et al., 2003). Considering the variability 

of the snow depth over lakes in coastal regions, the model was run with a snow cover depth 

scenario of 53%. This value represents the ratio (expressed as a percentage) of snow depth 

measured on lakes to that measured on land in the study area. The ratio was calculated based on 

in situ snow depth measurements available from previous studies (Jeffries et al., 1994; Sturm 

and Liston, 2003; Surdu et al., 2014). Making reference to existing field measurements, the 

model was driven with a set dry snow density of 335 kg   m
-3

. Modelled freeze-up and break-up 

dates were compared to ice-on and ice-off dates as derived from SAR observations.  

4.3.3 Meteorological Data 

Climate records from the Barrow, AK, meteorological station were obtained from NOAA’s 

National Climatic Data Centre (NCDC), and were used to force CLIMo and to asses the effect of 

temperature and snow on SAR-detected ice phenology. Mean daily screen-height air 
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temperature, relative humidity, wind speed, cloud cover fraction, and snow depth, were used to 

force CLIMo in order to simulate ice-on and ice-off dates for lakes in the region of study.  

4.3.4 MODIS Land/Ice Surface Temperature 

Moderate Resolution Imaging Spectroradiometer (MODIS) land/lake surface temperature data 

were acquired from 2006 to 2011. MODIS pixels were identified for each of the 14 ROIs (lakes) 

shown in Figure 1 and listed in Table 1, and used in the analysis
 
of σ

0
 values in relation to lake 

surface “skin” temperature. Selection of MODIS pixels was carefully performed in order to 

avoid land contamination and included MODIS pixels closer to the lake areas of interest. The 

pixels were selected based on two criteria: first – the proximity to the selected SAR ROIs, and 

second – each 1-km MODIS pixel had to be 95% over lake. 

In this study, the MODIS UW-L3 Lake Surface Water Temperature/Lake Ice Surface 

Temperature (LSWT/LIST) product was used (Kheyrollah Pour et al., 2012, 2014). The product 

is generated from Aqua and Terra MYD/MOD 11- L2 data, at a spatial resolution of 1 km. A 

new algorithm was developed to create products at various temporal resolutions from the 

combination of MODIS data from the Aqua and Terra satellites, which were not available 

otherwise (see Duguay et al., 2012 and Soliman et al., 2012 for details). The Aqua and Terra 

satellite platforms follow the same orbit within 3 hours of each other. However, at higher 

latitudes, it is possible to monitor the same location from both sensors within an hour, 

considering different viewing angles. In such case, it is feasible to combine observations from 

both sensors in each pixel during an hour. The MODIS UW-L3 LSWT/LIST product has been 

evaluated against in situ temperature measurements over Finnish lakes (Cheng et al., 2014; 

Kheyrollah Pour et al., 2014) as well as one-dimensional lake models over two large Canadian 

lakes (Kheyrollah Pour et al., 2012).  

Between 2006-2011, MODIS temperature data highly correlated with that recorded at the 

Barrow meteorological station (r = 0.94-0.99). However, the satellite “skin” temperature within a 

MODIS pixel over a lake located 9.3 km away from Barrow was generally lower than the 2-m 

air temperature recorded locally by 1.86 to 2.95°C during all years of analysis. Differences 

between the two temperatures are expected, as they do not represent the same measurement (2-m 
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height vs. “skin” temperature). A comparison of near-surface air temperature from the Barrow 

meteorological station and from MODIS is shown in Figure 4.3. 

 

 

Figure 4.3: MODIS LWST/LIST compared to the surface air temperature registered at 

Barrow in 2006 (a) and 2011 (b). The Pearson correlation (r) between the observations is 

also shown.  
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4.4 Results and Discussion 

Timing of initial ice formation (freeze onset), beginning (melt onset) and end of ice break-up 

(water-clear-of-ice or ice-off) for lakes on the NSA from 2005-2011 was determined for 14 

selected ROIs using the SAR σ
0
. Temporal evolution of σ

0 
was analyzed in relation to MODIS 

LSWT/LIST and/or weather station temperature (Figure 4.4) and snow depth.  
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Figure 4.4: Temporal evolution of SAR backscatter over a shallow lake near Barrow, 

Alaska: a) ASAR (2005-2008) and (b) ASAR and RADARSAT-2 (2009-2011). The solid 

grey line represents recorded air temperature at the meteorological station and the grey 

triangles represent the observed MODIS LST. SAR-detected freeze onset (blue triangles), 

melt onset (orange triangles) and ice-off (red triangles) dates are also shown. No ice-off 

dates are shown if SAR acquisitions were missing or sparse. 

 

Temporal analysis of radar returns indicates a strong σ
0
 relation with temperature, with lower air 

temperatures generally leading to an increase in σ
0
 and higher air temperatures resulting in a 

decrease of σ
0
 values, consequent to snow/ice melt. ASAR and RADARSAT-2 acquisitions were 

available for a common period (2009-2011). During this period, with more frequent 

observations, the detection accuracy of ice phenology events increased. However, several 

limitations have also been identified and they are related to the wide range of incidence angles at 

which images were acquired, to the different polarization modes of ASAR, and possibly to the 

alternating ascending and descending orbits for both ASAR and RADARSAT-2.  
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Snow has been demonstrated to be a significant driver of lake ice growth as variations in snow 

duration and depth have direct consequences on a lake’s thermal regime and winter energy 

balance (Sturm and Liston, 2003) and impact the timing of WCI. A thinner (about half of the 

terrestrial snow; Sturm and Liston, 2003) and denser snowpack provides less insulation and 

allows higher rates of heat flow to the atmosphere in spring (Sturm and Liston, 2003). 

Knowledge of snow conditions over lakes is useful in predicting timing of ice-off dates, as 

break-up trends to closely follow those of annual number of snow days (Jensen et al., 2007).  

Usually, ice starts forming once air temperatures fall below 0°C. Depending on lake depth and 

volume, and also on wind events that may occasionally break the thin ice cover, it may take 

several days from the initial drop in air temperature until a solid ice cover forms. For instance, in 

2007 negative air temperatures were registered on 21 September (DOY264) and mean FO date 

was estimated to be on 23 September (DOY266). Conversely, in 2009 consistent negative air 

temperatures were recorded after 20 September (DOY263) and mean FO was only detected on 3 

October (DOY276). Similarly, in 2011, FO was observed on 3 October, after 12 days of below-

freezing air temperatures. On the other hand, MO is associated with positive air temperature 

values but internal melt of the ice crystals may begin even at air temperatures slightly below 

0°C. Air temperatures over 0°C were recorded starting with 6 June (DOY157) in 2006 and 3 

June (DOY154) in 2007. In 2008 and 2009, MO occurred 5-6 days after above-freezing 

temperatures were recorded. In 2008, mean MO was observed on 5 June (DOY 156) and 23 

May, (DOY143) respectively while LSWT/LIST above 0°C were recorded starting with 30 May 

(DOY150) and 18 May (DOY138). In 2010 and 2011, MO preceded above-freezing air 

temperatures by 4 and 9 days, respectively. Nevertheless, the evolution of σ
0
 closely follows that 

of air temperature and when available that of LSWT/LIST, ice events occurring within 3-16 days 

prior or subsequent to changes in air temperatures/LSWT/LIST. 

4.4.1 Freeze onset 

Initial ice formation for shallow Alaskan lakes was monitored from 2005 to 2011 and FO dates 

were compared to model outputs (Table 4.2). The mean ice onset date for this period as derived 

from SAR observations is 28 September (DOY271) and it closely aligns with the date indicated 

by model simulations, 1 October (DOY274). Temporal analysis of σ
0 

indicates that the latest 

freeze onset occurred in 2008 (7 October, DOY280) and the earliest in 2005 (15 September, 
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DOY258). Results show that with the exception of 2010, ice onset of each year occurred later 

than the previous year. The σ
0 

values at the beginning of ice formation exhibit returns ranging 

from -15.9 dB to -4.8 dB for ASAR and from -17.4 dB to -11.7 dB for RADARSAT-2.  

Table 4.2: Timing of lake ice freeze onset dates between 2005-2011 derived from SAR 

backscatter and model simulations, shown as day of the year (DOY). The missing value 

indicates sparse or missing SAR observations. The range of freeze onset dates for the 14 

lakes is shown in parentheses. 

Year SAR CLIMo  

2005 258 (255-261) 270 

2006 –  279 

2007 266 (263-275) 276 

2008 280 (279-283) 276 

2009 276 (271-280) 273 

2010 271 (265-275) 273 

2011 276 (274-280) 274 

Mean FO 2005-2011 271 (255-283) 274 

 

As a result of increased sampling frequency (combined ASAR and RADARSAT-2 acquisitions) 

between 2009-2011, accuracy of FO detection in relation to model simulations increased, fact 

reflected by the similar mean FO dates observed with SAR, with 1 October (DOY274) as the 

mean FO date, and those simulated with CLIMo for the same period, with the mean FO date as 2 

October (DOY275). Greater differences in timing of mean FO dates were noticed between SAR 

observations (25 September, DOY268) and model simulations (1 October, DOY274) from 2005-

2008, when only ASAR data was available. During years when differences between SAR 

observations and model outputs are greater (e.g., 2005 and 2006), uncertainties associated with 

high σ
0
 from wind-roughened open water provide a possible explanation for these discrepancies. 

The differences between observations and simulations can also be explained by the fact that 

CLIMo was forced with temperature data from the weather station and by the fact that FO dates 

derived from SAR include ROIs that are located up to 60 km away from Barrow. As a result, the 

model outputs would indicate later FO (and earlier ice-off) dates. These discrepancies can also 

be explained by the fact that the model provides only one FO date for all lakes in the Barrow 

region whereas FO dates observed with SAR apply to each individual lake and display a range 

(as shown in Table 4.2). The SAR-observed FO dates are then reported as a mean date.  



 

 

 

74 

Ice formation is a function of decreasing air temperatures and lake morphometry as lakes store 

different amounts of heat accumulated in the warmer months prior to the event, depending on 

depth, area and volume (Brown and Duguay, 2010). Once lake water achieves its maximum 

density at 3.98°C consequent to heat loss at the air-water interface, deeper warmer waters 

replace the denser surface ones and additional cooling continues until a solid ice cover develops 

(Brown and Duguay, 2010). Given that most lakes in the study area are shallow, the effect of 

heat storage and circulation is reduced (Jeffries and Morris, 2007).  

The two extreme FO dates shown by the temporal analysis of σ
0
 – late in 2011 (11 October) and 

early in 2005 (15 September) – could be explained by the differences in air temperatures prior to 

ice onset (Figure 4.5). Mean September air temperature (2.76°C) possibly contributed to the late 

FO of 2011. The early ice onset in 2005 was possibly related to the lower mean September air 

temperature (1.08°C) when compared to the mean air temperature of the same month in 2011. 
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         (a) ASAR, 18 September 2005             (b) ASAR, 9 October 2008 

Figure 4.5: SAR images acquired at the time of freeze onset – (a) ASAR, 18 September 

2005 (b) ASAR, 9 October 2008 – of lakes on the North Slope of Alaska. The bottom 

graphs show the climate conditions – air temperature (blue dots) and snow depth on 

ice from CLIMo  (white line) prior and at the time of freeze onset. SAR-detected freeze 

onset dates are also indicated (yellow triangles). 

At high wind speeds, radar returns with values close to 0 dB could be distinguished from the 

newly formed ice. These high σ
0 

values were considered to be low-quality pixels were not 

included in the analysis but were useful as they were indicative of the presence of new ice. 
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4.4.2 Break-up 

Timing of melt onset and ice-off dates for coastal shallow lakes on the NSA is reported from 

2006 to 2011. The scarcity of the ASAR acquisitions throughout the 2008 break-up season 

did not allow accurate detection of ice events and thus these observations were not included 

in the analysis. 

