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Abstract 

What is the nature of non-verbal representations of number? Broadly speaking, non-verbal 

representations of number can be divided into two categories: representations of particular 

numerosities and representations of unspecified numerosities. However, studies of representations 

of number do not only call for investigations into the representations of numerosities. As 

philosophers of mathematics (i.e., structuralists) have pointed out, the essence of number lies in 

numerical relations. Using numerical comparison as a case study, this dissertation asks questions 

about the nature of the non-verbal representations of particular numerosities and unspecified 

numerosities.  

Research in the last few decades has found evidence for a non-verbal representation of 

particular numerosities – the approximate number system (ANS). The ANS encodes number as 

approximate numerical magnitudes, and is a dedicated system for representing number. While there 

is much evidence that the ANS can be used to represent numerical relations, little is known about 

whether a separate system for representing small sets of individual objects – parallel individuation 

– can also be used to represent number. In Chapter 2, I ask whether the parallel individuation 

system can support numerical comparison. In two experiments, children between the ages of 2 ½ 

and 4 ½ years old were asked to compare either exclusively small sets (< 4) or exclusively large 

sets (> 6) on the basis of number. The results of these studies suggest that parallel individuation 

supports numerical comparison prior to the acquisition of numerical language. 

In addition to representations of particular numerosities, humans are also capable of 

representing unspecified number. For example, we understand that the numerical statement ‘x + 1 

> x’ is true without representing the particular value of x. But when does this representation 

develop? In Chapter 3, I ask at what age children begin to show the capacity to reason about 

unspecified numerosities. In three experiments, children between the ages of 3 and 6 years were 
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asked to reason about the effects of numerical and non-numerical transformations on the 

numerosity of a set. These sets were large enough to be outside the range of parallel individuation 

and involved comparisons that are not computable by the ANS (Experiment 3), or were hidden so 

that the specific numerosity was unavailable (Experiments 4 and 5). After the transformation, 

children were asked whether there were more objects in the set. The results of these studies suggest 

that the ability to represent unspecified numerosities emerges at around age 4, and is fully in place 

by ages 5 to 6.  

Together, these studies provide evidence that 1) in addition to the ANS, parallel 

individuation is one of the developmental roots of the representation of numerical relations and 2) 

the numerical reasoning principles that operate over representations of unspecified numerosities 

may develop later than computations that operate over representations of particular numerosities. 
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Chapter One: General Introduction 

Humans are numerical beings. Whether we are thinking of how many cups of coffee we 

drink in a day, how much we have saved this month, or how far we are going for a hike, we think 

about number. But what is a representation of number? A growing body of research has shown 

that number can be represented with various representational systems (Dehaene, 1997; Fuson, 

1988; Gallistel & Gelman, 2000; Feigenson, Dehaene, & Spelke, 2004; Carey 2009; Hyde & 

Spelke, 2009, 2011; Wynn, 1990, 1992a). These systems can be broadly divided into two 

categories – representations of particular numerosities and representations of unspecified 

numerosities. For example, when asked how many cups of coffee we drink in a day, we may be 

thinking about the number of individual cups of coffee we had today, and this reflects our ability 

to represent particular numerosities. In contrast, we need not know the value of x to determine that 

‘x + 1 > x’ is true, and this reflects our ability to represent unspecified numerosities.  

However, investigations into the representations of number cannot be limited to explaining 

how we represent numerosities, but they must also explain how we compute relations between 

numerosities. Randy Gallistel put the point quite forcefully: 

“If the only sense in which the brain represents number is that there is a sensory/ 

perceptual mapping from numerosity to brain states (the activities of detectors for 

specific numerosities), which make possible simple numerical discriminations, then the 

brain’s representation of number is a representation in name only. Only if the brain brings 

combinatorial processes to bear on the neural entities that represent numerosities may we 

say that the brain represents number in an interesting sense of the term representation.” 

(1989, p. 159). 

 

Therefore, it is crucial to explore the nature of representations of number in the context of 

numerical relations. The overarching goal of the research reported in this dissertation is to 

characterize the nature and development of the representations of particular numerosities and 

unspecified numerosities through studies of numerical comparison. Moreover, given that the goal 
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is to explore the nature and development of representations of number, the present investigation 

focuses on non-verbal representations because they may be the building blocks for later numerical 

knowledge.  

 

Non-verbal representations of number 

A non-verbal representation of particular numerosities  

Research on the psychology of number has identified a non-verbal representational system 

that can be used to represent particular numerosities. This system is powerful enough to represent 

a broad range of numbers, and is called the approximate number system (ANS).  Akin to a ‘number 

line’, the ANS represents number as continuous mental magnitudes; the size of ‘the line’ is 

proportional to the objective magnitudes of the numerosities represented by the stimuli. ANS 

representations are approximate and exhibit scalar variability – i.e., error in the representation is 

proportional to the numerosity of the set. When adults are asked to estimate the number of objects 

in a set under conditions that suppress counting, the error in their estimates increases as a function 

of the size of the set of objects (e.g., Whalen, Gallistel, & Gelman, 1999). Another signature of the 

ANS is that numerical comparisons follow Weber’s law – discriminability between sets depends 

on the ratio between them. For example, adults make more rapid judgments when asked to compare 

two numerals that are further away from each other (e.g., 5 vs. 9) than two numerals that are closer 

to each other (e.g., 5 vs. 6; Moyer & Landauer, 1967). Moreover, the larger the numerals, the more 

difficult it is for adults to compare them if the distance between the two numerals is constant (e.g., 

comparing 8 vs. 9 is harder than 5 vs. 6 and the distance is 1 in both cases). These behavioural 

findings demonstrate the ratio signature of Weber’s law that characterizes the ANS (e.g., Dehaene, 

1997; Whalen, et al., 1999; Cordes, Gelman, Gallistel, & Whalen, 2001). 
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Research has consistently shown that the ANS is present early in infancy (e.g., Xu & Spelke, 

2000; Dehaene, 1997). For example, it has been shown that infants discriminate between 

numerosities as a function of Weber’s law – a signature of the ANS. The minimal ratio required 

for discrimination has been shown to develop with age. As young as 6 months, infants can 

discriminate 8 vs. 16 dots (1:2 ratio), but not 8 vs. 12 dots (2:3 ratio); by 9 months, they succeed 

at a 2:3 ratio discrimination, and by preschool years, at a 3:4 ratio (Feigenson et al., 2004; Halberda 

& Feigenson, 2008; Xu, Spelke, & Goddard, 2005; Lipton & Spelke, 2003; Xu & Spelke, 2000). 

Studies with infants have also shown that the ANS specifically encodes number, and not other 

non-numerical dimensions of sets. For example, as the number of objects increases in a set, the 

amount of space the objects occupy also increases. Thus, numerical and non-numerical dimensions 

are often correlated in sets of objects. Researchers have found that when non-numerical variables 

that co-vary with number, such as total surface area, are controlled for, infants continue to 

discriminate between sets of objects (e.g., arrays of dots or squares) on the basis of number, and 

that their discriminations follow Weber’s law (e.g., Xu & Spelke, 2000). Moreover, starting in 

infancy, there is evidence that the ANS represents relations between numerosities such as ordinal 

relations (Brannon, 2002; Suanda, Tompson, & Brannon, 2008), and addition and subtraction 

(McCrink & Wynn, 2004; see also Barth, LaMont, et al., 2005, 2006). Together, the evidence 

suggests that the ANS is a dedicated number system. Not only can it represent the numerosities of 

sets, but it can also represent numerical relations and operations.  

 

A non-verbal representation of individual objects 

In addition to the ANS, some have argued that there is another system for representing the 

numerosities of sets – parallel individuation (e.g., Carey, 2009; Le Corre & Carey, 2007, 2008). 
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However, unlike the ANS, this system is dedicated to representing individual objects. Specifically, 

under parallel individuation, each individual object is represented with a distinct mental symbol, 

and the limit on the system’s representational capacity comes from the number of objects it can 

represent in parallel. This system can only represent up to 3 or 4 objects. One piece of evidence 

for this system is that for the representation of small numbers (≤ 4) does not always show scalar 

variability. For example, in 1871, when estimating the number of beans being thrown into a box, 

W. J. Jevons found that he was almost perfect when estimating up to four beans, but his 

performance worsened as the number of beans increased (Jevons, 1871; see also Trick & Pylyshyn, 

1994 for similar evidence). This suggests that the ANS is not always recruited in the small number 

range. The fast and precise enumeration for small sets (≤ 4) indicates the role of parallel 

individuation – a system for representing individual objects.  

Evidence for parallel individuation is also found in infants (e.g., Feigenson & Carey, 2003, 

2005; Carey, 2009; Feigenson, Carey, & Hauser, 2002a; Feigenson, Carey, & Spelke, 2002). Using 

a manual search task, Feigenson and Carey (2003, 2005) showed that 14-month-old infants do not 

show ratio-dependent performance for small sets. In this task (Feigenson & Carey, 2003, 2005), 

infants watch as objects are hidden in an opaque box and are allowed to search for them. Infants 

succeed on this task if they search longer when the box is expected to contain objects, and if they 

stop searching when the box is expected to be empty. Using this paradigm, Feigenson and Carey 

found that if infants see two objects hidden in a box, and one of them is retrieved, they continue to 

reach into the box to look for the second object. In contrast, if they see two objects hidden, and 

both of them are retrieved, they stop searching. This suggests that they can distinguish 1 vs. 2. 

However, infants fail to search when they see four objects hidden in the box and two of them are 

retrieved. Thus, infants succeed at 1 vs. 2 but not 2 vs. 4. Given that the ratio of comparison is 1:2 
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for both discriminations, this suggests that infants’ success on this task does not depend on the 

ratio of the number of retrieved balls to the total number of hidden balls (see Feigenson et al., 2004 

for a review of similar evidence from other paradigms). Rather, it is determined by the total number 

of hidden balls, indicating that a capacity-limited system – i.e., parallel individuation, is recruited.  

On the basis of this finding, some have proposed that, although the primary function of 

parallel individuation is to track objects, it can also be used to represent the numerosity of sets 

(Carey, 2009; Le Corre & Carey, 2007, 2008). Specifically, they suggest that symbols for 

individual objects can enter into computations of one-to-one correspondence. Recall that in the 

manual search task, infants succeed as long as no more than three objects are hidden in the box 

(Feigenson & Carey, 2003, 2005). Critically, in contrast to previous studies (e.g., Clearfield & Mix, 

1999, 2001; Feigenson et al., 2002a), infants in this task appear to be tracking number, rather than 

continuous extent, such as the cumulative physical size of objects. For example, when infants 

retrieve a single large car whose volume is equal to the volume of the two cars hidden in the box, 

they expect to find another car in the box (Feigenson & Carey, 2003). Feigenson and Carey (2003, 

2005; Feigenson, 2005; Carey, 2009) proposed that infants succeed by comparing the number of 

hidden objects to the number of retrieved objects on the basis of one-to-one correspondence. When 

the two numbers match (i.e., when there is a one-to-one correspondence between hidden objects 

and retrieved objects), infants stop looking for objects in the box.  

Moreover, researchers have found that symbols for individuals can be “chunked” into sets. 

Feigenson and Halberda (2004) showed that infants can represent more than three hidden objects 

if the objects are presented as spatially distinct groups. For example, when infants are presented 

with two objects on the left side of the box, and two on the right, they represent all four objects as 

two chunks of two. Feigenson and Halberda suggest that, in this context, infants successfully 
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represent more than three objects by mentally chunking the objects in each spatial group into 

representations of “sets” (Feigenson & Halberda, 2004; Rosenberg & Feigenson, 2013). 

Given infants’ ability to compute one-to-one correspondence over representations of 

individual objects, and their ability to chunk objects into sets, Carey and colleagues have proposed 

that parallel individuation is powerful enough to represent the numerosity of sets. However, on 

closer inspection, the evidence is in fact limited. In the manual search task, infants create a working 

memory model of one set of objects, and compare a visible set to a set of objects stored in working 

memory. Infants are thus not representing two distinct sets. To date, there is no evidence that 

parallel individuation can support the numerical computation of two sets. A system that can only 

represent the numerosity of a single set is not a system that is powerful enough to represent 

numerical relations. This motivates the research reported in Chapter 2. Specifically, I ask whether 

parallel individuation can be used to compare distinct sets to examine the extent to which parallel 

individuation is a system for representing the numerosity of sets.  

 

A non-verbal representation of unspecified numerosities 

As adults, we are not limited to representing particular numerosities and can make 

generalizations over all possible numbers. For example, we know that when 1 is added to a very 

large set, the set contains more elements. We need not know how many objects are in this set; we 

understand that this is a general fact about number that holds for all numbers. This numerical fact 

can be expressed using a general statement, ‘x + 1 > x’. Therefore, as adults, we can reason about 

number without representing particular numerosities. I call this a representation of unspecified 

numerosities because the numerical statement holds true regardless of what numerosity x refers to.   

The representation of unspecified numerosities contrasts with that of particular numbers – 
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e.g., statements such as 2 + 1 > 2 – because knowledge about particular numbers does not 

generalize to other numbers. Knowing that 2 + 1 > 2 does not grant one the knowledge that ‘for 

any number x, x + 1 > x’, nor does it entail the knowledge of other specific number facts such as 

3 + 1 > 3.  

As adults, we can represent unspecified numerosities, but when and how do such 

representations develop? There has been a long-standing debate with regard to the origin of the 

representations of unspecified numerosities. On the constructivist view, children do not have a 

representation of unspecified numerosities until after they understand numerical equality (Piaget, 

1952). Drawing on data from his classic study of conservation of number, Piaget concluded that 

preschoolers fail to recognize that two sets are numerically equal when they are in one-to-one 

correspondence. In Piaget’s task, children are shown two sets that have the same number of objects, 

and they are placed in one-to-one correspondence (e.g., two rows of beads, with one bead above 

another bead). The experimenter asks if both sets have the same number. After the child judges 

that the two sets are the same, the experimenter transforms one of the sets spatially by making it 

longer. The child is then asked again about whether the two sets have the same number of objects. 

Piaget (1952) found that children younger than 6 or 7 years fail to recognize that the spatial cue 

(e.g., length) is irrelevant to judgments about the numerosity of sets. Note that, to succeed on the 

conservation of number task, one need not represent the specific numerosities. Success on Piaget’s 

conservation of number task requires knowledge that if two sets of objects are in one-to-one 

correspondence, the numerosity of one set of objects, x, is the same as the numerosity of another 

set of objects, y. This sort of general knowledge necessitates the ability to represent unspecified 

numerosities, because x and y can take any values. Moreover, it is not necessary to know the 

specific numerosity to understand that stretching a row of objects does not change its numerosity. 
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On Piaget’s theory, children do not have a representation of unspecified numerosities until after 

they are at the stage of concrete operations, at around ages 6 to 7 (Piaget, 1952). 

On the other side of the debate is the view that the representation of unspecified 

numerosities is innate. The specific proposals differ with respect to the innate components that 

constitute the representation of unspecified numerosities. For example, Leslie and colleagues 

(Leslie, Gallistel, & Gelman, 2007; Leslie, Gelman, & Gallistel, 2008) propose that numerical 

primitives such as the concept of ONE and the successor function (i.e., for each numeral N, there 

is a unique successor, N + 1) are the innate building blocks of natural numbers: “there is an innately 

given recursive rule S(x) = x + ONE” where S refers to the successor function, and ONE is an 

“innately given symbol with an integer value” (p. 132; Leslie et al., 2007). Thus, given an innate 

knowledge of the successor function that can take on any particular value, their account assumes 

an innate representation of unspecified numerosities.  

A similar proposal put forth by Rips and colleagues argues that humans have a powerful 

domain-general innate logic that allows one to derive knowledge that underlies the Peano axioms1, 

which define the natural numbers (Rips, Bloomfield, & Asmuth, 2008). Given that a representation 

of unspecified numerosities is required to represent the Peano axioms, Rips et al.’s account is 

committed to an innate representation of unspecified numerosities.  

Three sets of studies bear on the debate about children’s representation of unspecified 

numerosities. First, as mentioned earlier, Piaget investigated the issue using the conservation of 

number task that assessed children’s understanding of one-to-one correspondence. He found that 

children younger than 6 or 7 do not seem to understand that when two sets are in one-to-one 

                                                 
1 The Peano axioms state that (1) 1 is a natural number; (2) 1 is not the successor of any natural 

number; (3) if n is a natural number, then n + 1 is a natural number; (4) for natural numbers n 

and m, if n = m, then n + 1 = m + 1; (5) for every natural number n, S(n) is a natural number. 
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correspondence, they have the same numerosity irrespective of length. Based on this finding, he 

concluded that children who fail the conservation of number task do not understand that one-to-

one correspondence is a logically necessary equivalence that does not depend on perception. Thus, 

on his view, children who fail the conservation of number task do not have a representation of 

unspecified numerosities. 

Second, a recent study used a different paradigm to examine if children can use one-to-one 

correspondence to determine numerical equality (Izard, Streri, & Spelke, 2014). Using a manual 

search task, the researchers provided one-to-one correspondence cues for 2 ½-year-olds and acted 

out stories to test if they could make use of such cues to make quantity discriminations. Crucially, 

they used sets (e.g., 5 or 6) that were outside of children’s known number range. Thus, to succeed 

on the task, children have to reason about unknown numerosities using one-to-one correspondence. 

They found that children fail to use one-to-one correspondence to judge whether a set of retrieved 

objects matches a set of objects stored in memory.  

Finally, researchers have also investigated children’s representation of unspecified 

numerosities using tasks that require children to reason about the meanings of unknown number 

words (Sarnecka & Gelman, 2004; Condry & Spelke, 2008; Lipton & Spelke, 2006; Brooks, Audet, 

& Barner, 2013). Results are, however, inconsistent across these studies, and different 

interpretations have been proposed to explain children’s performance (e.g., Brooks et al., 2013). 

In particular, in some studies, 2- and 3-year-old children appear to understand the conditions under 

which a change in number word is licensed (Sarnecka & Gelman, 2004; Brooks et al., 2013; Lipton 

& Spelke, 2006), whereas in some other studies with a slightly different paradigm, researchers 

have noted failure (Condry & Spelke, 2008; Brooks et al., 2013).  

In sum, these three sets of studies suggest that children may not be able to represent 
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unspecified numerosities until age 6. However, they have methodological concerns that may make 

it difficult to generalize their findings. First, in Piaget’s conservation of number task, children’s 

failure may be explained by a perceptual conflict between length and the numerosity of sets. It 

remains a possibility that children’s performance would improve if perceptual conflict were 

removed. Second, in Izard et al.’s study, young children were required to remember the content of 

the stories, which were fairly complex. Finally, in studies on children’s knowledge of unknown 

number words, their failure may not reflect a lack of numerical knowledge, but a lack of knowledge 

of how number words represent number. 

