

Rank-switching, Open-row DRAM
Controller for Mixed-Critical Real-Time

Systems

by

Yogen Krishnapillai

A thesis

presented to the University of Waterloo
in fulfillment of the

thesis requirement for the degree of
Master of Applied Science

in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015
© Yogen Krishnapillai 2015

ii

I hereby declare that I am the sole author of th is thesis. This is a t rue copy of the

thesis, including any required fina l revisions, as accepted by my examiners.

Note tha t some contents of th is thesis a re t aken from my previously published paper

[1] where I am the first au thor . In addit ion, some content a re t aken from my other

published paper [2] where I am one of the co-authors.

I understand that my thesis may be made elect ronica lly ava ilable to the public

iii

Abstract

In th is thesis, we present a rank -switch ing open-row DRAM cont roller for mixed

cr it ica l rea l t ime systems. This memory controller is opt imized for mult i -requestor

and mult i-rank memory systems. The key to improved per formance is an innovat ive

rank-switching mechanism which h ides the la tency of wr ite to read t ransit ions in

DRAM devices without requir ing unpredictable request reorder ing. We fur ther

employ open-row policy to take advantage of the data caching mechanism (row

buffer ing) in each device. We choose the bank pr iva t iza t ion scheme where each

requestor is assigned its own pr iva te bank or set of banks. This pr iva te bank mapping

guarantees tha t each requestor has its own row buffers and cannot be in terfered by

other requestors. The proposed memory controller design allows maximum of thir ty

two requestors at a t ime ta rget ing either two or four ranks. This cont roller provides

complete t iming isolat ion between cr it ica l and non -cr it ica l applicat ions and a llows for

composit iona l t iming ana lysis over number of r equestors and memory ranks in the

system. We designed both the front end logic for the command genera t ion and back

end logic for the DRAM t iming constra in t check and arbit rat ion ut ilizing the rank

switch ing techniques. The complete design is implemented an d synthesized using

Ver ilog RTL and fina lly, we eva lua ted per formance using var ious benchmarks. Our

proposed memory controller offers significant ly lower worst case la tency bounds for

cr it ica l rea l-t ime applica t ions and suppor ts average throughput for non -cr it ica l rea l-

t ime applica t ions compared to exist ing rea l t ime memory controller s in the lit era ture.

iv

Ackn ow le dge m e n ts

I would like to thank my supervisor Rodolfo Pellizzoni for h is encouragement and

excellen t guidance for a successfu l complet ion of th is research. Prof Rodolfo has been

rea lly helpfu l and dedica t ing h is va luable t ime to accomplish th is research project .

I would like to thank my supervisor Manoj Sachdev for giving me the motiva t ion to

apply for MASc Program while my at tent ion was diver ted by my fu ll t ime car r ier .

I would a lso like to thank Professor Andrew Mor ton and Hiren Patel for reviewing

th is thesis and for their va luable comments.

v

De dicat ion

This is dedicated to my parents, my brothers and sisters for their constant love and

mot iva t ion throughout my life. I would not be here without them. It has been a grea t

cha llenge studying a thesis based Engineer ing Master program while focusing on a

fu ll t ime car r ier in the same field of interest . Dedica t ing the t ime and energy for both

studies and car r ier a t the same t ime has been a rewarding exper ience.

vi

Table of Con te n ts

List of Tables……………………………………………………………………..….……… viii

List of Figures………………………………………………………………………….…… ix

1 In trodu ction …………………………………………………………………… ……… 1

1.1 Problem Statement………………………………………………………….…….. 1

1.2 Cont r ibut ion………………………………………………………………………... 2

1.3 Organiza t ion………………………………………………………………..……… 3

1.4 Acknowledgement…………………………………………………………..……… 3

2 Backgrou n d ………………………………………………………………………….. 4

2.1 DRAM Basics …………………………………………………………………….. 4

2.2 DRAM Timing Const ra in ts …………………………………………………….. 6

2.2.1 Rank to Rank Timing Basics ………………………………………… 7

2.2.2 Request s t a rget ing the same rank …………………………….……. 7

 2.2.3 Request s t a rget ing different ranks …………………………….…… 9

2.3 DRAM Row Buffer Management …………………………………………........ 10

 2.4 DRAM Mapping ……………………………………………………………….…. 11

2.4.1 Cont inuous Memory Mapping …………………………………….. 11

2.4.2 In ter leaved Memory Mapping ………………………………….…. 12

2.5 Rela ted Works ………………………………………………………….………… 12

3 Me m ory Con troller De s ign ……………………………………………….……….. 16

3.1 Design Decisions ………………………………………………………………….. 16

3.1.1 Row Management Policy …………………………………………….. 16

3.1.2 Address Mapping Scheme …………………………………………… 16

3.1.3 Rank Switching Mechanism ………………………………….…….. 17

3.1.4 Select ion of Arbit rat ion Architecture Type …………………..…… 19

3.2 Arbit ra t ion Rules ……………………………………………………………….... 21

4 Th e ore tical An alys is ………………………………………………………………. 25

4.1 Worst Case Per -Request Latency ……………………………………………… 26

4.1.1 In ter ference delay for PRE ACT Commands ………...…………. 27

4.1.2 CAS-to-Data ……………………………………………………......... 32

vii

5 Me m ory Con troller Im ple me n tation …………………………………… …….. 39

5.1 Front End of the Memory Cont roller ………………………………..………… 40

5.2 Back End of Memory Cont roller ……………………………………………….. 43

5.2.1 Command Queues in Stage 4 ……………………………………… 44

5.2.2 PRE ACT Arbiter and CAS Arbiter in Stage 4 ………………….. 45

5.2.3 PRE, ACT, CAS Sequencer in Stage 4 …………………………… 46

5.2.4 PRE, ACT Queue in Stage 4 ………………………………………. 47

5.2.5 PRE, ACT Arbiter and RRD FAW Sequencer in Stage 3 ……… 48

5.2.6 PRE, ACT Arbiter in Level 2 ………………………………….…… 48

5.2.7 CAS FIFO in Stage 4...51

5.2.8 CAS Arbiter and CAS BTB Sequencer in Stage 3………….......... 51

5.2.9 CAS Arbiter in level 2 …………………………………………….... 52

5.2.9.1 BTB Comparator…………………………………………..…. 54

5.2.9.2 RTR Sequencer…………………………………………..…… 55

5.2.10 PRE ACT CAS Arbiter in Level 1 ………………….………….….. 58

5.3 Pipeline Implementat ion of the Memory Cont roller ……………….……….. 59

5.3.1 Pipeline Stage 4 – Request Arbit ra t ion ………………….….…… 60

5.3.2 Pipeline Stage 3 – Bank Arbit ra t ion ……………………….….…. 60

5.3.3 Pipeline Stage 2 – Rank Arbit ra t ion ………………….…….……. 61

5.3.4 Pipeline Stage 1 – Command Arbit rat ion …………….……..…… 62

5.3.5 Timing Analysis of Pipeline stages ……………………..…….…… 63

5.3.6 Data pa th of the Memory Cont roller……………………………….. 64

5.3.7 Test ing of the Memory Cont roller ………………………………….. 65

6 Evalu ation ……………………………………………………………………………. 66

6.1 Synthet ic benchmark Results…….……………………….…...................... 66

6.2 Latency of open and close memory read access ……………………………… 68

6.3 Simula t ion of Crit ica l tasks ………………………………………………..…… 69

6.4 Simula t ion of Crit ica l and non -cr it ica l t asks …………………………………. 73

7 Con clu s ion …………………………………………………………………………..... 76

Re fere n ce s ………………………………………………………………………………... 77

Appe n dix A: Design Block Diagrams……………………………………………………. 79

Appe n dix B: Simula t ion Outputs………………………………………………………… 82

viii

List of Table s

2.1 J EDEC Timing Const ra int s …………………………………………………………... 6

2.2: Summary of the rela t ed work ……………………………………………………….. 15

4.1 Timing Parameter Definit ion …………………………………………………………..27

6.1 Latency of open, close access with 0 % wr ite…………………………………………69

ix

List of F igu re s

2.1 DRAM Architecture…………………………………………………………………….. 5

2.2 Requests t arget ing different banks in the same rank……………………….……. 9

2.3 Requests t arget ing different ranks………………………………………………….. 10

2.4 Cont inuous Memory Mapping ………………………………………………….…... 11

2.5 In ter leaved Memory Mapping …………………………………………………........ 12

3.1 (A) Arbit rat ion for 1 Rank …………………………………………………….……… 18

3.1 (B) Arbit rat ion for 2 Ranks ……………………………………………………….….. 18

3.1 (C) Arbit rat ion for 4 Ranks ……………………………………………….………….. 18

3.2 Choice of Arbiter Types ………………………………………………….……………. 19

3.3 Three levels Arbit rat ion ……………………………………………………………… 21

4.1 Worst Case Latency Decomposit ion ………………………………………………… 25

4.2 Arr iva ls-to-CAS Decomposit ion for Close Request ………………………………. 26

4.3 In ter ference Delay for ACT command , R = 2, r = 1 and Mr = 5 …………….….. 29

4.4 Read to Read Latency, R = 2 and r = 1 ……………………………………….……. 32

4.5 Write to Read Latency, Case (a) with R = 2 and r = 1 ……………………….….. 34

4.6 Write to Read Latency, Case (b) with R = 3 and r = 1 ……………………….….. 36

4.7 In it ia l Write Latency, R = 3 and r = 1 ………………………………………….…. 38

5.1 Memory Cont roller with Front and Back end logic ……………………………… 39

5.2 Front End Memory Cont roller ……………………………………………………… 40

5.3 Refresh Controller ……………………………………………………………….……. 42

5.4 Back End Memory Controller ………………………………………………….…… 43

5.5 CMD Queues with PRE, ACT Arbiter and CAS Arbiter …………………….…... 44

5.6 Scheduling of PRE, ACT CMDs through L3, L2, L1 ………………………….….. 49

5.7 CAS FIFO and CAS BTB Sequencer ……………………………………………..… 51

5.8 Level 3 CAS BTB Sequencer and Level 2 CAS Arbiter ……………………….…. 53

5.9 Logic to ca lcu la te the Smallest BTB ………………………………………….…….. 54

5.10 Scheduling of CAS CMDs through L3, L2, L1 …………………………………… 56

5.11 Example BTB ca lcula t ion for RCAS CMD from Rank 0 ……………….……….. 58

x

5.12 Three Stage Pipeline for the backend Memory Cont roller ……………………... 59

5.13 Stage 4 Pipeline – Request Arbit ra t ion ……………………………………...……. 60

5.14 Stage 3 Pipeline – Bank Arbit ra t ion …………………………………………….... 60

5.15 Stage 2 Pipeline – Rank Arbit ra t ion …………………………………………..….. 61

5.16 Stage 1 Pipeline – Command Arbit ra t ion …………………………………….….. 62

5.17 Timing Analysis of Pipeline Stages ……………………………………….………. 63

6.1 Synthet ic 16 Requestors 64 bits da ta bus result ……………………………........ 67

6.2 Synthet ic 8 Requestors 64 bits da ta bus result……………………………….…… 67

6.3 Synthet ic 8 Requestors 64 bits da ta bus result……………………………….…… 68

6.4 Simula t ion setup for Memory Configura t ions 1…………………………….…...... 70

6.5 CHStone: 16 Requestors 64 bits da ta bus result ………………………….…….… 71

6.6 CHStone: 8 Requestors 64 bits da ta bus result ………………………………....… 72

6.7 Simula t ion setup for Crit ica l and Non -Crit ical requestors…………………….… 74

1

Ch apte r 1

In trodu ction

The memory clien ts either have rea l t ime or non -rea l t ime requirements. The rea l

t ime requests can be either cr it ica l or non -cr it ica l. The cr it ica l requests demand worst

case upper bound la tency whereas non -cr it ica l requests demand average minimum

bandwidth . The cr it ica l rea l t ime systems such as avionic system, nuclear plant and

safety-cr it ica l elect ronic medica l devices demand the worst case upper bound la tency.

In th is thesis, memory clien ts such as CPU or hardware accelera tors or IO per iphera ls

a re refer red to as requestor s from now on . The proposed memory cont roller was

implemented by u t ilizing the rank -switch ing techniques, open -row policy, pr iva te

bank mapping and dynamic scheduling. The memory controller implemented in th is

fashion is to show how the la tency of a memory request can be significant ly reduced

by applying rank switching techniques and thereby h iding the highly t ime consumed

read to wr ite and wr ite to read t iming const ra in t s. Fur ther , designing the memory

cont roller in th is fashion helps to prove the poin t tha t la rge number of requestors can

be handled through effect ive mult i stage arbit ra t ion mechanism while sa t isfying their

complex memory t iming parameters to serve a ll requestors to execute their memory

request demand in an order ly fashion. In Sect ion 1.1, we present the problem

sta tement and Sect ion 1.2 lists the cont r ibut ions accomplished for th is research .

Sect ion 1.3 gives a preview of how th is document is organized and fina lly Sect ion 1.4

provides the content acknowledgement .

1.1 P roblem Statem e n t

The challenges a r ise when la rge number of memory clients is running in para llel with

it s own cr it ica l and non -cr it ica l applica t ions ta rget ing one and only common shared

memory cont roller in a single channel memory environment . The common shared

memory controller should be able to handle cr it ica l and non -cr it ica l applica t ions

where heavily in ter dependant DRAM t iming const rain t s become very complica ted to

ana lyse. Further , the command scheduling of a ll the memory clients become another

cha llenge when the number of memory clients is growing.

2

Scheduling DRAM commands for many memory clien ts is not st ra ight forward, since

there a re a number of t iming constra in ts tha t must be sa t isfied before a memory

clien t can be chosen and its command can be issued. It is a grea t cha llenge to design

such a memory controller tha t provides equal chances to a ll the memory clien ts

through fa ir a rbit ra t ion and schedule their commands dynamically while sa t isfying

the in ter -dependant t iming const ra in t . The design st ra tegy of th is proposed memory

cont roller should a lso focus on scenar ios where both non-cr it ica l rea l t ime requestors

and non-rea l-t ime requestors cannot inter fere with the t ight la tency t iming deadlines

of the cr it ica l real t ime requestors. In other words, the memory cont roller should be

able to handle different type of requestors according to their respect ive la tency and

throughput requirements. All these demands should be sa t isfied by providing the

t ight bounds on the worst case execut ion t ime for the cr it ica l requestors and average

throughput for the non-cr it ica l requestors a long with guaranteed bandwidth .

1.2 Con tribu tion

In th is thesis, we present a rank -switch ing, open -row memory controller for mixed

cr it ica l rea l t ime systems. The major cont r ibut ions a re the following.

 The worst -case execut ion t ime was ana lysed for a single memory request from

requestor under ana lysis while remaining other requestors provide worst case

memory in terference a t the same t ime. This in it ia l phase helped to look in to

the para llelism na ture to reduce the in terference among mult iple requestors.

 Our rank-switching open row memory cont roller a rchitecture has both front

end and back end logic blocks. The front end design was implemented to

achieve address mapping, refresh cont roller and command genera t ion for a

mult i requestor environment where our memory cont roller can accept request s

from “n” number of requestors where 0 < n <= 32.

 The back end design was implemented with three levels of arbit ra t ion such as

requestor arbit rat ion, rank arbit ra t ion and command arbit ra t ion. To achieve

the h ighest throughput , back end design was architected in a four stage

pipelined fashion .

3

 The ver ifica t ion plat form such as test bench, tests su its and simula t ion were

developed and the design was ver ified.

 The fina l design was synthesized. The Sta t ic Timing Analysis (STA) was

car r ied out to fix set up and hold t ime viola t ions.

 The evalua t ion was car r ied out on our memory cont roller through extensive

hardware simula t ions to ana lyse how the rank -switch ing techniques effect ively

improve the performance. The eva lua t ion results were compared with the

ana lyt ica l result s.

1.3 Organ ization

This document is organized as follows. Chapter 2 provides required background on

DRAM. Chapter 3 discusses proposed memory cont roller design tha t includes the

important design decisions a nd arbit ra t ion ru les. Next , Chapter 4 is focused on the

theoret ica l analysis of worst case per -request la tency. Chapter 5 is dedica ted to the

implementat ion deta il of our proposed memory cont r oller . Next , Chapter 6 discusses

the ver ificat ion plat form used to ver ify the design and a lso eva lua tes the performance

of our design . Fina lly, Chapter 6 provides concluding remarks. At the end, the

schemat ic diagrams and one sample simulat ion output waveform of the memory

cont roller design are included in Appendix. The Ver ilog RTL code of the design can be

found a t [18].

1.4 Ackn ow le dge me n t

Sect ion 4.0, Sect ion 3.2, Sect ion 2.5 and Sect ion 2.1 were taken from published paper

[1]. I would like to thank Professor Rodolfo Pellizzoni for h is great assistance in

formula t ing the theoret ica l ana lysis and arbit ra t ion ru les. I would a lso like to thank

Zheng Pei Wu for h is suppor t for published paper [1] and providing the necessary

benchmark memory t races used in our simula t ions.

4

Ch apte r 2

Backgrou n d

This background chapter is dedicated to three main areas. F irst , it descr ibe s the basic

opera t ion of DRAM memory device. Second, complex t iming behaviour of DRAM will

be illust ra ted in deta ils. F ina lly rela ted work per formed by others is discussed and it

helps to different iate between our proposed design and the exist ing approaches.