4.4.2.1 Melt onset 

Analysis of SAR σ
0 

indicates that the mean MO date for shallow lakes on the NSA between 

2006-2011 is 23 May (DOY143). SAR observations show a relatively high variability of 

MO dates during the six years of monitoring, with the latest MO occurring in the spring of 

2008, on ~4 June (DOY155) and the earliest in 2011, on ~13 May (DOY133). Results show 

that SAR-derived mean MO dates are similar to CLIMo simulations (Table 4.3), model 

outputs indicating 16 May (DOY136) as the mean MO date.  

Table 4.3: Timing of lake ice melt onset between 2006-2011, derived from SAR 

backscatter and model simulations. Dates are shown as DOY. The range of melt onset 

dates for the 14 lakes is shown in parentheses.   

Year SAR CLIMo  

2006 141 (131-151) 134 

2007 141 (136-145) 144 

2008 156 (155-158) 138 

2009 143 (137-149) 132 

2010 147 (144-150) 145 

2011 133 (128-145) 139 

Mean MO 2006-2011 143 (128-158) 136 

 

The higher discrepancy between SAR observations and model output in 2008 is explained 

by the lack of ASAR observations between 15 May (DOY136) and 3 June (DOY155). The 

differences between SAR-observed and simulated MO dates are partially explained by the 

gap of 2-5 days (2009-2011) and of 2-19 days (2005-2008) between observations. At the 
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beginning of the break-up period, σ
0 

ranged from -20.44 dB to -15.66 dB for ASAR and 

from -22.87 dB to -16.11 dB for RADARSAT-2. 

At the beginning of the break-up period, snow controls the σ
0
, regardless of the ice type, as 

wet snow prohibits penetration of the radar signal below this layer (Howell et al., 2009) and 

thus resulting in low radar returns, as a result of the radar signal reflecting off the wet layer 

(specular reflection). Depending on ice type, the timing and length of ice decay is affected, 

with snow ice delaying the ice melt. If snow on ice or snow ice is present, its higher albedo 

delays break-up (Jeffries and Morris, 2007). Once snow has melted, the internal structure of 

ice crystals is disintegrated by solar radiation and mechanical break-up (Ashton 1986), and 

the albedo of the lake surface gradually decreases as more water is exposed to radiative 

warming, and melt accelerates with further heating. This is also the case for melt onset 

observed throughout the 2006-2011 period. More specifically, in the spring of 2008, climate 

records from Barrow indicate that following the transition toward above-freezing air 

temperatures, snow fully melted on 2 June and the melt onset of ice occurred two days later. 

Similarly, following higher air temperatures in late May 2011, melt onset occurred a few 

days prior to complete snow melt (Figure 4.6).  
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   (a) ASAR, 10 June 2008                             (b) RADARSAT-2, 16 May 2011 

Figure 4.6: SAR images acquired at the time of melt onset – (a) ASAR, 10 June 2008 

and (b) RADARSAT-2, 16 May 2011 – of lakes on the North Slope of Alaska. The 

bottom graphs show the climate conditions – air temperature (blue dots) and snow 

depth on ice from CLIMo (white line) prior and at the time of melt onset. SAR-

detected melt onset dates are also indicated (orange triangles). RADARSAT-2 Data 

and Products © MacDonald, Dettwiler and Associates Ltd., 2011 – All Rights 

Reserved. RADARSAT is an official trademark of the Canadian Space Agency.  
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4.4.2.2 Water clear of ice 

From 2006 to 2011, the mean WCI (ice-off) date for lakes on the Alaskan North Slope as 

indicated by SAR observations is 10 July (DOY191). Results are indicative of a relatively 

small variability (1-8 days) in the ice-off dates during the six-year period, with the latest ice-

off date occurring on 14 July 2010 (DOY195) and the earliest on 6 July 2009 (DOY187) 

(Table 4.4). The sparse SAR acquisitions during the end of the 2008 break-up period did not 

allow accurate detection of the WCI date. CLIMo mean WCI dates from 2006-2011 are 

similar with those observed with SAR (10 July, DOY191) during the same period (9 July, 

DOY190). These results are similar to previous MODIS-Terra observations (with a spatial 

resolution ranging from 250-1000 m) of ice-out timing of larger lakes on the Arctic Coastal 

Plain from 2007-2012, identifying 6 July (DOY187) as the mean ice-off date (Arp et al., 

2013). More specifically, the same study (Arp et al., 2013) identifies 4 July (DOY185) as 

the mean WCI date in 2007 and 2008, 2 July (DOY183) in 2009, 13 July (DOY194) in 2010 

and 6 July (DOY187) in 2011. The coarser MODIS resolution may explain the generally 

earlier WCI dates detected by this sensor compared to the WCI dates observed with the 

higher-resolution SAR. 

Table 4.4: Lake ice-off timing between 2006-2011, derived from SAR backscatter and 

model simulations. Dates are shown as day of the year. The missing value indicates 

sparse or missing SAR observations. The range of ice-off dates for the 14 lakes is 

shown in parentheses. 

Year SAR CLIMo  

2006 194 (189-198) 193 

2007 190 (189-190) 189  

2008 – 186 

2009 187 (178-190) 186 

2010 195 (192-198) 194   

2011 191 (196-201) 192  

Mean WCI 2006-2011 191 (178-201) 190 

 



 

 

 

80 

Radar signals from the ice oscillates during the break-up period. Consequent to warmer air 

temperatures, the low radar returns at the beginning of spring signal the ice melt onset. 

Following observations of low σ
0
, higher returns are noticed, indicating subsequent re-freeze 

events, mainly due to ascending (morning) and descending (evening) acquisitions, and/or 

that water has drained from the ice surface. Excluding the images affected by wind effect 

indicated by high radar returns, these values gradually decrease closer to the ice-off date, 

when air temperatures have been consistently positive. The open water season is indicated 

by consistent significant low σ
0
 values (-24.88 dB to -19.62 for ASAR and -28.54 dB to -

20.47 for RADARSAT-2).  

In 2009, the LSWT/LIST 5 days prior to the WCI date ranged from 4.7-6°C; in 2010, the air 

temperatures 5 days prior to the 2010 WCI dates were by 2.9-3.3°C lower. Additionally, in 

2010 snow melt occurred later by 9 days. Lower air temperatures and later snow melt likely 

explain the later WCI date of 2010 (Figure 4.7). 
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           (a) ASAR, 11 July 2010                                (b) RADARSAT-2, 6 July 2009 

Figure 4.7: SAR images acquired at the time of ice-off – (a) ASAR, 11 July 2010 and 

(b) RADARSAT-2, 6 July 2009 – of lakes on the North Slope of Alaska. The bottom 

graphs show the climate conditions – air temperature (blue dots) and snow depth on 

ice from CLIMo (white line) prior and at the time of ice-off. SAR-detected ice-off dates 

are also indicated (red triangles). RADARSAT-2 Data and Products © MacDonald, 

Dettwiler and Associates Ltd., 2009 – All Rights Reserved. RADARSAT is an official 

trademark of the Canadian Space Agency. 

In order to compare the results of the σ
0 

analysis for ice-off timing, segmentation of 

available SAR images on/close to the ice-off date was also performed using the K-means 

algorithm (Figure 4.8). Employing the σ
0 

threshold was necessary to detect important ice 

events throughout the ice season. The K-means classification was solely used for 
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comparison and could not have been used for FO or MO given the limitations associated 

with discrimination of ice/open water during these ice events.  
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Figure 4.8: Ice fractions (%) for 14 lakes combined near Barrow: (a) 14 July 2006 

(DOY195) – ASAR, (b) 9 July 2007 (DOY190) – ASAR, (c) 6 July 2009 (DOY187) – 

RADARSAT-2, (d) 14 July 2010 (DOY195) – ASAR, (e) 10 July 2011 (DOY191) – 

RADARSAT-2. Sparse SAR observations did not allow detection of ice-off date in 

2008. The red contours in the original images represent the polygons (ROIs) of the 14 

lakes. RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd., 

2009 – All Rights Reserved. RADARSAT is an official trademark of the Canadian 

Space Agency. 

Segmentation results show that no ice was detected on the selected lakes on 14 July 2006, 

10% ice 9 July 2007, 17% ice on 6 July 2009, 14% ice on 14 July 2010 and 9% ice on 10 

July 2011. These results are satisfactory considering that previous investigations of lake ice 

break-up using C-band SAR assigned ice-off dates on the dates when the areal fraction of 

open water first exceeded 90% (Geldsetzer et al., 2010). 

9%	
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Based on the visual analysis of the segmentation results, Lake Tusikvoak (ROI # 5, see 

Table I and Figure 1) maintains its ice cover later in the summer, being the lake with the 

latest ice-off date. No other pattern in terms of temporal behavior (i.e. early/late ice-off dates 

during particular years) from 2006-2011 was observed for the other lakes. 

These results show the potential of frequent C-band backscatter for identification of lake ice 

events, such as freeze and melt onset, and ice-off dates. The potential of C-band backscatter 

to discriminate between ice and open water, during both freeze-up and break-up, was shown 

to be a function of incidence angle and wind, and when available, reliable wind data is 

recommended to be used in analysis (Geldsetzer et al., 2013). 

Based on previous findings that suggest that the HV backscatter does not provide the 

optimum discrimination between ice and water particularly at the beginning of melt onset 

(Geldsetzer et al., 2010), only HH-polarized RADARSAT-2 images were used in the 

current study. Yet, wind speed prior to the lakes becoming completely ice-free affects the 

HH-polarized imagery, resulting in radar returns similar to those from open water in windy 

conditions. Consequently, the accuracy of ice-off timing could be affected. RADARSAT-2 

HH imagery is most useful for ice-off detection at incidence angles ranging from 36.6°-

46.9°, with wind speeds between 2.9-7.1 m/s (Geldsetzer et al., 2010). For the purpose of 

this study, all available HH-polarized SAR images were used. Considering that the 

frequency of SAR acquisitions ranges from 2-5 days, the accuracy in detecting lake ice 

events is also dependent on frequency of image acquisition. 

4.4.3 Backscatter sensitivity to incidence angle and polarization 

SAR microwave backscatter is a function of the dielectric properties of the material, local 

incidence angle and sensor polarization (Ulaby et al., 1986). Both ASAR Wide Swath and 

RADARSAT-2 ScanSAR Wide provide imagery acquired at a variety of incidence angles 

(beam modes) and thus increasing the temporal frequency of image acquisition of a 

stationary target.  
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Previous investigations of lake ice during spring melt with C-HH σ
0
 measurements report 

lower σ
0 

values (2 to 5 dB) for the same ice cover observed at shallower incidence angles 

(35-49°) than those at steeper incidence angles (20-35°) (Duguay et al., 2002; Nghiem and 

Leshkevich, 2007). Similarly, the lake surface σ
0
 exhibited a decreasing trend with incidence 

angle, with a sharper decrease for RADARSAT-2 (Fig. 4.9; Fig. 4.10).  

 

Figure 4.9: Mean ASAR σ
0
HH for selected pixels of a lake that freezes to bed in late 

winter. The solid purple line represents a best fit (linear regression) for the available 

samples. 
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Figure 4.10: Mean RADARSAT-2 σ
0
HH for selected pixels of a lake that freezes to bed 

in late winter. The solid black line represents a best fit (linear regression) for the 

available samples. 

In order to quantify the changes in σ
0
, an initial assessment of the incidence angle and 

polarization effects was performed. 

Analysis of ASAR and RADARSAT-2 σ
0
 in relation to incidence angles during 2010 shows 

high oscillations of σ
0 

values in images acquired on the same date or one day apart. Results 

also show that σ
0 

differences at similar incidence angle ranges are fairly constant for images 

acquired on the same date. For example, same-day and –orbit (ascending/descending) ASAR 

and RADARSAT-2 acquisitions, with differences between incidence angle ranging from 

1.17-7.71°, σ
0 

fluctuations were small and ranged from 1-3 dB. When differences in the 

incidence angle of acquisitions from the two sensors are greater than 8°, differences in σ
0
 

range from 3-9 dB (Table 4.5).  
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Table 4.5: Same-day ASAR and RADARSAT-2 σ
0
, incidence angle and orbit. 

