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Abstract

In this thesis, we present a rank-switching open-row DRAM controller for mixed
critical real time systems. This memory controller is optimized for multi-requestor
and multi-rank memory systems. The key to improved performance is an innovative
rank-switching mechanism which hides the latency of write to read transitions in
DRAM devices without requiring unpredictable request reordering. We further
employ open-row policy to take advantage of the data caching mechanism (row
buffering) in each device. We choose the bank privatization scheme where each
requestor is assigned its own private bank or set of banks. This private bank mapping
guarantees that each requestor has its own row buffers and cannot be interfered by
other requestors. The proposed memory controller design allows maximum of thirty
two requestors at a time targeting either two or four ranks. This controller provides
complete timing isolation between critical and non-critical applications and allows for
compositional timing analysis over number of requestors and memory ranks in the
system. We designed both the front end logic for the command generation and back
end logic for the DRAM timing constraint check and arbitration utilizing the rank
switching techniques. The complete design is implemented and synthesized using
Verilog RTL and finally, we evaluated performance using various benchmarks. Our
proposed memory controller offers significantly lower worst case latency bounds for
critical real-time applications and supports average throughput for non-critical real-
time applications compared to existing real time memory controllers in the literature.
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Chapter 1

Introduction

The memory clients either have real time or non-real time requirements. The real
time requests can be either critical or non-critical. The critical requests demand worst
case upper bound latency whereas non-critical requests demand average minimum
bandwidth. The critical real time systems such as avionic system, nuclear plant and
safety-critical electronic medical devices demand the worst case upper bound latency.
In this thesis, memory clients such as CPU or hardware accelerators or 10 peripherals
are referred to as requestors from now on. The proposed memory controller was
implemented by utilizing the rank-switching techniques, open-row policy, private
bank mapping and dynamic scheduling. The memory controller implemented in this
fashion is to show how the latency of a memory request can be significantly reduced
by applying rank switching techniques and thereby hiding the highly time consumed
read to write and write to read timing constraints. Further, designing the memory
controller in this fashion helps to prove the point that large number of requestors can
be handled through effective multi stage arbitration mechanism while satisfying their
complex memory timing parameters to serve all requestors to execute their memory
request demand in an orderly fashion. In Section 1.1, we present the problem
statement and Section 1.2 lists the contributions accomplished for this research.
Section 1.3 gives a preview of how this document is organized and finally Section 1.4
provides the content acknowledgement.

1.1 Problem Statement

The challenges arise when large number of memory clients is running in parallel with
its own critical and non-critical applications targeting one and only common shared
memory controller in a single channel memory environment. The common shared
memory controller should be able to handle critical and non-critical applications
where heavily inter dependant DRAM timing constraints become very complicated to
analyse. Further, the command scheduling of all the memory clients become another
challenge when the number of memory clients is growing.



Scheduling DRAM commands for many memory clients is not straight forward, since
there are a number of timing constraints that must be satisfied before a memory
client can be chosen and its command can be issued. It is a great challenge to design
such a memory controller that provides equal chances to all the memory clients
through fair arbitration and schedule their commands dynamically while satisfying
the inter-dependant timing constraint. The design strategy of this proposed memory
controller should also focus on scenarios where both non-critical real time requestors
and non-real-time requestors cannot interfere with the tight latency timing deadlines
of the critical real time requestors. In other words, the memory controller should be
able to handle different type of requestors according to their respective latency and
throughput requirements. All these demands should be satisfied by providing the
tight bounds on the worst case execution time for the critical requestors and average
throughput for the non-critical requestors along with guaranteed bandwidth.

1.2 Contribution

In this thesis, we present a rank-switching, open-row memory controller for mixed
critical real time systems. The major contributions are the following.

e The worst-case execution time was analysed for a single memory request from
requestor under analysis while remaining other requestors provide worst case
memory interference at the same time. This initial phase helped to look into
the parallelism nature to reduce the interference among multiple requestors.

e Our rank-switching open row memory controller architecture has both front
end and back end logic blocks. The front end design was implemented to
achieve address mapping, refresh controller and command generation for a
multi requestor environment where our memory controller can accept requests

I3}

from “n” number of requestors where 0 < n <= 32.

e The back end design was implemented with three levels of arbitration such as
requestor arbitration, rank arbitration and command arbitration. To achieve
the highest throughput, back end design was architected in a four stage
pipelined fashion.



e The verification platform such as test bench, tests suits and simulation were
developed and the design was verified.

e The final design was synthesized. The Static Timing Analysis (STA) was
carried out to fix set up and hold time violations.

e The evaluation was carried out on our memory controller through extensive
hardware simulations to analyse how the rank-switching techniques effectively
improve the performance. The evaluation results were compared with the
analytical results.

1.3 Organization

This document is organized as follows. Chapter 2 provides required background on
DRAM. Chapter 3 discusses proposed memory controller design that includes the
important design decisions and arbitration rules. Next, Chapter 4 is focused on the
theoretical analysis of worst case per-request latency. Chapter 5 is dedicated to the
implementation detail of our proposed memory controller. Next, Chapter 6 discusses
the verification platform used to verify the design and also evaluates the performance
of our design. Finally, Chapter 6 provides concluding remarks. At the end, the
schematic diagrams and one sample simulation output waveform of the memory
controller design are included in Appendix. The Verilog RTL code of the design can be
found at [18].

1.4 Acknowledgement

Section 4.0, Section 3.2, Section 2.5 and Section 2.1 were taken from published paper
[1]. I would like to thank Professor Rodolfo Pellizzoni for his great assistance in
formulating the theoretical analysis and arbitration rules. | would also like to thank
Zheng Pei Wu for his support for published paper [1] and providing the necessary
benchmark memory traces used in our simulations.



Chapter 2

Background

This background chapter is dedicated to three main areas. First, it describes the basic
operation of DRAM memory device. Second, complex timing behaviour of DRAM will
be illustrated in details. Finally related work performed by others is discussed and it
helps to differentiate between our proposed design and the existing approaches.

2.1 DRAM Basics

Modern memory devices are organized into ranks and each rank is divided into
multiple banks, which can be accessed in parallel provided that no collisions occur on
either buses. Each bank comprises a row-buffer and an array of storage cells
organized as rows and columns. This thesis considers devices with at least two ranks
for our analysis on rank switching techniques. A Memory Controller controls the
operations of DRAM device by issuing five important memory commands such as
Activate, Read, Write, Pre-charge and Refresh.

To access the data in a DRAM row, an Activate (ACT) command must be issued to
load the data into the row buffer before it can be read or written. Once the data is in
the row buffer, a read CAS or write CAS command can be issued to retrieve or store
the data. If a second request needs to access a different row within the same bank, the
row buffer must be written back to the data array with a Pre-charge (PRE) command
before the second row can be activated. In a rank, when each DRAM device
contributes with 8 bits, a rank with 8 devices has the data bus size of 64 bits. The
following Figure 2.1 illustrate row, columns, bank and rank configuration and it also
shows how the total 64 bit data from the memory controller reach the rank that has 8
DRAM devices.
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Figure 2.1 DRAM Architecture

Finally, a periodic Refresh (REF) command must be issued to all ranks and banks to
ensure data integrity. Note that each command takes one clock cycle on the command
bus to be serviced. Each CAS command accesses data in a burst of length BL and the
amount of data transferred is BL x WBUS, where WBUS is the width of the data bus.
Since DDR memory transfers data on rising and falling edge of clock, the amount of
time for one transfer is t,,, = BL/2 memory clock cycles. For example, with BL = 8 and
WBUS of 64 bits, it will take 4 cycles to transfer 64 bytes of data. A row that is cached
in the row buffer is considered open, otherwise the row is considered closed. For an
open request, only a read or write CAS command is generated since the desired row is
already cached in row buffer. For close request, if row buffer contains a row that is not
the desired row, then a PRE command is generated to close the current row. Then an
ACT is generated to load the new row and finally read/write is generated to access
data. The memory controller can employ one of two polices to manage the row buffers.
Under open row policy, the memory controller leaves the row buffer open for as long
as possible. In contrast, close row policy automatically pre-charges the row buffer
after every request. Finally, the controller must map the incoming request to the
correct rank, bank, row and column. With interleaved bank mapping, each request
can access all banks in parallel. However since all requestors share all banks, they
can cause mutual interference by closing each other’s rows. With private banks
mapping, each requestor is assigned its own bank or set of banks. Therefore, the state
of row buffers of one requestor cannot be influenced by other requestors.



2.2 DRAM Timing Constraints

Every memory device has timing requirements in order to perform read, write, and
refresh operations. Therefore, it is the memory controller which satisfies the timing
constraints needed by the memory devices. The operation and timing constraints of
memory devices are defined by the JEDEC standard. The Table 2.1 lists the
description of all timing parameters for DDR3-1333H device that we used in our
design. The table 2.10 also show which timing parameters are involved when the
requests target the same bank, same rank or different banks, same rank or different

ranks.
JDEC SPECIFICATIONS

oo ACT to READ/WRITE delay 9 Yes No No
t, READ to Data Start 9 Yes No No
tWL WRITE to Data Start 7 Yes No No
tBUS Data bus transfer 4 Yes Yes Yes
t., PRE to ACT Delay 9 Yes No No
tx End of WRITE to PRE Delay 10 Yes No No
tore Read to PRE Delay 5 Yes No No
toas ACT to PRE Delay 24 Yes No No
toc ACT-ACT (same bank) 33 Yes No No
tono ACT-ACT (different bank) 4 No Yes No
tw Four ACT Window 20 No Yes No
torw READ to WRITE Delay 7 Yes Yes No
tore WRITE to READ Delay 5 Yes Yes No
| Rank to Rank Switch Delay 2 No No Yes
LI Time required to refresh a row 160 ns Yes No No
t Refresh period 7.8 us Yes No No

REFI

Table 2.1 DRAM Timing Constraint
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2.2.1 Rank to Rank Timing Basics

Before analysing the timing analysis within the same rank and between different
ranks, it is important to analyse the origin of this timing requirement called Rank to
Rank (RTR) which was derived from Data Strobe (DQS). DDR SDRAM uses both a
clock and a source-synchronous data strobe (DQS) in order to achieve high data rates.
The DQS signal is a shared signal used by either bus masters such as memory
controller or DRAM memory device. During the read command, the DQS signal is
driven by the Memory device to notify the read data timing to the memory controller.
During the write command, the DQS signal is driven by the memory controller to
notify the write data timing from the memory controller to the Memory device. While
DQS is driven by the Memory controller, the same DQS is used by the memory device
to sample the incoming write data. Since the DQS is a shared signal by the bus
masters, the synchronization time is needed for one bus master to hand off the DQS
signal to another bus master. The DQS is the bus turnaround time, inserted to
account for skew on the bus and to prevent different bus masters from driving the bus
at the same time. To avoid such collisions, a second rank must wait at least t ¢ after a
first rank has finished before driving the bus. This synchronization time is called
Rank to Rank Time, RTR.

2.2.2 Requests targeting the same Rank

The Figure 2.2 shows the scenario where requests target different rows, banks within
the same rank. First, the REQ1 targets row 1, bank 1 and rank 1. Since it is a close
read request, the memory controller issues the ACT command torow 1, bank 1, rank
1. Then, it waits for RCD delay to issue the CAS Read command and it waits for Read
Latency (RL) time unit before expect to receive the first byte of read data from the
memory device. The length of the read data is equal to the burst length (BL).

Right after REQ1 arrived, a new write request REQ3 also arrived and targeting
different bank in the same rank (row 1, bank 2, rank 1). Since it is a close request, the
ACT command needs to be issued for REQ 3. As per the ACT to ACT timing constrain,
the row to row delay constrain is applied for requests targeting different banks in the
same rank. Therefore, the REQ3 ACT command cannot be issued right after the
REQ1 ACT command. Instead, the REQ3 ACT command should be delayed by RRD
delay. Now, the REQ 3 has issued ACT command after RRD time.



At this point, that memory controller cannot issue CAS write command after the
RCD delay is elapsed as expected. This scenario is explained in the following
paragraph.

When read and write requests targeting different banks or same bank within the
same rank, the memory controller must satisfy the Read to Write (RTW) timing
constrain. Therefore, the memory controller needs to wait for the Read to Write
(RTW) time delay from the REQ1 CAS read command before issue REQ 3 CAS write
command. After CAS Write command is issued, memory controller needs to wait for
Write Latency (WL) in order to send the write data to the memory device. After the
write data is written out, memory controller needs to wait for Write Recovery (WR)
time before issues the PRE, if row need to be closed. Closing the row depends on open
or close row policy.

While REQ1 is in action receiving read data, a new read request, REQ 2, just
arrived targeting the same bank and the same rank as REQ 1, but different row (row
2, bank 1, rank 1). Since the REQ 2 target the different row in the same bank, the
previous row which was being accessed by the REQ1 has to be closed before opening a
new row to REQ2. To issue PRE command in order to close the row, the memory
controller has to wait for the maximum of either Read to Pre-charge (RTP) or RAS
timing constraint. After issuing the PRE command for REQ2, the controller needs to
issue the ACT command after waiting for the maximum of either RP or RC timing
constraint. After issuing the ACT command for REQ2, the memory controller has to
wait for RCD delay time in order to issue the CAS read command as per the DRAM
protocol. But, REQ 2 CAS read command can only be issued after the timing constrain
called Write to Read (WTR) is satisfied as shown in Figure 2.2. It is important to point
out the difference between RTW and WTR constraints. The RTW constraint is
between the read command to the write command of the same or different requestors.
But, the WTR constraint is between the completion of write burst data to the read
command of the same or different requestors.
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Figure 2.2: Requests targeting different banks in the same rank

2.2.3 Requests targeting different Ranks

The Figure 2.3 shows the scenario where requests target different ranks. The first
read request (REQ1) arrives and since it is a close request targeting rank 1, the
memory controller issues the ACT command. At the same time, another close read
request, REQ 2, also arrives and targeting rank 2. Since it is a close request, the
memory controller issues the REQ 2 ACT command. This ACT command can be
issued right after the REQ1 ACT command without waiting for the Row to Row delay
(RRD). It is due to the fact that both requests are targeting different ranks and there
is no constraint between ACT commands of requestors that target different ranks. As
it can be seen from Figure 2.3, the REQ1 CAS read command and the corresponding
Read Data follows as per regular timing parameters that we saw before. But, for the
REQ?2, after RCD delay is elapsed from its ACT command, REQ2 CAS write command
cannot be issued, instead CAS write command need to be scheduled to satisfy the new
timing constraint called Rank to Rank (RTR). The RTR delay is needed to satisfy the
constraint between end of read data of REQL from rank 1 and beginning of write data
of REQ2 from rank 2. In other words, the memory controller can only begin sending
the REQ2 write data after RTR timing is elapsed from the end of the REQ1 read data.

