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Abstract 

Human genome contains abundant motifs bound by particular biomolecules. These motifs are 

involved in the complex regulatory mechanisms of gene expressions. The dominant mechanism 

behind the intriguing gene expression patterns is known as combinatorial regulation, achieved by 

multiple cooperating biomolecules binding in a nearby genomic region to provide a specific 

regulatory behavior. To decipher the complicated combinatorial regulation mechanism at work in the 

cellular processes, there is a pressing need to identify co-binding motifs for these cooperating 

biomolecules in genomic sequences. The great flexibility of the interaction distance between nearby 

cooperating biomolecules leads to the presence of flexible gaps in between component motifs of a co-

binding motif. 

Many existing motif discovery methods cannot handle co-binding motifs with flexible gaps. 

Existing co-binding motif discovery methods are ineffective in dealing with the following problems: 

(1) co-binding motifs may not appear in a large fraction of the input sequences, (2) the lengths of 

component motifs are unknown and (3) the maximum range of the flexible gap can be large. As a 

result, the probabilistic approach is easily trapped into a local optimal solution. Though deterministic 

approach may resolve these problems by allowing a relaxed motif template, it encounters the 

challenges of exploring an enormous pattern space and handling a huge output.  

This thesis presents an effective and scalable method called DFGP which stands for “Discovery of 

Flexible Gap Patterns” for identifying co-binding motifs in massive datasets. DFGP follows the 

deterministic approach that uses flexible gap pattern to model co-binding motif. A flexible gap pattern 

is composed of a number of boxes with a flexible gap in between consecutive boxes where each box 

is a consensus pattern representing a component motif. To address the computational challenge and 

the need to effectively process the large output under a relaxed motif template, DFGP incorporates 

two redundancy reduction methods as well as an effective statistical significance measure for ranking 

patterns. The first reduction method is achieved by the proposed concept of representative patterns, 

which aims at reducing the large set of consensus patterns used as boxes in existing deterministic 

methods into a much smaller yet informative set. The second method is attained by the proposed 

concept of delegate occurrences aiming at reducing the redundancy among occurrences of a flexible 

gap pattern.  
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Extensive experiment results showed that (1) DFGP outperforms existing co-binding discovery 

methods significantly in terms of both the capability of identifying co-binding motifs and the runtime, 

(2) co-binding motifs found by DFGP in datasets reveal biological insights previously unknown, (3) 

the two redundancy reduction methods via the proposed concepts of representative patterns and 

delegate occurrences are indeed effective in significantly reducing the computational burden without 

sacrificing output quality, (4) the proposed statistical significance measures are robust and useful in 

ranking patterns and (5) DFGP allows a large maximum distance for flexible gap between component 

motifs and it is scalable to massive datasets. 
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Chapter 1 

Introduction 

1.1 An Overview 

Many whole-genome assemblies for both simple and complex organisms have been sequenced, and 

comparative genome analyses for them revealed that the increase of the number of genes in the 

genome does not substantially accounted for the increase of organism complexity as one might expect 

[92]. For example, the human genome is estimated to contain only around 25,000 protein coding 

genes, which is about the same as that for corn and is nearly twice more than that for fruit fly, but 

Homo Sapiens exhibit far more complex gene expression patterns in the developmental processes and 

during responses to the stimulus from external environments. So, what are the mechanisms at work 

behind these intriguing gene expression patterns in complex organisms, making a eukaryote different 

from a prokaryote, or a human from a yeast? The answer lies in the non-coding genomic regions. 

Indeed, the coding regions consists of only 2% of the human genome. The remaining 98% of the 

genome harbors a vast number of regulatory motifs for the delicate and precise control of gene 

expressions.  

One of the most important genomic regulatory motifs in both prokaryotic and eukaryotic cells [93] 

is the transcription factor binding site (TFBS). Transcription factors (TF) are regulatory proteins to 

activate or inhibit the transcription of genes from the genome. The transcription process begins with 

the binding of RNA polymerase complex to an upstream region of the gene known as the promoter 

and then is followed by the elongation of the transcript. In prokaryote, one single activator or 

repressor together with a general specificity factor called sigma factor are often sufficient for 

transcriptional regulation of a gene [94]. Sigma factors help RNA polymerase to achieve high affinity 

in binding to the specific promoter regions. In eukaryote, the transcription process is much more 

complicated, and requires coordinated interactions of multiple proteins, the phenomenon known as 

combination regulation. More specifically, the transcription initialization involves binding of multiple 

transcription factors in a series of interactions to the promoter region to ultimately form a 

transcription complex that facilitates binding and transcription by RNA polymerase. 