2.1 DRAM Bas ics

Modern memory devices a re organized into ranks and each rank is divided in to

mult iple banks, which can be accessed in para llel provided that no collisions occur on

either buses. Each bank compr ises a row-buffer and an ar ray of storage cells

organized as rows and columns. This thesis considers devices with a t least two ranks

for our ana lysis on rank switch ing techniques. A Memory Cont roller cont rols the

opera t ions of DRAM device by issu ing five important memory commands such as

Act iva te, Read, Write, Pre-charge and Refresh.

To access the da ta in a DRAM row, an Act iva te (ACT) command must be issued to

load the da ta in to the row buffer before it can be read or writ t en. Once the da ta is in

the row buffer , a read CAS or wr ite CAS command can be issued to ret r ieve or store

the da ta . If a second request needs to access a different row with in the same bank, the

row buffer must be wr it t en back to the da ta a rray with a Pre-charge (PRE) command

before the second row can be act iva ted. In a r ank, when each DRAM device

cont r ibutes with 8 bits, a rank with 8 devices has the da ta bus size of 64 bits. The

following Figure 2.1 illust rate row, columns, bank and rank configurat ion and it a lso

shows how the tota l 64 bit da ta from the memory cont roller reach t he rank tha t has 8

DRAM devices.

5

 Figure 2.1 DRAM Architecture

F ina lly, a per iodic Refresh (REF) command must be issued to a ll ranks and banks to

ensure da ta in tegr ity. Note that each command takes one clock cycle on the command

bus to be serviced. Each CAS command accesses da ta in a burs t of length BL and the

amount of da ta t ransferred is BL x WBUS, where WBUS is the width of the da ta bus.

Since DDR memory t ransfers data on r ising and fa lling edge of clock, the amount of

t ime for one t ransfer is t
BUS

 = BL/2 memory clock cycles. For example, with BL = 8 and

WBUS of 64 bit s, it will t ake 4 cycles to t ransfer 64 bytes of data . A row tha t is cached

in the row buffer is considered open, otherwise the row is considered closed. For an

open request , only a read or wr ite CAS command is genera ted since the desired row is

a lready cached in row buffer . For close request , if row buffer conta ins a row tha t is not

the desired row, then a PRE command is genera ted to close the cur rent row. Then an

ACT is genera ted to load the new row and fina lly read/wr ite is genera ted to access

da ta . The memory controller can employ one of two polices to manage the row buffers.

Under open row policy, the memory cont roller leaves the row buffer open for as long

as possible. In cont rast , close row policy automat ically pre -charges the row buffer

a fter every request . F ina lly, the cont roller must map the incoming request to the

cor rect rank, bank, row and column. With inter leaved bank mapping, each request

can access a ll banks in para llel. However since a ll requestors share a ll b anks, they

can cause mutua l in ter ference by closing each other ’s rows. With pr iva te banks

mapping, each requestor is assigned it s own bank or set of banks. Therefore, the sta te

of row buffers of one requestor cannot be influenced by other requestors.

6

2.2 DRAM Tim in g Con strain ts

Every memory device has t iming requirement s in order to perform read, wr ite, and

refresh opera t ions. Therefore, it is the memory cont roller which sat isfies the t iming

constra in ts needed by the memory devices. The opera t ion and t iming const ra int s of

memory devices are defined by the J EDEC standard. The Table 2.1 lists the

descr ipt ion of all t iming paramet ers for DDR3-1333H device that we used in our

design . The table 2.10 a lso show which t iming parameters a re involved when the

request s t arget the same bank, same rank or different banks, same rank or different

ranks.

 J DEC SP ECIFICATIONS

Timing

Parameters
Descr ipt ions

DDR3

1333H

Same Bank

Same Rank

Diff. Banks

Same Ranks
Diff. Ranks

t
RCD

 ACT to READ/WRITE delay 9 Yes No No

t
RL

 READ to Da ta Sta r t 9 Yes No No

t
WL

 WRITE to Da ta Sta r t 7 Yes No No

t
BUS

 Data bus t ransfer 4 Yes Yes Yes

t
RP

 PRE to ACT Delay 9 Yes No No

t
WR

 End of WRITE to PRE Delay 10 Yes No No

t
RTP

 Read to PRE Delay 5 Yes No No

t
RAS

 ACT to PRE Delay 24 Yes No No

t
RC

 ACT-ACT (same bank) 33 Yes No No

t
RRD

 ACT-ACT (differen t bank) 4 No Yes No

t
FAW

 Four ACT Window 20 No Yes No

t
RTW

 READ to WRITE Delay 7 Yes Yes No

t
WTR

 WRITE to READ Delay 5 Yes Yes No

t
RTR

 Rank to Rank Switch Delay 2 No No Yes

t
RFC

 Time required to r efresh a row 160 ns Yes No No

t
REFI

 Refresh per iod 7.8 us Yes No No

Table 2.1 DRAM Timing Const rain t

7

2.2.1 Ran k to Ran k Tim in g Bas ics

Before ana lysing the t iming ana lysis with in the same rank and between different

ranks, it is impor tant to ana lyse the or igin of th is t iming requirement ca lled Rank to

Rank (RTR) which was der ived from Data Strobe (DQS). DDR SDRAM uses both a

clock and a source-synchronous data st robe (DQS) in order to achieve h igh da ta ra tes.

The DQS signal is a shared signal used by either bus masters such as memory

cont roller or DRAM memory device. Dur ing the read command, the DQS signal is

dr iven by the Memory device to not ify the read da ta t iming to the memory cont roller .

Dur ing the wr ite command, the DQS signal is dr iven by the memory controller to

not ify the wr ite data t iming from the memory cont roller to the Memory device. While

DQS is dr iven by the Memory controller , the same DQS is used by the memory device

to sample the incoming wr ite da ta . Since the DQS is a shared signal by the bus

masters, the synchroniza t ion t ime is needed for one bus master to hand off the DQS

signal to another bus master . The DQS is the bus turnaround t ime, inser ted to

account for skew on the bus and to prevent different bus mast ers from dr iving the bus

a t the same t ime. To avoid such collisions, a second rank must wait a t least t
DQS

 a fter a

fir st rank has fin ished before dr iving the bus. This synchroniza t ion t ime is ca lled

Rank to Rank Time, RTR.

2.2.2 Requ ests targe tin g th e sam e Ran k

The Figure 2.2 shows the scenar io where requests t arget different rows, banks with in

the same rank. First , the REQ1 targets row 1, bank 1 and rank 1. Since it is a close

read request , the memory cont roller issues the ACT command to row 1, bank 1, rank

1. Then, it waits for RCD delay to issue the CAS Read command and it wait s for Read

Latency (RL) t ime unit before expect to receive the fir st byte of read da ta from the

memory device. The length of the read da ta is equal to the burst length (BL).

Right a fter REQ1 ar r ived, a new wr ite request REQ3 a lso ar r ived and ta rget ing

different bank in the same rank (row 1, bank 2, rank 1). Since it is a close request , the

ACT command needs t o be issued for REQ 3. As per the ACT to ACT t iming const ra in,

the row to row delay const ra in is applied for requests t a rget ing different banks in the

same rank. Therefore, the REQ3 ACT command cannot be issued r ight a fter the

REQ1 ACT command. Instead, the REQ3 ACT command should be delayed by RRD

delay. Now, the REQ 3 has issued ACT command after RRD t ime.

8

At th is point , tha t memory cont roller cannot issue CAS wr ite command after the

RCD delay is elapsed as expected. This scenar io is expla ined in the following

paragraph.

When read and wr ite requests t a rget ing different banks or same bank with in the

same rank, the memory controller must sat isfy the Read to Write (RTW) t iming

constra in . Therefore, the memory cont roller needs to wait for the Read to Write

(RTW) t ime delay from the REQ1 CAS read command before issue REQ 3 CAS write

command. After CAS Write command is issued, memory cont roller needs to wait for

Write Latency (WL) in order to send the wr ite da ta to the memory device. After the

wr ite da ta is writ t en out , memory controller needs to wait for Write Recovery (WR)

t ime before issues the PRE, if row need to be closed. Closing the row depends on open

or close row policy.

While REQ1 is in act ion receiving read data , a new read request , REQ 2, just

a r r ived ta rget ing the same bank and the same rank as REQ 1, but different row (row

2, bank 1, rank 1). Since the REQ 2 ta rget the different row in the same bank, the

previous row which was being accessed by the REQ1 has to be closed before opening a

new row to REQ2. To issue PRE command in order to close the row, t he memory

cont roller has to wait for the maximum of either Read to Pre-charge (RTP) or RAS

t iming constra in t . After issuing the PRE command for REQ2, the controller needs to

issue the ACT command after wait ing for the maximum of either RP or RC t iming

constra in t . After issu ing the ACT command for REQ2, the memory cont roller has to

wait for RCD delay t ime in order to issue the CAS read command as per the DRAM

protocol. But , REQ 2 CAS read command can only be issued after the t iming const ra in

ca lled Write to Read (WTR) is sa t isfied as shown in Figure 2.2. It is impor tant to point

out the difference between RTW and WTR const rain t s. The RTW constra in t is

between the r ead command to the wr ite command of the same or different requestors.

But , the WTR const rain t is between the complet ion of wr ite burst da ta to the r ead

command of the same or different requestors.

9

Figure 2.2: Requests t arget ing different banks in the same rank

2.2.3 Requ ests targe tin g d ifferen t Ran ks

The Figure 2.3 shows the scenar io where requests t arget different ranks. The first

read request (REQ1) ar r ives and since it is a close request t a rget ing rank 1, the

memory cont roller issues the ACT command. At the same t ime, another close read

request , REQ 2, a lso ar r ives and target ing rank 2. Since it is a close request , t he

memory cont roller issues the REQ 2 ACT command. This ACT command can be

issued r ight after the REQ1 ACT command without wait ing for the Row to Row delay

(RRD). It is due to the fact that both requests a re t a rget ing different ranks and there

is no const ra int between ACT commands of requestors tha t t a rget different ranks. As

it can be seen from Figure 2.3, the REQ1 CAS read command and the corresponding

Read Data follows as per regular t iming parameters that we saw before. But , for the

REQ2, after RCD delay is elapsed from its ACT command, REQ2 CAS wr ite command

cannot be issued, instead CAS wr ite command need to be scheduled to sa t isfy the new

t iming constra in t ca lled Rank to Rank (RTR). The RTR delay is needed to sa t isfy the

constra in t between end of read data of REQ1 from rank 1 and beginning of wr ite data

of REQ2 from rank 2. In other words, the memory controller can only begin sending

the REQ2 wr ite data after RTR t iming is elapsed from the end of the REQ1 read da ta .

While REQ1 is receiving it s read data , there is a new request , REQ 3 tha t a r r ives and

ta rgets the same rank, bank and rows as of REQ1.

10

The REQ 3 is considered as open request since the r ow is a lready opened by the

REQ1. Therefore, there is no need to issue the ACT command; instead, the memory

cont roller can issue the CAS read command to access the a lready opened row. But ,

th is CAS read command cannot be issued r ight away, instead it need to be scheduled

to sat isfy the rank t o rank (RTR). Important observa t ion is that there is no need for

wr ite to read (WTR) or read to wr ite (RTW) const ra int in th is scenar io where request s

t a rget different ranks. The WTR and RTW t iming const ra in t are only applicable for

the requestors t a rget ing either same bank or different banks in the same rank as we

saw in the previous Sect ion 2.2.1.

 Figure 2.3: Requests t arget ing different ranks

2.3 DRAM Row Buffe r Man age m e n t P olicy

Sect ion 2.1 expla ins the opera t ion of row buffer in DRAM. The policy tha t manages

the opera t ion of row buffer is ca lled row buffer management policy. There a re two

types of policies exist ing and they are open row and close row. The decision on

choosing one of them depends on the memory cont roller designer ’s choice in terms of

per formance and power consumpt ion. For the open row policy, the memory controller

a llows the row buffer to be a lways open unt il a request to read a different row. If

another memory request ar r ives to the same row address with different column

address, memory access is possible with the minimum la tency of CAS Latency (CL)

11

without re-opening the row due to the open row policy. Therefore, th is policy sa ves

un-necessary RAS to CAS la tency delay by re-opening the row again . When the

cont roller send the memory request to different row in the same bank, the open row

needs to be closed by PRE command before opening the new row. On other hand, the

close row policy automat ica lly closes the row buffer a fter a request and consequent ly,

every new request to the same row has to issue ACT command to open the row even if

it accesses the same row as before.

2.4 DRAM Mappin g

The memory controller receives the memory request in the form of just physica l

address and the r equest type. It is the task of m emory cont roller to map the incoming

raw physica l address into correct rank, bank, row and column addresses to access the

memory devices. There a re two types of mapping methodologies.

2.4.1 Con tin u ou s Mem ory Mappin g

The cont inuous memory mapping is where the incoming physica l memory address is

mapped within the single row of a par t icu lar bank. The sequent ia l access cont inues

through different columns address in the same row unt il the end of the row is

reached. Only when the cur rent row is fin ished accessed, the mapping switches to the

same row number of next ava ilable bank as shown in Figure 2.4. If the next bank is

not ava ilable, th en, the logica l address is mapped to the next row in the cur rent bank.

Pr iva te bank mapping is a sub-set of cont inuous mapping scheme. When a pr iva te

bank scheme is used in a mult i requestor system , each requestor is assigned to either

one bank or set of disjoined banks with in the same rank. Cont inuous memory

mapping is very efficient method with no bank conflicts when the memory requests

a re cont inuous sequent ia l addresses. But , t his method becomes inefficient if t he

memory requests reach to different rows in the same bank.

F igure 2.4: Cont inuous Memory Mapping

12

2.4.2 In terleaved Mem ory Mappin g

The incoming physica l address is mapped to column address loca t ions of a row from

a ll banks ava ilable in rank . Once a ll banks have been accessed, then , the incoming

physica l address is mapped to the next column address loca t ion of the same row from

a ll banks. When the row becomes fu ll, the incoming logica l address is mapped the

next row from a ll ava ilable banks as shown in Figure 2.5. An in ter leaved memory

with n banks is sa id to be n -way in ter leaved. If there a re n banks, memory loca t ion i

would reside in bank number i mod n . The inter leaved method has an advantage of

make use of mult iple banks and access a ll banks simultaneously with addresses a re

spread over banks and hence th is mapping provides the efficient bank para llelism and

results in h igher memory throughput . But , the drawback is tha t it involves complex

design and it is only efficient when you require burst access to a ll the banks.

 Figure 2.5: In ter leaved Memory Mapping

2.5 Re late d Works

The rela ted works on memory cont roller design car r ied out by r esearchers can be

classified under different implementat ion ca tegor ies such as close row, open row,

cr it ica l, mixed cr it ica l, rank switch ing and arbit ra t ion policy. Let us ana lyse the

rela ted work under each of these ca tegories.

F ir st , we will be looking in to the rela ted work focusing on rea l t ime memory

cont rollers with close row policy. The work done by Analyzable Memory Cont roller

(AMC) [7] and Predator [8] employ close row policy designed for cr it ica l systems. The

in ter leaved banks are chosen as the bank mapping st ra tegy by [7] and [8]. In

in ter leaved bank mapping, there is no guarantee tha t rows opened by one requestor

will not be closed by another requestor .

13

Therefore, both [7] and [8] offers predictable t imings, but the la tency can be

significant ly h igher than cont roller s using open row policy. The work done by Yonghui

et a l. [3] presents the a rchitecture of a dynamica lly scheduled real t ime memory

cont roller . The paper ana lyses to minimize the worst case execut ion through close

page policy and bank para llelism with inter leaved bank mapping. Further , th is paper

[3] specifica lly addresses the issue of having either fixed or var iable t ransact ion size

for the rea l t ime memory cont rollers. Fur ther , the papers [4], [10] and [11] a lso u t ilize

the close page policy in their approach for the memory cont roller design .

From the open page policy ca tegory, Goossens et a l. [9] have proposed a new type of

open page policy ca lled conserva t ive open page policy. The approach in [9] sta tes the

following. Do not pre-charge if next request is known to ta rget the open row. Do the

Pre-charge if next address is not known in t ime, or in case of a miss. It a lso makes

sure tha t not to reduce the guarantees given by the close-page policy. In other words,

the approach in [9] wants to leave a row open for a fixed t ime window to take

advantage of row hits. In the worst case, th is approach is the same as close row policy

if no assumpt ions can be made about the exact t ime a t which request s a rr ive a t the

memory controller . Further , Author [5] has done extensive analysis on rank switch ing

based on open row policy.

Next , we would discuss the related work focussing on exper iment ing different

a rbit ra t ion policies. The authors [8] employ a credit cont rolled sta t ic-pr ior ity (CCSP)

is used to share between mult iple requestors. Authors [8] uses a hybr id approach

between the sta t ic DRAM command scheduling, bet ter for t iming guarant ies, and the

dynamic command scheduling, bet ter for average-case memory bandwidth ut iliza t ion.

Goossens et a l. [9] use the work-conserving Time-division mult iplexing (TDM) as the

a rbit ra t ion . The TDM arbit ra t ion makes the uncla imed slot s from one applica t ion to

be by another applicat ion if it has a request ava ilable. On the other hand, the

Analyzable Memory Cont roller (AMC) [7] provides upper bound latency for memory

request s in a mult i-core system by u t ilizing a round robin a rbiter . Reineke et a l. [10]

propose a memory cont roller tha t uses TDMA scheduling. On the other hand, Akesson

et a l. [11] propose an arbiter ca lled credit -controlled sta t ic-pr ior ity (CCSP) consist ing

of a r a te regula tor and a stat ic-pr ior ity scheduler .

