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Abstract

The service network design problem (SNDP) addresses the planning of operations for freight

transportation carriers. Given a set of requests to transport commodities from specific ori-

gins to specific destinations, SNDP determines a continuous movement of vehicles to service

demand. Demand becomes available for pick up at its origin by a given availability time and

has to be dropped off at its destination by a given delivery deadline. The transportation

plan considers matters of vehicle routing, consolidation, service schedule, empty vehicle

repositioning, assignment of freight to operating vehicles, and vehicle stops and waiting

times. The literature studies a periodic time approach to SNDP. This thesis generalizes

the periodic time approach to SNDP by introducing a continuous time network and model.

Several network and model reduction techniques are introduced, and a multi-cut Benders

decomposition is developed to solve the continuous time model. To improve convergence

of Benders decomposition, we strengthen the algorithm with a family of valid inequalities

for SNDP. Numerical results show the benefits of the continuous time approach. Substan-

tial reductions in computational effort and improved lower bounds are achieved by the

multi-cut Benders decomposition algorithm.
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Chapter 1

Introduction

The service network design problem (SNDP) addresses the planning of operations for freight

transportation carriers. The problem studies the design of the service network, where a

transportation plan is determined for a planning horizon. A service is referred to the

fulfilment of an order to transport a quantity of demand from a specified origin to a specified

destination. A generalization of the pick up and delivery problem with time windows

(PDPTW), the service network transportation plan not only determines vehicle routing

and assignment of freight to operating vehicles but considers matters of consolidation,

service schedule, empty vehicle repositioning, and vehicle stops and waiting times. Vehicles

operate based on continuous movement in the network as opposed to moving to and from a

depot in PDPTW. Continuous movement allows for the same vehicle to operate the same

set of services in each planning horizon, hence the name service network design.

The SNDP falls into the context of a network design problem, where an optimized

transportation plan is sought on a network of terminals. Freight becomes available at

terminals during various times in the planning horizon and must be delivered to other
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terminals within a delivery deadline. This extends the tight time window assumption of

terminals in PDPTW. The aim is to design a minimum cost network of operating vehicles

which satisfy transportation demands. This is done by determining when and at what

frequencies terminals are visited, the amount of time vehicles spend waiting at terminals

in order to pick up a quantity of consolidated commodities, and the routes vehicles take

on their course to pick up and deliver their allocated freight.

Service network design is an important and substantial problem faced by the freight

transportation industry. Matters such as transportation cost, asset utilization and service

quality are of vital significance. SNDP concerns any carrier consolidating freight for trans-

port in origin-destination pairs; examples of which are less than truckload (LTL) carriers,

express delivery services, and passenger transportation services. Such services may be op-

erated by any of railroad, long distance maritime, ferry, air, or intermodal transportation

modes. This has led to the increase of research in ways to model and solve the problem.

However, SNDP has been proven to be very hard to solve. Solving relatively real-life size

problems to optimality is not possible, and has provided the opportunity for research in

determining efficient solution algorithms.

The literature poses SNDP as a periodic time problem. The planning horizon is divided

into discrete time periods and it is assumed that all operations can occur in the defined pe-

riods only. Current models define a time-space network that repeats the physical structure

of the terminal network for each time period. As a result, a node of the time-space network

represents a specific terminal at a specific time period. The network thus incorporates the

time dimension of the problem.

The periodic approach to SNDP comes with a number of disadvantages. A periodic

time assumption must either use a very large number of periods to realistically model a

real-life problem, or aggregate services into fewer time periods. A large number of periods
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increases the size of the resulting model and increases the difficulty of an already hard to

solve problem. Aggregation into fewer number of periods reduces solution quality both

in terms of cost and service. From a modeling perspective, the periodic SNDP restricts

the ability to model stochastic transportation times. Any fluctuation in time must be a

multiplier of the period duration, and so the number of periods must be high for a realistic

analysis. The limitations of the periodic approach to SNDP provide the motivation for

this thesis.

Our purpose is to develop a continuous time modeling approach for SNDP. To the best

of our knowledge this is the first attempt in modeling SNDP in continuous time. We define

a network independent of the time dimension and use it to formulate the continuous time

model. Several reduction techniques are developed and applied to the continuous network

and model. We build an exact solution methodology based on Benders decomposition.

By exploiting the characterisitcs of SNDP we develop a family of valid inequalities, and

use them to strengthen the Benders decomposition algorithm. Furthermore, we employ a

multi-cut Benders decomposition approach. We test and compare the continuous model to

the periodic model and show the advantages that may be gained from a continuous time

perspective. We then test the proposed Benders decomposition approach and analyze the

effect of developed improvements.

The thesis is organized as follows. Chapter 2 reviews the literature on the periodic

time SNDP. In chapter 3 we develop the continuous time network and model. Benders

decomposition is applied to the continuous time model in Chapter 4, and the relaxation of

different sets of constraints is investigated. Chapter 5 presents algorithm improvements,

and valid family of cuts for SNDP. Numerical results are given in Chapter 6, and the thesis

is finally concluded in Chapter 7.
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Chapter 2

Literature review

Early research on SNDP goes back to the work of Crainic and Rousseau (1986) and Far-

volden and Powell (1994). Since then the literature has expanded in two main directions.

The first group focus on generalizing SNDP by introducing more real-life aspects and

complicating constraints. Sung and Song (2003) introduce cross docks into SNDP. Their

approach does not explicitly consider a time setting and rather limits the maximum time

a route can take. Meng and Wang (2011) study a hub and spoke structure with multiple

vehicle types for SNDP. Andersen et al. (2009) study SNDP with coordination of multiple

fleets. Fleets are defined as regionally different vehicles which also differ in type (e.g. train,

ferry, etc.). Their intermodal model is deterministic, and tests are run on real life instances

with 17 nodes and 84 time periods. They solve the model by a commercial solver and reach

a gap of 10% after 24 hours with an improvement of 0.1% in the last 20 hours. The rest

of the literature focuses on developing algorithmic methods to deal with the difficult and

large size aspect of SNDP.

Two modeling approaches dominate the literature for SNDP. The first approach is re-
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ferred to as the arc based formulation. The arc based formulation is modeled by commodity

flow on arcs. The second approach is the path based formulation, where decision variables

are defined on cycles. The path based formulation is shown to give higher LP bounds (An-

dersen et al., 2009). A different modeling approach is studied by Armacost et al. (2002).

The authors introduce a composite variable formulation, and combine several routes into

one composite route. Regardless of the modeling approach, SNDP is proven to be highly

NP-hard (Ghamlouche et al., 2003).

Most research in solving SNDP focus on heuristic and meta-heuristic approaches. Ex-

amples are the works of Lai and Lo (2004) in ferry SNDP, Wang and Lo (2008) in multi-fleet

passenger transportation, Teypaz et al. (2010) in large-scale SNDP, and Crainic et al. (2011)

in progressive hedging-based meta-heuristics for SNDP. Kim et al. (1999) study the path

based model for SNDP and develop several network reduction techniques. They study

exact and approximation models and solve by a combination of column generation and

heuristic procedures. They reduce the number of commodities by combining commodities

with same origins to single super commodities. Their instances include 30 to 140 nodes,

4 to 9 hubs, 900 to 18,000 commodities aggregated into 30 to 130 product groups, and 5

to 7 vehicles. Pedersen et al. (2009) study the path based model of SNDP and solve by

a neighbourhood tabu search algorithm. Their test instances include 20 to 100 nodes and

40 to 200 commodities.

Andersen et al. (2011) are the only authors that proposes an exact solution algorithm for

SNDP. They develop a branch and price algorithm and iteratively generate cycles through

two subproblems. In one subproblem they generate service cycles and in another they

generate flow paths. Negative reduced cost cycles and paths are added to the linear master

problem. They introduce acceleration techniques to form fast integer solutions. Tests are

run on three approaches within a time limit of 10 hours. Test instances include 5 to 10
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nodes with 10 to 50 services (possible number of paths from one terminal to another), 20

to 50 time periods, and 20 to 1000 commodities, with the largest instance having 10 nodes,

30 periods, 50 services and 800 commodities. Gaps of 0.9% to 21.5% are achieved but no

instance is solved to optimality.

Lium et al. (2009) introduce uncertainty into SNDP. Demand is assumed uncertain and

captured by the scenario based approach. The authors introduce an arc based model that

uses outsourcing to satisfy unserviced demand. They show by small numerical examples of

6 nodes, 12 commodities and 7 time periods that stochasticity plays an important role in

determining the optimal service routes. Hoff et al. (2010) study a stochastic SNDP with

uncertain demand. They apply a path generation neighbourhood search heuristic to the

SNDP formulation of Lium et al. (2009). Tests are run on small instances with 6 nodes

and larger instances with 16 nodes, both with 14 commodities, 7 time periods, and 20

scenarios. Solutions were compared to an MIP solver which reached the optimal solution

after 10 hours in the small instance and reached high gaps for large instances even after a

week of computation.

Crainic et al. (2011) apply a Lagrangian relaxation to the stochastic arc based formula-

tion of a restricted SNDP. They do not consider a time dimension and assume commodities

may be picked up or delivered at any time. The master problem gives a set of open arcs

which is used to determine the flow of commodities in the subproblems. The authors de-

velop several Hedging based Meta-heuristic methods to produce service routes (open arcs).

They test their approach on instances with 16 to 30 nodes, 14 to 80 commodities and 10

to 90 scenarios.

Bai et al. (2014) study the stochastic arc based formulation of SND. Stochasticity is

defined on demand and is captured by scenarios. They expand the work of Lium et al.

(2009) by incorporating the possibility to reroute previously determined services when
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demand is realized in each scenario. Tests analyze the effects of rerouting on highly uncer-

tain instances with 6 nodes, 8 commodities, 5 periods and 20 scenarios. Larger instances

with 20 commodities are tested but did not reach optimality. Results show that considering

rerouting may lead to better overall solutions with lower costs and less need of outsourcing.

Table 2.1 presents an overview and classification of SNDP literature. The interested

reader is referred to Crainic (2000) and Wieberneit (2008) for thorough reviews on SNDP.

Table 2.1: Classification of SNDP literature

Research Environment Time setting Modeling approach Solution approach

Crainic and Rousseau (1986) Deterministic No time dimension path based Heuristic

Farvolden and Powell (1994) Deterministic Periodic Arc based Subgradient-Heuristic

Kim et al. (1999) Deterministic Periodic path based Column generation-Heuristic

Armacost et al. (2002) Deterministic Periodic path based MIP solver

Sung and Song (2003) Deterministic Time limit Arc based Heuristic

Ghamlouche et al. (2003) Deterministic Periodic path based Heuristic

Lai and Lo (2004) Deterministic Periodic Arc based Heuristic

Wang and Lo (2008) Deterministic Periodic Arc based Heuristic

Lium et al. (2009) Stochastic Periodic Arc based MIP solver

Andersen et al. (2009) Deterministic Periodic Arc based MIP solver

Pedersen et al. (2009) Deterministic Periodic path based Heuristic

Hoff et al. (2010) Stochastic Periodic Arc based Heuristic

Teypaz et al. (2010) Deterministic Periodic path based Heuristic

Andersen et al. (2011) Deterministic Periodic path based Branch & price

Meng and Wang (2011) Deterministic Periodic path based MIP solver

Crainic et al. (2011) Stochastic No time dimension Arc based Lagrangian-Heuristic

Bai et al. (2014) Stochastic Periodic Arc based MIP solver
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2.1 The periodic service network design problem

The periodic SNDP model is defined on a time-space network. This approach incorporates

the time dimension of the problem into the network itself. The planning horizon is divided

into t = 1, 2, ..., |T | discrete time periods. The network is built by associating terminals

to nodes and transportation routes to arcs; and repeating all nodes and arcs for each

period. Figure 2.1 illustrates a time-space network with 3 terminals and 4 periods. Define

a time-space network Gp = (Np, Ap), where Np and Ap, denote the set of nodes and

arcs, respectively. Superscript p denotes a periodic time network setting. A node i ∈ Np

represents the physical location of terminal i at a specific period in the planning horizon.

An arc (i, j) ∈ Ap connects node i to j and represents a movement in time if i and j are

associated with the same terminal(i = j), and a movement in time and space otherwise. A

cost cij is associated with arc (i, j), and represents the vehicle waiting cost if i and j are

associated with the same terminal, or represents transportation cost otherwise.

Let K denote the set of commodities. A commodity k ∈ K is defined as a request

to move a quantity of dk freight from origin O(k) to destination D(k). Freight becomes

available at its origin at time σ(k) ≥ 0 and must reach its destination by at most time

τ(k) ≤ T . A set of homogeneous vehicles V , each with capacity η, is available to transport

demand. Vehicles move in cycles; that is period T of the current planning horizon precedes

period 1 of the next planning horizon. In other words, t = 0 is equivalent to t = T . The

decision variables are defined as the integer service frequency variable xtij, denoting the

number of vehicles moving on arc (i, j) in period t; and continuous flow variables ytijk,

denoting the flow of commodity k on arc (i, j) in period t. The periodic SNDP model is
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formulated as below (Bia et al., 2014):

[PM1]

min
∑
t∈T

∑
(i,j)∈Ap

cijx
t
ij (2.1)

s.t.
∑

j:(i,j)∈Ap
xtij −

∑
j:(j,i)∈Ap

xt−1
ji = 0 ∀i ∈ Np, ∀t ∈ T, (2.2)

∑
k∈K

ytijk ≤ ηxtij ∀(i, j) ∈ Ap, i 6= j,∀t ∈ T, (2.3)

∑
j:(O(k),j)∈Ap

y
σ(k)
O(k)jk = dk ∀k ∈ K, (2.4)

∑
j:(j,D(k))∈Ap

y
τ(k)−1
jD(k)k = dk ∀k ∈ K, (2.5)

∑
j:(i,j)∈Ap

ytijk −
∑

j:(j,i)∈Ap
yt−1
jik = 0 ∀i ∈ Np \ {O(k), D(k)},∀k ∈ K,∀t ∈ T, (2.6)

y
τ(k)
ijk = 0 ∀(i, j) ∈ Ap,∀k ∈ K (2.7)

xtij ≥ 0, Integer ∀(i, j) ∈ Ap, ∀t ∈ T, (2.8)

ytijk ≥ 0 ∀(i, j) ∈ Ap,∀k ∈ K,∀t ∈ T. (2.9)

Objective function (2.1) minimizes the sum of transportation and vehicle waiting costs.

Constraints (2.2) ensure the balance of flow on the number of vehicles. Constraints (2.3)

allow flow between two terminals only if there is vehicle movement, and also enforce an

aggregated vehicle capacity. There is no capacity, or commodity flow restriction on arcs

(i, j) if i and j are associated with the same terminal, which represent movement in time

only. This setting allows a soft window on the pick up and delivery of commodities. A

commodity may be picked up from its origin at any time after it becomes available, and

may be delivered to its destination any time before its deadline. Constraints (2.4)-(2.6)

enforce conservation of commodity flow, and constraints (2.7) ensure that no commodity

flow takes place after its delivery deadline. Without constraints (2.7) the model may
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take advantage of the cyclic vehicle movements by picking up a commodity in the current

planning horizon, and delivering it in the next planning horizon. We show in section

3.2.1 how these types of constraints are removed. Constraints (2.8), (2.9) are integer and

non-negativity requirements on the decision variables.

Figure 2.1: The time-space network.

1

2

3

1

2

3

22

1 1

3 3

t=1 t=2 t=3 t=4

: Movement in time 
and space

: Movement in time 
only

Commodity flow variables yvijk are continuous. However, [PM1] results in integer values

of yvijk for vehicles v ∈ V . This is assured by setting vehicle capacity η to an integer

multiplier of commodity volume. Currently, all commodities are assumed to consume the

same physical volume, which then determines vehicle capacity. Vehicle capacity is set to

the number of commodities that can fit into a vehicle v ∈ V . If commodities k ∈ K have

different physical capacities, variables yvijk must be set to integer, and constraints (2.3)

must be disaggregated by vehicle, for integer solutions of yvijk.