The existence of distal regulatory sequences outside of the promoter region of a gene such as 

enhancers, silencers, insulators [95], also adds great flexibility for regulating the transcription process 

in more complex organisms. For example, there is no known enhancers found in yeast genome while 
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many human genes are greatly influenced by their associated enhancers. These distal regulatory 

motifs can be far from the transcription start site, sometimes thousands kilo bases away from a 

promoter, and they can be in the downstream or upstream or introns. Though they might be very far 

from the gene they regulates in terms of nucleotides, due to the structure of the chromatin complex of 

DNA, they can be spatially in close proximity to the promoter and the gene, where trans-acting 

transcription factors can bind to them to either activate or repress the transcription process. 

In recent years, it is also found that non-coding RNAs (ncRNA) does not perform merely as a 

messenger between gene and protein but could play a significant regulatory role in the cellular 

developmental and differential processes [96] [97]. For example, an important class of these 

regulatory ncRNAs is called large ncRNA (lncRNA) [98]. As suggested by Wang et al. [17], an 

lncRNA can act a guide that can bind to proteins and direct their location to target genes either in cis 

or in trans by binding to the target DNA sequences. 

The addition layer of the regulation comes from the accessibility of the chromatin state of the 

DNA. Chromatin are made up of histone proteins into which DNA is packaged. DNA methylation 

and Histone modification through methylation and acetylation can serve as epigenetic markers for 

transcriptional activeness or silencing [99]. Through epigenetic markers, gene expression changes can 

be achieved without changes in DNA sequences. For example, DNA methylation of CpGs in the 

promoters of genes [100] [101], the tri-methylation of lysine 27 and lysine 9 of histone H3 

(H3K27me3 and H3K9me3) [102] are often associated with transcriptional silencing. In general, 

Epigenetic markers can be maintained for genes after cell division. Hence, they are important in 

controlling the cell identity. How these epigenetic markers are established during epigenetic 

reprogramming in germ-cell development and how they are modified during cellular differentiation 

are still partially understood. However, recent researches suggest that regulatory motifs in sequences 

around these markers might influence their modifications. For example, as suggested in [103] [104], 

sequence features around CpG islands contribute to the determination of their methylation state. 

Pervasive regulatory motifs in the DNA sequences, such as TFBSs, enhancers, silencers, insulators, 

ncRNA binding sites and recruiters for epigenetic marker modifications, form an enormously 

complex regulatory network, enabling complex organisms to control and maintain precise patterns of 

gene expression in different cells under different external environments. The identification of 

regulatory motifs in DNA sequences serves as an important step towards deciphering the regulatory 

programme encoded in the genome, the blueprint of life, and better understanding the pathology and 
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cancer mechanisms. A recent science paper [1] conducted a large scale study of 88 cancer genomes 

and identified 98 non-coding candidate drivers in causing cancers, in which 58 of them break 

transcription factor (TF) binding motifs, causing the loss of the binding function. 

Existing experimental techniques such as Electrophoretic Mobility Shift Assay (EMSA) and DNA 

Pull-Down Assay are essentially impractical to identify these regulatory motifs in DNA sequences [6] 

[7], whose length is around 6 to 15 base pairs (bp) in midst of a great amount of non-coding genomic 

sequences. Conversely, high-throughput sequencing and experimental techniques have been 

becoming a source of great value for identifying regulatory motifs by producing massive sequence 

data with potential binding sites of target biomolecules. Up-to-date, broad genomic regions with 

length typically varying from 100 to 500 bp, potentially bound by target biomolecules (i.e. protein, 

protein complex and non-coding RNA), can be obtained. For example, Chromatin 

Immunoprecipitation sequencing (ChIP-seq) was used to extract genomic regions (referred to as 

peaks) likely bound by TFs in [2] [3] [4]. Chromatin Isolation by RNA Purification sequencing 

(ChIRP-seq) was used to detect genomic regions likely bound by a non-coding RNA (ncRNA) in [5]. 

Next-generation sequencing can also produce genomic maps of DNA methylation (ME-DIPseq), 

chromatin accessibility to TFs [105], or other epigenetic factors involved in repressing and activating 

gene transcription. Accordingly, motif discovery, the computational approach, has gradually emerged 

as a crucial tool for exploring binding motifs of biomolecules from these rich data resources. 

Most motif discovery methods [8] [9] focus on discovering simple motifs and rigid gapped motifs. 

Rigid gapped motifs is composed of spaced simple motifs of fixed distance. Simple motifs are often 

targeted by biomolecules with only one DNA binding domain. On the contrary, rigid gapped motifs 

are often targeted by a biomolecule complex with physically rigid constrained binding domains such 

as homodimers or heterodimers, resulting in a rigid distance between their corresponding simple 

motifs. These binding domains are indispensable for the biomolecule complex to attain its intended 

function. Discovery methods for identifying simple motifs and rigid gapped motifs have achieved a 

certain level of success and are widely used by biologists nowadays. For instance, Chu et al. [5] used 

MEME [10] to find the simple binding motif for an ncRNA called HOTAIR in exploring its relation 

with PRC2 (ploycomb repressive complex 2). Wei et al. [11] used GLAM [38] to obtain a rigid 

gapped motif for a homodimer formed by the oncogenic protein TP53.  Kunarso et al. [4] applied 

MDmodule [63] to ChIP-seq datasets for TF OCT4 and found a rigid gapped motif for a heterodimer 
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formed by OCT4 and its binding partner SOX2, which are critical in maintaining the pluripotent state 

in stem cells. 