Now, let us focus on bank mapping methodology. Most of the research papers in

th is related work focus on in ter leaved as the bank mapping methods in their design .

Only very few research papers pay a t ten t ion t o the pr iva te banking mapping.

14

Leonardo et a l. [4] discuss the pr iva te banking through a terminology ca lled vir tual

devices (VD) where each VD is a group of two banks from the same rank. Fur ther ,

th is paper proposes to share each VD between one cr it ica l and a pre-determined

number of non-cr it ica l applicat ions. The pr ivate banking scheme helps to define the

clear boundary between cr it ica l and noncr it ica l applica t ions for their m ixed cr it ical

memory cont roller . Further , Reineke et a l. [10] propose a memory controller tha t uses

bank pr iva t izat ion for predictability and tempora l isola t ion .

When it comes to the rank switch ing techniques, the research paper [4], [5] and [6]

use the rank switch ing methods. The Wang et a l. [5] proposed a rank hopping

a lgor ithm to maximize DRAM bandwidth by scheduling a read group (or write group)

to the same rank to leverage bank para llelism unt il t
FAW

 constra in t is reached. At that

poin t , another group of CAS commands are scheduled for another rank. This way,

they amor t ize the ra nk to rank switch ing t ime across a group of CAS commands.

However , this scheduling policy inherent ly re-orders requests and it is not su itable for

cr it ica l rea l t ime systems tha t require guaranteed la tency bounds. The work in [6]

a lso uses rank scheduling to reduce DRAM power usage by minimizing the number of

sta te t ransit ions from low power to act ive sta te. In papers [5] and [6], the rank

scheduling and opt imiza t ions have only been applied to non -rea l t ime systems. The

paper [4] in t roduces the rank switching ana lysis for mixed cr it ica l systems. But , the

rank switching ana lysis is limited to only two ranks.

In cont rast , the approach of th is thesis t akes advantage of rank switch ing

techniques tha t h ides the la tency of wr ite to read and read to wr ite t ransit ions and

thereby enable the design to achieve the t ight bounds on worst case execut ion t ime

(WCET) to cr it ical core requestors and the lowest possible average execut ion for non -

cr it ica l core requestors. While most of the memory cont roller by other researchers

focuses on close page policy, we a t tempted to implement memory controller based on

open row policy and also take advantage of the pr iva te bank scheme where the

in ter ference from other requestors is eliminated. As a possible downside, using

pr iva te banks reduces the tota l memory ava ilable to each requestor compared to

in ter leaving methods. But , increasing the DRAM size is not an issue compared to

designing a memory cont roller that can work in a mult i r equestor rea l t ime

environment . Fur ther , our memory cont roller has three stages of a rbit ra t ion where

each stage has it s own arbit ra t ion mechanism of FCFS, RR and pr ior ity.

15

Close Row or

Open Row
Arbitration Policy

Critical or Mixed

Critical or Non

Critical

Rank Scheduling Bank Mapping

AMC [7] Close Row RR Arbitration Critical NA Interleaved Bank

Predator [8] Close Row

Credit -

Controlled

Sta t ic Pr ior ity

(CCSP)

Critical NA Interleaved Bank

Reineke [10] Close Row
TDM

Arbit ra t ion
Critical NA Private Bank

Wang [5] Open Row RR Arbitration Non Critical Rank Hopping Interleaved Bank

Yonghui Li [3] Close Row FCFS Arbitration Mixed Critical NA Interleaved Bank

Goossens [9]
Conservative

Open Row
TDM Arbitration Mixed Critical NA Interleaved Bank

Leonardo [4] Close Row Fixed Pr ior ity Mixed Critical Rank Switching Private Bank

Akesson [11] Close Row

Credit -

Controlled

Sta t ic Pr ior ity

(CCSP)

Mixed Critical NA Interleaved Bank

 Table 2.2: Summary of the related work

16

Ch apte r 3

Me m ory Controlle r De s ign

This chapter discusses deta ils of impor tant design decisions and the arbit ra t ion r u les

tha t a re formula ted as a st rong foundat ion to our memory cont roller implementat ion .

Based on the design decisions and arbit ra t ion ru les from this chapter , the

implementat ion of the memory cont roller design will be discussed in the next chapter .

3.1 Des ign De cis ion s

The design decisions such as type of row management policy, address mapping

scheme and rank-switching mechanism will be discussed next .

3.1.1 Row Man agem en t P olicy

The Row Management Policies can be either open row or close row. When the same

requestors t a rget the same row in the memory, the CAS command can be issued with

the minimum CAS Latency (CL) without re-opening the row due to the open row

policy. Therefore, the open row policy avoids the un -necessary RAS to CAS la tency

delay by re-opening the row again and therefore, the open row policy reduces la tency

t ime. To take advantage of the la tency reduct ion , the open row policy is chosen for our

memory cont roller design , because we know the number of open and close rows. On

the other hand, the downside of the open row policy is tha t we cannot t ake advantage

of au tomat ic pre-charge opera t ion. Fur ther , the open row policy requires addit iona l

commands to be act ive in the bus which eventua lly create the bus content ion .

3.1.2 Address Mappin g Sch em e

Address mapping scheme can be either cont inuous or in ter leaved. The pr iva t e bank

mapping is a sub-set of cont inuous address mapping. In the pr iva te bank mapping,

each requestor is assigned with one bank or set of banks which are disjoined. The

incoming logica l address is mapped to the first row and when the first row become

fu ll, the cont inuous access is mapped to the next row and so on with in the same bank.

17

It is important to ana lyse why the in ter leaved banking method is not su itable for our

proposed design. The in ter leaved bankin g a llows a ll requestors to access a ll the

banks where banks could be shared by requestors . But , in rea l t ime systems, we do

not want each requestor to share the banks between them. It is because; there is a

h igh probability where one requestor can close a row in a bank which was a lready

opened by a second requestor . This kind of in ter ference crea tes unwanted la tency

delay for the second requestor to re-open the row which was closed accident ly by the

fir st requestor . Based on these reasons, the in ter leaved banking is not su itable for our

memory cont roller design . Therefore, our rank switching memory cont roller design

has chosen the pr iva te bank mapping where each requestor is a lloca ted to one bank or

set of banks. But , there is a downside of pr iva te bank. Since each requestor is

a lloca ted to just one pr iva te bank, each requestor has limited memory access. But ,

increasing the memory size is not an issue and we can increase the amount of memory

tha t each pr iva te bank is assigned as a solu t ion.

3.1.3 Ran k Sw itch in g Mech an ism

In t roducing the Rank switch ing technique provide st rong isolat ion and composable

proper t ies to our proposed memory controller design . The composability provides the

way to in tegra te components a t the same t ime preserving their t empora l proper t ies.

In an idea l system, we like to achieve a data bus u t iliza t ion of 100 %. In pract ice, due

to the many t iming const ra int s deta iled in Sect ion 2.2, da ta bus ut ilizat ion is typica lly

much lower . This is t rue even if a ll request s a re open, since t
RTW

 and t
WTR

 significant ly

increase the t iming between successive read and wr ite com mands or vice-versa . Let us

look a t an example tha t illust ra tes the rank switch ing mechanism.

F igure 3.1 (A) depicts the worst case situa t ion for four successive open requests of

different requestors in a single-rank system, which is an a lterna t ion of st ore and load

(write and read CAS commands). Note that it takes 52 clock cycles to complete a ll four

request s, while the da ta bus is only used for 16 cycles, resu lt ing in a u t iliza t ion of only

31%. Our key idea is tha t we can improve the worst -case la tency by not icing that t
RTW

and t
WTR

 do not apply between requests tha t t a rget ba nks in different ranks.

F igure 3.1 (B) shows the schedule der ived by assigning the four requestors to two

different ranks and a lterna t ing servicing requests to the two ranks. Since the only

constra in t between requests to different ranks is the shorter t
RTR

, the schedule now

takes 35 cycles to complete, a 33% improvement .

18

Similar ly, F igure 3.1 (C) shows the effect of assigning each requestor to a different

rank. Note tha t in th is case, a fter da ta is sta r ted a t cycle 7, we use the da ta bus for 4

cycles every 6, resu lt ing in a ut iliza t ion of 2/3. F ina lly, not ice that a lterna t ing ranks

a lso helps reducing the la tency of ACT commands of close request s, since the t
RRD

 and

t
FAW

 const ra in ts do not apply between different ranks.

 F igure 3.1 (A): Arbit ra t ion for 1 Rank

 Figure 3.1 (B): Arbit ra t ion for 2 Ranks

 Figure 3.1 (C): Arbit ra t ion for 4 Ranks

Our illust ra t ive example shows tha t a rank -switch ing mechanism in the back end can

both significant ly decrease the latency of memory requests and increase bus

u t iliza t ion without requir ing us to reorder requests in the front e nd, which is

unsuitable for cr it ica l rea l-t ime requestors needing guaranteed la tency bounds.

19

The challenge is how to implement such mechanism in a predictable way. In

par t icular , a simple sta t ic TDMA schedule is not su itable since requestors can

dynamica lly submit different types of requests a t run -t ime. Instead, a set of dynamic

a rbit ra t ion ru les is proposed in Sect ion 3.1. Having seen the advantages of using rank

switch ing technique from the examples; now the cha llenge is how to implement such

rank switching mechanism in the memory cont roller .

3.1.4 Se lec t ion of Arbiter Type

Arbiter scheduling can be chosen from one of th e following policies such as Pr ior ity,

Round Robin , F ir st Come Fir st Served (FCFS) and TDMA. This sect ion descr ibes the

logica l reasons for the select ion of each arbiter type for our proposed design . Figure

3.2 shows an overview of a ll the a rbiters and it s scheduling type tha t were used in our

design . We will discuss each arbiter type tha t was used under requestor a rbit ra t ion ,

rank arbit ra t ion and command arbit ra t ion ca tegor ies.

F igure 3.2: Choice of Arbiter Types

20

The Requestor Arbit rat ion ca tegory consists of two arbiters such as CAS Arbiter

and PRE ACT Arbiter . The task of these a rbiter s is to choose a requestor from a set of

requestors of the same type. Out of different a rbiter scheduling mechanisms, we need

to ana lyse why cer ta in type of arbiter scheduling is su itable and why others are not

su itable for our design. If pr ior ity style was chosen , it assigns one requestor as the

h ighest pr ior ity over others. The lowest pr ior ity requestor would be sta rving while the

h igh pr ior ity requestor owns the bus master for a long t ime. Since a ll requestors a re of

the same type, we do not want one requestor to starve for the bus ownership. If the

Round Robin type arbiter was used, it rotates the pr ior ity level among a ll the

requestors where each requestor has equal t ime of being the highest pr ior ity. On the

other hand, a simple sta t ic TDMA schedule is not su itable since requestors can

dynamica lly submit different types of request s a t run -t ime. Our requirement is tha t

while achieving t he equal fa irness, we do not want to waste the clock cycles by the

a rbiter visit ing the requestor tha t has no requests. Therefore, CAS arbiter was

designed as a First Come First Served (FCFS) style. On other hand, PRE ACT Arbiter

has to do addit iona l t ask of giving PRE command higher pr ior ity compared to the

ACT when the ACT is wait ing to sa t isfy the t iming. The design decision is made to

grant PRE command higher pr ior ity than ACT command and th is make the PRE ACT

arbiter to be a modified Fir st Come First Served arbit ra t ion style (M-FCFS).

The Rank Arbit ra t ion ca tegory consists of Level 2 PRE ACT arbiter and level 2

CAS arbiter . In order to mainta in the fa irness and equal pr ior ity in choosing the

ranks, level 2 PRE ACT arbiter is designed as Round Robin style. On the other hand,

the level 2 CAS Arbiter has to choose it s level 3 queues based on the burst to burst

(BTB) va lues of the requests a rr iving from level 3. Fur ther , th is level 2 CAS Arbiter

has to different ia t e clien t s that a r r ive ear ly versus other client s who wait for a write

to read (WTR) or read to write (RTW) t iming const ra int s to be elapsed. By consider ing

a ll these requirements, the level 2 CAS Arbiter was designed to be Modified First

Come First Served (M-FCFS).

 In Command Arbit ra t ion ca tegory, there exists a command arbiter who handles

a ll commands such as PRE, ACT and CAS. In order to give CAS command to be

h igher pr ior ity than other commands, the pr ior ity based arbiter is used. All three

a rbiters in this design were not in tended to per form reorder ing of the incoming

request s and thereby, it r ea lly help to avoid the unnecessary complexity in t iming

ana lysis. Now that we have seen the a rbit ra t ion types, let us ana lyse the deta il of the

a rbit ra t ion ru les.

21

3.2 Arbitration Ru le s

The back end memory cont roller logic is built in to three levels of a rbiter s as shown in

Figure 3.3 below. Each level has different type of a rbiters and it is important to

ana lyse them through arbit ra t ion ru les. We consider a device with R ≥ 2 ranks. The

memory cont roller can suppor t both cr it ica l and non -cr it ical rea l-t ime requestors. Our

design goal is to minimize the la tency bound of cr it ica l requests, while simultaneously

a t tempt ing to maintain h igh da ta bus u t iliza t ion and thus provided memory

bandwidth to a ll requestors. To this end, each rank is assigned either to cr it ica l or to

non-cr it ica l requestors and each requestor uses only one rank; let Mr 1 ≤ r ≤ R, be

the number of requestors tha t use rank r . The banks in cr it ical rank r a re sta t ica lly

par t it ioned among the Mr requestors in rank r , according to the pr iva te bank

pr inciple.

F igure 3.3: Three Levels of Arbit ra t ion

F igure 3.3 shows an example block diagram of the three levels of a rbit ra t ion logic in

the back end, where Rank 1 is a cr it ica l rank, Rank R is a non-cr it ica l rank. M
1
 = 4

indica tes tha t rank 1 has four requestors. Arbit ra t ion is per formed in three levels.

22

For cr it ica l ranks, commands genera ted by the front end are en -queued in the per -

requestor command queues. Level 3 (L3), or Requestor Arbit ra t ion, arbit ra tes among

requestors within the same rank. The command a t the front of the selected requestor

queue is propagated to Level 2 (L2), or Rank Arbit ra t ion , which arbit ra tes among the

R ranks. Note tha t Level 3 and Level 2 a rbit ra t ions a re split between a PRE ACT

Arbiter tha t handles PRE and ACT commands only, which are needed only for close

request s, and a CAS Arbiter tha t handles CAS commands, which are needed by a ll

request s. F ina lly, Level 1 (L1), or Command Arbit rat ion, simply assigns h igher

pr ior ity to CAS than PRE or ACT command; i.e., if dur ing the cur rent clock cycle the

L2 CAS Arbiter propagates a CAS command to Level 1, the Command Arbiter will

issue it to the device, otherwise, if the L2 PRE ACT Arbiter propagates a PRE or ACT

the L1 Arbiter will issue it . This is done to ensure tha t the cr it ica l t imings of CAS

commands in the rank-switch ing mechanism are not disrupted by command bus

content ion with PRE/ACT commands. The following ru les capture the behavior of the

Level 2 a rbiters and of the Level 3 a rbiters for a cr it ica l rank r .

(1A) A command at the head of each per -requestor queue is sa id to be act ive if a ll

t iming const ra in ts tha t a re caused by previous commands of the same reques tor a re

sa t isfied;

(1B) A CAS command does not become act ive unt il the data of the previous CAS

command of the same requestor has been t ransmit ted. In other words, an act ive

command can be issued immediately if there a re no other requestors in the system.

(2A) The L3 PRE ACT Arbiter uses a modified Fir st -Come-First -Serve (FCFS)

arbit ra t ion; The requestor is en -queued at the back of a modified FIFO Queue as soon

as it has an act ive PRE or ACT command, and it is removed from the queue once the

command is fina lly issued by L1.

(2B) Every clock cycle, the a rbiter scans the modified FIFO Queue and propagates to

Level 2 the first command tha t can be issued (without viola t ing t iming constra in ts), if

any.

(2C) An act ive PRE command can a lways be issued; an act ive ACT command could

instead by blocked by t
RRD

 or t
FAW

 const ra in ts caused by other requestors in the same

rank.

23

(3) The L3 CAS Arbiter uses standard FCFS arbit ra t ion , with a requestor being en -

queued once it has an act ive CAS command and removed once the CAS command is

issued by L1. The L3 CAS Arbiter propagates to L2 the CAS command of the fir st

requestor in FCFS order (if any) together with the ear liest t ime t
SDr

 a t which the da ta

t ransmission associa ted with the CAS command could be sta r ted. The t
SDr

 is ca lcu lated

based on previous CAS commands a lready issued either from the same or a different

rank. Note that cont rary to L3 PRE ACT Arbit ra t ion , it is a llowed to propagate a CAS

command that cannot yet be issued; th is is required to proper ly a lterna te among

ranks.

(4) The L2 PRE ACT Arbiter can use either FCFS or Round-Robin (RR) arbit ra t ion;

we adopt RR in our prototype since it is easier to implement in hardware than FCFS.