While REQ1 is receiving its read data, there is a new request, REQ 3 that arrives and
targets the same rank, bank and rows as of REQL.
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The REQ 3 is considered as open request since the row is already opened by the
REQ1. Therefore, there is no need to issue the ACT command; instead, the memory
controller can issue the CAS read command to access the already opened row. But,
this CAS read command cannot be issued right away, instead it need to be scheduled
to satisfy the rank to rank (RTR). Important observation is that there is no need for
write toread (WTR) or read to write (RTW) constraint in this scenario where requests
target different ranks. The WTR and RTW timing constraint are only applicable for

the requestors targeting either same bank or different banks in the same rank as we
saw in the previous Section 2.2.1.
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Figure 2.3: Requests targeting different ranks

2.3 DRAM Row Buffer Management Policy

Section 2.1 explains the operation of row buffer in DRAM. The policy that manages
the operation of row buffer is called row buffer management policy. There are two
types of policies existing and they are open row and close row. The decision on
choosing one of them depends on the memory controller designer’s choice in terms of
performance and power consumption. For the open row policy, the memory controller
allows the row buffer to be always open until a request to read a different row. If
another memory request arrives to the same row address with different column
address, memory access is possible with the minimum latency of CAS Latency (CL)

10



without re-opening the row due to the open row policy. Therefore, this policy saves
un-necessary RAS to CAS latency delay by re-opening the row again. When the
controller send the memory request to different row in the same bank, the open row
needs to be closed by PRE command before opening the new row. On other hand, the
close row policy automatically closes the row buffer after a request and consequently,
every new request to the same row has to issue ACT command to open the row even if
it accesses the same row as before.

2.4 DRAM Mapping

The memory controller receives the memory request in the form of just physical
address and the request type. It is the task of memory controller to map the incoming
raw physical address into correct rank, bank, row and column addresses to access the
memory devices. There are two types of mapping methodologies.

2.4.1 Continuous Memory Mapping

The continuous memory mapping is where the incoming physical memory address is
mapped within the single row of a particular bank. The sequential access continues
through different columns address in the same row until the end of the row is
reached. Only when the current row is finished accessed, the mapping switches to the
same row number of next available bank as shown in Figure 2.4. If the next bank is
not available, then, the logical address is mapped to the next row in the current bank.
Private bank mapping is a sub-set of continuous mapping scheme. When a private
bank scheme is used in a multi requestor system, each requestor is assigned to either
one bank or set of disjoined banks within the same rank. Continuous memory
mapping is very efficient method with no bank conflicts when the memory requests
are continuous sequential addresses. But, this method becomes inefficient if the
memory requests reach to different rows in the same bank.

Row 0 0|1]|2]3 4 |5 |6 |7 8 (9 [10 |11 12 |13 |14 |15
Bank 0 Bank 1 Bank 2 Bank 3

Figure 2.4: Continuous Memory Mapping
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2.4.2 Interleaved Memory Mapping

The incoming physical address is mapped to column address locations of a row from
all banks available in rank. Once all banks have been accessed, then, the incoming
physical address is mapped to the next column address location of the same row from
all banks. When the row becomes full, the incoming logical address is mapped the
next row from all available banks as shown in Figure 2.5. An interleaved memory
with n banks is said to be n-way interleaved. Ifthere are n banks, memory location i

would reside in bank number i mod n. The interleaved method has an advantage of
make use of multiple banks and access all banks simultaneously with addresses are
spread over banks and hence this mapping provides the efficient bank parallelism and
results in higher memory throughput. But, the drawback is that it involves complex
design and it is only efficient when you require burst access to all the banks.

Row 0 0|48 ]|12 1 |5 |9 |13 2 |6 |10 |14 3 |17 |11 |15
Row 1 16 | 20 | 24 | 28 17 |21 |25 | 29 18 [ 22 |26 |30 19 (23 (27 |31
Bank 0 Bank 1 Bank 2 Bank 3

Figure 2.5: Interleaved Memory Mapping

2.5 Related Works

The related works on memory controller design carried out by researchers can be
classified under different implementation categories such as close row, open row,
critical, mixed critical, rank switching and arbitration policy. Let us analyse the
related work under each of these categories.

First, we will be looking into the related work focusing on real time memory
controllers with close row policy. The work done by Analyzable Memory Controller
(AMC) [7] and Predator [8] employ close row policy designed for critical systems. The
interleaved banks are chosen as the bank mapping strategy by [7] and [8]. In
interleaved bank mapping, there is no guarantee that rows opened by one requestor
will not be closed by another requestor.
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Therefore, both [7] and [8] offers predictable timings, but the latency can be
significantly higher than controllers using open row policy. The work done by Yonghui
et al. [3] presents the architecture of a dynamically scheduled real time memory
controller. The paper analyses to minimize the worst case execution through close
page policy and bank parallelism with interleaved bank mapping. Further, this paper
[3] specifically addresses the issue of having either fixed or variable transaction size
for the real time memory controllers. Further, the papers [4], [10] and [11] also utilize
the close page policy in their approach for the memory controller design.

From the open page policy category, Goossens et al. [9] have proposed a new type of
open page policy called conservative open page policy. The approach in [9] states the
following. Do not pre-charge if next request is known to target the open row. Do the
Pre-charge if next address is not known in time, or in case of a miss. It also makes
sure that not to reduce the guarantees given by the close-page policy. In other words,
the approach in [9] wants to leave a row open for a fixed time window to take
advantage of row hits. In the worst case, this approach is the same as close row policy
if no assumptions can be made about the exact time at which requests arrive at the
memory controller. Further, Author [5] has done extensive analysis on rank switching
based on open row policy.

Next, we would discuss the related work focussing on experimenting different
arbitration policies. The authors [8] employ a credit controlled static-priority (CCSP)
is used to share between multiple requestors. Authors [8] uses a hybrid approach
between the static DRAM command scheduling, better for timing guaranties, and the
dynamic command scheduling, better for average-case memory bandwidth utilization.

Goossens et al. [9] use the work-conserving Time-division multiplexing (TDM) as the
arbitration. The TDM arbitration makes the unclaimed slots from one application to
be by another application if it has a request available. On the other hand, the
Analyzable Memory Controller (AMC) [7] provides upper bound latency for memory
requests in a multi-core system by utilizing a round robin arbiter. Reineke et al. [10]
propose a memory controller that uses TDMA scheduling. On the other hand, Akesson
et al. [11] propose an arbiter called credit-controlled static-priority (CCSP) consisting
of a rate regulator and a static-priority scheduler.

Now, let us focus on bank mapping methodology. Most of the research papers in
this related work focus on interleaved as the bank mapping methods in their design.
Only very few research papers pay attention to the private banking mapping.
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Leonardo et al. [4] discuss the private banking through a terminology called virtual
devices (VD) where each VD is a group of two banks from the same rank. Further,
this paper proposes to share each VD between one critical and a pre-determined
number of non-critical applications. The private banking scheme helps to define the
clear boundary between critical and noncritical applications for their mixed critical
memory controller. Further, Reineke et al. [10] propose a memory controller that uses
bank privatization for predictability and temporal isolation.

When it comes to the rank switching techniques, the research paper [4], [5] and [6]
use the rank switching methods. The Wang et al. [5] proposed a rank hopping
algorithm to maximize DRAM bandwidth by scheduling a read group (or write group)

to the same rank to leverage bank parallelism until t_,, constraint is reached. At that
point, another group of CAS commands are scheduled for another rank. This way,
they amortize the rank to rank switching time across a group of CAS commands.
However, this scheduling policy inherently re-orders requests and it is not suitable for
critical real time systems that require guaranteed latency bounds. The work in [6]
also uses rank scheduling to reduce DRAM power usage by minimizing the number of
state transitions from low power to active state. In papers [5] and [6], the rank
scheduling and optimizations have only been applied to non-real time systems. The
paper [4] introduces the rank switching analysis for mixed critical systems. But, the
rank switching analysis is limited to only two ranks.

In contrast, the approach of this thesis takes advantage of rank switching
techniques that hides the latency of write to read and read to write transitions and
thereby enable the design to achieve the tight bounds on worst case execution time
(WCET) to critical core requestors and the lowest possible average execution for non-
critical core requestors. While most of the memory controller by other researchers
focuses on close page policy, we attempted to implement memory controller based on
open row policy and also take advantage of the private bank scheme where the
interference from other requestors is eliminated. As a possible downside, using
private banks reduces the total memory available to each requestor compared to
interleaving methods. But, increasing the DRAM size is not an issue compared to
designing a memory controller that can work in a multi requestor real time
environment. Further, our memory controller has three stages of arbitration where
each stage has its own arbitration mechanism of FCFS, RR and priority.
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Critical or Mixed

Close Row or o . L . .
Arbitration Policy Critical or Non Rank Scheduling Bank Mapping
Open Row .
Critical
AMC [7] Close Row RR Arbitration Critical NA Interleaved Bank
Credit-
Controlled N
Predator [8] Close Row . o Critical NA Interleaved Bank
Static Priority
(CCsP)
. TDM . .
Reineke [10] Close Row . . Critical NA Private Bank
Arbitration
Wang [5] Open Row RR Arbitration Non Critical Rank Hopping Interleaved Bank
Yonghui Li [3] Close Row FCFS Arbitration Mixed Critical NA Interleaved Bank
Conservative o ) .
Goossens [9] TDM Arbitration Mixed Critical NA Interleaved Bank
Open Row
Leonardo [4] Close Row Fixed Priority Mixed Critical Rank Switching Private Bank
Credit-
Controlled . .
Akesson [11] Close Row Mixed Critical NA Interleaved Bank

Static Priority
(CCsP)

Table 2.2: Summary of the related work
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Chapter 3

Memory Controller Design

This chapter discusses details of important design decisions and the arbitration rules
that are formulated as a strong foundation to our memory controller implementation.
Based on the design decisions and arbitration rules from this chapter, the
implementation of the memory controller design will be discussed in the next chapter.

3.1 Design Decisions

The design decisions such as type of row management policy, address mapping
scheme and rank-switching mechanism will be discussed next.

3.1.1 Row Management Policy

The Row Management Policies can be either open row or close row. When the same
requestors target the same row in the memory, the CAS command can be issued with
the minimum CAS Latency (CL) without re-opening the row due to the open row
policy. Therefore, the open row policy avoids the un-necessary RAS to CAS latency
delay by re-opening the row again and therefore, the open row policy reduces latency
time. To take advantage of the latency reduction, the open row policy is chosen for our
memory controller design, because we know the number of open and close rows. On
the other hand, the downside of the open row policy is that we cannot take advantage
of automatic pre-charge operation. Further, the open row policy requires additional
commands to be active in the bus which eventually create the bus contention.

3.1.2 Address Mapping Scheme

Address mapping scheme can be either continuous or interleaved. The private bank
mapping is a sub-set of continuous address mapping. In the private bank mapping,
each requestor is assigned with one bank or set of banks which are disjoined. The
incoming logical address is mapped to the first row and when the first row become
full, the continuous access is mapped to the next row and so on within the same bank.
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It is important to analyse why the interleaved banking method is not suitable for our
proposed design. The interleaved banking allows all requestors to access all the
banks where banks could be shared by requestors. But, in real time systems, we do
not want each requestor to share the banks between them. It is because; there is a
high probability where one requestor can close a row in a bank which was already
opened by a second requestor. This kind of interference creates unwanted latency
delay for the second requestor to re-open the row which was closed accidently by the
first requestor. Based on these reasons, the interleaved banking is not suitable for our
memory controller design. Therefore, our rank switching memory controller design
has chosen the private bank mapping where each requestor is allocated to one bank or
set of banks. But, there is a downside of private bank. Since each requestor is
allocated to just one private bank, each requestor has limited memory access. But,
increasing the memory size is not an issue and we can increase the amount of memory
that each private bank is assigned as a solution.

3.1.3 Rank Switching Mechanism

Introducing the Rank switching technique provide strong isolation and composable
properties to our proposed memory controller design. The composability provides the
way to integrate components at the same time preserving their temporal properties.
In an ideal system, we like to achieve a data bus utilization of 100 %. In practice, due
to the many timing constraints detailed in Section 2.2, data bus utilization is typically
much lower. This is true even if all requests are open, since t.,, and t . significantly
increase the timing between successive read and write commands or vice-versa. Let us
look at an example that illustrates the rank switching mechanism.

Figure 3.1 (A) depicts the worst case situation for four successive open requests of
different requestors in a single-rank system, which is an alternation of store and load
(write and read CAS commands). Note that it takes 52 clock cycles to complete all four
requests, while the data bus is only used for 16 cycles, resulting in a utilization of only
31%. Our key idea is that we can improve the worst-case latency by noticing that t_.
and t,.. donot apply between requests that target banks in different ranks.

w

Figure 3.1 (B) shows the schedule derived by assigning the four requestors to two
different ranks and alternating servicing requests to the two ranks. Since the only
constraint between requests to different ranks is the shorter t the schedule now
takes 35 cycles to complete, a 33% improvement.

RTR!
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Similarly, Figure 3.1 (C) shows the effect of assigning each requestor to a different
rank. Note that in this case, after data is started at cycle 7, we use the data bus for 4
cycles every 6, resulting in a utilization of 2/3. Finally, notice that alternating ranks
also helps reducing the latency of ACT commands of close requests, since the t_ and

t_,, constraints do not apply between different ranks.
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Figure 3.1 (A): Arbitration for 1 Rank
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Figure 3.1 (C): Arbitration for 4 Ranks

Our illustrative example shows that a rank-switching mechanism in the back end can

both significantly decrease the latency of memory requests and

increase bus

utilization without requiring us to reorder requests in the front end, which is
unsuitable for critical real-time requestors needing guaranteed latency bounds.
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The challenge is how to implement such mechanism in a predictable way. In
particular, a simple static TDMA schedule is not suitable since requestors can
dynamically submit different types of requests at run-time. Instead, a set of dynamic
arbitration rules is proposed in Section 3.1. Having seen the advantages of using rank
switching technique from the examples; now the challenge is how to implement such
rank switching mechanism in the memory controller.