The fundamental assumption behind these simple motif and rigid gapped motif discovery methods 

is that biomolecules responsible for these motifs bind independently to their target genomic sites and 

do not interact with other biomolecules binding nearby [12]. Under such assumption, it was observed 

that many predicted motif sites are false positives and therefore not functional in vivo [9] [13]. 

Biologists now agree to a more accurate picture that biomolecules seldom act alone but cooperatively 

through binding to a nearby genomic region to achieve a specific regulatory behavior. 

The cooperative behavior of biomolecules may repress their target gene expression while each 

biomolecule alone induces gene expression [14], illustrating an intriguing aspect of combinatorial 

regulation. The general consensus is that combinatorial regulation is the dominant mechanism behind 

the observed complex gene expression patterns [15] and is one of the major contributors in the 

cellular developmental and differentiation processes [16]. Furthermore, cooperating biomolecules are 

not restricted to only proteins. The discovery of significant regulatory roles of ncRNAs adds one 

more layer of complexity in the combinatory regulation network [17]. To achieve specific regulatory 

role, cooperating biomolecules can form homodimers or heterodimers, or be parts of an even larger 

regulatory machinery through protein-protein and protein-RNA interactions. 

To decipher the intriguingly complex combinatorial regulation at work in the cellular processes, 

there is a pressing need to identify co-binding motifs for these cooperating biomolecules in genomic 

sequences. In recent years, the field of motif discovery has therefore shifted to co-binding motif 

discovery. It attempts to uncover the combinatorial regulatory codes which are otherwise unattainable 

by simple motif and rigid gapped motif discovery [18] [19] [20] [21]. However, despite the 

considerable amounts of efforts that has been devoted to tackle this problem, co-binding motif 

discovery in large datasets (i.e., ChIP-seq datasets) still remains very challenging. 

This thesis aims at developing an effective and scalable computational method to discover co-

binding motifs from large DNA sequence datasets. A co-binding motif as shown in Figure 1 is 

composed of a number of simple component motifs with a flexible gap in between adjacent 

components. As opposed to rigid gapped motifs, the gap in co-binding motifs is flexible, reflecting 

the great flexibility of the interaction distance between cooperating biomolecules. In other words, the 

interaction distance is allowed to be within a maximum threshold but is not fixed. 
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Figure 1. A co-binding motif in DNA sequences. A white box is a genomic region of interest. A 

colored box represents a simple binding motif of a biomolecule. The two boxes connected by a 

line is a co-binding motif, the line in between simple motifs represents a flexible gap. The two 

boxes in the box with dashed line represents a rigid gapped motif. 

1.2 Limitations of Existing Methods 

Existing co-binding motif discovery methods can be mainly divided into two approaches. One is the 

probabilistic approach [64] [65] [66] and the other is the deterministic approach [70] [71] [72]. 

However, both approaches are ineffective to deal with the following difficulties encountered in co-

binding motif discovery due to the fact that (1) co-binding motifs may not appear in a large fraction 

of the input sequences, (2) the lengths of component motifs are unknown and (3) the maximum range 

of the flexible gap can be large. 

The probabilistic approach represents the co-binding motif to be found using a probabilistic model 

and attempts to obtain parameter values maximizing the model likelihood through Gibbs sampling.  

However, its nature of being easily trapped into a local optimal solution makes it incapable of 

handling the above difficulties. It may work properly only if the co-binding motif to be found is 

highly enriched in the dataset with the lengths of its component motifs and the flexible gap range 

roughly known. In addition, it can model co-binding motifs consisting of only two components. 

Conversely, the deterministic approach models a co-binding motif through a flexible gap pattern, 

which consists of a number of boxes with a flexible gap between every two consecutive boxes. A box 

represents a consensus pattern, which is essentially a string but with a certain number of mismatches 

allowed when matching the string in the input sequences to find its occurrences. The allowed 

mismatches increases the elasticity of each box for capturing a simple motif. The deterministic 

approach then exhaustively enumerates all flexible gap patterns occurring in at least a fraction of 
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sequences above a frequency threshold specified. After the pattern extraction phase, patterns are 

ranked based on their statistical significance. The top ranked patterns are considered as candidate co-

binding motifs. 