(5) The L2 CAS Arbiter uses a different , modified FCFS arbit ra t ion; a rank is en -

queued a t the back of a FIFO queue once a new CAS command is propagated from L3,

and it is removed from the FIFO once the command is issued by L1. Let t
ED

 be the

t ime a t which the data t ransmission of the last issued CAS command will end, or has

ended. Then a t every clock cycle, if for any queued rank it holds t
SDr

≤ t
ED

 + t
RTR

, the

fir st such rank in FCFS order is selected. Otherwise, the first rank in FCFS order

with the smallest va lue of t
SDr

 is selected. In either case, the corresponding CAS

command is propagated to L1 only if it can be issued in the cur rent clock cycle

(without viola t ing t iming const ra in ts).

(6) The L1 arbiter receives a ll the commands such as PRE, ACT, REF and CAS. This

a rbiter is designed as a pr ior ity a rbiter where CAS command is given h igher pr ior ity

than PRE, ACT, REF commands. The acknowledgement (ACK) is genera ted a t th is

level when the commands are sent out from this a rbiter . This ACK signal is used by

level 3 to schedule the DRAM t iming of the commands in an order ly manner .

For the Cr it ica l requestors, each requestor puts it s request s in to the L3 CMD queue

only a fter its previous request has been successfu lly completed with either read or

wr ites da ta . Otherwise, t he request with in the same requestor is blocked unt il the

read or wr ite da ta of the previous request of the same requestor is completed. Note

tha t since each requestor has a t most one act ive command and each L3 PRE ACT or

CAS Arbiter only propagates one command a t a t ime, it follows tha t only one instance

of each requestor or rank can be present in a given FCFS queue; a fter a command of

tha t requestor /rank is issued by L1, the requestor or rank can be re -en-queued a t the

back of the queue.

24

Hence, while the system is backlogged the scheme approximates a fa ir a rbit ra t ion

where each rank is a llowed to t ransmit once every R t imes, and thus each requestor

with in tha t rank t ransmits once every R · Mr Times.

Except ions a re made in Rules 2 and 5. The modified FCFS arbit ra t ion of Rule 2

ensures tha t PRE commands do not have to suffer from t
RRD

 or t
FAW

 const ra int s; if the

fir st requestor has an act ive ACT command tha t cannot be issued r ight away, we st ill

a llow the rank to propagate a PRE command of a la ter requestor , since issu ing the

PRE command cannot delay the ACT command of the first requestor in any case. The

modified FCFS arbit rat ion of Rule 5 implements the rank -switching mechanism for

CAS commands as long as the “bur st to burst gap” between successive data

t ransmission is a t most t
RTR

, r anks are scheduled in FCFS order . However , if

scheduling the fir st rank would result in a longer gap (in par t icu lar , because of a t
WTR

constra in t), then we reorder ranks to avoid sta lling the da ta bus.

We make no assumption on arbit rat ion for non -cr it ica l ranks, outside of the fact

tha t the Level 3 a rbiter will propagate a t most one issuable PRE/ACT command and

one CAS command with associa ted t ime t
SDr

 to Level 2 every clock cycle; ra nk-level

a rbit ra t ion ensures that the worst -case la tency for a request of a cr it ica l requestor

depends only on the tota l number of ranks R and the number of requestors Mr with in

the same rank. L3 arbit ra t ion for non -cr it ica l requestors can be opt imized for average

case latency and throughput . In par t icu lar , we can use techniques employed by h igh -

per formance commercia l controller s such as per -bank queues ra ther than pr iva te

banks, and request reorder ing to favor load over store and open over close request s.

F ina lly, due to space limita t ions we only br iefly discuss the issue of da ta shar ing;

more deta ils on our approach are discussed in [15]. If cr it ica l cores a re shar ing da ta ,

we a lloca te a separate shared bank par t it ion and use an addit iona l “vir tua l” cr it ica l

requestor to manage accesses to the shared par t it ion; content ion between da ta -

shar ing cores is then handled in the front end. For I/O communica t ion , DMA is

t rea ted as a separate requestor . A communicat ing core can then access the DMA bank

par t it ion while the DMA is not t ransmit t ing.

This chapter has shown the backbone st ructure for our proposed memory

cont roller design . The n ext sect ion , we will look in to the theoret ica l ana lysis done to

ana lyse the design st ructure and the t iming const rain t from the theoret ica l poin t of

view.

25

Ch apte r 4

Th e ore tica l An alys is

Based on the arbit ra t ion ru les deta iled in Sect ion 3.2, we will now show how to der ive

a safe upper bound on the la tency of each memory request of a cr it ica l requestor

assigned to rank r . In par t icu lar , we consider the back end worst case la tency t
Req

measured from the t ime when a request a rr ives a t the front of the per -requestor

command queue unt il it s data is t ransmit ted. As shown in [2], such la tency can th en

be used to der ive the overa ll delay suffered by a t ask due to main memory content ion;

for example, we can use the sta t ic ana lysis method descr ibed in [10] to obtain the

worst -case numbers of open/close and load/store request s, which let us der ive a wors t -

case request pa t tern for the task. Since the same st rategy in [2] can be used to

account for refresh opera t ions, we do not cover them here. We adopt the DRAM

la tency ana lysis framework int roduced in [2].

F igure 4.1: Worst Case Latency Decomposit ion

26

4.1 Worst Case P e r-Re qu est Late n cy

The worst case la tency t
Req

 is decomposed into two par t s, t
AC

 and t
CD

 as shown in Figure

4.1. Time t
AC

 (Arr iva l-to-CAS) is the worst case interva l between the a r r iva l of a

request a t the front of the per -requestor command queue and when the cor responding

CAS command becomes act ive. The t
CD

 (CAS-to-Data) is the worst case in terva l

between the CAS becoming a ct ive and the end of data t ransfer . In all figures in th is

sect ion , we use a solid a r row to indica te when a request a r r ives a t the front of the per -

requestor command queue; we use a dashed ar row to indica te the t ime instant a t

which a command becomes act ive; solid square boxes denote when commands are

issued on command bus; dashed square boxes denote commands that a re ready to be

issued but cannot be issued r ight away due to content ion with other requestors.

F igure 4.2: Arr iva l-to-CAS Decomposit ion for Close Request

For a close request , t
AC

 includes the la tency required to process a PRE and ACT

command; we thus fur ther decompose t
AC

 into smaller par t s as shown in Figure 4.2.

Each par t is either a J EDEC t iming const ra int shown in Table I or a parameter that

we compute, as shown in Table 4.1. Both t
DP

 and t
DA

 determine the t ime a t which a

PRE and ACT command becomes act ive, respect ively. t
IP

 and t
IA

 r epresent the worst

case delay between a command becoming act ive and when that command is issued,

and thus capture in terference caused by other requestors. Times t
DP

 , t
DA

 as well as t
AC

for an open request a re computed based only on t iming constra in ts caused by the

previous request of the requestor under ana lysis, a nd are independent of the specific

a rbit ra t ion used by the memory controller ; hence, we can reuse the expressions

provided in [2]. Instead, in the following Sect ions, we will deta il how to compute t
IP

 , t
IA

and t
CD

.

27

 Tim in g P arame te r De fin ition s

t
DP

End of previous DATA to PRE

Act ive

t
IP

 In ter ference Delay for PRE

t
DA

End of previous DATA to ACT

Act ive

t
IA

 In ter ference Delay for ACT

 Table 4.1: Timing Parameter Definit ion

Once a ll t iming components have been computed, the va lue of t
AC

 for a close request is

obta ined as:

t
AC

 = m ax (t
DA

, t
DP

 + t
IP

 + t
RP

) + t
IA

 + t
RCD

 (1)

and for both open and close request s we simply compute the overa ll la tency as

t
Req

 = t
AC

 + t
CD

.

4.1.1 In terferen ce De lay for P RE an d ACT Com m an ds

We begin by comput ing the worst -case in ter ference delay for PRE commands. We

limit ourselves to devices for which the rela t ion t
RTR

 ≥ t
RL

 - t
WL

 holds, which includes

a ll devices except the one with the la rgest t iming const ra in ts, i.e., the least

per formance ones in each speed category, which are ra rely used. The rela t ion ensures

tha t no more than one CAS command can be issued every t
BUS

 cycles, despite the fact

tha t t
RL

 is genera lly la rger than t
WL

; th is helps bounding the maximum delay suffered

by PRE and ACT commands due to Level 1 a rbit ra t ion . It has the benefit of

simplifying the proofs. We begin by determining the maximum delay suffered by PRE

and ACT commands due to L1 arbit ra t ion . Note tha t due to space limita t ions, some

proofs a re provided in appendix.

28

Th e orem 1: The worst case va lue for t
IP

 is:

t
IP

 = α
P A

(R · M
r
) - 1 (2)

 K

 where

 α

PA
 (K) = K +

 (t
BUS

 -1)

P roof: Note tha t there a re no in terfer ing constra in t s between the PRE under ana lysis

and commands by other requestors, since they must t a rget different banks. Since

fur thermore arbit ra t ion Rule 2 ensures that commands blocked by t iming const ra in ts

a re not considered for arbit ra t ion , it follows tha t the PRE under ana lysis can only be

delayed due to content ion on the command bus, i.e., the command bus must be

cont inuously in use between the en -queuing of the requestor under ana lysis and when

it s PRE command is issued. In the worst case, when the requestor under ana lysis is

en-queued into the L3 PA Arbiter FCFS queue, there can be a maximum of Mr - 1

preceding requestors in the queue. Note that requestors en -queued after the requestor

under ana lysis cannot delay it ; and after a PRE/ACT command is issued, the

cor responding requestor can only be re-en-queued a t the end of the queue. Hence,

each other requestor in rank r can only issue one PRE/ACT command before the

requestor under ana lysis, leading to a tota l of Mr PRE/ACT commands from rank r ,

including the PRE under ana lysis. Fur thermore, since the L2 PA Arbiter uses either

FCFS or round robin a rbit r a t ion, in the worst case R - 1 PRE/ACT commands of other

ranks must be issued before any command of rank r . Hence, the worst case number of

issued PRE/ACT commands is (R - 1) Mr + Mr = (R · Mr), and the L2 PA Arbiter is

backlogged while issu ing them. Based on Lemma 1, the worst case t ime required to

issue a ll R·Mr commands is then α
PA

(R . Mr). To conclude the proof, it suffices to

not ice tha t t
IP

 does not include the ext ra clock cycle required t o t ransmit the PRE

under ana lysis; hence, t
IP

 = α
PA

 (R · Mr) - 1. Note tha t t
IP

 depends on the number of

requestors Mr in rank ‘r ’ bu t it is independent from the number of requestors assigned

to other ranks; th is is because L2 arbit rat ion isola tes rank r from requestors in other

ranks. We will show tha t the same is t rue for the der ived t
IA

 and t
CD

, hence making

our ana lysis composit iona l.

29

We next ana lyze t
IA

. We prove that the ACT command under analysis suffers

maximal delay in the scenar io shown in Figure 4.3, where R = 2 and the rank under

ana lysis is r = 1 with M
r
 = 5. The worst case is produced when all M

r
 - 1 other

requestors of rank r en-queue an ACT command a t the same t ime t
0
 as the core under

ana lysis, which is placed last in the L3 PA Arbiter FCFS order ; each other requestor

t r iggers a t
RRD

t iming const ra int . Fur thermore, four ACT commands have been

completed as la te as possible before t
0
; th is forces the first ACT after t

0
 to wait for t

FAW
-

4· t
RRD

 before being propagated to Level 2. Once an ACT has been propagated to L2, in

the worst case it will have to wait for R - 1 PRE/ACT commands of other ranks and for

in ter fer ing CAS commands, similar ly to the case of PRE commands in Theorem 1; we

ca ll th is delay Δ
IA

. F ina lly, we need to consider th e effect of t
FAW

 on successive ACT

commands after t
0
.

F igure 4.3: In ter ference Delay for ACT command, R = 2, r = 1 and Mr = 5

As shown in Figure 4.3, since the t
FAW

 applies from the t ime when an ACT is issued to

the t ime when the fourth following ACT can be propagated to L2, we have to take the

maximum of either t
FAW

 or 4.t
RRD

 + 3.Δ
IA

 for every 4 ACT of rank r issued before the

one under ana lysis.

30

Th e orem 2: The worst case va lue for t
IA

is:

t
IA

 = t
FAW

 - 4 t
RRD

 + max ((M
r
 − 1)t

RRD
 + M

r
 ∙ Δ

IA
, K ∙ t

FAW
 + (M

r
 - 1 - 4K) t

RRD
 + (M

r
 - 3K) Δ

IA
)

 (3)

Where Δ
IA

 = α
PA

 (R) − 1 and K = (M
r
 − 1)/4

P roof: Let t0 be the t ime a t which the requestor with the ACT under ana lysis is en -

queued in the L3 PA Arbiter FCFS queue. We show that the worst case la tency for the

ACT under ana lysis is produced when a t t ime t
0
 there a re (Mr – 1) other requestors

en-queued before the requestor under analysis, a ll with ACT commands.

F ir st note that requestors en -queued after the ACT under ana lysis cannot delay it : if

the ACT under ana lysis is blocked by the tRRD or tFAW t iming const ra in t , then any

subsequent requestor with an ACT command in the L3 PA Arbiter FCFS queue would

a lso be blocked by the same const ra int . Requestors with PRE commands en -queued

after the requestor under ana lysis can be issued before it according to a rbit ra t ion

Rule 2 if the ACT under ana lysis is blocked, but they cannot delay it because those

requestors access different banks, and there are no t iming const rain ts between ACT

and PRE of a different bank. Fur thermore, a fter a PRE/ACT command is issued, the

cor responding requestor can only be re-en-queued a t the end of the queue. Hence,

each of the other Mr - 1 requestors on rank r can only delay the requestor under

ana lysis by one command, either ACT or PRE. A PRE command can only in ter fere

with the ACT under ana lysis due to command bus content ion , i.e., one bus cycle. On

the other hand, each ACT of another requestor en -queued before the requestor under

ana lysis can contr ibute to it s la tency for a t least a factor tRRD, which is la rger than

one clock cycle on a ll devices. This shows tha t the worst ca se is produced when a ll

other requestors on rank r have ACT commands.

Second, we show that a ll requestors of rank r en-queuing their ACT command a t

the same t ime t
0

are the worst case pat tern . Requestor en-queuing an ACT after t
0

does not cause in ter ference as a lready shown. If a n requestor en -queues an ACT a t

t ime t
0
 - Δ with Δ < t

RRD
, the overa ll la tency is reduced by Δ since the requestor cannot

en-queue another ACT before t
0
due to a rbit ra t ion Rule 1 (the next ACT would not be

act ive due to t
RRD

).

31

Third, we consider the la tency of ACT commands issued after t
0
 due to t

RRD
 and

L2/L1 arbit ra t ion; similar ly to the proof of Theorem 1, each ACT command of rank r

can suffer command bus content ion delay of Δ
IA

 = Δ
PA

(R) - 1 (as an example, Δ
IA

 = 2 in

Figure 4.3). Fur thermore, once an ACT command of rank r is issued, not ice tha t the

next ACT command of the same rank r cannot be propagated from L3 to L2 unt il a fter

the t
RRD

 const ra int has elapsed; hence, each ACT command can take Δ
IA

 + t
RRD

 before

being issued.

F ina lly, we consider the effect of the t
FAW

 t iming const ra in t . Note that a requestor

could issue an ACT a t or before t
0
- t

RRD
 and then en -queue another ACT a t t

0
 before the

ACT under ana lysis. Due to the t
FAW

 const ra int , ACT commands after t0 could then

suffer addit ional delay. Since the t
FAW

 const ra in t is act iva ted by four consecut ive ACT

commands, the worst case is produced when four ACT commands are issued as la te as

possible before t
0
, as shown in Figure 4.3. The fir st ACT after t0 is then blocked unt il

t ime t
1
 = t

0
 + t

FAW
 - 4·t

RRD
. Note tha t similar ly, the second ACT after t

0
 cannot be

propagated from L3 to L2 before t
0
 + t

FAW
 - 3t

RRD
 = t

1
 + t

RRD
 due to the same const ra in t ;

however , th is const ra int does not a ffect the worst case pa t tern since the second ACT

after t
0
 is blocked unt il t

1
 + Δ

IA
 + t

RRD
 anyway due to the t

RRD
 constra in t genera ted by

the fir st ACT and L2/L1 arbit rat ion. It remains to consider the case when t
FAW

 is

act iva ted by ACT commands of rank r issued after t0. Since t
FAW

 applies from the t ime

when an ACT of rank r is issued to the t ime when the fourth next ACT of rank r can

be propagated from L3 to L2, if the constra in t is act iva ted it effect ively replaces the

delay of four t
RRD

 constra in t s (generated by the CAS tha t star t s t
FAW

 and the next three

CAS commands of rank r) and three Δ
IA

 t imes (for each of the next three CAS; see a lso

the example in Figure 4.3). Fur thermore, the tota l number of t
FAW

 constra in t s tha t can

be act iva ted for CAS commands of rank r after t1 is K = b(Mr - 1) = 4c, since we need

a t least four CAS commands to block the fifth one.

In summary, if t
FAW

 ≤ 4·t
RRD

 - 3Δ
IA

, then t
FAW

 is not act iva ted after t
0
 and the final

bound on t
IA

 is then obta ined by summing the delay t
1
 - t

0
, Mr - 1 t imes the delay t

RRD

(once for each other requestor on rank r), and Mr t imes the delay Δ
IA

 (once for each

other requestor on rank r plus once for the requestor under ana lysis), yielding a

bound: t
FAW

 · 4t
RRD

 + (Mr-1)t
RRD

+ Mr · Δ
IA

. If instead t
FAW

 ≥ 4t
RRD

 - 3Δ
IA

, the bound on t
IA

can be obta ined as: t
FAW

 - 4t
RRD

 + K · t
FAW

 + (Mr - 1 - 4K)t
RRD

 + (Mr - 3K)Δ
IA

, where for

each of the K t imes the t
FAW

 constra in t is act iva ted, we replace a t erm 4t
RRD

 +3Δ
IA

 with

a t erm t
FAW

. To end the proof, it suffices to not ice tha t in Eq.(3) we consider the

maximum of the two bounds.

