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Abstract 

Spectroscopy in the near infrared range is a powerful tool for the qualitative and quantitative analysis 

of a variety of materials in the gas liquid or solid phases. The use of optical fibers as a means of 

performing cost effective in-situ spectroscopic analysis has gained a lot of attention in many fields in 

the past three decades. Intensity based fiber optic sensors, which rely on variations in transmission 

power at a fixed wavelength for the characterization of material, are relatively inexpensive to fabricate 

and provide an easy to read signal. 

The objective of this thesis will be to present an analytical model developed for a multimode fiber 

optic evanescent wave sensor (FOEWS) capable of monitoring the charge cycle of a lithium-ion battery 

cell. The sensor is fabricated by partial removal of the cladding material surrounding the core of a 

multimode fiber optic. The thinned cladding section allows for transmission loss via evanescing waves 

which radiate power out from the core as a function of the external environment. 

 In contrast to FOEWS designs which use a single mode optical fiber, the use of a multimode fiber 

causes difficulty in numerical modeling of the system. Single mode optical fibers have core diameters 

which are small relative to the wavelength of light propagating within. As such, solving for the 

transmission response of a single mode fiber can be accomplished using a numerical solver. By using 

a multimode optical fiber the fiber core diameter is orders of magnitude larger than the wavelength of 

propagating light. Attempting to accurately mesh a multimode optical fiber requires an unmanageably 

large mesh which cannot be solved in a reasonable time frame. Alternative approaches for the modeling 

of a multimode FOEWS have been proposed in the past. However, these methods make use of effective 

attenuation coefficients to estimate the transmission coefficient of the sensor and thus, they do not 

include a direct analysis of the electromagnetic field solutions of the thin cladding region. An analytical 

method for accurately solving the attenuation coefficient using the transfer matrix method is presented. 

Adoption of the analytical method extends the theoretical description of FOEWS model allowing for 

more accurate prediction of the sensor behavior by directly accounting for cladding thickness without 

the use of empirically determined attenuation coefficients. 

FOEWS fabricated using commercially available step index multimode fibers etched with buffered 

hydrofluoric acid were used to verify predictions of the newly modified model. Model predictions are 

matched with experimental tests performed using known index of refraction samples of glycerol and 
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calibrated thermal optic oil ranging from 1.451 to 1.466. The experimentally observed intensity 

variations are compared to model predictions for verification. The fabricated FOEWS was determined 

to have a cladding thickness of 0.485 ± 0.1 µm. Comparison with direct measurement under scanning 

electron microscope (SEM) place the variations of the model from the experimental results within one 

standard deviation of the fabrication tolerances of the optical fiber. 

Building on the increased capabilities of the transfer matrix method to analytically model the thin 

film reflection coefficient, a method is put forth to simulate the partial contact of a solid analyte with a 

FOEWS. A case study is presented which investigates the FOEWS response behavior to a solid lithium-

ion graphite anode held in partial contact to the fiber. SEM images of lithium-ion anode materials held 

in sensing contact with a fabricated FOEWS are analyzed to determine the fractional contact area of 

the fiber optic sensing region with the solid anode. A statistical average of the fractional contact area 

as well as mean depth of non-contact regions is determined. The presence of partial contact between 

the fiber thin cladding and anode material creates a fourth thin film region which is filled with 

electrolyte liquid from the cell. The addition of a fourth thin film region is added to the transfer matrix 

method analysis of the sensing region of the FOEWS to account for the presence of liquid electrolyte 

between the fiber sensing region and anode bed. By splitting the model analysis of the sensing region 

into two separate sections representing the fractional full and fractional partial contact regions effects 

of partial is then studied using simulated results. 

In summary, the ability to directly model thin film cladding effects using the transfer matrix method 

has been added to pre-existing FOEWS models. This new functionality is tested against fabricated 

devices using solutions of various index of refraction. The model is then used to predict the effect of 

partial contact of the sensor with a solid anode analyte from a lithium-ion cell. 
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Chapter 1 

Introduction 

The need to monitor, measure, and understand many of the processes not easily accessible to direct 

observation in today’s technological society, drives the development of better sensors and sensor 

systems. Consequently, there is always the need to improve current sensor methods. Crucial to the 

improvement to sensor technology is the ability to understand and model the physical phenomena 

governing the sensing mechanism. 

The use of fiber optic as a foundation for the design of fiber optic sensors, has been the subject of 

active research for the past thirty years. The ease of availability of photonic components including, 

lasers, light emitting diode (LEDs), detectors, and optical fibers in particular has encouraged the growth 

and development of the fiber optic sensor field. With continued improvement in the availability and 

manufacturing costs of specialized optical fibers and components, the further proliferation and 

development of the fiber optic sensor industry will only continue to grow. 

Various principles of light modulation are used to develop fiber optic sensors including intensity, 

wavelength, phase, polarization and spectra of the light propagating inside the fiber. A common sensor 

design using an intensity based measurement relies on the creation of evanescent waves that allow for 

interactions to take place between light propagating inside a fiber core and the outside environment. In 

such types of sensors, a section of cladding is thinned by means of chemical or mechanical processes 

from the optical fiber so that reflection losses in the thinned region modulate the transmission intensity 

of the sensor relative to the index of refraction of the external media. 

1.1 Motivation 

With the recent focus on the use of lithium-ion batteries as an alternative to fossil fuels, the estimation 

of charge in lithium-ion batteries has become a focus of active research. Current methods for charge 

estimation rely on non-direct methods such as coulomb counting. With such methods, the charge 

estimate is based on net energy transfer to the lithium cell. Coulomb counting is accurate at predicting 

charge state under low charge rates and short rest periods. However, if the lithium cell is exposed to 

various charge rates, temperature changes, or extended periods of inactivity, in direct methods of charge 

estimation lose accuracy. 
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 One promising alternative for lithium-ion charge estimate entails direct monitoring chemical 

composition of the cells electrodes during use. A sensor capable of such a function would be required 

to be chemically inert to avoid interfering with the natural chemical processes of the cell, and immune 

to the electronic interferences of the cell. Fiber optics are a natural and very promising candidate for 

such a sensor as they are chemically inert and immune to electromagnetic interferences. In addition, 

fiber optic sensors are small enough to feasibly fit inside a battery cell environment without drastically 

modifying conventional designs. This is the first time that an intensity based optical fiber sensor is 

placed into a fully functional lithium ion battery cell for the purpose of monitoring the state of charge. 

 Intensity based fiber optic sensors require the least complex and thus inexpensive sensor design 

and photonic components. The design of most intensity based sensors requires the reduction of the 

cladding thickness within a given length of an optical fiber to allow the light propagating within the 

fiber to interact with an external environment. The transmission of light through the optical fiber thus 

becomes a function of the optical and contact properties of the external media. Sensors of this design 

are referred to as a FOEWS. The process of thinning a portion of the optical fiber cladding to gain 

access to light propagating within the fiber core results in a reduction in the diameter. In the case of 

single mode fibers, the core diameter is typically less than ten microns in diameter. Thinning the 

cladding enough to allow for environmental interactions with light within the core would result in an 

extremely small fiber diameter within that region. Such a small fiber cross section would make it 

extremely likely that the optical fiber would break while insertion into a battery cell during fabrication, 

or during battery operation. In contrast, multimode optical fibers have a much larger core diameter, 

roughly ten times that of a single mode fiber. Accessing the core in multimode fibers requires 

considerable less removal of the cladding and lessen reduction in structural integrity of the fiber. 

 Accurate theoretical formulations for FOEWS utilizing single mode fibers rely of wave-optic 

descriptions of light. Practical use of such a formulation can be readily carried out using numerical 

techniques to solve the Maxwell equations within the framework of a single mode fiber due to the 

optically small diameter of a single mode core. This is not the case for multimode FOEWS, where the 

fiber core is several orders of magnitude larger than the wavelength of light being analyzed. To ensure 

that the numerical solutions converge properly, the sampling distance of the mesh must be small enough 

to ensure proper description of the excitation wavelength. Even when powerful computers are utilized, 

the problem domain is too large to be solved practically. Therefore, one must resort to a geometrical 

optics description. General theories for multimode uncladded, step index multimode fibers have been 
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presented under the framework of geometric optics. However, when partially, or thin cladded sensors 

are considered, proper description of the thin film interference effects between the fiber core, cladding, 

and external media cannot be accomplished with a geometric optics theory. Under the framework of 

geometric optics, it is assumed that light rays are interacting with structures that are large with respect 

to the wavelength. With the presence of a thin film cladding, the thickness of the cladding is smaller 

then or comparable to the wavelength of the light. When light rays pass through thin layer media, 

multiple reflections occurring between the entry and exit interfaces of the layer interfere and modify 

both the transmission and reflection properties of the layer. Additionally, geometric optics fails to 

describe the optical tunneling effect of rays of high incident angles on thin layers which will be 

discussed in more detail in Chapters 2 and 3. Attempts to account for the thin film interference effects 

into multimode FOEWS models are available in the literature, however, as discussed in Chapter 2, no 

solution has been presented which is able to fully describe this process. 

This lack of a full incorporation of the thin film interference analysis into the geometric optics theory 

of a multimode FOEWS motivates the work of this thesis. 

1.2 Objectives 

In this thesis, an analytical technique for the description of the attenuated losses of light rays 

interacting with the thin film layered interface within the sensing region of the device is developed. 

This technique uses the transfer matrix method to solve for the attenuated reflection caused by the thin 

film interactions of light with the thinly cladded sensing region of the FOEWS. The inclusion of the 

method to the existing geometric optics descriptions for multimode FOEWS, maintains the speed and 

efficiency of the original algorithm while allowing for increased functionality within the model. The 

newly modified model is then used to analyze the effect of cladding thickness and sensing length on 

sensor performance. Additionally, under the framework of the transfer matrix method, predictions on 

the nature of surface contact between the fiber sensing region and a solid measurand are made by the 

addition of a fourth thin film to the layer stack representing areas of non-contact. 

 The extension to the model is tested against in-house experimental results as well as previously 

published competing methods. The nature of surface contact of a fiber optic FOEWS with a lithium-

ion cell anode are characterized using SEM images of disassembled lithium-ion battery cell anodes 

fabricated to test the sensor. Mean values for surface contact ratio as well as non-contact region sizes 
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and depth are determined from the SEM samples. Predictions on the change in transmission response 

of a fiber optic FOEWS due to partial contact between sensor and solid anode are made and discussed. 

1.3 Organization of the thesis 

The thesis is divided into four chapters. In Chapter 2 an overview on intensity based fiber optic 

sensors is presented along with their practical applications. A review of the different types of analysis 

performed on multimode fiber optic FOEWS explaining the difficulties in their modeling follows. 

Finally, a survey of methods used to analyze the attenuation factor caused by the thin film sensing 

region is given. The survey highlights the gaps in methodology present in published works that prevents 

a more accurate characterization of the thin film cladding effects. 

In Chapter 3, the modifications to current geometric optic representations of multimode FOEWS are 

proposed. A full description of how the transfer matrix method is applied to analyze transmission 

through the sensor is given. The model is then applied to cases of sensing both liquid and solid 

measurands. Performance variations caused by changes in cladding thickness and sensing length for 

liquid measurands are discussed. Chapter 4 presents the experimental validation of the model using 

liquid measurands. First simulation results of the modified model under variations in sensor geometry, 

illumination conditions and contact nature are presented. The set up for experimental validation is 

described and the results are presented for several fabricated sensors with several test samples. 

Comparison between the experimental and predicted simulated results are made as well as comparison 

to alternative models found in the literature. 

Chapter 5 utilizes the convenience of modeling multi-layer stack structures via the transfer matrix 

method. In this section, the partial contact of a solid measurand is added to the model. Partial contact 

is modeled by averaging the transmission predictions obtained using a three layer stack structure to 

represent direct contact and a four layer stack structure to represent in direct contact. The four layer 

stack assumes a layer of liquid between the cladding and measurand layers. The thickness of the gap 

layer is obtained from empirical observations of a fiber in contact with graphite that has been used as 

the anode of a lithium-ion battery cell. An analysis of various launching conditions onto the fiber optic 

face is also developed. Equations for the propagating ray angles and intensities are derived for a general 

Lambertian LED source incident at arbitrary distances and tilt angles. Values for surface area contact 

ratio and non-contact void region depths are determined and generalized mean values are found. 
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Finally, a mean surface contact value is used to simulate the effect of partial contact on the sensor 

performance. 

Chapter 6 concludes the thesis by listing the main contributions and outlining the steps required to 

use the model as a validation tool for chemical models of battery state of charge. 

Finally, Appendix A contains background theory of geometric and wave optics treatment of fiber 

optic sensors. While Appendix B presents the Matlab code for the extended geometric optics model 

develop in this thesis. 
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Chapter 2 

Literature Review 

Optical fibers based on the coaxial structure of silica and silica doped glasses have been widely 

available for their use as sensors. Fiber optic sensors operate by monitoring the characteristics of the 

light propagating within as a function of a perturbing environment. Fiber optic sensors can be divided 

into two basic categories: wavelength modulated and intensity modulated sensors. Wavelength 

modulated sensors such as fiber Bragg grating sensors operate by monitoring the wavelength of a 

reflected wave sent into a single mode optical fiber containing a fiber Bragg grating achieved by 

creating a periodic variation in the refractive index of the fiber core. This Bragg grading acts as a 

wavelength specific dielectric mirror which reflects light of a specific wavelength based on the 

perturbing environments effect on the refractive indices of the grating. Wavelength modulated sensors 

provide high accuracy and precision but require the use of spectrum analyzers to monitor the 

wavelength of the reflected signal. Intensity modulated sensors detect a change in the amount of light 

that is a function of a perturbing environment. The change in the amount of light can be associated with 

transmission, reflection, absorption, scattering or fluorescence within the optical fiber [1]. Within the 

field of intensity based fiber optic sensors, there exist many designs, each of which can be analyzed 

using several different theoretical frameworks. In this chapter the endeavor is to give a broad overview 

of the common sensor types, methods for their analysis, as well as some common applications for each. 

2.1 Types of Intensity Based Fiber Optic Sensors 

Fiber optic sensors work by modulating the properties of the light propagating through the fiber core. 

Various principles of light modulation are used to develop sensors, but the most common rely on the 

modulation of intensity or phase of the light propagating inside the fiber. Intensity based sensors detect 

the change in light power as a function of either the optical properties of the measurand in contact with 

the sensor, or the deformation of the optical fiber based on the perturbing environment. Phase based 

sensors detect the phase shift of light from a coherent laser light source by utilizing interferometric 

methods. Common interferometric methods include the Fabry-Perot, Sagnac, Mach-Zehnder, and 

Michelson interferometers [2]. Interferometric methods are able to attain a high level of sensitivity but 

are difficult to set up than intensity based sensors [2]–[4]. 
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Regardless of the principle of modulation the measurand sample must be allowed to interact, whether 

extrinsically or intrinsically, with the light propagating within the optical fiber core. Extrinsic sensors 

modulate the light inside the fiber by indirectly allowing the measurand to interact with light within the 

fiber. In extrinsic sensors the fiber serves only to carry optical power and the sensing information to 

and from, an external region [5]. While in intrinsic sensors the light propagating in the fiber is affected 

directly by the measurand, and the modulation of the light is measured at the fiber output. 

2.1.1 Methods for intensity based fiber optic sensing 

Intensity based fiber optic sensors modulate the transmission intensity of light within the optical fiber 

based on the properties of the measurand. These types of fiber optic sensors have offer the advantages 

of ease of fabrication, robustness, and simplicity of signal processing [5]. 

Often referred to frustrated total internal reflection (FTIR) fiber optic sensors. Similar in set up to 

FTIR sensors are attenuated total internal reflection sensors. Both attenuated and frustrated sensors 

make use of the evanescent field created from the total internal reflections on thin media of low optical 

density. 

2.1.2 Frustrated Total Internal Reflection 

Intensity based fiber sensors offer the advantages of ease of fabrication, robustness, and simplicity 

of signal processing. FTIR based sensors are designed around the evanescent wave produced when a 

wave is incident from a high index of refraction media onto a low index material at angles higher than 

the critical angle. If there exists a secondary boundary to a third optically denser than the second media 

in close proximity to the first boundary, the evanescent field will not decay, transmitting energy into 

the third media Figure 1. The first interface does not fully reflect the incident light and the total internal 

reflection is then frustrated. 
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Figure 1: Representation of FTIR occurring when an optically dense medium (media 3) is brought 

into proximity to the interface between media 1 and media 3. When the distance between the two 

interfaces is on the order of the wavelength, the light tunnels through the second media via the 

evanescent wave resulting in a transmitted ray into media 3. 

Spillman and McMahon proposed a method for measuring acoustic waves using two angular cut 

fibers held closely together as shown in Figure 2 [6]. They choose to polish the optical fiber faces at 

angles large enough to guarantee complete total internal reflection for all propagating modes. By 

bringing the two fiber ends in proximity to one another, light was coupled between the fibers by means 

of optical tunneling. The intensity of light coupled between both fibers would modulate due to vibration 

caused by the acoustic waves changing the distance between the adjacent fibers. 

 

Figure 2: Angular polished optical fibers held in close proximity to one another so that light may 

be coupled between them via FTIR. The polish angle 𝜽 is chosen large enough to guarantee total 

internal reflection for all propagating modes. 

A similar edge butted fiber sensor has been used in a more direct fashion to measure refractive index 

changes in sample solution encompassing the fiber coupling. Rahnavardy et al. made use of a FTIR end 

sensors as a simple intensity modulated strain and pressure sensor [5]. Theoretical description of the 

frustrated reflection was accomplished by solving the Maxwell field equations explicitly for a three 
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infinite layer stack geometry. They were able to demonstrate a close correlation between theory and 

experimental results. 

Court and Willisen [7] applied the phenomena of FTIR to laser cavity design. Analysis of the optical 

tunneling effect was accomplished using Froersterling’s [8] solution for the amplitude reflection 

coefficient of a thin film in combination with the Fresnel equations to account for the phase coefficients. 

The final solutions for the 𝑠 polarized transmission coefficients of a thin film lossless dielectric between 

two semi-infinite isotropic dielectrics was given as: 

 
𝑇 =

1

𝛼𝑠 sinh2 𝑦 + 𝛽
  (1) 

 

Where 

 
𝑦 =

2𝜋𝑛1𝑑

𝜆
 √𝑁2 sin2 𝜑0 − 1; (2) 

 
𝛼𝑠 =

(𝑁2 − 1)(𝑛2𝑁2 − 1 )

4𝑁2 cos 𝜑0 (𝑁2 sin2 𝜑0 − 1)√𝑛2 − sin2 𝜑0

 (3) 

 

𝛽𝑠 =
(√𝑛2 − sin2 𝜑0 + cos𝜑0)

2

4 cos 𝜑0 √𝑛2 − sin2 𝜑0

 
(4) 

 𝑛 =
𝑛2

𝑛0
, 𝑁 =

𝑛0

𝑛1
. (5) 
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Figure 3: FTIR of an electromagnetic wave through a thin film between two half infinite spaces. 

Predictions in transmission intensity as a function of the optical length of the thin film for index ratio 

of 𝑁 = 1.540 for a ray incident at 𝜑0 =
𝜋

4
 where presented for various ratios of 𝑛. Predictions indicated 

that the transmission intensity drops significantly for thin film thicknesses exceeding the wavelength 

of the electromagnetic wave regardless of the index ratio 𝑛. Results are reproduced in Figure 4 for 

clarity. 

 

Figure 4: Transmission of the s component of an electromagnetic wave incident at 𝛑/𝟒 radians 

reproduced from [7]. 
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The theoretical analysis accomplished by Court and Willisen [7] of FTIR of a three layer stratified 

media became the foundation of for several application of the phenomena FTIR analysis such as 

microscopy [9] 

2.1.3 Reflection based sensing 

More recently the work of Nash et al. [10] developed an all-fiber optic sensor for use as a liquid 

refractometer. The sensor was fabricated from a ply methyl methacrylate multimode fiber. The end of 

the fiber was polished at various radii of curvature. With such a curvature in the fiber tip, low order 

modes of propagating light escape the fiber tip decreasing the back reflected signal, while higher order 

modes for which the angle of incidence at the core-air interface exceeds the critical angle reflected light 

along the fiber. The back reflected light is a function of the refractive index of the sample liquid. 

Calibration of the sensor was accomplished using empirical correlation of the back reflected light and 

the refractive index of the sample. Refractive index resolution of 0.002 was achieved with an upper 

limit of sensing of 1.467 determined by the refractive index of the core. 

 

Figure 5: Schematic representation of fiber optic refractometer fabricated by polishing a 

multimode fiber with a radius of curvature 𝑟. The curved end face limits the transmission of high 

order modes with propagation angles higher than the critical angle out of the fiber. 

2.1.4 Transmission based sensing 

2.1.4.1 Early development of waveguide sensors 

In 1986, Simhony, Kosower and Katzir demonstrated the feasibility of using infrared fibers as light 

conductors for total internal reflection measurements in a Fourier transform infrared spectrometer to 

obtain the spectra of aqueous solutions [11]. Simple uncladded waveguide fibers were fabricated by 

extruding silver halide crystals through a die. The resulting fiber was then placed inside a Pyrex 
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capillary tube having a filling port. By filling the capillary tube with various samples, the spectra was 

measured by exciting different wavelengths of light through the fiber and measuring the resultant 

transmission loss. 

2.1.4.2 Fiber optic based sensors 

The use of commercial optical fibers as a replacement for the silver halide fiber was then 

demonstrated shortly after by several other authors [8][9][14]. With the use of commercial optical 

fibers, the presence of a cladding material on the fiber modified the mechanism of sensing in 

comparison to the original work of [11]. Light propagates through the core an optical fiber and is kept 

from interacting with the external environment due to the presence cladding surrounding the fiber core. 

In order to allow the light within the core to interact with the external environment, the fiber was bent 

to a small radius of curvature forcing the presence of evanescent modes able to interact with the external 

environment. DeGrandpre et al. [13] managed to excited evanescing modes capable of interacting with 

a liquid measurand within a region of an unmodified commercial fiber by bending portion the fiber to 

a small radius of curvature. While, Tai et al. [14] tapered a portion of the optical fiber by heat treatment 

reducing the thickness of the cladding again allowing evanescent modes to interact with an external 

environment. 

