
Causal Sensitivity Analysis for
Decision Trees

by

Chengbo Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Chengbo Li 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Ventilator assignments in the pediatric intensive care unit (PICU) are made by med-
ical experts; however, for some patients the relationship between ventilator assignment
and patient health status is not well understood. Using observational data collected by
Virtual PICU Systems (VPS) (58,772 PICU visits with covariates and different ventilator
assignments conducted by clinicians), we attempt to identify which patients would derive
the greatest clinical benefit from ventilators by providing a concise model to help clinicians
estimate a ventilator’s potential effect on individual patients, in the event that patients
need to be prioritized due to limited ventilator availability.

Effectively allocating ventilators requires estimating the effect of ventilation on differ-
ent patients; this is known as individual treatment effect estimation. However, we only
have access to non-randomized data, which is confounded by the fact that sicker patients
are more likely to be ventilated. In order to reduce bias due to potential confounding to
estimate the average treatment effect, propensity score matching has been widely studied
and applied to estimate the average treatment effect, which matches patients from treated
group with patients from control group based on similar conditional probability of ven-
tilator assignment given an individual patient’s features. This matching process assumes
no unmeasured confounding, meaning there must be no unobserved covariates influencing
both treatment assignment and patient’s outcome. However, this is not guaranteed to
be true, and if it is not, the average treatment effect estimation using propensity score
matching approach can be fragile given an unmeasured confounder with strong influences.

Rosenbaum and Dual Sensitivity Analysis is specifically designed for potential unmea-
sured confounder problems in propensity score matching, assuming confounder’s existence
it evaluates how “sensitive” the treatment effect estimation after matching can be. This
sensitivity analysis method has been well-studied to evaluate the estimated average treat-
ment effect based on propensity score matching, specifically, using generalized linear models
as the propensity score model.

However, both estimating treatment effect via propensity score matching and its sen-
sitivity analysis have their limitations: first, propensity score matching only helps in es-
timating the average treatment effect, while it does not provide much information about
individual treatment effect on each patient; second, Rosenbaum and Dual Sensitivity Anal-
ysis only evaluates the robustness of estimated average treatment effect from propensity
score matching, while it cannot evaluate the robustness of a complex model estimating the
individual treatment effect, such as a decision tree model.

To solve this problem, we attempt to estimate the individual treatment effect from
observational study, by proposing the treatment effect tree (TET) model. TET can be

iii



estimated through learning a Node-Level-Stabilizing decision tree based on matched pairs
from potential outcome matching, which is a matching approach inspired by propensity
score matching. With synthetic data generated to mimic the real-world clinical setting, we
show that TET performs very well in estimating individual treatment effect, and the struc-
ture of TET can be estimated by conducting potential outcome matching in observational
data.

There is a matching process in TET estimation, and to evaluate the robustness of
the estimated TET learned through potential outcome matching in observational data,
we propose an empirical sensitivity analysis method to show how sensitive the estimated
TET’s structure and predictive power can be in situations with strong levels of confounding
described by Rosenbaum and Dual Sensitivity Analysis. We use the same synthetic dataset
with different levels of confounding encoded as boolean confounders to experiment with
this sensitivity analysis method. We show the experimental results of estimating TET from
observational data, as well as their performances in sensitivity analysis. The experimental
results show that with strong covariates setting, the estimated TET from observational
data can be very stable against strong levels of confounding described by Rosenbaum and
Dual Sensitivity Analysis encoded as boolean confounders.

In this work, we propose TET model for individual treatment effect estimation with
observational data, we show that TET can be learned from matching individuals based on
potential outcome. We designed an empirical sensitivity analysis method to evaluate the
robustness of TET with different levels of confounding described by Rosenbaum and Dual
Sensitivity Analysis, and the experimental results show the learned TET can be stable
against strong levels of confounding.
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Chapter 1

Introduction

This thesis is motivated by a triage problem, that is, given a population of patients, identify
the patients who would benefit the most from treatment. In cases where treatment is a
scarce resource, solving the triage problem can help decision-makers decide how to best
allocate available resources. The details of the specific triage problem in which we are
interested are given below in Section 1.1.

Before addressing the triage problem, we begin by briefly reviewing fundamental con-
cepts and methods for estimating treatment effects. In the field of biostatistics, the treat-
ment effect, defined as the “comparisons of the outcome with treatment and the outcome
without treatment” [20], is the key to evaluate how a treatment influences health outcomes.
Here, we define treatment as a boolean variable assigned to individuals in a population,
and in general, the outcome refers to a scalar describing the health status at some point
after the treatment assignment. The treatment effect tells us if the treatment, such as a
new medicine or a new operation, causally influences the outcome, such as patient’s health
status. Thus, the treatment effect is one of the most important quantities to estimate when
designing new treatments or evaluating existing ones.

However, estimating the treatment effect of a specific treatment on an individual is
not an easy task, from both the medical and statistical points of view, because we can
never observe the counterfactual outcome; that is, we can never observe “what would have
happened” if a treated patient had not been treated, or vice-versa. Instead, researchers
often estimate an averaged treatment effect by comparing “similar” populations. Ideally
these populations are generated by randomization, which means treatment is randomly
assigned to patients in the population before observing their outcomes. Doing so ensures
that the population of treated patients and the population of non-treated or control patients
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are similar if the sample sizes are large enough. However, randomly giving treatments can
be expensive or even unethical, especially when the outcome can be a patient’s mortality
status that might be negatively influenced by treatment.

In cases where randomized experiments are not possible, we may use observational
data to estimate treatment effects. Here the term “observational” indicates that the ex-
perimenters do not assign treatment; assignment is controlled by clinicians, such that
clinicians can assign different treatments to different patients with different health status
according to their judgement. We refer to this as the “treatment policy.” Normally, a
clinician, or more precisely the treatment policy, tends to assign treatment to a sub-group
of patients that is believed to benefit most from the treatment. To describe this mathe-
matically, if we collect a group of covariates (“features” in machine learning) from each
patient to describe this patient’s characteristics that can influence the clinician’s decision
of assigning a treatment, the observational setting essentially means that treatments are
assigned in an unknown (but potentially learnable) fashion based on patient’s covariates,
instead of according to a known policy as in the randomized experiment setting. But,
from the statistical point of view, this observational setting can make even the average
treatment effect extremely difficult to estimate because the group of patients who received
treatment and the group of patients who did not may be dramatically different. Thus,
difference between average outcomes in the two groups might not be caused by treatment
itself, but by the selection process that determines whether a patient is treated.

One of the most widely used methods to estimate the average treatment effect from
an observational study is matching [22], which in general uses a set of observational data
to construct treated and control groups using individuals that have been “matched” with
each other by their covariates so that the generated groups are similar to one another.
One can then estimate average treatment effects in the same way as one would for a
randomized trials. There are many ways to achieve matching, among them propensity score
matching [20], which is widely studied and used. The propensity score of an individual is
that individual’s probability of receiving treatment according to the treatment policy that
generated the data. Based on the strongly ignorable assumption [20], it selects a subset of
control population through matching on propensity score, which is learned from the data.
Propensity score matching and its applications are used in a wide variety of fields including
medicine [2], marketing strategy design [9], political evaluation, and many other [8].

Propensity score matching can only produce unbiased estimates of the average treat-
ment effect if there are no unmeasured confounders, that is, if in our observational study we
have all of the covariates we need about each patient to correctly estimate their probability
of receiving treatment. Given an estimated average treatment effect provided by propensity
score matching, we typically want to know “How much we can trust this estimation?” To
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answer this question, one can conduct sensitivity analysis [19]. Such analyses consider how
our estimates would change if in fact the assumption of no unmeasured confounding were
false. In other words, they attempt to evaluate and show how “sensitive” the estimated
treatment effect can be to any potential unmeasured confounders. Rosenbaum Sensitivity
Analysis and its variation, Dual Sensitivity Analysis, are used to evaluate the sensitivity
of the estimated treatment effect provided by propensity score matching to unmeasured
confounding by assuming that the treatment policy is estimated using a Generalized Linear
Model (GLM) [18].

Propensity score matching and related sensitivity analyses allow us to estimate average
treatment effects using observational data and assess sensitivity to unmeasured confound-
ing. In order to solve our problem of interest, the triage problem, we wish to estimate
individual treatment effects using observational data and still assess sensitivity to unmea-
sured confounding. To this end, we make four main contributions:

1. We define the Treatment Effect Tree (TET) which we use to define and learn indi-
vidual treatment effects.

2. We show that the TET cannot be estimated using propensity score matching, and
present an alternative procedure for estimation.

3. We develop a new method for Dual Sensitivity Analysis of the estimated TET that
is based on previous work using Generalized Linear Models.

4. We illustrate the use of our approach on synthetic data and on observational data
collected by Virtual PICU Systems (VPS) concerning the ventilator triage problem.

1.1 Motivation

Our work is motivated by the need for evidence-based decision support for the ventilator
triage problem. Mechanical ventilators are widely used in Intensive Care Units (ICU), and
are a critical treatment that can prevent severely sick ICU patients from dying. However,
mechanical ventilators can also cause side-effects, such as barotrauma and lung injury to
patients, thus a ventilation decision should be carefully made based on a patient’s specific
status, in order to maximize the ventilator’s positive effect and minimize its side-effects on
the patient.

The ventilator triage problem refers to the situation of a limited number of ventilators in
ICU, such that in extreme scenarios (e.g. natural disasters) an ICU might not have enough
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mechanical ventilators to give to all patients who would, under ordinary circumstances,
receive them. In this setting we wish to allocate ventilators to patients for whom the
treatment effect is greatest; that is, we wish to allocate them to the individual patients
who would benefit the most. In our case, we focus on patients potentially having higher
chances of surviving with ventilations. This is essentially the individual treatment effect
estimation problem we described above.

Given data collected by Virtual PICU Systems (VPS) from different paediatric hospi-
tals ICUs, we have access to 58,772 individual patients with each patient’s status recorded
as 142 covariates of boolean, categorical, and continuous-valued types; each patient’s ven-
tilation decision made by clinicians was also recorded as a boolean variable in the data,
and each patient’s mortality status after ventilation was also recorded and included as a
boolean indicator in the data. We present an analysis of these data in Chapter 3.

1.2 Thesis Structure

In Chapter 2, we review the essential components from both statistical and computer
science fields upon which our work is based. These include logistic regression, basic causal
inference terminology specific to our setting, matching, sensitivity analyses, and decision
trees.

In Chapter 3, we introduce the concept of Individual Treatment Effect (ITE) and
define the category of problems that require estimating ITE. After that, we introduce one
method to estimate ITE from observational data, which is getting the Treatment Effect
Tree (TET) by training on matched pairs of individuals. As mentioned earlier, propensity
score matching is one of the most popular methods for estimating average treatment effects;
however we show that the TET cannot be estimated from propensity score matching alone,
with both theoretical analysis and experimental results, and we explain why matching on
estimated outcome can provide reasonable ITE estimation. We also propose our empirical
method of conducting sensitivity analysis on TET with different levels of confounding with
respect to the confounding concept defined by Rosenbaum and Dual sensitivity analysis.
We use an experiment to show how this new mechanism works on data collected from an
observational study.

In Chapter 4, we provide the experimental results using the methods in Chapter 3,
showing that the TET can be estimated from matching based on estimated outcomes, and
by showing how the true TET and the estimated TET differ with different levels of con-
founding, we show our sensitivity analysis on decision trees can provide a straightforward
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description of how confounding may influence the estimated TET structures. We also show
experiment results of applying TET estimation and sensitivity analysis on the estimated
TET with real-world clinical data collected by VPS.

Finally, we conclude our experiment results and include our thoughts during the exper-
iment, with the future plan of this work in Chapter 6.
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Chapter 2

Background

In this Chapter, we review the fundamental concepts of logistic regression, which is crucially
important in estimating the average treatment effect via propensity score matching. We
briefly introduce what logistic regression tries to estimate and how it works.

2.1 Logistic Regression Models

Being categorized as a Generalized Linear Model (GLM) [10], logistic regression models
[7] are designed to solve classification problems. Similar to any regression problem, a
classification problem also requires the prediction of target y given inputs x, but the target
value y can take only a few discrete values instead of a continuous value as in linear
regression. In this section we focus on binary classification problem, whose target value y
can be either 1 or 0, namely, positive ⊕ and negative 	 labels of data instances.

Instead of directly returning the final prediction of labels, logistic regression produces an
estimated conditional probability of label being positive based on input x and a hypothesis
h. This is computed by multiplying a parameter vector θ = 〈θ0, θ1, ..., θn〉 by an input
vector x and transforming the result to the range (0, 1) as follows:

hθ(x) = S(θTx) =
1

1 + e−θT x
(2.1)

in which,

S(z) =
1

1 + e−z
(2.2)
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is the sigmoid function, also known as the logistic function.

Logistic regression training aims to find the optimal hypothesis h that can predict
correct labels as well as possible, using the criterion of conditional likelihood. Given the
setting that the hypothesis returns the estimated conditional probability of being labeled
positive, we have

Pr(y = 1|x, θ) = hθ(x)

Pr(y = 0|x, θ) = 1− hθ(x)
(2.3)

or equivalently,
Pr(y|x, θ) = (hθ(x))y(1− hθ(x))1−y. (2.4)

Assuming that the m instances in the training data set are all drawn independently from
each other, the likelihood of hypothesis parameter vector θ can be expressed as

L(θ) = Pr(~y|X, θ)

=
m∏
i=1

Pr(y(i)|x(i), θ)

=
m∏
i=1

(
(hθ(x

(i)))
y(i)

(1− hθ(x(i)))
1−y(i)

) (2.5)

such that the optimal hypothesis parameters θ maximizes the likelihood above. Simi-
lar to the likelihood analysis in linear regression [12], instead of directly maximizing the
likelihood, we maximize the log likelihood:

`(θ) = logL(θ)

=
m∑
i=1

(
y(i) log hθ(x

(i)) + (1− y(i)) log(1− hθ(x(i)))
) (2.6)

This function may then be maximized over θ using any algorithm appropriate for smooth
functions. (E.g. Newton-Raphson.)

2.2 Tools for Observational Data

In this section, we introduce basic terminology used in the study of estimating treatment
effects from observational data, and we define some basic symbols that we will use through-
out the thesis.
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2.2.1 Definitions and Terms

X
The covariates (or features) describing a patient. In our case X describes a pa-
tient’s health status and characteristics. xi refers to the covariate vector of observa-
tion/patient i in the data set. In general, xi can have different types of elements, e.g.
boolean type, integer type, continuous value type, category type, etc. However, the
type of each element in X must be consistent across all observations.

Z
The treatment assignment. For our application, Z describes the ventilation deci-
sion made by clinicians in the ICU. zi refers to the specific treatment assignment
of observation/patient i. In general, Z contains only boolean values, since for each
observation i either receives a treatment ( zi encoded as True or 1, observation i is
“treated”), or not (zi as False or 0, observation i is “control”). We let N denote
the total number of observations we have. We also let N1 and N0 be the number of
treated and control observations, respectively.

R0 and R1

The potential outcomes. These contain, for each patient, the outcome of the patient
under both the treated and the control condition. Note that for any given patient,
only one of these is ever observed. r0

i refers to observation/patient i’s outcome under
the control condition, and r1

i refers to observation/patient i’s outcome under the
treatment condition. In our setting, both R0 and R1 are boolean.

R
The observed outcome. For a treated patient, this is R1. For a control patient, this
is R0. (The meaning of R depends on the value of Z.)

U
A hypothesized unmeasured confounder. It is never observed, though we may make
assumptions about its relationships to Z, R1, and R0. It describes a hidden covariate
outside of X that influences both the treatment assignment Z and the potential
outcomes R1 and R0. U is assumed to be independent of X, that is, one cannot
estimate U based on X. In our setting, we assume the potential confounder is
boolean.
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2.2.2 Treatment Effects

The treatment effect is a scalar quantity describing how much the outcome, such as com-
pany’s earning or patient’s health condition, is affected by the treatment, such as a mar-
keting action or a medical treatment. Given an individual i, the treatment assignment of
i, which is the treatment i received, is denoted as zi, and the outcome with and without
treatment is denoted as as r1

i and r0
i . The effect of treatment zi on individual i is defined

as the difference between two outcomes with different treatments:

τi = (ri|zi = 1)− (ri|zi = 0) (2.7)

= r1
i − r0

i . (2.8)

The average treatment effect (averaged over individuals) can then be defined as the average
difference between the two estimated outcomes with different treatments:

ATE =
1

N

N∑
i=1

τi (2.9)

=
1

N

N∑
i=1

r1
i − r0

i (2.10)

=
1

N

N∑
i=1

r1
i −

1

N

N∑
j=1

r0
j . (2.11)

By averaging each individual’s treatment effect across all individuals, we can estimate the
average treatment effect over the population. Note that this can be interpreted also as
subtracting the averaged control outcomes from the averaged treatment outcomes.