32

4.1.2 CAS-to-Data

We now focus on comput ing a bound on t
CD

 for a request using rank r . Similar ly to the

case of t
IA

, we prove that the cur rent request suffers worst case in ter ference when a ll

M
r
 − 1 other requestors have an act ive CAS command arr iving a t the same t ime t

0
 as

the requestor under ana lysis, which is then serviced last according to FCFS

arbit ra t ion . Our proof scheme proceeds as follows. We fir st compute the delay for

successive CAS commands of rank r . Specifically, Lemma 1 computes the delay for a

read followed by a read and a wr ite followed by a wr ite (which we denote as t
RRD

 and

t
WWD

, respect ively), while Lemma 2 covers the cases of wr ite -to-read t ransit ion and

read-to-wr ite t ransit ion (t
WRD

 and t
RWD

), which are more complex due to the t
WTR

 and t
RTW

constra in ts. Then, Lemma 3 computes the delay for th e first CAS of rank r issued

after t
0
. F ina lly, Theorem 3 uses the computed delays to der ive the fina l va lue of t

CD
.

The t iming constra in ts tha t cont r ibute to the worst case la tency are shown as solid

black hor izonta l ar rows.

F igure 4.4: Read to Read La tency, R = 2 and r = 1

33

Le mm a 1: Assume that the L3 CAS Arbiter for rank r prop-agates a read command

to L2 immediately a fter a previous read command of rank r is issued (i.e., the L3 CAS

Arbiter is backlogged). Then the worst case latency between the complet ion of data

t ransmissions for the fir st read command and for the second read command is:

t
RRD

 = R(t
BUS

 + t
RTR

) (4)

Similar ly, for the case of a wr ite followed by a wr ite, the worst case la tency is t
WWD

 =

t
RRD

.

P roof: We prove the lemma for t
RRD

; the proof for t
WWD

 is equiva lent , by exchanging

read with wr ite commands and t
RL

 with t
WL

.

Let t
0
 be the t ime at which the first read command of rank r is issued; then by

defin it ion after t
0
, t

ED
 = t

0
 + t

RL
 + t

BUS
 (see Figure 4.4 above).

Since there a re no t iming constra in ts between consecut ive read commands of the

same rank, the second read command of rank r (dashed boxes in Figure 4.4) could

sta r t data t ransmission a t t ime t
SDr

 = t
ED

 if other ranks were not serviced before it .

After the first read command is issued a t t ime t
0
, r ank r will be re-en-queued a t the

back of the L3 CAS Arbiter FIFO a t t ime t
0
 + 1; in the worst -case, R − 1 ranks can be

en-queued before the rank under ana lysis. Note tha t whenever another rank issues a

CAS command after t
0
, the va lue of t

ED
 will be updated; due to the t

RTR
 t iming

constra in t between different ranks, the va lue of t
SDr

 will instead be updated to t
ED

 + t
RTR

(see the example in Figure 4.4 after a CAS of rank 2 is issued a t t ime t
1
). In any case,

the condit ion t
SDr

t
ED

 + t
RTR

 a lways hold. Due to th is reason and based on Arbit ra t ion

Rule 5, each of the other R − 1 ranks can issue a t most one CAS command before the

second read of rank r . Fur thermore, each such R − 1 da ta t ransmissions (let us say, of

rank j) must begin a t most t
RTR

 t ime unit s after the previous da ta t ransmission has

fin ished; otherwise, the condit ion t
SDj

 t
ED

 + t
RTR

 would be viola ted and rank j could not

issue a CAS before rank r according to Rule 5. In summary, a t most R CAS commands

must be issued, including the second read of rank r , and each data t ransmission

incurs a delay of at most t
RTR

 + t
BUS

. Hence, the lemma follows.

34

Le mm a 2: Assume that the L3 CAS Arbiter for rank r prop-agates a read command

immedia tely after a write command of rank r is issued. Then the worst case la tency

between the complet ion of data t ransmissions for the wr ite command and for the read

command is:

t
WRD

 = m ax(R (t
BUS

 + t
RTR

) , t
WTR

 + t
RL

 + 2 t
BUS

 + t
RTR

 − 1) (5)

F igure 4.5: Write to Read Latency, Case (a) with R = 2 and r = 1

Similar ly, for the case of a read followed by a wr ite, the worst case latency is:

t
RWD

 = m ax (R (t
BUS

 + t
RTR

), t
RTW

 + t
WL

 − t
RL

 + t
B US

 + t
RTR

 − 1) (6)

P roof: We first compute t
WRD

. Let t
0
 be the t ime a t which the wr ite command of rank r

is issued; then by definit ion , the CAS Arbiters set t
ED

 = t
0
 + t

WL
 + t

BUS
 (see Figure 4.5

above). Due to the t
WTR

 const ra int , the L3 CAS Arbiter of rank r will a lso set a t ime

t
SDr

 = t
ED

 + Δ for the star t of the successive read command, with Δ = t
WTR

 + t
RL

. Since t
WTR

and t
RL

 a re la rger than t
RTR

 and different ly from Lemma 1, we have t
SD

r > t
ED

 + t
RTR

. We

consider two possible cases.

35

Case A: In th is case, the read command of rank r is delayed by a CAS command of

another rank j en -queued after r in the L2 CAS Arbiter F CFS order . This is possible if

t
SDj

 < t
SDr

; in the worst case shown in Figure 4.5, t
SDj

 = t
SDr

 − 1 , resu lt ing in a la tency

t
WRD

 = Δ − 1 + t
BUS

 + t
RTR

 + t
BUS.

 Note that a fter the rank under ana lysis is delayed by a

command of j, it will hold t
SDr

 = t
ED

 + t
RTR

 and thus rank r cannot be delayed by

another rank en-queued after it .

Case B: The read command of rank r is delayed by CAS commands of ranks en -

queued before r in the L2 CAS Arbiter FIFO, similar ly to the case in Lemma 1. Note

tha t for a rank j to be en -queued before r in the FIFO, the CAS command of rank j

must have been propagated to Level 2 before or a t t ime t0 + 1 (dashed ar row for Rank

1 in Figure 4.6 below). We dist inguish two sub cases with in Case B: Case B_1, the

CAS command of rank j is not delayed by a t
WTR

 t iming constra in t . In th is case, the

da ta t ransmissions of rank j can sta r t a t t
ED

 + t
RTR

. For example, see Rank 3 in Figure

4.6. In Case B_2, a previous wr ite command of rank j has been issued before t0, and

the successive read command is thus delayed by the t
WTR

 const ra in t (Rank 2 in Figure

4.6). In th is case, the rea d command of rank j could be associa ted with a va lue t
SDj

 >

t
ED

 + t
RTR

. However , since the preceding wr ite command of rank j must have

completed its data t ransmission a t least t
BUS

 + t
RTR

 before the write command of rank r

completes it s da ta t ransmission , it must a lso hold tha t the difference between t
SDj

 and

t
SDr

 is a t least t
BUS

 + t
RTR

 (see the dot ted boxes in Figure 4.6 below). Hence, rank j a lone

cannot delay the read command of rank r , unless there are other ranks tha t can sta r t

da ta t ransmission a t t
ED

 + t
RTR

. In either sub case, it follows tha t the read of rank r can

only be delayed if other ranks cont inuously t ransmit data every t
BUS

 + t
RTR

 t ime unit s

sta r t ing a t t
ED

 + t
RTR

. Fur thermore, following the same reasoning as in Lemma 1, in

th is case no rank en -queued after rank r can cause delay on rank r . Hence, we obta in

the same expression as for t
RRD

, i.e. t
WRD

 = R (t
BUS

 + t
RTR

). F ina lly, t aking the maximum

of Case A) and B) will yield Equat ion (5).

36

F igure 4.6: Write to Read Latency, Case b) with R = 3 and r = 1

For t
RWD

, it suffices to note tha t the distance Δ between the end of da ta t ransmission

for the read and the star t of da ta for the successive wr ite is Δ = t
RTW

 + t
WL

 − t
RL

 – t
BUS

Again , t aking the maximum of Case A) and B) will yield Equat ion (6).

It is in terest ing to note tha t for the DDR3-1333H device in Table 2.1 and for R = 4, the

term R(t
BUS

 + t
RTR

) in Eq.(5), (6) is maximal, meaning t
WRD

 = t
RWD

 = t
RRD

 = t
WWD

; hence, in

th is condit ion ROC guarantees a da ta bus ut iliza t ion of t
BUS

/(t
BUS

 + t
RTR

) = 2/3 to a

backlogged system. Furthermore, the worst -case la tency is completely unaffected by

the t
WTR

 and t
RTW

 t iming constra in ts.

Le mm a 3: Assume tha t a CAS of the requestor under ana lysis in rank r becomes

act ive a t t ime t
0
, and tha t a t t

0
 there a re other Mr −1 requestors with act ive CAS

commands before it in the L3 CAS Arbiter FCFS order .

Then if the fir st CAS of rank r issued after t
0
 is a read, the worst case la tency between

t
0
 and the complet ion of da ta t ransmission for the fir st read command is:

37

t
RD

 = m ax(t
RL

 + t
BUS

 − 1 + R (t
BUS

 + t
RTR

), t
WTR

 + t
RL

 + 2 t
BUS

 + t
RTR

 − 1); (7)

Otherwise if the fir st CAS is a wr ite, the worst case la tency is:

t
WD

 = t
RL

 + t
BUS

− 1 + R (t
BUS

 + t
RTR

) (8)

P roof: The proof is similar to Lemma 2. The main difference is tha t now a requestor

of another rank could issue a request immedia tely before t
0
 and st ill be en -queued

before rank r (see Rank 2 in Figure 4.7 as an example for t
WD

); th is cont r ibutes the

addit iona l delay term t
RL

 + t
BUS

 − 1.

Th e orem 3: The worst case CAS-to-Data la tency for a wr ite or read command,

respect ively, is:

P roof: We show tha t the pa t tern in Lemma 3 result s in the worst case la tency t
CD

;

in tu it ively, we maximize the number of requestors of rank r tha t in ter fere with the

requestor under analysis. Hence, we can compute the la tency for the first CAS of rank

r a fter t
0
 as either t

RD
 or t

WD
; for each of the other Mr − 1 requestors of rank r

(including the one under ana lysis), we then add a t erm t
RRD

, t
WWD

, t
WRD

 or t
RWD

 based on

the sequence of CAS commands.

38

 Figure 4.7: In it ia l Write Latency, R = 3 and r = 1

Now note that t
WRD

≥ t
RRD

 = t
WWD

 and t
RWD

 ≥ t
RRD

 = t
WWD

; hence, we prove tha t the worst

case sequence is an a lterna t ion of read and wr ite commands (a lso not ice tha t t
RD

 ≥ t
WD

,

bu t we prove that the effect of a lt erna t ing read and wr ite commands on the worst case

la tency is larger compared to sta r t ing with a rea d ra ther than a wr ite). To conclude

the proof, note tha t if the requestor under ana lysis issues a read, then in an

a lterna t ing sequence of Mr Commands there are (Mr − 1)/2 wr ite-to-read t ransit ions

and (Mr −1)/2 read-to-wr ite t ransit ions, and vice-versa for a wr ite.

So far , we have seen the theoret ica l ana lysis of our memory cont roller design . In the

next Sect ion, we show you the deta il implementa t ion of our rank -switching open-row

memory cont roller design .

39

Ch apte r 5

Me m ory Controlle r Im plem e n tation

The proposed rank-switch ing memory cont roller consist s of front end and back end as

shown in Figure 5.1. This memory cont roller design can accept requests from number

N of both cr it ica l and non -cr it ica l rea l t ime requestors where 0 < N <= 32. The front

end logic receives memory request s tha t have the physica l address and the request

type in order to genera te the corresponding DRAM commands such as ACT, PRE,

REF and CAS. The genera ted commands from the front end are dispa tched to the

command queues in the back end. The command queues are the first clocked

in ter face between front and back end. The back end logic is responsible for requestor

a rbit ra t ion , rank arbit ra t ion and command arbit ra t ion . Each level of a rbit rat i on

consists of sequencers to check if the chosen command sat isfies the DRAM protocol

t iming. Once the t iming check is sa t isfied, it would dispa tch the command to

appropr ia te ranks, banks in the physical DDR Memory Device.

Figu re 5.1: Me m ory Con trolle r w ith Fron t an d Back e n d logic .

40

The object ive of this proposed rank switch ing open row memory controller design is to

achieve worst case upper bound latency for cr it ica l requestors and average bandwidth

for non-cr it ical requestors. Both front end and back end logic works with one clock

domain. As you can see from Figure 5.1, there a re three buses such as DATA bus,

ADDR Bus and CMD bus that connect our memory cont roller with the memory device.

This CMD bus represent impor tant memory device signals such as CS, RAS, CAS,

WE. Similar ly, the ADDR Bus represents the device signals such as A0 to A15.

Fur ther B0 to B2 represent the 8 banks and CS signal represents the number of

Ranks as per J DEC standard. To carry out the eva lua t ion and test ing, the design was

implemented in such a way tha t the number of requestors, ranks and banks can be

customized as per user request . Next , the front end will be discussed in detail.

5.1 Fron t End Me mory Con trolle r

F igure 5.2: Front End Memory Cont roller

The front End Memory Cont roller consists of Address Mapping, Command Genera tor ,

Refresh Controller and Row Table as shown in Figure 5.2. The N number of

requestors would require N number of address mapping logic blocks and N number of

command genera tors in the front logic sh own in Figure 5.2.

41

F ir st , the incoming physica l addresses from a ll N requestors would go through N

number of Address Mapping logic blocks which would split the incoming physical

addresses in to normalized rank, bank, row and column Addresses. Then, the

normalized rank, bank, row, column addresses a re fed in to their respect ive N number

of command genera tors for the proper command generat ions. The Command

Generators a re responsible for genera t ing the necessary DDR Memory commands

such as PRE, ACT, REF and CAS based on the incoming request type (read or wr ite),

physica l address and the sta tus of row table tha t indica te if the row is open or close.

When a request ta rget s a specific rank, bank, row combinat ion , tha t par t icu lar

request en t ry is en tered in to the row table. The row table keep the record of which

rows, banks and ranks have been accessed for each incoming request . Using the

previous access record in the row table, the command genera tor is able to generate the

r ight command. Fur ther , main ta in ing the row sta tus of previously accessed memory

request s a lso enhance the command scheduling efficiency. Since pr iva te bank

mapping is used, every requestor is assigned to one bank or set of banks in a rank.

Two requestors cannot access the same bank in a rank. The number requestors, N,

can range from 0 < N <= 32. But , for th is implementat ion , we considered maximum N

= 16 requestors.

In th is proposed design, the row table updates its ent ry in to one of the following

three scenar ios in order to assist the command genera tors to genera te the

cor responding commands such as PRE, ACT, REF and CAS.

Row Con flic t: A row conflict occurs when there is a new request to row in a

par t icular bank which a lready has different row opened. In th is scenar io, the

command genera tor would generate the following commands in order . F ir st , it would

genera te PRE command to close the already opened row. Second, it needs to issue an

ACT Command to open the row for the new request . F ina lly, it would issue the Read

or wr ite CAS command.

Row Miss: A row miss occurs when there is a request to a row in a par t icu lar bank of

DRAM tha t does not have any row a lready open. The Command Genera tor needs to

send ACT command (row open) and then Read or wr ite CAS command.

42

Row Hit: A row hit occurs when there is a request to a row in a par t icu lar bank of

DRAM tha t is a lready opened by previous request . In th is case, there is no need to

open the bank aga in and therefore, it simply sends read or wr ite CAS command.

Refresh Controlle r

Every row in a DRAM needs to be regular ly refreshed to avoid da ta lost which would

eventua lly make sure the memory access predictable. Refresh process is separately

handled by a refresh cont roller which genera te the refresh command for every refresh

per iod. Refresh per iod depends on the DDR Memory device. The refresh of a memory

rank is par t it ioned in to 8,192 smaller refresh opera t ions. Such refresh opera t ion has

to be issued every 7800 ns (64 ms divided by 8192). In other words, a refresh

opera t ion must be performed every 7800 ns on average to refresh the ent ire DRAM in

64ms (retent ion t ime). This 7800 ns in terva l is referred to as the refresh in terva l, t
REF

.

Each Refresh opera t ion last s for a t ime limit tha t is refer red to as the refresh cycle

t ime, t
RFC

, which depends on the devices. For our design simulat ion , DDR3 1333-H

device is used where t
RFC

 = 160 ns and t
REF

 = 7800 ns. These parameter va lues might be

different for other h igh end memory devices. All of the banks must be pre-charged

before a refresh command is issued. During every refresh per iod, a ll the banks and

ranks need to be refreshed.