3.1.4 Selection of Arbiter Type

Arbiter scheduling can be chosen from one of the following policies such as Priority,
Round Robin, First Come First Served (FCFS) and TDMA. This section describes the
logical reasons for the selection of each arbiter type for our proposed design. Figure
3.2 shows an overview of all the arbiters and its scheduling type that were used in our
design. We will discuss each arbiter type that was used under requestor arbitration,
rank arbitration and command arbitration categories.

Requestor Arbitration

REQO

4

......

Rank Arbitration

Figure 3.2: Choice of Arbiter Types
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The Requestor Arbitration category consists of two arbiters such as CAS Arbiter
and PRE ACT Arbiter. The task of these arbiters is to choose a requestor from a set of
requestors of the same type. Out of different arbiter scheduling mechanisms, we need
to analyse why certain type of arbiter scheduling is suitable and why others are not
suitable for our design. If priority style was chosen, it assigns one requestor as the
highest priority over others. The lowest priority requestor would be starving while the
high priority requestor owns the bus master for a long time. Since all requestors are of
the same type, we do not want one requestor to starve for the bus ownership. If the
Round Robin type arbiter was used, it rotates the priority level among all the
requestors where each requestor has equal time of being the highest priority. On the
other hand, a simple static TDMA schedule is not suitable since requestors can
dynamically submit different types of requests at run-time. Our requirement is that
while achieving the equal fairness, we do not want to waste the clock cycles by the
arbiter visiting the requestor that has no requests. Therefore, CAS arbiter was
designed as a First Come First Served (FCFS) style. On other hand, PRE ACT Arbiter
has to do additional task of giving PRE command higher priority compared to the
ACT when the ACT is waiting to satisfy the timing. The design decision is made to
grant PRE command higher priority than ACT command and this make the PRE ACT
arbiter to be a modified First Come First Served arbitration style (M-FCFS).

The Rank Arbitration category consists of Level 2 PRE ACT arbiter and level 2
CAS arbiter. In order to maintain the fairness and equal priority in choosing the
ranks, level 2 PRE ACT arbiter is designed as Round Robin style. On the other hand,
the level 2 CAS Arbiter has to choose its level 3 queues based on the burst to burst
(BTB) values of the requests arriving from level 3. Further, this level 2 CAS Arbiter
has to differentiate clients that arrive early versus other clients who wait for a write
toread (WTR) or read to write (RTW) timing constraints to be elapsed. By considering
all these requirements, the level 2 CAS Arbiter was designed to be Modified First
Come First Served (M-FCFS).

In Command Arbitration category, there exists a command arbiter who handles
all commands such as PRE, ACT and CAS. In order to give CAS command to be
higher priority than other commands, the priority based arbiter is used. All three
arbiters in this design were not intended to perform reordering of the incoming
requests and thereby, it really help to avoid the unnecessary complexity in timing
analysis. Now that we have seen the arbitration types, let us analyse the detail of the
arbitration rules.
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3.2 Arbitration Rules

The back end memory controller logic is built into three levels of arbiters as shown in
Figure 3.3 below. Each level has different type of arbiters and it is important to
analyse them through arbitration rules. We consider a device with R > 2 ranks. The
memory controller can support both critical and non-critical real-time requestors. Our
design goal is to minimize the latency bound of critical requests, while simultaneously
attempting to maintain high data bus utilization and thus provided memory
bandwidth to all requestors. To this end, each rank is assigned either to critical or to
non-critical requestors and each requestor uses only one rank; let Mr 1 < r < R, be
the number of requestors that use rank r. The banks in critical rank r are statically
partitioned among the Mr requestors in rank r, according to the private bank
principle.

Rank 1 : Hard Requester Arbitration Rank Arbitration

i ReEQo E I PREACT e \
REQ1 —] ! Arbiter
> :
REG2 ] Command Arbitration
—| CAS PRE,ACT N
REQ3 ——)- Arbiter Arbiter
CLK ]
........................... o
. — AcT :
° D g CAS
e Arbiter
CAS
- -
2. CAS
REQ3 ——). Arbiter ——
. CLK .
Level 3 Level 2 Level 1

Figure 3.3: Three Levels of Arbitration

Figure 3.3 shows an example block diagram of the three levels of arbitration logic in
the back end, where Rank 1 is a critical rank, Rank R is a non-critical rank. M, = 4
indicates that rank 1 has four requestors. Arbitration is performed in three levels.
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For critical ranks, commands generated by the front end are en-queued in the per-
requestor command queues. Level 3 (L3), or Requestor Arbitration, arbitrates among
requestors within the same rank. The command at the front of the selected requestor
gueue is propagated to Level 2 (L2), or Rank Arbitration, which arbitrates among the
R ranks. Note that Level 3 and Level 2 arbitrations are split between a PRE ACT
Arbiter that handles PRE and ACT commands only, which are needed only for close
requests, and a CAS Arbiter that handles CAS commands, which are needed by all
requests. Finally, Level 1 (L1), or Command Arbitration, simply assigns higher
priority to CAS than PRE or ACT command; i.e., if during the current clock cycle the
L2 CAS Arbiter propagates a CAS command to Level 1, the Command Arbiter will
issue it to the device, otherwise, if the L2 PRE ACT Arbiter propagates a PRE or ACT
the L1 Arbiter will issue it. This is done to ensure that the critical timings of CAS
commands in the rank-switching mechanism are not disrupted by command bus
contention with PRE/ACT commands. The following rules capture the behavior of the
Level 2 arbiters and of the Level 3 arbiters for a critical rank r.

(LA) A command at the head of each per-requestor queue is said to be active if all
timing constraints that are caused by previous commands of the same requestor are
satisfied;

(1B) A CAS command does not become active until the data of the previous CAS
command of the same requestor has been transmitted. In other words, an active
command can be issued immediately if there are no other requestors in the system.

(2A) The L3 PRE ACT Arbiter uses a modified First-Come-First-Serve (FCFS)

arbitration; The requestor is en-queued at the back of a modified FIFO Queue as soon
as it has an active PRE or ACT command, and it is removed from the queue once the
command is finally issued by L1.

(2B) Every clock cycle, the arbiter scans the modified FIFO Queue and propagates to
Level 2 the first command that can be issued (without violating timing constraints), if
any.

(2C) An active PRE command can always be issued; an active ACT command could
instead by blocked by t.. or t_,, constraints caused by other requestors in the same
rank.

RRD
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(3) The L3 CAS Arbiter uses standard FCFS arbitration, with a requestor being en-
gueued once it has an active CAS command and removed once the CAS command is
issued by L1. The L3 CAS Arbiter propagates to L2 the CAS command of the first
requestor in FCFS order (if any) together with the earliest time t at which the data
transmission associated with the CAS command could be started. The t_ is calculated
based on previous CAS commands already issued either from the same or a different
rank. Note that contrary to L3 PRE ACT Arbitration, it is allowed to propagate a CAS
command that cannot yet be issued; this is required to properly alternate among
ranks.

(4) The L2 PRE ACT Arbiter can use either FCFS or Round-Robin (RR) arbitration;
we adopt RR in our prototype since it is easier to implement in hardware than FCFS.

(5) The L2 CAS Arbiter uses a different, modified FCFS arbitration; a rank is en-
queued at the back of a FIFO queue once a new CAS command is propagated from L3,
and it is removed from the FIFO once the command is issued by L1. Let t_, be the
time at which the data transmission of the last issued CAS command will end, or has
ended. Then at every clock cycle, if for any queued rank it holds t,, < t_ +t_., the
first such rank in FCFS order is selected. Otherwise, the first rank in FCFS order
with the smallest value of t. is selected. In either case, the corresponding CAS
command is propagated to L1 only if it can be issued in the current clock cycle

(without violating timing constraints).

(6) The L1 arbiter receives all the commands such as PRE, ACT, REF and CAS. This
arbiter is designed as a priority arbiter where CAS command is given higher priority
than PRE, ACT, REF commands. The acknowledgement (ACK) is generated at this
level when the commands are sent out from this arbiter. This ACK signal is used by
level 3 to schedule the DRAM timing of the commands in an orderly manner.

For the Critical requestors, each requestor puts its requests into the L3 CMD queue
only after its previous request has been successfully completed with either read or
writes data. Otherwise, the request within the same requestor is blocked until the
read or write data of the previous request of the same requestor is completed. Note
that since each requestor has at most one active command and each L3 PRE ACT or
CAS Arbiter only propagates one command at a time, it follows that only one instance
of each requestor or rank can be present in a given FCFS queue; after a command of
that requestor/rank is issued by L1, the requestor or rank can be re-en-queued at the

back of the queue.
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Hence, while the system is backlogged the scheme approximates a fair arbitration
where each rank is allowed to transmit once every R times, and thus each requestor
within that rank transmits once every R - Mr Times.

Exceptions are made in Rules 2 and 5. The modified FCFS arbitration of Rule 2
ensures that PRE commands do not have to suffer from t_. or t_,, constraints; if the
first requestor has an active ACT command that cannot be issued right away, we still
allow the rank to propagate a PRE command of a later requestor, since issuing the
PRE command cannot delay the ACT command of the first requestor in any case. The
modified FCFS arbitration of Rule 5 implements the rank-switching mechanism for
CAS commands as long as the ‘“burst to burst gap” between successive data
transmission is at most t..., ranks are scheduled in FCFS order. However, if
scheduling the first rank would result in a longer gap (in particular, because of a t .
constraint), then we reorder ranks to avoid stalling the data bus.

We make no assumption on arbitration for non-critical ranks, outside of the fact
that the Level 3 arbiter will propagate at most one issuable PRE/ACT command and
one CAS command with associated time t to Level 2 every clock cycle; rank-level
arbitration ensures that the worst-case latency for a request of a critical requestor
depends only on the total number of ranks R and the number of requestors Mr within
the same rank. L3 arbitration for non-critical requestors can be optimized for average
case latency and throughput. In particular, we can use techniques employed by high-
performance commercial controllers such as per-bank queues rather than private
banks, and request reordering to favor load over store and open over close requests.

Finally, due to space limitations we only briefly discuss the issue of data sharing;
more details on our approach are discussed in [15]. If critical cores are sharing data,
we allocate a separate shared bank partition and use an additional “virtual” critical
requestor to manage accesses to the shared partition; contention between data-
sharing cores is then handled in the front end. For I/O communication, DMA is
treated as a separate requestor. A communicating core can then access the DMA bank
partition while the DMA is not transmitting.

This chapter has shown the backbone structure for our proposed memory
controller design. The next section, we will look into the theoretical analysis done to
analyse the design structure and the timing constraint from the theoretical point of
view.
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Chapter 4

Theoretical Analysis

Based on the arbitration rules detailed in Section 3.2, we will now show how to derive
a safe upper bound on the latency of each memory request of a critical requestor
assigned to rank r. In particular, we consider the back end worst case latency t*
measured from the time when a request arrives at the front of the per-requestor
command queue until its data is transmitted. As shown in [2], such latency can then
be used to derive the overall delay suffered by a task due to main memory contention;
for example, we can use the static analysis method described in [10] to obtain the
worst-case numbers of open/close and load/store requests, which let us derive a worst-
case request pattern for the task. Since the same strategy in [2] can be used to
account for refresh operations, we do not cover them here. We adopt the DRAM
latency analysis framework introduced in [2].

ACND -
: Request Arrival : : CMD Active : CMD Issued
AChS
CF
) tAC - tCD -
) tReq -

Figure 4.1: Worst Case Latency Decomposition

25



4.1 Worst Case Per-Request Latency

Req

The worst case latency t™ is decomposed into two parts, t,. and t_, as shown in Figure
4.1. Time t,. (Arrival-to-CAS) is the worst case interval between the arrival of a
request at the front of the per-requestor command queue and when the corresponding
CAS command becomes active. The t_ (CAS-to-Data) is the worst case interval
between the CAS becoming active and the end of data transfer. In all figures in this
section, we use a solid arrow to indicate when a request arrives at the front of the per-
requestor command queue; we use a dashed arrow to indicate the time instant at
which a command becomes active; solid square boxes denote when commands are
issued on command bus; dashed square boxes denote commands that are ready to be
issued but cannot be issued right away due to contention with other requestors.

