
An Analysis of the Effect of
Community Structure on SAT

Solver Performance

by

Zack Newsham

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Electronic and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Zack Newsham 2015

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

ii

Abstract

Despite enormous improvements in Boolean SATisfiability solver performance
over the last decade, it is still unclear why specific input formula are slow
to solve, when other similarly specified formula execute more quickly. This
work explores the relationship between the community structure of a SAT
formula and its execution time on several state-of-the-art solvers. We explore
the analysis of this data from a number of directions; first, we explore the
relationship between the well known clause-variable ratio result, and com-
munity structure in randomly generated instances. Second, we perform a
standard linear regression on data obtained from the 2013 SAT competition.
Third, we present a visualisation tool and data repository for viewing the
structure of a SAT formula. Fourth, we explore the effect of hardware con-
straints on the solution time of instances across various machines. Finally,
we explore survival analysis, a technique that is new to the field of Boolean
SATisfiability. By collating the results from each of these experiments, we
have determined that the community structure is critical in determining the
solution time of a SAT formula, more important than the clause-variable
ratio of the formula. While this work is not a complete explanation of the
varying solution time of SAT formulae, it has provided us with significant
insight for further research to answer the question: why different similarly
specified formula have such different solution times?

iii

Acknowledgements

I would like to thank my supervisors Sebastian Fischmeister and Vijay Ganesh,
as well as the kernel development team at QNX for their help with implemen-
tation and Jean-Chrisophe Petkovich for his help with the DataMill experi-
ment. Additionally, I’d like to thank William Lindsay for his help with the
development of SATGraf and Professor Thomas Duever for his help with the
details of the linear regression experiments. Finally I’d like to thank Gina
Hickman, for her support and proof reading abilities.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 6
1 Boolean satisfiability . 6
2 Community structure of SAT formulae 8
3 Linear regression . 8

3 Regression analysis of impact of community structure on
SAT solver performance 11
1 Experimental setup . 11
2 Results . 12
3 Further results . 15
4 Conclusions and future work 17

4 Relationship between CVR and community structure in ran-
dom SAT instances 19
1 Experimental setup . 19
2 Results . 21
3 Conclusion and future work 30

5 SATGraf: A tool to view the evolution of a SAT instance
during solving 31
1 Implementation . 31
2 Features . 33
3 Algorithms used in SATGraf 34

v

4 Results . 36
5 SATBench . 37
6 Utility and limitations of SATGraf 39
7 Conclusion and future work 39

6 Survival analysis of different classes of SAT instances 41
1 Experimental setup . 43
2 Results . 44
3 Conclusion and future work 50

7 Effect of machine parameters on SAT solver performance 51
1 Experimental setup . 51
2 Results . 54
3 Conclusion and future work 62

8 Related work 65

9 Future work 68

10 Conclusion 71

References 72

Appendices 78
A Benchmarking machines . 79
B Benchmarking instances . 80
C Regression co-efficients . 84

vi

List of Figures

3.1 Plots for the model without community metrics R2 = 0.3148 . 13
3.2 Plots for the model 3.1 including community metrics R2 =

0.5159 . 14

4.1 Q against average time for randomly generated instances . . . 22
4.2 A plot of Q against time, for the original dataset (550,000

instances) . 23
4.3 Q and CVR against time, displayed according to solver result 24
4.4 The product of Q and CVR scores against average execution

time . 27
4.5 The peak of |Co| against time 28
4.6 The product of Q, |Co| and CVR scores against average exe-

cution time . 29
4.7 Number of communities plotted against average time for ran-

dom instances . 30

5.2 Partial evolution of the aes 16 10 keyfind 3 problem 38
5.1 Community structure of instances from the SAT 2013 Com-

petition. 40

6.1 Survivability plot of randomly generated instances from Chap-
ter 4 highlighting the phase transition range 44

6.2 Survivability plot of randomly generated instances from Chap-
ter 4 WRT the product of community, Q and CVR scores . . . 46

6.3 Survivability plot of application specific and crafted/handmade
2011-2014 SAT competition instances WRT Q 48

6.4 Survivability plot of 2011-2014 SAT competition application
instances WRT Q . 48

vii

6.5 Survivability plot of 2011-2014 SAT competition hand-crafted
instances WRT Q . 49

6.6 Survivability plot of application specific and crafted/handmade
2011-2014 SAT competition instances WRT CVR 50

7.1 CPU Model against average speed for that model 54
7.2 CPU Model against average execution time for that model,

separated by solver . 55
7.3 Plotting CPU speed against average execution time per solver 56
7.4 Average adjusted R2 against different formula characteristics

for the model of time CPU Speed 59
7.5 Average adjusted R2 against different formula characteristics

for the model of time RAM Size 60
7.6 Average adjusted R2 against different formula characteristics

for the model of time L1 Data Cache Size⊕ L2 Cache Size . . 62
7.7 Average adjusted R2 against CVR for the model of time #Cores 63

viii

List of Tables

3.1 List of the factors with 99.9% significance level. � indicates
an interaction between two or more factors and Sig stands for
Significance. The full table is listed in Appendix Table C . . . 15

3.2 Details of the regression scores for the eight subsets of data
considered . 17

6.1 Example survival analysis dataset 43
6.2 Example survival probabilities 43

8.1 Comparison of Tools . 67

ix

Chapter 1

Introduction

The Boolean satisfiability (SAT) problem is widely regarded as one of the
most important problems in computer science. The problem is known to be
NP-complete [43], and an efficient algorithm to solve it can have profound
impact on computer science and society as a whole. While the problem is
believed to be intractable [21] in general, in the past decade there has been
dramatic progress in designing and implementing efficient algorithms that
perform very well on large instances obtained from practical applications.

In this thesis I will explore the relationship between the community struc-
ture of a Boolean satisfiability formula and its solution time. The community
structure of an input formula (or instance) can be loosely defined as how well
clustered the variables in the formula are, with respect to the clauses that
connect them.

Problem Statement: The intention of this work is to provide a detailed
analysis of the effects of structure — specifically community structure — on
the solution times of Boolean satisfiability formula. We will also compare
this model with previously considered models, such as the phase transition
in the clause-variable ratio.

It has long been known that the structure of a SAT instance has some
effect on the performance of SAT solvers. The work by Gent and Walsh [18] as
well as the work by Coarfa, et al [14] has shown that there is some connection
between the clause-variable ratio (CVR) of random SAT instances and their
performance. However this relationship changes with the use of different
solver algorithms, and implementations. In addition to this, further work by
Levi, et al [7, 6] has shown that industrial SAT instances exhibit a better

1

community structure than other types of SAT formula (e.g., random or hand-
crafted).

While attempts have been made to explain the link between structure of a
SAT instance and its solution time, these have been limited to solver specific
analysis and typically basic factors, such as the clause-variable ratio. This
work shows that SAT instances have an inherent community structure, and
that in many cases this community structure is correlated with the solution
time of that instance. We go on to show that this is the case for a variety
of state-of-the-art solvers under numerous testing conditions. Further, we
present an analysis technique that is new to the field of SAT solver perfor-
mance, and has enabled us to identify specific characteristics of an input
formula that affect the performance of certain SAT solvers.

Motivation: Understanding the structure present in SAT instances, and
the relationship between this structure and SAT solver performance should
enable practitioners to develop more predictable and potentially faster SAT
solvers. As SAT solvers are used in all fields of software engineering, for ex-
ample program synthesis[20] and vulnerability testing[26], an improvement
in SAT solver technology can be translated into an improvement in the im-
plementation of software engineering techniques.

Contributions:

• First, We performed a regression analysis on approximately 800 in-
stances from the 2013 SAT Competition executed on the Minipure
solver, with additional results considered from other competitions and
solvers. These were analysed while paying particular attention to the
community structure of the instances. We found a strong correlation
between measures of community structure and Minipure performance.
These results are described in Chapter 3

• Secondly, we performed an analysis of the community structure present
in random instances, and the relationship of such a structure with the
clause-variable ratio(CVR). This experiment was performed twice with
different datasets, providing the same result - that random instances
with 0.05 ≤ Q ≤ 0.13 are harder to solve than similar formula with
a community structure outside of this range. This was found to be

2

the case, regardless of the instances CVR. This result is described in
Chapter 4

• Thirdly, we developed a tool for viewing the evolution of the community
structure of a SAT formula, during solution time. This tool named
SATGraf is described in Chapter 5

• Fourthly, we introduce survival analysis as a tool for evaluating the ex-
ecution time of different classes of trials. For example, trials performed
on different solvers or machines, or instances with different ranges CVR.
We were able to confirm previous hypothesis using this technique, and
gain extra detail on others. These results are described in Chapter 6

• Our final contribution is An initial explanation of the varying perfor-
mance seen when running SAT instances on different machines. In
this study we consider approximately 14,000 pre-simplified instances
and their running times on 28 different machines and five solvers. We
found that solution time of a particular instance on a particular solver,
is not purely a product of the solving machines CPU speed, or other
basic factors such as RAM and cache sizes. These results are described
in Chapter 7

• In addition to these main results, we present SATBench. A user ed-
itable repository for storing and analysing SAT instances from various
sources, utilising numerous (currently approximately 40) different pa-
rameters.

Summary of Thesis In order to understand the link between community
structure and the performance of SAT instances, it is necessary to define cer-
tain terms. The study of community structure in complex networks/graphs
is not new and many algorithms have been proposed to represent this struc-
ture as a single metric, commonly referred to as the Q metric. In order to
utilise such algorithms it was necessary to convert the instances under anal-
ysis into graphs. For this task we chose to represent a SAT instance as its
variable-incidence graph, where variables in the formula become vertices in
the graph. An edges between two vertices if the variables they represent are
present within a clause of the input formula.

In this work we use two such proposed algorithms, the Clauset-Newman-
Moore (CNM) method and the Online (OL) community detection algorithm.

3

These are described in detail in Chapter 2, however it suffices to say for now
that both these algorithms define the community structure of a SAT instance
as a ratio of the number of between community edges to the number of within
community edges. A community is a sub graph of the variable-incidence
graph that contains more internal edges than outgoing ones.

We explain the link between community structure and SAT solver perfor-
mance by utilising a number of analytical techniques. For example, we use
simple correlation metrics, measures of fit, standard linear regression and
survival analysis. These individual methods are described in detail in Chap-
ters 3 and 6, however the purpose of each analysis is the same: to reduce a
complex set of input parameters and provide a single measure for the quality
of the relationship between two factors. In our case the response factor for
each of these analysis techniques is almost always the wallclock execution
time of a SAT solver, however in some analysis, we use the measure of the
relationship between two factors as a response variable, such as when consid-
ering how effective certain prediction models are for different types of input
formula as in Chapter 7.

Structure of Thesis: This thesis contains five distinct undertakings, all
related to the study of the community structure of a SAT instance, and the
connection between that structure and an instances solution time.

In order to understand the work presented in this document, a certain amount
of background knowledge is required of the reader. Much of the relevant infor-
mation can be found in Chapter 2, where we describe the different regression
techniques used in the experiments, as well as defining community structure.
In addition to this, each chapter presents any specific relevant information
required.

In Chapter 3 we explore the utility of certain input characteristics — such
as the Q value, and the clause-variable ratio — on the solution time of the
Minipure[42], MiniSAT[15] and Glucose[8] solvers, when considering input
formula and timing data taken from the 2013 and 2014 SAT competitions [1].

In Chapter 4 we endeavour to explain the relationship between the well
understood CVR result [18, 14] and the recently explained Q result [36] when
considering randomly generated SAT formula

In Chapter 5 we describe our tool SATGraf, a tool designed to allow the
visualisation of the community structure of a SAT instance, as well as the

4

evolution of that SAT instance while it is being solved.
In Chapter 6 we discuss an analysis technique that to our knowledge has

not been considered in the field of SAT solver performance, survival analysis.
In survival analysis it is possible to describe the probability of a solver still
running after a certain amount of time, when considering different input
factors, such as the clause-variable ratio Q or other less obvious factors.

Finally, in Chapter 7 we discuss performance differences when solving the
same instance on different hardware and solvers, and provide an initial insight
into the effects of CPU speed, RAM size and cache sizes on the performance
of different solvers, and different types of instances.

5

Chapter 2

Background

In this chapter, we provide some background on regression analysis, the con-
cept of the community structure of graphs and how it relates to SAT formula.

1 Boolean satisfiability

The Boolean satisfiability problem (referred to as SAT) is the quintessential
NP-complete problem. In short, SAT takes an input formula of clauses and
variables, and tests if there is an assignment to each of the variables that
allows the formula to evaluate as true. Each variable has only a true or false
representation, and may appear as both in a formula, in separate clauses.
When a variable is represented with a value it is referred to as a literal.
There are multiple representations for SAT problems, the most commonly
used is conjunctive normal form (CNF). In CNF clauses are sets of variables
joined by disjunction, the entire formula is made up of the conjunction of
all the clauses, as opposed to disjunctive normal form (DNF) which is the
opposite. A formula is said to be satisfiable if every clause in the problem is
satisfied, a clause is satisfied if at least one literal in the clause has a satisfying
assignment. For example, consider Equation 2.1. This example is displayed
in dimacs format, where each variable is numbered. A positive number spec-
ifies that literal requires a true assignment to the variable, a negative literal
specifies that a false assignment is required, clauses are terminated with ze-
ros. A satisfying assignment to this formula could be −1, 2,−3,−4. Compare
this to the highly trivial Equation 2.2, which has no satisfying assignment.

6

1 2 3 0

-1 -2 0

3 -1 4 0

-3 2 -1 0

-4 0

(2.1)

1 2 0

-1 0

-2 0

(2.2)

While in these highly simplified examples the problem may appear sim-
ple, these formulas can contain millions of clauses and variables, the problem
quickly becomes complicated. As SAT formula became larger, new tech-
niques have been developed to solve them. The current state-of-the-art
solvers are conflict driven clause learning (CDCL) solvers [25].

In a CDCL solver there are two phases, initially the solver chooses a
variable (based on some heuristic) and assigns it true/false. After this any
other variable that can be assigned through propagation are set. This can
be caused either because a variable now only appears as true/false (a pure
literal) or due to constraints. For example, considering Equation 2.1, if the
variable 1 were assigned to true, the solver would know to assign 2 to false to
satisfy clause two. The second phase in CDCL solvers is when a conflict oc-
curs. A conflict is defined as the solver finding a set of assignments that does
not satisfy the formula, discovered when the next variable chosen propagates
a variable assignment that conflicts with a previous assignment. Considering
Equation 2.1 if the variable 1 is assigned to true, forcing 2 to be false, which
in turn forces 3 to be false, however clause three specifies that either 3 must
be true, or 1 must be false. This creates a conflict. The second phase of
CDCL solvers is to learn from this conflict, this is achieved by finding the
minimal set of assignments that led to this conflict, in our case 1,−3. This
clause is inverted and added to the formula. The solver then resets the state
of the solver to the assignment before the first assignment in the conflict
clause.

CDCL solvers can generate millions of conflict clauses, this can quickly
consume the available memory. As such clauses are periodically deleted,
unfortunately this removes the completeness property from CDCL solvers,
as it is possible that a deleted conflict clause will be re-discovered, causing
the solver to enter an un-escapable loop.

For more information on the Boolean satisfiability problem, consider read-
ing the handbook of satisfiability [9]

7

2 Community structure of SAT formulae

The idea of decomposing graphs into natural communities [13, 45] arose in
the study of complex networks such as the graph of biological systems or the
Internet. Informally, a network or graph is said to have community structure
if the graph can be decomposed into sub-graphs where the sub-graphs have
more internal edges than outgoing edges. Each such sub-graph (aka module)
is called a community. Modularity is a measure of the quality of the com-
munity structure of a graph. Figure 5.1 is an example of a graph with good
community structure. the coloured edges represent edges within a single com-
munity, the white edged represent inter-community edges. The idea behind
this measure is that graphs with high modularity have dense connections be-
tween nodes within a sub-graph but have few inter-module connections. It is
easy to see that maximising modularity is one way to detect the optimal com-
munity structure inherent in a graph. Many algorithms [13, 45] have been
proposed to solve the problem of finding an optimal community structure of
a graph, the most well-known among them being the one from Girvan and
Newman [13]. The quality measure for optimal community structure is often
called the Q value, and we will continue to refer to it as such. There are many
different ways of computing the Q value and we refer the reader to these pa-
per [13, 45, 28] for a complete explanation of the individual algorithms, a
brief explanation of those used in this work is provided in Section 3.

We experimented with two different algorithms; the Clauset-Neuman-
Moore (CNM) algorithm [13] and the online community detection algorithm
(OL) [45]. While we did find that the CNM algorithm resulted in a better
community structure — evidenced by a small number of communities with
few links between them — we chose the OL algorithm because of its vastly
superior run time. This was of particular importance due to the sheer size
and number of SAT instances we processed. Our initial experiments were
conducted with an implementation of the CNM algorithm, then repeated
with the OL algorithm. The results we present in Section 2 were observed,
regardless of the choice of algorithm.

3 Linear regression

In this thesis we make use of linear regression techniques for the result that
correlates the Q value and number of communities with the running time of

8

the MiniSAT CDCL SAT solver.
Linear regression can be used to determined the relationship between the

factors and variables based on a provided model. Given multiple independent
factors and a single dependent variable. For the scope of this paper the
dependent variable will always be log(time), while the independent factors
(such as Q value, number of communities, variables, and clauses) will be
appropriately specified for each experiment. This model can either look only
at the main effects of the factors specified, or at both the effects of factors
and the interactions between them.
We provide a few important definitions below:

ANOVA stands for analysis of variance. In the scope of this paper, it is
generated by the linear regression, and used to understand the influence
that specific factors and interactions between factors have on the dependent
variable.

R2 represents the amount of variability in the data that has been accounted
for by the model and is used to measure the goodness of fit of the model. It
ranges from zero to one with one representing a perfect model. Due to the
nature of the calculation, the R2 value will increase when additional factors
are added to the model. In this paper, we refer to the Adjusted R2 which
is modified to only increase if an added factor contributes positively to the
model.

Confidence Levels are used to specify a certain level of confidence that
a given statement is true. They can be used to calculate the likelihood of
a given set of input values resulting in a given output (e.g., time), or they
can be used to estimate the likelihood that a factor in a model is significant.
They are measured in percent, typical values are 99.9, 99 and 95. Any result
with a confidence level below 95% is considered unimportant in the context
of this paper.

Confidence Intervals are used to provide a range for a value at a given
confidence level, which is usually set to 95% or 99%. They show that with
a given percentage probability, an estimated value will lie within a certain
range.

Kolmogorov–Smirnov test is used to provide quantitative assurances that
a provided sample belongs to a specified distribution. It results in a value
between zero and one, with values approaching zero indicating that the pro-
vided sample does belong to the specified distribution.

9

Residuals is the difference between a fitted dependent variable and the
corresponding provided dependent variable. It represents the amount of error
for a given set of input factors when calculating the output.

There are numerous resources available for further information on statis-
tical analysis including linear regression such as [27].

10

Chapter 3

Regression analysis of impact
of community structure on SAT
solver performance

We pose the question: is there a connection between graph theory and perfor-
mance of SAT solvers? There have been numerous attempts at characterising
structure in SAT instances, the most famous of these is the result showing
that hard random instances have a CVR of approximately 4.2[18]. However,
this result only characterises the structure of random instances, and does
not lend any insight to the structure of industrial or crafted instances. The
results presented in this chapter utilise graph theoretical concepts, such as
community structure, to characterise SAT instance structure. We found that
there is a correlation between the quality of the community structure and
SAT solver performance. Our initial work in this area utilised linear regres-
sion to determine which input characteristics of a SAT formula were most
predictive of the solution time for a specific solver. This resulted in some in-
teresting results as published in [36]. This chapter builds on those results by
considering different datasets from different SAT competitions and solvers.

1 Experimental setup

The data for this analysis was taken from the 2013 SAT competition and
looked at instances from the application, hard combinatorial and random cat-
egories. Our initial experiments were published in the SAT 2014 conference[36]

11

and utilised the OL algorithm to detect the community structure and used
the timing data published in the competition[1]. This data was obtained by
running the solvers under analysis on a 2x Quad core Intel Xeon 2.83GHz
with 16GB RAM running scientific Linux 2.6.18. When discussing time in
this chapter, we refer to the wallclock time taken for the solver to either
return a correct result, or to time-out. A time-out of 5200 seconds was speci-
fied. Due to memory constraints it was not possible to detect the community
structure for each instance. As such in these initial experiments we were left
with 835 instances to consider.

The analysis was performed using log(time) rather than raw recorded time
due in part to the presence of a large number of time-outs. A time-out occurs
when a user imposed deadline for a solution is passed. It is possible that a
solution would have been found within the next second, or possibly not for
many hours (or longer). The wide distribution between the slowest solved
instances and the time-outs was an additional contributing factor to our
decision to use log(time). This would have severely skewed the distribution
if raw recorded time had been used. In addition to this we standardised
our data to have a mean of zero and a standard deviation of one, which is
standard practice when using parameters that have large differences in scale
to ensure that significance is not awarded to a variable based on scale alone.