2.2 Modeling of Intensity Based Sensors 

2.2.1 Methods to use geometric optics and light rays 

A general theory for the geometry optics approach to evanescent wave spectroscopy in multimode 

optical fibers was put forth by Messica et al. near the end of the last century [15]. The theoretical paper 

outlined a method to predict the transmission behavior for a fiber optic sensor designed with a 

completely uncladded sensing region. An arbitrary intensity angular distribution of both skew and 

meridional rays was taken as the illumination conditions of the input fiber face. Given the angular 

direction of each ray, a generalized transmission function whose form accounted for several factors was 

derived. The total power transmitted through the optical fiber sensor was then found as the double 

integral of the transmission function convoluted with the intensity distribution function over the fiber 

input face and solid angle. 
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2.2.2 Examples of attempts to include effects of partial cladding 

The geometric layout of a partially cladded sensing region is represented simply by a three media 

layer stack. In such a configuration, two interfaces are present, each of which produce transmitted and 

reflected waves. As a result of reflection and transmission at each interface caused by a single incoming 

electromagnetic excitation, secondary and higher order rays are created by multiple internal reflections 

within the middle layer. 

Buric et al. [12] recently published a new method for the analysis of thin cladding sensing regions with 

cladding thicknesses on the order of one wavelength. The fabrication of the sensing region constituted 

the complete removal of the silica cladding material, followed by the addition of a new thin cladding 

material. The resulting geometry of the sensing region of the fiber consisted of a three layer stack of 

media with a thin film of cladding separating the core from the external environment. The attenuation 

losses within the sensing region were modeled utilizing multiple reflection coefficients of the Fresnel 

equation. 

2.2.2.1  Rigorous analytical solution to the Maxwell equations. 

While studying the effects of gold nanoparticle coatings on the modal propagation constants of 

optical fibers. Choudhury [17] used a rigorous approach to solve a four layer stack profile of the coated 

optical fiber that was made of the fiber core, cladding, nanoparticle layer, and free space environment. 

The field solution was derived for cylindrical symmetry of the fiber geometry, and matching the 

solutions at the layer interfaces. Solutions within each of the four regions of the fiber cross section 

where considered as Bessel and modified Bessel functions of the first and second kind. Implementation 

of the boundary conditions at each interface yielded a system of twelve equations that were used to 

derive the modal propagation constants of the coated fiber. Theoretical analysis of the solutions were 

performed to predict the effects of nano-coating thickness on the number of propagating modes of the 

fiber. In a recent extension to this work, modification to the rigorous solution were applied to model 

the effect of stress/strain due to twisting of the optical fiber on the propagation characteristics of a 

fiber[18], [19]. 
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2.2.2.2 Transmission line equivalent 

A transmission line equivalent model to analyze the optical tunneling phenomena caused by a multi-

layer stack thin film structure was completed by Pieper et. al.[20]. The thin film optical structure was 

made analogous to a transmission line using the Telegraph equations: 

 𝜕𝐼

𝜕𝑥
= −𝑌𝑙𝑉 

𝜕𝑉

𝜕𝑥
= −𝑍𝑙𝑉. (6) 

 

The electrical phasors are identified as 𝐼 for current and 𝑉 for voltage, while the complex admittance 

and impedance per unit length are 𝑌𝑙 and 𝑍𝑙 respectively. The translation from the electrical quantities 

to the optical field elements were derived in [21] and are repeated in Table 1 below for clarity. 

Table 1: Translation from optical field components to electric quantities for the transmission line 

analogue of s and p polarized waves in multi-layer stack thin film analysis [21]. 

S-Wave P-Wave 

(−𝐸𝑦) ↔ 𝑉 𝐸𝑥 ↔ 𝑉 

𝐻𝑥 ↔ 𝐼 𝐻𝑦 ↔ 𝐼 

𝑗𝜔𝜖 cos2 𝜃 = 𝑌𝑙 𝑗𝜔𝜖 = 𝑌𝑙  

𝑗𝜔𝜇𝑜 = 𝑍𝑙 𝑗𝜔𝜇𝑜 cos2 𝜃 = 𝑍𝑙 

𝑧 ↔ 𝑥 

 

Where 𝜔 is the radian frequency of the incoming wave, 𝜖 is the electric permittivity, 𝜇0 is the 

magnetic permeability, 𝐸𝑦 , 𝐸𝑥  are the electric fields, and 𝐻𝑥, 𝐻𝑦 are the magnetic fields for the s and p 

polarized waves. The change of the coordinate axis 𝑧 to 𝑥 indicates that the normal direction of optical 

incidence (𝑧)is replaced by the transmission line axis (𝑥). The equations of Table 1 are valid under: 

 
𝜔√𝜖𝑖𝜇0 =

𝜔

𝑣𝑖
=

2𝜋

𝜆𝑖
=

2𝜋𝑛𝑖

𝜆
 (7) 
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Where 𝜆 is the vacuum wavelength, and 𝑣𝑖 , 𝜆𝑖 , 𝑛𝑖  are the wave speed, wavelength, and index of 

refraction in the 𝑖𝑡ℎlayer of a thin film stack. 

Within the framework of transmission line theory, the multi-layer stack geometry of Figure 6 can be 

represented as the series of transmission lines of Figure 7. 

 

Figure 6: Schematic representation of an incident wave of a multi-layer thin film stack. 

 

 

Figure 7: Transmission line equivalent model for the multi-layer stack geometry of Figure 6. 

The algorithm used to compute the reflection coefficient Γ0 of Figure 7 first requires the calculation 

of the propagation angles for each media in the thin film stack using Snell’s law computed from the 
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first interface to the last. Once the propagation angles for all layers are found, the algorithm then 

operates from the last interface on the right hand side working back through the layer stack towards the 

first interface. Beginning with the last interface, the reflection coefficient of the interface separating 

layers 𝐹 − 1 and 𝐹 are found using the impedances of each layer and the reflection equation [22]: 

 
Γ𝐹−1 =

𝑍0𝐹
− 𝑍0𝐹−1

𝑍0𝐹
+ 𝑍0𝐹−1

 . (8) 

With the reflection coefficient of the final interface, the equivalent impedance of the 𝐹 − 1 layer is 

then calculated using [22]: 

 
𝑍𝐸𝑞𝐹−1

= 𝑍0 (
1 + Γ𝐹−1𝑒

𝑗2Δ𝜙𝐹−1

1 − Γ𝐹−1𝑒
𝑗2Δ𝜙𝐹−1 

). (9) 

Note that since there is no reflection after the final interface that 𝑍𝐸𝑞𝐹
= 0. The algorithm then 

reiterates moving towards the left, using the above Eq. (8) and (9) until reaching the first interface and 

determining the overall reflection coefficient Γ0. 

2.2.2.3 Transfer matrix method 

An alternative and powerful method of analysis of multi-layer media to the transmission line 

equivalence method is the transfer matrix method. The transfer matrix method (TMM) relies on the 

continuity of the electric and magnetic fields across a boundary as defined by Maxwell’s equations. A 

general plane wave solution is assumed to exist within each layer of a multi-layer stack as: 

 𝐸𝑛(𝑧) = 𝐸𝑛+ 𝑒𝑖𝑘𝑧 + 𝐸𝑛− 𝑒−𝑖𝑘𝑧. (10) 

Put into a matrix formulation, and knowing the field at the incident media, the resulting electric and 

magnetic fields from the multi-layer stack can be derived from simple matrix multiplication. With the 

multi-layer stack represented in matrix form the transmission and reflection coefficients can also be 

derived. The full summary and derivation of the TMM is outlined in Appendix A for reference. 

The TMM has been utilized in a variety of differing fields. Sharing similarities in geometrical design 

as FTIR and Attenuated Total Reflection (ATR) phenomena, the resonant optical tunneling effect 

structure consists of two low refractive index layers sandwiched between three high refractive index 

layers. The transmission and reflection of light due to this extended tunneling design requires the 

analysis of evanescing waves through two layers of the structure, while accounting for resonance effects 
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of the light waves due to the thickness and spacing of the three internal layers. The resonant optical 

tunneling effect was first proposed by Yeh in 1988 [23], and the first experimental validations for the 

effect were demonstrated by Hayashi in 1999 [24]. Jian and Zhang, recently published a summary on 

the recent development in the progress of modeling and applications of the resonant optical tunneling 

effect [25]. Within the summary of modeling methods, they cited the TMM as the standard analysis 

method to use under the optical interpretation of the phenomena, while comparing it to their newly 

developed potential barrier method which holds to the quantum mechanics interpretation. 

The TMM has also been employed to model the reflection and transmission spectra of grating in fiber 

Bragg gratings. Oliveira et al. [26] used the TMM in combination with a finite element analysis to 

design a Bragg grating acousto-optical modulator. The finite element analysis was used to determine 

the strain field caused by an incident acoustic wave while the TMM was then used to obtain the 

spectrum corresponding to the strained grating. A similar merging of the TMM with finite element 

analysis for acousto-optical modulators was also accomplished in [27]–[36]. 

The modeling of surface plasmon resonance (SPR) type sensors, has also found success by relying on 

the TMM. SPR is a commonly used technique used for detecting small changes in refractive index of 

a media using a thin metallic layer sandwiched between dielectric and analyte layers. One standard 

sensor set up for SPR is the Kretschmann configuration [37] which consist of a prism directing light 

onto a metallic layer that is in contact with the analyte as seen in Figure 8. For use in bio-sensing 

applications, the surface of the metallic layer is functionalized with ligands which are chosen to bind 

to the target molecule present in the analyte. The binding of the target molecule with the ligand on the 

metallic surface changes the properties of the metallic and analyte solution interfaces, resulting in a 

change in the reflected light within the prism. 
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Figure 8: Kretschmann configuration for SPR based sensing. 

Direct use of the TMM for the modeling of the reflected light resulting from the Krestchmann 

configuration has been reported by [38]–[42]. With the ever increasing need for miniaturization and 

integration, alternative configurations for SPR sensors are being developed. Consequently, there has 

been an increased interest in fiber optic based SPR sensors [43]–[46]. Kanso et al. [42] developed a 

numerical model for an optical fiber sensor based on SPR where the analyte/metallic layer interface 

was modeled using the TMM. They were able to demonstrate good agreement between experimental 

and simulated results which have been reproduced here for convenience in Figure 9. 

 

Figure 9: Comparison of experimental and simulated results modeling an optical fiber based SPR 

sensor. Reproduced from Kanso et al. [42]. 

Prism

Mettallic Layer

Analyte Solution

Target Molecule

Ligand



 

19 

The validation between simulated and experimental results for the transmission characteristics of the 

fiber optics based SPR sensor was done on a relative scale whereby, both the simulated and 

experimental results were normalized to the transmission intensity of a reference sample. 

Ongoing research in fiber optics based SPR sensors continues to be carried out, leasing to the 

development of low cost SPR sensors by the authors of [47]–[51]. While competing methods of analysis 

to the TMM have been used including finite element through Comsol® in [51], the TMM remains a 

strong tool for the full description of the reflection coefficient at the SPR interface, indicated by the 

recent work of Liu et al. [49] which extended the work of Kanso et al [42] to include skew ray 

propagation in ray based models of multimode fiber optics SPR sensor. 

2.2.3 Examples of empirical calibration of sensors 

The transmission of light through the FOEWS has been described using a Lambert-Beer law defined 

by: 

 𝑃(𝑍) = 𝑃(0)𝑒(−𝑁𝑇𝑍), (11) 

 

where 𝐼𝑖𝑛 is represents the intensity of light incident on the fiber, while, 𝑃(𝑍) is the intensity remaining 

at a distance 𝑍 along the fiber with an absorbing cladding. The attenuation of the fiber is described by 

the coefficient 𝑁 which is a function of the number of reflections a traveling ray makes with the lossy 

cladding interface, while 𝑇 is the transmission coefficient of the light penetrating the lossy cladding 

[52]. 

This exponential decay model of the transmission of light through a FOEWS depends explicitly on the 

definition of the absorption coefficient 𝑇. Ruddy proposed an effective attenuation coefficient for 

multimode fibers in [52]. The effective absorption coefficient partially accounted for the presence of a 

thin lossy cladding utilizing Fresnel equations with a modified complex index of refraction to describe 

the absorption behavior of the lossy cladding. The disadvantage of this methods is that the modified 

complex portion of the index of refraction (IOR) must be determined a priori, and is not arrived at using 

an analytical expression. The goal of this thesis will be to develop a model that will not rely on the use 

of modified empirical variables to describe the transmission response of sensors. 
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2.2.4 Modeling of launch conditions for FOEWSs 

The performance of a FOEWS relies heavily on the distribution of propagating angles of light rays 

within the fiber. A theoretical analysis of the variation in response due to changes in launching 

conditions was carried out by Messica et al.[15]. The model used to simulate an FOEWS relied on the 

Fresnel equations to describe the transmission loss through the sensing region of the fiber as described 

in the previous section. Analyzing both laser beam and blackbody illumination sources through a 

focusing lens, studied three separate illumination conditions. The geometry of illumination conditions 

is outlined in Figure 10. Three separate illumination set ups where examined: blackbody illumination 

source through a focal lens, in a center spot and off center spot illumination, and a laser off center spot 

configuration. Analysis of the three cases determined that only meridional rays are excited in a center 

spot illumination set up, while the off centered spot configuration with a laser source excited only skew 

rays. It was concluded that the off centered spot with laser illumination was superior to the other cases 

based on sensitivity and detection limit. 

 

Figure 10: Description of illumination geometry as conducted by Messica et al. [15]. a) The 

coincidence of the optical and fiber axis at the center of the fiber optic face describes a center spot 

illumination set up with off center distance 𝑑𝑠. b) Whereas an off centered illumination spot occurs 

when the optical and fiber axes do not coincide at the fiber face center. 
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The description of light from a diffuse Lambertian light source onto a fiber face was fully developed 

by Love et al. in [53], using trigonometric relationships. Similar to the Messica treatment of launching 

conditions, the propagation of light within the fiber assumes that the optical fiber is perfectly straight 

and as such, the angle of incidence of rays interacting with the sensing region are determined by the 

initial entry angle of light from the source to the fiber entry face. Using this idealization, Love et al.  

conducted a theoretical analysis of the effects of spot size, and launch angle. The analysis concluded 

that the transmission intensity of the sensor was approximately proportional to the square of the spot 

radius. They also concluded that the power loss increased with increasing launch angle since higher 

launch angles lead to a large number of reflections within the sensing region of the fiber. The equations 

derived by Love et al. were subsequently utilized by McCabe for the investigation of fiber optic gas 

sensors [54], and by O’Keeffe, for the analysis of fluorescent evanescent wave sensors [1]. 

The work of Chyad at el. Assumed a collimated laser beam focused onto the fiber axis, which excited 

only meridional rays in the simulation [55]. The equations for the illumination by a collimated beam 

were taking form the work of Born and Wolf [21]. 

The work completed by Buric et al. [16] resulted in a ray based model again relying on the Fresnel 

equations to describe the absorption loss due to a modified FOEWS. Unlike the Messica model above, 

the description of light entering the fiber was not derived analytically but instead made to match 

empirical values based on reference experimental results. 

2.2.5 Surface roughness 

The fundamental step in the fabrication of a FOEWS is the thinning of the cladding material 

surrounding the fiber core. Reported methods for the modification of the cladding material include: 

tapering by means of heating and pulling the fiber [56]–[60], side polishing the fiber resulting in half 

exposure of the fiber core [61]–[65], or chemical etching of the cladding material using buffered 

hydrofluoric acid (BHFA) [66]–[69]. Chemical etching was used to fabricate the sensor modeled in this 

study. 

The process of etching the fiber using BHFA can result in pitting of the fiber surface. Zhong et al. 

[67], [68] published results on the surface quality of BHFA etch silica optical fibers. Using various 

buffering concentrations of BHFA under various ultrasonic agitation strengths, average surface pitting 

depths and widths ranged from 3.82 µm to 8.49 µm and 0.16 µm to 2.67 µm respectively [68]. They 
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determined that optimal surface quality of the etched surface can be obtained using BHFA of pH 5.34, 

under the influence of ultrasonic agitation. 

The theoretical analysis of surface roughness due to complete etching of the optical fiber cladding 

material was presented by Zhong et al. [67] using the Lambert-Beer model for transmission of light 

through an evanescent wave sensor given by Eq.(11) above. In a rough surface fiber optic sensor, the 

propagation path of light incident on the fiber core/external media interface will vary based upon the 

depth and diameter of the surface pits. Zhong et al. pointed out that the presence of surface roughness 

will affect the incident angle of the light ray impacting on the interface between the fiber core and the 

medium. As such, the angle of incidence 𝜃𝑖 of Eq.(12) was modified and expressed as a function of 

average pit diameter (𝛿) and depth (Δ) given by: 

 
𝜃𝑖

′ = 𝜃𝑖 − arctan (
2𝛿

Δ
).  (12) 

 

Using this method of inclusion of surface roughness, Zhong et al. [67] concluded that as the roughness 

(2𝛿/Δ) decreased the output transmission power of the sensor, whereas the sensitivity initially 

increased for small roughness before rapidly decreasing with increasing roughness. 

In this thesis, the surface roughness of optical fiber sensors etched in BHFA will be mitigated by 

following the procedure put forth by Zhong et al. [68]. As will be seen in Chapter 4, little to no surface 

roughness is found on the optical fibers fabricated in this thesis. Therefore, the inclusion of surface 

roughness effects will not be included in the model developed here. However, a similar statistical 

characterization of the partial contact of a FOEWS with a solid graphite anode will be conducted in 

Chapter 5. 
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Chapter 3 

Development of Hybrid Model 

Simulation of FOEWS in multimode fibers using wave based optics is computationally intense 

because the diameter of the core of the fiber can often be orders of magnitude larger than the wavelength 

of light of interest. As such, ray optics is used to describe the behavior of these FOEWSs. While the 

core of a multimode FOEWS is optically large, the sensing region is made by thinning the cladding 

along a length of fiber by means of chemical etching [67], [68] and it is optically small. A general ray 

theory for the description of FOEWSs has been put forth in other works [15], [64]. In these cases, the 

analysis of the thin cladding region is usually addressed using effective refractive index values that 

approximate the optical behavior of a thin cladding sandwiched between the core and external media. 

A method for the analysis of the thin cladding region that relies on the thin film interference transfer 

matrix method to determine the reflection loss at the thin cladded interface is presented. This approach 

solves the full three layer thin film stack without use of effective parameters providing a more rigorous 

method of analysis. Using the modified theoretical model, the effects of cladding thickness on the 

power transmission of an FOEWS are investigated. 

As a ray optics simulation of an FOEWS is dependent on the distribution of rays propagating within 

the fiber, it is assumed that the fiber is illumination from a Lambertian LED held at various distances 

and angles to the fiber face. The generalized angular and intensity distributions for light rays from this 

set up are then derived. By modifying both the distance of the LED to the fiber face as well as the angle 

between the fiber axis and LED fiber face axis, the effects of launching conditions on the performance 

of the FOEWS are studied. 

3.1 Description of an FOEWS 

The FOEWS studied in this work is designed from a multimode optical fiber with a modified cladded 

region that acts as the sensing region of the fiber. The full schematic of the modified optical fiber, 

illumination source and photo detector are depicted in the schematic of Figure 11. The LED 

illumination sources is considered to be a perfect Lambertian source with a narrow half angle of 

intensity, that directly illuminates the fiber end face. Section 3.2.3 gives a full description of the light 

coupling into the optical fiber along with a derivation of the analytical equations governing the light 

distribution onto the fiber face. The transition of light from the external of the entry face to the interior 
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of the fiber core is subject to Fresnel reflection losses as well as to Snell refraction upon entering the 

core which will modified the angular distribution within the optical fiber. The light from the LED 

source is guided along the multimode fiber subject only to Lambert-Beer losses until reaching the 

sensing region of the fiber. Losses attributed to transmission along the fiber are accounted for in the 

model and described in Section 3.2.1 below. 

The portion of fiber subject to a reduced cladding thickness is called the sensing region of the 

fiber. It is within this region that the light within the fiber core can tunnel out through the thinned 

cladding based on the optical properties of the material exterior to the fiber cladding. Light that tunnels 

out through the sensing region of the fiber results in a transmission intensity loss that can be measured 

at the output of the fiber. Section 3.2.2 gives a full description of the tunneling phenomena, along with 

an analytical derivation of the reflection coefficient of light rays incident of the sensing region boundary 

using the transfer matrix method. The description of light loss within the sensing region of the FOEWS 

is the most crucial component of the model. As mentioned in the literature review of Chapter 2, many 

attempts to describe the reflection of light within the sensing region rely on effective parameters and 

simplifications in geometry that are not capable of fully describing the optical tunneling effect. 

After passing through the sensing region of the fiber, the remaining light propagates again 

through an unmodified multimode fiber until it reaches the exit end face. Again once exiting the fiber 

end face the light rays are subjected Fresnel reflections further contributing the loss of the transmitted 

intensity. Within the proceeding model, the Fresnel reflections at fiber end faces are taken into account 

while computing the transmission power of the FOEWS. The analytical equations describing this loss 

are summarized in Section 3.2.1 below. 

Once the light exits the optical fiber from the end face, the intensity is measured using a photo 

detector capable of measuring the wavelength of light emitted from the LED source. The photo detector 

converts the optical signal into a voltage that can then be easily read by an oscilloscope or alternative 

read out device. 



 

25 

 

Figure 11: Overview of the FOEWS as studied in this thesis. 

3.2 Overview of model structure 

Modeling the transmission response of the FOEWS will be accomplished using a hybrid analysis 

which will exploit the computational simplicity of ray tracing through the optically large domains of 

the system such as the multimode fiber core, and LED illumination conditions. While utilizing the thin 

film transfer matrix to accurately model the optically small region corresponding to the light reflection 

with the thinly cladded sensing region of the system. The output power of the FOEWS will be 

determined as a two-dimensional integral over the surface of the face of the fiber core given by: 

 
𝑃𝑜𝑢𝑡 = ∫𝑇(𝜃𝐼(𝑟, 𝜑)) ⋅ 𝐼(𝑟, 𝜑)

𝑆

𝑑𝑆. (13) 

The integrand terms 𝑇 and 𝐼 represent the transmission and intensity functions of the overall system, 

while the variables 𝑟, and 𝜑, and the polar coordinates on the face of the fiber core. The transmission 

function models the fiber optic attenuation behavior based on the dimensions of the FOEWS, as a 

function of the ray propagating through the fiber. The intensity function computes the angular 

distribution of rays entering the fiber based upon the illumination conditions of the LED onto the fiber 
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face. The integral of Eq. (13), will be done numerically using a double sum where each of the 

discretization of the surface will represent a guided ray through the FOEWS. 