Request 1\ PRE IACT 1\ CAS
Arrival
I P I A I
I I I
< >€ >< >
tpp tp trp
& L.l N 2 ~
Ty 7 £ N .
tpa tia treD
< >
tac

Figure 4.2: Arrival-to-CAS Decomposition for Close Request

For a close request, t,. includes the latency required to process a PRE and ACT
command; we thus further decompose t,_ into smaller parts as shown in Figure 4.2.
Each part is either a JEDEC timing constraint shown in Table | or a parameter that
we compute, as shown in Table 4.1. Both t, and t,, determine the time at which a
PRE and ACT command becomes active, respectively. t, and t,, represent the worst
case delay between a command becoming active and when that command is issued,
and thus capture interference caused by other requestors. Timest  , t,, as well ast,.
for an open request are computed based only on timing constraints caused by the
previous request of the requestor under analysis, and are independent of the specific
arbitration used by the memory controller; hence, we can reuse the expressions
provided in [2]. Instead, in the following Sections, we will detail how to computet,, t,,
and t_,.
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Timing Parameter Definitions
; End of previous DATA to PRE
oF Active
t, Interference Delay for PRE
¢ End of previous DATA to ACT
oA Active
t Interference Delay for ACT

Table 4.1: Timing Parameter Definition

Once all timing components have been computed, the value of t,_ for a close request is
obtained as:

tAC = max (tDA’ tDF’ + tIP + tRP ) + 1:IA + tRCD (1)
and for both open and close requests we simply compute the overall latency as
tReq = AC + tCD'

4.1.1 Interference Delay for PRE and ACT Commands

We begin by computing the worst-case interference delay for PRE commands. We
limit ourselves to devices for which the relation t_., > t_, -t holds, which includes
all devices except the one with the largest timing constraints, i.e., the least
performance ones in each speed category, which are rarely used. The relation ensures
that no more than one CAS command can be issued every t, . cycles, despite the fact
that t_ is generally larger than t,, ; this helps bounding the maximum delay suffered
by PRE and ACT commands due to Level 1 arbitration. It has the benefit of
simplifying the proofs. We begin by determining the maximum delay suffered by PRE
and ACT commands due to L1 arbitration. Note that due to space limitations, some

proofs are provided in appendix.
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Theorem 1: The worst case value for t, is:

t,= e, (R-M)-1 (2

1P

where a,, (K) = K +

(tBUS _1)

Proof: Note that there are no interfering constraints between the PRE under analysis
and commands by other requestors, since they must target different banks. Since
furthermore arbitration Rule 2 ensures that commands blocked by timing constraints
are not considered for arbitration, it follows that the PRE under analysis can only be
delayed due to contention on the command bus, i.e., the command bus must be
continuously in use between the en-queuing of the requestor under analysis and when
its PRE command is issued. In the worst case, when the requestor under analysis is
en-queued into the L3 PA Arbiter FCFS queue, there can be a maximum of Mr - 1
preceding requestors in the queue. Note that requestors en-queued after the requestor
under analysis cannot delay it; and after a PRE/ACT command is issued, the
corresponding requestor can only be re-en-queued at the end of the queue. Hence,
each other requestor in rank r can only issue one PRE/ACT command before the
requestor under analysis, leading to a total of Mr PRE/ACT commands from rank r,
including the PRE under analysis. Furthermore, since the L2 PA Arbiter uses either
FCFS or round robin arbitration, in the worst case R - 1 PRE/ACT commands of other
ranks must be issued before any command of rank r. Hence, the worst case number of

issued PRE/ACT commands is (R - 1) Mr + Mr = (R * Mr), and the L2 PA Arbiter is

backlogged while issuing them. Based on Lemma 1, the worst case time required to
issue all R*Mr commands is then a,,(R . Mr). To conclude the proof, it suffices to

notice that t, does not include the extra clock cycle required to transmit the PRE

under analysis; hence, t, = a,, (R - Mr) - 1. Note that t,, depends on the number of
requestors Mr in rank ¢’ but it is independent from the number of requestors assigned
to other ranks; this is because L2 arbitration isolates rank r from requestors in other

ranks. We will show that the same is true for the derived t,, and t.,, hence making

CD?
our analysis compositional.
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We next analyze t,,. We prove that the ACT command under analysis suffers
maximal delay in the scenario shown in Figure 4.3, where R = 2 and the rank under
analysis is r = 1 with M_= 5. The worst case is produced when all M, - 1 other
requestors of rank r en-queue an ACT command at the same time t_ as the core under
analysis, which is placed last in the L3 PA Arbiter FCFS order; each other requestor
triggers a t., timing constraint. Furthermore, four ACT commands have been
completed as late as possible before t ; this forces the first ACT after t, to wait for t_,, -
4-t... before being propagated to Level 2. Once an ACT has been propagated to L2, in
the worst case it will have to wait for R - 1 PRE/ACT commands of other ranks and for
interfering CAS commands, similarly to the case of PRE commands in Theorem 1; we
call this delay A ,. Finally, we need to consider the effect of t_,, on successive ACT
commands after t .

| 4trrp 3 A1

| traw | ' | |

| - tran !
| |

i A : iCAS Rz: A i :

| Lo ' Lo

IftRRD A i :AIA "RRD [ Jral A | i

| | |
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t | |

: RRD A : : A1+ terp CAS g2 A i :

| |

| Loy [

| Loy [

: tReD - A : : A1A Treo cas Rz A : :

| Lo [
| I |

| {RRD | A fRRD b

I I dles R A
et o~
| : 'A]A :
[} '
t, t tia

Figure 4.3: Interference Delay for ACT command, R =2, F=1and Mr =5

As shown in Figure 4.3, since the t_,, applies from the time when an ACT is issued to
the time when the fourth following ACT can be propagated to L2, we have to take the
maximum of either t_,, or 4.t + 3.A, for every 4 ACT of rank r issued before the

\"

one under analysis. [ |
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Theorem 2: The worst case value for t,is:

tn = toaw - 4 toey * Max (M, = Dty + M, " A, Kt + (M, -1 -4K) t + (M, -3K) A, )
(3)

Where A, =a,, (R)—1and K = L(Mr - 1)/4J

Proof: Let tO be the time at which the requestor with the ACT under analysis is en-
qgueued in the L3 PA Arbiter FCFS queue. We show that the worst case latency for the
ACT under analysis is produced when at time t, there are (Mr — 1) other requestors
en-queued before the requestor under analysis, all with ACT commands.

First note that requestors en-queued after the ACT under analysis cannot delay it: if
the ACT under analysis is blocked by the tRRD or tFAW timing constraint, then any
subsequent requestor with an ACT command in the L3 PA Arbiter FCFS queue would
also be blocked by the same constraint. Requestors with PRE commands en-queued
after the requestor under analysis can be issued before it according to arbitration
Rule 2 if the ACT under analysis is blocked, but they cannot delay it because those
requestors access different banks, and there are no timing constraints between ACT
and PRE of a different bank. Furthermore, after a PRE/ACT command is issued, the
corresponding requestor can only be re-en-queued at the end of the queue. Hence,
each of the other Mr - 1 requestors on rank r can only delay the requestor under
analysis by one command, either ACT or PRE. A PRE command can only interfere
with the ACT under analysis due to command bus contention, i.e., one bus cycle. On
the other hand, each ACT of another requestor en-queued before the requestor under
analysis can contribute to its latency for at least a factor tRRD, which is larger than
one clock cycle on all devices. This shows that the worst case is produced when all
other requestors on rank r have ACT commands.

Second, we show that all requestors of rank r en-queuing their ACT command at
the same time t are the worst case pattern. Requestor en-queuing an ACT after t,
does not cause interference as already shown. If an requestor en-queues an ACT at
time t, - Awith A< t_, the overall latency is reduced by A since the requestor cannot
en-queue another ACT before t,due to arbitration Rule 1 (the next ACT would not be
active duetot

RRD)'
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Third, we consider the latency of ACT commands issued after t, due to t_ and
L2/L1 arbitration; similarly to the proof of Theorem 1, each ACT command of rank r
can suffer command bus contention delay of A, = A,,(R) -1 (as an example, A, =2 in
Figure 4.3). Furthermore, once an ACT command of rank r is issued, notice that the
next ACT command of the same rank r cannot be propagated from L3 to L2 until after
the t., constraint has elapsed; hence, each ACT command can take A, + t_. before
being issued.

Finally, we consider the effect of the t_,, timing constraint. Note that a requestor
could issue an ACT at or before t-t_ and then en-queue another ACT at t, before the
ACT under analysis. Due to the t_,, constraint, ACT commands after tO could then
suffer additional delay. Since the t_,, constraint is activated by four consecutive ACT
commands, the worst case is produced when four ACT commands are issued as late as
possible before t, as shown in Figure 4.3. The first ACT after t0 is then blocked until
time t, = t, +t_,, - 4t.,.. Note that similarly, the second ACT after t, cannot be
propagated from L3 to L2 before t, + t_,, - 3t.,, = t, + t.., due to the same constraint;
however, this constraint does not affect the worst case pattern since the second ACT
after t, is blocked until t, + A, + t.., anyway due to the t__ constraint generated by
the first ACT and L2/L1 arbitration. It remains to consider the case when t_,, is
activated by ACT commands of rank r issued after t0. Since t_,, applies from the time
when an ACT of rank r is issued to the time when the fourth next ACT of rank r can
be propagated from L3 to L2, if the constraint is activated it effectively replaces the
delay of four t_. constraints (generated by the CAS that starts t_,, and the next three
CAS commands of rank r) and three A, times (for each of the next three CAS; see also
the example in Figure 4.3). Furthermore, the total number of t_,, constraints that can
be activated for CAS commands of rank r after t1 is K = b(Mr - 1) = 4c, since we need
at least four CAS commands to block the fifth one.

In summary, ift_,, <4-+t.,-3A, thent_, is not activated after t, and the final
bound on t, is then obtained by summing the delay t, - t,, Mr - 1 times the delay t,__;
(once for each other requestor on rank r), and Mr times the delay A, (once for each
other requestor on rank r plus once for the requestor under analysis), yielding a
bound: t_,, -4t + (Mr-1)t_ ..+ Mr - A,. Ifinstead t.,, > 4t_ -3A, theboundont,
can be obtained as: t_,, - 4t  + K -t_,, + (Mr -1 -4K)t_, + (Mr - 3K)A ,, where for
each of the K times the t_,, constraint is activated, we replace a term 4t_.  +3A,, with
a term t_,,. To end the proof, it suffices to notice that in Eq.(3) we consider the

maximum of the two bounds. u

RRD 1A? FAW

R RRD 1A?
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4.1.2 CAS-to-Data

We now focus on computing a bound on t_, for a request using rank r. Similarly to the
case of t ,, we prove that the current request suffers worst case interference when all
M. — 1 other requestors have an active CAS command arriving at the same time t as
the requestor under analysis, which is then serviced last according to FCFS
arbitration. Our proof scheme proceeds as follows. We first compute the delay for
successive CAS commands of rank r. Specifically, Lemma 1 computes the delay for a
read followed by a read and a write followed by a write (which we denote as t_, and
two respectively), while Lemma 2 covers the cases of write-to-read transition and
read-to-write transition (t,., and t.,.), which are more complex due tothet,  andt
constraints. Then, Lemma 3 computes the delay for the first CAS of rank r issued
after t,. Finally, Theorem 3 uses the computed delays to derive the final value of t .
The timing constraints that contribute to the worst case latency are shown as solid
black horizontal arrows.

1A?

RWD WTR RTW

™ | trRrD '
R Data | |
: : |
| |
Rank1 J | tRy tbus | |
| AR | |
| |
i : R | Data R | Data |
| | —|
~| : trL | tgus |
| <> |
Rank 2 o | | R | terr Data | i
| | I ——le——>
- | | RL BBUS | frrr | .
| | | | | t
to t;  tsp1 =tep teD tsp1
(At time to) (At time t;)

Figure 4.4: Read to Read Latency,R=2andr=1
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Lemma 1: Assume that the L3 CAS Arbiter for rank r prop-agates a read command
to L2 immediately after a previous read command of rank r is issued (i.e., the L3 CAS
Arbiter is backlogged). Then the worst case latency between the completion of data
transmissions for the first read command and for the second read command is:

tRRD = R(tBUS + tRTR) (4)
Similarly, for the case of a write followed by a write, the worst case latency is t,,, =
t

RRD"

Proof: We prove the lemma for t_.; the proof for t
read with write commands and t, with t, .

o IS equivalent, by exchanging

Let t, be the time at which the first read command of rank r is issued; then by
definition after t, t_, =t , +t, +t . (see Figure 4.4 above).

0’ “ED

Since there are no timing constraints between consecutive read commands of the
same rank, the second read command of rank r (dashed boxes in Figure 4.4) could
start data transmission at time t,, =t__ if other ranks were not serviced before it.

After the first read command is issued at time t,, rank r will be re-en-queued at the
back of the L3 CAS Arbiter FIFO at time t, + 1; in the worst-case, R — 1 ranks can be
en-queued before the rank under analysis. Note that whenever another rank issues a
CAS command after t, the value of t_ will be updated; due to the t. . timing
constraint between different ranks, the value of t., will instead be updated tot_, + t,,
(see the example in Figure 4.4 after a CAS of rank 2 is issued at time t,). In any case,
the condition t  t_  + t_ . always hold. Due to this reason and based on Arbitration
Rule 5, each of the other R — 1 ranks can issue at most one CAS command before the
second read of rank r. Furthermore, each such R — 1 data transmissions (let us say, of
rank j) must begin at most t_ time units after the previous data transmission has
finished; otherwise, the condition t_ t_, + t . would be violated and rank j could not
issue a CAS before rank r according to Rule 5. In summary, at most R CAS commands
must be issued, including the second read of rank r, and each data transmission

incurs a delay of at most t_,, + t, .. Hence, the lemma follows. u
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Lemma 2: Assume that the L3 CAS Arbiter for rank r prop-agates a read command
immediately after a write command of rank r is issued. Then the worst case latency
between the completion of data transmissions for the write command and for the read
command is:

tWRD = max( R (tBUS + tRTR) 1 t\/\/TR + tRL + 2 tBUS + tRTR - 1) (5)
_ | twRD |
W Data | > |
| | | | |
| | | | |
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' |
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Figure 4.5: Write to Read Latency, Case (a)withR=2andr =1

Similarly, for the case of a read followed by a write, the worst case latency is:

towo = Max (R (tyye + tars), tarw T €

RTW - tRL + tBUS + t

RTR 1) (6)

BUS WL

Proof: We first compute t, . Let t, be the time at which the write command of rank r
is issued; then by definition, the CAS Arbiters set t_., =t +t, +t, (see Figure 4.5
above). Due to the t,,, constraint, the L3 CAS Arbiter of rank r will also set a time
tSDr
and t_ are larger than t_ . and differently from Lemma 1, we have tr >t +t_ .. We
consider two possible cases.

=1, + Afor the start of the successive read command, with A=t +t_ . Sincet,
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Case A: In this case, the read command of rank r is delayed by a CAS command of
another rank jen-queued after r in the L2 CAS Arbiter FCFS order. This is possible if
to <t in the worst case shown in Figure 4.5, t,. =t — 1, resulting in a latency
tuo = A— 1+t +t. .+t Notethat after the rank under analysis is delayed by a
command of j, it will hold t,, = t_  + t_.. and thus rank r cannot be delayed by

another rank en-queued after it.

D R

Case B: The read command of rank r is delayed by CAS commands of ranks en-
queued before r in the L2 CAS Arbiter FIFO, similarly to the case in Lemma 1. Note
that for a rank j to be en-queued before r in the FIFO, the CAS command of rank j
must have been propagated to Level 2 before or at time t0 + 1 (dashed arrow for Rank
1 in Figure 4.6 below). We distinguish two sub cases within Case B: Case B_1, the

CAS command of rank j is not delayed by a {,., timing constraint. In this case, the

data transmissions of rank j can start at t_  +t_... For example, see Rank 3 in Figure
4.6. In Case B_2, a previous write command of rank j has been issued before t0, and

the successive read command is thus delayed by the t, .. constraint (Rank 2 in Figure
4.6). In this case, the read command of rank j could be associated with a value t_ >
t, +t

completed its data transmission at least t_ + T, before the write command of rank r

However, since the preceding write command of rank j must have

ED RTR®

completes its data transmission, it must also hold that the difference between t_ and

t,,, is at least t_, + t... (see the dotted boxes in Figure 4.6 below). Hence, rank j alone
cannot delay the read command of rank r, unless there are other ranks that can start
data transmission at t_, + t_.. In either sub case, it follows that the read of rank r can
only be delayed if other ranks continuously transmit data every t_  + .. time units
starting at t_, + t_ .. Furthermore, following the same reasoning as in Lemma 1, in
this case norank en-queued after rank r can cause delay on rank r. Hence, we obtain
the same expression as for t___,i.e. T ., =R (t
of Case A) and B) will yield Equation (5).

