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Abstract

Given the explosive growth of digital image data being generated, medical communities
worldwide have recognized the need for increasingly efficient methods of storage, display
and transmission of medical images. There is also a general acknowledgement that lossless
compression techniques, with low compression ratios, are no longer adequate and that
it is necessary to consider higher compression rates. Since the result, lossy compression,
involves a loss of information and possibly visual quality, it is absolutely essential to be able
to determine the degree to which a medical image can be compressed before its “diagnostic
quality” is compromised. The main goal of this work was to achieve “diagnostically lossless
compression”, i.e., compression with no loss in visual quality nor the diagnostic accuracy.
The degradation produced by “diagnostically lossless compression” is sufficiently minor
and will not affect radiological diagnosis.

The quality of a compressed image can be characterized objectively in several ways.
Radiologists most often employ the Mean Squared Error (MSE) and its close relative,
Peak Signal-to-Noise Ratio (PSNR), even though they are known to correspond poorly
to visual quality. The failure of MSE/PSNR is partially due to the fact that spatial
relationships are ignored by the L2 metric on which they are based. A more recent image
fidelity measure, the SSIM index, measures the difference/similarity between two images
by combining three components of the human visual system – luminance, contrast and
structure estimated using the mean, variance and covariance, respectively. The result is a
much improved assessment of visual quality.

Recent research by Koff et al. has shown that at higher compression levels lossy JPEG
is more effective than JPEG2000 in some cases of brain and abdominal CT images. This
is an interesting and somewhat surprising observation as JPEG2000 is generally believed
to provide better rate-distortion performance than JPEG. We have investigated the effects
of the sharp skull edges in CT neuro images on JPEG and JPEG2000 lossy compression.
A CT neuro image is segmented into three parts (background, skull bone and the interior
region of the skull) using simple thresholding and morphological operators. From each of
these separate pieces, a new image is created by assigning the average value of the extracted
mask to the remaining pixels. These three images are then separately compressed using
JPEG and JPEG2000 algorithms. As expected, the quality is improved according to MSE,
SSIM and its variations MS-SSIM and IW-SSIM. We provide an explanation why JPEG
outperforms JPEG2000 for some CT images.

Another aspect of this study, involving a collaboration with radiologists as well as a
leading international developer of medical imaging software (AGFA), is primarily concerned
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with improved methods of assessing the diagnostic quality of compressed medical images.
The radiological community has not yet accepted a single objective assessment method for
the quality of medical images. Recommended compression ratios for various modalities
and anatomical regions have been published. To date, these recommendations have been
based on experiments in which radiologists subjectively assess the diagnostic quality of
compressed images. In this work, we have examined whether compression ratio and MSE
actually serve as reliable indicators of diagnostic quality. By this we mean to model the
perception of trained radiologists in a satisfactory way. We have also investigated the
quality factor, the sole input parameter in the JPEG compression algorithm, since it has
also been employed as a reference for quality assessment. The performances of the above
indicators are compared to that of SSIM index, based on the data collected in subjective
experiments involving radiologists. An ROC and Kolmogorov-Smirnov analyses indicate
that compression ratio is not always a good indicator of visual quality. Moreover, SSIM
demonstrates the best performance, i.e., it provides the closest match to the radiologists’
assessments. We also show that a weighted Youden index can provide SSIM and MSE
thresholds for acceptable compression.

We also examine two approaches of modifying L2-based approximations so that they
conform to Weber’s model of perception, i.e., higher/lower tolerance of deviation for high-
er/lower intensity levels. The first approach involves the idea of intensity-weighted L2

distances. We arrive at a natural weighting function that is shown to conform to We-
ber’s model. The resulting “Weberized L2 distance” involves a ratio of functions. The
importance of ratios in such distance functions leads to a consideration of the well-known
logarithmic L2 distance which is also shown to conform to Weber’s model. In fact, we
show that the imposition of a condition of perceptual invariance in greyscale space accord-
ing to Weber’s model leads to the unique (unnormalized) measure with density function
ρ(t) = 1/t. This result implies that the logarithmic L1 distance is the most natural “We-
berized” image metric. From this result, all other logarithmic Lp distances may be viewed
as generalizations. We provide numerical implementations of the intensity-weighted ap-
proximation methods for natural and medical images.
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Chapter 1

Introduction

1.1 Prelude

An image is a representation of the likeness of some subject. Images are generated by
recording the radiation from a source of energy passing through a medium. Medical images
are created by the combination of illumination and reflection or absorption of energy from
a source by elements of the human body. Some examples of medical images, based on the
electromagnetic energy spectrum (Figure 1.1), include X-ray, magnetic resonance (MR)
and Gamma-ray images. The various types of medical images are generated using medical
modalities having their own specific features corresponding to the physiological phenomena
studied [57].

Figure 1.1: The electromagnetic spectrum arranged according to energy per photon. Figure adopted
from [31].

Mathematically, a greyscale image can be represented by a real-valued function, f(x, y),
of two continuous variables x and y. The value of f at any pair of coordinates (x, y) is
called the intensity or grey level of the image at that point. Most medical images are
greyscale images. To create a digital image, we need to convert the image function of the
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continuous spatial variables into finite, discrete quantities by sampling and quantization.
A digital image is represented as a two-dimensional array.

Digital medical images are usually greyscale with 16 bits per pixel (i.e. 65536 greyscale
levels). However, the human eye is unable to distinguish that many greyscale levels. It is
generally known that the human eye is able to distinguish no more than 10-bits of grey
(1024 grey shades). The grey level reduction for medical images is accomplished through
the means of window levelling filter. This filter operates on 16-bit images and reduces
their greyscale range to 256 shades of grey (8-bit). This operation automatically enhances
the contrast. Regular monitors are capable of displaying 256 (8-bit) grey shades whereas
medical displays are now capable of displaying 4096 (12-bits) [37] and the latest technology
allows for 14-bit display. Although specialized medical displays are able to display more
than 8-bit greyscale images, the display is not a “true” 10-bit (or more) display since the
window levelling operation transforms the original (raw) 16-bit image into an 8-bit image
before it is displayed. It should be noted that displaying images in browsers is limited to
8-bit.

In general, image arrays exhibit coding, spatial and perceptual data redundancies.
Image compression exploits these redundancies in order to represent the image using the
smallest number of bits. Compression can be defined as “the art and science of representing
information in a compact form” [75]. Image compression can be lossless or lossy. In
lossless, or reversible compression, the reconstructed image is identical to the original
image. In lossy compression, however, which is an irreversible process, we encounter loss of
image information/quality. In general, lossy compression techniques achieve much greater
compression ratios than lossless algorithms. The most common compression formats used
in medical imaging are JPEG and JPEG2000, developed by the Joint Photographic Experts
Group.

Lossy compression alters the quality of the original image. Subjective and objective
quality assessment methods are used to evaluate the degradations that result from com-
pression. One of the subjective methods used in medical image compression studies is
the Receiver Operating Characteristics (ROC) analysis, where a group of experts rates
the quality of images. Objective methods, where no human intervention is required, are
based on signal, texture analysis and models of the Human Visual System (HVS). The
most widely used objective quality measure for images is the Mean Squared Error (MSE).
Traditionally, much of the image processing literature has relied on MSE or other “L2-
based” methods. The advantage of these methods is that they are easy to compute. The
disadvantage is that they do not necessarily reflect visual quality. It is easy to modify an
image to produce another image which is “close” in L2-distance, yet visually “far” (Figure
2.6). In recent years, there has been some progress in the development of image quality
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measures that better reflect visual similarities/dissimilarities. An example is the structural
similarity (SSIM) index [88].

1.2 Motivation

A patient’s medical record consists of clinical data, images and other physiological signals.
Medical information is stored and/or transmitted between healthcare centers. Although,
thousands of medical records are still recorded using a radiological film, the vast majority of
data acquired are digital. With the rapid advances of medical digital imaging technologies
such as computed tomography (CT) and magnetic resonance imaging (MRI) scanners, the
amount of image data being acquired each day has been increasing exponentially [57], [62].
Unfortunately, the decreasing cost of computer storage is being largely surpassed by the
increasing volume.

CT images take nearly 50% of a Picture Archiving and Communication System (PACS)
storage space with CT studies reaching 5000 images [38]. A typical neuro CT image
(512 × 512) pixels requires about 0.5MB of storage space if stored is a raw pixel format.
The storage needs are predicted to further increase with 3D volume rendering [57]. It is
obvious that physicians, regardless of their location, would like to be able to access medical
images efficiently and quickly. Access to imaging data is becoming more widespread with
Electronic Health Record (EHR) solutions. Canada Health Infoway is hosting the develop-
ment of imaging repositories that host data online for legal retention allowing physicians
to access medical information dating back many years, in nearly real-time [61]. In order
to achieve this goal, new and/or improved technology is needed for efficient storage, trans-
mission between sites, retrieval and display of medical image information in large scale
databases. For this reason the use of lossy image compression techniques is inevitable.

Speed limitations of existing networks along with the explosive growth of image modal-
ities with extremely high volume outputs have combined to make the issue of irreversible
medical image coding one of the key considerations in the design of future PACS systems
[82]. Existing lossy image compression techniques are well suited for images where the
only concern is visual quality. Medical images are special; each imaging modality produces
images that differ in spatial resolution, contrast and type of noise. Therefore, improved or
specially designed compression algorithms are desired.

As expected, increasing the degree of compression of an image leads to decreasing
fidelity. The extent of allowable irreversible compression is dependent on the imaging
modality and the nature of the image pathology and anatomy. Image compression often
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results in distortions of the images, and therefore creates the risk of losing or altering
relevant diagnostic information.

The concern that a misdiagnosis could occur as a result of relevant information being
lost due to lossy compression has encouraged researchers to systematically review existing
research on lossy compression. In order to facilitate the adoption of lossy compression for
medical images researchers have investigated the use of JPEG and JPEG2000 compression
methods for various modalities and anatomical regions. As a result, recommendations for
using lossy compression for medical images have been adapted and published by several
radiological societies [63]:

• Royal College of Radiologists (RCR, UK) [62]

• Canadian Association of Radiologists (CAR) [61]

• German Röentgen Society (DRG, Germany) [47]

• The Royal Australian and New Zealand College of Radiologists (RANZCR) [5].

The recommendations all suggest that the use of irreversible image compression is
possible without the loss of relevant clinical features required for diagnosis. Legal issues
are based on national law.

The guide prepared by RCR in UK outlines the current regulations and legal impli-
cations of using lossy compression for medical images: “The main regulatory bodies in
the UK, EU, USA, Canada and Australia neither prevent nor endorse lossy compression
for medical images. The risk of using lossy compression is no more than in conventional
practice provided that the diagnostic quality of the image is not reduced and that the
decision to use lossy compression was made at an institutional level as a matter of public
policy and resource allocation and there was support from at least a respectable minority
of radiologists.”

In Germany, irreversible compression is also allowed if “there is no loss in medical
information” [63], [47].

In Canada there is a governmental supported/driven process in evaluating and imple-
menting irreversible compression for the national Canada Health Infoway Project.

Two independent literature reviews, sponsored by Canada Health Infoway, were done.
These studies reviewed over 120 journal articles and were performed by INSITE Consul-
tancy Inc. [36], and Finnis [25].

From these two independent studies, the following conclusions were drawn: [61]:
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• Irreversible compression is a clinically acceptable option for compresing medical im-
ages

• The extent of allowable irreversible compression depends on the modality of the image
and the nature of the pathology and body part.

Furthermore, two unrelated comprehensive legal reviews including a regulatory assess-
ment, sponsored by Canada Health Infoway, were conducted with regards to the use of
irreversible compression for medical images in Canada [11] [52]. From both studies it was
concluded that the appropriate use of lossy compression does not increase the legal liability
of medical practitioners [61].

One of the main studies considered by CAR, based on which the recommended com-
pression ratios were published, is the pan- Canadian clinical evaluation on JPEG and
JPEG2000 irreversible compression in medical imaging by Koff et al. [38]. The use of
JPEG and JPEG2000 compression methods was investigated for various modalities and
anatomical regions. The study was broad and involved 5 modalities (CR/DR, CT, US,
MR, NM), 7 body parts, 100 radiologists from across Canada and up to 80 images per
session. As a result, they published, for the first time, a standard for the use of compres-
sion in medical imaging, supported by CAR. In their study, they found limitations linked
to the properties of the compression algorithms. For example, JPEG, based on the block
discrete cosine transform, often leads to blurring within blocks and blockiness at block
boundaries. JPEG2000, based on the wavelet transform, often produces blurring in image
detail structures and ringing around edges.

In Australia, “RANZCR recommends the use of lossless compression where possible.
However, where necessitated by infrastructure or cost barriers, conservative levels of data
compression may be used, as per the RCR guidelines; if more aggressive lossy compression
is used, compression levels should generally be within the guidelines adopted by CAR” [5].

A summary of compression ratio recommendations based on the studies reported in
CAR, DRG and RCR is presented in Table 1.2.
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Figure 1.2: Recommended compression ratios for medical images in UK, Canada and Germany. Table
adopted from [63].

Needless to say, if not implemented properly, distortions resulting from lossy compres-
sion could impede the ability of radiologists to make confident diagnoses from compressed
medical images. However, defining the amount of accepted distortion is a complex task.
For this reason, reliable image quality assessment methods are needed in order to achieve
what we shall call diagnostically lossless compression, defined as follows:

Diagnostically lossless compression: Irreversible compression of a medical
image with little or no loss in visual quality and no effect on diagnostic accuracy.
The degradations produced by such compression are sufficiently minor so as not
to affect the diagnostic assessments of radiologists.

The above definition was written by the author, however, similar definitions exist in
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the relevant literature. For example, “diagnostically acceptable irreversible compression
(DAIC)” was introduced in [63] and refers to an irreversible compression that has no effect
on diagnostic task.

1.3 Objective

The main goal of this thesis is to achieve diagnostically lossless compression for medical im-
ages with a quantitative evaluation of compression-caused degradations and through a sub-
jective experiment with radiologists. Furthermore, we work toward developing intensity-
weighted image approximation techniques that incorporate a Weber-type model of percep-
tion.

1.4 Statement of Contributions

Below is a summary of the main contributions of this thesis:

• A quantitative analysis of compression degradations is presented. We provide an
explanation why JPEG performs better than JPEG2000 for certain types of CT
images. According to Koff et al. [38], [39], at higher compression levels lossy JPEG
is more effective than JPEG2000 in some cases of brain and abdominal CT images.
We have investigated how JPEG and JPEG2000 lossy compressions are affected
by the sharp skull edges in the case of CT neuro images. Our technique involves
segmentation of a brain CT image into background, skull bone and the interior
region of the skull, using thresholding and morphological operators. The three image
regions are then compressed separately using JPEG and JPEG2000 algorithms. This
technique improves image quality as measured by MSE, SSIM and its variations
MS-SSIM and IW-SSIM.

• Another aspect of this study, involving a collaboration with radiologists as well as
a leading international developer of medical imaging software (AGFA), is primarily
concerned with improved methods of assessing the diagnostic quality of compressed
medical images. In this study, we have compared the performances of the structural
similarity quality measure (SSIM), MSE/PSNR, compression ratio and JPEG quality
factor, based on the data collected in a subjective experiment involving radiologists.
An ROC and Kolmogorov-Smirnov analyses indicate that compression ratio is not
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always a good indicator of visual quality. Moreover, SSIM demonstrates the best
performance, i.e., it provides the closest match to the radiologists’ assessments. We
have also shown that a weighted Youden index can provide SSIM and MSE thresholds
for acceptable compression.

• We have proposed two approaches of modifying L2-based approximations incorpo-
rating Weber’s model of perception. The first method involves the idea of intensity-
weighted L2 distances. We arrive at a natural weighting function that conforms to
Weber’s model. The resulting “Weberized L2 distance” involves a ratio of functions,
which leads to a consideration of the well-known logarithmic L2 distance. The log-
arithmic L2 distance also conforms to Weber’s model. Furthermore, we have shown
that the imposition of a condition of perceptual invariance in greyscale space ac-
cording to Weber’s model leads to the unique (unnormalized) measure with density
function ρ(t) = 1/t. This result implies that the logarithmic L1 distance is a natu-
ral “Weberized” image metric. As a consequence, all other logarithmic Lp distances
may be viewed as generalizations. We provide numerical implementations of the
intensity-weighted approximation methods for natural and medical images.

1.5 Thesis organization

The next chapter of this thesis, Chapter 2, covers background information and literature
review. It includes a discussion on the creation of medical images, DICOM format, JPEG
and JPEG2000 compression algorithms and image quality assessment measures including
MSE/PSNR and SSIM index. In Chapter 3, we present an investigation of the effects
of irreversible compression on brain CT and body CT images. A quantitative analysis
including a discussion on the effects of medical image compression on visual/diagnostic
quality is presented. The quest for finding features in medical images that would serve as
an indicator of compressibility by employing local analysis of compression artifacts is also
one of the topics of Chapter 3. Validation of objective quality assessment models for com-
pressed medical images including results of the main subjective experiment are provided
in Chapter 4. Chapter 5 covers a mathematical treatment of intensity weighted approxi-
mations of images: “Weberized” L2 and Logarithmic L2 methods. We provide numerical
implementations of the Weber-model based approximation methods with applications to
natural and medical images in Chapter 6. Finally, Chapter 7 contains concluding remarks
and possible future directions based on the results provided in this thesis.
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Chapter 2

Background and Related work in the
Literature

2.1 Image Compression

2.1.1 The Projection Theorem and Frequency Domain Trans-
forms

The Projection Theorem is a well known result that makes transformations from time or
space to frequency domain possible.

Theorem 2.1.1. Projection Theorem:
Let H be a Hilbert space with dimension M , M could be infinite. Let {ek}Mk=1 be a complete
orthonormal basis of H, i.e., 〈ei, ej〉 = 1 if i = j and 0 otherwise. Let us define the
subspaces SN ⊂ H, where 1 ≤ N ≤ M . Then the best approximation of f in SN , to be
denoted as fN ∈ SN is given by

f ≈ fN =
N∑
k=1

ckek (2.1)

where ck = 〈f, ek〉, 1 ≤ k ≤ N . ck are the Fourier coefficients of f .

The approximation fN is the element in SN closest to f with respect to the distance/-
metric defined by the inner product in H.
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Images are finite dimensional, discrete signals. For this reason, it is sufficient to consider
N to be finite. Signals or images may thus be represented by N -vectors, which are to be
considered as elements of the space CN of complex N -vectors. Each such N -vector f is
indexed as follows,

f = (f [0], f [1], ..., f [N − 1])). (2.2)

The set of functions

ek[n] =
1√
N

exp
(i2πkn

N

)
, n = 0, 1, ..., N − 1; k = 0, 1, ..., N − 1. (2.3)

forms an orthonormal basis on CN .

Using the basis {ek}Nk=1, defined in 2.3, we now present the discrete version of the
Fourier transform and its inverse.

Definition 2.1.2. Discrete Fourier transform (DFT):

ck = 〈f, ek〉 =
N−1∑
n=0

f [n]ek[n] =
1√
N

N−1∑
n=0

f [n] exp
(−i2πkn

N

)
, k = 0, 1, · · · , N − 1.

Definition 2.1.3. Inverse discrete Fourier transform (IDFT):

f [n] =
1√
N

N−1∑
n=0

ck exp
(i2πkn

N

)
, n = 0, 1, · · · , N − 1 .

The original vector f can be reconstructed from the DFT coefficients ck.

Fourier series representation defines the 2π-periodic extension of f ∈ L2[−π, π]. This
can cause problems at x = ±π if f(−π) 6= f(π) which is known as the Gibbs phenomenon.
One way to avoid the Gibbs phenomenon at the endpoints is to define f on [0, π] and
construct an even extension f(x) = f(−x) on [−π, 0]. The 2π-periodic extension of f is
continuous at the endpoints. This produces the so-called Fourier cosine series expansion
of f , i.e., the orthonormal basis consists entirely of cosines. As a result, ringing artifacts
at the endpoints can be avoided. In the discrete case this idea leads to the special case of
the Fourier transform and it is known as the Discrete Cosine Transform (DCT). Due to
excellent energy compaction of the coefficients, the DCT is used in the JPEG compression
algorithm. The discrete cosine transform (1-D and 2-D) and its inverse are given by:
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Definition 2.1.4. Discrete cosine transform (DCT 1-D)

F [k] = λk

N−1∑
n=0

f [n] cos
( π
N

(
n+

1

2

)
k
)
, k = 0, 1, .., N − 1 (2.4)

Definition 2.1.5. Inverse discrete cosine transform (IDCT 1-D)

f [n] =

√
2

N

N−1∑
k=0

F [k]λk cos
( π
N

(
n+

1

2

)
k
)
, λk =

{ 1√
2

if k = 0

1 otherwise.
(2.5)

The DCT easily translates into two dimensions:

Definition 2.1.6. DCT 2-D

F [u, v] =
1√
MN

C[u]C[v]
N−1∑
x=0

M−1∑
y=0

f [x, y] cos
((2x+ 1)uπ

2N

)
cos
((2y + 1)vπ

2M

)
(2.6)

Definition 2.1.7. IDCT 2-D

f [x, y] =
1√
MN

N−1∑
u=0

M−1∑
v=0

C[u]C[v]F [u, v] cos(
(2x+ 1)uπ

2N
) cos

((2y + 1)vπ

2M

)
(2.7)

u = 0, 1, ..., N − 1, v = 0, 1, ...,M − 1, x = 0, 1, ..., N − 1, y = 0, 1, ...,M − 1, (2.8)

C(z) =

{ 1√
2

if z = 0

1 otherwise.
(2.9)

2.1.2 Wavelet Transform and Multiresolution Analysis

Let L2(R) denote the Hilbert space of square integrable functions. We now provide a short
summary of multi-resolution analysis.

We begin with the properties of multi-resolution analysis [85, 19], which is defined on
the space L2(R) and consists of a sequence of closed subspaces Vj, j ∈ Z, such that,

• Vj, j ∈ Z are nested, i.e. {0} ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ L2(R)

• Vj’s are scaled versions of each other with the scaling dilation factor 2j−k for j > k,
i.e. v(x) ∈ Vk ⇐⇒ v(2j−kx) ∈ Vj. (Self-similarity in space)
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• Vj’s are invariant under shifts by p · 2k, p ∈ Z, i.e. v(x) ∈ Vj ⇐⇒ v(x+ p · 2k) ∈ Vj.
(Self-similarity in time)

• Vj’s fill the whole space L2(R), i.e. The set ∪∞j=−∞Vj is dense in L2(R). (Complete-
ness).

• Vj’s are not redundant, i.e. ∩∞j=−∞Vj = {0}.

• ∃ a generating function φ ∈ V0 of span {φ(x − k)}, k ∈ Z that forms a Riesz basis
(i.e. there exists A,B > 0 such that A ≤

∑
k∈Z |φ̂(ω + 2πk)|2 ≤ B where φ̂ is the

Fourier Transform of φ) of L2. φ should be piecewise continuous and have compact
support. φ is also known as a scaling function or father wavelet.

For each j ∈ Z, the space Vj+1 can be written as

Vj+1 = Vj ⊕Wj.

The space Wj is spanned by the set of functions

{ψ(2jx− k)}, k ∈ Z,

which are called wavelets. These wavelet functions exist for any multi-resolution analysis
[19]. Furthermore, the set of scaling functions

{φ(2jx− k)}, k ∈ Z

spans Vj. Moreover,

φ(x) =
∞∑

k=−∞

pkφ(2x− k) (2.10)

and

ψ(x) =
∞∑

k=−∞

qkφ(2x− k). (2.11)

for some sequences of numbers {pk} and {qk}.
We denote the scaling and wavelet functions according to their dilations and translates:

φj,k(x) = φ(2jx− k) (2.12)

ψj,k(x) = ψ(2jx− k). (2.13)
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The dual wavelet

For any multi-resolution analysis, ∃ φ̃, satisfying the biorthogonality condition, i.e.

〈φ(x− k)φ̃(x− l)〉 = δk,l (2.14)

The dual wavelet may be derived from the dual scaling function by use of the scaling
equation, Eq. (2.11). This type of wavelet is called biorthogonal.

Functions of L2(R) can be represented in the dual wavelet basis:

f(x) =
∑
k

〈f, φj,k〉φ̃j,k(x) +
∑
j,k

〈f, ψj,k〉ψ̃j,k(x), (2.15)

The inner product 〈·, ·〉 denotes the usual inner product in L2.
〈f, ψ̃j,k〉 is the wavelet coefficient corresponding to the wavelet function ψj,k.

Image approximation using wavelets

It is well known that a given number N of basis functions will generally approximate a
continuous function to more accuracy than a discontinuous one, i.e., a function with dis-
continuities (in the case of images, edges). Consequently, the rate of convergence of the
Fourier series of a discontinuous function is lower than that of a continuous one. Wavelets,
on the other hand, have finite support which changes depending on the resolution and
provide multiresolution analysis of a signal keeping track of time and frequency. Wavelet
decomposition is obtained through the Discrete Wavelet Transform (DWT), which decom-
poses the signal into its frequency components that lie in ranges bounded by powers of
2. Ingrid Daubechies was the first to construct a family of compactly supported orthog-
onal wavelets [20]. Further development of multiresolution analysis and the fast wavelet
transform by Mallat led to using wavelets in image processing [49].

Biorthogonal transforms are invertible but not orthogonal [84]. The Daubechies wavelet
functions that are widely used in image compression (e.g. JPEG2000 compression) do not
have a closed form and the decomposition and reconstruction of signals is obtained using
high-pass and low-pass digital filters corresponding to parameters (polynomial coefficients)
that characterize each wavelet function. The high-pass and low-pass filters that are em-
ployed in the DWT use coefficients that do not exist in the data set; this is called the
“overspill problem”. In order to overcome this issue, signal extensions are performed at
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the boundaries. The most common are symmetric and periodic extensions. Periodic ex-
tensions introduce boundary discontinuities which cause large number of high frequency
coefficients in the DWT. The advantages of symmetric extension over periodic extension
have been studied in [81]. It is known that symmetric extension cannot be applied to or-
thogonal wavelets (for non-expansive DWT, i.e. the number of input samples is the same
as the number of wavelet coefficients at any point during the decomposition process) [77].
Symmetric extensions require symmetric filters, which can be employed with biorthogonal
wavelets. The filters corresponding to orthogonal wavelets are energy preserving (Parse-
val’s identity). However, the Daubechies biorthogonal filters correspond to a wavelet basis
that is “close” to orthonormal and thus preserve energy quite well under the DWT [73].

Let f(x, y) ∈ L2((R)) represent an image function. The image function f assigns to
each point (x, y) an intensity value. These values are the pixel intensities. In the case of
a digital image, f is represented as a N ×N matrix with entries (n,m) and integrals are
replaced with finite summations.

The “projection theorem” justifies the use of orthogonal or biorthogonal basis functions
to best approximate a function in the space L2. The DWT converts an image into a
space where image information is represented in a more compact form, which in turn
reduces redundancies. These transforms separate the relevant and irrelevant information
that are present in an image, i.e., into low and high frequency coefficients. The goal in
image compression is to preserve the most relevant coefficients (low frequency coefficients),
whereas the less important coefficients (higher frequency coefficients) are often rounded to
zero. The most relevant coefficients are those that have large magnitudes.

2.2 Baseline JPEG Compression

The JPEG Baseline technique was developed by the Joint Photographic Experts Group
and became an international standard in 1993 [57]. Figure 2.1 shows the steps involved in
JPEG compression of a greyscale image. The algorithm starts with dividing an image into
8 × 8 pixel blocks. The rest of the algorithm processes each block independently, which
is less computationally complex. The DCT is computed for each block. The DCT takes
the pixel values of the image and transforms them into a matrix of frequency coefficients.
The advantage of this operation is that the coefficients are now decorrelated (to some
degree) and most of the image information is contained in a small number of these spectral
DCT coefficients. The next step is scalar quantization, where each coefficient is divided
by the corresponding quantization number. Depending on the degree of compression,
quantization can be more or less strong. The quantized coefficients are then rounded to
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the nearest integer. Next, the coefficients are reordered according to increasing spatial
frequency using the 1-D zigzag pattern and run-length encoding (RLE) is applied. The
RLE takes advantage of the long runs of zeros that usually result from reordering. This
operation is performed by grouping similar frequencies together, storing single data value
and count instead of the original string of values. Finally, Huffman coding is applied on the
remaining data. The idea is that the most frequently occurring characters (numbers in this
case) will be represented by shortest code words. Decompression is done by performing
the inverse of the same operations in the reverse order. JPEG compression is widely used
on the Internet and in digital cameras. It works best for images with smooth variations of
tone. [57, 75, 23, 67]

JPEG is not optimized for L2. A quantization table optimized for L2 would have the
full table with constant entries. However, in the case of JPEG, where non-uniform quan-
tization is performed, finer quantization is applied to mid-low frequency DCT coefficients.
The default JPEG DCT quantization table for luminance is given in 2.16. The JPEG
quantization tables were claimed to be obtained through psychovisual testing. Interest-
ingly, this does not necessarily mean that a uniform quantization table will lead to better
L2 performance. The real gain of JPEG relies on the number of zero DCT coefficients. The
scan of DCT coefficients follows a zig-zag pattern starting from the top-left corner, and
it stops when all remaining coefficients are zero. Thus, having larger quantization entries
at high frequency coefficients is beneficial because it makes it a lot more likely to create
more zeros at the tail of the zig-zag scan. Having more zeros at the tail of the scan makes
the scan stop earlier. This is very important in JPEG compression in terms of saving bits.
Furthermore, the JPEG default quantization table and zig-zag scan is indeed a coherent
joint design.

Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(2.16)

The default way of using JPEG quantization table is to apply a scale factor on top
of the above table, round the resulting table to integers, and use the rounded integers to
quantize DCT coefficients.
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Figure 2.1: Steps in lossy JPEG compression. Each 8 × 8 block is first transformed using the DCT.
These coefficients are then scalar quantized, and reordered using the zigzag pattern. Finally, the run-length
encoding (RLE) and Huffman coding is applied. Decompression is done by performing the inverse of the
same operations in the reverse order. (Brain CT image: MIIRC@M)

2.3 JPEG2000 Compression Format

JPEG2000 still image compression is based on the DWT and is the newest addition to the
family of international standards that were developed by the Joint Photographic Experts
Group. JPEG2000 compression involves several steps. These steps are shown in Figure
2.2. First, the greyscale image can be divided into tiles of equal size (this step is unneces-
sary). Then the DWT is applied (to each tile), which decomposes the image into subbands
revealing the collection of details at different resolutions. The details represent the differ-
ences between two consecutive resolution levels and correspond to characteristics in the
horizontal, vertical and diagonal directions. This subimage pyramid, which contains the
“approximations” and “details” of the original image is obtained via an iterative filtering
scheme and subsampling operations. The filters used in JPEG2000 compression are the
biorthogonal Daubechies (irreversible 9-7 floating point filters and reversible 5-3 integer fil-
ters) wavelet filters [31]. Figure 2.3 shows 2-level wavelet decomposition applied to a neuro
CT image. Most wavelet compression algorithms compute a four or five level decomposi-
tion. Next, each subband’s wavelet coefficients are scalar quantized using a quantization
step, which depends on the level of compression and on the characteristic of the details
that the subband represents. Then, the quantized coefficients are put in codeblocks of
sizes 64 × 64 or 32 × 32. Individual codeblocks are then divided into bit planes ranging
from most significant (MSB) to least significant (LSB). Starting with the MSB plane with
a nonzero element, each bit plane undergoes three passes: significance propagation, mag-
nitude refinement and cleanup. Each bit in each bit plane is coded using only one of these
passes. The resulting bits are then arithmetically coded and grouped with bits that result
from similar passes from other code blocks. This forms layers, which are then divided into
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pockets. Pockets allow the extraction of a spatial Region of Interest (ROI) from the total
image data. Decompression is done by inverting the above operations. The number of
bit planes used for reconstruction can be specified by the user. The compressed image
can be recovered at progressive quality from the codeblocks. Due to the nature of the
wavelet functions, which satisfy the properties of a multiresolution analysis, lossless and
lossy compression can be obtained from one file stream [57, 31, 84, 23].

The goal of JPEG2000 was to provide: better performance at high compression ratios
than JPEG, lossless and lossy compression in one file stream, support for 16-bit medical
images [23, 39]. The disadvantages of JPEG2000 are that the format is not supported by
Web browsers and that it requires complex encoders and decoders.

Figure 2.2: Block diagram of a wavelet based lossy compression system (JPEG2000). Figure adopted
from [31].

Figure 2.3: 2-level wavelet decomposition. (Brain CT image: MIIRC@M)

2.4 Medical Imaging

The process used to create images of the human body or parts of it for diagnostic purposes
or for medical science is called medical imaging. Various physical phenomena are used to
create medical images. The most common are: X-rays, γ-rays, ultrasound waves, nuclear
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magnetic resonance. The use of computers in the acquisition process (real time treatment of
a large amount of information) and for image reconstruction (tomography) has significantly
increased over the years.

Medical imaging is a noninvasive process. This means that imaging modalities do not
penetrate through the skin physically. However, the electromagnetic radiation that passes
through the body alters the physical and chemical reactions of the body in order to obtain
data. In some cases, the electromagnetic radiation can be ionizing, i.e. the electromagnetic
waves have enough energy to detach electrons from atoms or molecules. Some procedures,
however, involve the introduction - either by ingestion or injection - of some kind of contrast
medium (e.g. iodine and barium in the case of CT) in order to enhance the contrast of
structures or fluids within the body and can be detected quite conspicuously by the imaging
modality.

The visual presentation of the human body depends on the image formation process
and the features of various medical modalities correspond to the physical and physiological
phenomena observed. Consequently, each imaging modality produces images that differ in
spatial resolution, contrast and type of noise [57]. Sagittal slices of the brain using four
different medical image modalities are shown in Figure 2.4 and include X-ray CT, MRI
and ultrasound imaging.

Medical images are generally low contrast images. They contain a complex type of
noise, which is introduced due to the various acquisition techniques, transmission, storage,
display devices as well as resulting from quantization, reconstruction and enhancement
algorithms. Unfortunately, all medical images contain noise, which has grainy, textured or
snowy appearance. In CT, MR and ultrasound images noise is very significant and may
reduce the visibility of some diagnostically relevant features, especially for low contrast
objects [80].

Of particular interest are CT images, which are discussed in the next section.
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Figure 2.4: Sagittal slices of the brain obtained using four different medical image modalities. a) magnetic
resonance imaging (MRI), b) computed tomography (CT), c) positron emission tomography (PET), d)
ultrasound. The figure was adopted from [57].

2.4.1 X-ray and Computed Tomography (CT)

X-rays are one of the oldest sources of electromagnetic radiation used in medical imaging.
The X-rays are generated by using an X-ray vacuum tube with a cathode and an anode.
When the cathode is heated, free electrons are released and then flow to the anode of
positive charge. The electrons hit the metal target in the anode and the energy is released
in the form of X-rays. The strength of the emitted X-rays is controlled by the voltage on
the anode as well as the current in the cathode. The patient is placed between the source
of the radiating X-rays and a film that is sensitive to X-rays. The X-rays penetrate the
patient’s body and images are created using radioluminescent storage phosphor plates or
flat matrix panels.

In the former case, the intensities of X-rays are recorded when the phosphor plates are
exposed. They are then put in a special reader where a laser beam scans over the panel
and converts the X-rays into light, which is then detected by a photomultiplier tube and
the signal is digitized.
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The flat matrix detectors have receptors with the ability of converting X-rays into an
electric charge. For each pixel, an electric charge is received by a low noise electronic
system and then digitized. These detectors produce a single projection plane of the region
being imaged.

X-rays are used in CT imaging. Each CT image represents a “slice” of a part of the
patient’s body. CT scanners are moved around the patient in order to obtain a variety
of projections from many different angles. The sum of the attenuation coefficients of all
tissues that the X-ray beam has passed through is the total X-ray transmission measured
by each detector. Although most tissues in the body are composed mainly of water, the
variations are sufficient to record differences in the attenuation coefficients. The collection
of the ray sums for all the detectors at a given position is a projection (Radon transform);
about 800 data points corresponding to the 800 individual detectors is a single matrix
array. About a thousand of these projections are needed to produce one CT slice. Sino-
grams are the graphic plots of projections (amplitude) vs. the X-ray tube angle (phase).
Generating a CT image out of these projections requires determining the relative attenu-
ation coefficients of individual pixels in order to discriminate small differences, which are
expressed as Hounsfield units (HU). Figure 2.5 shows a plot of Hounsfield units corre-
sponding to different tissues (densities). A cross sectional CT image is reconstructed by
performing filtered back-projection on the projected data set. Three dimensional filtered
back-projection can be used for 3-D reconstruction of the object being imaged. [57, 35, 6].
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Figure 2.5: The plot shows a function that converts CT numbers to linear attenuation values at 511 keV.
Linear attenuation coefficient at 511 keV is a function of corresponding CT value (in Hounsfield units).
Figure adopted from [7].

CT provides anatomic information and is used to examine bones, breasts (mammogra-
phy) or lungs. CT scanners are very useful for the visualization of complicated fractures,
examination of organs in the neck or in the abdomen. Angiograms are X-ray images ob-
tained by injecting X-ray contrasting agent in the coronaries through a catheterization
process. The resulting images have better contrast of the blood vessels with the surround-
ing tissue. This technique is used in cardiology for coronary angiography.

A single cardiac (angiography) examination consists of 2000 to 3000 images (512×512×8
bits), which requires about 600 Megabytes of memory. CT imaging is very expensive in
terms of storage; for example Angers hospital (France) accumulates 4.5 TB of CT data a
year [57], (which comprises 35% of all of its imaging data)!

A single slice CT scanner generates one tomographic image (slice) for each full rotation
(360 degrees). The recent developments in CT technology provide multi-slice scanners,
which allow for 320 slices (with slice thickness of 0.5mm) to be acquired in one rotation of
the X-ray tube. There are more detecting channels, which results in better temporal and
spatial resolution of the images. Therefore, CT images obtained using the new technology
are of better quality as compared to the older generations CT imaging systems.
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Of particular concern is the amount of ionizing radiation that the patient receives
during CT examination. Recent developments in CT imaging led to less intrusive and
highly efficient imaging. For example, the 3D images enable us to view the aorta and the
arteries of the lower limbs through a single acquisition and thus allowing to visualize a
total length of more than one meter, made up of sub-millimeter slices [57, 35].

In a CT image, a variety of image artifacts can be observed. Aliasing, observed as
dark lines radiating away from edges, results from taking not enough projections or from
insufficient penetration of the X-rays. Partial volume effect appears as blurring, which
results from the slices being too thick. There are also other artifacts such as ringing and
motion artifact [34].

2.5 Medical Image Standards and Formats used in the

Healthcare Industry

2.5.1 Picture Archiving and Communication systems (PACS)
and Digital Imaging and Communications in Medicine (DI-
COM)

PACS is a solution to manual filing, retrieval and transfer of digital medical images. PACS
allows electronic retrieval and storage and simultaneous access (at more than one site)
of medical images, with support of multiple imaging modalities. This communication is
usually carried by a server. The universal file format that is used in PACS is DICOM.
DICOM is a data transfer, storage and display protocol that covers the functional aspects
of digital medical imaging. The DICOM standard differentiates among various medical
modalities. It is organized into independent sections, which specify the DICOM file format
and rules for printing, communication of related images and data over a network or using a
physical media, the security of data exchange, monitor display, and other tasks. Although
DICOM has been mainly used in hospitals, small medical practices have started using it.

DICOM is a file format in which the information (such as medical images, patient
information, reports, interpretations and other related data) is grouped into data blocks.
The image data cannot be separated from the patient data (nor from other DICOM data
blocks). The DICOM standard supports several lossless and lossy compression techniques
including JPEG (8, 12-bit images) and JPEG2000 (8,12, 16-bit images). PACS allows
quick and easy access to images and other related patient data from past examinations,
which might in turn lead to a more reliable diagnosis.
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Internet browsers play an important role in viewing patient data. Browsers do not
support DICOM format however through web based server-client applications, patient’s
data including the related medical image can be viewed. It is very common that doctors
view medical images using an Internet browser such as Chrome. Due to browser limitations
as well as transmission speed, only compressed versions of images are displayed. The
compression formats that are supported in DICOM and most Internet browsers are 8-bit
images compressed with JPEG and JPEG2000 algorithms. This is the reason why we base
our studies on these two image formats. As discussed previously, the amount of compression
raises several concerns as it is still questionable which measure is most accurate in assessing
the quality of compressed images. In the next chapters we are hoping to at least partially
answer that question, however, we admit that there is still a lot of research to be done in
order to find answers to these important problems in the radiological industry.

2.6 Quality Assessment of Medical Images

Lossy compression alters the original image. When working with medical images, we are
not just concerned with the visual quality, we are also concerned with diagnostically rele-
vant features. The goal of many researchers working in the field of image compression is to
achieve diagnostically lossless compression as defined in Section 1.2. In order to study and
evaluate lossy compression techniques, it is necessary to measure the degradations they
produce. The amount of accepted distortion that would qualify a particular lossy com-
pression as diagnostically lossless compression is a complex task and an open discussion
among researchers. It depends on the image features, anatomical region and acquisition
technique, compression method and compression ratio. As mentioned previously, recom-
mended compression ratios for JPEG and JPEG2000 lossy methods have been proposed by
Koff et al. [38] for various medical image modalities and anatomical regions. The degrada-
tion produced by diagnostically lossless compression should be sufficiently minor and not
affecting radiological diagnosis. Clearly, it is absolutely necessary to correctly identify and
measure degradations caused by lossy compression applied to medical images. In order to
do so, we need reliable quality assessment methods.

Many objective image quality metrics have been proposed in the last decade. Due to
the wide variety of image types and applications, image quality assessment is not (yet)
fully automatic and subjective approaches are still predominant [57]. How do we measure
diagnostic quality? It is the pathological condition that determines the information that
must be retained in any given medical data.
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There is no standard method to measure the quality of compressed medical images,
however, three approaches are usually considered [12]:

1. Subjective image quality rating using psychovisual tests or questionnaires with nu-
merical ratings

2. Diagnostic accuracy measured by simulating a clinical environment with the use of
statistical analysis (e.g. ROC)

3. Objective quality measures such as the MSE.

Although subjective experiments are complicated and difficult to conduct [57], they are
the most accepted way for measuring diagnosis reliability. In order to overcome problems
with subjective quality assessment and to automate the process of assessing degradations,
there is a need for reliable objective quality assessment of medical images. Objective medi-
cal image quality assessment, where no human intervention is required, must be compliant
with the human visual system (HVS) and provide accurate diagnostic quality measures.

2.6.1 Subjective Methods for Image Quality Assessment

Subjective image quality rating experiment is conducted by presenting a randomized set
of images to the observer, who will assign a rating to each image (typically from 1 to 5).
Depending on the purpose of the test, the observer will be a typical user or a specialist (ra-
diologists, in the case of medical images, for example). This is usually done by comparison
(side-by-side or by flickering) of compressed and uncompressed images by readers.

For the purpose of evaluating speech and video quality, the ITU standard that de-
scribes several approaches to perform subjective experiments has been developed. These
approaches include absolute category rating (ACR), single stimulus continuous quality eval-
uation (SSCQE), double stimulus continuous quality scale (DSCQS) [1] [70] and Overall
quality rating scale (OQRS) [2]. There is no standard way for rating of medical images [12].
Although some of the above rating scales have been used in subjective tests for medical
images [72], these standards may not fit well with medical applications, where the ultimate
purpose is determining diagnostic quality. For example, in a typical ACR scales, there are
five categories: Excellent, Good, Fair, Poor and Bad. Based on these categories alone, it
is not clear how to define a threshold for “diagnostically lossless” compression. Specialized
rating scales are often used in medical imaging research, where the description of the scale
categories is more meaningful to radiologists. In [30], for example, the following modified
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scale has been used: “A score of 5 is no distortion (Excellent), score of 4 represents a little
distortion which can be ignored (Good), score of 3 shows distortion which can be seen
evidently but it can be accepted (Fair), score 2 shows a lot of distortion, which can not
be accepted (Bad), and finally score of 1 shows too much distortion, therefore can not be
tolerated (Very Bad).” Another specialized scale was used in [46]. The following categories
were defined:

1. Better than the reference image

2. Same as the reference image

3. Poorer than the reference image, but acceptable

4. Unacceptable.

A subjective experiment with binary image quality evaluation by comparison of com-
pressed and the original uncompressed images has been conducted in [71].

Some studies report on the results of subjective assessment, with the assumption that
there is no tolerance to any visually detectable difference between the compressed image
and its uncompressed counterpart. Statistical analysis is usually performed on the data
including computation of averages, variability and other statistical qualities. Plots of com-
pression ratio versus PSNR and compression ratio versus the mean subjective scores are
often compared and objective and subjective scores are presented in tables. More involved
analysis is performed by modelling subjective assessments with an objective quality mea-
sure. For medical images, the purpose is to predict the radiologists subjective assessment
using an objective criteria. This is typically accomplished by plotting the mean values of
the objective measure against the mean values of subjective responses and fitting a curve
to the obtained points [12].

The clinical performance of a method can be measured with the use of diagnostic ac-
curacy, i.e. the correct grouping of subjects into clinically relevant subgroups. “Diagnostic
accuracy refers to the quality of the information provided by the classification device and
should be distinguished from the usefulness, or actual practical value, of the information”
[48].

Diagnostic accuracy is assessed using statistical analysis. The most common tool to
measure diagnostic accuracy is the Receiver Operating Characteristic (ROC) analysis [55]
[83]. The result of an ROC analysis is a threshold, which depends on the trade-off between
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the sensitivity and specificity. “For radiological applications, this involves asking radiol-
ogists to provide a subjective confidence rating of their diagnoses (typically on a scale of
1-5) which is then used as if it were a threshold to adjust for detection accuracy” [12].

ROC analysis has some pitfalls in the case of diagnostic accuracy measurement. ROC
analysis is more appropriate to use in the case of a binary task. Firstly, radiologists are
not used to assign values to the confidence of their diagnostic decision. Secondly, in the
case of the non-binary scale, it is not clear how to detect the number of abnormalities that
are absent/present. In a binary detection task, however, such as detection of a tumour in
the brain, if the image is diagnosed as normal then only one abnormality is absent. There
exist extensions and variations to the conventional ROC analysis that allow for multiple
abnormalities and localization of abnormality:

• Localization ROC (LROC). Use of observers to specify location of pathology. [54]
[94]

• Free-Response Operating Characteristic (FROC). Generalized LROC. It allows for
multiple abnormalities and multiple locations. [14]

• Differential ROC (DROC) [13].

Furthermore, the ROC curve is a useful visual tool to compare two or more tests on a
common set of scales. The performance of a classifier is determined using the area under
the curve [60].

Studies on diagnostic accuracy generally involve detecting pathologies in medical im-
ages. Some examples include: the radiologists task involving the detection of enlarged
lymph nodes in a CT chest scan [12], specifying the quadrant in which the pathology
exists [38], and measurement accuracy of MR chest scans [68].

For the purpose of measuring diagnostic accuracy, it is necessary to determine a “ground
truth” or a “gold standard”, which represents the true diagnosis on which the ROC analysis
is based. There are several ways a “ground truth” can be defined. For example, it could
consists of subjective opinions of experienced experts, or represent results of an autopsy,
surgical biopsy, reading of images from a different imaging modality, etc. Another one is
called a “personal gold standard” where each reader’s judgement on the original image is
considered to be the “ground truth” for the readings of the same reader on the compressed
images [12].

In our study, we propose a method that involves ROC analysis with the use of a binary
task on detecting unacceptable compression degradations. In order to measure the degree
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of allowable compression degradations, in our experiments we consider the radiologists to
define the “ground truth”. The result of our study is a threshold for diagnostically lossless
compression corresponding to an objective quality measure. This method will be discussed
in detail in Section 4.

2.6.2 Objective Methods for Image Quality Assessment

There are many full reference image quality assessment algorithms proposed in literature
[29]. Full reference methods are based on comparison between the original image and
its distorted version. The most popular ones include MSE/PSNR, Structural Similarity
Index (SSIM) and its variations [88], Most Apparent Distortion (MAD)[45], Normalized
Perceptual Information Distance (NPID) [59], Practical Im age Quality Index [95] and a
wavelet-based measures: Visual Signal-to-Noise Ratio (VSNR) [15] and Visual Informa-
tion Fidelity (VIF) [32]. The MSE/PSNR is related to the L2 distance between image
functions. “The SSIM image quality assessment approach is based on the assumption that
the human visual system is highly adapted for extracting structural information from the
scene, and therefore a measure of structural similarity can provide a good approximation
to perceived image quality”[88], [91]; it is the method that this thesis is based on. The
MAD method utilizes two strategies to determine image quality: “Local luminance and
contrast masking are used to estimate detection-based perceived distortion in high-quality
images, whereas changes in the local statistics of spatial-frequency components are used
to estimate appearance-based perceived distortion in low-quality images” [44]. The NPID
method is a wavelet based algorithm with laplacian pyramid subband decomposition based
on Kolmogorov complexity [29], [59]. The Practical Image Quality Index is relatively sim-
ple to implement and it is based on the texture masking effect and contrast sensitivity
function [95]. The VSNR is a low complexity method that considers near-threshold and
suprathreshold properties of the HVS [15]. VIF is based on visual information fidelity [32].

The objective image quality measures are not necessarily reliable measures of diagnostic
quality of medical images. Moreover, compression ratios, generally used as pre-compression
quality predictors, indicate poor correlation with image quality and are image dependent
[24]. According to Marmolin [51]: “MSE is not very valid as a quality criterion for pictures
reproduced for human viewing and the improved measures could be derived by weighting
the error in accordance with assumed properties of the visual system.” It cannot be
assumed that an objective quality metric that performs well for natural images will ensure
a superior diagnostic quality for medical images. In spite of these pitfalls, MSE/PSRN and
other objective methods have been used in medical image quality assessment.
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How do we determine which objective quality assessment measure is best suited for
medical images? The common way of comparing performances of lossy compression meth-
ods is to plot distortion rate (e.g. MSE, SSIM) versus bit rate curves (or compression
ratio). [74] [28]. For medical images, the goal is to find an objective image quality that
can best predict the subjective radiologists’ assessments. The performance of an objective
quality measure to predict subjective scores is usually measured by means of a curve-fitting
model. First MSE values are plotted against mean scores of subjective assessments, then
curve (e.g. polynomial spline, quadratic, exponential, logistic) is fitted to the resulting
points [12]. Another tool used to compare image quality measures is the correlation co-
efficient. The correlation coefficient relates objective and subjective quality evaluations
using statistical correlations. Best performance of an objective measure corresponds to the
highest correlation with the subjective method. A review of comparison studies involving
computation of the correlation is presented in [72].

More specialized objective quality measures that focus on perceptually significant fea-
tures incorporating the human visual system have been studied in [10] [50]. Some re-
searchers have focused on designing objective quality assessment methods that were spe-
cialized for medical images. An attempt to characterize the class and amount of distortion
and to evaluate diagnostic accuracy and acceptable compression level has been proposed
by Przelaskowski et al. in [71]. Subjective results have been tested against a Chi-square
quality measure and recommended compression ratios have been proposed for MR and
CT images using a compression based on the block DCT transform. In another study,
statistical metrics have been used for quality evaluation of ultrasound compressed images
[21]. In a paper by Oh et al. [64], a perceptual quality rating (PQR) is introduced. PQR
is based on “a multistage perceptual quality assessment for compressed digital angiogram
images (MPQA)”, which provides distortion maps and contrast error measures with the
consideration of the human visual system (HVS). The PQR measure shows satisfactory
correlation with radiologists’ assessment.

In this thesis, we study and compare the most popular objective quality assessment
methods used in literature, namely MSE/PSNR and SSIM index [72]. Although MSE/P-
SNR is shown to poorly correlate with visual quality, it should not be taken for granted
that any perceptual object quality measure must be better. SSIM and other objective mea-
sures show better performance for natural image/video content for consumer electronics
applications based on subjective tests [89] [90] [3]. Moreover, no objective model has not
been yet “established” for medical images, especially when using radiologists as subjects.
We aim to validate the SSIM index as a reliable measure of diagnostic quality. The SSIM
index provides a meaningful quality map, that allows localized analysis and reveals image
quality variation over space closely. The SSIM map may be helpful to explain the differ-
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ences between compression algorithms. It may be also very useful in suggesting ways to
develop better image compression algorithms for medical images. In what follows, the two
objective quality assessment methods, MSE and SSIM, are discussed in detail.

The Mean Squared Error (MSE)

The squared L2 distance between the compressed image g and the original image f , is
defined as

∆2 =
M∑
i=1

N∑
j=1

(f(i, j)− g(i, j))2 .

The Mean Squared Error (MSE) between the compressed image g and the original
image f is given by

MSE(f, g) =
∆2

NM
=

1

MN

M∑
i=1

N∑
j=1

(f(i, j)− g(i, j))2 .

In image processing, one also sees the Root Mean Squared Error (RMSE):

RMSE(f, g) =
√
MSE(f, g).

Results are often expressed in terms of the Peak Signal-to-Noise ratio (PSNR), which
is derived from the MSE as follows,

PSNR(f, g) = 10 log10

(
L2

MSE(f, g)

)
.

Here L is the dynamic range.

Why is MSE so popular? Some of the reasons are: it is simple and fast to implement,
it is a metric (non negativity, identity, symmetry and triangle inequality hold), energy
preserving for orthogonal transforms (i.e. Parseval’s identity), it is convex, differentiable
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and symmetric, it is memoryless (i.e. independent of other samples) and it is a convention
[88]. According to Marmolin [51], “MSE is not very valid as a quality criterion for pictures
reproduced for human viewing and the improved measures could be derived by weighting
the error in accordance with assumed properties of the visual system.” It is well known
that MSE does not correspond well with the Human Visual System (HVS) and it is not a
good measure of image diagnostic nor visual quality. For example, it is possible that two
images f and g both have the same MSE distance to a reference image and one of them
is much “closer” visually than the other. This will be also shown later in this report. The
failure of the MSE is partially due to the following: any spatial relationships between the
samples of the signal, and any relationships between the original and the distorted image
are ignored by the MSE, where image pixels are treated equally. The MSE can also be
visualized as a point in an N-dimensional vector space (signal space), in which N represents
the number of pixels in the image, and each point is an image. Adding a distortion to an
image can be viewed as adding a vector from the original image. The set of all distorted
images such that the values of the MSE between the original image and the distorted
ones are equal, forms an “equal-MSE hypersphere” in the signal space. Various distortions
produce images that differ visually from the original image as well as from each other. The
MSE ignores the directions of these distortion vectors, which are also of importance. In
the next section, we discuss the Structural Similarity Index (SSIM), a more recent image
quality assessment measure which can differentiate the various distortion vectors.

Structural Similarity (SSIM) Index

There has been much effort in developing image quality measures that give more accurate
information about visual differences. In a study done by Chandler et al.[16] on “Effects
of spatial correlations and global precedence on the visual fidelity of distorted images”, it
was concluded that structural distortions are one of the most perceived distortions by the
human eye.

The SSIM index, introduced by Wang and Bovik [89], assumes that the HVS is highly
sensitive to structural information/distortions (e.g. JPEG blockiness, “salt-and-pepper”
noise, ringing effect, blurring) in an image and automatically adjusts to the non-structural
(e.g. luminance or spatial shift, contrast change) ones [88]. Another assumption of the
SSIM index is that images are highly structured and there exist strong neighbouring de-
pendencies among the pixels, which the MSE totally ignores. The SSIM Index measures
the difference/similarity between two images by combining three components of the human
visual system- luminance, l(f, g), contrast, c(f, g) and structure, s(f, g).
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The general form of the (local) SSIM is given by

SSIM(f, g) = (l(f, g))α · (c(f, g))β · (s(f, g))γ (2.17)

=

(
2µfµg + C1

µ2
f + µ2

g + C1

)α

·

(
2σfσg + C2

σ2
f + σ2

g + C2

)β

·
(
σfg + C3

σfσg + C3

)γ
, (2.18)

where µ is the mean:

µf =
1

NM

N∑
i=1

M∑
j=1

f(i, j),

σ2
f is the variance:

σf
2 =

1

(NM − 1)

N∑
i=1

M∑
j=1

(f(i, j)− µf )2,

σfg is the covariance:

σfg =
1

(NM − 1)

N∑
i=1

M∑
j=1

(f(i, j)− µf )(g(i, j)− µg),

and α, β and γ are parameters to define the relative importance of the three components.
In most applications, we set α = β = γ = 1 and the local (basic) SSIM Index is defined as
follows:

SSIM(f, g) =

(
2µfµg + C1

µ2
f + µ2

g + C1

)
·

(
2σfσg + C2

σ2
f + σ2

g + C2

)
·
(
σfg + C3

σfσg + C3

)
. (2.19)

It is normally computed over M ×N pixel neighbourhoods.

The SSIM behaves as follows,

− 1 ≤ SSIM(f, g) ≤ 1, (2.20)

and SSIM(f, g) = 1 ⇐⇒ f = g. (2.21)

As its name suggests, SSIM measures the similarity between f and g. The closer f and
g are to each other, the closer SSIM(f, g) is to the value 1. If f and g are identical, then
SSIM(f, g) = 1.
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The (non-negative) parameters C1, C2 and C3 are stability constants of relatively small
magnitude, which are designed to avoid numerical “blowups” which could occur in the case
of small denominators. For natural images, there are some recommended default values
for these parameters [88]. On the other hand, the question of optimal values for these
stability constants for medical images is still an open one. The smaller the values of these
constants, the more sensitive the SSIM index is to small image textures such as noise. In
our study below, we shall examine a range of values for the stability constant (only one
will be used, as explained below) in order to determine the value(s) which are optimal for
the assessment of the diagnostic quality of medical images.

Note that in the special case C3 = C2/2, the following simplified, two-term version of
the SSIM index is obtained:

SSIM(f, g) =

(
2µfµg + C1

µ2
f + µ2

g + C1

)(
2σfg + C2

σ2
f + σ2

g + C2

)
. (2.22)

The Local SSIM index is computed first within a sliding window that is moved across
the image. This results in a “SSIM quality map”, which reveals local image quality and is
a useful tool in image analysis. The total SSIM score is computed by averaging the local
SSIM values [89]. The formulation of the SSIM index in terms of ratios was motivated by
the Weber’s model of perception (discussed later). The SSIM index gives more accurate
measures than the MSE. Figure 2.6 shows brain CT images with similar MSE values for
very high and very low quality images. The SSIM values, however, differ relative to human
perception. For example, high JPEG compression with clearly visible blocks produces
structural distortion (very low quality image, the structure of the brain is lost!) and
change in luminance, a non-structural and barely noticeable distortion (very high quality
image), have similar MSE whereas the SSIM index is very low for JPEG compressed image
and very high for the luminance shifted image. This example illustrates the problem with
using MSE as a quality measure for images.

SSIM as a variance weighted L2 distance

Given that SSIM(f, g) approaches 1 as g approaches f , one might conjecture that 1 −
SSIM(f, g) is a measure of the error between f and g. This is not quite true. However,
in the case of zero-mean images, i.e. if we remove the mean of the images f and g, then a
metric function can be defined.

Let f, g ∈ Rn and define:
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Figure 2.6: MSE and SSIM comparison. (Brain CT image: MIIRC@M) (a) the original brain CT image,
(b) JPEG2000 highly compressed image, (c) JPEG highly compressed image, (d) luminance shifted image,
(e) salt-and-pepper noise added (f) contrast enhanced image.

f0 = f − µf 1NM , g0 = g − µg 1NM =⇒ µf0 = µg0 = 0, (2.23)

where 1NM denotes an N ×M matrix of ones. Then,

DSSIM =
√

1− SSIM(f0, g0) =
||f0 − g0||√
||σf0||2 + ||σg0 ||2

, for C2 = 0. (2.24)

It has been shown that in [9]
√

1− SSIM(f0, g0) is a valid distance metric that satisfies
the identity and symmetry axioms as well as triangle inequality.