An assumption of the current SNDP is that a commodity k ∈ K may, with zero cost,

change vehicle at any node along its path to destination. As vehicle flow variables xtij
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are integer, there is no differentiation between which vehicle is carrying which commodity.

For example assume two vehicles entering node i ∈ Np:
∑
j∈Ap

xtji = 2 at time t ∈ T .

Assume further that one of the vehicles is carrying load d1, and the other is carrying

load d2. By the current formulation it is possible that the exiting vehicles from node i

carry the loads of d1 + d2/2 and d2/2. This results in η − d2/2 available capacity for

the second vehicle to pick up a different commodity k ∈ K, one which would not have

been possible with η − d2 available capacity. This is an unrealistic outcome. Not only is

exchanging commodities between vehicles difficult ,and requires time and resources, but

it also requires special terminals and infrastructure. The time and cost of exchanging

commodities depends on where in the truck they are loaded; and rearranging a loaded

truck is often difficult. Therefore, allowing such an option in order to possibly save on

transportation costs is unrealistic.

On the other hand the model assumes that all terminals i ∈ Np can act as hub locations.

A vehicle v ∈ V is able to drop its load at one node i ∈ Np for another vehicle v′ ∈ V, v′ 6= v

to pick up at another time with no additional cost. Again this drop off-pick up activity

is an unrealistic possible outcome. Not all nodes may have the infrastructure to allow

storage, and assuming that all network nodes i ∈ Np are hub locations with no inventory

cost is a major assumption. We therefore enforce that the flow of commodity k, ytijk,

assigned to a vehicle v, stays on that vehicle from origin to destination. Since commodity

flow variables ytijk are continuous, total commodity demand dk, k ∈ K, may be assigned

to multiple vehicles. Finally, if consolidation nodes or hub and spoke networks are sought,

then the problem must specifically consider such nodes where vehicles may load or unload

the commodities they carry with associated costs and times. This case is beyond the scope

of this thesis.

To address the stated issues we must disaggregate vehicle movements. This is done by
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differentiating between vehicles, and replacing integer variables xtij by binary variables xtvij ,

which denote whether vehicle v uses arc (i, j) in period t. Consequently, variable ytijk is

replaced by variable ytvijk which denotes the flow of commodity k on vehicle v moving on

arc (i, j) at period t. The modified vehicle specific periodic model is formulated as follows:

[PM2]

min
∑
t∈T

∑
v∈V

∑
(i,j)∈Ap

cijx
tv
ij (2.10)

s.t.
∑

j:(i,j)∈Ap
xtvij −

∑
j:(j,i)∈Ap

xt−1v
ji = 0 ∀i ∈ Np,∀t ∈ T, ∀v ∈ V, (2.11)

∑
(i,j)∈Ap

xTvij ≤ 1 ∀v ∈ V, (2.12)

∑
k∈K

ytvijk ≤ ηxtvij ∀(i, j) ∈ Ap, i 6= j,∀t ∈ T, ∀v ∈ V, (2.13)

∑
v∈V

∑
j:(O(k),j)∈Ap

y
σ(k)v
O(k)jk = dk ∀k ∈ K, (2.14)

∑
v∈V

∑
j:(D(k),j)∈Ap

y
τ(k)−1v
jD(k)k = dk ∀k ∈ K, (2.15)

∑
j

ytvijk −
∑
j

yt−1v
jik = 0 ∀i ∈ Np \ {O(k), D(k)},∀t ∈ T, ∀k ∈ K,∀v ∈ V, (2.16)

∑
v∈V

∑
(i,j)∈Ap

y
τ(k)v
ijk = 0 ∀k ∈ K, (2.17)

xtvij ≥ 0, Binary ∀(i, j) ∈ Ap, ∀t ∈ T, ∀v ∈ V, (2.18)

ytvijk ≥ 0 ∀(i, j) ∈ Ap,∀k ∈ K,∀t ∈ T, ∀v ∈ V. (2.19)

Objective function (2.10) and Constraints (2.11), are similar to Objective function (2.1)

and Constraints (2.2) in [PM1], respectively. Constraints (2.12) ensure that a vehicle v ∈ V

is used at most once. This constraint is not required in the previous formulation as vehicle

flow is aggregated over all vehicles v ∈ V . Constraints (2.13) account for disaggregated

capacity constraints on vehicles v ∈ V . Constraints (2.14), (2.15) are similar to Constraints
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(2.4), (2.5) in [PM1]. Constraints (2.16) enforce commodity flow balance and do not allow

the exchange of commodities k ∈ K between vehicles v ∈ V or their drop off at any node

i ∈ Np, i 6= D(k). An advantage of the vehicle specific model is the possibility of using

vehicles with different capacities. The downside is that the problem increases in size by

the number of vehicles |V |, and possibly makes it more difficult to solve.

This concludes the review of the periodic approach to SNDP. The next chapter takes

a continuous time approach to SNDP, and constructs the continuous time network and

model.
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Chapter 3

The continuous service network

design problem

The time-space network incorporates the time dimension of SNDP into the network itself.

To the best of our knowledge the time-space network is the only approach available to

SNDP. However, this approach makes a discrete time assumption, and occurrences in time

must be assigned to specific time points. All schedules and vehicle movements must be

based on the assumed period duration, and any time in between periods must be aggre-

gated to the discrete time periods. This setting also removes the possibility of considering

stochastic transportation durations, as any change to transportation time must be at least

the duration of a whole time period.

The time-space network approach also comes with the price of repeating the original

network by the number of periods considered. Assuming that the original network G =

(N,A) has |N | nodes and |A| = |N |(|N |−1) arcs, the time space network has |Np| = |N ||T |

nodes and |Ap| = |N |3|T | arcs. As the number of periods increases, the size of the time-
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space network increases. This increase limits the possibility of using short time periods over

a planning horizon. As an example, if we were to design the service network with 1 hour

periods on a horizon of 30 days, we must repeat the entire network 24 × 30 = 720 times.

Such large networks exceed the capacities of available solution approaches. The current

literature assumes long time periods, and aggregates the operations between periods into

far apart points of time, which reduces the accuracy and quality of solution for real-life

operations.

We propose a commodity-based network for SNDP. Our aim is to incorporate the time

dimension of the problem into the model, rather than the network. We assume continuous

time which is a generalization of the periodic time representation.

3.1 Constructing the continuous time network

To model the time dimension of SNDP we introduce time variables and determine the time

a vehicle v ∈ V arrives or departs terminals i ∈ N . Arrival (departure) variables can only

take one value, meaning that a vehicle v ∈ V may arrive (depart) a terminal i ∈ N at

most once. However, the problem may require a vehicle to visit a terminal more than once.

Assuming that transportation costs and times have the triangular property, there is only

one case where a vehicle v ∈ V may be required to visit the a terminal i ∈ N more than

once. When a terminal i ∈ N serves as the origin O(k) or destination D(k) to more than

one commodity k ∈ K, a vehicle v ∈ V may choose to visit i to pick up a commodity

k ∈ K, and visit i again to deliver another commodity k′ ∈ K, k′ 6= k. To remove this case,

we model the problem on the following network.

We define the continuous time network on a directed graph Gc = (N c, Ac) where N c is

the set of nodes and Ac is the set of arcs, respectively. Superscript c represents a continuous
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time network setting. The set of nodes N c is built by associating a node i ∈ N c to the origin

O(k) of a commodity k ∈ K, and a node i ∈ N c to the destination D(k) of a commodity

k ∈ K, resulting in 2|K| nodes. In this setting a vehicle v ∈ V visits a node i ∈ N c either

to pick up or deliver a commodity k ∈ K. On the other hand, not only would a vehicle

v ∈ V visit a node i ∈ N c at most once, but if it does, it picks up or delivers a commodity

k ∈ K. Visiting a node i ∈ N c without performing a service only increases cost and is

not optimal. A node i ∈ N c is associated with a terminal location in the original network,

and multiple nodes may share the same physical location. A node i ∈ N c is associated

with waiting cost ci, which represents the cost of waiting at the associated terminal of

node i. Graph Gc is complete and all nodes i ∈ N c are connected to all other nodes

j ∈ N c, j 6= i, by arcs of set Ac. An arc (i, j) ∈ Ac is associated with cost cij, and time

tij, which represent transportation cost and time if nodes i and j are not associated with

the same terminal, and are set to zero otherwise. The final step in forming the continuous

time network is ensuring that vehicles start at some terminal, perform a number of pick

up and deliveries, and return to the same starting terminal. Such vehicle cycles have the

characteristics below:

1. A cycle starts at an origin node O(k), k ∈ K, as no delivery is possible without pick

up.

2. A cycle ends at a destination node D(K), k ∈ K, as no pick up is possible without

delivery in the same planning horizon.

Using these two facts we define “end of horizon” nodes D′(k), which represent the

associated terminals of all commodity destinations D(k), k ∈ K at the end of the planning

horizon. These nodes are added to N c and denoted by N c
s ⊂ N c. Based on its associated

terminal, a destination D(k) is connected to its corresponding end of horizon node D′(k),
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by adding arc (D(k), D′(k)) to Ac, with cost cD(k)D′(k) = 0 and time tD(k)D′(k) = 0. A node

i ∈ N c
s has the same waiting cost ci as its corresponding terminal, and is only used to

indicate the location of a vehicle v ∈ V , at the end of the cycle. A node i ∈ N c
s is then

connected to all origin nodes O(k′), k′ ∈ K by “end of horizon” arcs (D′(k), O(k′)), that

are added to set Ac. An arc (D′(k), O(k′)) indicates that a vehicle v ∈ V starts at origin

O(k′) and ends at destination D(k).

The cost cD′(k)O(k′) and time tD′(k)O(k′) associated with end of horizon arcs (D′(k), O(k′),

is defined in two ways. If D′(k) and O(k′) are associated with the same terminal, then

arc (D′(k), O(k′) is associated a cost cD′(k)O(k′) = 0 and transportation time tD′(k)O(k′) =

−T ; otherwise the associated cost is cD′(k)O(k′) = cD(k)O(k′) and transportation time is

tD′(k)O(k′) = −T + tD(k)O(k′). The transportation time of the end of horizon arcs is what

distinguishes them from regular transportation arcs, and indicates moving to the start of

the next planning horizon. Note that as the arrival time to any node is non-negative, the

use of end of horizon arcs is only possible at a time greater than −tD′(k)O(k′). Figure 3.1

displays a continuous time network for |K| = 3, such that the last two destinations are

associated with one terminal.

By the above definitions, the number of nodes is at most |N c| = 3|K|, and the set of

arcs is at most |Ac| = 5|K|2 − |K| arcs. The continuous model may be modeled on Gc.

However Gc is general and not all arcs (i, j) ∈ Ac are needed. The network Gc can be

considerably reduced by the characteristics of SNDP, as shown in the next section.

3.1.1 Network reduction

The network Gc is general and contains a large number of arcs. A node i ∈ N c may be

connected to as many as |N c| − 1 nodes, meaning that there could be |N c| − 1 nodes a
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Figure 3.1: The continuous time network.

:End of horizon 
nodes

:Origin or 
destination nodes

O

O

O

D

D

D

vehicle v ∈ V may visit when leaving node i. We simplify the network by removing arcs

of set Ac that cannot be in a feasible cycle. This is done by exploiting the relationship

between commodities k ∈ K, and their respective origins O(k) and destinations D(k) in

N c.

The first set of redundant arcs are of form (D(k), O(k)), k ∈ K. The reasoning is simple:

after we have serviced and delivered a commodity k ∈ K we never have to visit O(k).

Therefore, direct movement from the destination of a commodity to its origin is infeasible.

By this we remove all arcs (D(k), O(k)), k ∈ K from the arc set Ac, as illustrated by Figure

3.2. Throughout this thesis, a dashed line indicates an eliminated arc. The second set of

redundant arcs are shown by Lemma 1:

Lemma 1. Given τ(k) ≤ σ(k′), k, k′ ∈ K, a feasible cycle cannot contain the arcs

(O(k), D(k′)), (O(k′), D(k)), (O(k), O(k′)), (O(k′), O(k)), (D(k), D(k′)), (D(k′), D(k)),

(D(k′), O(k)).

Proof. Recall that if origin O(k), k ∈ K is visited, commodity k is picked up; and if
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Figure 3.2: Removing arcs of form (D(k), O(k)).

O(k) D(k)

destination D(k), k ∈ K is visited, commodity k is delivered. As τ(k) ≤ σ(k′) then

commodity k has to be serviced before commodity k′ becomes available. That is, both

O(k) and D(k) must be visited before O(k′) and D(k′) in any feasible path. Therefore, the

only direct movement between the two commodities’ nodes could be moving from D(k) to

O(k′).

By Lemma 1 we remove all arcs (O(k), D(k′)), (O(k′), D(k)), (O(k), O(k′)), (O(k′), O(k)),

(D(k), D(k′)), (D(k′), D(k)), (D(k′), O(k)) from Ac, where τ(k) ≤ σ(k′), k, k′ ∈ K. This is

shown by Figure 3.3.

Figure 3.3: Removing arcs by Lemma 1.

O(k) D(k’)

O(k) D(k’)

We further reduce network Gc using the time relationship of nodes i, j ∈ N c such that

i and j are associated with the same terminal. We show the reduction by the three cases

below:

1. Consider two origins O(k), O(k′), k, k′ ∈ K such that O(k), O(k′) are associated with

the same terminal and σ(k) ≤ σ(k′). Since commodity k becomes available before
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commodity k′, it is safe to assume that in a consecutive visit of a vehicle v ∈ V to

origins O(k), O(k′), origin O(k) is visited first, and O(k′) is visited second. By this

assumption we remove arc (O(k′), O(k)) from Ac, as shown by Figure 3.4.a.

2. Consider two destinations D(k), D(k′), k, k′ ∈ K such that D(k), D(k′) are associated

with the same terminal and τ(k) ≤ τ(k′). Since commodity k must be delivered

before commodity k′, then it is safe to assume that in a consecutive visit of a vehicle

v ∈ V to destinations D(k), D(k′), destination D(k) is visited first, and D(k′) is

visited second. By this assumption we remove arc (D(k′), D(k)) from Ac, as shown

by Figure 3.4.b.

3. Consider origins O(k), k ∈ K, and destination D(k′), k′ ∈ K, k′ 6= k, such that

O(k), D(k′) are associated with the same terminal. It is safe to assume that in a

consecutive visit to O(k) and D(k), the delivery of commodity k′ takes place before

the pick up of commodity k. That is in a consecutive visit of a vehicle v ∈ V to

origin O(k) and destination D(k′), destination D(k′) is visited first, and O(k) is

visited second. By this assumption we remove arc (O(k), D(k′)) from Ac, as shown

by Figure 3.4.c.

Figure 3.4: Removing arcs between nodes associated with the same terminal.

D(k) D(k’)O(k) O(k’) D(k) O(k’)

a) Case 1 b) Case 2 c) Case 3

This concludes the construction of the continuous time network. Section 3.2 develops

the continuous time model.
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3.2 Developing the continuous time formulation of

SNDP

We define the continuous time formulation on network Gc = (N c, Ac), constructed and

reduced in Section 3.1. The continuous time model consists of two parts. The first part

models commodity and vehicle flow constraints and the second parts models time con-

straints. Let binary decision variables xvij denote vehicle movement and indicate whether

vehicle v ∈ V moves on arc (i, j). Let continuous decision variables yvijk denote commod-

ity flow and indicate the quantity of commodity k ∈ K moving on arc (i, j) on vehicle

v ∈ V . Transportation cost is calculated as
∑
v∈V

∑
(i,j)∈Ac

cijx
v
ij. Commodity and vehicle flow

constraints are as follows.