The exhaustive manner of the deterministic approach guarantees that co-binding motifs in the 

dataset are unlikely to be missed in the output of flexible gap patterns. However, this guarantee 

requires the condition of allowing a low frequency threshold, a relaxed range of box length and a 

large range for the flexible gap. Using such a relaxed motif template, the above mentioned difficulties 

(1)-(3) can be addressed. However, the pattern extraction phase can take considerable time even by 

the best method RISOTTO [70].  Furthermore, the Monte Carlo method [68] used for computing 

pattern statistical significance would take an unmanageable amount of time. The huge computation 

time for assessing pattern statistical significance is due to the gigantic output resulting from the 

combinations of boxes. 

Consider, for example, the case of discovering flexible gap patterns of two boxes in a dataset of a 

moderate size (500 sequences and 150546 bp in total). One mismatch is allowed for each box. Setting 

each box length to 6, the maximum distance for the flexible gap to 30 and the threshold to 10% of 

sequences, RISOTTO outputs 1976770 patterns in 71 seconds and the ranking of these patterns took 

2.72 days. Under a more relaxed setting that allows box length to be from 4 to 12 and decreases the 

threshold to 5%. RISOTTO took 1.75 hours to generate 59730851 patterns, letting alone the time for 

computing statistical significances for ranking patterns. 

It is clear that the deterministic approach suffers from either a need of exploring an enormous 

pattern space as well as handling a huge output or an unsatisfactory performance when the specific 

knowledge of the co-binding motifs is not available. In addition, it is not obvious that the top ranked 

patterns rendered by the Monte Carlo method is effective to capture co-binding motifs in the case of 

huge output size. Hence, the effectiveness of existing deterministic methods is greatly impaired by the 

computational burden and the lack of an effective method for handling a huge output. 

1.3 Contributions of the Thesis 

This thesis presents an effective and scalable method DFGP (Discovery of Flexible Gap Patterns) for 

identifying co-binding motifs in massive datasets, meeting the need for such a method in the research 

area of motif discovery. DFGP follows the deterministic approach to generate flexible gap patterns 

but resolves the tradeoff between the need to overcome the inevitable difficulties in the co-binding 
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motif discovery and the need to mitigate the great computational burden for pattern extraction and 

ranking. 

To overcome the difficulties posed, DFGP uses a relaxed motif template, imposing no restriction 

over the length of component motifs, as well as allowing large maximum distance for the flexible gap 

and low frequency threshold. To handle the tremendous computational burden and the huge output 

due to such relaxed template, this thesis proposes two redundancy reduction methods for drastically 

reducing the enormous pattern space to search while maintaining the output quality. One is the 

method for obtaining representative patterns (Chapter 3) and the other is the method for extracting 

delegate occurrences (Chapter 4). 

The concept of representative patterns aims at reducing the large set of consensus patterns used as 

boxes for generating flexible gap patterns into a much smaller yet informative set. Such reduction 

leads to the exclusion of a large portion of pattern space to search but reduces the risk of missing 

important consensus patterns that are part of a co-binding motif. 

The concept of delegate occurrences aims at reducing the positional redundancy among 

occurrences of a flexible gap pattern. It is based upon the observation that the presence of the flexible 

gap creates many occurrences that encompass other occurrences within themselves. The exclusion of 

these encompassing occurrences leads to a subset of occurrences called delegate occurrences. 

Counting only delegate occurrences further improves the pattern discovery process and makes the 

runtime of DFGP independent of the maximum allowed distance and the number of boxes in a 

flexible gap pattern. The extraction of only delegate occurrences during the construction of a flexible 

gap pattern enables DFGP to explore long-range interactions among multiple biomolecules. 

Existing deterministic methods use the Monte Carlo method to estimate the expected number of 

sequences for a given flexible gap pattern.  It generates a set of randomly shuffled sequence datasets 

of the same input size to achieve the estimation. This is impractical when the number of output 

patterns is large. To address this issue, this thesis develops two statistical significance measures 

(Chapter 5) for ranking patterns. The computation of the two measures does not add additional 

complexity into the pattern discovery process. The first measure accounts for the flexible gap pattern 

with a complete set of occurrences and the second one accounts for delegate occurrences. Both 

measures are effective in ranking patterns. 
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The effectiveness and scalability of DFGP are achieved by integrating the method for extracting 

representative patterns; the method for identifying delegate occurrences in the pattern discovery 

process; and the statistical significance measure introduced. Extensive experiment results have shown 

that (1) DFGP outperforms existing co-binding discovery methods significantly in terms of both the 

capability of identifying co-binding motifs and the runtime; (2) co-binding motifs found by DFGP in 

datasets reveal previously unknown biological insights; (3) the two proposed redundancy reduction 

methods for obtaining representative patterns and delegate occurrences respectively are effective in 

greatly reducing the computational burden without sacrificing output quality; (4) the proposed 

statistical significance measures are useful in ranking patterns and (5) DFGP allows large maximum 

distance for the flexible gap between component motifs and (6) DFGP is scalable to massive datasets. 