Estimating ATE

Clearly, the treatment effect τi on individual i is impossible to identify in the real world, no
matter whether in a randomized or non-randomized experiment, for each individual i only
one of the potential outcomes, either r0

i or r1
i can be observed, but never both of them.

One of them has to be counterfactual. To solve this problem, we may try to estimate one
of the potential outcomes. The estimated treatment effect on individual i can then be
expressed as the difference between one observed and one estimated potential outcome:

τ̂i = r1
i − r̂0

i (2.12)

or

τ̂i = r̂1
i − r0

i (2.13)
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Now consider the population in our setting: given a sample of N = N1 + N0 individuals,
treatment zi and the observed outcome ri which may be r0

i or r1
i depending on zi, we can

estimate the ATE by

ÂTE =
1

N1

∑
zi=1

r1
i −

1

N0

∑
zi=0

r0
i (2.14)

By averaging values from two subgroups, we no longer require counterfactual outcomes
for each individual. Also note that the treated and control subgroups might be of differ-
ent sizes. If the treatment and control groups come from the same distribution, as in a

randomized trial, ÂTE will be unbiased.

The Average Treatment Effect on the Treated (ATT) is similar to the ATE, but instead
of looking at the whole population, this time we only focus on the comparisons on the
treated subgroup

1

N1

∑
i∈Pt

(r1
i − r̂0

i ) (2.15)

in which r̂0
i is typically estimated using an observed outcome r0

j from the control group.
When the treated and control groups are the same size and have the same distribution,
ATT = ATE. Otherwise, estimating the ATT requires a reliable estimation of the av-
erage counterfactual outcome, specifically, the expected outcome without treatment, for
individuals i in the treated group. One way to estimate such a counterfactual outcome is
to match individuals in the treated group with individuals in the control group, as long
as the matched pair are believed to share a similar r0. The ATT is of interest because it
estimates the averaged effect of treatment among the treated sub-population; this is par-
ticularly relevant for triage if we are making decisions about patients who would ordinarily
be treated.

2.3 Matching

As we have seen, estimating the ATT requires that we estimate counterfactual outcomes
for individuals in the treated group. One of the most popular methods for this is called
matching. One view of matching is that it attempts to take observational data and produce
a new dataset that would have been created by a randomized experiment. The main idea
of matching is that estimating counterfactuals can be achieved by matching up individuals
with similar covariates from the different treated and control groups in observational data as
shown in Figure 2.1. If the well-matched individuals from different groups share the same
or similar covariates, it is reasonable to consider their treatments as randomly assigned
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in this matched group. Several methods of finding well-matched pairs from treated and
control groups are all called “matching.” This idea can also be viewed simply as trying

a

b

c

d

1

2

3

4

5

6

Treated Controlled

Figure 2.1: Matching between treated and controlled groups

to re-balance the covariate distribution bias in the treated and control groups due to the
treatment selection to simulate a randomized experiment, in order to finally compute causal
effects on the rebalanced-observational data. Matching has been widely used in the two
following scenarios based on different types of observational data:

1. The first scenario is the one in which the data contains each individual’s treatment
assignment and covariates, but the outcome values are not available or still remain
unknown. In this scenario, matching is primarily used to select appropriate individu-
als for follow-up studies, which may or may not involve the future outcomes. Though
this is not relevant to the purpose of using matching for causal effect estimation, it
was the setting for most original works on matching [15].

2. The second scenario is the one in which the data contains treatment assignments,
covariates, as well as outcome values. In this scenario, matching is widely used to
balance the treated and control groups for treatment effect estimation by reducing
covariate bias in these two groups.
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2.3.1 Strongly Ignorable Assumption

One of the important assumptions required for matching to be effective is the Strongly
Ignorable Treatment Assignment Assumption [20]. When data are properly collected from
a randomized experiment, x is known to include all covariates that are both used to assign
treatment z, and possibly related to the control and treated outcomes (r0, r1). Which
implies the treated and control outcomes (r0, r1) and treatment z are conditionally inde-
pendent given covariates x:

(r0, r1) |= z|x.

However, this is often not the case for non-randomized experiments. For a non-
randomized setting, given a vector x containing some covariates, the treatment assignment
is considered strongly ignorable if for all possible instances of x the following statement
holds true:

(r0, r1) |= z|x and 0 < Pr(z = 1|x) < 1 for all x

Briefly, if the statement above still holds, then we say the treatment assignment is strongly
ignorable, which requires that (1) each individual in the population has a non-zero chance
of being treated, and (2) treatment z and potential outcomes (r0, r1) are independent given
a set of covariates x. This assumption allows us to get consistent estimates of a treatment
effect in observational studies by adjusting for the observed covariates, for example by
matching[16]. With this assumption, it becomes reasonable to match individuals from
different treatment assignment groups based on their similar covariates x, such that the
matched pairs can be regarded as receiving treatments through a randomized experiment.

2.3.2 Covariate-based Matching

Considering the fact that τi of a treated individual i is the difference between observed
outcome r1

i of i being treated and the unobserved outcome r0
i of i not being treated, the

last missing piece that remains to be the estimated is the outcome r̂0
i of i not being treated,

for which we can never truly observe. Generally, all matching methods tend to estimate
this unknown expected outcome by looking at the control group and finding each treated
individual i with at least one control “paired” individual j from the control group, such
that we generate two sub-population using i and j, and these sub-populations share the
maximum of “similarity” of covariates distribution. In this section, we will discuss how to
measure “similarity” in order to find reasonable matches for all treated individuals.
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Definition of distances

Rather than define the “similarity between individuals,” it is typically easier to define
the difference between individuals and use it to find the “least different” individuals for
matching. There is a variety of distance definitions, and each definition of distance will
lead to a different matching procedure. Here we review four commonly-used definitions of
distance Di,j between individuals i and j.

Exact Distance Exact distance is an intuitive definition based on the concept of co-
variate similarity; in fact, instead of finding “similar individuals with different treatment
assignment,” it directly finds differently treated individuals with exactly the same covari-
ates:

Di,j =

{
0 if xi = xj

∞ if xi 6= xj.

Though we can imagine the pairs matched according to this exact distance must be most
reliable, since there is no other “similarity” better than being exactly the same, it is only
applicable to very special situations such that we have enough control individuals sharing
the exact same covariates as treated patients, which is not applicable in general. In fact,
if we push this property to the extreme, every treated patient can be matched with a
controlled patient using an exact distance match. These matched pairs together can be
regarded as drawn from a perfectly randomized experiment, if the covariates include all
factors influencing treatment assignment.

Mahalanobis Distance Mahalanobis distance is a more complex definition which makes
use of distribution of sample covariates in a population:

Di,j = (xi − xj)T cov−1(Xc)(xi − xj)

When Mahalanobis distance is used to estimate the ATT, cov(Xc) refers to the sample
variance-covariance matrix of X estimated from the control group. The difficulty of ap-
plying this definition in matching is that it does not work very well in situations where
X is high-dimensional and each covariate is not normally distributed, which is unfortu-
nately the case in most observational studies. Gu and Rosenbaum [6] point out the reason
Mahalanobis does not perform well in such cases is due to its assumption of regarding all
interactions among covariates in X as equally important, but this assumption is weak since
they are very likely to have different weights for different interactions among them.
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2.3.3 Propensity Score Matching

Perhaps the most widely-used matching criterion, propensity score distances are defined
based on conditional treatment probabilities,

Di,j = dist(Pr(zi = 1|xi), P r(zj = 1|xj))

where dist is some function describing the distance between two probabilities. Recall
that Pr(zi = 1|xi) is the conditional probability of an individual being treated given the
observed covariates. We will discuss the use of propensity scores in the next section.

The idea of propensity scores was first introduced by Rosenbaum and Rubin [20]. In-
stead of focusing on the differences and interactions among all covariates in X for scaling by
pushing the statistics into high-dimensional spaces (e.g. Mahalanobis distance), propensity
score takes the opposite direction of summarizing all covariates into a single quantitative
scalar, which is an individual’s conditional probability of being treated given the observed
covariates.

Consider the fact that for each specific propensity score value, these two sub-populations
of individuals with the same propensity score from treated and control groups should have
the “same distribution”, in this case it does not mean these two individuals are exactly
the same, but in a sense that tahey all share the same conditional probability of being
treated. From this point of view, matching with propensity score can also be interpreted
as conducting several mini-scale randomized experiments by resampling new treated and
control groups from the original treated and control populations.

Compared with exact distance, the advantage of propensity score is obvious: finding
pairs with the same conditional probability is a more tolerant condition than exact covari-
ates, so it is more likely to produce a greater amount of meaningful matched-pairs, as long
as we have the conditional probability estimated properly.

However, it would be impossible to get access to the true conditional probabilities
(propensity score) without a randomized experiment, therefore such probabilities must be
estimated from observational data. Generally, we may utilize any statistical model that
takes covariates as inputs and gives predicted binary values as outputs as a propensity
score model, and the most widely used model is logistic regression to regress treatment on
covariates

log

(
Pi

1− Pi

)
= β0 +

∑
xk∈xi

βkxk

which is based on the assumption that xi captures all factors that influence the treatment
of individual i. Notice that we do not involve the outcome of i into the propensity score
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model, due to the Strongly Ignorable Treatment Assignment Assumption we mentioned
before, which assumes the two potential outcomes (R0, R1) and the treatment assignment
zi should be conditionally independent given covariates xi.

Matching individuals with similar propensity score from different treatment assignment
groups performs well in selecting observations to construct “new” treated and control sub-
populations, such that comparing the average outcome between these two sub-populations
can be a good estimation of ATT. However, matching individuals on propensity score does
not guarantee that the outcome differences of each matched pair (i,j) is a good estimation
of the counterfactual outcome of either individual i or j, as we will see in our experiment
in Chapter 4.

2.3.4 Matching Methods

With a distance metric chosen, the next step to conduct matching is the matching process
itself, which in general refers to matching each treated individual with one or several control
individuals, and there is a great variety of methods to achieve this matching process. In
this section, we introduce one major popular group of methods for conducting matching.
One intuitive matching method is to match each treated to individual k control individuals
with the minimal distances according to the chosen distance measurement. Known as the
k : 1 nearest neighbor matching, this is probably the most commonly used approach to
find matched pairs.

A particularly variation of the k : 1 nearest neighbor matching is when k is set to 1,
which means each treated individual will be matched with only one control individual.
This one-to-one nearest matching approach is popular for its effective reduction of the bias
between treated and control groups, as well as its ease of implementation. Though there
are complaints regarding its only picking one being essentially equivalent to disregarding
a great number of individuals in controlled group. However, one-to-one matching can
also be seen as an ordinary k : 1 matching method with a even stricter condition —
only the most similar individuals will be matched as a pair. Considering the fact that in
most cases we do have a larger controlled group, one-to-one nearest neighbor matching
does provide a more precise match result with higher balance quality. When choosing
one-to-one nearest neighbor matching, one must consider in what order shall the treated
individuals be matched, for the change of order might vary the overall matching quality.
Many modifications of the above “greedy” one-to-one matching method can solve this
problem well, such as finding match pairs minimizing the overall distances between treated
and matched control groups, known as the optimal one-to-one matching.
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Another way to solve the problem is to allow matching with replacement; that is, each
controlled individual can be matched to more than one treated individual if necessary.
This approach works especially well in situations with insufficient controlled individuals,
and we no longer need to worry about greedy matching, since each matched individual
is still available to be matched, hence, previous matches do not influence future potential
matches. However, we need to pay extra attention when using one-to-one matching with
replacement: due to the possibility that one controlled individual can be matched multiple
times, the causal inference results, such as the estimate of ATT, might be heavily influenced
by only a few controlled individuals matched many times. To avoid this, we must take
the match frequency of each matched individual into account when conducting one-to-one
matching with replacement.

2.4 Sensitivity Analysis

As an important statistical tool, sensitivity analysis is the study of how the uncertainty in
the output of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input [19]. In this chapter, we will discuss sensitivity analysis in
detail, as well as its application to propensity score matching.

2.4.1 Unobserved Covariate

As we have discussed in Section 2.3.1, no matter which specific model is applied, all
matching methods share the same goal of balancing the treatment bias caused by the
non-randomized treatment assignment process. And in order to reduce this bias, it will
match individuals according to their covariates. In other words, the general idea of match-
ing is primarily based on the assumption that covariates X are sufficient to capture all
information of the treatment assignment process, hence we are able to represent the treat-
ment assignment process by building the treatment policy from X and Z. The assumption
above guarantees that if individuals are matched based on similar X or other reasonable
statistics of X, the differences of potential outcomes R among these matched individuals
are only due to the remaining difference between these matched individuals—the treatment
assignment Z itself. With all of these causalities above, we may draw a Bayesian Network
to illustrate this assumption.

More precisely, the assumption requires that the Bayesian Network (See Figure 2.2) is
a complete representation of all the causalities between X, Z, and R. There is no other
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X R

Z

Figure 2.2: Bayesian Network of Matching Assumption

factor except X to influence Z, and R is only influenced by X and Z, namely, there is no
hidden covariate which is not included in X that influences Z and R. If this assumption
of no hidden covariate holds true, then we are confident to say matching with a model
learned from X is a valid approach for causal inference in observational settings.

However, this very strong assumption is often not guaranteed in an observational set-
ting. For one reason, the treatment assignment process might not be fully recorded in the
data, which will leave the possible existence of one or even several hidden covariates out
of X. Another reason could be the involvement of another hidden covariate that remains
invisible during the treatment assignment process, such as assigning Z whose distribution
cannot be captured by X alone.

X R

Z U

Figure 2.3: Bayesian Network with Confounder U

The possible existence of one or more hidden covariates, known as the confounders U ,
will invalidate the previous assumption. Shown by another Bayesian Network with hidden
covariate (See Figure 2.3), if one or several confounders U is not included in X, and at the
same time U is marginally independent of X so we cannot represent/predict U from X
alone, then the information X contains by itself is not sufficient to represent the treatment
assignment process. As a result of the hidden U , any matched pair based on X alone
can be actually very different with respect to this confounder U . This causal uncertainty
makes it impossible to determine if the difference in outcomes R is due to the different
treatment assignments Z, or to different values of the confounder U , since U also influences
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the outcome R.

Considering the possible existence of confounder U , a common concern regarding match-
ing’s reliability is to question whether the readjustment of observational data by matching
solely based on X alone will fail to account for hidden confounder U , which was not mea-
sured and included during matching process, and if such a confounder U actually exists,
how much might it vary this readjustment to harm the original matching’s performance.

2.4.2 Rosenbaum Sensitivity Analysis

One method that attempts to answer the previous question is the Rosenbaum Sensitivity
Analysis [17] [18]. As illustrated by its name, Rosenbaum Sensitivity Analysis is used
to estimate a quantifiable increase of uncertainty among all matched groups that one or
several hidden confounders U will bring. This can also be interpreted as how “sensitive”
the matching is to potential hidden confounders.

The idea behind Rosenbaum Sensitivity Analysis is straightforward and empirical: as-
sume we have a set of data X, Z, R, with these data we learn a matching model h1 solely
based on X alone, then we get all matched groups according to h1, such that individuals in
the same matched group have the same estimated conditional probability of being treated
given covariates X. After matching, we suspect the existence of a confounder U ; however
we have no access to U ’s specific values.

If we consider the matching model h1 as a readjustment of individuals data points
between treated and control groups, then we know that with a new matching model h2

based on X and U together1, the readjustment from h2 is supposed to be different from
and more precise and reliable than h1. Or, U will change some of the readjustments in
h1, such as changing individual data points into different matched groups, and in turn,
produce different estimates of counterfactuals.

However, it is impossible to actually learn h2 and compare it to h1, since we do not know
the values of U . Drawing back to the very original goal of analyzing a matching model’s
reliability, Rosenbaum Sensitivity Analysis says the specific h2 model is not necessary for
evaluating h1’s sensitivity to U . As a matter of fact, what we want to know is how different
the matching results from h1 can be [18], if we manually change the matching readjustment
of h1, assuming a confounder U is swapping individual data points in different matched
pairs.

1In this case, there is no other hidden covariates besides U .
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Figure 2.4: Rosenbaum sensitivity analysis as readjustment of matching

Firstly, assume there is no confounder at all, so the treatment assignment of Z is only
based on covariates X. We can calculate the following ratio ρi,j:

ρi,j =
πi(1− πj)
(1− πi)πj

(2.16)

in which,

πk = Pr(zk = 1|X = xk) =
∑
u

Pr(zk = 1|X = xk, U = u)Pr(U = u) (2.17)

So ρi,j is actually the ratio of two individual i and j’s odds ratios of being treated given
their covariates. Besides, in a simple randomized experiment2, this ratio should be exactly
1.0, since every individual is equally likely to be assigned with treatment.