∑
j:(i,j)∈Ac

xvij −
∑

j:(j,i)∈Ac
xvji = 0 ∀i ∈ N c, ∀v ∈ V (3.1)

∑
(i,j)∈Ac

xvij ≤ 1 ∀v ∈ V, (3.2)

∑
k∈K

yvijk ≤ ηxvij ∀(i, j) ∈ Ac,∀v ∈ V, (3.3)

∑
v∈V

∑
j:(O(k),j)∈Ac

yvO(k)jk = dk ∀k ∈ K, (3.4)

∑
v∈V

∑
j:(j,D(k))∈Ac

yvjD(k)k = dk ∀k ∈ K, (3.5)

∑
j:(i,j)∈Ac

yvijk −
∑

j:(j,i)∈Ac
yvjik = 0 ∀i ∈ N c \ {O(k), D(k)},∀k ∈ K,∀v ∈ V, (3.6)

∑
v∈V

∑
(i,j)∈Ac:j∈Nc

s

yvijk = 0 ∀k ∈ K, (3.7)

xvij binary ∀(i, j) ∈ Ac,∀v ∈ V, (3.8)

yvijk ≥ 0 ∀(i, j) ∈ Ac,∀k ∈ K,∀v ∈ V. (3.9)
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Constraints (3.1) address the vehicle balance requirements. Constraints (3.2) are similar to

constraints (2.12), and only allow one cycle per vehicle. Constraints (3.3) enforce vehicle

capacity and flow of commodity only if there is vehicle movement on set Ac. Constraints

(3.4)-(3.6) are conservation of commodity flow. Constriants (3.7) ensure that no commodity

flow takes place on end of horizon arcs (i, j) ∈ Ac, j ∈ N c
s , and constraints (3.9), and (3.15)

are binary and non-negative requirements on the decision variables.

The time dimension may be modeled in two ways. The first approach introduces vari-

ables uvi and svi as the arrival and departure times of vehicle v ∈ V , to and from node

i ∈ N c. Vehicle waiting cost is calculated as
∑
i∈Nc

∑
v∈V

ci(s
v
i − uvi ), and the time constraints

are written as:

uvi ≤ svi ∀i ∈ N c,∀v ∈ V, (3.10)

tijx
v
ij − (1− xvij)T ≤ uvj − svi ≤ tijxvij + (1− xvij)T ∀(i, j) ∈ Ac,∀v ∈ V, (3.11)

svi ≤ T
∑

j:(i,j)∈Ac
xvij ∀i ∈ N c,∀v ∈ V, (3.12)

svO(k) ≥ σ(k)
∑

j:(O(k),j)∈Ac
xvO(k)j ∀k ∈ K,∀v ∈ V, (3.13)

uvD(k) ≤ τ(k) ∀k ∈ K,∀v ∈ V, (3.14)

svi , u
v
i ≥ 0 ∀i ∈ N c, ∀v ∈ V. (3.15)

Constraints (3.10) ensure that vehicle arrival precedes vehicle departure. Transportation

time is implemented by constraints (3.11). Constraint (3.11) accounts for the time it takes

to move on arc (i, j) if it is used by vehicle v (xvij = 1), and becomes redundant if there

is no vehicle movement (xvij = 0). Constraints (3.12) set the departure time of unvisited

nodes to zero. Together with (3.10), constraints (3.12) set arrival time of unvisited nodes

to zero. Constraints (3.13) and (3.14) ensure that the availability and delivery deadline of

all commodities k ∈ K are respected. Constraints (3.8) are non-negative requirements on
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the time decision variables.

The second approach to model time constriants is to define variables wvij as the time

vehicle v ∈ V departs node i ∈ N c, heading for node j ∈ N c : (i, j) ∈ Ac1. In this case

vehicle waiting cost is calculated as
∑
i∈Nc

∑
v∈V

ci

( ∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix

v
ji

))
, and time

constraints are written as:∑
j:(j,i)∈Ac

(
wvji + tjix

v
ji

)
≤

∑
j:(i,j)∈Ac

wvij ∀i ∈ N c,∀v ∈ V, (3.16)

wvO(k)i ≥ σ(k)xO(k)i ∀i ∈ N c : (O(k), i) ∈ Ac,∀k ∈ K, ∀v ∈ V, (3.17)

wviD(k) + tiD(k)x
v
iD(k) ≤ τ(k)xviD(k), ∀i ∈ N c : (i,D(k)) ∈ Ac1,∀k ∈ K, ∀v ∈ V, (3.18)

wvij ≤ Txvij ∀(i, j) ∈ Ac,∀v ∈ V, (3.19)

wvij ≥ 0 ∀(i, j) ∈ Ac,∀v ∈ V. (3.20)

Constraints (3.16) set the arrival time of a vehicles v ∈ V to a node i ∈ N c to precede its

departure time. Moreover Constraints (3.16) keep track of time spent by a vehicle v ∈ V

in the network. In other words, these constraints serve the same purpose as constraints

(3.10) and (3.11) together in the previous definition of time variables. Constraints (3.17)

and (3.18) enforce the availability and delivery deadline of the commodities, and constraint

(3.19) sets the departure time (and consequently the arrival time) of unvisited nodes to

zero.

Both modelling approaches give the same solution to the continuous time SNDP. How-

ever the feasible region, when relaxing the binary requirements on variables xvij, is different.

Based on our initial experiments, the second approach of defining time variables wvij out-

performs the first approach by computational time and tightness of the relaxed feasible

region. The advantage of the second approach is significantly clear in large size instances.

Therefore we pursue and use only the second approach in this thesis. The complete model
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for the continuous time SNDP is:

[CM1]

min
∑

(i,j)∈Ac

∑
v∈V

cijx
v
ij +

∑
i∈Nc

∑
v∈V

ci

∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix

v
ji

) (3.21)

s.t. (3.1)− (3.9), (3.16)− (3.20).

Model [CM1] can be reduced for an easier solution. This reduction is discussed in the

following section.

3.2.1 Model reduction

We reduce [CM1] by distinguishing the arcs of set Ac. We show how this distinction leads

to a smaller and reduced model [CM2]; and prove by Theorem 1 how [CM1] and [CM2]

are equivalent. We define subsets Ac1, Ac2, and Ac3, such that all arcs (i, j) ∈ Ac fall into

one subset only, and Ac = Ac1 ∪ Ac2 ∪ Ac3. Each set is defined as follows:

1. Let Ac1 ⊂ Ac denote the set of arcs (i, j), such that i and j are not associated with

the same terminal; or i and j are associated with the same terminal but take forms

of (O(k), D(k′)), (D(k), O(k′)), k, k′ ∈ K.

2. Let Ac2 ⊂ Ac denote the set of arcs (i, j), such that i and j are associated with the

same terminal, and are of the forms (O(k), O(k′)), (D(k), D(k′)), k, k′ ∈ K.

3. Let Ac3 ⊂ Ac denote the set of end of horizon arcs (i, j), where i ∨ j ∈ N c
s .

By this definition we only define vehicle flow for set Ac1∪Ac3, and only define commodity

flow for set Ac1 ∪Ac2. This reduces both the number of vehicle flow variables xvij, and time
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Figure 3.5: Definition of arc sets for the continuous time network.
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variables wvij by |V ||Ac2|; and reduces the number of commodity flow variables yvijk by

|V ||Ac3|. In addition to the number of variables, the number of constraints in [CM2] are

reduced compared to [CM1]. Model [CM2] is formulated as below.

[CM2]

min
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

cijx
v
ij +

∑
i∈Nc

∑
v∈V

ci

∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix

v
ji

) (3.22)

s.t.
∑

j:(i,j)∈Ac1∪Ac3

xvij −
∑

j:(j,i)∈Ac1∪Ac3

xvji = 0 ∀i ∈ N c,∀v ∈ V, (3.23)

∑
(i,j)∈Ac1∪Ac3

xvij ≤ 1 ∀v ∈ V, (3.24)

∑
k∈K

yvijk ≤ ηxvij ∀(i, j) ∈ Ac1,∀v ∈ V, (3.25)

∑
v∈V

∑
j:(O(k),j)∈Ac1∪Ac2

yvO(k)jk = dk ∀k ∈ K, (3.26)

∑
v∈V

∑
j:(j,D(k))∈Ac1∪Ac2

yvjD(k)k = dk ∀k ∈ K, (3.27)
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∑
j:(i,j)∈Ac1∨(i,j)∈Ac2,j=D(k)

yvijk −
∑

j:(j,i)∈Ac1∨(j,i)∈Ac2,j=O(k)

yvjik = 0

∀i ∈ N c \ {O(k), D(k)}, ∀k ∈ K,∀v ∈ V, (3.28)∑
j:(j,i)∈Ac1∪Ac3

(
wvji + tjix

v
ji

)
≤

∑
j:(i,j)∈Ac1∪Ac3

wvij ∀i ∈ N c,∀v ∈ V, (3.29)

wvO(k)i ≥ σ(k)xO(k)i ∀i ∈ N c : (O(k), i) ∈ Ac1 ∪Ac3, ∀k ∈ K,∀v ∈ V, (3.30)

wviD(k) + tiD(k)x
v
iD(k) ≤ τ(k)xviD(k)

∀i ∈ N c : (i,D(k)) ∈ Ac1 ∪Ac3, ∀k ∈ K,∀v ∈ V, (3.31)

wvij ≤ Txvij ∀(i, j) ∈ Ac1 ∪Ac3, ∀v ∈ V, (3.32)

wvij ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac3, ∀v ∈ V, (3.33)

xvij binary ∀(i, j) ∈ Ac1 ∪Ac3, ∀v ∈ V, (3.34)

yvijk ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac2,∀k ∈ K,∀v ∈ V. (3.35)

Objective function (3.22) corresponds to objective function (3.21) with no vehicle flow on

arcs (i, j) ∈ Ac2. Constraints (3.23), (3.24), and (3.29)-(3.32) correspond to Constraints,

(3.1), (3.2), and (3.16)-(3.20), respectively, with no vehicle flow on arcs Ac2. Constraints

(3.3) only enforce vehicle capacity on arcs of set Ac1. In other words commodities may

flow without the requirement of vehicle flow on arcs Ac2 (there is no commodity flow on

arcs Ac3). Constraints (3.26), (3.27) are supply and demand constraints defined on arcs

Ac1∪Ac2. Constraints (3.28) are conservation of commodity flow. In addition to conserving

commodity flow on arcs (i, j) ∈ Ac1; for a commodity k ∈ K these constraints conserve flow

on arcs (i,D(k)), (O(k), i) ∈ Ac2. By constraints (3.26)-(3.28) we ensure that a commodity

k′ ∈ K, k′ 6= k does not move on arcs (i,D(k)), (O(k), i) ∈ Ac2, and that they may only be

used for commodity k. If commodities k′ were allowed to flow on these arcs, a vehicle may

unrealistically drop a commodity at node O(k) : (O(k), j) ∈ Ac2 (or node i : (i,D(k)) ∈ Ac2),

and pick it up later in the cycle at node j : (O(k), j) ∈ Ac2 (node D(k) : (i,D(k)) ∈ Ac2)
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using arc (i,D(k)) (arc (O(k), i)) as a short cut. There is no commodity flow defined on

subset Av3, and so constraints (3.7) are automatically satisfied. We now prove by Theorem

1 that solving [CM1] and [CM2] is equivalent.

Theorem 1. Solving model [CM2] is equivalent to solving model [CM1].

Proof. An arc (i, j) ∈ Ac2 corresponds to cij = 0. Therefore, solutions xvij = 1, (i, j) ∈ Ac2
and xvij = 0, (i, j) ∈ Ac2 give the same value in objective (3.21) in [CM1]. The proof reduces

to proving feasibility. We show that if a solution x̂vij satisfies constraints (3.23)-(3.33),

it satisfies constraints (3.1)-(3.9), (3.16)-(3.20). It is clear that if x̂vij satisfies vehicle and

commodity flow conservation enforced by Constraints (3.23)-(3.28), it satisfies conservation

of flow in Constraints (3.1)-(3.9). Now, Constraints (3.29)-(3.32) enforce time constraints

on set arc set Ac1 ∪ Ac3; and Constraints (3.16)-(3.20) enforce time constraints on arc set

Ac = Ac1 ∪ Ac2 ∪ Ac3. An arc (i, j) ∈ Ac2 falls in one of the below cases:

1. If (i, j) ∈ Ac2, and i = O(k), j = O(k′), k, k′ ∈ K, we have σ(k) ≤ σ(k′) by network

reduction techniques. If commodity k flows on arc (O(k), O(k′)), it is picked up at

O(k′), without requiring vehicle movement on arc (O(k), O(k′)). If the vehicle picking

up commodity k satisfies its availability time σ(k) then it is feasible to Constraints

(3.16)-(3.20). In this case we have xO(k′)i = 1 for some i ∈ N c, therefore:

wO(k′)i ≥ σ(k′) by constraint (3.30).

As σ(k) ≤ σ(k′) we thus have:

wO(k′)i ≥ σ(k).

which means time constraints (3.16)-(3.20) are satisfied for commodity k without

requiring vehicle movement to O(k).

2. If (i, j) ∈ Ac2, and i = D(k), j = D(k′), k, k′ ∈ K, we have τ(k) ≤ τ(k′) by network

reduction techniques. If commodity k′ flows on arc (D(k), D(k′)), it is dropped off
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at D(k), without requiring vehicle movement on arc (D(k), D(k′)). If the vehicle

dropping off commodity k′ satisfies its delivery deadline τ(k′) then it is feasible to

Constraints (3.16)-(3.20). In this case we have xiD(k) = 1 for some i ∈ N c, therefore:

wiD(k) + tiD(k) ≤ τ(k) by constraint (3.31).

As τ(k) ≤ τ(k′) we thus have:

wiD(k) + tiD(k) ≤ τ(k′).

which means time constraints (3.16)-(3.20) are satisfied for commodity k′ without

requiring vehicle movement to D(k′).

Hence, commodity flow of arcs (i, j) ∈ Ac2 is satisfied by Constraints (3.4)-(3.6). This

concludes the proof. Figure 3.6 shows a pick up or delivery service without requiring

vehicle movement.

Figure 3.6: Simultaneous pick up or delivery of commodities sharing their associated

terminal.

b) Two Destinationsa) Two Origins

Commodity flow

Vehicle flow

O(k) O(k’ ) D(k’ )D(k)

By the reduction in size, solving [CM2] is easier than [CM1]. However, [CM2] is still

hard to solve using a commercial solver. We develop a decomposition algorithm using

Benders decomposition to aid in solving [CM2]. This solution algorithm is presented in

Chapter 4.
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Chapter 4

Solution by Benders decomposition

Model [CM2] presented in Chapter 3 is difficult (or even impossible in large size problems)

to solve using commercial solvers alone. An approach to solving large size problems is the

use of decomposition schemes. Branch and price algorithms are employed in the literature

to solve the periodic SNDP. However, as the linear relaxation lower bound is poor in

SNDP models, the branch and price algorithm is not very efficient and requires a lot of

improvement. We propose using Benders decomposition.

Benders decomposition generally solves a relaxed master problem [RMP] with a set

of relaxed constraints in the first stage. The relaxed constraints are moved into recourse

subproblems which are bound by the solution of [RMP]. Based on the solutions of the

subproblems, feasibility and optimality cuts are derived and added to [RMP]. The proce-

dure continues until all subproblems are feasible and give the same objective bound as the

master problem. Given a set of vehicle movements x̂vij, [CM2] may be decomposed in three

ways:

1. Commodity flow constraints (3.25)-(3.28) are relaxed and moved into the subproblem.
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2. Time constraints (3.29)-(3.32) are relaxed and moved into the subproblem.

3. Both commodity flow and time constraints (3.25)-(3.32) are relaxed and moved into

the subproblem.