Date of 

acquisition 

ASAR θ 

(°) 

ASAR σ0 

(dB) 

ASAR 

orbit 
R-2 θ (°) 

R-2 σ0 

(dB) 
R-2 orbit 

14-Feb-10 21.78 -16.31 DESC 36.18 -20.19 DESC 

03-Apr-10 33.52 -18.59 DESC 36.45 -20.17 DESC 

08-May-10 35.89 -18.89 DESC 42.88 -20.85 DESC 

24-May-10 28.32 -16.82 ASC 36.03 -19.28 ASC 

31-May-10 22.52 -13.81 ASC 34.27 -23.5 ASC 

21-Jun-10 28.32 -16.85 ASC 27.15 -13.22 ASC 

 

For same-day ASAR and RADARSAT-2 images, in order to correct the differences in 

incidence angle between the two sensors, a adjustment of 0.9 dB could be applied to 

RADARSAT-2 images acquired at incidence angles of 20-33° and one of 1.6 dB to images 

acquired at incidence angles of 33-46°. These values were calculated based on the sum of 

same-day ASAR and RADARSAT-2 power over the selected ROI, sum that was divided by 

two and then converted to σ
0
. Considering that lake surface conditions (e.g. ice thickness, 

transition from a floating to a grounded ice cover, transition form open water to an ice cover 

and vice versa) change in time and that consequently the bulk dielectric properties of the 

lake surface also change and affect in turn the surface and/or volume scattering, this 

correction is highly recommended to only be applied to same-/consecutive-day images. 

Applying the same approach when images are acquired at intervals of 2-12 days is only 

appropriate when knowledge of ice conditions confirms that ice conditions remain constant 

and thus the observed change in σ
0 

is solely from surface scattering as a result of changing 

SAR incidence angle. Without additional information, applying an incidence angle 

correction to ASAR and RADARSAT-2 images that are acquired at intervals greater than 

two days would have to assume that lake surface conditions remain constant between the 

observations. However, in order to evaluate the possibility of using this approach, this 

hypothesis was assumed and differences in incidence angle were corrected by 0.9 dB for 
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RADARSAT-2 images acquired at incidence angles of 20-30° and by 1.6 dB for 

RADARSAT-2 images acquired at incidence angles of 30-46° (Fig. 4.11) 
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Figure 4.11: (a) Uncorrected temporal evolution of ASAR and RADARSAT-2 

backscatter over a lake that freezes to bed, near Barrow, Alaska) in 2010; (b) 

Incidence-angle corrected temporal evolution of ASAR and RADARSAT-2 backscatter 

over a lake that freezes to bed, near Barrow, Alaska) in 2010. Freeze onset, melt onset 

and water-clear-of-ice dates are also shown. 

Results show that based on the hypothesis that surface conditions remain constant between 

the ASAR and RADARSAT-2 observations, applying an incidence angle correction 

calibrates the two data sets and has the potential to improve detection of important lake ice 

events. However, if this correction is applied, the thresholds for detection of FO, MO and 

WCI dates using the RADARSAT-2 data need to be adjusted accordingly. 

Evaluation of an ASAR descending-pass image (38.4° incidence angle) and a RADARSAT-

2 ascending-pass image (36.03° incidence angle) acquired on 24 May 2010 show a 

difference in σ
0
 of 2.08 dB. If the calculated incidence angle correction of 1.6 dB is applied, 
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it can be derived that the change in σ
0
 is only of 0.48 dB. A more comprehensive analysis of 

orbit effects on σ
0
 was not possible in this study given that these were the only available 

overlapping ASAR and RADARSAT-2 images acquired at similar incidence angles and at 

different orbit modes. This suggests that σ
0 

differences for the selected ROIs are likely to be 

related to differences in incidence angle rather than the orbit mode.  

These results show that oscillations and magnitude of σ
0
 variations is a function of changes 

in lake surface type (ice versus open water) and differences in incidence angle. Although 

incidence angle correction improves detection of lake ice events by combing acquisitions 

from two SAR satellites, the changing ice conditions (e.g. transition from floating to 

grounded ice) between images acquired at more than 1-2 day differences may justify the 

differences in σ
0
. 

However, considering the numerous unknown parameters (e.g. ice cover type, ice thickness, 

wind conditions, the timing of transition from a grounded ice cover to initiation of melt) and 

the limited same-day ASAR and RADARSAT-2 acquisitions, calculation of an incidence 

angle correction for such a diversified data set is difficult and therefore not applied to the 

full dataset analyzed for the determination of ice dates in this paper. However, this is a topic 

that warrants further investigation in light of new and upcoming C-band satellite missions. 

4.5 Conclusions 

The primary objective of this study was to investigate the potential of high temporal 

frequency C-band backscatter from combined ASAR and RADARSAT-2 observations for 

detection of ice phenological events, such as melt and freeze onset, and ice-off timing. 

Results show that C-band SAR is generally suitable for discrimination between ice and open 

water, however some limitations were also identified.  

SAR observations fall within similar ranges with CLIMo simulations, particularly for the FO 

dates of 2009-2011, when increased satellite observations were available, and for the WCI 

dates during all years of the time series. Detection of freeze and that of a continuous ice 
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cover onset is made difficult by the wind effect (speed and direction) on radar backscatter 

during freeze-up, by the similar backscatter signal from the newly formed ice and that of 

open water. Moreover, the presence or absence of bubbles, and/or locally drifted snow, 

resulting in high oscillations of radar returns, complicate freeze onset and complete freeze-

over detection on the shallow lakes examined in this study.  

Limitations for melt onset are related to the intensity of backscatter signal from the ice cover 

of the shallow lakes that freeze to the bottom during the winter. Lakes on the North Slope of 

Alaska are in their majority shallow lakes, with depths ranging from under 1.4 m (7% of the 

lakes) to 1.4-1.5 m (60% of the lakes) and 1.5-2.2 (10% of the lakes). The remaining 23% 

represents lakes that may be deeper than 2.2 m (Jeffries et al., 1996). By late winter (end of 

April), many of these lakes freeze to lakebed (Jeffries et al., 1994). The backscatter signal 

from lakes frozen to lakebed is already low prior to melt onset. Identifying the differences in 

backscatter returns from grounded ice poses its challenges. The differences in lake ice cover 

types (grounded versus floating ice) would eventually result in threshold values close or 

below the noise floor, or melt onset may be mistaken with water-clear-of-ice conditions for 

lakes frozen to lakebed. A more fitting approach would be to perform image segmentation of 

datasets acquired in late winter, determine the lakes with a floating or grounded ice cover, 

and according to the derived segmentation results, apply a lower threshold on the 

backscatter from lakes frozen to lakebed in order to detect more accurately melt onset for 

these lakes.  

This was the first study of its kind to evaluate the performance of C-band backscatter from 

the combination of two different SAR sensors to derive important lake ice dates. Overall, 

this work showed the potential of high temporal frequency SAR for detection of lake ice 

events, within an accuracy of 2-5 days. In order to maximize observations, this study used 

all available data. However, limitations exist and further improvements are needed in order 

to increase the accuracy of this method. Future work in using the analysis of the backscatter 

temporal evolution from the existing dual-polarized C-band sensors should investigate in 
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more detail the effect of incidence angle and that of dual polarization (HH and VV) on the 

backscatter signal for the ASAR acquisitions. The use of reliable wind data (from weather 

stations or spaceborne altimeters) is also recommended in interpretation of C-band 

backscatter for detection of ice events. Moreover, use of polarimetric parameters from 

RADARSAT-2 observations could improve detection of FO (Geldsetzer and van der 

Sanden, 2013). 

The newly launched Sentinel-1a, and follow-up Sentinel-1b mission, with a spatial 

resolution of 20 x 40 m in extra-wide swath mode, and the upcoming RADARSAT 

constellation, will not only continue the records of the ERS-1/2 and ENVISAT (C-band) 

missions but will also provide more frequent acquisitions that will improve timing estimates 

of ice phenology parameters. In addition, the multi-spectral Sentinel-2a/b missions, with a 

spatial resolution of 10-20 m in visible to mid-infrared bands are planned for launch in 2015 

and 2016. These missions will deliver optical data that will increase the frequency of 

acquisitions (every 1-2 days at high latitudes in cloud-free conditions) and be an invaluable 

complement to SAR observations of lake ice. Combining observations from multiple 

missions complies with the Integrated Global Observing Strategy (IGOS, 2007) 

requirements for comprehensive global monitoring and the possible delivery of an 

operational product, with nearly daily observations.  
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Chapter 5 

Evidence of recent changes in the ice regime of High Arctic lakes 

from satellite observations 

 

5.1 Introduction 

In a rapidly changing climate, with each of the last three decades being successively warmer 

than any preceding decade (IPCC, 2013) and as a result of complex energy exchanges 

between atmosphere, ocean and land, the Arctic cryosphere is possibly transitioning towards 

a new state. As a major feature of the Arctic landscape, lakes, through their ice cover 

phenology (timing of ice formation, melt onset and end of break-up), are a key indicator of 

climatic changes (Heron and Woo, 1994; Duguay et al., 2006; Williamson et al., 2008) that 

the high-latitude environment is experiencing. Lake ice phenology is dependent on several 

factors, including meteorological conditions (e.g., air temperature, lack or presence of snow, 

snow depth and density, wind speed) and lakes’ physical characteristics (e.g., surface area, 

bathymetry, elevation). However, long-term analysis indicates that lake ice phenology is 

primarily responsive to air temperature (Palecki and Barry, 1986; Jeffries et al., 1996, 

Duguay et al., 2006). Increasing air temperatures in the Canadian Arctic in all seasons, with 

an almost total absence of negative temperature anomalies over the past four decades, have 

led to later freeze-up and earlier break-up of lakes in this region (Derksen at al., 2012) and 

appear to have altered the ice regimes of many Arctic lakes.  

Changes in the ice phenology of Arctic lakes have major implications for the physical and 

biogeochemical processes, and the aquatic primary production and fauna, as they are strongly 

dependent on the presence of ice. Recent studies of Arctic lakes indicate thinner ice covers 

and less lakes freezing to bed on the North Slope of Alaska during the winter (Surdu et al., 
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2014) and reduced summer ice cover, leading to the loss of perennial ice of lakes on 

Northern Ellesmere Island (Mueller et al., 2009), in the Canadian Arctic Archipelago (CAA).  

The CAA is part of the Canadian High Arctic, a region projected to experience the greatest 

annual temperature increase in the North-American Arctic during the course of the next eight 

decades (ACIA, 2005). Projected climate conditions (2041-2070) employing two similar 

Canadian Regional Climate Model (CRCM) scenarios (Brown and Duguay, 2011) show that 

consequent to loss of perennial ice, lakes on Ellesmere Island will experience maximum ice 

regime changes. As a result, lakes are projected to break-up earlier by over 30 days, with 

lakes in the CAA being expected to experience shorter ice seasons by 25 to 40 days.  

Monitoring changes in the lake ice cover and the rate at which they occur in the High Arctic 

is limited by the sparse and inconsistent observations, and the short observational period in 

these remote regions. Accurate and consistent monitoring of small Arctic lakes requires a 

complex combination of spaceborne observations, model simulations, and where available, in 

situ measurements. Opportunities exist to monitor small lakes across the Arctic by exploiting 

the existing observations from heritage C-band synthetic aperture radar (SAR) missions (i.e. 

ERS-1/2, ENVISAT’s Advanced Synthetic Aperture Radar (ASAR), RADARSAT-1/2). 

These missions, complemented with data from optical sensors (i.e. Landsat) improve 

detection of ice cover conditions of Arctic lakes. 

A limited number of recent studies investigating ice phenology (i.e. the timing of ice break-

up of two lakes on Ellesmere Island; Cook and Bradley, 2010) and summer ice minimum on 

lakes (i.e. the amount of ice present at the end of summer on four lakes in the Canadian High 

Arctic; Mueller et al., 2009) exist. However, changes that lakes have undergone over the last 

two decades and the current state of ice conditions for most High Arctic lakes remain 

unknown. 