The following sections give full derivations to the various components that make up the integrand 

functions 𝑇 and 𝐼. The full explicit formulations of the transmission and intensity functions will be 

given at the end of the chapter before simulation results are presented. 

3.2.1 Geometric Optics and Ray Tracing in Multimode Fibers 

For multimode optical fibers the core diameter is large relative to the optical wavelength of light. 

From a modeling approach having an optically large fiber core allows the propagation of light within 

the fiber to be modeled using a ray based approach. 

Step index multimode optical fibers transmit light on the basis of the principle of total internal 

reflection (TIR) of rays incident on the core cladding interface, as a result of this phenomenon, light 

rays are guided along the fiber core and propagate with very little loss to the surrounding environment. 

The basic structure of an optical fiber consists of a central core medium of refractive index 𝑛core 

surrounded by a second medium called the cladding of index of refraction 𝑛clad. To ensure TIR at the 

core cladding interface the IOR of the cladding is chosen to be less than that of the core (𝑛core > 𝑛clad). 

With the appropriate chose of core and cladding, light propagating within the fiber core will do so while 

the angle of incidence at the core cladding boundary is greater than the critical angle defined by Snell’s 

law: 

  
𝜃𝑐 = arcsin (

𝑛clad

𝑛core
).  (14) 

Two types of rays can propagate within a multimode fiber while satisfying Snell’s law at the core 

cladding interface. Meridional rays consist of the family of rays that propagate along the fiber while 

intersecting the fiber axis between each successive reflections off the fiber walls. By passing through 

the fiber axis between each successive reflection, meridional rays are confined to travel within a single 

family of planes of the fiber defined which contain the fiber axis. A schematic representation of a 

meridional ray propagating within a fiber core is given in Figure 12. From the schematic of Figure 12, 

the ray path is easily followed along the length of the fiber core. 



 

27 

 

Figure 12: Ray optics representation of a meridional ray propagating through an optical fiber. For 

clarity, only the fiber core is drawn. Meridional rays propagate along the same propagation plane after 

each successful reflection. 

Analysis of a meridional ray path within the fiber core can be simply analyze using the propagation 

plane which confines the path of the ray. In Figure 13 the cross section view of meridional ray 

propagation through an ideal step index optical fiber is shown. Because the meridional ray propagates 

through the fiber axis, the perpendicular distance travelled by a ray between successive reflections is 

given simply by the core diameter. In addition to a simple expression for the perpendicular distance 

travelled by meridional rays, the calculation for the angle of incidence of meridional rays on the core 

cladding interface is simply computed using the single angle of propagation within the meridional 

plane. 

 

Figure 13: Meridional ray planar propagation through a step index multimode fiber. Propagation of 

the meridional ray is dependent upon the condition that the angle of incidence 𝜽𝑰 is greater than the 

critical angle for TIR of meridional rays defined in Eq.(14). 
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In comparison, skew rays, travel along the fiber without intersecting the fiber axis. As such, a single 

propagating skew ray propagates along an optical fiber following a helical path as shown in Figure 14. 

 

 

Figure 14: Ray optics representation of a skew ray propagating through an optical fiber. For clarity, 

only the fiber core is drawn. Skew rays propagate along different propagation planes after each 

reflection. However, each plane has the same skew angle as defined in Figure 15. 

As a result of following a helical path through the fiber core, skew rays are not contained within a 

unique propagation plane after each successive reflection from the cladding interface. Instead, rays 

propagate along a family of propagation planes that are defined by a specific skew angle. The skew 

angle of the plane is defined by the angle that the propagating plane makes with a radial line of the fiber 

core as illustrated in Figure 15. This angle remains constant for a skew ray as it propagates along the 

fiber core. As a result of the constant skew angle, the minimum distance that the skew ray attains from 

the fiber axis is constant between successive reflections with the cladding interface. 

Fiber Axis

Skew Propagation Planes

Ray Path

Ray Path projected 
on fiber end face



 

29 

 

Figure 15: Schematic representation of the angle of the skew propagation plane of a skew ray. 

Propagating rays which do not intersect with the optical axis of the fiber slightly modified cross 

sectional projection from that of meridional rays described in Figure 13. Because skew rays propagate 

away from the fiber axis, they travel a smaller distance between successive reflections than meridional 

rays. While the propagation plane between successive reflections of skew rays changes, the symmetry 

of constant skew angles can be used to create an equivalent two-dimensional schematic of skew rays 

similar to that meridional rays shown in Figure 13. Figure 16 shows the equivalent two-dimensional 

propagation of skew rays within a fiber core. As mentioned, the family of propagation planes maintain 

a symmetry that can be utilized the visualize the ray propagation along a single place so long as the 

appropriate modifications to the TIR angle and perpendicular distance are met. Within the skew plane, 

the perpendicular distance between the successive reflections at the cladding interface is reduced by 

the cosine of the skew angle. 

The presence of a skew angle to rays propagating within a fiber core adds complexity to the analysis 

of reflection of the ray at the core cladding interface. Recall that the angle of incidence of meridional 

rays at the core cladding interface is only influenced by the angle of entry of the ray from the fiber end 

face. In contrast, the angle of incidence at the core cladding interface of skew rays is a function of both 

the angle of entry of the ray into the fiber end face and the skew angle of the ray. In Section 3.2.3 below, 

it is shown that the skew angle is directly determined by the position on the fiber face that the ray strikes 

from the light source. 
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Figure 16: Skew ray planar propagation through a step index multimode fiber. Propagation of the 

meridional ray is dependent upon the condition that the angle of incidence 𝜽𝑰 is greater than the critical 

angle for TIR of skew rays defined in Eq.(15). 

Having the angle of incidence of skew rays depend on the skew angle of the ray, requires a 

modification to the critical angle equations for light rays bound to the fiber core. In order for the skew 

rays of the two-dimensional schematic in Figure 16 to remain within the fiber core, the critical angle 

necessary for TIR must depend on the skew angle of the ray. As such, the modified critical angle 

necessary for TIR which includes the description of skew rays is given by [15]: 

 
𝜃′𝑐 = arcsin {

𝑛clad

𝑛core cos 𝛾
}.  (15) 

This new TIR equation reverts to the original of Eq.(14) when the skew angle of the ray is set to zero. 

Also note that the presence of the skew angle in the modified TIR equation changes the planar crictial 

angle (𝜃′𝐶). Such that the in plane angle of incidence (𝜃𝐼) of a skew ray required for maintaining TIR 

increases with increasing skew angle. Thus, skew rays are forced to propagate along the fiber with 

smaller in plane propagation angles (𝜃𝑃) than are allowed for meridional rays. 

3.2.1.1 Acceptance angle of a fiber 

As mentioned in the previous section, rays propagating within an optical fiber core are confined to 

propagate at angles that ensure TIR at the core cladding interface is met. A result of this condition is 

that optical fiber are only capable of receiving incoming light from a source at certain angles. 

Considering an optical fiber with core and cladding indices 𝑛𝑐𝑜𝑟𝑒 , 𝑛𝑐𝑙𝑎𝑑 respectively, the propagation 
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angle of a ray within the fiber must be 𝜃𝑃 < (90 − 𝜃𝐶) to ensure that the ray remains bound to the fiber 

core as a consequence of Eq.(15). 

Given light entering the optical fiber through the fiber face at an angle 𝜃𝑒𝑥𝑡 from an external 

environment of refractive index 𝑛𝑒𝑥𝑡, the refracted ray entering the fiber will have a propagation angle 

given by: 

 
𝜃𝑃 = arcsin {

sin 𝜃𝑒𝑥𝑡 𝑛ext

𝑛core
}.  (16) 

Eq.(16) holds in the case of a meridional ray. The more general case involving skew rays will be 

tackled in Section 3.2.3. From the conditions on the propagation angle given by Eq.(15) and the angle 

of the refracted ray defined by Eq.(16) the boundary conditions on the external incident angle 𝜃𝑒𝑥𝑡 are 

determined as: 

 

max(𝜃𝑒𝑥𝑡) = asin
(𝑛𝑐𝑜𝑟𝑒

2 − 𝑛𝑐𝑙𝑎𝑑
2 )

𝑛𝑒𝑥𝑡

1/2

.  (17) 

Therefore, those rays which are incident at the fiber face with an angle less than max𝜃𝑒𝑥𝑡 will totally 

internally reflect at the core cladding interface. Considering the case where the external environment is 

air, then 𝑛𝑒𝑥𝑡 = 1 and Eq.(17) can be used to define the numerical aperture (NA) of a step index fiber 

for meridional rays as: 

 𝑁𝐴 = sin(max(𝜃𝑒𝑥𝑡)) = (𝑛𝑐𝑜𝑟𝑒
2 − 𝑛𝑐𝑙𝑎𝑑

2 )
1/2

≃ 𝑛𝑐𝑜𝑟𝑒√2Δ (18) 

 

Where Δ =
𝑛𝑐𝑙𝑎𝑑−𝑛𝑐𝑜𝑟𝑒

𝑛𝑐𝑜𝑟𝑒
, is the index difference. The NA is a dimensionless quantity less than 1, which 

typical values ranging from 0.14 to 0.5. Since the NA is related to the maximum acceptance angle of 

the fiber, it is commonly utilized to describe the light gathering capability of a fiber and to calculate the 

source-to-fiber optical power coupling efficiencies [70]. 

3.2.1.2 Waveguide conditions on rays 

The propagation of light within an optical fiber is dependent upon satisfying the conditions for TIR 

defined within the previous section. Under the guidelines of maintaining TIR at the core cladding 

boundary it would appear that any rays propagating along the fiber with incident angles greater than 
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the critical angle 𝜃𝐶 for meridional rays, and 𝜃′𝐶 for skew rays. However, simply considering the 

reflection conditions of rays neglects the effects of phase of the plane wave associated with the 

individual ray. Accounting for the phase of the ray and the resulting interference that can occur after 

multiple reflections, it is seen that only rays at certain discrete propagation angles less than or equal to 

the critical angle are capable of propagating along the fiber without succumbing to destructive 

interference. 

 

Figure 17: Light rays propagating within a fiber core. In order for propagation to occur, the angle of 

propagation (𝜃𝑃) must ensure that the distances 𝑠1 and 𝑠2 are phase matched. 

In order to understand the effect of self-interference that can occur for a light ray propagating within 

a fiber core, the simple geometry outlined in Figure 17 is considered. The two rays incident at point 𝐴 

and 𝐴′ are defined by the time varying wave function: 

 𝐴(𝑥⃑, 𝑡) = 𝑒̂𝑖𝐴0𝑒
𝑗(𝜔𝑡−𝑘⃑⃑⋅𝑥⃑).  (19) 

Where, 𝑥 = 𝑥𝑒̂𝑥 + 𝑦𝑒̂𝑦 + 𝑧𝑒̂𝑧 is the position vector, 𝑘⃑⃑ = 𝑘𝑥𝑒̂𝑥 + 𝑘𝑦𝑒̂𝑦 + 𝑘𝑧𝑒̂𝑧 is the wavenumber, 

and 𝜔 is the angular frequency of the light. As a light ray propagates within the fiber core, it undergoes 

a phase shift 𝛿 defined by: 

 
𝛿 =

𝑛𝑐𝑜𝑟𝑒2𝜋𝑠

𝜆
 (20) 
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Where, 𝑠, and 𝜆, are the distance travelled by and wavelength of the ray. In addition to the phase 

change resulting from the propagation of the ray, when light is totally internally reflected, it also 

undergoes a phase change. The phase change is a function of the angle of incidence of the ray, the 

polarization, and the relative refractive indices of the two interfacing media given by: 

 
𝛿𝑁 = 2 atan(

√𝑛2 cos2 𝜃𝑃 − 1

𝑛 sin 𝜃𝑃
) , (21) 

 
𝛿𝑃 = 2 atan(

𝑛√𝑛2 cos2 𝜃𝑃 − 1

sin 𝜃𝑃
) . (22) 

Where, 𝑛 = 𝑛𝑐𝑜𝑟𝑒/𝑛𝑐𝑙𝑎𝑑 is the ratio of the core and cladding refractive indices, and the subscripts 

𝑁,𝑃 represent the appropriate polarization. Given this understanding of the phase progression of a light 

ray propagating within a fiber core, and the schematic of Figure 17 the conditions on the propagation 

angle 𝜃𝑃 can be found. From the rays in Figure 17, the point 𝐴, before a reflection, and the point 𝐶 

share the same wave front and thus are in phase. Similarly, the point 𝐴′ before reflection is in phase 

with the point 𝐵 after reflection. Defining the distances 𝑠1 and 𝑠2, note that ray 1 travels the distance 

𝑠1 from point 𝐴 to point 𝐵, while ray 2 travels a distance 𝑠2 from point 𝐶 to point 𝐴′. As mentioned 

since points 𝐴 and 𝐶 share the same wave front as do points 𝐴′ and 𝐵, the distances 𝑠1 and 𝑠2 must 

differ but an integer number of 2𝜋 to ensure that the rays do not destructively interfere as they move 

along the fiber core. 

The distances 𝑠1 and 𝑠2 is defined using: 

 
𝑠1 =

𝑑

sin 𝜃𝑃
 (23) 

 
𝑠2 =

(cos2 𝜃𝑃 − sin2 𝜃𝑃)𝑑

sin 𝜃
. (24) 

Note that the expressions for 𝑠1 and 𝑠2 are completely independent of the distance 𝐴𝐴′, and remain 

solely a function of the core diameter and the propagation angle 𝜃𝑃. Knowing that the phase change 

undergone by ray 1 as it reflects at point 𝐴 and 𝐵, while travel from 𝐴 to 𝐵, is given by: 

 
𝜑𝑠1 =

𝑛𝑐𝑜𝑟𝑒2𝜋𝑠1
𝜆

+ 2𝛿𝑁,𝑃. (25) 
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Similarly, the phase change corresponding to ray 2 traveling from point 𝐶 to 𝐴′ without undergoing a 

reflection is: 

 
𝜑𝑠2 =

𝑛𝑐𝑜𝑟𝑒2𝜋𝑠2

𝜆
. (26) 

Therefore, by imposing that 𝜑𝑠1 and 𝜑𝑠2 must differ by an integer of 2𝜋, so that: 

 𝜑𝑠1 − 𝜑𝑠2 = 2𝑚𝜋 𝑚 ∈ ℤ. (27) 

Using Eqs. (20) to (26)and simplifying gives us a final condition on the propagation angle of rays 

within the core of: 

  2𝜋𝑛𝑐𝑜𝑟𝑒𝑑 sin 𝜃𝑃

𝜆
+ 𝛿𝑁,𝑃 = 𝜋𝑚 𝑚 ∈ ℤ. (28) 

The implications of Eq.(28) are that the acceptable propagation angles for an optical fiber with a core 

diameter 𝑑, core index 𝑛𝑐𝑜𝑟𝑒, for a ray of wavelength 𝜆, do not form a continuous set angles within the 

NA of the fiber. Instead, the allowed propagation angles within the fiber form concentric cones within 

the NA cone of the fiber. The ensemble of rays entering at a specific angle from the axis of the fiber 

gives discrete optical intensity distributions. These are called the modes of an optical fiber. Note that 

when the diameter of the core is large relative to the wavelength, the number of values of 𝑚 that satisfies 

Eq. 17 increases. In the case where the diameter is orders of magnitude larger than the wavelength the 

discretization of the propagation angles becomes dense enough so that the allowed propagation angles 

can be considered a continuum when modelling the illumination conditions of the fiber. This fact will 

be exploited in Section 3.2.3. 

In order to gain insight into the number of modes which are allowed to propagate in the optical fiber 

which will be used in the construction of the FOEWS, we solve for the integer solutions of Eq. (28) 

and present the results in Figure 18 below. 
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Figure 18: Plot showing the solutions to the mode condition of Eq. (28) for an optical fiber of 

numerical aperture 0.22, diameter of 105 µm, with a propagating wavelength of 0.85 nm. The solid line 

describes the value of 𝑚 found while solving Eq. (28) while the circles highlight the solutions where 

𝑚 ∈ ℤ which correspond to allowable propagating modes. The optical fiber here allows for 172 

propagating modes according to Eq. (28). 

From Figure 18 we note that the optical fiber is capable of supporting 172 propagating angles or modes 

for a free space wavelength of 0.85 µm. Given that the propagating modes span less than 9°, on average 

a mode exists every 0.052°. 

3.2.1.3 Fresnel reflection at the fiber end face 

Section 3.2.1.1 showed that light incident on the fiber face is refracted into the fiber core following 

Snell’s law. As with any ray incidence a portion of the ray power is transmitted through the refracted 

ray, while the remaining power is reflected back from the interface. In modeling the power transfer 

from an illumination source through a FOEWS onto a photo detector as illustrated in Figure 11, losses 

associated with fiber face reflections while minor can be considered. 
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Consider an incident ray from the illumination source incident onto the fiber end face as simple 

refraction between two semi-infinite media as illustrated in Figure 19. 

 

Figure 19: Schematic representation of a ray’s transmission and reflection at the fiber end face 

governed by the Fresnel equations. 

 The angle of incidence (𝜃𝑎𝑖𝑟) is determined by the ray path from the light source onto the fiber face 

and will be discussed thoroughly in Section 3.2.3. Make note that at this point the resulting skew angle 

that the transmitted ray will have while propagating within the fiber core has no effect on the 

computation of the transmission at the fiber face. The transmission of the refracted ray into the fiber is 

calculated using the well know Fresnel equations given by: 

 

𝑡𝑝
2 =

4𝑛𝑐𝑜𝑟𝑒 cos(𝜃𝑎𝑖𝑟) (𝑛𝑎𝑖𝑟
2 − 𝑛𝑐𝑜𝑟𝑒

2 sin2(𝜃𝑎𝑖𝑟))
1
2

(𝑛𝑐𝑜𝑟𝑒 cos(𝜃𝑎𝑖𝑟) + (𝑛𝑎𝑖𝑟
2 − 𝑛𝑐𝑜𝑟𝑒

2 sin2(𝜃𝑎𝑖𝑟))
1
2  )

2, (29) 

 

𝑡𝑠
2 =

4𝑛𝑐𝑜𝑟𝑒𝑛𝑎𝑖𝑟 cos(𝜃𝑎𝑖𝑟) (𝑛𝑎𝑖𝑟
2 − 𝑛𝑐𝑜𝑟𝑒

2 sin2(𝜃𝑎𝑖𝑟))
1
2

(𝑛𝑎𝑖𝑟
2 cos(𝜃𝑎𝑖𝑟) + 𝑛𝑐𝑜𝑟𝑒(𝑛𝑎𝑖𝑟

2 − 𝑛𝑐𝑜𝑟𝑒
2 sin2(𝜃𝑎𝑖𝑟))

1
2  )

2. (30) 

Here the transmission equations for both polarization directions of the ray on the fiber face are 

written. Given that the resulting average of all rays incident on the fiber face will have an equally 

weighted polarization distribution and following the assumption of [15] the resulting estimation of the 

transmission coefficient of rays refracted into the fiber face will be given by: 

 𝑡2 = (𝑡𝑝
2 + 𝑡𝑠

2). (31) 

Fiber core 
Air 
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3.2.1.4 Bulk attenuation loss 

Although in principle optical fibers are designed to transmit light with little to no power loss, in 

practice, every optical fiber is less than one hundred percent efficient at transmitting light. Attenuation 

losses within an optical fiber are attributed to a combination of factors. Scattering losses due to 

imperfections of the fiber as well as bending losses cannot be completely modeled. Additionally, the 

inherent absorption coefficient of the core material combine to attenuate the power transport through 

the fiber that can be treated as a bulk attenuation coefficient. General specifications for a commercial 

optical fiber provide an attenuation coefficient which is meant to describe the general power loss 

associated to the fiber. The attenuation of an optical fiber is defined as the ratio of overall input to 

output transmitted power. The ratio of power loss is usually expressed as a logarithmic expression given 

by: 

 
𝛼𝑎𝑡𝑡𝑒𝑛 = (

10

𝐿𝑝
) log10 (

𝑃𝑖𝑛

𝑃𝑜𝑢𝑡
) . (32) 

Where 𝐿𝑝, is the total effective path length of a light ray propagating through the, while 𝑃𝑖𝑛, 𝑃𝑜𝑢𝑡 , are 

the input and output power of the fiber respectively. For commercial optical fibers, the attenuation is 

expressed as decibels per kilometer (dB/km), as over smaller lengths, the attenuation can be very small. 

The total effective path length of a light ray propagating through a fiber is a function of both the 

propagation and skew angles of the ray as defined above along with the radius and length of the fiber. 

In general, a ray traveling through an optical fiber of radius 𝑎, and length 𝐿, with a propagation angle 

𝜃𝑝 and skew angle 𝛾 as illustrated previously in Figure 14 will have make a total number of reflections 

on the core cladding interface defined by [15]: 

 
𝑁 =

𝐿 tan𝜃𝑝

2𝑎 cos 𝛾 
. (33) 

The distance, 𝐿𝑖 , travelled between successive reflections along a fixed skew plane is found to be: 

 
𝐿𝑖 =

2𝑎 cos 𝛾

sin 𝜃𝑃
. (34) 
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With these two equations, total effective path length travelled by a ray propagating along the fiber is 

found to be: 

 
𝐿𝑝 = 𝑁𝐿𝑖 =

𝐿

cos 𝜃𝑃
. (35) 

Note here that the total effective path length travelled is independent of the skew angle 𝛾. 

Two types of absorption dominate attenuation loss in an optical fiber. There are two types of 

absorption causes in a fiber, extrinsic and intrinsic. Intrinsic absorption is due to the material properties 

of the fiber materials. Silica glass fibers are the predominant type of optical fibers used. While silica 

glass has excellent optical transport properties, it does have a limited absorption characteristic 

depending on the wavelength of light. That is to say that given a pure sample of silica glass with no 

impurities or physical imperfections, light propagating through it would still experience a level of loss 

due to the inherent absorption properties of the material. The intrinsic absorption of a material define 

the transparency window over a specified spectral region. Intrinsic absorption results from electronic 

absorption bands in the ultra-violet region and from atomic vibration bands in the near infrared region 

[70]. 

Extrinsic absorption in optical fibers are caused by the presence of atomic impurities within the glass. 