Given these methodological concerns, in Chapter 3, I explore when children begin to be 

able to reason about unspecified numerosities using a paradigm that removes (1) the perceptual 

conflict that may be present in the Piagetian conservation of number task, (2) the memory demands 

in Izard et al.’s study, and (3) the need to interpret number word meanings.  

In this paradigm, children were shown sets of objects, and observed some types of 

transformations performed on the set. Then the experimenter asked if there were more objects in 

the set after the transformation. Investigating children’s understanding of numerical 

transformations is one way to tap their knowledge of numerical relations. It also provides important 

insights into the development of mathematical thinking because knowledge of numerical 

transformations (e.g., that the addition of one element affects all numbers in the same way) reflects 

our ability to think about symbolic operations, and one can combine symbolic operations such as 

those studied in Chapter 3 to form more complex numerical thought.  

 

The present research 

The goal of the present research is to investigate the nature of non-verbal representations 



 

11 

 

of number in early childhood. I chose to study non-verbal representations because they may be the 

fundamental building blocks for later numerical knowledge.  

In Chapter 2, I investigate the nature of representations of particular numerosities. While 

the ANS can represent relations between numerosities starting in infancy, little is known about 

whether parallel individuation can also be used to represent numerical relations between sets of 

objects. To test this, in two experiments, I asked preschoolers between the ages of 2 ½ and 4 ½ 

years to compare either exclusively small numerosities (< 4) or exclusively large numerosities (> 

6). Crucially, the ratios of comparisons were equated between small and large numerosities. This 

allows me to use the accuracy of performance to address the question of whether parallel 

individuation can support numerical comparison. Moreover, to investigate whether parallel 

individuation is one of the developmental roots of numerical relations, I examined whether 

children who had not acquired number word meanings could use parallel individuation to compare 

numerosities.  

In Chapter 3, I investigate the developmental trajectory of the representation of unspecified 

numerosities. In three experiments, I asked when children between the ages of 3 and 5 years begin 

to reason that the addition of one element increases the numerosity of a set regardless of set size. 

Using visible sets and hidden sets of objects, children were asked to reason about the effects of 

various types of transformations (e.g., addition, subtraction, and rearranging objects) on 

numerosity.  

In the final chapter, I highlight some contributions that the present research makes to the 

field of numerical cognition, and discuss the implications for verbal representations of number, 

along with the similarities and differences between the computations of numerical comparison 

reported in Chapters 2 and 3.  
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Chapter Two: The role of non-verbal representations of sets in numerical comparison  

According to structuralism, an influential theory of the nature of mathematical objects, the 

natural numbers are nothing but a system of relations (e.g., Shapiro, 2000). Therefore, accounts of 

our knowledge of the natural numbers and of its developmental origins cannot be limited to 

explaining how we represent individual numbers and how we acquire these representations. They 

must also explain how we represent relations between them and how these representations develop.  

One of the possible developmental roots of our representations of relations between 

numbers is the Approximate Number System (ANS). The ANS represents number approximately, 

and does not discriminate all pairs of numerosities with equal precision (Dehaene, 1997; Gallistel 

& Gelman, 2000; Meck & Church, 1983). Rather, the discrimination precision of the ANS is a 

function of the ratio of numerosities (e.g., Moyer & Landauer, 1967; Lipton & Spelke, 2003; Xu 

& Spelke, 2000; Xu, Spelke, & Goddard, 2005; Xu & Arriaga, 2007; Coubart, Izard, Spelke, Marie 

& Streri, 2014). For example, 9-month-olds can discriminate numerosities that differ by a 2:3 ratio 

(e.g., 6 vs. 9), but not a 3:4 ratio (e.g., 12 vs. 16). Starting in infancy, the ANS also represents 

relations between numerosities such as ordinal relations (Brannon, 2002; Suanda, Tompson, & 

Brannon, 2008; see Barth, LaMont, et al., 2005, 2006 for evidence from preschoolers), addition 

and subtraction (McCrink & Wynn, 2004; see also Barth, LaMont, et al., 2005, 2006), and 

proportions of discrete quantities (McCrink & Wynn, 2007). Although this is controversial, some 

studies suggest that later numerical reasoning about numerical relations is at least partially rooted 

in the ANS, even when the reasoning involves manipulating mathematical symbols (e.g., Halberda, 

Mazzocco, & Feigenson, 2008; Libertus, Feigenson & Halberda, 2011). 

However, multiple studies have shown that, in various contexts, infants and adults often do 

not use the ANS to represent the numerosity of sets when they include 4 or fewer objects. Instead, 
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they use a distinct system whose capacity is limited to sets of up to 3 or 4 objects (e.g., Feigenson, 

Carey, & Hauser, 2002a; Feigenson & Carey, 2003, 2005; Feigenson, Dehaene, & Spelke, 2004; 

Lipton & Spelke, 2004; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008; Trick & Pylyshyn, 1994; 

Xu, 2003). Most agree that this system represents individual objects and their features and that the 

limit on its capacity comes from the number of objects it can represent in parallel. It is thus often 

referred to as “parallel individuation.” There is also growing agreement that this system develops 

early in infancy (e.g., Feigenson, et al., 2002a; Hyde & Spelke, 2011; Coubart et al., 2014).  

Some have argued that, in addition to representing objects, parallel individuation provides 

another developmental root of our representations of numerosities and of the relations between 

them (Carey, 2009; Feigenson & Carey, 2003, 2005; Le Corre & Carey, 2007, 2008). However, to 

date there is no evidence that parallel individuation can be used to compare the numerosities of 

distinct sets. As made clear by structuralist philosophers of mathematics, a system that can encode 

the numerosity of individual sets but that cannot compare the numerosities of distinct sets cannot 

support the acquisition of much numerical knowledge. Therefore, to further investigate the extent 

to which parallel individuation can be thought of as a developmental root of our numerical 

knowledge, the experiments in Chapter 2 ask whether children can use this system to compute 

relative numerosity– i.e., to determine which of two distinct sets contains more objects – prior to 

going to school, and prior to acquiring numerical language. 

There are some reasons to think that parallel individuation is one of the developmental 

roots of our knowledge of relative numerosity. First, Carey and colleagues (Feigenson & Carey, 

2003, 2005; Carey, 2009; see also Uller, Carey, Huntley-Fenner, & Klatt, 1999) have argued that, 

from infancy on, computations of one-to-one correspondence are defined over the representations 

of objects created by the parallel individuation system. For example, Feigenson and Carey (2003) 
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suggested that infants keep track of the number of objects hidden in a box by representing each 

hidden object with a unique symbol that is held in working memory, where each symbol functions 

as a mental tally mark of sorts. Every time they retrieve an object, they match it to an active tally 

mark in working memory. When each tally mark has been matched to an object, infants stop 

reaching. Second, infants can use parallel individuation to represent more than one set at a time. 

That is, under some conditions, representations of objects can be grouped into two or three “chunks” 

of up to three objects (Moher, Tuerk, & Feigenson, 2012; Feigenson & Halberda, 2004; see Frank 

& Barner, 2011 for evidence of object-chunking in school-age children).  

Given that parallel individuation can compute one-to-one correspondence within a set, and 

can represent more than one set at a time, I hypothesize that parallel individuation may also make 

it possible to determine which of two sets contains more objects. If it can do so prior to the 

acquisition of numerical language, then it could be one of the developmental roots of our 

knowledge of relations between numerosities. To my knowledge, no study has directly tested 

whether these two hypotheses are true. To test these hypotheses directly, a study must show that 

the basis of the comparison is numerosity and not any other physical property that co-varies with 

it (e.g., total physical size). It must also show that the comparison is not carried out with the ANS, 

the other non-verbal system of numerical representation that is available to infants.  

To accomplish the latter goal, a study must (1) include numerosities that can be compared 

with parallel individuation (henceforth, “small numerosities”) and numerosities that can only be 

compared with the ANS (henceforth, “large numerosities”); (2) use the same ratios for 

comparisons of small numerosities and comparisons of large numerosities; and (3) show that 

performance on comparisons of small numerosities is significantly different from performance on 

comparisons of large numerosities. Pairs of sets that straddle the boundary between parallel 
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individuation and the ANS must be avoided because the pattern of performance to be expected in 

such situations is not well known. 

Therefore, the right design crucially depends on the upper limit on the capacity of parallel 

individuation. Unfortunately, it is somewhat unclear. Some studies suggest that it can hold up to 4 

objects, but many others suggest that it cannot hold more than 3 (e.g., Starkey & Cooper, 1980; 

Feigenson, et al., 2002a; Feigenson & Carey, 2005). The bulk of the evidence that suggests it can 

hold up to 4 objects comes from studies of adult humans or rhesus monkeys (e.g., Luck & Vogel, 

1997; Pylyshyn & Storm, 1988; Hauser, Carey, & Hauser, 2000); only one out of many infant 

studies suggests that it can hold up to 4 objects (Ross-Sheehy, Oakes, & Luck, 2003). Moreover, 

a study of non-verbal numerical comparisons in human adults has shown that they use parallel 

individuation when sets are comprised of 3 or fewer objects, and that they rely on the ANS when 

they are comprised of 4 or more objects (Choo & Franconeri, 2013). Therefore, I suggest that 

comparisons should not include sets of 4 objects because the way such sets are represented is 

unclear. In other words, small numerosities should be limited to sets of up to 3 objects and large 

numerosities should consist of sets of at least 5 objects.  

Most studies of non-verbal numerical comparisons fail to meet at least one of the above 

demands. Some have showed clear evidence for the use of parallel individuation in comparisons 

of sets but also showed that the comparisons were based on physical attributes of the sets (e.g., 

their total physical size) rather than on their numerosity (Feigenson, et al., 2002a; Feigenson, et 

al., 2002b; Clearfield & Mix, 1999, 2001; Xu, et al., 2005). Other studies have showed clear 

evidence of comparisons based on numerosity but did not include comparisons where both sets 

contained fewer than 4 objects (Odic, Pietroski, Hunter, Lidz, & Halberda, 2012; Odic, Libertus, 

Feigenson, & Halberda, 2013). Studies that have included comparisons where both sets contained 
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fewer than 4 objects did not also include comparisons where both sets included at least 5 objects 

(Barner & Snedeker, 2005, 2006; Brannon & Van de Walle, 2001; Feigenson, 2005; Feigenson et 

al., 2002a, 2002b). Therefore, none of these studies are able to distinguish whether children recruit 

parallel individuation or the ANS to compare two small sets of objects. 

To my knowledge, only two studies clearly met all of the demands laid out above (Choo 

and Franconeri, 2013; Wagner & Johnson, 2011).2 However, neither of them included children 

who had not yet begun to learn number word meanings. One of the studies was conducted with 

children who had all learned the meaning of at least some number words (Wagner & Johnson, 

2011). The other was conducted with adults (Choo & Franconeri, 2013). Therefore, these studies 

cannot tell us whether parallel individuation is one of the developmental roots of our knowledge 

of relative numerosity, in the sense of being available prior to the acquisition of numerical language. 

I aimed to fill this gap with a study of non-verbal numerical comparisons that met all the 

conditions listed above, namely: (1) participants included children who had not learned the 

meaning of any of the number words that denote the numerosities used in this study; (2) I included 

pairs of comparisons where both sets were unquestionably within the range of parallel 

                                                 
2Two additional studies compared preschoolers’ performance on non-verbal numerical 

comparisons of what they called small numerosities to their performance on comparisons of 

larger numerosities where all comparisons had the same ratio (Cantlon, Safford, and Brannon, 

2010; Rousselle, Palmers and Noel, 2004). Neither of these studies found a difference between 

performance on small and large comparisons. However, on closer inspection, we noticed that 

there were problems with each study. Rousselle et al.’s study included three number ranges: 

small (1 to 4), medium (4 to 8) and large (8 to 16). Both the small and the medium number 

ranges included comparisons that potentially straddle the boundary between parallel 

individuation and the ANS (e.g., 3 vs. 4 and 4 vs. 6). Therefore, their results are difficult to 

interpret. Cantlon et al’s study had only one pair of comparisons that actually had the right 

design features – namely, a pair comprised of comparisons of 1 vs. 2 and 6 vs. 12. Their results 

are also difficult to interpret. They found that children are better at finding the numerical match 

for 1 object (out of 1 and 2 objects) than at finding the match for 6 or 12 objects (out of 6 and 

12). However, they also found that children are not significantly better at finding a match for 2 

(out of 1 and 2) than at finding a match for 6 or 12 (out of 6 and 12).   
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individuation – i.e,. both contained no more than 3 objects – and pairs where both sets were 

unquestionably within the range of the ANS – i.e., both contained at least 5 objects; and (3) the 

ratios of the small numerosities were the same as the ratios of the large numerosities. Given that 

ratios were equated, if children recruit the ANS to compare small and large numerosities, I should 

observe equal performance. If participants are not equally accurate on the comparisons of small 

numerosities and on the comparisons of large numerosities, this would suggest that different 

systems underlie performance for these two number ranges. Given that the ANS is required for 

large number comparisons, this would suggest that parallel individuation can be used to compare 

small numerosities.3 Moreover, if I find that children who have not yet acquired number words for 

the numerosities used in the study show a difference in comparing small and large numerosities, 

this would suggest that parallel individuation is one of the developmental roots of our knowledge 

of numerical relations.  

 

                                                 
3 There are no strong a-priori reasons to make a directional prediction with regard to children’s 

performance on small numerosity comparisons and large numerosity comparisons. On the one 

hand, one could predict that children’s performance for small numerosity comparison would be 

worse than for large numerosity comparison. This is because in previous studies, infants have 

been shown to attend to continuous cues for small sets under parallel individuation (Clearfield & 

Mix, 1999, 2001; Feigenson et al., 2002a), so it is possible that preschoolers may fail to compare 

two small sets of objects on the basis of number in the current study. Specifically, one could 

predict that they would demonstrate above chance performance on trials in which continuous 

cues co-vary with number (i.e., size-number congruent trials, see Methods), but would perform at 

chance on trials in which continuous cues are in conflict with number (i.e., size-number 

incongruent trials, see Methods). On the other hand, one could predict that children’s 

performance for small numerosity comparison would be better than for large numerosity 

comparison, because if infants can compute one-to-one correspondence on a single set of objects 

(Feigenson & Carey, 2003, 2005), and if they can chunk small sets of objects (e.g., Feigenson & 

Halberda, 2004), then there is reason to suggest that they can also compare two sets of objects on 

the basis of number. Given that it is unclear from previous research whether children will 

perform better or worse on small numerosity comparison than large numerosity comparison, a 

directional prediction was not made.  
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Experiment 1 - Comparisons of small vs. large numerosities 

Method 

Participants 

A total of 99 2½ - to 4½-year-olds participated in this study. Fifty of them were tested on 

comparisons of small sets only (average age of 3 years 7 months; range: 2 years 7 months – 4 years 

7 months; 22 males), and 49 were tested on comparisons of large sets only (average age of 3 years 

7 months; range: 2 years 6 months – 4 years 7 months; 30 males). All of the children were recruited 

in Southwestern Ontario in Canada, and were predominantly monolingual speakers of English.  

Design and procedure 

Children were tested on a numerical comparison task and on Give-N, a standard assessment 

of number word knowledge (Wynn 1990). The Give-N task was always administered at the end of 

the testing session.  

Numerical comparison. The numerical comparison task always started with an 

experimenter introducing two puppets to the children - a frog and a duck. Then, the familiarization 

trial began. Children were shown a picture of a rectangle and asked to name it, e.g., “Do you know 

what this is?” If children failed to provide a label, the experimenter suggested one (e.g., block, 

rectangle), and encouraged children to repeat it. After familiarization, the experimenter showed 

children two pictures of blocks, placed one in front of each of the two puppets, and said, “Froggie 

has some [blocks], duckie has some [blocks], who has more [blocks]?” This instruction was 

repeated for each trial.  

The numerical comparison task had two between-subject conditions that differed in the 

range of numbers tested: small numbers (<4) and large numbers (>4). In each condition, sets that 

differed by a 1:3 and 2:3 ratio were shown. Children in the small numerosity condition were asked 
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to compare 1 vs. 3 (4 trials) and 2 vs. 3 (4 trials). Children in the large numerosity condition were 

asked to compare 6 vs. 18 (4 trials) and 6 vs. 9 (4 trials). All sets consisted of red rectangles printed 

on letter-sized paper. The rectangles in each individual set were all of the same physical size. 

However, the relation between the physical size of individual rectangles, their total perimeter and 

area, and numerosity varied across trials (see Figures 1a, 1b, 1c and 1d). On half of the trials, the 

two sets had the same cumulative perimeter and surface area, so that the physical size of the 

individual rectangles in the sets conflicted with numerosity (i.e., the rectangles in the numerically 

smaller set were physically larger). Thus, I refer to these trials as “size-number incongruent.” 

(Figures 1b and d). On the other half of the trials, the physical size of the rectangles was the same 

in both sets and thus did not conflict with numerosity. Consequently, the cumulative perimeter and 

surface area of the sets was confounded with numerosity (i.e., the set with a greater number of 

objects also had a larger cumulative perimeter and a larger surface area; Figures 1a and c). I refer 

to these trials as “size-number congruent.”  

 In the small numerosity condition, for size-number congruent trials, the cumulative surface 

area of the sets ranged from 1.5 cm2 to 12 cm2, and their cumulative perimeter ranged from 5.32 

cm to 30cm. For size-number incongruent trials, the cumulative surface area was always 6 cm2, 

and cumulative perimeter was 18 cm. In the large numerosity condition, for size-number congruent 

trials, the cumulative surface area of the sets ranged from 18 cm2 to 72 cm2, and their cumulative 

perimeter ranged from 31.92 cm to 144 cm. For size-number incongruent trials, cumulative surface 

area ranged from 18 cm2 to 36 cm2, and cumulative perimeter ranged from 54 cm to 108 cm.  

Pairs of sets of rectangles were presented in one of two item orders. For each order, the 

correct side (left or right), ratio presented (1:3 or 2:3), numerosity pair (2 vs. 3 or 1 vs. 3; 6 vs. 9 

or 6 vs. 18), and trial type (size-number congruent or size-number incongruent) was randomized. 
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In addition, no two consecutive trials were of the same trial type and numerosity pair. No feedback 

was given. If the child did not respond, the experimenter repeated the question. No prompts were 

given.   

       

Figure 1a. A size-number congruent trial in the small numerosity condition.  

 

       

Figure 1b. A size-number incongruent trial in the small numerosity condition.   
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Figure 1c. A size-number congruent trial in the large numerosity condition.  