1.4 Organization of the Thesis 

There are seven chapters in this thesis including this introduction. 

Chapter 2 provides a brief review of existing ideas relevant to motif discovery in biological 

sequences. Discussions of individual methods follow an overview of motif types and the presentation 

of two general approaches for motif discovery. The advantages and limitations of these methods 

pertaining to the focus of this thesis are examined, and state-of-the-art methods are identified for 

experimental comparisons. Preliminary definitions and terminologies that will be used throughout the 

rest of the thesis are presented. 

Chapter 3 starts with a discussion of the problem concerning the overwhelming number of flexible 

gap patterns due to the exhaustive use of all available consensus patterns as boxes combinations. It 

then presents the rationale of using maximal solid patterns (a well-known pattern redundancy 

concept) instead of all consensus patterns as a starting point to narrow down the search. A linear time 

algorithm based upon suffix tree to extract these maximal patterns is developed. Furthermore, the 

insufficiency of maximal patterns to overcome this problem alone leads to the proposed redundancy 

reduction concept of representative patterns and the development of the method DRP (Discovery of 

Representative Patterns) for extracting these patterns. DRP achieves a much more compact yet 

informative set of consensus patterns to be used for constructing flexible gap patterns. 

Chapter 4 first presents a straightforward method to obtain the complete set of occurrences for a 

flexible gap pattern. A formal analysis of the size of the complete set leads to the observation of the 

redundancy among occurrences of a flexible gap pattern. The concept of delegate occurrences is then 
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proposed to address this redundancy issue and the method DOA (Delegate Occurrences Assembling) 

is developed to efficiently generate a flexible gap pattern while counting only delegate occurrences. 

Chapter 5 introduces the two novel measures for assessing statistical significances of flexible gap 

patterns, and then presents DFGP that integrates DRP, DOA and the statistical significance measure. 

It ends with the discussion of the parameter settings and the runtime analysis for DFGP. 

Chapter 6 presents the experiment results. The proposed method is applied to 68 ChIP-seq datasets, 

a subset of 457 ChIP-seq datasets on 119 human TFs generated by ENCODE Consortium. A 

computational pipeline developed in a recent genome research paper [2] proposed that each of the 68 

datasets contains some co-binding motifs formed by the canonical motif for the ChIP’ed TF and a 

noncanonical motif for a cooperating partner TF. The experiments compare DFGP with the state-of-

the-art methods RISOTTO, Bioprospector and GLAM2 for co-binding motif discovery as well as 

other well-known methods MEME, MEME-Chip, MDmoudle and Weeder for simple motifs as well 

as rigid gapped motifs discovery. The performance is evaluated in terms of the ability of finding co-

binding motifs and also the computational runtime. Co-binding motifs found by DFGP are compared 

with those proposed by the computational pipeline. Experiments were also conducted to investigate 

the effect of the proposed two redundancy reduction methods. Experiment results for DFGP under 

different parameter settings and its scalability to massive datasets are also presented.  
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Chapter 2 

Review of Related Works 

2.1 An Overview of Motif Discovery 

Methods for discovering regulatory motifs in DNA sequences have undergone tremendous 

developments over the last decade [8] [9]. A motif is the description for a particular functional unit 

[22]. An important type of motifs in the genomic sequences is the binding motif for regulatory 

proteins and ncRNAs such as TF binding sites (TFBS) [23]. Binding sites of a biomolecule often 

have variations yet still retain the same biological function [24]. De novo motif discovery is the task 

of identifying over-represented motifs in a set of sequences without using other additional 

information. There are also many methods that integrate other external evidences attempting to 

improve the motif discovery performance. For example, non-coding genomic regions well conserved 

across different species are likely to be functional regions that contain motifs and hence this 

information is utilized by the Phylogenetic footprinting approach [8] [23]. Some methods integrate 

the microarray gene expression data into motif discovery to find motifs that are likely to be major 

contributors to the expression of their regulated genes [63] [87]. There are also some motif search or 

localization methods [82] [88] that find the occurrences for a given motif. This thesis focuses on de 

novo motif discovery only. First, the definition of sequence is formally introduced. 

Definition 1. Sequence 

Let §§ be a set of distinct characters fe1; e2; : : : ; ej§jgfe1; e2; : : : ; ej§jg. §§ is called an alphabet and j§jj§j is its size. A 

sequence SS over §§ is an ordered list of characters, denoted as s1s2 : : : sns1s2 : : : sn, where each si 2 §si 2 §. nn is the 

length of SS. S[i; j]S[i; j]  is a substring of SS  where ii and jj are the first and last indices of the substring in 

the sequence.  