The presence of OH (water) ion impurities in fabricated optical fibers are one cause extrinsic 

absorption. Water impurity concentrations of less than a few parts per billion are required it the 

attenuation is to be less than 20 dB/Km [70]. 

As mentioned the attenuation properties of an optical fiber both extrinsic and intrinsic, are provided 

within a specification datasheet from the manufacturer. For example, optical fiber which will be used 

in Chapter 4 is a high OH, step index multimode fiber product number SFS105/125Y obtained from 

ThorLabs. Within the datasheet a performance plot describing the attenuation behavior of the optical 

fiber with wavelength is provided. 
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Figure 20: Performance plot for ThorLabs step index multimode fiber SFS105/125Y used in 

experimental results of Chapter 4 reproduced from [71]. The presence of the high absorption peaks 

at 1400, 950, and 725 nm, are a result of the high OH impurities present within the silica. 

Figure 20 shows the attenuation performance for the ThorLabs step index multimode fiber 

SFS105/125Y reproduced from [71]. This fiber has a high presence of OH impurities and as such has 

large absorption peaks occurring at 1400, 950, and 725 nm. These are the first, second, and third 

overtones, respectively, of the fundamental absorption peak of water near 2.7µm [70]. The attenuation 

curve for the multimode optical fiber is incorporated directly into the model database and is used to 

evaluate the wavelength dependent bulk attenuation properties of the fiber. 

In determining the power loss resulting from the attenuation properties of the optical fiber, Eq.(32) 

is re-written as: 

 𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
= 𝑒𝛼𝑎𝑡𝑡𝑒𝑛𝐿𝑝. (36) 

Where, 𝛼𝑎𝑡𝑡𝑒𝑛 is the attenuation coefficient obtained from Figure 20 and expressed as a natural 

logarithm base. 

3.2.1.5 Return internal reflection losses 

As each ray propagates from the fiber input to output faces, it is subject to reflections at each 

interface. As a result a process of multiple reflections at the end faces occurs causing a loss in 
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transmitted power. Intuitively, the loss of transmitted power by this phenomena is minimal and hardly 

effects the total transmitted power. However, its effects are included within the model for completeness. 

The work of Messica et al. [15], derived an expression for multiple successive reflections at the fiber 

end faces by considering the simple illustration of Figure 21. 

 

Figure 21: Schematic representation of multiple Fresnel reflections at the fiber end face as 

considered by Messica et al.[15]. 

Each ray propagating within the fiber undergoes bulk attenuation, as well as losses associated with 

attenuated reflections within the sensing region. Considering successive reflections on the fiber end 

faces, the resulting total power loss is given by [15]: 

 
𝑀(𝜃, 𝛾) = 1 − [𝑟4(𝑟𝑠𝑒𝑛𝑠

2 )𝑁𝑒(𝛼𝑎𝑡𝑡𝑒𝑛𝐿𝑝)]
2
.  (37) 

Here, 𝑟 is the power reflected from both fiber end faces given by the reflection coefficients of the 

Fresnel equations given as: 

 

𝑟𝑝 =
𝑛𝑎𝑖𝑟

2 sin(𝜓) −𝑛𝑐𝑜𝑟𝑒(𝑛𝑎𝑖𝑟
2 − 𝑛𝑐𝑜𝑟𝑒

2 cos2(𝜓))
1
2

𝑛𝑎𝑖𝑟
2 sin(𝜓) + 𝑛𝑐𝑜𝑟𝑒(𝑛𝑎𝑖𝑟

2 − 𝑛𝑐𝑜𝑟𝑒
2 cos2(𝜓))

1
2

 (38) 

 

𝑟𝑠 =
𝑛𝑐𝑜𝑟𝑒 sin(𝜓) − (𝑛𝑎𝑖𝑟

2 − 𝑛𝑐𝑜𝑟𝑒
2 cos2(𝜓))

1
2

𝑛𝑐𝑜𝑟𝑒 sin(𝜓) + (𝑛𝑎𝑖𝑟
2 − 𝑛𝑐𝑜𝑟𝑒

2 cos2(𝜓))
1
2

 (39) 

For convenience 𝜓 is used to denote the expressions: 

 cos 𝜓 = sin(𝜃) cos(𝛾) ; 

sin𝜓 = (1 − cos2(𝜓))1/2. 
(40) 
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Where 𝜃, and γ are the propagation and skew angles define above in Section 3.2.1. Again working 

with the assumption that 𝑟2 = (𝑟𝑝
2 + 𝑟𝑠

2). The terms 𝐿𝑝 and 𝑟𝑠𝑒𝑛𝑠 are the path length of the ray travelled 

through the fiber and the reflection coefficient within the sensing region of the fiber. Both of these 

terms will be defined in in the following sections. 

3.2.2 Optical Tunneling in Thin Film Stratified Media 

As will be discussed in Chapter 4, a FOEWS is fabricated through the partial removal of the cladding 

within a given length of an optical fiber. The partial removal of the cladding along a given length of 

the fiber reduces the thickness of the cladding material to less than the wavelength of the light 

propagating within the fiber. 

 When light is incident from a medium of high refractive index to a medium of lower refractive index, 

there exists an angle of incidence for which no light is able to transmit into the second media. This is 

the well-known phenomenon of TIR. 

 

Figure 22: Schematic of the three layer stack present within the sensing region of the FOEWS. 
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3.2.2.1 Theoretical description of a three layer stack problem. 

Under the framework of geometric optics, the analysis of a light ray incident at an interface between 

two media is analyzed considering only one interface regardless on the thickness of each layer. In other 

words, in a multi-layer stack geometry, each refraction calculation in geometric optics is considered as 

an independent phenomenon regardless of the geometry of the overall problem. This approach remains 

accurate so long as the thicknesses of the individual layers comprising the multi-layer stack is optically 

large. A dimension is considered optically large in relation to the wavelength of the light being analyze 

in the problem. In general, a distance that is an order of magnitude larger than the wavelength of interest, 

(𝑑 > 10𝜆), is consider to be optically large. 

In the case of a three layer stack problem where the second layer in the stack is on the order of or 

lower than that of the wavelength of interest, analysis using geometric optics fails to properly describe 

the physics of the problem. Consider the geometry of Figure 23 which illustrates the path a single 

incident ray travels through a three layer two interface geometry. Incident light onto interface 𝑎 

separating media one and two will both transmit through into the second media and reflect back into 

the first media following the Fresnel equations. The transmitted light continues through medium two 

and is eventually incident with media three at interface 𝑏. Whereupon the ray splits again partially 

transmitting into media three and reflecting back through media two. When the reflected light from 

interface b travels backwards towards interface 𝑎, it again reflects and transmits. This process continues 

infinitely, resulting in a need to compute an infinite sum of rays to determine the complete transmission 

of the initial ray through into medium three. 

It is possible to solve for the reflection and transmission of the incident wave onto the two interphase 

media, by summing over the infinite series. This type of analysis was performed by recently by Buric 

et al. [16]. Wherein attempts to determine the reflection coefficient of a three layer stack in the sensing 

region of a fiber optic sensor were done utilizing the Fresnel equations 
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Figure 23: Infinite internal reflection of a two interface three layer system. 

In Section 2.2  the use of alternative solutions to the two interphase system where discussed, which 

included the transmission line equivalency, as well as the transfer matrix method which was fully 

derived in Appendix A. Both the transmission line equivalency and the transfer matrix method provide 

a more efficient method for solving the transmission, and reflection of an incident electromagnetic field 

incident on a thin film stack. 

3.2.2.2 Derivation of the reflection coefficient due to partial cladding 

Figure 22 shows an overview of the geometry (not to scale) and analysis that is used to model a 

typical FOEWS. In the unmodified region of the sensor, both the core and cladding media are several 

wavelength thick. As such, the core cladding interface here can be considered as an interface between 

two half infinite spaces and the reflection coefficient can be found using the standard Fresnel equations 

without approximation. Because the IOR of the core is larger than that of the cladding, light rays 

propagating through the unmodified regions of the optical fiber experience TIR at the core cladding 

interface and remain unaltered by the external media. 

In contrast, to the unmodified region, within the thin cladding region the thickness of the cladding is 

typically reduced to the order of one wavelength. With such a thin film separating the core from the 

external media the core cladding interface can no longer be accurately described by two half infinite 

spaces, but rather must be investigated as a thin film sandwiched between two infinite half spaces as 

shown in the circled region of Figure 22. 

Transmitted
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With the cladding thickness now on the order of one wavelength, light rays incident at the core 

cladding interface no longer undergo TIR, but instead some of the energy of the ray is allowed to 

“tunnel” through the thin cladding region resulting in a non-zero transmission coefficient in the external 

media. This kind of reflection at an interface is known as frustrated total internal reflection. The 

determination of the reflection coefficient in this kind of geometry can no longer be analyzed using the 

Fresnel equations, but instead the analysis is done by solving the Maxwell equations in each region and 

matching the boundary conditions at each interface. 

While it is possible to explicitly solve the Maxwell equations for geometry present in Figure 23, a 

much more elegant and efficient method is the transfer matrix method. This method determines the 

transmission and reflection coefficient for any number of stratified layers by representing each layer of 

a stratified media as a matrix which is used to maintain the continuity conditions for the electric field 

across boundaries from one layer to the next. The full derivation of the transfer matrix method is given 

in Appendix A. Here the final resulting expression of the reflection coefficient at the core cladding 

interface, with cladding thickness 𝑡𝑐𝑙𝑎𝑑 and refractive indices 𝑛𝑐𝑜𝑟𝑒, 𝑛𝑐𝑙𝑎𝑑 and 𝑛𝑚𝑒𝑑𝑖𝑎 for the core, 

cladding, and external media respectively with incident angle 𝜃𝐼 = 90 − 𝜃𝑃 and free space 

wavelength 𝜆 is presented as [72]: 

 
𝑅 = (

𝜂𝑐𝑜𝑟𝑒𝐵 − 𝐶

𝜂𝑐𝑜𝑟𝑒𝐵 + 𝐶
) (

𝜂𝑐𝑜𝑟𝑒𝐵 − 𝐶

𝜂𝑐𝑜𝑟𝑒𝐵 + 𝐶
)
∗

. (41) 

The asterisk, ∗, denotes the complex conjugate operation, while 𝜂𝑐𝑜𝑟𝑒 is the wave tilted optical 

admittance defined as 𝜂0𝑠
= 𝑛𝑐𝑜𝑟𝑒√

𝜖0

𝜇0
cos 𝜃𝑖  and 𝜂0𝑝

= 
𝑛𝑐𝑜𝑟𝑒√

𝜖0
𝜇0

cos𝜃𝑖 
 for 𝑠 and 𝑝 polarizations. The 

expressions for the coefficients 𝐵 and 𝐶 are given by: 

 
𝐵 = cos 𝛿 + 𝑖 (

𝑛𝑚𝑒𝑑𝑖𝑎

𝑛𝑐𝑙𝑎𝑑
) sin 𝛿 (42) 

 𝐶 = 𝑖𝑛𝑐𝑙𝑎𝑑 sin 𝛿 + 𝑛𝑚𝑒𝑑𝑖𝑎 cos 𝛿. (43) 

Finally, the variable 𝛿 is a function of the free space wavelength , 𝜆0, the incident angle 𝜃𝑖 =
𝜋

2
− 𝜃𝑃 

and the thickness 𝑑 of the cladding layer given by [73]: 
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𝛿 =

2𝜋

𝜆0
𝑛𝑐𝑙𝑎𝑑𝑑 cos 𝜃𝑖 . (44) 

 

Eq. (41) is the core expression that allows the overall model to account directly for both the thickness 

of the thin cladding layer and the optical properties of each of the three layers. It is this expression alone 

which is responsible for the change in optical response of the FOEWS due to the properties of the 

analyte media. Note that the expression is arrived at analytically, and does not assume any 

simplifications on the multiple internal reflections present in the cladding layer. The power of the TMM 

is that the full boundary value solution to the Maxwell equations for an incident plane wave on a multi-

layer structure are solved simply with an iterative algorithm that can easily be translated to an efficient 

computer algorithm. 

Methods and equations used to govern to transmission of light through a FOEWS based on the 

propagation and skew angles of the light ray entering the fiber face were derived. In the proceding 

section, the mathematical expressions required to establish the angular distribution and intensity of light 

rays entering a FOEWS from a typical LED illumination scheme will be given. Once the angular and 

intensity distributions are found, the full expression predicting the power output of a FOEWS is 

presented and used to analyze the effects of various input parameters on this power. 

3.2.3 Illumination Conditions 

The predicted response of a FOEWS using a ray based model relies heavily upon the angular 

distribution of rays propagating within the fiber. As demonstrated in Section 3.2.1, the propagation and 

skew angle of a ray within the fiber core characterizes the path a ray travels and the loss it experiences 

while traveling through the sensor. This model assumes that the optical fiber is perfectly straight so that 

variations in the propagation angle of rays due to bends in the fiber are not considered. The entirety of 

the angular distribution of rays propagating within the fiber model are determined by the launching 

conditions of light from the source onto the fiber face. As a result of this fact the predicted response of 

a FOEWS by the model relies as heavily on the appropriate description of the light incident onto the 

fiber face. The inherent dependence on the launching conditions on the predicted response of geometric 

optics based ray models of multimode optical fiber sensors is a known factor and has been studied by 

various authors namely [[15], [54], [1], [55], [74]]. Intuitively, it is known that larger propagation angle 

within the fiber core will result in more loss occurring at reflections within the sensing region of the 
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fiber. The presence of more skew rays within a fiber core will also change the modeled response. Skew 

rays propagate near the exterior of the fiber core and as such, will experience a higher number of 

reflections within a given fiber length than a meridional ray. As a result, by increasing the proportion 

of skew rays in a modeled angular distribution an increase in sensitivity in the sensor performance due 

to the higher number of reflections within the sensing region would be expected. 

The work of Gupta et al. [74], provided a general analysis of the effects of launching conditions on 

the evanescent absorption of a FOEWS utilizing a collimated He-Ne laser directly incident onto the 

optical fiber face. By varying the illumination angle of the laser beam onto the fiber face they 

investigated the in optical response of the sensor. They found an increase in the absorption efficiency 

occurred as the incident angle of the laser beam onto the fiber face increased. The increase in efficiency 

continued until the laser angle reached approximately 24° when the efficiency began to drop with 

increase angle. While the fiber used in the analysis had a numerical aperture of 9.8°, it was concluded 

that because the fiber has an overall short length (approximately 15 cm) it was able to still guide rays 

outside the NA of the fiber over that length. Upon reaching a launch angle higher than 24°, the loss due 

to poorly guided rays overcame the increase in efficiency of the high absorption of the rays within the 

sensing region leasing to a decrease in efficiency. 

A more theoretical approach to the analysis of angular distribution of rays in a FOEWS was carried 

out by Messica et al. in [15]. The modeled the response of the FOEWS using some simplified launching 

geometries. Their geometry consisted of a parallel light source focus through a focusing lens onto the 

fiber optic end face at various tilt angles as illustrated in Figure 10. They also consider the illumination 

using a laser beam shoot directly at the fiber face. They concluded from these geometries that off 

centered spot illumination of the fiber face using a laser source excited only skew rays within the fiber. 

 The power outputs from a FOEWS of core cross sectional area can then be found by the power out 

integral defined at the onset of this chapter and repeated here for clarity as: 

 
𝑃𝑜𝑢𝑡 = ∫𝑇(𝜃𝐼(𝑟, 𝜑)) ⋅ 𝐼(𝑟, 𝜑)

𝑆

𝑑𝑆. (13) 

Where the transmission 𝑇(𝜃𝐼(𝑟, 𝜑)) is the transmission loss function for a single ray passing through 

the FOEWS that was created from the combinations of Sections 3.2.1.1 to 3.2.2.2. While, 

𝐼(𝑟, 𝜑) represents the intensity of the light ray incident on the fiber face as a function of the source 
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illumination conditions. The variables 𝑟, 𝜑 are the polar coordinate representation of the location on the 

fiber face as described in Figure 24. 

 

Figure 24: Schematic of the general launching conditions of a Lambertian LED source onto an 

optical fiber face at a tilt angle 𝜶. 

Because the intensity and angular distributions of light rays is crucial in determining the power output 

for an FOEWS, it is assumed that the LED illumination scenario illustrated in Figure 24 is valid. As 

illustrated, a Lambertian LED source is placed a distance 𝑑𝑠 away from the center of the fiber face so 

that the optical axis of the LED is at a fixed angle 𝛼 with the fiber axis of the FOEWS. At a point 

(𝑟, 𝜑) on the fiber face the equations governing both the relative intensity of a ray striking the face as 

well as the angle of incidence between the striking ray and the fiber face are derived. 

Without loss of generality, the tilt angle of the LED optical axis to the fiber axis in chosen to fall 

within the 𝑦𝑧-plane. Variation in the tilt angle 𝛼 and the source distance 𝑑𝑠 represent all possible 

locations for the LED source. The choice of having the optical and fiber axes intersect at the fiber face, 

simplifies the computation of the intensity distribution of rays but has no bearing on the propagation or 

skew angle calculations. 

The angular distribution of rays on the fiber face can be determined by calculating the angle between 

a ray along the vector 𝑃𝐴̅̅ ̅̅  to the normal vector 𝑧̂ of the fiber face. The angle of a ray incident on the 

fiber source at a point (𝑟, 𝜑) is found to be [72]: 

fiber axis
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𝜃𝐹(𝑟, 𝜑, 𝛼) = arccos [

𝑑𝑠 cos 𝛼

√𝑟2 + 𝑑𝑠
2 − 2𝑟𝑑𝑠 sin 𝛼 sin 𝜑

 ]  (45) 

From Eq. (45) a description of the incident angle a ray traveling from a source makes with a given 

point on the fiber face as a function of the launching angle 𝛼 is given. With the incident angle given at 

any point on the fiber face, the resulting propagation angle through the FOEWS can then be computed 

using Snell’s law so that: 

 sin 𝜃𝑃 =
𝑛𝑎𝑖𝑟

𝑛𝑐𝑜𝑟𝑒
sin 𝜃𝐹  . (46) 

 The propagation angle defined in Eq. (46) as a function of the IOR of the air and core, is the 

complementary angle to the incident angle that a ray propagating within the fiber core makes with the 

core cladding interface within the sensing region of the fiber. It is thus, the complementary angle 90 −

𝜃𝑃 which is used to compute the reflection coefficient. 

As mentioned previously, the skew angle of a ray propagating through the fiber core depends on the 

launching conditions of the light source. In the case where the LED source is placed on the 𝑧-axis, 

coinciding with 𝛼 = 0, there is no possibility for the excitation of skew rays through the fiber. When 

the tilt angle is increased certain rays propagating through the fiber core will have an associated skew 

angle. 

The derivation of the skew angle of a ray incident from an LED source onto the fiber face is derived 

considering the projection of the ray’s path in Figure 24 onto the fiber face surface. An illustration of 

the projection onto the fiber face is given in Figure 25. The skew angle 𝛾 of a ray emanating from an 

LED source at a point 𝑃 = (0, 𝑑𝑠 sin 𝛼 , 𝑑𝑠 cos 𝛼), incident at any point 𝐴 = (𝑟, 𝜑, 0) on the fiber face, 

can be derived in general for an optical fiber with a core radius of 𝑟𝑐 . 
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Figure 25: Schematic illustrating the projection along the 𝑧-axis of points of an incoming ray from 

an LED point source as in Figure 24, onto the fiber face. The incident skew angle is calculated as the 

angle between the lines through the points 𝐵,𝐴, 𝑃𝑧=0, and a radial line of the fiber. 

The vector defined by the points 𝐴 and 𝑃𝑧=0, is given by: 

 𝐴𝑃𝑧=0
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = (𝑟 cos𝜑 , 𝑟 sin 𝜑 − 𝑑𝑠 sin 𝛼 , 0). (47) 

Making use of the dot product, the angle made by the points, 𝐴, 𝑃𝑧=0, and the origin, is defined by: 

 
∠𝐴𝑃𝑧=0𝑂 = arccos [ 

𝐴𝑃𝑧=0
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⋅ 𝑂𝑃𝑧=0 

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑

‖𝐴𝑃𝑧=0
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ‖‖𝑂𝑃𝑧=0 

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑‖
] (48) 

Finally, the incident skew angle 𝛾 is found by use of the sine law as: 

 
𝛾 = arcsin [‖𝑂𝑃𝑧=0 

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑‖ sin
(∠𝐴𝑃𝑧=0𝑂)

𝑟𝐶
] (49) 

Unlike the incident angle 𝜃𝐹 which undergoes refraction upon entering the fiber core from the 

external environment; the skew angle 𝛾 is measured perpendicular to the plane of incidence and as 

such does not change when the ray enters the fiber core. 
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In addition to knowing the propagation and skew angles of any ray striking the fiber face from an 

illumination source, the intensity of that ray also plays a role in computing the response of the FOEWS. 

For an LED illumination source the intensity of light emitted depends on the angle from the emission 

axis. A standard LED will emit light as a Lambertian source. This means that the normalized angular 

intensity pattern of the LED follows the formula given by: 

  𝐼(𝜃𝑆) = cos 𝜃𝑆 . (50) 

 

 

Figure 26: Angular intensity distribution of a Lambertian LED source with an emission width 

of 5°. 

Where 𝜃𝑆 is the angle from the emission axis illustrated in Figure 24. For the applications of 

illuminating a fiber optic face with an LED in close proximity, having such a broad angular emission 

pattern results in the waste of power due to the small angular area of the fiber face. A better approach 

is to use a more directed LED emission pattern which directs light over a smaller angular range. By 

confining the LED emission to a limited angular range, a higher portion of the power from the LED 

strikes the fiber face. The angular emission pattern for a Lambertian LED with a 5° emission width is 

given in Figure 26. The normalized intensity formula for an LED with a 5° emission width is given by: 

 
𝐼(𝜃𝑆) = {

cos(18𝜃𝑆) for 0 ≥  𝜃𝑆 ≥ 5
 0 otherwise

. (51) 
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3.2.4 Relative intensity of modes 

With the setup for the FOEWS model complete, it is now possible to predict the relative loss for 

experienced for each propagating angle corresponding to the individual modes allowed to propagate 

within the FOEWS. Determining the relative loss of each mode in the FOEWS will allow us to 

determine which modes contribute the most to the power loss in the FOEWS. From Figure 18, we know 

that the optical fiber used to fabricate the FOEWS is capable of supporting 172 separate modes.  In 

order to determine which modes are most important for sensing characteristics, we compute the relative 

transmission coefficient of each mode travelling through a FOEWS. For the purposes of this simulation, 

the FOEWS is assumed to have a sensing length of 1.5 cm with a cladding thickness of 0.2 µm. The 

simulation will assume that the analyte material has a refractive index of 1.7. The results for this 

simulation are presented below in Figure 27. 