F igure 5.3: Refresh Cont roller Timing

43

5.2 Back En d Me mory Con trolle r

This sect ion will ana lyse the deta iled implementa t ion of each logic component tha t

was used to build the back end logic as shown in Figure 5.4 below. The back end logic

is designed as 3 levels of a rbiter s and 4 stages of pipeline a rchitecture. Each level of

a rbiters is ca tegor ized as requestor a rbit rat ion (L1), rank arbit rat ion (L2) and

Command arbit ra t ion (L3). The design was implemented in a 4 stage pipeline

a rchitecture in order to increases the number of commands throughput by execut ing

opera t ions in a ll four stages in para llel. Each pipelined stage is separa ted by a

sequent ial register element . In the next sect ion , let us look a t the logic behind

command queues which are the first in ter face unit of this back end logic.

F igure 5.4: Back End Memory Cont roller

44

5.2.1 Com m an d Qu eu es in Stage 4

The commands genera ted by the front end are stored in to the command queues as

shown in Figure 5.5. It is the first sequent ia l in ter face to the back end. The command

queue cont roller is specia lly designed to increase the efficiency of th is proposed

memory controller in the following manner . In a regular FIFO cont roller design , the

read enable should be sent out to the queue before reading out the da ta . But , th is

customized queue controller is designed to funct ion like a look-ahead manner where

the head of the queue is visible to the receiver so that the receiver logic is able to

decide if the next command is a PRE or ACT or REF or CAS. This look -ahead fea ture

helps to different ia te CAS versus PRE, ACT, REF commands. Therefore, th is look-

ahead feature process the CAS and PRE, ACT commands separa tely in para llel by

separate a rbiter s in order to minimize the la tency.

As out lined in the a rbit ra t ion ru le (1 A), the command at the head of each

commands queue is act ive only if the cor responding t iming const rain t s of the previous

commands of the same requestor are sat isfied. Only if the command sa t isfies the

t iming, the command is a llowed to be fetched from the par t icu lar command queue and

will be propagated to sta ge 3. If not , the command will be staying in the command

queue unt il it s DDR t iming is sa t isfied. The number of command queues depends on

how many requestors are connected with the memory cont roller design . For a system

with sixteen requestors, there will be sixteen command queues to store their

respect ive commands. The design was implemented in such a way tha t number of

command queues can be dynamically configured dur ing the run t ime depending on

the number of requestor that were chosen by the user .

F igure 5.5: L3 CMD Queue, L3 PRE, ACT Queue and RRD FAW Sequencer

45

5.2.2 P RE, ACT Arbiter an d CAS Arbiter in Stage 4

The stage 4 consist s of two arbiter s namely PRE ACT Arbiter and CAS a rbiter as

shown in Figure 5.5. Both arbiters work in para llel to a rbit ra te among commands

wait ing a t the head of L3 CMD queues. The Arbit ra t ion ru le (2A) says t he requestor

is put in the back of a L3 PRE ACT Queue in stage 4 as soon as it has an act ive PRE

or ACT command and it is removed from the queue once the command is fina lly

issued by L1. But , a ll the commands in CMD queues cannot be dispa tched a ll once

instant ly as sta ted in ru le (2A). From the hardware implementa t ion poin t of view,

each command in the L3 CMD queue can only be dispa tched one per clock cycle.

Therefore, we need an addit iona l arbit ra t ion mechanism to choose the PRE, ACT

command per clock cycle from L3 CMD queues. Similar ly, we a lso need an arbit rat ion

mechanism to choose one CAS command per clock cycle from CMD queues. The CAS

arbiter a rbit rates a L3 CMD queue that has CAS commands a t the front (head) of the

queues. As per the a rbit ra t ion ru le (1B), a CAS command does not become act ive unt il

the da ta of the previous CAS command of the sam e requestor has been received by the

memory cont roller from the memory device. While CAS arbiter is in act ion , PRE ACT

arbiter a rbit ra tes a queue tha t has PRE or ACT commands a t the front (head) of the

queue. Both arbiters ignore those queues tha t do not have any command to be served.

Having two separate a rbiters to a rbit ra te a t the same t ime plays a major role in

reducing overa ll la tency in our proposed rank switch ing DDR memory cont roller

design . This L3 PRE ACT Arbiter is designed based on the modified FCFS arbit rat ion

style. This modified FCFS ensures tha t when the requestor has an ACT wait ing for

it s t
RRD

 or t
FAW

 const raint s, the PRE commands do not have to suffer due to t
RRD

 or t
FAW

constra in ts. This a llows the late a r r iving PRE command to get propagate. On the

other hand, the CAS arbiter is built from the regular First Come Fir st Se rved (FCFS)

arbit ra t ion style. Having two separate a rbiters for PRE ACT and CAS rea lly help to

reduce the overa ll la tency. Let us ana lyze a scenar io with an example where REQ 1,

REQ2, REQ3, REQ4 queues receive the commands in the order of ACT, PRE, ACT,

and CAS respect ively. If one Arbiter was used to handle a ll the commands, then, the

a rbiter would sta r t a rbit ra t ing from REQ1 => REQ2 => REQ3 => REQ4. The CAS

command that is wait ing a t REQ4 has to wait unt il the a rbiter fin ished arbit ra t ing

REQ1, REQ2 and REQ3. This is not efficient and there is no reason to keep wait ing

the important CAS command a t REQ4. Instead, th is CAS command should be

dispatched as ear ly as possible to save the la tency in get t ing the da ta back from

memory. The proposed design has one arbiter to handle PRE, ACT and other a rbiter

46

to handle CAS in order to reduce the wait ing t ime of the impor tant CAS commands

inside the Command queues and thereby minimizes the tota l la tency.

5.2.3 P RE, ACT, CAS Sequ en cer in Stage 4

When the command is ava ilable a t the head of the L3 CMD queue, the PRE, ACT,

CAS sequencer in stage 4 will star t ver ifying the t iming check and mak e sure that the

cur rent command from the requestor sa t isfies the t iming const rain t with the previous

command from the same requestor as shown in Figure 5.5. The look-ahead na ture of

L3 CMD queue allows th is sequencer to scan the commands a t the head of the

command queues and ver ify the t iming without actua lly fetch ing it from the command

queue. Note tha t both PRE ACT Arbiter and CAS arbiter car ry out their a rbit ra t ion

task while checking with th is sequencer to determine if the par t icu lar command can

be chosen for the arbit ra t ion . Each CMD queue represents the commands that a re

solely coming from a single r equestor . This sequencer checks the t iming const rain t

such as RAS to CAS (RCD), CAS La tency (CL), RC, RAS, RP for the commands from

the very same requestor . It is impor tant to note tha t the t iming const ra in t such as

ACT to ACT (RRD) or Four Act ive Windows (FAW) for the commands tha t come from

different requestors t arget ing different banks a re not ver ified by th is sequencer .

As shown in Figure 5.5, PRE ACT arbiter , CAS a rbiter works in para llel with PRE

ACT CAS sequencer to check if the par t icu lar command sat isfied the t iming before

the a rbiter s can choose the command for it s arbit ra t ion process . If the command did

not sat isfy with the t iming, then , the arbiters would not choose that command and

instead, it would move onto the next requestor in it s a rbit ra t ion path . The Stage 4

PRE, ACT, CAS Sequencer was designed with la rge set of down counters to represent

a ll the DRAM t iming const ra int s as shown in Table 2.1. These t iming counters in this

par t icular sequencer in stage 4 would only check the t iming const ra int for the

commands with in each requestor . As indicated in Figure 5.4, the feedback shown in

green color is a combinat ional pa th coming from level 1 towards level 2 and level 3.

This feedback indica tes tha t the command is dispa tched a t level 1 and th is

acknowledgement is used by the t iming sequencers in level 3 and level 2 to in it ia lize

the corresponding t iming counters for the next commands. It is impor tant to note

tha t the t iming constrain t such as Row to Row (RRD) or Four Act ive Windows (FAW)

for the commands tha t come from different requestors, t a rget ing different banks in

the same rank are not ver ified by th is t iming sequencer in stage 4 and it will be

discussed in sect ion 5.2.5.

47

5.2.4 P RE, ACT Qu eu e in S tage 4

Once the DRAM t iming const ra in t has been sa t isfied by the PRE , ACT, CAS

sequencer , it would propagate the PRE and ACT commands to PRE ACT queue for a

t emporary storage as shown in Figure 5.5. This PRE, ACT queue receives commands

from requestors t a rget ing different banks with in the same rank. This queue is a

custom made design and it is not based on either regular First in First out or Last in

Fir st out architectures. In regular queue architecture, the da ta will be fetched on the

next cycle after receiving the read enable from the receiving block. But , th is PRE ACT

queue was designed in such a way where the next ava ilable command is au tomat ica lly

just visible without wait ing for the read enable from the receiving block. This look -

ahead feature a llows the receiving block, RRD FAW sequencer , to va lida te

cor responding RRD, FAW t iming check even before actually fetch ing it . Fur ther , th is

queue was designed to offer h igher pr ior ity to PRE command over ACT command

when ACT was subjected to addit iona l delay due to the RRD, FAW t iming const ra int .

This PRE ACT queue receives ACT commands tha t a re coming from a ll four

requestors t a rget ing different banks in the same rank. Therefore, t hose ACT

commands ta rget ing different banks in the same rank are expected to sa t isfy the

t iming parameters such as Row to Row Delay (RRD) and Four Act ive Window (FAW).

The PRE ACT sequencer eva lua tes the t iming of ACT command and decides when

the ACT command can be fetched from the PRE, ACT queue based on it s RRD, FAW

sequencer t iming. While the ACT is wait ing for it s cor responding RRD, FAW t imer to

elapsed, there is no reason to hold those PRE command inside the queue. In th is

scenar io, PRE are given h igher pr ior ity than ACT command. To facilit a te th is

pr ior ity, the PRE ACT queue was designed to make necessary up sh ift ing of PRE

commands so that PRE commands can be released ear ly as shown in the following

Figure 5.8. This ear ly release makes a reasonable improvement over the overa ll

la tency of the operat ion of our proposed design . The next sect ion descr ibes in deta il

how th is RRD FAW sequencer works in para llel with PRE ACT queue.

48

5.2.5 P RE ACT Arbiter an d RRD FAW Sequen cer in Stage 3

The sect ion descr ibes the task of the PRE, ACT arbiter and RRD, FAW sequencer as

shown in stage 3 of Figure 5.5. This logic unit consist of PRE, ACT a rbiter and RRD,

FAW sequencer . The arbiter logic arbit rates commands tha t a re in PRE, ACT queue.

If the front (head) of the queue is an ACT command, the a rbiter would choose the ACT

commands only if the Row to Row Delay (RRD) and Four Act ive Window (FAW) delay

is sat isfied for that ACT command by the RRD, FAW Sequencer logic. The arbit ra t ion

ru le (2C) says tha t an act ive PRE command can a lways be issued; an act ive ACT

command could instead by blocked by t
RRD

 or t
FAW

 const ra int s caused by other

requestors in the same rank. Now, let us ana lyse how th is ru le (2 C) is implemented.

The RRD and FAW t imings are ver ified by RRD, FAW Sequencer logic for an ACT

command. Once fir st ACT command is inser ted in to the L3 PRE ACT queue, t he Row

to Row Delay (RRD) counter and Four Act ive Window (FAW) counter will be

in it ia lized to RRD value and FAW value respect ively. When it receives the second

ACT command, it would check if the RRD counter has been a lready elapsed or not . If

it is not elapsed, th is logic block will wait and will not send the read enable to the

PRE ACT Queue unt il the RRD t iming is sa t isfied. Only after RRD t imer is elapsed, it

would a llow th is second ACT command from PRE ACT Queue to propagate to next

stage in the pipeline. At the same t ime, it would send back the read enable to the PRE

ACT Queue so that queue would pop up the next ava ilable command to it s head. This

process would keep on cont inuing every t ime there is a new ACT command. The FAW

counter will a llow only four ACT commands to pass with in the FAW t ime window.

5.2.6 P RE, ACT Arbiter in Leve l 2

As shown in the fu ll system level view of Figure 5.4, four PRE ACT queues a re in L3.

This L2 PRE ACT Arbiter was designed based on the round robin a rbit rat ion

architecture as expla ined in Sect ion 3.1.4 Select ion of a rbiter type. When a L3 PRE

ACT queue has the command a t the head of the queue wait ing to be sent , fir st , it

would send the request (REQ) to th is Level 2 PRE ACT Arbiter . In a fu ll system level

opera t ion , the L2 PRE ACT Arbiter receives REQs from a ll four PRE ACT queues

residing in level 3. The arbit ra t ion ru le (2 A) says tha t the PRE ACT command is

removed once the PRE ACT command is issued by L1. This sub-ru le is implemented

as follows. The L2 PRE ACT a rbiter will pick one of the L3 PRE ACT queue

represent ing different ranks.

49

L2 PRE ACT arbiter will issue the acknowledgment (ACK) to tha t chosen L3 PRE

ACT queue. Only after receiving the ACK, the cor responding L3 PRE ACT queue will

release the PRE or ACT command to th is L2 PRE ACT Arbiter . Note tha t REQ and

ACK exchange between L3 to L2 are combinat ional logic and it does not consume any

clock cycle. The arbit rat ion ru le (4) says tha t th is level 2 PRE ACT Arbiter can use

either FCFS or Round-Robin (RR) arbit ra t ion . But , th is level 2 PRE ACT was

implemented using RR due to the ease of implementat ion in hardware compared to

FCFS. The command received by th is level 2 PRE, ACT Arbiter would then dispa tch it

to the next pipelined storage which reside between level 2 PRE ACT Arbiter and level

1 Arbiter .

F igure 5.6: Scheduling of PRE, ACT CMDs through L3, L2, L1

50

Let us look in to the deta il of scheduling events of PRE, ACT commands from levels of

L3 to L2 to L1 as shown in Figure 5.6. At clock cycle 0, L3 PRE, ACT queue of rank 0

conta ins ACT0, ACT0, PRE0, PRE0 commands. Similar ly, a t clock 0, L3 PRE, ACT

queue of rank 1 conta ins a ll four ACT1 commands. At clock cycle 0, assume that rank

0 takes higher pr ior ity than rank 1. Even though both rank 0 and rank 1 send the

REQs to L2 PRE ACT arbiter , L2 PRE ACT a rbiter choose the L3 PRE ACT queue

from rank 0 due to the h igher pr ior ity. Therefore, PRE ACT queue of rank 0 will own

the bus ownership and will dispatch the ACT0 command in t o L2 PRE, ACT a t clock

cycle 1. Next , t he L2 PRE ACT will dispa tch the ACT0 from L2 to L1 a t clock cycle 2.

Due to the Row to Row Delay (RRD) between ACT commands of the sa me rank, the

ear liest t ime that L1 PRE ACT can receive the next ACT0 command would be a t clock

cycle 6. Therefore, ear liest t ime the next ACT0 command from L3 PRE, ACT queue of

rank 0 could be dispa tched is a t clock cycle 4.

The moment tha t ACT0 is dispa tched by L1 PRE ACT register a t clock cycle 2,

the RRD counter is in it ia lized to a RRD value. The design of th is down counter t ake

in to the fact tha t RRD coun ter is actua lly get t ing it s in it ia lized va lue on the next

clock cycle so that in it ia lized va lue should be RRD – 2 so tha t the counter would be

down countered to zero a t clock cycle 5 where next ACT0 command will be checked for

it s RRD const ra int to be elapsed at the cor rect t ime so tha t next ACT0 command is

dispatched to L1 PRE ACT a t clock cycle 6. P lease note that the counter in it ia l va lue

modifica t ion is done carefu lly in our design for a ll the counters involved in check ing

the DDR t iming constrain t s.

On other hand, t he L3 PRE, ACT queue of rank 1 will dispa tch its first ACT1

command from L3 PRE ACT queue into L2 PRE ACT register a t clock cycle 2, only

a fter the ACK is given by the L2 PRE ACT arbiter . Note tha t rank 1 is less pr ior ity

than rank 0 as per our assumpt ion . Next , L2 PRE ACT register will dispatch the ACT

1 command in to L1 at clock cycle 3 a fter ACT0 from rank 0 is dispa tched. Note tha t

ACT commands from different ranks does not have any t iming constra in t s between

them and can be processed back to back a t clock cycle 2 and clock cycle 3 as shown in

Figure 5.6. The PRE command has no impact on either RRD or FAW t iming.

Therefore, if there is a PRE command in the queue, there is no need for the PRE

command to wait unnecessar ily while wait ing for e ither RRD or FAW. The Figure 5.6

clear ly illust ra te scenar io of ear ly dispatching of PRE 0 a t clock cycle 2 while ACT0

command is wait ing for RRD or FAW at L3 PRE ACT queue for rank 0.

51

5.2.7 CAS FIFO in Stage 4

Once the PRE, ACT, CAS Arbiter & Sequencer unit chooses a CAS command, it

propagates tha t CAS command to the temporary storage of CAS FIFO as shown in

Figure 5.7 below. The CAS FIFO has a var iable depth size depending on the number

of requestors connected. When either 4 or 8 requestors a re connected in the above

logic unit , the CAS FIFO s ize would take either 4 or 8 respect ively. This CAS FIFO

would not release (pop) the CAS Command to the next stage downstream unt il the

required DRAM t iming constra in t is successfu lly checked by the CAS BTB Sequencer

which will be descr ibed in next sect ion . Only when the CAS FIFO is chosen as the

winner by level 2 CAS Arbiter the CAS FIFO would release the CAS command and

send it to level 2 CAS Arbiter as shown in Figure 5.10. If the CAS FIFO is not chosen

as the winner , then, it would not release the CAS Command from the CAS FIFO. The

winner signal coming from level 2 CAS Arbiter is used as the read acknowledgement

for th is CAS FIFO logic to get the next command to pop up a t the head of the CAS

FIFO for the next operat ion .