The DNA alphabet contains four nucleotides fA;C;G;TgfA;C;G;Tg. In general, the input sequence data 

might come as multiple sequences S1; S2; : : : ; SNS1; S2; : : : ; SN  with lengths n1; n2; : : : ; nNn1; n2; : : : ; nN  respectively. Let LL be 

the input size (the total length) of the input sequences. An example of input sequences is shown in 

Table 1. The input contains 3 DNA sequences of length 16, 13 and 15 respectively. S1[2;5] =TTCGS1[2;5] =TTCG 

is a substring in sequence S1S1. The total length LL is 44. 
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Table 1. An example input of DNA sequences 

S1 :S1 : GTTCGCATGTATACGA 

S2 :S2 : GATGTTAATGAGC 

S3 :S3 : TTCCAGCGTATCACT 

 

Motifs in genomic sequences can be mainly categorized as three types: simple, rigid gapped and 

co-binding. A simple or single motif [10] [47] is a short sequence of nucleotides targeted by a 

biomolecule with a single DNA binding domain. A rigid gapped motif or simply gapped motif [40] 

[58] consists of simple motifs that are separated by a fixed distance. A co-binding motif or structured 

motif [2] [65] [70] consists of simple motifs that are separated by flexible gaps of variable distance. 

In earlier years of motif discovery, the promoter sequences of co-regulated genes are the main sources 

of input data [8] [22]. Most of the earlier years’ discovery methods aim at discovering simple and 

rigid gapped motifs that are over-represented in these promoter sequences. A survey [9] conducted a 

large scale comparison of 13 of these motif discovery methods and found that they all perform poorly 

on metazoan datasets. These datasets consists of a few sequences, each of which is 2000 bp long. The 

poor performance on these datasets is likely due to the two factors: (1) the target motifs are eclipsed 

by a large amount of statistical noise as well as other functional motifs in the datasets and (2) a large 

number of false positives [12] [23] are predicted for the target motifs. The first factor leads to the 

development of the experimental techniques such as ChIP-seq to obtain more specific regions that 

potentially are bound by target biomolecules. Many more motif discovery methods [61] [62] [64] 

were developed specifically for these ChIP-seq datasets where the binding motifs are easier to 

distinguish from the background sequences. The second factor leads to the development of more 

methods focusing on co-binding motifs or composite motifs [18] [19] [89] in recognition of the 

combinatorial regulation of biomolecules to provide more binding specificity. A composite motif is a 

cluster of simple motifs in a fixed window size. Though composite motifs aim to reduce false 

positives in predicting binding instances, they do not reveal the combinatorial regulatory codes for 

cooperating co-binding biomolecules whereas co-binding motifs provide direct evidence for 

biomolecules co-binding within a certain distance.  

There are other indirect ways for inferring co-binding biomolecules. One approach is to design 

large scale experiments for directly measuring TF-TF interactions [16]. The other approach is to use 

known simple motifs from existing databases and infer motif pairs that can explain microarray gene 



 

 12 

expression data or that occur frequently together in the dataset. However, this approach needs known 

motifs to be provided along with other external data such as gene expression data [79] [84] [85] [86]. 

Depending on how to model a motif [25] [26] [27], motif discovery methods can be divided into 

two main categories: the probabilistic approach and the deterministic approach. The probabilistic 

approach models a motif using a probabilistic model with parameters. It often uses Expectation 

Maximization (EM) or Gibbs Sampling (GS) method [31] [32], attempting to obtain model 

parameters to maximize the likelihood of the probabilistic model. This optimization process often 

involves iterating two steps alternatively. One step is to find the best instances in the sequences for 

the current model. The other step is to estimate the model parameters based on current instances. It 

often outputs a single best model but would miss some other significant motifs. It is also easily 

trapped into a local optimal solution when the target motif does not have a rich concentration in the 

input sequences.  

The deterministic approach models a motif by a sequence pattern. This approach then enumerates 

all sequence patterns satisfying certain constraints such as length and frequency requirements. The 

more flexible a pattern and the more relaxed the constraints, the greater the capability of this approach 

to capture subtle and complex motifs. However, such greater pattern flexibility and constraint 

relaxation could lead to an enormous pattern space and an overwhelming number of output patterns. 

Hence, this approach often encounters the challenges of computational efficiency as well as the need 

of an effective measure for ranking the output patterns. 