2 Results

After formatting the data as described, we fitted a linear regression model
to it using a stepwise regression technique to choose the best model, which
was identified as:

log(time) = |V | ⊕ |CL| ⊕Q⊕ |CO| ⊕QCOR⊕ CVLR (3.1)

Where V is the set of all variables in a formula, CL is the set of all clauses,
CO is the set of all communities, QCOR is the ratio of Q

|CO| , and VCLR is

the ratio of |V |
|CL| . In this model the ⊕ operator denotes that the factor and

all interactions with all other factors were to be considered. Performing the
regression resulted in a residual vs fitted plot, shown in Figure 3.2a where
the x-axis shows the fitted values and the y-axis shows the residuals. As
well as a normal quantile plot shown in Figure 3.2b where the x-axis shows
the standardised residuals plotted against a randomly generated normally

12

-3 -2 -1 0 1 2 3

-4
-2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm("ltime~vars*clauses*vars_clauses")

Normal Q-Q

286405
243

(a) Plot of normal and theoretical
quantiles

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-4
-3

-2
-1

0
1

2

Fitted values

R
es
id
ua
ls

lm("ltime~vars*clauses*vars_clauses")

Residuals vs Fitted

286405
243

(b) Residuals vs Fitted values

Figure 3.1: Plots for the model without community metrics R2 = 0.3148

distributed sample with the same mean and standard deviation on the y-
axis. In the normal quantile plot, the presence of a slight curve in the line
is indicative that the distribution of the data is non normal. However, when
we consider Figure 3.1 which shows the same data plotted for the previously
available model 3.2 we can see that its data is at least equally non-normal.
In this situation calculating confidence intervals is non straightforward and a
method to allow accurate estimates is unknown to us, as such we are unable
to measure confidence intervals for the accuracy of the model. In addition
to this, the residual plot shows that the data may be biased, but at least has
relatively even variance. Unfortunately, the presence of the time-out results
has played a role in the biased nature of the experiment. However dropping
them from the results entirely leads to a bias in the opposite direction.

The adjusted R2 of our model 3.1 is 0.5159. While this relatively low
R2 value indicates that there is some factor we have not considered, our
model is far better than any previous model, which relied only on number of
variables and clauses. This model, which takes the form of

log(time) = |V | ⊕ |CL| ⊕ CVLR (3.2)

13

-3 -2 -1 0 1 2 3

-4
-2

0
2

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm("ltime~clauses*vars*Q*coms*Q_coms*vars_clauses")

Normal Q-Q

286405243

(a) Plot of normal and theoretical
quantiles

-2 -1 0 1

-3
-2

-1
0

1
2

3

Fitted values

R
es
id
ua
ls

lm("ltime~clauses*vars*Q*coms*Q_coms*vars_clauses")

Residuals vs Fitted

286405243

(b) Residuals vs Fitted values

Figure 3.2: Plots for the model 3.1 including community metrics R2 =
0.5159

is also given for comparison and results in an adjusted R2 of 0.3148 — mak-
ing it significantly less predictive than our model. In addition to this, the
more distinct S shape, and presence of sharp curves in Figure 3.1 shows
that the distribution of the data is less normal. This result is confirmed
when using the Kolomogorov-Sminov (KS) method to test goodness of fit.
Our model 3.1 results in a KS value of 0.1283 compared with the previously
available model 3.2 which gave a KS value of 0.3154. As discussed, this lack
of normality makes it difficult to estimate confidence intervals for the results.
However, it is possible to rank the factors by importance (because the data
was standardised prior to regression). The results in Figures 3.2a and 3.2b
show that our model, while not perfect, is a major step towards being a
predictor for solve time. This is confirmed when viewing the results of the
regression shown in the Table 3.1 (This table can also be viewed from our
website [35]). This table shows each significant factor (Appendix C shows
the table for all factors) and the probability that its significance is random
(Pr(> |t|)).

The main result we found from the regression is that the Q factor is in-
volved in every one of the significant interactions at a 99.9% confidence level.

14

In addition to this we found that |V | (number of variables) alone is not sig-
nificant, and |CL| (number of clauses) alone is only marginally significant.
Furthermore, |CO| (number of communities) proved to be the most predic-
tive effect, as well as being involved with numerous other interactions that
are also significant.

3 Further results

After evaluating this initial result, we decided to explore additional datasets
from the SAT competition, specificity different years and solvers. Unfortu-
nately, due to unforeseen circumstances we were unable to directly reuse the
data obtained in the previous result for the SAT 2013 Minipure solver. In-
stead we re-ran the community detection algorithm from approximately the
same subset of formula from the 2013 SAT competition and used this data
for analysis where relevant. Due to the different physical characteristics of
the machines used to run the community detection algorithm, the subset of
results used here is slightly different than those used in the previous section,
additionally due to a randomness that is present in the community detection
algorithm, the Q value and number of communities also differs slightly. Due
to these small changes the R2 of the repeated result is 0.5198, a very small
difference.

The full details of the changes to the data can be found in the errata
attached to [36], however as an overview, we re-ran the community detection
algorithm on 935 instances [32] then paired the number of variables and
clauses with the original data to give us an approximation at the same data

Factor Pr(> |t|) Sig

|CO| 0.000121 ***
|CL| �Q�QCOR 0.000492 ***
|CL| �Q 0.000523 ***
|CL| �Q� |CO| �QCOR� CV LR 0.000702 ***
|CL| �Q� |CO| 0.000719 ***
Q�QCOR 0.000881 ***
Q 0.000947 ***

Table 3.1: List of the factors with 99.9% significance level. � indicates an
interaction between two or more factors and Sig stands for Significance.

The full table is listed in Appendix Table C

15

set. It was important to attempt to repeat the same dataset as the newer
dataset had far more time-outs than the original dataset. We were ultimately
able to match 710 instances from our new dataset, to those instances in
the original dataset. As such, these 710 instances are used in the repeated
regression for the SAT 2013 competition solvers.

In an attempt to confirm the result described in Section 2 we re-ran
the same linear regression on the equivalent formula set from the 2014 SAT
competition [2]. Unfortunately we ran into some issues with this. Firstly, the
timing data from the SAT competition random instances is only available for
satisfiable instances, Which severely reduces the size of this portion of data,
it also results in an unfair analysis due to the lack of any UNSAT formula.
Secondly Minipure did not compete in the 2014 competition, meaning that
a secondary solver had to be used for timing data, as stated in [14] different
algorithms and implementations of those algorithms display different timing
characteristics — in some cases vastly different — as such it is not possible to
directly compare the results of our model on the Minipure solver, with data
obtained from any other solver. To mitigate this, we chose Glucose due to
our familiarity with it and similar lineage, both Minipure and Glucose were
derived from variants of the MiniSAT solver. However, even then Glucose
did not compete in the random category. In fact no single solver competed
in all three categories. These reasons combined with the different physical
characteristics of the machines used to run the trials, as well as the differing
time-outs (5200 seconds vs 6000 seconds) makes it very difficult to compare
these results as apples to apples. To mitigate this we also considered the
Glucose timing data from the 2013 SAT competition, and in some cases will
limit our hypothesis to the application and crafted formula from the relevant
SAT competitions, as we have solver complete datasets for these. The results
of these experiments are detailed below in Table 3.2.

The most noticeable result from these experiments is that the Glucose
results are far weaker than the Minipure result. There are many possible
reasons for this, including different functionality of the solver, however the
most likely explanation is that the absence of random instances in the Glucose
regressions skewed the result. The less significant difference between Glucose
2013 and Glucose 2014 is likely the increased time-out, increasing the non-
normality of the data under analysis.

In addition to the differing R2 for the solvers in each competition, we
noticed the R2 for each individual category — particularly with the Glu-
cose solver — the application and hard combinatorial/crafted categories, was

16

Competition Subset Solver #Formula #Completed R2

2013 All Minipure 709 274 0.5198
2013 Application Minipure 228 127 0.5058
2013 Crafted Minipure 232 147 0.7032
2013 Random Minipure 249 0 N/A
2013 All N/A 0 0 N/A
2013 App+Crafted Glucose 538 350 0.3332
2013 Application Glucose 264 169 0.5403
2013 Crafted Glucose 273 180 0.6276
2013 Random N/A 0 0 N/A
2014 All N/A 0 0 N/A
2014 App+Crafted Glucose 527 352 0.2990
2014 Application Glucose 249 183 0.5702
2014 Crafted Glucose 278 169 0.547
2014 Random N/A 0 0 N/A

Table 3.2: Details of the regression scores for the eight subsets of data
considered

stronger than the R2 for the combined dataset. This would suggest that the
Glucose solver behaves very differently when solving industrial vs crafted
instances, in a way that cannot be explained by any of the four factors we
have considered. While a similar pattern was observed with the Minipure
solver, the R2 of the random results is much lower than that of the overall
competition, and likely some type of “averaging” is occurring when the full
dataset is considered. It is possible that if we had experimental data for
the Glucose solver on random instances, we would notice a similar pattern.
However, this does not explain the pattern of application and crafted being
more predictable alone than together.

4 Conclusions and future work

In this chapter we have discussed the relationship between the community
structure of SAT instances and their performance on the Minipure solver.
We further describe that this community structure is more important in
determining solution time than previously considered metrics, such as the
clause-variable ratio (CVR).

17

There are a number of directions we intend to take this work. First, as
described in this chapter, the non-normality of the data precludes us from
making confidence intervals on our predictions, to counter this we are going
to look at different distributions for our regression. From our initial work in
this area the most promising of these is a Gamma regression.

In addition to utilising different regression distributions, our results have
shown clearly that the structure of random instances is different from both
crafted and application instances. We intend to explore this by developing
category specific models. To accomplish this we need to find significantly
more instances that do not time-out.

18

Chapter 4

Relationship between CVR and
community structure in
random SAT instances

Previous attempts to uncover the relationship between the structure of a
random SAT instance and its performance have discovered that hard random
instances have a clause-variable ratio of approximately 4.2 [18]. However,
further results in this area have shown that this CVR range is dependant not
only on the algorithm used, but the implementation of the algorithm [14].
In addition to this, our previous work in this area has found a similar phase
transition with respect to community structure [36]. However, we found that
there was no direct correlation between community structure and CVR, and
some instances identified as hard by the CVR model were identified as easy
by our community based, and vice versa. This chapter further explores this
relationship and we find that a combined model of CVR and community
structure is more descriptive.

1 Experimental setup

The first version of this experiment, published in [36] considered approxi-
mately 550,000 randomly generated formula and their running time on the
MiniSAT 2.2 solver. In doing so we discovered that there is a large increase in
average solution time when 0.05 ≤ Q ≤ 0.13. Unfortunately due to the ran-
dom nature of the experiment, and the number of instances utilised it was

19

difficult to perform a more in depth analysis on this data, without repeating
the experiment. As such, the results presented here will be for a repeated
experiment where we captured much more information about a smaller set of
instances. For this later experiment we considered 4887randomly generated
instances.

The formulae were generated by varying the number of variables from 500
to 2000 in increments of 100, the number of clauses from 2000 to 10,000 in
increments of 1000, the desired number of communities from 20 to 400 in
increments of 20, and the desired Q value, from zero to one in increments
of 0.01. Each individual trial was repeated three times with the same char-
acteristics. This was necessary due to the non-deterministic nature of the
generation technique. We then randomly sampled 4887instances from this
set. The resulting instances were ran in a random order on machine 27 from
Appendix Table A

To generate a specific 3-CNF instance we perform the following actions:
Let the set of variables be denoted as V = {Vi | 0 ≤ i < nv} where nv is the
desired number of variables. Similarly, let the set of groups be G = {Gx | 0 ≤ x < ng}
where ng is the desired number of groups. A group is a rough estimate of a
community, and is used only to guide the generator in producing a problem
with a specific structure. First, we assign variables to groups such that each
group Gx = {Vy | y = rv ∗ |G|+ x; 0 ≤ rv <

|V |
|G|}, where rv is randomly se-

lected. This creates ng groups each containing nv

nv
randomly selected variables.

Next, we generate the set of clauses C = {Cz | 0 ≤ z < nc} as follows, where
nc is the desired number of clauses such that Cz = {Vz1 ∨ Vz2 ∨ Vz3}. Each
clause is constructed as follows: First, a group Gx and a variable Vz1 ∈ Gx

are randomly selected. This is followed by a selection of another variable Vz2

from either Gx or V with probability of q of being selected from Gx. Finally,
a third variable Vz3 is selected from either Gx or V with probability of q of
being chosen from Gx. The value q (lies between 0 and 1) can be used as a
rough estimator of Q, the modularity of the formula and is provided as input
to the generator. The result is a randomly-generated 3-CNF formula.

During our analysis of the instances, we discovered that our random gen-
eration technique resulted in far more results in the 0.05 ≤ Q ≤ 0.12 range
than in any other range. To ensure an unbiased result we performed basic
analysis on a stratified random sample taken uniformly across the range of
Q. A stratified sample ensures that a uniform number of samples are taken
from each sub-population of the data, this ensures a fair analysis when the

20

sizes of the sub-populations vary. From the original 545,000 results, 2250
were randomly sampled, with 250 results taken from each range of 0.1; as
there were no results with Q > 0.9 this range was not included in the sam-
ple. This process ensured there was no bias in the results based purely on
frequency. The resulting sample is shown in Figure 4.2 which shows that
when 0.05 ≤ Q ≤ 0.12, the formula take far longer to solve. While this range
is slightly different from the results of the full dataset (0.05 ≤ Q ≤ 0.13) this
can be explained by the reduced dataset.

In both the original and our extended analysis, we noticed that a huge num-
ber of instances — approximately 90% in the first version, and approximately
76%in the second version — finished in less than one second. While to a cer-
tain extent this is to be expected, as per the random clause-variable result[18],
we wanted to be sure we had not generated a large number of instances that
were trivial, i.e., solvable by simplification. Unfortunately it was impossible
to do this with the initial experiment, as we did not record this information,
however, we were able to utilise a subset of the second experiment’s results
that could not be solved by simplification. In doing this we found that ap-
proximately 40%were solved by simplification and were therefore excluded
from the analysis. However even these instances considered alone, which
will be discussed further in subsequent chapters, show a community related
trend.

2 Results

As you can see from Figure 4.1 the results are very similar whether we include
or exclude the instances that can be solved by simplification. The peak for
both datasets is approximately Q = 0.12, the main difference is how dispersed
the remainder of the dataset is. As would be expected with the instances that
can be solved by simplification included the average time for the remainder of
the instances decreases, making the trend appear stronger. It was interesting
to us that only a little over half of the instances that finish in under one second
were solved by simplification, this is likely because those fast non simplifiable
instances had relatively few conflict clauses.

In addition to the small difference in distribution when excluding the
instances that can be solved by simplification, we found that our original

21

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.2 0.4 0.6 0.8

Q Against Average Time (All)

Q

T
im

e
in

 S
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0

All

(a) All random instances

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.2 0.4 0.6 0.8

Q Against Average Time (Un−simplifiable)

Q

T
im

e
in

 S
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0

All

(b) Random instances unsolvable by
simplification

Figure 4.1: Q against average time for randomly generated instances

dataset presented almost identical results even when far more instances were
considered. The overall result for that experiment was 0.05 ≤ Q ≤ 0.13. The
largest difference between these instances is the absence of any Q < 0.05 re-
sults in our second experiment. We think this is due to a minor error in the
OL algorithm, which we fixed in this second experiment as discussed in the
errata of [36].

It has long been known that the clause-variable ratio (CVR) in random in-
stances is a factor of longer solve times in random instances. In [18] the
authors show that there exists a phase transition between easy UNSAT in-
stances, to “hard” instances, to easy SAT instances around CVR = 4.26.
However, in our trials we have not found this to be the case. When con-
sidering the graphs in Figure 4.3b we noted that while the absolute peak of
the CVR did reside around the CVR = 4.26, the range for “hard” instances
was quite wide. Even just considering those instances that timed out, we
found this range was 3.25 ≤ CVR ≤ 8.70 with a relatively large number of
those time-outs residing outside of the CVR = 4.26 range. Only 83 time-
out instances had a CVR of between 4.2 ≤ CVR < 4.4 compared with 96
between 3.8 ≤ CVR < 4.0, as well as 193 4.0 ≤ CVR < 5.0. While this is
only considering the time-out data, we see a similar result when consider-

22

Q Against Time(Uniform Random Sample)

Q

Ti
m

e
in

 S
ec

on
ds

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0 0.20 0.30 0.40 0.50 0.60 0.70 0.80

(a) Stratified Sample (b) All instances

Figure 4.2: A plot of Q against time, for the original dataset (550,000
instances)

ing the satisfiable results, showing an absolute peak in average execution
time at CVR = 3.8 with a peak in execution time for SAT instances exist-
ing between 3.5 ≤ CVR < 4.0. Strangely, we see an entirely different “peak”
when looking at the un-satisfiable instances, where the hardest instances re-
side around CVR = 8.0, but the majority of slightly easier instances reside
around CVR = 6.0. This result is more in line with [14] where the authors
show that the phase transition may start earlier than anticipated. Their
figures show that when CVR = 3.8 the solution time of a formula becomes
exponential in the size of the variables; whereas at CVR = 3.7 the solution
time is polynomial in the size of the variables.

When we consider the same plot of Q against average time Figure 4.3a
we see a similar pattern, a large number of time-outs — 700 out of a total
of 839 — reside between 0.05 ≤ Q < 0.16. However, the peak of non time-
out instances for both SAT and UNSAT is much lower between 50 and 100
seconds — but both within the target range of Q. Additionally, there is
no phase transition when considering Q. SAT and UNSAT instances appear
throughout the range of Q all the way from 0.05 to 0.95 (the complete set).

In addition to the phase transition result, Ansotegui et al have shown
a correlation between slow instances with a CVR = 4.25 and slow instances
with a Q = 0.15[6]. When looking at the frequency of Q within the phase

23

●
●●●●●

●●●●●●●
●
●●●●●

●
●●

●
●●

●
●●●●●

●
●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.2 0.4 0.6 0.8

Q Against Average Time

Q

T
im

e
in

 s
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

● UNSAT
SAT
TIMEOUT

(a) Q against time

●●●

●

●●●●●

●

●●●●●●
●
●●
●
●
●●
●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●
●
●●

●
●

●●●●●

●

●●●●●

●

●

●

●●●

●
●

●
●●●●●

●

●●●●●●

●

●●●

●
●●●●

●

●●

●

●

●

●●

●

●●●●●●●●
●
●●●●

●●

●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ● ● ● ● ● ●

5 10 15

CVR Against Average Time

CVR

T
im

e
in

 s
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

● UNSAT
SAT
TIMEOUT

(b) CVR against time

Figure 4.3: Q and CVR against time, displayed according to solver result

transition range (4.23 ≤ CVR ≤ 4.27), we can confirm that far more in-
stances have a bad Q than all the other ranges together, we found that
36 instances had Q ≤ 0.14 and 26 had Q > 0.14. However, when looking at
the same frequency distribution of Q, but outside the phase transition range,
we found there were still a large number of instances that show bad Q and
slow solution time, despite them not being within the phase transition range.

One possible explanation for this is that in our experiment we are working
on a relatively low time-out of 900 seconds (used due to its use in the 2012
SAT Competition), however it is possible that a different peak would have
been seen if we had allowed instances to continue past this point. In this
situation it is possible that the instances which timed out in this experiment,
and were outside the 4.23 ≤ CVR ≤ 4.27 range would have been solved, and
those instances within this CVR range would still have timed out. Thus
showing a more distinct peak in this range.

Another potential explanation for hard instances outside of the phase
transition range could be the scale of the results; in [14] the results state
that a CPU time limit of 10,800 seconds was imposed. This implies that they
were measuring CPU time rather than wallclock time. As mentioned in our
experimental setup, we use wallclock time in all our experiments, as it more
accurately represents the time spent solving a solution, and as our results in
Chapter 7 show, the speed at which an instance is solved does not rely entirely

24

on the CPU speed of the machine; meaning that in some cases RAM and
cache sizes/speeds are also a factor. These factors are not considered when
measuring only CPU time. In addition to the difference in time measures, we
also noted that the authors opted for an analysis of the median time. As the
majority of our results are shown with time-outs in a separate trend, utilising
the median was not required to handle the bias a single high result may have
on a dataset. We did also note, despite the author’s assertion that the median
and the mean are typically quite close to one another, that our median (4
milliseconds) differs greatly from our mean (160.71 seconds). Additionally,
the CPU speed (and other factors) of the solving machine in our experiment
are vastly different from theirs; it is very likely that instances that would
have timed out in their experiments would have completed successfully in
ours, this combined with the huge advancements in SAT solver technology
over the past decade, makes it difficult to directly compare our results with
theirs. To support this, the result in [14] states that the time complexity of
the solution varies with the choice of solver.

A further possible explanation for this difference is that the authors of[18]
noted that the phase transition range is very tight around CVR = 4.26, where
we found that it was much more dispersed, though still centring around
this range. This would explain the discrepancy where a large number of
instances outside of the phase transition range described therein still had a
slow solution time. To test this hypothesis we looked at the same frequency
of Q for instances outside our range of “hard” CVR (3.8 ≤ CVR ≤ 8.0) and
found there were approximately 30% fewer instances with bad Q outside of
this range. However, we still saw a significant peak in execution time of those
instances with non-bad CVR and bad Q. This leads us to the conclusion that
in our dataset, CVR and Q are not tightly correlated, and in fact are separate
predictors of solution time. If CVR and Q had been tightly correlated, it
would be unnecessary to compute Q as CVR would be an estimator of it.
Additionally, it would not be possible to combine the factors for a more
accurate model.