There are several versions of the SSIM index including the multi-scale SSIM (MS-SSIM)
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[91] and complex wavelet SSIM (CW-SSIM)[89].

Figure 2.7: MS-SSIM system diagram. L: low-pass filtering; 2 ↓: downsampling by 2. Figure adopted
from [91].

MS-SSIM gives more flexibility than the basic single scale SSIM. It incorporates vari-
ations of viewing conditions. A low-pass filter is applied iteratively and the filtered image
is downsampled by a factor of 2. Figure 2.7 shows system diagram of MS-SSIM. For the
original image and its downsampled versions, the MS-SSIM is computed as follows:

MS-SSIM(f, g) = [lM(f, g)]αM ·
M∏
j=1

[cj(f, g)]βj · [sj(f, g)]γj (2.25)

where αM , βj and γj represent the relative importance of the three components. M repre-
sents the highest scale that is obtained after M − 1 iterations.

The basic SSIM does not correspond well to non-structural distortions such as relative
translations, scalings and rotations. The complex wavelet SSIM (CW-SSIM) [89], solves
this issue by comparing the wavelet coefficients of the same spatial location in the same
wavelet subband. CW-SSIM makes use of the fact that consistent phase shifts correspond to
translations of the image. The CW-SSIM results in high scores for images with luminance
and contrast changes, translations and rotations and low scores for images with structural
distortions [88].

Another variation of the SSIM index is the Information Content Weighting Structural
Similarity Index (IW-SSIM) [90]. The IW-SSIM is a two stage algorithm; Figure 2.8 shows
the two steps involved in this approach. The IW-SSIM employs the same localized measure-
ment approach as MS-SSIM, which results in a local quality map, however, the conversion
of local quality map into a single quality score is achieved by a pooling algorithm in the
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second stage of the algorithm. The content weighting approach involves assigning weights
according to the information content of a given region of an image. The pooling method
used in the IW-SSIM approach is saliency-based, with the resulting weighting function
having connections with quality/distortion-based pooling method [90]. “The success of
the IW-SSIM approach may be understood as a natural consequence of an effective com-
bination of several proven useful approaches in image quality assessment research. These
include multiscale image decomposition followed by scale-variant weighting, SSIM-based
local quality measurement, and information theoretic analysis of visual information content
and fidelity” [90] [78],[79].

Figure 2.8: Two stage structure of image quality assessment systems. Figure obtained from [90].

In this thesis we use several variations of the SSIM index. The MS-SSIM is used most
often and we will refer to it, in general, as the SSIM-index.
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Chapter 3

The Effects of Irreversible
Compression on brain CT and body
CT Images

3.1 The Effects of Irreversible Compression on Med-

ical Images

Lossy compression does not result in perfect reconstruction. The quality reduction re-
sults in the appearance of artifacts in compressed images when the compression ratio is
increased. For medical images, the goal is to obtain diagnostically lossless compression,
where the degradation produced by compression is sufficiently minor and does not affect
the assessment of radiologists. It is essential that the diagnostic interpretation and the
visual quality are not altered by compression. The change of image features resulting from
compression depends heavily on the characteristics of the image, the compression algorithm
and the compression ratio used. At low compression ratios, the quantization step removes
high frequency coefficients. These high frequency coefficients are low in magnitude and
often correspond to high frequency noise. At low compression ratios, there are no visible
degradations and the image is referred to as “visually lossless”. When we increase the
compression ratio, the first noticeable change is the removal of “salt-and-pepper” noise (it
is generally true for medical images). These denoised images are often perceived as having
better quality over the original images; they may improve diagnostic accuracy [23]. The
differences can also be seen by looking at a quality map obtained from applying an image
quality measure.
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The greatest disadvantage of block transforms in image compression algorithms at
higher compression ratios is the appearance of disjoint blocks, which generally will result
in visible discontinuities at the block boundaries (“blocking effect”). The human visual
system (HVS) is particularly sensitive to the presence of strong gradients that show up
in different directions [84]. These artifacts are the main sources of visual disturbance.
JPEG is based on the 8×8 DCT, whereas JPEG2000 is based on a dyadic multi-resolution
subband discrete wavelet transform. These two methods also use different quantization
and coding techniques; they are not optimized for viewer’s present viewing conditions [84].
Blocking artifacts do not appear on images compressed with wavelet techniques, since the
transformation is computed usually for the entire image (one tile). At high compression
ratios, JPEG2000 produces “rice-shaped” artifacts that result from quantization of high
frequency coefficients. Ringing artifacts are present in both JPEG and JPEG2000 algo-
rithms; they can be seen as distortion around edges. Figure 3.1 shows blocking and ringing
artifacts caused by JPEG and JPEG2000 at the compression ratio 40:1.

The biggest concern in using lossy compression for medical images is that important
features of the image will be lost. The block effect, for example, could result in bad
visibility of nodular details. Change of texture might alter diagnosis of a fracture or tumor
in a mesh-like bone structures (trabecular bones). The fade in contrast or blurring in
JPEG2000 in the high spatial frequency zones of the image reduces the clarity of the
image’s contours or its details (fibrous aspects). This sometimes causes the image texture
to change, which could represent lesions (the “salt and pepper” pattern of glomic tumor,
or radial and granular pattern of tumorous tissue) [57]. Dr. Franchetto, a neuroradiologist
from Hamilton General Hospital (Hamilton, Ontario), comments that the most subtle brain
pathologies are early stroke and trauma (small blood collections). Early strokes are very
common, they occur at least twice a day at Hamilton General Hospital. She also states
that fractures in the masteroid bone are not always visible and would be more difficult
to compress; skull base fractures, however, are better suited for compression since there is
more contrast with the surrounding tissue [58].

A large body of research has been dedicated to studying the differences between JPEG
based on the conventional DCT block approximation and JPEG2000 based on the wavelet
transform [74] [40] [65] [39] [4]. In most cases, JPEG2000 shows better performance.

Koff et al. [39] in their pan-Canadian evaluation study of lossy compression, found
that: “At low levels of lossy compression, there was no significant difference between the
performance of lossy JPEG and lossy JPEG2000. (...) they are both appropriate to use
for reporting on medical images. At higher levels, lossy JPEG proved to be more effective
than JPEG2000 in some cases of MSK CR, brain and abdominal CT images.” A natural
question to ask is why does JPEG perform better than JPEG2000 for some images? Brain
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CT images, compressed with JPEG2000 show the main source of degradation in regions
with speckle noise (acquisition noise). Features with energy spread over a number of small
coefficients will be most affected by compression. Speckle patterns together with features
such as irregular, small textures (for example, white matter in a brain CT image) are rep-
resented by numerous high frequency coefficients of low amplitude. These features, along
with noise, are discarded during quantization. This results in local blurring and ringing
with orientation and spatial extension corresponding to subbands where the coefficients
were largely quantized. This local blurring occurs because wavelets are spatially localized;
each DWT coefficient corresponds to a certain frequency and location. The DCT coeffi-
cients in JPEG compression, however, are global in nature (over each 8 × 8 block) and
speckle patterns are a combination of various frequencies, which generally are larger and
therefore are less susceptible to quantization [39]. The amount of energy that is distributed
into low and high frequency coefficients is also referred to as the compaction property of
the transform. Thus, it is safer to leave the high frequency coefficients that correspond to
noise rather than reduce the texture of fine, irregular tissues [57].

Another paper that studied the differences between JPEG and JPEG200 algorithms
and their effect on medical images concluded that subtle low contrast pathologies which
might be difficult to see with the human eye, are well preserved by JPEG and JPEG2000
compressions. However, high-frequency patterns with irregular features are more degraded
by compression. Moreover, pathologies vary in susceptibility to compression based on the
distribution of their energies in the spectral domain [69].

Lossless compression methods applied to medical images yield low compression rates.
For example, the JPEG-LS (lossless method) achieves, on average, 4:1 compression ratio
for CT images [17]. Thus, the existing lossless compression schemes do not solve the
problem of storage and transmission of medical images. For this reason, we focus our
attention mainly on lossy compression schemes. The drastically increasing quantity of
images generated by modalities such as CT scanners and MR imaging justifies the use of
lossy compression for medical images, in order to decrease the storage costs and improve
network transmission of data, provided there is no loss of clinically relevant information.
The DICOM format, for example, supports lossy JPEG and JPEG2000. In Canada, for
example, it is safe to compress neuro CT images using JPEG baseline algorithm with a
compression ratio up to 12:1 and using JPEG2000 up to 8:1 [61] [38]. MR images can be
compressed up to 24:1 using both JPEG and JPEG2000 algorithms. The goal, however, is
to achieve diagnostically lossless compression beyond these recommendations.
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Figure 3.1: (Left) original part of brain CT image. Examples of the types of artifacts caused by JPEG
(middle) and JPEG2000 (right) at high compression levels. Observe clear blocks due to the division into
8 × 8 blocks by JPEG and the “rice-shaped” artifacts that result from quantization of high frequency
coefficients in JPEG2000. Brain CT image: MIIRC@M

3.2 Investigating the effects of medical image com-

pression on visual/diagnostic quality

One of the initial goals of this project was to predict potentially “bad” subblocks of a (med-
ical) image with respect to a particular method of image compression (JPEG, JPEG2000),
that is, those subblocks Bi of an image I with higher rates of degradation with respect
to the degree of compression. We consider subblocks Bj with lower rates of degradation
to be “good” subblocks. Of course, the term “degradation” of a subblock will have to be
specified. As we all know, the usual procedure is to employ the L2 distance: Let I be a
reference image and suppose that a particular compression method is applied to it to pro-
duce the compressed image Ĩ. Let u(Bk) and ũ(Bk) denote the image functions associated
with I and Ĩ supported on a given subblock Bk. Then the degradation may be defined by
the RMSE as defined in Section 2.6.2.

Given our work with the structural similarity (SSIM) image quality measure as defined
in Eq. (2.22), we may wish to consider the following SSIM-based measure of degradation,

DSSIM =
√

1− SSIM(u(Bk), ũ(Bk)), (3.1)

It is quite obvious that flat regions compress better than those containing structure.
However, for some medical images, for example brain CT images, the region inside the skull
consists mostly of small structures. The changes of error (DSSIM and RMSE) of 8 × 8
blocks inside the skull of a brain CT image (Figure 3.2) that is later compressed versus the
quality factor of JPEG are presented in Figures 3.3, 3.4, 3.5 and 3.6. These “fan-shaped”
plots are also presented for JPEG2000 compressed brain CT image, with compression
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ratio in the horizontal axis, in Figures 3.7, 3.8, 3.9 and 3.10. For a given 8× 8 block of the
image, we have plotted and connected points that correspond to the pair: (quality factor,
error (DSSIM or RMSE)) for JPEG and (compression ratio, error (DSSIM or RMSE))
for JPEG2000. It is observed that some regions degrade more than others. Most regions
inside the skull (i.e. soft tissue), have structures that appear visually close to each other
and have approximately the same size. Furthermore, we expect that compression would
have a similar effect on these regions, however, as depicted in the plots, there is certainly a
wide variation in rates of degradation. However the variation in rate of degradation seems
to be a rather continuous one - there does not seem to be a clear separation between “good”
blocks and “bad” blocks. It seems, however, natural to try to classify blocks as “good”
or “bad”. According to the plots in Figures 3.3 and 3.4, there is a sudden decrease in
visual quality according to DSSIM and RSME when quality factor is less than 20. A “close
up” plot of quality factors below 20 is shown in Figures 3.5 and 3.6. Another thought
provoking observation is the increase in error (DSSIM and RMSE) with the increase in
quality for some blocks! What is so special about these blocks? The remainder of this
section is devoted to a quantitative investigation of the above observations.
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Figure 3.2: Brain CT image (Source: MIIRC@M, McMaster University, Hamilton). Size of the original
image is 512× 512 pixels.
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Figure 3.3: (JPEG) Plot of quality factor ver-
sus DSSIM corresponding to 32 8 × 8 blocks of
the interior region of the skull of the brain CT
image in Figure 3.2.
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Figure 3.4: (JPEG) Plot of quality factor ver-
sus RMSE corresponding to 32 8 × 8 blocks of
the interior region of the skull of the brain CT
image in Figure 3.2.
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Figure 3.5: (JPEG) Plot of quality factor
(< 20) versus DSSIM corresponding to 32 8× 8
blocks of the interior region of the skull of the
brain CT image in Figure 3.2.
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Figure 3.6: (JPEG) Plot of quality factor
(< 20) versus RMSE corresponding to 32 8× 8
blocks of the interior region of the skull of the
brain CT image in Figure 3.2.
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Figure 3.7: (JPEG2000) Plot of compression
ratio (< 51) versus DSSIM corresponding to 32
8× 8 blocks of the interior region of the skull of
the brain CT image in Figure 3.2.
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Figure 3.8: (JPEG2000) Plot of compression
ratio (< 51) versus RMSE corresponding to 32
8× 8 blocks of the interior region of the skull of
the brain CT image in Figure 3.2.
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Figure 3.9: (JPEG2000) Plot of compression
ratio (15 − 51) versus DSSIM corresponding to
32 8×8 blocks of the interior region of the skull
of the brain CT image in Figure 3.2.
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Figure 3.10: (JPEG2000) Plot of compression
ratio (15 − 51) versus RMSE corresponding to
32 8×8 blocks of the interior region of the skull
of the brain CT image in Figure 3.2.
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We also present two other medical images, lung CT in Figure 3.12 and body CT in Fig-
ure 3.11. The corresponding plots of changes of error score versus quality factor (for JPEG)
and compression ratio (for JPEG2000) are shown in Figures 3.13, 3.14, 3.15, 3.16, 3.17,
3.18, 3.19 and 3.20. These plots look similar to the ones corresponding to the presented
brain CT image. We therefore conclude that it is not clear that there exists a separation
between “good” blocks and “bad” blocks for these types of medical images.

Figure 3.11: Body CT image (Source: MIIRC@M, McMaster University, Hamilton). Size of the original
image is 512× 512 pixels.
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Figure 3.12: Lung CT image (Source: MIIRC@M, McMaster University, Hamilton). Size of the original
image is 512× 512 pixels.
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Figure 3.13: Plot of quality factor versus
DSSIM corresponding to 32 8 × 8 blocks of a
subregion of the body CT image in Figure 3.11,
compressed using JPEG.
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Figure 3.14: Plot of quality factor versus
RMSE corresponding to 32 8 × 8 blocks of a
subregion of the body CT image in Figure 3.11,
compressed using JPEG.
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Figure 3.15: Plot of compression ratio (< 51)
versus DSSIM corresponding to 32 8× 8 blocks
of a subregion of the body CT image in Figure
3.11, compressed using JPEG2000.
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Figure 3.16: Plot of compression ratio (< 51)
versus RMSE corresponding to 32 8 × 8 blocks
of a subregion of the body CT image in Figure
3.11, compressed using JPEG2000.
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Figure 3.17: Plot of quality factor versus
DSSIM corresponding to 32 8 × 8 blocks of a
subregion of the lung CT image in Figure 3.12,
compressed using JPEG.
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Figure 3.18: Plot of quality factor versus
RMSE corresponding to 32 8 × 8 blocks of a
subregion of the lung CT image in Figure 3.12,
compressed using JPEG.
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Figure 3.19: Plot of compression ratio (< 51)
versus DSSIM corresponding to 32 8× 8 blocks
of a subregion of the lung CT image in Figure
3.12, compressed using JPEG2000.
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Figure 3.20: Plot of compression ratio (< 51)
versus RMSE corresponding to 32 8 × 8 blocks
of of a subregion of the lung CT image in Figure
3.12, compressed using JPEG2000.
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3.2.1 Preliminary subjective experiments

We conducted two subjective experiments with radiologists (Dr. David Koff and Dr. Na-
dine Smolarski-Koff, McMaster University) with the hope of being able to divide a given
compressed medical image into “bad” and “good” blocks. In these experiments, only JPEG
compression was employed. In the first experiment, a particular brain CT image was se-
lected from the database obtained from Medical Imaging Informatics Research Centre at
McMaster University in Hamilton, Ontario (MIIRC@M) and it was displayed using a spe-
cially designed for this experiment image viewer (co-op project written by Faerlin Pulido,
University of Waterloo). At each step, the uncompressed image was shown on the left
and a compressed image on the right. Starting at quality factor Q = 100, and proceeding
downwards, compressed images of decreasing quality factor were displayed (on the right)
and examined by the radiologists until they noted some degradation. For a typical brain
CT image, the first degradations of image features that were important in diagnosis, were
noticed by radiologists at Q = 35. Using the viewer, the radiologists selected the pixels
in the brain image where such significant degradation was noticed. The image was then
subjected to further compression, i.e., lower Q values, until more degradation was noticed.
Once again, the pixel locations were recorded. The process was continued.

To illustrate, here is a summary of results obtained for the first brain CT image studied.

• Q = 35: 4 pixels recorded.

• Q = 20: 4 pixels recorded.

• Q = 15: 5 pixels recorded.

• Q = 10: 9 pixels recorded.

• Q = 5: 19 pixels recorded.

For each particular compression, i.e., Q-value, the following was done:

• The 8× 8-pixel block containing that pixel was determined,

• Some characteristic properties/potential indicators of each uncompressed 8× 8-pixel
block was computed, e.g., standard deviation, total variation, high frequency content,
low frequency content.
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• The RMSE and DSSIM degradations for all blocks (in other words, the RMSE and
DSSIM distances between compressed and uncompressed blocks) were computed.
The idea was to look for potential “indicators” or “descriptors” of good/bad blocks,
including the following features:

• standard deviation (std),

• L2 norm of high-frequency DCT components,

• L2 norm of low-frequency DCT components,

• entropy,

• total variation (tv).

The degradations were plotted with respect to the above characteristic properties, along
with the mean value of the degradations. For a given N > 0, and a given compression
ratio, the N “best” and N “worst” blocks of a given image were selected on the basis of (i)
L2 error and (ii) SSIM error. In each case, two histogram plots of the error vs. each of the
above quantities – one for the best blocks and one for the worst blocks – were constructed
for each of the above features. If the best-block and worst-block histogram plots would
show significant differences, then that feature would be considered as a good indicator.
Before proceeding, let us qualify that we focus only on the effects of compression. As
such, we do not consider any effects of spatial transformations, as produced by zooming,
or greyscale transformations, as produced by windowing.

It is expected that as the JPEG quality factor is reduced, the errors generally increase.
Figure 3.21 shows plots of the RMSE error versus DSSIM index for several JPEG quality
factors corresponding to a brain CT image. As the quality factor gets larger, the difference
between the two quality measures gets smaller. There is a kind of proportionality between
DSSIM and RMSE, although there is quite a wide variability as well.
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Figure 3.21: Plots of RMSE versus DSSIM corresponding to 8× 8 blocks of a CT brain Image
in Figure 3.2 compressed using JPEG with quality factors Q = 35, 20, 15, 10 and 5.
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In the next experiment we asked the radiologists to select regions instead of single
pixels. In order to simulate such results in this experiment we also consider neighbouring
blocks of those identified by the radiologists in the following set of plots. The size of the
neighbourhood is characterized by the parameter nbhd ≥ 0: For a given block (i, j), where
1 ≤ i, j ≤ 64, we consider all (2 · nbhd+ 1)2 blocks (i+ k, j + l), −nbhd ≤ k, l ≤ nbhd.

Figures 3.22 and 3.23 show plots of statistical properties of the selected (“bad”) blocks
(shown as red dots) versus other blocks for a brain CT image at Q=10 with nbhd = 0 and
nbhd = 2, respectively. Note that for the case nbhd = 0, i.e., only the blocks identified
by the radiologists are used, the RMSE and DSSIM degradations of all of these blocks are
observed to lie above the mean value of the respective degradation over the image.

In none of the figures shown above is there a clear, or even partial, distinction or
separation to be found between good (blue) and bad (red) blocks. As such, we concluded
at the time that such separation was not possible. Furthermore, the experiments presented
in this section served as the first elements in the sequence of experiments on subjective
assessment of compression artifacts that we have conducted. This preliminary study has
helped to design a better experiment, presented in Chapter 4, where we have carefully
selected the quality levels and asked radiologists to assess the images as “acceptable” or
“unacceptable”.

An interesting observation has been noted about the DSSIM scores and the respective
DSSIM mean values. Here, we consider the blocks that were identified over all quality
factors, Q = 35, 20, 15, 10, 5, for a total of 41 pixels identified by the radiologists with
nbhd = 0. The image was compressed with quality Q = 10. We note that the DSSIM
degradations of the blocks identified by the radiologists lie above the respective mean values
over the image. The corresponding plots are shown in Figure 3.24. This is not always true
for the RMSE degradations, which may be an encouraging result. This observation seems
to be an indication that DSSIM is modelling the subjective assessment of radiologists
in a better way than RMSE. Moreover, at first sight it may seem that there is a larger
concentration of points above the mean. However, there is a very high unnoticed peak
at (0, 0). This peak corresponds to the flat (black) background blocks, which were not
affected by compression at the given quality factors.
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Figure 3.22: Plots of the RMSE and DSSIM errors for all 4096 8 × 8 blocks vs. (i) standard deviation
(std), (ii) total variation (tv), (iii) high-frequency norm (hf) and (iv) low-frequency norm (lf). In each plot,
the average value of the appropriate degradation is also plotted for comparison. The red points correspond
to the blocks isolated by the radiologists, i.e. “bad” blocks. nbhd = 0 and quality factor Q = 10.
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Figure 3.23: Plots of the RMSE and DSSIM errors of a JPEG compressed brain CT image in Figure 3.2
with quality factor Q = 10, for all 4096 8 × 8 blocks vs. (i) standard deviation (std), (ii) total variation
(tv), (iii) high-frequency norm (hf) and (iv) low-frequency norm (lf). In each plot, the average value of the
appropriate degradation is also plotted for comparison. The red points correspond to the blocks isolated
by the radiologists, i.e. “bad” blocks. nbhd = 2 and quality factor Q = 10.
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Figure 3.24: Plots of the RMSE and DSSIM errors for all 4096 8 × 8 blocks vs. (i) standard deviation
(std), (ii) total variation (tv), (iii) high-frequency norm (hf) and (iv) low-frequency norm (lf). In each plot,
the average value of the appropriate degradation is also plotted for comparison. The red points correspond
to the blocks isolated by the radiologists, i.e. “bad” blocks. nbhd = 0.
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3.3 Quantitative Evaluation of Degradations

Resulting from JPEG and JPEG2000

Compression of Neuro CT images

On the basis of extensive tests employing natural images, it is generally accepted that
JPEG2000 provides better rate-distortion performance than JPEG at higher compression
ratios. Koff et al. [39], however, found that JPEG can outperform JPEG2000 in cases of
brain and abdominal CT images. It is natural to inquire why this is so. Perhaps one quick
answer could be that CT images, especially brain CT images, are not “natural images” -
the presence of bone (in the case of brain images, the skull) produces regions of extremely
high image intensity and therefore, very sharp edges. But this analysis can be carried a
bit further. Speckle patterns together with features such as irregular, small textures (for
example, white matter in a brain CT image) are represented by numerous high frequency
coefficients of low amplitude. These features, along with noise, are discarded first during
quantization. The bitplane coding scheme in JPEG2000 always gives priority to high
energy coefficients. When this is applied to an image with sharp edges (such as neuro CT
images), the bits are allocated to the sharp edge regions rather than to the tissue regions
with lower energy coefficients resulting in local blurring and ringing. JPEG performs better
since the 8× 8 block DCT is local - as such, it will not allow excessive bits to be allocated
to sharp edges.

In this study, a database of 105 neuro CT images (7 studies with 15 images in a
study) of slice thickness 0.1 mm, obtained from Medical Informatics Research Centre at
McMaster (MIIRC@M), Hamilton, Canada, was analyzed. JPEG2000 outperformed JPEG
in terms of MSE. In terms of the DSSIM index, however, JPEG is seen to perform better
for some compression ratios. Figure 3.25 shows plots of compression ratios vs. RMSE
(root mean squared error) and DSSIM. The plots of compression ratio vs. quality measure
change their shape when the image under consideration is cropped to a rectangular region
inside the skull. Figure 3.26 reveals that in this case JPEG2000 always performs better
than JPEG and that the RMSE and DSSIM curves (obtained by joining points) have
very similar shapes. This is expected since the function DSSIM is an inverse variance-
weighted L2 distance (see Equation 2.24), and the cropped region of the skull interior
has many similar details and thus an approximately constant variance throughout the
image. This is an indication that the skull edge affects the compressibility of neuro CT
images when JPEG2000 is used to compress the image, resulting in worse performance than
JPEG. Our study suggests that the SSIM measure and the SSIM quality map provide the
most promising approach to predict subjective quality assessment of compressed brain CT
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Figure 3.25: Plots of compression ratio
versus RMSE and DSSIM of a neuro CT image
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Figure 3.26: Plots of compression ratio versus
RMSE and DSSIM of a cropped neuro CT image

images.

3.4 The impact of skull bone intensity on the quality

of compressed neuro CT images

In order to further investigate the effects of the sharp skull edges in neuro CT images on
JPEG and JPEG2000 lossy compression, a straightforward segmentation has been applied
to a neuro CT image. A typical 8-bit brain CT image has a greyscale distribution concen-
trated mostly in the lower intensities with a peak at a greyscale intensity of approximately
252 representing the skull bone (Figure 3.27). A neuro CT image is segmented into three
parts (background, skull bone and the inside of the skull) using simple thresholding and
morphological operators. From each of these separate pieces, a new image is created by
assigning the average value of the extracted mask to the remaining pixels. These three
separate images are then compressed by JPEG and JPEG2000 at the same compression
ratio. After decompression, these three images are merged back into one image.

We emphasize here that the technique described above should not be used to compress
images since it cannot be generalized to a larger set of images. We have employed it in
this study in order to illustrate the effects of sharp edges on compression.
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Figure 3.27: Histogram of a neuro CT image.

Neuro CT Image 1 JPEG Segmented JPEG JPEG2000 Segmented JPEG2000
PSNR 32.080 34.528 34.185 36.512
SSIM 0.991 0.996 0.988 0.995

MS-SSIM 0.995 0.997 0.995 0.997
IW-SSIM 0.992 0.996 0.993 0.996

Neuro CT Image 2 JPEG Segmented JPEG JPEG2000 Segmented JPEG2000
PSNR 31.572 33.918 33.917 36.883
SSIM 0.989 0.995 0.986 0.995

MS-SSIM 0.994 0.997 0.994 0.997
IW-SSIM 0.991 0.995 0.993 0.996

Table 3.1: Quality scores using PSNR, SSIM, MS-SSIM and IW-SSIM for two JPEG and JPEG2000
compressed neuro CT images

The objective quality measures that were used include: PSNR, SSIM, MS-SSIM and
IW-SSIM. As expected, the quality is improved according to all objective quality measures
used (see Table 3.1). The new method produces less artifacts according to the SSIM local
quality map for all the 105 images tested. Figures 3.28, 3.29, 3.30 and 3.31 show the
SSIM and MSE quality maps for two compressed CT images using JPEG and JPEG2000
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compression with and without the use of segmentation. These objective quality tests
support the hypothesis that pre-compression segmentation of neuro CT images improves
the quality of JPEG and JPEG2000 compressed images.

(a) (b) (c)

(d) (e) (f)

Figure 3.28: Quality maps of a JPEG compressed neuro CT image, compression ratio: 12:1 (a) com-
pressed image (no segmentation), (b) SSIM quality map, SSIM = 0.9909, no segmentation (c) MSE
quality map, PSNR = 32.1, no segmentation, (d) compressed image (segmentation) (e) SSIM quality
map, SSIM = 0.9959, segmentation, (f) MSE quality map, PSNR = 34.5, segmentation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.29: Quality maps of a JPEG2000 compressed neuro CT image, compression ratio: 12:1 (a)
compressed image (no segmentation), (b) SSIM quality map, SSIM = 0.9898, no segmentation (c) MSE
quality map, PSNR = 34.2, no segmentation, (d) compressed image (segmentation) (e) SSIM quality
map, SSIM = 0.9949, segmentation, (f) MSE quality map, PSNR = 36.5, segmentation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.30: Quality maps of a JPEG compressed neuro CT image, compression ratio: 12:1 (a) com-
pressed image (no segmentation), (b) SSIM quality map, SSIM = 0.9887, no segmentation (c) MSE
quality map, PSNR = 31.6, no segmentation, (d) compressed image (segmentation) (e) SSIM quality
map, SSIM = 0.9952, segmentation, (f) MSE quality map, PSNR = 33.9, segmentation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.31: Quality maps of a JPEG2000 compressed neuro CT image, compression ratio: 12:1 (a)
compressed image (no segmentation), (b) SSIM quality map, SSIM = 0.9863, no segmentation (c) MSE
quality map,PSNR = 33.9, no segmentation, (d) compressed image (segmentation) (e) SSIM quality map,
SSIM = 0.9945, segmentation, (f) MSE quality map, PSNR = 36.9, segmentation.
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In summary, we have answered the question why JPEG performs better than JPEG2000
on some CT images. We conclude that compressing a neuro CT image requires a special
treatment due to a specific distribution of its greyscale intensities (Figure 3.27). We have
employed several image quality measures including PSNR, SSIM, MS-SSIM and IW-SSIM.
Using the SSIM and its variations, we were able to objectively confirm the subjective
radiological results that JPEG sometimes performs better than JPEG2000 in the case of
neuro CT images. The result of 8- and 16-bit compression of neuro CT images has also
been studied here.

The effect that sharp edge has on compression may be encountered not only in neuro CT
images but also in other images that contain both extremely strong edges and diagnostically
important textures with moderate energy. Although the segmentation technique used in
this study is not recommended to use in practice, we are working on developing better
ways to deal with the troublesome sharp edges in order to improve the performance of
both JPEG and JPEG2000 algorithms.

The JPEG2000 algorithm shifts a significant number of bits in order to better encode
the edges. As a result, fewer bits are left for the textural brain tissue regions, which are
more relevant in medical diagnosis. Applying image segmentation before compression could
improve the JPEG2000 compression results because it avoids shifting too many bits from
the textural regions.