 

Figure 27: Plot of the relative transmission of each of the allowable propagation angles (172 modes) 

for a FOEWS of sensing length 1.5 cm, cladding thickness of 0.2 µm and in contact with an analyte of 

refractive index 1.7. 

The results of Figure 27 clearly show that propagating angles greater than 1.2° are greatly attenuated 

while passing through the FOEWS. These higher order modes or propagating angles experience a 
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greater number of reflections at the sensing interface making them the larger contributors to the signal 

loss. For completion the results of Figure 27 are represented using a log scale below in Figure 28. 

 

Figure 28: A second plot of Figure 27 using log scale.  

Looking at the relative transmission coefficients in Figure 28 we note that propagation angles above 

1. 5° are effectively transmitting no power through the FOEWS having lost all power through sensing 

region. Given that the FOEWS works based on the power loss high loss modes are important. However, 

for the purposes of monitoring the change in refractive index of the external media, the change in output 

power from the FOEWS must be measured. Therefore, propagating modes must experience a high 

enough loss while passing through the FOEWS as a result of interacting with the external analyte while 

maintaining a high enough transmission coefficient in order to deliver enough signal to show variations 

in loss intensity based for different refractive indices of the analyte material. Also of importance is the 

number of rays which are sent through the FOEWS for each of the allowable modes. Based on the 

illumination conditions, not all modes will be equally populated with the same number of rays. The 

effects of illumination conditions of the FOEWS transmission response will be investigated later in 

Section 3.3. 
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3.2.5 Summary of FOEWS model 

Within this chapter all the relevant equations used in predicting the response of a FOEWS were 

derived. As previously mentioned the final power output of the FOEWS is described by Eq. (13). To 

conclude the theoretical description of the model, the explicit forms of both the intensity and 

transmission functions are summarized. 

The transmission function is explicitly defined by: 

 
𝑇(𝑟, 𝜑) =

𝑡4(𝑅)𝑁𝑒𝛼𝑎𝑡𝑡𝑒𝑛𝐿𝑝

𝑀
 . (52) 

Where 𝑡 is defined as the loss associated with Fresnel reflections at the fiber end faces in Eq.(31), 

while 𝑅 is the reflection coefficient at the sensing region thin film stack defined in Eq.(41). The 

expression 𝑒𝛼𝑎𝑡𝑡𝑒𝑛𝐿𝑃 accounts for attenuation losses of a ray travelling along the fiber of attenuation 

𝛼𝑎𝑡𝑡𝑒𝑛, defined Section 3.2.1.4 with a total effective path length 𝐿𝑝 derived in Eq. (35). Finally, the 

coefficient 𝑀 accounts for the return internal reflection losses, and is defined in Eq. (37). 

The intensity function 𝐼(𝑟, 𝜑)is given directly by Eq.(51), and like the transmission function relies 

on the input variables 𝑟 and 𝜑. As mentioned the power out integral defined in Eq. (13), is solved by 

discretizing the surface domain and replacing the integral with a double summation as: 

 𝑃𝑜𝑢𝑡 = ∑∑{𝑇 (𝜃𝐼(𝑟(𝑖), 𝜑(𝑗)), 𝛾(𝑟(𝑖), 𝜑(𝑗))) ⋅ 𝐼(𝑟(𝑖), 𝜑(𝑗))} Δ𝑟𝑖Δ𝜑𝑗

𝑗𝑖

. (53) 

The meshing of the fiber face surface is done in polar coordinates as illustrated in Figure 29. Each 

index pair (𝑟𝑖 , 𝜑𝑗), corresponds to the simulation of a single ray being sent though the FOEWS. 
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Figure 29: Polar meshing of the FOEWS illumination face used to discretize the surface of the 

fiber. Each node corresponds the simulation of a single rays passing through the FOEWS. 

For a ray impacting at a point (𝑟𝑖, 𝜑𝑗) on the fiber surface there is an associated intensity described 

by the intensity function, 𝐼(𝑟, 𝜑). In order to compute a power from the intensity function it must be 

multiplied by an area exposed to the intensity. In discretizing the fiber face domain, a finite number of 

rays are impacting the surface determined by the number of nodes of the mesh covering only one 

dimensional points on the surface. In order to assign an incident power to each ray, a two-dimensional 

surface element is associated to each ray. By assuming that the intensity of the ray at point (𝑟𝑖, 𝜑𝑗) 

uniformly covers a surface 𝐴𝑖,𝑗  an incident power on the surface element is given by: 

 𝑃𝑖,𝑗 = 𝐼(𝑟𝑖 , 𝜑𝑗)𝐴𝑖,𝑗. (54) 

The surface element 𝐴𝑖,𝑗 corresponding to a node (𝑟𝑖 , 𝜑𝑗) is defined as the surface with vertices 

(𝑟𝑖, 𝜑𝑗), (𝑟𝑖+1, 𝜑𝑗), (𝑟𝑖+1, 𝜑𝑗+1) and (𝑟𝑖 , 𝜑𝑗+1) as illustrated in Figure 29. In general, the area of the 

surface 𝐴𝑖,𝑗  is given by: 

 𝑎𝑟𝑒𝑎(𝐴𝑖,𝑗) = Δ𝑟𝑖Δ𝜑𝑗 = 𝑟Δ𝑟Δ𝜑. (55) 

Meshing of the fiber face is done so with fixed division length of radius, Δ𝑟, and fixed angular 

division Δ𝜑. The result of this fixed division meshing is that a larger number of rays are sent through 

the center region of the fiber face than at the edge of the face. However, care is taken to make sure 
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that a large enough number of rays are simulated so that there is a high resolution meshing at the 

outer region of the fiber face to maintain accurate representation of the variance in intensity and 

angular distributions. For the simulation presented in the next section, the division length Δ𝑟 and Δ𝜑 

are chosen as 1 µm and 0.1 rad. This results in the simulation of 6 597 rays onto the fiber face with a 

maximum element surface area 𝑎𝑟𝑒𝑎(𝐴𝑖,𝑗) = 10.4 µm2 which corresponds to 0.03 % of the entire 

fiber face size. 

3.3 Response Predictions 

Using the model described above, it is possible to theoretically investigate the expected change in 

response of a FOEWS under variations in cladding thickness, illumination conditions, and refractive 

index of the analyte material. By running several simulations under variations in these parameters, the 

following section attempts to draw conclusions about the significance each has on the expected optical 

response. The transmission response behavior of the FOEWS is given as a normalized power ratio 

instead of the absolute power output of the model. The signal is normalized to a reference power chosen 

as the output power of the FOEWS when exposed to air. From theory it is known that at analyte IOR 

values below the IOR of the core, no power is lost along the sensing region of the FOEWS and the 

output transmission is at a maximum. Normalization to the simulated transmission value at for air also 

provides a method for comparison with experimental results that will be useful in the following chapter. 

Under experimental conditions, determining the power transfer into the optical fiber from the LED 

source is not easily determined. In contrast, normalizing to the power output in air or any other analyte 

with a known IOR below that of the core is a simple and accurate baseline to take. 

The following response predictions are conducted using certain assumptions for the input parameters 

of the model. The LED source is taken to be an ideal Lambertian emitter with an angular width of 5° 

that is incident directly on the fiber face without the use of focusing lenses. The optical fiber is assumed 

to have a core IOR of 1.455 with a NA of 0.22. 

3.3.1 Cladding thickness 

The thickness of the cladding within the sensing region of the fiber strongly effects the response 

behavior of a FOEWS. Figure 30 presents the change in relative power transmission for various 

cladding thickness ranging from 0.1 to 1.4 µm on the sensing response to sample media with IOR 

ranging from 1.42 to 1.6 where the LED distance from the source is held at 1 mm with no tilt angle 
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and a fixed sensing length of 1.5 cm. Only real IOR values for the analyte are chosen to investigate the 

behavior of the sensor to changes in the sensor response. The model is capable of simulating the effects 

of an absorbing analyte on the sensor response, but for the purposes of analyzing the effects of cladding 

thickness on sensor behavior, only non-absorbing analytes are considered. 

Notice that for IOR values of the external media below that of the core, the relative power transmitted 

through the FOEWS remains constant. This is expected as tunneling through the thin cladding region 

requires the external analyte to have an IOR which would not support TIR within the core. 

 When the IOR of the external media is lower than that of the core, an evanescent field is produced 

from the incidence of rays at the core cladding interface. The evanescent field attenuates exponentially 

in amplitude away from the fiber core through the cladding and external media without carrying energy 

away from the core. When the IOR of the external analyte equals or is larger that of the core, the 

evanescent field within the cladding generates a propagating wave at the cladding external analyte 

interface which allows energy from the core to tunnel through the thin cladding and carry energy away 

from the fiber core. This phenomenon is sometimes referred to as optical tunneling and has been 

discussed extensively in the literature as mentioned in the literature review. 

As the cladding thickness is increased the minimum relative power transmission. This is expected, 

since the evanescent wave attenuates less as the cladding thickness decreases, allowing less energy to 

be radiated from the core. Also of importance is the shape of the relative power curve with external 

IOR values. As the cladding thickness decreases, there is an increase in the transmission range of the 

FOEWS response. However, as the transmission range increases the transmission itself decreases, and 

for IOR of the analyte near minimum transmission the signal can become difficult to measure. 
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Figure 30: Predicted normalized power loss for sensors with cladding thicknesses from 0.2-1.6 µm 

in response to external media with IOR values from 1.42 to 1.6. LED illumination distance was held 

at 1 mm with zero tilt angle and a fixed sensing length of 1.5 cm. 

The change in transmission range of the FOEWS as a function of cladding thickness is given by 

Figure 31. The transmission range is given as the measure of the drop in transmission signal from the 

reference power to the lowest transmitted power observed over the range of analyte IOR values. From 

the graph of Figure 31, the transmission range of the FOEWS as a function of cladding thickness 

demonstrate exponential behavior, and is reminiscent of the FTIR transmission through a thin film 

shown in Figure 4. The similarities between these graphs are due to the strong dependence of the 

FOEWS’s transmission response on the reflection coefficient occurring within the sensing region of 

the fiber. 
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Figure 31: Prediction of the change in transmission range of the FOEWS response as a function of 

cladding thickness. 

Also of note is the behavior of the IOR corresponding to the minimum transmission value of the 

FOEWS response. Figure 32 shows the predicted change in the corresponding IOR of minimum 

transmission as a function of the cladding thickness of the FOEWS. The IOR corresponding to the point 

of minimum transmission varies exponentially with cladding thickness. The shift in minimum 

transmission through the FOEWS is a consequence of the behavior of the reflection coefficient off a 

simple thin film as illustrated in Figure 23 with an incident angle of 1 degree. For clarity the shift of 

IOR corresponding to minimum reflection off a thin film as a function of film thickness is plotted 

alongside the IOR shift of minimum transmission of a FOEWS as a function of cladding thickness. The 

close agreement of the two scenarios is a result of the strong dependence of the FOEWS model on the 

reflection coefficient of the thin cladding interface. 

This behavior can be exploited to more accurately determine the cladding thickness of fabricated 

sensors since it provides a relationship between cladding thickness and optical response without relying 

on the absolute transmission intensity of the fiber. The minimum transmission IOR of a sensor can 
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easily be determined using calibrated thermo-optic liquids as will be seen in Chapter 4, where this 

behavior will be exploited to fit experimental results to simulated responses. 

 

Figure 32: Prediction of the change in the minimum transmission index for various cladding 

thicknesses. Model results are compared to the shift in IOR corresponding to minimum reflection of a 

thin film structure, as in Figure 23, with an incidence angle of 1°. 

3.3.2 Length of sensing region 

In addition to cladding thickness as a fabrication design parameter, the length of the sensing region 

of the FOEWS can be adjusted depending upon the desired response characteristics. From the general 

formulation of the power output in Eq. (52) it is seen that the sensing length presents itself in the 

exponent term 𝑁. As such, the expected change in FOEWS response to a change in sensing length 

should follow a logarithmic behavior. 
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Figure 33: Predicted normalized power loss for sensors with change in sensing length from 1 to 4 

cm in response to external media with IOR values from 1.42 to 1.6. Cladding thickness was held at 0.5 

µm with zero tilt angle, and an LED launch distance of 1 mm. 

Figure 33 shows simulation results for variations in sensing length ranging from 1 to 4 cm long. In 

these simulations, the cladding thickness was kept at 0.5 µm while the LED was held 1 mm with zero 

tilt angle. From the simulation results, increasing the sensing length results in an increase in 

transmission range as expected from the form of Eq. (52). Figure 34 shows the logarithm correlation 

between the sensing length and transmission range. 

While changing the sensing length of the fiber increases the transmission range similarly to a 

decrease cladding thickness, the index of minimum transmission does not exhibit the same change in 

behavior. Figure 35 shows how the index of minimum transmission remains constant as a function of 

the sensing length of the FOEWS. Because of this behavior it is possible to adjust the transmission 

range of the FOEWS without changing the index of minimum transmission. 
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Figure 34: Predicted behavior of the transmission range measured in the fiber as a function of 

sensing length. 

 

Figure 35: Predicted behavior of the change in the minimum transmission index as a function of 

sensing length. Unlike the phenomena seen with variation in cladding thickness, sensing length does 

not affect the minimum transmission index value. 
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3.3.3 Distance of LED to fiber face 

In the preceding two sections the change in transmission response of a FOEWS predicted by the 

model as a function of the cladding thickness and sensing length of the fabricated fiber was investigated. 

Both of these parameters are functions of the etching process and remain fixed once the FOEWS is 

fabricated. In this and the following sections, effects of the launching conditions of the LED on the 

transmission response of the FOEWS are investigated. Unlike cladding thickness and sensing length, 

launching conditions can be changed after sensor fabrication. The launching conditions are modeled 

using the illumination equations derived in Section 3.2.3. 

Figure 36 presents the change in relative power transmission for LED illumination distances ranging 

from 1 to 5 mm on the sensing response to sample external media with IOR ranging from 1.42 to 1.6 

for a constant cladding thickness of 0.5 µm and no tilt angle. The predicted power transmission for the 

FOEWS maintains the same general shape as those shown in Figure 30. The increase in LED distance 

decreases the transmission power contrast for external media IOR values below and above the core 

IOR, so that for a launching distance very little signal variation with external media IOR is seen. 

 

Figure 36: Predicted normalized power loss for sensors with distance of LED to fiber face from 1 to 

5 mm in response to external media with IOR values from 1.42 to 1.6. Cladding thickness was held at 

0.5 µm with zero tilt angle. 
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The LED source is assumed to emit light rays from a single point source in a Lambertian emission 

profile. Consequently, as the LED is place further from the fiber face, light rays incident of the fiber 

face impact at a smaller angles so that light rays travelling along the fiber core have a larger propagation 

angle. Light rays travelling at larger propagation angle are less frequently incident of the core cladding 

interface and additionally the reflection coefficient from high angle incidences is closer to unity. 

Therefore, less power is lost to the external media by the high propagation angle rays, reducing the 

transmission range for far distance illumination. The correlation between the launch distance and the 

transmission range is given in Figure 37. The transmission range decreases exponentially as the LED 

distance is increased. 

 

Figure 37: Predicted behavior of the transmission range measured in the fiber for various LED 

source distances. 

Similar to the change in sensing length, increasing the LED launching distance does not affect the 

index of minimum transmission of the FOEWS. Predictions from the model for indices of minimum 

transmission as a function of launch distance are given in Figure 38. A constant index of minimum 

transmission index is expected from the illumination condition equations of Section 3.2.3. Since the 

LED is modeled as a Lambertian source with a small angular emission width, the variation in 

propagation angles of ray on the fiber face vary only slightly when the LED distance is held at distances 
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above 1 mm. With such small variations in propagation angle, the resulting reflection coefficients and 

number of reflections along the sensing region are held constant. 

 

Figure 38: Predicted behavior of the change in the minimum transmission index for various LED 

source distances. Unlike the phenomena seen with variation in cladding thickness, the distance of LED 

illumination shows no change in the index of minimum transmission value. 

3.3.4 Title angle of LED to fiber face 

In addition to the LED distance to the fiber face, the tilt angle that the LED makes to the optical axis 

as described in Figure 24 can be varied to elicit a change in the transmission response of the FOEWS 

Figure 39 presents the change in relative power transmission for changes in the tilt angle between 

the optical and fiber axes of 0 to 5°, on the sensing response to sample external media with IOR ranging 

from 1.42 to 1.6 for a sensor with a fixed cladding thickness of 0.5 µm and LED illumination distance 

fixed at 1 mm. 

When the tilt angle is increased beyond 5° the fiber no longer allows for rays to enter at such high 

incident angles and light no longer enters the FOEWS. The range of acceptable incident light ray angles 

is determined by the NA of the fiber and is a function of the IOR of the core and cladding defined by 

Eq. (18). For the values of the core and cladding IOR assumed here the NA is approximately 0.22 
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corresponding to an acceptance angle of 12.5°. Note that the model shows little to no relative power 

transmission for external media IOR values above the core IOR for tilt angles of 4 and 5°. 

 

Figure 39: Predicted normalized power loss for sensors with tilt angle between the optical and fiber 

axes ranging from 0-5° in response to external media with IOR values from 1.42 to 1.6. Cladding 

thickness was held at 0.5 µm an LED illumination distance of 1 mm. 

In Figure 40 the transmission range as a function of the tilt angle is summarized. As the tilt angle 

increases the drop in relative power transmission is increased. In a similar reasoning to the effects of 

LED distance on relative power transmission, as the tilt angle is increased, rays propagate inside the 

fiber with a larger propagation angle. Since rays propagating at larger propagation angles have smaller 

reflection coefficients and interact more with the core cladding interface, they lose more power to the 

external media. 
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Figure 40: Predicted behavior of the transmission range measured in the fiber for various angles of 

tilt of the source LED. 

Unlike the LED distance, tilt angle greatly affects the propagation angle of rays within the fiber, and 

as a result the angle of incidence for reflections at the sensing region. However, this change in incidence 

angle should have no effect on the index of minimum transmission. Figure 41 summarizes the change 

in minimum transmission index as a function of the tilt angle as predicted by the model and compared 

to the behavior of the same reflection coefficient off a thin film structure used in Section 3.3.1. The 

index of minimum reflection off a thin film structure does not change as a function of the incident 

angle. In comparison, the model predictions remain relatively constant but due show slight variation 

with tilt angle. These variations are a result of the numerical inaccuracy for the calculation of the 

relative power output of the FOEWS. As the tilt angle increases, the calculated absolute power output 

of the FOEWS becomes extremely small so that imprecisions in numerical calculations result in a slight 

variance in the index of minimum transmission. Compared to the variance in index observed with 

change in cladding thickness, the variance observed here are minor enough to be considered constant. 
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Figure 41: Predicted behavior of the change in the minimum transmission index for various angles 

of tilt of the source LED for the model compared to the same thin film reflection calculation of Figure 

32. A slight change in the index of minimum transmission is seen with tilt angle as a result of numerical 

imprecision due to low output power at higher angles. 
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Chapter 4 

Experimental Validation and Results 

This chapter presents the experimental results conducted on a fabricated FOEWS to verify the 

proposed model. The response of the sensor was measured against exposure to several liquid samples. 

The thermo-optic properties of the liquids were utilized to obtain a response curve over a range of IOR 

values. For precise control of the temperature of the liquid an aluminum thermal test bed was setup and 

its details are presented here. The design of the test bed ensures proper submersion of the sensing region 

within the liquid analyte while keeping it away from the aluminum side walls. Real-time monitoring of 

temperature ramping of the liquid and optical response of the FOEWS is used to map the measured 

response to the calculated IOR of the sample. Once the IOR optical response relation for the tested 

FOEWS is produced, the observed response is compared to the theoretical response predicted by the 

FOEWS model presented in the previous chapter. Due to difficulties in direct measurement of the 

cladding thickness of etched FOEWS, fitting of the experimental results to the theoretical model is used 

to estimate the cladding thickness of the fiber. The quality of fit between the experimental results and 

the theoretical predictions is then used to validate the precision of the model. 

4.1 Experimental Setup 

In order to accurately characterize the response of a FOEWS, accurate control of the IOR of the 

analyte material is required. The method described below makes use of thermo-optic liquids which are 

calibrated to give precise IOR values over a specified range of temperatures. To fully take advantage 

of the precision of the calibrated liquids, a custom designed thermal test bed was developed for the 

purpose of accurately and reliably monitoring the temperature of the sample liquids while keeping 

ensuring full suspension of the FOEWS sensing region within the sample liquid. The schematic of 

Figure 42 outlines the proposed design for the thermal test bed. The main test bed is milled from a solid 

1.3 × 5 × 10 cm block of aluminum chosen for its high heat conduction and dimensioned large enough 

to provide a stable uniform temperature across the well. The fiber optic cable is guided and held in 

place within the well using modified syringe needles that have been retro-fitted with bare fiber 

terminators obtained from ThorLabs (Product name BFTU-Universal Bare Fiber Terminator) [75]. The 

syringe needles are bent at two points in order to position the sensing region of the fiber in the center 

of the test well and to avoid kinks in the fiber. The BFTUs act as clamps on the fiber locking the sensing 
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region of the FOEWS within the well while maintaining a constant tension in the fiber which keeps the 

sensing region from touching the aluminum edges of the well. The optical fiber guides are secured to 

the aluminum test bed with Teflon strips which are bolted to the top surface of the test bed. The Teflon 

strips provide sufficient pressure on the optical fiber guide while distorting enough to avoid collapsing 

the syringe needle. 

 

Figure 42: Schematic of the oil reservoir test bed used for the temperature sensitive oil test of the 

FOEWS. 

Temperature control of the sample well is accomplished with the use of two rod heaters inserted 

longitudinally into the aluminum bed on either side of the well. Quarter inch FIREROD® heaters from 

Watlow were chosen as the heat sources [76]. The rod heaters were controlled using a Watlow mini 

control console model number K5R1-0000 [77]. The control console monitors the temperature of the 

test well using a K-type thermocouple which is placed at one end of the test well. Accuracy in the 

control console temperature reading is ± 0.1% of span. To ensure a constant temperature in the test 

bed, a second sensing K-type thermocouple is placed at the opposite end of the test well. Experimental 

testing of the variation in the temperature between each end of the test well was found to be within 

0.1℃ for well temperatures up to 100℃. 
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The sensing thermocouple is read monitored and recorded in real-time every second using an NI 

USB-TC01 thermocouple measurement device from national instruments product number 781314-01 

[78]. The temperature was recorded with equal time resolution as the optical response of the sensor for 

accurate correlation. 