       

Figure 1d. A size-number incongruent trial in the large numerosity condition. 

 

Give-N. The purpose of this task was to assess children’s number word knowledge. 

Children were first introduced to a puppet, a tub of 10 fish, and a plate. They were then told that 

the puppet wanted to eat some fish, and the experimenter asked the child to give the puppet N fish 

(e.g., “Can you put one fish on the plate?”). Children were asked to give 1 and then 3 fish on the 

first two trials. If children succeeded on both, they were asked to give 5 fish. If children failed to 

correctly give 1 for “one” or 3 for “three”, the experimenter asked for two fish. At this point, if 

children succeeded in response to a request for N, the next request was N+1; if they incorrectly 

responded to the request for N, the next request was for N-1. The highest numeral requested was 

“six”.  
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Children were called ‘N-knowers’ (e.g., ‘1-knowers’) if they correctly gave N fish two out 

of three times when asked for N, but failed to give the correct number two out of three times for 

N+1. Children who failed to give one fish when asked for “one” were classified as ‘non-knowers’. 

Children who only knew a subset of the number words – i.e., ‘1-knowers’, ‘2-knowers’, ‘3-

knowers’, and 4’-knowers’ – were called ‘subset-knowers’. Children who gave the correct number 

of fish for all numerals asked for (up to six) were called ‘Cardinal Principle-knowers’, ‘CP-

knowers’ for short.  

Results 

 

Give-N. The number of children and the mean age in each knower-level group are presented 

in Table 1. Age was significantly correlated with children’s knower-level, Pearson’s r = .52, p < 

.001.   

 Small Large 

 N Mean Age (Range) N Mean Age (Range) 

Non-knowers 8 3;1 (2;9 - 3;8) 7 3;5 (3;2 - 3;10) 

1-knowers 12 3;5 (2;7 - 4;0) 10 3;0 (2;6 - 3;7) 

2-knowers 10 3;5 (2;8 - 3;11) 12 3;9 (3;2 - 4;7) 

3-knowers 12 3;10 (3;1 - 4;7) 11 3;8 (2;11 - 4;2) 

CP-knowers 8 3;11 (3;2 - 4;7) 9 3;11 (2;11 - 4;7) 

Table 1. Age and number of children in each knower-level group in Experiment 1. 

 

Numerical Comparisons. A linear mixed effects model was used to analyze proportion 

correct on the numerical comparison task. My first analysis found no order or gender effects (all 

p’s > .33), so these variables were not included in subsequent analyses. In the final model, I 
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included Number Range (small vs. large), Size-Number Congruence (congruent vs. incongruent), 

Ratio (1:3 vs. 2:3), Knower-Level (non-knowers, subset-knowers, vs. CP-knowers) as fixed 

factors, centered Age as a covariate, and subject as a random factor. I also included all 2-way 

interaction terms involving Number Range.4  

There was an effect of Number Range, β = -.76, SE = .34, p = .015. Children were better 

at comparing small numerosities (M = .79, SE = .031) than large numerosities (M = .66, SE = .032). 

There was also a main effect of Size-Number Congruence, β = .095, SE = .042, p < .001, with 

better performance on congruent (M = .80, SE = .025) than incongruent trials (M = .65, SE = .030). 

I also found an effect of Age, β = .13, SE = .058, p < .001. In addition, there was a main effect of 

Knower-Level, β = -.18, SE = .10, p = .003. CP-knowers (N = 17, M = .93, SE = .039) were 

significantly more accurate than both non-knowers (N = 15, M = .60, SE = .061, t(30) = -4.72, p < 

.001) and subset-knowers (N = 67, M = .72, SE = .030, t(82) = -3.36, p < .001). Non-knowers did 

not differ from subset-knowers (t(80) = -1.7, p = .093). I also found a Number Range x Age 

interaction, β = .17, SE = .083, p =.040. No other interactions were found.  

I analyzed the Number Range by Age interaction effect by splitting the sample into two 

age groups using the sample mean: younger preschoolers (2 years 6 months to 3 years 6 months) 

and older preschoolers (3 years 7 months to 4 years 7 months). Independent samples t-tests 

revealed that there was an effect of Number Range for younger preschoolers (small: N = 23; large: 

N = 21), t(42) = 2.27, p = .028, but the effect was not significant for older preschoolers (small: N 

                                                 
4 I chose linear mixed models because they allow for interactions between factors and covariates. 

I first fit a linear mixed model with all main effects and interaction terms and found that adding 

interaction terms did not improve the fit of the model compared to the model with only main 

effects. Also, none of the interactions except for Number Range x Age was a significant 

predictor. Thus, I only included 2-way interaction terms involving Number Range because I was 

primarily interested in whether small and large comparisons differed.  
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= 27; large: N = 28), t(53) = 1.37, p = .18 (see Figure 2).  

 

 

Figure 2. Overall proportion correct on small and large numerosity comparisons for younger and 

older preschoolers in Experiment 1. Error bars represent standard error of the mean.  

 

I also tested whether children performed above chance for small and large numerosity 

comparisons. Older preschoolers performed above chance on both small, t(26) = 10.26, p < .001, 

and large comparisons, t(27) = 8.17, p < .001. However, younger preschoolers performed 

significantly above chance for small comparisons, t(22) = 3.68, p < .001, but not for large 

comparisons, t(20) = .44, p > .66.  

Given the main effect of Number Range, I asked whether better performance on 

comparisons of small numerosities was driven by better performance on the 1 vs. 3 comparisons 

only. Indeed, by physical necessity, whenever one of the choices in a comparison is one object, 

the other choice is always the right answer. Thus, comparisons where one of the choices is a single 

object may be easier than all other comparisons. Yet, independent samples t-tests revealed that the 
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effect of Number Range was not specific to comparisons of 1 vs. 3. Instead, the effect of Number 

Range was significant for comparisons with a 2:3 ratio, t(97) = 2.05, p = .043 (Means: 2 vs. 3 = 

.81 and 6 vs. 9 = .69), but not for comparisons with a 1:3 ratio, t(97) = 1.71, p = .091 (Means: 1 

vs. 3 = .78 and 6 vs. 18 = .68). 

The difference in accuracy suggests that children used two different systems - parallel 

individuation and ANS – for the small and large comparisons. However, it is possible that this 

accuracy difference arose because children used counting to determine which of two small sets 

was more numerous. To address this possibility, I analyzed whether subset-knowers – i.e., children 

who had not acquired the cardinal principle – performed significantly more accurately on small 

comparisons than large comparisons. Results show that they did, t(65) = 2.16, p = .035, (Small: M 

= .78, SE = .043; Large: M = .66, SE = .040). I also found that subset-knowers performed 

significantly better than chance on small comparisons, t(33) = 6.54, p < .001. The fact that even 

children who did not understand counting performed well on small comparisons (and better than 

on large comparisons) suggests that strategies such as counting are not responsible for the 

difference in performance for small and large comparisons.  

Given the main effect of knower level, I also compared children’s performance in the small 

and large numerosity conditions against chance for each knower-level group (see Figure 3). I 

combined congruent and incongruent trials in this analysis. One-sample t-tests showed that all 

knower-level groups performed above chance (all p’s < .05) for small numerosity comparisons 

except for 1-knowers (p = .17). For large number comparisons, it was only after children learned 

the meaning of ‘two’ that they demonstrated above chance performance (all p’s <.05). These 

results suggest that children are able to compare small sets in the absence of number word 

knowledge (see more below), but the ability to compare large sets may change with the 
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development of number word learning.    

 

 

Figure 3. Overall proportion correct on small and large numerosity comparisons by knower-level 

group in Experiment 1. Error bars represent standard error of the mean. * p < .05 

 

To further explore whether the ability to use parallel individuation to compare numerosities 

is available prior to the acquisition of any number word meanings, I analyzed whether non-

knowers performed significantly above chance on size-number incongruent trials for small 

numerosities, and whether their performance for small numerosities was also better than for large 

numerosities. I combined the 2 vs. 3 and 1 vs. 3 comparisons and found that non-knowers 

performed significantly above chance, M = .66, SD = .23, t(7) = 1.93, p = .048 (1-tailed), d = .68 

(90% CI: .0071, 1.31).5 Moreover, given the possibility that non-knowers’ performance might be 

                                                 
5 One may argue that a two-tailed test is more appropriate and conservative. Under a two-tailed test, non-

knowers’ performance on small comparisons would almost reach significance, p = .096. However, it is 

also important to evaluate an effect based on its effect size. The effect size found here - d = .68 (90% CI: 
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carried by the comparison that involved a set of 1, I removed 1 vs. 3 and only analyzed their 

performance on 2 vs. 3. I found that non-knowers continued to perform marginally above chance, 

M = .63, SD = .35, W = 1.63, p = .10.6 I also found that they performed marginally better on 

comparing small sets (1 vs. 3 and 2 vs. 3) than large sets (6 vs. 18, 6 vs. 9), M = .43, SD = .24, 

t(13) = 1.89, p = .082. These results suggest that parallel individuation can likely support numerical 

comparisons prior to the acquisition of numerical language.  

Discussion 

Two- to four-year-old children were tested on a non-verbal numerical comparison task in 

one of two conditions: comparing sets of three or fewer objects or sets of six or more objects. The 

ratios of the numerosities in both the small and large numerosity comparisons were the same. 

Despite that, children did not perform equally well on all comparisons. Rather, they were more 

accurate on small than on large comparisons. This difference also held in children who had not 

learned the meaning of any number word – i.e., non-knowers. Non-knowers performed above 

chance when they compared small numerosities, and did better on small numerosities than on large 

ones. Finally, the results also indicate that the effect of Number Range only held in younger 

children (2;6 to 3;6).  

These results suggest that children relied on distinct systems to compare small and large 

numerosities – i.e., parallel individuation for small ones and the ANS for large ones. Given that 

the same difference was observed in non-knowers and that non-knowers performed above chance 

on comparisons of small numerosities even when area and numerosity were not congruent, it may 

be that some of the operations that can be performed over representations of objects created with 

                                                 
.0071, 1.31) - is of medium size. Future studies should replicate the current study with a larger sample of 

non-knowers. 
6 A one-sample Wilcoxon signed rank test was performed for this analysis because of the non-parametric 

data structure for the comparison of 2 vs. 3. 
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parallel individuation provide one of the developmental roots of representations of relative 

numerosity.  

However, at first sight, the absence of a ratio difference for the large comparisons may 

appear to suggest that children did not use the ANS to compare large numerosities. In particular, 

children were not more accurate on the large comparisons with a large ratio (6 vs. 18) than on the 

large comparisons with a smaller ratio (6 vs. 9), which may raise the concern that my task was not 

appropriately designed to test the question of interest because it may not have engaged the ANS.  

I believe that this concern is unwarranted for two reasons. First, three other studies of non-

verbal numerical comparisons in preschoolers with designs similar to the current study also failed 

to find accuracy differences for ratios similar to Experiment 1 – i.e., 1:2 and 2:3 (Abreu-Mendoza, 

Soto-Elba, & Arias-Trejo, 2013; Halberda & Feigenson, 2008; Rousselle & Noel, 2008). 

Importantly, two of these studies provided positive evidence that their task engaged the ANS – 

i.e., they found that children were better on comparisons with 1:2 and 2:3 ratios than on 

comparisons with harder-to-discriminate ratios (Abreu-Mendoza et al., 2013; Halberda & 

Feigenson, 2008). Moreover, children’s average accuracy on the large numerosity comparisons in 

the present study was similar to that which has been reported in previous studies – i.e., near 70% 

for comparisons with ratios between 2:3 and 1:2 (Halberda & Feigenson, 2008; Rousselle & Noel, 

2008). Therefore, our failure to find a difference between performance on comparisons of 6 vs. 9 

(a 2:3 ratio) and of 6 vs. 18 (a 1:3 ratio) does not mean that our task did not engage the ANS. 

Rather, it is consistent with, perhaps even predicted by, what we know about how ratio affects 

children’s performance when they use the ANS to compare numerosities.  

Second, there is no other plausible explanation of children’s performance on large 

comparisons in our study. The only other strategies that are available to adults are counting, and 
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breaking up the large collections into smaller collections of 2 to 4 elements and adding these up.  

Neither of these strategies can explain why I find the same pattern of results when I restrict my 

analyses to subset-knowers. Subset-knowers do not know the cardinal principle. Therefore, they 

cannot have compared the collections by counting them. Moreover, it is highly unlikely that 

children who do not know the cardinal principle nonetheless know the sums required to determine 

the numerosity of collections of 6, 9 or 18 elements by breaking them up into small collections of 

2 to 4. Therefore, it is unreasonable to assume that subset-knowers used this strategy. Then how 

did subset-knowers compare the large numerosities? I believe that, short of postulating new 

representational systems for which no evidence has been provided, the only explanation left is that 

they did so with the ANS. 

Another possible concern is that children controlled how long the collections were 

presented to them, so that, consequently, they could have used counting instead of parallel 

individuation and/or the ANS to compare numerosities. Since small collections are easier to count 

than large ones, this could explain why children were more accurate on small comparisons than on 

large ones. However, as I argued above, the fact that subset-knowers showed this pattern of results 

rules out this alternative. There remain two alternatives that cannot be ruled out directly by the 

results of Experiment 1. First, it could be that children were, in fact, relying on the ANS for all 

comparisons but that they performed more poorly on large comparisons because these comparisons 

make greater demands on non-numerical aspects of processing. For example, larger sets 

necessarily require children to divide their attention over more objects than small sets, and this 

could cause a decrement in performance. Although possible in theory, this “processing demands” 

alternative is unlikely to be the right explanation. First, on this alternative, the difficulty of 

comparisons should increase continuously as a function of the absolute value of numerosities. 
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Contrary to this prediction, previous research provides strong evidence that when infants (Wood 

& Spelke, 2005) or adults (Barth, Kanwisher, & Spelke, 2003) use the ANS to compare 

numerosities, their level of performance for a given ratio of numerosities is the same regardless of 

the absolute value of the numerosities. Second, it may be that children performed better on 

comparisons of small numerosities because the correct answer in this condition was always the 

same – i.e., 3 – whereas the correct answer in the large numerosity condition alternated between 9 

and 18. Both of these alternatives were tested in Experiment 2. 

 

Experiment 2 - Comparisons of small vs. large numerosities with a wider range of set sizes 

Experiment 2 had two main goals. First, I sought to replicate the effect of Number Range 

in Experiment 1. Second, I aimed to address the two alternative explanations raised in Experiment 

1. As in Experiment 1, one group of children compared small numerosities only and another group 

compared large numerosities only. All comparisons differed by a 2:3 ratio.  

To address the processing demands alternative the large comparisons included a wider 

range of numerosities: in addition to 6 vs. 9, I also included 10 vs. 15 and 12 vs. 18. Evidence that 

children’s accuracy decreases as numerosity increases would support this alternative. On the other 

hand, evidence that (1) children perform better when they compare small numerosities than when 

they compare large numerosities at the same ratio, and that (2) they perform equally on all 

comparisons of large numerosities would provide strong evidence against the processing demands 

alternative.  

Experiment 2 also tested whether the children in Experiment 1 who compared small 

numerosities were more accurate than those who compared large ones because the correct answer 

was always the same numerosity in the former condition but not in the latter. To test this, the small 
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numerosity condition of Experiment 2 included comparisons of 1 vs. 2 and 3 vs. 4 in addition to 

comparisons of 2 vs. 3. Children’s performance on 3 vs. 4 will also shed light on whether a set of 

4 objects can be represented with parallel individuation.  

Method 

Participants 

A total of 86 2 ½ - to 4 ½-year-olds participated in this study. There were 45 children in 

the small numerosity condition, with an average age of 3 years 5 months (range: 2 years 6 months 

– 4 years 5 months; 24 males), and 41 children in the large numerosity condition, with an average 

age of 3 years 5 months (range: 2 years 6 months – 4 years 9 months; 21 males). A majority of the 

children were recruited in Southwestern Ontario in Canada (N = 63; 24 in the small numerosity 

condition), and the remaining children were recruited in the Greater Boston Area in the US (N = 

23; 21 in the small numerosity condition). Participants were predominantly monolingual speakers 

of English.  

Design and procedure 

The stimuli and procedure were similar to Experiment 1. All except one child completed 

Give-N after the numerical comparison task. The numerical comparison task had two between-

subject conditions that differed on the range of numbers tested: small numbers (≤ 4) and large 

numbers (>4). As in Experiment 1, each individual set was composed of red rectangles of the same 

size, and all sets were printed on letter-sized paper. All pairs of numerosities differed by a 2:3 

ratio: children in the small numerosity condition were asked to compare 2 vs. 3 (8 trials), and those 

in the large numerosity condition compared 6 vs. 9, 10 vs. 15, and 12 vs. 18 (4 trials each). Children 

in the small numerosity condition also compared 1 vs. 2 (2 trials) and 3 vs. 4 (2 trials), and thus 

children completed a total of 12 trials in each condition. Size and number were incongruent in all 
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comparisons (as in Figures 1b and 1d). Pairs of sets of rectangles were presented in one of two 

item orders. In each order, the correct side (left or right) was counterbalanced and the order was 

pseudo-randomized such that no two consecutive trials were of the same pairs of numerosities. No 

feedback was given. 

In the small numerosity condition, the cumulative surface area ranged from 6 to 8 cm2 and 

cumulative perimeter ranged from 18 to 24 cm. In the large numerosity condition, cumulative 

surface area ranged from 18 to 36 cm2, and cumulative perimeter ranged from 54 cm to 108 cm. 

Results and Discussion 

Give-N. The number of children and the mean age in each knower-level group are presented 

in Table 2.7 Age was significantly correlated with children’s knower-level, Pearson’s r = .48, p < 

.001. 

 Small Large 

 N Mean Age (Range) N Mean Age (Range) 

Non-knowers 3 3;0 (2;10 - 3;3) 3 2;10 (2;8 - 3;0) 

1-knowers 8 3;0 (2;6 - 3;10) 12 3;1 (2;7 - 4;9) 

2-knowers 10 3;2 (2;7 - 4;5) 12 3;3 (2;6 - 4;0) 

3-knowers 9 3;5 (2;10 - 4;2) 5 3;8 (2;8 - 4;3)  

CP-knowers 14 3;10 (3;3 - 4;5) 9 4;1 (3;4 - 4;7) 

Table 2. Age and number of children in each knower-level group in Experiment 2. 