The procedure presented in this section is not a complete image compression algorithm
that is competitive against the existing ones. Instead, the purpose of the segmentation
based compression presented herein is to further validate the hypothesis why JPEG some-
times performs better than JPEG2000. The ideas presented in this section might serve as
a demonstration of a potential direction that might be useful in the future development of
better compression algorithms for medical images.

3.4.1 8-bit versus 16-bit Compression

Baseline lossy JPEG allows only 8- and 12-bit greyscale compression, whereas JPEG2000
allows up to 16-bit of greyscale compression. In this work we have also investigated
JPEG2000 compression of 16 bpp (bits per pixel) and 8 bpp neuro CT images. Most
viewable images are 8 bits and displays very seldom support a raster depth more than 8
bits (per colour). The typical “12 bit” monitor typically means that the lookup table to
drive the monitor is 12 bits, not that the incoming raster depth is 12 bits. For any system
which compresses the viewable image, the compression is performed on the viewable image,
not necessarily on the source image. This is required in order to use the available imaging
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libraries which do not typically support 12/16 bpp images (none of the 5 major browsers
support more than 8 bpp.)

Neuro CT images are usually lossy compressed after their bit-depth has been reduced
to 8 bits by means of window levelling. (The window levelling is generally accomplished
by using a piecewise linear function). In this case, the compression is 8 bpp, and it is
applied to an already altered image. Another option is to apply lossy JPEG2000 compres-
sion on the original 16 bpp image, followed by window levelling. There are advantages and
disadvantages to both approaches. Figure 3.32 shows SSIM and MSE quality maps of a
compressed CT image using 8- and 16-bit JPEG2000 compressions. Quality scores were
computed for each of the compressed images and are presented in Table 3.2. The result
agrees with intuition and we conclude that 16-bit compression does provide better quality
than 8-bit compression when the same compression ratio is used. However, 16 bpp com-
pressed images take up more storage space than 8 bpp compressed images! The advantage
of using 16-bit compression is that any window levelling (i.e. bone) can be still obtained
from the compressed image. With 8 bpp compressed images, that option is no longer
available. Furthermore, it is not clear how to compare 8-bit and 16-bit compressions.

The comparison of 8- and 16-bit compression could be carried in several ways. One
option is to use the same compression ratio (as performed in our study). Another option is
to match one of the quality measures (PSNR, SSIM, etc.). For example, in order to obtain
the same image size (25KB) after compression, we would have different compression ratios
for 8- and 16-bit compressions (12:1 for 8-bit compression, and 20:1 for 16-bit compression).
However, this is not a desirable result as 20:1 compression ratio produces lower quality
scores (Table 3.3) and to the best of our knowledge there were no radiological studies on
recommended compression ratios for 16-bit compression. Furthermore, Figure 3.32 reveals
that there are more “edge artefacts” in the 8-bit compressed image than in the 16-bit
compressed JPEG2000 image. Thus, we draw the conclusion that the skull edge has an
effect on the compressibility of neuro CT images.

Quality Measure JPEG2000 16-bit JPEG2000 8-bit
PSNR 37.124 33.917
SSIM 0.995 0.986

MS-SSIM 0.998 0.993
IW-SSIM 0.997 0.993

Table 3.2: Quality scores of a JPEG2000 compressed neuro CT image (8- and 16-bit compressions),
compression ratio: 12:1

63



Quality Measure JPEG2000 16-bit JPEG2000 8-bit
PSNR 31.339 33.917
SSIM 0.978 0.986

MS-SSIM 0.989 0.993
IW-SSIM 0.987 0.993

Table 3.3: Quality scores of a JPEG2000 compressed neuro CT image (8-bit with compression ratio 12:1
and 16-bit with compression ratio: 20:1)

(a) (b) (c)

(d) (e) (f)

Figure 3.32: Quality maps of a JPEG2000 compressed neuro CT image, compression ratio: 12:1 (a)
Neuro CT image after 16-bit compression, (b) SSIM quality map (16-bit compression), (c) MSE quality
map (16-bit compression), (d) Neuro CT image after 8-bit compression, (e) SSIM quality map (8-bit
compression), (f) MSE quality map (8-bit compression)
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Chapter 4

Validation of Objective Quality
Assessment Models for Compressed
Medical Images

4.1 Subjective Experiment

In this study, we compare the performances of the SSIM index, MSE/PSNR, compression
ratio CR and JPEG quality factor Q, based on experimental data collected in two experi-
ments involving radiologists. This result was presented at the Medical Imaging, SPIE 2014
conference in San Diego, CA [41]. An ROC and Kolmogorov-Smirnov analysis indicates
that compression ratio is not always a good indicator of visual quality. Moreover, SSIM
demonstrates the best performance, i.e., it provides the closest match to the radiologists’
assessments. We also show that a weighted Youden index [93] and curve fitting method
can provide SSIM and MSE thresholds for acceptable compression ratios.

We examine whether compression ratio CR and MSE actually serve as reliable indica-
tors of diagnostic quality. By this we mean “model the perception of trained radiologists
in a satisfactory way”. We also investigate the quality factor Q, the sole input parameter
in the JPEG compression algorithm, since it has also been employed as a reference for
quality assessment. The performances of the above indicators are compared to that of the
SSIM index, based on experimental data collected in two experiments involving radiolo-
gists. The second goal of this work is to determine a method of acceptable compression
thresholds using the data from our subjective experiments involving radiologists’ image
quality assessment.
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4.2 Methods: Subjective Experiment Design

Two subjective experiments were designed in order to assess both the local and global
prediction of the image quality assessments being examined. The first experiment, designed
for a global analysis, employed ten CT slices - five neurological and five upper body images
- extracted from volumes stored in the Cancer Imaging Archive [86]. These images were
first windowed according to their default viewing parameters (window width and window
centre) in order to reduce their bit-depth from 16 to 8 bits per pixel (bpp). Each of the
resulting 512×512 pixel, 8 bpp, images were compressed at five different compression ratios
using both the JPEG and JPEG2000 compression algorithms. (Since JPEG employs only
the quality factor as input, it was adjusted in order to produce compression ratios as close
as possible to those used for the JPEG2000 compression.) Preliminary visual observations
were used to select the compression ratios employed in the experiment. The range of
compression ratios was intended to represent a wide variety of visual qualities, from barely
noticeable to fairly noticeable distortion.

An image viewer, was developed specifically for this study by Jiheng Wang (Ph.D.
student in the Department of Electrical and Computer Engineering UW), in order to
provide an easy-to-use graphical interface for the radiologists. The viewer displayed a
compressed image beside its uncompressed counterpart without zoom. (No zooming was
permitted in this experiment.) The ten compressed images were presented randomly and
independently to each subject. During the course of the experiment, each compressed
image was presented twice to each radiologist, but without the radiologists’ knowledge. The
subjects were not made aware of the compression ratios or quality factors of the compressed
images. Two buttons were placed at the bottom of the user interface: acceptable and
unacceptable. A confirmation was requested before passing to the next stimulus. In the
second experiment, designed for a local analysis, six CT slices - four brain images and two
body images - were compressed with JPEG at five different levels. Ten regions (35 × 35
pixel blocks) were manually selected from each of these images. The regions were chosen in
order to obtain both a variety of features as well as local image quality. Ten pairs of buttons
in the bottom of the interface allowed the subjects to rate each region as either acceptable
or unacceptable. Once again, the experiment was repeated with the same medical images
in a random order.

Two radiologist subjects (Dr. David Koff and Dr. Nadine Smolarski-Koff, McMaster
University) participated in each of the experiments. (They were not specifically specialists
for the sites and types of images presented.) The subjects were instructed to flag an image
as unacceptable in the case of any noticeable distortion. The first experiment (global
analysis) was held in an afternoon session while the second experiment (local/regional
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analysis) took place during the morning. Each experiment lasted about one hour.

In the following sections, we outline the methods used to analyze the data obtained in
these experiments. An analysis of the data is then presented in Section 4.4.

4.2.1 Global and Local experiments

Objective Quality Metrics

Since some regions of images are of much less interest than others in terms of diagnosis, an
automatic segmentation of the images employed in this study (that is, the uncompressed
and all compressed images) was performed in order to remove the background and bony
anatomy. In the 16-to-8 bit tone-mapping of the images, background pixels always assumed
a zero value, while those corresponding to bony anatomy generally assumed values near or
equal to 255. The following simple segmentation operation was therefore sufficient: First
threshold the images to separate the foreground from the background and then perform
a fill operation in order to include the black pixels within the body part being imaged.
A similar operation of thresholding followed by filling was performed in order to remove
the skull. The removal of objects such as the couch or the scalp was also automatically
performed by selecting only the largest region according to an 8-neighbour connectivity.
The couch and the skull are successfully removed, while the bony anatomy inside the body
is preserved. Some examples of segmentation are presented in Figure 4.1. All computations
reported below were performed on thresholded images.

In this work, we employ a variation of the above SSIM index by considering only the
second term, i.e., the structure term. The first term, i.e., the luminance term, will not
be considered since it does not make an impact on the quality score. This is because the
luminance does not change visibly for the images and compression ratios encountered in
this study. In summary, we consider the following SSIM index, which involves only a single
stability parameter,

SSIM(f, g) =

(
2σfg + C

σ2
f + σ2

g + C

)
. (4.1)

The reader will note that there is a further complication because of the “apples-oranges”
nature of MSE and SSIM, i.e., “error” vs. “similarity”: Recall that if f and g are “close”,
then MSE(f, g) is near 0 but SSIM(f, g) is near 1. In order to be able to compare the
quality assessments of both indices more conveniently, we define the following quantity,
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SMSE(f, g) = 1−MSE(f, g)/D (4.2)

where D is a constant. In this paper D was chosen to be 255.

Using this definition, we now have that if f and g are “close”, then SSIM(f, g) and
SMSE(f, g) are near 1. The reason for choosing D = 255 was to have SMSE close to
SSIM for the same image quality. Other values of D and other scaling of MSE could also
be used.

Finally, we mention another variation in the computation of the SSIM, that is, the
computation of the local SSIM. The above discussion of SSIM involved a computation of
the similarity of two entire images f and g, in other words, the global similarity of the
images. It is often useful to measure the local similarity of images, i.e., the similarity of
corresponding regions or pixel subblocks between images. For this reason, one can employ
any or all of the above formulas to compute SSIM values between corresponding m×n-pixel
subblocks of two images.

One can proceed further and compute a SSIM quality map between two images f and
g on a pixel-by-pixel basis as follows: At pixel (i, j) of each image, one constructs an
m× n-pixel neighbourhood, or “window”, centered at (i, j) and then computes the SSIM
index between the two neighbourhoods. This SSIM value is then assigned to location (i, j).
The result is a SSIM quality map which reveals local image similarities/differences between
images f and g. A total SSIM score may then computed by averaging over all the local
SSIM values.

4.3 Classification Performance Metrics

The Receiver Operating Characteristic (ROC) curve [55] [83] is a common tool for visually
assessing the performance of a classifier in medical decision making. ROC curves illustrate
the trade-off of benefit (true positives, TP) versus cost (false positives, FP) as the dis-
criminating threshold is varied. For convenience, the contingency table is shown in Figure
4.2. At this point, we must qualify that due to the nature of the problem we are investi-
gating, our definitions of FP and TP differ from those normally applied for the purposes
of medical diagnosis. In this study, we wish to examine how well different “image quality
indicators”, e.g., compression ratio, MSE, quality factor, SSIM, compare to the subjective
assessments of image quality by radiologists. As such, we must assume that the “ground
truth” for a particular experiment, i.e., whether or not a compressed image is acceptable
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or unacceptable, is defined by the radiologist(s). From this ground truth, we measure the
effectiveness of each image quality indicator in terms of FP, TP, etc... This leads to the
following definitions of P, N, TP, FP, etc.:

Figure 4.1: Examples of auto-
matic image segmentation and
object removal by thresholding
and region growing.

Figure 4.2: Contingency tables for Experiment 1.

1. P (or “1”) = FP + TP total positives (acceptable) and N (or “0”)= TN + FN
total negatives (unacceptable): These refer to radiologists’ subjective opinions, which
represent the True class. On the other hand, P ′ and N ′ belong to the Hypothesis
class which, in our experiment, corresponds to a given quality assessment method,
i.e., SSIM, MSE, quality factor, and compression ratio. With reference to Figure 4.3:

2. TP (true positives): points that lie to the right of the threshold s′ and have a value of
1, i.e., images that are acceptable to both radiologists and a given quality assessment
method.

3. TN (true negatives): points that lie to the left of the threshold s′ and have a value
of 0, i.e., images that are unacceptable to both radiologists and a given quality
assessment method.

4. FN (false negatives): points that lie to the left of the threshold s′ and have a value of
1, i.e., images that are acceptable to radiologists but unacceptable to a given quality
assessment method.

5. FP (false positives): points that lie to the right of the threshold s′ and have a value of
0, i.e., images that are unacceptable to radiologists but acceptable to a given quality
assessment method.
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Figure 4.3 shows an illustration of how the counts for FP, FN, TP, TN are obtained
for a given threshold s′ corresponding to a discriminant (SSIM, MSE, compression ratio,
quality factor).

Figure 4.3: Computation of FP, FN, TP and TN for the threshold s′.

This, of course, leads to the question, “What constitutes acceptability/unacceptability
to a given quality assessment method?” This is defined with respect to the discrimination
threshold s′ associated with the method, where 0 ≤ s′ ≤ 1 . Given an objective image
quality measure (e.g. SMSE, SSIM), we select a discriminating threshold s′, 0 ≤ s′ ≤ 1
with reference to the figure on the right of 4.2. Using this threshold value s′, FPR and
TPR are computed. Each threshold value s′ generates a point on the ROC curve which
corresponds to the pair of values (FPR, TPR) = (1−SP, SE), where SP denotes specificity
and SE denotes sensitivity, i.e.,

FPR (false positive rate) = FP/N = 1− SP (specificity)

TPR (true positive rate) = TP/P = SE (sensitivity)

FNR (false negative rage) = FN/N = 1− SE
TNR (true negative rate) = TN/N = SP.

Figure 4.4 shows an example of an ROC curve. The point (1, 1) on the ROC curve
corresponds to FN = 0, i.e., no false negatives, and TN = 0, i.e., and no true negatives.
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The opposite scenario occurs at the point (0,0) which corresponds to FP = 0, i.e., no
false positives, and TP = 0, i.e., no true positives. The point (0, 1) corresponds to perfect
classification, since FP = 0, i.e., no false positives, and FN = 0, i.e., no false negatives.

Once again, we mention that the definitions and labels in the contingency table associ-
ated with our experiments differ from those associated with a general detection/diagnosis
experiment. Here, by false negative we mean that an image with a low objective quality
score (hence unacceptable according to the quality method) has actually received a positive
subjective score (acceptable, according to the radiologists).

In ROC analysis, as is well known, the performance of a discriminant (here, the SSIM,
MSE, JPEG quality factor and compression ratio quality assessment methods) is often
characterized by (1) the area under the curve (AUC) and/or (2) the Kolmogorov-Smirnov
(KS) statistic or test.

AUC method: The AUC can be computed by numerical integration using the trapezoidal
rule. Larger AUC values correspond to better performance of the classifier. It is possible
that two ROC curves cross. In this special situation a given classifier might demonstrate
better performance for some threshold values whereas another classifier behaves better for
other threshold values. In this case, a single AUC may not be the best predictor of the
performance of a classifier.

Kolmogorov-Smirnov (KS) test: [18] Given two cumulative probability distributions
P1(x) and P2(x), their KS statistic is defined as follows,

KS(P1, P2) = sup
x
|P1(x)− P2(x)|. (4.3)

In our study, P1 and P2 are the cumulative distributions of “acceptable” (1’s) and
“unacceptable” (0’s) radiologists responses (respectively) corresponding to a given objec-
tive quality measure (i.e. SSIM, SMSE, compression ratio, JPEG quality factor). The
larger the difference between the two distributions, the better the performance of a given
model. A generic situation is illustrated in Figure 4.5. Examples of cumulative probability
distributions with respect to a discriminant are shown in Figures 4.6 and 4.6.
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Figure 4.4: Example of an ROC curve.

Figure 4.5: Kolmogorov-Smirnov distance.
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Figure 4.6: Example of a cumulative distribution of 0s with respect to a discriminant.

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

0	   0.25	   0.5	   0.75	  

Cumula&ve	  
distribu&on	  of	  1s	  

Figure 4.7: Example of a cumulative distribution of 1s with respect to a discriminant.
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With reference to Figure 4.2, for a given threshold s′ in [0, 1], we have the following
relations,

Cumulative Probability Distribution of 0′s = TN/(TN + FP ) = 1− FPR.

Cumulative Probability Distribution of 1′s = FN/(FN + TP ) = 1− TPR.

Thus, the KS statistic translates to

KS = sup
x
|TPR(x)− FPR(x)|. (4.4)

Youden index: Let us now recall the idea of the Youden index [93]. With reference to
Figure 4.5, in which the cumulative probability distribution curves, 1−FPR and 1−TPR,
are plotted as a function of the threshold s, the Youden index Y (s) associated with the
threshold value s is simply the difference,

Y (s) = TPR(s)− FPR(s). (4.5)

Now suppose that the maximum value of Y(s), the so-called maximum Youden index,
occurs at the threshold value s = s′. This implies that the points TPR(s′) and FPR(s′)
lie farthest away from each other which, in turn, implies that the maximum Youden index
is the Kolmogorov-Smirnov (KS) value associated with the cumulative probability distri-
butions of 0’s and 1’s discussed in the previous section.

There is also a connection between the maximum Youden index and ROC curves. Since
the values FPR(s′) and TPR(s′) lie farthest from each other, the corresponding point
(FPR(s′), TPR(s′)) on the ROC curve (which contains all points (FPR(s), TPR(s)) lies
farthest away from the diagonal line joining (0, 0) and (1, 1). The threshold value s = s′

for which the Youden index is maximized is considered to be the optimal threshold value.

It is possible to define a weighted version of the Youden index in the following way.
First of all, note that the Youden index Y (s) introduced above may be expressed as follows,

Y (s) = TPR(s)− FPR(s) = SP (s) + SE(s)− 1, (4.6)

where SE(s) and SP (s) denote, respectively, the sensitivity and specificity associated
with the threshold value s. The Youden index Y (s) may be viewed as employing an equal
weighting of false positives (FP ) and false negatives (FN). It may be desirable to employ
a non-equal weighting of these statistics in order to alter their relative importance. This
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can be accomplished by means of a parameter λ, 0 ≤ λ ≤ 1 so that the weighted Youden
index is given by

WY (s) = λSP (s) + (1− λ)SE(s)− 1 = −(λFPR(s) + (1− λ)FNR(s)). (4.7)

4.3.1 Threshold selection

The selection of a threshold is accomplished in two ways: using the Weighted Youden Index
and by means of a curve-fitting model.

In order to take into account the variability in the subjective quality assessment of
compressed medical images, a logistic cumulative probability distribution is assumed to
model the decision of a radiologist to either accept or not accept an image at a given
objective score. A robust curve-fitting is performed on plot of the average subjective
score over all the radiologists and all the repetitions in function of the objective score.
The threshold is selected so that the cumulative probability distribution model represents
the desired level of confidence that the quality of the compressed image is diagnostically
acceptable. For example, if one requires a 99% confidence, the recommended threshold has
to be selected at the value for which the fitted logistic curve is at 0.99.

The recommended threshold for compression was obtained by means of the logistic
curve-fitting model and the Youden Index with the use of k-fold cross validation procedure
as outlined in [33] on pages 241-242: “K-fold cross- validation uses part of the available
data to fit the model, and a different part to test it. We split the data into K roughly
equal-sized parts. ... For the kth part, we fit the model to the other K − 1 parts of the
data, and calculate the prediction error of the fitted model when predicting the kth part of
the data. We do this for k = 1, 2, ..., K and combine the K estimates of prediction error.”

Steps of our 10-fold cross-validation procedure based on the above description using
the curve-fitting model:

1. The data is randomly split (random permutation) into K sets. K-1 sets are used for
training, kth set is used for testing. The confidence level is chosen by the user.

2. Training step: The threshold of SSIM (and SMSE) is computed on the training set
as follows:
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• Given x1 the predicted value (SSIM or SMSE) and y1 the average subjec-
tive score, we determine the parameters a and b of the logistic function y =
1/(1 + exp (−a ∗ x+ b)) that produce the least weighted square error, with
weighting according to the Bisquare Method (this is a standard robust fitting
technique). Alternatively, one could minimize the Absolute Error or the Square
Error (standard least square).

• Once the coefficients a and b are found, the recommended threshold for compres-
sion is computed from the inverse logistic function x = (log (y/(1− y)) + b)/a
where y = 1− α is the desired significance level.

3. Testing step: Prediction accuracy (number of FPs and FNs) is computed on the
testing set.

4. Steps (2) and (3) are repeated for k = 1, 2, ...K times (K = 10).

5. Optimal threshold and prediction accuracy are obtained by averaging the results over
all repetitions of the procedure.

Steps of our 10-fold cross-validation procedure based on the above description using
the Youden index:

1. The data is randomly split (random permutation) into K sets. K-1 sets are used for
training, kth set is used for testing. User defined parameter λ is selected.

2. Training step: Threshold of SSIM (and SMSE) corresponding to the max Youden
Index (calculated using the user defined parameter λ) is determined on the training
set.

3. Testing step: Prediction accuracy (number of FPs and Fns) is computed on the
testing set.

4. Steps (2) and (3) are repeated for k = 1, 2, ...K times (K = 10).

5. Optimal threshold and prediction accuracy are computed by averaging the results
over all repetitions of the procedure.
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4.4 Results

4.4.1 First Experiment: global quality

The first part of our analysis involves all data points accumulated in Experiment 1. These
data points include the two image types (brain CT and body CT) and the two compression
methods (JPEG and JPEG2000). Figure 4.8 shows the ROC curves that correspond to
the two quality measures SSIM and SMSE. Figures 4.9 and 4.10 show the ROC curves
corresponding to JPEG and JPEG2000 compressed images and the four quality measures
SSIM, SMSE, JPEG quality factor Q and compression ratio CR. We observe that the
ROC curve corresponding to CR demonstrates the worst performance, i.e., the lowest area
under curve (AUC). Figures 4.11 and 4.12 show ROC curves associated with each of the
two image types, i.e., brain CT and body CT. Such an analysis in terms of image types
is particularly important since these two classes of images possess different characteristics
(e.g. texture) which may yield different compression artifacts. Note that the ROC curves
with the largest AUC correspond to the SSIM index quality measure.

In Figures 4.13, 4.14, 4.15 and 4.16 are presented the individual ROC curves corre-
sponding to JPEG and JPEG2000 compression methods, the four quality measures and
the two image types. Once again, the ROC curves associated with the SSIM index quality
measure yield the largest AUCs. This suggests that of the four quality measures, SSIM per-
forms the best in modeling the radiologists’ subjective assessments of compressed images
when the AUC is used as a performance indicator.

From Figures 4.13, 4.15 and 4.18, the AUCs associated with JPEG-compressed brain
images are seen to be significantly lower than those associated with JPEG-compressed body
images. This indicates that assessments of compressed brain CT images agree the least
with the subjective assessments of radiologists. A closer examination of the data provides
an explanation of this disparity. The radiologists perceived JPEG-compressed brain images
as almost always acceptable, even in the cases when the quality of these images was deemed
unsatisfactory in terms of SSIM or SMSE. As a result, the ratios FP/TN, which are the
false positive rates (FPR) plotted along the horizontal axis of ROC space, assume values of
only 0 or 1. This explains why the two JPEG-compressed ROC curves are not only linear
but almost horizontal.

Furthermore, Figures 4.13 and 4.15 show that in the case of compressed brain images,
JPEG2000 demonstrates better agreement with the radiologists’ opinions than JPEG. How-
ever, at the same compression ratios, more JPEG images were judged as acceptable by the
radiologists. How do we explain this oddity? It is generally accepted that JPEG2000
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“performs better” than JPEG for most classes of images - in other words, at a given com-
pression ratio, the error (both visual as well as quantitative) between uncompressed and
compressed images is less for JPEG2000 than JPEG. That being said, Koff et al. noted
that the opposite was often observed in the case of brain images, i.e., JPEG performed
better than JPEG2000. This anomaly is due to the bony skull in brain images [43]. The
sharp edges between the skull bone and neighbouring regions (both background and in-
terior regions) are difficult to approximate by any method. This is particularly the case
for JPEG2000 since a larger number of wavelet coefficients are required to approximate
these edges. JPEG can better accommodate these strong edges because of the 8× 8 pixel
block structure employed in the algorithm. As a result, the visual quality in the interior
regions, which contain the most diagnostic information, can be lower for JPEG2000 than
for JPEG.

We now summarize the results of applying the Kolmogorov-Smirnov (KS) test to the
collected data. Figures 4.19 and 4.20 present the cumulative distributions of subjective
radiologist scores (0’s and 1’s) corresponding to, respectively, SSIM and SMSE quality
measures for all data points. Figure 4.21 is a plot of the subjective radiologist scores for
JPEG-compressed images using the JPEG quality factor Q as the quality measure. Finally,
the distributions of 0’s and 1’s corresponding to compression ratio are shown in Figure 4.22.
As expected, the KS statistic, i.e. the separation between the two cumulative distributions
is largest for SSIM (81%), intermediate for JPEG quality factor Q (78%) and smallest for
compression ratio CR (60%).
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Figure 4.8: ROC curves corresponding to all data points. AUC SSIM = 0.9471 AUC SMSE = 0.8900.
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Figure 4.9: ROC curves corresponding to JPEG images and SSIM, SMSE, quality factor, compression
ratio. AUC JPEG SSIM = 0.9485 AUC JPEG SMSE = 0.9101 AUC JPEG quality factor = 0.9401 AUC
JPEG compression ratio =0.8372.
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Figure 4.10: ROC curves corresponding to JPEG2000 images and SSIM, SMSE, compression ratio. AUC
JPEG2000 SSIM = 0.9330 AUC JPEG2000 SMSE = 0.8691 AUC JPEG2000 compression ratio =0.7573.

81



Figure 4.11: ROC curves corresponding to brain CT. The area under the curve for each of the types is:
Brain SSIM: AUC = 0.9447 Brain SMSE: AUC = 0.8524.
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Figure 4.12: ROC curves corresponding to body CT. The area under the curve for each of the types is:
Body SSIM: AUC = 0.9389 Body SMSE: AUC = 0.9226.
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Figure 4.13: ROC curves corresponding to JPEG and JPEG2000 compressed brain CT images and
SSIM. JPEG body SSIM: AUC = 0.7828 JP2 body SSIM: AUC = 0.9204.
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Figure 4.14: ROC curves corresponding to JPEG and JPEG2000 compressed body CT images and
SSIM. JPEG brain SSIM: AUC = 0.9492 JP2 brain SSIM: AUC = 0.9577.
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Figure 4.15: ROC curves corresponding to JPEG and JPEG2000 compressed brain CT images and
SMSE. JPEG Body SMSE: AUC = 0.7424 JP2 Body SMSE: AUC = 0.8859.

86



Figure 4.16: ROC curves corresponding to JPEG and JPEG2000 compressed body JPEG brain SMSE:
AUC = 0.8749 JP2 brain SMSE: AUC = 0.8750.
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Figure 4.17: ROC curves corresponding to JPEG compressed body images with respect to quality factor
and compression ratio. JPEG body, quality factor: AUC = 0.9332 JPEG body, compression ratio AUC
= 0.8926.
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Figure 4.18: ROC curves corresponding to JPEG compressed brain images with respect to quality factor
and compression ratio. JPEG body, quality factor: AUC = 0.7424 JPEG body, compression ratio AUC
= 0.6818.
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Figure 4.19: Cumulative distributions of subjective radiologist scores corresponding to SSIM. K-S =
81.09%.
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Figure 4.20: Cumulative distributions of subjective radiologist scores corresponding to SMSE. K-S =
64.40%.
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Figure 4.21: Cumulative distributions of subjective radiologist scores corresponding to JPEG quality
factor. K-S = 77.65%.
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Figure 4.22: Cumulative distributions of subjective radiologist scores corresponding to compression ratio
for JPEG and JPEG2000 compressed images. K-S = 59.68%.
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The Optimal Threshold of Diagnostically Lossless Compression

The result of the logistic curve-fitting model (described in the Section 4.3.1) applied to all
data points is presented in Figure 4.23. For example, for 99.99% confidence, the recom-
mended SSIM threshold is 0.955.

K-fold cross validation was applied to the logistic curve-fitting model and weighted
Youden index WY (s).

For the logistic curve-fitting method, the desired level of confidence is provided by the
user. For example, if the level of confidence is 99.99%, then the recommended threshold
for compression corresponding to the SSIM index is 0.95 with 10% of FPs and 42% of FNs.
The threshold results using the curve-fitting model with 10-fold cross validation procedure
are presented in Table 4.1.

In the case of the Weighted Youden index, the user specifies the parameter λ, which
corresponds to the weighting of FPs versus FNs. Larger values of λ correspond to higher
thresholds of SSIM and SMSE and it means that having FPs is very costly. If λ equals
1, there are no TPs and too many FNs. Thus, λ equal or very close to 1 should not
be considered. To demonstrate the results, we chose λ to be 0.95. Figure 4.2 shows the
thresholds for SSIM and SMSE. The use of the weighted Youden index yields threshold
values of 0.955 and 0.96 for the SSIM index and SMSE, respectively. This results in almost
a small number of FPs, i.e. there is no risk that an image with higher quality score will be
marked as unacceptable.

The rather high percentage of FNs resulting from applying the two methods is caused
by the nature of the data. The JPEG compressed Brain CT images were almost always
perceived as acceptable by radiologists, even for low quality scores.