+1...). Finally, taking the maximum

BUS
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Figure 4.6: Write to Read Latency, Case b) with R=3 andr =1
For t it suffices to note that the distance A between the end of data transmission

RWD?

for the read and the start of data for the successive writeis A=t +1t, —t, —1t .

Again, taking the maximum of Case A) and B) will yield Equation (6). [ |

It is interesting to note that for the DDR3-1333H device in Table 2.1 and for R = 4, the
term R(t,, *+ to) IN EQ.(5), (6) is maximal, meaning t ., = ton = teeo = twwo: NENCE, N
this condition ROC guarantees a data bus utilization of t, J/( t,, + t.;) = 2/3 to a
backlogged system. Furthermore, the worst-case latency is completely unaffected by

the t,., and t.,, timing constraints.

WRD

Lemma 3: Assume that a CAS of the requestor under analysis in rank r becomes
active at time t, and that at t, there are other Mr —1 requestors with active CAS
commands before it in the L3 CAS Arbiter FCFS order.

Then if the first CAS of rank r issued after t,is a read, the worst case latency between
t, and the completion of data transmission for the first read command is:
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tRD = max(tRL + tBUS - 1 + R (tBUS + tRTR) t + tRL + 2 tBUS + tRTR - 1); (7)

! TWTR

Otherwise if the first CAS is a write, the worst case latency is:

ty = to s~ 1+ R (t

WD R + tRTR) (8)

BUS

Proof: The proof is similar to Lemma 2. The main difference is that now a requestor
of another rank could issue a request immediately before t, and still be en-queued
before rank r (see Rank 2 in Figure 4.7 as an example for t, ); this contributes the
additional delay term t_ +t_ — 1. |

Theorem 3: The worst case CAS-to-Data latency for a write or read command,
respectively, is:

Write Mr-1 Mr -1

tep trRwp +
2 2

twrp + (9)

{trp if Mris even or typ if Mris odd };

Read Mr-1 Mr -1

twep + |7 | trwp * (10)
2 2

,_..

(2]

o
]|

{ twp if Mr is even or tgpif Mris odd };

Proof: We show that the pattern in Lemma 3 results in the worst case latency t_;
intuitively, we maximize the number of requestors of rank r that interfere with the
requestor under analysis. Hence, we can compute the latency for the first CAS of rank
r after t, as either t,, or t,,; for each of the other Mr — 1 requestors of rank r

(including the one under analysis), we then add a term t_.., t, o tweo OF taw, D@S€d ON
the sequence of CAS commands.
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Figure 4.7: Initial Write Latency, R=3andr =1

Now note that t, >t =t, . andt =t hence, we prove that the worst
case sequence is an alternation of read and write commands (also notice that t. >t
but we prove that the effect of alternating read and write commands on the worst case
latency is larger compared to starting with a read rather than a write). To conclude
the proof, note that if the requestor under analysis issues a read, then in an
alternating sequence of Mr Commands there arel?Mr - 1)/2—|WHte-to-read transitions

and I_(Mr —1)@ read-to-write transitions, and vice-versa for a write. |

>t

RWD RRD WWD'!

So far, we have seen the theoretical analysis of our memory controller design. In the
next Section, we show you the detail implementation of our rank-switching open-row
memory controller design.
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Chapter 5

Memory Controller Implementation

The proposed rank-switching memory controller consists of front end and back end as
shown in Figure 5.1. This memory controller design can accept requests from number
N of both critical and non-critical real time requestors where 0 < N <= 32. The front
end logic receives memory requests that have the physical address and the request
type in order to generate the corresponding DRAM commands such as ACT, PRE,
REF and CAS. The generated commands from the front end are dispatched to the
command queues in the back end. The command queues are the first clocked
interface between front and back end. The back end logic is responsible for requestor
arbitration, rank arbitration and command arbitration. Each level of arbitration
consists of sequencers to check if the chosen command satisfies the DRAM protocol
timing. Once the timing check is satisfied, it would dispatch the command to
appropriate ranks, banks in the physical DDR Memory Device.

AT

REQ[0] ——>

®
Front End | PDR CMD[0:N] | Back End ADDR E
) Memory |:> Memory | N
o Controller Controller 4 i
DATA

R:QN_)\\ ) U e

/

‘\ /7

DDR3 Memory Device with
4 Ranks

Figure 5.1: Memory Controller with Front and Back end logic.
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The objective of this proposed rank switching open row memory controller design is to
achieve worst case upper bound latency for critical requestors and average bandwidth
for non-critical requestors. Both front end and back end logic works with one clock
domain. As you can see from Figure 5.1, there are three buses such as DATA bus,
ADDR Bus and CMD bus that connect our memory controller with the memory device.
This CMD bus represent important memory device signals such as CS, RAS, CAS,
WE. Similarly, the ADDR Bus represents the device signals such as A0 to Al5.
Further BO to B2 represent the 8 banks and CS signal represents the number of
Ranks as per JDEC standard. To carry out the evaluation and testing, the design was
implemented in such a way that the number of requestors, ranks and banks can be
customized as per user request. Next, the front end will be discussed in detail.

5.1Front End Memory Controller

\
ADDR MAP[0] 5

1
! 1
REQ [0]—> | i
| READ | WRITE Rank_Addz i
i N ° ——>| CMD_GEN [0] DDR_CMD_REQ[0] |
b ] Bank_Addr !
| — > . !
i Row_Addr ° i
. i i
=PHY ADDRESS o Col_Addr ° i
1 > °
I ADDR MAPIN] i
° ! . ]
! 1
1 ® H
: — i
(] i Refresh e > PY !
: Controller 1
i o i
1
REQ [N]—> | 5 i
1 PAGE TABLE DDR CMD REQ[ N i
! Upddte | CMD_GEN [N] -CMDREQINT |
1 :

QK | BANK/ ROW /

Figure 5.2: Front End Memory Controller

The front End Memory Controller consists of Address Mapping, Command Generator,
Refresh Controller and Row Table as shown in Figure 5.2. The N number of
requestors would require N number of address mapping logic blocks and N number of
command generators in the front logic shown in Figure 5.2.
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First, the incoming physical addresses from all N requestors would go through N
number of Address Mapping logic blocks which would split the incoming physical
addresses into normalized rank, bank, row and column Addresses. Then, the
normalized rank, bank, row, column addresses are fed into their respective N number
of command generators for the proper command generations. The Command
Generators are responsible for generating the necessary DDR Memory commands
such as PRE, ACT, REF and CAS based on the incoming request type (read or write),
physical address and the status of row table that indicate if the row is open or close.
When a request targets a specific rank, bank, row combination, that particular
request entry is entered into the row table. The row table keep the record of which
rows, banks and ranks have been accessed for each incoming request. Using the
previous access record in the row table, the command generator is able to generate the
right command. Further, maintaining the row status of previously accessed memory
requests also enhance the command scheduling efficiency. Since private bank
mapping is used, every requestor is assigned to one bank or set of banks in a rank.
Two requestors cannot access the same bank in a rank. The number requestors, N,
can range from 0 < N <= 32. But, for this implementation, we considered maximum N
= 16 requestors.

In this proposed design, the row table updates its entry into one of the following
three scenarios in order to assist the command generators to generate the
corresponding commands such as PRE, ACT, REF and CAS.

Row Conflict: A row conflict occurs when there is a new request to row in a
particular bank which already has different row opened. In this scenario, the
command generator would generate the following commands in order. First, it would
generate PRE command to close the already opened row. Second, it needs to issue an
ACT Command to open the row for the new request. Finally, it would issue the Read
or write CAS command.

Row Miss: Arow miss occurs when there is a request toa row in a particular bank of
DRAM that does not have any row already open. The Command Generator needs to
send ACT command (row open) and then Read or write CAS command.
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Row Hit: A row hit occurs when there is a request to a row in a particular bank of
DRAM that is already opened by previous request. In this case, there is no need to
open the bank again and therefore, it simply sends read or write CAS command.

Refresh Controller

Every row in a DRAM needs to be regularly refreshed to avoid data lost which would
eventually make sure the memory access predictable. Refresh process is separately
handled by a refresh controller which generate the refresh command for every refresh
period. Refresh period depends on the DDR Memory device. The refresh of a memory
rank is partitioned into 8,192 smaller refresh operations. Such refresh operation has
to be issued every 7800 ns (64 ms divided by 8192). In other words, a refresh
operation must be performed every 7800 ns on average to refresh the entire DRAM in
64ms (retention time). This 7800 ns interval is referred to as the refresh interval, t .
Each Refresh operation lasts for a time limit that is referred to as the refresh cycle
time, t. ., which depends on the devices. For our design simulation, DDR3 1333-H
device is used where t... = 160 ns and t._. = 7800 ns. These parameter values might be
different for other high end memory devices. All of the banks must be pre-charged
before a refresh command is issued. During every refresh period, all the banks and
ranks need to be refreshed.

RFC

PRE CMD REF CMD ACTCMD CAS CMD CAS CMD CAS CMD PRE CMD REF CMD
A A ) A
< ?) tREF = 7800 ns tREC = 160ns
tRFC =160 ns
REF OP
REFOP  REFOP o g
Start End a

Figure 5.3: Refresh Controller Timing
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5.2 Back End Memory Controller

This section will analyse the detailed implementation of each logic component that
was used to build the back end logic as shown in Figure 5.4 below. The back end logic
is designed as 3 levels of arbiters and 4 stages of pipeline architecture. Each level of
arbiters is categorized as requestor arbitration (L1), rank arbitration (L2) and
Command arbitration (L3). The design was implemented in a 4 stage pipeline
architecture in order to increases the number of commands throughput by executing
operations in all four stages in parallel. Each pipelined stage is separated by a
sequential register element. In the next section, let us look at the logic behind
command queues which are the first interface unit of this back end logic.
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5.2.1 Command Queues in Stage 4

The commands generated by the front end are stored into the command queues as
shown in Figure 5.5. It is the first sequential interface to the back end. The command
gueue controller is specially designed to increase the efficiency of this proposed
memory controller in the following manner. In a regular FIFO controller design, the
read enable should be sent out to the queue before reading out the data. But, this
customized queue controller is designed to function like a look-ahead manner where
the head of the queue is visible to the receiver so that the receiver logic is able to
decide if the next command is a PRE or ACT or REF or CAS. This look-ahead feature
helps to differentiate CAS versus PRE, ACT, REF commands. Therefore, this look-
ahead feature process the CAS and PRE, ACT commands separately in parallel by
separate arbiters in order to minimize the latency.

As outlined in the arbitration rule (1 A), the command at the head of each
commands queue is active only if the corresponding timing constraints of the previous
commands of the same requestor are satisfied. Only if the command satisfies the
timing, the command is allowed to be fetched from the particular command queue and
will be propagated to stage 3. If not, the command will be staying in the command
queue until its DDR timing is satisfied. The number of command queues depends on
how many requestors are connected with the memory controller design. For a system
with sixteen requestors, there will be sixteen command queues to store their
respective commands. The design was implemented in such a way that number of
command queues can be dynamically configured during the run time depending on
the number of requestor that were chosen by the user.
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5.2.2 PRE, ACT Arbiter and CAS Arbiter in Stage 4

The stage 4 consists of two arbiters namely PRE ACT Arbiter and CAS arbiter as
shown in Figure 5.5. Both arbiters work in parallel to arbitrate among commands
waiting at the head of L3 CMD queues. The Arbitration rule (2A) says the requestor
is put in the back of a L3 PRE ACT Queue in stage 4 as soon as it has an active PRE
or ACT command and it is removed from the queue once the command is finally
issued by L1. But, all the commands in CMD queues cannot be dispatched all once
instantly as stated in rule (2A). From the hardware implementation point of view,
each command in the L3 CMD queue can only be dispatched one per clock cycle.
Therefore, we need an additional arbitration mechanism to choose the PRE, ACT
command per clock cycle from L3 CMD queues. Similarly, we also need an arbitration
mechanism to choose one CAS command per clock cycle from CMD queues. The CAS
arbiter arbitrates a L3 CMD queue that has CAS commands at the front (head) of the
queues. As per the arbitration rule (1B), a CAS command does not become active until
the data of the previous CAS command of the same requestor has been received by the
memory controller from the memory device. While CAS arbiter is in action, PRE ACT
arbiter arbitrates a queue that has PRE or ACT commands at the front (head) of the
gueue. Both arbiters ignore those queues that do not have any command to be served.

Having two separate arbiters to arbitrate at the same time plays a major role in
reducing overall latency in our proposed rank switching DDR memory controller
design. This L3 PRE ACT Arbiter is designed based on the modified FCFS arbitration
style. This modified FCFS ensures that when the requestor has an ACT waiting for
its t., or t_,, constraints, the PRE commands do not have to suffer due tot_ ort
constraints. This allows the late arriving PRE command to get propagate. On the
other hand, the CAS arbiter is built from the regular First Come First Served (FCFS)
arbitration style. Having two separate arbiters for PRE ACT and CAS really help to
reduce the overall latency. Let us analyze a scenario with an example where REQ 1,
REQ2, REQ3, REQ4 queues receive the commands in the order of ACT, PRE, ACT,
and CAS respectively. If one Arbiter was used to handle all the commands, then, the
arbiter would start arbitrating from REQ1 => REQ2 => REQ3 => REQ4. The CAS
command that is waiting at REQ4 has to wait until the arbiter finished arbitrating
REQ1, REQ2 and REQ3. This is not efficient and there is no reason to keep waiting
the important CAS command at REQ4. Instead, this CAS command should be
dispatched as early as possible to save the latency in getting the data back from
memory. The proposed design has one arbiter to handle PRE, ACT and other arbiter

FAW
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to handle CAS in order to reduce the waiting time of the important CAS commands
inside the Command queues and thereby minimizes the total latency.