 

Numerical Comparisons. Preliminary analyses showed that children recruited in Canada 

                                                 
7 Across both small and large numerosity conditions, I found 1 4-knower and he was classified as a 3-

knower in the analyses. One child in the small numerosity comparison did not complete the Give-N task 

but was included in analyses for the numerical comparison task.  
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and in the US performed similarly, t(84) = 1.29, p = .20. Given that almost all American children 

(21/23) were tested in the small numerosity condition, I also compared Americans (n = 21) to 

Canadians (n = 22) on comparisons of small numerosities only, and again, found no difference, 

t(43) = .47, p = .64. Thus, I combined data from the two locations in the subsequent analyses. 

Preliminary analyses also revealed that there were no order or gender effects, so I collapsed across 

these variables (all p’s > .36).  

First, I asked if the effect of Number Range in Experiment 1 could be replicated. I 

constructed a generalized linear model predicting overall proportion correct using Number Range 

(small vs. large) and Knower-Level (subset-knowers vs. CP-knowers)8 as predictors, and centered 

Age as a covariate. I also included two interaction terms: Number Range x Age and Number Range 

x Knower-Level. Results revealed a main effect of Number Range, β = -.17, SE = .11, p =.015. As 

in Experiment 1, children were better at comparing small numerosities (M = .82, SE = .035) than 

large numerosities (M = .70, SE = .038). There was also an effect of Age, β = .091, SE = .07, p = 

.022. In addition, I found a main effect of Knower-Level, β = -.18, SE = .09, p =.022. CP-knowers 

(N = 23, M = .85, SE = .057) performed significantly better than subset-knowers (N = 62, M = .69, 

SE = .031). No interactions were found.  

To test the processing demands alternative, I compared the large numerosity comparisons 

to each other. No significant differences were found (all p’s > .64). I also compared 2 vs. 3 to each 

of the large numerosity comparisons individually. A significant difference was found in each case: 

6 vs. 9, t(76.3) = 2.42, p = .019; 10 vs. 15, t(84) = 2.25, p = .027; 12 vs. 18, t(84) = 2.58, p = .012 

                                                 
8 I only had a total of six non-knowers in Experiment 2 (n = 3 in the small numerosity condition, 

n = 3 in the large numerosity condition), and thus they were included in the subset-knowers 

group.  
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(see Figure 4).9 These results strongly suggest that the Number Range effect was categorical - i.e., 

children were more accurate on comparisons of small numerosities than on comparisons of large 

ones, but were equally accurate on all comparisons of large numerosities.  

 

Figure 4. Proportion correct on small and each of the large numerosity comparisons in 

Experiment 2. Error bars represent standard error of the mean.  

  

To examine whether children succeeded on 2 vs. 3 in Experiment 1 because they somehow 

defaulted to choosing 3 (or to avoiding 2) as the correct answer without doing the comparison. If 

children used the first strategy, they should have always chosen the wrong collection on 

comparisons of 3 vs. 4. If they used the second, they should have always chosen the wrong 

collection on comparisons of 1 vs. 2. This was not so. Rather, children performed significantly 

above chance on 1 vs. 2 (M = .77, SD = .38), t(44) = 4.8, p < .001, and on 3 vs. 4 (M = .74, SD = 

.33), t(44) =  4.9, p < .001. 

Moreover, given a main effect of knower level, I compared children’s performance on both 

                                                 
9 The statistics for equal variances not assumed was reported for the comparison between 2 vs. 3 

and 6 vs. 9 because Levene’s Test for Equality of Variances was significant (p=.045). 
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small and large numerosity conditions against chance as in Experiment 1 (see Figure 5). One-

sample t-tests showed that only 1-knowers, 3-knowers, and CP-knowers performed significantly 

above chance on small numerosity comparisons (all p’s < .05). Non-knowers (p = .46) and 2-

knowers (p = .091) did not. However, as shown in Table 2, there were only 3 non-knowers and, 

although 2-knowers’ performance was not significantly above chance, it approaches significance. 

In the large numerosity comparison, only CP-knowers performed significantly above chance. Two-

knowers’ (p = .089) and 3-knowers’ (p = .094) performance approaches significance, whereas non-

knowers’ and 1-knowers’ did not (all p’s > .45).  

 

 

Figure 5. Overall proportion correct on small and large numerosity comparisons by knower-level 

group in Experiment 2. Error bars represent standard error of the mean. * p < .05 

 

The evidence thus far suggests that preschoolers use parallel individuation to compare 

small numerosities. I next asked whether this ability is available prior to the acquisition of 

numerical language. Due to a small sample of non-knowers in the small numerosity condition (N 
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= 3), I combined non-knowers and 1-knowers in the current analysis. I included 1-knowers and 

analyzed their performance on 2 vs. 3 because they have not yet acquired number word meanings 

for the number words that designate the small numerosities I used in this analysis, namely ‘two’ 

and ‘three.’ I found that they performed significantly above chance, t(10) = 2.64, p = .013 (1-tailed; 

M = .71, SD = .27). I also examined whether non- and 1-knowers performed better on comparisons 

of small than large numerosities (M = .51, SE = .057), and found that they did, t(24) = 2.10, p = 

.046. This finding suggests that by the time children acquire the meaning of ‘one’, they can recruit 

parallel individuation to compare the numerosities of sets of up to four objects.  

 

Chapter Two Discussion 

Two separate experiments showed that preschoolers were modestly, but reliably more 

accurate in comparing numerosities between 1 and 3 than numerosities larger than 5, despite the 

fact that the ratios of all comparisons were the same. The same pattern was found on comparisons 

where size and numerosity were incongruent – i.e., where the total area and the total perimeter of 

both sets of rectangles were equal so that individual rectangles in the small set were larger than 

the ones in the large set. Moreover, both experiments showed that this effect is also found in 

children who have not learned the meaning of any number word beyond “one.”  

In my view, the best explanation of these findings is that preschoolers used distinct systems 

to compare small and large numerosities: parallel individuation for 1 to 3 (and likely, 4) and the 

ANS for more than 5. Various aspects of my results allow me to rule out alternative explanations. 

First, Experiment 2 showed that, although children were equally accurate on comparisons of a 

relatively wide range of large numerosities (6 vs. 9, 10 vs. 15, and 12 vs. 18), they were more 

accurate on comparisons of small numerosities (2 vs. 3) than on any of the comparisons of large 
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numerosities.  This suggests that children did not perform more poorly on comparisons of large 

numerosities because forming representations of larger numerosities made greater demands on 

domain-general perceptual or attentional processes. Rather, it suggests that there was a categorical 

difference between performance on comparisons of the numerosities of sets that can be represented 

with parallel individuation and performance on comparisons of numerosities that can only be 

represented with the ANS.  

Second, it cannot be that children were more accurate on comparisons of small 

numerosities because they could count small sets more easily than large ones. Indeed, children 

were discouraged from counting in this study, and, according to the experimenter’s informal 

observations, very few children actually attempted to count (see also Sophian, 1987). Furthermore, 

the same difference was found in children who had not learned how to use counting to determine 

the number of objects in a set – i.e., children who were subset-knowers or non-knowers. Another 

possibility is that most children could name the small numerosities more easily than the large ones 

without counting, and that naming the numerosities made the comparisons easier (see Le Corre & 

Carey, 2007). However, this does not explain why children who had not learned the meaning of 

any number words beyond “one” were more accurate on comparisons of small numerosities than 

on comparisons of large ones.  

While the current experiments found an effect of number range, two previous studies that 

tested performance on small and large non-verbal numerical comparisons in young children who 

had learned some numerical language did not find this effect (Abreu-Mendoza, Soto-Alba & Arias-

Trejo, 2013; Wagner & Johnson, 2011). The results of Experiment 1 suggest a possible explanation 

for this discrepancy. Specifically, Experiment 1 suggests that the difference between small and 

large comparisons is more pronounced in children who are younger than 3 years 6 months than in 
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older children. The participants in Abreu and colleagues’ and in Wagner and Johnson’s studies 

were older on average (the average age in these studies was 4 years plus or minus one month) than 

the ones in the present study (the average age in both Experiments was near 3 years 6 months). 

Moreover, neither group of researchers tested whether there was an interaction between age and 

number range. Therefore, they may have failed to find a difference between performance on small 

and on large comparisons because their analyses did not focus on children of the right age. 

 

 Relation between knowledge of the cardinal principle and performance on non-verbal numerical 

comparisons 

Across both experiments, I found that CP-knowers were better at numerical comparisons 

than subset-knowers, even when age was partialled out. Why is acquiring the cardinal principle 

related to an improvement in children’s performance on non-verbal numerical comparisons? One 

possibility is that acquiring the cardinal principle is related to changes in the non-verbal 

representations that are used to represent and compare numerosities in non-verbal numerical 

comparison tasks. Another possibility is that acquiring the principle is related to changes in other 

factors (e.g., domain-general processing) that affect performance on non-verbal numerical 

comparison tasks.  

Ideally, if the acquisition of the cardinal principle is related to a change in non-verbal 

representations of numerosity, one would expect to find a correlation between knowledge of the 

cardinal principle and performance on non-verbal numerical comparisons regardless of the relation 

between the physical properties of the collections (e.g., the sum of the areas of their elements or 

“total area”) and their numerosity. In accord with this, I find an effect of knowledge of the cardinal 

principle that is independent of age when trials where numerosity and total area are confounded 
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are intermixed with trials where total area is equated across collections (Experiment 1). I also 

found this effect when total area is always equated across collections (Experiment 2). The latter 

finding converges with other studies that suggest that the effect of the acquisition of the cardinal 

principle is more robust in tasks where total area is always equated across collections. Indeed, 

Abreu-Mendoza and colleagues found that when the task only includes numerical comparisons 

where the collections are equated for total area, knowledge of the cardinal principle predicted 

performance on non-verbal numerical comparisons independently of age. However, they also 

found that, when the task includes at least some trials where relative numerosity and relative total 

area are confounded (i.e., where the more numerous collection also has a larger total area), 

knowledge of the cardinal principle did not predict performance on non-verbal numerical 

comparisons independently of age. Rousselle & Noel (2008) also obtained the latter result. Thus, 

it may be that the correlation between the acquisition of the cardinal principle and performance on 

non-verbal numerical comparisons is not due to changes in non-verbal representations of 

numerosity per se. Rather, it may be due to changes in factors that play a greater role in numerical 

comparisons when the total area of the collections is not congruent with their numerosity. For 

example, Abreu-Mendoza and colleagues propose that the correlation may be mediated by changes 

in children’s ability to focus on numerosity as a dimension to be compared and/or in their executive 

function (see Negen & Sarnecka (under review) for a similar proposal).  

 

How does parallel individuation support numerical comparison of distinct sets? 

How does parallel individuation support the computation of numerical comparison? 

Previous studies of infants’ memory for hidden objects suggest that a possible mechanism is via 

the computation of one-to-one correspondence. Feigenson and Carey (2003, 2005) found that 
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infants use parallel individuation to represent up to three objects hidden in a box, and infants use 

this system to track and compare the number of hidden objects to the number of retrieved objects. 

They propose that infants succeed by performing a computation of one-to-one correspondence. 

That is, when there is a one-to-one correspondence between the set of hidden objects and the set 

of retrieved objects, infants stop looking for objects in the box. Moreover, Feigenson and Halberda 

(2004) found that when the objects to be hidden are presented as spatially separate groups, infants 

can represent at least two sets of up to three hidden objects. Therefore, it is possible that, in order 

to compare the numerosities of distinct sets of up to three objects, preschoolers represent the 

objects in each set with parallel individuation, and then compare the sets on the basis of one-to-

one correspondence. If the representation of one of the sets contains an extra object, children judge 

that this set is more numerous. Future studies should investigate whether this is indeed the 

mechanism whereby parallel individuation supports numerical comparisons.  

 

Conclusions 

The experiments in Chapter 2 are the first to provide evidence that parallel individuation 

supports numerical comparisons, and it does so prior to the acquisition of numerical language. 

Thus, there may be two developmental roots of our knowledge of numerical relations: the 

comparisons of the size of the mental magnitudes created with the ANS, and, possibly, the one-to-

one correspondence operations defined over representations of objects created with parallel 

individuation. 
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Chapter Three: The development of representations of unspecified numerosities in 

numerical comparison 

In the last few decades, research on the development of numerical cognition has focused 

on the development of representations of particular numbers, namely via parallel individuation, 

the approximate number system, and counting. However, some types of numerical knowledge and 

reasoning involve thinking about numbers in general – i.e., knowledge that applies to all possible 

numbers. For example, for any given set of objects with numerosity x, x changes whenever an 

object is added to or subtracted from the set; this knowledge applies regardless of what numerosity 

x refers to. Thus, whether the set contains 1, 5, or 100 objects, when an object is added to the set, 

the numerosity has increased. Likewise, whenever an object is removed from a set of 1, 5, or 100 

objects, the numerosity has decreased. These examples illustrate that there are facts about number 

that necessarily hold true regardless of the number of objects in the set. These facts can be 

expressed using general statements with algebraic expressions (e.g., x + 1 > x) that are supported 

by representations of unspecified numerosities.   

Knowledge about unspecified numerosities contrasts with knowledge about particular 

numerosities. For example, when an object is added to a set of 2, the set no longer has 2 objects; 

it has more than 2 objects. But this knowledge is only specific to ‘2’, and knowing that 2 + 1 > 2 

does not necessarily grant you the knowledge that 50 + 1 > 50. In this sense, the knowledge is 

number-specific, because knowing facts about ‘2’ does not entail knowing facts about all possible 

numbers. The present study investigates when we begin to demonstrate general numerical 

knowledge as a first step to discovering how we construct such knowledge. In particular, I explore 

one of the most fundamental aspects of numerical knowledge – i.e., the knowledge that adding one 

element increases the numerosity of a set, expressed as x + 1 > x.   
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Previous research has shown that sometime between the preschool and kindergarten years, 

children begin to show signs of general knowledge that adding one element to a set increases its 

numerosity. In one study, 5-year-olds were shown a box of objects labelled with a number word. 

The experimenter then performed a transformation that changed the numerosity (e.g., taking away 

one object; a numerical transformation) or a transformation that did not change the numerosity 

(e.g., shaking the box; a non-numerical transformation), and asked whether there was still the same 

number of objects in the box (Lipton & Spelke, 2006). Crucially, the researchers used numbers 

that were beyond children’s counting range (e.g., 127) to ensure that children could not recruit 

particular facts about number words to succeed on the task. They found that children correctly 

responded with the original number word after non-numerical transformations, but a different 

number word after numerical transformations, providing strong evidence that at age 5, children 

understand how number words label sets in general.  

Some studies suggest that younger children have similar knowledge; however, the evidence 

is weaker. Sarnecka and Gelman (2004) presented older 2- and 3-year-olds with one set of objects 

placed in an opaque box and labeled it with a small (i.e., two, three) or a large (e.g., five, six) 

number word, e.g., “Here are [five] moons.” Then, the experimenter performed a numerical 

(adding one object, subtracting one object) or a non-numerical (shaking or rotating) transformation. 

Children were asked whether the original or a new, alternative number word applied, e.g., “Now 

how many moons – is it five or six?” They found that regardless of whether small or large number 

words were used, children correctly chose the alternative number word after the numerical but not 

non-numerical transformations. However, in another study with a slightly different paradigm, the 

experimenter used two sets of objects rather than one, and labelled one of the two sets with a 

number word (e.g., “This tray has [five] sheep.”; Condry & Spelke, 2008). Children between the 
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ages of 3 and 3 ½ were tested, and number words that were outside of their known number word 

range (e.g., five, seven) were used. The experimenter then performed a numerical or non-numerical 

transformation on the labelled set, and asked children to point to the tray that was labelled by either 

the original number word (e.g., five) or a different number word (e.g., six). Using the two-set task, 

they found that regardless of whether an object was added to the set or whether the objects were 

rearranged, 3-year-olds were equally likely to choose the labelled and the unlabelled tray, 

suggesting that they may not understand how transformation affects number word meanings. Thus, 

children appear to behave differently on the one-set task and the two-set task.  

While it is possible that the two-set task may be more cognitively demanding than the one-

set task, Brooks, Audet and Barner (2013) argue that children may not be recruiting numerical 

knowledge to solve the one-set task. In the one-set task, children were presented with a labelled 

set and observed changes in numerosity, then a new number word was offered as an alternative 

that contrasted with the original number word. They argue that if children expect the experimenter 

to provide relevant information in communication, they may infer that the alternative number word 

is offered because it is relevant, and thus choose the alternative label for pragmatic reasons. On 

their view, children selected a new number word after numerical transformation not because of 

their knowledge about number word application, but because of pragmatic inference.10 In support 

of their argument, they first replicated children’s failure on the two-set task and their success on 

the one-set task in a within-subject design. Then they extended the same pattern of results to novel 

words denoting object kinds (e.g., “This is a dax”). They found that children who were presented 

                                                 
10 However, it should be noted that on Brooks et al.’s account, children still possess the 

knowledge about what kind of transformation affects numerosity. This is because children only 

apply the alternative label in the context of numerical transformation, but not in the context of 

non-numerical transformation. I will revisit this point in the General Discussion section of this 

chapter.  
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with a single, labeled novel object preferred a new label after the experimenter added a piece to 

the novel object, but not when the experimenter shook the object. When two identical objects were 

presented and only one was labeled, children were equally likely to assign a label to its original 

referent regardless of whether the labeled object was transformed or shaken. Children’s behaviour 

in the novel object tasks was similar to that in tasks involving number words, providing evidence 

that their success in previous studies of number word application may be explained by a domain-

general pragmatic inference mechanism. 

Regardless of whether children are using domain-specific numerical reasoning or domain-

general pragmatic reasoning, most previous studies on children’s acquisition of general or specific 

facts about number require children to interpret or use number words in their tasks. Children’s 

apparent difficulty in mastering the logic of number words may therefore reflect a lack of 

knowledge of how number words represent number, and might not constitute evidence for a lack 

of general knowledge about number. Moreover, studies on children’s verbal numerical comparison 

have found that 4-year-olds may not understand that “ten” is more than “six” (Le Corre, 2014; Le 

Corre & Carey, 2007; Schaeffer, Eggleston, & Scott, 1974). Thus, even if children apply a different, 

larger number word after the addition of one object as suggested by Sarnecka and Gelman (2004), 

this does not necessarily mean that they understand the numerosity has increased as a result of 

addition.  