The recommended thresholds for diagnostically lossless compression for SSIM and
SMSE are similar according to the two methods used (logistic curve-fitting model and
Youden index), as described above. However, it is understood that the optimal thresholds
for SSIM and SMSE found in this work are dependent upon the collected data samples and
may well be different for other data. In order to find optimal thresholds for a given qual-
ity measure, the experiment should employ a larger set of images and a larger number of
radiologists as subjects. Moreover, the thresholds may vary according to image modality.
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Figure 4.23: Logistic curve fitted with LAD Regression with threshold confidence corresponding to
SSIM.

Objective
Quality Measure

Threshold with
confidence level = 99.99%

Prediction
Accuracy

SSIM .952
0.03% FPs
27% FNs

SMSE .96
0.05% FPs
32% FNs

Table 4.1: SSIM index and SMSE thresholds obtained by means of the logistic curve-fitting model
with 10-fold cross validation procedure using a fixed confidence level of 99.99%. The resulting percentage
of FPs, FNs are given for each case.
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Objective
Quality Measure

Threshold with
λ = 0.95

Prediction
Accuracy

SSIM .955
0.03% FPs
29% FNs

SMSE .964
0.04% FPs
34% FNs

Table 4.2: SSIM index and SMSE thresholds obtained by means of the Youden index with 10-fold
cross validation procedure using a fixed λ = 0.95. The resulting percentage of FPs, FNs are given for each
case.

4.4.2 Second experiment: Local quality

In this local analysis only JPEG images were considered. The ROC curves corresponding
to the SSIM index, SMSE and quality factor are shown in Figures 4.24, 4.25, 4.26 and 4.27.

Our examination of the data has shown that brain and body CT images should be
analyzed separately. These two image types posses different characteristics (e.g. textures,
distribution of intensities, variances of subblocks). We therefore expect, and observe,
different types of degradations that become noticeable at different compression levels.

In the local analysis, the ROC curves for body CT images corresponding to SSIM, SMSE
and JPEG quality factor Q have very similar AUC. However, the ROC curves corresponding
to brain CT images show poorer performance. We already observed a similar result for
brain images in the first experiment. Again, for the brain, most radiologists’ responses
were positive, meaning that the images (the regions in Experiment 2) are acceptable. Due
to too many “acceptables” for brain images in experiment 2, no proper local analysis is
possible for the tested brain CT images.
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Figure 4.24: ROC curves corresponding to SSIM and SMSE for brain CT images. AUC SSIM = 0.7183
AUC SMSE = 0.6481.
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Figure 4.25: ROC curves corresponding to SSIM and SMSE for body CT images. AUC SSIM = 0.8422
AUC SMSE = 0.8541.
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Figure 4.26: ROC curves corresponding to JPEG quality factor for brain CT images AUC QF = 0.7284.
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Figure 4.27: ROC curves corresponding to JPEG quality factor for body CT images AUC QF = 0.8613.
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4.4.3 Concordance of subjective responses

Here we discuss the consistency of the radiologists’ responses. The concordances of the
subjective responses corresponding to global and local experiments are shown in Figures
4.28 and 4.29. The term “consistency” in the table refers to the same choice for each
repetition for each radiologist (intra-class concordance), whereas “agreement” corresponds
to the same choice between radiologists (inter-class concordance). Moreover, we have also
computed the coherence between compression level and acceptance, labeled as ’monotonic-
ity’ in the figure. According to this summary, during the local experiment the radiologists
were more consistent in both intra- and inter-class concordance. However, the consistency
statistics percentages are on average close to 100% and are overall satisfying, therefore we
conclude that the experiment data are reliable.

LOCAL%EXPERIMENT Radiologist%1 Radiologist%2

Acceptable%Responses 263 286

Unacceptable 37 14

Consistency%(intra%class) 100% 100%

Agreement%(inter%class) 92% 92%

Monotonicity 97% 99%

GLOBAL%EXPERIMENT Radiologist%1 Radiologist%2

Acceptable%Responses 77 83

Unacceptable 15 6

Repetition%inconsistency 8 11

Consistency%(intra%class) 92% 89%

Agreement%(inter%class) 84% 84%

Monotonicity 99% 99%

Figure 4.28: Consistency of subjective re-
sponses of the global experiment.

LOCAL%EXPERIMENT Radiologist%1 Radiologist%2

Acceptable%Responses 263 286

Unacceptable 37 14

Consistency%(intra%class) 100% 100%

Agreement%(inter%class) 92% 92%

Monotonicity 97% 99%

GLOBAL%EXPERIMENT Radiologist%1 Radiologist%2

Acceptable%Responses 77 83

Unacceptable 15 6

Repetition%inconsistency 8 11

Consistency%(intra%class) 92% 89%

Agreement%(inter%class) 84% 84%

Monotonicity 99% 99%

Figure 4.29: Consistency of subjective re-
sponses of the local experiment.

4.5 Discussion

Our AUC and KS analyses of the results of Experiment 1 yield the following important
conclusions:

• Compression ratio demonstrates the poorest performance of the four quality measures
examined.

• MSE performs inconsistently as indicators of visual/diagnostic quality.

• SSIM demonstrates the best performance, i.e., it provides the closest match to the
subjective assessments of the radiologists.
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• JPEG quality factor performs nearly as well as SSIM

• Our examination of the data indicates that brain and body CT images should be
analyzed separately

Furthermore, we have utilized a weighted Youden index and a curve-fitting model to
suggest thresholds for SSIM and SMSE as indicators of acceptable compression levels for
brain CT and body CT compressed images. The thresholds reported in this work corre-
spond to the specific set of sample data collected in our experiments. In order to obtain
more reliable and statistically significant thresholds, the experiment should employ a larger
set of images - separately for the various anatomical regions as well as modalities - and
involve more radiologists as subjects.

The local analysis in Experiment 2 was performed separately on brain and body CT
images. As expected, the performance of SSIM was quite satisfactory in terms of AUC
(area under ROC curves). SMSE and JPEG quality factor also performed well.

Although JPEG quality factor shows a good performance, it is not reliable since it is
image-dependent. Please refer to Section 2.2 of Chapter 2 for detailed discussion on JPEG
quantization.

How can the SSIM and SMSE thresholds be used in practice? For example, in order
to use the recommended threshold, the first compression attempt has to be performed for
the purpose of determining the SSIM or SMSE quality score. The corresponding input
parameters (e.g. compression ratio and quality factor) can then be adjusted accordingly.

Finally, the recommended threshold results presented here cannot be directly compared
with the recommendations based on compression ratio for medical images (as presented in
Section 1.2). Based on our findings compression ratio is not a reliable quality predictor. In
a study done by Flynn et al., it has been shown that regardless of the type of image, the
threshold at which the human eye is not able to determine compression degradations is on
average at SSIM= 0.95 [26]. Nevertheless, it would be difficult to find a common threshold
on SSIM for diagnostically lossless compression. In practice, the threshold is likely to be
application dependent. For example, the same image content viewed on different display
devices at different viewing distance would result in different visual quality, however, ac-
cording to the existing objective measures such as MSE/PSNR and SSIM a fixed quality
prediction is given.

102



4.5.1 Training of the stability constant for the SSIM index

In Figure 4.30 are plotted ROC curves that correspond to the SSIM quality index (actually,
the structure term of SSIM) for various values of the stability constant C. The AUC (area
under ROC curve) values associated with these values of C are plotted in Figure 4.31. The
monotonically decreasing behavior of the curve for values of C near 0 is quite interesting,
and suggests that best ROC-performance (i.e., maximum AUC) is obtained. That being
said, a nonzero stability constant of very low magnitude will be employed in order to
avoid any possible division by zero in the computation of the SSIM index. Such “zero
denominators” could arise in the case of “flat” image blocks, i.e., pixel blocks with constant
greyscale value, hence zero variance, in both uncompressed and compressed images.
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Figure 4.30: ROC curves corresponding to various
values of the constant C in the structure term of
SSIM.
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Figure 4.31: Plot of AUC and the various SSIM
stability constants.

4.6 Conclusion

In this work, we compared the performances of SSIM, MSE/PSNR, compression ratio
CR and JPEG quality factor Q, based on experimental data collected in two experiments
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involving radiologists. The first xperiment involved a global quality assessment of 100 brain
and body CT images at various compression ratios. The radiologists evaluated compressed
images as acceptable or unacceptable as compared to their uncompressed counterparts.
An ROC and Kolmogorov-Smirnov analysis indicates that compression ratio is not always
a good indicator of visual quality. Moreover, SSIM demonstrated the best performance,
i.e., it provides the closest match to the radiologists’ assessments. We also show that a
weighted Youden index and curve fitting method can provide SSIM and MSE thresholds
for acceptable compression ratios. The second experiment involved a local/regional image
quality analysis of these images by the radiologists. An ROC analysis once again shows
that SSIM provides a closer match to subjective assessments.

4.7 Improved experiment design

The above experiment has several flaws and therefore we are unable to draw all desired
conclusions. First of all, the sample sizes (i.e., the number of images and radiologists
involved in the subjective assessment) are too small. Of course, at the time of the exper-
iment those were the only available resources. Second of all, there were too few negative
responses to make proper ROC analysis for brain CT images. We are currently working on
conducting a new experiment- an improved version of the experiment described above. We
are in the process of conducting a larger scale experiment where at least ten radiologists
are involved in a subjective assessment of diagnostic quality of compressed neuro CT and
body CT normal and pathological images. The experience gained during the course of
the previous experiments and consultations with Prof. Marriott (Statistics and Actuarial
Science Department, University of Waterloo) brought new ideas for designing a better,
more statistically valid experiment. Also, the suggestions provided by Nasim Themmati,
a radiologist from McMaster University, have helped with the choice of images for the
experiment.

Full results are not yet available. In what follows, is the experiment design.

• The group of (al least 10) radiologists subjects includes experienced radiologists as
well as residents (McMaster University).

• Types of pathologies: Based on previous findings by Koff et al. [38], [39], the patholo-
gies include subtle lesions in the liver for the body, and brain parenchyma and pos-
terior fossa for the heads. By subtle lesions, it is meant two main types:
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– Very small lesions, limit in size, of less than 2 mm, but high contrast (calcifica-
tions) or low density (tiny cysts);

– Subtle parenchymal alterations translating into subtle differences in density such
as cerebral infarcts.

• The experiment consists of two parts:

– Task 1: Subjective classification of compressed normal and pathological brain
CT and body CT images into one of three groups: 1) not noticeable and accept-
able, (2) noticeable and acceptable and (3) noticeable and not acceptable by
radiologists. The compressed images are displayed together, side by side, with
their uncompressed versions.

– Task 2: Subjective classification of images into three groups: (1) Normal, (2)
Pathological, (3) Unable to assess.

• The brain CT and body CT images used in the experiment were carefully chosen
with the help of radiologists and contain pathological and normal cases (about 1/3
of normal cases).

• Working environment: MIIRC@M office; Eizo Radiforce monitor, 54 cm (21,3”) dis-
play, with a 1200x1600 native resolution (3:4 aspect ratio) and a viewing size of 324.0
x 432.0 mm. It displays 10-bit colors.

• Images are displayed randomly.

• Number of images

– Trial experiment includes 6 images from each brain CT and body CT sets.
These images are repetitions of images that are included in the main part of the
experiment.

– Main experiment, Part 1

Number of images: 306 brain CT, 306 body images (30 different images com-
pressed at five compression ratios using JPEG and JPEG2000 algorithms in-
cluding 6 repetitions added at the end of the sequence).

– Main experiment, Part 2

The set of images includes 100 brain CT and 100 body CT randomly chosen
images from the set of images displayed in the first part of the main experiment
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• Repetitions are included in the trial experiment as well as at the end of the first part
of the main experiment to check consistency of the radiologists.

• The second experiment serves as a measure of diagnostic accuracy and concordance
of the radiologists.

• Duration of the experiment: The number of images has been adjusted to the time
limitation of the experiment. Expected timeline of the experiment: (Total 90 min-
utes)

– Trial experiment including explanation of the task: 10 minutes

– Main experiment, Part 1:

∗ Brain CT: 25 minutes

∗ Body CT: 25 minutes

– Break: 10 minutes

– Main experiment, Part2:

∗ Brain CT: 10 minutes

∗ Body CT: 10 minutes

All of the above items included in the design of the experiment have been restricted
to several limitations. It is important to find the balance between the trade-offs that are
involved. First of all, the time of radiologists who are willing to participate in such research
study is up to 1.5 hrs. We have chosen 30 images for each brain CT and body CT at five
compression levels. This choice is optimal for the given time frame.

With this new experiment we are hoping to answer several questions:

• Determine a more reliable threshold for compression and tuning of the SSIM index.

• Examine the difference in diagnosis between experienced and novice radiologists.

• Understand the difference between quality and diagnostic quality of images by group-
ing the subjective assessments into two or three groups of responses. This may be
possible to accomplish with the use of the third button in the first part of the exper-
iment: Acceptable, noticeable distortions. This third button serves to differentiate
between the diagnostic quality and simply visual quality of compressed images. Ac-
cording to radiologists’ comments, we believe that some compressed images with very
minor distortions are still of “diagnostic quality”.
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• Measure diagnostic accuracy with a task of detecting a pathology.

• Is the difference among the quality measures clinically important?

• Do pathological and non-pathological images compress in the same way?

It has been mentioned by several radiologists that normal images compress better as
compared to pathological images. Also, for brain CT images, compression does not affect
diagnosis as much as in the case of body CT images. We are hoping to address these
and the related problems using the data from the experiment. Moreover, in further future
experiments we will attempt to determine thresholds for SSIM and MSE on the basis of
larger sample size data, for several modalities and a variety of anatomical regions.
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Chapter 5

“Weberized” approximation of
images: An attempt to construct a
“Weberized” L2-based image
approximation and similarity
measure

In this chapter we consider a modified method of L2 approximation of functions that
takes into consideration a Weber-type model of perception. Weber’s law (sometimes called
Weber-Fechner law) comes from psychophysics and relates human perception to change in
the magnitude of stimuli [87].

5.1 Weber’s model of perception

Consider a signal u, for example a grey-scale image where u(x) denotes the intensity at a
point x, the minimum perceived sensitivity ∆u is related to the intensity u as follows,

∆u

u
= c, (5.1)

where c is roughly constant. In other words, the eye/brain/mind is less sensitive to a given
change in intensity ∆u in regions where the image intensity is high.
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In Chapter 2.6.2 we discussed some image quality measures, namely MSE and the SSIM
index. The MSE has been shown to behave poorly as perceptual quality assessor, however,
it is known for its simplicity and is still being widely employed. A newer measure, the
SSIM index, is also simple to compute and it shows better performance (than MSE) to
measure the quality of images.

SSIM is also formulated to accommodate Weber’s model of perception. In order to see
this connection, we take a closer look at one of the components of the SSIM function, the
luminance function

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

, (note:− 1 ≤ l(f, g) ≤ 1). (5.2)

The factor l(x, y) measures the discrepancy between the mean values of x and y. Assume
that f is fixed and g is an approximation to f . Then l(f, g) can be written as follows,

l(f, g) =
2(µg

µf
) + C ′1

1 + (µg
µf

)2 + C ′1
. (5.3)

This expression of l(f, g) shows a dependence on ratio µg
µf

, in accordance with the Weber

model.

5.2 Approximation of signals using intensity weight-

ing functions

“Weberizing” the L2 distance function

The L2 distance function, which in our image context is the MSE, does not incorporate
any weighting of the pixels and therefore has no connection with Weber’s Law. In fact, all
Lp- based metrics for p ≥ 1, do not conform to the Weber’s model of perception since they
involve integrations over appropriate powers of intensity differences, |u(x)− v(x)|, with no
consideration of the magnitudes of u(x) or v(x). One idea to “Weberize” the L2 distance
function is to incorporate some weighting of the pixel intensities inside the integral.

In what follows, we let u ∈ L2[a, b] be the signal we wish to approximate and let {φk}∞k=1

denote a complete orthonormal basis for the Hilbert space of functions L2[a, b]. In the usual
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L2-based approach, the approximation,

u ≈ uN =
N∑
k=1

ckφk, (5.4)

is obtained by minimizing the squared L2 error ∆2
N = ‖u− uN‖2 given by

∆2
N =

∫ b

a

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx. (5.5)

It is a known result that ∆2
N is minimized when

ck = 〈u, φk〉, 1 ≤ k ≤ N. (5.6)

The “Weberization” of the L2 error will be accomplished by dividing the integrand by
the intensity at each pixel. The “Weberized” L2 approximation is then accomplished by
minimizing the modified squared L2 error,

W 2
N =

∫ b

a

[
u(x)−

∑N
k=1 ckφk(x)

u(x)

]2

dx

=

∫ b

a

1

[u(x)]2

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx. (5.7)

Eq. (5.7) is an intensity weighted L2 approximation. This definition of an error con-
forms to the Weber Law: Regions of the interval [a, b] where the signal intensity |u(x)| is
larger/smaller are weighted to a lesser/greater extent in the integral.

The image function u(x) may contain the value of 0, representing a black pixel. In
order to avoid such problems, a “stability parameter” ε > 0 is introduced, i.e.,

W 2
N =

∫ b

a

1

[u(x) + ε]2

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx, (5.8)

The weighting function [u(x) + ε]2 in Eq. (5.8) can be generalized. This leads to the
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idea of a more general form of intensity-weighted approximation, i.e.,

W 2
N =

∫ b

a

g(u(x))

[
u(x)−

N∑
k=1

ckφk(x)

]2

dx, (5.9)

where g(u(x)) > 0 will accommodate some kind of inverse intensity-weighting, e.g.,

g(u(x)) ∝ 1

u(x)α
, α > 0. (5.10)

“Weberized” L2 approximation

As in the case of the L2 approximation, the “Weberized” L2 distance in Eq. (5.7) can be
minimized in order to find coefficients to approximate a given function. The coefficients ck
that minimize W 2

N in Eq. (5.9) may be determined as follows: We impose the stationarity
conditions

∂W 2
N

∂cp
= −2

∫ b

a

g(u(x))

[
u(x)−

N∑
k=1

ckφk(x)

]
φp(x) dx = 0, 1 ≤ p ≤ N. (5.11)

After rearranging, we obtain

N∑
k=1

ck

∫ b

a

g(u(x))φp(x)φk(x) dx =

∫ b

a

g(u(x))u(x)φp(x) dx. 1 ≤ p ≤ N, (5.12)

Eq. (5.12) represents a system of linear equations in the coefficients cp having the form
Ac = b, or

N∑
k=1

apkck = bp, 1 ≤ p ≤ N, (5.13)

where
apk = 〈φp, φk〉W , bp = 〈u, φp〉W . (5.14)

〈·, ·〉W denotes a weighted inner product with the weight function g(u(x)), i.e.:

〈u, v〉W =

∫ b

a

g(u(x))u(x)v(x) dx. (5.15)
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Consider the special case where the weight function g(u(x)) = C is a constant. We may
think of this weighting as “global”, i.e., the same at each point. In this case the matrix A
is diagonal, and we obtain

cp = bp =

∫ b

a

u(x)φp(x) dx, (5.16)

which are the Fourier coefficients of Eq. (5.6).

Note that in the case where the weighting function is not a constant, each pixel difference
in Eq. (5.12) is weighted according to the value of the intensity at a given pixel. We may
regard this kind of weighting procedure as “local”.

5.2.1 Another look at the “Weberized” L2 approximation
method

We now consider a particular case of the “Weberized approximation” with the weighting
function given by

g(u(x)) =
1

u(x)2
. (5.17)

The choice of the weighting function in Eq. (5.17) is a natural consideration since it
involves division of the integrand in Eq. (5.7) by a single power of pixel intensities.

Eq. (5.7) can be written as follows,

W 2
N =

∫ b

a

[
1−

N∑
k=1

ckψk(x)

]2

dx, where ψk(x) =
φk(x)

u(x)
, 1 ≤ k ≤ N. (5.18)

Thus minimizing W 2
N amounts to finding the best L2 approximation of the constant

function h(x) = 1 in terms of the set of functions ψk(x). In other words, if ψk(x) basis
functions are used then the “Weberized” error measures how far the approximated signal is
from the unity. This is just another way of looking at the approximation procedure. There
is no new mathematics since the form of g(u(x)) in Eq. (5.17) implies that the system of
linear equations in (5.12) may be rewritten as follows,

N∑
k=1

ck

∫ b

a

ψp(x)ψk(x) dx =

∫ b

a

1 φp dx, 1 ≤ p ≤ N, (5.19)
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which is precisely the set of equations corresponding to the approximation of h(x) = 1 in
the ψk basis.

A natural question arises from this viewpoint: “How linearly independent, or even
orthogonal, are the functions ψk?” One way to characterize their orthogonality is to look
at the structure of the matrix A in Eq. (5.12) – the more concentrated along the diagonal
it is, the more orthogonal the basis. If, in our applications, we consider subintervals or
subblocks of an image, then one expects that in places where the image function u(x) is
relatively constant, the functions ψk will behave much like their orthogonal φk counterparts
(Fourier approximation). The interesting cases will occur where the image function u(x)
exhibits more “activity,” i.e., higher variance and/or edges.

5.3 The “Weberized” L2 as a distance function

The constructed “Weberized” L2 error in Eq. (5.7) will be used to measure the error
between the original and distorted images, i.e. the distance between the two. From a
mathematical point of view, we would like such measure to be a valid metric. We now return
to Eq. (5.7), in which the function u ∈ L2[a, b] is considered to be the “reference function”
that is to be approximated. Instead of employing a linear combination of orthogonal basis
functions, we simply consider another function v ∈ L2[a, b] as an approximation to u. The
error of approximation, in the “Weberized” L2 sense, and with u as reference, will be
denoted as

∆(u, v) =

[∫ b

a

1

u(x)2
[u(x)− v(x)]2 dx

]1/2

. (5.20)

Upon interchanging u and v, we obtain the “Weberized” L2 error of approximating v with
u, i.e.,

∆(v, u) =

[∫ b

a

1

v(x)2
[u(x)− v(x)]2 dx

]1/2

. (5.21)

Note that both ∆(u, v) and ∆(v, u) are examples of weighted L2 distances having the
form,

d2(u, v ; g(u(x))) =

[∫ b

a

g(u(x)) [u(x)− v(x)]2 dx

]1/2

(5.22)
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and

d2(v, u ; g(v(x))) =

[∫ b

a

g(v(x)) [v(x)− u(x)]2 dx

]1/2

, (5.23)

where g(u(x)) > 0, g(v(x)) > 0 for x ∈ [a, b]. Note that we may rewrite the above as
follows,

d2(u, v ; g(u(x))) =

[∫ b

a

[
√
g(u(x))u(x)−

√
g(u(x)) v(x)]2 dx

]1/2

, (5.24)

d2(v, u ; g(v(x))) =

[∫ b

a

[
√
g(v(x)) v(x)−

√
g(v(x))u(x)]2 dx

]1/2

. (5.25)

In other words,

d2(u, v ; g(u)) = d2(
√
g(u)u,

√
g(u)v ; 1) = d2(

√
g(u)u,

√
g(u) v), (5.26)

d2(v, u ; g(v)) = d2(
√
g(v)v,

√
g(v)u ; 1) = d2(

√
g(v) v,

√
g(v)u), (5.27)

where d2(u, v) denotes the usual (unweighted) L2 distance between u and v, i.e.,

d2(u, v) =

[∫ b

a

[u(x)− v(x)]2 dx

]1/2

. (5.28)

This implies that the weighted distance function d2(u, v; g(u)) satisfies all the properties
of a metric, including the triangle inequality. Let us confirm the latter statement: For any
u, v, w ∈ L2[a, b],

d2(u, v ; g(u)) = d2(
√
g(u)u,

√
g(u)v)

≤ d2(
√
g(u)u,

√
g(u)w) + d2(

√
g(u)w,

√
g(u)v) (since d2 is a metric)

≤ d2(u,w ; g(u)) + d2(w, v ; g(u)). (5.29)

However, d2(u, v ; g(u)) 6= d2(v, u ; g(v)) since, in general, the functions g(u(x)) and
g(v(x)) are not the same. Thus, ∆(u, v) is not symmetric w.r.t. u and v and therefore is
not a metric. Furthermore, it is not necessary to contract a metric out of the “Weberized”
measure. Given that our primary applications will be in signal/image processing, let us
assume that we are working with square integrable functions that are bounded from above
and away from zero. Consider a fixed lower bound L > 0 and a fixed upper bound M > L
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and define the following space of functions,

F = {u : [a, b]→ [L,M ]}. (5.30)

Theorem 5.3.1.
2L−M

L
∆(u, v) ≤ ∆(v, u) ≤ M

L
∆(u, v). (5.31)

Proof. u ∈ F ⇒ u ∈ L2[a, b] are square integrable functions. It then follows that

1

M
≤ 1

u(x)
≤ 1

L
, x ∈ [a, b] (5.32)

From (5.20),
1

M
d2(u, v) ≤

{
∆(u, v)
∆(v, u)

}
≤ 1

L
d2(u, v). (5.33)

Since our usual convention is to consider the function u as the “reference” or “target”
function being approximated by the function v, here we consider ∆(u, v) and express
∆(v, u) in terms of it. From Eq. (5.20), we see that both ∆(u, v) and ∆(v, u) lie inside the
real interval

I =

[
1

M
d2(u, v),

1

L
d2(u, v)

]
(5.34)

where, d2(u, v) denotes the L2 distance between u and v, i.e.,

d2(u, v) =

[∫ b

a

[u(x)− v(x)]2 dx

]1/2

. (5.35)

This implies that ∆(u, v) and ∆(v, u) cannot differ by more than the length of this interval,
i.e.,

|∆(u, v)−∆(v, u)| ≤
(

1

L
− 1

M

)
d2(u, v). (5.36)
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But from Eq. (5.20), the above inequality yields

|∆(u, v)−∆(v, u)| ≤ M

(
1

L
− 1

M

)
∆(u, v)

= M
(M − L)

LM
∆(u, v)

=
M − L
L

∆(u, v). (5.37)

This implies that(
1− M − L

L

)
∆(u, v) ≤ ∆(v, u) ≤

(
1 +

M − L
L

)
∆(u, v), (5.38)

which may be simplified to

2L−M
L

∆(u, v) ≤ ∆(v, u) ≤ M

L
∆(u, v). (5.39)

In Theorem 5.3.1, the coefficient of the LHS may be negative, in which case no new
information is yielded since ∆(v, u) must be nonnegative. As a result, it follows that

∆(u, v)→ 0⇒ ∆(v, u)→ 0. (5.40)

The above result implies that it is sufficient to consider only ∆(u, v) as a measure of
closeness between u and v since

1

M
d2(u, v) ≤

{
∆(u, v)
∆(v, u)

}
≤ 1

L
d2(u, v). (5.41)

Clearly, if v → u in d2 metric, then both ∆(u, v) and ∆(v, u) go to zero.

We now address an important property that we require from the weighting function.
We could employ a more general form of the weighting function that depends on u(x) and
v(x). The dependence on both intensity functions would lead to complicated mathematics
for which finding approximated coefficients would be difficult. In our consideration the
weighting function depends on one intensity function, u(x) or v(x). The fundamental
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property that we require of the weighting function is that it conforms to the Weber’s
model of perception. Recall Eq. (5.42) in which we declared the weighting function belong
to the symmetric, decreasing family of functions:

g(u(x)) =
1

u(x)α
, α > 0, (5.42)

This choice of g(u(x)) accommodates Weber’s model. As presented in Eq. (5.17), a
natural choice of the parameter α is 2. With this choice of α, the approximation errors
d2W (u, v) and d2W (v, u) are:

d2W (u, v) =

[∫ b

a

[
1− v(x)

u(x)

]2

dx

]1/2

= ∆(u, v), (5.43)

and

d2W (v, u) =

[∫ b

a

[
1− u(x)

v(x)

]2

dx

]1/2

= ∆(v, u), (5.44)

Note also that from the definitions of ∆(u, v) and ∆(v, u) in (5.20) and (5.21) and Eq.
(5.27),

∆(u, v) = d2(u−1u, u−1v) = d2(1, v/u)

∆(v, u) = d2(v−1u, v−1v) = d2(u/v, 1). (5.45)

These results, of course, could have been derived directly from (5.20) and (5.21). From
(5.20),

∆(u, v) =

[∫ b

a

1

u(x)2
[u(x)− v(x)]2 dx

]1/2

=

[∫ b

a

[
1− v(x)

u(x)

]2

dx

]1/2

(5.46)
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Likewise,

∆(v, u) =

[∫ b

a

1

v(x)2
[u(x)− v(x)]2 dx

]1/2

=

[∫ b

a

[
u(x)

v(x)
− 1

]2

dx

]1/2

(5.47)

The ∆ distances between two functions u(x) and v(x) are measures of how well their
ratios approximate the constant function 1 over [a, b]. This may be viewed as an imple-
mentation of Weber’s Law into the L2 distance measure. From (5.43) we see that for
∆(u, v) to be small, the ratio v(x)/u(x) must be close to 1 for all x ∈ X. This already
suggests that Weber’s model of perception is being followed: Larger values of u(x) will
tolerate larger deviations between v(x) and u(x) so that the ratio v(x)/u(x) is kept within
a specified distance from 1. To see the differences between the L2 and the “Weberized” L2

distances, consider a reference image u(x) = I , I ∈ Rg = [A,B] ⊂ (0,∞), x ∈ X ⊂ R.
Let v(x) = I + ∆I such that ∆I > 0 be the constant approximation to u(x). According
to the Weber’s model of perception, Eq. (5.1), ∆I = CI is the minimum perceived change
in intensity corresponding to I. The L2 distance between u and v is

d2(u, v) =

[∫
X

[(I + ∆I)− I]2 dx

]1/2

= ∆I

[∫
X

dx

]1/2

= KCI (5.48)

where K =
[∫
X
dx
]1/2

Now, we compute the “Weberized” L2 distance ∆(u, v):

∆(u, v) = K
∆I

I
= KC (5.49)

From Eq. (5.48) we see that the higher the intensity level I the larger the L2. This is
expected since ∆I increases with I. The “Weberized” L2 distance in Eq. (5.49), however,
remains constant according to the Weber’s model of perception Eq. (5.1). Thus we claim
that ∆(u, v) better accommodates Weber’s model of perception: The distance measure
remains constant regardless of the perturbations ∆I of image intensities I.
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5.3.1 A variation on the “Weberized” L2 method: Matching of
means

The “Weberized” L2 method was introduced in an effort to accommodate Weber’s model
of perception. Here we consider a variation of the “Weberized” L2 approximation where
the mean value of the function being approximated is assumed to be the same as the
original function. As such, one would hope that optimal “Weberized” approximations
would perform better than their optimal L2 counterparts in terms of image quality as
measured, for example, by structural similarity (SSIM). However, this is not generally the
case - numerical examples will be presented in the next chapter. It turns out that the
SSIM measure of an approximation is affected if the mean value of the function being
approximated is not matched very well. Let us just recall the definition for the SSIM
measure S(x, y) between two signals, x, y ∈ Rn:

S(x, y) = S1(x, y)S2(x, y) =
2x̄ȳ

x̄2 + ȳ2
· 2sxy
s2
x + s2

y

, (5.50)

where

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi, (5.51)

and

sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ), s2
x =

1

N − 1

N∑
i=1

(xi − x̄)2, s2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2.