In order to confirm this we plotted a graph showing the combined Q and
CVR “scores” where individual scores represent the instance’s distance from
Q = 0.13 and CVR = 5.0 respectively, these were the values we found optimal
for the full dataset. We found slightly different values optimal for instances
that could not be solved by simplification (Q = 0.09 and CVR = 5.15), how-
ever the result is very similar. We then plotted the product of these two scores
against average execution time for instances, showing different trends for the

25

SAT vs UNSAT instances. The results of which are shown in Figure 4.4,
where the x-axis shows the combined “scores” and the y-axis shows the av-
erage execution time in seconds for instances that have the same “score”.
This figure shows that instances with a low “score” are typically harder to
solve. We can also see that every instance, which did not finish trivially fast,
resides within this range:

score(Q) · score(CVR) < 0.6

. We also show a good distribution of SAT vs UNSAT instances within and
outside of this range, the plot where time-outs are not separately tracked
shows an even more distinct pattern, but has been excluded from this report
for the sake of brevity. In addition to the community modularity being im-
portant, we noted that the number of communities was similarly important,
arguably in a more predictable manner. We show that there is a peak in av-
erage execution time when a random instance is comprised of approximately
130 communities. This peak, shown in Figure 4.5, is not as sharp as the Q
transition, but has a more analysable symmetric curve. Though we did note
that no instance containing more than 240 communities took longer than one
second to solve, despite the fact that some of these (between 240 and 340
communities) were not solvable by simplification.

In Figure 4.6 we show the result of adding “number of communities”
score to our model where the score is defined as the number of distance of
communities in an instance away from the worst case 130. We see that it
has a small, but significant affect on the graph, where we compress the hard
instances into a range covering 5% of the graph, when compared to 7.5% of
the range for the model containing only Q and CVR. This small change makes
sense when you consider Figure 4.7a, showing the number of communities in
an instance on the x-axis, and the CVR of the instances on the y-axis, this
figure shows there exists a relatively strong overall correlation between CVR
and the number of communities, though this correlation does weaken within
the range we observed as the peak range of number of communities, between
40 and 240 communities. Hence the improvement we observed.

These results show us that by including the number of communities, Q
and CVR we have a model for identifying hard random instances that con-
tains very few false negatives. However, we later discovered that while in-
cluding the number of communities in this model reduces the false negatives,
it increases the false positives — this new model incorrectly identifies many
easy instances as hard — this result is discussed further in Chapter 6.

26

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●● ● ● ●

0 2 4 6

Product of Q and CVR Scores Against Average Time

score(Q)*score(CVR)

T
im

e
in

 S
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

● UNSAT
SAT
TIMEOUT

Figure 4.4: The product of Q and CVR scores against average execution
time

27

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ● ●● ●● ●●●●● ●● ● ●

0 100 200 300 400

|Co| Against Average Time

|Co|

T
im

e
in

 S
ec

on
ds

0
50

10
0

15
0

20
0

25
0

● All

Figure 4.5: The peak of |Co| against time

28

●
●●
●

●

●

●●●●●●

●
●
●●
●●●

●

●●●●
●
●●●●●●●●
●
●
●
●●●●●●●●●●●●

●

●●●
●●
●●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●
●
●●●●●●●●●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●
●
●●●

●

●●● ●●●●●● ●●●●● ●●●● ● ● ● ●●

0 200 400 600 800

Product of Q, |Co| and CVR Scores Against Average Time

score(Q)*score(|Co|)*score(CVR)

T
im

e
in

 S
ec

on
ds

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

● UNSAT
SAT
TIMEOUT

Figure 4.6: The product of Q, |Co| and CVR scores against average
execution time

29

●
●

●

●

●

●

●●

●

●
●●

● ●
●

●
●

●●●●● ●●●●●● ●
●●●

●● ●
●●● ●● ●●● ●●● ●●

●●●●● ●●

●●●●●
●●●●
●●●

●
● ●●●

●●●●●● ●● ●
●

●

●●●●● ●●● ●●●●
● ●

●●● ●
●
●●●

●

● ●●●

● ●●●

●●●●●●●
●●●●

●●●
●

●●

●
●●
●●●

● ●

● ●

●● ●●●● ●

●
●●

●●

●●
●

●

●
●● ●

●

●● ●
●●

●
●●●
●

●●●

●

●
●

● ●
●● ●

●
● ●

●

●
●

● ●●● ●●●

●●●
●

●

●

●●●●● ●●
●

●●●

●●
●

●
●● ●●●

●●●●

●●

●

●● ●

●

●
●

●●

●

● ● ●

●
●

●
●

●●

●

●●

●●

● ●
●●

●

●●
●

● ●● ●●●●●● ●
● ●● ● ●●●● ●●● ●●● ●

●●●● ●●●● ●

●●● ●
●

●●●●●
●●●● ●● ● ●●

●●● ●● ●●●● ●

●●●● ●●

●● ●●● ●●
●●

● ●●
●
●●●

● ●●● ●●●● ●●

● ● ●●

● ●●● ●
●

● ●●

●●● ●

●●●●

●● ●●●●●●

●●● ●●

●●

● ● ●

● ●
● ●●●

●●●
●

●
●●●●● ●

●●●

●●

●●●

●●

●●
●

●● ●
●

●●●
●●

●●●●
●●●●●●

●

●●

●
●
● ●

●

●●
●

●
●

●
●●●

●●

●

●

●
●●

●●

●

● ●

● ●●●● ●●
●● ●●

●●●

●

●●

●●

●
●●●

●
●●●

●●●

●●●

●●● ●●● ●● ●● ●●●●●●●● ● ●●●● ●●● ●
●● ●

●● ●●●●●● ●●● ●●●
●● ●●●●

●●●●

●● ●● ●●
●●●

● ● ●●
●● ●●

●● ●

●
●● ●● ●●●
●●●●

●●●●

●
●●

● ●
● ●

●

●● ●●●●

● ●
●● ●●

● ●
●●
●
●

●

●
●●

● ●●

●
●●●●● ●●

●

●● ●●● ●

● ●●

●● ● ●●●

●● ●●
●●●● ●●●●

●
●

●●●
●

● ●

●

●

● ●●●● ●

●
●● ●●●

●●

●

●●●

●
●
●●

●

● ●

●●●● ●●●●● ●●●●● ●●

●

●●●

●

●
●●

●
●
●

●

● ●
●●

●● ●●●

●●●● ●●● ● ●●●●●●● ●●● ●● ●● ● ●●●●● ●●

●● ●●●● ●●●● ● ●●
● ● ●● ● ●● ● ●

●●● ●●
●●●●●●● ●

●●●● ●● ●
●● ●● ●●

●
●● ●

●● ●
●●●● ●

●●

●● ●●●● ●●●
●●●

●
● ●●●●● ●●●● ●● ●

●

●● ●

●●● ●●● ●
●

●●●

●●●
● ●

●●●●
● ●●
●● ●

● ●

●
●●

● ●● ●●● ●
●●●●

●●●
●

●
●●●

●

● ●
● ●●

●●

●
●●

●●●●●
● ●

● ●

●

●● ● ●●

●●● ●●

●

●

●●●●
●

●●

●
● ●●

● ●●●
●● ●

●●●● ●●●

●●●●●

●

●● ●●
●●●

● ●
●

●
●●

●●●●● ●

●● ●●●● ●●●●●●●● ● ●● ●●● ●● ●●● ● ●●
●

● ●●●●
● ● ●

● ●●●● ●●● ●● ●● ● ●● ● ●●●●● ● ●
●●

●●●●● ●●● ●●●●●●● ●● ●●
●●●

● ●●●

●●● ●●● ●

●●● ● ●●●●
●

●●
●

● ●●●
● ●●
●●● ●

●●

● ●●

● ●●● ●● ●
●●●

●●●
●●●

●●● ●●

●●● ●● ●

●● ●●●● ●●

●●
●●● ●

● ●●
●●

●
●●

●● ●●●●

●● ●●●
●●

●●●
●●●

●●

●●

●
●●●

●
●● ●

●
●

● ●

● ●

●
●● ●

●●
●●

●
●

●●●
●

●●
●

●
●

●●
●●●● ●●

●●

●●

●
●

●●
●
●

●
●

●●●●●●●

●●● ●● ●●●● ●●●●●● ●●●●●● ●●● ●●● ●● ●● ●●● ●● ●●

●● ●●●●●●● ●●●● ●●● ●● ●● ●●●● ●
● ●●●●

●●● ● ● ●●●
●●

●● ● ●●●● ●●●
●●●● ●

●● ●●● ●●

● ●● ●
●

●●
●●●●●● ● ● ●●●

●●●● ●

●●● ●●
●●● ●

●●
● ●

●
●

● ●●

● ●●●

●
●●● ●●

●●●
● ●●

●● ● ●
● ●

●
●●

●●●●

●●●●

●●
●● ●●

● ●●●
●●●

●●
●

●●
● ●● ● ●●

●●

●●
●●● ●

●●●
●

●●
●

●

●
● ●

●
● ●

●● ●● ●●● ●
●●●● ●

●●● ●● ●
●● ●

●

● ●● ●●

●● ●● ●● ● ●●● ●● ●●●●●● ●●●●● ●●●●●● ●●●●●●

●●● ●●●● ●●● ●●●●● ●●●● ●●●● ●●●

●● ●●●● ●●● ●● ●●●●● ● ●●● ●● ●
●● ●● ●●●● ●●● ●

●● ●●● ● ●●● ● ●
● ●● ●● ●● ●●●●

●●● ●● ●●●

●●● ● ●●●●
●
●

●● ●●●●●
●● ●●● ● ●

● ●● ●

●● ● ●●

●●●● ●●●●●● ●●
●

●●
●

● ●
●

●●● ●

●●●● ●●●
●● ●● ●●

● ●
●●● ●●

● ●●●
●
● ●● ●●
●

● ●●●●

● ●●
●

●

●

●●
●●●

●
●●

● ●●
●●●

●●
●

●●● ●●●●● ●●● ●
●

●●

●●

●●●●

● ●● ●●●
●

●●
●●

●●●
●●● ●●●

●● ●●● ● ●● ●● ●●● ●● ●●● ●● ●● ●●● ●●●● ●

●●●●● ●●●●● ●●● ●● ● ●●● ● ●●●● ●●● ●●●● ●●●●

● ●● ●●● ●● ●●● ●●●●● ● ●● ●● ●●●●●●

●● ●● ● ●●●●●● ●●● ●●● ●● ●
●●●

●●●

● ●
● ●●

● ●● ●● ●● ●●● ●●

●● ●● ●
●

●
● ●●●

● ●●
●●●

●● ●●
●

●
●●●●●

● ●● ●●● ●
●●

●●●●
●●
● ●● ●

●●
●●

●
●●

● ●●
●

●● ● ●●●●
●●

●
●●●

●● ●
●
●

● ●
● ●

●●●

●●● ●●

●● ●● ●● ●●●
●●●●● ●● ●●● ●

●●
●●

●●●
● ●

●● ●●●● ●
●

●● ●

● ●●●●●● ●● ●● ● ●●● ●●●● ●●

● ●●●● ●●● ●●●● ●●●●● ● ●● ● ●●●● ●●●●●●● ●●●●●●

●●● ●● ●●●● ● ●●●●● ●●●●●
●● ●● ●●● ●●● ●

●● ●●●

●●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●

●●●●

●●●● ●● ●●●●● ●●●
● ● ●●●●● ●●●●

●●● ●

●● ●●●● ●●
●●

●
●●●● ●● ● ●

●●●●
● ●●● ●● ●

● ●
●

●●●●

● ●●●

●●● ●● ●●

●●
●

●

●● ●● ●●
● ●● ●●● ●● ●

● ●●
●●

●
●●

●●
●●
●●● ●

●● ●

● ●●●● ● ●●●●● ●● ●●●● ●● ● ●●● ●●●●●●● ●●●
● ●●● ● ●●● ●● ●●●●● ●● ●●● ● ●●●●●● ●●●●●

●●●● ●● ●●●● ●●●● ●
● ●●●

● ● ●●●●●●● ●●
●●● ● ●● ● ●●● ●● ●

●●● ●●●●

●●● ● ●●●● ●●●●●● ●●
●●

●●●●● ● ●● ●●● ●●● ●●●
●●●●

● ●● ●●●●●● ●
●●

●● ● ●
● ●●●

● ● ●
●● ●●●

●● ● ●● ●●●●● ●●
●●

●● ●● ●●
●

●●●
●●●

● ● ●
●

●●●●●●

●●● ●●●
●

● ●
●●

●
●●

●

●● ●● ●●
●● ●●●● ●●

●

●●●●
●
●●●
●●●

● ●

● ●●●●

●● ●●●●● ●●●●● ●● ●●● ●●● ●● ●●●●
●●● ●●●●● ●● ●●● ● ●●●●●● ●●●●● ● ●● ●●●●● ●●●● ●●●