With the purpose of identifying the changes in the ice regime of 11 lakes in the CAA as 

derived from existing spaceborne satellite observations (SAR and Landsat) from 1997 to 
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2011, this study: (1) analyzes and reports annual changes in the timing of ice melt onset, 

summer ice minimum and end of ice break-up, (2) assesses the rate of change in the timing of 

start and end of break-up, and of the minimum ice cover at the end of summer and (3) 

comparatively investigates the changes in the ice regimes of polar desert lakes versus those 

of polar oasis lakes.  

This study aims to reveal recent changes in the ice cover of lakes in the CAA and thus to 

provide a glimpse into foreseeable changes that these sensitive Arctic lacustrine systems are 

likely to experience if climate conditions of the last two decades persist. Moreover, this 

analysis continues observation records of some lakes that have been previously studied and 

sets the basis of a monitoring record for High Arctic lakes that have not yet been 

investigated. 

 

5.2 Study Area 

The High Arctic is in its majority a polar desert area with mostly barren land surfaces, 

intense and persistent coldness, and low amounts of precipitation (Woo et al., 2006). Mean 

annual temperature (1950-2011) at Alert, Nunavut (82°30’ N, 62°20’ W) is -19°C, at Eureka, 

Nunavut (79°59’ N, 85°56’ W) is -18°C, and at Resolute, Nunavut (74°41’ N, 94°49’ W) is   

-15°C. For the same period, mean total precipitation fall is 158 mm at Alert, 161 mm at 

Resolute and 79 mm at Eureka (Environment Canada, 2011). 

Positive temperatures are registered only during July and August, and occasionally in June 

and September, and most precipitation falls between July and October, mostly as snow 

(Environment Canada, 2011). The summer melt periods are shortest (~ 3 weeks) for the north 

coast, while they last ~8 weeks near Alert and ~10 weeks at Lake Hazen (Thompson, 1994). 

Results of this study indicate that melt periods of lakes on Northern Ellesmere Island last ~6 
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weeks, melt periods of Lake Hazen last ~6.6 weeks while all other lakes have melt periods 

lasting ~4 weeks. 

The current study focuses on 11 lakes located in the CAA, mostly small lakes with surface 

areas between 4 km
2
 and 16 km

2
, with the exception of lake L11 on Baffin Island (64 km

2
), 

Stanwell Fletcher Lake (339 km
2
) and Lake Hazen (542 km

2
) – the largest lake within the 

Arctic Circle (Figure 5.1).  

 

Figure 5.1: Location of monitored lakes in the Canadian Arctic Archipelago. 

Distribution of polar oases is also shown (Woo and Young, 1997, after Bliss, 1977). Inset 

shows location of the Canadian Arctic Archipelago within the North-American Arctic. 

L1. Craig Lake (Ellesmere Island) 

L2. Lake Hazen (Ellesmere Island) - polar oasis 

L3. Upper Murray Lake (Ellesmere Island)  

L4. Lower Murray Lake (Ellesmere Island)  

L5. Buchanan Lake (Axel Heiberg Island) - polar oasis 

L6. Unnamed Lake (Devon Island) - polar oasis 

L7. Unnamed Lake (Bathurst Island) - polar oasis 

L8. Eleanor Lake (Cornwallis Island) 

L9. Unnamed lake (Somerset Island) 

L10. Stanwell Fletcher (Somerset Island) 

L11. Unnamed lake (Baffin Island) 
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Observed maximum ice thickness of lakes on Northern Ellesmere at the beginning of winter 

ranges from 1.1 to 2 m (Jeffries and Krouse, 1985; Belzile et al., 2001; Mueller et al., 2009). 

In situ observations on Upper and Lower Murray Lakes at the start of the melt season in early 

June 2005 indicated an ice thickness of 1.5 to 2.2 m (Cook and Bradley, 2010). Previously 

recorded early-season snow depth on Northern Ellesmere lakes ranged from 42 to 52 cm 

(Belzile et al., 2001; Mueller et al., 2009). Recent records of snow depth over these northern 

lakes do not exist. While the majority of the study lakes are dominated by typical polar desert 

climate, four lakes are located in so-called polar oasis environments. 

Polar or High Arctic oases, are fairly small regions (with surface areas ranging from 10
-2

 to 

10
2
 km

2
) (Woo and Young, 1996) of relatively great biological production and diversity, with 

warmer soil and longer growing season (Courtin and Labine, 1977), discretely localized from 

the surrounding arid landscape of polar deserts (Svoboda & Freedman, 1981). Lakes with 

longer frost-free seasons are associated with higher primary productivity and more rapid 

nutrient cycling (Perren et al., 2003; Keatley et al., 2007; Callaghan et al., 2012). They are 

characterized by a milder microclimate (Woo and Young, 1997) that is mainly attributed to 

higher incoming radiation given by the fact that most frequently they develop in relatively 

flat coastal lowlands, exception being the thermal oasis surrounding Lake Hazen (France, 

1993). Lake Hazen is situated in a trough, and is sheltered from the cold Arctic Ocean air by 

the Grant Land Mountains (> 2000 m) in the north and a plateau (400-900 m) in the south.  

Ellesmere Island contains some of the largest polar oases in the Queen Elisabeth Islands of 

Arctic Canada, including Eureka, Tanquary Fiord and Lake Hazen (Edlund and Alt, 1989). 

Other High Arctic oases have been identified on Devon Island (Bliss, 1977), Alexandra Fiord 

(Freedman et al., 1994), Polar Bear Pass (Bathurst Island), at Sherard Bay (Melville Island), 

and Mould Bay on Prince Patrick Island (Aiken et al., 1999). Given that the current analysis 

is limited by the low spatial resolution of the SAR sensors (150 m for ASAR, and 200 m for 

RADARSAT-1/2), Lake Hazen, Buchanan Lake, lake L6 on Devon Island and lake L7 on 

Bathurst Island were the only investigated lakes located in polar oases environments.  
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5.3 Data and Methods 

5.3.1 Satellite acquisitions  

Due to frequent revisits at high northern latitudes and their ability to acquire data during 

polar darkness and through cloud cover, spaceborne SAR sensors are suitable for monitoring 

changes in the ice cover of High Arctic lakes. In C-band (~5.3 GHz) SAR imagery, the high 

contrast between ice and open water, representing the amount of radar signal or backscatter 

(σ°) returned to the sensor, allows detection of the timing of summer ice minimum and 

water-clear-of-ice (Morris et al., 1995; Duguay et al., 2002; Geldsetzer et al., 2010). Given 

the relatively coarse spatial resolution of SAR images used in this study, melt onset detection 

is limited, particularly for small lakes (Cook and Bradley, 2010). Robust determination of the 

timing of lake freeze-up using SAR is limited by the low σ° contrast between the open water 

and the newly formed floating ice (Cook and Bradley, 2010) and also because the C-band co-

polarized backscatter from water is not only sensitive to wind speed but also to wind 

direction (Geldsetzer and Van der Sanden, 2013). Considering the limitations that freeze-up 

detection pose with SAR, particularly at VV polarizations and to a lesser degree for HH-

polarized images, this study focuses on monitoring the break-up period of High Arctic lakes 

in the CAA. 

Given that the current study includes 11 lakes that were monitored for a period of 15 years, 

the number of satellite observations employed in the analysis was considerable: ~22,148 

SAR acquisitions (RADARSAT-1/2 and ASAR) (Table 5.1) and over 2,000 Landsat images; 

~1,600 SAR images were segmented to derive ice/open water fractions.  
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Table 5.1: Total number of satellite images used for monitoring the ice cover of 11 lakes 

in the Canadian High Arctic during the break-up season from 1997 to 2011. 

 

Year of observations RADARSAT-1 RADARSAT-2 ASAR 

1997 231 - - 

1998 761 - - 

1999 787 - - 

2000 718 - - 

2001 1777 - - 

2002 1476 - - 

2003 1431 - - 

2004 1392 - - 

2005 1282 - 126 

2006 1202 - 403 

2007 1435 - 316 

2008 1100 2740 339 

2009 65 1561 539 

2010 155 1077 380 

2011 - - 855 

Total 13812 5378 2958  

 

The ASAR images were provided by the European Space Agency (ESA) as a Wide Swath 

Mode Medium Resolution Image (ASA_WSM_1P) product. The ASAR instrument, on board 

of ESA’s ENVISAT, when in wide-swath mode is using the ScanSAR technique (the same 

as RADARSAT-1/2), provides a spatial resolution adapted for regional monitoring (approx. 

150 m, with a pixel spacing of 75 m). The combination of HH- and VV-polarized images was 

acquired at incidence angles ranging from 17° to 42°. The time lapse between repeat passes 

(or revisit time) of ENVISAT is 35 days. In order to increase the frequency of observations, 

data from different tracks, descending and ascending orbits, were used.  

RADARSAT-1/2 data, with a spatial resolution of 100 m and a pixel spacing of 50 m, 2x2 

block averaged to 100 m (obtained from the Canadian Ice Service), acquired at incidence 
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angles of 19°-49° (RADARSAT-1) and 20°-46° (RADARSAT-2), is a ScanSAR Wide mode 

product. The single-polarized (HH) RADARSAT-1, and single- and dual-polarized 

(HH+HV) RADARSAT-1/2 images were acquired approximately every 2-3 days during the 

break-up season of each year of study. 

In addition to SAR data, archived Landsat 4 Thematic Mapper (TM) and Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) imagery, with a spatial resolution of 30 m, was also used. 

Because of the data gaps in the Landsat imagery from 1997 to 2003 and the limited number 

of images during spring melt after 2003 for some of the lakes included in this study, the 

Landsat images were not used for calculating ice/open water fractions. Instead, the Landsat 

imagery was utilized to complement and evaluate the SAR observations, and thus build a 

reliable record from the beginning to the end of the ice season during the 15 years of record. 

5.3.2 Climate data 

Climate records of air temperature, including daily, monthly and seasonal averages from 

1997-2011, were collected in support of the analysis of satellite-derived ice phenology 

parameters. Given that the majority of weather stations in the CAA with longer climate 

records are situated at a significant distance from most lakes included in the current study, 

with distances ranging from 60 to 255 km, a combination of weather station and surface air 

temperature reanalysis data was used to assess the observed changes in lake ice regimes.  

5.3.2.1  Weather station records 

Meteorological station data from Environment Canada’s National Climate Data and 

Information Archive was used for post analysis of the spaceborne observations. These 

records include mean temperature and precipitation data from 1 January 1997 to 31 

December 2011, for three permanent weather stations: Alert, Eureka and Resolute, Nunavut. 

Air temperature anomalies from 1997 to 2011 based on the available weather station annual 

mean temperature records are shown in Figure 5.2.  
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Figure 5.2: Air temperature anomalies for (a) Alert, (b) Eureka and (c) Resolute 

relative to the 1997-2011 mean annual temperature. 

These anomalies are to be used as a reference in interpretation of lake ice events during the 

same period. The weather station records, complemented by ERA-Interim reanalysis data, 

were used for assessment of the relation between air temperature and ice phenology of lakes 

situated within a 0-120 km range from the weather station. Temperature records for lakes 

located further from the weather stations were based exclusively on ERA-Interim reanalysis 

data. 

5.3.2.2  ERA-Interim reanalysis data 

The ERA-Interim is the largest global atmospheric reanalysis product of the European Centre 

for Medium-Range Weather Forecasts (ECMWF). The full-resolution (~0.75° x 0.75°) 

gridded product is derived from data assimilation from a variety of sources: radiances from 

the Special Sensor Microwave Imager (SSM/I), radiosonde temperature, scatterometer ocean 

surface wind data, including recalibrated data from the European Remote Sensing (ERS-1/2) 

satellites, and until 2009 from QuickSCAT (Dee et al., 2011) and provides global coverage 

since 1979. For the purpose of this study, the 2-m near-surface temperature computed with a 

-3.00 

-2.00 

-1.00 

0.00 

1.00 

2.00 

3.00 
Resolute 

T
em

p
er

at
u
re

 a
n
o
m

al
y
 (

°C
) (c) 



 

 

 

105 

sequential data assimilation scheme, advancing forward in time using 12-hourly analysis 

cycles, was utilized.  