(5.52)
Note that S1(x, y) = 1 if x̄ = ȳ. If we consider y as an approximation to x, then if x̄ 6= ȳ,
S1(x, y) < 1. Since S1(x, y) is a multiplicative factor, it can influence the value of S(x, y)
significantly.

We can try to alleviate this difficulty by imposing the condition that the mean ȳ of
the approximation y matches the mean x̄ of the signal being approximated. To do this,
we shall proceed in a manner similar to that employed in [8], a study of optimal SSIM-
based approximation. The following discussion starts with a formulation over a continuous
domain, then we will transform to the discrete domain.

We now return to the formulation of the problem in terms of a complete orthonormal
basis, but with a minor alteration. The orthonormal basis elements will now be indexed as
{φk}∞k=0. In this way, the first element of the basis, φ0(x), will have a rather special status,
as it does in the Fourier and wavelet basis, as well as in our SSIM-based approximations.
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The mean value of a function u(x) over the interval [a, b] is defined as follows,

u =
1

b− a

∫ b

a

u(x) dx. (5.53)

It would be much easier if we simply formulated the problem over the interval [0, 1], but
we will continue with this general formulation. It will be assumed that only the function
φ0 has nonzero mean, i.e.,

φ0 6= 0, φk = 0, k = 1, 2, · · · . (5.54)

This holds in the Fourier as well as wavelet cases.

Once again, we consider the following N -function approximation to a function u(x),

u ≈ uN =
N−1∑
k=0

ckφk, (5.55)

but with the condition that
u = uN , (5.56)

which implies that
c0 = (φ0)−1 u. (5.57)

Now define
v(x) = u(x)− c0φ0, (5.58)

so that the approximation in (5.55) becomes

v ≈ vN =
N−1∑
k=1

ckφk. (5.59)

The condition on the φk implies that

vN = 0. (5.60)

Before discussing the resulting “mean matching” “Weberized” L2 method, let us note
one important result of the above matching method: If the function φ0(x) is constant over
[a, b] (as is the case for Fourier as well as Haar wavelet bases), then the coefficient c0 is also
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the Fourier coefficient of u in the φk basis, i.e.,

c0 = 〈u, φ0〉 =

∫ b

a

u(x)φ0(x) dx. (5.61)

In other words, it is also the “best L2” coefficient for u, at least for the subspace spanned
by φ0.

To see this, note that if the orthonormal basis function φ0 is a constant on [a, b], it
follows that

φ0(x) = (b− a)−1/2, a ≤ x ≤ b. (5.62)

It is easily verified that this constant value must also be the mean of φ0, i.e.,

φ0 = (b− a)−1/2. (5.63)

The Fourier coefficient of a function u with respect to φ0 is

c0 = 〈u, φ0〉

=

∫ b

a

u(x)φ0(x) dx

= (b− a)−1/2

∫ b

a

u(x) dx

= (b− a)1/2 u

= (φ0)−1 u, (5.64)

in agreement with Eq. (5.57).

We now consider a “Weberized” L2 approximation to v which minimizes the squared-
distance function,

W 2
N =

∫ b

a

1

u(x)2
[v(x)− vN(x)]2 dx

=

∫ b

a

1

u(x)2

[
v(x)−

N−1∑
k=1

ckφk(x)

]2

dx. (5.65)

The weight function still employs the non-negative function u(x), as opposed to the function
v(x), since the latter will have zero mean, i.e., v = 0, in which case we might encounter
problems with zeros.
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If we now impose the stationarity constraints,

∂W 2
N

∂cp
= 0, 1 ≤ p ≤ N − 1, (5.66)

we obtain a set of N − 1 linear equations in the unknowns cp having the form Ac=b, or

N−1∑
k=1

apkck = bp, 1 ≤ p ≤ N − 1, (5.67)

where
apk = 〈φp, φk〉W , bp = 〈v, φp〉W . (5.68)

There are two differences between this system and the system in Eq. (5.13):

1. There are only N − 1 unknowns, cp, 1 ≤ p ≤ N − 1.

2. The integrals defining the coefficients bp involve the function v and not u.

An implementation of the “Weberized” L2 method with the mean matching procedure
is presented in the next chapter. We will see that the difference between the “Weberized”
L2 and its matching of the means variation with small number of basis functions will be
negligible for natural images. In the case of some medical images, however, the mean
matching procedure shows to produce better visual results than the original “Weberized”
L2 approximation method for low quality approximations.

5.4 Logarithmic L2

The “Weberized” L2 approximation accommodates the Weber model of perception, in
which we weight the error accordingly to the intensity at a given pixel. The “Weberized”
L2 method is more expensive computationally than the original L2 method. This is the
price we pay for incorporating the Weber model of perception into the L2 approximation.
Furthermore, the “Weberized” L2 approximation is based on the ratio of intensities, which
can also be represented using logarithms. The following discussion introduces another
“Weberized” L2 approximation method, using logarithms of functions, which is simpler to
implement than the previous “Weberized” L2 approach.

Let us first emphasize that taking the ratio of functions is the basis for our “Weberized”
L2 approach. As before, we assume that our signals of interest are represented by positive,
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bounded functions with support [a, b] ⊂ R. The extension to 2D signals, i.e., images, is
straightforward. Let us define the function space,

F = {u : [a, b]→ [L,M ] }. (5.69)

where L and M are positive numbers, with L < M . Clearly, F ⊂ L2[a, b].

If we now consider u ∈ F to be a reference function and v ∈ F to be an approximation
to u, then a “Weberized” L2 error associated with the approximation u ≈ v may be defined
as

∆(u, v) =

[∫ b

a

1

u(x)2
[u(x)− v(x)]2 dx

]1/2

. (5.70)

As mentioned earlier, ∆(u, v) is not a metric since it is not symmetric with respect to u
and v. We may also consider

∆(v, u) =

[∫ b

a

1

v(x)2
[u(x)− v(x)]2 dx

]1/2

(5.71)

and try to construct a metric from these two components. However, by theorem (5.3.1), it
is sufficient to consider only one of these components, for example ∆(u, v), as a measure
of closeness between u and v.

Recall equations (5.43) and (5.44),

∆(u, v) =

[∫ b

a

[
1− v(x)

u(x)

]2

dx

]1/2

∆(v, u) =

[∫ b

a

[
1− u(x)

v(x)

]2

dx

]1/2

. (5.72)

In both cases, a ratio involving u and v is involved. According to Eq. (5.1), such ratios
allows for Weber’s Law to be accommodated. In order to see this, suppose that u(x) = A
on [a, b] and v(x) = A+ ε, ε > 0, is an approximation to u. We assume that A and A+ ε
lie in the greyscale range [L,M ]. Then

∆(u, v) =

[∫ b

a

[
1− A+ ε

A

]2

dx

]1/2

=
√
b− a

( ε
A

)
. (5.73)
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We conclude that if the ratio ε/A is kept constant, the error ∆(u, v) is constant. This is
consistent with the Weber’s model of perception, Eq. (5.1).

5.4.1 Logarithms as a natural representation for Weber’s model

Before we present the mathematical formalism for a logarithmic L2-based approximation
method, we will attempt to justify why logarithms provide a natural representation for
Weber’s model of perception. We start this discussion with the reference to an article
written by B. Forte and E. Vrscay [27] in which the authors described a method of moving
from a strict metric defined over so-called fuzzy set functions to a weaker metric that
involves integration. The fuzzy set metric employs the d∞ metric involving Hausdorff
distances between α-level sets of functions. The motivation for a new metric was to measure
distances between functions taking into consideration the aspects of visual perception.

The details of the transition from fuzzy sets to L1 is presented in [27]. Below is a
summary of the results. As before, assume that image functions are non-negative functions,
i.e. u : X 7→ Rg where X is the “base space” on which the image functions are defined,
and Rg ⊆ R+ denotes the greyscale range. Let ν be a measure on B(Rg), the σ-algebra of
Borel measurable subsets of Rg.

The authors of [27] consider a more general case of a measure µ ∈ B(Rg). Since we
will be integrating over the space X, we consider uniform Lebesgue measure on X, which
we denote by m. As before our two image functions are represented by u and v. We
now provide some definitions that will be needed to formally present the ideas and the
connection to the logarithmic L2- based approximation.

Definition 5.4.1. The α-level set of a function u is defined as follows,

[u]α = {x ∈ X, u(x) ≥ α}. (5.74)

Definition 5.4.2. The symmetric difference of two sets A and B is given by,

A∆B = A ∪B − A ∩B. (5.75)

The set A∆B is composed of points on A and B that are not common to A and B.
If A and B are subsets of the plane, then the “greater” the overlap between A and B,
the smaller the area of their symmetric difference. However, the area of their symmetric
difference is the R2 Lebesgue measure of A∆B, i.e., m(A∆B).
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Here, we construct a distance function that is based on the α-level sets of two functions.
The distance function will be defined in terms of the symmetric difference between the α-
level sets of u and v, i.e.:

[u]α∆[v]α, α ∈ Rg. (5.76)

Given a measure µ in the pixel space X (which will typically be Lebesgue measure),
define the symmetric difference of the α−level sets as

G(u, v;α) = µ([u]α∆[v]α). (5.77)

Now let ν be a measure over the greyscale range Rg and define

g(u, v; ν) =

∫
Rg

G(u, v;α)dν(α) (5.78)

In other words, integrate the ν-measures of the symmetric difference of the α-level
sets over Rg. An application of Fubini’s theorem (details in [27]) allows g(u, v; ν) to be
expressed as an integration over subsets of the pixel space X. In the special case that the
µ-measure is Lebesgue (uniform) measure mg on X,

g(u, v; ν) =

∫
Xu

ν(u(x), v(x))dx+

∫
Xu

ν(v(x), u(x))dx (5.79)

where

Xu = {x ∈ X, u(x) < v(x)}, Xv = {x ∈ X, v(x) < u(x)}. (5.80)

Eq. (5.79) is simpler than the general result presented in Eq. (20) in [27] since we
are using Lebesgue measure. g(u, v;mg) is a pseudometric on the space of nonnegative L1

functions on X. In the case that ν = mg, the uniform Lebesgue measure on Rg,

mg(u(x), v(x)] = v(x)− u(x), mg(v(x), u(x)] = u(x)− v(x), (5.81)

and we obtain another form of Eq. (5.79),

g(u, v;mg) =

∫
X

|u(x)− v(x)|dx = ‖u− v‖1, ‘ (5.82)
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which is the L1 distance between u and v.

At the time of writing the article, the authors of [27] did not know about the Weber’s
model of perception but they wrote:

“In principle, the measure ν may be used to define various types of grey scales, e.g.,
(i) quantized grey levels, where ν consists of a finite set of Dirac measures, (ii) nonuniform
distributions which model the varying sensitivities of the human due to different regions
of the grey level spectrum.”

In this work, we are interested in finding a measure ν that will accommodate the
Weber’s model of perception. It seems reasonable to assume that this measure will behave
continuously with respect to the greyscale (or intensity) level. As such, we shall assume
that it can be defined in terms of a density function ρ(x), i.e., dv = ρ(x) such that the
ν-measure of the interval [a, b] ⊂ Rg is given by

ν([a, b]) =

∫ b

a

dν =

∫ b

a

ρ(t)dt (5.83)

In order to accommodate the Weber’s model of perception, such a density function
should decrease with t, i.e., lesser weight is assigned to higher intensities.

Suppose that t1 and t2, both positive, are two (background) greyscale intensities. Using
the Weber’s model of perception, the minimum perceived change in intensities, ∆t1 and
∆t2, obey the relationship,

∆t1
t1

=
∆t2
t2

= C =⇒ ∆t1 = Ct1 and ∆t2 = Ct2. (5.84)

Figure 5.4.1 shows this relationship graphically in terms of the density function ρ(t).
The area of region A is

∫ t1+∆t1

t1

ρ(t)dt = ν([t1, t1 + ∆t1]), (5.85)

the ν-measure of the interval [t1, t1 + ∆t1]. Likewise, the area of region B is

∫ t2+∆t2

t2

ρ(t)dt = ν([t2, t2 + ∆t2]), (5.86)
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Figure 5.1: Graphical representation of minimum perceived changes in intensities, ∆t1,∆t2 obeying
the Weber’s model of perception

We now assume that the area of region A represents a kind of “visual accumulation”
of intensity level that contributes to perception. Our goal is to incorporate Weber’s law of
perception: the area of region A represents the maximum accumulation of intensity levels
before a change from level t1 is perceived. Furthermore, if Weber’s law is accommodated,
then we propose that

area of A = area of B (5.87)

Theorem 5.4.3. The unique density function that satisfies Eq. (5.87) is given by ρ(t) =
1/t.

Proof. For ∆t1 and ∆t2 given in Eq. (5.84), we have

∫ t1+Ct1

t1

ρ(t)dt =

∫ t2+Ct2

t2

ρ(t)dt. (5.88)

Letting ρ(t) = 1/t in Eq. (5.88) gives
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LHS:

∫ t1+Ct1

t1

1

t
dt = ln(t1 + Ct1)− ln t1 = ln(1 + C) (5.89)

RHS:

∫ t2+Ct2

t2

1

t
dt = ln(t2 + Ct2)− ln t2 = ln(1 + C). (5.90)

Thus, ρt = 1
t

satisfies Eq. (5.87).

We now show that the density function given by ρ(t) = 1
t

is the unique solution of Eq.
(5.87).

Let F (t) be the antiderivative of ρ(t). Using Eq. (5.88), we have:

F (t1 + Ct1)− F (t1) = F (t2 + Ct2)− F (t2) (5.91)

=⇒ F (t1 + Ct1)− F (t2 + Ct2) = F (t2)− F (t1). (5.92)

Upon dividing by t1− t2, multiplying by 1
1+C

and taking the limit as t2 7→ t1, we obtain:

F ′((1 + C)t1) =
F ′(t1)

1 + C
. (5.93)

But F ′(t) = ρ(t),

=⇒ ρ((1 + C)t1) =
ρ(t1)

1 + C
(5.94)

Let K = 1 + C.

=⇒ ρ(Kt) =
ρ(t)

K
(5.95)

Assume there exists another solution of the form

ρ(t) =
1

t
· v(t) (5.96)

Substituting into Eq. (5.96) gives
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ρ(Kt) =
1

K

v(Kt)

t
=

1

K

v(t)

t
, t 6= 0 (5.97)

=⇒ v(Kt) = v(t). (5.98)

This means that v(t) is a homogeneous function of degree 0. Thus Euler’s homogeneous
function (see Appendix A) theorem applies and

pv(t) = v′(t)t, (5.99)

where p is the homogeneity degree. Since p = 0, we obtain

=⇒ v′(t)t = 0,∀t. (5.100)

=⇒ v′(t) = 0 since t > 0. (5.101)

Thus v(t) must be a constant.

We conclude that ρ(t) = 1
t

is the unique solution to Eq. (5.88).

Using the measure ν with ρ = 1
t

as the density function, the distance between u and v
in Eq. (5.79) becomes

D(u, v; ν) =

∫
Xu

[∫ v(x)

u(x)

1

t

]
dx+

∫
Xv

[∫ u(x)

v(x)

1

t

]
dx =

∫
X

| lnu(x)− ln v(x)|dx, (5.102)

the logarithmic L1 distance between u and v. The above discussion hopefully convinces
the reader that logarithms provide a natural representation for Weber’s model. From the
above result, all other logarithmic Lp distances may be viewed as generalizations. The
above result was published in [42].
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5.4.2 Logarithmic L2 distance

Looking back at the weighted L2 metrics in Eqs. (5.20) and (5.21), we see that their
accommodation of Weber’s model of perception comes from the fact that their integrands
involve ratios of the signals/images u and v. A ratio between functions can also be achieved
if we consider their logarithms. Taking the logarithm of a signal has been used in image
enhancement and is the basis of homomorphic filtering [66]. In our work, however, we are
considering logarithms of images for the purpose of image approximation as opposed to
image enhancement.

Given two signals u, v ∈ F , define U = log u and V = log v, i.e.,

U(x) = log u(x), V (x) = log v(x), x ∈ [a, b]. (5.103)

Note that log represents any base for the logarithm.

Recall from the definition of the space F that

logL ≤ U(x), V (x) ≤ logM . (5.104)

The usual L2 distance between U and V is

d2(U, V ) =

[∫ b

a

[U(x)− V (x)]2 dx

]1/2

<∞ . (5.105)

Now we define a “Logarithmic L2 distance” between u and v, i.e.,

dlog(u, v) = d2(U, V ) = d2(log u, log v). (5.106)

It is easy to see that dlog is a metric on F . First, dlog(u, v) is clearly ≥ 0. Also, dlog(u, v) =
0 ⇐⇒ u = v we are using the L2 metric on the logarithms functions, which is continuous
and 1−1. It is also easy to see that dlog(u, v) is symmetric. Let us return to the Logarithmic
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L2 distance between u and v in Eq. (5.106):

dlog(u, v) = d2(log u, log v)

=

[∫ b

a

[log u(x)− log v(x)]2 dx

]1/2

=

[∫ b

a

[
log

u(x)

v(x)

]2

dx

]1/2

=

[∫ b

a

[
log

v(x)

u(x)

]2

dx

]1/2

. (5.107)

In order to verify the triangle inequality, we first define the space

G = {f : [a, b]→ [logL, logM ] }. (5.108)

Then for u ∈ F it follows that U = log u ∈ G. Furthermore, for any U ∈ G, the function

u(x) = eU(x) ∀x ∈ [a, b], (5.109)

which we shall denote as u = eU , is an element of F .

For any u, v, w ∈ F , we let U = log u, V = log v and W = logw. Then

dlog(u, v) = d2(U, V )

≤ d2(U,W ) + d2(W,V )

= dlog(u,w) + dlog(w, v) . (5.110)

As before, let u(x) = A be the reference signal and v(x) = A + ε an approximation to
it. Then

dlog(u, v) =

[∫ b

a

[
log

A+ ε

A

]2

dx

]1/2

=

[∫ b

a

[
log
(

1 +
ε

A

)]2

dx

]1/2

=
√
b− a log

(
1 +

ε

A

)
. (5.111)
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As before, if the ratio ε/A is kept constant, then the distance dlog(u, v) is constant, in
accordance with the Weber model of perception, Eq. (5.1).

In the case that the ratio ε/A is very small, then

log
(

1 +
ε

A

)
≈ ε

A
, (5.112)

so that
dlog(u, v) ≈ ∆(u, v) , (5.113)

the “Weberized” L2 distance in Eq. (5.73).

Finally, it is also worthwhile to consider the effect of taking the logarithm of a signal.
If U = log u, then high values of u are “dampened.” It is probably convenient to assume
that the lower bound L of our signals is greater or equal to 1. Otherwise, the logarithm
produces a “stretching” of the graph of u(x) in the negative direction for values of u(x)
between 0 and 1.

5.4.3 Approximation in Logarithmic L2 distance

We now consider the use of the Logarithmic L2 distance to approximate a u ∈ F .

As before, we let {φk}∞k=1 denote a complete orthonormal basis for the Hilbert space of
functions L2[a, b] which will therefore serve as a basis for our signals F ⊂ L2[a, b]. If we
consider the following approximation to u,

u ≈ uN =
N∑
k=1

ckφk, (5.114)

then the squared approximation error in the dlog metric is given by

dlog(u, uN)2 =

∫ b

a

[
log u(x)− log

N∑
k=1

ckφk(x)

]2

dx. (5.115)

Setting aside possible complications (e.g., the sum in the above equation assuming negative
values at some x ∈ [a, b]), the equations resulting from the stationarity conditions,

∂dlog(u, uN)2

∂cp
= 0, 1 ≤ p ≤ N , (5.116)
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are extremely complicated in form, i.e.,∫ b

a

[
log u(x)− log

N∑
k=1

ckφk(x)

]
φp(x)∑N

k=1 ckφk(x)
dx = 0. (5.117)

These equations are certainly not linear in the unknown coefficients ck and the problem
becomes more complex than solving the simple system of equations as in the “Weberized”
L2 case. An enormous simplification occurs if we consider the approximation of the Loga-
rithmic function U = log u, i.e., removing the logarithms from the approximated function.
We then seek to approximate U ∈ G ⊂ L2[a, b] as follows,

U ≈ UN =
N∑
k=1

akφk, (5.118)

by minimizing the squared L2 distance

d2(U,UN) =

∫ b

a

[
U(x)−

N∑
k=1

akφk(x)

]2

dx. (5.119)

The solution to this problem is well known. It is the usual squared L2 distance and it is
minimized by the standard Fourier coefficients of U in the φk basis, i.e.,

ak = 〈U, φk〉 =

∫ b

a

U(x)φk(x) dx. (5.120)

The sequence of functions UN will converge to U in L2 metric, i.e.,

lim
N→∞

d2(U,UN) = 0, (5.121)

which we shall write as
lim
N→∞

UN = U. (5.122)

The functions UN are then used to provide approximations to u = eU as follows,

u(x) ≈ uN := exp(UN) = exp

(
N∑
k=1

akφk

)
. (5.123)
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Because of the continuity of the exponential function, it follows that

lim
N→∞

uN = lim
N→∞

exp (UN)

= exp
(

lim
N→∞

UN

)
= exp (U)

= u. (5.124)

It is interesting to consider the expressions for the approximations uN(x) in “x-space”:

uN(x) = exp

(
N∑
k=1

akφk(x)

)
= ea1φ1(x)ea2φ2(x) · · · eaNφN (x)

=
[
eφ1(x)

]a1 [
eφ2(x)

]a2 · · · [eφN (x)
]aN

. (5.125)

The last line may also be expressed as follows,

uN(x) = [ea1 ]φ1(x) [ea2 ]φ2(x) · · · [eaN ]φN (x) . (5.126)

This provides several ways of computing these approximations.

In summary, the Logarithmic L2 approximation method is much less computationally
expensive that the “Weberized” L2 approach. First, the Fourier coefficients of the logarithm
of the signal are computed, which is the usual procedure in the L2 approximation. Second
the obtained approximation needs to be exponentiated in order to obtain approximation
uN of the function. Moreover, there are no systems of equations to be solved. In the
next Chapter, we will see that approximations yielded by the Logarithmic L2 method are
generally slightly better than their “Weberized” L2 counterparts.

5.5 Best approximation of functions

Let us now return to the scenario of Section 5.1, where {φk}∞k=1 denoted a complete or-
thonormal basis for L2[a, b]. Given a target signal/image u ∈ F , we consider approxima-
tions of the form

u ≈ uN =
∑
k=1

ckφk (5.127)
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Once again, the best L2-approximation is obtained when

ck = 〈u, φk〉, 1 ≤ k ≤ N. (5.128)

From the completeness of the φk-basis, it follows that for this choice of coefficients ck,

d2(u, uN)→ 0 as N →∞. (5.129)

From (5.34), this implies that the distance between uN and u in terms of the “Weberized”
L2 metric DW also goes to zero, i.e.,

DW (u, uN)→ 0 as N →∞. (5.130)

Recall from Eq. (5.121) that in the Logarithmic L2 approximation

D2(U,UN)→ 0 as N →∞. (5.131)

where U = log u and UN ≈
∑N

k=1 ckφk.

In other words, in the limit N →∞, the best L2 approximation to u converges to the
best “Weberized” L2 and the best log L2 approximation to u. One may then well ask, “So
why even consider the “Weberized” L2 and Log L2 approaches?” The answer is that we
are primarily interested in the finite-dimensional approximations u ≈ uN .

This will also be the situation in the finite-dimensional case, i.e., when u is a digitized
signal, i.e., u ∈ RM . In this case, the orthonormal basis is composed of M functions
{φk}Mk=1, and perfect reconstruction is attained when N = M , i.e., u = uM . The best L2,
the best “Weberized” L2 and the best logarithmic L2 approximations coincide. Again, one
may ask, “So why even consider the other approaches?” And once again, the answer is
that we are primarily interested in the lower-dimensional approximations to u, i.e., u ≈ uN
for N < M .
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5.5.1 Best constant approximation using the “Weberized” L2

method

The first is to consider the “best constant approximation” of a function u(x) on [a, b], i.e.,

u(x) ≈ C, x ∈ [a, b]. (5.132)

It is well known that the best L2 approximation to u(x), i.e., the value of C which minimizes
the distance d2(u,C) is given by the mean value of u(x) over [a, b], i.e.,

CL2 = ū =
1

b− a

∫ b

a

u(x) dx. (5.133)

Our goal is to find the best “Weberized” L2 constant approximation.

In this case, the “Weberized” L2 error DW (u,C) will be determined by the two (un-
symmetric and squared) distance functions

D1(C) = (∆(u,C))2 =

∫ b

a

[
C

u(x)
− 1

]2

dx,

D2(C) = (∆(C, u))2 =

∫ b

a

[
u(x)

C
− 1

]2

dx. (5.134)

Proceeding in the usual way, we will impose the following stationarity condition,

∂DW

∂C
= 0. (5.135)

For the moment, we do not assume a particular form for DW (u,C) in terms of D1 and D2

and simply compute the necessary partial derivatives of D1 and D2,

∂D1

∂C
= 2

∫ b

a

[
C

u(x)
− 1

]
1

u(x)
dx

= 2C

∫ b

a

1

u(x)2
dx− 2

∫ b

a

1

u(x)
dx (5.136)
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and

∂D2

∂C
= −2

∫ b

a

[
u(x)

C
− 1

]
u(x)

C2
dx

= − 2

C3

∫ b

a

u(x)2 dx+
2

C2

∫ b

a

u(x) dx. (5.137)

Let us now proceed by computing the critical points of D1 and D2:

1. From (5.136), D1 has a critical point at

C = C1 =

∫ b
a

1
u(x)

dx∫ b
a

1
u(x)2

dx
. (5.138)

2. From (5.137), D2 has a critical point at

C = C2 =

∫ b
a
u(x)2 dx∫ b

a
u(x) dx

. (5.139)

In order to determine the natures of these critical points, we examine the second derivatives
of D1 and D2. First, note that

∂2D1

∂C2
= 2

∫ b

a

1

u(x)2
dx > 0, (5.140)

for all feasible values of C implying that C = C1 is a global minimum of D1 on [L,M ].
(D1 is a positive quadratic form on [L,M ].)

Regarding D2, we find that

∂2D2

∂C2
(C) =

6

C4

∫ b

a

u(x)2 dx− 4

C3

∫ b

a

u(x) dx. (5.141)

A little algebra shows that

∂2D2

∂C2
(C2) =

2

C3
2

∫ b

a

u(x) dx > 0, (5.142)

which implies that C = C2 is a local minimum of D2 on [L,M ].
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It remains to evaluate D1 and D2 at their respective critical points:

D1(C1) = C2
1

∫ b

a

1

u(x)2
dx− 2C1

∫ b

a

1

u(x)
dx+

∫ b

a

dx

= (b− a)−
(
∫ b
a

1
u(x)

dx)2∫ b
a

1
u(x)2

dx
(5.143)

and

D2(C2) =
1

C2
2

∫ b

a

u(x)2 dx− 2

C2

∫ b

a

u(x)dx+

∫ b

a

dx

= (b− a)−
(
∫ b
a
u(x)dx)2∫ b

a
u(x)2dx

. (5.144)

If we now wish to consider only D1(C) = ∆(u,C) as the error in approximating u(x)
with a constant C, then our problem is solved – the best “Weberized” L2 approximation
is

u(x) = C1 =

∫ b
a

1
u(x)

dx∫ b
a

1
u(x)2

dx
. (5.145)

The error associated with this approximation is

∆(u,C1) = [D1(C1)]1/2 =

[
(b− a)−

(
∫ b
a

1
u(x)

dx)2∫ b
a

1
u(x)2

dx

]1/2

. (5.146)

It would be interesting to compare the best L2 and best “Weberized” L2 constant
approximations for various functions, recalling that the latter would try to accomodate
better the portions of the function u(x) with lower magnitudes. In fact, consider the step
function,

u(x) =

{
1, 0 ≤ x ≤ 0.5
3, 0.5 < x ≤ 1.

(5.147)

First, we prove a claim involving mean values and the best “Weberized” L2 approxi-
mation of the step function u(x).