 

 

Figure 43: Overview outlining the components used in the characterization of the FOEWS and the 

experimental setup used in testing the FOEWS. 

The FOEWS is illuminated using a high speed infrared surface emitting diode with an 850 nm 

emission narrow band spectrum available from Vishay Semiconductors model number 782-VSLY5850 

[79]. As described in the previous chapter the LED has a beam angle of 3° with a radiant intensity of 

600 mW/sr. Light from the LED is coupled directly into the fiber using an LED mounting adapter from 

ThorLabs product number RMS11P [80]. The LED source is powered using an Agilent E3631A DC 

power supply [81]. The intensity of the LED was fixed by holding the power supply output at a constant 
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voltage of 1.67 Volts and 90 mA, corresponding to approximately 30 mW of radiant power. The output 

intensity of the FOEWS was measured using a ThorLabs DET10C- InGaAs detector which converted 

the optical signal to a current which was read by an Agilent 54621D oscilloscope [82], [83]. The 

oscilloscope was connected via GPIB to a desktop computer which recorded the optical signal and 

temperature readings in real-time. Figure 43 illustrates experimental setup schematic of the equipment 

used in the characterization of the FOEWS. 

 

Figure 44: Teflon fixture used to etch optical fiber sensing region with BHFA. 

The FOEWS itself was fabricated from a low-OH, set index multimode fiber from ThorLabs product 

number AFS105/125Y [84]. The optical fiber has a 105 µm silica core and a fluorine doped silica 

cladding that is 125 µm in diameter. The refractive index of the solid silica core is reported as 1.452 at 

a wavelength of 850 nm according to the work of Malitson [85]. The optical fiber is surrounded by an 

acrylate coating material. Fabrication of the sensor requires removal of the coating material and 

reduction of the cladding thickness over a given sensing length of the fiber. The acrylate coating is 

chemically removed with acetone exposing the fluorine doped cladding. Removal of the cladding 

requires chemical etching using hydrofluoric acid. The fibers are etching using a custom designed 

Teflon fiber holder for controlled emersion of the fiber within a buffered HF solution as shown in 

Figure 44. Etching depth of the cladding is controlled by emersion time in the acid and a rough estimate 

of the cladding thickness is accomplished using a combination of optical microscopy measurement and 
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a glycerol contrast test. The etching process is carried out using a BHFA consisting of 6 parts NH4F 

(40 % concentration) and 1 Part HF (49 % concentration which results in an etch rate of approximately 

1 µm/min. 

Under observation in a SEM as shown in Figure 45 the final etched surface is smooth with no pitting 

visible. The jacket, un-etched and etched regions of the fiber are visible within the image. Clear 

boundaries between the regions are visible, between the etched and etched region of the fiber a tapered 

region is visible which is caused by the partial emersion of the fiber in the buffered HF during etching. 

Measurements of the width of the fiber at the etched region vary along the entire etched region between 

anywhere from 102.1 to 104.6 µm with a mean value estimated at 103 µm. 

 

Figure 45: Scanning electron image of an etched FOEWS using a buffered HF solution sputtered 

with gold at a thickness of 10 nm. Image shows widths of fiber at both the etched and un-etched regions 

as well as the fiber jacket region. 
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4.2 Experimental determination of temperature dependence 

To ensure that no intrinsic error in measurement can be attributed to the temperature of the FOEWS 

during measurement, it is important to isolate the sensor response to change in temperature. The goal 

of this section is to characterize the change in response of the FOEWS purely from a change in 

temperature while maintaining a constant IOR of the sample liquid. Since most liquids exhibit a change 

in IOR under a change in temperature, pure water is used to test the temperature dependence of the 

FOEWS. In Chapter 3 it was noted that when the FOEWS was exposed to an analyte with an IOR value 

below that of the IOR of the core, no power from the core escapes from the sensing region. Thus, the 

response for any IOR of the analyte below the core IOR should remain constant. Therefore, by exposing 

the FOEWS water which is known to have an IOR below the core index for all temperatures will allow 

the characterization of the intrinsic temperature dependence of the FOEWS itself. 

Deionized water presents itself as an optimum candidate for use in measuring the temperature 

dependence of the FOEWS. The measured IOR of water at 850 nm was reported as 1.3276 by Daimon 

and Masumura [86]. This is well below the value of 1.455 for the core of the fiber. Additionally, the 

change in IOR of water was investigated by Bashkatov and Genina and the IOR change at 850 nm was 

reported to decrease by 0.014 with a temperature change from 0 to 100 °C [87]. Therefore, that for 

temperatures between 0 to 100 °C with an interrogation wavelength of 850 nm, any change in optical 

response of the FOEWS is attributed to the intrinsic temperature dependence of the sensor. 

It should be noted that testing the FOEWS temperature response with an empty test well would also 

satisfies the low IOR requirements of test. However, attempting to accurately determine the temperature 

of the FOEWS in an air environment becomes more difficult than in water. Emersion of the FOEWS 

in water allows for conductive heating of the fiber in contrast to convective heating in air. In addition, 

emersion in water helps maintain a uniform temperature reading over the sensing length of the fiber 

due to the thermal capacity of water. 

Figure 46 presents both the recorded temperature and normalized optical response of a fabricated 

FOEWS immersed in deionized water and exposed to a temperature ramping and cooling over time. 

The measured temperature of the FOEWS was ramped from 25 to 70 °C over a period of 90 seconds 

and then allowed to cool to 47 °C over a 14 minute period. The optical response of the sensor is 

presented as a ratio of the recorded voltage from the oscilloscope to the measured reference voltage. 
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The reference voltage is taken at a temperature of 25 °C. The reference voltage ratio corresponds to the 

in air power ratio used to characterize FOEWS performance back in Section 3.3. 

Upon inspection of the normalized optical signal during the temperature ramping of the FOEWS in 

Figure 46, a change in optical signal of 0.4 % was measured over the full 50 degree temperature 

ramping. However, the simulations presented in Section 3.3 expect no change in optical signal for the 

corresponding IOR change of water at these temperatures. The observed change in response of the 

FOEWS due to temperature change is hypothesized to be caused by the change in IOR of the core and 

cladding materials of the fiber optic cable itself. 

 

Figure 46: Recorded temperature dependence of FOEWS with temperature variations from 20℃ to 

70℃. Normalized change in optical response is minimal. 

Changes to the IOR of the core and cladding materials would result in a change to the NA of the fiber 

resulting in a change in the transmission properties of the FOEWS. According to the specifications of 

the SFS105/125Y optical fiber used in this experiment, the designed operation temperature ranges from 

−40 to 85 °C [71]. Therefore, a 0.4 % change is relative transmission is to be expected for exposure 

to temperature variations of 50 °C. 

With the intrinsic temperature variation of the FOEWS determined to be within 0.4 % of the 

reference transmission, it can be concluded that neglecting the effects of transmission variations in the 
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FOEWS model due to temperature changes will not significantly diminish the accuracy of the model. 

In the experimental test, and model verifications that follow, no accounting for temperature changes in 

the response properties of the FOEWS will be considered. 

4.3 Experimental validation using calibrated oil samples 

Now that the intrinsic temperature dependence of the FOEWS has been determined, thermo-optical 

oil is used next to characterize the transmission response of a FOEWS to known IOR changes in the 

analyte solution. The thermo-optic oil used in this section is the series A product number 14720 

certified oil available from Cargille labs. The oil has a reported IOR of 1.4649 at 850 nm and a 

temperature coefficient of −3.92e-4 per degree Celsius. 

The transmission voltage from the oscilloscope was measured before the addition of the oil to the 

test bed well and used as the reference voltage which would be used to normalize the transmission 

response to the thermo-optic oil. Figure 47 summarizes the recorded transmission response of the 

FOEWS during several temperature cooling runs using the test bed of Figure 42. It was noticed during 

testing that the rapid heating cycle of the test bed the correlation between the recorded temperature and 

transmission response is less accurate then during the longer cooling cycle. Therefore, the data shown 

in Figure 47 includes only the recorded data during the cooling period of the test bed. 

 

Figure 47: Recorded sensor response to thermo-optic oil at temperatures ranging from 22 to 44 °C. 

Optical response of sensor is given as a ratio to the reference signal in air. 
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From the temperature transmission response summarized in Figure 47, the transmission response 

correlates directly to the temperature of the oil for temperatures below 𝟑𝟓 ℃, and correlates inversely 

with temperatures above as highlighted by the gray regions on the graph. The change in correlation 

behavior suggests that the thermo-optic oil IOR is spanning the region of minimum transmission of the 

FOEWS as described in the predicted response analysis of Section 3.3. 

The measured temperature data of Figure 47 is converted to the IOR value of the thermo-optic oil 

using the relation given by: 

 𝑁𝑜𝑖𝑙 = (𝑇 − 25)(−3.92𝑒 − 4) + 1.4650. (56) 

Where T is the recorded temperature of the test oil within the test bed. The temperature of the test 

bed was held below 𝟑𝟓 ℃ in order to stay within the accuracy of the thermo-optic coefficient provided 

by the manufacturer. Using the relation given by Eq.(56), the transmission response as a function of 

IOR of the thermo-optic oil is derived and plotted in Figure 48. 

 

 

Figure 48: Computed normalized optical response to IOR of Series A 14720 thermo-optic oil 

created from the results of Figure 47 and the relation of Eq.(56). The index of minimum transmission 

is found from the curve of best fit and is estimated at 1.4615. 
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A curve of best fit is drawn over the scatter point data, and is used to determine the index of minimum 

transmission. From the graph in Figure 48, the index of minimum transmission is found to be 1.4615. 

In Section 3.3.1, it was determined the relationship between cladding thickness and the index of 

minimum transmission. Using the relationship correlating the index of minimum transmission to 

cladding thickness similar to Figure 32 for a fiber with a core index of 1.452, the correlation of index 

of minimum transmission to cladding thickness for a SFS105/125Y optical fiber shown in Figure 49 

was obtained. The predicted cladding thickness of the sensor is found to be 0.57 m. This prediction 

falls well within the observed cladding thicknesses under SEM. 

 

Figure 49: Index of minimum transmission as a function of cladding thickness as predicted by the 

model using the material properties of the SFS105/125Y optical fiber. Predictions show that the 

cladding thickness corresponding to the minimum transmission index of 1.4615 is about 0.57 µm in 

thickness. 

4.4 Experimental validation using Glycerol 

In addition to tests using the thermo-optic oil, a second analysis of the transmission response using 

the temperature dependent IOR of glycerol was performed. The full summarized temperature ramping 

of glycerol and transmission response of the FOEWS are shown in Figure 50. At the start of the 

experiment the transmission intensity before the addition of glycerol was recorded as indicated 
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by 𝑉𝑅𝐸𝐹 = . The sharp drop in transmission intensity corresponds to the addition of glycerol to the test 

well. The IOR range of glycerol partially overlaps that of the thermo-optic oil used in the previous 

section. As such, the optical response of the FOEWS shows both positive in white, and negative in 

gray, correlations with the temperature range indicating that the index of minimum transmission of the 

FOEWS is reached during the temperature ramping of the glycerol. As in the case with the thermo-

optic oil tests above. The data retrieved from the experiment for analysis excludes the temperature 

ramping portions of the test in favor of the slower cooling ramps. A total of three cooling cycles where 

performed, with only one encompassing the region of index of minimum refraction. 

 

Figure 50: Recorded sensor response to glycerol at temperatures ranging from 25 to 95 °C. Optical 

response of sensor is measured as the voltage outputted from the photo detector. VREF is the reference 

voltage measured in air before the insertion of glycerol. The gray region indicates where the correlation 

between the optical signal and the temperature is negative. 

The thermo-optic properties for glycerol were derived from work done using an Abbe refractometer 

by Rheims et al. in [88]. The Cauchy dispersion constants were determined for wavelengths in the near 

infrared (IR) range. Additionally, measurements of the IOR change from at temperatures of 20 and 

25℃ were also conducted. The IOR of glycerol at 850 nm at 25 ℃ is given by the Cauchy dispersion 

equation as: 
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𝑁𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙|𝜆=8500Å,T=25℃

= 1.4585519 +
446809

𝜆2 +
7.018541𝑒11

𝜆4 = 1.4642. (57) 

The reported index of glycerol at 20℃ was given as 1.4670. Assuming a constant temperature 

coefficient for the thermo-optic properties of glycerol, a determined thermo-optic coefficient 

of −2.2𝑒 − 4 ℃−1 was found. Using this coefficient the correlation between the calculated IOR of 

glycerol and the FOEWS sensor response was produced and is shown in Figure 51. It can be seen from 

the summarized data that the upward swing of the transmission response at lower IOR values is less 

sharp than expected from the response predictions calculated in Section 3.3. It is reasoned that the 

apparent deviation from expected behavior at lower IOR values are due to nonlinear behavior of the 

thermo-optic coefficient at the corresponding temperatures. 

 

Figure 51: Recorded normalized optical response to IOR change using glycerol measured with 1 Hz 

sampling. At Temperatures above 70 ℃ the uncertainty in the thermo-optic coefficient of glycerol 

results in uncertainty in the proper calculation of the IOR. The presence of multiple sets of data points 

is attributed to measurement drift in the system. 

As mentioned above, only one of the cooling cycles was able to pick up the point of minimum 

transmission. Enlarging the region of minimum transmission and finding a curve of best fit allows us 
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to determine a precise minimum IOR. Figure 52 shows the enlarged region of minimum transmission 

along with the curve of best fit to the cooling cycle data. However, the IOR of minimum transmission 

is found to be located at 1.4617 ± 2e-4, corresponding to a cladding thickness of 0.57 to 0.62 µm 

from Figure 49 matching well with the reported minimum from the thermo-optic oil tests. 

 

 

Figure 52: Enlargement of the region where the FOEWS transmission response is minimum. The 

gray highlighted region gives the uncertainty in the position of the minimum transmission of 29.4%. 

In contrast to how the position of the index of minimum transmissions agreed well between both the 

thermo-optic oil and glycerol tests, the normalized voltage values for corresponding regions deviated 

much more significantly. The relative output ratio of the thermo-optic oil at the index of minimum 

transmission was reported in Figure 48 as 27.7 ± 0.05%. While as shown in Figure 52, the reported 

output ratio was recorded as 29.4%. Measurements of recorded output ratios are subject to various 

external factors which can change the reference voltage of the FOEWS making it more difficult to 

accurately determine normalized transmission response intensity. Tracking the index of minimum 

transmission of a FOEWS removes the uncertainty related to direct intensity measurements providing 

a more accurate method for the determination of cladding thickness. 
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4.5 Comparison to Model Predictions 

Combining the experimental sensor response to both the glycerol and thermo-optic oil tests provides 

a measure of the FOEWS response to IOR changes of the analyte liquid from 1.451 to 1.466. The 

experimental results presented in the previous two sections are combined to obtain the measured 

response shown in Figure 53. In addition, identifying the index of minimum transmission using the 

thermo-optic oil and glycerol experiments predicted a cladding thickness for the FOEWS of 0. 57 µm. 

In this section a comparison of the full FOEWS response curve measured experimentally in the previous 

sections to the corresponding model predictions using this cladding thickness obtained experimentally 

is done. This comparison will demonstrate the ability of the model to accurately predict the transmission 

response of a FOEWS over a range of analyte IOR values. 

Figure 53 shows the fitting of the model to the experimentally measured transmission response. 

Using the predicted cladding thicknesses of Sections 4.3 and 4.4 that were arrived at by matching the 

observed index of minimum transmission a good fit of the model to the experimental results over the 

full range of IORs of the analyte from 1.451 to 1.466 is observed. 

 

Figure 53: Fitting of the model to the experimentally measured transmission response behavior of a 

fabricated FOEWS. Experimental results fall within model predictions with a variation of 0.1 µm in 

the cladding thickness. 
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The predicted behavior from the model for a tilt angle 𝛼 = 0° resulted in normalized transmission 

intensities higher than what was shown experimentally. However, the position of minimum 

transmission of the experimental and simulated response curves are in agreement. Running the 

simulations with a change in tilt angle of the LED on the fiber face of 1.5° shifted the response curves 

to the appropriate transmission response while keeping the index of minimum transmission at the same 

value. As discussed in Section 4.4, the transmission response of the glycerol test at IOR values below 

1.454 correspond to a high temperature of the glycerol sample. Due to the limited information available 

on the thermo-optic properties of glycerol at these temperatures, deviation of the experimental curve 

from the simulated response is attributed to an error in the calculated IOR value of glycerol. 

From this comparison, the measured transmission response of the fabricated FOEWS falls within a 

variation of 0.1 µm in the cladding thickness and a correction in tilt angle (𝛼) of 1.5° of the simulated 

response predictions. The measured cladding thickness from SEM analysis of the FOEWS had a median 

cladding thickness of 0.8 µm over an observed range from 0 to 1.4 µm. The value of 0.5 to 0.6 µm 

found from comparison with the model fall well within the acceptable range. 
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Chapter 5 

Nature of Contact 

The contact between the fiber optic sensing region and the analyte is crucial in the response of the 

sensor. If the analyte does not make full contact with the FOEWS, then the resulting signal modulation 

will differ from the expected response of a full contact model. As discussed in the literature of Chapter 

2, the modelling of contact with analyte has larger been considered with gases and liquids where the 

sensing region is considered in full contact with the analyte material. In this section the transfer matrix 

method of analysis developed in Section 3.2.2.2 is used to account for a solid analyte held in partial 

contact with the FOEWS. 

Partial contact of a solid analyte with the sensor implies that unlike a liquid or gaseous analyte, 

complete direct coverage of the sensing region is not guaranteed. Instead, there is the possibility for the 

presence of a separation layer forming in between the cladding and analyte layers that will affect the 

reflection coefficient calculation. Using the modelling of multi-layers structures that TMM provides it 

is simple to include an additional gap layer in of reflection coefficient calculation. 

With partial contact of a solid analyte two possible interfaces are possible within the sensing region 

of the fiber, direct contact and no contact. Where the solid is in direct contact with the cladding the 

reflection coefficient can be determined using a three layer two interphase geometry that was used in 

Chapter 3. When the solid has no contact with the cladding of the sensing region a separate reflection 

coefficient can be calculated using a four layer three interphase geometry. The final response of the 

FOEWS with the partial contact solid analyte can therefore be determined by calculating the 

transmission loss from interaction using two sensing sections, (i) one representing full contact and a 

three medium interphase, and (ii) the second representing the gap and a four media interphase. The 

length of each respective section is determined by the percent of direct contact that the solid is 

determined to have with the FOEWS. 

Once the model was extended to account for the partial contact of a solid analyte, analysis of SEM 

images of the contact surface of a solid graphite material that was held in partial contact with a 

fabricated FOEWS were conducted. The SEM images were used to determine percentage contact 

between the fiber and graphite surfaces, and to find appropriate values for the depth of the indirect 

contact gaps for modeling. An investigation of the resulting effects of several direct to indirect contact 
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ratios, gap thicknesses, and optical properties of the gap media on the FOEWS response was also 

conducted. 

5.1 Description of surface contact 

A solid analyte in contact with a FOEWS differs from contact with a liquid or gas. Because a solid 

analyte will not conform completely to the surface of the fiber when in contact, there exists the 

possibility that gaps will appear between the analyte and cladding of the sensing region. In the literature 

review of Chapter 2 it was noted that the ability to account for a solid analyte in FOEWS models has 

received little to no attention. However, the derivation of the reflection coefficient for a sensing region 

using the TMM back in Section 3.2.2.2, has the advantage of accounting for not only a two interface 

but an 𝑛-interface system in general. 

Recall that the TMM is capable of modeling thin films that can be considered of infinite dimension 

along the plane of incidence. Therefore, when applying it to the instance of partial contact with a solid 

analyte it is limited to cases where the gap between layers is optically large in the direction parallel to 

the plane of incidence, but can be thin perpendicular to it. Figure 54 provides a schematic representation 

of the type of partial contact described here using the TMM. Based on the limitations of the TMM to 

infinite planar geometries, the gap regions that can be considered must be optically larger in 

width (𝑤𝑔𝑎𝑝 ≫ 𝜆), and separated an optically large distances as well. 

 

 

Figure 54: Schematic representation of the partial contact phenomenon included into the model. Gap 

regions are considered optically large in width and separated by optically large distances. 
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As a result on the limitations in gap geometry that result from the TMM, the gaps in the contact 

interface between the cladding and solid analyte must be large and spread relatively far apart. Relatively 

far apart refers to an optically large distance apart which is defined again by distances larger than an 

order of magnitude of the wavelength of interest, (𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 > 10𝜆). The limitation of optically large 

gaps and distances between gaps, is in fact useful for modeling a solid analyte that is inhomogeneous 

and composed of a conglomerate of large unit cells. In the following section, a graphite electrode, which 

under SEM is an ideal candidate for modeling the TMM partial contact method described here is 

characterized. 

5.2 Derivation of three interface reflection coefficient 

In Section 3.2.2.2 the reflection coefficient for a two interface thin film system using the TMM was 

derived. It was noted that this method can be easily used to solve a 𝑛-layer thin film interface by making 

use of characteristic matrix that will represent each layer in the stack. The general form of a 

characteristic matrix is [73]: 

 

𝑀𝑟 = [
cos 𝛿𝑟

𝑖 sin(𝛿𝑟)

𝜂𝑟

𝑖𝜂𝑟 sin 𝛿𝑟 cos 𝛿𝑟

].  (58) 

Where, 

𝛿𝑟 =
2𝜋𝑁𝑟𝑑𝑟 cos𝜃𝑟

𝜆
, 

𝜂𝑟 =
𝑁𝑟√𝜖0𝜇0 cos 𝜃𝑟, for TE

𝑁𝑟√𝜖0𝜇0

cos𝜃𝑟
, for TM

, 

with 𝑁𝑟  representing the complex IOR of the individual layer and 𝑑𝑟 as the thickness of the layer. The 

specific 𝜃𝑟 for each layer is calculated simply from the initial incident angle 𝜃1 using Snell’s law. Once 

the characteristic matrix is defined for each layered media in the stack, the reflection coefficient of the 

structure is then found from the same equation as in Section 3.2.2.2 repeated here for clarity. 