Now, consider the value of ρi,j with individuals i and j and an extra condition that i
and j share the same covariate values xi = xj, it is obvious that ρi,j is now 1.0, since i and
j have the same odds ratio of being treated given their covariates:

ρi,j =
πi(1− πj)
(1− πi)πj

= 1.0,∀(i, j) ∈ {(a, b) : Xa = Xb}

2In this case, it refers experiments with the setting that individuals are randomly selected, according
to a uniform distribution, to be treated.
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At the same time, if we calculate the same ratio between any matched pair of individuals
i and j, the statement of ρi,j being 1.0 still holds true, for the case of matching, matched
pair (i, j) might not share the exact covariates, but they do share the same conditional
probability of being treated give their covariates. Though the condition is a bit relaxed,
the ratio will not change, because the ratio’s value directly relies on these conditional
probabilities:

ρi,j =
πi(1− πj)
(1− πi)πj

= 1.0,∀(i, j) ∈ {(a, b) : πa = πb} (2.18)

The equation above further demonstrates the goal of matching is to mimic a smaller
scale randomized experiment in each matched group, by matching individuals with different
treatment assignments based on their conditional probability of being treated given their
covariates. Note that the conditional probability πi in the equation above is calculated
from a propensity score model based on covariates xi, and that the statement above only
holds true when there is no other hidden covariate not captured by xi.

Now, if we introduce a confounder U into our setting, which means though all the
matching procedures are done without U , this confounder does influence the conditional
probability of being treated given X and U , and it does influence the outcome R. So if
we use πx,uk to denote the true conditional probability of individual k being treated given
covariates xk and uk, we have:

πx,uk = Pr(zk = 1|X = xk, U = uk) (2.19)

Note the fact in our previous setting of no confounder, πx,uk = πk. However with confounder
uk, now πx,uk 6= πk. Due to this change, we also need to update the previous definition of
ratio ρi,j 2.18:

ρi,j =
πx,ui (1− πx,uj )

(1− πx,ui )πx,uj

for which ρi,j no longer relies on πi and πj, but now πx,ui and πx,uj .

Notice that this ratio is always calculated after matching, and during the matching
process we do not know any information of U , even its existence. The matching model
averaging over U is still solely based on X; in another words, the matching model is
still trying to generate matched groups (i, j) with individuals i and j having different
treatments, but the same πi = πj.
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Now we calculate the ratio between matched pair individuals again, and not to our
surprise, it is no longer guaranteed to be 1.0:

ρi,j =
πx,ui (1− πx,uj )

(1− πx,ui )πx,uj
,∀(i, j) ∈ {(a, b) : πa = πb} (2.20)

Let us assume that if we randomly pick matched individuals i and j to record their ratio
ρi,j, its value will be within certain boundaries:

1

Γ
≤ ρi,j ≤ Γ,∀(i, j) ∈ {(a, b) : πa = πb} (2.21)

How much this boundary departs from 1.0 reflects how much bias the confounder U brings
into the matching performance. As the influence of confounder U on treatment assignment
Z is increased, the ratio will be further from 1.0, hence, Γ will become larger.

This ratio is an essential component in Rosenbaum Sensitivity Analysis, and its bound-
ary Γ can then be seen as a boundary of the degree of departure from random assignment
of treatment, which is what a reasonable matching process is trying to achieve by matching
individuals with similar covariates but different treatments. With hidden confounders U ,
two matched individuals with exactly the same observed covariates X may still differ in
the odds of receiving the treatment, one of these individuals true odds of being treated can
be at most Γ times larger than this individuals matched pair.

Instead of trying to calculate the boundary Γ of this ratio, Rosenbaum Sensitivity
Analysis attempts to test how much the original matching’s performance (e.g. the estimated
ATT and its associated p-value) will change, if the matching individuals are changed and
swapped within a specific boundary of Γ, which now serves as a parameter to describe the
level of departure from a randomized setting [19].

2.4.3 Dual Sensitivity Analysis

Rosenbaum Sensitivity Analysis has investigated the potential imbalance or association
between the treatment assignment Z and the confounder U , and has been widely applied
in many fields to evaluate the robustness of matching.

However, Rosenbaum Sensitivity Analysis only focuses on using Γ to directly evaluate
and analyze treatment assignment Z’s departure from a randomized setting after intro-
ducing U . Recall the previous Bayes network 2.3, the confounder U has direct causal
effects on both treatment assignment Z and outcome R, though swapping individuals in
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the original matched pairs with certain level of randomness does introduce uncertainty
when comparing their outcomes, but essentially Rosenbaum Sensitivity Analysis does not
include a straightforward way to evaluate how much randomness the confounder U brings
to outcome R.

As an extension of the original Rosenbaum Sensitivity Analysis, Dual Sensitivity Anal-
ysis [5] includes of the confounder U ’s effects on both the treatment Z and outcome R
simultaneously, by controlling different levels of uncertainty in these two effects. Dual
Sensitivity Analysis can be regarded as a more comprehensive analysis on matching’s sen-
sitivity to the potential unobserved covariate [5]. With exactly the same settings of Γ in
Rosenbaum Sensitivity Analysis, Dual Sensitivity Analysis evaluates the randomness U
introduces to R by asking a straightforward question: given treatment and covariates, how
inbalanced will the outcome distribution become after introducing U? For simplicity, we
assume the treatment Z, and outcome R are all binary.

For the scenario without any confounder at all, the outcome R is only determined by
covariates X and treatment Z as illustrated in Figure 2.2. Similar to the previous approach,
for two individuals i and j, let us calculate the following ratio:

ρ′i,j =
ηi(1− ηj)
(1− ηi)ηj

(2.22)

in which
ηk = Pr(rk = 1|X = xk, Z = zk). (2.23)

So this ρ′ essentially represents the odds ratio of outcomes between two individuals given
their covariates X and treatment assignments Z. Though the ratio ρ′ here does not have
any direct links to randomized experiment as ρ in Equation 2.16, in the following we show
it to be very helpful when analyzing the confounder’s effect on outcomes.

For two individuals i and j having the identical covariates X and treatment Z, it
is intuitive that their expected outcomes are identical, hence ρ′i,j is 1.0, as long as our
assumption that outcome R is fully determined by X and R holds true:

ρ′i,j =
ηi(1− ηj)
(1− ηi)ηj

= 1.0,∀(i, j) ∈ {(a, b) : Xa = Xb, Za = Zb}.

Now let us include confounder U into our analysis. Note that besides Z and X, U is
also influencing outcome R. So if we use P ′k to denote the true conditional probability of
individual k having outcome as 1 given covariates xk, treatment zk and confounder uk, we
have:
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P ′k = Pr(rk = 1|X = xk, Z = zk, U = uk). (2.24)

Because, P ′k 6= ηk with confounder U , we need to update our definition of ρ′i,j in 2.22:

ρ′i,j =
P ′i (1− P ′j)
(1− P ′i )P ′j

. (2.25)

Now this ratio ρ′ relies on the true conditional probabilities P ′ instead of η.

To estimate the treatment effect, the ideal method is to compare outcomes from two
individuals with identical covariates but different treatments. This is based on the Strongly
Ignorable Assumption that individual’s two potential outcomes r0 and r1 are conditionally
independent of treatment Z given covariates X. In this case, it is reasonable to say the
outcome difference between individuals having the same covariates is a result of different
treatment assignments. However, the existence of the unmeasured confounder U breaks
this Strongly Ignorable Assumption, that is, potential outcomes are no longer independent
of treatment Z given covariates X, moreover, their values now also have dependencies on
U .

Given two individuals i and j having identical covariates, their outcomes differences are
not only due to different treatment assignments. Even if two individuals have identical co-
variates and identical treatment, their outcomes may still vary within certain boundaries:

1

∆
≤ ρ′i,j ≤ ∆,∀(i, j) ∈ {(a, b) : Xa = Xb, Za = Zb} (2.26)

To further explain the boundaries above: the ratio ρ′i,j departs from being 1.0 only in cases
that Ui 6= Uj, and how much it will depart is bounded by ∆, for example, ∆ being 2.0
means the odds of getting a positive outcome can be doubled if we only change the value
of U . A ∆ being 1.0 simply says the odds of getting positive outcome will always stay
the same no matter how U changes, in another words, given X and Z, the unobserved
covariate U would introduce no imbalance to R at all.

2.4.4 Using Logistic Regression Propensity Score Models

Rosenbaum Sensitivity Analysis is widely used to evaluate a matching’s performance in
scenarios where treatments are supposed to be assigned from a model which can be approx-
imated by a logistic regression model taking covariates X and confounder U as inputs. As
will be shown in this section, the main reason for choosing Rosenbaum Sensitivity Analysis
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to evaluate the reliability of matching with logistic regression models relies heavily on the
treatment model’s log-linear structure, with which the degree of departure parameter Γ
and confounder U will have a more direct link with each other. With this advantage, the
specific values of U are no longer necessary for analyzing a model’s sensitivity. Instead,
one can set different levels of effect from U to Z by directly setting different values of Γ.

Assume a regression model is learned from data to predict the treatment assignment, in
which the covariates X and the confounder U are independent from each other and there
is no interaction between them (See Figure 2.3), as appeared in the following expression:

log(
Pi

1− Pi
) = κ(xi) + γui. (2.27)

Here, Pi is the conditional probability of being treated given covariates X and U as in
Equation 2.19, κ is a function taking a vector of X as inputs, and γ is a factor denoting
the confounder U ’s effect on treatment assignment.

Then we have the odds ratio of i being treated as:

Pi
1− Pi

= exp(κ(xi) + γui)

For two perfectly matched individuals i and j, we have xi = xj, such that we can rewrite
the ratio of ρi,j between these two individuals as:

ρi,j =
Pi(1− Pj)
(1− Pi)Pj

= exp(κ(xi)− κ(xj) + γui − γuj)

= exp (γ(ui − uj))
(2.28)

When U ’s constraint has been set as binary ui = {0, 1},∀i, then ρi,j can be further simpli-
fied as

ρi,j =


1 if ui = uj

exp(γ) if ui > uj
1

exp(γ)
if ui < uj

and we can directly map the degree of departure parameter Γ to the confounder effect γ
as:

Γ = exp(γ)

This allows us to avoid having to produce specific values of the confounder U when con-
ducting experiments for sensitivity analysis, but this is only possible if a generalized linear
relation is assumed between the treatment odds to X, as well as the treatment odds to U ,
while there is no interaction between X and U . Subsequently, we will see that when using
decision trees for analysis, we cannot use this “trick.”
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2.5 Decision Trees

Decision trees are predictive models constructed by supervised machine learning based on
the labeled training data. Decision tree learning algorithms work by finding the most infor-
mative covariate, partitioning the data based on the covariate, then recursively processing
each partition. After the training process, covariates selected to split the data can be rep-
resented as a tree-structure model, hence the term “decision tree”. Decision tree models
are widely used due to good predictive performance, as well as ease of implementation and
interpretation. Decision trees can be used for both regression analysis, whose predicted
outcome is more often a real value number, and classification analysis, whose predicted
outcome is the class that data belongs to. Here we introduce the classification decision
tree model.

2.5.1 Decision Tree Representation

The learned decision tree model consists of a group of 〈covariate, partitions〉 pairs arranged
in the structure of a tree; in each 〈covariate, partitions〉 pair the covariate is represented as
a “tree node” and each partition from partitions is represented as a “branch” or a directed
edge from the covariate to the child node.

Each tree node can have a number of “branches” that link to other child tree nodes,
a “branch” is normally defined as a constraint of the node covariate, such that instances
satisfying this branch’s constraint will be sent to the child node the branch links to. When
a tree node has more than one branch, we say the data instances split on this tree node,
while a tree node with no branches is a “leaf” node. Instead of further splitting data
instances, a leaf node returns the final prediction. If a tree node has no incoming edges or
branches, it is the root node of the tree.

With a learned decision tree model, an instance is classified by starting at the root node
of the tree, testing the covariate specified by this node [11], then moving down the tree
branch whose corresponding constraint is satisfied by the value of covariate. This process
is then repeated for the subtree rooted at the new node, until it reaches a leaf node.

In 2.5, we show a typical learned decision tree [11] which classifies Saturday mornings
according to whether they are suitable for playing tennis. The node at the top with
covariate Outlook and no incoming branches is the root node. Nodes with rounded corners
without any child node are the leaf nodes; each leaf node stores the final predictions. Other
nodes are all splitting nodes.
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Outlook

Humidity True Wind

False TrueFalse True

Sunny Overcast Rain

Strong WeakHigh Normal

Figure 2.5: A decision tree to classify if a day is suitable for playing tennis

2.5.2 Decision Tree Learning Algorithm

The process of generating tree nodes and tree branches to develop a learned decision tree
requires a decision tree learning algorithm, which is essentially a searching algorithm in
the space of all possible decision trees that can be built from the data. In general, most
decision tree learning algorithms are variations on a core algorithm that employs a top-
down, greedy search [11], that is, gradually “growing” a decision tree from the root node,
generating child nodes such that each node’s covariate and constraints could “mostly” split
all local instances in this node into groups with homogeneous predictions. In this section,
we review one basic decision tree learning algorithm, the ID3 algorithm [14].

Covariate Selection

The core idea of the ID3 algorithm is to answer the following question: which covariate and
constraint should we choose to generate the next node that is most useful for classification?
The ID3 algorithm answers this question with the help of information gain: recursively
generate a new node with the most informative covariate and constraints that maximize
the information gain, which is the amount of entropy decrease after data are partitioned by
the new node. The definition of information gain is based on the concept of entropy, which
in information theory measures the impurity of the label within an instance collection.
One way to understand this is to connect entropy with bit representation of each instance,
that is, entropy can be regarded as the averaged minimal number of bits/digits we need to
represent all instance labels in a group:
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We can easily distinguish two different types of instances by labeling each of them
either 0 and 1, which will take only 1 bit. So with n bits, we can distinguish at maximal
2n different instances labels. Given an instance collection with k different labels, we can
easily calculate the minimal bits to distinguish all of them, which is log2 k.

However, this minimal number of bits can only reflect how many different labels we
have in an instance collection, it does not reflect any information regarding the proportion
of each label in the collection, while one might argue that by changing the proportion of
each label, the “impurity” of collection will also change.

To include the information regarding proportion of each instance labels in the impurity
measurement, we can take the use of each unique instance type’s probability in a group.
Assume in our instance collection S, we have n different instance labels, and the proportion
of instance label i in S denoted as pi, we have the definition of entropy in collection S:

Entropy(S) = −
n∑
i=1

pi log2 pi (2.29)

while,
n∑
i=1

pi = 1 (2.30)

if we only have two labels in the group: positive label with proportion of p⊕ and negative
label with proportion of p	, then the group entropy can be represented as

Entropy(S) = −p⊕ × log2 p⊕ − p	 × log2 p	 (2.31)

in which
p⊕ + p	 = 1.0 (2.32)

such that entropy is 0.0 if all instances in the group have the same label, and for boolean
types the entropy reaches the maximum of 1.0 if this group is equally mixed with two
different types; hence, higher the entropy, less the purity.

Information gain captures the drop in entropy after processing instances through a
node. Given a splitting node Node A with two partitions Partition1 and Partition2 as in
Figure 2.6, all instances in Node A satisfying the condition of Partition1 fall into Node B,
others in Node C. Assume there are in total NA instances in Node A, NB instances in Node
B and NC instances in Node C, then we have NB +Nc = NA.

As we have shown, the entropy of all instances in Node A before splitting is defined as:

Entropy(A) = −
∑
i∈n

pi log2 pi (2.33)
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Node A

Node B Node C

Partition1 Partition2

Figure 2.6: Splitting node with binary constraint

similar to Node A, we can also get Entropy(B) and Entropy(C) after the split, the infor-
mation gain after this splitting node is formally defined as:

IG(A) = Entropy(A)− NB

NA

Entropy(B)− NC

NA

Entropy(C) (2.34)

As we can see, with a larger information gain, the two groups of instances will get “purer”
after the split, hence, the more useful this split is to our classification, which can be
regarded as a series of splits aiming to generate subgroups with minimal group entropy.

Thus, when generating a new split node, ID3 tries all covariates with constraints and
calculate the potential information gain for each covariate, then picks the 〈covariate,
partitions〉 pair with the highest information gain as a new node, then recursively gen-
erate nodes for each child node.

As a greedy, top-down approach for generating new splitting nodes, one may ask when
to stop growing more nodes. To solve this problem, different stopping criteria can be
used, such as stopping when there is no covariate to use, or stopping when the number of
instances is below a threshold. When the algorithm stops generating a child node for a
branch, the current node becomes a leaf node in the tree. A leaf node returns the majority
of the class among all instances in it as the prediction.

2.5.3 Tree Performance

After a decision tree is learned, we need to evaluate its performance; that is, if the learned
tree can classify new instances correctly, which refers to the predictive power of the tree.
And it would be helpful to qualify a learned tree by estimating its predictive power before
actually putting it in usage.
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Predictive Power and Cross Validation

Estimating the predictive power before new instances are obtained means we need to use
the same data for both training and testing. However, we should never use the same
instances for both training and testing purposes, since decision tree learning algorithm
takes a greedy approach, the learned tree tends to maximize its predictive performances
on instances used to train it. In another word, the learned decision tree’s predictive power
is biased to the data set it learns from; hence, using the training data for testing provides
an overestimation of its predictive power.