● ● ●●● ●● ●●● ● ●● ●● ●●●● ●●●
● ●●●● ●●● ●● ●●● ● ●●●●● ●●● ● ●●●● ●●

●●● ●●●●
● ●●● ●● ●●●● ●● ● ●●● ● ●

●●● ● ●●●
● ●● ●● ●

●●●●● ●●●●●● ●● ●●●● ● ●●●
●●

● ●
●● ●●

●●●● ●● ●●●●
●●

●●●●
●●● ●●●

●● ●
● ●● ● ●

●●
●

● ● ● ●● ●●●●●
●● ●●

●● ● ●
●

●●
●●

●●●
●

● ●

●● ●● ●

●●

●

● ●

●

●●

● ● ●●

●

●

●

●

●●

●●●

●●
●

● ●

●

●●●

●●●

●●●●● ●

● ●
● ●● ●

●●●●

●●●

●●
●

●●
●

●●

● ●
●
●
●●

●

●
●●

● ●●
●

● ●●●●

●

●●

●

●●
● ● ● ●

● ●
●● ●

●
●
●●●● ●

●

●
●●
●

●●●

● ●

●

●

●

●

●
●

●●
●

● ●

●

●●
●

●●

●

● ●
●

●

●

●

●●

●●●

●● ●●●

●
● ●

●●

●

●

●

●

● ●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●●

●

●● ●

●● ● ●

●

●

●

●

●

●

●●

●●

●

●●
●

●●
●

●

●

●

●

●

●

●●

● ●
●

●
●●

●●

●●● ●●●●●●●●●●
●●
●

● ●
●●● ● ●● ●
●●●● ● ● ●

●●● ●●●
●●●

●●●●●

●
●

●

●●

●
●● ●● ●●● ● ●

●

●●

● ●●

●●●

●●

●●

●●●●

● ●●●

● ● ●
●

●
●

●
●●

● ●

●●●

●

●●●●

●

●●●●●●

●

●

●

●●
●

●

● ●●●
● ●

●

●●●
●

●●

●●

●

●●

●● ●●

●●

● ● ●

●●

● ●
●

●

●●

●●
●
●●

●

●●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

● ●●●

●●

●●●

●

●● ●
●

●● ●●

●●●
●●

● ●●
●

●●●

●

●

● ●

● ●

●

● ●

●

●

● ●

●●●

●

●

●●

●●

●

●

● ● ● ●

●●

●

●●

●

● ● ●

●
●

●●●●●●
●

● ●●
●● ● ●●● ●● ●●●●● ●●

●●● ●

● ●
●

●● ●
● ●●

●●● ●● ●●●
●

●●● ●● ●

●●●

●●

●

●●

●●
● ●● ●

● ● ●

● ●●

●●
●● ●

●●● ●

●

●●●●

●●
●●
●●●●

●●
●

●
●

●

●●●

●●
●

●

●

●

●

●
●

●
●●● ●

●

●●●●

●
● ●●●●●

●

●●

●

●●

●●
●

●
●

●

●
●

● ●

●

●●

● ●

●

●

●
●

● ●

●
●

●●●

● ●●

●●

● ●

● ●

●

●

●●●

● ●

●● ●

●

●
●●

●●

●

●

●●●

●

●

●●

●

●

●●●●

●●

●●● ●●●●●●●●
●

●● ●●
●

●●●

●●●● ●●

●●● ●● ●●●● ●
●

●●

●
●
●●

●● ●●●● ●

● ●● ●

●●
●● ●●● ●●

●●●

●

● ●
● ●
● ●● ●●

●
● ●●

● ● ●●

●
●

●●

●●●

● ●
●● ●

●
●●

● ●

●●●●
●●●●

●
●

●●●

●

●

●

●

●
● ●

● ●●● ●
●●

●

●●
●●●

●●

●
●
●●●
●● ● ●

●● ●
●

●

●● ●●●
●●

●●

●●●●
●●

●●●

●●

●

●

●

● ●
●

●
●

●●●

●
●● ●

●●●

●
●

●
●

●
●

●

●

●

●●
●

●

●●

●

●

● ●

● ● ●
●●

●

●●●

● ●●● ●●● ●
●● ●● ●● ●●●●● ●● ●

● ●
●●

●
●

●●●●

●● ●●●●●
●●●

●●●●
●

●● ●●
● ●●●● ●●

●●● ●
●●●

●● ●●●●

●●●
●

●●
●●●●
●

●●

●●
●●●

● ●●●

●

●●●● ●●

●●
●

● ●

●●●●

●

●
●

●●
●

●

● ●●

●

●●

● ●●

●

●●●●

●

●

●
● ●●
● ●

●

● ●

●●

●● ●●●

●

●●
●●

●
●

●
●

●

●

●●● ●●●

●

● ●

●●

●●●●

●● ●

● ●

●

●

●●●

●●

●●●

●●

●
●

●●

● ●●●

●●● ● ●

●●
● ●

● ●
● ●

●●

●
●

●

●

●

●●

●● ●
● ● ●

●●●

● ●
●● ●

●

●●●
●

●

●
●

●

●

● ●

●
●

●

● ●
●

●●

●
●●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●● ●● ●●

●●

●● ●
●

●
●

●●
●

●

●
● ●●

●
●

●●

●
●●●

● ●

● ●

●●

●
●

●
●●

● ●●

●
●● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●● ● ● ●●●
●●

●
●

●
●●

●●
●●●

●●

●●
●
●●●

● ●
●● ●

●●●●
●

●● ●

●
●●
●
●

●●

●●

●
●●

●

●●

●●
●

●
●

●● ●

●

● ●
●

●

●
●

●

●●

● ● ●●●

●●●
●

●
●●● ●

●●
●

●

● ●● ● ●
●

●

●●
●

●

●●
●

●
● ●

●

●
●

●

● ●

●

●
●

●●
● ●

● ●●●●● ●●●

● ●● ●●●
●

●● ●●●● ●●
●

● ●●
● ●

●

●
●

●

●●
●

●●
●

●
●● ●

●●
●●

● ●● ● ●

●●

●

●
●●●
●●●

●

●

●
●

●

●
●

●●

● ●●● ●●●●

●●● ●
● ● ●● ●

●

●●
● ● ●●●●

●●● ●
●

●●●
●● ●

●●
● ●

● ●
●
●

●

●
● ●

●

●
●●

●● ●
●

●●

●
●
●

●

● ●● ●●●● ●●

●● ● ●●

● ●●● ●●●
●●

● ●● ●●●
●●

● ● ●
●●

●● ● ●
● ●

●
● ●● ● ●●

●
●●
●

●

●●
●●

●

●

●
●●

●
●

●

●
●

●●● ●●●●

●●● ●● ●●

● ●●● ● ●
●

● ●● ●
●● ●

●●●
● ●

●
●● ●● ●

●

●
●

●

●
●
●

●●
● ●

●● ●●

● ● ●●●●●
●

● ●●

●● ●

●● ●

● ●●●● ●●

●● ● ●●●

● ●● ●
●

●

● ● ●
●

●●●

● ● ●
●●●

●●●

●
● ●

●

● ●●● ●
●●● ●●

●

● ●●●●
●●● ●● ●

●● ●●●●●

●
● ● ●●●● ●

● ●
● ● ●

●●

● ●
● ●

●●
●●

● ●

●
●●●● ●

●●

● ●● ●● ●●
● ●●

●●● ●●● ● ● ● ●● ●●
●●●●● ●●● ●

●●● ● ●●●●●

●●●● ●●
● ●

●

●● ●
● ● ●●

●● ●

● ● ●

●

●

● ●

●

● ●●

●

●

●

●
● ●

● ●

●

●●●
● ●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●● ●●

●

●
●

●
●

●
●●● ●

●
●

●

●

●
●

●●

●

●●

●

●● ●

● ●

●

● ●

●

●

●● ●

●

●

●●

● ●● ●

●●
●

●

●

●
●

●●

●

● ●
●

●

●

● ●

●
●

●●●
● ●●

● ●
● ●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●●●●
● ●

●
● ●●

● ●●
● ●●●

●●

●

●●
● ●

● ●
● ●●

●

●

●●●

●

●

●
●

●

● ●●●

●●

● ●

●

● ●●
●

●●●●●
●

●

●

●●

●
●●

●

● ● ●

●

●

●

●

●

●

●●●

●●●● ●●
●

●●●● ●●
●

●●●●● ●

● ●●●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●●

●●
● ●

●●

●

●
● ●

●

●

●

●● ●

● ●

●

●

●

●

●

●

0 100 200 300 400

5
10

15
Correlation of |Co| and CVR

|Co|

C
V

R

(a) |Co| plotted against CVR

●
●

●

●

●

●

● ●

●

●
●●
● ●

●

●
●

●● ● ● ●●●● ● ●●●
●● ●

●● ●
●● ● ●● ●●● ●●● ●●

●●● ● ●● ●

●●●●●
●●●●

● ●● ●
● ● ●●

●● ●● ●●●● ●
●

●

● ● ● ●●● ●●● ●● ●
●●

●● ●●
●

●● ●
●

● ●●●

●● ●●

● ● ●●● ●●
●● ● ●

● ● ●
●

● ●

●
● ●
●●●
● ●

●●

●●●●● ●●

●
● ●

● ●

●●
●

●

●
● ●●

●

●●●
●●

●
● ● ●
●

●● ●

●

●
●
● ●
● ● ●

●
● ●

●

●
●

●●● ●● ●●

●● ●
●

●

●

●● ● ●● ● ●
●

● ●●

● ●
●

●
●●●● ●

● ● ● ●

● ●

●

●● ●

●

●
●

●●

●

● ● ●

●
●

●
●

●●

●

●●

● ●

● ●
● ●

●

● ●
●

● ● ●●● ●●●● ●
●●●● ●●●● ●●●●●● ●

● ●● ●●●● ●●

● ● ●●
●

●● ●● ●
● ● ● ●●●●● ●

● ●● ●● ●● ●● ●

●● ●● ● ●

● ●● ● ●●●
●●

●● ●
●

● ● ●
● ●● ● ●●●●● ●

●●●●

●● ●●●
●

●● ●

●● ●●

●●●●

● ●●●●● ● ●

●● ●● ●

● ●

●●●

● ●
● ● ● ●

●●● ●

●
● ●●● ●●

● ●●

●●

●● ●

●●

● ●
●

●● ●
●

● ● ●
●●

● ● ● ●
● ● ●● ● ●

●

● ●

●
●

● ●

●

●●
●

●
●

●
● ●●

● ●

●

●

●
●●

● ●

●

● ●

●●● ● ●● ●
● ●●●

● ● ●

●

●●

● ●

●
●●●

●
●●●

●● ●

●●●

●● ●●●● ●● ● ●● ●● ●● ●●●● ● ● ●●● ●● ●
● ●●

● ●● ●●●● ●●●● ●● ●
● ● ●●● ●

●●● ●

● ●● ●●●
● ●●

●●● ●
●● ●●

● ●●

●
●●●●●● ●

●●● ●
●● ● ●

●
● ●

● ●
● ●

●

● ●● ● ●●

●●
● ●●●●●

● ●
●

●

●

●
●●

●● ●

●
●● ● ●●● ●

●

● ●● ● ●●

● ● ●

● ●●●● ●

●●● ●
●● ● ●● ● ● ●

●
●

● ●●
●

● ●

●

●

●● ● ●●●

●
●● ●● ●

● ●

●

●● ●

●
●

● ●
●

● ●

●●● ●●●● ● ●●●●● ●● ●

●

●●●

●

●
● ●

●
●

●
●

● ●
●●

● ●● ● ●

●● ● ●● ● ●●●● ●● ●● ● ●●● ●●●● ● ●● ● ●● ● ●

● ●● ●●●● ● ●●● ● ●
●● ●●● ●● ●●

● ●●● ●
●●●●●● ●●

●● ● ●● ●●
● ●● ●● ●
●

● ●●
●●●

● ● ●● ●
● ●

● ●● ● ● ●●● ●
●● ●

●
●● ● ● ● ●●●●● ●● ●

●

● ●●

●● ●●● ●●
●

●● ●

●●●
●●
● ● ● ●
●● ●
●● ●
● ●

●
● ●

●● ●●● ●●
●● ● ●

● ●●
●

●
● ● ●

●

●●
●●●

● ●

●
● ●

●●●● ●
● ●

● ●

●

● ●●● ●

●●●● ●

●

●

● ● ●●
●

●●

●
● ●●

●●● ●
● ●●

●●●● ● ● ●

●●● ● ●

●

● ●● ●
● ● ●

● ●
●

●
● ●

●● ● ● ●●

● ●●● ●● ●●● ●●●● ●●● ●●●●● ● ●●● ● ● ●
●

● ● ●●●
● ●●

● ● ● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●
● ●

●● ● ● ●● ● ●●●●●●● ●● ●●●
● ●●

● ●● ●

● ● ●● ● ●●

● ● ●●● ● ● ●
●
● ●

●
● ● ● ●
● ●●
●● ●●

●●

● ●●

●●● ●● ●●
●●●

●●●
●● ●

● ●● ●●

● ● ●● ●●

● ●●● ● ●● ●

●●
● ● ●●

● ● ●
● ●

●
●●

● ● ●● ● ●

●● ● ● ●
●●

● ● ●
● ● ●

● ●

●●

●
● ● ●

●
● ● ●

●
●

●●

● ●

●
● ●●

● ●
● ●

●
●

●● ●
●

● ●
●
●

●

● ●
● ● ● ●●●

● ●

● ●

●
●

● ●
●

●
●

●

●●●●●● ●

●●●●●● ●●●●● ● ●●● ● ● ●● ●● ● ●●●● ●● ●●● ●●● ● ●●●

●● ●●● ● ●●● ● ● ● ●● ●● ●●●●● ● ● ●●
●●● ● ●

● ● ●●●●● ●
●●

● ●●● ●● ●●● ●
● ● ● ● ●

●●●● ●● ●

●● ●●
●

● ●
● ● ●

● ● ●●● ● ●●

● ● ● ●●

● ● ●●●
● ● ●●

● ●
●●

●
●
● ●●

●● ● ●

●
●● ●● ●

● ●●
●● ●

● ●● ●
●●

●
● ●

●●● ●

●● ● ●

●●
● ●●●

●● ● ●
● ● ●

●●
●

● ●
●● ● ●● ●

● ●

● ●
● ● ●●

●●●
●

● ●
●
●

●
●●

●
● ●

● ●● ●● ● ●●
● ● ●●●
● ● ●● ●●
●●●

●

●● ●●●

●●●● ● ●●●●●●● ● ●●● ●●●●● ● ●●●●●●●● ●● ● ●●

● ● ●●● ● ●●● ●● ●● ●● ●●●● ●●● ●● ● ●

●● ● ● ● ●● ●●●●●●● ● ●● ●● ● ●● ●
●●●● ●● ● ●● ● ●●

●●●● ●●●●
●●●

●●● ● ●● ●●● ● ●
● ● ●●● ● ● ●

● ● ●●●● ● ●
●

●
● ●●● ● ●●

●●● ● ●● ●
● ●● ●

● ●● ● ●

● ● ● ●●● ●●● ●● ●
●

●●
●

●●
●

●● ●●

●● ● ●● ●●
●●●● ● ●
●●

● ●● ● ●
● ● ● ●
●
●● ●● ●

●

●●● ● ●

●● ●
●

●

●

● ●
●●●
●

● ●
●● ●
● ● ●

●●
●

● ● ●●●● ● ●● ● ●●
●

● ●

●●

● ● ● ●

●● ●● ● ●
●

● ●
●●

● ● ●
● ● ●●● ●

●●●●● ● ●●● ●● ● ●● ● ●●● ●● ●●●●●●●● ●●

●●● ● ●●●● ● ●●●●● ●●● ●●●● ●●●● ●●●●● ●● ● ● ●

●● ●● ● ●● ●●● ●●● ● ● ●● ● ●●● ●●●● ● ●

● ●● ●●●●● ● ●● ● ● ●● ● ●● ●●
● ●●

● ● ●

● ●
●●●

●● ●●●● ●● ● ●● ●

● ●●●●
●

●
●●● ●
● ● ●

● ● ●
● ●● ●

●
●
●●● ● ●

●● ●● ● ●●
● ●

●● ● ●
● ●
●●● ●

● ●
● ●

●
● ●
●● ●

●
● ●●●● ● ●

● ●
●

● ● ●

● ●●
●

●
●●

● ●
●● ●

● ●● ●●

●● ●●● ●● ● ●
●●●● ●●●● ● ●●

●●
● ●
● ● ●

● ●

●●●● ● ● ●
●

● ●●

●●●● ● ●●● ●●● ●●●● ●● ●●● ●

●●● ●●●● ●● ●●●●●● ● ●● ●●●● ●●● ●●● ●● ● ●●●●● ● ●

●●●● ●●● ● ●●●● ●● ●● ● ● ● ●
● ●● ●● ● ●● ● ●●

●● ●● ●

● ● ●● ● ●● ● ● ●●● ●● ● ●● ● ● ●● ●● ●●

● ● ● ●

●● ● ●● ●●● ● ● ●●● ●
●●● ●●● ●● ● ● ●

● ● ●●

● ●● ● ● ●● ●
●●
●
●●

● ●● ●● ●
●●● ●

●● ● ●● ●●
● ●

●
●● ●●

●●● ●

● ●●● ●●●

● ●
●

●

● ●● ●● ●
●● ●●● ●●● ●

●● ●
●●
●

●●
● ●
●●

● ● ●●

● ●●

●●●● ●●● ●●●●●●● ● ●● ●●● ●● ●●●●● ● ● ●●● ●
●● ● ●●●●● ● ●●●●● ●● ●● ●●●● ● ● ●●●●●●● ●

●●● ●●●●● ● ●● ●● ●●
●● ● ●

● ● ●●●● ● ●●●●
● ● ● ●● ● ●●● ●●●●

● ● ●●●● ●

●● ●●● ● ●●●●● ● ● ●● ●
● ●

●● ●● ●●● ●●● ●● ●● ●●●
●●● ●

●● ●●● ● ● ● ●●
● ●

● ●●●
●● ● ●
●● ●

● ●● ●●

● ●● ● ●● ●● ● ●● ●
● ●

●●●● ● ●
●

● ●●
●● ●

●● ●
●

●● ● ● ● ●

●●●● ● ●
●

●●
● ●

●
●●

●

● ●● ●● ●
● ●●●● ●● ●

●

●●● ●
●

● ● ●
● ● ●

● ●

●●● ● ●

●●●●● ●●● ●●●●●●● ●● ●● ● ●● ●●●●
● ● ●●● ●●●●●●● ●●● ●● ● ●●● ● ●●●●●● ●●●● ●●● ● ●● ● ●

●● ● ● ●●● ● ● ●● ● ●●●● ● ● ●●● ●
● ● ● ● ●● ● ●● ●●● ●●●●●● ●● ● ●●● ● ●●● ●
● ● ●● ● ● ●

●● ● ●● ●●●● ●● ●● ●●●● ●
●● ●●● ● ●

●● ●● ●●
●●● ● ●● ●●● ● ●● ●●● ● ●●● ● ●
●●

●●
● ●● ●

● ● ● ●● ●● ● ●●
● ●

●● ● ●
●● ● ● ● ●

● ●●
●●

●●●
● ●

●
●●●● ●●●● ● ●

● ●● ●
● ●●●
●

●●
● ●

●● ●
●

●●

● ●● ●●

●●

●

● ●

●

● ●

●● ●●

●

●

●

●

●●

●● ●

● ●
●

● ●

●

● ●●

●● ●

●●●●●●

● ●
● ●● ●

●●● ●

● ● ●

● ●
●

● ●
●

● ●

● ●
●
●

● ●
●

●
●●

●● ●
●

●● ●●●

●

● ●

●

● ●
●● ● ●

● ●
● ● ●

●
●
●●● ●●
●

●
● ●

●

●● ●

● ●

●

●

●

●

●
●

●●
●

● ●

●

●●
●

● ●

●

● ●
●

●

●

●

●●

● ●●

●● ●●●

●
● ●

● ●

●

●

●

●

● ●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●●

●

● ● ●

●● ● ●

●

●

●

●

●

●

●●

●●

●

● ●
●
●●

●

●

●

●

●

●

●

●●

● ●
●

●
● ●

● ●

● ● ●● ●● ● ● ● ● ● ● ●
●●
●
● ●

● ●● ● ●● ●
●● ●●● ● ●

● ● ●● ● ●
● ● ●

●● ● ●●

●
●

●

● ●

●
●● ●● ●●● ● ●

●

● ●

● ●●

● ● ●

● ●

● ●

● ● ● ●

● ●●●

● ● ●
●

●
●

●
●●
●●

●● ●

●

● ●●●

●

●●●● ● ●

●

●

●

●●
●

●

● ●●●
● ●

●

●● ●
●

●●

●●

●

● ●

● ● ●●

●●

● ● ●

●●

● ●
●

●

● ●

● ●
●

●●

●

● ●

●

●

●

●

●●
● ● ●
●

●

●

●

●

●

●

● ● ● ●

●●

●●●

●

●● ●
●
●● ●●

●● ●
● ●

● ● ●
●

●●●

●

●

● ●

●●

●

● ●

●

●

● ●

●●●

●

●

● ●

●●

●

●

●● ● ●

● ●

●

● ●

●

● ● ●

●
●

●●●●●●
●

●●●
● ● ●● ●● ●● ●●●●● ●●

● ●●●

●●
●

● ●●
●● ●

●●● ●● ● ●●
●

● ● ●● ●●

●●●

●●

●

●●

●●
● ●● ●

● ● ●

●● ●

●●
●● ●

● ●● ●

●

●● ● ●

● ●
● ●

●●● ●
●●

●
●
●
●

●● ●

● ●
●

●

●

●

●

●
●
●
●●● ●

●

● ● ●●

●
●● ● ● ● ●

●

● ●

●

● ●

● ●
●

●
●

●

●
●
● ●

●

● ●

● ●

●

●

●
●

●●

●
●

● ● ●

● ● ●

●●

● ●

● ●

●

●

●●●

●●

●●●

●

●
● ●

● ●

●

●

● ● ●

●

●

●●

●

●

● ● ● ●

● ●

● ● ●● ●● ● ●● ●●
●

●● ●●
●

● ●●

● ●● ●● ●

● ● ●● ●●● ●●●
●

● ●

●
●

●●
●●● ●●● ●

●● ●●

● ●
● ●●● ●

●●

●● ●

●

● ●
● ●
● ●● ●●

●
● ●●

●●● ●

●
●

● ●

●● ●

● ●
●● ●

●
● ●

● ●

● ●● ●
● ● ● ●

●
●

● ● ●

●

●

●

●

●
● ●

●● ● ●●
●●

●

●●
● ● ●

● ●

●
●
● ● ●
●● ● ●

●● ●
●

●

● ●●● ●
● ●

● ●

● ● ● ●
● ●
●● ●

● ●

●

●

●

● ●
●

●
●

●● ●

●
●● ●

●● ●

●
●
●

●

●
●

●

●

●

●●
●

●

●●

●

●

● ●

● ● ●
● ●

●

● ● ●

●●● ●●● ●●
● ● ●●● ●● ●●● ●● ● ●

● ●
●●

●
●

●●● ●

● ●●● ● ● ●
● ●●

● ● ● ●
●
● ● ●●

●●●● ● ●●
●●●●

●●●

● ●● ● ● ●

● ● ●
●

● ●
● ●● ●
●

● ●

●●
● ●●

● ●● ●

●

● ● ● ●● ●

● ●
●
●●

● ●● ●

●

●
●

● ●
●

●

●● ●

●

● ●

●● ●

●

● ● ●●

●

●

●
●●●
● ●

●

●●

●●

● ●●● ●

●

●●
● ●

●
●

●
●

●

●

● ● ●● ● ●

●

●●

● ●

●● ●●

●● ●

● ●

●

●

● ● ●

● ●

● ● ●

● ●

●
●

● ●

●● ●●

●●● ● ●

●●
● ●

● ●
● ●

●●

●
●

●

●

●

●●

●● ●
● ● ●

●● ●

●●
●●●

●

● ● ●
●

●

●
●

●

●

●●

●
●

●

●●
●

● ●

●
●●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●●●●● ●●

● ●

●●●
●

●
●

● ●
●

●

●
●●●

●
●

● ●

●
● ●

●
● ●

●●

● ●

●
●

●
● ●

●● ●

●
● ●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●● ●● ●● ● ●
●●

●
●

●
● ●

●●
●● ●

● ●

● ●
●
●● ●

●●
● ●●

● ● ● ●
●

● ●●

●
● ●

●
●

● ●

● ●

●
● ●

●

● ●

● ●
●

●
●

● ●●

●

●●
●

●

●
●

●

● ●

● ●● ● ●

● ● ●
●

●
● ● ● ●

●● ●
●

●● ●●●
●

●

●●
●

●

● ●
●

●
●●

●

●
●

●

● ●

●

●
●

● ●
● ●

● ●●●●●●●●

●● ●● ● ●
●

● ●● ●● ●●●
●

●● ●
● ●

●

●
●

●

● ●
●

● ●
●
●

● ● ●

● ●
● ●

●● ●●●

● ●

●

●
● ● ●

●● ●

●

●

●
●

●

●
●

● ●

● ● ●● ●●● ●

● ● ● ●
● ●● ●●

●

● ●
●●● ●● ●

● ● ●●
●

● ● ●
● ●●

● ●
●●

●●
●

●

●

●
●●

●

●
● ●
●● ●

●

●●

●
●

●
●

●●●● ●●●●●

● ●● ●●

●● ●● ●●●
● ●

●● ●● ●●
● ●

●●●
● ●

● ●● ●
●●

●
●● ●●● ●

●
●●

●
●

● ●
● ●

●

●

●
●●

●
●

●

●
●

●● ●● ●●●

●● ●● ●●●

● ● ● ●●●
●

●● ●●
● ●●

● ● ●
● ●

●
● ●● ●●
●

●
●

●

●
●

●

● ●
●●

● ●● ●

●●●●● ●●
●

●● ●

● ●●

●●●

●● ● ●●●●

● ● ●● ●●

●● ●●
●

●

●●●
●

●● ●

●●●
● ●●

● ● ●

●
●●

●

●●● ●●
●●●● ●

●

● ●●●●
● ● ●● ●●

● ●● ● ●●●

●
●●●●● ●●

●●
●●●

●●

●●
●●

●●
● ●

● ●

●
● ●● ●●

● ●

●●● ●●●●
●●●

● ●●● ● ●● ●●●● ●●
●●● ● ●● ● ●●

● ● ● ●●● ●● ●

●● ● ●●●
● ●

●

● ●●
●●●●
● ●●

●● ●

●

●

●●

●

●●●

●

●

●

●
● ●

● ●

●

●● ●
● ●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●●●●

●

●

●

●

● ● ●●

●

●
●

●
●

●
●●● ●

●
●

●

●

●
●

● ●

●

● ●

●

● ●
●

● ●

●

● ●

●

●

●● ●

●

●

●●

● ●● ●

● ●
●

●

●

●
●

●●

●

● ●
●

●

●

● ●

●
●
● ●●
● ● ●

● ●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

● ●●●
●●

●
● ● ●

● ●●
● ●● ●

● ●

●

●●
● ●

● ●
● ●●

●

●

● ● ●

●

●

●
●

●

●● ● ●

● ●

● ●

●

●● ●
●

●● ● ●●
●

●

●

●●

●
●●

●

●● ●

●

●

●

●

●

●

● ●●

● ●● ●● ●
●

● ●● ●●●
●

● ●● ●● ●

● ● ● ●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

● ●

● ●
● ●

● ●

●

●
●●

●

●

●

● ●●

● ●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

5
10

15

Correlation of Q and CVR

Q

C
V

R
(b) Q plotted against CVR

Figure 4.7: Number of communities plotted against average time for
random instances

3 Conclusion and future work

In this chapter we have described the phase transition of random SAT in-
stances with respect to community structure, we have compared the quality of
the CVR and community structure based models, and shown that a combined
model including community structure, number of communities and CVR has
the least false negatives with respect to characterising instances as hard/easy.

Our future plans for this work are to see if the community structure and
combined models are better able to characterise instances across different
implementations of the CDCL algorithm than the pure CVR model is able
to.

Additionally, our discovery that that instances with an average clause
length of below 2.9 are easy will also be explored further to determine if this
is purely an artefact of our generation technique.

30

Chapter 5

SATGraf: A tool to view the
evolution of a SAT instance
during solving

Motivated by these discoveries [6, 7, 4], we built SATGraf, a visualization and
evolution tool that displays the structure inherent to Boolean formulae and
shows how this structure is morphed by modern CDCL SAT solvers as they
solve these formulae. SATGraf takes as input a Boolean formula, constructs
the corresponding variable-incidence graph, finds the inherent community
structure, and displays it. SATGraf also shows how CDCL solvers morph the
input formula, in some cases solving it community by community.

While there are other tools that help us visualize the graph structure
of SAT formulae [41], they do not display their community structure. The
motivation for us to build SATGraf was to get clues as to how CDCL solvers
exploit structure, and indeed it led us to many falsifiable hypotheses that we
subsequently tested.