F igure 5.7: CAS FIFO and CAS BTB Sequencer

52

5.2.8 CAS Arbiter an d CAS, BTB Sequ en cer in Stage 3

This logic block is direct ly in teract ing with CAS FIFO as shown in Figure 5.7 above.

Three logic opera t ions such as CAS arbit ra t ion, CAS t iming and BTB t iming are built

in th is logic block . As per a rbit ra t ion ru le (3), the commands at the head of the L3

CAS FIFO are a rbit rated by the CAS Arbiter unit . This arbiter select ion process

depends on the t iming check done by CAS sequencer and BTB sequencer logic blocks.

The t iming constra in t such as Write to Read (WTR) and Read to Write (RTW)

between banks will be ver ified by th is CAS sequencer .

Note tha t the a rbit ra t ion ru le (5) only discusses the t
SDr

 and t
ED

 and it does not

discuss about the BTB t iming parameter . It is important to understand how this BTB

is important for the processing of CAS commands. The BTB stands for Burst to Burst

and the BTB sequencer ca lcu la tes the t ime difference between two burst da ta of the

different requestors t a rget ing either same or different banks in the same rank. As per

the a rbit rat ion ru le (5), the BTB = t
SDr

 - t
ED.

The ca lcula ted BTB value for each L3 CAS

will be dispa tched to the level 2 CAS Arbiter and t h is process is repea ted by other

CAS BTB sequencer s in other ranks as shown in F igure 5.8. At the L2 CAS Arbiter , it

r eceives CAS commands and the cor responding BTB values from CAS, BTB

Sequencers represent ing a ll four ranks or two ranks depending on the configurat ion .

In the next sect ion , we will see how level 2 CAS Arbiter chooses one of the CAS FIFOs

based on both the BTB value received and the pr ior ity of the CAS FIFOs.

5.2.9 CAS Arbiter in Leve l 2

The L2 CAS Arbiter consist s of three important logic units and they are CAS Arbiter ,

BTB Compara tor and Rank to Rank (RTR) Sequencer . The L2 CAS arbiter a rbit ra tes

L3 CAS FIFOs represent ing different ranks as shown in Figure 8 below. The

arbit ra t ion task car r ied out by L2 CAS arbiter not only just depends on the

a rbit ra t ion policy it self, but a lso depends on the outcome of BTB Com parator and

Rank to Rank (RTR) sequencer . The factors tha t decides on how L2 CAS arbiter is

supposed to choose the L3 CAS FIFOs is as follows. If L2 CAS arbit er makes it s

select ion as per round robin policy, each L3 CAS FIFO will be visit ed in an equal

fa irness and order ly manner regardless of which request s are wait ing for a long t ime

in the L3 CAS FIFOs. But , our design of L2 CAS arbiter gives impor tance to t hose

request s which ar r ived ear ly wait ing a t the L3 CAS FIFO to be served.

53

It a lso gives equal impor tance to other request s which are wait ing for their read to

wr ite or wr ite to read or burst to burst t iming constra in t to be elapsed. The impor tant

fact is that we cannot use either fixed pr ior ity or round robin policies for the L2 CAS

arbiter without consider ing the request ’s a rr iva l t ime. Therefore, we decided to

choose First Come First Served st ructure. Since th is arbit ra t ion process is a lso

depend on Burst to Burst (BTB) va lues, the exist ing FCFS policy need to be modified

and thereby, Modified FCFS (M-FCFS) is well su ited for our design as the a rbit ra t ion

policy for L2 CAS arbiter . Now, let us look in to the BTB Compara tor logic which is

par t of the L2 CAS arbiter logic.

F igure 5.8: Level 3 CAS BTB Sequencer and Level 2 CAS Arbiter

54

5.2.9.1 BTB Com parator

Whenever there a re CAS commands a va ilable a t L3 CAS FIFOs, the L2 CAS Arbiter

receives the Burst to Burst (BTB) va lue from all BTB Sequencers represent ing a ll the

ranks. Note tha t BTB value is issued by the BTB sequencer to L2 CAS arbiter even if

the CAS cannot be issued a t any clock cycle. In other words, the BTB is issued a t

every clock cycle and the BTB compara tor compares the BTB values coming from a ll

the BTB sequencers as shown in Figure 5.9. The winner is chosen based on BTB

values and based on the pr ior ity level of each of the L3 CAS FIFOs at tha t t ime. The

winning L3 CAS FIFO is a llowed to release the CAS command to the L2 CAS Arbiter .

Other L3 CAS FIFOs which were not chosen would keep their CAS Commands. Once

the CAS command is chosen from a par t icular L3 CAS FIFO, it st ill need to go

through one more t iming check ca lled Rank to Rank (RTR). The RTR Sequencer unit

will check the t iming before the CAS Command can actua lly be indeed released by the

L3 CAS FIFO.

F igure 5.9: Logic to Calcula te the Smallest BTB

55

5.2.9.2 Ran k to Ran k (RTR) Sequ en cer

Having completed the BTB compar ison, the L2 CAS Arbiter a lso needs to do another

t iming check ca lled Rank to Rank. It is important to ana lyze why we need th is rank to

rank sequencer between ranks. The synchroniza t ion t ime is needed for one bus

master to hand off the bus ownership to another bus master . This t ime is ca lle d

turnaround t ime which is inser ted to account for skew on the bus and to prevent

different bus masters from dr iving the bus a t the same t ime. To avoid such collisions,

a second rank must wait a t least t
RTR

 a fter a fir st rank has fin ished using the bus.

This synchroniza t ion t ime is ca lled Rank to Rank Time, RTR.

The RTR Sequencer was designed to ensure tha t the second rank would not dr ive the

da ta bus while the first rank is in the process of dr iving the da ta bus and avoiding

collision between da ta movem ent among ranks. With in each rank itself, the t iming

conflict in the direct ions of da ta movements is ca lled wr ite to read (WTR) and read to

wr ite (RTW). But , when the da ta movements occur between ranks, the t iming

conflict s such as WTR or RTW due to the direct ion of da ta movement a re no longer

applicable. Instead, only Rank to Rank t iming check need to be ver ified by th is level 2

CAS Arbiter before dispa tching the received CAS command towards level 1.

It is impor tant to fur ther ana lyse how the CAS comman ds are scheduled and

propagated from L3 to L2 to L1 levels. The Figure 5.10 shows an example scenar io to

illust ra te the scheduling of CAS command a long with their cor responding BTB

values.

56

F igure 5.10: Scheduling of CAS CMDs through L3, L2, L1

Let us assume the following for our example scenar io. The burst size of 1 clock cycle

and read, wr ite la tency of 3 clock cycles a re used as a sca le down view for the

illust ra t ive purpose in th is Figure 5.10. Further , assume that four CAS commands are

stored in L3 CAS FIFO of rank 0 and three CAS commands are stored in L3 CAS

FIFO for rank 1. Also, a ssume tha t RDATA2 is present at clock cycle 1 by ran k 2 to

illust ra te the BTB processing for rank 0 and rank 1. Assume tha t the rank 0 has

h igher pr ior ity than rank 1.

57

At clock cycle 0, due to the RDATA2, the BTB values for Rank 0 a nd Rank 1 a re

ca lcu la ted to be 3. Since both BTB values a re equal to be 3 a t clock cycle 0 and since

rank 0 has h igher pr ior ity than rank 1, the L3 CAS FIFO (rank 0) is chosen as t he

winner by the L2 CAS arbiter . Therefore, RCAS0 command in L3 CAS FIFO of rank

0 is dispa tched to L2 CAS register a t clock cycle 1. At clock cycle 2, th is RCAS0 will

be fur ther dispa tched to L1 CAS for output . The read da ta , RDATA0 is received a t

clock cycle 5 a fter RL t iming.

While th is RCAS0 is propagat ing through L3 , L2 and L1, the RCAS 1 wait ing a t L3

CAS FIFO (rank 1) cannot be dispa tched to L2 CAS register unt il clock cycle 4 due to

the fact tha t Burst to Burst (BTB) need to be mainta ined between RDATA0 an d

RDATA1 as shown in Figure 5.10. The BTB values for both rank 0 and rank 1 a re

mainta ined to be same va lue as 3 for clock cycle 0, 1, 2 due to the presence of RDATA

2 from rank 2. Once the RCAS0 is dispa tched a t clock cycle 2, the next WCAS 0 a t

rank 0 is wait ing unt il clock cycle 8 to sa t isfy the read to wr ite (RTW) t iming

constra in t . Due to th is WCAS0, the new BTB value for rank 0 is updated a t clock

cycle 3 to be 5 as per the following equat ion .

BTB = t RTW + t WL – t RL – t Burst

 = 6 + 3 – 3 – 1

BTB = 5

Similar ly, a t clock cycle 3, BTB for rank 1 is calcu la ted to be 0, since there is no data

in the bus a t tha t t ime for rank 1.

The following Figure 5.11 shows deta il view of how the BTB values a re ca lcu lated. For

an example, t he RCAS from rank 0 can be dispatched only if the R1_BTB value can be

sa t isfied between the la test RDATA from rank 1 to the fu ture RDATA from rank 0.

The T0_MAX is ca lcu lated as the maximum delay of the da ta from other ranks. If the

RCAS command a t rank 0 is followed by previous wr ite da ta , then , we need to wr ite to

read (WTR) delay as par t of the BTB ca lcula t ions. All the relevant equat ions for the

BTB ca lcula t ions a re shown in Figure 5.11.

58

F igure 5.11: Example BTB ca lcula t ion for RCAS CMD from Rank0

5.2.10 P RE ACT CAS Arbiter in Leve l 1

As can been seen from the system level view in Figure 5.4, the commands from a ll the

requestors from different ranks a r r ives simultaneously a t th is fina l stage ca lled level

1 PRE ACT CAS arbiter . This L1 arbiter arbit ra tes for the PRE, ACT and CAS

commands coming from a ll ranks. This arbiter was designed as a pr ior ity style arbiter

since the proposed design expects the CAS commands to be given h igher pr ior ity than

PRE, ACT commands. By issu ing the CAS comm ands as ear ly as possible offer bet ter

read latency and hence reduces the overa ll la tency. Note tha t there is only one

command bus and therefore, only a single command can be dispa tched out of level 1

towards the memory device. Since CAS command get the h ighest pr ior ity, th is a rbiter

is built with the ability to t emporar ily store those PRE and ACT which may ar r ive a t

the same t ime as CAS commands from different requestors of different ranks. Only

after CAS is dispa tched out of level 1 a rbiter , those stored PRE, ACT commands will

be dispa tched as per the order they arr ived. As stated in a rbit rat ion rule (6), th is level

1 a rbiter would send back the ACK to both level 2 and level 3 every t ime the

commands have been dispa tched out of th is level 1 arbiter .

59

5.3 P ipe lin e Im plem en tation of th e Mem ory Con trolle r

This sect ion will ana lyse the pipeline implementat ion of the back end memory

cont roller . As shown in Figure 5.12, the back end is designed to be three stage

pipeline st ructures. This sect ion would go in to deta il on each stages and the t iming

ana lysis as pointed out below.

1) Pipeline Stage 4 – Request Arbit ra t ion

2) Pipeline Stage 3 – Bank Arbit ra t ion

3) Pipeline Stage 2 – Rank Arbit ra t ion

4) Pipeline Stage 1 – Command Arbit rat ion

5) Timing Analysis of Pipeline Stages

F igure 5.12: Three Stage Pipeline for the backend Memory Cont roller

60

5.3.1 P ipe lin e Stage 4 – Re qu est Arbitration

This pipeline stage 4 receives the commands from a sequent ia l unit ca lled CMD

queues. This stage conta ins logic units such as PRE, ACT Arbiter , CAS Arbiter and

PRE, ACT, CAS Sequencer . It is impor tant to note tha t th is sequencer per forms the

t iming checks on the commands coming from same requestor , not between requestors.

Once the a rbit ra t ion and t iming checks are completed, the PRE, ACT commands are

stored in to L3 PRE ACT queue and the CAS commands are stored in to L3 CAS FIFO

as shown in Figure 5.13. The commands stored in to th is L3 PRE ACT queue and L3

CAS FIFO represents four requestors of the same ran k.

 F igure 5.13: Stage-4 Pipeline F igure 5.14: Stage-3 Pipeline

5.3.2 P ipe lin e Stage 3 – Ban k Arbitration

The pipeline stage 3 conta ins the logic block ca lled PRE, ACT arbiter and RRD, FAW

sequencer which receives the commands from L3 PRE, ACT queue of stage 4.

Similar ly, the stage 3 a lso con ta ins CAS arbiter and CAS, BTB sequencer which

receives the command from L3 CAS FIFO of stage 4. Having completed the

a rbit ra t ion and t iming check task s, the PRE, ACT commands will be dispa tched in to

the L2 PRE, ACT register and CAS commands will be dispatched in to L2 CAS register

as shown in Figure 5.14.

61

5.3.3 P ipe lin e Stage 2 – Ran k Arbitration

Stage 2 has two arbiters: PRE, ACT Arbiter and CAS Arbiter . F irst PRE ACT Arbiter

per forms the rank arbit ra t ion for PRE ACT commands tha t a re stored in to the L3

PRE ACT Queues. At the same t ime, the CAS Arbiter performs the a rbit rat ion on

CAS Commands tha t are stored L3 CAS FIFOs. As you can see in Figure 5.15, there

a re registers between the stage 3 and stage 4. These registers a re used to carry out

the pipelined nature of the design . It is impor tant to note that these registers are not

buffer to store the commands for a longer per iod; ra ther these registers are used to

delay the commands by just one clock cycle in order to per form the pipeline na ture for

our design . Actua lly, the L3 PRE ACT queue and L3 CAS FIFO are the storage place

where the commands are get t ing buffered unt il they receive the ACK from L2 arbiters

and a lso they wait in the buffer unt il their t iming const ra in t is sa t isfied .

F igure 5.15: Stage 2 Pipeline – Rank Arbit rat ion

62

5.3.4 P ipe lin e Stage 1 – Com m an d Arbitration

As shown in system level Figure 5.4, the s tage 1 receives commands from a ll the

requestors represent ing different ranks. This is the fina l stage where a ll commands

come together from a ll the requestors of a ll the r anks. The stage 1 conta ins PRE,

ACT, CAS Arbiter of pr ior ity type. At th is level, the command arbit rat ion is

per formed where CAS command is given h igher pr ior ity than PRE or ACT if a ll 3

commands ar r ive a t the same t ime. Since stage 1 a rbiter is the fina l stage of our

memory cont roller design , t he output coming out of th is stage 1 should be clocked in

order to send the sequent ia l signa ls in to the memory device. This will prevent any

glit ches coming from the stage 1 combinat ional logic being passed onto the memory

device. The Stage 1 PRE, ACT CAS arbiter a lso send out the feedback signal to Level

3 and Level 2, once the commands are dispatched out of th is a rbiter towards the

memory device. This feedback is used by the level 3 and level 2 t iming sequencers to

eva lua te the t iming const ra int s for the next commands.

Up to now, a ll 3 sta ges of pipeline design was presented. The fu ll implementa t ion of

the front and back end design was done using Ver ilog RTL language and the code can

be found at [18].

F igure 5.16: Stage 1 Pipeline – Command Arbit ra t ion

63

5.3.5 Tim in g An alys is of P ipe lin e s tages

Figure 5.17: Timing Analysis of Pipeline Stages

64

The deta iled t iming of each pipelin e stages is shown in Figure 5.17. The da ta a rr iva l

t ime indica tes the t ime a t which the data a r r ived after being subjected to the

combinat ional delay by the logic in each stage. The da ta required t ime indica tes the

safest t ime at which the da ta is expected to reach to avoid the setup t ime, Ts. The

Time durat ion of T4, T3, T2, T1 indica tes the Data Arr iva l t ime and i t includes the

delay suffered by logic for the cor responding pipeline stages. In order to ana lyse the

t ime taken by each stage of the pipeline, the Sta t ic Timing Analysis (STA) was car r ied

on back end memory cont roller by using the Xilinx Timing Analyzer Tool. As a

requirement for the tool, the User Constrain File (UCF) was cr ea ted with the

following four t iming inter faces such as Input PAD to FLOP, FLOP to FLOP, FLOP to

Output PAD and Input PAD to output PAD

The following results were achieved from the Sta t ic Timing Analysis

T4 = Time taken by the Stage 4 = 2.57 ns

T3 = Time taken by the Stage 3 = 2.47 ns

T2 = Time taken by the Stage 2 = 2.51 ns

T1 = Time taken by the Stage 1 = 2.38 ns

Ts = Setup Time of the flip flop. = 0.29 ns

Minimum per iod = 2.86 ns

Maximum Frequency: = 350.00 MHz

5.3.6 Data P ath of th e Mem ory Con trolle r

Our proposed memory cont roller is capable of reading da ta from the memory

device as well a s wr it ing da ta in to the memory device. Both the read and write

da ta a re sent out through 64 bit bi-direct iona l DQ bus a long with bi-direct ional

DQS st robe signa l which is used to capture the read da ta . For the read

process, the read da ta DQ and st robe DQS a re dr iven by the memory device for

each of the requestor represent ing different banks and ranks. Simila r ly, for

the write process, the memory cont roller is capable of dr iving the write da ta

through DQ bus a long with DQS st robe signa l. The memory model is design in

such a way to send and receive the da ta and st robe signa ls.