5.3.3 Image processing and analysis 

A total of ~1600 SAR images acquired from the beginning of the melt season until the water 

was clear of ice (WCI or break-up end or 100% ice free), or in cases when perennial ice was 

identified, until the beginning of freeze-up were selected. The selected images were 

segmented using the most common clustering method, the unsupervised K-means 

classification algorithm. This algorithm has proved to be a suitable method to discriminate 

between ice and open water and thus monitor the lake ice break-up using SAR data (Sobiech 

and Dierking, 2013). Keeping in mind the large number of images analyzed in this study, the 

K-means algorithm was preferred over a fixed threshold method as it performs better given 

the changing ice conditions (Sobiech et al., 2013) during the melt season. The unsupervised 

K-means classification is an iterative process in which image intensity values are divided into 

‘k’ classes or clusters. Throughout the 20 iterations performed for each segmentation, the K-

means classification assigned each intensity value to the class with the nearest arithmetic 

mean (minimum-distance technique).  

In order to reduce the inherent speckle present in SAR images, a Lee filter (Lee, 1980) with a 

kernel size of 3x3 was applied to all geocoded images. After the speckle was removed, 

regions of interest (ROIs) covering the lake areas were selected. Following ROI designation, 

image segmentation of each ROI was performed. The classification only included the pixels 

inside the ROI, all other pixels being excluded from analysis. The segmentation was set to 

five clusters that were further merged into two classes, one for open water and one for ice, 

that were next represented on a two-class map generated for each segmented image (Figure 

5.3). Text files showing the percentage (%) or fraction of open water and ice were extracted 

for each ROI of the classified maps to quantify the amount of ice present on lakes from the 

start of the break-up process until the end of the melt season. 
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(a)                   (b) 

   

  

         (c)               (d) 

        

 

Figure 5.3: SAR-image segmentation processing steps: (a) Landsat image of Lake 

Hazen, 19 July 2010, (b) original ASAR image of Lake Hazen acquired on 19 July, 

2010, (c) K-means classified image (five clusters), (d) two-class map of ice (light blue) 

and open water (dark blue). The white line in the original SAR image represents the 

lake polygon that was used for defining the ROIs covering the lake. 

In order to estimate the magnitude and significance of changes during the 15-year period, a 

Mann-Kendall test using Sen’s slope (Sen, 1968) was performed. This method has previously 

been used for detecting the presence of trends in long-term observation of lake ice (Duguay 

et al., 2006). However, caution should be used in interpretation of the statistical significance 

values considering that the trend analysis was performed on a relatively short-term time 

series of 15 years. 
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5.4 Results and Discussion 

Previous knowledge about past ice conditions for small High Arctic lakes is limited to a few 

lakes located on Northern Ellesmere Island (Belzile et al., 2001; Jeffries et al., 2005; Mueller 

et al., 2009; Cook and Bradley, 2010) and Colour Lake located on Axel Heiberg Island 

(Adams et al., 1989; Doran et al., 1996). Latifovic et al. (2007) have provided records of ice 

conditions for larger High Arctic lakes, results obtained from the Advanced Very High 

Resolution Radiometer (AVHRR), at 1.1 km spatial resolution. Lakes that have been 

previously studied and are also analyzed in the current study include Upper and Lower 

Murray Lakes, previously monitored between 1997-2007 (Cook and Bradley, 2010), Lake 

Hazen, and Stanwell Fletcher Lake between 1995-2004 (Latifovic et al., 2007). The medium 

resolution of the SAR data used in this study (1997 to 2011) did not allow continuation of 

monitoring records for the smaller lakes on Northern Ellesmere Island that were investigated 

in previous studies. 

Satellite observations of the ice cover on 11 lakes in the Canadian High Arctic from 1997 to 

2011 reveal great variability in the timing of ice melt onset, summer ice minimum and water-

clear-of-ice, with a noticeable direction toward earlier ice-off dates. Compared to the 1997-

2011 mean, melt onset started earlier for all lakes, typically in June when positive air 

temperatures were recorded at these latitudes but cases of melt onset occurring in July were 

observed. With the occasional perennial ice persisting throughout the short High Arctic 

summers on Lake Hazen, Upper and Lower Murray Lakes, lake L6 on Devon Island and 

Stanwell Fletcher Lake, a direction toward earlier ice minimum dates was observed for all 

lakes during most years of observation. The timing of melt onset was observed to occur 

earlier in the spring for all other lakes. With the exception of Lower Murray Lake for which 

delayed summer ice minimum and water-clear-of-ice dates were observed, all lakes 

experienced earlier ice minimum and water-clear-of-ice dates. Water-clear-of-ice dates 

ranged from the second week of July to the third week of August. Lakes remained 
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completely ice free for several weeks prior to starting to refreeze, usually at the beginning of 

September when below-freezing air temperatures returned. 

The analysis focuses on the response of lakes to changes in air temperatures, however, wind 

speed during spring melt could also contribute to the break-up of the ice cover and play an 

important role during the break-up process (Liston and Hall, 1995). However, physical 

break-up by wind is dependent on the lake surface therefore the likeliness of wind to be a 

contributing factor to ice break-up is mainly limited to the larger lakes, Hazen and Stanwell 

Fletcher.  

5.4.1 Melt onset  

Melt onset (start of break-up) was considered as the first date when surface melt or patches of 

open water were noticed in satellite observations through image segmentation for the SAR 

acquisitions and visual assessment of the Landsat images.  

At the start of the break-up season, pooling water was observed atop the ice cover of lakes on 

Ellesmere Island (Cook and Bradley, 2010). Considering the similar backscatter 

characteristics of pooling water on the ice surface and open water (Hall, 1998) at the 

beginning of lake ice break-up, discriminating between ice and open water in SAR images 

poses certain challenges. In order to improve the accuracy of melt onset detection, the 

Landsat imagery provided a valuable complement to the SAR observations.  

The Landsat data was also used to detect melt onset as identifying the small areas of open 

water in the SAR images was more difficult and thus area calculations of open water with 

image segmentation was not possible for those images acquired at the very beginning of the 

break-up period. Spaceborne observations were available for most lakes during melt onset 

from 1997 to 2011 (Table 5.2).  
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Table 5.2: Melt onset dates shown as day of the year (DOY) for the 11 lakes included in 

the analysis from 1997-2011. Missing values (n/a) indicate the lack of available satellite 

imagery. The statistical significance is indicated by the α values. 
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During the 15-year period with available satellite acquisitions, advanced melt onset was 

observed for all 11 lakes, with earlier melt onset by a total of 39 days for lake L6 on Devon 

Island (α = 0.05) and by 2.7 days for Stanwell Fletcher Lake, and lake L11 on Baffin Island 

(α = 0.1). Mean melt onset dates for lakes on Northern Ellesmere Island (i.e. Craig Lake, 

Upper and Lower Murray Lakes, and Lake Hazen) ranges between 18 June (DOY169) and 

24 June (DOY175). Melt onset for lake L6 on Devon Island, Eleanor Lake and Buchanan 

Lake, was observed to start between 7 July (DOY188) and 17 July (DOY198). Overall, the 

greatest changes in timing of melt onset dates were observed for lakes located in polar oasis 

environments (Figure 5.4). 

In order to analyze the melt onset-air temperature relation, based on the approach described 

in Bonsal and Prowse (2003), 0°C spring isotherm dates were calculated. The 0°C spring 

isotherm date is considered as the date when mean daily air temperature rises above 0°C. 

Taking into consideration the large variability in daily air temperature, a 31-day running 

mean filter is used for the mean daily air temperatures. 
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Figure 5.4: Changes – shown as number of days – in the mean melt onset date of lakes 

in the Canadian Arctic Archipelago (1997-2011). Lakes in polar desert environments 

are shown as grey bars and lakes in polar oasis environments are shown as blue bars. 

The red line indicates the 1997-2011 mean number of days change for melt onset. 

The date when the running mean rises above 0°C marks the 0°C spring isotherm date. While 

interannual variability in the melt onset dates existed from 1997 to 2011, lakes generally 

experienced earlier melt onset during the years with positive anomalies of the 0°C spring 

isotherm date and later melt onset during the years with negative anomalies of the 0°C spring 

isotherm date. The 0°C spring isotherm date anomalies from 1997 to 2011 based on the 

available weather station temperature records are shown in Figure 5.5.  
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Figure 5.5: The 0°C spring isotherm anomalies (shown as number of days) relative to 

the 1997-2011 mean 0°C isotherm for (a) Alert, (b) Eureka and (c) Resolute. 

For instance, in 1997, a year with negative 0°C isotherm date anomaly (16 days late) at Alert, 

NU, melt onset for Lake Hazen was observed on 24 July (DOY205). Melt onset for the same 

lake occurred by 49 days earlier (6 June, DOY157) in 2010, when the 0°C isotherm date 

anomaly at Alert, NU was positive (7 days earlier). The large positive 0°C isotherm date 

anomaly (e.g., 1998, 2007, 2010, and 2011) is at Alert a consequence of higher spring air 

temperatures during these years. Positive temperature anomalies have been associated with 

episodes of advection of moist, warmer air (Overland et al., 2004) from the anomalous higher 

sea surface waters of the northwest Atlantic (Sharp et al., 2011). These episodes of warmer 

air advection in spring/early summer result in large positive anomalies in the near surface 

temperature that initiate snowmelt (Tisler et al., 2008) and consequently contribute to lake 

ice melt onset.  

The break-up period (1997-2011) for most lakes covered the months of June, July and 

August (JJA). The relation between the timing of melt onset dates and 0° isotherm date was 
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determined with Spearman’s rank correlation coefficient (R). Analysis shows an overall 

correlation of R = 0.67 between timing of melt onset and the spring 0° isotherm date. 

However, observed earlier/later melt onset is not correlated on a consistent basis with 

positive/negative 0°C isotherm date anomalies for the study lakes. These discrepancies could 

be explained by several other factors, including but not limited to the ability of ERA-Interim 

data to not always accurately express the local meteorological conditions on/around the 

lakes, the presence or lack of snow over lakes at time of melt onset, the duration of sunlight, 

wind intensity and the effect of warmer inflows into the lakes.  

The presence of the Greenland Ice Cap (Alert, Northern Ellesmere Island), glaciers (Northern 

Ellesmere Island, Devon Island) and high topographic features (mountains > 2,200 m around 

Lake Hazen and near Eureka) could lead to discrepancies between the weather station and 

reanalysis data. Hence, the gridded ERA-Interim data for the Northern Ellesmere Island tends 

to underestimate the surface air temperature and is not always able to precisely reflect the 

microclimates, or warmer/colder climatic episodes that develop in some of the High Arctic 

regions (Brown, 2014, unpublished work). 

Given the high albedo of snow, melt onset (the first appearance of open water) could be 

delayed if a layer of snow or snow ice formed during freeze-up is present on lakes at the 

beginning of the break-up season. Previous field observations revealed that the ice cover of 

Murray Lakes at the beginning of the 2005 break-up season entirely consisted of black ice 

thus lacking the snow-ice layer (Cook and Bradley, 2010). Additionally, most of the high-

latitude regions generally experience low amounts of snowfall (< 158 mm/year). These facts 

could suggest that the presence of snow ice and/or snow on High Arctic lakes is not a 

significant driver of the break-up process. However, the sparse in situ snow accumulation, 

thickness and ice type measurements limit the evaluation of the importance of snow in the 

timing of melt onset for the lakes in the CAA.  
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Another factor to be taken into consideration when discussing the timing of melt onset for 

lakes is water inflow into the lakes. Nine out of the 11 lakes included in this study have 

streams flowing into the lake. The origin of the warmer streams flowing into the lakes could 

be from melting glaciers (i.e. Murray Lakes and Lake Hazen on Northern Ellesmere Island, 

Buchanan Lake on Axel Heiberg Island) and/or runoff from snowmelt (e.g., lake L6 on 

Devon Island). The ice break-up of the northern Craig Lake seems to be initiated by a runoff 

stream outflowing from Lake Hazen (Figure 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

116 

(a)              (b)      (c) 

   

      (d) 

 

Figure 5.6: Landsat images acquired at the start of ice break-up showing melt and/or 

open water adjacent to water inflows: (a) Upper and Lower Murray Lakes (17 June 

2007), (b) Buchanan Lake (8 July 1999), (c) Lake L6, (10 July 2003) (d) Lake Hazen and 

Craig Lake (16 June 2001). 
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5.4.2 Summer ice minimum 

The last date with a floating ice cover on the lake surface was considered the ice minimum 

date. During years when lakes maintained a perennial ice cover, the summer ice minimum 

date was usually observed in late August to mid-September when melt does not occur any 

longer, and most lakes start refreezing. The mean ice minimum date ranges from 12 July 

(DOY193, Craig Lake) to 25 August (DOY237, Stanwell Fletcher Lake). From 1997 to 

2011, most lakes lost their ice cover during all years of investigation (Table 5.3).  