1 Implementation

SATGraf is implemented in three phases:

Phase 1: First, it converts an input Boolean formula (represented in the
standard DIMACS format) into its corresponding variable-incidence
graph.

31

Phase 2: Second, it computes the community structure based on user’s
choice of either the Clauset-Newman-Moore (CNM) algorithm [13] or
the online (OL) community algorithm [45]. We modified the CNM
algorithm to make it more efficient, and it is the default community
discovery algorithm in SATGraf. The original CNM and OL algorithms
and our modifications are described in section 3.1.

Phase 3: Finally, SATGraf uses either a modified version of the force-
directed graph layout algorithm by Kamada and Kawai called the KK
algorithm [22] or Fruchtermon and Reingold algorithm [17] to render
the community structure. The original algorithm and our modifications
are described in section 3.3. In addition to these two graph layout al-
gorithms, it is possible to view the graph as a grid structure; this is
a much more efficient, but less visually appealing way of viewing the
community structure. It is possible to extend the drawing behaviour to
allow for any arbitrary layout algorithm. For example we have imple-
mented a simple layout algorithm to view round based functions such
as MD5 and SHA-1.

Additional As an optimisation for repeated viewing of the same input
formula, the user is able to save the viewed formula as a JSON file
with community and positional information included. Loading this
JSON file is much faster than the associated CNF formula; however
the file size is significantly larger.

Figure 5.1 shows the graph generated by SATGraf for two instances from
the SAT 2013 competition [1]. Figure 5.1a is an industrial instance, and
Figure 5.1b is a randomly-generated instance. Each distinct colour is mapped
to a unique community to make it easy to discern the various communities.
The colour white is reserved for inter-community edges. As is evident, the
industrial instance has many more distinct communities that can be neatly
partitioned, while the randomly generated instance has one big community
that has lots of edges linking it tightly, with very few discernible communities.
SATGraf presents the evolution of the formula by interacting with a modified
version of Minipure[42], which periodically generates a new graph of the SAT
formula as it is being solved. The period is user specifiable and corresponds
to the number of conflicts (n) discovered by Minipure. The output from
Minipure after n conflicts is the formula with all satisfied clauses removed.

32

The remaining clauses do include the learnt clauses generated by the solver.
It is worth noting that the tool is not restricted to Minipure.

2 Features

SATGraf not only provides a visualisation of a static representation of a SAT
formula, but also the ability to watch it transform whilst it is being solved.
We currently have two static examples of this evolution. The first shows the
partial evolution of aes 16 10 keyfind 3 [34], unfortunately at this point only
a partial evolution is possible due to the large GIF size of the generated file
(approximately 70MB). The second example shows the full evolution of the
trivial toybox example [33]. There are two separate mechanisms for this,
depending on the goal of the user. The first evolution mechanism is accom-
plished by having the solver dump the state of the formula regularly (every
n conflict clauses, where n is user specified) for re-processing. While our
experiments all focused on MiniSAT 2.0, it would be possible to implement
the required changes on any SAT solver for which source code is available.
While currently we don’t have an open, published API for this (as the im-
plementation is changing as we decide which features to support) it would
be possible for a developer to implement a solver matching the specification
found at [30]. This evolution is viewed as a series of slides with the nodes
and edges placed and coloured based on the community structure of each
of the dumps. This mechanism allows the user to view the way the com-
munity structure of the entire formula evolves over time; thus discovering if
as conflict clauses are added the formula becomes more or less community
clustered. However, as the community structure of the graph is re-calculated
at each stage, it is difficult to see how the solver interacts with individual
communities.

The second mechanism communicates with the solver via variable as-
signments. Each time a variable assignment is changed (either by decision,
implication or back-jumping) SATGraf updates the graph by either colouring,
or adding/removing the node that represents the assigned variable. This is
done based on user provided flags. In doing this it is possible to see how the
solver interacts with individual communities without the overall structure of
the graph changing.

To create an effective tool we decided to build a dynamic tool instead
of outputting a static image or series of images representing the community

33

structure and evolution of the formula. This allows the user to hide irrele-
vant information, based on that user’s preferences. A key component of this
interface is to allow the hiding of nodes and edges based on various factors,
these include the names of the variables if provided. These names, passed
in through comments in the DIMACS file can be grouped and a single node
may be present in more than one group. We found this a great help when
analysing formula representing the MD5 hash collision problem. By grouping
variables based on their relevance to specific words of the message and hash
we were able to provide the SAT solver with hints as to which intermediate
round variables to focus its attention on when solving. This approach is sim-
ilarly useful to any SAT instance generated from code rather than manually
or randomly generated.

In addition to the ability to hide nodes and edges based upon variable
naming patterns, the user can hide entire communities, either just the in-
ternal edges, external edges, nodes or any combination thereof. This allows
the user to clear the visualisation of entire communities where the edges may
obstruct the view to important areas that may otherwise go un-noticed. It
is also possible to hide specific nodes and edges.

In addition to the ability to hide nodes and edges, the ability to scale
the graph in an efficient manner provides users with the benefit of seeing the
entire formula displayed, whilst still being able to view in high detail specific
areas of the formula.

Finally, to ensure an efficient tool for analysis we provide users with the
option of saving the current session to file. While these files are in most cases
far larger than the ones containing their original formula it also provides a
way of quickly restoring a session, without having the re-run the community
detection or placement algorithms.

3 Algorithms used in SATGraf

A number of algorithms are used in SATGraf, for graph layout and community
detection. The modular design of SATGraf allows external development of
additional algorithms for these tasks, and the simple conversion of existing
implementations.

34

3.1 CNM Algorithm

The purpose of the CNM algorithm [13, 24] is to identify communities in a
graph. Initially every node is its own community. For every pair of commu-
nities, the pair that maximizes the modularity score is merged into a single
community. This process is repeated until the modularity score cannot be
maximized any further.

3.2 OL Algorithm

The online community detection algorithm by Zhang et al. [45] has the same
purpose as the CNM algorithm and uses the same metric — modularity — to
determine the quality of the community structure. However, the difference
between the two methods is that the online method has a linear worst-case
time complexity in the number of edges, compared to that of the CNM algo-
rithm which is worst-case exponential in the number of edges. For real-world
examples this led to 600-fold speed-up [45]. The only drawback to the al-
gorithm is that the modularity found by the algorithm, in our experience,
is strictly worse than the modularity found by the CNM algorithm. Conse-
quently, the graphs’ communities will not be as strongly connected and may
vary each time the algorithm is ran.

3.3 Kamada-Kawai Algorithm

The Kamada-Kawai algorithm [22] is a force-directed graph drawing algo-
rithm for general undirected graphs. It assigns “forces” to edges and nodes
based on their position relative to each other and then calculates the repulsive
and attractive forces between them to reposition them. The KK algorithm’s
complete explanation can be found in this paper [22]. Several small modifica-
tions were made in our implementation of the published algorithm. Firstly,
the KK algorithm requires that graphs be fully connected. Unfortunately,
this is not always the case for SAT instances. Hence, we implemented a
system to create proxy edges between nodes for the purpose of the layout.
These are removed after the position of each node is determined. The second,
and more important modification was to implement a wrapper for the KK
algorithm that takes advantage of the community structure present in most
large SAT instances to reduce the complexity of the algorithm. Rather than
submitting an entire graph to the script for processing, each community is

35

submitted in turn. These communities are then laid out relative to each other
using an approximation that replaces each community by a hyper node in
the graph. Once each hyper nodes position is determined, the communities
are brought back and their positions are scaled relative to each other’s size.
This results in a decrease in the algorithm’s complexity due to the far smaller
number of communities versus nodes (usually less than 200 communities are
present). This yielded a performance improvement by a factor of three.

3.4 Fruchtermon and Reingold Algorithm

The Fruchtermon and Reingold Algorithm [17] is a force-directed graph draw-
ing algorithm for general undirected graphs. It ensures that nodes which are
connected are placed close to one another, and that all nodes (whether con-
nected or not) are not placed too close to one another. It is based on an
observation from physics as to the structure of atoms, where when two par-
ticles are within one fento-meter (fm) they are strongly attracted to each
other, when this distance closes to 0.4fm, the attraction force reverses to
repel the particles - stopping the nuclei from collapsing.

A similar approach is used in the FR algorithm where the nodes are
atomic particles exerting attractive and repulsive forces on one another. The
FR algorithm’s complete explanation can be found in this paper [17]. The
desired distance between nodes is determined by the number of nodes in the
graph and the area selected for the visualisation, as such by varying the size
granted it is possible to make a tighter or more diffuse visualisation.

4 Results

SATGraf has been tested on several industrial, hard combinatorial, and randomly-
generated formulae from the 2013 SAT competition[2]. The time taken to
display the community structure of a single instance grows with the size of
the input formula. This is to be expected due to the nature of the com-
munity detection and placement algorithms. The resulting images using the
CNM community detection and KK layout algorithms, can be seen in Fig-
ure 5.1. As mentioned earlier, the right half of the Figure 5.1 is a randomly
generated SAT instance from the 2013 SAT competition, whereas the left
half of the Figure 5.1 is the graph of an industrial SAT instance from the
same competition. The community structure of the industrial instance has

36

much better modularity than the one for the randomly-generated instance.
This can be verified both visually and through the modularity measure of
quality of the community structure: the industrial instance has a modularity
of 0.437, while the randomly-generated one has a modularity of 0.132. Their
solve times using Minipure are also different; The industrial instance takes
0.076 seconds to solve compared to the randomly-generated instance which
times out after 5000 seconds.

SATGraf’s evolution by decision level feature is partly shown in three
pictures in Figure 5.2. The SAT instance here is called aes 16 10 keyfind 3
that can be downloaded from SATGraf website [29]. The entire evolution of
aes 16 10 keyfind 3 can be found at [29]. We chose this SAT formula since it
is a good representative of an industrial application of SAT solvers. Further-
more, this instance is small enough so that we can actually show, in a timely
manner, how the SAT solver dynamically morphs its graph (the instance
and the generated learnt clauses). Figure 5.2b shows the formula after sev-
eral hundred decisions have been made. Figure 5.2c shows the formula after
a few more decisions. The “new” cluster of inter-community edges (coloured
in white) represent the learnt clauses that caused this particular back jump.
Observing the evolution showed an interesting trend, namely, the removal of
entire communities during the solving process. This evolution can be seen
when going from the graph of the original SAT formula in Figure 5.2a, to
Figure 5.2b. It is easy to see that some of the communities have completely
disappeared by the absence of their associated colour, i.e., the corresponding
clauses have been satisfied.

5 SATBench

During the development of this work we decided to setup an online repository
for SAT instances. We chose to do this for a number of reasons, partly due to
the large number of instances considered and the diversity of the sources of
these formula, as well as the varied experiments performed in this work. But
also we found that current repositories such as [1] were not able to provide
the level of detail we desired when viewing the formula. Enter SATBench,
a platform for hosting information about large numbers of SAT instances
taken from a variety of sources primarily various SAT competitions, but also
custom randomly generated instances and pre-simplified versions of some
instances. The site allows for hosting an unlimited number of factors for

37

each instance and currently provides approximately 30 unique factors for
each formula stored. These factors can be user specified, and are available
publicly. In addition to storing a large number of instances, and factors.
We also store information regarding individual executions of an instance
on specific versions of solvers (with arguments provided) and on different
solving machines. We currently host trials from several different variants
of solvers, and approximately 30 different solving machines. It is possible
to create custom datasets of formulae, workers and solvers that match the
user’s specification.

We hope that providing this information publicly will encourage other
researchers to provide details about the formula in their experiments and
reduce the amount of work necessary to replicate and evaluate published
experiments, as well as reduce the work required to expand on current results.
For this reason it is possible to “publish” datasets, making the entire set
downloadable in CSV format publicly.

In addition to hosting information about a large number of instances,
we have also made it possible to view the static community structure of
certain instances (all those used in experiments from Chapters 3, 6 and 7).
Unfortunately we are not currently able to provide the evolution for these
instances online, as it requires a connection to a local instance of MiniSAT
(or another appropriately modified solver).

(a) Initial formula state (b) After many decisions (c) After a back jump

Figure 5.2: Partial evolution of the aes 16 10 keyfind 3 problem

38

6 Utility and limitations of SATGraf

We have found SATGraf useful in a number of situations, particularly when
analysing “hard” SAT instances (whether exhibiting good community struc-
ture or not) and have leveraged this tool to provide insight on the utility
of variable selection heuristics such as VSIDS. We are also in the process
of developing a parallel SAT solver based on the results provided to us by
SATGraf.

However, SATGraf does have some limitations. We have found that when-
ever a SAT formula creates a large number of edges — either from a large
clause set or from a single enormous clause — SATGraf struggles to either
build the graph or calculate the community structure. Similarly, if the in-
stance takes a particularly long time to be solved under the MiniSAT solver,
the evolution may result in large overheads. We have found that instances
under 100MB in size typically work well, however some of those approaching
this limit that have a small number of particularly large clauses also cause
problems.

The development of SATGraf provided some interesting challenges. An
example of this was separating the visualisation code from structural into
separate packages, which had to be re-factored several times. Similarly, devel-
oping a system that allows for any community detection or layout algorithm,
also proved challenging. Despite these challenges, the overall development
process went surprisingly smoothly, development of different interpretations
of the graph representation (e.g., the implication graph viewer) went quickly,
as did development of the second evolution mechanism.

7 Conclusion and future work

In this chapter we have described SATGraf, a tool for visualising the evolu-
tion of the community structure of SAT instances during solution time and
SATBench, our online repository for storing SAT instances.

In the future, we hope to integrate more options of solvers into SATGraf,
but also more decision heuristics into the solvers we support, so a user may
view the evolution with respect to different heuristics.

In addition to this, we are in the process of implementing GPU based
layout algorithms to further improve the performance of SATGraf.

39

(a) Industrial instance aes 16 10 keyfind 3

(b) Random instance
unif-k3-r4.267-v421-c1796-S4839562527790587617

Figure 5.1: Community structure of instances from the SAT 2013
Competition.

40

Chapter 6

Survival analysis of different
classes of SAT instances

Survival analysis is used in many disciplines to determine the likelihood of
a test completing within a certain time period. It is often used in medical
trials to measure the time a patient lives after treatment, or in engineering
to measure the time until failure for a component. It is particularly useful
where observed trials do not complete in a given time frame. This is the
case with SAT solvers as in many cases (particularly those in the SAT com-
petition) the instances time out, or (in a few cases) result in memory errors
before completion, this type of data is called right-censored. However, sur-
vival analysis is not able to analyse complex models in the same way that a
linear regression is; it is best used to compare different segments of data, for
example the time taken to find a set of formula SAT vs the time taken to
find a set of formula UNSAT.

Formally, the survival analysis used here is a Kaplan-Meyer estimate as de-
scribed in [23] which uses the function s(p, t) to return the probability that
a member of a population p will have a lifetime (in our case solution time)
exceeding t. Let the observed times until solution of the NP sample members
be
t11 ≤ t12 ≤ t1N1

t21 ≤ t22 ≤ t2N2

...
tP1 ≤ tP2 ≤ tPNP

41

Corresponding to each tij is nij the number of instances that are likely to
be solved (“at risk”). Instances for population i just prior to tij and dij
the number of instances that were solved at exactly time tij for population
i. This allows for non-uniform distribution of events across time, where a
number of formulae may be solved at time = x1, no formula are solved at
time = x2, and then several more solved at time = x3 and time = x4.

In more general terms, survival analysis is a technique to help evaluate
different measures of structure. It has helped us identify which measures of
structure correlates strongly with hardness of solution. While full regression
is ideal in many cases for predicting solution time, it — like all analysis tech-
niques — relies on the quality of the data. For regression analysis time-outs
are particularly problematic, however survival analysis is designed specifically
to use time as the prediction factor and is designed to handle time-outs. In
addition to this, the temporal nature of survival analysis allows us to iden-
tify not only which classes of instances are hard, but at which point different
classes of instance are most frequently solved. While it is not possible to
make concrete predictions based on this, it is possible to predict that an
instance belonging to class x that doesn’t finish within time t will not fin-
ish before a pre-determined time-out. This will be discussed in more detail
throughout this chapter, with numerous graphical examples.

As an example, consider the data presented in Table 6.1. The column time
is the response variable and the columns age and drug are different potential
response variables. The censor column states whether an observed reading
is right censored (0) meaning that the observed end time was when the sub-
ject withdrew from the study (or in our case, the solver timed out). It is
then possible to calculate the survival data for this dataset using two simple
Equation 6.1. In each equation i is the current event (numerically indexed
from 0), where an event is the death of a participant (or solver finding a
solution). As such, ti is the time at event i, di is the number of deaths (or
solutions) at event i. In the case where there is no right censored data at an
event, ni is the number of participants prior to event i. When right censored
data is present ni is the number of participants minus the number of partici-
pants lost due to censoring (time-out or error-out solvers). The result of this
equation on the provided dataset is given in Table 6.2. For more details of

42

time age drug censor
3 30 1 1
5 46 0 1
6 35 1 0
8 30 1 1
22 36 0 1

Table 6.1: Example survival analysis dataset

time survival
3 0.8
5 0.6
8 0.3
22 0.0

Table 6.2: Example survival probabilities

this example, see [11].

ŝ(t) =
∏
ti<t

ni − di
ni

(6.1)

1 Experimental setup

Two sets of data are used in these experiments, the first are the same ran-
domly generated instances (approximately 4887) from Chapter 4. The second
set of data is taken from the 2011-2014 SAT competitions in the application
specific and crafted/handmade categories. Only instances with a dimacs
(comments excluded) file size of < 100MB were used and a time-out of one
hour was imposed. The former restriction is due to the memory intensive
nature of determining the community structure of SAT instances, the latter
is to ensure data was collected on as many instances as possible, rather than
spending large amounts of time solving a single instance. We gathered data
for 733 instances (377 application specific, 356 handmade/crafted) of which
453 instances (263 application specific, 190 handmade/crafted) finished suc-
cessfully within the timeout of 5200 seconds on the Minipure solver in the
SAT 2013 competition. We then ran 830 trials, where approximately 100

43

instances were ran twice on the same worker and solver. The purpose of this
was to gather the amount of randomness present in the experiment purely
from within machine variance. Fortunately in most cases this variance was
very low (mean = 8.8 seconds, median = 0.07 seconds), with the exception
of a single instance that had an enormous error variance. In the first trial
it timed out, in the second it finished in approximately 500 seconds. We
are working on the assumption that something triggered an early shut-down
of the solver (possibly a memory error), and are considering this single in-
stance to be an outlier. Timing was obtained by running the experiments on
MiniSAT 2.0on an AMD FX-8350 Eight-Core Processor with 16GB RAM,
running Ubuntu 12.04.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT CVR

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 100 200 300 400 500 600 700 800 900

0 <= CVR < 3.8
3.8 <= CVR < 5
5 <= CVR < 20

(a) Plotted against distinct CVR
ranges

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT QCVR Score

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 100 200 300 400 500 600 700 800 900

0 <= QCVR Score < 0.01
0.01 <= QCVR Score < 0.5
0.5 <= QCVR Score < 8

(b) Plotted against distinct
Score(Q)*Score(CVR) ranges

Figure 6.1: Survivability plot of randomly generated instances from
Chapter 4 highlighting the phase transition range

2 Results

As an initial trial of the effectiveness and validity of survival analysis, we
utilised the data and result already presented in Chapter 4. Figure 6.1a
shows three curves plotted, one for instances with a clause-variable ratio
(CVR) of below 3.8 (where our results suggest instances become hard). The

44

second shows instances with a 3.8 ≤ CVR < 5.0, and finally those instances
with CVR ≥ 5. As you can see from the curves plotted, the survival analysis
has identified that instances with a CVR within the phase transition range
described in [18, 14] have a much lower probability of being solved within
the time-out, than otherwise. However, unlike the average plots presented
in Chapter 4, the survival analysis has also identified that there are a large
number of instances within the phase transition, approximately 50% that
are solved in under one second. This will be discussed in more detail when
looking at combinations of factors.

If we compare this to Figure 6.1b we see that the model we propose in
Chapter 4 utilising the product of the distance of Q from 0.13 and the dis-
tance of CVR from 5.0, refereed to as the QCVR Score, we see a similar,
but stronger trend where the slowest data QCVR < 0.01 has a lower prob-
ability of solving within the 900 second time-out. Additionally, this model
includes less than 30% of instances that finish trivially fast within this cat-
egory; clearly this model is able to better characterise hard instances than
considering Q or CVR alone. The final model we propose in Chapter 4
includes the community score — the distance from the worst case 130 com-
munities in a formula. In Figure 6.2 we show that including this factor in a
survival analysis weakens the model.

This was a not anticipated prior to performing the analysis, as including
the factor in a simple correlation suggested that it improves the model, by
sharpening the observed peak and reducing the number of false negatives.
In the QCVR score model, the “hard” instances are contained within 7.5%
of the observed range. Including the community score in the model reduces
this to only 5% of the observed range. However, when we view Figure 6.2 we
can see that the slowest range of QCVRCom, instances with a score of be-
low 0.08, includes approximately 31% trivial instances. This is an increased
number of false positives. Reducing the range of this curve (for example to
0.07), increased this percentage. What this tells us is the peak of number
of communities found in Chapter 4 is not the strongest value when consid-
ered from a survival analysis point of view, despite the fact that it was the
strongest value from a correlation perspective.