 
 𝑅 = (

𝑛𝑐𝑜𝑟𝑒𝐵 − 𝐶

𝑛𝑐𝑜𝑟𝑒𝐵 + 𝐶
) (

𝑛𝑐𝑜𝑟𝑒𝐵 − 𝐶

𝑛𝑐𝑜𝑟𝑒𝐵 + 𝐶
)
∗

.  (59) 
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However, the individual coefficients 𝐵 and 𝐶 are now defined by the product of the individual 

matrices taken in the order presented in Figure 55, within the relationship below: 

 

[
𝐵
𝐶
] = {∏[

cos 𝛿𝑟

𝑖 sin(𝛿𝑟)

𝜂𝑟

𝑖𝜂𝑟 sin 𝛿𝑟 cos 𝛿𝑟

]

𝑞

𝑟=1

} [
1
𝜂𝑞

]. (60) 

 

Figure 55: Schematic representation of a 𝒒 assembly and how it is represented in the TMM. 

As expected the coefficients for 𝐵 and 𝐶 in Eq. (60) revert to those for the three layer interface shown 

in Eqs. (42) and (43) , see Section 3.2.2.2, when 𝑞 is made equal to 3. In addition, when considering 

the gap layer in the layer assembly, this value changes to 𝑞 = 4 with the gap layer being represented 

by the subscript 3. 

With the reflection coefficient for the three and four layer assemblies now defined, it is possible to 

extend the capabilities of the model. However, accounting for direct and in direct contact within the 

model will requires a simplification of the inhomogeneous cladding solid analyte interface seen under 

SEM analysis below. When outlining the nature of the inhomogeneous interface that would be 

considered in Section 5.1, restrictions were placed on the length of each individual gap as well as the 

space between consecutives gaps on the interface. 
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5.3 Observation of graphite electrode solid analyte contact surface 

As previously mentioned, the interface of a solid analyte on a fiber sensing surface is to be 

investigated using a graphite material that was pressed onto the surface of a fabricated FOEWS. The 

specific type of graphite studied here was used as the anode electrode in in-house lithium-ion battery 

cells fabricated in a pouch cell configuration [89] and prepared specifically for this purpose. In these 

batteries, the anode electrode is composed of a 50 µ𝑚 thick composite graphite layer deposited onto a 

9 µm copper foil sheet. The graphite electrode material was obtain from MTI Corporation under the 

product name Li-Ion Battery Anode – Copper foil single side coated by CMS Graphite [90]. The 

separator is composed of a 16 µ𝑚 thick monolayer polyethylene membrane with a double side ceramic 

0.75 µ𝑚 thick alumina coating. The separator material is a ceramic coated membrane obtained from 

MTI Corporation [91]. 

During fabrication of the lithium-ion cell, the FOEWS is sandwiched between the anode electrode 

and separator layers of the lithium-ion battery cell as depicted in Figure 56. 

 

Figure 56: Cross section schematic of fiber placement in contact with an anode electrode within a 

lithium-ion battery cell. The entire battery in encased inside a pouch cell with only the fiber sensor and 

terminals exiting the pouch. Contact between the sensor and anode is ensured by applying pressure to 

the pouch cell after fabrication. 

To ensure that proper contact is made with the anode layer, the fabricated pouch cell is place under a 

set weight of 6 lbs. The application of this weight helps to imprint the fiber into the graphite material. 

After upwards of 100 hours of battery operation and upon disassembly of the pouch cell, an indentation 

of the fiber in the graphite is clearly visible. Figure 57 shows an SEM image of the fiber indentation 

into the graphite electrode. Using the measurement scale of the SEM image, the width of the fiber 

trench was estimated to be approximately 106 µm across which falls within the expected width of the 
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FOEWS diameter at the sensing region. Therefore, it is safe to assume that the set weight of 3 lbs used 

to embed the fiber into the electrode is enough to cover half of the sensor with the graphite. The SEM 

picture also shows that the morphology of the indented graphite surface is different than that of the 

unaltered bed. Hence, embedding the fiber into the graphite tends to flatten the particles allowing for a 

smoother interface between the FOEWS and the graphite material. While the particles have been 

flattened to make smooth contact with the FOEWS, Figure 57 clearly shows that there remains a 

significant number of gaps in between flattened particles which result in gaps in the solid analyte 

cladding interface. From the image it can be seen that the gaps range in size from as large as 10 µm 

down to 1 µm or lower. As discussed in the previous section, the modification to the model to allow 

for partial contact with a solid analyte is designed to work when the dimensions of the partial contact 

structure are larger than the wavelength of light sent propagating through the optical fiber. The light 

source used in the analysis of the graphite anode had a wavelength of 850 nm which was chosen based 

on the work done by Norris et al. in [89]. Considering this wavelength, and that the dimensions of the 

gap structure are between 1-10 µm, the appropriate range of tolerances exist so as to expect that the 

assumptions made to account for a partial contact interface in the previous section will remain valid 

here. 

Now that the surface structure of a solid graphite analyte with an embedded FOEWS has been 

investigated and deemed appropriate for partial contact analysis using the adjusted model, an 

appropriate average characteristic gap depth and contact fraction must be found. The area outlined 

within the dotted rectangular region of Figure 57 will be used as a representative sample region. 
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Figure 57: SEM image of a solid graphite electrode from a dissembled battery cell. Image shows 

fiber sensor indentation clearly demonstrating partial contact of the fiber and solid analyte. 

In order to determine the area fraction of contact present within the rectangular region of Figure 57, 

the image was imported into the open source software ImageJ for analysis [92]. Using the analyze 

particle algorithm within ImageJ, the boundaries between the contact and non-contact regions of the 

graphite surface where found. After boundary tracking the image was converted to black and white as 

shown in Figure 58. The white portion represents regions of full contact while the black region showing 

the gaps in the interface. 

With the image now in black and white the area contact ratio is easily determined by the measure 

command which gives the average grayscale value of the black and white image that is easily converted 

to a ratio of contact to non-contact regions. 
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Figure 58: Resulting black and white image of the framed portion of the indented SEM image of 

Figure 57. This view is a planar projection of the actual cylindrical surface. 

To determine the area ratio of contact and non-contact regions from Figure 58, the measurement tool 

in ImageJ was used to give the area statistics of the image. When applied to the entire image surface a 

mean value of pixel gray value is obtained. With a black and white image, the possible gray values 

range from 0 for black to 255 for white pixels. The summary of the measurement results for Figure 58 

find a mean pixel value of 222.960 which converted to a percentage results in an estimated 87.1 % 

direct contact of the solid analyte. 

The SEM image gives a top down view of the fiber indentation surface, which effectively projects 

the cylindrical surface onto a plane distorting the actual contact surface on the sidewalls of the trench. 

This distortion compresses the sidewalls of the surface on the image when viewed from the planar 

projection of the SEM image of Figure 57. As a result of this compression from the projection of a 

cylindrical surface onto a plane, the ratio of contact obtained by the ratio of black to white pixels in the 

projected view does not properly represent the actual contact ratio on the cylindrical surface. In order 

to account for the distortion due to the project, a reverse transformation of the projected image back to 
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a cylindrical surface must be made. Mathematically the projection of a plane to a unit cylinder along 

the 𝑦-axis is done under the transformation given by: 

 𝑥 → 𝑥 
𝑦 → 𝑦

𝑧 → 𝑥2 + 𝑦2
. (61) 

 

By applying the transformation of Eq. (61) to the image of Figure 58, view the reconstructed three 

dimensional representation of the cylindrical indentation surface can be made as shown in Figure 59. 

The transformation mapping removes the distortion on the edges of the channel so that the resulting 

surface has a more homogeneous pattern than what was seen in the original image. While the contact 

pattern does seem more homogeneous when transformed to the cylindrical surface, some distortion in 

the pixel pattern does arise do to the interpolation method used to associate color values to the added 

pixels on the new surface. The interpolation algorithm utilized by Matlab® to associate the pixel values 

of the newly added pixels uses a linear interpolation method which assigns a gray value to the image 

based on a linear fit of the neighboring original pixels. Make note that this results in the reappearance 

of gray valued pixels that were removed in the thresholded image. Therefore, a secondary thresholding 

will be required to return the image to a binary color map. 
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Figure 59: Projection of Figure 58 onto a cylindrical surface. Under this transformation, the 

distortion near the vertical walls of the channel are removed. 

While the cylindrical representation of the fiber bed contact in Figure 59 is informative, the surface 

needs to be mapped to a plane without changing the black to white area ratio in order to submit it for 

measure analysis using ImageJ. Fortunately, the unwrapping of a cylinder to convert it to a plane is an 

area preserving transformation that is described by [93]: 

 𝑥 → asin(𝑥) 
𝑦 → 𝑦
𝑧 → 1

. (62) 

This transformation maps the pixels of the original image in Figure 58 directly to the planar image 

of Figure 60 without the need to map the to an intermediary cylindrical surface. From the transformation 

equations of Eq.(62) it is clear how the image is stretched non-linearly along the 𝑥-axis, perpendicular 

to the fiber bed, while keeping the dimensions in the 𝑦-axis unaltered. The nonlinear stretch in the 𝑥-

axis accomplished by the arc sine function applies little to know stretch to the center of the image 

corresponding to the bottom of the fiber indentation. Conversely, the pixels away from the center of 

the indentation are skewed appropriately to invert the projection distortion arising from the overhead 

perspective of the SEM image. 
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Figure 60 shows the output image of Figure 58 having gone under the mapping of Eq.(62). 

Additionally, as mentioned, the image was thresholded again to remove the gray valued pixels which 

appeared due to the linear interpolation performed in Matlab®. By remapping the pixels to in an attempt 

to counteract the distortion due to the overhead view of the fiber indentation significant changes to the 

perceived morphology become apparent. Measurement analysis of the compensated image under 

ImageJ in contrast to the results of the uncompensated image show that the pixel area has increased to 

251600 from 160000 due to the transformation of Eq. (62). Additionally, the mean pixel value is now 

213.504 compared to 222.960 resulting in a new measured contact ratio of 83.2%. 

 

Figure 60: Unwrapped cylindrical projection of Figure 59 which appropriately removes the 

compression of the vertical side walls of the original image in Figure 58. Analysis of this view indicates 

a contact percentage of 83.2%. 

This difference of 4% demonstrates the need to account for visual distortions in the SEM due to 

projections of the cylindrical indentation onto the planar image. In addition to the measurement of 

contact ratio, the mean gap depth present in the indentation bed is crucial in order to effectively 

incorporate the effects of partial contact into the model described in Section 5.2 above. The depth of 
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the gaps in contact are more difficult to properly determine from the SEM image of Figure 57, given 

the limited resolution of the sidewall area. 

Depth measurements using SEM images on similar structures were performed by Zhong et al. in 

[67], [68] for the purposes of determining surface roughness parameters in hydrofluoric etch optical 

fibers. In Figure 61, the magnification of the fiber indentation is doubled to 1000X, giving a better view 

of the gap height along the vertical wall sections in the lower right and upper left corners of the image. 

While not a full cross section of the indentation surfaces, the outlined regions in the lower right corner 

clearly show that the gap depth is between 4 to 8 µm in depth. The presence of such gap depths relative 

to the wavelength of interest of 850 nm, used to monitor the electrode bed present an optically large 

domain that intuitively will impact on the expected response of the FOEWS. 



 

95 

 

Figure 61: Enlarged view of the fiber indentation of Figure 57 under 1000X magnification. The 

lower right and upper left corners show near cross section view of the wall morphology. The encircled 

regions show the gap depth between 4 to 8 µm. 

 

Table 2: Summary of several fiber indentation surface morphology and dimension obtained using 

the methodology presented above. 

Electrode Sample Contact Percentage Mean Gap Depth (µ𝑚 ± 1) 

1 83.2 5 

2 60.5 5 

3 63.0 5 
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Making use of the gap dimensions presented above, the following section makes use of the partial 

contact model to determine the expected change in response of the FOEWS due to variations in contact 

nature with a solid analyte. 

5.4 Expected variations in response due to partial contact with a solid analyte 

In the previous sections, both the modifications in the FOEWS model to include partial contact and 

a brief analysis of the contact morphology with a graphite electrode were made. The tools and inputs 

parameters required to investigate the effects of the contact nature on FOEWS response are present. In 

addition to the gap thicknesses observed above, further simulation results are presented whereby the 

gap thickness is reduced to optically short distances in order to demonstrate the effects that a thin liquid 

film present between the cladding and solid analyte layers can have on the expected FOEWS response. 

The partial contact statistics that are reported in Table 2 represent the gap dimensions for contact 

with a graphite electrode. In practice, when the FOEWS is included in the battery fabrication as shown 

in Figure 56, the electrode does not envelope the entire fiber. In fact, even after the fabricated pouch 

cell is completed and a loading pressure is applied to maximize the contact surface, at most half of the 

fiber can be expected to be in contact with the electrode while the remaining portion is in contact with 

the separating polymer layer. Accounting for this half envelopment of the electrode on the fiber, the 

input contact percentage parameters of Table 2 are divided by a factor of two. 

For simplicity, the material properties of the non-contact regions are chosen to match the material 

properties of the liquid electrolyte solutions present in the battery. The electrolyte used in the fabrication 

of this specific battery cell is ethylene carbonate and dimethyl carbonate (EC:DC) in a 3:7 ratio with a 

1M concentration of LiFP6 salt. The predicted IOR of the electrolyte mixture extrapolated from the 

weighted volume ratio of the IOR of the individual components. Pure ethylene carbonate has a reported 

IOR of 1.4158 at 50℃ [94] while pure dimethyl carbonate has a reported index value of 1.368 [95]. 

The IOR of the electrolyte mixture can be determined from a linear combination of the refractive indices 

of the individual solutions [96]. Therefore, without consideration for the addition of the LiFP6 salt the 

IOR of the binary solution can be assumed by the volume fraction: 

 
𝑁𝐸𝐶:𝐷𝐶 =

(1.4158(3) + 1.368(7))

10
= 1.382. (63) 
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The addition of the LiFP6 salt to create the one molar solution used as the electrolyte in the fabricated 

cell adds an additional factor to the resulting IOR of the mixture. A study on the change in absorbance 

at of a binary mixture of ethylene carbonate and dimethyl carbonate under the addition of LiFP6 salt 

was conducted by Stewart and Newman in [97]. Results of this work showed that the addition of LiFP6 

salt increased the absorbance of the binary solution following an affine relation in the range of zero to 

one molar concentrations at 250 nm wavelength. Results from 300 to 400 nm showed little to no 

change in absorption with the addition of LiFP6. In the description of the electrolyte here it will be 

assumed that the absorption of the electrolyte is zero at 850 nm based on the results from [97]. A similar 

work on the change of the real portion of the IOR change due to the addition of LiFP6 to a propylene 

carbonate solution for use as a battery electrolyte. Results obtained using holographic interferometry 

that the real portion of the IOR changed according to the relation [98]. 

 𝑁𝐿𝑖𝐹𝑃6 𝑃𝐶 = 1.422 − 0.0071𝐶. (64) 

Where C is the molar concentration of LiFP6. This limited changed in the real IOR of propylene 

carbonate solutions with the addition of LiFP6, allows us to assume an IOR for the EC:DC 1 molar 

LiFP6 solution is given by Eq.(63). 

In the following analyses, the polymer separator material is not considered, so that there are only two 

possible layer stack configurations responsible for the modulation of the light intensity. The first layer 

configuration considered is from the idealized direct contact of the cladding layer with the solid 

electrode analyte resulting in a reflection coefficient dependent on the optical properties of the analyte 

and the design of the sensor only. This reflection coefficient is described by the three layer stack 

equation presented in Section 3.2.2.2. The second type of layer stack configuration results from the 

indirect contact of the solid analyte and cladding layers due to the presence of an intermediary liquid 

electrolyte layer. Depth of the liquid electrolyte layer is taken as the mean gap depth, while its IOR is 

chosen as that of the electrolyte liquid. The reflection coefficient for this layer interaction is given in 

Section 5.2 above. 

In regards to the refractive index properties of the solid analyte electrode, a simplification of the 

chemical change of the chemistry undergone during charging and discharging is assumed. In a lithium-

ion battery with a pure graphite anode, the effects of charging the battery result in the lithiation and de-

lithiation of the anode material. A theoretically fully discharged battery would result an anode 

composed entirely of pure graphite. The process of charging the battery results in the lithiation of the 
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graphite material through several intercalation stages. Each intercalation stage is characterized by the 

dominance of a specific lithium carbon compound. Theoretically, the process of charging a battery from 

full discharge to full charge takes the graphite anode composition through six distinct lithiation 

compounds. The work of Ohzuku et al. observed that the lithiation stages of a graphite electrode in a 

lithium-ion cell were characterized by the five stages summarized in the following table [99]. 

Table 3: Summary of the lithiation stages and compounds of a lithium-ion graphite electrode as 

observed in [99]. 

Lithiation Stage Lithium Carbon Compound 

I LiC6 

II LiC12 

III LiC18 

IV LiC27 

V LiC36 

VI C 

 

Given that the chemical composition of the graphite electrode changes in chemical composition 

during the charging and discharging process, the expected response of the FOEWS placed in proximity 

to the electrode would have its response modulated according to the dominant lithium carbon compound 

of each stage. 

For the purposes of this thesis, a simplified lithiation model of a charging and discharging anode is 

used to give a valid range of IOR change that can be used to evaluate the FOEWS response. This simple 

model assumes that the change in refractive index of a graphite electrode is interpolated between the 

IOR values of pure graphite and fully lithiated graphite, with chemical formula LiC6. The interpolation 

function giving the refractive index at a given state of charge is given by: 

 𝑁𝑆𝑂𝐶  =  𝑁𝐶(1 − 𝑆𝑂𝐶)  + 𝑁𝐿𝑖𝐶6
 (𝑆𝑂𝐶). (65) 

Where the value of 𝑆𝑂𝐶 varies from 0 representing fully discharged and 1 for full charge. The value 

of 𝑁𝐿𝑖𝐶6
was obtained from work done on the reflectivity spectra analysis of stage-1 graphite 

intercalation compounds by Fischer et al.[100]. Using a combination of normal-incidence reflectivity 

and electron-energy-loss spectra along with successive Kramer-Kronig analyses, the complex 
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permittivity of LiC6 was determined. Converting to an optical constants, the refractive index of LiC6 

and 850 nm was found to be: 

 𝑁𝐿𝑖𝐶6
=  2.3032 + 𝑖2.3987. (66) 

The IOR of graphite is given by Djurišić and Li as [101]: 

 𝑁𝐶 =  3.0761 + 𝑖1.8101. (67) 

The linear interpolation of the anode refractive index provides a simple model for the chemical 

change occurring during charging and discharging of the battery without accounting for the presence 

of the different intercalation stages summarized in Table 3. However, it is used here to give an expected 

response change of a FOEWS embedded in lithium-ion battery cell. 

In order to simulate the response from a mixture of direct and partial contact of the solid analyte with 

the sensing region of the FOEWS, two separate sensing geometries are set up. The two sensing regions 

represent direct and indirect contact, and use the appropriate reflection coefficient for each. The length 

of the each region is then determined using the direct contact area percentage which can be determined 

from the investigation of the SEM of the fiber indentation surface on the graphite material as done in 

the previous section. 

 

Figure 62: Schematic showing modified geometry of partial contact interface used to describe the 

inhomogeneous contact interface show in Figure 54. 

Figure 62 illustrates the equivalent sensing interface of Figure 54 after the inhomogeneous interface 

has been represented by a combination of direct and indirect contact regions as described above. This 

representation of the inhomogeneous interface remains a valid representation so long as both the gap 
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and contact surface areas remain optically long as described in the onset of Section 5.1. In the following 

section, simulation results are presented that will give insights into the effects of the gap thickness, and 

direct to indirect contact ratios on the expected performance response of an FOEWS. 

5.5 Simulated effects of contact nature of FOEWS response 

With the characterization of the solid analyte cladding interface completed in the previous section, 

this section makes use of the indirect contact simulation capabilities of the FOEWS model to derive 

insights into the relative effects of partial contact of the expected response of a FOEWS in proximity 

to a charging lithium-ion cell graphite electrode. 

5.5.1 Effect of electrolyte gap depth on sensitivity 

The graph presented in Figure 63 demonstrates the effects of a deeper gap depth caused by deeper wells 

of electrolyte between the cladding and electrode materials. The simulations were run for a FOEWS 

with a sensing length of 1 cm with a cladding thickness of 0.5 µm and no tilt angle of the LED assuming 

50 % full contact of the electrode and cladding interface. For the purposes of comparison, the reference 

power was taken as the output power calculated for the IOR of pure graphite. 
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Figure 63: Simulated response behavior for a FOEWS under variations in gap depth with the 

assumption of full non-direct contact. Refractive index change corresponding to those of pure graphite 

and fully lithiated graphite. 

From the simulations presented above, increasing the gap depth from 0 representing full contact to 

0.5 µm has a significant effect on the sensitivity of the signal. At zero gap depth the sensitivity of the 

transmission response of the FOEWS is approximately 0.7 % per 0.1 refractive units while the presence 

of a 0.5 µm gap depth between half of the sensing surface results in a sensitivity of only 1.4e-2 % per 

refractive units. Such a change in sensitivity predictions indicates that the presence of a gap between 

the cladding and electrode surfaces must be kept at a minimum in order to provide the best monitoring 

of the optical properties of the electrode during charge cycling. 

5.5.2 Effect direct to indirect contact ratio on transmission intensity 

The ratio of direct to indirect contact of the electrode and cladding surfaces can be varied with the 

outside application of pressure to the battery pouch cell. A pressure test was performed on a pouch cell 

which contained a FOEWS in contact with the anode electrode as described in Figure 56. The test was 

performed by placing known weights on a monitored pouch cell held at a constant state of charge. The 

transmission response of the FOEWS while weight was applied to the pouch cell is summarized in 

Figure 64. 
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Figure 64: Measured transmission response of FOEWS in a pouch cell during weight application to 

the cell. Results show the decrease in transmission intensity when the applied weight is increased. Gray 

shadings are used to distinguish the different weighted regions. 