In the following brief review, representations and methods for discovering simple motifs and rigid 

gapped motifs are first presented. The probabilistic approach for co-binding motif discovery is then 

introduced. The deterministic approach is discussed following the formal definition of flexible gap 

pattern discovery. The advantages and disadvantages of different methods are then discussed along 

the way and the state-of-the-art methods are identified for experimental comparison. The review ends 

with a summary of the differences between the method DFGP proposed in this thesis and the existing 

deterministic methods. 
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2.2 Discovery of Simple Motif and Rigid Gapped Motif 

2.2.1 The Probabilistic Approach 

In the probabilistic approach, simple motifs and rigid gapped motifs are often modeled using a 

position weight matrix (PWM) [12] [26]. A PWM ww is a matrix representing a motif of ll sites. Each 

entry w(c; j)w(c; j) of the matrix is the probability of observing the character cc at the site jj. Figure 2(a) 

shows an example PWM with 6 sites. 

(a) 

 

(b) 

Figure 2. PWM ww and its sequence logo. (a) The PWM ww for the binding motif of transcription 

factor GATA3 from JASPAR database [28] (b) The sequence logo of the PWM for 

visualization. The y-axis represents the relative entropy. 

Given f(c)f(c), the probability of observing character cc in the background, the relative entropy RR of a 

given PWM is  

 R =

lX

j=0

Rj =

lX

j=0

X

c2§

w(c; j) log2

w(c; j)

f(c)
R =

lX

j=0

Rj =

lX

j=0

X

c2§

w(c; j) log2

w(c; j)

f(c)
 

where RjRj is the relative entropy for the site jj. Relative entropy is also called information gain. It 

provides a measure to indicate how a given motif deviates from the probability distribution of 

characters in the background. In a particular site, the more the distribution of the random variable 

deviates from the background distribution, the higher is the relative entropy for that site. Many 

probabilistic methods attempt to find a PWM with the highest relative entropy in the discovery 

process. It was shown that maximizing the information gain is equivalent to maximizing the log 

likelihood ratio that the observed data is generated by the PWM rather than by the background model 

[29] [90]. 

The sequence logo shown in Figure 2(b) is a visualization of a PWM. Each column of the sequence 

logo corresponds to a site. The height of each site is the relative entropy RjRj when assuming an equal 
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probable distribution of nucleotides in the background (i.e., 2 bits minus the Shannon entropy for the 

site jj). The height of a character at a site is displayed in proportion to the observed probability of that 

character. The sequence logo visually reveals how conserved it is in a motif site. For example, the 

sites 2-4 of the binding motif for TF GATA3 are well conserved. 

Using PWM as a motif representation, probabilistic methods often use either Expectation 

Maximization (EM) or Gibbs Sampling techniques, attempting to find model parameters that 

maximize the expected likelihood of the data given the model. Gibbs sampling can be viewed as a 

stochastic implementation of Expectation Maximization [30]. Here the basic EM and Gibbs sampling 

methods are shown below. They assume that each input sequence contains exactly one model 

instance. 

The first EM method for motif discovery was proposed by [31]. It consists of two steps, E step and 

M step in the iteration. EM algorithm iterates between calculating the probability for each ll-mer 

(subsequence of length ll) generated by the current PWM and computing a new PWM based on the 

probabilities. 

The basic EM method 

Initialization step:  

Set the initial PWM randomly 

Iteration step 

E step: For each ll-mer in the input sequences, the probability that it is 

generated by the current PWM, is computed. The sum of the probabilities 

of all ll-mer in each sequence is normalized to one. 

M step: The expected count of an observed character in a certain position 

of PWM is calculated as the sum of the probabilities of each ll-mer whose 

corresponding position contains this character. The probability of 

observing a certain character in a given position (an entry) of PWM is then 

updated by normalizing the expected count of that character with respect to 

the total expected count (the sum of the probabilities of all ll-mers). 

Repeat iteration step, until the stop condition is met. (i.e. no further 

improvement) 

 

Unlike EM algorithm, Gibbs Sampling [32] initially selects a ll-mer from each sequence. PWM is 

directly computed from these aligned ll-mers. Gibbs Sampling iterates between updating the selection 

of ll-mers by the current PWM and computing a new PWM based upon the selected ll-mers. 
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The Basic Gibbs Sampling Method 

Initialization step:  

The initial set of occurrences is formed by randomly selecting one ll-mer 

from each sequence. Denote the occurrence in sequence ii by o io i. 

Iteration step:  

(1) Pick randomly one sequence ii;  

(2) Compute PWM based on the set of occurrences except o io i;  

(3) For each ll-mer in sequence ii, compute the probability that it is 

generated by the PWM, rather than by the background distribution;  

(4) Choose randomly the new occurrence o 0
io
0
i among all ll-mers of sequence 

ii according to their corresponding scores (it is more probable to be chosen 

with higher score);  

(5) Replace o io i with o 0
io
0
i in the set of occurrences. 

Repeat iteration step, until the stop condition is met. 

 

EM algorithm takes the weighted average across all ll-mers whereas Gibbs Sampling takes a 

weighted sample from all ll-mers. Given sufficient iterations, Gibbs sampling would efficiently 

sample the joint probability distribution of the likelihood of PWM. As EM, Gibbs sampling would 

also converge to a local maximum. 