The evidence thus far suggests that by 5, children understand how numerical and non-

numerical transformations affect the use of number words, but it is unclear at what age children 

begin to show such understanding. Also, children’s difficulty with number word application may 

be due to problems specific to the acquisition of number word meanings, and not their cognitive 

ability to reason numerically. Thus, a non-verbal reasoning task that does not require children to 
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reason about number word meanings would provide another test of children’s knowledge of the 

numerical principle ‘x + 1 > x’. I know of one study that assesses children’s understanding of 

numerical relations such as greater than (>) or less than (<) without recruiting their number word 

knowledge. In this study, Gelman (1977) trained children between the ages of 2 and 4 years on the 

numerical relation between a set of two objects and a set of three objects, and tested whether they 

understood what type of transformation affected numerosity. Children were told that the set of 

three objects was the “winner”, and the set of two objects was the “loser”. Then the experimenter 

did one of three things to the “winner” set: surreptitiously removed an object, rearranged objects 

or substituted an individual for another individual of a different kind. Interestingly, children 

responded that there were no winners when the experimenter removed an object, and they chose 

the set of three objects as the “winner” in cases where the experimenter rearranged objects or 

substituted an individual. Nevertheless, this study used small sets (< 4), and thus, children could 

potentially recruit representations of particular numerosities to succeed in this non-verbal 

reasoning task. Children’s ability to generalize the greater-than/less-than relation to larger set sizes 

remains unknown.  

 

The present experiments 

The experiments in this chapter examine children’s representations of unspecified 

numerosities – specifically, the knowledge that when an object is added to or taken away from a 

set, it necessarily follows that the numerosity of a set changes. Across three experiments, children’s 

reasoning about changes in numerosities of visible sets (Experiments 3), and hidden sets 

(Experiments 4 and 5) was investigated. Given that in previous studies, children demonstrate 

conflicting behaviour in tasks involving number words, Experiments 3 and 4 did not include 
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number words in the instructions or ask questions about number word reference (e.g., “Can you 

point to the tray with five objects?”). This design allows me to ask whether children have general 

knowledge about number that applies to all set sizes without recruiting their knowledge about 

number words. In Experiment 5, I explored the possibility that highlighting the numerical 

comparison task that was required of the participants may improve their performance.  

 

Experiment 3: Children’s reasoning about numerosity changes with visible objects  

To investigate when children begin to understand that adding one element to a set of objects 

increases its numerosity regardless of set size, I designed a paradigm that asked children to reason 

about numerical and non-numerical transformations of visible sets of objects that differed in set 

size – small sets and large sets. Children observed four kinds of transformation: addition of an 

object, subtraction of an object, addition and subtraction of the same object, and moving one object. 

After the transformation, children were asked whether the set contained more elements.  

Given that children cannot rely on the ANS for reasoning about large sets because a 

numerical ratio of 15:14 (in the case of subtraction) or 15:16 (in the case of addition) is beyond 

the range of ratio discrimination that preschoolers can perform (see Halberda & Feigenson, 2008), 

their performance on large number trials is critical for determining whether children are capable 

of reasoning about unspecified numerosities. Specifically, if children demonstrate general 

understanding of number, they should recognize that addition and subtraction, but not moving one 

object, change the numerosity of a set. However, if they fail at reasoning about large sets, it could 

be due to task demands. To ensure that task demands are not an issue, small sets were also included. 

Given that children can recruit parallel individuation to reason about small sets, if they succeed 

with small sets, but fail with large sets, this provides evidence that they do not possess general 
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numerical knowledge. However, if they fail with both small and large sets, then this suggests that 

their failure is due to a general difficulty in understanding the task.  

Importantly, children were prevented from counting across all experiments reported in this 

chapter.  

Method 

Participants 

Forty-eight children between the ages of 3 and 5 participated. There were 19 3-year-olds 

(range = 3 years 1 month to 3 years 11 months; mean = 3 years 6 months; 10 boys), 14 4-year-olds 

(range = 4 years 0 months to 4 years 11 months; mean = 4 years 3 months; 10 boys), and 15 5-

year-olds (range = 5 years 0 months to 5 years 11 months; mean = 5 years 6 months; 10 boys). 

They were recruited at daycare centres in Kitchener-Waterloo and nearby areas.  

Procedures and stimuli 

Each child completed the Transform Set task.11 Each testing session lasted about 10 - 15 

minutes. Two experimenters sat across from the child.  

Transform Set task. At the beginning of the session, children were introduced to two 

puppets – Winnie the Pooh and Giraffe –and were told that they were friends. Each puppet was 

manipulated by a different experimenter. Children completed two familiarization trials before 

moving onto the experimental phase. The purpose of the familiarization trials was to test whether 

children can reason about changes made to a single object. During familiarization, Winnie the 

Pooh took out a ball that could be made bigger and smaller (Hoberman’s Sphere), and asked 

                                                 
11 Children in Experiments 3-5 also completed the Give-N task (as described in Chapter 2) at the 

end of the testing session to examine effects of counting knowledge. However, a majority of the 

children had already acquired the cardinal principle (i.e., all 4- and 5-year-olds, and more than 

half of the 3-year-olds were CP-knowers), making it difficult to study the effects of counting on 

numerical reasoning. Thus, results from the Give-N task were not analyzed.   
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Giraffe to make it ‘bigger’. Giraffe either made it bigger or smaller. The direction of the change 

was counterbalanced across participants. Children were then asked, “Does Winnie the Pooh have 

a bigger ball now?” A ‘yes’ or ‘no’ response was recorded. If children answered incorrectly, 

feedback was given, and the puppets repeated the action and the experimenter asked the question 

again. Almost all children succeeded on the two familiarization trials with no feedback. One child 

failed one of the familiarization trials but succeeded on a second attempt, and was included in the 

analyses.  

The experimental trials began with a dialogue between Winnie the Pooh and Giraffe.  

Winnie the Pooh: Giraffe, I have some toys to show you. Do you want to see? 

Giraffe: Yeah, sure! 

Winnie the Pooh: Look, here are my [blocks] and I want more [blocks].  

Can you help me? 

Giraffe: Yeah, let me help you. Look, [child’s name], look. (Giraffe performs the  

transformation). 

 

Then the experimenter asked, “Does Winnie the Pooh have more [blocks] now?” Children 

gave a ‘yes’ or ‘no’ response. Stimuli included eight different kinds of objects – pom poms, bows, 

buttons, red Lego blocks, yellow Lego blocks, bells, rocks, and hearts. All objects were presented 

on a letter-sized piece of paper. 

Children received both small and large number trials, which were conducted in blocks. For 

the small number trials, an object was always added to and subtracted from a set of two objects, 

such that in the case of addition, it resulted in three objects, and in the case of subtraction, it resulted 

in one object. For the large number trials, an object was always added to and subtracted from a set 
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of 15 objects, such that in the case of addition, it resulted in 16 objects, and in the case of 

subtraction, it resulted in 14 objects.  The order of the small and large number blocks was 

counterbalanced between children at all daycares such that at each daycare, there was an 

approximately equal number of children who received the small number block first and the large 

number block first. For each number block, the experimenter transformed the set in one of four 

ways: (a) by moving one object (‘Move 1’); (b) by adding one object (‘Plus 1’); (c) by removing 

one object (‘Minus 1’), and (d) by moving one object outside of the sheet and then putting it back 

into the set of objects (‘-A+A). There were two trials for each transformation, making a total of 16 

trials for each child. There were two possible item orders, and the order of trial type was 

randomized such that no two consecutive trials were of the same trial type. 

Results and Discussion 

If children can represent unspecified numerosities, then they should be able to distinguish 

when the numerosity of a set changes: ‘Plus 1’ and ‘Minus 1’ trials change the numerosity of a set, 

and ‘Move 1’ and ‘-A+A’ trials do not. Critically, if children can demonstrate this knowledge in 

the large number trials, then this constitutes evidence for their ability to reason about unspecified 

numerosities because neither the ANS nor parallel individuation representations can support 

reasoning of large sets of the sort tested in this study. (The ANS cannot because of the ratios used.) 

If children only succeed on small number trials, then it suggests that they are relying on the 

representations of particular numbers, and may lack the cognitive capacity to reason algebraically. 

 

Overall performance in Transform Set Task 

I computed a score for each participant in both small and large number trials. Participants 

received a score of 1 for each trial that they answered correctly, and thus, the maximum score is 8 
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for both the small and large number trials. 

Preliminary analyses found no order or gender effects (p’s > .49), so these variables were 

not included in subsequent analyses. First, to examine the performance on small and large number 

trials, a repeated measures ANOVA using proportion correct as the dependent variable, with 

Number Range (Small and Large) as a within-subjects factor, and Block Order (Small first vs. 

Large first) and Age Group (3-year-olds vs. 4-year-olds vs. 5-year-olds) as between-subjects 

factors was conducted. There was a main effect of Age Group, F(2,42) = 8.33, p < .001, 𝜂𝑝
2 = .28. 

Tukey HSD revealed that 3-year-olds (57.6%) did not differ significantly from 4-year-olds 

(58.9%), but both groups performed significantly worse than the 5-year-olds (85.8%). There was 

also a main effect of Block Order, F(1,42) = 8.25, p = .027, 𝜂𝑝
2 = .11, indicating that children 

performed better overall when they were tested on small number trials first (small number first 

74.6%; large number first: 60.4%). More importantly, there was a significant main effect of 

Number Range, F(1,42) = 36.02, p < .001, 𝜂𝑝
2= .46. Children were better at reasoning about small 

sets (78.0%) than large sets (57.0%). No interactions were found.  

To examine the effect of Number Range, I analyzed if children’s performance on large 

number trials was above chance (50%). If children can reason about unspecified numerosities, they 

should perform above chance. Separate analyses were conducted for each of the three age groups. 

One-sample t-tests showed that only 5-year-olds (79.2%) performed significantly above chance on 

large number trials, t(15) = 3.95, p <.001. Neither the 3- nor the 4-year-olds were significantly 

different from chance, M = 46.1%, t(18) = -.71, p = .49, M = 45.5%, t(13) = -.66, p =.52, 

respectively. This suggests that the capacity to reason about unspecified numerosities may not 

appear until 5.  

However, one may argue that 3-year-olds simply do not understand the task (e.g., difficulty 
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of reasoning about the puppet’s intentions in general). To address this, I computed one-sample t-

tests for small number trials. Results showed that children from all age groups had above chance 

performance on small number trials: 3-year-olds: M = 69.1%, t(18) = 3.27, p = .004; 4-year-olds: 

M = 72.3%, t(13) = 2.96, p  = .011; 5-year-olds: M = 92.5%, t(14)=9.38, p < .001.  

 

Relationship between age and trial type 

 To further explore how children’s reasoning about unspecified numerosities differs by age, 

I analyzed whether children’s responses differed on the four different transformation types. If 

children can represent unspecified numerosities, then for both small and large sets, they should 

understand that ‘Plus 1’ is the only transformation that increases numerosity, and respond ‘yes’ to 

the question about whether the puppet has more objects. Friedman’s ANOVA with the four 

transformation types as within-subject variables was computed separately for small and large 

number trials and for each age group with proportion of ‘yes’ responses as the dependent variable. 

Figures 6-8 display children’s proportion of ‘yes’ responses for each transformation type in both 

small and large number trials. 

For 3-year-olds, responses varied across the four transformation types for small number 

trials (χ2 (3) = 14.0, p = .003) but not for large number trials (χ2 (3) = 7.34, p = .062; see Figure 

6). Wilcoxon signed rank tests revealed that 3-year-olds were able to differentiate between the 

transformation types for small sets but not for large sets (see Table 3). To adjust for multiple 

comparisons, a Bonferroni corrected alpha level of .0083 (.05/6 comparisons for each age group) 

was applied to all pairwise comparisons involving the transformation types.12 

                                                 
12 Across the three experiments reported in this chapter, all trial type analyses were adjusted for 

Bonferroni correction. It is important to note that Bonferroni is often overly conservative. 

Significant and marginally significant values are marked with asterisks.  
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For 4-year-olds, responses varied across the four transformation types for both small (χ2 

(3) = 24.3, p < .001) and large number trials (χ2 (3) = 15.6, p = .001; see Figure 7). Wilcoxon 

signed rank tests revealed that 4-year-olds were sensitive to the differences among the 

transformation types for small sets; for large sets, they appear to be able to differentiate between 

addition and subtraction, but not between addition and the no-numerosity change trials (i.e., ‘-

A+A’ and ‘Move 1’; see Table 4).  

For 5-year-olds, responses varied across the four transformation types for both small (χ2 

(3) = 38.1, p < .001) and large number trials (χ2 (3) = 30.2 p < .001; see Figure 8). Wilcoxon 

signed rank tests revealed that 5-year-olds were able to differentiate between all the transformation 

types for both small sets and large sets (see Table 5).  

 

 

Figure 6. Three-year-olds’ proportion of ‘yes’ responses in both small and large number trials. 

Error bars represent standard errors of the mean. 
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Figure 7. Four-year-olds’ proportion of ‘yes’ responses in both small and large number trials. 

Error bars represent standard errors of the mean. 

 

Figure 8. Five-year-olds’ proportion of ‘yes’ responses in both small and large number trials. 

Error bars represent standard errors of the mean. 
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 Small Large 

Plus 1 – Minus 1 -2.67 (.008)** 1.19 (.233) 

Plus 1 – Minus A Plus A -1.90 (.057) -.33 (.739) 

Plus 1 – Move 1 -2.44 (.015)** -2.01 (.045) 

Table 3. Z-scores (p-values) from Wilcoxon signed rank tests for 3-year-olds. *** significant 

difference with Bonferroni correction (adjusted alpha = .0083). ** marginally significant 

difference with Bonferroni correction. 

 

 Small Large 

Plus 1 – Minus 1 -3.21 (.001)*** -2.60 (.009)** 

Plus 1 – Minus A Plus A -2.71 (.007)** -1.41 (.157) 

Plus 1 – Move 1 -2.76 (.006)** -2.07 (.038) 

Table 4. Z-scores (p-values) from Wilcoxon signed rank tests for 4-year-olds. *** significant 

difference with Bonferroni correction (adjusted alpha = .0083). ** marginally significant 

difference with Bonferroni correction. 

 

 Small Large 

Plus 1 – Minus 1 -3.77 (< .001)*** -3.42 (.001)*** 

Plus 1 – Minus A Plus A -3.50 (< .001)*** -2.97 (.003)*** 

Plus 1 – Move 1 -3.74 (< .001)*** -3.46 (.001)*** 

Table 5. Z-scores (p-values) from Wilcoxon signed rank tests for 5-year-olds. *** significant 

difference with Bonferroni correction (adjusted alpha = .0083).  
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Results from this experiment show that the ability to reason about unspecified numerosities 

begins to emerge by age 4, and is fully in place by age 5. Using a Transform-Set task, I found that 

3-year-olds can reason about the effects of transformations on small sets, but not on large sets, 

suggesting that while they can recruit parallel individuation for small number trials, they lack an 

ability to reason about unspecified numerosities. By age 4, children are capable of differentiating 

between addition and subtraction, but they fail to recognize that taking away an individual and 

returning it back to the set does not result in a change of numerosity of the set. Five-year-olds are 

able to recognize that addition increases the numerosity of the set, but other transformations do 

not.  

The current results raise questions about why 4-year-olds understand the effects of addition 

and subtraction, but fail to understand that the addition of one element and subtraction of one 

element cancels each other out. There are two possible explanations. First, children may succeed 

on the ‘Plus 1’ and ‘Minus 1’ trials, but fail on the ‘-A+A’ trials because the latter type of 

transformation involves two steps – i.e., the subtraction and addition of the same individual, 

whereas the former transformations only involve one step. It is thus possible that reasoning about 

the effect of ‘-A+A’ is computationally more complex than ‘Plus 1’ and ‘Minus 1’, and makes 

greater processing demands. Second, 4-year-olds may be responding based on a ‘last-action’ 

heuristic that does not require them to reason about the effects of transformation on the numerosity 

of a set. For example, whenever the last action is adding an object, one gives a positive response 

and answers that there are ‘more’, and whenever the last action is taking away an object, one gives 

a negative response and answers that there are ‘not more’. To examine these two possibilities, I 

added other types of transformations in the following experiments. Specifically, I included 

transformations that involved the substitution of an individual (e.g., replacing a black rock with a 
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white rock), and the removal of 3 individuals and addition of 1 individual. If children’s difficulty 

with the ‘-A+A’ trial is due to the fact that this transformation involves two steps, then they should 

fail on both the substitution and ‘Minus 3 Plus 1’ transformations. If they are responding based on 

a ‘last-action’ heuristic, then they should respond that there are more on all transformations except 

for ‘Minus 1’ and ‘Knock’ trials.   

 

Experiment 4: Children’s reasoning about numerosity changes with hidden objects 

Experiment 3 suggests that the capacity to reason about numerical transformations without 

representing any specific numerosities may begin to emerge around age 4, and is fully in place at 

age 5. However, the experiments with visible sets could underestimate children’s ability to reason 

about unspecified numerosities because some of the transformations required children to resolve 

a conflict between their perception and their abstract representation of the set of objects. For 

example, in the case of moving one object, children may experience conflict between their 

perceptual reasoning (i.e., the set of objects takes up more space) and conceptual reasoning (i.e., 

the numerosity has not changed even though objects are moved). And this may explain why 3- and 

4-year-olds responded that there were more elements around 50-70% of the time after one object 

was moved. Nevertheless, children’s performance on the ‘-A+A’ trial in Experiment 3 suggests 

that the reasoning conflict explanation does not fully explain the results. On a ‘-A+A’ trial, the 

pre- and post-transformation sets look perceptually the same, yet 3- and 4-year-olds said there 

were more elements post-transformation 80% of the time. Moreover, 3-year-olds perform poorly 

on the ‘Minus 1’ trials, despite the fact that perceptual and conceptual reasoning coincide. This 

makes it unlikely that such a conflict can account for all of the results in the previous experiment. 

Nevertheless, to ensure that the perceptual aspect of sets does not interfere with children’s 
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numerical judgments, Experiment 4 presented sets that were hidden. This also provides another 

test for children’s reasoning about representations of unspecified numerosities.  

In Experiment 4, objects were presented in an opaque box and children could not see how 

many objects were in the box. Then a numerical or a non-numerical transformation was performed, 

and the experimenter asked if there were more objects in the box after the transformation. If older 

children’s success on large number trials in Experiment 3 was explained by their ability to 

represent unspecified numerosities, then the same pattern of results should be observed in 

Experiment 4. That is, 5-year-olds should demonstrate an ability to reason about unspecified 

numerosities, and children younger than 5 should not.  

Method 

Participants 

Fifty-two children between the ages of 3 and 5 participated. There were 21 3-year-olds 

(range = 3 years 0 months to 3 years 11 months; mean = 3 years 7 months; 11 boys), 17 4-year-

olds (range = 4 years 1 month to 4 years 11 months; mean = 4 years 5 months; 11 boys), and 14 5-

year-olds (range = 5 years 0 months to 6 years 1 month; mean = 5 years 8 months; 6 boys). They 

were recruited at daycare centres in Kitchener-Waterloo and nearby areas.  An additional three 

children were excluded from the analyses for failing twice on a familiarization trial (n = 2) and 

object trials during the test phase (n = 1; see below).  