When comparing the survivability of different formula a number of factors
were considered, including: the modularity of the formula (Q), the number
of communities in the formula |Co| and the clause to variable ratio (CVR).
Each of the survivability plots included show the probability of the solver still

45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT QCVRCom Score

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 100 200 300 400 500 600 700 800 900

0 <= QCVRCom Score < 0.08
0.08 <= QCVRCom Score < 6.5
6.5 <= QCVRCom Score < 30
30 <= QCVRCom Score < 809

Figure 6.2: Survivability plot of randomly generated instances from
Chapter 4 WRT the product of community, Q and CVR scores

running (the y-axis) at a certain point in time (the x-axis) based on formula
exhibiting a value within a specific range of the measured factor (plotted as
curves).

For each of these results, we looked for interesting patterns in the data
through regular analysis, or linear regression and then isolated those into
sets. In some cases this meant that only a small number of instances were in
specific sets. To ensure this did not create a bias in the analysis, we repeated
it with equal sized categories, that isolated similar sets, and saw very similar
results.

While they initially appear somewhat complicated, the plots in Figures 6.3, 6.4

46

and 6.5 show some interesting facts. In each survival plot, the x-axis shows
the time in seconds, the y-axis shows the probability of an instance not fin-
ishing within that time. Each curve plotted is a separate class of problem,
as defined in the legend of the figure. A flatter curve indicates that few non
trivial instances finished within the timeout. Similarly, a curve that appears
to start low on the y-axis indicates a high number of trivial instances.

Firstly in Figure 6.3 we see that there exists two categories of Q that
MiniSAT found hard to solve. This bimodal type distribution is not in keep-
ing with our results from the random instances, and can be explained in part
by the differences between application and hard category instances. This
can be observed when looking at the same separate plots for application and
hand-crafted instances, in Figures 6.4 and 6.5 respectively. From these plots
we see that part of this “double peak” can be explained when separating
instances into their categories. The crafted instances see a peak in execution
time when 0.07 ≤ Q < 0.13, whereas the application instances see a peak in
execution time when 0.19 ≤ Q < 0.29. In this case every application instance
with a Q within this range timed out. This explains the double peak dis-
played in Figure 6.3. Unfortunately we still see a somewhat mixed message
in application instances where those with a Q < 0.07 also have a very slow
execution time. At present we are unsure of the reason for this secondary
peak, however the presence of instances with a Q < 0 are due to a complete
lack of community structure within those instances.

It is possible to use survival analysis to determine the probability of a
solution being found at a specific point in time. For example, from Fig-
ure 6.3 we can see that at 1800 seconds, there is approximately a 72% chance
that an instance with a Q ≥ 0.5 will be solved, regardless of whether it is an
industrial, or hand-crafted instance. This can be compared with instances
with a 0.07 ≤ Q < 0.13, that have a 23% chance of being solved within this
time. Further results are also possible, for example observing Figure 6.5 we
can see that instances with a Q < 0.5 that don’t finish within 2800 seconds,
almost all time-out. This may be an interesting feature to invoke in a solver
when estimating solution time. In this case it is relatively trivial, as the
time-out is only 800 seconds further, however observing the same figure, we
can see that instances with 0.07 ≤ Q < 0.13 that do not finish within 500 sec-
onds, have a very small probability of being solved at all, approximately 1.6%

To determine if the clause-variable ratio (CVR) has any effect on so-

47

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT Q

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 300 700 1100 1600 2100 2600 3100 3600

−0.1 <= Q < 0.07
0.07 <= Q < 0.13
0.13 <= Q < 0.19
0.19 <= Q < 0.29
0.29 <= Q < 0.5
0.5 <= Q < 1

Figure 6.3: Survivability plot of application specific and crafted/handmade
2011-2014 SAT competition instances WRT Q

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT Q

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 300 700 1100 1600 2100 2600 3100 3600

−0.1 <= Q < 0.07
0.07 <= Q < 0.13
0.13 <= Q < 0.19
0.19 <= Q < 0.29
0.29 <= Q < 0.5
0.5 <= Q < 1

Figure 6.4: Survivability plot of 2011-2014 SAT competition application
instances WRT Q

lution time for application or industrial instances, we performed the same
survival analysis for CVR, that we did with Q. The results of this analy-
sis are presented in Figure 6.6. From this we can see that while there is

48

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT Q

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 300 700 1100 1600 2100 2600 3100 3600

−0.1 <= Q < 0.07
0.07 <= Q < 0.13
0.13 <= Q < 0.19
0.19 <= Q < 0.29
0.29 <= Q < 0.5
0.5 <= Q < 1

Figure 6.5: Survivability plot of 2011-2014 SAT competition hand-crafted
instances WRT Q

no phase transition for application and crafted instances, the performance
of these is heavily dependant on the clause-variable ratio. While the upper
bound of the final dataset seems very large, it should be noted that only
two instances in the dataset exhibit a CVR of greater than 417. Exclud-
ing these two instances does not change the result. When we considered
the survival plots of the application and hand-crafted instances separately
we noticed that application instances showed almost no difference between
instances with CVR < 10 and instances with a 10 ≤ CVR < 50 and those
instances with a CVR ≥ 50 showed a relatively small increase in the proba-
bility of finding a valid solution. For example at 1800 seconds instances with
CVR < 50 had approximately a 65% chance of having been solved, whereas
instances exhibiting a CVR ≥ 50 had a 45% chance of having been solved.
While this is a statistically significant increase, it is far lower than the in-
crease seen when looking at hand-crafted, or combined instances. In the
latter case instances with a CVR < 50 have approximately a 61% probabil-
ity of being solved within 1800 seconds compared with a 21% probability for
instances with CVR ≥ 50.

49

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivability WRT CVR

Time in Seconds

P
ro

ba
bi

lit
y

of
 s

ol
ut

io
n

tim
e

no
t e

xc
ee

di
ng

0 300 700 1200 1700 2200 2700 3200

1 <= CVR < 10
10 <= CVR < 150
150 <= CVR < 1681

Figure 6.6: Survivability plot of application specific and crafted/handmade
2011-2014 SAT competition instances WRT CVR

3 Conclusion and future work

In this chapter we have describe survival analysis and shown that it is a use-
ful tool for analysing SAT solver performance. We have used it to show that
despite our combined CVR/community structure model’s reduced number
of false negatives, certain variants of it contain a higher number of false-
positives. We have also identified different classes of SAT instance that are
hard for SAT solvers, described using different input characteristics such as
the number of communities and CVR.

In the future we wish to extend our work here to discover complex classes of
instances. By which we mean a class that is not based on ranges of a single
input factor, but combines multiple input factors in a more comprehensive
manner.

50

Chapter 7

Effect of machine parameters
on SAT solver performance

While performing the numerous experiments here, we compared results gath-
ered across several different machines and noticed that performance of the
same solver, on the same instance varied greatly across the machines we
solved them on. While this in itself is not abnormal, we found that instances
solved on machine X were not always faster or slower than the same instances
solved on machine Y. Clearly certain aspects of a machine’s physical config-
uration are better suited to solving different types of SAT instances. In this
chapter we explore which of these characteristics are the determining factors
for different types of instance.

1 Experimental setup

From the outset we were convinced that memory size and speed, CPU clock
speed and cache size were going to be significant contributing factors, however
as shown in [38] memory layout as well as other factors can have significant
impact on any execution times, including that of a SAT solver. For this
reason we decided to utilise DataMill [39], a platform that automatically
varies system level properties on a heterogeneous set of hardware. By util-
ising this platform, combined with additional machines with more specific
configurations, we were able to generate usage results for the solve time of
26using 5to solve 144. While our previous experiments have been performed
exclusively on MiniSAT 2.0we wanted to get a “bigger picture” result with

51

this comprehensive study. As such we opted to not only perform the tri-
als with MiniSAT 2.0, but also with Glucose 3.0, Lingeling , Plingeling and
SWDiA5BY 2.3. We chose these as they were the silver and gold meddle
winners of the 2013/2014 SAT competition for the application category. Ini-
tially we intended to run the experiments with PeneLoPe as well, however
we were unable to compile the 2013/2014 SAT competition version on any
of our machines. While we would ultimately like to run the trials on more
solvers, time did not allow for this. Additionally in the future we intend to
run the trials on more machines and more instances. For this set of trials
we specifically chose instances exhibiting different characteristics. While this
may be seen as a bias of the experiment, it is important to note that we
are not trying to show which solver is fastest, only identify which hardware
characteristics impact the solution time with these solvers.

The instances were selected from a stratified random sample, from the 2011-
2014 SAT competition application categories, across ranges of Q, |Co|, |V |,
|Cl|, CVR and solution time. At most three instances were selected for
each range of the measured property. The properties were measured on
the non-simplified instances on a single trial machine (machine 28 in Ap-
pendix Table A). The resulting set contained 144instances after duplicates
were removed. These 144instances cover a diverse set of of characteristics
and solution times. Selecting instances from a stratified random sample in
this manner allowed us to ensure that while no instance was “cherry picked”
for any reason, we were guaranteed to see a representative set of instances
from the entire population.

Each pair of instance and solver was then run on each of the 26machines. Due
to constraints of the DataMill platform, each trial was allowed a maximum
of two hours for completion and were ran in batches. Each batch contained
no more than 18 instances to keep the batch time (including setup, solving
and collection) under two days, this is a requirement of DataMill. 40 batches
were ran per machine, the order of trials was randomized prior to batching,
as such each batch for each machine contained the same instances, addition-
ally batches were ran in a random order.

Due to the heterogeneous nature of the hardware used, it was not possi-
ble to run all solvers on all machines. We found that the ARMV7 machines
(machines 22-25 in Appendix Table A) were only able to run Lingeling, all

52

the other solvers (including pLingeling oddly) failed to compile due to a
floating point library not being present in the ARM version of the operating
system. All machines in the DataMill cluster run Gentoo Linux with kernel
version 3.3.8, and GCC 4.5.3, machines 1 and 28 ran Ubuntu 12.04 LTS.
Each machine is dedicated to running only the experiment given, and is not
virtualised or shared in any way.

To remove the possibility that these timing differences were the result of
randomness in the solver, we pre-simplified the instances then turned off
simplification on the solvers, this is to resolve the known issue that clause
(and variable) ordering has an effect on solution time [12]. In addition to
this we set a fixed random seed for all the solvers on all machines (with the
exception of pLingeling which did not support this option), such that a sin-
gle instance/solver pair should have identical performance on an identically
specified machine.

The complete set of all combinations of solvers, workers and instances would
have created approximately 18500 trials. Unfortunately even with the time-
outs and batching we imposed DataMill was unable to complete all of these
trials within the required time frame. As such we are limited to analysing
those results which were gathered, approximately 15500 of them. Within
these results approximately 1600 were unable to run due to a lack of sup-
port in the ARM kernel, as mentioned previously. Leaving a total of 13825
instances available for analysis. The majority of our analysis looks at aggre-
gate results, either across the instances, solvers or workers. To ensure that no
bias has been introduced by certain combinations of workers/instances not
being included we only analyse the complete set of workers and instances, by
which we mean that every worker in our final dataset solved every instance
at least once. To accomplish this we used an implementation of maximal
biclique enumeration algorithm from Alexe et al[3] where the workers are
one half of the graph and the instances are the other. The resulting clique
included 13648 trials, unless otherwise stated this is the set used in all results
presented.

The factors considered in this experiment were CPU speed, CPU cores, CPU
Model, cache size (L1, L2 and L3, where available), RAM size (as well as
speed and channels, where available) and FSB speed. Modern CPU’s ex-
press their FSB speed in GT/i whereas older CPUs utilise MHz, since GT/i

53

is considered a more accurate measurement, which describes not only the
clock speed of the bus but the data width, we converted all measurements of
FSB speed to GT/i. We included CPU Model to determine if CPUs from dif-
ferent models/manufacturers with similar specifications perform differently,
a reason for this could be things like cache replacement policies and imple-
mentation specific timing characteristics, such as the proportion of integer
vs floating point cores within the CPU. The data in this chapter is available
online [31].

2 Results

In addition to these static factors, which were available prior to execution,
we also measured the number of major/minor page faults and the memory
usage peak. We found that while these did change between executions (based
on the randomness of the memory layout and scheduling algorithms) they
were tightly correlated to RAM size, page size and instance size. In some
cases we analyse these as response variables, to replace of time.

The first factor we looked at was the average execution time between each

●

●

●
●

●
●

●

●

●

●

CPU Model against average CPU Speed

CPU Model

C
P

U
 S

pe
ed

 (
G

H
z)

1
1.

5
2

2.
5

3
3.

5

Athlon Athlon XP Core i5 Core i7 Pentium 4 Pentium D Pentium M Rev 10 VIA Nano X2 Xeon

● All

Figure 7.1: CPU Model against average speed for that model

type of CPU. Immediately we saw that each type of CPU solved instances at
a different average speed While this is to be expected, as they have differing
CPU speeds across the CPU types, we found that the average speed of the
machines with a single CPU type — shown in Figure 7.1 — did not always
correlate with the average execution time of instances solved on that CPU
type — shown in Figure 7.2. One clear example is that of the Pentium M

54

●

●

● ●

●
● ●

●

●

CPU Model against average execution time

CPU Model

T
im

e
in

 S
ec

on
ds

70
0

14
00

22
00

30
00

Athlon Athlon XP Core i5 Core i7 Pentium 4 Pentium D Pentium M Rev 10 VIA Nano X2 Xeon

● Glucose
Lingeling
MiniSAT
pLingeling
SWDia5BY

Figure 7.2: CPU Model against average execution time for that model,
separated by solver

and Pentium D CPUs. The Pentium M machine used had a CPU speed of
1.7Ghz, compared to the Pentium D, which had a CPU speed of 3Ghz. How-
ever, despite this large difference in CPU speed, they presented very similar
average execution times for the same set of instances. 1621 seconds for the
Pentium D and 1742 seconds for the Pentium M. Clearly factors other than
the CPU speed are playing a role here. This case is compounded further by
the fact that the Pentium D machine has two CPU cores, versus the sin-
gle core of the Pentium M. While this should have a minimal effect on the
sequential solvers, it would be expected that pLingeling would exploit this
additional CPU to improve the average execution time of the entire worker.
In the remainder of this document we will explore which factors could be
contributing to the unexpected result seen here.

As expected, when comparing the CPU clock speed of a machine to the
average execution time there is a clear trend — with a few exceptions —
as can be seen in Figure 7.3, however a less obvious result is the difference
between the solvers. While almost all solvers performed better on CPUs
with a faster clock speed, it is interesting to see that they did not all improve
by the same amounts. MiniSAT, one of the slowest solvers on the slowest
two CPUs measured (757MHz and 1.1GHz) improved radically to become
the fastest overall solver on the faster CPU’s measured (3.4GHz). Similarly
Lingeling, the fastest solver on the slower CPUs, was relegated to third place
on the faster CPUs.

A notable exception to the overall increasing performance as the CPU
clock speed increases is that of Lingeling on the ARM machines. Lingeling
is the only solver used that can run on these CPUs. Despite their middle

55

ranged CPU speed, Lingeling ran slower on them than any other machine.
This result is due to a number of factors, including the cache and RAM
amounts, these will be discussed in more detail in subsequent paragraphs.

In addition to the obvious result that increases in CPU clock speed lead
to an overall increase in performance, this experiment revealed other less
obvious and more interesting results. Figure 7.1 show that the relationship
between CPU speed and average time is not a fixed one, there are clearly
other affects at work here.

●

●

●

● ●

● ●

●

1000 1500 2000 2500 3000 3500

CPU Speed Against Average Time

CPU Speed (Mhz)

T
im

e
in

 S
ec

on
ds

50
0

80
0

11
00

14
00

17
00

20
00

23
00

26
00

29
00

32
00

● Glucose
Lingeling
MiniSAT
pLingeling
SWDia5BY

Figure 7.3: Plotting CPU speed against average execution time per solver

A further result observed was that while the majority of solvers perform
better under an x86 64 cpu, pLingeling performs best under the i686 archi-
tecture. While it is expected that 64 bit machines offer performance increases
for most instances due both to the increased width of registers in the CPU

56

and the increased total amount of memory available, it was unexpected that
pLingeling should perform better on the lower specified i686 architecture.
The likely reason for this is that pLingeling is more bound by the presence
of multiple cores than it is by the quantity of RAM available. A further
analysis of the results may show that there is a correlation between larger
numbers of cores and the i686 architecture.

In addition to determining which solvers performed better under different
conditions, we were also interested in determining which characteristics of
an input formula causes an instance to perform well on certain machines and
less well on others.

Due to the limited quantity of computers this experiment was ran over,
it was difficult to produce a single model that estimates the time of an indi-
vidual instance/solver combination across the machines. Instead of this, our
approach was to group solvers together and develop a model that describes
the solution time of a specific instance across all solvers and machines. This
lead to a far larger sample size per instance and as such allowed us to include
more terms in the model without risking over fitting.

In addition to this, we also considered how important a single machine
parameter was to instances based on different input formula characteristics,
for example Q or CVR. To describe this we created a model that was of the
following form:

time ∼ factor

Where factor was one of the machine parameters described earlier. Next
we computed the adjusted R2 for each instance executed across all solvers
and machines. We then grouped instances with similar input characteristics
and measured the average adjusted R2. The results of this experiment were
quite interesting. We discovered that some instances solution time are tightly
bound to the speed of the CPU speed of the worker. However for other
instances this was not the case. Consider Figure 7.4a, there exists a strong
correlation between the quality of the community structure and the impact
of the CPU speed on the solution time.

This would suggest that instances with a strong community structure
(high Q) are more CPU bound, by which we mean they spend less time wait-
ing for resources, than their lower Q counterparts. We see a similar pattern,
though less strong when looking at the number of communities |Co| in Fig-

57

ure 7.4b. As the number of communities in a formula approaches 8000 the
instance becomes more CPU bound, while those instances above this point
(particularly those with more than approximately 17500 communities) see a
reduced R2 it is interesting to note that the R2 for those instances within the
“CPU bound” range, is higher, with many values of |Co| exhibiting R2 of
greater than 0.35, and some approaching 0.5. In addition to these two com-
munity related trends we found two others with regards to clauses. We found
that when the average clause length approaches 7, the instance becomes more
CPU bound as shown in Figure 7.4c. Similarly, when then the CVR of an
instance approaches 50 the instances also become more CPU bound as shown
in Figure 7.4d. We found that neither the number of variables (|V |) nor the
number of clauses (|Cl|) exhibited any particular trend when compared look-
ing at CPU Speed. In the CVR graph Figure 7.4d a set of trials for a single
instance was excluded as the instance had a CVR of 1680, this compressed
the remaining data in the graph, making the trend more difficult to observe.
However it also exhibited the same R2 as those instances with CVR ∼ 290.

While no discernible pattern was observed that correlates solution time
with |V | when considering CPU Speed, we did notice a pattern when looking
at RAM size. Figure 7.5a shows this trend, while it is not a particularly rela-
tionship, it should be noted that in many cases the RAM size of the solving
machine is the main determining feature for instances with a certain sized
|V |. This is something that requires more detailed analysis to understand
fully, as will be discussed in Chapter 9. We saw a less severe, but stronger
correlation when observing the |Co| against the effectiveness of RAM size
as a predictor as shown in Figure 7.5b. As the number of communities in-
creases, the importance in RAM size also increases, with a single exception.
This makes sense, both in regards to |V | and |Co|. In the former case as
the size of the formula increases, so does the amount of RAM required to
store it, before swap space is used. Swapping pages of memory to physical
storage is a highly time consuming operation, particularly as a swap out to
memory is almost always accompanied by a triggering swap into memory,
from storage. In this case the CPU is often unable to continue working while
this happens, and the delay can be several milliseconds in some cases, de-
pending on the storage medium and connection used. In the latter case, the
|Co| does not directly reflect the size of the input formula, and therefore
would not directly rely on the RAM size for performance, however it is likely
that those instances with a large number of communities do not exhibit good
temporal locality with regards to memory accesses, this will likely trigger a

58

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
15

0.
20

0.
25

0.
30

0.
35

Effectiveness of CPU Speed as a predictor WRT Q

Q

A
dj

us
te

d
R

2

● All

(a) Average adjusted R2 against Q

●

●

●

●

●

●

●

●

●

●

● ●

●

0 5000 10000 15000 20000 25000 30000

0.
2

0.
3

0.
4

0.
5

Effectiveness of CPU Speed as a predictor WRT |Co|

|Co|

A
dj

us
te

d
R

2

● All

(b) Average adjusted R2 against |Co|

●

●

● ●

●

●

●

●

●

0 2 4 6 8 10 12 14

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Effectiveness of CPU Speed WRT Clause Length

Average Clause Length

A
dj

us
te

d
R

2 ● All

(c) Average adjusted R2 against
clause length

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Effectiveness of CPU Speed as a predictor WRT CVR

CVR

A
dj

us
te

d
R

2

● All

(d) Average adjusted R2 against CVR

Figure 7.4: Average adjusted R2 against different formula characteristics for
the model of time CPU Speed

large number of page faults. An additional factor not yet discussed in this
document is the size of the largest community of the input formula, this is
shown in Figure 7.5c, from this figure we can observe that when there are
approximately 3000 variables in the largest community of an input formula,
the speed of the worker is determined almost entirely by the available RAM.