4.1 Relaxing commodity flow constraints

Model [CM2] may be decomposed by moving commodity flow constriants (3.25)-(3.28) and

(3.35) to [SPy], and reformulating [CM2] on a set of feasibility constraints Ωfeas
y . We have

the reformulation of model [CM2] as [MPy]:

[MPy]

min
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

cijx
v
ij +

∑
i∈Nc

∑
v∈V

ci

∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix

v
ji

) (4.1)

s.t.
∑

j:(i,j)∈Ac1∪Ac3

xvij −
∑

j:(j,i)∈Ac1∪Ac3

xvji = 0 ∀i ∈ N c,∀v ∈ V, (4.2)

∑
j:(i,j)∈Ac1∪Ac3

xvij ≤ 1 ∀i ∈ N c,∀v ∈ V, (4.3)

∑
(i,j)∈Ac1∪Ac3:i∈Nc

s

xvij ≤ 1 ∀v ∈ V, (4.4)

∑
(i,j)∈Ac1∪Ac3

∑
v∈V

Θry

ij x
v
ij ≥ Θry

0 ∀ry ∈ Ωfeas
y , (4.5)

∑
j:(j,i)∈Ac1∪Ac3

(
wvji + tjix

v
ji

)
≤

∑
j:(i,j)∈Ac1∪Ac3

wvij ∀i ∈ N c,∀v ∈ V, (4.6)

wvO(k)i ≥ σ(k)xO(k)i ∀i ∈ N c : (O(k), i) ∈ Ac1 ∪Ac3, ∀k ∈ K,∀v ∈ V, (4.7)

wviD(k) + tiD(k)x
v
iD(k) ≤ τ(k)xviD(k)

∀i ∈ N c : (i,D(k)) ∈ Ac1 ∪Ac3, ∀k ∈ K,∀v ∈ V, (4.8)
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wvij ≤ Txvij ∀(i, j) ∈ Ac1 ∪Ac3,∀v ∈ V, (4.9)

wvij ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac3,∀v ∈ V, (4.10)

xvij binary ∀(i, j) ∈ Ac1 ∪Ac3,∀v ∈ V. (4.11)

where Ωfeas
y is the set of feasibility cuts that ensure the solution of [MPy] is feasible for

commodity transportation. The coefficients Θvry

ij are used to describe such feasibility cuts.

The set Ωfeas
y is unknown beforehand. We start by solving a relaxed master problem [RMPy]

defined on Ω̄feas
y ⊂ Ωfeas

y . The solution of the relaxed master problem [RMPy] x̂vij, gives a set

of vehicle cycles that satisfy the availability time and delivery deadlines of all commodities

k ∈ K. To check feasibility of x̂vij for commodity flow constraint we solve subproblem

[SPy].

[SPy]

min 0

s.t.
∑
k∈K

yvijk ≤ ηx̂vij ∀(i, j) ∈ Ac1,∀v ∈ V, (4.12)

∑
v∈V

∑
j:(O(k),j)∈Ac1∪Ac2

yvO(k)jk = dk ∀k ∈ K, (4.13)

∑
v∈V

∑
j:(j,D(k))∈Ac1∪Ac2

yvjD(k)k = dk ∀k ∈ K, (4.14)

∑
j:(i,j)∈Ac1∨(i,j)∈Ac2,j=D(k)

yvijk −
∑

j:(j,i)∈Ac1∨(j,i)∈Ac2,j=O(k)

yvjik = 0

∀i ∈ N c \ {O(k), D(k)}, ∀k ∈ K,∀v ∈ V, (4.15)

yvijk ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac2, ∀k ∈ K,∀v ∈ V. (4.16)

Subproblem [SPy] is a capacitated multi-commodity flow problem, restricted by open

arcs in x̂vij. It determines the flow of commodities given vehicle movements x̂vij from [RMPy].

As [SPy] has no objective, we only seek feasibility in the subproblem, and the first feasible

solution of [RMPy] in [SPy] is the optimal solution to [CM2]. If [SPy] is infeasible we
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derive a Benders feasibility cut and add it to the set Ω̄feas
y . To derive the feasibility cuts

we take the dual of [SPy]. Associating dual variables αvij, βO(k), βD(k), β
v
ik with constriants

(4.12)-(4.15) we have the dual of [SPy] as:

[DSPy]

max −
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

ηx̂vijα
v
ij +

∑
k∈K

dk(βO(k) + βD(k)) (4.17)

s.t. − αvO(k)j + βO(k) − βvjk ≤ 0 ∀(O(k), j) ∈ Ac1, j 6= D(k), ∀k ∈ K,∀v ∈ V, (4.18)

− αvO(k)D(k) + βO(k) − βD(k) ≤ 0 ∀(O(k), D(k)) ∈ Ac1, ∀k ∈ K,∀v ∈ V, (4.19)

βO(k) − βvjk ≤ 0 ∀(O(k), j) ∈ Ac2, ∀k ∈ K,∀v ∈ V, (4.20)

− αvD(k)j + βD(k) − βvjk ≤ 0 ∀(D(k), j) ∈ Ac1, ∀k ∈ K,∀v ∈ V, (4.21)

βD(k) − βvjk ≤ 0 ∀(D(k), j) ∈ Ac2, ∀k ∈ K,∀v ∈ V, (4.22)

− αvij − βvjk ≤ 0 ∀(i, j) ∈ Ac1, i, j /∈ {O(k), D(k)}, ∀k ∈ K,∀v ∈ V, (4.23)

− αviO(k) + βvik − βO(k) ≤ 0 ∀(i, O(k)) ∈ Ac1, ∀k ∈ K,∀v ∈ V, (4.24)

− αviD(k) + βvik − βD(k) ≤ 0 ∀(i,D(k)) ∈ Ac1, i 6= O(k), ∀k ∈ K,∀v ∈ V, (4.25)

βvik − βO(k) ≤ 0 ∀(i, O(k)) ∈ Ac2, ∀k ∈ K,∀v ∈ V, (4.26)

βvik − βD(k) ≤ 0 ∀(i,D(k)) ∈ Ac2, ∀k ∈ K,∀v ∈ V, (4.27)

αvij ≥ 0 ∀(i, j) ∈ Ac1,∀v ∈ V. (4.28)

The dual subproblem [DSPy] is always feasible as the all-zero solution is a feasible

answer. Whenever [DSPy] is unbounded, [SPy] is infeasible. To remove the infeasible

solution xvij from [RMPy] we derive the unbounded dual ray (αvrij , β
r
O(k), β

r
D(k)) and add cut

(4.29) to Ω̄feas
y :

−
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

ηαvrij x
v
ij +

∑
k∈K

dk(β
r
O(k) + βrD(k)) ≤ 0. (4.29)

The procedure continues by adding feasibility cuts (4.29) to [RMPy] until [DSPy] finds

a feasible solution to subproblem [SPy], which is the optimal solution to [CM2].
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4.2 Relaxing time constraints

Model [CM2] may be decomposed by moving time constriants (3.29)-(3.32) and (3.15) to

subproblem [SPvt] which is disaggregated by vehicles v ∈ V , and reformulating [CM2] on

a set of feasibility cuts Ωfeas
t and optimality cuts Ωopt

t . Associating value function variables

zv with a subproblem [SPvt], we have the reformulated master problem [MPt] as:

[MPt]

min
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

cijx
v
ij +

∑
v∈V

zv (4.30)

s.t.
∑

j:(i,j)∈Ac1∪Ac3

xvij −
∑

j:(j,i)∈Ac1∪Ac3

xvji = 0 ∀i ∈ N c,∀v ∈ V, (4.31)

∑
(i,j)∈Ac1∪Ac3:i∈Nc

s

xvij ≤ 1 ∀v ∈ V, (4.32)

zv +
∑

(i,j)∈Ac1∪Ac3

Λvhij x
v
ij ≥ Λvh0 ∀v ∈ V,∀h ∈ Ωopt, (4.33)

∑
(i,j)∈Ac1∪Ac3

Θvrt

ij x
v
ij ≥ Θvrt

0 ∀v ∈ V,∀rt ∈ Ωfeas
t , (4.34)

∑
k∈K

yvijk ≤ ηxvij ∀(i, j) ∈ Ac1,∀v ∈ V, (4.35)

∑
v∈V

∑
j:(O(k),j)∈Ac2

yvO(k)jk = dk ∀k ∈ K, (4.36)

∑
v∈V

∑
j:(j,D(k))∈Ac2

yvjD(k)k = dk ∀k ∈ K, (4.37)

∑
j:(i,j)∈Ac1∨(i,j)∈Ac2,j=D(k)

yvijk −
∑

j:(j,i)∈Ac1∨(j,i)∈Ac2,j=O(k)

yvjik = 0

∀i ∈ N c \ {O(k), D(k)}, ∀k ∈ K,∀v ∈ V, (4.38)

xvij binary ∀(i, j) ∈ Ac1 ∪Ac3,∀v ∈ V, (4.39)

yvijk ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac2, ∀k ∈ K,∀v ∈ V. (4.40)
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where Ωopt
t is the set of cuts that bound variables zv depending on vehicle movements

xvij and Ωfeas
t is the set of cuts that ensure the solution of [RMPy] is feasible in terms of

time constraints. The coefficients Λvh
ij and Θvrt

ij are used to describe such cuts. Sets Ωfeas
t

and Set Ωopt
t are unknown beforehand. We start by solving a relaxed master problem

[RMPy] defined on sets Ω̄feas
t ⊂ Ωfeas

t , and Ω̄opt
t ⊂ Ωopt

t . The solution of the relaxed master

problem [RMPt], x̂vij, gives a set of vehicle and commodity routes that satisfy demand and

commodity flow requirements. These routes may however be infeasible in terms of when

commodities become available and when they are needed at their destination. To determine

the feasibility and optimality of x̂vij to [CM2], we solve subproblem [SPvt]. Subproblem

[SPvt] determines the vehicle arrival and departure times given vehicle movements x̂vij. We

have the [SPvt] formulation as:

[SPvt]

min
∑
i∈Nc

∑
v∈V

ci

∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix̂

v
ji

) (4.41)

s.t.
∑

j:(j,i)∈Ac1∪Ac3

(
wvji + tjix̂

v
ji

)
≤

∑
j:(i,j)∈Ac1∪Ac3

wvij ∀i ∈ N c, (4.42)

wvO(k)i ≥ σ(k)x̂O(k)i ∀i ∈ N c : (O(k), i) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.43)

wviD(k) + tiD(k)x̂
v
iD(k) ≤ τ(k)x̂viD(k) ∀i ∈ N c : (i,D(k)) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.44)

wvij ≤ T x̂vij ∀(i, j) ∈ Ac1 ∪Ac3, (4.45)

wvij ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac3, (4.46)

If [SPvt] is infeasible we derive a Benders feasibility cut and add it to set Ω̄feas
t . If [SPvt]

is feasible but not optimal we derive a Benders optimality cut and add it to Ω̄opt
t . To derive

the optimality and feasibility cuts we take the dual of [SPvt]. Associating dual variables
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πvi , γ
v
ik, θ

v
ik, λ

v
ij with constriants (4.42)-(4.45) we have the dual of [SPvt] as:

[DSPvt]

max
∑
i∈Nc

 ∑
j:(j,i)∈Ac1∪Ac3

tjix̂
v
ji

πvi +
∑

i:(O(k),i)∈Ac1∪Ac3

∑
k∈K

(
σ(k)x̂vO(k)i

)
γvik

+
∑

i:(i,D(k))∈Ac1∪Ac3

∑
k∈K

((
−τ(k) + tiD(k)

)
x̂iD(k)

)
θvik − T

∑
(i,j)∈Ac1∪Ac3

x̂vijλ
v
ij (4.47)

πvi − πvO(k) − λ
v
iO(k) ≤ ci − cO(k) ∀(i, O(k)) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.48)

πvO(k) − π
v
i + γvik − λvO(k)i ≤ cO(k) − ci

∀(O(k), i) ∈ Ac1 ∪Ac3, i 6= D(k),∀k ∈ K, (4.49)

πvi − πvD(k) − θ
v
ik − λviD(k) ≤ ci − cD(k)

∀(i,D(k)) ∈ Ac1 ∪Ac3, i 6= O(k),∀k ∈ K, (4.50)

πvD(k) − π
v
i − λvD(k)i ≤ cD(k) − ci ∀(D(k), i) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.51)

πvO(k) − π
v
D(k) − θ

v
O(k)k + γvD(k)k − λ

v
O(k)D(k) ≤ cO(k) − cD(k)

∀(O(k), D(k)) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.52)

πvi − πvj − λvij ≤ ci − cj ∀(i, j) ∈ Ac1 ∪Ac3, i, j /∈ {O(k), D(k)} ,∀k ∈ K, (4.53)

πvi ≥ 0 ∀i ∈ N c, (4.54)

θvik ≥ 0 ∀(i,D(k)) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.55)

γvik ≥ 0 ∀(O(k), i) ∈ Ac1 ∪Ac3,∀k ∈ K, (4.56)

λvij ≥ 0 ∀(i, j) ∈ Ac1 ∪Ac3. (4.57)

Subproblem [DSPvt] is always feasible since setting πvi = ci,∀i ∈ N c and all other variables

to zeros is a feasible answer. If [DSPvt] is unbounded, then [SPvt] is infeasible. To remove

the infeasible solution xvij we derive the unbounded dual ray (πvri , θ
vr
ik , γ

vr
ik , λ

vr
ij ), and add
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the infeasibility cuts (4.58) to Ωfeas
t :

∑
i∈Nc

πvri
∑

j:(j,i)∈Ac1∪Ac3

tjix
v
ji +

∑
k∈K

∑
i∈Nc:(O(k),i)∈Ac1∪Ac3

σ(k)γvrik x
v
O(k)i

+
∑
k∈K

∑
i∈Nc:(i,D(k))∈Ac1∪Ac3

(
−τ(k) + tiD(k)

)
θvriD(k)x

v
iD(k) − T

∑
(i,j)∈Ac1∪Ac3

λvrij x
v
ij ≤ 0 ∀v ∈ V.

(4.58)

If [DSPvt] is optimal we obtain the feasible solution (π̂vi , θ̂
v
ik, γ̂

v
ik, λ̂

v
ij), and add optimality

cuts (4.59) to Ωopt:

Zv ≥
∑
i∈Nc

π̂vi
∑

j:(j,i)∈Ac1∪Ac3

tjix
v
ji +

∑
k∈K

∑
i∈Nc:(O(k),i)∈Ac1∪Ac3

σ(k)γ̂vikx
v
O(k)i

+
∑
k∈K

∑
i∈Nc:(i,D(k))∈Ac1∪Ac3

(
−τ(k) + tiD(k)

)
θ̂viD(k)x

v
iD(k) − T

∑
(i,j)∈Ac1∪Ac3

λ̂vijx
v
ij ∀v ∈ V. (4.59)

As all vehicles are identical, any cut obtained from [DSPvt] is added for all vehicles v ∈ V ,

to speed up the solution procedure. We repeat the decomposition procedure until [RMPt]

gives the same objective bound as the feasible solution found in [DSPvt], indicating the

optimal solution to [CM2].

4.3 Relaxing time and commodity constriants

The third option to decompose [CM2] is to relax both commodity and time constriants.

In such a case [MPyt] gives a set of vehicle movements that may not be feasible in terms
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of time constriants or commodity flow constraints. The [MPyt] is reformulated as:

[MPyt]

min
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

cijx
v
ij +

∑
v∈V

Zv (4.60)

s.t.
∑

j:(i,j)∈Ac1∪Ac3

xvij −
∑

j:(j,i)∈Ac1∪Ac3

xvji = 0 ∀i ∈ N c, ∀v ∈ V, (4.61)

∑
(i,j)∈Ac1∪Ac3:i∈Nc

s

xvij ≤ 1 ∀v ∈ V, (4.62)

∑
(i,j)∈Ac1∪Ac3

∑
v∈V

Θry

ij x
v
ij ≥ Θry

0 ∀ry ∈ Ωfeas
y , (4.63)

zv +
∑

(i,j)∈Ac1∪Ac3

Λvhij x
v
ij ≥ Λvh0 ∀v ∈ V,∀h ∈ Ωopt, (4.64)

∑
(i,j)∈Ac1∪Ac3

Θvrt

ij x
v
ij ≥ Θvrt

0 ∀v ∈ V,∀rt ∈ Ωfeas
t , (4.65)

xvij binary ∀(i, j) ∈ Ac1 ∪Ac3, ∀v ∈ V. (4.66)

We solve a relaxed [MPyt] on subsets Ω̄feas
y ⊂ Ωfeas

y , Ω̄feas
t ⊂ Ωfeas

t , Ω̄opt
y ⊂ Ωopt

t . In each

iteration [DSPy] and [DSPvt] are solved, and if necessary, cuts (4.29), (4.58), and(4.59) are

added to Ω̄feas
y , Ω̄feas

t ,Ωopt. The procedure continues until the solution of [RMPyt] is feasible

for [DSPy], and gives the same objective bound as the feasible solution found in [DSPvt],

indicating the optimal solution to [CM2]. The complete Benders decomposition algorithm

is given below.
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Complete Benders decomposition algorithm.