Procedures and stimuli 

Box Task. The Box Task was essentially the same as the Transform Set task except that the 

sets children had to reason about could not be seen. The Box Task had three phases: familiarization, 

labeling and test. The task began with the same familiarization phase using the ball that could be 

made bigger and smaller (Hoberman’s Sphere), followed by a labeling phase in which the 
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experimenter laid out one of each object kind and asked the child to label them. The experimenter 

used the labels provided by the child during the test phase. Twelve kinds of objects were used in 

the study: buttons, rocks, Lego blocks, bows, sticks, pom poms, flowers, leaves, stars, beads, shells, 

bells.  

At test, children were told that they were going to play a game with a box and the objects 

that they just labeled. The experimenter first showed that the box was empty, then she transferred 

objects into the box from an opaque cup, and said, “I’m going to put [bells] into the box”. The 

experimenter closed the box, and asked, “Are there more [bells] in the box now?” The 

experimenter then performed a transformation, and asked again, “Are there more [bells] in the box 

now?” The purpose of repeating the same test question twice is that in piloting, I found that 

children had difficulty parsing the event into appropriate time points for comparison. For example, 

it appeared that they sometimes compared the initial state of the box (i.e., an empty state) to the 

post-transformation state. To scaffold children into comparing the post-transformation state to the 

state of the box that was immediately before transformation, I asked the test question directly 

before and after transformation. Responses to the first question were not analyzed. 

Six kinds of transformation were performed: adding one object (‘Plus 1’), removing one 

object (‘Minus 1’), taking away one object and putting it back (‘-A+A’), taking away one object 

and putting back another object that was of the same kind but of a different colour (‘-A+B’), taking 

away three objects and putting another one back (‘-3+1’), and knocking on the box. For ‘Plus 1’, 

the experimenter added an identical object to the box. For ‘Minus 1’, the experimenter removed 

an object and hid it under the table. For ‘–A+A’, the experimenter took an object out of the box, 

put it in front of the child, and put it back into the box. For ‘–A+B’, the experimenter removed an 

object from the box (e.g., a black rock), hid it under the table, and put in another object of the same 
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kind but of a different colour into the box (e.g., a white rock). For ‘-3+1’, the experimenter took 

out 3 objects, put them in front of the child, quickly showed him/her that the box was not empty, 

and added an identical object.  

The purpose of adding the ‘–A+B’ trial was to further examine the nature of children’s 

reasoning of unspecified numerosities. This trial extended the ‘-A+A’ trial by testing whether 

children understand that a transformation that results in an identity change (i.e., substitution of one 

individual for a different individual) does not change the numerosity of sets. The purpose of the ‘-

3+1’ trial was to examine if children’s difficulty with reasoning about the effects of transformation 

is specific to a change of one object. Children’s performance on these two trials (i.e., ‘-A+B’ and 

‘-3+1’) also addresses the question of whether their difficulty with the ‘-A+A’ trial in the previous 

experiment can be explained by the ‘two-step’ processing account or the ‘last-action’ heuristic 

account.  

In addition to trials that required children to judge whether there were more elements 

(‘more’ trials), children were given three object trials as control trials. These trials were designed 

to ensure that children understood the Box Task, and involved the addition of a pen, the removal 

of a pen, and knocking on the box. At the beginning of the object trials, children were shown a 

blue pen and a red pen, and were told that they were going to play a game with the pens and the 

box. After showing that the box was empty, the experimenter did one of three things, and asked 

“Is there a red pen in the box now?” For addition, the experimenter first put a blue pen, and then a 

red pen into the box; for the removal of a pen, the experimenter put both the blue and the red pens 

into the box, and then removed the red pen; for knocking, the experimenter put the blue pen in the 

box, and knocked on the box. Children were allowed to make one error across the three trials. 

Altogether, only four children made an error; they were included in the analyses. One child made 
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two errors and was removed from the analyses.  

Nine five-year-olds completed the study in one session. The others were tested over two 

sessions of twelve trials each. Children who finished all trials in one session received a total of 18 

‘more’ trials and 3 object trials; those who completed in two sessions received 9 ‘more’ trials and 

3 object trials in the first session, and 12 ‘more’ trials in the second session. Thus, the object trials 

were conducted either at the end of session 1 or at the end of the entire session. There were three 

trials for each transformation type. However, for children who completed over two sessions, there 

were 6 ‘Plus 1’ trials, with 3 ‘Plus 1’ trials for each session; the purpose was to balance the ‘yes’ 

and ‘no’ responses in each session. The type of transformation was pseudo-randomized such that 

no two consecutive trials were of the same transformation type. Children received one of two 

randomized orders of trials. 

Results and Discussion 

Overall performance on Box Task 

Preliminary analyses found no order or gender effects (p’s > .31), so these variables were 

not included in subsequent analyses.  

An overall proportion correct, averaging the scores across all six transformation types, was 

computed and was used as a dependent variable. For each post-transformation question, children 

received a score of 1 each time they answered correctly; the maximum score is 18. For children 

who received 6 ‘Plus 1’ trials, only the first 3 trials were included.  

First, I analyzed if there was an effect of age. An ANOVA revealed a main effect of Age 

Group, F(2,51) = 6.37, p = .003, 𝜂𝑝
2= .20. Tukey HSD revealed that 5-year-olds (48.8%) differed 

significantly from 3-year-olds (26.5%, p = .013), but not 4-year-olds (39.5%, p = .33), and that 3- 

and 4-year-olds did not differ from each other (p =.14). To better characterize children’s 
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performance at each age, I conducted separate analyses for 3-, 4-, and 5-year-olds. 

 

Relationship between age and trial type 

For each age group, I first analyzed whether children’s responses differed on the six 

different transformation types using Friedman’s ANOVA with proportion of ‘yes’ responses as 

the dependent variable. Then, similar to the analyses in Experiment 3, I compared whether children 

are sensitive to the distinction between ‘Plus 1’ and other transformation types using Wilcoxon 

signed rank tests with a Bonferroni corrected alpha level of .01 (.05/5 comparisons for each age 

group). Figures 9-11 display children’s proportion of ‘yes’ responses for each transformation type. 

For 3-year-olds, responses varied across the six transformation types (χ2 (5) = 11.34, p 

= .045; see Figure 9). However, Wilcoxon signed rank tests revealed they failed to recognize the 

distinction between addition and almost all of the other transformation types (see Table 6). They 

did, however, show some sign of distinguishing between addition and subtraction. An inspection 

of Figure 9 suggests an overall ‘yes’ bias for 3-year-olds. 

For 4-year-olds, responses varied across the six transformation types (χ2 (5) = 28.12, p 

< .001; see Figure 10). Wilcoxon signed rank tests revealed that 4-year-olds were able to 

differentiate between addition and subtraction, and between addition and ‘-3+1’. The results also 

suggest that they were marginally able to differentiate between addition and ‘Knock’. However, 

they did not recognize that the ‘-A+A’ trial and the ‘-A+B’ do not increase the numerosity of the 

set (see Table 6). 

For 5-year-olds, responses varied across the six transformation types (χ2 (5) = 35.49, p 

< .001; see Figure 11). Wilcoxon signed rank tests revealed that 5-year-olds can distinguish 

between addition and subtraction, ‘-3+1’, and ‘Knock’. Nevertheless, they continued to show signs 
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of difficulty in differentiating ‘–A+A’ and ‘-A+B’ from addition (see Table 6).  

 

 

 

Figure 9. Three-year-olds’ proportion of ‘yes’ responses for hidden sets. Error bars represent 

standard errors of the mean. 

  

Figure 10. Four-year-olds’ proportion of ‘yes’ responses for hidden sets. Error bars represent 

standard errors of the mean. 
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Figure 11. Five-year-olds’ proportion of ‘yes’ responses for hidden sets. Error bars represent 

standard errors of the mean. 

 

 3-year-olds 4-year-olds 5-year-olds 

Plus 1 – Minus 1 -2.34 (.017)** -2.99 (.003)*** -3.38 (.001)*** 

Plus 1 – Minus A Plus A -1.90 (.058) -1.34 (.18) -1.34 (.18) 

Plus 1 – Minus A Plus B -1.80 (.072) -2.07 (.038) -2.23 (.026) 

Plus 1 – Minus 3 Plus 1 -.96 (.34) -2.72 (.007)*** -2.75 (.006)*** 

Plus 1 – Knock -96 (.34) -2.36 (.018)** -2.60 (.009)*** 

Table 6. Z-scores (p-values) from Wilcoxon signed rank tests for 3-, 4-, and 5-year-olds. *** 

significant difference with Bonferroni correction (adjusted alpha = .01). ** marginally 

significant difference with Bonferroni correction. 
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Consistent with previous experiments, Experiment 4 showed that 3-year-olds likely lack 

the ability to reason about unspecified numerosities, and this ability emerges at 4 years of age. It 

is important to note that 4-year-olds in this experiment distinguish between addition and ‘-3+1’ 

but continue to have difficulty with reasoning about ‘-A+A’ and ‘-A+B’. This provides evidence 

that children’s difficulty with reasoning about the effect of ‘-A+A’ in the previous experiment 

cannot be explained by the fact that ‘-A+A’ involves two steps, because ‘-3+1’ also involves two 

steps and children are succeeding at differentiating between ‘Plus 1’ and ‘-3+1’ by the age of 4. 

These results also suggest that children are likely not relying on a ‘last-action’ heuristic. Given 

that the last action of ‘-A+A’, ‘-A+B’, and ‘-3+1’ all involve the addition of an individual, if 

children are relying on this heuristic, they should respond that there are more elements when tested 

on each of these three types of transformations. But children respond that ‘-3+1’ does not increase 

the numerosity of a set, and this rules out the possibility that children simply recruit a ‘last-action’ 

heuristic.  

Nevertheless, the current experiment also showed that 5-year-olds have trouble 

recognizing that the subtraction and addition of the same individual and the substitution of an 

individual do not affect the numerosity. This was somewhat inconsistent with findings from 

Experiment 3, which showed that by 5, children can reason about unspecified numerosities, and 

specifically, that 5-year-olds understand how adding and removing the same individual does not 

change the numerosity of visible sets. There are two possible explanations for these conflicting 

findings. 

First, children’s difficulty with the ‘–A+A’ and ‘–A+B’ trials may be explained by an 

unwillingness to answer ‘no’ to the question, “Are there more [bells] in the box now?” when the 

numerosity of a set remains the same. For example, a handful of children responded “the same” to 
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the test question about ‘more’ on ‘–A+A’ and ‘–A+B’ trials, but these same children had no 

difficulty answering yes/no for addition and subtraction. Moreover, this difficulty may be driven 

by the pragmatics of the task. For example, when asked whether there were more elements in the 

set, children had to generate a list of possible responses – i.e., more, less, the same number. In the 

case of visible sets, it may be easier for children to generate all three responses but in the case of 

hidden sets, ‘less’ may be a better and more salient response than ‘the same number.’ In other 

words, children may have difficulty generating ‘the same number’ as a possible alternative 

response to a question about ‘more’. This may explain why children have no difficulty with the ‘-

A+A’ trial in Experiment 3 but exhibit difficulty in the current experiment. Children who were 

presented with hidden sets may only be able to generate ‘less’ as a possible alternative. This may 

explain why children have particular difficulty answering ‘no’ on trials in which the numerosity 

remains unchanged (i.e., ‘-A+A’, ‘-A+B’). 13  

Second, it is possible that children interpret ‘more’ non-comparatively – i.e., as if it means 

‘some’. The evidence for the ‘more = some’ interpretation comes from children’s justifications. 

For example, when the experimenter took away one object or knocked on the box, some children 

answered that the box contained more elements because “there’s some.” This suggests that in the 

context of the Box Task, they may not always be interpreting ‘more’ comparatively. However, 

children do appear to interpret ‘more’ comparatively for some types of transformation (e.g., ‘Plus 

                                                 
13 This difficulty may also be related to the semantics of adjectives. For example, pairs of 

adjectives such as tall/short are different from pairs of adjectives such as dead/alive. A person 

who is not tall does not mean that the person is short, but a person who is not dead does mean 

that the person is alive. This difference in meaning highlights a distinction that is documented in 

the semantics literature: tall/short are gradable adjectives and dead/alive are absolute adjectives. 

It is possible that children are interpreting ‘more’ as if it is an absolute adjective, when in fact it 

behaves more similarly to gradable adjectives, and thus, they refuse to say no to the question 

about ‘more’ unless the set contains fewer items. 
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1’, ‘Minus 1’, ‘-3+1’), suggesting that the “more = some” interpretation cannot account for all of 

the data. To probe the robustness of findings from previous experiments, and determine whether 

5-year-olds can represent unspecified numerosities, I conducted Experiment 5 with the objective 

of removing some of the task demands children experienced in Experiment 4.  

 

Experiment 5: Children’s reasoning about numerosity changes with quantified sets of 

hidden objects 

Results from Experiment 4 provide inconclusive evidence with respect to children’s 

representation of unspecified numerosities, and one possibility was that children were not clear on 

the numerical aspect of the task. To address this concern, in Experiment 5, I labelled the hidden 

sets with a numerical expression (e.g., “there are 29 bells in the box”) and used the numerical 

expression in a ‘more than’ construction (e.g., “are there more than 29 bells in the box now?”). 

The objective of introducing these changes was to highlight the task of numerical comparison that 

was required of the child. Lastly, given that 5-year-olds may have difficulty with reasoning about 

numerosity change with hidden sets, I also tested 6-year-olds in this experiment.  

Method 

Participants 

Forty-one children between the ages of 3 and 6 participated. There were 13 3-year-olds 

(range = 3 years 2 months to 3 years 11 months; mean = 3 years 7 months; 6 boys), 10 4-year-olds 

(range = 4 years 4 months to 4 years 11 months; mean = 4 years 8 months; 5 boys), 9 5-year-olds 

(range = 5 years 0 months to 5 years 10 months; mean = 5 years 4 months; 4 boys), and 9 6-year-

olds (range = 6 years 0 months to 6 years 11 months; mean = 6 years 4 months; 4 boys). They were 

recruited in daycare centres and kindergartens in Kitchener-Waterloo and nearby areas.   
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Procedures and stimuli 

Box Task (Number Word Trials). The Box Task (Number Word Trials) is almost identical 

to Experiment 4 with the exception that the experimenter used a number word in the introduction 

and in the test question, and the test question was only asked once after transformation.  

After the familiarization phase (with Hoberman’s Sphere) and the labeling phase, all 

children first received three training trials in which the experimenter used a small number word – 

‘two’ – to label a set of objects. For the training trials and the subsequent test trials, the 

experimenter first showed that the box was empty, and then s/he said “I’m going to put [2] [bells] 

into the box. There are [2] [bells] in the box.” The experimenter performed the transformation, and 

asked “Are there more than [2] [bells] in the box now?”   

After the three training trials, the experimenter immediately began the test trials. The only 

difference between the training trials and the test trials was the number words that were used. At 

test, different number words were used depending on the child’s age: ‘nine’ was used for three-

year-olds and four-year-olds, ‘nineteen’ was used for five-year-olds, and ‘twenty-nine’ was used 

for six-year-olds. The transformations were identical to Experiment 4: adding one object, 

removing one object, taking away one object and putting it back (‘-A+A’), taking away one object 

and putting back another object of the same kind but of a different colour (‘-A+B’), taking out 

three objects and putting another one back (‘-3+1’), knocking on the box.  

Results and Discussion 

Overall performance on Box Task (Number Word Trials) 

Preliminary analyses found no order or gender effects (p’s > .64), so these variables were 

not included in subsequent analyses.  

First, I analyzed children’s performance on the training trials involving small number 
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words by age group. Table 7 shows that as children grow older, they perform better on reasoning 

about sets that were labeled with small number words such as ‘two’. Binomial tests showed that 

the proportion of 6-year-olds who responded correctly on at least 2 out of 3 trials for sets labelled 

with ’two’ differed significantly from 3-year-olds, p = .02, and marginally from 4-year-olds, p 

= .07, but did not differ from 5-year-olds, p = .13. 14  

 

 3-year-olds 4-year-olds 5-year-olds 6-year-olds 

At least 2 out of 3 correct 7 7 7 9 

N 13 10 9 9 

Table 7. Number of children who answered at least 2 out of 3 questions correctly on trials 

labelled with ‘two’.  

 

For the test trials involving larger number words (i.e., nine, nineteen, twenty-nine), children 

received a score of 1 for each transformation that they answered correctly. An overall proportion 

correct on test trials averaging the scores across all transformation types was computed for each 

child and was used as a dependent variable. ANOVA revealed a main effect of Age Group, F(3,37) 

= 6.47, p = .001. Tukey HSD revealed that 6-year-olds (87.7%) differed significantly from 3- and 

4-year-olds (p’s < .042), and were marginally different from 5-year-olds (p = .071). To better 

characterize children’s performance at each age, I conducted separate analyses for 3-, 4-, 5-, and 

6-year-olds. 

                                                 
14 Arguably, children who fail to answer correctly on at least 2 trials on ‘two’ may have difficulty 

with comprehending the test question, and should thus be excluded from the analyses. However, 

due to my relatively small sample sizes in each age group, all children were included in the 

analyses. 
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Relationship between age and trial type 

For each age group, I first analyzed whether children’s responses differed on the six 

different transformation types using Friedman’s ANOVA with proportion of ‘yes’ responses as 

the dependent variable. Then, similar to the analyses in Experiment 4, I compared whether children 

are sensitive to the distinction between ‘Plus 1’ and the other transformation types using Wilcoxon 

signed rank tests with a Bonferroni corrected alpha level of .01 (.05/5 comparisons for each age 

group). Figures 12-15 display children’s proportion of ‘yes’ responses for each transformation type. 

For 3-year-olds, responses did not vary across the six transformation types (χ2 (5) = 5.74, 

p = .33; see Figure 12). Wilcoxon signed rank tests revealed that the use of a quantified expression 

did not help 3-year-olds in reasoning about the effects of transformation for hidden sets (see Table 

8). This may not come as a surprise given that half of the 3-year-olds appear to have difficulty 

even with training trials on ‘two’, which is a numeral that is likely within their range of known 

number word knowledge.  

For 4-year-olds, responses varied across the six transformation types (χ2 (5) = 10.9, p 

= .007; see Figure 13). The use of a quantified expression revealed a relatively similar pattern of 

results for the 4-year-olds compared to Experiment 4 (see Table 8). They continued to show 

difficulty recognizing that the addition and subtraction of the same individual does not increase 

the numerosity of a set. However, 4-year-olds in the current experiment were able to recognize 

that the substitution of an individual does not increase the numerosity of a set, while failing to 

notice that knocking on the box was numerically-irrelevant.  