One way to properly estimate the learned tree’s predictive power is cross validation.
The idea is to split the whole data into two sets: training set and testing set. Use only the
training set data when growing a decision tree; after learning a tree, use only the testing
set data to test the learned tree’s predictive power. The estimated predictive power, such
as learned tree’s prediction error rate on testing set, is more trustworthy as long as there
is no intersection between training and testing sets.

As a variation of cross validation, k-fold cross validation provides a more predictive
power estimation by avoiding the bias in training and testing sets: instead of splitting the
whole data into two sets, it equally and randomly split the whole data into k folds, namely,
fold1 to foldk. Then it iterates through all k folds, in every iteration i it keeps fold i as the
testing set, learns a new tree Tree i based on other k−1 folds, uses fold i to test the learned
Tree i, keeps record of the predictive power metric, such as error-rate, of Tree i. After all
k iterations, it calculates the average of all k predictive power metrics as the estimated
predictive power of the decision tree learned from the whole data.

Pruning

One potential problem with the greedy decision tree learning algorithm we mentioned
before is overfitting; that is, the learned decision tree often overfits the training data, such
that it only performs the best with instances from the training data, but performs worse
with other new instances. This happens for several reasons: one, there can be noise in the
training data or the training data is biased, which causes the greedy algorithm to pick less
optimal covariates while growing the tree; another reason can be improper selection of the
threshold in the stopping criterion, thus each node near the bottom of the tree does not
have enough instances to grow child nodes that improve the overall tree performance.

One way to deal with the potential overfitting problem is to use a validation set for
reduced-error pruning. Before learning a decision tree from the training data set, we first
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split the training set into two separate groups: the new training set and the validation set.
There should be no intersection between these two sets. The training set, as it literally
means, is for training purposes only, while the validation set is used to prune the decision
tree learned from the training set. Reduced-error pruning assumes that each node in the
tree can be regarded as a potential node to be pruned. Starting from the leaf nodes in
a bottom-up approach, each node i will be tested in two cases: The first case is to keep
the node as it is, no matter if it is a leaf node or a splitting node, calculate the estimated
classification error rate eroot(i) of this tree instance using validation set. The second case
is to remove the subtree rooted at this node, then making this node, which was originally
a splitting node, a new leaf node by returning the classification result as the most common
classification among all instances in this node, calculate the classification error rate eleaf (i)
of this modified decision tree instance using validation set. We then compare the decision
tree’s prediction accuracy on validation set and modify the tree by only iteratively removing
the node such that its removal will increase decision tree’s predictive power the most,
which is the node i that maximizes the value of eleaf (i) − eroot(i). This pruning process
stops when any node removal will only decrease decision tree’s predictive power, that is,
eleaf (i)− eroot(i) < 0.0,∀i.

2.5.4 NLS-Decision Tree

The pruning approach above solves the problem of overfitting in greedy decision tree learn-
ing algorithms; however, this only improves the estimated predictive power of the pruned
decision tree. Considering the fact that our final learned decision tree should be easily
interpreted and used by clinicians in all situations even without the help of a computer,
we do need to maintain a stable and meaningful structure of the tree. In cases of small
amount of training data, the ID3 algorithm might not be the ideal approach for decision
tree generation, for it produces a tree that maximizes predictive power on the training
data, but the resulting tree may not be stable to small changes in the data.

The stability of a decision tree often refers to if the decision tree maintain its original
structure when noise is introduced in the training data. If the decision tree keeps its original
splitting nodes and edges connecting these nodes, then the decision tree is regarded as
stable. The Node-Level-Stabilized learning algorithm (NLS-DT) designed by Dannegger
[4] attempts to generate a decision tree based on predictive power while maintaining a
simple and stable tree structure at the same time. In this section, we will introduce the
general concepts of the NLS-DT algorithm.
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Algorithm

The NLS-DT algorithm generates a binary classification decision tree with a more stable
structure than other algorithms such as ID3. The main concept of NLS-DT is to intro-
duce bootstrap replicates of data when choosing covariates as splitting nodes. As shown
in Algorithm 1, when generating a new node using NLS-DT, instead of directly exam-
ining all potential covariates with their informative metrics such as information gain, it
uses n bootstrap replicates of data at the current node to construct a node with a high
predictive power that also maintains the node-level stabilization at the same time. For
each node-level bootstrap replicate, the algorithm separately chooses the most informative
covariate and constraint, then it generates the splitting node with covariate that voted by
the most number of bootstrap replicates, and taking the median of constraint values from
all bootstrap replicates voting for this covariate as the final constraint value of this new
node.

Data: Labeled training data
Result: NLS-Decision Tree

1 Initialization of root node;
2 for every leaf node t containing Nt instances do
3 for n = 1 to N do
4 Generate bootstrap replicate Nt(n) from Nt;
5 Choose the most informative 〈covariaten, constraintn〉 from Nt(n);
6 Include 〈covariaten, constraintn〉 into Tablet;

7 end
8 Set covariate(T ) as the most frequent covariate in Tablet;
9 Include Tablet entries with covariatei == covariate(T ) into Table′t;

10 Set constraint(T ) as the median of constraint in Table′t;
11 Update current node as 〈covariate(T ), constraint(T )〉 ;
12 Generate two child leaf node of t with instances in Nt split by constraint(T );
13 Reset Tablet and Table′t;

14 end
Algorithm 1: NLS-Decision Tree learning algorithm

Pruning

After a NLS-Decision Tree is learned from training set, we also need to prune the tree to
avoid overfitting. As proved by Briand [3], the reduced-error pruning approach we intro-
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duced before performs well for NLS-Decision tree compared with other pruning method
such as cross-validation pruning.
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Chapter 3

The Treatment Effect Tree (TET)
and its Causal Sensitivity Analysis

In this chapter, we introduce our new method to estimate the treatment effect on each
individual with the help of a decision tree learned from matched pairs, and we propose our
method to conduct causal sensitivity analysis for this decision tree model, as an extension
of the classic Rosenbaum Sensitivity Analysis and Dual Sensitivity Analysis.

First, we discuss the ventilator triage problem and categorize all similar problems that
require estimation of individual treatment effects. We argue that estimating individual
treatment effects can be achieved by estimating the treatment effect of sub-populations
grouped by similar covariates that influence outcome, and that this is a necessary first step
to solve such problems.

We then introduce a new concept which we call the Treatment Effect Tree (TET),
which is a decision tree that can be used to achieve the estimation of individual treatment
effect. We also present a guide for how to learn and estimate the TET based on individuals
through matching on potential outcomes.

Having introduced the idea of the TET, we then propose our empirical end-to-end
sensitivity analysis for TET estimation. This can be regarded as extending the original
Rosenbaum and Dual sensitivity analysis from logistic regression models into a more general
group of models, including decision trees.
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3.1 Individual Treatment Effect Estimation Problems

As we mentioned in Section 1.1, we attempt to solve the ventilator triage problem by
prioritizing patients according to the effect of mechanical ventilation on those patients,
and this requires estimating the Individual Treatment Effect, which is one of the main
tasks in our work. We use the term of Individual Treatment Effect (ITE) to refer to the
treatment’s effect on each individual:

τi = r1
i − r0

i (3.1)

in which, as before, rzi stands for the potential outcome of individual i if they had treatment
assignment z.

Given the data collected from an observational study, estimating the Average Treatment
effect on the Treated (ATT) can be achieved by performing propensity score matching
on the data and compare the average outcomes within the treated and control groups as
discussed in Section 2.3.3. However, the ATT only evaluates the treatment’s effect averaged
across all treated individuals; it does not provide any information helping us to understand
which subgroup of individuals would benefit the most from treatment, given the assumption
that treatment might have different levels of effect on subgroups of individuals with different
covariates. In fact, the assumption above is often considered as true, that is, treatment
does not have a “uniform” effect for all individuals. For example, a treatment specifically
designed to cure a disease might be more effective to patients with that disease, and a
marketing action such as price reduction might be more effective to customers essentially
care more about the price.

Instead of estimating the averaged treatment effect across treated individuals, estimat-
ing the treatment effect on each individual can provide valuable information helping us
to have a thorough understanding of the treatment, and designing a better strategy of
assigning treatments in the future. Though we use a specific method to estimate the ITE,
we believe there are many other methods for estimation. To be more precise, in this work
we focus on estimating the ITE for each treated individuals, hence, we estimated the In-
dividual Treatment Effect on the Treated (ITT). For the convenience of notation, we use
the term ITE in following sections to refer to the estimand, and the estimated ITT as the
estimation of ITE.

With the idea of ITE given, the ventilator triage problem can be regarded as one
example of a category of problems; here we categorize such problems as ITE Estimation
Problems, for they all require a valid estimation of a boolean treatment’s effect on each
individuals from observational study. We call a problem an ITE estimation problem if it
satisfies the following conditions:
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1. Each individual i can be described by covariates xi.

2. The treatment Z is a boolean value, and the treatment zi of individual i is fully
determined or strongly influenced1 by covariates xi.

3. Individual’s outcome R after treatment is observed and recorded during the study.
For individual i, the corresponding outcome ri is believed to be fully-determined or
strongly influenced by the covariates xi and treatment zi.

4. The goal is to estimate and predict the ITE for each individual i based on covariates
xi.

For the specific case of our ventilator triage problem, the goal is to provide a model
taking covariates of a new patient that can predict the treatment’s effect on this patient.
In the following section, we propose our method to estimate ITE with data collected from
observational studies.

3.2 Treatment Effect Tree (TET)

The concept of Treatment Effect Tree (TET) is motivated by the ventilator triage problem:
clinicians want an easy-to-apply model predicting the treatment effect of ventilator on a
new patient given the patient’s covariates, and this model should be applicable offline
without the help of any computer after the model is learned. The rationale for this is that
the model is intended for use in potential disaster scenarios, where access to a computer
may not be possible. This motivation naturally leads us to the idea of a decision tree model
predicting treatment effect for each individual patient, for its ease of implementation and
for the intuitive structure that can be easily understood and applied by clinicians without
computer science background.

The rationale for building the Treatment Effect Tree is that treatment is supposed to
have different effect on individuals described by different covariates, thus individuals can
be grouped according to their covariates and the treatment should have similar amount of
effect within the same group. This process can be represented by a tree model, that is, if
we use a decision tree to achieve the grouping process based on covariates, then individuals
falling into the same leaf node are expected to have a similar treatment effect.

1Considering the cases with potential confounder U, zi is determined by xi and ui together
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Given the definition of ITE in Equation 3.1, the real TET can be acquired by predicting
the τi via tree nodes that split on covariates xi. This can be achieved with decision tree
learning algorithms, if two potential outcomes are accessible for each individual at the
same time. However, as we discussed, this is not practical because for individual i we
can only observe one of the two potential outcomes, either the outcome with treatment r1

i

or the outcome with control r0
i , but never both. So the real ITE data are not available;

instead, we can only try to estimate the real TET by estimating counterfactuals. Then the
problem now becomes what information shall we feed the decision tree learning algorithm
to estimate the real TET, or, how shall we acquire the ITE from the data collected from
an observational study.

A TET may be constructed for different populations of patients; in this thesis we
focus on building a TET specifically for the population of treated patients, analogous
to estimating the ATT. A similar strategy could be used to build a TET on the entire
population, or on a different sub-population.

3.2.1 Estimating the TET using matching

Matching is designed to handle the problem of only one outcome being observed, and
considering its applications, matching has been used to estimate the ATE and ATT well.
Naturally, we follow the idea of matching to estimate the real TET, that is, instead of using
two potential outcomes r0

i and r1
i of the same individual i, we use the actual outcome ri

that has been observed and recorded in the data, combined with another actual outcome
rj from another individual j that is matched with i, we make sure that zi 6= zj, such that
the differences between ri and rj can be regarded as a rough estimation of ITE, given a
reliable matching approach.

Propensity Score Matching

As discussed above, one of the most widely used matching methods when estimating ATE
or ATT is to match individuals with different treatment assignments according to the
propensity score, which is the conditional probability of being treated given covariates.
However, though propensity score matching performs very well when estimating the ATE
or ATT, it will not succeed when the goal is to estimate the TET: matching individuals
with similar propensity scores does not guarantee that it is reasonable to directly compare
their outcomes and using the outcome difference as the estimated ITE; in fact, the matched
results are only useful if we later plan to average outcomes across all matched pairs. Given
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the definition that ITE refers to the treatment effect defined by covariates, we cannot
simply average across the whole population, as that is equivalent to assuming that the ITE
is uniform over all individuals and independent of covariates.

To further demonstrate that matching with propensity score and use matched pairs to
train a decision tree does not result in an valid estimation of TET, we conduct an experi-
ment in Section 4.4.1 showing that the decision tree learned from propensity score matching
is totally different from the real TET. However, in the experiment we also point out that
propensity score matching does guarantee to perform well when estimating treatment effect
after averaging, either the ATE or the ATT.

Potential Outcome Matching

Now, reconsider the definition of ITE in Equation 3.1, it is true that we can not observe the
two potential outcomes at the same time, thus for individual i we can only use the actual
outcome ri that is observed and recorded in the data. By matching, we hope to have the
comparison between the outcome ri and the matched outcome rj able to provide us more
information about the treatment effect to individuals similar to i. Propensity score defines
the “similarity” by the conditional probability of being treated given covariates, and we
showed above that using the propensity score cannot provide the information we need for
estimating the TET because individuals with the same propensity score do not essentially
share the same ITE.

In order to regroup individuals such that treatment effect is more consistent and uniform
for individuals in the same group, we propose to match based on the potential outcome,
such that individuals with different treatment assignment but the similar potential out-
comes get matched together. Here we choose to match on the potential outcome without
treatment, since we intend to use the covariates from treated individuals to estimate the
real TET on the treated population, so the individual i and j with different treatment
should be matched with each other if they share the similar potential outcome without
treatment. Hence,

τ̂i = r1
i − r0

j (3.2)

in which,

zi = 1 and zj = 0 and |r̂0
i − r̂0

j | < δ (3.3)

There are many different methods to get r̂0
i , however, we choose to use the decision tree

model to estimate the potential outcome without treatment, this decision tree can be
learned from using the control group of individuals to predict their outcomes based on
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their covariates. The reason for choosing potential outcome without treatment to match
on is based on the definition of ITE in Equation 3.1, that is, if two individuals i and j have
the same two potential outcomes r0

i = r0
j and r1

i = r1
j , their ITEs are the same. Based on

this idea, we can match on individuals with the similar estimated outcomes instead of the
actual outcomes.

To further show that matched pairs from estimated outcome matching can be used to
estimate the real TET, we conduct an experiment in 4.4.2 and show the real TET as well
as estimated TET using estimated outcome matching by decision tree and by regression.
We show that the estimated TET based on estimated outcome matching with decision tree
outcome estimator is almost the same as the real TET, proving that estimated outcome
matching can perform well in estimating the real TET from observational data.

3.3 Sensitivity Analysis for TET

For TET, there is still a matching process used during its estimation and learning. As
we know, the quality of propensity score matching is always vulnerable to unmeasured
confounding, and for this reason Rosenbaum and Dual Sensitivity Analysis were derived to
evaluate matching’s robustness in situations with different levels of unmeasured confound-
ing. Given our approach of estimated outcome matching for TET estimation, a similar
question which is reasonable to ask would be: how robust the estimated TET will be in sit-
uations with different levels of confounding? Answering this question is more complex for
TET estimation than for estimating ATE from propensity score matching, since our final
model gives more a complex output than regular matching, that is, instead of producing a
scalar from the matching results, such as the estimated ATE, we use the matched results
and learn another model based on the matched results, which is the estimated TET.

Confounding might influence the results of estimated TET at two different stages: First,
the real TET with confounding might differ from the real TET without confounding, and
if the real TET structure is vulnerable to a very weak confounding, then TET might not
be very valuable after all; Second, the estimated TET with confouding might also differ
from the estimated TET without confounding, and this information can help us evaluate
whether the estimation process is reliable or not. As a result, our sensitivity analysis
must be able to analyze the robustness of our matching-based TET model, and by using
the term “robustness” we refer to how stable both the real TET and estimated TET
structures would be given different levels of confounding controlled by Rosenbaum and
Dual Sensitivity Analysis, that is, given confounders U with levels of effect on treatment
assignment Z and outcome R.
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However, it is not possible to conduct Rosenbaum sensitivity analysis or Dual sensitivity
analysis on decision trees directly, due to the fact that both of these analyses determine
the effect of an unmeasured confounding variable on a generalized linear model without
actually constructing it. To study decision tree sensitivity to unmeasured confounders
we will explicitly generate confounder observations ui for each individual, based on the Γ
and ∆ parameters which describe the relationship between the confounder, treatment, and
outcome. Then we compare the structures of the TET learned without the hypothesized
confounder with the TET learned with the hypothesized confounder. Figure 3.1 shows
a diagram to illustrate the procedures of conducting sensitivity analysis on an estimated
TET.