Generally, lakes were observed to lose their ice covers earlier in the season during the years 

with positive JJA air surface temperature anomalies and retain it later into the summer during 

the years with negative JJA air temperature anomalies. Similarly, perennial ice lasted from 

one year to the other during the years with negative JJA air temperature anomalies. With the 

exception of the polar desert Upper and Lower Murray Lakes that maintained relatively 

consistent ice conditions or extended the ice cover duration into the summer by 12.4 days (α 

= 0.1, Lower Murray Lake) during the 15-year observation period, all other lakes 

experienced earlier minimum ice during the summer and thus earlier ice-off dates. Lakes 

located in polar oasis environments experienced the earliest summer ice minimum dates, with 

lake L6 on Devon Island (30 days earlier, α = 0.1) and Buchanan Lake (22.5 days earlier, α = 

0.05), experiencing the greatest change. 
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Table 5.3: Dates, shown as DOY, when minimum ice cover was observed for the 11 

lakes included in the analysis from 1997-2011. Missing values (n/a) indicate the lack of 

available imagery. The statistical significance is indicated by the α values. 
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Eleanor Lake was the only polar desert lake with considerably earlier summer ice minimum 

dates (18.8 days earlier, α = 0.05). All other polar desert lakes experienced minimum 

negative change (1.5 to 5 days earlier) in the timing of the summer ice minimum date (Figure 

5.7). 

Perennial ice was observed on occasional years for Lake Hazen (2004 and 2009), Upper 

Murray Lake (1999), Lower Murray Lake (1999, 2002 and 2006), lake L6 on Devon Island 

(1997, 2001, 2003, 2004 and 2006) and Stanwell Fletcher Lake (2001 and 2002). Lakes 

formerly observed to maintain perennial ice covers, such as Lake Hazen in the 1950s 

(Hattersley-Smith, 1974) and Stanwell Fletcher Lake in the early 1960s (Coakley and Rust, 

1968) have preserved a partial ice cover into the following season only during two years out 

of the 15-year time series of the current investigation. The loss of the perennial ice cover for 

most lakes is mainly a consequence of the warmer air temperatures recorded in the High 

Arctic during recent decades. 

Conversely, in the case of lakes that did not fully melt during the summer on occasional 

years, there are other factors that are likely contributing to preserving the ice cover of lakes 

into early autumn when it starts refreezing. These factors could be related to colder air 

temperatures during those years, the presence of glaciers (Lake Hazen, Upper and Lower 

Murray Lakes) that stabilizes the lake ice cover (Doran et al., 1996) through generally 

persistent low air temperatures, the vicinity of a partially frozen Arctic Ocean and reduced 

wind action over lakes with smaller surfaces (lake L6 on Devon Island and Lower Murray 

Lake).  
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Figure 5.7: Changes – shown as number of days – in the mean summer ice minimum 

date of lakes in the Canadian Arctic Archipelago (1997-2011). Lakes in polar desert 

environments are shown as grey bars and lakes in polar oasis environments are shown 

as blue bars. 

5.4.3 Water clear of ice  

The end of break-up was indicated by the absence of an ice cover over lakes (0% ice) also 

known as water clear of ice (WCI).  For years with sparse satellite imagery at the end of 

break-up, the date when the lake became ice free was estimated by interpolating between the 

date of the last satellite image (either SAR or Landsat) that indicated the presence of ice on 
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lake surface and the date of the next available satellite observation that showed 100% open 

water, based on the observed rate of ice decay from previous images.  

While most lakes lost their ice cover every summer, observations indicate that a few lakes 

did not completely melt during the summer months (Table 5.4) of years with greater negative 

JJA air temperature anomalies (e.g., 1997, 1999, 2004). Analysis indicates that the ice-off 

date was generally earliest for polar oasis lakes: Lake Buchanan (by 23.6 days, α = 0.01), 

lake L7 on Bathurst Island (by 15 days, α = 0.1), Lake Hazen (by 9 days, α = 0.1) and lake 

L6 on Devon Island (by 8.4 days, α = 0.1). WCI for the polar desert Eleanor Lake occurred 

earlier by 20 days (α = 0.05). The polar desert Lower Murray Lake experienced later WCI 

dates by 12.5 days (α = 0.1). 
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Table 5.4: Water-clear-of-ice dates shown as DOY for 11 High Arctic from 1997-2011. 

Missing values (n/a) indicate the lack of available imagery. Dash indicates that complete 

melt did not occur. The statistical significance is indicated by the α values. 
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Comparative changes in the timing of the water-clear-of-ice date between lakes located in 

polar desert environments and those in polar oasis environments are shown in Figure 5.8. 

 

 

 

Figure 5.8: Changes – shown as number of days – in the mean water-clear-of-ice date of 

lakes in the Canadian Arctic Archipelago (1997-2011). Lakes in polar desert 

environments are shown as grey bars and lakes in polar oasis environments are shown 

as blue bars. 

Analysis of break-up dates in relation to the JA mean air temperature for four lakes – two 

located in polar oases environments (lake L6 and Buchanan Lake) and two situated in areas 
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dominated by typical polar deserts climate (Lower Murray Lake and Eleanor Lake) – shows 

moderate to high correlation between the timing of ice-off dates and the JA air temperature. 

The highest correlation between ice-off dates and the JA air temperature (weather stations for 

the nearby lakes and ERA-Interim for lakes located further from the weather station) was 

observed for Eleanor Lake (R = - 0.70), a lake located closer to a weather station (Resolute). 

The lower correlation for the other lakes emphasizes the limited ability of the gridded data to 

accurately represent local climate conditions for the lakes located further from permanent 

weather stations. These lakes are likely influenced by local microclimates due to the effect of 

the nearby glaciers and high mountains.  

The range of mean WCI dates for the observed lakes from 1997 to 2007 falls between 17 July 

(DOY198, Lake Craig) and 22 August (DOY234, Stanwell Fletcher Lake). The mean WCI 

date for Upper Murray and Lower Murray Lake is 15 August (DOY227) and 18 August 

(DOY230), respectively. The mean duration of the break-up season for Upper Murray Lake is 

52 days and for Lower Murray Lake is 55 days. Previous findings of ice regimes for Murray 

Lakes between 1997-2007 indicate 16 August (DOY228) as a mean ice-off date for Upper 

Murray Lake and 24 August (DOY236) for Lower Murray Lake, and an average duration of 

the melt period of 74 and 81 days, respectively (Cook and Bradley, 2010). The earlier timing 

of WCI dates and shorter break-up seasons for Murray Lakes shown by the current study, are 

indicative of positive air temperature anomalies at Alert during all years from 2007-2011. 

Earlier positive air temperatures at the beginning of summer and consecutive days with 

temperatures higher by 2°-4°C than temperatures recorded during previous break-up seasons 

of 2007-2011 are likely the main drivers of the earlier ice-off dates and shorter break-up 

periods for Murray Lakes shown in this study.  

AVHRR observations of WCI dates for Lake Hazen and Stanwell Fletcher Lake from 1995-

2004 reveal earlier break-up by < 10 days for the former and by 4-6 days for the latter 

(Latifovic and Pouliot, 2007). The current analysis shows that during the 1997-2011 period, 

break-up occurred earlier by a total of 12 days for Lake Hazen and by 6 days for Stanwell 
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Fletcher Lake. Considering that break-up is highly correlated with air temperatures (Duguay et 

al., 2006), the increase in the number of days revealing even earlier WCI dates for Lake Hazen 

and Stanwell Fletcher Lake is reflective of higher mean air temperatures during 1997-2011 

shown by the gridded ERA-Interim data. 

Using all available RADARSAT-1/2, ASAR and Landsat images from the beginning to the 

end of the break-up period between 1997-2011, WCI timing was determined with an accuracy 

of 1-3 days, three days being the longest period with no available satellite imagery from any 

sensor at the end of break-up. A time series of multiple-sensor acquisitions for Lake Hazen 

during the 2010 break-up season (Figure 5.9) shows the ice cover changes from the beginning 

to the end of break-up. 
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Landsat, 8 June 2010 ASAR 9 June 2010 Landsat, 18 June 2010 

Landsat, 24 June 2010 Landsat, 26 June 2010 Landsat, 29 June 2010 
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Landsat, 5 July 2010 Landsat, 2 July 2010 ASAR, 30 June 2010 

Ice 98% 

Ice 97% 

ASAR, 7 July 2010 ASAR, 11 July 2010 

Ice 96% 

Landsat, 13 July 2010 
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ASAR, 22 July 2010 

Ice 44% Ice 33% 

ASAR, 14 July 2010 ASAR, 17 July 2010 
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ASAR, 19 July 2010 
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Figure 5.9: Time series of combined satellite observations (Landsat, ASAR and 

RADARSAT-2) for Lake Hazen during the break-up period of 2010. RADARSAT-2 Data 

and Products © MacDonald, Dettwiler and Associates Ltd., 2010 – All Rights Reserved. 

RADARSAT is an official trademark of the Canadian Space Agency. Ice fractions for 

available SAR images are also shown. No ice fractions are shown for Landsat observations 

as image segmentation was only performed on SAR imagery. 

Changes in the ice cover of Lake Hazen during the 2010 break-up season reflect the lake 

ice/temperature relation, the decrease in the ice cover fraction being correlated (R = -0.88) with 

the number of cumulative thawing degree days (CTDD) calculated based on the ERA-Interim 

daily mean air temperatures (Figure 5.10). CTDD are a running total of days with mean air 

temperatures above 0°C. 

 

Figure 5.10: The cumulative thawing degree days and ice fraction for Lake Hazen during 

the 2010 break-up season. 
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The close relation between WCI dates and temperature was also associated with the 0° spring 

isotherm date (Bonsal et al., 2003; Duguay et al., 2006). This study shows that a correlation of 

R = 0.63 exists between the timing of WCI dates and the 0° spring isotherm date. 

The greatest changes during the break-up season from 1997 through 2011 were recorded for 

lake L6 on Devon Island, Buchanan Lake, Eleanor Lake, and lake L7 on Bathurst Island. These 

lakes experienced earlier melt onset by 19.5-30 days, earlier ice minimum dates by 15-30 days 

and earlier WCI dates by 15-23.6 days. These extreme changes seem to be characteristic for 

smaller lakes located in polar oases environments. 

Earlier ice break-up consequent to the loss of perennial ice has been observed for Lake Hazen 

as well but these changes are not statistically significant as they are for the smaller lakes in 

Arctic oases (earlier melt onset by 14 days, summer ice minimum and end of break-up earlier 

by 9 days). These findings suggest that due to their smaller surface area and possibly to smaller 

depths, small High Arctic lakes are prone to more dramatic changes than the larger and deeper 

lakes. Greater changes in the timing of the WCI date for these lakes are expected to occur as a 

result of increasing positive air temperature anomalies at these latitudes. 

5.4.4 Lake ice and coupled atmosphere-land-ocean interactions  

The Arctic cryosphere is a complex system driven by strong interactions among the atmosphere, 

land and ocean. Under projected amplified warming of polar regions, ice break-up of inland 

lakes will be prone to a greater change as ice decay is more responsive to changes in air 

temperature (Bonsal et al., 2006). Considering the dynamic nature of the ocean-atmosphere-

land linkages, changes within the lake ice cover are likely to be more prominent and result in 

more extreme ice conditions associated with warmer events (e.g., extremely late freeze-up, 

extremely early break-up; Benson et al., 2011), and shift from perennial to seasonal ice cover.  