In addition to RAM size and CPU speed, we also looked at the effect
of cache size on the performance of individual instances. Unfortunately we

59

●●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Effectiveness of RAM Size as a predictor WRT |V|

|V|

A
dj

us
te

d
R

2

● All

(a) Average adjusted R2 against |V |

●

●

●

●
●

●

●

●

●

●

●

●

●

0 5000 10000 15000 20000 25000 30000

0.
1

0.
2

0.
3

0.
4

0.
5

Effectiveness of RAM Size as a predictor WRT |Co|

|Co|

A
dj

us
te

d
R

2

● All

(b) Average adjusted R2 against |Co|

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

Effectiveness of RAM Size as a predictor WRT |Co|

|Cl|

A
dj

us
te

d
R

2

● All

(c) Average adjusted R2 against
max(Co)

Figure 7.5: Average adjusted R2 against different formula characteristics for
the model of time RAM Size

were unable to gather complete cache sizes for all CPU’s in this experiment.
However, L1 and L2 cache sizes were mostly available to us. Figure 7.6
shows the impact of cache sizes on the running time of a SAT formula when
compared with different ranges of characteristics. Figure 7.6a shows this
trend with respect to the community structure (Q), from this we can see
that cache size always plays a relatively significant role in the performance
of a particular worker, however as Q increases the importance on the cache

60

size becomes, generally speaking, more significant. This was a shock for us
as we expected the opposite. This would have supported the belief that
as the Q increases, the “locality” of the instance improves. In executions
of typical computer programs, the higher the locality (but temporal and
spacial) a program is, the less cache it requires to be executed efficiently. This
result would suggest that either, as Q increases, the locality of the instance
decreases, or that as Q increases the locality of the instance — and thus the
size of the cache — becomes more significant to performance. Figure 7.6b
shows a negative trend, where the larger the size of the smallest community,
the less significant the cache size becomes to performance. This would also
suggest that the locality of a formula is affected by its Q and |Co|, instances
with larger communities cannot fit a single community into cache, meaning
that if the solver is working locally, on one community at a time it would
need to repeatedly load from variables and clauses RAM, leading to an overall
decrease in performance. This is reflected by a decrease in the significance of
cache size on those instances with larger, smallest communities. The result
shown in Figure 7.6b has a single result removed, an instance where the
smallest community size was very large (2.0e+09). This instance followed the
same overall trend presented in Figure 7.6b, and had an R2 of approximately
0.1. It was removed to make the overall trend more clear.

The final parameter we looked at was the number of CPU cores available
to the solver. For this result we performed the same analysis as for the other
machine parameters, however we separated the dataset not only by formula,
but by solver as well. The reason for this is that we would expect there to
be significant trends visible on at least some of the formulae when looking
at the pLingeling solver (and in the future, any other parallel solver) and
less significant trends for all other solvers, as they are sequential and should
not be taking advantage of multiple cores. The results for this are shown in
Figure 7.7, these results show a number of interesting characteristics. Firstly,
we see that Lingeling is unable to take advantage of the number of cores in
the solving machine, regardless of the clause-variable ration (CVR). This is
to be expected as it is a sequential solver, however it is strange that all other
solvers seem to be able to exploit the number of cores to some extent, even
though that relationship is unpredictable. A notable exception to this is
pLingeling, where we see a weak — but visible — trend where as the CVR
increases, the number of cores available becomes less significant. The mixed
result regarding other solvers is likely because of some secondary relationship
between the number of cores and either the CPU speed, or RAM/cache

61

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Effectiveness of RAM Size as a predictor WRT Q

Q

A
dj

us
te

d
R

2

● All

(a) Average adjusted R2 against Q

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Effectiveness of RAM Size as a predictor WRT Q

Q

A
dj

us
te

d
R

2

● All

(b) Average adjusted R2 against
min(Co)

Figure 7.6: Average adjusted R2 against different formula characteristics for
the model of time L1 Data Cache Size⊕ L2 Cache Size

sizes. This is certainly true in certain circumstances, looking at Appendix
Table A we see that the majority of machines with more cores have a faster
CPU, in the 3.2Ghz-3.4Ghz range (most of the ARM machines were excluded
from these trials). However, there is some crossover in CPU speed between
those machines with one and two cores. Unfortunately without more data —
particularly data where we can test different numbers of CPU cores without
changing the CPU speed — it is difficult to determine conclusively whether
some sequential solvers perform better on multi core machines rather than
single core machines. This is discussed further in Chapter 9

3 Conclusion and future work

In this chapter we have explored the relationship between different classes of
instance, and their solution times on differently specified solving machines.
We have shown that the solution time for a specific instance varies greatly
across different solving machines, in ways that are not completely predictable
when considering characteristics such as CPU speed, RAM size and cache
size. We have further shown that the impact of each of these factors on the

62

●
●

●

●

●●

●

●
●
●
●

●

●

●

●

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

Effectiveness of #CPU cores as a predictor WRT CVR

CVR

A
dj

us
te

d
R

2

● Glucose
Lingeling
MiniSAT
pLingeling
SWDia5BY

Figure 7.7: Average adjusted R2 against CVR for the model of time #Cores

solution time of an instance depends on the structure of the instance. In
some cases this structure is characterised by graph theoretical concepts, and
others use SAT specific concepts such as the clause-variable ratio.

While we have not been able to produce a model that completely explains
the variability in solution time when varying the solving machine, we have
been able to explain a large amount of it. The remaining variability is likely
to be in the factors that were only partially present (e.g. cache sizes, RAM
speeds, etc), however we also speculate that cache replacement policies will
be a determining factor in solution time of specific instances.

The next steps for this work are to find more details on the machines used,
as previously mentioned it was not possible to gather all levels of cache size
for all machines, similarly RAM channels and speeds were missing in some
cases. We hope this will partially solve the issue of un-defined variation.
However, if this does not complete the model we are planning on exploring
the relationship between cache replacement policies and performance. We

63

feel this may be what is missing when we compare machines with very dif-
ferent specifications, that perform similarly — for example, the Pentium M
and Pentium D machines as described above.

64

Chapter 8

Related work

In [6] Levy et al introduced the concept of SAT problems having community
structure. The paper showed that numerous problems in the SAT 2010 race
contained very high modularity compared to graphs of any other nature. It
was also suggested in this paper that SAT solvers are able to exploit this hid-
den structure in order to achieve good solve times. However, the paper was
unable to explain what characteristics of community structure leads to poor
or good solve times. Also, in [7] the authors state that while SAT solvers
have shown improvements in solve times for numerous industrial applica-
tions, their has been less success in improving the solve time of randomly
generated instances. They posit that this is due to the lack of structure
present in randomly generated instances. Many algorithms have been pro-
posed to discover the community structure in graphs [16, 13]. Below we give
a brief description of other tools that provide visualization and/or evolution
capabilities and highlight the differences between these tools and SATGraf.

In [44] Xu et al describe a SAT solver that chooses its algorithms based on
48 features of the input formula. While they did use certain graph theoretic
concepts, such as node-degree statistics, they did not consider the concept of
communities as a feature of the input. The list of 48 features could be used
in a more comprehensive model than the ones used in our regression. In [19]
Habet et al present an empirical study of the effect of conflict analysis on
solution time in CDCL solvers.

In [5] the authors present a the notion of fractal dimensions in SAT
solvers, they have discovered that as the SAT solver progresses the frac-
tal dimension increases when new learnt clauses are added to the formula.
They have also discovered that learnt clauses do not connect distant parts

65

of the formula (ones with long shortest paths between nodes), as one would
expect. This is interesting when combined with the work we present stating
that clauses which are comprised of variables in a small number of communi-
ties are more useful to the solver. This means that even when a learnt clause
that does connect distant variable in the formula is added, it is not as useful
as a clause that connects locally occurring variables.

In [14] the authors discuss the impact of the previous CVR result [18]
on a more diverse set of input formula and solvers. They state that the
relationship between CVR and solution time in random instances is differ-
ent depending on the algorithm and implementation chosen, and that the
CVR = 4.26 result is not conclusive.

SATGraf is the only tool that we know of that has both visualization
capabilities to view the community structure of SAT instances, and evolution
feature that shows how the community structure is morphed by a CDCL
SAT solver as it solves an input instance. While other tools [41, 40, 37, 10]
have visualization and/or evolution capabilities, they do not focus on the
community structure of SAT instances nor do they show how the solver
morphs the community structure of input SAT instances. Instead these tools
allow the user to view the SAT instance as a graph without any community
structure information. The following Table 8.1 highlights the differences
between the various visualization tools that we found. Those differences
range across a handful of categories such as interactive (ability to set a value
to a variable on the graph), evolution (ability to see the evolution of the
SAT formula), community (ability to display the community structure), 3D
(three dimensional capability), and implication (can generate the implication
graph).
DPViz [41], probably the closest to SATGraf in terms of features, is a graph-
ing tool designed to expose how a CDCL solver morphs a SAT instance as it
is being solved. It offers a number of features such as multiple layout algo-
rithms, zooming into the graph to show more detail, the ability to set specific
values on literals displayed in the graph, and performing unit propagation.

Each tool presented above has different strengths and weaknesses. How-
ever, the only tool that can accomplish visualizing community structure of
a SAT formula, both in its original state and while being solved by a SAT
solver, is SATGraf.

66

Tool Interactive Evolution Community 3D Implication
DPViz[41] 3 3 7 7 3

GraphInsight[37] 3 7 7 3 7

iSat[40] 7 3 7 7 7

GraphViz[10] 7 7 7 7 7

SATGraf 3 3 3 7 3

Table 8.1: Comparison of Tools

67

Chapter 9

Future work

The results presented in this work are far from the last word on the subject
of community structure and SAT solver performance. Before beginning this
work we knew it would not cover every angle, leaving a plethora of subjects
available to study in the future. While working on this document that num-
ber increased further as we found hitherto unconsidered factors.

In regards to the linear regression we have a number of avenues for fu-
ture work. Firstly we intend to consider a larger set of data, enabling us
to exclude time-outs and focus on specific categories of SAT instances, i.e.
random, industrial and hand-crafted. This will allow us to utilise the same
(or a similar) model to gather a more accurate result by excluding our right
censored (time-out) data. It will also allow us to present more accurate cat-
egory specific results which, as discussed in Chapter 3 will require separate
models for each category.

In addition to this, we are exploring different regression techniques more
suited to non-normally distributed data. At present gamma regression is
looking the most likely candidate. We are also looking into the utility of
bootstrapping this experiment to estimate confidence intervals for our esti-
mates, which is not currently possible.

Finally, we are exploring new input factors for this model, such as the
size of the smallest, and largest communities within the formula, as well as
non community related factors, such as the total number of edges, and the
number of times a variable is reused within a formula.

In regards to the random data experiment, we observed an interesting trend

68

when considering the average clause length of the input formula. Due to
the random generation technique used, a clause in a formula contains ex-
actly three literals, but some clauses may contain the same literal more than
once. Modern SAT solvers immediately remove these duplicate variables dur-
ing simplification, we noticed that when the average clause length was below
2.8, the formulae were all trivially easy, and an exponential curve was present
between 2.8 and 3.0.

In addition to this, we want to explore different SAT solvers, the work
in [14] states that different algorithms present different patterns in this area,
it will be interesting to see how different implementations of the same algo-
rithm (for example different clause deletion, or decision heuristics) affect this
result.

In regards to SATGraf, there are a number of potential new features, the
least of which is including new drawing and community detection algorithms
as options. Additionally, supporting different solvers, or at least different
decision and clause deletion heuristics in the supported MiniSAT solver is a
priority. In addition to this, we are working on better SATGraf support for
our web platform SATBench.

In regards to our work on survival analysis, there are numerous other ex-
periments that can be run, primarily we intend to focus on results that show
more than just a simple peak in execution time — we found that the more
interesting results revolve around observations that define when certain in-
stances will be solved, rather than their overall probability of solution.

In Chapter 7 we looked into which machine parameters were determining fac-
tors in the speed of different solvers for different classes of instances. While
we did confirm that CPU speed, cores and RAM amounts were significant
factors, as well as other less significant (and less obvious) factors, we have
further experiments planned regarding these results.

Firstly, we would like to study how closely the solution time of different
instances is correlated with the percentage of cache misses at different levels,
while it is known that this will affect performance to some degree, it will be
interesting to determine how much this one factor affects solve time, and to
see if this changes based on the community structure of the instance being
solved. In addition we would like to use this new trial as an opportunity to
analyse the different cache replacement policies, and their effectiveness on

69

different classes of instances under different solvers. we feel this may be the
cause of the differing results for similar specified computers from different
manufacturers.

Additionally, while we have explored the relationship between a num-
ber of machine based factors and performance of SAT solvers on different
instances, we are also interested in exploring the relationship between ad-
vertised speed of a CPU vs the speed it actually runs at (due to over/under
clocking), we are not certain if a CPU that is over clocked will run with the
same performance as an identically specified machine with a natively faster
CPU, reasons for this include insufficient memory access channels or cache
configurations, as well as potential issues with overheating.

In addition to these chapters specific areas of future research, we are also
in the process of repeating these results with different graph representations,
such as the clause-incidence graph. In addition to this, we have found that
slight differences in the implementation of the OL or CNM algorithms can
have huge impact on the utility of the models utilised, for this reason we will
be exploring other community detection algorithms, particularly ones that
focus on weighted edges.

In addition to this, we are looking at the differences between graph width,
back-door size and community based models. It is possible that some com-
bination of these will lead to stronger results.

70

Chapter 10

Conclusion

This concludes the thesis undertaken for my Master of Applied Science. The
work has focussed primarily on the performance of SAT solvers, particularly
when considered from the perspective of graph theoretical concepts such as
community modularity.

This work has covered several areas. It contains an initial and revised ver-
sion of a predictive model for the solution time of the MiniSAT solver. In
addition to this, it contains an analysis of the effect of machine parameters
on SAT solver performance for a number of state of the art solvers. We have
expanded on our work on the relationship between the clause-variable ratio
and community modularity (Q) of a SAT instance. Furthermore, we have
considered for the first time the use of survival analysis techniques to anal-
yse the survivability of SAT instances with respect to different characteristics.

From the above work, we can establish that not only does the community
structure of a SAT instance have a significant impact on the solution time
of a SAT solver, but that this solution time is affected by different physical
machine attributes depending on the class of problem. We have shown that
this is linked closely with the community structure of the instance. In ad-
dition we have shown that different solvers also respond differently to these
physical attributes.

We have presented several resources with this work. Firstly, SATGraf a tool
for visualising the community structure and evolution of this structure in SAT
instances while they are being solved. Secondly, SATBench an online repos-

71

itory tracking solution time for a number of solvers and machines against
numerous instances. This archive is searchable and exportable as well as
offering basic analytical tools for comparing trends of different sets of data.
An API is also available for this such that other researchers can provide data
to this archive. It is our hope that this system become a central location
for storing instances utilised not only in SAT competitions but whenever an
experiment is ran that looks at the solution time of SAT solvers, so further
research may be carried out without necessarily re-running experiments that
already exist. It also provides a central location where researchers may pub-
lish their data so their findings may be corroborated.

Finally, we have introduced survival analysis to the field of SAT solver per-
formance and shown that its ability to include right censored data — such as
memory out and time-out errors — enables it to show trends that would oth-
erwise be difficult to analyse. We have further shown that survival analysis
is able to describe more than simple peaks in execution time, by providing
insight into when instances of a certain class are solved.

72

References

[1] 2013 sat competition. http://satcompetition.org/2013/. Accessed:
2014-12-01.

[2] 2014 sat competition. http://satcompetition.org/2014/. Accessed:
2014-12-01.

[3] et al Alexe. Maximal biclique enumeration implementation.
http://genome.cs.iastate.edu/supertree/download/biclique/

README.html, 2004. Accessed: 2015-01-10.

[4] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi
Levy. The fractal dimension of SAT formulas. CoRR, abs/1308.5046,
2013.

[5] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi
Levy. The fractal dimension of sat formulas. arXiv preprint
arXiv:1308.5046, 2013.

[6] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community
structure of sat formulas. In Theory and Applications of Satisfiability
Testing–SAT 2012, pages 410–423. Springer, 2012.

[7] Carlos Ansótegui and Jordi Levy. On the modularity of industrial sat
instances. In CCIA, pages 11–20, 2011.

[8] Gilles Audemard and Laurent Simon. Glucose: a solver that predicts
learnt clauses quality. 2009.

[9] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfi-
ability, volume 185. IOS Press, 2009.

73

http://satcompetition.org/2013/
http://satcompetition.org/2014/
http://genome.cs.iastate.edu/supertree/download/biclique/README.html
http://genome.cs.iastate.edu/supertree/download/biclique/README.html

[10] A. Bilgin, J. Ellson, E. Gansner, O. Smyrna, Y. Hu, and S. North.
Graphviz - graph visualization software. http://www.graphviz.org/.
Accessed: 2015-01-10.

[11] J. Bruin. R textbook examples, applied survival analysis,chapter 2: De-
scriptive methods for survival data. http://www.ats.ucla.edu/stat/
r/examples/asa/asa_ch2_r.htm, 2011. Accessed: 2015-01-13.

[12] Rodrigo Castaño and José M Castaño. Propositional satisfiability (sat)
as a language problem. In XVII Congreso Argentino de Ciencias de la
Computación, 2011.

[13] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical review E,
70(6):066111, 2004.

[14] Cristian Coarfa, Demetrios D Demopoulos, Alfonso San Miguel Aguirre,
Devika Subramanian, and Moshe Y Vardi. Random 3-sat: The plot
thickens. In Principles and Practice of Constraint Programming–CP
2000, pages 143–159. Springer, 2000.

[15] Niklas Een and Niklas Sörensson. Minisat: A SAT solver with conflict-
clause minimization. SAT, 5, 2005.

[16] S. Fortunato, V. Latora, and M. Marchiori. Method to find community
structures based on information centrality. http://www.w3.org/

People/Massimo/papers/2004/community$_$pre$_$04.pdf, 2004.
Accessed: 2015-01-10.

[17] Thomas MJ Fruchterman and Edward M Reingold. Graph draw-
ing by force-directed placement. Software: Practice and experience,
21(11):1129–1164, 1991.

[18] Ian P Gent and Toby Walsh. The sat phase transition. In ECAI, pages
105–109. PITMAN, 1994.

[19] Djamal Habet and Donia Toumi. Empirical study of the behavior of
conflict analysis in cdcl solvers. In Principles and Practice of Constraint
Programming, pages 678–693. Springer, 2013.

74

http://www.graphviz.org/
http://www.ats.ucla.edu/stat/r/examples/asa/asa_ch2_r.htm
http://www.ats.ucla.edu/stat/r/examples/asa/asa_ch2_r.htm
http://www.w3.org/People/Massimo/papers/2004/community$_$pre$_$04.pdf
http://www.w3.org/People/Massimo/papers/2004/community$_$pre$_$04.pdf

[20] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In Software Engineering,
2010 ACM/IEEE 32nd International Conference on, volume 1, pages
215–224. IEEE, 2010.

[21] David S Johnson and Michael R Garey. Computers and intractability:
A guide to the theory of np-completeness. Freeman&Co, San Francisco,
page 32, 1979.

[22] Tomihisa Kamada and Satoru Kawai. A general framework for visual-
izing abstract objects and relations. ACM Trans. Graph., 10(1):1–39,
January 1991.

[23] Edward L Kaplan and Paul Meier. Nonparametric estimation from in-
complete observations. Journal of the American statistical association,
53(282):457–481, 1958.

[24] J. Leskovec. Snap system. http://snap.stanford.edu/snap/index.

html. Accessed: 2015-01-10.

[25] Inês Lynce and Joao Marques-Silva. Building state-of-the-art sat solvers.
In ECAI, pages 166–170, 2002.

[26] Haralambos Mouratidis and Paolo Giorgini. Security attack testing
(sat)testing the security of information systems at design time. Infor-
mation systems, 32(8):1166–1183, 2007.

[27] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William
Wasserman. Applied linear statistical models, volume 4. Irwin Chicago,
1996.

[28] Mark EJ Newman. Fast algorithm for detecting community structure
in networks. Physical review E, 69(6):066133, 2004.

[29] Z. Newsham, W. Lindsay, J. Liang, K. Czarnecki, S. Fischmeister,
and V. Ganesh. Satgraf: Results. http://ece.uwaterloo.ca/$\

sim$vganesh/SATGraf/Results.html, 2014. Accessed: 2015-01-10.

[30] Z. Newsham, W. Lindsay, J. Liang, K. Czarnecki, S. Fischmeister, and
V. Ganesh. Satgraf: Source code. http://bitbucket.org/znewsham/

satgraf, 2014. Accessed: 2015-01-10.