Step 1:

Solve [RMPyt] and obtain x̂vij .

Step 2:

Solve [DSPy], and [DSPvt] at x̂vij .

- If both [DSPy] and [DSPvt] are feasible, and value of variables zv, v ∈ V are equal to their corresponding

objectives in [DSPvt], x̂vij is the optimal solution to [CM2]. Stop.

- If [DSPy] is unbounded generate cuts (4.29) and update Ω̄feas
y .

- If [DSPvt] is unbounded generate cuts (4.58) and update Ω̄feas
t .

- Else if [DSPvt] is feasible generate cuts (4.59) and update Ω̄opt
t .

- Go to Step 1.

We analyze the performance of each decomposition approach in Section 6.2. Results

show that applying Benders decomposition to [CM2] does not produce desirable results.

The rate of convergence to the optimal solution is poor and requires a high computational

effort. To improve the convergence rate and reduce the computational effort, we develop

several algorithm improvements, presented in Chapter 5.
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Chapter 5

Algorithm improvements

Solving [CM2] by Benders decomposition turned out to be not as promising as first ex-

pected. The procedure requires a high amount of CPU time to solve and the convergence

rate is very poor. In fact applying Benders decomposition to even small sized problems did

not solve the model by any of the Benders decomposition approaches discussed in Chapter

4. The major weakness is that the subproblem is a feasibility problem. This is known

to have convergence issues in Benders decomposition (Codato and Fischetti, 2006). To

overcome this issue we develop a reduction technique, a family of feasibility cuts to tighten

the relaxed master problem, and employ a multi-cut Benders decomposition approach.

5.1 Reducing [SPvt] to a feasibility problem

In this section we present a Lemma that reduces subproblem [SPvt] based on the charac-

teristic of the SNDP. Currently subproblem [SPvt] verifies the feasibility and optimality

of the solution from the relaxed master problems [RMPt] or [RMPyt]. However it can be
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shown that this problem could be transformed into a feasibility subproblem, if waiting time

cost ci of vehicles is the same in all terminals. This is shown by Lemma 2:

Lemma 2. Given ci = c,∀i ∈ N c, the objective function (3.22) can be written as:∑
(i,j)∈Ac1∪Ac3

∑
v∈V

cijx
v
ij+

∑
i∈Nc

∑
v∈V

ci

( ∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tjix

v
ji

))
=

∑
(i,j)∈Ac1∪Ac3

∑
v∈V

(cij−ctij)xvij.

Proof. For xvij = 0, we have by equation (3.19), wvij = 0, and by equation (3.16), wvji = 0

leading to a value of zero in both sides of the above equation. Let

zv = (i1, i2, ..., in−1, in, in+1, ..., iκ, i1) denote the cycle of vehicle v ∈ V , we have

xinin+1 = 1,∀i ∈ N c, in ∈ zv, and:∑
j∈Nc

wvij −
∑
j∈Nc

(
wvji + tji

)
= wn1n2− (wn2n3 + tn2n3) + ...+wni−1ni− (wnini+1

+ tnini+1
) +wnini+1

− (wni+1ni+2
+ tni+1ni+2

)

+ wni+1ni+2 − (wni+2ni+3
+ tni+2ni+3

) + ...+ wnκn1 − (wn1n2 + tn1n2)

= −tn2n3 − ...− tnini+1
− tni+1ni+2

− tni+2ni+3
− ...− tn1n2

= −
∑

(j,i)∈Ac1∪Ac3:(nj ,ni)∈zv
tji

= −
∑

(i,j)∈Ac1∪Ac3:(ni,nj)∈zv
tij.

To further clarify we have tij = −T + tD(k)O(k′), i = D′(k) ∈ N c
S, k, k

′ ∈ K. Therefore,

the objective function may be written as:
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

(cij − ctij)xvij =
∑

(i,j)∈Ac1∪Ac3
cijx

v
ij +

c(T −
∑

(i,j)∈Ac1
tij + tD(k)D′(k) + tD′(k)O(k′)), corresponding to the total waiting time of vehicle

v. Note that Lemma 2 holds for vehicle specific waiting time costs cv, however, all vehicles

are identical in our problem.

Lemma 2 shows that if ci = c,∀i ∈ N c, vehicle waiting cost is independent of variables

wvij, and objective function 3.22 in [CM2] may be reformulated. This assumption holds

for SNDP as waiting cost of vehicles is independent of the terminal. As a consequence

to Lemma 2 only feasibility cuts (4.58) are added to Ωfeas
t in the Benders decomposition
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algorithm, and the first feasible solution to all subproblems is the optimal solution to

[CM2].

5.2 Valid cuts for SNDP

This section presents a family of valid cuts that are valid for SNDP, and are used to

tighten the relaxed Benders master problems. These cuts are redundant in [CM2], but

become active in the relaxed master problems. By exploiting the characteristics of a

feasible cycle in the continuous time model, we can introduce cuts aiming to enforce a

relationship between selected nodes served by any vehicle. These cuts greatly affect the

starting lower bound given by the solution of the relaxed master problems, and also reduce

the number of required iterations for the algorithms to converge. However they incur a

higher computational burden on solving the master problems in each iteration. A balance

must be struck between which cuts to include in the master problems to enable a reasonable

solution time, while maintaining a desirable quality of the solution lower bound. The family

of feasibility cuts is presented in the following sections

5.2.1 Covering cuts

The covering cuts (5.1)-(5.4) enforce that all origins and destinations are visited by a

minimum of ddk/ηe vehicles. Theorem 1 states that a feasible solution of [CM2] may not

require vehicles to move through all origins O(k), k ∈ K (or destinations D(k), k ∈ K),

and some commodities k′ ∈ K, k 6= k may be picked up (dropped off) at nodes other than

their origin O(k′) (destination D(k′)). Constraints (5.1), ((5.2)) enforce a vehicle to move

through at least one of these origins or destinations. This setting allows the simultaneous
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pick up or delivery of Theorem 1.

For origins O(k), such that ((O(k), j′) /∈ Ac2,∀j′ ∈ N c) we add cuts (5.1) to the master

problem. For destinations D(k) such that ((j′, D(k)) /∈ Ac2,∀j′ ∈ N c) we add cuts (5.2) to

the master problem.

∑
v∈V

∑
j:(j,O(k))∈Ac1∪Ac3

xvjO(k) ≥ ddk/ηe ∀k ∈ K : (O(k), j′) /∈ Ac2, ∀j′ ∈ N c, (5.1)

∑
v∈V

∑
j:(j,D(k))∈Ac1∪Ac3

xvjD(k) ≥ ddk/ηe ∀k ∈ K : (j′, D(k)) /∈ Ac2,∀j′ ∈ N c. (5.2)

Constraints (5.1) force a minimum ddk/ηe of vehicles v ∈ V to enter origin O(k). Similarly

Constraints (5.2) force a minimum ddk/ηe of vehicles v ∈ V to enter destination D(k).

Figure 5.1 shows an example of cuts 5.1, and 5.2.

Figure 5.1: Covering cuts 5.1, and 5.2.

O(k) D(k)

For the rest of the commodities k ∈ K that can be picked up in nodes other than their

origin O(k), we add cuts (5.3) to the master problems. For commodities k ∈ K that can

be delivered to nodes other than their destination D(k), we add cuts (5.4) to the master
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problem.

∑
v∈V

∑
j:(j,O(k))∈Ac1∪Ac3

xvjO(k) +
∑
v∈V

∑
i:(O(k),i)∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij ≥ ddk/ηe

∀k ∈ K : ∃j′ ∈ N c|(O(k), j′) ∈ Ac2, (5.3)∑
v∈V

∑
j:(j,D(k))∈Ac1∪Ac3

xvjD(k) +
∑
v∈V

∑
i:(i,D(k))∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij ≥ ddk/ηe

∀k ∈ K : ∃j′ ∈ N c|(j′, D(k)) ∈ Ac2. (5.4)

Constraints (5.3) force a minimum ddk/ηe of vehicles v ∈ V to either enter origin O(k) or

a node i ∈ N c such that (O(k), i) ∈ Ac2, where commodity k may be picked up, without

requiring vehicle movement to O(k). Constraints (5.4) force a minimum ddk/ηe of vehicles

v ∈ V to either enter destination D(k) or a node i ∈ N c such that (i,D(k)) ∈ Ac2, where

commodity k may be dropped off, without requiring vehicle movement to D(k). Figure

5.2 shows an example of covering cuts 5.3, and 5.4.

Figure 5.2: Covering cuts 5.3, and 5.4.

D(k)

D(k’)

O(k)

O(k’)
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5.2.2 Origin-Destination cuts

The Origin-Destination cuts ensure that when a vehicle v ∈ V is assigned to service a

commodity k ∈ K, it picks it up and delivers it. According to Theorem 1, a commodity

k ∈ K may be picked up (dropped off) without a visit to O(k) (D(k)) if there is an arc

(O(k), i) ∈ Ac2 ((i,D(k)) ∈ Ac2). Cuts are written depending on whether these arcs exist.

For commodities k ∈ K such that ((O(k), j′) /∈ Ac2,∀j ∈ N c) and ((j,D(k)) /∈ Ac2,∀j ∈
N c), we add cuts (5.5).

∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j =
∑

j:(D(k),j)∈Ac1∪Ac3

xvD(k)j ∀v ∈ V,∀k ∈ K : (O(k), j′) /∈ Ac2,∀j′ ∈ N c,

(j′, D(k)) /∈ Ac2, ∀j′ ∈ N c. (5.5)

Cuts (5.5) enforce the visiting vehicle v to origin O(k) to visit D(k). Figure 5.3 shows an

example of such cuts.

Figure 5.3: Origin-Destination cuts 5.5.

O D

For commodities k ∈ K such that ((O(k), j) /∈ Ac2,∀j ∈ N c), but ∃j ∈ N c|(j′, D(k)) ∈
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Ac2 we add cuts (5.6), and (5.7):

∑
j:(D(k),j)∈Ac1∪Ac3

xvD(k)j ≤
∑

j:(O(k),j)∈Ac1∪Ac3

xvO(k)j ∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(j′, D(k)) ∈ Ac2,

(O(k), j′′) /∈ Ac2,∀j′′ ∈ N c, (5.6)

∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j ≤
∑

i:(i,D(k))∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij +
∑

j:(D(k),j)∈Ac1∪Ac3

xvD(k)j

∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(j′, D(k)) ∈ Ac2, (O(k), j′′) /∈ Ac2,∀j′′ ∈ N c. (5.7)

Cuts (5.6) ensure that if destination D(k) is visited by a vehicle v ∈ V , it visits origin

O(k). If origin O(k) is however visited, by cut (5.7) we force vehicle v to visit either D(k)

or a node i such that arc (i,D(k)) ∈ Ac2 exists, and where commodity k may be dropped

off.

For commodities k ∈ K such that (j,D(k)) /∈ Ac2,∀j ∈ N c, but ∃j ∈ N c|(O(k), j) ∈ Ac2,

we add cuts (5.8) and (5.9):

∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j ≤
∑

j:(D(k),j)∈Ac1∪Ac3

xvD(k)j ∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(O(k), j′) ∈ Ac2,

(j′′, D(k)) /∈ Ac2, ∀j′′ ∈ N c, (5.8)

∑
j:(D(k),j)∈Ac1∪Ac3

xvD(k)j ≤
∑

i:(O(k),i)∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij +
∑

j:(O(k),j)∈Ac1∪Ac3

xvO(k)j

∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(O(k), j′) ∈ Ac2, (j′′, D(k)) /∈ Ac2,∀j′′ ∈ N c. (5.9)

Cuts (5.8) ensure that if origin O(k) is visited by a vehicle v ∈ V , it visits destination

D(k). If destination D(k) is however visited, by cut (5.9) we force vehicle v to visit either

O(k) or a node i such that arc (O(k), i) ∈ Ac2 exists, and commodity k may be picked up

there. Figure 5.4 gives an example of Origin-Destination cuts 5.6-5.9.
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Figure 5.4: Origin-Destination cuts 5.6-5.9.

O O’ D D D’O

And finally for commodities k ∈ K such that ∃j ∈ N c|(j,D(k)) ∈ Ac2 and ∃j ∈
N c|(O(k), j) ∈ Ac2 we add cuts (5.10) and (5.11):

∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j ≤
∑

i:(i,D(k))∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij +
∑

j:(D(k),j)∈Ac1∪Ac3

xvD(k)j

∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(j′, D(k)) ∈ Ac2,∃j′ ∈ N c|(O(k), j′) ∈ Ac2, (5.10)

∑
j:(D(k),j)∈Ac1∪Ac3

xvD(k)j ≤
∑

i:(O(k),i)∈Ac2

∑
j:(i,j)∈Ac1∪Ac3

xvij +
∑

j:(O(k),j)∈Ac1∪Ac3

xvO(k)j

∀v ∈ V,∀k ∈ K : ∃j′ ∈ N c|(j′, D(k)) ∈ Ac2,∃j′ ∈ N c|(O(k), j′) ∈ Ac2. (5.11)

Cuts (5.10) ensure that if origin O(k) is visited by a vehicle v ∈ V , it either visits D(k)

or a node i such that arc (i,D(k)) ∈ Ac2 exists, and where commodity k may be dropped

off. Cuts (5.11) ensure that if destination D(k) is visited by a vehicle v ∈ V , it either

visits O(k) or a node i such that arc (O(k), i) ∈ Ac2 exists, and where commodity k may

be dropped off. Figure 5.5 gives an example of such cuts.
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Figure 5.5: Origin-Destination cuts 5.10 and 5.11.

D D’O O’

5.2.3 Subtour elimination cuts and precedence cuts

This section presents a set of modified Miller-Tucker-Zemlin (MTZ) (Miller et al., 1960)

cuts that are used in SNDP for three purposes. First, when relaxing time constraints,

master problems [RMPt] and [RMPyt] may result in subtours. In this case, a vehicle cycle

does not visit an end of horizon node i ∈ N c
s , or would move on two or more independent

cycles. We later show in section 5.2.6 how we can force the vehicles used to move through

end of horizon nodes. However, we may still reach results with more than one independent

cycle for a vehicle as shown by Figure 5.6. We therefore employ MTZ constraints used for

the very purpose of subtour elimination in the literature. Let µvi denote the placement of

node i ∈ N c in a cycle of vehicle v ∈ V . By introducing cut (5.12) and (5.13) we remove

the possibility of subtours in the solution to the relaxed master problems.