The 1-km resolution combined Moderate Resolution Imaging Spectroradiometer (MODIS)-

Aqua/Terra Land Surface Temperature (LST) maps represent a valuable tool in obtaining 
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consistent observations of “skin” temperature over land at high latitudes. MODIS observations 

acquired during the break-up season of two extreme years, 2004 (negative air temperature 

anomalies) and 2011 (positive air temperature anomalies) show up to 5°C differences in the 

mean JJA air temperatures of the two years, over all study sites (Figures 5.11, 5.12 and 5.13). 
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Figure 5.11: (a) Mean land surface temperature derived from MODIS-Aqua/Terra over 

the CAA during the month of June 2004 and 2011; (b) June air temperature anomalies for 

Alert, Eureka and Resolute compared to the 1997-2011 June mean air temperature. 

Differences in the surface “skin” temperature (MODIS) discriminate the warmer land areas 

from the colder ones. During years with negative JJA air temperature anomalies, these 

differences range from 5°-15°C for the polar oases areas around Lake Hazen on Northern 

Ellesmere Island and Buchanan Lake on Axel Heidberg Island, and from 1°-4°C for the polar 

oases areas around lake L6 on Devon Island and lake L7 on Bathurst Island. The air temperature 

differences between the investigated polar oases and the surrounding areas during years with 

positive JJA air temperatures range from 10°-19°C around lake Hazen and Buchanan Lake and 

from 9°-16°C for areas around lakes L6 and L7.  

In June 2004, the areas around Lake Hazen and Buchanan Lake experienced higher 

temperatures than the surrounding areas that are controlled by a typical polar desert climate by 

5°-12°C. No air temperature difference was observed in the case of areas around lakes L6 and 

L7 during the same month. In 2011, the June air temperature differences between the warmer 

polar oases and surrounding areas ranged from 3°-4°C (lakes L6 and L7) and 10°-16°C (Lake 

Hazen and Buchanan Lake). 
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Figure 5.12:  (a) Mean land surface temperature derived from MODIS-Aqua/Terra over 

the CAA during the month of July 2004 and 2011; (b) July air temperature anomalies for 

Alert, Eureka and Resolute compared to the 1997-2011 July mean air temperature. 

During the month of July, all areas around the investigated polar oases experienced higher air 

temperature than the surrounding areas. In 2004, these differences ranged from 3°-4°C (lakes 

L6 and L7) to 3°-11°C (Lake Hazen and Buchanan Lake). These differences were considerably 

higher in 2011 and ranged from 12°-15°C (lakes L6 and L7) to 9°-19°C (Lake Hazen and 

Buchanan Lake). 
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Figure 5.13: (a) Mean land surface temperature derived from MODIS-Aqua/Terra over 

the CAA during the month of August 2004 and 2011; (b) June air temperature anomalies 

for Alert, Eureka and Resolute compared to the 1997-2011 August mean air temperature. 

During the month of August 2004 and 2011, no noticeable “skin” temperature differences were 

observed for areas around lakes L6 and L7 in comparison to the usually colder surrounding 

areas. Air temperatures around Lake Hazen and Buchanan Lake during the same month were 

higher than the neighbouring areas by 9°-12°C in 2004 and by 13°-16°C in 2011. 

Analysis of MODIS data shows that the greatest differences in surface temperature of polar 

oases and those polar deserts locations investigated in the current study occur in June and July, 

with significant surface temperature differences during years with higher air temperature 

anomalies of the same month. Moreover, differences in surface temperature between polar 

oases and the surrounding polar desert environments is considerably higher around Lake Hazen 

on Northern Ellesmere Island and Buchanan Lake on Axel Heidberg Island, and less around 

lake L6 on Devon Island and lake L7 on Bathurst Island. In years with high positive air 

temperature anomalies, these polar ‘hot spots’ extend over larger areas and could be impacting 
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the otherwise typical polar desert climate of these areas (e.g., Craig Lake, located north-east of 

Lake Hazen). 

Investigations of location of polar oases across the Canadian High Arctic have not been 

performed since 1997. Using the surface temperature compared to the neighbouring areas, 

through longer records, the MODIS LST product presents the potential to locate other polar 

oases that may not have been previously identified. 

Analysis of air temperature as recorded at the weather stations with available data reveals that 

temperature anomalies during the same month of the two years are greatest during the month of 

June at all stations, and smallest in August. The smallest positive air temperature anomaly 

between 2004 and 2011 was recorded in July, at Alert (0.67°C) and the greatest positive 

anomaly was observed in July, at Resolute (5.09°C) (Figure 12). In 2004, delayed break-up 

dates were observed for most lakes, with Craig Lake, lake L11 on Baffin Island, lake L7 on 

Bathurst Island and Eleanor Lake experiencing the latest break-up dates during the 15-year 

record. Lake Hazen and lake L6 on Devon Island also maintained a perennial ice cover 

throughout the 2004 summer. Conversely, melt onset and break-up occurred earlier for most 

lakes in 2011, extreme earlier WCI dates were observed for Lake Buchanan, lakes L6, L7, 

Eleanor Lake, lakes L9 and L11. Perennial ice was not observed on any of the 11 lakes at the 

end of the 2010/11ice season. 

Air temperatures at high latitudes are associated with changes in the coupled atmosphere-ocean 

system (Trenberth and Hurrell, 1994). Warmer air temperatures and a higher Arctic troposphere 

will continue to reduce the pressure gradient between northern and southern latitudes and will 

lead to substantial changes in atmospheric circulation patterns (Watanabe et al., 2006). Extreme 

phases of atmospheric circulation patterns, also known as teleconnections, have been shown to 

influence ice phenology of lakes in the northern hemisphere (Bonsal et al., 2006), such as the 

major shift in the Pacific Decadal Oscillation (PDO) in mid-1970s toward a positive phase 

when North-American lakes experienced earlier break-up and shorter ice seasons (Benson et al., 
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2000) or the strong positive phase of El Niño Southern Oscillation (ENSO) in 1998 that resulted 

in extreme ice events for many of the lakes in the High Arctic and when none of the study lakes 

maintained a perennial ice cover. The North Atlantic Oscillation (NAO) and the Arctic 

Oscillation (AO), highly related to each other, also play a significant role in the winter 

(November-April) Arctic atmosphere.  

The lack of a strong correlation between ice break-up of High Arctic lakes and teleconnections 

from 1997 through 2011 as indicated by a preliminary analysis (not shown) could be explained 

by the fact that neither PDO nor the NAO/AO has been in a phase to contribute to the Arctic 

warming during the past several years (AMAP, 2011). On a background of increased warming 

at higher latitudes, the previous strong correlation between AO and ice regimes of lakes north of 

65° (Bonsal and Prowse, 2003) could weaken in the forthcoming decades. However, in order to 

determine the impact that atmospheric circulation patterns have had on ice phenology during 

recent years, a more comprehensive analysis is needed.  

Recently observed warming of the Arctic (Overland and Wang, 2010; Serreze et al., 2011) has 

been largely attributed to summer sea ice loss (12% decade
-1

) in September (NSIDC, 2011) and 

an ice-albedo feedback, resulting in amplified sensible and latent heat fluxes between the ocean 

and the Arctic atmosphere (Strey et al., 2010). Sea ice reduction is mostly noticeable during 

summer and autumn (Deser et al., 2010) but due to the extensive memory of the ocean, its 

effects are greatly influencing the winter climate and weather patterns of the northern high 

latitudes (Wu et al., 2006). While the current study does not focus on the analysis of sea ice 

conditions, a preliminary assessment of the historical total accumulated ice coverage (TAC) and 

mean air temperature from either weather station or ERA-Interim data in the Canadian Arctic 

between the weeks of 2 July-30 July is shown (Figure 5.14).  
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Figure 5.14: Historical total accumulated sea ice coverage in the Canadian Arctic for the 

weeks of 9 July-3 September, during the summer seasons of 1997-2011. Ice coverage 

fractions are courtesy of CIS. 

Analysis indicates that accumulated July sea ice coverage correlates well with mean air 

temperatures during the same period (R = -0.72 for Eureka, R = -0.73 for Resolute, R = -0.61 

for Somerset Island and R = -0.57 for Baffin Island). Spaceborne observations indicate earlier 

WCI dates for most lakes in years with lower percentages of total accumulated July sea ice 

coverage (e.g., 2010 and 2011, with the TAC from 2 July to 30 July of 47% and 43%, 

respectively). Mean air temperatures for 2010 ranged from 4.77°C (Eureka) to 9.41°C (Baffin 

Island). In 2011, mean air temperatures ranged from 7.22°C (Eureka) to 11.28°C (Baffin 

Island). 

Conversely, in years when the TAC was higher (e.g., 64% in 2002) and mean air temperatures 

were lower (between 2.41°C and 6.78°C), delayed WCI dates were observed for many lakes 

(e.g., Lake Hazen, lake L6 on Devon Island, Eleanor Lake, lake L9 on Somerset Island). 
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Additionally, a few lakes also preserved a perennial ice cover (Lower Murray Lake and 

Stanwell Fletcher Lake). 

Changes in the sea ice surface are well correlated with changes in the overlying atmosphere 

(Zhang et al., 2008), the latter strongly influencing surface temperature and large-scale 

atmosphere and ocean circulation patterns (Hall et al., 2004; Tivy et al., 2011). Sea ice retreat 

and atypical atmospheric flows are frequently associated with anomalous advection of warmer 

and moister air by transient winds (Stroeve et al., 2011), considered to be the main driver of 

high-latitude terrestrial warming (Deser et al., 2010). This anomalous poleward heat transport at 

the beginning of summer is likely to amply the effect of air temperature on the ice cover at the 

beginning of lake ice decay and result in extremely early melt onset. Consequent to changes in 

surface heating and distribution of the atmospheric pressure as a result of sea ice reduction, 

coastal terrestrial Arctic areas in particular experience higher summer temperatures, often 

associated with higher vegetation productivity. This relation weakens gradually with increasing 

distance from the coast (Bhatt et al., 2014). 

These results provide an initial assessment of the relation between air temperature, sea ice 

coverage and lake ice phenology but for a better understanding of the strength of interactions 

between these components require a more detailed analysis looking at specific sectors of the 

Canadian Arctic Archipelago.  

 

5.5 Summary and Conclusions  

This study provides a robust assessment of lake ice conditions in the Canadian High Arctic, and 

reveals changes in the break-up dates and the summer ice cover that these lakes experienced 

between 1997-2011. Analysis of the available SAR and Landsat data from 1997 to 2011 

indicates that the start of ice break-up is occurring by 14-39 days earlier for polar-oasis lakes 

and by 2.7-22.5 days earlier for polar-desert lakes. Changes were also observed in the summer 
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ice minimum, with ice generally disappearing earlier on all lakes, by 9-30 days earlier in polar 

oasis environments and by 1.5-18.8 earlier in polar desert environments. Timing of the WCI 

dates ranges from 9-23.6 days earlier in polar oasis environments and from 1.6-20 days earlier 

in polar desert environments. The only lake with later WCI dates is Lower Murray Lake (12.5 

days). 

During the 15-year period covered by this study, the melt onset and ice-off dates occurred 

earlier for all 11 lakes, with the exception of Lower Murray Lake on Northern Ellesmere Island 

that despite experiencing earlier melt onset, had an ice cover lasting longer into the summer or 

even occasionally persisting from one year to another. The lakes with the greatest changes in 

the timing of melt onset date were Buchanan Lake on Axel Heidberg Island (23.6 days early), 

Eleanor Lake on Cornwallis Island (20 days early), lake L7 on Bathurst Island (15 days early), 

Lake Hazen (9 days early) and lake L6 on Devon Island (8.4 days early). Earlier summer ice 

minimum was also observed on these lakes. Given that with the exception of Eleanor Lake, the 

lakes with the shortest ice seasons are located in polar oases areas, environments dominated by 

milder temperatures, comes to reinforce the strong relation between air temperature and lake ice 

break-up. The increasing positive air temperature anomalies are likely the cause of perennial ice 

loss for lakes. Lakes that preserved their ice cover from one season to another on a consistent 

basis (e.g., Lake Hazen, Stanwell Fletcher Lake) in previous decades are transitioning toward a 

seasonal ice cover, with sparse or no perennial ice seasons. Some of the lakes on Northern 

Ellesmere Island (i.e. Lake Hazen and Murray Lakes), along with lake L6 on Devon Island and 

Stanwell Fletcher Lake are the only lakes with observed occasional perennial ice. From 2007 to 

2011, Lake Hazen and Murray Lakes were the only ones with observed perennial ice cover in 

2009.  