65

Even though the memory cont roller design is capable of receiving read da ta

from memory device, the received read da ta is not sen t to the system bus in

our design . We a re not concerned with the system bus for our ana lysis, because

the absence of this addit iona l da ta processing to the system bus does not have

any impact on the read and write la tency tha t we a re concerned for th is thesis.

5.3.7 Testin g of th e Mem ory Con trolle r

Ident ifying the main corner cases and wr it ing test s to address those corner

cases a re the most cha llenging par t of the simula t ion setup. As inputs to the

design , va r ious read and write memory t races were used as input st imuli. Once

the test cases and input s a re ready, next impor tan t t a sk was to design the

memory model tha t would in teract with our memory cont roller . The memory

model was designed to mimic the in ter face of DDR3 memory device. Next , the

test bench st ructu re was designed where Design under Test (DUT) and the

memory model were instan t ia ted. Test bench a lso includes the proper clocking

and reset genera t ion . For design ent ry, simula t ion and synthesis purpose, the

Xilinx ISE Design su it , v14.4, was used.

To obta in the simula t ion resu lt s, we implem ented the en t ire memory cont roller

for the front -end for t he command genera tor and back -end for t he a rbit ra t ion

and memory t iming check using Ver ilog RTL. Our implementa t ion uses a fu lly

pipelined a rchitecture with four stages to increase the ha rdware speed. We

synthesized the design using Xilinx Kintex 7 FPGA and obta in ing a maximum

command bus clock frequency of 350 MHz. While this frequency is lower than

the 666 MHz frequency used in our simula t ions, we a rgue tha t an ASIC

implementa t ion would resu lt in s ignificant ly h igher speed. The next sect ion

deta ils out the background informat ion on hardware simula t ion setup and the

eva luat ion resu lt s.

66

Ch apte r 6

Evaluation

The evalua t ion of our rank switch ing open-row memory controller design was car r ied

out through hardware simulat ion process for var ious memory configura t ions. We

evalua te the per formance of our memory cont roller simula ted with CHStone and

SPEC benchmarks. Since AMC result s a re only su itable for cr it ica l requestors, we

compare the la tency resu lts using cr it ica l requestor a rbit ra t ion where CHStone and

SPEC benchmarks were used. Fur ther , the sim ula t ion for non -cr it ica l requestor

a rbit ra t ion was a lso carr ied out to measure the throughput for non-cr it ica l t asks. The

hardware simulat ion used DDR3-1333H memory device with data bus size of 64 bits.

Fur ther , th is ana lysis considers the memory device with 2 ranks or 4 ranks with 8 or

4 banks per rank respect ively. This allows us to assign one bank to each requestor .

6.1 Syn th e tic ben ch m ark Resu lts

Synthet ic benchmarks a re used to show how the worst case ana lyt ical bound var ies

as a funct ion of benchmark’s parameters . Since the la tency bound is a funct ion of the

number of open/close and load/store requests performed by the requestor under

ana lysis, we decided to plot the average per -request worst case latency in nano-

seconds (y-axis) for a synthet ic t ask as we vary the row hit ra t io (percentage of open

request s, x-axis) and fixing the per centage of store request s to 20%. Both figures 6.1

and 6.2 plot result s for da ta bus width of 64 bit s and 16, 8 requestors respect ively.

F igure 6.3 shows the case of 8 requestors and 32 bit s bus. From a ll three figures

below, we can see that AMC’s plot is constant in the graph since it uses close row

policy; hence the la tency does not depend on row hit rat io. When the number of

requestors and ranks a re increased, our approach per forms compara t ively much

bet ter . For 8 requestors with 32 bits bus and 0% row hit ra t io, AMC st ill has 50%

higher la tency compared to ROC 4 rank scenar io. Similar ly, the la tency from paper

[2] is a t least 50% higher than ROC 4 ranks overa ll cases. Note tha t the synthet ic

results does not account for the refresh la tency.

67

F igure 6.1: Synthet ic 16 Requestor s 64 bits da ta bus result

F igure 6.2: Synthet ic 8 Requestors 64 bit s da ta bus resul t

68

F igure 6.3: Synthet ic 8 Requestors 64 bit s da ta bus result

6.2 Late n cy of ope n an d c lose m em ory re ad access

The memory access can be one of the four types such as open read or close read or

open wr ite or close wr ite. In t h is exper iment , the worst -case la tency for memory read

and memory write is der ived from the simula t ion for the request under ana lysis,

REQ0 while other requestors are used to apply in t er ference. The la tency t ime means

the t ime taken from the moment the read command is sent out from the front end

unt il the read da ta is received by the back end logic from the memory device. Every

t ime a command is dispa tched from the front end, it is ident ified as either open read

or close r ead. For both open read and close read, the la tency t ime is captured and

recorded in to an output file. Ou t of a ll the captured la tency t imes, only the worst case

va lues in each memory access ca tegory is considered for this ana lysis to be compared

aga inst synthet ic ana lysis result s. We only consider open read and close read since

the read la tency is much more cr it ica l than wr ite la tency. Therefore, t he theoret ica l

69

values a re compared with ha rdware simula t ion results for the open read and close

read with 0 % wr ite scenar io. The exper iment was carr ied out for the memory

configura t ion of 16 requestors with 4 ranks and 2 ranks as shown in Table 6.1. We

exper imented with many different benchmarks from CHStone family to get the worst

la tency delay for open read and close read. Note tha t theoret ica l ana lysis results did

not include the delay caused by refresh . Therefore, we did th is exper iment by turn ing

off the refresh operat ion in hardware simula t ion in order to make the cor rect

compar ison with the theoret ica l results. For the hardware simula t ion , the open and

close latency delay is ext racted as number of clock cycles an d it is mult iplied by the

clock per iod of 1.5 ns to get the actual delay as shown in Table 6.1.

 REQs = 16; Ran ks = 2 REQs = 16; Ran ks = 4

 Th e ore tica l

An alysis

 HW

sim u la tion

Th e ore tica l

An alysis

 HW

sim u la tion

Ope n Re ad

100 % row h it
230.5 n s 222.0 n s 162.5 n s 136.5 n s

Close Re ad

0 % row h it
364 n s 277.5 n s 278 n s 211.5 n s

Table 6.1 Late ncy of ope n , c lose acce ss w ith 0 % w rite

6.3 S im u lation of Critical tasks on ly

In th is case, a ll 16 requestors a re assigned to cr it ica l t asks. F igure 6.4 shows the

Memory configura t ion 1 where the first Requestor , named REQ0, is assigned as

requestor under ana lysis and the remaining requestors, REQ1 to REQ15 are used to

provide extensive in ter ference to the Requestor under Analys is, REQ0. The Requestor

under Analysis receives memory request inputs from CHStone benchmark family tha t

include mips, adpcm, aes, bf, gsm, dfadd, dfdiv, dfmul, dfsin , jpeg, mot ion and sha .

Other Requestors, REQ 1 to REQ 15 receives memory request input from LBM of

SPEC benchmark family to provide the t iming in terference to Requestor under

Analysis, REQ0. After the simulat ion is completed, the total execut ion t ime for

Requestor under Analysis, REQ0, was der ived from the simulat ion output .

70

This process was repea ted for each of the twelve mem ory t races of CHStone

benchmark family. Having achieved the execut ion t ime for each benchmark, the

graph is plot ted for execut ion t ime against each of the CHStone benchmark. This

process is repea ted for a ll four configurat ions that a re listed below where a ll the

requestors a re assigned as cr it ica l applica t ions. F igure 6.4 shows Configura t ion 1.

1. Configura t ion 1: Requestors = 16, Ranks = 4, Banks = 4

2. Configura t ion 2: Requestors = 16; Ranks = 2; Banks = 8

3. Configura t ion 3: Requestors = 8; Ranks = 4; Banks = 2

4. Configura t ion 4: Requestors = 8; Ranks = 2; Banks = 4

F igure 6.4 Simula t ion setup for Memory Configura t ions 1

71

F
ig

u
re

 6
.5

:

C
H

S
to

n
e
:

 1
6

 R
e
q

u
e
s
to

rs
 w

it
h

 R
a

n
k

s
 4

 a
n

d
 R

a
n

k
 2

72

F
ig

u
re

 6
.6

:

C

H
S

to
n

e
:

 8
 R

e
q

u
e
s
to

rs

 w
it

h

 R
a

n
k

 4
 a

n
d

 R
a

n
k

 2

73

The Figures 6.5 and 6.6 show the total execut ion t ime (y-axis) consumed by the

Request under Analysis (REQ0) for each of the memory t races (x-axis) in CHStone

benchmark family. F igure 6.5 is der ived when the 16 requestors a re in act ion making

memory request s to the memory cont roller for both 4 ranks and 2 ranks scenar ios.

Similar ly, F igure 6.6 is der ived when the 8 requestors a re in act ion making memory

request s to the memory cont roller for 4 ranks and 2 scenar ios . The y-axis is the

normalized execut ion t ime of the benchmarks aga inst the worst case ana lyt ica l bound

of our published paper [2]. The T-bars a re the worst case ana lyt ica l bounds while

rectangular boxes with shades a re simulat ion results. In t erms of ana lyt ica l bounds,

the result s of our memory controller with 4-ranks and 2 ranks per forms well

compared to the theoret ica l result s of our published paper [2]. It a lso performs well

compared to the AMC per formance. But , as you can see from Figure 6.5, and 6.6,

la tency from hardware simulat ion is h igher than the software simula t ion result s. This

is due to the fact tha t hardware design uses the three stages of pipelines with four

level of arbit rat ion . The difference between simula ted and ana lyt ica l t ime is a lways

quite small for AMC, less than 10%. However , our simulated t ime is significant ly

lower than the ana lyt ica l bounds. This is because the ana lysis assumes a precise

worst case pat tern of in ter fer ing request s by other requestors. The probability that

such pa t tern is produced a t run -t ime is very low, a lbeit non-zero.

6.4 S im u lation of Critical an d Non -Critical tasks

This sect ion ana lyses the scenar io where both cr it ica l and non -cr it ical requestors do

make memory request s a t the same t ime to our memory controller . Memory

configura t ion 1 is used for eva lua t ion with the following setu p. Rank 1 and Rank 2

a re assigned with 8 cr it ica l requestors whereas the Rank 3 and Rank 4 a re assigned

with non-cr it ica l requestors as shown in Figure 6.7. The LBM memory t race from

SPEC benchmark family is split into four sub-files as per address range, 64 bytes and

each sub files a re sent to each of the four banks in rank 3 and rank 4. For th is mixed

simulat ion , cr it ica l t asks will be made to be in -order and the non -cr it ica l t asks will be

made to be out of order . It is worth to m ent ion how in-order and out of order requests

a re made at the front end. When each request a r r ives a t the front end, it ca r r ies the

type of request (read or write), physica l address and a delta delay. This delta delay

indica tes the t ime difference between the last request s to cur rent request . This delta

delay between requests makes them to be in -order . On the other hand, to genera te the

out of order requests, the incoming request s with fixed delay will be used. This fixed

delay for each request will enable the out of order t ransfer for the non -cr it ica l t ask.

74

F igure 6.7 Simula t ion setup for Cr it ica l and Non -Cr it ical requestors

The bandwidth ca lcu la t ion is carr ied out when both cr it ica l (mot ion) and non-cr it ica l

(LBM) requestors are sending request s to the memory cont roller a t the same t ime. As

shown below, the bandwidth for cr it ica l and non -cr it ica l a re ca lcu la ted to achieve the

tota l bandwidth.

75

 Since we included the rank switch ing techniques in our design , our t otal

bandwidth may not reach close to the theoret ica l bandwidth va lue. Our design is able

to achieve 5.898/10.664 = 55.3 % bandwidth which is somewhat close to the expected

ra te of 66 % due to the addit ion of rank switch ing logic in our memory cont roller

design . For the fu ture work, the design can be opt im ized fur ther to get h igher

bandwidth .

76

Ch apte r 7

Con clu s ion

A rank-switch ing open-row memory cont roller design for mixed-cr it ica l system is

presented in th is thesis. Our design was built to handle dynamic command

scheduling while exist ing memory controller s solely rely on sta t ic command

scheduling. The exist ing memory cont roller s usua lly take advantage of the close row

policy to easily handle the complex t iming const ra ins. But , our object ive is to ut ilize

both open row policy and pr iva te bank mapping to offer the worst case la tency for the

cr it ica l requestors and minimum average bandwidth for non -cr it ica l requestors.

Fur ther , our rank-switch ing mechanism improves the u t iliza t ion of the da ta bus by

guaranteeing tha t consecut ive da ta t ransfers are spaced by a t most one rank to rank

t ransit ion delay. This delay is shor ter than the wr ite to read and read to wr ite delays

tha t apply to the da ta t ransfers of the same rank. As a result , our proposed rank

switch ing memory controller design significant ly improves the worst case la tency of

memory requests while guaranteeing the isolat ion among requestors.

Our eva luat ion is carr ied out for both cr it ica l and non -cr it ica l requestor s. The

eva lua t ion on cr it ica l requestor has demonstra t ed reduct ion in la tency for cr it ica l

requestors. The outcome of la tency from our hardware s imulat ion of cr it ica l

requestors is compared aga inst our theoret ical va lues and AMC and our hardware

design results per form well. For bandwidth , we eva lua ted the bandwidth for the

cr it ica l and non-cr it ical and ca lcu lated the tota l bandwidth which is compared aga inst

the theoret ica l bandwidth . The eva luat ion result s show tha t our rank -switch ing open -

row memory cont roller per forms well as the number of ranks increases. As a fu ture

work, the design can be opt imized to achieve h igher speed.

77

Re fe re n ce s

[1] Kr ishnapilla i, Yogen; Zheng Pei Wu; Pellizzoni, R, “A Rank -Switching, Open-Row

DRAM Controller for Time-Predictable Systems” in Real-Time Systems (ECRTS),

2014 26th Euromicro Con ference, Publicat ion Year : 2014, Page(s): 27 – 38

[2] Z. Wu, Yogen . Kr ishnapilla i, and R. Pellizzoni, “Worst Case Ana lysis of DRAM

Latency in Mult i-Requestor Systems,” in Real-Time Systems Symposium (RTSS),

2013.

[3] Yonghui Li, Benny Akesson and Kees Goossens, “Dynamic Command Scheduling

for Real-Time Memory Cont rollers” in Proc. Euromicro Conference on Real-Time

Systems (ECRTS), 2014

[4] Leonardo Ecco, Sebast ian Tobuschat , Selma Saidi, and Rolf Ernst , "A Mixed

Cr it ica l Memory Cont roller Using Bank Pr iva t iza t ion and Fixed Pr ior ity Scheduling"

in Proc. of the 20th IEEE In terna t ional Conferen ce on Real-Time Comput ing Systems

and Applica t ions (RTCSA), August 2014 => close

[5] D. T. Wang, “Modern DRAM Memory systems: Per formance Analysis and

Scheduling Algor ithm,” Ph.D. disser ta t ion , University of Maryland at College Park,

2005.

[6] S. Kim, S. Kim, and Y. Lee, “DRAM power -aware rank scheduling,” in ISLPED,

2012.

[7] M. Paolier i, E . Quinones, F . Cazor la , and M. Valero, “An Analyzable Memory

Cont roller for Hard Real-Time CMPs,” Embedded Systems Let ters, IEEE, vol. 1, no. 4,

pp. 86–90, 2009.

[8] B. Akesson, K. Goossens, and M. Ringhofer , “Predator : a predictable SDRAM

memory cont roller ,” in CODES+ISSS, 2007.

78

[9] S. Goossens, B. Akesson, and K. Goossens, “Conserva t ive Open -row Policy for

Mixed Time-Crit ica lity Memory Cont rollers,” in DATE, 2013.

[10] J . Reineke, I. Liu , H . D. Pa tel, S. Kim, and E. A. Lee, “PRET DRAM Cont roller :

Bank Pr iva t iza t ion for Predictability and Tempora l Isola t ion ,” in CODES+ISSS, 2011.

[11] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-t ime scheduling

using credit -cont rolled sta t ic-pr ior ity arbit rat ion ,” in RTCSA, 2008.

[12] R. Bourgade, C. Ballabr iga , H. Cass, C. Rochange, and P. Sainra t , “Accurate

analysis of memory la tencies for WCET est imat ion (regular paper),” in RTNS, 2008.

[13] I. Liu, J . Reineke, and E. A. Lee, “A PRET Architecture Support ing Concur rent

Programs with Composable Timing Proper t ies,” in ASILOMAR, 2010.

[14] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed (PRET)

Machine,” in DAC, 2011.

[15] D. Bui, E . A. Lee, I. Liu , H . D. Pa tel, and J . Reineke, “Tempora l isolat ion on

mult iprocessing architectures,” in DAC, 2011.

[16] J EDEC, “DDR3 SDRAM Standard J ESD79-3F,” J u ly 2012.

[17] Zheng. Wu, “Worst Case Analysis of DRAM Latency in Hard Real Time Systems,

MASc Thesis, University of Water loo, 2013.

[18] Memory Cont roller Design code designed for th is thesis is ava ilable at

h t tp://ece.uwater loo.ca /rpellizz/techreps/roccode.zip

79

Appendix A: Design Block Diagrams

 Back End Block Level View

80

Front End Block Level View

81

 Front and Back End Block Level View

82

Appendix B: Simulation Output – Example snapshot

83