Claim 5.5.1. The best “Weberized” L2 constant approximation is lower than the mean
value of u(x) over [0, 1], namely, ū = 2.
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Proof. From Eq. (5.145), the best “Weberized” L2 constant approximation of u(x) is given
by

u(x) = C1 =

∫ 0

−1
1 dx+

∫ 1

0
1
3
dx∫ 0

−1
1 dx+

∫ 1

0
1
9
dx

=
1 + 1

3

1 + 1
9

=
3

2
< 2, (5.148)

In fact, we can show that this is true in general:

Theorem 5.5.2. For C1 in Eq. (5.145),

C1 ≤ ū =
1

b− a

∫ b

a

u(x) dx. (5.149)

Proof. We employ the Cauchy-Schwartz inequality,∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣ ≤ [∫ b

a

f(x)2 dx

]1/2 [∫ b

a

g(x)2 dx

]1/2

, (5.150)

where all of the integrals are assumed to exist. In our case, f(x), g(x) > 0 so that the
absolute values on the left can be removed. For f(x) = 1 and g(x) = 1/u(x), we have∫ b

a

1

u(x)
dx ≤

[∫ b

a

1 dx

]1/2 [∫ b

a

1

u(x)2
dx

]1/2

=
√
b− a

[∫ b

a

1

u(x)2
dx

]1/2

. (5.151)

For f(x) = g(x) =
√
u(x), we have

b− a =

∫ b

a

1 dx ≤
[∫ b

a

u(x) dx

]1/2 [∫ b

a

1

u(x)
dx

]1/2

. (5.152)
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From Eq. (5.151), [∫ b

a

1

u(x)
dx

]2 [∫ b

a

1

u(x)2
dx

]−1

≤ b− a. (5.153)

From Eq. (5.152),

(b− a)2 ≤
[∫ b

a

u(x) dx

] [∫ b

a

1

u(x)
dx

]
. (5.154)

From (5.153) and (5.154), along with the fact that 0 < a ≤ b and 0 < c ≤ d implies
ac ≤ bd, we have

(b− a)2

[∫ b

a

1

u(x)
dx

]2 [∫ b

a

1

u(x)2
dx

]−1

≤ (b− a)

[∫ b

a

u(x) dx

] [∫ b

a

1

u(x)
dx

]
. (5.155)

Therefore, [∫ b

a

1

u(x)
dx

] [∫ b

a

1

u(x)2
dx

]−1

≤ 1

b− a

[∫ b

a

u(x) dx

]
, (5.156)

which proves the desired result.

5.5.2 Best affine approximation using the “Weberized” L2

method

We now consider the “best affine approximation” of a reference function u(x) on [a, b], i.e.,

u(x) ≈ uab(x) = cx+ d, x ∈ [a, b]. (5.157)

As is well known, the minimization of the L2 distance d2(u, uab) yields a system of linear
equations in the unknowns a and b - the so-called method of least squares.

To find the best “Weberized” L2 affine approximation, we shall continue with the
approach of the previous section and minimize the (squared) distance function

D1(a, b) = ∆(u, uab) =

∫ b

a

[
cx+ d

u(x)
− 1

]2

dx. (5.158)

Instead of deriving the linear system of equations in a and b for the above problem, we
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will consider the following general squared weighted L2 distance given in Section 1,

W 2 =

∫ b

a

g(x) [u(x)− cx− d]2 dx. (5.159)

In this way, we can quickly construct the systems of equations for both “Weberized” L2,
where g(x) = 1/u(x)2, and standard L2, where g(x) = 1. We impose the stationarity
conditions,

∂W 2

∂a
= −2

∫ b

a

g(x)[u(x)− cx− d]x dx = 0

∂W 2

∂a
= −2

∫ b

a

g(x)[u(x)− cx− d] dx = 0, (5.160)

to arrive at the following linear system of equations in a and b,[∫ b

a

x2g(x) dx

]
c+

[∫ b

a

xg(x) dx

]
d =

∫ b

a

xg(x)u(x) dx[∫ b

a

xg(x) dx

]
c+

[∫ b

a

g(x) dx

]
d =

∫ b

a

g(x)u(x) dx. (5.161)

Case 1: Standard L2 (“least squares”) best affine approximation, g(x) = 1[∫ b

a

x2 dx

]
c+

[∫ b

a

x dx

]
d =

∫ b

a

xu(x) dx[∫ b

a

x dx

]
c+

[∫ b

a

dx

]
d =

∫ b

a

u(x) dx. (5.162)

Case 2: “Weberized” L2 (“weighted least squares”) best affine approximation,
g(x) = 1/u(x)2 [∫ b

a

x2

u(x)2
dx

]
c+

[∫ b

a

x

u(x)2
dx

]
d =

∫ b

a

x

u(x)
dx[∫ b

a

x

u(x)2
dx

]
c+

[∫ b

a

1

u(x)2
dx

]
d =

∫ b

a

1

u(x)
dx. (5.163)

Some examples:
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1. Let [a, b] = [0, 1] and u(x) = 5x + 1. Since u(x) is affine, we should obtain it as its
best approximation in both cases.

(a) Case 1: Standard L2 “least squares” approximation. After some computation,
the linear system of equations in (5.162) is found to be

1

3
c+

1

2
d =

13

6
1

2
c+ d =

7

2
(5.164)

The determinant of this system is D =
1

12
and the solution is c = 5 and d = 1,

as expected.

(b) Case 2: “Weberized” L2 approximation. After some computation (with the
help of MAPLE), the linear system of equations in (5.162) is found to be

a11c+ a12d = b1

a21c+ a22d = b2, (5.165)

where

a11 =
7

150
− 2

125
ln 2− 2

125
ln 3, a12 = a12 = − 1

30
+

1

25
ln 2+

1

25
ln 3, a22 =

1

6
,

(5.166)
and

b1 =
1

5
− 1

25
ln 2− 1

25
ln 3, b2 =

1

5
ln 2 +

1

5
ln 3. (5.167)

Computation with MAPLE yields the apparently miraculous result that c = 5
and d = 1.

2. Let [a, b] = [0, 1] and u(x) = x2 + 1.

(a) Case 1: Standard L2 “least squares” approximation. The coefficients aij of
the linear system are identical to those of Case 1 in the previous example. The
coefficients bj are found to be

b1 =
3

4
, b2 =

4

3
. (5.168)
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The solution to the linear system is c = 1 and d =
5

6
. Thus the best L2 affine

approximation to u(x) = x2 + 1 is

v(x) = x2 +
5

6
≈ x+ 0.833. (5.169)

(b) Case 2: “Weberized” L2 approximation. After some computation (with the
help of MAPLE), the coefficients of the the linear system of equations in (5.162)
are found to be

a11 = −1

4
+

1

8
π, a12 =

1

4
, a21 = a12, a22 =

1

4
+

1

8
π, (5.170)

and

b1 =
1

2
ln 2, b2 =

1

4
π. (5.171)

The determinant of this system is D = −1

8
+

1

64
π2. The solution to the linear

system is

b1 =
4(π ln 2 + 2 ln 2− π)

−8 + π2
≈ 0.904

b2 = −2(4 ln 2 + 2π − π2)

−8 + π2
≈ 0.871. (5.172)

Thus the best “Weberized” L2 affine approximation to u(x) = x2 + 1 is

w(x) ≈ 0.904x+ 0.871. (5.173)

In Figure 5.5.2 are presented plots of (i) the reference function u(x) = x2 +1 (solid), (ii)
the best L2 affine approximation v(x) = x+ 0.833 (dot) and (iii) the best “Weberized” L2

affine approximation w(x) = 0.904x+0.871 (dash). Note that the graph of the “Weberized”
L2 approximation w(x) has a slightly lesser slope than that of the best L2 approximation
v(x). As such, w(x) provides a better approximation to u(x) than v(x) for values of x near
0, where u(x) assumes its lowest values. And v(x) provides a better approximation to u(x)
for values of x near 1, where u(x) assumes its highest values. This relative behaviour of
w(x) and v(x) is consistent with the “Weberized” L2 approach.
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Figure 5.2: Plots of the reference function u(x) = x2 + 1 (solid), the best L2 affine ap-
proximation v(x) = x + 0.833 (dot) and the best “Weberized” L2 affine approximation
w(x) = 0.904x+ 0.871 (dash).

5.5.3 Best constant approximation using the Logarithmic L2

method

We wish to find the best Logarithmic L2 constant approximation. i.e.:

Dlog(C) =

∫ b

a

(log u(x)− C)2dx =

∫ b

a

(log2 u(x)− 2C log u(x) + C2)dx. (5.174)

We set
∂Dlog

∂C
= 0. (5.175)

∂Dlog

∂C
= 2

∫ b

a

log u(x)dx+ C(b− a) = 0. (5.176)

We obtain
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C =
1

b− a

∫ b

a

log u(x)dx. (5.177)

The second derivatives reveal the nature of this critical point.

∂2Dlog

∂C2
= 2(b− a) > 0,∀C. (5.178)

Thus, C is a local minimum of Dlog on [L,M ].

The value of Dlog at the critical point C is:

Dlog(C) =

∫ b

a

(
log u(x)−

[
1

b− a

∫ b

a

log u(x)dx

])2

dx. (5.179)

Once again, we return the the step function:

u(x) =

{
1, 0 ≤ x ≤ 0.5
3, 0.5 < x ≤ 1.

(5.180)

As in the “Weberized” L2 constant approximation case, we prove a theorem involving
the mean value of Logarithmic L2 approximation of the step function.

Claim 5.5.3. The best Logarithmic L2 approximation is lower than the mean value of u(x)
over [0, 1], namely, ū = 2.

Proof. From Eq. (5.123) , the best Logarithmic L2 constant approximation of u(x) is given
by

u(x) = eC = e
1

b−a

∫ b
a log u(x)dx

= e
log3
2

=
√

3

= ≈ 1.732

< 2. (5.181)
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Theorem 5.5.4. For C in Eq. (5.177),

eC ≤ ū =
1

b− a

∫ b

a

u(x) dx. (5.182)

Proof. We will employ the Jensen’s inequality for concave functions,

φ

(∫ b

a

f(x) dx

)
≥ 1

b− a

∫ b

a

φ((b− a)f(x)) dx (5.183)

where f(x) is a non-negative real valued function, φ is a concave function on the real line
and all of the integrals are assumed to exist.

Using the Jensen’s inequality, we obtain:

eC = e
1

b−a

∫ b
a log u(x)dx

≤ e
1

b−a
log

∫ b
a u(x)dx

=
1

b− a

∫ b

a

u(x)dx

which finishes the proof.

5.5.4 Best affine approximation using the Logarithmic L2

method

Here, we consider the “best affine approximation” using the Logarithmic L2 method. Given
a function u(x) on [a, b]

u(x) ≈ ucd(x) = cx+ d, x ∈ [a, b]. (5.184)

In order to find the “best affine approximation” using the Logarithmic L2 method, we
will proceed as in the previous sections, with minimizing the squared distance function:

D2
log(c, d) =

∫ b

a

[log(u(x))− (cx+ d)]2 dx (5.185)

After differentiation, we obtain a system of two equations in two unknowns c and d:
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∂D2

∂c
= 2

∫ b

a

(log(u(x))− (cx+ d))x dx = 0

∂D2

∂d
= 2

∫ b

a

(log(u(x))− (cx+ d)) dx = 0, (5.186)

Then,

∫ b

a

x log(u(x))dx =

∫ b

a

(cx+ d)x dx∫ b

a

log(u(x))dx =

∫ b

a

(cx+ d) dx. (5.187)

Example: Let [a, b] = [0, 1], u(x) = 3x + 1 and the base of log equal to e. The “best
affine approximation” to u(x) using the Logarithmic L2 method can be obtained by using
Eq. (5.187).

∫ 1

0

x ln(u(x))dx =

∫ 1

0

(cx+ d)x dx∫ 1

0

ln(u(x))dx =

∫ 1

0

(cx+ d) dx. (5.188)

The integrals involving the ln functions have been solved using common formulas from
tables of integrals:∫

x ln(sx+ t)dx =
tx

2s
− 1

4
x2 +

1

2
(x2 − t2

s2
) ln(sx+ t)∫

ln(sx+ t)dx = (x+
t

s
) ln(sx+ t)− x, s 6= 0. (5.189)

After a few steps, we arrive at the following system of equations:
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Figure 5.3: Plots of the function 3x+ 1 (dash) and best affine Logarithmic L2 approximation to 3x+ 1
(solid).

1

3
c+

1

2
d = − 1

12
+

4

9
ln 4

1

2
c+ d = −1 +

4

3
ln 4 (5.190)

Using MATLAB, we obtain: c = 1.3032 and d = 0.1968. Thus, exp (1.3032x+ 0.1968) is
the best affine Logarithmic L2 fit to the function 3x+ 1.

Perhaps it would be more meaningful to compute the “proper” best Logarithmic L2

approximation by minimizing the squared logarithmic L2 distance from Eq. (5.106), i.e.

dlog(u, cx+ d) = d2(log u, log(cx+ d)). (5.191)

148



We impose the stationarity conditions,

∂d2
log(u, cx+ d)

∂c
= 0,

∂d2
log(u, cx+ d)

∂d
= 0, (5.192)

and arrive at the following set of equations in the unknowns c and d:

∫ b

a

x log(u(x))

cx+ d
dx =

∫ b

a

x log(cx+ d)

cx+ d
dx∫ b

a

log(u(x))

cx+ d
dx =

∫ b

a

log(cx+ d)

cx+ d
dx (5.193)

The above equations seem a lot more complicated than Eq. (5.187). However, in this
case we are approximating the function u(x) with the affine function cx+ d.

Finding the best affine approximation is closely related to our previous discussions. In
this case, the orthogonal basis that is discussed throughout the document, φk, has been
replaced by two functions “1” and “x” which, of course, are not orthogonal but only linearly
independent.
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Chapter 6

Implementations of the “Weberized”
L2 and Logarithmic L2 approximation
methods

This chapter presents implementations of the intensity weighted function approximation
methods presented in the previous chapter. We first illustrate the effect of the “Weberized”
L2 and Logarithmic L2 by approximating the step function and standard test images.
MATLAB code used to compute the approximations is included in Appendix B.

6.1 Approximating the step function using “Weber-

ized” L2 and Logarithmic L2

We wish to approximate the step function using three methods discussed in the previous
chapter: The usual L2, “Weberized” L2 and Logarithmic L2 approaches. Let

u(x) =

{
1, 0 ≤ x ≤ 0.5
3, 0.5 < x ≤ 1,

(6.1)

and the orthonormal basis on L2[0, 1], given by

φ0(x) = 1, φk(x) =
√

2 cos(kπx), k ≥ 1. (6.2)
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For a given N > 0, we compute the best L2 and best “Weberized” L2 approximations
obtained by minimizing ∆2

N and WN
2 in Eqs. (5.5) and (5.7), respectively, using the above

cosine basis functions φk, 0 ≤ k ≤ N−1. We expect that the “Weberized” approximations
will provide better fits to u(x) on its left piece. We analyze the approximations using three
different number of basis functions for each method.

Case 1: Number of basis functions: N = 1

This corresponds to the best constant fit of u(x) over [0, 1]. The best L2 approximation
is straightforward and can be easily computed:

c1 = 〈u, φ0〉 = 2, ⇒ u1(x) = 2, (6.3)

the mean of u(x) over [0, 1].

The best “Weberized” L2 approximation can be found analytically from Eq. (5.12):

c1

[∫ 1/2

0

1 dx+

∫ 1

1/2

1

9
dx

]
=

[∫ 1/2

0

1 dx+

∫ 1

1/2

1

9
3 dx

]
, (6.4)

which implies that

c1 =
6

5
= 1.2, ⇒ u1,W (x) = 1.2. (6.5)

The “Weberized” best constant fit is lower than the mean value of u(x) in order to better
approximate the lower value u(x) = 1 over [0, 1/2].

The best Logarithmic L2 approximation is computed analytically:

c1 = 〈log u(x), φ0〉 =
log 1

2
+

log 3

2
= 0.55 (6.6)

u1,logL2 (x) = exp (c1φ0) = 1.73. (6.7)

The Logarithmic L2 best constant fit is lower than the mean value of u(x). As in the
“Weberized” L2 case (although the “Weberized” L2 methods gives even lower best constant
fit), the Logarithmic L2 method better approximates the lower value u(x) = 1 over [0, 1/2].

Cases 2 and 3: Number of basis functions: N = 5, 20

Figure 6.1 shows the best L2, the best “Weberized” L2 and the best Logarithmic L2

approximations to u(x) using N -function orthonormal basis sets {φ0, · · · , φN−1} for the
two cases N = 5 (left) and N = 20 (right). All computations were performed using
MATLAB with a grid of 1000 points on [0, 1] to approximate the integrations. In each
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case, as expected, the best “Weberized” L2 and the best Logarithmic L2 approximations
perform a slightly better fit of u(x) on the subinterval 0 ≤ x ≤ 0.5 as compared to the
best L2 fit. On the other hand, the “Weberized” L2 and Logarithmic L2 approximations
will not perform as well as the best L2 fit on the subinterval 0.5 ≤ x ≤ 1.

We now examine the L2, “Weberized” L2 error and SSIM index of these approximations.
Tables 6.1 and 6.2 present these numerical measures.

N=5 MSE “Weberized” L2 error SSIM

L2 approx. 0.099 0.055 0.948
“Weberized” L2 approx. 0.122 0.027 0.937

Log L2 approx. 0.107 − 0.944

Table 6.1: Quality assessment using MSE, “Weberized” L2 error and SSIM (with N=5 basis functions)

N=20 MSE “Weberized” L2 error SSIM

L2 approx. 0.020 0.0112 0.990
“Weberized” L2 approx. 0.024 0.007 0.988.

Log L2 approx. 0.22 − 0.989

Table 6.2: Quality assessment using MSE, “Weberized” L2 error and SSIM (with N=20 basis functions)

As expected, in both cases, the best L2 approximation yields the lower L2 error. How-
ever, what may be somewhat surprising is that the SSIM values for the best L2 approxi-
mations are better than those for the “Weberized” L2 and Logarithmic L2 approximations.
After all, SSIM is also formulated to accomodate Weber’s model of perception. In order to
see this connection, we take a closer look at one of the components of the SSIM function,
the luminance function

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

, (note:− 1 ≤ l(f, g) ≤ 1). (6.8)

Assume that f is fixed and g is an approximation to f . Then l(f, g) can be written as
follows,

l(f, g) =
2(µg

µf
) + C ′1

1 + (µg
µf

)2 + C ′1
.

This expression of l(f, g) shows a dependence on ratio µg
µf

, in accordance with the Weber

model. However, the factor l(x, y) measures the discrepancy between the mean values of
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Figure 6.1: L2, “Weberized” L2 and Logarithmic L2 approximations of the step function using N = 5
(top) and N = 20 (bottom) basis functions.
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x and y. With this in mind, we can explain the poorer behaviour of the “Weberized” L2

method:

1. In the case of the best L2 approximation uN always has the same mean value as the
function u it is approximating.

2. The above is not necessarily true for the “Weberized” L2 and the Logarithmic L2

approximations.

This motivates a reformulation of the “Weberized” L2 method, in which the mean of
the approximation is guaranteed to be the mean of the function u being approximated.
This reformulation was discussed in the previous chapter, Section 5.3.1.

The “Weberized” L2 error was computed for the best L2 and Weberized L2 approxima-
tions. As expected, the “Weberized” L2 approximation has the smallest “Weberized” L2.
We omit the computation of the “Weberized L2 for the Log L2 approximation due to the
latter obtained from a completely different different approach. The use of the “Weberized”
L2 error to compare the Logarithmic L2 approximation with the other methods studied
herein is not well understood.

6.1.1 Comparisons of image approximations using L2, “Weber-
ized” L2 and Logarithmic L2 methods for natural images

This section presents a discussion on the approximation of image functions using the meth-
ods described in Chapter 5. For each image (Lena and Mandrill), 8×8 block approximation
was performed using 2D DCT, the “Weberized” L2 approximation (obtained by minimiz-
ing the “Weberized” L2 error) and the log L2 approximation (minimizing the L2 error of
the logarithm of the signal). Several levels of approximations were used by varying the
number of basis functions, N . The approximated images are shown in Figures 6.1.1, 6.1.1
for Lena, and in Figures 6.1.1, 6.1.1 for Mandril. Quality assessment of each approximation
was performed and it is presented in Tables 6.3, 6.4, 6.5 and 6.6. As expected, the log L2

method performs better than the “Weberized” L2 method according to MSE and the SSIM
index. We also show the quality of the “Weberized” L2 approximation with the matching
of the means method implemented.
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N=5 MSE “Weberized” L2 error SSIM

L2 approx. 91.5667 0.0159 0.9231
Web. L2 approx. 101.3257 0.0115 0.9194

Web. L2 (m. mean) 96.4424 0.0139 0.9214
Log L2 approx. 98.9585 − 0.921

Table 6.3: Quality assessment of approximations of Lena using MSE, “Weberized” L2 error and SSIM
(with 8× 8 size blocks and N = 5 basis functions).

N=20 MSE “Weberized” L2 error SSIM

L2 approx. 16.3766 0.0027 0.9938
Web. L2 approx. 17.2275 0.0023 0.9936

Web. L2 (m. mean) 17.0895 0.0023 0.9936
Log L2 approx. 17.1163 − 0.9937

Table 6.4: Quality assessment of approximations of Lena using MSE, “Weberized” L2 error and SSIM
(with 8× 8 size blocks and N = 20 basis functions).
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Original image

Weberized L2 (block) approximation

Best L2 (block) approximation

Logarithmic L2 (block) approximation

Figure 6.2: Approximations of Lena with N = 5 basis functions. Original size of images: 512 × 512
pixels.
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Original image

Weberized L2 (block) approximation

Best L2 (block) approximation

Logarithmic L2 (block) approximation

Figure 6.3: Approximations of Lena with N = 20 basis functions. Original size of images: 512 × 512
pixels.
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Original image

Weberized L2 (block) approximation

Best L2 (block) approximation

Logarithmic L2 (block) approximation

Figure 6.4: Approximations of Mandrill with N = 5 basis functions. Original size of images: 512× 512
pixels.
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Original image

Weberized L2 (block) approximation

Best L2 (block) approximation

Logarithmic L2 (block) approximation

Figure 6.5: Approximations of Mandrill with N = 20 basis functions. Original size of images: 512× 512
pixels.
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N=5 MSE “Weberized” L2 error SSIM

L2 approx. 254.3766 0.0473 0.8083
Web. L2 approx. 271.8218 0.0252 0.8038

Web. L2 (m. mean) 262.7264 0.0303 0.8081
Log L2 approx. 264.5155 − 0.8050

Table 6.5: Quality assessment of approximations of Mandrill using MSE, “Weberized” L2 error and
SSIM (with 8× 8 size blocks and N=5 basis functions).

N=20 MSE “Weberized” L2 error SSIM

L2 approx. 33.3056 0.0038 0.9935
Web. L2 approx. 34.6701 0.0031 0.9931

Web. L2 (m. mean) 34.4869 0.0032 0.9932
Log L2 approx. 37.1986 − 0.9930

Table 6.6: Quality assessment of approximations of Mandrill using MSE, “Weberized” L2 error and
SSIM (with 8× 8 size blocks and N=20 basis functions).

The above examples illustrate the effect of the “Weberized” approximations. The dif-
ferences are subtle; we do not want to see large differences between the L2 and the other
two approximations as the usual L2 approximation is already very good. We observe that
in darker areas of the images, the “Weberized” L2 and the Logarithmic L2 provide better
results. This is exactly what is expected. We also note from the above quality assessment
tables that the errors do not differ significantly. In the 1 dimensional example of approxi-
mating the step function in the previous section, we have seen more significant difference
of the error among the three methods. Of course, we expect that if we assign more impor-
tance to the low intensity areas then the price that we have to pay is worse approximation
of the high intensity areas. The errors according to the quality assessment presented in
Tables 6.3, 6.4, 6.5, 6.6 remain similar, although we were hoping that “Weberizing” the L2

would result in better SSIM estimates.

In order to visually emphasize the effect of “Weberizing” the L2 approximation, we
used 32× 32 sized blocks with N = 78 with 2 dimensional DCT basis functions, the result
is shown in Figure 6.6. Having larger blocks provides more intensity values to be approxi-
mated and therefore the weighting will have more effect on the approximation. We used 78
basis functions in this approximation to emphasize the difference of the approximations. It
is generally accepted that in the case of L2 approximation the optimal quality is obtained
with the use of 8 × 8 block sizes. Figure 6.7 shows the result of approximating the Lena
image and illustrates the differences between each approximation and the original image
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using N = 43 blocks. In the next section we will illustrate the differences in approximations
using plots of intensities. It is clearly noticeable that in low intensity regions both “We-
berized” methods provide better approximation than the L2 methods. In higher intensity
areas, L2 gives better results. This is again what we expect from weighing the intensities
according to the Weber’s model of perception. The approximations afforded by the Loga-
rithmic L2 method are virtually identical to their “Weberized” L2 counterparts. As such,
they display the same kind of “Weberized ringing” over regions with edges separating high
and low greyscale intensities, with lesser ringing error over the latter regions.

The matching of means variation of the “Weberized” L2 approximation is “pushing”
the approximation towards the L2 approximation. Overall, the differences among the
errors as presented in the above tables are small. Here, the visual effect that we expect
should be somewhere between the L2 and the “Weberized” L2 approximations. However,
the differences are very subtle; difficult to detect. Please refer to 6.8 for an example of
approximation of Lena using this method. A mathematical treatment of the matching of
means procedure for the “Weberized” L2 method was explained in section 5.3.1. Unless
otherwise stated, we will be using the “Weberized” L2 approximation without the matching
of means procedure.

If we consider the “Weberized” L2 error as a measure of quality assessment then we
obviously expect to see the lowest errors for the “Weberized” L2 approximations. The same
analogy applies to the L2 approximation. As discussed above, we would expect that SSIM
provides an objective quality assessment for our approximation since it is conceptually
consistent with the Weber’s model of perception. However, it is strongly related to the
mean value of the function, which is used in the usual L2 approximation. We conclude,
although only based on our empirical observation, that SSIM shows stronger dependence on
the mean value than to weighting the error according to the Weber’s model of perception.

It is somewhat obvious that we should also expect that the more basis functions are
used the smaller the difference between these approximations. This can be seen in the
above tables 6.3, 6.4, 6.5, 6.6.
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Original image

Weberized L2 (block) approximation

Best L2 (block) approximation

Logarithmic L2 (block) approximation

Figure 6.6: Best L2 (top-right), “Weberized” L2 (bottom-left) and Logarithmic L2 (bottom-right) ap-
proximations to Lena image using N = 78 2D DCT basis functions over 32 × 32-pixel blocks comprising
the shoulder region of Lena image (magnified). Original size of images: 512× 512 pixels.
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Best L2 (block) approximation

Weberized L2 (block) approximation

Logarithmic L2 (block) approximation

Best L2 approx. difference map

Weberized L2 approx. difference map

Logarithmic L2 approx. difference map

Figure 6.7: Best L2 (top left), “Weberized” L2 (middle left) and Logarithmic L2 (bottom left) approx-
imations to Lena image using N = 43 2D DCT basis functions over 32 × 32-pixel blocks comprising the
shoulder region of Lena image (magnified). Beside each approximation, difference-maps (between each
approximation and the original image) are shown. Original size of images: 512× 512 pixels.
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Weberized L2 (block) approximation Weberized L2 (block) approximation with matching means.

Figure 6.8: “Weberized” L2 (left) and “Weberized” L2 with matching of means (right) approximations
to Lena image using N = 43 2D DCT basis functions over 32 × 32-pixel blocks comprising the shoulder
region of Lena image (magnified). Original size of images: 512× 512 pixels.
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Furthermore, the distribution of variances in Lena is more concentrated toward zero
value than that of Mandrill (see Figure 6.9, 6.10). Thus, Lena image has less activity
than the Mandrill image and we should expect the L2, “Weberized” L2 and Logarithmic
L2 approximations to be further away from each other for the Mandrill image. To illus-
trate the difference between the approximations, plots of pixel intensities (original versus
approximated) are shown in Figures 6.11 and 6.12. As we increase the number of basis
functions, the “Weberized” L2 and Logarithmic L2 intensities look more like the best L2

intensities . Of course, in case of better approximations (i.e. more basis functions used)
the plots look more like straight lines.

Figure 6.9: Histogram of standard deviations of 8× 8 blocks of Lena

.
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Figure 6.10: Histogram of standard deviations of 8× 8 blocks of Mandrill

.
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Figure 6.11: Plots of differences between the original intensity and the approximated intensities for Lena
with (a) N = 5, (b) N = 20 and (c) N = 50 basis functions.
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Figure 6.12: Plots of differences between the original intensity and the approximated intensities for
Mandrill with (a) N = 5, (b) N = 20 and (c) N = 50 basis functions.
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In conclusion, we expect to detect differences in approximation of images having various
levels of activities; this is how the intensity weighted methods were constructed (recall the
orthogonality of matrix A from Section 5.2.1). The empirical evidence presented in this
section confirms the theory that there should be a stronger effect of the intensity weighted
methods for images with higher variance.

6.1.2 Comparisons of image approximations using L2, “Weber-
ized” L2 and Logarithmic L2 methods for medical images

In this section we present implementations of the intensity weighted methods on some med-
ical images. We have encountered some problems with approximating the bone-background
edges in brain and body CT images using the “Weberized” L2 method with small number
of basis functions. Specifically for extremely high contrast blocks, the “Weberized” L2

method produces more error than the best L2 and Log L2 methods for a small number
of basis functions. This effect is shown for the brain CT image in Figures 6.13 and 6.14
together with the corresponding absolute difference maps (between the original and the ap-
proximated pixels). This is also reflected in the quality scores, which are presented in Table
6.7. We observe that the “Weberized” L2 and Log L2 approximations put less emphasis on
higher intensities areas according to the Weber’s model of perception. In the case of very
poor approximation (i.e. small number of basis functions), the “Weberized” L2 and Log
L2 approximations approximate the high contrast blocks 8 × 8 blocks by lower intensity
blocks. The Weber’s effect can also be seen in the corresponding difference maps in Figures
6.13 and 6.14. The best L2 approximation is more “uniform” (i.e. the absolute difference
map has very similar intensities), whereas in the other two methods, the approximated
intensities are weighted according to their magnitudes. According to the SSIM index, the
intensity weighted approximations are not as good as the best L2 approximation. What
is causing the poor performance of the Weber-model based algorithms? Could it be that
the high contrast blocks (edges of the bone with black background areas) are causing the
problems?