X,Z,R

X,Z,R,U1 X,Z,R,U2 . . . X,Z,R,Un

Matching0Matching1 Matching2 . . . Matchingn

T̂ET 1 T̂ET 2
. . . T̂ET n TET0

Compare Compare Compare

Γ1,∆1 Γ2,∆2 Γn,∆n

Figure 3.1: Diagram of estimating and comparing TET with different levels of Rosenbaum
confounding for TET sensitivity analysis

3.3.1 Generating the Confounder U

In observational data, we are expected to have covariates X, treatment assignment Z,
and outcome R recorded, and based on this information we are able to estimate the TET
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from a potential outcome matching. Now we discuss how a boolean confounder U can be
generated for each individual for estimated TET sensitivity analysis.

We generate confounder U such that the distribution of the generated U reflects the
relationship between U , Z, and R. This means, for an existing population with covariates
X, treatment Z, and outcome R fixed, we need to control the distribution of U in this
population such that this confounder U ’s effect on treatment assignment Z and outcome R
can be controlled separately. Recalling Dual Sensitivity Analysis we reviewed in Chapter 2,
Γ is used to describe confounder U ’s effect on treatment Z, and ∆ on outcome R; therefore,
we generate U based on different values of Γ and ∆. Here we use the term Rosenbaum
confounding referring to the confounder setting with the same Γ and ∆.

We now show how a boolean confounder U can be generated for each individual in our
existing population (i.e. dataset) with covariates X, treatment Z, and binary outcome R
by controlling its effects using two parameters Γ and ∆.

This generating process requires the conditional probability,

Pr(U = u|X = x, Z = z, R = r). (3.4)

For simplicity, in following probability notations we skip the item variables when variable
instances are given, so the probability above is written as,

Pr(u|x, z, r). (3.5)

According to the definition of conditional probability, this probability is equivalent to,

Pr(x, r, z, u)

Pr(x, r, z)
. (3.6)

The denominator part in the above fraction is the same as the following marginal proba-
bility, where U is marginalized out,

Pr(x, r, z) =
∑
∀u′

Pr(x, z, r, u′). (3.7)

Combining Equation 3.6 and Equation 3.7, we can rewrite Equation 3.5 as

Pr(u|x, z, r) =
Pr(x, r, z, u)∑
∀u′ Pr(x, z, r, u

′)
. (3.8)

In Equation 3.8, both the numerator and denominator are in the format of a joint proba-
bility. Recall that the dependencies among X, Z, R, and U are given by the Bayes network
shown in Figure 2.3:
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X R

Z U

Therefore, the joint probability can be expanded as

Pr(x, z, r, u) = Pr(x)Pr(u)Pr(z|x, u)Pr(r|x, z, u). (3.9)

Then we expand both the nominator and denominator part of Equation 3.8 based on
Equation 3.9 and cancel the common factor Pr(x)

Pr(u|x, z, r) =
Pr(x, r, z, u)∑
∀u′ Pr(x, z, r, u

′)

=
Pr(x)Pr(u)Pr(z|x, u)Pr(r|x, z, u)∑
∀u′ Pr(x)Pr(u′)Pr(z|x, u′)Pr(r|x, z, u′)

=
Pr(u)Pr(z|x, u)Pr(r|x, z, u)∑
∀u′ Pr(u

′)Pr(z|x, u′)Pr(r|x, z, u′)

(3.10)

which gives the conditional probability that U = 1 for any individual with given x, z, and
r.

Now we separately prove that each probability we need in Equation 3.10 exist and can
be fully determined given any choice of Γ and ∆:

Pr(u)
These values do not interact with Γ and ∆, so we can set them up with any reasonable
values, as long as they sum up to 1.0. For the binary confounder setting, we set Pr(U =
1) = Pr(U = 0) = 0.5.

Pr(z|x, u)
For binary confounder U and binary treatment Z, this expression refers to four probabilities
given a fixed X = x; here we denote these as Pz,u:
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P1,1 = Pr(Z = 1|X = x, U = 1)

P0,1 = Pr(Z = 0|X = x, U = 1) = 1− P1,1

P1,0 = Pr(Z = 1|X = x, U = 0)

P0,0 = Pr(Z = 0|X = x, U = 0) = 1− P1,0

Recall the definition of Γ in Equation 2.21, if we push the ratio ρ to its limit, which is
either Γ or 1

Γ
, the confounder U ’s effect will also be pushed to its limit, while still bounded

by Γ. In our case, we set the effect of confounder U on treatment Z to be consistent; that
is, with the same covariates X, an individual having U = 1 is always more likely to be
treated. Therefore we have the following equation relating the above quantities:

P1,1

1− P1,1

= Γ× P1,0

1− P1,0

. (3.11)

We can also relate the quantities to each other through the propensity score

Pr(Z = 1|X = x) =
∑
∀u′

Pr(Z = 1|X = x, U = u′)Pr(U = u′|X = x)

= P1,0Pr(U = 0|X = x) + P1,1Pr(U = 1|X = x)

= P1,0Pr(U = 0) + P1,1Pr(U = 1).

(3.12)

Note that in Equation 3.12, we need the probability Pr(U = u′|X = x) to marginalize out
confounder U ; recall from Bayes network shown in Figure 2.3 that X and U are independent
as long as R and Z are not observed, that is Pr(U = u′|X = x) = Pr(U = u′), so we safely
replace Pr(U = u′|X = x) as Pr(U = u′). Also note in Equation 3.12 Pr(Z = 1|X = x)
is essentially the propensity score given X = x used in matching, which we can easily
calculate by learning a propensity score model.

Combining Equation 3.11 and Equation 3.12 together, we get the following quadratic
equation:

(Γ− 1) Pr(U=1)
Pr(U=0)

P 2
1,1 +

(
Pr(Z=1|X=x)
Pr(U=0)

− 1−
(
Pr(Z=1|X=x)
Pr(U=0)

+ Pr(U=1)
Pr(U=0)

)
Γ

)
P1,1 + Pr(Z=1|X=x)

Pr(U=0)
Γ = 0. (3.13)

By solving Equation 3.13 we can get all four instances values of Pz,u given X for each Γ.
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Pr(r|x, z, u)
Similarly, for binary outcome R and binary confounder U , we have eight probabilities
denoted as Pr,z,u:

P1,1,1 = Pr(R = 1|X = x, Z = 1, U = 1)

P1,0,1 = Pr(R = 1|X = x, Z = 0, U = 1)

P1,1,0 = Pr(R = 1|X = x, Z = 1, U = 0)

P1,0,0 = Pr(R = 1|X = x, Z = 0, U = 0)

plus their four counterparts, denoted as P0,z,u = 1 − P1,z,u. In Dual Sensitivity Analysis
we have discussed in Section 2.26, ∆ is used to define confounder U ’s effect on outcome R
given covariates X and treatment Z, more specifictly, ∆ represents how much the odds of
having outcome R as 1 can vary with different confounder U . In our case, similar to the
case for Γ, we also set confounder U ’s effect on outcome R as consistent; that is, given the
same covariates X = x and treatment Z = z, individuals with U = 1 will have a higher
odds to get outcome R = 1, compared with individuals having U = 0. Maximizing this
effect gives

P1,1,1

1− P1,1,1

= ∆× P1,1,0

1− P1,1,0

(3.14)

and
P1,0,1

1− P1,0,1

= ∆× P1,0,0

1− P1,0,0

. (3.15)

And again, we have additional information, this time from the outcome model,

Pr(R = 1|X = x, Z = 1) =
∑
∀u′

Pr(R = 1|X = x, Z = 1, U = u′)Pr(U = u′|X = x, Z = 1)

= P1,1,0Pr(U = 0|X = x, Z = 1) + P1,1,1Pr(U = 1|X = x, Z = 1)

(3.16)

and

Pr(R = 1|X = x, Z = 0) =
∑
∀u′

Pr(R = 1|X = x, Z = 0, U = u′)Pr(U = u′|X = x, Z = 0)

= P1,0,0Pr(U = 0|X = x, Z = 0) + P1,0,1Pr(U = 1|X = x, Z = 0).

(3.17)
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The conditional probability Pr(u|x, z) required in Equation 3.16 and Equation 3.17 can
also be further expanded

Pr(u|x, z) =
Pr(u, x, z)

Pr(x, z)

=
Pr(u, x, z)

Pr(z|x)Pr(x)

=
Pr(z|x, u)Pr(u|x)Pr(x)

Pr(z|x)Pr(x)

=
Pr(z|x, u)Pr(u)

Pr(z|x)

(3.18)

In Equation 3.18, Pr(z|x) can be calculated from the propensity score given covariates
X = x, and Pr(z|x, u) is exactly the probability computed by solving 3.11 and 3.12
together as we showed above. Having substituted in their values, we can form two more
quadratic equations based on 3.14, 3.15, 3.16 and 3.17 to compute the eight probabilities
needed. Solving 3.14, 3.16, 3.17, and 3.18 together, we will have a set of Pr,z,u given any
value of ∆.

Note that we can estimate the probability Pr(R = r|X = x, Z = z) in Equation 3.16
and Equation 3.17 using any reasonable model taking X and Z as inputs and predicting
output Pr(R = 1|X,Z). For example, we could use two decision tree models summarizing
outcome R given X for each treatment group. (I.e., we do not need counterfactuals to
estimate this.)

Now we have proved each item in 3.10 is accessible given Γ and ∆ and estimatable
quantities, which means, Pr(u|x, z, r) is also accessible given Γ and ∆, so we can generate
U given X, Z, R, Γ, and ∆ according to the probability calculated in 3.10.

Given that we are able to generate a hypothesized hidden confounder U based on our
data and based on Γ and ∆, now we can perform sensitivity analysis with respect to this
confounder. Below, we provide the high-level algorithm as a guideline for TET estimation
and sensitivity analysis.
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Data: X, Z, and R from observational data

1 Estimate R|X,Z = 0 as potential outcome R̂0;

2 Match on R̂0;

3 Estimate TET based on matching as T̂ET;
4 for each level of confounding Γ, ∆ do
5 for each individual in the dataset do
6 Compute probability UΓ,∆ = 1 given X, Z, R for that individual;
7 Sample u for that individual accordingly

8 end
9 Estimate R|X,U,Z = 0 (using generated u);

10 Match on R0 using both X and generated UΓ,∆;

11 Estimate TET based on matching as T̂ETΓ,∆;

12 Compare T̂ETΓ,∆ with T̂ET;

13 end
Algorithm 2: TET Sensitivity Analysis Algorithm
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Chapter 4

Experimental Results

In this chapter, we show the results from our experiments regarding different topics we
discussed in Chapter 3: First of all, we describe in detail the procedure for generating
synthetic data under two different covariate settings, and with the generated synthetic data
we compare the performance of propensity score matching and potential outcome matching
in TET estimation. After that, we walk through the sensitivity analysis on estimated TET
by introducing different levels of confounding into the synthetic data and examine the
structural differences between the estimated TETs. Finally, we show a preliminary TET
estimation based on VPS data in Section 4.6.

With our experimental results, we propose the following four conjectures:

1. Potential outcome matching performs much better than propensity score matching
in TET estimation from observational data.

2. With no unmeasured confounding, it is possible to estimate the TET well using
potential outcome matching, no matter whether the observed covariates are strongly
or weakly predictive of treatment assignment and outcome.

3. With strongly predictive covariates, the estimated TET structure can be stable
against strong Rosenbaum confounding encoded as a boolean.

4. With weakly predictive covariates, TET estimation can still provide some reasonable
predictions of ITE against strong Rosenbaum confounding encoded as a boolean, but
the structure of the tree will change.
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4.1 Synthetic Data Setting

In this section, we describe in details how synthetic data was generated for our experiments.

Similar to the VPS data set, our synthetic data is also represented in a matrix format,
where each row refers to one patient. With 50,000 individuals generated, each row has a
series of covariates X to represent the patient’s health metrics, with a boolean indicator of
treatment Z assigned according to a treatment assignment model based on the patient’s
covariates. There are also two potential outcomes (R0,R1) for each patient generated
from the outcome models, and each patient’s outcome Rz is determined by the patient’s
covariates X and treatment assignment Z.

4.1.1 Covariates X

To have covariates X that mimic those of a patient’s health metrics similar to the real
world clinical data, we generate synthetic patient covariates following these principles:

• The distribution of synthetic covariates should be representative enough of a rela-
tively large patient population, which means we need to generate covariates with a
great diversity covering as many cases as possible.

• The synthetic covariates should include different types of covariates, specifically, we
want to include both boolean covariates and real-valued covariates.

• To reflect the correlations between different covariates, which can be frequently seen
in real world clinical data, we also want to generate X such that it involves inter-
actions between covariates. That is, for a patient’s covariates in X not all of them
should be independent of each other. There should be dependencies between at least
two of them.

In general, any data set satisfying these three principles could be used for our synthetic
sensitivity analysis. For experimental purposes, we generate a relatively simple synthetic
dataset with 8 covariates from X0 to X7, which we now describe.

X0, X1

Covariates X0 and X1 are generated to serve as noise in our experiment. They have no
causal relationship to other covariates, treatment, or outcome. X0 is generated according
to a Bernoulli distribution with probability of 0.5, while X1 is generate from a standard
normal distribution N(0, 1).
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X2, X3

Covariates X2 and X3 are also randomly generated; however, they have a very strong
causal relationship with some other covariates, the value of X2 and X3 can influence or
even determine the value of some other covariates. X2 is generated through the same
Bernoulli distribution as the X0 generator, and X3 is generated from the same standard
normal distribution of N(0, 1) as in the X1 generator.

X4, X5, X6, X7

Values of these four covariates are strongly influenced by covariates X2 and X3. With
X4, X5, X6, X7, we intend to introduce certain levels of interactions between different
covariates, which increases the difficulties of both estimating treatment models that will be
used in propensity score matching, as well as estimating outcome models used in estimated
outcome matching. Among them, covariates X4 and X5 are in the format of boolean
variables, while X6 and X7 are continuous valued. Pseudocodes for their generation can
be found in Appendix B.1.

4.1.2 Outcome R

The outcome R should be generated individually for each individual based on their co-
variates X as well as their treatment assignment Z. For the convenience of estimated
TET evaluation, we choose to generate both of the boolean potential outcomes without
treatment r0

i and with treatment r1
i for each entry i based on individual i’s covariates.

The reason to generate both of the potential outcomes for each individual is that with
this information, specifically r1

i − r0
i the true ITE of individual i, we are able to directly

learn the real TET as our benchmark for estimated TET evaluation. Note that these two
potential outcomes are only used together when building the real TET, that is, when trying
to estimate the TET we only use one of these two potential outcomes for each individual,
with respect to the properties of observational study that these two potential outcomes
can never be observed at the same time.

The potential outcome can be generated from any model, but to mimic the real world
clinical setting, we require the model to follow these principles:

• The outcome model should not be a deterministic model, instead, it provides a
boolean outcome based on a unique Bernoulli distribution calculated from patient
covariates and treatment assignment for each individual patient, such that two pa-
tients with identical covariates and treatment assignment only share the same mean
outcome, but not exactly the same outcome values.
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• ITE of individual i, defined as r1
i − r0

i , should depend on individual i’s covariates
alone.

• Treatment in general should benefit patients, that is, for the majority of patients
r1
i > r0

i holds true, if a larger outcome value refers to a better health outcome.

• However, patients with extreme health status may not benefit from treatment, or
treatment may tend to make the outcome worse. This reflects the fact that treatment
might harm healthy patients with its side-effects, and for patients with extremely bad
health status, treatment may not succeed at improving the outcome.

In general, any model satisfying these principles can be used as outcome models. For
our experiment, for each individual we generate two pairs of potential outcomes with two
different settings based on how influential the covariates X is to potential outcomes (R0,
R1), here we describe them one by one.

“Strong” Covariate Setting

In this setting, covariates X strongly influence the outcomes, such that X can be used to
predict these two potential outcomes with a very low error-rate. To generate outcomes
with this setting, we have the two potential outcome models that are nearly deterministic.

We choose to build two separate models to generate R1 and R0, and these two models
are in the simple decision tree format. Their structures can be found in Appendix B.2.

“Weak” Covariate Setting

In this setting, covariates X still influence the outcomes, but the influcence is weak com-
pared with the “strong” setting. X is still very helpful in predicting these two potential
outcomes; However, X does not contain all the information to predict outcomes perfectly,
that is, using X to predict these two potential outcomes will have an obvious error-rate
that cannot be easily ignored. To generate outcomes with this setting, we use the same
structure as in the strong setting, but we introduce more randomness into the two potential
outcome modes. Note that estimating ITE with this setting is essentially more difficult
than the previous strong covariate setting, because the covariates contain less information
helping us to distinguish individuals with different outcomes, which is very likely to have
negative influences on our estimation.
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We choose to build two separate models to generate R1 and R0 with the same decision
tree structures as in the previous “Strong” setting, however, we change the probability
inside each leaf node, such that the new models now generate outcomes with more ran-
domness compared with the previous “Strong” setting. These two models can be found in
Appendix B.3.