5.2.3 PRE, ACT, CAS Sequencer in Stage 4

When the command is available at the head of the L3 CMD queue, the PRE, ACT,
CAS sequencer in stage 4 will start verifying the timing check and make sure that the
current command from the requestor satisfies the timing constraint with the previous
command from the same requestor as shown in Figure 5.5. The look-ahead nature of
L3 CMD queue allows this sequencer to scan the commands at the head of the
command queues and verify the timing without actually fetching it from the command
queue. Note that both PRE ACT Arbiter and CAS arbiter carry out their arbitration
task while checking with this sequencer to determine if the particular command can
be chosen for the arbitration. Each CMD queue represents the commands that are
solely coming from a single requestor. This sequencer checks the timing constraint
such as RAS to CAS (RCD), CAS Latency (CL), RC, RAS, RP for the commands from
the very same requestor. It is important to note that the timing constraint such as
ACT to ACT (RRD) or Four Active Windows (FAW) for the commands that come from
different requestors targeting different banks are not verified by this sequencer.

As shown in Figure 5.5, PRE ACT arbiter, CAS arbiter works in parallel with PRE
ACT CAS sequencer to check if the particular command satisfied the timing before
the arbiters can choose the command for its arbitration process. If the command did
not satisfy with the timing, then, the arbiters would not choose that command and
instead, it would move onto the next requestor in its arbitration path. The Stage 4
PRE, ACT, CAS Sequencer was designed with large set of down counters to represent
all the DRAM timing constraints as shown in Table 2.1. These timing counters in this
particular sequencer in stage 4 would only check the timing constraint for the
commands within each requestor. As indicated in Figure 5.4, the feedback shown in
green color is a combinational path coming from level 1 towards level 2 and level 3.
This feedback indicates that the command is dispatched at level 1 and this
acknowledgement is used by the timing sequencers in level 3 and level 2 to initialize
the corresponding timing counters for the next commands. It is important to note
that the timing constraint such as Row to Row (RRD) or Four Active Windows (FAW)
for the commands that come from different requestors, targeting different banks in
the same rank are not verified by this timing sequencer in stage 4 and it will be
discussed in section 5.2.5.
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5.2.4 PRE, ACT Queue in Stage 4

Once the DRAM timing constraint has been satisfied by the PRE, ACT, CAS
sequencer, it would propagate the PRE and ACT commands to PRE ACT queue for a
temporary storage as shown in Figure 5.5. This PRE, ACT queue receives commands
from requestors targeting different banks within the same rank. This queue is a
custom made design and it is not based on either regular First in First out or Last in
First out architectures. In regular queue architecture, the data will be fetched on the
next cycle after receiving the read enable from the receiving block. But, this PRE ACT
queue was designed in such a way where the next available command is automatically
just visible without waiting for the read enable from the receiving block. This look -
ahead feature allows the receiving block, RRD FAW sequencer, to validate
corresponding RRD, FAW timing check even before actually fetching it. Further, this
qgueue was designed to offer higher priority to PRE command over ACT command
when ACT was subjected to additional delay due to the RRD, FAW timing constraint.
This PRE ACT queue receives ACT commands that are coming from all four
requestors targeting different banks in the same rank. Therefore, those ACT
commands targeting different banks in the same rank are expected to satisfy the
timing parameters such as Row to Row Delay (RRD) and Four Active Window (FAW).

The PRE ACT sequencer evaluates the timing of ACT command and decides when
the ACT command can be fetched from the PRE, ACT queue based on its RRD, FAW
sequencer timing. While the ACT is waiting for its corresponding RRD, FAW timer to
elapsed, there is no reason to hold those PRE command inside the queue. In this
scenario, PRE are given higher priority than ACT command. To facilitate this
priority, the PRE ACT queue was designed to make necessary up shifting of PRE
commands so that PRE commands can be released early as shown in the following
Figure 5.8. This early release makes a reasonable improvement over the overall
latency of the operation of our proposed design. The next section describes in detail
how this RRD FAW sequencer works in parallel with PRE ACT queue.
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5.2.5 PRE ACT Arbiter and RRD FAW Sequencer in Stage 3

The section describes the task of the PRE, ACT arbiter and RRD, FAW sequencer as
shown in stage 3 of Figure 5.5. This logic unit consist of PRE, ACT arbiter and RRD,
FAW sequencer. The arbiter logic arbitrates commands that are in PRE, ACT queue.
If the front (head) of the queue is an ACT command, the arbiter would choose the ACT
commands only if the Row to Row Delay (RRD) and Four Active Window (FAW) delay
is satisfied for that ACT command by the RRD, FAW Sequencer logic. The arbitration
rule (2C) says that an active PRE command can always be issued; an active ACT
command could instead by blocked by t.  or t_, constraints caused by other
requestors in the same rank. Now, let us analyse how this rule (2 C) is implemented.
The RRD and FAW timings are verified by RRD, FAW Sequencer logic for an ACT
command. Once first ACT command is inserted into the L3 PRE ACT queue, the Row
to Row Delay (RRD) counter and Four Active Window (FAW) counter will be
initialized to RRD value and FAW value respectively. When it receives the second
ACT command, it would check if the RRD counter has been already elapsed or not. If
it is not elapsed, this logic block will wait and will not send the read enable to the
PRE ACT Queue until the RRD timing is satisfied. Only after RRD timer is elapsed, it
would allow this second ACT command from PRE ACT Queue to propagate to next
stage in the pipeline. At the same time, it would send back the read enable to the PRE
ACT Queue so that queue would pop up the next available command to its head. This
process would keep on continuing every time there is a new ACT command. The FAW
counter will allow only four ACT commands to pass within the FAW time window.

5.2.6 PRE, ACT Arbiter in Level 2

As shown in the full system level view of Figure 5.4, four PRE ACT queues are in L3.
This L2 PRE ACT Arbiter was designed based on the round robin arbitration
architecture as explained in Section 3.1.4 Selection of arbiter type. When a L3 PRE
ACT queue has the command at the head of the queue waiting to be sent, first, it
would send the request (REQ) to this Level 2 PRE ACT Arbiter. In a full system level
operation, the L2 PRE ACT Arbiter receives REQs from all four PRE ACT queues
residing in level 3. The arbitration rule (2 A) says that the PRE ACT command is
removed once the PRE ACT command is issued by L1. This sub-rule is implemented
as follows. The L2 PRE ACT arbiter will pick one of the L3 PRE ACT queue
representing different ranks.
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12 13 14

1

But, this level 2 PRE ACT was
10

implemented using RR due to the ease of implementation in hardware compared to
FCFS. The command received by this level 2 PRE, ACT Arbiter would then dispatch it
to the next pipelined storage which reside between level 2 PRE ACT Arbiter and level

L2 PRE ACT arbiter will issue the acknowledgment (ACK) to that chosen L3 PRE
1 Arbiter.

ACT queue. Only after receiving the ACK, the corresponding L3 PRE ACT queue will
release the PRE or ACT command to this L2 PRE ACT Arbiter. Note that REQ and

ACK exchange between L3 to L2 are combinational logic and it does not consume any
clock cycle. The arbitration rule (4) says that this level 2 PRE ACT Arbiter can use

either FCFS or Round-Robin (RR) arbitration.
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Figure 5.6: Scheduling of PRE, ACT CMDs through L3, L2, L1
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Let us look into the detail of scheduling events of PRE, ACT commands from levels of
L3toL2toLl asshown in Figure 5.6. At clock cycle 0, L3 PRE, ACT queue of rank 0
contains ACTO, ACTO, PREO, PREO commands. Similarly, at clock 0, L3 PRE, ACT
queue of rank 1 contains all four ACT1 commands. At clock cycle 0, assume that rank
0 takes higher priority than rank 1. Even though both rank 0 and rank 1 send the
REQs to L2 PRE ACT arbiter, L2 PRE ACT arbiter choose the L3 PRE ACT queue
from rank 0 due to the higher priority. Therefore, PRE ACT queue of rank 0 will own
the bus ownership and will dispatch the ACTO command into L2 PRE, ACT at clock
cycle 1. Next, the L2 PRE ACT will dispatch the ACTO from L2 to L1 at clock cycle 2.
Due to the Row to Row Delay (RRD) between ACT commands of the same rank, the
earliest time that L1 PRE ACT can receive the next ACTO command would be at clock
cycle 6. Therefore, earliest time the next ACTO command from L3 PRE, ACT queue of
rank O could be dispatched is at clock cycle 4.

The moment that ACTO is dispatched by L1 PRE ACT register at clock cycle 2,
the RRD counter is initialized to a RRD value. The design of this down counter take
into the fact that RRD counter is actually getting its initialized value on the next
clock cycle so that initialized value should be RRD — 2 so that the counter would be
down countered to zero at clock cycle 5 where next ACTO command will be checked for
its RRD constraint to be elapsed at the correct time so that next ACTO command is
dispatched to L1 PRE ACT at clock cycle 6. Please note that the counter initial value
modification is done carefully in our design for all the counters involved in checking
the DDR timing constraints.

On other hand, the L3 PRE, ACT queue of rank 1 will dispatch its first ACT1
command from L3 PRE ACT queue into L2 PRE ACT register at clock cycle 2, only
after the ACK is given by the L2 PRE ACT arbiter. Note that rank 1 is less priority
than rank 0 as per our assumption. Next, L2 PRE ACT register will dispatch the ACT
1 command into L1 at clock cycle 3 after ACTO from rank 0 is dispatched. Note that
ACT commands from different ranks does not have any timing constraints between
them and can be processed back to back at clock cycle 2 and clock cycle 3 as shown in
Figure 5.6. The PRE command has no impact on either RRD or FAW timing.
Therefore, if there is a PRE command in the queue, there is no need for the PRE
command to wait unnecessarily while waiting for either RRD or FAW. The Figure 5.6
clearly illustrate scenario of early dispatching of PREO at clock cycle 2 while ACTO
command is waiting for RRD or FAW at L3 PRE ACT queue for rank 0.
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5.2.7 CAS FIFO in Stage 4

Once the PRE, ACT, CAS Arbiter & Sequencer unit chooses a CAS command, it
propagates that CAS command to the temporary storage of CAS FIFO as shown in
Figure 5.7 below. The CAS FIFO has a variable depth size depending on the number
of requestors connected. When either 4 or 8 requestors are connected in the above
logic unit, the CAS FIFO size would take either 4 or 8 respectively. This CAS FIFO
would not release (pop) the CAS Command to the next stage downstream until the
required DRAM timing constraint is successfully checked by the CAS BTB Sequencer
which will be described in next section. Only when the CAS FIFO is chosen as the
winner by level 2 CAS Arbiter the CAS FIFO would release the CAS command and
send it to level 2 CAS Arbiter as shown in Figure 5.10. If the CAS FIFO is not chosen
as the winner, then, it would not release the CAS Command from the CAS FIFO. The
winner signal coming from level 2 CAS Arbiter is used as the read acknowledgement
for this CAS FIFO logic to get the next command to pop up at the head of the CAS
FIFO for the next operation.
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Figure 5.7: CAS FIFO and CAS BTB Sequencer
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5.2.8 CAS Arbiter and CAS,BTB Sequencer in Stage 3

This logic block is directly interacting with CAS FIFO as shown in Figure 5.7 above.
Three logic operations such as CAS arbitration, CAS timing and BTB timing are built
in this logic block. As per arbitration rule (3), the commands at the head of the L3
CAS FIFO are arbitrated by the CAS Arbiter unit. This arbiter selection process
depends on the timing check done by CAS sequencer and BTB sequencer logic blocks.
The timing constraint such as Write to Read (WTR) and Read to Write (RTW)
between banks will be verified by this CAS sequencer.

Note that the arbitration rule (5) only discusses the t_ and t_, and it does not
discuss about the BTB timing parameter. It is important to understand how this BTB
is important for the processing of CAS commands. The BTB stands for Burst to Burst
and the BTB sequencer calculates the time difference between two burst data of the
different requestors targeting either same or different banks in the same rank. As per
the arbitration rule (5), the BTB =t_ -t_, The calculated BTB value for each L3 CAS
will be dispatched to the level 2 CAS Arbiter and this process is repeated by other
CAS BTB sequencers in other ranks as shown in Figure 5.8. At the L2 CAS Arbiter, it
receives CAS commands and the corresponding BTB values from CAS, BTB
Sequencers representing all four ranks or two ranks depending on the configuration.
In the next section, we will see how level 2 CAS Arbiter chooses one of the CAS FIFOs
based on both the BTB value received and the priority of the CAS FIFOs.

5.2.9 CAS Arbiter in Level 2

The L2 CAS Arbiter consists of three important logic units and they are CAS Arbiter,
BTB Comparator and Rank to Rank (RTR) Sequencer. The L2 CAS arbiter arbitrates
L3 CAS FIFOs representing different ranks as shown in Figure 8 below. The
arbitration task carried out by L2 CAS arbiter not only just depends on the
arbitration policy itself, but also depends on the outcome of BTB Comparator and
Rank to Rank (RTR) sequencer. The factors that decides on how L2 CAS arbiter is
supposed to choose the L3 CAS FIFOs is as follows. If L2 CAS arbiter makes its
selection as per round robin policy, each L3 CAS FIFO will be visited in an equal
fairness and orderly manner regardless of which requests are waiting for a long time
in the L3 CAS FIFOs. But, our design of L2 CAS arbiter gives importance to those
requests which arrived early waiting at the L3 CAS FIFO to be served.
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It also gives equal importance to other requests which are waiting for their read to
write or write to read or burst to burst timing constraint to be elapsed. The important
fact is that we cannot use either fixed priority or round robin policies for the L2 CAS
arbiter without considering the request’s arrival time. Therefore, we decided to
choose First Come First Served structure. Since this arbitration process is also
depend on Burst to Burst (BTB) values, the existing FCFS policy need to be modified
and thereby, Modified FCFS (M-FCFS) is well suited for our design as the arbitration
policy for L2 CAS arbiter. Now, let us look into the BTB Comparator logic which is
part of the L2 CAS arbiter logic.
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5.29.1 BTB Comparator

Whenever there are CAS commands available at L3 CAS FIFOs, the L2 CAS Arbiter
receives the Burst to Burst (BTB) value from all BTB Sequencers representing all the
ranks. Note that BTB value is issued by the BTB sequencer to L2 CAS arbiter even if
the CAS cannot be issued at any clock cycle. In other words, the BTB is issued at
every clock cycle and the BTB comparator compares the BTB values coming from all
the BTB sequencers as shown in Figure 5.9. The winner is chosen based on BTB
values and based on the priority level of each of the L3 CAS FIFOs at that time. The
winning L3 CAS FIFO is allowed to release the CAS command to the L2 CAS Arbiter.
Other L3 CAS FIFOs which were not chosen would keep their CAS Commands. Once
the CAS command is chosen from a particular L3 CAS FIFO, it still need to go
through one more timing check called Rank to Rank (RTR). The RTR Sequencer unit
will check the timing before the CAS Command can actually be indeed released by the
L3 CAS FIFO.
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Figure 5.9: Logic to Calculate the Smallest BTB
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5.2.9.2 Rank to Rank (RTR) Sequencer

Having completed the BTB comparison, the L2 CAS Arbiter also needs to do another
timing check called Rank to Rank. It is important to analyze why we need this rank to
rank sequencer between ranks. The synchronization time is needed for one bus
master to hand off the bus ownership to another bus master. This time is called
turnaround time which is inserted to account for skew on the bus and to prevent
different bus masters from driving the bus at the same time. To avoid such collisions,
a second rank must wait at least t .. after a first rank has finished using the bus.
This synchronization time is called Rank to Rank Time, RTR.