In an Arctic that has warmed during recent decades and that will likely continue to be driven by 

above-normal air temperatures, shorter ice seasons, with later freeze-up and earlier break-up 

dates, complete loss the perennial ice cover (Brown and Duguay, 2011) and major biological 

changes within the High Arctic lakes are predicted to persist in forthcoming decades. 
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Studies suggest that consequent to ice loss and longer growing seasons Arctic lakes and ponds 

have the potential to experience a large leap in productivity (Smol and Douglas, 2007; Paul et. 

al., 2010). A possible scenario consequent to a reduced ice cover involves abundance of 

peripytic diatoms in shallow lakes (Smol et al., 2005), diversification of the planktonic flora 

(Keatley et al., 2008) and an overall increase of the primary production rate (Smol et al., 2005). 

Lakes within the polar deserts may virtually start to respond and act like those within polar 

oases due to the changing climate conditions (Young and Abnizova, 2011). Studying the 

phenology of the lakes that are presently located in polar oases environments could provide an 

insight as to how the ice conditions of polar desert lakes may be in the near future. 

The increasing positive air temperature anomalies recorded across the Arctic, sea ice reduction, 

the increased cloudiness over the Arctic consequent to longer summer seasons (AMAP, 2011), 

earlier snow melt and reduced snow extent at high latitudes (AMAP, 2011), the accelerated 

glacier melt in the Canadian Arctic, including the Devon Ice Cap (ACIA, 2011) have led to 

positive feedbacks within the Arctic system. However, given the complexity of the atmosphere-

ocean-land interactions and the variability of the Arctic climate, linkages between these 

components and lake ice phenology require to be investigated in greater detail. 

The results presented in this paper document changes in the ice cover of lakes in the Canadian 

High Arctic in recent years as observed by a combination of SAR and optical sensors, and 

present a preview of changes that Arctic lakes are likely to undergo in future decades. The 

combination of radar satellite missions, the recently launched (Sentinel-1a) and the forthcoming 

RADARSAT constellation, and the upcoming optical (Sentinel 2-a/b Multi-Spectral 

instrument), with frequent revisit times, will be invaluable tools that will enable consistent 

monitoring of High Arctic lakes in a dynamic and rapidly changing climate. The 15-year ice 

records for the observed 11 lakes in the CAA set the baseline for a long-term monitoring 

database for High Arctic lakes that can be consolidated through observations from future 

satellite missions. 
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Chapter 6 

General Conclusions 

6.1 Overall Summary 

The overall objective of this research was to provide a better understanding of the response 

of Arctic lake ice to recent climate conditions. This work is not only a contribution to Arctic 

research and freshwater studies in general but it also provides an overview of the 

implications related to changes in the ice cover of Arctic lakes. Furthermore, considering the 

extended time series of the analysis, this study also provides the basis of a lake-ice 

monitoring network that can be further built on in order to create a long-term record.  

Chapters 1 and 2 covered the motivation and the research background required to understand 

the complex interactions between climate and lake ice cover, lake ice thermodynamics, 

spaceborne monitoring of lakes and lake ice, and lake ice modeling.  

The first analysis of a 20-year time series of ERS-1/2 SAR images (1991-2011) investigating 

the evolution of grounded ice of shallow lakes on the North Slope of Alaska was presented in 

Chapter 3. Findings were also evaluated against model simulations of ice thickness. 

Moreover, in order to determine the long-term changes (1950-2011) in the ice cover of these 

lakes, model simulations of freeze-up and break-up dates, and ice thickness were also 

derived. The study revealed a trend toward floating ice covers (22% reduction in the 

grounded ice cover), thinner ice by 18-22 cm for the period of ERS-1/2 image analysis 

(1991-2011) and by 21-38 cm over the last six decades (1950-2011). Freeze-up occurred 5.9 

days later and break-up 17.7-18.6 days earlier for the same time period (1950-2011). 

Analysis of the temporal evolution of C-band backscatter from ASAR and RADARSAT-2 

was employed to evaluate the potential of relatively high temporal frequency SAR to detect 

the timing of ice freeze and melt onset, and ice-off for shallow Alaskan lakes (2005-2011) 

with an accuracy of 2-5 days. Results presented in Chapter 4 showed that with some 
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limitations, particularly during the freeze onset, high temporal frequency SAR allows 

detection of important lake ice events. For the 2005-2011, the mean freeze onset date was 28 

September (DOY271), mean melt onset date was 23 May (DOY143) and mean ice-off date 

was 10 July (DOY191). Comparison of SAR-observed dates with CLIMo simulations 

revealed similar lake ice events dates, in particular for SAR observations versus the outputs 

of the 53% snow depth scenario, and during years with more frequent SAR observations 

(2009-2011).  

Chapter 5 documented ice conditions from the start to the end of the break-up season, 

including summer ice minimum and the presence/absence of perennial ice for 11 lakes in the 

Canadian Arctic Archipelago (1997-2011). The analysis of combined SAR and optical 

images showed not only that the investigated High Arctic lakes experienced earlier melt 

onset and ice-off dates, but also that the lakes have been experiencing advanced summer ice 

minimum dates that could result in the loss of perennial ice. This study showed that lakes 

located in polar oasis environments experienced greater changes in ice conditions than the 

polar desert lakes. Findings indicated that melt onset has been occurring earlier by 14-39 

days for polar oases lakes and by 2.7-22.5 days for polar desert lakes. Timing of the ice-off 

date advanced by 9-23.6 days for lakes in polar oasis environments and by 1.6-20 days for 

lakes in a typical polar desert. With the occasional residual ice that persists throughout the 

summer for a few lakes, most lakes do not maintain a perennial ice cover from one ice season 

to the other. 

This thesis investigated changes in the ice cover of North-American Arctic lakes over a two-

decade period and thus provides a comprehensive monitoring record that can be further build 

on. Spaceborne observations were found to be an invaluable tool in documenting changes in 

the ice cover of remote Arctic lakes where consistent in situ observations are sparse or 

nonexistent. The use of C-band SAR images combined with optical imagery provided the 

opportunity to detect changes in the lake ice cover with a accuracy of 2-5 days for melt onset 



 

 

 

146 

and of 1-2 days for the end of break-up.  The C-band backscatter from two different SAR 

sensors allowed detection of both freeze-up and break-up. 

Lake ice has been shown to promptly reflect changes resulting from complex feedback 

processes and interactions between land, ocean and atmosphere. Lake ice response to a 

changing Arctic climate system is controlled by a multitude of parameters but identified 

short-term and long-term lake ice trends have been particularly associated with changes in air 

temperature, and snow depth and distribution. The assessment of spaceborne satellite 

observations of lake ice conditions against model simulations, air temperature data from 

weather stations, ERA-Interim and MODIS, and snow depth measurements reinforce the 

strong relationship between lake ice as well as regional and local climate conditions. 

Variations in air temperature are meaningful particularly for break-up. In a climate largely 

controlled by positive air temperature anomalies observed during the last decade, the lake ice 

cover of Arctic lakes is expected to undergo significant changes. Trends toward thinner ice 

covers, later freeze-up dates, earlier break-up dates, reduced late-winter grounded ice and the 

loss of the perennial ice cover at high latitudes have been observed and are expected to 

continue or even intensify in the future.  

 

6.2 Limitations 

The two most prominent drawbacks of this work are the temporal and the spatial resolution 

of the SAR sensors that were available. While revisit times range from 24 to 35 days, for 

both SAR and optical sensors, more frequent acquisitions are possible at higher latitudes. 

Considering that small lakes respond to synoptic weather conditions and that ice cover 

conditions could change within one day, spaceborne observations do not always manage to 

capture these daily changes. The combined use of SAR and optical sensors improves the 

accuracy of ice events timing, particularly during break-up when optical observations are not 

as hampered by the presence of clouds. 



 

 

 

147 

The medium resolution SAR data available for this thesis were a limiting factor for detection 

of melt onset on small lakes in particular. The 100-150 m spatial resolution does not always 

allow detection of small areas of open water, typically lateral, if only a few lake pixels are 

affected by melt. Landsat images, with a 30-m spatial resolution, present a valuable 

complimentary tool for break-up monitoring. 

Freeze onset detection is complicated by the effect of wind speed and direction over open 

water on C-band co-pol (HH and VV) backscatter and that of similar radar returns from the 

newly formed ice and open water, resulting in high returns that may signal a false freeze 

onset. Detection of lake complete freeze over was not feasible because of the limited number 

of available images following freeze onset. 

Image segmentation was performed in order to derive the grounded ice fraction versus that of 

floating ice using the MAGIC software (Chapter 3) or to determine the ice fraction of ice 

versus that of open water (Chapter 5). Algorithms used for image segmentation do not 

include automated labeling and thus a human operator was needed to visually inspect each 

segmented image and compare the segmentation results with the original image in order to 

determine class merging and perform labeling of each class. 

Lack of weather station data in the High Arctic limits model simulations with parameters 

illustrative of local climate conditions. Considering this limitation, CLIMo results were not 

used for evaluating the observed ice conditions in the Canadian Arctic Archipelago presented 

in Chapter 4, as they would not have been always representative. Scarcity of weather station 

data limited the assessment of spaceborne detected changes in the lake ice cover against local 

climate conditions. Lack of air temperature records was supplemented with MODIS-

Aqua/Terra LST data, also known to inherent a cold bias. 
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6.3 Future Directions 

Documenting the response of Arctic lakes to changing climate conditions is limited by a 

declining, almost non-existent in situ lake ice monitoring network since the 1980s. This 

research demonstrates that historical C-band SAR and Landsat observations provide a 

practical alternative to documenting long-term changes in the ice cover of small lakes on the 

North Slope of Alaska or lakes of various sizes in the Canadian High Arctic. Moving 

forward, an important step in improving the monitoring record of lake ice phenology and 

improving the retrieval accuracy of changes in the lake ice cover mandates a multi-sensor 

approach, with higher temporal and spatial resolution. The recent launch of the Sentinel-1a 

mission, with a spatial resolution of 20 x 40 m in extra-wide swath mode and the upcoming 

RADARSAT constellation will not continue the C-band SAR operational applications but it 

will also increase the temporal frequency of observations and thus improve the detection 

accuracy of important lake ice events. Additionally, the future multi-spectral Sentinel-2a/b 

missions (planned for launch in 2015 and 2016, respectively) will provide high-resolution 

(10-20 m in the visible band) data that will increase the sampling density at northern latitudes 

– every 1-2 days in cloud-free conditions. Moreover, future missions such as Surface Water 

and Ocean Topography (SWOT) will enable accurate monitoring of water levels and thus 

contributing to a better understanding of lake conditions prior to freezing. Future work needs 

to continue the monitoring record of the lakes investigated in this research but also needs to 

document lake ice changes for a large number of lakes across the Arctic. 

Regarding monitoring lake ice phonological events at the beginning of the ice season, freeze-

up detection could benefit from the polarimetric observations of RADARSAT-2 that provide 

many additional parameters (Geldsetzer and van der Sanden, 2013). 

With respect to image segmentation, automated labelling of MAGIC would greatly improve 

the segmentation process and would constitute a step forward toward development of an 

operational product. 
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Finally, assessment of changes in lake ice conditions would benefit from a greater 

availability of local weather data. Limited by substantial costs, installation of automated 

inland weather stations or buoys on lakes would provide at the very least accurate local 

air/water temperature. 
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