4.1.3 Treatment Z

Similar to the potential outcomes, treatment assignment Z should also be individually
generated for each entry based on an individual’s covariates X. In general, any treat-
ment assignment model can be used in our experiment, as long as it does not violate the
Strongly Ignorable Treatment Assumption for propensity score matching. So we require
the treatment assignment model to follow these principles:

• The treatment assignment model is not deterministic, which means for each patient
the models returns a non-zero probability of being treated.

• This non-zero probability is calculated for each patient solely based on the patient’s
covariates.

• In order to generate synthetic data for matching, the probability of treatment as-
signment should not be equal across all individuals, which means the probability of
being treated for each individual should cover a wide range of (0.0, 1.0).

• To mimic the real-world treatment assignment strategy, tree models taking individual
covariates as inputs can be designed for treatment generation, that may reflect the
implicit decision-making approach of clinicians.

For our experiments, we design the treatment assignment model as a decision tree
taking individual’s covariates X and providing a probability of assigning this individual
treatment. The detailed model structure can be found in Appendix B.4.

4.1.4 Confounder U

We generate confounders with different levels of confounding according to the approach we
described in Section 3.3.1. As we have two different outcome settings, namely, “Strong”
and “Weak”, we generate confounders with the same level of confounding for each of them
separately.
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To examine the robustness of estimated TET structures with different types of con-
founding besides Rosenbaum confounding, we also include the conditional probabilities of
boolean confounder U being 1 as the continuous value variable PU into the matching pro-
cess. This probability can be regarded as an extreme type of confounding, which we will
discuss later in our experiment results.

4.2 Matching Settings

In order to show that outcome potential matching performs better than propensity score
matching when estimating the TET, we apply both of these two matching methods with
the same dataset of covariates X, treatment assignment Z, outcome R, as well as the
boolean confounder U when confounding is introduced.

For propensity score models, we choose both the classic logistic regression model as
well as the decision tree model. For potential outcome model, we choose the decision tree
model alone, for we believe a decision tree is a more flexible model for grouping individual
with the same expected outcome.

As we focus on the ITE of treated individuals, we match each treated individual with
control individuals. To further reduce bias in the final matching results, we choose to
conduct matching with replacement, that is, each treated individual can be matched to
multiple control individuals, and each control individual can be used for matching multi-
ple times. We merge all the matched pairs with the same treated individual as a single
match pair by weighting each match pair with respect to the number of times the con-
trol individual gets matched, this merging process allows us to benefit from matching
with replacement without introducing more bias into the covariates of the treated group.
We use the Matching package [24] for R [26] to conduct matching in all of our following
experiments.

4.3 TET Settings

To evaluate the performance of estimated TET, we need to know the structure of the real
TET and compare all estimated TETs with this real TET.

A real TET can be learned from the real ITE. As we already have two potential out-
comes generated for each individual in our synthetic data, we can access the real TET
easily. The real TET can be learned by firstly labeling each individual i with r1

i − r0
i ,
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which is the real ITE of i, then use a decision tree learning algorithm to predict the real
ITE based on individual i’s covariates. Note that when learning the real TET, all the
information we need are covariates X, and the two potential outcomes R0, R1. We do not
need any information of treatment assignment, as the true ITE should not be influenced
by treatment Z according to the Strongly Ignorable Assumption.

This learned real TET will be used as the benchmark to evaluate the estimated TET
from either propensity score matching or estimated outcome matching. After matching,
for each matched pair (i,j), assuming individual i is given the treatment, we use ri− rj to
label the covariates of individual i, then learn another decision tree to predict ri− rj based
on individual i’s covariates. The learned tree will be our estimated TET.

In our experiment, we use the NLS-DT algorithm to learn our decision tree. In each
covariate selection process we set the bootstrap number to 50, and we choose the most
voted covariate that has been voted at least 25 times as our splitting covariate. The
learned NLS-DT is then pruned using error-reduce pruning.

4.4 Estimating TET

The first experiment we conduct with our synthetic data shows that we can estimate the
TET from observational data with the help of estimated outcome matching, while we
cannot estimate the TET well with propensity score matching.

As we have mentioned before, for each individual i in the synthetic data, we generate
both of the potential outcomes r1

i and r0
i with and without treatment. With this informa-

tion we can access the true ITE of each individual and represent the real TET by decision
tree learning. Note that this is an experiment for estimating TET without any confounding,
so we do not include the generated confounder U when conducting this experiment.

The procedure of representing the real TET is straightforward: for each individual i we
take all its covariates xk as splitting candidates, we label the covariates of each individual
i with the true ITE, which is defined as r1

i − r0
i and can be easily computed from these two

potential outcomes we generated. We use these labeled individuals as our training data to
learn a decision tree via the NLS-DT algorithm. The final real TET learned from the true
ITE in “Strong” setting data is shown in Figure 4.1, and the real TET in “Weak” setting
data is shown in Figure 4.2.

Comparing the real “Strong” TET in Figure 4.1 learned from the true ITE of each
individual in the dataset, we see that the real TET shares a strong similarity with each
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X3 > 0.6

X7 < 0.5 X4 is False

-0.9 -0.047 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

Figure 4.1: Real TET learned from “Strong” covariate setting data

X3 ≥ 0.6

-0.32 X4 is False

0.0025 0.2

True False

True False

Figure 4.2: Real TET learned from “Weak” covariate setting data

of the outcome models shown in Appendix B.2. In fact, it can be regarded as these two
outcome models “merged” together. The cross-validated error-rate of real “Strong” TET
without confounding learned using true ITE is 4.958%; it shows that this real TET performs
very well in estimating ITE.

The real “Weak” TET shown in Figure 4.2 learned from the true ITE of each individual
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can be regarded as a simplified version of the real “Strong” TET. This can be explained as
we have more randomness in the “Weak” data setting, such that covariates X contain less
information helping us to estimate the ITE. This missing piece of information helps the
real “Strong” TET to fully develop its structure, while it stops the real “Weak” TET from
further growing. The cross-validated error-rate of real “Weak” TET without confounding
learned using true ITE is around 24.8%, which means this real TET does not perform so
well in estimating the true ITE.

Both of these real TETs are the benchmarks to evaluate all estimated TET, for with
observational data we would never have access to the true ITE of each individual, thus we
can only estimate the structure of real TET. In another words, these two real TETs are
the models assigning different levels of treatment effect given individual’s covariates. And
we should not expect the estimate TETs perform even better than these two real TETs.

4.4.1 Estimate TET with propensity score

Now we show that TET estimated from propensity score matching does not perform well,
that is, the estimated TET learned from propensity score matching results does not rep-
resent the structure of the real TET as shown in Figure 4.1 and Figure 4.2. We show the
following TETs estimated from propensity score matching with two different propensity
score models.

Logistic Regression Model

Logistic regression is the most common propensity score model used to estimating ATT
and ATE. The following estimated TET is learned from all treated individual’s covariates,
with each entry of covariates labeled as ri − rj, assuming in matched pair (i, j) individual
j is from the control group and is matched to i based on propensity scores provided by a
logistic regression model:

Comparing the estimated “Strong” TET shown in Figure 4.3 with the real “Strong”
TET shown in Figure 4.1, we see that even though the right branch of the estimate TET
does share a certain amount of similarity with the real TET, the general structure of this
estimated TET does not represent the real TET at all: it even picks a different covariate
as the root node.

Considering the fact that neither our treatment model or outcome models are complex
or difficult to predict in the “Strong” setting, the estimated TET should be close to the

54



X6 > 0.42

X2 ≤ 0.47 X4 is False

X3 ≤ 0.52 -0.17

-0.6 -0.19

-0.011 X5 is False

0.1 0.44

True False

True False True False

True FalseTrue False

Figure 4.3: Estimated TET from “Strong” covariate setting data using logistic regression
propensity score matching

X4 is False

-0.11 0.091

True False

Figure 4.4: Estimated TET from “Weak” covariate setting data using logistic regression
propensity score matching

real TET if the matching is producing match pairs that are meaningful for ITE estimation.
Apparently, propensity score matching with logistic regression as the propensity score
model cannot represent the real TET, and should not be considered for TET estimation.

On the other hand, the estimated “Weak” TET comparing with the real “Weak” TET
does not helping us at all to estimate the ITE: they are totally different in structure, the
estimated TET even picks the only node incorrectly.
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Decision Tree Model

One might argue that the estimated TETs in Figure 4.3 failed to represent the real TET
structure because logistic regression is not the correct propensity score model. To further
show that propensity score matching does not help when estimating TET, we use a different
propensity score model: the decision tree model. This is the “correct” propensity score
model as our synthetic data uses a decision tree to select treatment. The TETs estimated
using propensity score matching with decision tree as the propensity score model are shown
in Figure 4.5 and Figure 4.6.

X6 ≥ 0.37

-0.26 X4 is False

0.0 X5 is False

0.12 0.45

True False

True False

True False

Figure 4.5: Estimated TET from “Strong” covariate setting of data using decision tree
propensity score matching

If we compare this estimated “Strong” TET with the real “Strong” TET in Figure 4.1,
similar to the previous estimated “Strong” TET in Figure 4.3 with logistic regression model,
it still fails to pick the correct covariate for the root node, and it loses more information
to further classify its left branch. The general structure is different from the real TET,
and most importantly, it fails to distinguish the potential ITE differences hidden in its
left branch by simply predicting all individuals with X6 ≥ 0.37 as benefiting from the
treatment, which is not only incorrect but also very dangerous: for as we know in the
real TET shown in Figure 4.1 there is a subgroup of individuals in the left branch that
treatment tends to hurt instead of improving their outcomes.
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X4 is False

-0.11 0.081

True False

Figure 4.6: Estimated TET from “Weak” covariate setting of data using decision tree
propensity score matching

As before, the structure of the estimated “Weak” TET compared with the real “Weak”
TET does not make any sense.

By comparing estimated TET shown in Figure 4.3 and estimated TET shown in Figure
4.5 based on two different propensity score matching approaches, we show that propensity
score matching does not perform well in estimating TET in both “Strong” and “Weak”
settings, more specifically, using each matched pair based on propensity score matching
as training data to learn a decision tree predicting ITE given covariates only results in a
decision tree with structure far from the real TET.

4.4.2 Estimate TET with potential outcome

Now, we show that estimated outcome matching with a decision tree to estimate the
potential outcome can provide reliable matched pairs such that they can be used to train
a decision tree as the estimated TET.

As we focus on the ITE on the treated individuals, we use the decision tree model to
predict each individual’s potential outcome without treatment, this decision tree, namely
the potential outcome tree, is learned from summarizing all control individual’s outcome
given their covariates. After that, we feed this potential outcome tree with all individuals
covariates from our data, such that we have the estimated outcome without treatment for
all treated and control individuals. We then use this estimated potential outcome as the
criteria to conduct our estimated outcome matching with replacement between the treated
and control groups.

Finally, for each matched pair (i, j), we take the covariates of the treated individual
i, label the covariates with the actual outcome differences ri − rj. We use these labeled
covariates as training data to learn a decision tree using the NLS-DT algorithm. The
learned decision tree is regarded as our estimation of TET (See Figures 4.7 and 4.8):
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X3 > 0.6

X7 < 0.5 X4 is False

-0.91 -0.073 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

Figure 4.7: Estimated TET from “Strong” covariate setting of data with estimated outcome
matching with decision tree outcome estimator.

X3 ≥ 0.6

-0.32 X4 is False

0.0025 0.2

True False

True False

Figure 4.8: Estimated TET from “Weak” covariate setting of data with estimated outcome
matching with decision tree outcome estimator.

We immediately observe the estimated “Weak” TET is exactly the same as the real
“Weak” TET, we also observe the estimated “Strong” TET is almost exactly the same as
the real “Strong” TET in Figure 4.1, in fact, they share exactly the same structure, only
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with minor differences between some of the leaf node values, which can be explained as
random noise.

The cross-validated error-rate of the estimated “Weak” TET is exactly the same as the
real “Weak” TET, and the error-rate of the estimated “Strong” TET without confounding
learned through outcome matching is 4.991%, which is very close to the error-rate of the
real “Strong” TET learned on true ITE. This shows that this estimated TET via outcome
matching performs well in estimating ITE from observational data.

Considering the fact the real ‘Strong” TET shown in Figure 4.1 is trained with all
individual’s true ITE as the label, while the estimated “Strong” TET in Figure 4.7 is only
trained with the matched outcome differences as the label, and we only use the covariates of
all treated individuals. It is obvious that the treated individuals are only a sub-population
of the data, and this treated group is expected to have a strong bias over all covariates,
they can all be regarded as increasing the difficulty of estimating the real TET.

However, as we have shown, the TET estimated from estimated outcome matching
represents the real TET perfectly. In fact, in our experiment they can be regarded as
the same decision tree. This shows that matching with potential outcome predicted by a
decision tree model can provide us matched pairs such that we label them with the actual
outcome differences between individuals matched together, and use the matched results to
estimate the real TET.

4.4.3 Conjectures

So far, with our experimental results, we have attempted to prove the evidence for following
two conjectures:

• With observational data, matched pairs from propensity score performs badly in
estimating the real TET.

• With observational data, matched pairs from potential outcome with decision tree
estimating the outcomes performs very well in estimating the real TET.

4.5 Sensitivity Analysis

As we have shown that TET can be estimated successfully based on potential outcome
matching, in this experiment, we now focus on evaluating the robustness of the estimated
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TET to unmeasured confounding. We show how to conduct sensitivity analysis on the
estimates TET; for this, we include the confounder U in our synthetic data.

We have set the confounder as a boolean variable. To generate them we firstly compute
the conditional probability of confounder U being 1 for each individual given the covariates,
treatment, as well as outcome, then we convert the probability into a boolean confounder
for each individual through a randomization process. A diagram showing the concepts of
sensitivity analysis in our experiment can be found in Appendix A.

4.5.1 Confounding Settings

We introduce our synthetic data with different levels of confounding defined in Dual Sensi-
tivity Analysis that can be described with parameter Γ and ∆. According to the method we
developed in Section 3.3.1, for the simplicity of our experiments, we generate four different
sets of confounder, denoted as UΓ,∆, with different confounding controlled by parameters
Γ and ∆ used in Section 2.4.3:

• U4,4, refers to the situation where with the same covariates, the confounder being
true will strongly increase the probability of being treated and the probability of
corresponding outcome being 1.

• U4,0.25, refers to the situation where with the same covariates, the confounder being
true will strongly increase the probability of being treated, while strongly decrease
the probability of corresponding outcome being 1.

• U0.25,4, refers to the situation where with the same covariates, the confounder being
true will strongly decrease the probability of being treated, while strongly increase
the probability of corresponding outcome being 1.

• U0.25,0.25, refers to the situation where with the same covariates, the confounder being
true will strongly decrease the probability of being treated and the probability of
corresponding outcome being 1.

Note that each of these eight confounder sets will have a very strong level of confound-
ing, as most of the Rosenbaum and Dual Sensitivity Analysis only focus on Γ and ∆ within
a much smaller range. The reason we introduce very strong confounding into the estimated
outcome matching is that, though confounding is expected to change the matching results,
we have no idea how it will eventually influence the estimated TET structure based on
estimated outcome matching. In fact, with such a strong confounding, we expect to see
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the real TET without confounding being totally different from the real TET with con-
founding, and the estimated TET without confounding being totally different from the
estimated TET with confounding.

For the real TET without confounding and estimated TET without confounding, both
of them will always maintain exactly the same structure as in Figure 4.1 and Figure 4.7,
since we are only generating confounder UΓ,∆ with different levels of confounding for the
same set of data as we discussed in Section 4.1, datasets X,Z,R, UΓ,∆ will always maintain
the same covariates X, treatments Z, as well as outcomes R. Considering the fact that we
only need X,Z,R to learn the real TET or estimate the TET without confounding, their
structures will not change.

In the following sections, we use the notation of TETU,Γ,∆ to denote the real TET
learned with confounding dataset UΓ,∆.

4.5.2 TET with confounding

In this section, we separately learn the real TETs with boolean confounder TETU,Γ,∆, as
well as their estimations with estimated outcome matching. For all TET estimations, we
use a decision tree predicting potential outcomes without treatment learned from all control
individuals, and for the outcome matching we choose to match with replacement. And we
show the experimental results with “Strong” and “Weak” covariate settings separately.

With “Strong” Covariate Setting

To our surprise, with the “Strong” covariate setting data, the experiment result shows all
four TETU,Γ,∆ shown in Figure 4.9 remain the same structure as the real TET without

confounding shown in Figure 4.1, at the same time, all their four estimations T̂ETU,Γ,∆

as shown in Figure 4.10 also remain the same structure as the estimated TET without
confounding shown in Figure 4.7. The error-rate of these decision trees are also shown in
Table 4.1 and Table C.3.