The RTR Sequencer was designed to ensure that the second rank would not drive the
data bus while the first rank is in the process of driving the data bus and avoiding
collision between data movement among ranks. Within each rank itself, the timing
conflict in the directions of data movements is called write to read (WTR) and read to
write (RTW). But, when the data movements occur between ranks, the timing
conflicts such as WTR or RTW due to the direction of data movement are no longer
applicable. Instead, only Rank to Rank timing check need to be verified by this level 2
CAS Arbiter before dispatching the received CAS command towards level 1.

It is important to further analyse how the CAS commands are scheduled and
propagated from L3 to L2 to L1 levels. The Figure 5.10 shows an example scenario to
illustrate the scheduling of CAS command along with their corresponding BTB
values.
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Figure 5.10: Scheduling of CAS CMDs through L3, L2, L1
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illustrative purpose in this Figure 5.10. Further, assume that four CAS commands are
stored in L3 CAS FIFO of rank 0 and three CAS commands are stored in L3 CAS
FIFO for rank 1. Also, assume that RDATAZ2 is present at clock cycle 1 by rank 2 to
illustrate the BTB processing for rank 0 and rank 1. Assume that the rank 0 has

and read, write latency of 3 clock cycles are used as a scale down view for the
higher priority than rank 1.

Let us assume the following for our example scenario. The burst size of 1 clock cycle



At clock cycle 0, due to the RDATAZ2, the BTB values for Rank 0 and Rank 1 are
calculated to be 3. Since both BTB values are equal to be 3 at clock cycle 0 and since
rank 0 has higher priority than rank 1, the L3 CAS FIFO (rank 0) is chosen as the
winner by the L2 CAS arbiter. Therefore, RCASO command in L3 CAS FIFO of rank
0 is dispatched to L2 CAS register at clock cycle 1. At clock cycle 2, this RCASO will
be further dispatched to L1 CAS for output. The read data, RDATAO is received at
clock cycle 5 after RL timing.

While this RCASO is propagating through L3, L2 and L1, the RCAS 1 waiting at L3
CAS FIFO (rank 1) cannot be dispatched to L2 CAS register until clock cycle 4 due to
the fact that Burst to Burst (BTB) need to be maintained between RDATAOQ and
RDATAL as shown in Figure 5.10. The BTB values for both rank 0 and rank 1 are
maintained to be same value as 3 for clock cycle 0, 1, 2 due to the presence of RDATA
2 from rank 2. Once the RCASO is dispatched at clock cycle 2, the next WCAS 0 at
rank 0 is waiting until clock cycle 8 to satisfy the read to write (RTW) timing
constraint. Due to this WCASO, the new BTB value for rank 0 is updated at clock
cycle 3 to be 5 as per the following equation.

BTB =trtw +twL — tRL — tBurst
=6 +3 -3 -1
BTB =5

Similarly, at clock cycle 3, BTB for rank 1 is calculated to be 0, since there is no data
in the bus at that time for rank 1.

The following Figure 5.11 shows detail view of how the BTB values are calculated. For
an example, the RCAS from rank 0 can be dispatched only if the R1_BTB value can be
satisfied between the latest RDATA from rank 1 to the future RDATA from rank 0.
The TO_MAX is calculated as the maximum delay of the data from other ranks. If the
RCAS command at rank 0 is followed by previous write data, then, we need to write to
read (WTR) delay as part of the BTB calculations. All the relevant equations for the
BTB calculations are shown in Figure 5.11.
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Ti= RL

WTR >

Rank 0 WDATA RCAS RDATA
T2 =RL + BL
Rank 1 { RDATA
T3= WL + BL > R1_BTB

Rank 2 WDATA

T4= WL + BL -
Rank 3 WDATA

Time =t

TO_MAX = MAX { T2, T3, T4}

R1_BTB

WIR + RL - T0_MAX

RCAS CMD from Rank 0 can be sent when (T0_MAX +R1_BTB - T1)==0

Figure 5.11: Example BTB calculation for RCAS CMD from Rank0

5.2.10 PRE ACT CAS Arbiter in Level 1

As can been seen from the system level view in Figure 5.4, the commands from all the
requestors from different ranks arrives simultaneously at this final stage called level
1 PRE ACT CAS arbiter. This L1 arbiter arbitrates for the PRE, ACT and CAS
commands coming from all ranks. This arbiter was designed as a priority style arbiter
since the proposed design expects the CAS commands to be given higher priority than
PRE, ACT commands. By issuing the CAS commands as early as possible offer better
read latency and hence reduces the overall latency. Note that there is only one
command bus and therefore, only a single command can be dispatched out of level 1
towards the memory device. Since CAS command get the highest priority, this arbiter
is built with the ability to temporarily store those PRE and ACT which may arrive at
the same time as CAS commands from different requestors of different ranks. Only
after CAS is dispatched out of level 1 arbiter, those stored PRE, ACT commands will
be dispatched as per the order they arrived. As stated in arbitration rule (6), this level
1 arbiter would send back the ACK to both level 2 and level 3 every time the
commands have been dispatched out of this level 1 arbiter.
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5.3 Pipeline Implementation of the Memory Controller

This section will analyse the pipeline implementation of the back end memory
controller. As shown in Figure 5.12, the back end is designed to be three stage
pipeline structures. This section would go into detail on each stages and the timing
analysis as pointed out below.

1)
2)
3)
4)
5)

Pipeline Stage 3 — Bank Arbitration
Pipeline Stage 2 — Rank Arbitration

Timing Analysis of Pipeline Stages

Pipeline Stage 4 — Request Arbitration

Pipeline Stage 1 — Command Arbitration

L3 COMMAND
QUEUE L3PRE, ACT QUEUE L2PRE, ACT Register L1PRE, ACT Register
— — /— LIPRE,ACT, CAS
Lage > PRE ACT PREACT Register
Arbiter Arbiter PRE,
& ACT
RRD, FAW Arbiter
REQ1 =t & . \ -
equencer
CAS Arbis L1 [CAS Regist act
rhiter L3 CAS FIFO L2CAS Register CAS Register
S ’ ) : i
& & CAS Arbiter [
o T~ Cd —
& CAS :
L o CAS, BTB Arbiter i
PRSE‘:’ ACT, CAS Sequencer i
L equencer
\ e/ —/ — ;
i | | i |
CLE : CLK : CLK : CLK : CLK E
) Caih) Caih) Caih) ’l
] | | ]
i STAGE 4 : STAGE 3 | STAGE 2 i STAGE 1 i
I 1 1

Figure 5.12: Three Stage Pipeline for the backend Memory Controller
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5.3.1 Pipeline Stage 4 — Request Arbitration

This pipeline stage 4 receives the commands from a sequential unit called CMD
qgueues. This stage contains logic units such as PRE, ACT Arbiter, CAS Arbiter and
PRE, ACT, CAS Sequencer. It is important to note that this sequencer performs the
timing checks on the commands coming from same requestor, not between requestors.
Once the arbitration and timing checks are completed, the PRE, ACT commands are
stored into L3 PRE ACT queue and the CAS commands are stored into L3 CAS FIFO
as shown in Figure 5.13. The commands stored into this L3 PRE ACT queue and L3
CAS FIFO represents four requestors of the same rank.

L3CMD QUEUES

L3PRE, ACT QUEUE

L2 PRE, ACT Register

s Y
REQ0—> ' \ PRE ACT Arbiter S
_E|_) PREACT 6> <> «—> s > —
Arbiter
1 RRD, FAW
REQ1 —B_) & Sequencer
REQ2 —> CAS Arbiter L3 CAS FIFO
CAS Arbiter
- & —> |je— <« < —>
REQ3— > CAS, BTB
Q PRE, ACT, CAS Sequencer
— \  Sequencer I\
CLK E CLK E i CLK L2 CA? Storage
N > < >
1 STAGE 4 1 ! STAGE 3 1

Figure 5.13: Stage-4 Pipeline Figure 5.14: Stage-3 Pipeline

5.3.2 Pipeline Stage 3 — Bank Arbitration

The pipeline stage 3 contains the logic block called PRE, ACT arbiter and RRD, FAW
sequencer which receives the commands from L3 PRE, ACT queue of stage 4.
Similarly, the stage 3 also contains CAS arbiter and CAS, BTB sequencer which
receives the command from L3 CAS FIFO of stage 4. Having completed the
arbitration and timing check tasks, the PRE, ACT commands will be dispatched into
the L2 PRE, ACT register and CAS commands will be dispatched into L2 CAS register
as shown in Figure 5.14.
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5.3.3 Pipeline Stage 2 - Rank Arbitration

Stage 2 has two arbiters: PRE, ACT Arbiter and CAS Arbiter. First PRE ACT Arbiter
performs the rank arbitration for PRE ACT commands that are stored into the L3
PRE ACT Queues. At the same time, the CAS Arbiter performs the arbitration on
CAS Commands that are stored L3 CAS FIFOs. As you can see in Figure 5.15, there
are registers between the stage 3 and stage 4. These registers are used to carry out
the pipelined nature of the design. It is important to note that these registers are not
buffer to store the commands for a longer period; rather these registers are used to
delay the commands by just one clock cycle in order to perform the pipeline nature for
our design. Actually, the L3 PRE ACT queue and L3 CAS FIFO are the storage place
where the commands are getting buffered until they receive the ACK from L2 arbiters
and also they wait in the buffer until their timing constraint is satisfied.

! LZPREACT : ( )
RANK 0 : Register .
H H L1 PRE, ACT Register

L2 CAS —
Register

PRE,ACT = >
Arbiter -

! PREACT — :
: Register :
RANK1 @ % :
I cas — i :

Register

! PREACT —]

Register L1 CAS Register

CAS —
Register

A 4

=

! PREACT ]

RANK 3 § Register

I cas —
: Register
L e LT i

CLK

CrK STAGE 2

A

STAGE 3

Figure 5.15: Stage 2 Pipeline — Rank Arbitration
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5.3.4 Pipeline Stage 1 — Command Arbitration

As shown in system level Figure 5.4, the stage 1 receives commands from all the
requestors representing different ranks. This is the final stage where all commands
come together from all the requestors of all the ranks. The stage 1 contains PRE,
ACT, CAS Arbiter of priority type. At this level, the command arbitration is
performed where CAS command is given higher priority than PRE or ACT if all 3
commands arrive at the same time. Since stage 1 arbiter is the final stage of our
memory controller design, the output coming out of this stage 1 should be clocked in
order to send the sequential signals into the memory device. This will prevent any
glitches coming from the stage 1 combinational logic being passed onto the memory
device. The Stage 1 PRE, ACT CAS arbiter also send out the feedback signal to Level
3 and Level 2, once the commands are dispatched out of this arbiter towards the
memory device. This feedback is used by the level 3 and level 2 timing sequencers to
evaluate the timing constraints for the next commands.

Up to now, all 3 stages of pipeline design was presented. The full implementation of
the front and back end design was done using Verilog RTL language and the code can
be found at [18].

N Feedback
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l I
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Figure 5.16: Stage 1 Pipeline — Command Arbitration
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5.3.5 Timing Analysis of Pipeline stages
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Figure 5.17: Timing Analysis of Pipeline Stages
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The detailed timing of each pipeline stages is shown in Figure 5.17. The data arrival
time indicates the time at which the data arrived after being subjected to the
combinational delay by the logic in each stage. The data required time indicates the
safest time at which the data is expected to reach to avoid the setup time, Ts. The
Time duration of T4, T3, T2, Tl indicates the Data Arrival time and it includes the
delay suffered by logic for the corresponding pipeline stages. In order to analyse the
time taken by each stage of the pipeline, the Static Timing Analysis (STA) was carried
on back end memory controller by using the Xilinx Timing Analyzer Tool. As a
requirement for the tool, the User Constrain File (UCF) was created with the
following four timing interfaces such as Input PAD to FLOP, FLOP to FLOP, FLOP to
Output PAD and Input PAD to output PAD

The following results were achieved from the Static Timing Analysis

T4 = Time taken by the Stage 4 =2.57ns
T3 = Time taken by the Stage 3 =2.47 ns
T2 = Time taken by the Stage 2 =2.51ns
T1 = Time taken by the Stage 1 =2.38ns
Ts = Setup Time of the flip flop. =0.29 ns
Minimum period =2.86 ns
Maximum Frequency: =350.00 MHz

5.3.6 Data Path of the Memory Controller

Our proposed memory controller is capable of reading data from the memory
device as well as writing data into the memory device. Both the read and write
data are sent out through 64 bit bi-directional DQ bus along with bi-directional
DQS strobe signal which is used to capture the read data. For the read
process, the read data DQ and strobe DQS are driven by the memory device for
each of the requestor representing different banks and ranks. Similarly, for
the write process, the memory controller is capable of driving the write data
through DQ bus along with DQS strobe signal. The memory model is design in
such a way to send and receive the data and strobe signals.
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Even though the memory controller design is capable of receiving read data
from memory device, the received read data is not sent to the system bus in
our design. We are not concerned with the system bus for our analysis, because
the absence of this additional data processing to the system bus does not have
any impact on the read and write latency that we are concerned for this thesis.