µvi − µvj + 1 ≤ (|N c| − 1)(1− xvij) ∀(i, j) ∈ Ac1, ∀v ∈ V, (5.12)

µ1 = 1, (5.13)

µvi ≥ 0 ∀i ∈ N c, ∀v ∈ V. (5.14)

Covering cuts (5.1)-(5.4), and Origin-Destination cuts (5.5)-(5.11) ensure that com-
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Figure 5.6: Infeasible cycle due to subtour, and a feasible cycle.
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modities k ∈ K are picked up and delivered by the same vehicle v ∈ V , but do not force

commodity k to be picked up before it is delivered. Master problem solutions may contain

cycles that D(k) is visited before O(k). Such cycles are infeasible to [CM2]. To eliminate

the infeasible cycles we extend the MTZ constraints so that O(k) precedes D(k):

µvi − µvj + 1 ≤ (|N c| − 1)(1− xvij) ∀(i, j) ∈ Ac1,∀v ∈ V (5.15)

µvO(k) ≤
∑

j:(j,O(k))∈Ac1∪Ac3,j∈Nc
s

xvjO(k) + (|N c| − 1)

1−
∑

j:(j,O(k))∈Ac1∪Ac3,j∈Nc
s

xvjO(k)


∀k ∈ K,∀v ∈ V, (5.16)

µvO(k) ≥
∑

j:(j,O(k))∈Ac1∪Ac3,j∈Nc
s

xvjO(k) ∀k ∈ K,∀v ∈ V, (5.17)

µvO(k) ≤ µ
v
D(k) ∀k ∈ K,∀v ∈ V, (5.18)

µvD(k) ≥ µ
v
i − (|N c| − 1)

 ∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j +
∑

i′:(O(k),i′)∈Ac2,i′ 6=i

∑
j:(i′,j)∈Ac1∪Ac3

xvi′j


∀i : (O(k), i) ∈ Ac2,∀k ∈ K,∀v ∈ V, (5.19)

µvO(k) ≤ µ
v
i + (|N c| − 1)

 ∑
j:(D(k),j)∈Ac1∪Ac3

xvD(k)j +
∑

i′:(i′,D(k))∈Ac2,i′ 6=i

∑
j:(i′,j)∈Ac1∪Ac3

xvi′j


∀i : (i,D(k)) ∈ Ac2,∀k ∈ K,∀v ∈ V, (5.20)

µvi ≥ 0 ∀i ∈ N c, ∀v ∈ V. (5.21)
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Cuts (5.15) set the sequence of nodes in a vehicle cycle v ∈ V . Cuts (5.16) and (5.17)

together set the sequence of the first visited node in a cycle (first node visited after the end

of horizon node) to 1. Cuts (5.18) set the sequence of O(k), k ∈ K to precede the sequence

of D(k). Constraints (5.19) cover cases where a commodity k is picked up at another node

i such that ∃i ∈ N c|(O(k), i) ∈ Ac2. For these cases we set the sequence of D(k) to proceed

the sequence of i unless, O(k), or another node i′, such that ∃i′ ∈ N c|(O(k), i′) ∈ Ac2 is

visited by vehicle v. Similarly cuts (5.20) cover cases where a commodity k is dropped

off at another node i such that ∃i ∈ N c|(i,D(k)) ∈ Ac2. For these cases we set the

sequence of O(k) to precede the sequence of i unless, D(k), or another node i′, such that

∃i′ ∈ N c|(i′, D(k)) ∈ Ac2 is visited by vehicle v.

The MTZ constraints may be extended to model time constraints. By modifying the

definition of µvi to be the arrival time of vehicle v ∈ V at node i ∈ N c, we can enforce the

time constraints of all commodities k ∈ K. In other words the modified MTZ constraints

can replace the original time constraints (3.29)-(3.32). However, we do not replace the

original time constraint in [CM2] by the modified MTZ constraints, as the definition of µvi

does not provide a linear approach to calculating the vehicle waiting costs in the objective

function. Lemma 2 shows that vehicle waiting cost may be solely formulated based on

variables xvij. We therefore replace the original time constraints in the Benders relaxed
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master problems by the modified MTZ constraints (5.22)-(5.28):

µvi − µvj + tij ≤ T (1− xvij) ∀(i, j) ∈ Ac1,∀v ∈ V (5.22)

µvO(k) ≤ σ(k)
∑

j:(j,O(k))∈Ac1∪Ac3,j∈Nc
s

xvjO(k) + T

1−
∑

j:(j,O(k))∈Ac1∪Ac3,j∈Nc
s

xvjO(k)


∀k ∈ K,∀v ∈ V, (5.23)

µvO(k) ≥ σ(k)
∑

j:(j,O(k))∈Ac1∪Ac3

xvjO(k) ∀k ∈ K,∀v ∈ V, (5.24)

µvD(k) ≤ τ(k) ∀k ∈ K,∀v ∈ V, (5.25)

µvO(k) ≤ µ
v
D(k) ∀k ∈ K,∀v ∈ V, (5.26)

µvD(k) ≥ µ
v
i − T

 ∑
j:(O(k),j)∈Ac1∪Ac3

xvO(k)j +
∑

i′:(O(k),i′)∈Ac2,i′ 6=i

∑
j:(i′,j)∈Ac1∪Ac3

xvi′j


∀i : (O(k), i) ∈ Ac2,∀k ∈ K,∀v ∈ V, (5.27)

µvO(k) ≤ µ
v
i + T

 ∑
j:(D(k),j)∈Ac1∪Ac3

xvD(k)j +
∑

i′:(i′,D(k))∈Ac2,i′ 6=i

∑
j:(i′,j)∈Ac1∪Ac3

xvi′j


∀i : (i,D(k)) ∈ Ac2,∀k ∈ K,∀v ∈ V, (5.28)

µvi ≥ 0 ∀i ∈ N c, ∀v ∈ V. (5.29)

Cuts (5.22) enable the model to track transportation time in the cycle visited by a vehicle

v ∈ V . Cuts (5.23) together with cuts (5.24) set the arrival time of the first visited node

of all cycles (first node visited after the end of horizon node) to its availability time σ(k).

For all other origins O(k′), k′ ∈ K, k′ 6= k, cuts (5.24) set the arrival time to at least σ(k′).

Cuts (5.25) limit the arrival of all destinations D(k), k ∈ K, to their delivery deadline

τ(k). Cuts (5.26) serve as precedence constraints and set the arrival time of origins O(k)

to precede the arrival time of their destinations D(k). Cuts (5.27) and (5.28) enable

precedence consideration for commodities picked up or delivered from nodes other than
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their origin O(k) and destination D(k). Although the modified MTZ constraints are very

useful in enabling a time feasible solution, they greatly increase the computational burden

of solving large instances. The increase of burden is however lower than the original timing

constraints of the relaxed master problem [RMPy], as shown by the numerical results in

Chapter 6.

5.2.4 Vehicle-Commodity cuts

Vehicle-Commodity cuts are defined as commodities that cannot be served by the same

vehicle. A vehicle that services such commodities violates the timing constraints and

cannot deliver the commodities before their delivery deadline τ(k). Let S ⊂ K be a subset

of commodities that may be serviced by the same vehicle and let S̄ ⊂ K be the set of all

commodities k′ ∈ K such that commodities in S ∪ {k′} cannot be serviced by the same

vehicle; i.e. the vehicle carrying commodities S ∪ {k′} violates the delivery deadline of at

least one commodity in set S∪{k′}. Hence, a cut that excludes commodities of set S∪{k′}
from being assigned to the same vehicle is a valid cut for [CM2], and the relaxed master

problems. Cuts (5.30), (5.31) are introduced for that purpose:

∑
i:(i,j)∈Ac1∪Ac3

∑
j:j=O(k),k∈S̄

xvij +
∑

i:(i,j)∈Ac1∪Ac3

∑
j:j=D(k),k∈S̄

xvij ≤ 2|S̄|

|S| − ∑
i:(i,j)∈Ac1∪Ac3

∑
j:j=O(k),k∈S

xvij


∀v ∈ V, (5.30)

∑
i:(i,j)∈Ac1∪Ac3

∑
j:j=O(k),k∈S̄

xvij +
∑

i:(i,j)∈Ac1∪Ac3

∑
j:j=D(k),k∈S̄

xvij ≤ 2|S̄|

|S| − ∑
i:(i,j)∈Ac1∪Ac3

∑
j:j=D(k),k∈S

xvij


∀v ∈ V. (5.31)

Cuts (5.30) restrict a vehicle v ∈ V visiting the origins O(k) of all commodities k ∈ S from

visiting any of the origins O(k′), or destinations D(k′) of commodities k′ ∈ S̄. The cut is
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only active if vehicle v visits all origins O(k), k ∈ S, and becomes redundant if the origin

of at least one commodity k ∈ S is not visited. Similarly cuts (5.31) restrict a vehicle

v ∈ V visiting the origins D(k) of all commodities k ∈ S from visiting any of the origins

O(k′), or destinations D(k′) of commodities k′ ∈ S̄. The cut is only active if vehicle v

visits all destinations D(k), k ∈ S, and becomes redundant if the destination of at least

one commodity k ∈ S is not visited. Figure 5.7 shows an example where commodities of

set S cannot be served together with commodity k′.

Figure 5.7: Exclusive commodity cuts.

S

K'

There is an exponential number of sets S ⊂ K (bounded by 2|K|). Generating all such

subsets is not possible. Given a subset of commodities S, and for |S| = 2, one can verify

whether the two commodities k1, k2 ∈ S can be served by one vehicle, by checking the

availability times σ(k1), σ(k2), and delivery deadlines τ(k1), τ(k2). There can be 6 possible

paths including the origins and destination of k1, k2:

(O(k1), O(k2), D(k1), D(k2)), (O(k1), O(k2), D(k2), D(k1)), (O(k1), D(k1), O(k2), D(k2)),

(O(k2), O(k1), D(k2), D(k1)), (O(k2), O(k1), D(k1), D(k2)), (O(k2), D(k2), O(k1), D(k1)). If

any of these paths is feasible and satisfies the availability times σ(k1), σ(k2), and delivery

deadlines τ(k1), τ(k2), then commodities k1 and k2 can be served by one vehicle. If all

paths are infeasible then k1 and k2 must be served by different vehicles. For this case we

set S = {k}, S̄ = {k′}, and add cuts (5.30), (5.31). Similarly we can set S = {k′}, S̄ = {k}
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and add cuts (5.30), (5.31).

For |S| = 3, the exclusivity of commodities k ∈ S may be verified using feasibility

problem [RCM], which is a modification of [CM2] with |V | = 1, and solved on a restricted

network G = (N rc, Arc) consisting of only node set N rc ⊂ N c, and arc set Arc ⊂ Ac,

corresponding to commodities k ∈ S.

[RCM]

min 0

s.t.
∑

j:(i,j)∈Arc1 ∪Arc3

xij −
∑

j:(j,i)∈Arc1 ∪Arc3

xji = 0 ∀i ∈ N rc, (5.32)

∑
j:(i,j)∈Arc1 ∪Ac3rc

xij ≤ 1 ∀i ∈ N rc, (5.33)

∑
k∈S

yijk ≤ |S|xij ∀(i, j) ∈ Arc1 ∪Arc2 , (5.34)

∑
j:(O(k),j)∈Arc2

yO(k)jk = 1 ∀k ∈ S, (5.35)

∑
j:(j,D(k))∈Arc2

yjD(k)k = 1 ∀k ∈ S, (5.36)

∑
j:(i,j)∈Arc1 ∨(i,j)∈Arc2 ,j=D(k)

yijk −
∑

j:(j,i)∈Arc1 ∨(j,i)∈Arc2 ,j=O(k)

yjik = 0

∀i ∈ N rc \ {O(k), D(k)},∀k ∈ S, (5.37)∑
j:(j,i)∈Arc1

(wji + tjixji) ≤
∑

j:(i,j)∈Arc1 ∪Arc3

wij ∀i ∈ N rc, (5.38)

wO(k)i ≥ σ(k)xO(k)i ∀i ∈ N rc : (O(k), i) ∈ Arc1 ∪Arc3 ,∀k ∈ S, (5.39)

wiD(k) + tiD(k)xiD(k) ≤ τ(k)xiD(k) ∀i ∈ N rc : (i,D(k)) ∈ Arc1 ∪Arc3 ,∀k ∈ S, (5.40)

wij ≤ Txij ∀(i, j) ∈ Arc1 ∪Arc3 , (5.41)

xij binary, wij ≥ 0 ∀(i, j) ∈ Arc1 , (5.42)

yijk ≥ 0 ∀(i, j) ∈ Arc2 ,∀k ∈ S. (5.43)
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Constraints (5.32), (5.33) ensure conservation of vehicle flow. Constraints (5.34) link com-

modity flow to vehicle flow. Constraints (5.35)-(5.37) enforce the vehicle to pick up and

deliver commodities k ∈ S. Timing requirements are assured by Constraints (5.38)-(5.41).

The complete algorithm to generate Vehicle-Commodity cuts is given below.

Complete algorithm to generate Vehicle-Commodity cuts.

Initialize |S| = 2, maximum subset size |S|max, and generate all sets S ⊂ K. For each set S do:

Step 1:

Set S̄ = ∅. While |S| ≤ |S|max do:

Solve [RCM] for set S.

- If [RCM] is feasible go to step 2.

- Else if [RCM] is infeasible, we have |S| = 2, S = {k, k′}. Redefine set S = {k}, and set S̄ = {k′}.

Generate cuts (5.30) and (5.31). Redefine set S = {k′}, and set S̄ = {k}. Generate cuts (5.30) and (5.31).

Stop.

Step 2:

- For all commodities k ∈ K \ S, solve [RCM] for set S ∪ {k}. If [RCM] is infeasible add k to S̄. Generate

cuts (5.30) and (5.31), for sets S, S̄.

- Set |S| = |S|+ 1, and generate all sets S by adding a commodity k ∈ K \ S, k /∈ S̄ to S. Go to Step 1.

In the current implementation we generate cuts (5.30), (5.31) for subsets of size |S| = 1.

That is we verify exclusivity for (|k| − 1)(|K| − 2)/2 sets of size |S|max = 2.

5.2.5 Direct capacity cuts

Direct capacity cuts prevent a consecutive pick up of commodities that violate vehicle

capacity. Define set S ⊂ K of |S| commodities where
∑
k∈S

dk ≥ η. Commodities in set
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S cannot be consecutively picked up by a single vehicle. Recall that if we visit an origin

O(k), we pick up all or part of its demand dk. Therefore, if a vehicle consecutively visits all

origins O(k), k ∈ S then either it partially picks up at least one of the commodities k ∈ S,

or the solution is infeasible. In other words, as a feasible solution satisfies vehicle capacity,

then portion η −
∑
k∈S

dk of the total demand must be picked up by another vehicle. For a

set S we generate cut (5.44) and add it to the master problems:

∑
v′ 6=v

∑
j:(i,j)∈Ac1∪Ac3,j /∈S

∑
i∈S

xv
′
ij ≥

 ∑
(i,j)∈Ac1∪Ac3:i,j∈S

xvij − (|S| − 2)

 d∑
k∈S

dk/ηe ∀v ∈ V. (5.44)

If a vehicle v ∈ V consecutively visits all originsO(k), k ∈ S then we have
∑

(i,j)∈Ac1∪Ac3:i,j∈S
xvij =

|S| − 1. In this case Cut (5.44) forces another vehicle v′ ∈ V, v′ 6= v to visit at least one

of the origins O(k). Figure 5.8 gives an example with of a vehicle with capacity η = 20

consecutively visiting 4 origins, each with supply of 6. If a consecutive visit were to be

made to these origins, at least (3− 2)(d24/20e) = 2 vehicle are needed to visit these set of

origins.

Figure 5.8: Direct capacity cuts.

O O OO
O O OO6
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b) Feasible consecutive visita) Infeasible consecutive visit

Set S is generated by choosing |S| commodities k ∈ K where
∑
k∈S

dk ≥ η. In the current

implementation we generate all sets of size |S| = 3, and add cuts (5.44) to the master

problems.
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5.2.6 Other cuts

This section presents a set of cuts that aid in preventing infeasible solutions of the master

problems, or in speeding the decomposition process. These cuts are presented as follows.

• Maximum time cuts:

These cuts restrict any cycle duration from exceeding the planning horizon T .

∑
(i,j)∈Ac1

tijx
v
ij ≤ T ∀v ∈ V. (5.45)

Cut (5.45) require vehicle flow on arcs (i, j) ∈ Ac1 to take less than T units of time.

• End of horizon cuts:

These cuts enforce cycles to pass through an end of horizon node, as a feasible cycle

contains one node i ∈ N c
S.