The real “Strong” TET and estimated “Strong” TET keeping their original structure
even with such a strong confounding encoded as boolean confounders means a lot to our
ITE estimation mechanism: it means that even if there is a boolean confounder with a very
strong Rosenbaum confounding 1 in the observational data, we may still be able to estimate
the ITE by estimating the TET through estimated outcome matching, and the estimated

1Means the confounding can be controlled as described by Γ and ∆ together.
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(a) TETU,0.25,4

X3 > 0.6

X7 < 0.5 X4 is False

-0.9 -0.047 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(b) TETU,4,4

X3 > 0.6

X7 < 0.5 X4 is False

-0.9 -0.047 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(c) TETU,0.25,0.25

X3 > 0.6

X7 < 0.5 X4 is False

-0.9 -0.047 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(d) TETU,4,0.25

X3 > 0.6

X7 < 0.5 X4 is False

-0.9 -0.047 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

Figure 4.9: Comparison between TETU,Γ,∆ models from “Strong” covariate setting of data
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(a) T̂ETU,0.25,4

X3 > 0.6

X7 < 0.5 X4 is False

-0.91 -0.073 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(b) T̂ETU,4,4

X3 > 0.6

X7 < 0.5 X4 is False

-0.91 -0.073 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(c) T̂ETU,0.25,0.25

X3 > 0.6

X7 < 0.5 X4 is False

-0.91 -0.073 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

(d) T̂ETU,4,0.25

X3 > 0.6

X7 < 0.5 X4 is False

-0.91 -0.073 0.0 X5 is False

0.11 0.47

True False

True False True False

True False

Figure 4.10: Comparison between T̂ETU,Γ,∆ models with “Strong” covariate setting of data
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Table 4.1: Comparison between error-rates of TETU,Γ,∆ with “Strong” setting data
H
HHH

HH∆
Γ

0.25 4

0.25 4.957% 4.958%
4 4.958% 4.957%

Table 4.2: Comparison between error-rates T̂ETU,Γ,∆ with “Strong” setting data
HH

HHHH∆
Γ

0.25 4

0.25 4.991% 4.991%
4 4.991% 4.991%

TET can be stable against a boolean confounder with a strong confounding defined by Γ
and ∆.

With “Weak” Covariate Setting

Different from the previous results, with the “Weak” covariate setting data, the experiment
result shows all four TETU,Γ,∆ shown in Figure 4.11 change their structures compared with
the real “Weak” TET without confounding shown in Figure 4.2. However, this structural
change can be regarded as an improvement over the original real “Weak” TET, since the
estimated TET generally develops leaf nodes with the information provided by U based
on the original real “Weak” TET. We show their improved error-rates in Table 4.3.

At the same time, some of the four estimated TETs in the “Weak” T̂ETU,Γ,∆ setting
as shown in Figure 4.10 also change their structures. The error-rate of these estimated
“Weak” TETs are also shown in Table 4.3 and Table 4.4.

We observe that the real “Weak” TETs in Figure 4.12 change their structures by
adding the confounder U as splitting nodes while maintaining the original tree structures,
the error-rate comparison in Table 4.3 shows that this structural change slightly improves
the predictive power of the original real “Weak” TET from 24.8%.

While comparing the estimated “Weak” TETs in Figure 4.12 with the real “Weak”
TETs they attempt to estimate in Figure 4.11, we observe that the estimated “Weak”
TETs also change their structures to mimic the real “Weak” TETs learned from the real
ITE. Some of them do not share exactly the same structures with each other, also, these
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(a) TETU,0.25,4

X3 ≥ 0.6

U is True X4 is False

-0.51 -0.24 0.008 0.25

True False

True False True False

(b) TETU,4,4

X3 ≥ 0.6

U is True X4 is False

-0.51 -0.24 0.008 0.25

True False

True False True False

(c) TETU,0.25,0.25

X3 ≥ 0.6

U is False X4 is False

-0.51 -0.24 0.008 0.25

True False

True False True False

(d) TETU,4,0.25

X3 ≥ 0.6

U is False X4 is False

-0.51 -0.24 0.008 0.25

True False

True False True False

Figure 4.11: Comparison of TETU,Γ,∆ models from “Weak” covariate setting of data
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(a) T̂ETU,0.25,4

X3 ≥ 0.6

U is True X4 is False

-0.51 -0.24 0.008 0.25

True False

True False True False

(b) T̂ETU,4,4

X3 ≥ 0.6

U is True X4 is False

-0.5 -0.15 -0.0082 0.18

True False

True False True False

(c) T̂ETU,0.25,0.25

X3 ≥ 0.6

-0.28 X4 is False

0.00822 0.19

True False

True False

(d) T̂ETU,4,0.25

X3 ≥ 0.6

-0.25 X4 is False

0.0033 U is True

0.073 0.32

True False

True False

True False

Figure 4.12: Comparison of T̂ETU,Γ,∆ models from “Weak” covariate setting of data
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Table 4.3: Comparison between error-rates of TETU,Γ,∆ with “Weak” setting data
H
HHH

HH∆
Γ

0.25 4

0.25 24.2% 24.3%
4 24.3% 24.3%

Table 4.4: Comparison between error-rates T̂ETU,Γ,∆ with “Weak” setting data
HH

HHHH∆
Γ

0.25 4

0.25 24.5% 24.9%
4 25.1% 24.5%

estimated TETs do perform reasonably well in estimating the real TETs. This is be shown
by their error-rates in Table 4.4.

Considering the fact that covariates in the “Weak” setting are not very helpful for
ITE estimation, and we are comparing the real TETs learned from all population with
the estimated TETs learned from treated population. With such a strong confounding
encoded as boolean confounders, the experiment results reveals a lot of TET estimation
mechanism: we can infer that even if there is a boolean confounder with a very strong
Rosenbaum confounding in the observational data, we may still be able to estimate the
ITE by estimating the TET through estimated outcome matching. Even with covariates
very weak for ITE estimation, the estimated TET shows up to be stable against a boolean
confounder with a strong confounding defined by Γ and ∆.

With Extreme Confounding

To further experiment with the estimated TET’s structure stability, we also estimated
the TET using datasets containing the conditional probability of U being 1 rather than
containing U itself. This probability can be regarded as an extreme confounding that does
not directly correspond to Rosenbaum confounding and so is not a main part of this thesis,
but we include the detailed experimental results in Appendix C for the interested reader.
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4.5.3 Conjectures

From the experimental results of sensitivity analysis on estimated TET, we propose the
following conjectures:

• With observational data of strong covariates, TET estimated based on outcome
matching shows to be stable against strong Rosenbaum confounding encoded as
boolean confounders.

• With observational data of weak covariates, TET estimated based on outcome match-
ing can still provide reasonable ITE estimations in situations of strong Rosenbaum
confounding encoded as boolean confounders.

4.6 Preliminary Application on VPS data

In this section, we show the preliminary result of TET estimation based on potential
outcome matching from the real-world VPS data, we also conduct a preliminary sensitivity
analysis on the estimated TET by introducing Rosenbaum confounding into the VPS data.

4.6.1 VPS Data

Collected by the Virtual PICU System (VPS) and Children’s Hospital Los Angeles (CHLA),
the VPS data contains information of 58,772 individuals, with each ICU patient recorded
as an entry of 138 covariates, 1 treatment assignment, and 3 outcomes. The covariates are
recorded in different types including boolean, real-valued, and categorical variables. The
treatment assignment is recorded as a boolean with True indicating patient is ventilated.
The outcomes are observed and recorded after the treatment assignment. In the VPS data,
18,610 patients are treated with ventilation, and 40,162 patients are not given ventilation
as treatment.

Due to the high missing-rates of some of the covariates and outcomes, we use mortality
status as the outcome for our analysis. Among all 58,772 patients, 1,521 of them do not
survive during their stay in ICU. In our experiments, we encode the outcome as 1 (True)
if a patient did not survived in the ICU, and as 0 (False) for patient survived in ICU as
shown in Table 4.5. A VPS data description with more details can be found in Appendix
D.
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Table 4.5: Outcomes of treated and control groups in VPS data
Mortality = 1 Mortality = 0

Treated 1360 17250
Control 161 40001

4.6.2 VPS TET Estimation

For the TET estimation, we use the same matching setting as in our experiments with
synthetic data, that is, we conduct matching with replacement and merge all matched
pairs with the same treated individual as one. We label them with the actual outcome
differences, and use these labeled covariates to learn a decision tree through the NLS-DT
algorithm. We show the learned decision tree as our estimated TET in Figure 4.13.

obsWhiteBloodCellHigh ≥ 3.2

obsPhLow ≥ 7.1 0.25

obsPupilReaction ≤ 1.5 0.19

0.031 obsPimHighRisk is True

-0.063 0.34

True False

True False

True False

True False

Figure 4.13: Estimated TET from VPS

After observing the estimated TET, we notice that the branches indicating the patients
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with worse health conditions (e.g. pupil reaction being low is bad, and white blood cell count
bing high is also bad) tend to have better2 treatment effect from ventilation, while patients
with normal health conditions tends to have worse treatment effect from ventilation. This
in general makes sense, since ventilators are frequently used to try to save very sick patients,
while for more healthy patients ventilation may be less necessary. One strange feature of
the tree is the question about obsPhLow; normal blood pH is approximately 7.4, so the
“True” branch of this question actually indicates healthier patients, at least according to
blood pH.

We also notice this estimated TET attempts to identify the subgroup of patients who
benefit from ventilation shown as the leaf node with ITE of -0.063. (Recall that in this
case, a negative treatment effect reflects a decrease in mortality.) However, the estimated
TET shows that only a small group of patients would benefit from ventilation. Part of
the reason may be the VPS data has a very high missing rate for a great number of
covariates. For this preliminary estimation of TET we only select those patients with
complete covariates recorded in the data. Given the fact that patient’s covariates are
sometimes missing for a reason, such as clinicians skip the recording because the covariates
are normal3, this selecting process essentially introduces even more covariate bias into
our estimation, that is, we are very likely selecting a subgroup of extremely sick patients
for our estimation, which partially explains why the estimated ITE does not show up as
significantly helping patients. Another possible problem is that, unlike in our synthetic
data settings, the outcomes in the VPS data are extremely unbalanced–more than 97% of
all patients survived in the ICU; therefore we have very limited data to distinguish patients
who died from patients who survived.

4.6.3 VPS TET Sensitivity Analysis

To evaluate the structural quality of the estimated TET in Figure 4.13, we introduce a
strong level of Rosenbaum confounding as the boolean confounder U using the same ap-
proach described in Section 3.3.1. We set both Γ and ∆ as 4.0, since this is the confounder
we worry about the most for the ventilator triage problem: individuals having this con-
founder U as True are very likely to have bad outcomes and being treated at the same
time, which tends to make the estimated treatment effect worse than the real treatment
effect. We show the estimated TET with this strong Rosenbaum confounding in Figure
4.14.

2In this case, less positive.
3As confirmed by our co-workers from VPS.
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obsWhiteBloodCellHigh ≥ 3.2

0.24obsPupilReaction ≤ 1.5

0.036 obsPimHighRisk is True

-0.0098 0.39

True False

True False

True False

Figure 4.14: Estimated TET from VPS

As we can observe, even though the original estimated TET only distinguishes a small
subgroup of patients benefiting from the ventilation, it still shows up to be somehow
“stable” against a very strong level of Rosenbaum confounding: with confounding the
estimated TET slightly changes its structure by removing a splitting node, and changes
some of its leaf node values. However, we do observe that this confounder influences the
TET estimation such that treatment effect tends to get a bit worse4, but in general the
structure of estimate TET remains to be stable, except that the node asking about blood
pH is no longer present.

One potential explanation is that the covariates in the VPS data predict treatment and
outcome well, simply because mortality is so rare. So we may be in a situation similar to
the “Strong” covariate setting we proposed in Section 4.5.2, such that even with strong
Rosenbaum confounding its structure remains relatively stable.

Generally, a meaningful TET estimation of this VPS data requires dealing well with
the data missing value problem, such that it is possible to estimate the TET for the whole
treated individuals with less bias. In the future we plan to either impute the missing values
or encoding missingness as another covariate to further study the TET estimation on VPS
data.

4In this case, leaf node values slightly increase.

71



Chapter 5

Conclusions

Estimating the Average Treatment Effect (ATE) from observational data has been well
studied by statisticians and can be achieved by models such as propensity score matching,
where its estimated treatment effect is averaged across either the treated population or the
whole population from data. In this work, we attempt to solve a related problem known
as the Individual Treatment Effect (ITE) estimation problem, which is motivated by the
real-world ventilator triage problem. We search for a model that can be learned from
observational data, and we expect this model can help to estimate and predict different
levels of treatment effect on each individual by examining an individual’s covariates.

We proposed the Treatment Effect Tree (TET) model to solve the ITE estimation
problems, inspired by the classic propensity score matching that has been widely used
for ATE estimation. Instead of learning the propensity score, this method learns the
potential outcome without treatment using each control individual’s covariates labeled
with the actual outcome as training sample for decision tree algorithm. After that we use
this learned potential outcome tree model to estimate each individual’s potential outcome
in the data, such that each individual corresponds to a potential outcome estimation.
We then match each treated individual with one or several control individuals based on
their potential outcome similarity. Finally, for each matched pair, we label the treated
individual’s covariates with the difference between treated individual’s actual outcome and
control individual’s outcome. These labeled covariates are used to train a Node-Level-
Stabilized (NLS) decision tree, and the learned NLS tree can be used to estimate ITE
given an individual’s covariates.

Considering the fact that matching can be vulnerable to unmeasured confounding,
which is the hidden covariate independent of other covariates while influencing the treat-
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ment assignment and outcome at the same time, inspired by the Rosenbaum and Dual
Sensitivity Analysis, we proposed an empirical sensitivity analysis as an extension of Dual
Sensitivity Analysis to evaluate the robustness of estimated TET in situations of different
levels of confouding.

To evaluate our proposed methods, we generated synthetic data including covariates,
treatment assignments, as well as two potential outcomes (with and without treatment) for
an individual. With these two potential outcomes we access the real TET using the true
ITE of each individual in our data. We then modify the synthetic data such that only one
potential outcome corresponding the individual’s treatment assignment can be included
in the data. We estimate the TET based on estimated outcome matching, and from the
experimental results we find the estimated TET based on estimated outcome matching
shares the same tree structure as the real TET learned from real ITE. We show that TET
is the model to estimate for ITE estimation problems, and estimated outcome matching
can provide matched pairs helpful for estimating TET. We also notice that even though
propensity score matching performs very well in estimating ATE, the TET estimated based
on propensity score matching results does not represent the real TET structure at all.

During the experiments we find that though with a very strong level of Rosenbaum
confouding, both the real TET and the estimated TET learned from data with boolean
confounders managed to maintain their original structures as long as covariates are strong
in predicting outcomes, this can be explained as the boolean confounder does not influence
the TET estimation or the ITE very much compared with covariates. We argue that given
strong covariates, the structure of estimated TET based on estimated outcome matching
can be very stable against strong levels of Rosenbaum confounding encoded as boolean
confounders. We also notice that even with weak covariates and strong Rosenbaum con-
founding, the estimated TET can still provide reasonably good ITE estimations.

Finally, we presented a preliminary analysis of the VPS data to attempt to solve the
ventilator triage problem.

In conclusion, we propose our model for solving the ITE estimation problems by learn-
ing the TET based on estimated outcome matching, given strong covariates. The estimated
TET shows to be stable against strong Rosenbaum confounding encoded as boolean con-
founders.
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Chapter 6

Discussions and Future Plans

In this chapter, we discuss some of the topics that we think are interesting to both the
TET estimation and its sensitivity analysis, we also propose our future plans based on
these topics.

6.1 Estimated Outcome Matching

As shown in the experiment, estimating TET based on estimated outcome matching turned
out to perform quite well, and we have been thinking about why potential outcome — more
specifically, the predictions from potential outcome without treatment decision tree — is
the right metric to match on.

One explanation can be: ITE is defined as the differences between two potential out-
comes. Ideally, the TET should group individuals sharing the similar ITE together as a
leaf node. However, this means the ideal TET should ignore these two potential outcomes,
but only focus on their differences. To achieve this, one approach can be finding reliable
method to estimate their two potential outcomes, which is the idea behind matching.

Estimated outcome matching, on the other hand, is based on the assumption that
two individuals sharing a similar outcome without treatment should be matched with each
other. This can be interpreted as assuming individuals sharing the similar outcome without
treatment are expected to have similar ITE, while at first glance it does not sound quite
promising. However, if we reconsider what estimated outcome matching is trying to do,
it is actually trying to estimate the averaged treatment effect on the treated within each
subgroup divided by potential outcomes, that is, estimated outcome matching’s matched
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pairs can only be regarded as meaningful for subgroup ATT estimation, and this is why
we choose to use decision tree as our potential outcome estimator, for it performs well in
grouping individuals.