5.3.7 Testing of the Memory Controller

Identifying the main corner cases and writing tests to address those corner
cases are the most challenging part of the simulation setup. As inputs to the
design, various read and write memory traces were used as input stimuli. Once
the test cases and inputs are ready, next important task was to design the
memory model that would interact with our memory controller. The memory
model was designed to mimic the interface of DDR3 memory device. Next, the
test bench structure was designed where Design under Test (DUT) and the
memory model were instantiated. Test bench also includes the proper clocking
and reset generation. For design entry, simulation and synthesis purpose, the
Xilinx ISE Design suit, v14.4, was used.

To obtain the simulation results, we implemented the entire memory controller
for the front-end for the command generator and back-end for the arbitration
and memory timing check using Verilog RTL. Our implementation uses a fully
pipelined architecture with four stages to increase the hardware speed. We
synthesized the design using Xilinx Kintex 7 FPGA and obtaining a maximum
command bus clock frequency of 350 MHz. While this frequency is lower than
the 666 MHz frequency used in our simulations, we argue that an ASIC
implementation would result in significantly higher speed. The next section
details out the background information on hardware simulation setup and the
evaluation results.
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Chapter 6

Evaluation

The evaluation of our rank switching open-row memory controller design was carried
out through hardware simulation process for various memory configurations. We
evaluate the performance of our memory controller simulated with CHStone and
SPEC benchmarks. Since AMC results are only suitable for critical requestors, we
compare the latency results using critical requestor arbitration where CHStone and
SPEC benchmarks were used. Further, the simulation for non-critical requestor
arbitration was also carried out to measure the throughput for non-critical tasks. The
hardware simulation used DDR3-1333H memory device with data bus size of 64 bits.
Further, this analysis considers the memory device with 2 ranks or 4 ranks with 8 or
4 banks per rank respectively. This allows us to assign one bank to each requestor.

6.1 Synthetic benchmark Results

Synthetic benchmarks are used to show how the worst case analytical bound varies
as a function of benchmark’s parameters. Since the latency bound is a function of the
number of open/close and load/store requests performed by the requestor under
analysis, we decided to plot the average per-request worst case latency in nano-
seconds (y-axis) for a synthetic task as we vary the row hit ratio (percentage of open
requests, x-axis) and fixing the percentage of store requests to 20%. Both figures 6.1
and 6.2 plot results for data bus width of 64 bits and 16, 8 requestors respectively.
Figure 6.3 shows the case of 8 requestors and 32 bits bus. From all three figures
below, we can see that AMC’s plot is constant in the graph since it uses close row
policy; hence the latency does not depend on row hit ratio. When the number of
requestors and ranks are increased, our approach performs comparatively much
better. For 8 requestors with 32 bits bus and 0% row hit ratio, AMC still has 50%
higher latency compared to ROC 4 rank scenario. Similarly, the latency from paper
[2] is at least 50% higher than ROC 4 ranks overall cases. Note that the synthetic
results does not account for the refresh latency.
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Figure 6.3: Synthetic 8 Requestors 64 bits data bus result

6.2 Latency of open and close memory read access

The memory access can be one of the four types such as open read or close read or
open write or close write. In this experiment, the worst-case latency for memory read
and memory write is derived from the simulation for the request under analysis,
REQO while other requestors are used to apply interference. The latency time means
the time taken from the moment the read command is sent out from the front end
until the read data is received by the back end logic from the memory device. Every
time a command is dispatched from the front end, it is identified as either open read
or close read. For both open read and close read, the latency time is captured and
recorded into an output file. Out of all the captured latency times, only the worst case
values in each memory access category is considered for this analysis to be compared
against synthetic analysis results. We only consider open read and close read since
the read latency is much more critical than write latency. Therefore, the theoretical
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values are compared with hardware simulation results for the open read and close
read with 0 % write scenario. The experiment was carried out for the memory
configuration of 16 requestors with 4 ranks and 2 ranks as shown in Table 6.1. We
experimented with many different benchmarks from CHStone family to get the worst
latency delay for open read and close read. Note that theoretical analysis results did
not include the delay caused by refresh. Therefore, we did this experiment by turning
off the refresh operation in hardware simulation in order to make the correct
comparison with the theoretical results. For the hardware simulation, the open and
close latency delay is extracted as number of clock cycles and it is multiplied by the
clock period of 1.5 ns to get the actual delay as shown in Table 6.1.

REQs =16; Ranks =2 REQs =16; Ranks =4
Theoretical HW Theoretical HW
Open Read
. 230.5 ns 222.0 ns 162.5 ns 136.5 ns
100 %row hit
Close Read
) 364 ns 277.5ns 278 ns 2115 ns
0 %row hit

Table 6.1 Latency of open, close access with 0 %write

6.3 Simulation of Critical tasks only

In this case, all 16 requestors are assigned to critical tasks. Figure 6.4 shows the
Memory configuration 1 where the first Requestor, named REQO, is assigned as
requestor under analysis and the remaining requestors, REQL to REQ15 are used to
provide extensive interference to the Requestor under Analysis, REQO. The Requestor
under Analysis receives memory request inputs from CHStone benchmark family that
include mips, adpcm, aes, bf, gsm, dfadd, dfdiv, dfmul, dfsin, jpeg, motion and sha.
Other Requestors, REQ 1 to REQ 15 receives memory request input from LBM of
SPEC benchmark family to provide the timing interference to Requestor under
Analysis, REQO. After the simulation is completed, the total execution time for
Requestor under Analysis, REQO, was derived from the simulation output.
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This process was repeated for each of the twelve memory traces of CHStone
benchmark family. Having achieved the execution time for each benchmark, the
graph is plotted for execution time against each of the CHStone benchmark. This
process is repeated for all four configurations that are listed below where all the
requestors are assigned as critical applications. Figure 6.4 shows Configuration 1.

1. Configuration 1: Requestors = 16, Ranks = 4, Banks =4
2. Configuration 2: Requestors = 16; Ranks = 2; Banks =8
3. Configuration 3: Requestors = 8; Ranks =4; Banks=2
4. Configuration 4: Requestors = 8; Ranks = 2; Banks =4
[” ___________ -\\l V..
Rank 0 REQO :
Critical %3 % Arbiters& : CMD Rank 0
Task REQ3 Sequencers 1 —
I =
Rank 0 REQ4 ; Rank 1
Critical Qp3§ Arbiters& ' —_
Task REQ7 i Sequencers ) : ADDR‘
1 [ }
Rank 0 REQS —m—3( ) : Rank 2
an [ 1
Critical REQ jo———3] Arbiters& i =
Task  REQ 11—+ Sequencers 1 DATA
Rank 0 REQ 12 i i Rank 3
an
nl REQ13 ) ; _
Critical REQ 14 Arbiters& :
Task REQ15 ] Sequencers : 1|}
v
A Y 7’

Figure 6.4 Simulation setup for Memory Configurations 1
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The Figures 6.5 and 6.6 show the total execution time (y-axis) consumed by the
Request under Analysis (REQO) for each of the memory traces (x-axis) in CHStone
benchmark family. Figure 6.5 is derived when the 16 requestors are in action making
memory requests to the memory controller for both 4 ranks and 2 ranks scenarios.
Similarly, Figure 6.6 is derived when the 8 requestors are in action making memory
requests to the memory controller for 4 ranks and 2 scenarios. The y-axis is the
normalized execution time of the benchmarks against the worst case analytical bound
of our published paper [2]. The T-bars are the worst case analytical bounds while
rectangular boxes with shades are simulation results. In terms of analytical bounds,
the results of our memory controller with 4-ranks and 2 ranks performs well
compared to the theoretical results of our published paper [2]. It also performs well
compared to the AMC performance. But, as you can see from Figure 6.5, and 6.6,
latency from hardware simulation is higher than the software simulation results. This
is due to the fact that hardware design uses the three stages of pipelines with four
level of arbitration. The difference between simulated and analytical time is always
quite small for AMC, less than 10%. However, our simulated time is significantly
lower than the analytical bounds. This is because the analysis assumes a precise
worst case pattern of interfering requests by other requestors. The probability that
such pattern is produced at run-time is very low, albeit non-zero.

6.4 Simulation of Critical and Non-Critical tasks

This section analyses the scenario where both critical and non-critical requestors do
make memory requests at the same time to our memory controller. Memory
configuration 1 is used for evaluation with the following setup. Rank 1 and Rank 2
are assigned with 8 critical requestors whereas the Rank 3 and Rank 4 are assigned
with non-critical requestors as shown in Figure 6.7. The LBM memory trace from
SPEC benchmark family is split into four sub-files as per address range, 64 bytes and
each sub files are sent to each of the four banks in rank 3 and rank 4. For this mixed
simulation, critical tasks will be made to be in-order and the non-critical tasks will be
made to be out of order. It is worth to mention how in-order and out of order requests
are made at the front end. When each request arrives at the front end, it carries the
type of request (read or write), physical address and a delta delay. This delta delay
indicates the time difference between the last requests to current request. This delta
delay between requests makes them to be in-order. On the other hand, to generate the
out of order requests, the incoming requests with fixed delay will be used. This fixed
delay for each request will enable the out of order transfer for the non-critical task.
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Figure 6.7 Simulation setup for Critical and Non-Critical requestors

The bandwidth calculation is carried out when both critical (motion) and non-critical
(LBM) requestors are sending requests to the memory controller at the same time. As
shown below, the bandwidth for critical and non-critical are calculated to achieve the
total bandwidth.

Critical (Motion)

Critical (Motion)

Critical (Motion)

Critical (Motion)

Data Transferred by REQO

Time taken by requestor completed first.

Number of data completed * burst length * bus size

Time taken by the requestor completed first.

575 x 64 Bytes

112860 ns

326 MB/sec
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Data Transferred by (SUM REQ8 toREQI11})
Non-Critical (LBM) =

Time taken by the requestor completed first.

# of data completed * burst length * bus size

Non-Critical (LBM) =
Time taken by the requestor completed first.

{731 + 724 + 721 + 725} * 64 Bytes

Non-Critical (LBM) =

112860 ns
Non-Critical (LBM) = 1645 MB/sec
Total Bandwidth = Critical * 8 + Non-Critical * 2

= (326) * 8 + (1645) * 2 MB/sec

Total Bandwidth = 5.898 GB/sec

Theoretical Bandwidth =Frequency * Bus width
=1333 MHz * 8 Bytes

Theoretical Bandwidth =10.664 GB/sec

Since we included the rank switching techniques in our design, our total
bandwidth may not reach close to the theoretical bandwidth value. Our design is able
to achieve 5.898/10.664 = 55.3 % bandwidth which is somewhat close to the expected
rate of 66 % due to the addition of rank switching logic in our memory controller
design. For the future work, the design can be optimized further to get higher
bandwidth.
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Chapter 7

Conclusion

A rank-switching open-row memory controller design for mixed-critical system is
presented in this thesis. Our design was built to handle dynamic command
scheduling while existing memory controllers solely rely on static command
scheduling. The existing memory controllers usually take advantage of the close row
policy to easily handle the complex timing constrains. But, our objective is to utilize
both open row policy and private bank mapping to offer the worst case latency for the
critical requestors and minimum average bandwidth for non-critical requestors.

Further, our rank-switching mechanism improves the utilization of the data bus by
guaranteeing that consecutive data transfers are spaced by at most one rank to rank
transition delay. This delay is shorter than the write to read and read to write delays
that apply to the data transfers of the same rank. As a result, our proposed rank
switching memory controller design significantly improves the worst case latency of
memory requests while guaranteeing the isolation among requestors.

Our evaluation is carried out for both critical and non-critical requestors. The
evaluation on critical requestor has demonstrated reduction in latency for critical
requestors. The outcome of latency from our hardware simulation of critical
requestors is compared against our theoretical values and AMC and our hardware
design results perform well. For bandwidth, we evaluated the bandwidth for the
critical and non-critical and calculated the total bandwidth which is compared against
the theoretical bandwidth. The evaluation results show that our rank-switching open-
row memory controller performs well as the number of ranks increases. As a future
work, the design can be optimized to achieve higher speed.
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Appendix A: Design Block Diagrams

BackEnd_Memory_Controller

BE_CMD_NEQ_wo(16:0)

DE_CMD_REQO(10.0)

JE_CMD_NEQY(100)

DE_CMD_REQ(10.0)

JE_CMD_NEQX10:0)

IE_CMD_REQA(10,0)

JE_CMD_NEQB(10:0)

ME_GMO_AEQO(16,0)

I CMOD_NEQ7(10:0)

NE_CMD_REQB(1.0)

JE_CMO_NEQO(10:0)
BE_CMD_REQ10(18,0)
BE_CMD_NEQY(10.0)

DE_CMD_REQ12(18,0)

IE_CMO_NEQ1TN10:0)

WE_CMD_REQ14(18.0)

JE_CMD_NEQ15(10.0)
CK

neseY

4

[N

-

4

DOR_ADDR(16:0)

DOIN_BA(2.0)

DDR_CMD(7.0)

DODA_CMD_REQX(7:0)

DOR_CB(1,0)

FIFO_Full_REQ(15:0)

NEQ_WCAS_BENT(18,0)

DOR_CAS

DOR_CKI

DON_NAS

DO Wi

DOA_DQ(63.0)

DDRA_DQB(16:0)

BE_Memory_Controller

Back End Block Level View
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FrontEnd_Memory_Controller

FIFO_Full_REQ(15:0) | __ | FE_CMD_REQ_we(15:0)
__ | FE_CMD_REQO(18:0)
| FE_CMD_REQ1(18:0)
___| FE_cMD_REQ2(18:0)
__ | FE_cMD_REQ3(18:0)
| FE_CMD_REQ4(18:0)

REQ_WCAS_SENT(15:0) | __| FE_cMD_REQS(18:0)
___ | FE_CMD_REQS(18:0)
| FE_CMD_REQ7(18:0)
| FE_CMD_REQS(18:0)
__ | FE_CMD_REQY(18:0)
___| FE_cMD_REQ10(18:0)

cK | __ | FE_CMD_REQ11(18:0)
__| FE_CMD_REQ12(18:0)
| FE_CMD_REQ13(18:0)
| FE_CMD_REQ14(18:0)
__| FE_CMD_REQ15(18:0)
___ | ppR_pQ(63:0)

RESET | DDR_DQS(15:0)

A A
FE_Memory_Controller

Front End Block Level View
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Appendix B: Simulation Output - Example snapshot
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