∑
(i,j)∈Ac1

xvij ≤ |Ac1|
∑

(i,j)∈Ac3

xij ∀v ∈ V. (5.46)

Cuts (5.46) enforce a vehicle v ∈ V that flows on any arc (i, j) ∈ Ac1 to pass through

an arc (i, j) ∈ Ac3.

• Vehicle preference cuts:

All vehicles are identical in our problem. Vehicle preference cuts are introduced to

enforce vehicle sequence and remove the redundancy in selecting vehicles from set V .

∑
(i,j)∈Ac1∪Ac3

xv+1
ij ≤ |Ac1 ∪Ac3|

∑
(i,j)∈Ac1∪Ac3

xvij ∀v ∈ V. (5.47)

Cuts 5.47 permit a vehicle v + 1 to be used only if vehicle v is used.
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5.3 Multi-cut Benders approach

The master problems of the continuous time SNDP are hard to solve. Our initial exper-

iments showed that on average, 98% of the total CPU time in all Benders decomposition

approaches is utilized by the commercial solver in solving the master problems. To increase

the efficiency of Benders decomposition algorithm we aim to reduce the number of times

we must solve the master problem. One approach to achieve this goal is the multi-cut

Benders approach. In addition to the classical Benders approach where only feasibility

and optimality cuts (4.29),(4.58), and (4.59) are added to the master problem, we seek to

generate and add additional cuts that my lead to a reduction in the number of required

iterations for the algorithm to converge. This section introduces a set of such cuts.

5.3.1 Disaggregated Commodity cuts

Subproblem [SPy] is an aggregated problem on the set of commodities k ∈ K. This

subproblem is not separable by commodities k ∈ K due to capacity constraints (3.25).

Disaggregated commodity cuts may be derived, where the feasibility of each commodity

route is sought. This is possible by relaxing constraint (4.12), and replacing it with an

uncapacitated constraint (5.48), where only vehicle movement is enforced. This enables us
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to separate [SPy] into |K| subproblems [SPky], one for each commodity k ∈ K:

[SPky]

min 0

s.t. yvijk ≤ x̂vij ∀(i, j) ∈ Ac2,∀v ∈, V (5.48)∑
v∈V

∑
j:(O(k),j)∈Ac2

yvO(k)jk = 1, (5.49)

∑
v∈V

∑
j:(j,D(k))∈Ac2

yvjD(k)k = 1, (5.50)

∑
j:(i,j)∈Ac1∨(i,j)∈Ac2,j=D(k)

yvijk −
∑

j:(j,i)∈Ac1∨(j,i)∈Ac2,j=O(k)

yvjik = 0

∀i ∈ N c \ {O(k), D(k)},∀v ∈ V, (5.51)

yvijk ≥ 0 ∀(i, j) ∈ Ac2,∀v ∈ V. (5.52)

To derive Benders feasibility cuts for an infeasible solution x̂vij in subproblem [SPky]

we take the dual of [SPky]. Associating dual variables αvij, βO(k), βD(k), β
v
ik with constraints

(5.49)-(5.52) we have the dual of [SPky] as:

[DSPky]

max −
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

x̂vijα
v
ij + βO(k) + βD(k) (5.53)

s.t. − αvO(k)j + βO(k) − βvjk ≤ 0 ∀(O(k), j) ∈ Ac1, j 6= D(k),∀v ∈ V, (5.54)

− αvO(k)D(k) + βO(k) − βD(k) ≤ 0 ∀(O(k), D(k)) ∈ Ac1,∀v ∈ V, (5.55)

βO(k) − βvjk ≤ 0 ∀(O(k), j) ∈ Ac2,∀v ∈ V, (5.56)

− αvD(k)j + βD(k) − βvjk ≤ 0 ∀(D(k), j) ∈ Ac1,∀v ∈ V, (5.57)

βD(k) − βvjk ≤ 0 ∀(D(k), j) ∈ Ac2,∀v ∈ V, (5.58)

− αvij − βvjk ≤ 0 ∀(i, j) ∈ Ac1, i, j /∈ {O(k), D(k)},∀v ∈ V, (5.59)
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− αviO(k) + βvik − βO(k) ≤ 0 ∀(i, O(k)) ∈ Ac1,∀v ∈ V, (5.60)

− αviD(k) + βvik − βD(k) ≤ 0 ∀(i,D(k)) ∈ Ac2, i 6= O(k),∀v ∈ V, (5.61)

βvik − βO(k) ≤ 0 ∀(i, O(k)) ∈ Ac2,∀v ∈ V, (5.62)

βvik − βD(k) ≤ 0 ∀(i,D(k)) ∈ Ac2,∀v ∈ V, (5.63)

αvij ≥ 0 ∀(i, j) ∈ Ac1,∀v ∈ V. (5.64)

Problem [DSPky] is solved at each iteration of the Benders algorithm under master

problem solution x̂vij. The dual problem [DSPky] is always feasible as the all-zero solution

is feasible. If [DSPky] is unbounded for a commodity k ∈ K, then the we derive the

unbounded dual ray (αvrij , β
r
O(k), β

r
D(k)), and add feasibility cut (5.65) to set Ωfeas

y .

−
∑

(i,j)∈Ac1∪Ac3

∑
v∈V

αvrij x
v
ij + βrO(k) + βrD(k) ≤ 0. (5.65)

5.3.2 Identical Vehicle cuts

Subproblems [SPy] and [SPky] are aggregated on vehicles v ∈ V . As multiple vehicles

may satisfy the demand of a commodity k ∈ K we cannot disaggregate these subproblems

by vehicle. A solution x̂vij of the master problem thus gives the movements of |V a| ≤ |V |

identical vehicles on network Gc, where V a ⊆ V denotes the set of active vehicles. Consider

an example with |V a| = 2. Let x̂vij = [x̂1
ij, x̂

2
ij] represent a solution of the master problem

with x̂1
ij indicating the movements of the first active vehicle, and x̂1

ij the movements of the

second active vehicle. Now note that although the solution [x̂2
ij, x̂

1
ij] pertains to the same

solution to the overall problem it represents a different solution to the master problem. In

other words even though the solutions represent the same overall vehicle movements, they

do not represent the same solution of the master problem, due to vehicle sequence. If a

Benders feasibility cut removes infeasible solution [x̂1
ij, x̂

2
ij], the infeasible solution [x̂2

ij, x̂
1
ij]
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may be generated in the next iterations. It is possible, in the worst case, that the master

problem is solved |V a| times to remove the solutions pertaining to the same overall vehicle

movements in the network.

To remove all such solutions at once, we derive cuts that remove any combination of a

master problem solution by vehicle sequence. As all vehicles are sequenced by cuts (5.47)

we can safely divide an unbounded dual ray αvrij into [αv
ar
ij , α

vinar
ij ], where αv

ar
ij denotes the

part of αvrij corresponding to active vehicles, and αv
inar
ij to inactive vehicles. The vector

αv
ar
ij can further be separated into |V a| active vehicles [α1ar

ij , α
2ar
ij , ..., α

var
ij ], which are used

to generate all required cuts to remove the overall infeasible solution. We derive all possible

combinations of αv
ar
ij corresponding to the |V a|! possible placements of active vehicles. Each

combination is then joined with αv
inar
ij to form a valid unbounded dual ray, and used to

derive new infeasibility cuts (4.29) and (5.65).

5.3.3 Original network cuts

The continuous time model is defined on a network Gc. This network is built using the

original network of terminals. Nodes in setN c may be associated with the same terminal. A

cycle z = (i1, ..., in..., iκ, i1) obtained from the solution of the master problems corresponds

to a cycle zo = (io1, ..., i
o
n, ..., i

o
κ, i

o
1) in the original network. A cycle zo in the original

network may in turn correspond to a number of cycles in the continuous time network, any

of which may or may not be feasible. All paths z corresponding to the original path zo

incur the same costs, as transportation costs cij and transportation times tij all correspond

to the original network. Therefore it is possible that by removing an infeasible solution

x̂vij corresponding to the cycles z and zo, the master problem gives another solution with

cycle z′, corresponding to the same original cycle zo.
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We can generate and remove cycles that correspond to an infeasible original cycle.

Whenever the master problem gives an infeasible solution we derive its corresponding

original cycle and use it to generate all possible cycles in network Gc. Infeasible cycles z

are then removed using cut (5.66), generalized from the work of Ascheuer et al. (2000) for

the travelling salesman problem.

∑
n:in∈z,n≤κ−1

xvinin+1
+ xviκi1 ≤ κ− 1 = |z| − 1 ∀v ∈ V. (5.66)

Cuts (5.66) remove an infeasible cycle. These cuts may however be strengthened based

on the source of a cycle’s infeasibility. We assess a cycle to be infeasible depending on the

reasons below:

1. The origin (destination) of a commodity is visited but the destination (origin) of that

commodity is not visited.

If the origin of a commodity k ∈ K is visited but the destination of commodity k is

not visited, cut (5.67) is a strengthening to (5.66), where m denotes the placement

of O(k) in cycle z.

∑
n:in∈z,n≥m,n≤κ−1

xvinin+1
≤ κ−m− 1 ∀v ∈ V. (5.67)

If the destination of a commodity k ∈ K is visited but the origin or a proxy origin to

commodity k is not visited cut (5.68) is a strengthening to (5.66), where m denotes

the placement of D(K) in cycle z.

∑
n:in∈z,n≤m−1

xvinin+1
+ xviκi1 ≤ m− 1 ∀v ∈ V. (5.68)

2. The origin (destination) of a commodity k ∈ K is visited after the destination (origin)

of that commodity.
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In this case the cut (5.69) is a strengthening of cut (5.66), where m and m′ denote

the placement of the origin and destination of commodity k.

∑
n:in∈z,n≥m,n≤m′−1

xvinin+1
≤ m′ −m− 1 ∀v ∈ V. (5.69)

3. The delivery deadline of a commodity k ∈ K is violated.

In this case cut (5.70) is a strengthening of cut (5.66), where m denotes the placement

of the destination of commodity k.

∑
n:in∈z,n≤m−1

xvinin+1
≤ m− 2 ∀v ∈ V. (5.70)

This concludes the improvements made on the Benders decomposition algorithms. An

overall illustration of the multi-cut Benders decomposition algorithm is given by Figure

5.9. Chapter 6 analyzes the continuous time approach to SNDP by several numerical tests.

Figure 5.9: Multi-cut Benders decomposition, and original Benders decomposition.
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Chapter 6

Numerical Tests

The first part of the numerical tests is dedicated to the comparison of the periodic and

continuous time approaches. In the first step, we compare the periodic approach with the

continuous approach in terms of ease of solution under the same problem setting. We

solve the periodic and continuous time models under the same original network setting,

and analyze how each model performs in terms of solution time and optimality gap. In

the next step we show how the quality of a solution decreases as we aggregate the problem

into smaller numbers of periods.

The second part of the numerical tests focuses on analyzing the Benders decomposition

approaches. We test solution time and quality of lower bounds when relaxing commodity

constraints, time constraints, or time and commodity constraints. We then choose the most

promising decomposition approach and apply all proposed improvements, and discuss their

effects.

Tests instances are generated using the original network G = (N,A). That is we

consider an original network of terminals, with a determined planning horizon T , set of
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terminals N , a complete set of arcs A, set of commodities K, and set of vehicles V ; and use

it to build the networks for the periodic and continuous time approaches. Three problem

sizes of |K| = 5, 10, 15 are considered with the number of vehicles set to |V | = d|K|/2e.

Furthermore we consider two network settings of congested and uncongested terminals. A

congested terminal setting implies that a terminal i ∈ N has a higher chance of serving as

the origin or destination of more than one commodity k ∈ K compared to an uncongested

terminal. To generate a network with congested terminals we set |N | = 5 and randomly

allocate all commodity origins and destinations to available terminals. For an uncongested

network we set |N | = 20. After commodity allocation, we remove any node i ∈ N that

does not accommodate a commodity k ∈ K. For each data setting we generate five random

instances. The cost, time, and demand are discussed separately in each section.

All models and algorithms are coded in Matlab R2011 and performed on a PC with

Intel Xeon 3.00 GHz and 8G RAM. We impose a one hour CPU time limit, and use Gurobi

5.50 as the commercial solver.

6.1 Comparison of the periodic and continuous time

models

This section compares the periodic and continuous time approaches to SNDP. The first

section compares the ease of solution of the periodic and continuous time approaches. The

periodic and continuous models are compared by solution time and quality of lower bound.

The second section analyzes the impact of aggregating operations into discrete time periods

on the quality of solutions obtained from [PM2].

In this section cost, time and demand settings are adopted from Bai et al. (2014).

64



Vehicle waiting cost is cii = 100, transportation cost cij is set as either 150 or 250. Each

transportation move consumes one unit of time. Availability and delivery deadline times

σ(k) ≤ τ(k), are randomly generated in the planning horizon. Commodity demand dk

follows a triangular distribution of (2, 14, 8), and vehicle capacity is η = 20.

6.1.1 Analyzing ease of solution

In this section we set the planning horizon to one week with hourly operations. In the

periodic network each hour is interpreted as one period resulting in a total of |T | = 168

periods. In the continuous model each hour is interpreted as one unit of time. We compare

models [CM2] and [PM2] in terms of network and model size, and solution time (Cpu) and

quality. All comparisons are based on the average data of each size setting.

The network and model size is given in Tables 6.1 and 6.2. We compare the original

network size (Original) and analyze its expansion in the time-space (Periodic time), and

continuous time network. The continuous time network is presented with (Original con-

tinuous time) and without (Reduced continuous time) the network and model reductions

discussed in Chapter 3. Note that the number of nodes is equal in both the original and

reduced continuous time networks, and so, it has only be given in the original continuous

time section.

The original network size is larger in the uncongested terminal setting, compared to

the congested terminal setting. Averaging on all data sizes, in the uncongested terminal

setting, the periodic network expands the number of nodes by 16,700%, while this expansion

is 111% in the continuous time network. The number of arcs increases by 18,011% in the

periodic time network, and by 139% in the reduced continuous time network. The periodic

time model is 7,765% larger than the reduced continuous time model. The network and
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model reduction techniques reduce the number of arcs by 26%, and reduce model size by

39%.

Averaging on all data sizes, in the congested terminal setting, the periodic network

expands the number of nodes by 16,700%, while the continuous time network increases the

number of nodes by 396%. The number of arcs increases by 20,958% in the periodic time

network, and by 1,549% in the reduced continuous time network. The periodic time model

is 838% larger than the reduced continuous time model. The network and model reduction

techniques reduce the number of arcs by 36%, and reduce model size by 40%.

The quality of a solution in the periodic or continuous time approach is determined by

the lower bound (LB) and the upper bound (UB), reached by the commercial solver. The

optimality gaps (Gap%) are calculated as (UB−LB)/LB, and are reported in percentages.

An “∞” sign indicates that no value was derived from Gurobi within the 1 hour time limit.

Results are given in Tables 6.3 and 6.4.

In uncongested terminal settings, the continuous model outperforms the periodic model

in all aspects. In the smaller size instances of |K| = 5, the continuous model reaches the

optimal solution within seconds. The periodic model has varying results and can result

in gaps as high as 164.6% after one hour of computation. On average the continuous

model gives 47.1% higher lower bounds than the periodic model. In other instance sizes of

|K| = 10, 15, the periodic model does not reach any bound within the one hour CPU time

limit. The continuous model reaches a lower bound in all instances and gives an upper

bound in two of the ten instances. The lower bounds are, however, poor.

The periodic model performs better in congested terminals compared to uncongested

terminals. This is due to the reduction in size of the network. However, the continuous

time model still outperforms the periodic model in the small instance size of |K| = 5. The
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continuous model reaches better lower bounds by 63.1% while utilizing 99.9% lower CPU

time. In the |K| = 10 instance size both models reach comparable results. The periodic

model gives an average 17.7% lower optimality gaps and 9.7% better lower bounds while

utilizing 19.2% higher CPU time compared to the continuous model. In the instance size

of |K| = 15 both models perform poorly. The periodic model does not reach a bound in

two of the five instances and gives poor lower bounds in the other three instances. The

continuous model consistently reaches lower bounds, which are very poor.