So, estimated outcome matching with replacement is not exactly predicting the ITE,
instead, it tries to predict one ATT for each subgroup. Then why this can be used to
represent the real TET learned with the true ITE of each individual?

Considering the fact, all matched pairs’ treated individual covariates are labeled and
used as training data for the decision tree, one can expected that the true ITE is different
from the label we attach to each treated individual covariates, such that grouping them
together as a subgroup based on outcome without treatment is essentially including several
individuals that does belong to this ATE subgroup, but not sharing the same ITE at all.
One natural way to look at this problem is that these “noisy” individuals can be catego-
rized into even smaller subgroups inside the subgroup defined by similar potential outcome
without treatment, which is the leaf node of potential outcome tree. It is also a reason-
able assumption that these even smaller subgroups can be distinguished by individual’s
covariates, or there must be confounding involved in the data.

Estimated outcome matching assumes further that these smaller subgroups can be
distinguished by the treated individual’s covariates, such that the TET learning algorithm
can categorize these “noisy” individuals out of the rest of individuals in the potential
outcome tree leaf node by splitting on covariates that distinguish these “noisy” individuals
from the rest of individuals. From this point of view, estimated outcome matching using a
decision tree can be regarded as conducting exact matching on those covariates influential
to outcomes.

Instead of matching on just one potential outcomes, we plan to experiment on matching
on both of two potential outcomes, we would like to see the estimated TETs using these
two different matching metrics based on more complex synthetic data and models, to see
if matching on two potential outcomes performs better than just matching on potential
outcome without treatment.

6.2 U with Rosenbaum Confounding

Another interesting observation from our experiment is the boolean confounder sometimes
does not change the structure of estimated TET, while its probability used as a confounder
changes the structure significantly as shown in Appendix C.
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As we explained, U and its conditional probability PU have totally different effects on
ITE estimation: PU can be regarded as an extreme confounding while U is not. This
makes us think these two confoundings fall into different categories of confounding, and we
question if Rosenbaum confounding is precise enough to describe and control confounding
in this scenario, or whether we should consider other mechanisms.

For this problem, we plan to experiment further with the boolean confounder genera-
tion. We hope to find a method of generation such that we are able to control the generated
boolean confounder to have exactly the same level of confounding to TET estimation as if
we used PU as a variable.
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Appendix A

Sensitivity Analysis Experiment
Diagrams

Here we show a diagram of the sensitivity analysis on both real and estimated TET with
and without confounding A.1.
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X,Z,R

X,Z,R,U

TET1

matching1

T̂ET1 TET0

matching0

T̂ET0

Compare Compare

Figure A.1: Comparing real TET and estimate TET in sensitivity analysis.
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Appendix B

Synthetic Data Generation
Pseudocode

In this appendix, we show the pseudocode for generating synthetic data that has been used
in our experiment.

B.1 Covariates Generation

For covariates X0, X1, X2, and X3 are simply drawn from either a Bernoulli distribution
or the standard normal distribution N(0, 1), here we focus on the generation of X4, X5,
X6, and X7.
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B.1.1 X4, X5

With covariates from X0 to X3 generated, X4 and X5 can be generated according to
following procedures:

1 for each individual i do
2 Get x2, x3 from covariates of i;
3 if x3 >1/3 then
4 x4 is drawn from Bernoulli distribution with probability 0.1;
5 x5 is drawn from Bernoulli distribution with probability 0.1;

6 else
7 if x2 <0.7 then
8 x4 is drawn from Bernoulli distribution with probability 0.25;
9 x5 is drawn from Bernoulli distribution with probability 0.25;

10 else
11 x4 is drawn from Bernoulli distribution with probability 0.95;
12 x5 is drawn from Bernoulli distribution with probability 0.95;

13 end

14 end

15 end
Algorithm 3: Generating X4 and X5

B.1.2 X6, X7

With covariates from X0 to X5 generated, X6 and X7 can be generated according to
following procedures:

1 for each individual i do
2 Get x2, x3, x4, x5 from covariates of i;
3 x6 ← (4x3 + x2 × random(0, 1)) /5;
4 x7 ← (x3 × 7x3 + (1− x2)× random(0, 1)) /8;

5 end
Algorithm 4: Generating X6 and X7
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B.2 “Strong” Setting Outcomes

With all covariates from X0 to X7 generated, we use two simple decision tree models to
generate the two potential outcomes with treatment R1 and without treatment R0 for each
individual.

We also design these two separate tree models with different covariates and cutpoint
values as splitting nodes, such that the R0 tree and R1 tree have different structures, which
guarantees that the real TET’s structure is not exactly the same as the R0 or R1 tree. In
fact, the real TET’s structure can only be learned from training another new decision tree
taking each individual’s covariates labeled with ITE. This essentially increases the difficulty
of TET estimation.

The models in this setting are more deterministic compared with models in the “Weak”
setting.

B.2.1 R0

Given covariates from X0 to X7, the potential outcome without treatment can be generated
through the decision tree model shown in Figure B.3:

X3 > 0.6

X7 > 0.5 R0 ← 0

90% being 0
10% being 1

10% being 0
90% being 1

True False

True False

Figure B.1: R0 Generator

82



B.2.2 R1

Given covariates from X0 to X7, the potential outcome with treatment can be generated
through the decision tree model shown in Figure B.4:

X4 6= True

R1 ← 0 X5 6= True

90% being 0
10% being 1

50% being 0
50% being 1

True False

True False

Figure B.2: R1 Generator

B.3 “Weak” Setting Outcomes

We take the same decision tree structures from the “Strong” setting to design models
generating outcomes with this “Weak” setting. We change the probability inside each leaf
node, such that these two models now are less deterministic compared with models in the
“Strong” setting.

B.3.1 R0

Given covariates from X0 to X7, the potential outcome without treatment can be generated
through the decision tree model shown in Figure B.3:

B.3.2 R1

Given covariates from X0 to X7, the potential outcome with treatment can be generated
through the decision tree model shown in Figure B.4:
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X3 > 0.6

X7 > 0.5
90% being 0
10% being 1

75% being 0
25% being 1

50% being 0
50% being 1

True False

True False

Figure B.3: R0 Generator

X4 6= True

90% being 0
10% being 1

X5 6= True

75% being 0
25% being 1

50% being 0
50% being 1

True False

True False

Figure B.4: R1 Generator

B.4 Treatment Generations

With all covariates from X0 to X7 generated, we design the treatment assignment model
as a simple decision tree model. We also design this treatment assignment tree model with
covariates that do not show up in any of these two outcome trees. This is to make sure
that we are not able to predict outcome simply given treatment, or vice versa.
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X2 < 0.5

X6 < 0.37 X6 > 0.5

90% being 1
10% being 0

10% being 1
90% being 0

5% being 1
95% being 0

1% being 1
99% being 0

True False

True False True False

Figure B.5: Z Generator
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Appendix C

Extreme Confounding with PU

In this Chapter, we introduce an extreme confounding into our synthetic data: the condi-
tional probability of the boolean confounder U being 1 during its generation process. We
also generated four other datasets that include the conditional probability of confounder
U being 1 encoded as a continuous confounder. We name these four datasets as PUΓ,∆ to
distinguish from datasets UΓ,∆ with boolean confounders included.

From the experimental results, we find the estimated TETs structural change influenced
by PU is very different from the influence of the boolean confounder U: all four TETPU,Γ,∆

change their structures significantly compared with the real TET without confounding,

and all their four estimations T̂ETPU,Γ,∆ also change significantly compared with the goals
they attempt to estimate. Here we show their structures side-by-side in Figure C.1 and
Figure C.2.

We can easily observe that all these real TETs with confounder probabilities change
their structures from the real TET without confounding shown in Figure 4.1, more specif-
ically, the confounder probability changes the real TET structure by showing up as a
splitting node in the real TET, and with such a strong level of confounding, the new
confounder probability node shows up very close to the root node of each real TET.

This kind of changing the real TET can be interpreted as the confounder probability
being very influential to the ITE and this influence can be captured by the real TET
model, that is, confounding defined by Rosenbaum and Dual Sensitivity Analysis results
in changing the structure of real TET without confounding.

Besides, we also observe that a TET tends to “mirror” the structure of another corre-
sponding TET with the same level but different direction of confounding, more specifically,
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(a) TETPU,4,0.25

X3 > 0.6

X7 < 0.5 pu > 0.53

-0.9 -0.047 0.003 1.0

True False

True False True False

(b) TETPU,4,4

X3 > 0.6

X7 < 0.5 pu < 0.8

-0.9 -0.047 X4 < 0.5 1.0

0.0 pu < 0.7

0.0 pu > 0.74

0.0 1.0

True False

True False True False

True False

True False

True False

(c) TETPU,0.25,0.25

X3 > 0.6

X7 < 0.5 pu > 0.2

-0.9 -0.047 X4 < 0.5 1.0

0.0 pu > 0.3

0.0 X5 < 0.5

0.0 1.0

True False

True False True False

True False

True False

True False

(d) TETPU,0.25,4

X3 > 0.6

X7 < 0.5 pu < 0.47

-0.9 -0.047 0.003 1.0

True False

True False True False

Figure C.1: Comparison of real TETPU,Γ,∆
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TETPU,Γ,∆ tends the have a very similar structure with TETPU,1/Γ,1/∆, but with the PU
conditions reversed. This can be explained as the confounder having exactly the opposite
effect to treatment and outcome, and it turns out to have the exact opposite effect to ITE
as well.

And we find that though structures of these real TETs change from the real TET
without confounding, their error-rates are almost the same as the error-rate of real TET
without confounding, here we show a table of error-rate comparison in Table C.1.

Given the fact that, as a variable very influential to treatment Z and outcome R and
included in our data for matching, this PU is equivalent as a covariate containing more
information that can help us to estimate ITE better. This error-rate comparison between
the real TET with and without confounding further also confirms our previous statement:
TET is the correct model to describe the ITE.

Table C.1: Comparison between TETPU,Γ,∆ error-rates
HHH

HHH∆
Γ

0.25 4

0.25 4.959% 4.956%
4 4.956% 4.959%

When looking at the four estimated TETs with confounding encoded as PU, all four

T̂ETPU,Γ,∆ dramatically change their structures compared with the corresponding real TET
with confounding that they attempt to estimate through estimated outcome matching, here
we show these four estimated TET with confounding side-by-side in Figure C.2.

As we can easily observe, the confounder probability PU has a really strong influence
to all the TETs estimated through estimated outcome matching, in each of these trees,
PU shows up as a splitting node, and significantly changes the estimated TET structure
far from the structure of real TET with confounding as shown in Figure C.1. Each of
the estimated TET can be regarded as totally different from the real TET it attempts to
estimate.

Given the fact that the boolean confounder U and this conditional probability PU are
both derived from the same level of Rosenbaum confounding, since they are all generated
according to the same Γ and ∆, then why do these estimated TETs based on U and PU
end up in totally different quality?

We propose the following explanation: though U and PU are both derived from the
same level of Rosenbam confounding, they actually have different kinds of effect on estimate

88



outcome matching, or any statistical treatment effect estimation based on comparing met-
rics between treated and control. The probability PU is computed such that the boolean
confounder U distributed according to PU is expected to have certain Rosenbaum con-
founding, PU itself can be a perfect predictor of treatment and outcomes at the same time.
If we included PU as a covariate, we can perfectly predict treatment and outcomes of each
individual by just looking at PU alone. This means covariate PU itself is easily splitting
the whole population into two groups regarding treatment, such that inside each group
the distribution of PU will be totally different, in fact, we can say that there will not be
any “overlapping” part between treated and control groups in the covariate space, and this
indicates that any comparison between these two groups will hardly provide meaningful
information regarding treatment effect. This will eventually make any current matching
strategy useless for treatment effect estimation.

On the contrary, boolean confounder U is converted from the probability PU through
randomization, this means even though the distribution of U is strongly influential to
treatment and outcome, we may have reasonable estimation of treatment of outcome based
on U , but it would be almost impossible for us to perfectly predict treatment and outcome
perfectly from the boolean covariate U . That means, if we include the boolean confounder
U as a covariate, the treated and control group still share a overlapping part between
each other, with this overlapping part we are able to estimate treatment effect by cleverly
comparing the population or sub-populations from these two groups, such as matching.

To confirm this idea, here we show the comparison between the original estimated
outcome decision tree that was learned from data set without confounding or with boolean
confounder, as well as the real potential outcome model that has been used in R0 generation

in Figure C.3. By comparing these two decision tree models, we observe that the R̂0 did a
very good job of estimating the potential outcome without treatment even with the boolean
confounder U included in the data, this good estimation promises a good matching scalar
for TET estimation. And this can also explain why estimated TET with estimated outcome
matching performs well in situations of boolean confounding.

We also show the comparison among the estimate potential outcome trees with different
levels of confounding probabilities included in the data in Figure C.4. As we can observe
the confounder probability PU perfectly predicts the outcome without treatment in all of
these four models, leaving no space for matching or any other treatment effect estimation
at all. This property of PU eventually made matching on estimated outcome not providing
any meaningful information for treatment estimation, which made these estimated TET
in Figure C.2 not only very different from the real TET in structure, but also extremely
poor in predictive power as shown in Table C.2.
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Table C.2: Comparison between T̂ETPU,Γ,∆ error-rates
HH

HHHH∆
Γ

0.25 4

0.25 38.175% 49.745%
4 49.745% 38.175%

Table C.3: Comparison between error-rates T̂ETU,Γ,∆ with “Strong” setting data
H
HHH

HH∆
Γ

0.25 4

0.25 4.991% 4.991%
4 4.991% 4.991%

Note that this does not indicate that estimating TET based on estimated outcome
matching is bad with continuous value confounder, by including PU we actually introduced
the “worst” confounding that could ever possibly happen to observational study, we argue
that with this kind of confounding, no treatment effect estimation strategy would ever
provide any reasonable estimation.
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(a) T̂ETPU,4,0.25

pu > 0.53

X2 < 0.75 1.0

0.0 pu > 0.74

0.0 1.0

True False

True False

True False

(b) T̂ETPU,4,4

X4 < 0.5

-1.0 X6 > 0.37

pu < 0.83 -0.012

-1.0 0.0

True False

True False

True False

(c) T̂ETPU,0.25,0.25

X4 < 0.5

-1.0 X6 > 0.37

pu > 0.17 -0.012

-1.0 0.0

True False

True False

True False

(d) T̂ETPU,0.25,4

pu > 0.53

X2 < 0.75 1.0

0.0 pu < 0.26

0.0 1.0

True False

True False

True False

Figure C.2: Comparison of T̂ETPU,Γ,∆
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(a) R̂0 without confounding

X3 < 0.6

0.0 X7 > 0.5

0.097 0.9

True False

True False

(b) real R0 without confounding

X3 > 0.6

X7 > 0.5 1.0

0.1 0.9

True False

True False

Figure C.3: Comparison of R̂0 model with real R0 model without confounding
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(a) R̂0
PU,0.25,4

pu < 0.54

0.0 X3 < 0.52

0.0 1.0

True False

True False

(b) R̂0
PU,4,4

pu < 0.5

0.0 1.0

True False

(c) R̂0
PU,0.25,0.25

pu ≥ 0.5

0.0 1.0

True False

(d) R̂0
PU,4,0.25

pu ≥ 0.46

0.0 X3 < 0.52

0.0 1.0

True False

True False

Figure C.4: Comparison between R̂0
PU,Γ,∆ models
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Appendix D

VPS Data Description

In this Chapter, we provide a description of VPS data, including what covariates VPS data
contains, and their missing rates.

Collected by VPS and CHLA together, the VPS data is a 58,772 × 142 matrix with
following types of variables:

• Unique numeric episode identifier episode ID in range 1 · · · 58772.

• 3 patient characteristics (age, weight, gender).

• 9 covariates related to patient origin or reason for coming.

• 15 binary covariates related to diagnoses collected for PIM [25] score.

• 7 clinical observation covariates collected at the time of admission.

• 9 binary covariates related to diagnoses collected for PRISM [13] score.

• 46 clinical observation covariates collected after 12 hours for PRISM score.

• 44 medical procedures the patient has undergone (e.g. ventilation).

• 6 covariates related to resources utilization.

• 3 values related to outcome (POPC1, PCPC2, and mortality).

1Pediatric Overall Performance Category.
2Pediatric Cerebral Performance Category.
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Table D.1: Covariates missing rates in VPS data
Covariate Treated NA rates Control NA rate

maxPh 24% 77%
minPh 34% 83%

maxPCO2 24% 77%
minPCO2 34% 83%

WorstComaStatus 85% 76%
· · · · · · · · ·

Table D.2: Outcomes missing rates in VPS data
Outcome Treated NA rates Control NA rate

POPC 77% 90%
PCPC 85% 97%

A great number of those covariates and outcomes have a high missing rate, here we
show some of them in Table D and Table D. Especially the high missing rates of outcome
POPC and PCPC, which leaves only the mortality data for us to use as outcome in TET
estimation.
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