For 5-year-olds, responses did not vary across the six transformation types (χ2 (5) = 8.3, p 

= .14). This is somewhat surprising given that an inspection of Figure 14 suggests that 5-year-olds 

show some understanding of the effects of transformation such as addition, subtraction, and ‘-3+1’ 
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(see Table 8).  

For 6-year-olds, responses varied across the six transformation types (χ2 (5) = 33.2, p 

< .001; see Figure 15). Wilcoxon signed rank tests revealed that they were able to differentiate 

between all the transformation types (see Table 8). 

 

 

Figure 12. Three-year-olds’ proportion of ‘yes’ responses for hidden sets labelled with a number 

word. Error bars represent standard errors of the mean. 
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Figure 13. Four-year-olds’ proportion of ‘yes’ responses for hidden sets labelled with a number 

word. Error bars represent standard errors of the mean. 

 

 

Figure 14. Five-year-olds’ proportion of ‘yes’ responses for hidden sets labelled with a number 

word. Error bars represent standard errors of the mean. 
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Figure 15. Six-year-olds’ proportion of ‘yes’ responses for hidden sets labelled with a number 

word. Error bars represent standard errors of the mean. 

 

 

 3-year-olds 4-year-olds 5-year-olds 6-year-olds 

Plus 1 – Minus 1 1.83 (.068) -2.38 (.017)** -2.01 (.044) -2.89 (.004)*** 

Plus 1 – Minus A Plus A -1.29 (.20) -1.79 (.74) -.97 (.34) -2.46 (.014)** 

Plus 1 – Minus A Plus B -.95 (.34) -2.38 (.017)** -1.38 (.17) -2.24 (.008)*** 

Plus 1 – Minus 3 Plus 1 -1.59 (.11) -2.37 (.018)** -2.21 (.027) -2.89 (.004)*** 

Plus 1 – Knock -1.84 (.066) -1.78 (.075) -1.02 (.31) -2.64 (.008)** 

Table 8. Z-scores (p-values) from Wilcoxon signed rank tests for 3-, 4-, 5-, and 6-year-olds. *** 

significant difference with Bonferroni correction (adjusted alpha = .01). ** marginally 

significant difference with Bonferroni correction. 
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Results from Experiment 5 suggest that children do not reason about unspecified 

numerosities until 6 years. This is somewhat inconsistent with the results of Experiments 3 and 4, 

showing that by around 5 years of age, children can reason about the effects of transformation 

algebraically. In fact, an inspection of the graph suggests that performance of 5-year-olds improved 

in the current experiment compared to Experiment 4. The lack of significant results from the 

Wilcoxon signed rank tests could be due to the relatively small sample sizes and insufficient power 

to detect a significant difference between the paired trial types.  

Regardless of the pattern of results, one may argue that Experiment 5 did not necessarily 

tap into children’s representation of unspecified numerosities. Indeed, it is possible that 4-year-

olds know the meaning of ‘nine’ and can recruit particular facts about ‘nine’ to reason about 

addition and subtraction. The same is true for 5 and 6-year-olds who may know the meaning of 

‘nineteen’ and ‘twenty-nine’. Nevertheless, it provides evidence that labelling hidden sets of 

objects with number words increases their ability to reason about numerosities, and children’s 

pattern of responses is similar to those of Experiments 3 and 4, where no numerosity was given.  

 

Chapter Three Discussion 

Three experiments explored the development of children’s capacity to reason about 

unspecified numerosities – i.e., that the addition of one object necessarily increases the numerosity 

of a set regardless of set size. In each of the experiments, children were asked to reason about how 

different types of transformation changed the numerosity of a set of objects. Specifically, children 

were asked whether there were more elements in the set after the transformation. To assess when 

children begin to show a capacity to reason about unspecified numerosities, set size was 

manipulated such that children could not recruit representations of particular numbers (Experiment 
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3) and sets of objects were presented out of view of children, requiring them to reason about 

unspecified numerosities to conclude whether or not the transformation affected the numerosity of 

hidden sets (Experiment 4).  

In Experiment 3, children were asked to reason about how the addition of one element, 

subtraction of one element, the combined operation of addition and subtraction, and moving one 

object affected the numerosity of a visible set. Results from this experiment showed an interesting 

developmental trajectory: 3-year-olds were able to reason about the effect of transformations on 

particular numerosities, but were unable to reason about unspecified numerosities; starting at the 

age of 4, children understood whether addition, subtraction, and rearranging objects increase the 

numerosity of sets; and by 5, they also correctly reasoned that the addition of one object and 

subtraction of one object cancels each other out and thus does not affect numerosity.  

To provide stronger evidence for children’s ability to reason about unspecified 

numerosities, children were asked to reason about the effects of transformations on the numerosity 

of hidden sets in Experiment 4. This completely eliminates perceptual access to the sets. Although 

the overall analysis revealed that 5-year-olds had difficulty reasoning about the effects of 

transformations, trial type analyses suggested a pattern that was mostly consistent with the findings 

from Experiment 3. Specifically, 5-year-olds demonstrated an understanding of whether addition, 

subtraction, and non-numerical transformation such as knocking on the box (similar to rearranging 

objects in the previous experiment) affected the numerosity of a set. However, they had trouble 

differentiating between addition and the subtraction and addition of the same individual (‘-A+A’) 

and the substitution of an individual (‘-A+B’).  

Thus, Experiment 4 provided somewhat inconclusive evidence regarding when children 

possess the ability to reason about unspecified numerosities. In Experiment 5, I examined this 
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conflicting finding and probed children’s understanding of the effects of transformation on hidden 

sets by modifying the paradigm in Experiment 4. Specifically, hidden sets were labelled with a 

numerical expression to highlight the task of numerical comparison that was required of children. 

Due to the poor overall performance of 5-year-olds in Experiment 4, 6-year-olds were also 

recruited for this experiment. Results showed a pattern of results that is somewhat similar to 

Experiment 4: 4-year-olds are able to distinguish between addition and subtraction, and between 

addition and ‘-3+1’. Although the transformation types analyses were not significant for the 5-

year-olds, this is likely due to insufficient sample size, and the pattern of results (see Figure 14) 

suggested that they were able to distinguish between some of the transformation types. By 6 years, 

there is strong evidence that children are capable of reasoning about whether all of the numerical 

and non-numerical transformations increase numerosity, and this provides evidence that they have 

the capacity to reason about unspecified numerosities. 

Overall, 3-year-olds fail to reason about unspecified numerosities, as suggested by their 

poor performance on reasoning about visible sets and hidden sets across all three experiments. 

Four-year-olds show emergent understanding that the addition of one object increases the 

numerosity of a set, but the subtraction of one object and the combined operation of ‘Minus 3’ and 

‘Plus 1’ does not. However, the finding that 4-year-olds fail to distinguish between addition and 

the non-numerical transformations (i.e., ‘Move 1’ and ‘Knock’) may raise the question of whether 

4-year-olds truly demonstrate an ability to reason about number in the case of addition and 

subtraction. I will return to this point later in this section. Finally, both 5- and 6-year-olds 

demonstrate the ability to reason about unspecified numerosities. Although 5-year-olds have 

difficulty in reasoning that ‘–A+A’ and ‘–A+B’ do not increase numerosity, this may be due to a 

difficulty in negating a question about ‘more’ when the numerosity of the set remains unchanged 
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(i.e., a bias to respond ‘no’ only when the set contains fewer objects). Moreover, given 4-year-

olds’ emergent understanding of addition and subtraction, 5-year-olds’ success on reasoning about 

the effect of ‘–A+A’ in visible sets, and 6-year-olds’ success on reasoning about the effects of all 

transformation types, there is reason to suggest that by 5, children have the ability to reason about 

unspecified numerosities.  

 

An alternative explanation: quantification by continuous cues and not number? 

Although the current studies were designed to test children’s understanding of 

transformations on the numerosity of a set, an alternative strategy is to perform comparison on the 

basis of continuous extent of the set. There are at least two ways to quantify a set of objects by 

continuous extent in the current experiments. First, children can quantify on the basis of the total 

mass of the objects. For example, when one Lego block was added to a set of Lego blocks in 

Experiment 3, not only was the number of Lego blocks increased, but the amount of “Lego block 

stuff” (or the amount of plastic) also increased. Similar arguments can be made for Experiments 4 

and 5 (e.g, when a Lego block went into the box, both the number of blocks and the amount of 

‘Lego block stuff’ increased). While the number of objects and their total mass are confounded in 

the study, there are two important reasons to interpret children’s performance as being based on 

reasoning about number. First, it has been argued that the construal of an entity may influence the 

kind of quantification people perform on an object or a set of objects. Prasada and colleagues have 

argued that humans have an intuitive sense of how entities are to be construed (Prasada, Ferenz, 

& Haskell, 2002). For example, whether we construe an entity as an object kind or a substance 

kind is dependent upon its structure (e.g., shape, regularity of structure). If an entity is construed 

as an object kind (e.g., honey-dipper), then its structure is perceived to be non-arbitrary, whereas 
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if an entity is construed as a substance kind (e.g., wooden stuff), then its structure is perceived to 

be arbitrary. To illustrate, when a honey-dipper is construed as a honey-dipper, it has the structure 

it does because it is a honey-dipper; the structure is not accidental. However, when we construe 

an entity as a piece of wood, we do not think that it has the structure it does because it is wood; its 

structure is more likely to be accidental. This arbitrariness in structure affects the process of 

quantification: object construals call for quantification by number, whereas substance construals 

call for quantification by continuous cues (Prasada et al., 2002). In the current experiment, almost 

all of the stimuli were object kinds. The only exception might be rocks. However, the rocks used 

in the current study all have a regular shape (i.e., they are round like pebbles), and thus, following 

Prasada’s proposal, it is likely that the rocks are still construed of as objects. 

In addition, in the current experiments, nouns were used with count syntax (e.g., “Does 

Winnie The Pooh have more bells now?”), thus signifying quantification by number. Previous 

studies have shown that children are sensitive to such syntactic cues when asked to make ‘more’ 

judgments (Barner & Snedeker, 2005; Gathercole, 1985; see also Gordon, 1985). For example, 

when 4-year-olds were asked questions such as “Who has more shoes/toothpaste?”, where one 

alternative contained a greater number of objects but less overall mass (e.g., six tiny shoes, six tiny 

portions of toothpaste) and the other alternative contained fewer objects but with greater overall 

mass (e.g., two giant shoes, two giant portions of toothpaste), they responded that six tiny shoes 

were more shoes than two giant shoes, and that two giant portions of toothpaste were more 

toothpaste than six tiny portions. Importantly, this pattern of finding has also been demonstrated 

for nouns that can be used flexibly with mass syntax or count syntax. For example, when asked 

“Who has more rocks?” children responded on the basis of the number of rocks, but when asked 

“Who has more rock?” they responded on the basis of total mass (Barner & Snedeker, 2005). These 
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results provide strong evidence that children are sensitive to syntactic cues when making ‘more’ 

judgments. Given that only count nouns were used in the current study, there is reason to suggest 

that children are responding to the question about ‘more’ on the basis of number.  

However, this argument leaves open one question: children in Piaget’s conservation of 

number task responded on the basis of length even though natural object kinds were used (e.g., 

beads). This raises the question of whether the use of count syntax or the construal of object kind 

necessitates quantification by number. I speculate that in the Piagetian task, the conflict between 

perceptual cues and the numerosity of the set is too distracting and makes a comparison of 

numerosity difficult. One piece of evidence suggests that this might be the case. Using Piaget’s 

conservation of number task, Winer (1978) found that children perform better on the conservation 

of number task when shown small sets (two, three) than large sets (five, six). One explanation is 

that children know the numerosity of small sets, thus making the perceptual conflict less distracting. 

If this explanation is true, then it is possible that when perceptual cues are completely removed 

(e.g., children who were shown hidden sets of objects in the current study), children are more likely 

to attend to the syntactic cue and to the nature of the object kind in a quantity judgment task. 

Moreover, even when shown visible sets, it can be argued that the only trial that induces a 

perceptual conflict is the non-numerical transformation in which one object is moved. Thus, there 

is reason to believe that children in the current study did attend to the syntactic cue and construed 

the stimuli as object kinds, causing them to reason about the numerosity of the sets.  

A second alternative to number is contour (Experiment 3 only). For example, when one 

Lego block was added to a set of Lego blocks, both the number of objects and the contour of the 

set of objects increased. If children are adopting a ‘contour strategy’, then one may expect them to 

deploy it for both small and large sets in Experiment 3, and their performance on small sets should 
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be similar to that on large sets. However, this is not what I found. As shown in Experiment 3, 

children across all age groups were consistently better on comparing small sets than large sets. 

One can argue that the ‘contour strategy’ is only applied for reasoning about large sets, and that 

children are recruiting parallel individuation when shown small sets. If this is the case, children 

should be more likely to respond that the set contains ‘more’ in the case of the ‘Move 1’ trial than 

in the ‘Plus 1’ trial because the contour has increased more in the former than in the latter case. 

However, as shown in Figures 6-8 across the 3-, 4-, and 5-year-olds, the proportion of ‘yes’ 

responses was numerically higher for ‘Plus 1’ trials than for ‘Move 1’ trials, which is not predicted 

on the ‘contour strategy’ account.  

 

Relating to previous research: Reasoning about unspecified numerosities and number word 

acquisition 

 As noted in the Introduction, much previous research on children’s understanding of 

number words is motivated by the assumption that children’s understanding of numerical symbols 

may reveal the nature of their numerical knowledge. The present experiments adopted a different 

strategy in examining children’s numerical knowledge. In particular, children were asked to reason 

about changes in numerosity, and not how number words change their application in the context 

of numerical and non-numerical transformations.  

 Previous studies on number word meanings and the current set of experiments reveal a 

similar pattern of results on children’s developing numerical knowledge. First, Experiment 3 

showed that by 5, children understand how rearranging objects, addition, and subtraction affect 

the numerosity of sets. A similar pattern was also revealed in trial type analyses in Experiment 4. 

This converges with findings from Lipton and Spelke (2006), who showed that 5-year-olds 
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understand that the number word that labels a large set of objects changes when objects are 

removed from or added to the set, but the number word remains the same when objects are simply 

rearranged. Importantly, the current experiments are the first to show that even before children 

turn 5, they have the capacity to reason about some aspects of unspecified numerosities.  

 Second, Experiment 3 also showed that by 3, children are capable of reasoning about how 

rearranging objects, addition, and subtraction affect the numerosity of small sets. This is consistent 

with studies on children’s understanding of small number words and their sensitivity to numerosity 

changes in the small number range (e.g., Gelman, 1977; Bullock & Gelman, 1977; Condry & 

Spelke, 2008; Schaffer, Eggleston, & Scott, 1974). 

 In addition, across the three experiments, it has been shown that 3-year-olds fail to correctly 

reason about whether addition and subtraction increase the numerosity of large sets. This finding 

has implications for the conflicting findings on children’s understanding of number word 

application (Sarnecka & Gelman, 2004; Condry & Spelke, 2008; Brooks et al., 2013). In previous 

studies, when presented with one set of objects and two number words, 3-year-olds demonstrate 

understanding of the application of number words. They apply a different number word when a 

numerical transformation is performed, and the original number word when a non-numerical 

transformation is performed. However, when shown two sets of objects, they are at chance. Using 

experiments on novel objects that were similar in design to the experiments on number word 

application, Brooks et al. (2013) argue that children’s success on the one-set task reflects 

sensitivity to pragmatic cues provided by use of the alternative label, and not genuine knowledge 

about the application of number words. Specifically, they argue that children first interpret number 

words as quantifiers such as ‘some’ and ‘all’. Thus, they understand that number words denote 

numerosities, and they may also know that a change in numerosity can affect the application of 



 

81 

 

number words. However, they do not necessarily know that a change of one element is sufficient 

to change the application of number words. Importantly, in the one-set task, children can succeed 

by making a pragmatic inference. When given an alternative number word that directly contrasts 

with the original label, the experimenter is inviting the child participants to think that the new label 

is relevant to the change in numerosity. Therefore, on Brooks et al.’s account, understanding that 

adding one element changes the application of number words does not necessarily reflect 

knowledge of the semantics of number words, but can instead be explained by the use of pragmatic 

inference. This contrasts with Sarnecka and Gelman’s view, which argues that the knowledge that 

a change of one element is sufficient to change number word application is part of the semantics 

of number words. Nevertheless, on both accounts, children at the age of 3 should understand that 

number words are about numerosities, and that the application of number words changes in the 

context of numerical transformation but not in the non-numerical transformation. Yet the current 

studies found that 3-year-olds fail to identify whether addition and subtraction affect the 

numerosity of sets. What may explain this discrepant finding? 

 One possibility is that the current experiments included the ‘-A+A’ trial, which was not 

investigated in previous experiments that used the one-set paradigm. Perhaps this explains why 3-

year-olds in previous studies demonstrate some knowledge of numerical transformation, but those 

in the current studies do not (at least not with large sets). To evaluate this possibility, I removed 

the ‘-A+A’ trial and analyzed children’s performance against chance in Experiment 3. Post-hoc 

analyses showed that 3-year-old children still performed at chance for large number trials (M = 

54.4% vs. M = 46.1% when ‘-A+A’ was included; p’s = .49, one-sample t-tests). Therefore, the 

inclusion of this trial type does not seem to be responsible for the discrepancy.  

Another possibility is that it may be harder for children to respond to questions about 
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more/less (as in the current experiments) than about same/different (as in previous studies on 

number word meanings). Future studies can investigate how children’s reasoning about ‘more’ 

develops with their corresponding understanding of number word meanings.  

 

Relating to previous research: Interference of continuous cues in tracking numerosity changes 

Not surprisingly, the current results on trials in which a spatial transformation was 

performed (e.g., moving 1 object) in Experiment 3 replicate Piaget’s (1952) finding that children 

are often influenced by non-numerical cues when asked to track numerosity. Specifically, in the 

classic Piagetian conservation of number paradigm, children are presented with two rows of 

objects that are in one-to-one correspondence. In some contexts, the experimenter then moves one 

row of objects to make it longer and asks whether there is still the same number of objects. Children 

younger than 6 often respond that the longer row has ‘more’ objects, attending to non-numerical 

cues such as length in response to a question about the numerosity of a set. In the current 

experiments, 3- and 4-year-old children attended to non-numerical cues and responded that a set 

contained more elements after one object was moved in the context of large sets. Nevertheless, by 

5, children became less inclined to respond that the numerosity had increased under non-numerical 

transformation. Thus the present studies find earlier competence than Piaget did, suggesting that 

the tendency to rely on non-numerical cues in numerical tasks diminishes by around 5 years of age.  