Overall results show that both models are very hard to solve. The continuous time ease

of solution is greatly affected by the number of commodities. This is due to the increase in

network size. The periodic model cannot solve any problem under the number of assumed

periods, even in small size instances of |K| = 5. For an efficient periodic model we can

aggregate the operations into smaller numbers of periods. However, we show in the next

section that this aggregation greatly affects solution quality, and cannot be used to model

the same problem.

6.1.2 Analyzing quality of solution

In this section we analyze the periodic time model in terms of modeling a problem under

different number of periods. The periodic model improves its performance when the number

of periods |T | decreases. Therefore, to have an efficient solution of real life problems, the

planning horizon is divided into low numbers of periods. All services are then aggregated

to the assumed periods. We show how this aggregation changes the quality of the solution.

We employ the cost, time, and demand settings of Bai et al. (2014). To have a better

analysis and reach optimal solutions, we consider a congested network of terminals |N | = 5,

a low number of periods |T | = 20, and |K| = 10; and aggregate the problem into the two
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cases |T | = 10, 5 periods. Aggregation is done by changing all availability times σ(k), and

delivery deadlines τ(k) to correspond to their new periods, and updating costs accordingly.

As an example when aggregating from |T | = 20 to |T | = 10, availability times are updated

as dσ(k)/2e, similarly delivery deadlines are updated as dτ(k)/2e. Vehicle waiting time in

the aggregated network |T | = 10 corresponds to double the vehicle waiting times in the

disaggregated network |T | = 20; and so waiting cost is set to 2cii. Transportation in the

aggregated network |T | = 10 corresponds to a transportation move and one vehicle waiting

time in the disaggregated network |T | = 20, and so transportation costs are set to cij + cii.

Figures 6.1 and 6.2, illustrate the aggregation of the first instance for |T | = 5, |T | = 10,

respectively. Figure 6.3 shows the optimal solution of |T | = 20 for the first instance.

Table 6.5 gives the results of aggregating |T | = 20 into |T | = 10, 5. Reducing the

number of periods by 50% decreases solution time by an average 93.3% and increased the

solution cost by an average 42.3%. Service is changed by using two vehicles compared to

the optimal one vehicle. Reducing the number of periods by 75%, decreases solution time

99.9%, and increases solution cost by an average 62.2%. Service is changed by using three

vehicles compared to the optimal one vehicle. In our opinion, the decrease in solution time

does not compensate for the increase of solution cost.

6.2 Analysis of Benders decomposition

In this section we analyze the performance of the Benders decomposition approaches and

test the effect of improvements on the most promising approach. The most promising

approach is that which solves faster and gives better lower bounds. The major issue in our

decomposition approaches is the solution time of the master problem. In that regard the

decomposition approach with the minimum solution time of the master problem has the
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most potential for improvement. If the master problem takes a long time to solve without

any improvement cuts, then their addition incurs a higher burden and does not aid in the

decomposition process.

To investigate a broader set of instances, we generate a new set of values for cost, time

and demand. We consider a one week planning horizon with hourly operations, |T | = 168.

To determine transportation times, tij, we generate random points on a |T |/3×|T |/3 plane.

Transportation times are equal to the euclidean distance between the generated points.

The T/3 plane is selected to avoid transportation times greater than
√

2T/3 (near the

half duration of the planning horizon), as they are unrealistic. We consider two settings

for the window [σ(k), τ(k)] of a commodity k ∈ K. For a loose time window, we set

τ(k) = σ(k) + 4tij, and for a tight time window we set τ(k) = σ(k) + 2tij. The availability

times σ(k) are randomly chosen in the interval [0, T−4tij] for loose windows and [0, T−2tij]

for tight windows. Vehicle waiting cost is c = 1 per unit of time, and transportation costs

are set to cij = 10tij. Demand dk is uniformly generated in interval [1, 5]. Vehicle capacity

is set to η = 20.

6.2.1 Comparison of Benders decomposition approaches

We analyze the results of the classical Benders decomposition when relaxing commodity

constraints (3.25)-(3.28), relaxing time constraints (3.29)-(3.32), and relaxing time and

commodity constraints (3.3)-(3.14). We seek to choose the decomposition approach with

the most potential to implement the improvements of Chapter 5. We run each approach

on the instances with loose time windows and uncongested terminals as initial experiments

showed they are the hardest instances to solve. We also only present the results of the

largest instances with |K| = 15 as the differences of the decomposition approaches are
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more apparent.

The results of each decomposition approach are given in Table 6.6. Decomposing time

constraints doesn’t seem to be an efficient solution procedure. Although the lower bounds

given by the master problem are the strongest between all approaches, the master problem

is very large and utilizes a high CPU time to solve. In fact the relaxed master problem

[RMPt] is not solved to optimality even for one iteration. Our aim in using Benders

decomposition is to make the problem easier to solve, and adding more constraints to

[RMPt] as improvements only increase the difficulty in solving a still very hard problem.

Relaxing commodity constraints relatively decreases the solution burden of the master

problem [RMPy]. When relaxing both time and commodity constraints, the relaxed master

problem [RMPyt] is relatively easy to solve. The average lower bound is greater than the

average lower bound when relaxing commodity constraints. We believe that relaxing time

and commodity constraints has the most potential for improvement as it may accommodate

the improvement cuts better than the other two approaches.

6.2.2 Effects of algorithm improvements

In the final section of the numerical test we analyze the effects of improvements in the Ben-

ders algorithm when relaxing both time and commodity constraints (3.25)-(3.32). We test

on four data sets with different settings in terminal congestion and windows [σ(k), τ(k)].

We compare the solution of the commercial solver to the classical Benders approach with no

improvement cuts implemented, Benders decomposition with all improvement cuts except

the modified MTZ cuts (5.22)-(5.28), and Benders decomposition with all improvement

cuts including the modified MTZ subtour elimination and precedence cuts (5.22)-(5.28).

The modified MTZ subtour elimination and precedence cuts are the strongest of the cuts
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introduced, and we seek to observe the trade-off between ease of solution and solution

quality when they are introduced into the master problem. When including MTZ cuts the

solution of the master problem is always feasible in subproblems [SPvt]. This relaxation is

equivalent to replacing time constraints (3.29)-(3.32) by the MTZ constraints (5.22)-(5.28),

and relaxing commodity constraints (3.25)-(3.28). Tables 6.7-6.10 give the results of the

comparison.

In small sized instances of |K| = 5, all approaches, except classical Benders decompo-

sition, consistently reach the optimal solution. Improved Benders decomposition with all

improvement cuts reaches the optimal solution in an average 1.2 iterations and reduces the

required CPU time to an average 2 seconds which is a 99.2% improvement to the solver.

The effects of including modified MTZ cuts are most apparent in |K| = 5. Results show

that including these cuts decreases the number of iterations and CPU time by an average

94.3% and 98.1% respectively.

In instances of size |K| = 10, the solver and classical Benders decomposition do not

solve any instances in the one hour time limit. Benders decomposition with all improvement

cuts reaches the optimal solution in 10 of the 20 instances in an average 2,125 seconds.

The hardest instances are uncongested terminals with loose windows, where no instances

are solved. When removing the modified MTZ cuts the master problem becomes easier

to solve as indicated by the increase in number of iterations within the one hour time

limit. The increase in speed does not, however, compensate for quality of solutions. Five

instances are solved compared to the previous 10, and the lower bound quality is decreased

by 3.7%.

In the largest instance size of |K| = 15, no approach is able to solve any of the instances.

The classical Benders approach remains the weakest approach and gives the lowest average

lower bound. Bender decomposition with all improvements and no modified MTZ cuts is
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the strongest, with an average increase of 68.1% and 4.9% in the lower bounds compared

to the solver and Benders with all improvements, respectively. Adding the modified MTZ

cuts to the master problem increases its solution difficulty. The master problem is not

solved to optimality even for one iteration when including the modified MTZ cuts, and the

lower bound cannot be checked for overall optimality in the subproblems.

This concludes the numerical tests of Chapter 6. In summary the numerical results

show that the continuous time approach may lead to a better and more effective modeling

of SNDP compared to the periodic time approach. In terms of solution approach, Benders

decomposition when reformulating both time and commodity constraints leads to faster

solutions of the relaxed master problem, and can be considerably strengthened by the

proposed algorithm improvements. Chapter 7 concludes the thesis.
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Table 6.3: Comparison of [PM2] and [CM2] - Uncongested terminals

Periodic Model Continuous Model

Inst Cpu Gap% LB UB Cpu Gap% LB UB

|K
|=

5

1 3622 164.6 6,650 17,600 4 0 17,200 17,200

2 4569 95.5 8,950 17,500 0 0 17,250 17,250

3 2989 1.2 17,100 17,300 75 0 17,250 17,250

4 4907 0.9 17,200 17,350 17 0 17,350 17,350

5 3388 96.1 8,850 17,350 3 0 17,350 17,350

Avr 3895 71.7 11,750 17,420 20 0 17,280 17,280

|K
|=

10

1 3678 ∞ -∞ ∞ 3416 518.9 2,900 17,950

2 3662 ∞ -∞ ∞ 3349 ∞ 2,750 ∞

3 3661 ∞ -∞ ∞ 3411 ∞ 2,300 ∞

4 3621 ∞ -∞ ∞ 3314 1,280.4 2,550 35,200

5 3679 ∞ -∞ ∞ 3355 ∞ 2,200 ∞

Avr 3660 - - - 3369 899.7 2,540 26,575

|K
|=

15

1 3812 ∞ -∞ ∞ 3493 ∞ 17,850 ∞

2 3816 ∞ -∞ ∞ 3429 ∞ 3,600 ∞

3 3809 ∞ -∞ ∞ 3492 ∞ 1,900 ∞

4 3805 ∞ -∞ ∞ 3495 ∞ 3,400 ∞

5 3811 ∞ -∞ ∞ 3493 ∞ 3,150 ∞

Avr 3811 - - - 3480 - 5,980 -
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Table 6.4: Comparison of [PM2] and [CM2] - Congested terminals

Periodic Model Continuous Model

Inst Cpu Gap% LB UB Cpu Gap% LB UB

|K
|=

5

1 3444 94.9 8,900 17,350 9 0 17,300 17,300

2 6459 91.2 9,100 17,400 2 0 17,300 17,300

3 6456 0.9 17,050 17,200 1 0 17,200 17,200

4 5792 97.1 8,750 17,250 6 0 17,150 17,150

5 3589 94.5 9,050 17,600 0 0 17,250 17,250

Avr 5148 75.7 10,570 17,360 3.6 0 17,240 17,240

|K
|=

10

1 3388 905.4 1,850 18,600 3391 1,048.4 1,550 17,800

2 3386 5.4 17,450 18,400 3521 96 17,600 34,500

3 3387 205.0 5,950 18,150 3430 963.6 1,650 17,550

4 3492 7.0 17,700 18,950 498 0 18,200 18,200

5 3387 1,427.0 1,650 25,200 3444 990.9 1,650 18,000

Avr 3408 510.0 8,920 19,860 2857 619.8 8,130 21,210

|K
|=

15

1 3371 184.5 6,450 18,350 3093 3,387.5 2,000 69,750

2 3718 ∞ -∞ ∞ 3095 ∞ 2,000 ∞

3 3452 ∞ 9,000 ∞ 3493 ∞ 2,200 ∞

4 3376 ∞ 7,500 ∞ 3491 2,270.5 2,200 52,150

5 3681 ∞ -∞ ∞ 3492 ∞ 1,800 ∞

Avr 3520 184.5 7,650 18,350 3333 2,829.0 2,000 60,950
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Figure 6.1: Aggregation of periods from |T | = 20 to |T | = 5.
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a) Solution of [PM2] for aggregated periods |T|=5

b) Corresponding disaggregated solution for periods |T|=20 

77



Figure 6.2: Aggregation of periods from |T | = 20 to |T | = 10.
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a) Solution of [PM2] for aggregated periods |T|=10

b) Corresponding disaggregated solution for periods |T|=20 
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Figure 6.3: Optimal solution of [PM2] for disaggregated network of |T | = 20.
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Table 6.5: Quality of [PM2] solutions with varying aggregation levels.

| T |= 20 | T |= 10 | T |= 5

Inst Cpu Gap% Cost Cpu Gap% Cost Cpu Gap% Cost

1 5687 0 2,900 267 0 4,950 3 0 7,450

2 1906 0 2,750 206 0 4,900 3 0 6,700

3 8327 0 2,750 818 0 5,050 4 0 7,300

4 4114 0 2,950 209 0 4,900 2 0 9,050

5 3100 0 2,900 45 0 4,900 4 0 7,200

Avr 4627 0 2,850 309 0 4,940 3 0 7,540
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Table 6.6: Comparison of Benders decomposition approaches

Relaxing commodity constraints Relaxing time constraints Relaxing time and commodity constraints

Inst Iter Cpu Gap% LB Iter Cpu Gap% LB Iter Cpu Gap% LB

1 10 4503 - 768 1 4981 - 1,488 23 3769 - 744

2 8 6399 - 678 1 9638 - 1,386 22 4819 - 582

3 8 4595 - 861 1 7193 - 1,575 30 4092 - 1,005

4 6 3687 - 768 1 5682 - 1,197 28 3619 - 888

5 14 4070 - 708 1 3771 - 1,734 37 3633 - 915

Avr 9.2 4650 - 756.6 1 6253 - 1,476 28 3986 - 826.8
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Chapter 7

Conclusion

This thesis studies a continuous time approach to SNDP. A continuous time approach

generalizes the periodic time approach in the literature by modeling the problem without

the assumption of discrete time periods. To define the continuous time model for SNDP,

we first develop a continuous time network which is reduced by several network reduction

techniques. We then develop a continuous time model and reduce it using the character-

isitcs of SNDP. Benders decomposition is used to decompose the continuous model in three

directions. We may relax commodity constraints, relax time constrains, or relax both time

and commodity constraints. To improve the classical Benders decomposition on SNDP we

develop a number of algorithm improvements. We reduce the model based on the char-

acterisitcs of SNDP, develop families of cuts to improve the lower bound of the master

problems, and employ a multi-cut Benders algorithm.

We perform a number of numerical tests and show the advantages of the continuous

time approach to SNDP. We compare the periodic and continuous time models in terms of

ease of solution. The continuous time model outperforms the periodic model by as much as
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99.9% in solution time when solving the same problem. It is shown that the Periodic model

is unable to solve any of the considered instances to optimality. An efficient periodic model

requires a low number of periods, and must aggregate real-life operations to the number

of assumed periods. We show how aggregation can reduce solution quality of the periodic

model both in terms of cost and service.

We test and analyze the ease of solution of the proposed Benders decomposition ap-

proaches. We show that relaxing both time and commodity constraints provides a bet-

ter potential for improvement, as it is solved faster than the other two approaches, and

provides relatively good lower bounds. The effects of improvements are then tested by

comparing the solution of the continuous model by a commercial solver, to the classic

Benders decomposition, Benders decomposition with all improvement cuts except subtour

elimination and precedence cuts, and Benders decomposition with all improvement cuts.

A classical Benders does not provide satisfactory lower bounds and is mostly outperformed

by the commercial solver. The effect of improvements is apparent in the improved Benders

decomposition, which outperforms the solver in all instances by substantial amounts.

There are a number of possible future research directions. The master problems of

Benders decomposition approaches are very hard to solve. Therefore, any method that

enables a faster solution to the master problem is an improvement. Dynamic programming

approaches may be used to derive feasible vehicle cycles to the master problem and check

optimality in the Benders subproblems. The master problem may be transformed into a

path based formulation and solved by branch and price. Such an approach is used for

the periodic time model studied in the literature. Employing a Benders branch and cut

algorithm is another interesting approach. Finally, efficient heuristics may be developed

for fast solutions to SNDP and to provide tight upper bounds.
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