Recall that the matching of the mean procedure for the “Weberized” L2 method was not
a significant improvement from the “Weberized” L2 method for natural images. However,
it seems to make a difference in the case of brain CT images. The main difference between
natural and medical images is the continuity of grayscale tones. In natural images this
change is more continuous whereas medical images may have sudden jumps from white
to black pixels. This might be one of the reasons for quite different performance of the
intensity weighted approximation methods for some images as the high contrast 8 × 8
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blocks are approximated with lower intensities (i.e. often dark pixels) according to the
Weber’s model of perception. A similar effect we would observe in the case of body CT
images; which also contains blocks of high intensity contrast. Furthermore, there are
medical images for which the Weber-model based approximations perform well according
to the SSIM index. For example, lung CT images have more continuous tones and are
more suitable for the weighted intensity approximations. Approximations of a lung CT
image are shown in Figures 6.15 and 6.16 and quality scores are presented in Table 6.8.
The contrast of intensities at the edges is not as strong as for brain or body CT images.
Table 6.8 shows quality scores for the approximations of the lung CT image in Figure
3.12. We conclude that the intensity based approximation methods studied herein are
more suitable for images of continuous tone, i.e. natural images, lung CT, etc. However,
brain CT and body CT images are very special having extreme intensity contrast, i.e.,
almost “black-and-white” blocks and, are more difficult to approximate.

In conclusion, the Weber-model based methods for approximating medical images do
not provide satisfactory visual results, which is confirmed by the SSIM scores. However,
for certain types of images i.e. lung CT, these methods tend to perform better. These
empirical observations are not general enough and require further testing of the weighted
intensity approximation methods for brain CT or body CT images, or images of extremely
high contrast areas. In this section, we have confirmed that certain types of medical
images are more difficult to approximate. These special images are brain CT and body
CT images. Recall, that according to Dr. Koff et al. [38], brain CT and body CT images
behave differently under compression as compared to other medical images (please refer to
Chapter 3 for more details on the effects of compression on medical images).
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Best L2 approximation

Weberized L2 approximation.

Best L2 approx. difference map

Weberized L2 approx. difference map

Figure 6.13: Left column: (magnified) approximations of part of the brain CT (Figure 3.2) image using
the best L2, “Weberized” L2 with 8× 8 blocks and N = 25 basis functions. Right column: corresponding
difference maps. Original size of images: 512× 512 pixels.
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Weberized L2 approximation (match. means).

Logarithmic L2 approximation

Weberized L2 approx. difference map (match means)

Logarithmic L2 approx. difference map

Figure 6.14: Left column: (magnified) approximations of part of the brain CT (Figure 3.2) image using
“Weberized” L2 with matching of the mean procedure and Logarithmic L2 methods with with 8×8 blocks
and N = 25 basis functions. Right column: corresponding difference maps. Original size of images:
512× 512 pixels.
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N=25 MSE “Weberized” L2 error SSIM

L2 approx. 31.9001 5.6142 0.9963
Web. L2 approx. 106.8707 0.1318 0.9773

Web. L2 (m. mean) 102.4284 0.9572 0.9895
Log L2 approx. 201.6349 − 0.9905

Table 6.7: Quality assessment of approximations of the brain CT image in Figure 3.2 using MSE,
“Weberized” L2 (including the matching of the mean variation) error and SSIM (with 8 × 8 size blocks
and N = 25 basis functions).

N=25 MSE “Weberized” L2 error SSIM

L2 approx. 9.8141 0.0364 0.9964
Web. L2 approx. 10.3349 0.0020 0.9961

Web. L2 (m. mean) 10.3261 0.0020 0.9961
Log L2 approx. 13.4066 − 0.9955

Table 6.8: Quality assessment of approximations of the lung CT image in Figure 3.12 using MSE,
“Weberized” L2 (including the matching of the means variation) error and SSIM (with 8 × 8 size blocks
and N = 25 basis functions).

6.2 Conclusion

We have examined two approaches of modifying L2-based approximations that conform
to Weber’s model of perception, viz. higher/lower tolerance of deviation for higher/lower
intensity levels. The first approach involves the idea of intensity-weighted L2 distances.
We arrive at a natural weighting function that is shown to conform to Weber’s model. The
resulting “Weberized” L2 distance involves a ratio of the functions being compared. The
importance of ratios in such distance functions leads to a consideration of the well-known
logarithmic L2 distance which also accommodates Weber’s model. In fact, it can be shown
that logarithms of image functions are the most natural representations with regard to
Weber’s model.

Moreover, the reason that SSIM measure performs better than L2-based methods is
that it measures the correlation between images, which the L2-based methods do not do,
or at most do indirectly. Nevertheless, it was necessary that the intensity based methods
were investigated.
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Best L2 approximation

Weberized L2 approximation

Best L2 approx. difference map

Weberized L2 approx. difference map

Figure 6.15: Left column: Approximations of part of lung CT image using the best L2, “Weberized”
L2 methods with with 8 × 8 blocks and N = 25 basis functions. Right column: corresponding difference
maps. Original size of images: 512× 512 pixels.
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Weberized L2 approximation. (match means)

Logarithmic L2 approximation

Weberized L2 approx. difference map (match means)

Logarithmic L2 approx. difference map

Figure 6.16: Left column: Approximations of part of lung CT image using “Weberized” L2 with the
matching of the means procedure and Logarithmic L2 methods with with 8× 8 blocks and N = 25 basis
functions. Right column: corresponding difference maps. Original size of images: 512× 512 pixels.
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Chapter 7

Conclusions

7.1 Quality Assessment of Medical Images

The task of achieving diagnostically lossless compression of medical images is a complex
one. It involves tuning technology with radiological subjective responses/preferences. We
have used two compression algorithms JPEG and JPEG2000 and several, most commonly
used quality assessment algorithms and conducted subjective experiments with radiologists
as subjects to assess quality of body CT and brain CT images. The choice of studying
JPEG and JPEG2000 compression algorithms comes from the limitation of the DICOM
format for medical images.

In particular, we have investigated how the MSE and the SSIM index image quality
measures perform in the case of some medical images. By performance of a given quality
measure we mean: how closely they match the subjective opinion of a radiologist. Medical
images are not just evaluated for their visual quality. By performing a subjective experi-
ment of image quality assessment with radiologists we found that SSIM index best predicts
quality of compressed image as compared to MSE, quality factor and compression ratio.
Another important result is that the poorest quality predictor for brain CT and body CT
images is compression ratio according to subjective radiological assessments. Nevertheless,
compression ratio seems to be used as an indicator of image quality for medical images
[38] [39]. We are aware that even though SSIM index shows best performance as image
fidelity predictor, it will not be feasible to use in certain situations. It is understood that
in order to compress images according to the SSIM index, a first pass of compression has
to be performed for each individual image and the compression input parameter adjusted
accordingly (quality factor for JPEG and compression ratio for JPEG2000). As a further
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matter, we are hoping that compression ratio will be at least a satisfactory indicator of
quality for specific image types. Perhaps, even within an image group (e.g. brain CT),
there are also subgroups that can be categorized where the use of compression ratio will be
more appropriate. MSE/PSNR is commonly used to assess the quality of medical images.
The results presented in this thesis also indicate that MSE/PSNR is not the best measure
to predict image quality.

Medical images posses different properties and should be analyzed separately. Among
all types of medical images (body parts as well as various image modalities), body CT and
brain CT are the only two types that have shown to behave better under JPEG compression
as compared to JPEG2000 algorithm. This oddity has been observed in an experiment
conducted by Koff et al. [38]. This peculiarity might be caused by the sharp edges in brain
CT images between the skull bone and the background. Applying segmentation followed
by a morphological operation on brain images before compression improves its JPEG2000
compressibility. A detailed treatment of this topic has been presented in Chapter 3.3.

We are currently in the process of conducting another subjective experiment involving
radiological assessment of medical images. This new experiment is an improved version of
the one described in Chapter 4. It involves more radiologists and a larger, carefully chosen
set of pathological and normal brain and body CT images.

A challenging element of this work, a question that we have posed and still have not
answered, involves finding features in medical images that would serve as an indicator of
compressibility by employing local analysis of compression artifacts. The details of this in-
vestigation have been presented in Section 3.2. Local analysis of compression degradation
through SSIM quality maps indicates that there is a variation of quality in a compressed
image, i.e., some regions compress better than others. Despite the fact that we see nonuni-
form compressibility of images according to SSIM quality maps, there does not seem to
exist a separator between “good” blocks and “bad” blocks.

7.2 Intensity Weighted Approximations of Images

This thesis also proposes a modification of the L2-based approach for approximating images
that conforms to the Weber’s model of perception. In Chapter 5, we have introduced
two intensity weighted approximations of images: “Weberized” L2 and Logarithmic L2

methods. These methods behave similarly to the best L2 approximation for some natural
images according to MSE and SSIM quality measures. An involved mathematical treatment
of this topic is presented in Chapter 5. The “Weberized” L2 distance involves a ratio of
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functions. The well-known logarithmic L2 distance also shows to conform to Weber’s
model. Our result shows that the logarithmic L1 distance is the most natural “Weberized”
image metric. From this result, all other logarithmic Lp distances may be viewed as
generalizations.

7.3 Final remarks

We are hoping that this study can be useful in defining what diagnostically lossless com-
pression means and that our techniques can be helpful in determining appropriate levels of
compression. We are aware that having more available resources in the experiment would
provide more statistically significant results. However, the experiment presented in this
thesis can be thought of as a “pilot study”, which has led to its improved version. In the
currently conducted subjective experiment with radiologist we were able to avoid some
previous constraints so that the statistical significance is maximized.

The intensity weighted image approximations - the modified L2 approaches presented
in this thesis may serve as a basis for new compression algorithms.

7.4 Future directions

There are several natural extensions of this work that can be considered. One of them
is to conduct a subjective experiment with radiologists to compare other quality assess-
ment methods for several modalities and body parts as well as investigation of other lossy
compression algorithms. This consideration would lead to statistically valid results includ-
ing advanced techniques of determining threshold values with regards to a given quality
measure that could serve as a reliable quality predictor for compressed medical images.

Another possible direction could be tuning of the SSIM index to correspond better
with the radiological opinions. There are several ways to achieve this. One is to determine
the best constants for the algorithm. Another one is to consider the IW-SSIM index for
medical images and modify the second stage of the algorithm, the pooling procedure in
order to achieve the best correspondence with subjective radiological responses.

Our weighted intensity approximation based on the Weber model of perception could
possibly be incorporated into an already developed compression algorithm. Consideration
of the “Weberized” L2 approach for high dynamic range (16-bit) images is also a possible
extension of this work.
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Another future path that could be considered is to study interpolation algorithms and
quality assessment of interpolated medical images. It involves producing a larger version
of an image, a high-resolution image, by adding new pixels to the existing image. This is
particularly important in the radiological community because images are often magnified
during diagnostic evaluations. The interpolated pixels are obtained by convolution of a
linear interpolation filter. This involves linearly combining the known pixels with some
weighted functions that satisfy certain properties and are known as convolution kernels.
Even for the same image, different interpolation techniques could produce images that dif-
fer significantly. Interpolation is only an approximation and therefore an image will always
undergo some loss-of-quality when interpolation is performed. Convolution with an inter-
polation filter can be thought of as a weighted averaging and therefore produces blurring.
Other artifacts include ringing and aliasing. Most interpolation techniques were designed
for general sets and therefore they do not necessarily correspond well to human visual
perception. Objective quality assessment of such images is a difficult problem since there
there is no one-to-one mapping between the original image and the interpolated image.
Several workarounds have been suggested in literature [53] [22] [92]; also there has been
some advances in the development of no reference quality assessment algorithms [76] [56].
In summary, performing an objective comparison of interpolation algorithms is a difficult
task and it is still unknown how to make full-reference objective quality assessment most
reliable. A subjective study of interpolation algorithms involving radiologists’ responses
may be helpful in determining the best interpolation algorithm for given types of medical
images.

Another direction is to extend the idea of intensity weighted image approximation to
transform domains (e.g. DCT, Fourier and wavelet domains) in light of the fact that
the general principle of the Weber’s law is applicable to other perceptual quantities such
as image contrast. This may lead to perceptually meaningful cost functions that can be
directly employed to improve transform-domain image compression algorithms.
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APPENDICES

APPENDIX A

7.4.1 Euler’s Homogeneous Function Theorem

Assume that f(x), a homogeneous function of order n satisfies

f(tx) = tnf(x) (7.1)

Let x
′
= xt. Then

nt(n−1)f(x) =
df

dx′
dx
′

dt

= x
df

dx′

= x
df

d(xt)
(7.2)

Let t = 1, then

x
df

dx
= nf(x). (7.3)
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Appendix B

1 %%%%%%%%%%%%%%%%%
2 % I n t e n s i t y weighted approximations o f images us ing
3 % Best Lˆ2 , Weberized Lˆ2 , Ln Lˆ2 methods .
4 %
5 %%%%
6 c l o s e a l l ;
7 c l e a r a l l ;
8

9 %% Reading in images
10

11 %natura l images
12 %%%%%%%%%%%%
13 f i l e n a m e l e n a=’ l ena g ray 512 . t i f ’ ;
14 f i l e n a m e m a n d r i l l= ’ mandr i l gray . t i f ’ ;
15 f i l e n a m e g o l d h i l l= ’ g o l d h i l l . t i f ’ ;
16

17 %imjpgor ig = double ( imread ( f i l e n a m e g o l d h i l l , ’ t i f ’ ) ) ;
18 %imjpgor ig = double ( imread ( f i l ename l ena , ’ t i f ’ ) ) ;
19 %imjpgor ig = double ( imread ( f i l ename mandr i l l , ’ t i f ’ ) ) ;
20

21

22 %read in DICOM medical image
23 dicom object = dicominfo ( ’dcm/brainCT . dcm ’ ) ;
24 %dicom object = dicominfo ( ’dcm/1 .dcm ’ ) ;
25

26 %get d e f a u l t window cente r and window parameters from the dicom
image

27 window center = dicom object . WindowCenter (1 ) ;
28 window width = dicom object . WindowWidth (1 ) ;
29 matr ix 16 = dicomread ( d icom object ) ;
30

31 %Get the 8−b i t matrix r e p r e s e n t a t i o n o f the image f i l e
32 I n t e r c e p t = dicom object . R e s c a l e I n t e r c e p t ;
33 Slope = dicom object . Resca l eS lope ;
34
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35 matr ix 16 = double ( in t16 ( matr ix 16 ) .∗ Slope + I n t e r c e p t ) ;
36 matr ix 8 = s i x t e e n 2 e i g h t ( matrix 16 , window center , window width ) ;

%Medical image
37 imjpgor ig = double ( matr ix 8 ) ;
38

39

40 %S e l e c t the i t e r i o r o f the brainCT image
41 %imjpgor ig = imjpgor ig (110 :333 , 140 :363) ;
42 %imshow ( imjpgor ig )
43

44

45 %% s e t up v a r i a b l e s
46 char f l a g ;
47 o r i g s i z e = s i z e ( imjpgor ig ) ;
48 NP = o r i g s i z e (1 ) ∗ o r i g s i z e (2 ) ;
49 s i z = 8 ;
50

51 imblock = ze ro s ( s i z ) ;
52 M = s i z ˆ2 ; %number o f po in t s
53

54 %number o f b a s i s f u n c t i o n s used in approximation
55 N=20;
56

57 eps = 0 . 9 ;
58 a = ze ro s (N,N) ;
59 b = ze ro s (N, 1) ;
60 cw = ze ro s (N, 1 ) ;
61 g= ze ro s (M, 1 ) ;
62 ss im k = [ 0 . 0 1 0 . 0 3 ] ;
63

64 %count f o r index ing the d i sp l ay o f the matrix Aa
65 count = 1 ;
66

67 %Al lo ca t e space f o r the f i n a l image
68 imf in = ze ro s ( s i z ) ;
69 i m f i n a l = ze ro s ( f l o o r ( s q r t ( o r i g s i z e ) ) ) ;
70

71 %% i n i t i a l i z e the DCT b a s i s
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72 % 2D DCT b a s i s
73 % Al l e n t r i e s are s to r ed in 1D vecto r
74 % M = s i z ˆ2 ( s i z =8, M=64 f o r 8X8 DCT blocks )
75 % N i s the number o f b a s i s f u n c t i o n s we wish to use
76

77 phi = ze ro s (M,N) ;
78

79 % cons t ruc t i on o f upper l e f t d iagona l o f DCT b a s i s s e t
80 % (0 ,0 ) , then (0 , 1 ) , ( 1 , 0 ) , . . . . ( 0 , 8 ) , ( 1 , 7 ) , . . . ( 8 , 0 )
81

82 kc=0;
83 f o r kk=1: s i z
84 f o r k=1:kk
85 l=kk+1−k ;
86 kc=kc+1;
87 i f kc <= N
88 i c =0;
89 f o r mm=1: s i z
90 f a c t 1 =1;
91 i f k==1
92 f a c t 1 =1/ s q r t (2 ) ;
93 end
94 term1 = f a c t 1 ∗ cos ( ( p i / s i z ) ∗ ( (mm−1)+0.5) ∗(k−1) ) ;
95 f o r nn=1: s i z
96 f a c t 2 =1;
97 i f l==1
98 f a c t 2 =1/ s q r t (2 ) ;
99 end

100 term2 = f a c t 2 ∗ cos ( ( p i / s i z ) ∗ ( ( nn−1)+0.5) ∗( l −1) ) ;
101 i c=i c +1;
102 phi ( i c , kc )= 2∗ term1∗ term2/ s i z ;
103 end
104 end
105 end
106

107 end
108 end
109
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110 % cons t ruc t i on ( i f nece s sa ry ) o f lower d iagona l DCT b a s i s
111

112 f o r kk=1: s i z −1
113 f o r l=kk+1: s i z
114 k=s i z+1+kk−l ;
115 kc=kc+1;
116 i f kc <= N
117 i c =0;
118 f o r mm=1: s i z
119 f a c t 1 =1;
120 i f k==1
121 f a c t 1 =1/ s q r t (2 ) ;
122 end
123 term1 = f a c t 1 ∗ cos ( ( p i / s i z ) ∗ ( (mm−1)+0.5) ∗(k−1) ) ;
124 f o r nn=1: s i z
125 f a c t 2 =1;
126 i f l==1
127 f a c t 2 =1/ s q r t (2 ) ;
128 end
129 term2 = f a c t 2 ∗ cos ( ( p i / s i z ) ∗ ( ( nn−1)+0.5) ∗( l −1) ) ;
130 i c=i c +1;
131 phi ( i c , kc )= 2∗ term1∗ term2/ s i z ;
132 end
133 end
134 end
135

136 end
137 end
138

139 %Compute log o f the s i g n a l
140 l n im jpgo r i g = log ( imjpgor ig +1) ;
141

142 %% Lˆ2 approximation
143 %compute approximation f o r each 8x8 block
144 f o r ind1 =1: s i z : o r i g s i z e
145 count index = 0 ;
146 f o r ind2 = 1 : s i z : o r i g s i z e
147
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148 imblock = imjpgor ig ( ind1 : ind1+s i z −1, ind2 : ind2+s i z −1) ;
149 ln imblock = ln imjpgo r i g ( ind1 : ind1+s i z −1, ind2 : ind2+s i z −1) ;
150 count index = count index + 1 ;
151

152 %compute c o e f f i c i e n t s
153 f o r k=1:N
154 yf1 ( : , k ) = imblock ( : ) .∗ phi ( : , k ) ;
155 c = sum( yf1 ) ;
156 end
157

158 %approximate the func t i on
159 f o r xind =1:M
160 ys ( xind , : ) =c ( : ) ’ .∗ phi ( xind , : ) ;
161 end
162 yf = sum( ys , 2 ) ;
163 yf = reshape ( yf , s i z , s i z ) ;
164 %%
165 i f ( ind2 == 1)
166 y l2 = yf ;
167 e l s e
168 y l2 = [ y l2 y f ] ;
169 end
170

171

172 nimjpg = imblock ( : ) ;
173

174 [ v a r l 2 ( count index ) l 2 s s i m b l o c k ( count index ) l2 rmse (
count index ) ] = sts im ( double ( imblock ) , double ( y f ) , s i z ) ;

175

176

177 %% Ln Lˆ2 approximation
178 %compute c o e f f i c i e n t s 1D
179 f o r k=1:N
180 l ny f 1 ( : , k ) = lnimblock ( : ) .∗ phi ( : , k ) ;
181 l n c = sum( lny f 1 ) ;
182 end
183

184 %approximate the func t i on
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185 f o r xind =1:M
186 ys ( xind , : ) =lnc ( : ) ’ .∗ phi ( xind , : ) ;
187 end
188 l n y f = sum( ys , 2 ) ;
189 l n y f = reshape ( lny f , s i z , s i z ) ;
190

191 i f ( ind2 == 1)
192 l n y l 2 = l n y f ;
193 e l s e
194 l n y l 2 = [ l n y l 2 l n y f ] ;
195 end
196

197 [ v a r l n l 2 ( count index ) l n l 2 s s i m b l o c k ( count index ) ln l 2 rmse (
count index ) ] = sts im ( double ( imblock ) , double ( exp ( double ( l n y f
) )+1) , s i z ) ;

198

199 lnnimjpg = lnimblock ( : ) ;
200

201

202 %% Weberized Lˆ2 approximation
203 ap = ze ro s (M,N,N) ;
204 a = ze ro s (N,N) ;
205 b = ze ro s (N, 1) ;
206 cw = ones (N, 1 ) ;
207 g= ze ro s (M, 1 ) ;
208 ysw = ze ro s (M, N) ;
209

210 f o r xind1 =1:M
211 i f ( nimjpg ( xind1 ) == 0)
212 g ( xind1 ) = 1/( nimjpg ( xind1 )+ eps ) ; %. ˆ ( 2 ) ;
213 e l s e g ( xind1 ) = 1/ nimjpg ( xind1 ) ; %. ˆ ( 2 ) ;
214 end
215 end
216

217

218 f o r p=1:N
219 f o r k=1:N
220 ap ( : , k , p )=g ( : ) .∗ phi ( : , p ) .∗ phi ( : , k ) ;
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221 a (k , p) = sum( ap ( : , k , p ) ) ;
222 end
223

224 end
225

226 f o r p=1:N
227 b(p) = sum( g ( : ) .∗ nimjpg ( : ) .∗ phi ( : , p ) ) ;
228 end
229

230

231 %% Matching the mean f o r the Weberized Lˆ2 approximation
232 %Compute the mean
233 imMean = c (1) ;
234 sum( nimjpg ) /64 ;
235 aMean = a ( 1 : l ength ( a ) , 2 : l ength ( a ) ) ;
236 bMean = b − a ( : , 1 ) ∗imMean ;
237

238 %l e a s t square
239 cw1 = aMean\bMean ;
240 cw (1) = imMean ;
241 cw ( 2 : l ength ( a ) ) = cw1 ;
242

243 %Conjugate g rad i en t method to s o l v e a system o f l i n e a r equat ions
244 [ cw2 , f l a g ] = pcg (a , b) ;
245

246 cw ’ ;
247

248 %%%%%%%%%%%%
249 %No matching the mean
250 %Conjugate g rad i en t method to s o l v e a system o f l i n e a r equat ions
251 %[ cw , f l a g ] = pcg (a , b) ;
252

253 f o r xind =1:M
254 ysw ( xind , : ) =cw ( : ) ’ .∗ phi ( xind , : ) ;
255 end
256

257 yfinw = sum(ysw , 2 ) ;
258
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259 i f ( ind2 == 1)
260 yfinw = reshape ( yfinw , s i z , s i z ) ;
261 imf in = yfinw ;
262

263

264 e l s e
265 yfinw = reshape ( yfinw , s i z , s i z ) ;
266 imf in = [ imf in yf inw ] ;
267 end
268

269

270 [ var webl2 ( count index ) web l2 s s im b lock ( count index ) webl2 rmse (
count index ) ] = sts im ( double ( imblock ) , double ( double ( yf inw ) ) ,

s i z ) ;
271

272 %% Reshape the o r i g i n a l image
273 i f ( ind2 == 1)
274 yor i g = reshape ( imblock , s i z , s i z ) ;
275 yo = yor i g ;
276

277

278 e l s e
279 yor i g = reshape ( imblock , s i z , s i z ) ;
280 yo = [ yo yor i g ] ;
281 end
282 end
283

284 %% Weber block combining
285 i f ( ind1 == 1)
286 i m f i n a l = imf in ;
287 e l s e
288 i m f i n a l = [ i m f i n a l ; imf in ] ;
289 end
290

291 %% L2 block combining
292 i f ( ind1 == 1)
293 y l 2 f i n a l = yl2 ;
294 e l s e
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295 y l 2 f i n a l = [ y l 2 f i n a l ; y l2 ] ;
296 end
297

298 %% Ln L2 block combining
299 i f ( ind1 == 1)
300 l n y l 2 f i n a l = l n y l 2 ;
301 e l s e
302 l n y l 2 f i n a l = [ l n y l 2 f i n a l ; l n y l 2 ] ;
303 end
304

305 %% Orig block combining
306 i f ( ind1 == 1)
307 y o r i g f i n = yo ;
308 e l s e
309 y o r i g f i n = [ y o r i g f i n ; yo ] ;
310 end
311

312 %sum of the c o e f f i c i e n t s o f a
313 Aa( count ) = sum(sum( abs ( a ) ) ) ;
314 count = count +1;
315

316 end
317 %end o f computing approximation o f each 8x8 block
318

319

320 %% DISPLAY r e s u l t s
321 d i sp l ay ( ’# o f Bas i s f u n c t i o n s N=’ ) ;
322 N
323

324 d i sp l ay ( ’−−−−−−−MSE−−−−−−−− ’ ) ;
325 msecL2 = mean2( ( double ( imjpgor ig ) − double ( y l 2 f i n a l ) ) . ˆ 2 ) ;
326 msecW = mean2 ( ( double ( imjpgor ig ) − double ( i m f i n a l ) ) . ˆ 2 ) ;
327 mseclnL2 = mean2 ( ( double ( imjpgor ig ) − double ( exp ( l n y l 2 f i n a l )−1) )

. ˆ 2 ) ;
328

329 msecL2
330 msecW
331 mseclnL2
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332

333 d i sp l ay ( ’−−−−−−−−SSIM−−−−−−− ’ ) ;
334 [ mssimL2 ssim mapL2 ] = ssim ( u int8 ( imjpgor ig ) , u int8 ( y l 2 f i n a l ) ) ;
335 [mssimW ssim mapWL2 ] = ssim ( u int8 ( imjpgor ig ) , u int8 ( i m f i n a l ) ) ; %,

K, window , L) ;
336 [ lnmssimL2 lnssim mapL2 ] = ssim ( u int8 ( imjpgor ig ) , u int8 ( exp (

l n y l 2 f i n a l )−1) ) ;
337 mssimL2
338 mssimW
339 lnmssimL2
340

341 d i sp l ay ( ’−−−−−−−−SSIM non−over lapping−−−−−−− ’ ) ;
342

343 n o l 2 s s i m = mean( l 2 s s i m b l o c k ( : ) )
344 no web l2 s s iml2 = mean( web l2 s s im b lock ( : ) )
345 n o l 2 l n s s i m l 2 = mean( l n l 2 s s i m b l o c k ( : ) )
346

347 d i sp l ay ( ’−−−−−−−−Web Lˆ2 er ror−−−−−−−− ’ ) ;
348 msecL2 = mean2( ( ( double ( imjpgor ig ) − double ( y l 2 f i n a l ) ) . / (

imjpgor ig+eps ) ) . ˆ2 ) ;
349 msecW = mean2 ( ( ( double ( imjpgor ig ) − double ( i m f i n a l ) ) . / ( imjpgor ig+

eps ) ) . ˆ2 ) ;
350 nmsecL2 = mean2( ( ( double ( imjpgor ig ) − double ( exp ( l n y l 2 f i n a l )−1)

) . / ( imjpgor ig+eps ) ) . ˆ2 ) ;
351 msecL2
352 msecW
353 nmsecL2
354 d i sp l ay ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;
355

356 r e s c l n y l 2 f i n a l = exp ( l n y l 2 f i n a l )−1;
357

358 f i g u r e (1 ) ;
359 s r = 2 ;
360 sc = 2 ;
361 subplot ( sr , sc , 1 ) ; imshow ( imjpgor ig , [ ] ) ; t i t l e ( s p r i n t f ( ’ Or i g i na l

image ’ ) ) ;
362 subplot ( sr , sc , 2 ) ; imshow ( uint8 ( y l 2 f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f ( ’DCT (

block ) approximation ’ ) ) ; %Lˆ2 appr
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363 subplot ( sr , sc , 3 ) ; imshow ( uint8 ( i m f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f ( ’
Weberized ( b lock ) approximation ’ ) ) ; %weber ized appr

364 subplot ( sr , sc , 4 ) ; imshow ( uint8 ( r e s c l n y l 2 f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f
( ’Ln DCT ( block ) approximation ’ ) ) ; %Lˆ2 appr

365

366 f i g u r e (2 ) ;
367 s r = 2 ;
368 sc = 3 ;
369 subplot ( sr , sc , 1 ) ; imshow ( uint8 ( y l 2 f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f ( ’DCT (

block ) approximation ’ ) ) ; %Lˆ2 appr
370 subplot ( sr , sc , 2 ) ; imshow ( uint8 ( i m f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f ( ’

Weberized ( b lock ) approximation ’ ) ) ; %weber ized appr
371 subplot ( sr , sc , 3 ) ; imshow ( uint8 ( r e s c l n y l 2 f i n a l ) , [ ] ) ; t i t l e ( s p r i n t f

( ’Ln DCT ( block ) approximation ’ ) ) ; %Lˆ2 appr
372 subplot ( sr , sc , 4 ) ; imshow ( uint8 (255 − abs ( imjpgor ig −y l 2 f i n a l ) ) ) ;

t i t l e ( s p r i n t f ( ’DCT ( block ) approximation ’ ) ) ; %Lˆ2 appr
373 subplot ( sr , sc , 5 ) ; imshow ( uint8 (255 − abs ( imjpgor ig − i m f i n a l ) ) ) ;

t i t l e ( s p r i n t f ( ’ Weberized ( block ) approximation ’ ) ) ; %weber ized
appr

374 subplot ( sr , sc , 6 ) ; imshow ( uint8 (255 − abs ( imjpgor ig −
r e s c l n y l 2 f i n a l ) ) ) ; t i t l e ( s p r i n t f ( ’Ln DCT ( block )
approximation ’ ) ) ; %Lˆ2 appr
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