 

Relating to previous research: Young children’s interpretation of the relationship between set 

identity and the numerosity of sets 

My findings also extend a recent study on children’s use of one-to-one correspondence 

cues to track changes in numerosity (Izard, Streri, & Spelke, 2014). They found that children can 
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use one-to-one correspondence to track small sets (2 or 3) but not large sets (5 or 6) of items. In 

this study, 2 1/2–year-old children who had not learned number word meanings beyond ‘four’ 

were given one-to-one correspondence cues to track sets of items. They were presented with a set 

of finger puppets that were sitting on branches of a toy tree; the puppets and the branches either 

corresponded one-to-one or they did not. This set up made clear when there was a difference of 

one puppet (e.g., 5 puppets with 6 branches). Then, the experimenter placed the puppets in an 

opaque box, and acted out stories that resulted in a transformation of the set (e.g., addition of one 

puppet, subtraction of one puppet, removing one puppet and returning it to the set, substituting one 

puppet with an identical-looking puppet). Children were then allowed to search in the box after 

the transformation, and search times were used as a dependent variable. For example, if children 

understand the effect of addition, then they should understand that when 1 puppet is added to a set 

of 5 puppets, it results in a set of 6 puppets. Thus, after returning 5 puppets to the tree, they should 

keep searching for the 6th puppet. Izard and colleagues found that for large sets, children could not 

compute the effects of adding one or subtracting one from the initial set on the correspondence 

between branches and puppets. However, they were successful when the transformation involved 

the addition and removal of the same puppet, searching longer for the 6th puppet when the set was 

expected to contain 6 puppets. Under a similar transformation, one in which a puppet was replaced 

with an identical-looking puppet, children failed to search longer for the 6th puppet.  

Findings from this study are similar to the current experiments in two ways. First, 

consistent with Izard et al.’s study, I found that 3-year-olds in Experiment 3 failed to distinguish 

the addition of one element and subtraction of one element when shown large sets of objects. 

Second, similar to Izard et al., I also found that when shown small sets, children are capable of 

reasoning about the effects of addition and subtraction on the numerosity of sets. However, my 
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findings diverge in the case of the addition and removal of the same individual item or puppet. 

Unlike Izard et al., both 3- and 4-year-olds in the current experiments incorrectly reasoned that 

when an individual was removed and returned back to the set (i.e., -A+A), the numerosity of the 

set changed. Thus, findings from the current experiments reveal a more protracted development of 

understanding the effects of removing and returning the same individual on the numerosity of a 

set. 

A difference in methodology might explain this discrepant finding. To succeed on the 

current experiments, children have to understand how removing an object and returning it to the 

set affects its numerosity. However, in Izard et al.’s study, children could succeed on the analogous 

transformation without thinking about its effect on numerosity. As argued by Izard and colleagues, 

it may be that young children (or non-CP-knowers) did not interpret the one-to-one correspondence 

between branches and puppets as determining numerical equality between them, but rather 

interpreted each of the branches as referring to one individual. In other words, they may not have 

interpreted the presence or absence of one-to-one correspondence as indicating that “the number 

of branches is equal/not equal to the number of puppets”, but rather interpreted the situation as 

“each branch has one puppet” (see Sarnecka & Gelman, 2004; Sarnecka & Wright, 2013, for 

evidence that non-CP-knowers fail to use one-to-one correspondence cues to infer the numerosity 

of sets). Therefore, children in Izard et al. may have succeeded on the transformation that is 

equivalent to the ‘-A+A’ trial in the current study because it may be easier to reason about the 

effect of ‘–A+A’ at the level of individuals than at the level of its effect on the numerosity of sets.  

 

Conclusions about the nature of representations of unspecified numerosities 

The pattern of results reported in this Chapter raises important questions about the nature 
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of representations of unspecified numerosities. The data clearly indicate a developmental trend in 

children’s reasoning about how transformations to a set affect numerosity. But what is developing?  

On one view, children are born with the capacity to represent unspecified numerosities. It 

is important to note that hypothesizing that an ability is innate does not mean infants possess that 

ability from birth (e.g., puberty is an innate biological mechanism that does not occur until our 

early teenage years). On the nativist view, children do not acquire representations of unspecified 

numerosities because the representation of particular numerosities presupposes one to represent 

unspecified numerosities, and thus, it does not make sense to hypothesize that children construct 

representations of unspecified numerosities. Rather, as children grow older, they develop an ability 

to apply reasoning principles that operate over representations of unspecified numerosities, and 

the principles that operate over such representations require exposure to sets of objects and 

numerical language to fully develop. This may explain why there was an effect of block in 

Experiment 3: children who were tested on small number trials first performed better than those 

who were tested on large number trials first. Children may need to engage in a numerical 

environment before recruiting representations of unspecified numerosities. On this account, what 

is changing over the early developmental years is how the numerical principles such as addition 

and subtraction can be applied to representations of unspecified numerosities. This explains why 

children’s understanding of the effects of transformation on numerosity develops gradually: they 

first learn that addition but not subtraction increases the numerosity of a set, followed by an 

understanding of how the two numerical operations cancel each other out. Therefore, what 

develops is not the representations of unspecified numerosities per se but the ability to reason 

numerically.  

On the other hand, it can also be argued that children construct representations of 
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unspecified numerosities as they grow older. One possibility is to construct representations of 

unspecified numerosities from representations of particular numbers. As the current findings 

suggest, children are capable of reasoning about small sets (1-3) before reasoning about large sets 

(14-16) and hidden sets. On the constructivist account, children first notice how numerical 

principles apply to representations of particular numerosities, and then make an induction of these 

principles over all possible numbers. Specifically, they know that (1) small sets of objects have a 

particular numerosity, and that (2) there is an order for small sets, i.e., a set of three is more than a 

set of two, and a set of two is more than a set of one. It has also been shown that even infants can 

perform addition over small sets of individuals (Wynn, 1992b). Thus, the analogies children 

observe in the small number range may be powerful enough to allow them to make a crucial 

induction: any sets of objects will have a numerosity x, which will be different from x + 1.  

 

Conclusions 

Since Piaget, the bulk of research on children’s developing understanding of number 

focuses on how children represent and reason about representations of particular numerosities. 

Studies on children’s understanding of numerical knowledge that applies to all possible numbers 

are rare (e.g., Evans, 1983; Hartnett, 1991). The present findings shed light on both the extent and 

limits of children’s representations of unspecified numerosities. Across three experiments, I found 

that by 5, children demonstrate knowledge about how numerical and non-numerical 

transformations affect the numerosity of a set. Although children younger than 5 fail to reason 

entirely correctly about unspecified numerosities, by 4, they begin to show a general understanding 

of addition and subtraction.  

In sum, by investigating how children reason about the effects of numerical and non-
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numerical transformations in the context of numerical comparison, we gain insight into children’s 

representation of numerical knowledge. The present studies contribute to our understanding of 

children’s developing numerical reasoning by providing converging evidence that children 

develop the ability to reason about unspecified numerosities at around the age of 5. Future studies 

should investigate how the different aspects of numerical knowledge such as the one-to-one 

correspondence principle and the successor principle develop with children’s ability to reason 

about unspecified numerosities. This will provide important insights into the origins and 

development of the concept of the natural numbers.  
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Chapter Four: General Conclusions 

Using numerical comparison as a case study, this dissertation explored the limits and extent 

of representations of number through the study of the development of representations of particular 

numerosities and unspecified numerosities.  

I began by asking how rich the innate non-verbal representations of sets are in representing 

number. A growing body of literature has shown evidence for two distinct non-verbal 

representations of sets of objects – the approximate number system (ANS) and an object tracking 

system termed parallel individuation (e.g., Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004; 

Xu, 2003; Carey, 2009). Some have argued that ANS is our only innate non-verbal system for 

representing numerical relations, and there is much evidence to suggest that the ANS can represent 

numerical relations early in infancy (e.g., Brannon, 2002; Suanda, Tompson, & Brannon, 2008; 

McCrink & Wynn, 2004). However, there is little consensus as to whether parallel individuation 

can also represent numerical relations between two sets of objects. This motivates the research 

reported in Chapter 2. Using a numerical comparison task, children between the ages of 2 ½ and 

4 ½ were shown two sets of objects and were asked which set contained more elements. In two 

experiments, I found that young preschoolers (2 ½ to 3 ½) were more accurate on comparing small 

sets (1 to 3, and likely, 4) than large sets (6 or more) even though the ratios of the numerosities 

were the same in the small and large numerosity comparisons. Importantly, I found the same 

pattern of results in children who had not learned any number word meanings. These findings 

suggest that preschoolers use distinct systems to compare small and large numerosities: parallel 

individuation for small sets and the ANS for large sets. These findings make an important 

contribution to the field of numerical cognition: I provided the first evidence that in addition to the 

ANS, parallel individuation, a non-verbal representational system for representing objects, can be 
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used to support the computation of numerical comparison of two distinct sets prior to the 

acquisition of numerical language. 

The third chapter investigated the development of another type of representation of number 

– namely, representations of unspecified numerosities. Investigations into the concept of the 

natural numbers must not only account for representations of particular numerosities, but they must 

also explain how we represent unspecified numerosities. As adults, we are capable of determining 

whether statements such as ‘x + 1 > 1’ are true without knowing the exact value of x. The ability 

to represent unspecified numerosities is an important aspect of numerical knowledge that is 

fundamental not only in the field of mathematics, but also in other fields such as physics and 

computer science. But when and how does the representation of unspecified numerosities develop? 

In Chapter 3, I examined when children are able to reason about the effects of different types of 

transformation on the numerosity of a set, as a way to explore the development of the 

representation of unspecified numerosities. In three experiments, children between the ages of 3 

and 5 observed as the experimenter performed a transformation on a set of visible or hidden objects, 

and were asked whether there were more elements in the set. The experiments were designed to 

examine when children begin to understand that ‘x + 1 > x’ regardless of the value of x. I found 

that the ability to reason about unspecified numerosities emerges at around age 4, and is fully in 

place by around 5-6 years of age. These findings make three important contributions: (1) I provided 

evidence that 5-year-olds show the capacity to reason about unspecified numerosities in a task that 

does not require them to interpret number word meanings; (2) I showed that children younger than 

5, and in particular, 4-year-olds, have some limited abilities to reason about representations of 

unspecified numerosities; (3) Contrary to the view that studies on number word application may 

underestimate children’s numerical knowledge, I used a task that did not employ number words 
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and found converging evidence that is consistent with previous research on children’s knowledge 

of unknown number words (Lipton & Spelke, 2006).  

 

The representation of unspecified numerosities: What is developing? 

 The findings from Chapter 3 suggest that 3-year-olds fail to reason about unspecified 

numerosities. This ability may emerge at around age 4, and is fully in place by age 5. What is 

developing between the ages of 3 and 6 that may account for these developmental changes? One 

possibility is the experience of schooling. At the time of testing, both 4- and 5-year-olds spent half 

of each week at a daycare (or at home) and the other half at an elementary school with a junior and 

senior kindergarten program. Thus, it is possible that being in a school environment enhances 

children’s numerical reasoning abilities, perhaps via structured activities. Nevertheless, given that 

4- and 5-year-olds experience the same amount of schooling but demonstrated a different level of 

understanding of numerical transformations in my experiments, it seems unlikely that schooling 

alone can explain the developmental differences. A second possibility is that children’s ability to 

ignore perceptual cues develops between the years of 4 and 5. In particular, given that 4-year-olds 

failed to distinguish between ‘Move 1’ and ‘Plus 1’ in Experiment 3, their poor performance 

compared to 5-year-olds could stem from perceptual interference. However, in Experiments 4 and 

5 where perceptual cues were completely removed, 4-year-olds still demonstrated difficulty with 

numerical reasoning. A third possibility is that pragmatic abilities develop between the ages of 4 

and 5. In addition to the non-numerical transformations (‘Move 1’, ‘Knock’), 4-year-olds also had 

difficulty with ‘-A+A’ across all experiments. This raises the possibility that 4-year-olds’ poorer 

performance was due to their developing pragmatic abilities. For example, as mentioned earlier, 

4-year-olds may not be able to spontaneously generate ‘same number’ as a possible response 
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alternative to a question about ‘more’. They may interpret a question about ‘more’ as if ‘more’ is 

an absolute adjective – i.e., when a set does not contain ‘more’, it contains ‘less’. I speculate that 

this particular difficulty about interpreting ‘more’ may only arise in the context of questions when 

children have to generate possible response alternatives. These three possibilities are not mutually 

exclusive. It is likely that there could be multiple sources of difficulty for young children’s failure 

to reason about number. 

 In addition, while I argue that the development of children’s numerical reasoning abilities 

develops gradually, it is possible that the change occurring when children turn 5 is more sudden. 

For example, given that 4-year-olds failed to distinguish between addition and the non-numerical 

transformations (‘Move 1’, ‘Knock’), it leaves open the question of whether they are truly 

engaging in numerical reasoning in the context of addition and subtraction. As noted above, the 

use of real object kinds and count syntax should make it salient that the task is about discrete 

quantification – quantification on the basis of the number of objects. Moreover, as mentioned in 

Chapter 3, both Sarnecka and Gelman (2004) and Brooks and colleagues (2013) showed that by 

age 2 ½ to 3, children understand the type of transformation that licenses a change in number word, 

and the type of transformation that does not license a change in number word. This provides some 

evidence that the changes I found in the current set of experiments are more quantitative in nature 

and due to other aspects of the tasks. Future studies could investigate this in more detail by 

including a trial in which continuous cues are controlled (e.g., removing three tiny bells and adding 

1 giant bell that has a larger volume than the combined volume of 3 tiny bells). 

 

Implications and convergent evidence for number word learning 

 Although the present dissertation focuses on non-verbal representations of numerical 
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relations, it has implications for children’s acquisition of verbal numerical knowledge, and 

specifically, number word meanings. In Chapter 2, I found evidence that parallel individuation can 

support numerical computations, despite the lack of an explicit representation of number in the 

system. Importantly, I also found that children who had not acquired any number word meanings 

can likely recruit parallel individuation to compare small numerosities. This provides some 

evidence that parallel individuation could support the acquisition of early number word meanings, 

and may explain why children acquire number words in sequence. Using the Give-A-Number task 

as discussed in Chapter 2, it has been consistently shown that children learn the first few number 

words in order: they first learn the meaning of ‘one’, then ‘two’, ‘three’, and sometimes ‘four’, 

before inducing the cardinal principle – i.e., that the last word in a counted set refers to the 

numerosity of the set (e.g., Wynn, 1990, 1992a; Le Corre et al., 2006; Barner, Libenson, Cheung, 

& Takasaki, 2009; Sarnecka et al., 2007; Le Corre, Li, Huang, Jia, & Carey, under review; 

Sarnecka & Lee, 2009; Lee & Sarnecka, 2010, 2011). While the source of delay regarding 

children’s acquisition of early number words remains an open question (e.g., Le Corre & Carey, 

2007; Wagner & Johnson, 2011), the findings from Chapter 2 provide some support for the 

hypothesis that children’s meanings for small number words may first be mapped onto 

representations of individual objects before they make the cardinal principle induction.  

Investigations of the development of unspecified numerosities reported in Chapter 3 

provide convergent evidence for number word learning. One motivation for the experiments in 

that chapter was to examine children’s generalized numerical knowledge without recruiting their 

number word knowledge. Although knowledge about number word meanings reflects children’s 

understanding of numerical concepts, it could also underestimate their ability. In particular, their 

difficulty in previous studies on number word application (e.g., Condry & Spelke, 2008) may have 
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reflected a lack of knowledge about how number words represent numerical concepts. Thus, it is 

crucial to investigate children’s numerical understanding in the absence of number words. 

Surprisingly, in such a task, I did not find an earlier emergence of numerical reasoning abilities. 

Results from Chapter 3 show that children are capable of reasoning about general number by age 

5, the same age at which Lipton and Spelke (2006) found evidence for children’s understanding of 

number word application in the context of unknown number words. This converging result 

tentatively suggests that 5-year-old children begin to reason about unspecified numerosities at the 

same time that they understand that there are numbers outside of their count list. Future studies 

can adopt a within-subject design to explore the relationship between these pieces of numerical 

knowledge that are closely related to each other.  

 

Numerical comparison on two distinct sets and on one set of objects 

 The two chapters used numerical comparison as a case study to examine the nature of 

representations of number in children. At first glance, it may appear that results from the two 

chapters contrast with each other. On one hand, as shown in Chapter 2, children begin to be able 

to compare small numerosities as young as 2 ½ years of age, and large numerosities starting at 

around 3 ½ years of age. On the other hand, as shown in Chapter 3, their ability to compare a set 

of objects before and after transformation does not emerge for large sets until age 4 or 5. What 

may explain such discrepant findings?  

One important factor that warrants discussion is the methodological differences. In Chapter 

2, children were presented with two distinct, static sets, whereas children in Chapter 3 were shown 

a set that was transformed. Thus, although children across all experiments reported in this 

dissertation were asked to make ‘more’ judgments, the way the stimuli were presented may require 
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different computations of numerical comparison. In particular, children who participated in the 

experiments in Chapter 3 were required to reason about the effects of transformation in the context 

of numerical comparison. Thus, the task facing children in these experiments is computationally 

more complex than for those who participated in experiments in Chapter 2. For example, in 

Chapter 3, when shown hidden sets, children have to generate a representation of the set before 

the transformation, store it in memory, and compare it to a representation that they generate after 

the transformation. Arguably, the task may be simpler in the case of visible sets. However, children 

are still required to store the pre-transformed set in memory in order to compare it to the post-

transformed set. In contrast, children who participated in the experiments in Chapter 2 were asked 

to compare two sets of objects that were both in sight, and children did not have to update their 

representations of these sets or store them in memory. These differences in the process of 

numerical comparison may explain why children demonstrate earlier competency in comparing 

two distinct sets of objects than in reasoning about transformation effects on a single set of objects. 

Another possibility for the discrepant results is that the representation of unspecified numerosities 

is constructed much later. The origin of the representation of unspecified numerosities remains an 

open question that will likely generate a fruitful area for research. 

 

Conclusions 

In summary, this dissertation expanded the scope of evidence regarding the nature and 

development of representations of number in two important ways. First, I documented evidence 

for rich innate representations of sets. In addition to the ANS, parallel individuation – a system for 

representing individual objects – has been shown to support numerical comparison in young 

children, suggesting that it is one of the developmental roots for representing numerical relations. 
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Second, I found that children’s ability to reason about unspecified numerosities develops gradually, 

and appears relatively late in development, not until 5 years of age.  Together, these results suggest 

that the numerical reasoning principles that operate over representations of unspecified 

numerosities may develop later than computations that operate over representations of particular 

numerosities. 
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