From the measured results the change in transmission voltage decreases with the pressure loaded 

onto the pouch cell. The largest drop in transmission intensity occurs with the initial addition of 1 lb. 

to the cell and decreases less with the addition of further weight. Removal of the weight returns the lost 

intensity. The correlation between the transmission signal and the applied weight is summarized in 

Figure 65. By fitting the data to an exponential curve, it is clear that the transmission voltage has an 

exponential dependence on the applied weight. 
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Figure 65: Transmission intensity as a function of applied pressure to the pouch cell. The behavior 

follows an exponential decay function 

 

Figure 66: Predicted change in normalized transmission as a function of the contact ratio. 

Transmission is normalized to the calculated input power at the fiber face. Simulation parameters 

correspond to a sensor of 0.5 µm cladding thickness, sensing length of 1.7 cm, with a fix electrolyte 

gap thickness of 0.5 µm at a fixed anode IOR of 2.5. 
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The measured intensity as a function of applied weight follows an exponential decay behavior. In 

Figure 66, simulated behavior of normalized transmission response for a FOEWS with parameters: 

0.5 µm, 1.7 cm, 0.5 µm, 0°, 1 mm, for cladding thickness, sensing length, electrolyte gap depth, tilt 

angle, and LED source distance respectively is presented. The normalized transmission response is 

done at an IOR of 2.5 corresponding to 50% lithiation according to the linear model in Eq.(65), and the 

signal is normalized to the calculated input power at the fiber entry face. The simulation shows a 

negative correlation between transmission power and contact ratio. This prediction agrees in behavior 

with the measured results of Figure 66 in that an increase in applied pressure increases the fraction of 

direct contact with the graphite anode allowing for greater power loss through the sensing region. The 

exponential decrease of transmission as a function of applied weight is a product of the contact ratio 

change as a function of applied weight and is beyond the scope of this thesis. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion 

In this thesis, an analytical model capable of modeling the transmission response behavior of a 

FOEWS capable of monitoring the charge cycle of a lithium-ion battery cell was presented. The sensor 

was fabricated by partial removal of the cladding material surrounding the core of a multimode fiber 

optic. The thinned cladding section allows for transmission loss via evanescing waves which radiate 

power out from the core as a function of the environment within a battery cell. The transmission output 

of the sensor can then be monitored and used to derive conclusions on the behavior of the optical and 

physical properties of the battery electrode material. 

6.2 Contributions of thesis 

6.2.1 Development of an analytical model capable of predicting the transmission 

response of a FOEWS sensor by direct simulation of the thin film tunneling losses 

along the sensing region 

The main contribution of the hybrid FOEWS model is its ability to simulate the transmission response 

of a sensor by computing the reflection coefficient off the thin cladding interface directly and not using 

an effective coefficient. Using the transfer matrix method to solve the optical tunneling of rays through 

the thin cladding region as presented in Section 3.2.2 provides an analytical equation based solely on 

the IOR values of the core cladding and external media and the thickness of the cladding. The ability 

to compute the reflection coefficient directly by solving the electromagnetic wave equations accurately 

and efficiently with the transfer matrix method instead of using effective absorption parameters has, to 

our knowledge, not been applied to the modeling of evanescent wave sensors. 

6.2.2 Use of the index of minimum transmission of the FOEWS response to characterize 

cladding thickness 

Using the analytically derived FOEWS model to investigate the transmission response behavior as a 

function of wavelength, a new method for the characterization of cladding thickness was found. The 

index of minimum transmission of a FOEWS was found to change solely as a function of the cladding 
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thickness. This behavior was exploited in order to accurately determine the cladding thickness of a 

fabricated FOEWS without relying on the absolute intensity output of a sole IOR measurement. 

6.2.3 Derivation of the intensity and angular distribution of illumination conditions from 

an LED source onto the fiber face 

The equations governing the distribution of light rays propagating within the FOEWS based on the 

direct illumination of the fiber with a Lambertian LED source were calculated. These equations were 

then used as the excitation parameters for the FOEWS model allowing for experimental validation of 

the FOEWS model using measured transmission response behavior of a fabrication FOEWS exposed 

to thermo-optic calibration oils. Simulated transmission behavior of the model was found to agree with 

experimental results within an accuracy of 0.1 µm in cladding thickness over a measured range in 

refractive index values from 1.43 to 1.466. 

6.2.4 Characterization of the contact nature between a solid graphite electrode and 

FOEWS 

A new method was develop to determine the effect of a partial contact interface between a FOEWS 

and a lithium-ion graphite anode using SEM analysis. Observations showed that the interface surface 

was not uniform and homogeneous but instead was made up of a mix of indirect and direct contact 

regions with morphologies that were an order of magnitude larger than the interrogation wavelength 

used to monitor the electrode with the FOEWS. An empirical method for characterizing the contact 

surface using the mean contact ratio and mean indirect contact gap was calculated from the SEM 

pictures was developed.   

Using the transfer matrix method, the three layer reflection coefficient used to predict the 

transmission loss in a FOEWS in full direct contact with the analyte material was extended to four 

layers in order to account for a gap layer separating the analyte from the FOEWS sensing surface. The 

three and four layer reflection coefficients were then utilized to develop a model capable of predicting 

the response behavior of a FOEWS in partial contact with a solid analyte media. The ability to account 

for the partial contact by including a fourth layer in the calculation of the transmission loss of the 

FOEWS has to our knowledge not been demonstrator previously. 
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6.3 Proposed future work 

Some potential extensions of the presented research work are presented in this section. They are 

categorized in three main groups as follow: 

6.3.1 Modeling and Optimization 

 Improving the parameter determination algorithm: for example, in this research, the cladding 

thickness of a fabrication FOEWS was determined by first identifying the index of minimum 

transmission to find the cladding thickness after which the illumination conditions were adjusted 

in order to improve the model predictions. An algorithm capable of simultaneously fitting all 

model parameters to the experimental data would improve the accuracy of the model. 

 Mechanical model of the partial contact of the surface: the sensing region of the fiber embeds 

itself into the graphite electrode of the pouch cell based on the applied pressure to the cell. A 

mechanical model capable of predicting the change in direct contact between the electrode and 

fiber sensing region as a function of the cylindrical geometry of the fiber and pressure applied to 

deform the electrode bed would be able to optimize the sensing capabilities of the FOEWS within 

the battery cell. 

6.3.2 Experiments and test setups 

 Use of the FOEWS as novel refractometer: in combination with the predicted response behavior 

of the model and accurate mapping of the transmission response of a FOEWS using a wider range 

of thermo-optic oils, the temperature dependent IOR of liquids can measured based on the 

transmission response. 

 Characterization of the refractive index change of the anode: by accurately determining the 

refraction indices of the graphite electrode at each of the lithiation states undergone during charge 

cycling, the FOEWS response can be mapped directly to state of charge of the lithium-ion cell. 
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Appendix A 

Transfer Matrix Method 

The reflection and transmission fields for an incident plane wave on a general multilayer film stack 

are derived using the transfer matrix method following the theory laid out in Macleod [73]. 

 

Figure A1: Plane wave incident on a thin film at an incident angle 𝜃0. 

We begin with the analysis of a plane wave of free space wavelength 𝜆 that is obliquely incident on 

a thin film at an angle 𝜃0 as shown in Figure A1. The tangential components of the magnetic and electric 

fields within the thin film at the boundary 𝑏 can be expressed as a sum of both a wave travelling the in 

positive and negative z directions. Therefore, at interface 𝑏 the magnitude of the tangential components 

of the 𝑬  and 𝑯 fields are 

 𝐸𝑏 = 𝐸1𝑏
+ + 𝐸1𝑏

−

𝐻𝑏 = 𝜂1𝐸1𝑏
+ − 𝜂1𝐸1𝑏

−  (A.1) 

Where 𝜂1 the tilted admittance of the thin film layer is defined by 𝜂1 = 𝑛1√
𝜖0

𝜇0
cos 𝜃1  and 𝜂1𝑝

=
𝑛1√

𝜖0
𝜇0

cos𝜃1
, 

for 𝑠 and 𝑝 polarizations, and 𝐸𝑏 and 𝐻𝑏 represent the resulting fields. Rearranging we obtain: 

Incident medium

Substrate medium

Thin Film

Boundary 

Boundary 
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𝐸1𝑏

+ =
1

2
(
𝐻𝑏

𝜂1
+ 𝐸𝑏)

𝐸1𝑏
− =

1

2
(−

𝐻𝑏

𝜂1
+ 𝐸𝑏)

𝐻1𝑏
+ = 𝜂1𝐸1𝑏

+ =
1

2
(
𝐻𝑏

𝜂1
+ 𝐸𝑏)

𝐻1𝑏
− = 𝜂1𝐸1𝑏

− =
1

2
(−

𝐻𝑏

𝜂1
+ 𝐸𝑏) .

 (A.2) 

The fields at the previous boundary 𝑎 at the same moment in time and the same 𝑥 and 𝑦 coordinates 

can be determined by computing the phase shift along the 𝑧-axis from 0 to −𝑑 . The phase factor of the 

positive going wave will be multiplied by 𝑒𝑖𝛿 where: 

 
𝛿 =

2𝜋𝑁1𝑑 cos𝜃1

𝜆
.  (A.3) 

Therefore, the fields at the boundary 𝑎 are defined by: 

 
𝐸1𝑎 

+ = 𝐸1𝑏
+ 𝑒𝑖𝛿 =

1

2
(
𝐻𝑏

𝜂1
+ 𝐸𝑏)𝑒𝑖𝛿

𝐸1𝑎 
− = 𝐸

1𝑏𝑒𝑖𝛿
− =

1

2
(−

𝐻𝑏

𝜂1
+ 𝐸𝑏)𝑒𝑖𝛿

𝐻1𝑎 
+ = 𝐻1𝑏

+ =
1

2
(
𝐻𝑏

𝜂1
+ 𝐸𝑏) 𝑒𝑖𝛿

𝐻1𝑎 
− = 𝐻1𝑏

−  =
1

2
(−

𝐻𝑏

𝜂1
+ 𝐸𝑏)𝑒𝑖𝛿 .

 (A.4) 

The full field at the boundary 𝑎  in terms of the fields at boundary 𝑏 can now be expressed as: 

 

 

𝐸𝑎 = 𝐸1𝑎
+ + 𝐸1𝑎

−

= Eb

(𝑒𝑖𝛿 + 𝑒−𝑖𝛿)

2
+ Hb

(𝑒𝑖𝛿 − 𝑒−𝑖𝛿)

2𝜂1

= 𝐸𝑏 cos 𝛿 + 𝐻𝑏

𝑖 sin𝛿

𝜂1

 (A.5) 

 𝐻𝑎 = 𝐻1𝑎
+ + 𝐻1𝑎

−

= Eb𝜂1

(𝑒𝑖𝛿 − 𝑒−𝑖𝛿)

2
+ Hb

(𝑒𝑖𝛿 + 𝑒−𝑖𝛿)

2
= 𝐸𝑏𝑖𝜂1 sin𝛿 + 𝐻𝑏 cos 𝛿 .

 (A.6) 

The above equations written in matrix form become: 



 

117 

 

[
𝐸𝑎

𝐻𝑎
] = [

cos 𝛿
𝑖 sin𝛿

𝜂1

𝑖𝜂1 sin𝛿 cos 𝛿

] [
𝐸𝑏

𝐻𝑏
]. (A.7) 

The 2 × 2 matrix is known as the characteristic matrix of the thin film. The optical admittance of the 

thin film assembly is defined as: 

 
𝑌 =

𝐻𝑎

𝐸𝑎
. (A.8) 

Therefore the reflection 𝑅 of a simple interface medium of admittance 𝜂0 and a medium of 

admittance Y is: 

 
𝑅 = (

𝜂0 − 𝑌

𝜂0 + 𝑌
)(

𝜂0 − 𝑌

𝜂0 + 𝑌
)
∗

. (A.9) 

Where ∗ is the complex conjugate. Normalizing Eq.(A.7) by dividing by 𝐸𝑏 we obtain 

 
[
𝐸𝑎/𝐸𝑏

𝐻𝑎/𝐸𝑏
] = [

B
C
] = [

cos 𝛿
𝑖 sin𝛿

𝜂1

𝑖𝜂1 sin𝛿 cos 𝛿

] [
1
η2

]. (A.10) 

We can now define 

 
𝑌 =

𝐻𝑎

𝐸𝑎
=

C

B
=

𝜂2 cos 𝛿 + 𝑖𝜂1 sin𝛿

cos 𝛿 + 𝑖(𝜂2/𝜂1) sin𝛿
. (A.11) 

Thus the reflection of the thin film assembly can be calculated using Eq.(A9) where 

 [
B
C
] (A.12) 

is the characteristic matrix of the assembly. 

By adding another thin film to the single film of Figure A1 as seen in Figure A2, we can find the 

new reflection coefficient which will allow us to immediately see how to extend the analysis to the 

general case of an assembly of 𝑞 layers.  
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Figure A2: Schematic and notation for the two layer assembly 

The characteristic matrix of thin film 2 is: 

 

[
cos 𝛿2

𝑖 sin 𝛿2

𝜂2

𝑖𝜂2 sin𝛿2 cos 𝛿2

], (A.13) 

so that  

 

[
𝐸𝑏

𝐻𝑏
] = [

cos 𝛿2

𝑖 sin𝛿2

𝜂2

𝑖𝜂2 sin𝛿2 cos 𝛿2

] [
𝐸𝑐

𝐻𝑐
]. (A.14) 

Combining with the previous definition of the fields at boundary 𝑎 we have: 

 

[
𝐸𝑎

𝐻𝑎
] = [

cos 𝛿1

𝑖 sin𝛿1

𝜂1

𝑖𝜂1 sin𝛿1 cos 𝛿1

] [
cos 𝛿2

𝑖 sin𝛿2

𝜂2

𝑖𝜂2 sin𝛿2 cos 𝛿2

] [
𝐸𝑐

𝐻𝑐
]. (A.15) 

The characteristic matrix of the assembly of Figure A.2 is the defined by: 

 

[
B
C
] = [

cos 𝛿1

𝑖 sin𝛿1

𝜂1

𝑖𝜂1 sin𝛿1 cos 𝛿1

] [
cos 𝛿2

𝑖 sin𝛿2

𝜂2

𝑖𝜂2 sin𝛿2 cos 𝛿2

] [
1
η3

]. (A.16) 
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The optical admittance of the assembly is as before, 𝐶/𝐵,  and the reflectance is, as in Eq. (A.9) 

 
𝑅 = (

𝐵𝜂0 − 𝐶

𝐵𝜂0 + 𝐶
)(

𝐵𝜂0 − 𝐶

𝐵𝜂0 + 𝐶
)
∗

.  

This result can be immediately extended to the general case, so that the characteristic matrix of the 

assembly of 𝑞 layers becomes: 

 

[
B
C
] = {∏[

cos𝛿r

𝑖 sin𝛿𝑟

𝜂𝑟

𝑖𝜂𝑟 sin𝛿r cos 𝛿𝑟

]

𝑞

𝑟=1

}[
1
η𝑚

]. (A.17) 

where the suffix 𝑚 denotes the substrate media and the values of 𝜃𝑟 can be found from Snell’s Law: 

 𝑁0 sin 𝜃0 = 𝑁𝑟 sin𝜃𝑟 = 𝑁𝑚 sin𝜃𝑚. (A.18) 
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Appendix B 

Sensitivity Analysis 

 

In this appendix, an analysis is performed to determine the theoretical sensitivity of the FOEWS 

under measurement from an 18 bit analog to digital converter. The following analysis assumes a 

noiseless optical signal from the FOEWS. The circuit diagram shown in Figure B.1 outlines the readout 

circuit design which will be used to analyze the output optical signal from the FOEWS. 

 

Figure B.67: Circuit diagram of the FOEWS readout system. 

The analysis of the output optical signal from the FOEWS is read by a photo-detector obtained from 

Thorlabs, model DET 10C, which has a stated responsivity of 0.175 A/W. The output current of the 

photo-detector is then read using an Agilent Oscilloscope, model A3631A, which acts as a 

transimpedance amplifier with gain of 1 MΩ. The resulting output voltage 𝑉𝑜𝑢𝑡 is then sent to a high 

quality 18-bit analog to digital controller where the signal can be read by computer. 

Experiments conducted in Chapter 4, determined the output voltage from the oscilloscope resulting 

from the output transmitted power from the FOEWS exposed to an external environment of refractive 

index 1.33 to be 400 mV. Thus, the normalized transmission response curves of the FOEWS shown in 

Figure 30, are assumed to have a gain of 400 mV resulting from the photo-detector and oscilloscope 

elements. Therefore, the predicted voltage response of the FOEWS exposed to analyte index of 

T.I.A
(Scope

Gain=1M )

Photo-detector
(0.175 A/W)

Vout A.D.C

Resolved 
Voltage

Fiber Output
Power

-
+

Rf

Cf



 

121 

refractions ranging from 1.42 to 1.6 with cladding thicknesses from 0.1 to 1.4 µm are described by the 

graphs of Figure B.2. 

 

Figure B.68: Predicted voltage output of the FOEWS for cladding thicknesses from 0.1 to 1.4 µm 

with an empirically determined gain of 400 mV. 

The sensitivity of the FOEWS as determined by the output voltage response curves of Figure B.2, 

can be determined using the definition of sensitivity given by: 

 
𝑆 =

𝑑𝑉𝑜𝑢𝑡

𝑑𝑛
. (B.1) 

 

Using the definition of sensitivity of Eq. B.1 and applying it to the predicted output voltage curves 

of Figure B.2 to sensitivity curves of the FOEWS are shown in Figure B.3. 
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Figure B.69: Predicted sensitivity of the FOEWS output voltage as measured at the output of the 

oscilloscope shown in Figure B.1.  

From the predicted sensitivity curves of Figure B.3, the sensitivity of the FOEWS regardless of 

cladding thickness occurs at the index of refraction corresponding to the fiber core index of 1.451  due 

to the non-smooth behavior of the voltage response curve. Due to the asymptotic behavior of the 

sensitivity near the index of refraction of the core, the bounds on sensitivity are investigated between 

±5 mV/RIU, where RIU are refractive index units.  

As shown in Figure B.1, the output voltage from the oscilloscope can be analyzed using an 18 bit 

analog to digital controller (ADC) from Microchip Technology Inc. model MCP3421. The ADC is 

programed for a voltage input range of ±2.048 V so that theoretical minimum resolvable voltage is 

given by: 

 Δ𝑉𝑚𝑎𝑥 =
2.048

217 = 1.562 e-3 mV. (B.2) 

The resulting minimum detectable refractive index change using the ADC, photo detector and 

transimpedance amplifier configuration of Figure B.1 can be found by dividing the minimum resolvable 

voltage of Eq. B.2 by the predicted sensitivity curve of Figure B.3. For clarity, only the refractive index 
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sensitivity for a FOEWS of cladding thickness 0.1 µm is shown in Figure B.4 for refractive indices 

from 1.46 to 1.6. 

 

Figure B.70: Minimum detectible index of refraction change for a FOEWS read by the circuit of 

Figure B.1 for a FOEWS of cladding thickness 0.1 µm. The highest sensitivity is 3.56e-4 RIU in around 

an analyte IOR value of 1.46 and an average sensitivity of 2.2e-3 over the entire range from 1.46 to 

1.6. 

The predicted detectible index of refraction change shown in Figure B.4 varies from 3.56e-4 to 5.5e-

3 RIU in the sample range of 1.46 to 1.6. In Chapter 5, the response behavior of the FOEWS under 

exposure to an assumed battery electrode changing index of refraction from that of pure graphite to 

pure LiC6. The predicted output voltage of a FOEWS with cladding thickness of 0.1 µm is given in 

Figure B.5. below.  
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Figure B.71: Predicted voltage output of the FOEWS for a cladding thickness of 0.1 µm with an 

empirically determined gain of 400 mV subject to a change in analyte refractive index equal to that of 

the battery electrode outlined in Chapter 5. 

Similar to the derivation of Figure B.4, the resulting minimum detectable refractive index change 

using the ADC, photo detector and transimpedance amplifier configuration of Figure B.1 can be found 

by dividing the minimum resolvable voltage of Eq. B.2 by the predicted sensitivity curve of 

corresponding to Figure B.5. The resulting curve of minimum detectible index of refraction change in 

the range of the battery electrode is shown in Figure B.6. 
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Figure B.72: Minimum detectible index of refraction change for a FOEWS read by the circuit of 

Figure B.1 for a FOEWS of cladding thickness 0.1 µm in the range of the battery electrode. The highest 

sensitivity is 5.83e-2 RIU in around an analyte IOR value of 3.07 + 𝑖1.7. 

From the graph in Figure B.6 the minimum detectible index of refraction change for a FOEWS of 

cladding thickness 0.1 µm in exposed to the index of refraction range of the battery electrode is 5.83e-

2 RIU.  

The sensitivity of in the range of 1.46 to 1.6 presented in Figure B.3 is comparable to the calculated 

sensitivity of the FOEWS considered by several other authors of fiber optic refractive index sensors. 

Table B.1 below summarizes the reported sensitivities.   
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Table B.1: Summary of several reported sensitivities of fiber optic intensity based refractive index 

sensors. 

Reference Sensitivity 

[mW/RIU] 

Minimum Detectible 

Index of Refraction 

Change [RIU] 

Refractive Index 

Range 

Zhong et al. (2013) [67] −6.7 to −11.5 Not reported 1.332 to 1.353 

Chen et al. (2010) [102] Not reported 1.27e-3 to 3.13e-4 1.333 to 1.403 

Polynkin et al.(2005) [103] Not reported 5e-4 1.31 to 1.44  

Nath et al. (2008) [10] Not reported 2e-3 1.32 to 1.42 

This Work 4 to 0.2 3.56e-4 to 5.5e-3  1.46 to 1.6 

 

The minimum detectable refractive index change for the system outlined in Figure B.1, can be 

improved by modifying and calibrating the elements of the system. By cascading a secondary 

transimpedance amplifier onto the oscilloscope signal, the output voltage of gain can be increased in 

order to better fill the voltage range of the ADC. Additionally, a stronger LED can be used to illuminate 

the FOEWS increasing the signal output onto the photo detector. In respect to the sensitivity of the 

FOEWS in the range of the battery electrode refractive indices, the voltage range caused by the index 

of refraction change from 2.342 + 𝑖2.45 to 3.07 + 𝑖1.7, would require an additional  gain in order to 

fill the input range of the ADC.  
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Appendix C 

Model Code 

The full Matlab® code developed in this thesis is available by email request to: 

Jeremy R. Godin 

jrgodin@uwaterloo.ca  

or  

Patricia Nieva 

pnieva@uwaterloo.ca 

 