75

http://snap.stanford.edu/snap/index.html
http://snap.stanford.edu/snap/index.html
http://ece.uwaterloo.ca/$\sim $vganesh/SATGraf/Results.html
http://ece.uwaterloo.ca/$\sim $vganesh/SATGraf/Results.html
http://bitbucket.org/znewsham/satgraf
http://bitbucket.org/znewsham/satgraf

[31] Zack Newsham. Maching parameters experimental data. http://

satbench.uwaterloo.ca/download/39/1, 2014. Accessed: 2015-01-10.

[32] Zack Newsham. Sat 2013 competition minipure timing, corrected
data. http://satbench.uwaterloo.ca/download/43/1, 2014. Ac-
cessed: 2015-01-10.

[33] Zack Newsham. Evolution of toybox. http://satbench.uwaterloo.

ca/evo/toybox.gif, 2015. Accessed: 2015-01-10.

[34] Zack Newsham. Partial evolution of aes 16 10 keyfind 3. http://

satbench.uwaterloo.ca/evo/aes_16_10_keyfind_3.gif, 2015. Ac-
cessed: 2015-01-10.

[35] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Aude-
mard, and Laurent Simon. Community Structure of SAT Instances Web-
page with Data and Code. https://ece.uwaterloo.ca/~vganesh/

satcommunitystructure.html. Accessed: 2015-01-10.

[36] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Aude-
mard, and Laurent Simon. Impact of community structure on sat solver
performance. In 17th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), 2014. best student paper award.

[37] Carlo Nicolini and Michele Dallachiesa. Graphinsight: An interac-
tive visualization system for graph data exploration. http://www.

graphinsight.com. Accessed: 2015-01-10.

[38] Augusto Oliveira, Jean-Christophe Petkovich, and Sebastian Fischmeis-
ter. How Much Does Memory Layout Impact Performance? A Wide
Study. In Proceedings of the International Workshop on Reproducible
Research Methodologies (REPRODUCE), page 23–28, Orlando, USA,
Febuary 2014.

[39] Augusto Oliveira, Jean-Christophe Petkovich, Thomas Reidemeister,
and Sebastian Fischmeister. Datamill: Rigorous performance evalua-
tion made easy. In Proc. of the 4th ACM/SPEC International Con-
ference on Performance Engineering (ICPE), pages 137–149, Prague,
Czech Republic, April 2013.

76

http://satbench.uwaterloo.ca/download/39/1
http://satbench.uwaterloo.ca/download/39/1
http://satbench.uwaterloo.ca/download/43/1
http://satbench.uwaterloo.ca/evo/toybox.gif
http://satbench.uwaterloo.ca/evo/toybox.gif
http://satbench.uwaterloo.ca/evo/aes_16_10_keyfind_3.gif
http://satbench.uwaterloo.ca/evo/aes_16_10_keyfind_3.gif
https://ece.uwaterloo.ca/~vganesh/satcommunitystructure.html
https://ece.uwaterloo.ca/~vganesh/satcommunitystructure.html
http://www.graphinsight.com
http://www.graphinsight.com

[40] Ezequiel Orbe, Carlos Areces, and Gabriel Infante-López. isat: structure
visualization for SAT problems. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 335–342. Springer, 2012.

[41] Carsten Sinz and Edda-Maria Dieringer. DPvis–a tool to visualize the
structure of SAT instances. In Theory and Applications of Satisfiability
Testing, pages 257–268. Springer, 2005.

[42] T. Taiwan and H. Wang. Minipure. http://

satcompetition.org/edacc/SATCompetition2013/experiment/

25/solver-configurations/859, 2013. Accessed: 2015-01-10.

[43] Craig A Tovey. A simplified np-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85–89, 1984.

[44] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Satzilla: Portfolio-based algorithm selection for sat. J. Artif. Intell.
Res.(JAIR), 32:565–606, 2008.

[45] Wangsheng Zhang, Gang Pan, Zhaohui Wu, and Shijian Li. Online
community detection for large complex networks. In Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence,
pages 1903–1909. AAAI Press, 2013.

77

http://satcompetition.org/edacc/SATCompetition2013/experiment/25/solver-configurations/859
http://satcompetition.org/edacc/SATCompetition2013/experiment/25/solver-configurations/859
http://satcompetition.org/edacc/SATCompetition2013/experiment/25/solver-configurations/859

Appendices

78

A Benchmarking machines

A list of all machines used in the various experiments in this thesis.

Number CPU Cores CPU speed Cache (L1 i/d + L2 + L3) RAM amt Ram speed
1 Intel Core i7 i686 4 3400 32/32 + 256 + 8192 8266580 0
2 Intel Pentium M i686 1 1695 0/0 + 256 + 0 902287 0
3 Intel Pentium 4 i686 2 2992 0/16 + 2048 + 0 894177 533
4 VIA Nano X2 i686 2 1733 128/128 + 2048 + 0 1814036 1066
5 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000263 0
6 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 254781 0
7 Intel Pentium 4 i686 2 2998 0/16 + 1024 + 0 893347 0
8 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 514119 133
9 Intel Pentium 4 i686 2 2992 0/0 + 1024 + 0 894269 0
10 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000540 0
11 Intel Pentium 4 i686 2 2793 64/64 + 2048 + 0 902461 0
12 Intel Pentium 4 i686 2 1614 0/0 + 256 + 0 894269 0
13 Intel Pentium 4 i686 2 1600 0/0 + 256 + 0 242851 0
14 Intel Pentium 4 i686 2 3198 0/0 + 512 + 0 894269 0
15 AMD Athlon XP i686 1 1111 64/64 + 256 + 0 514199 0
16 Intel Pentium D i686 2 2993 0/0 + 1024 + 0 2076180 0
17 Intel Pentium 4 i686 2 3200 0/16 + 512 +0 894269 0
18 Intel Pentium 4 i686 2 3192 0/0 + 512 + 0 505661 0
19 Intel Xeon x86 64 2 3000 0/0 + 4098 + 0 2831155 0
20 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 2076180 0
21 Intel Core i7 x86 64 8 3401 128/128 + 1024 + 0 8095006 0
22 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
23 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
24 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
25 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
26 Intel Core i5 x86 64 4 3291 128/128 + 1024 + 0 8095006 0
27 Intel Core i7 64 4 3400 32/32 + 256 + 8192 8388608 0
28 AMD Athlon 1 757 64/64 + 256 + 0 773079 0

List of machine specifications used for the varied parameters trial.
Machines 2-28 were ran through the DataMill platform

79

B Benchmarking instances

A list of all instances used in Chapter 7.

Instance name Q |Co| |Cl| |V | CVR

005 0.090262 64 55861 3254 17.17
289-sat-6x20 -0.001587 3 11760 360 32.67
6pipe 6 ooo.shuffled-as.sat03-413 0.133085 10 539799 14948 36.11
6s137 0.466398 8468 1104820 218561 5.05
6s139 0.436815 4964 727544 134368 5.41
7cnf20 90000 90000 7.shuffled 0.017496 1 1532 20 76.60
9pipe k 0.402002 9 2302466 45830 50.24
aaai10-planning-ipc5-pathways-13-step17 0.40244 1213 123637 19174 6.45
aaai10-planning-ipc5-pipesworld-12-step15 0.841376 250 931750 56496 16.49
aaai10-planning-ipc5-pipesworld-12-step16 0.843843 259 1016489 61519 16.52
aaai10-planning-ipc5-TPP-30-step11 0.863159 2359 2910796 308480 9.44
ACG-10-10p0 0.465775 5887 422890 85306 4.96
aes 32 3 keyfind 1 0.34408 24 2204 450 4.90
AProVE11-06 0.351294 22535 778280 159983 4.86
AProVE11-10 0.283643 18194 749349 143647 5.22
AProVE11-11 0.384989 6663 225071 49526 4.54
AProVE11-13 0.319356 30663 1294039 249832 5.18
AProVE11-15 0.307996 4833 172762 35192 4.91
AProVE11-16 0.377515 5440 192596 41165 4.68
battleship-10-17-sat 0.055898 9 865 170 5.09
battleship-10-18-sat 0.067677 11 910 180 5.06
battleship-14-26-sat 0.087463 15 2562 364 7.04
battleship-16-31-sat 0.053327 17 3976 496 8.02
battleship-5-8-unsat 0.013009 5 105 40 2.62
bc57-sensors-1-k303-unsat.shuffled-as.sat03-406 0.541139 8775 600244 110933 5.41
bob12m04 0.461189 975 149496 35038 4.27
bob12s04 0.313953 6176 322010 90321 3.57
b unsat 0.793949 92 1009915 112707 8.96
connm-ue-csp-sat-n1200-d-0.02-s405595518.used-as.sat04-950 0.125351 44 13008 843 15.43
connm-ue-csp-sat-n800-d-0.02-s1542454144.sat05-533.reshuffled-07 0.120872 35 8688 552 15.74
connm-ue-csp-sat-n800-d0.02-s925928766.sat05-538.reshuffled-07 0.124302 30 8592 525 16.37

80

Instance name Q |Co| |Cl| |V | CVR

ctl 4291 567 12 unsat pre 0.701089 31 259225 15232 17.02
ctl 4291 567 2 unsat 0.749368 35 149117 17742 8.40
cube-11-h14-sat 0.706586 656 828022 131729 6.29
dated-10-13-u 0.548559 3000 266796 43356 6.15
dated-5-11-u 0.588522 2010 175711 31545 5.57
driverlog3 v01a.renamed-as.sat05-3963 0.087007 3 163 28 5.82
E02F17 0.433218 77 63775 5283 12.07
E02F20 0.472681 175 392787 9892 39.71
E02F22 0.04212 197 1263700 12542 100.76
E04F19 0.538132 197 293680 8025 36.60
E04F20 0.382924 141 465947 9532 48.88
E04N18 0.466961 87 86799 5803 14.96
E05F20 0.561251 144 470330 9796 48.01
E05X15 0.521341 120 39904 4043 9.87
em 11 3 4 exp 0.495151 118 379659 8709 43.59
em 12 2 4 exp 0.49548 141 673048 12536 53.69
em 7 3 6 cmp 0.500984 46 11213 1465 7.65
em 7 4 9 fbc 0.509187 45 28463 1673 17.01
em 8 4 5 all 0.503798 61 61604 2416 25.50
gensys-icl007.shuffled-as.sat05-3133 0.225554 12 11487 666 17.25
gss-16-s100 0.770504 655 55745 13554 4.11
gss-20-s100 0.765423 735 57320 13940 4.11
gus-md5-08 0.15498 4392 163004 28424 5.73
gus-md5-11 0.154939 4369 163299 28472 5.74
hard-6-U-7061 0.474487 1340 407829 68144 5.98
hid-uns-enc-6-1-0-0-0-0-30856 0.519168 32 5492 1664 3.30
hitag2-8-60-0-0x880693399044612-25-SAT 0.23415 19 25259 2174 11.62
hwmcc10-timeframe-expansion-k45-pdtswvqis8x8p2-tseitin 0.714523 317 193587 27042 7.16
hwmcc10-timeframe-expansion-k45-pdtviseisenberg1-tseitin 0.784991 180 143866 23404 6.15
ibm-2002-21r-k95 0.53606 1073 406418 56624 7.18
ibm-2002-30r-k85 0.518531 2937 655165 85912 7.63
itox vc1033 0.327283 5994 126273 28172 4.48
itox vc1130 0.302241 7537 193003 40087 4.81
k2fix gr rcs w9.shuffled 0.16935 15 303750 9929 30.59
korf-17 0.411141 152 88786 5924 14.99

81

Instance name Q |Co| |Cl| |V | CVR

LABS n067 goal001 0.633233 959 262103 76128 3.44
LABS n068 goal001 0.644354 939 277430 80853 3.43
LABS n070 goal001 0.643218 1043 299142 87292 3.43
lksat-n900-m6174-k4-l4-s819398222.used-as.sat04-929 0.129821 96 3667 719 5.10
manol-pipe-c10nidw 0.444685 1568 577387 93075 6.20
manol-pipe-f7idw 0.416056 804 330538 52766 6.26
marg3x3add8ch.shuffled-as.sat03-1448 0.098309 5 272 41 6.63
md5 48 1 0.493783 467 157214 26665 5.90
md5 48 4 0.494696 467 157348 26691 5.90
minandmaxor016 0.391523 65 6844 1393 4.91
mizh-sha0-36-2 0.393503 495 120186 20535 5.85
mizh-sha0-36-4 0.393658 487 120280 20555 5.85
mod2-rand3bip-sat-270-1.shuffled-as.sat05-2248 0.162143 54 1080 270 4.00
mrpp 4x4#10 16 0.40342 85 16177 1660 9.75
mrpp 4x4#10 20 0.39835 100 20879 2123 9.83
MUS-v300-3 0.139001 37 1024 283 3.62
ndhf xits 19 UNKNOWN 0.216174 11 456820 2803 162.98
ndist.b.26487 0 0 0 0 0
openstacks-sequencedstrips-...-p30 3.085-SAT 0.217335 22 1331173 205326 6.48
partial-10-15-s 0.616535 5779 686037 120599 5.69
pb 200 03 lb 02 0.598218 228 236382 47916 4.93
pb 200 05 lb 00 0.647451 245 226038 45649 4.95
pb 300 02 lb 07 0.678614 179 527489 106836 4.94
pb 300 06 lb 02 0.676937 214 510059 103115 4.95
Q3inK10 0.000606 1 75600 45 1680.00
q query 3 L150 coli.sat 0.343241 1680 936264 91073 10.28
q query 3 L70 coli.sat 0.351663 808 298118 28568 10.44
rand net60-40-10.shuffled 0.266552 581 10755 2888 3.72
rbsat-v760c43649g3 0.187684 12 40775 730 55.86
rbsat-v760c43649g7 0.140115 13 43098 731 58.96
rbsat-v945c61409g5 0.138853 45 58491 945 61.90
rnd 100 28 s 0.319278 10 5462 861 6.34
SAT dat.k80 0.431933 598 120758 17924 6.74
SGI 30 50 30 20 1-log.shuffled-as.sat03-107 0.02662 1 42147 150 280.98
shift1add.10997 0.528773 1347 42917 14621 2.94
shift1add.19970 0.54556 2489 80140 27195 2.95

82

Instance name Q |Co| |Cl| |V | CVR

shift1add.23958 0.527967 2790 87551 29833 2.93
shift1add.28943 0.548842 3295 107510 36465 2.95
slp-synthesis-aes-top25 0.460695 595 129117 25928 4.98
slp-synthesis-aes-top26 0.449641 612 139149 27953 4.98
slp-synthesis-aes-top27 0.450997 624 150017 30189 4.97
slp-synthesis-aes-top28 0.444864 668 160659 32468 4.95
slp-synthesis-aes-top29 0.473257 688 172347 34832 4.95
smtlib-qfbv-aigs-bin libsmbclient vc1228502-tseitin 0.431906 316 154597 33775 4.58
smtlib-qfbv-aigs-bin libsmbsharemodes vc5759-tseitin 0.501419 888 139574 30089 4.64
smtlib-qfbv-aigs-lfsr 004 127 112-tseitin 0.292715 58 74579 6252 11.93
smtlib-qfbv-aigs-lfsr 008 063 080-tseitin 0.295903 130 64816 6360 10.19
smtlib-qfbv-aigs-lfsr 008 079 112-tseitin 0.325816 158 105644 9868 10.71
sokoban-sequential-p145-microban-sequential.030-NOTKNOWN 0.259026 3 487093 35876 13.58
sokoban-sequential-p145-microban-sequential.070-NOTKNOWN 0.223978 3 1504693 107716 13.97
srhd-sgi-m27-q225-n25-p15-s58217873 0.107995 24 35446 542 65.40
stable-300-0.1-20-98765432130020 0.028899 1 17097 300 56.99
total-10-13-u 0.533613 3808 336030 53321 6.30
toughsat factoring 958s 0.299018 276 9284 1742 5.33
tph6 -0.011324 5 1716 65 26.40
traffic pcb unknown 0.638722 55 698392 32426 21.54
traffic r sat 0.586552 88 3158889 97506 32.40
traffic r uc sat 0.767679 619 4453116 453652 9.82
UCG-15-10p0 0.428974 7674 635885 101289 6.28
UCG-15-10p1 0.426842 7686 649235 101968 6.37
UCG-20-10p0 0.436047 10101 915516 136805 6.69
UCG-20-10p1 0.435672 10143 931387 137282 6.78
UCG-20-5p1 0.443108 8932 815936 120706 6.76
UR-15-10p0 0.430162 7661 635846 101272 6.28
UR-20-5p0 0.437544 8927 802143 120287 6.67
urquhart3 25bis.shuffled 0.127052 16 264 70 3.77
UTI-10-5t1 0.483595 2276 220437 36086 6.11
UTI-15-10p1 0.471582 6382 649363 102107 6.36
UTI-20-10p0 0.470823 8322 917592 137619 6.67
UTI-20-10p1 0.462407 9112 933889 137991 6.77
valves-gates-1-k617-unsat.shuffled-as.sat03-412 0.561996 17543 1344664 246554 5.45
VanDerWaerden pd 2-3-20 388 0 1 20393 194 105.12
VanDerWaerden pd 2-3-22 443 0 1 26201 222 118.02
VanDerWaerden pd 2-3-22 462 0 1 28738 231 124.41
velev-pipe-o-uns-1.0-7 0.337154 4 703071 21498 32.70
velev-vliw-uns-4.0-9 0.716108 27 1786538 85471 20.90
vmpc 29 0.180482 16 89294 841 106.18
vmpc 33 0.192585 17 132531 1087 121.92
N 0.138853 45 58492 945 61.90

List of all instances used in the machine parameters experiment

83

C Regression co-efficients

Factor Estimate Std. Error t value Pr(> |t|) Sig

|CO| -1.237e+00 3.202e-01 -3.864 0.000121 ***
|CL| �Q�QCOR -4.226e+02 1.207e+02 -3.500 0.000492 ***
|CL| �Q -2.137e+02 6.136e+01 -3.483 0.000523 ***
|CL| �Q� |CO| �QCOR� CV LR -1.177e+03 3.461e+02 -3.402 0.000702 ***
|CL| �Q� |CO| -6.024e+02 1.774e+02 -3.396 0.000719 ***
Q�QCOR 3.415e+02 1.023e+02 3.339 0.000881 ***
Q 1.726e+02 5.200e+01 3.318 0.000947 ***
Q� |CO| �QCOR 9.451e+02 2.927e+02 3.229 0.001292 **
Q� |CO| 4.839e+02 1.503e+02 3.220 0.001335 **
|V | �QCOR -3.177e+01 1.004e+01 -3.164 0.001617 **
|CL| � |V | � V CLR -1.263e+01 4.503e+00 -2.805 0.005163 **
|CL| � |V | �QCOR� CV LR -2.521e+01 9.008e+00 -2.798 0.005263 **
|V | -1.376e+01 4.947e+00 -2.782 0.005526 **
QCOR -1.057e+01 3.912e+00 -2.701 0.007065 **
|CL| � |V | �QCOR 2.096e+01 7.894e+00 2.656 0.008073 **
(Intercept) -4.949e+00 1.950e+00 -2.538 0.011327 *
|CL| �QCOR 9.486e+00 3.792e+00 2.502 0.012556 *
|CL| � |V | 9.641e+00 3.933e+00 2.451 0.014456 *
QCOR� V CLR 9.035e+00 3.789e+00 2.385 0.017323 *
V CLR 4.452e+00 1.892e+00 2.353 0.018845 *
|CL| 4.299e+00 1.894e+00 2.270 0.023507 *
|V | �QCOR� CV LR 1.700e+01 7.556e+00 2.250 0.024755 *
|V | � V CLR 8.059e+00 3.811e+00 2.115 0.034769 *
|CL| � |V | �Q�QCOR -4.680e+02 2.298e+02 -2.036 0.042060 *
|CL| � |V | �Q -2.373e+02 1.167e+02 -2.034 0.042268 *
|CL| � |V | �Q� |CO| -6.594e+02 3.315e+02 -1.989 0.047042 *
|CL| � |V | �Q� |CO| �QCOR -1.286e+03 6.469e+02 -1.988 0.047160 *

List of all significant effects, three stars indicates the highest level of
confidence that the effect is important. � indicates an interaction between

two or more factors and Sig stands for Significance

84

	List of Figures
	List of Tables
	Introduction
	Background
	Boolean satisfiability
	Community structure of SAT formulae
	Linear regression

	Regression analysis of impact of community structure on SAT solver performance
	Experimental setup
	Results
	Further results
	Conclusions and future work

	Relationship between CVR and community structure in random SAT instances
	Experimental setup
	Results
	Conclusion and future work

	SATGraf: A tool to view the evolution of a SAT instance during solving
	Implementation
	Features
	Algorithms used in SATGraf
	Results
	SATBench
	Utility and limitations of SATGraf
	Conclusion and future work

	Survival analysis of different classes of SAT instances
	Experimental setup
	Results
	Conclusion and future work

	Effect of machine parameters on SAT solver performance
	Experimental setup
	Results
	Conclusion and future work

	Related work
	Future work
	Conclusion
	References
	Appendices
	Benchmarking machines
	Benchmarking instances
	Regression co-efficients