MEME [10] is an improved version of the basic EM algorithm [31]: (1) it removes the assumption 

that the probabilistic model has exactly one instance in each input sequence; (2) it can be forced to 

report several best PWMs instead of only one and (3) it increases the chance of finding the globally 

optimal PWM. Improbizer [33] adapts MEME for identifying cis-regulatory elements that activate 

expression within the pharyngeal gene clusters in C. elegans.  

The research group of C. E. Lawrence continued to develop motif sampler [34], recursive sampler 

[35] and centroid sampler [36] that improves the first Gibbs sampling method [32] developed by them 

along this line. Motif sampler eliminates the one motif instance per sequence assumption, allowing 0 

to maximum possible motif instances in one sequence. Recursive sampler implements an advanced 

sampling method that enables it to obtain simultaneously multiple PWMs with widths specified in 

advance, though more computationally intense than motif sampler. Centroid Sampler is a 

modification version of recursive sampler that does not pursue the optimal solution. It obtains a 
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centroid solution consisting of a set of instances from the total sampled instances acquired during 

sampling period such that these instances achieve minimal cost in explaining other instances.  

There are also many variants of Gibbs sampling based methods: ANN-spec [37], GLAM [38], 

AGLAM [39] and SeSiMCMC [40]. ANN-Spec combines an Artificial Neural Network with a PWM 

and uses a Gibbs sampling method to search for model parameters that maximizes the likelihood that 

a motif instance appears at least once in each input sequence compared to a background sequence set. 

GLAM modified the original Gibbs sampling method by including a procedure to automatically 

adjust the PWM width and modifying the way to choose a model instance in a sequence to escape 

from being trapped into a local maximum. AGLAM improves GLAM by incorporating positional 

information of model instance in assessing model quality. SeSiMCMC modified the Gibbs sampling 

method to better capture rigid gapped motifs of direct/inverted spaced repeat and to automatically 

determine the motif length for the PWM.  

2.2.2 The Deterministic Approach 

In the deterministic approach, sequence patterns are used to capture simple and rigid gapped motifs. 

Before discussing various methods for discovering sequence patterns, some basic sequence patterns, 

which will be used later for developing the proposed method DFGP, are introduced. The simplest 

sequence pattern is the solid pattern defined below.  

Definition 2. Solid Pattern 

A solid pattern PP  is a short sequence p1p2 : : : pmp1p2 : : : pm over §§ where mm is the pattern length. mm should 

be at least 2. 

The solid pattern is essentially a substring in the input sequences. It is rigid for modeling simple 

motifs since it does not allow any variation in a motif site. Sequence segments in the input must be 

exactly matched to the solid pattern to be occurrences of the pattern. Formally, the occurrences of a 

solid pattern and its counting statistics are defined as follows: 

Definition 3. Solid Pattern Occurrence 

A solid pattern PP  of length mm occurs at position jj in the sequence SiSi if the pattern PP  matches a 

substring Si[j; k]Si[j; k] in SiSi where k = j +m¡ 1k = j +m¡ 1. Let ½=Si[j;k]½=Si[j;k] denote an occurrence of PP . Then the 

list of all occurrences of PP  is represented as LP = f½1; ½2; : : : ; ½jLP jgLP = f½1; ½2; : : : ; ½jLP jg.  
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In compliance to Definition 3, let l(½) =ml(½) =m, sid(½) = isid(½) = i, s(½) = js(½) = j and e(½) = j+m¡1e(½) = j+m¡1 be the 

length, the sequence ID, the starting position and the end position of an occurrence ½½  for convenience. 

These notations will be used in the later definitions. 

Definition 4. Number of occurrences of PP   

The number of occurrences of PP  denoted by kPkP  is the size of the occurrence list LPLP . 

Definition 5. Quorum of PP  

The quorum of PP  denoted by qPqP  is the number of sequences in which PP  occurs. 

Though here the number of occurrences and quorum are defined for a solid pattern, they can be 

similarly extended to other sequence patterns since a sequence pattern alone determines its 

occurrences in the input sequences. They are often called frequency in the literature. Since a pattern 

with low frequency is unlikely to be a motif, deterministic methods aim at discovering frequent 

patterns only. A pattern is called frequent if its frequency is above a user defined threshold thfthf .  

Though solid pattern is inappropriate in directly modeling simple motifs since it does not allow 

motif site variations, it can be an integral part of other more complicated methods and serves as a 

basic unit for more complex sequence patterns. In fact, consensus pattern as defined below is a solid 

pattern with mismatches allowed.  

Definition 6. Consensus Pattern  

A consensus pattern PP  is a solid pattern but allows a certain number of mismatches up to a 

constant ¯̄  in defining its occurrences in the input sequences. In other words, PP  occurs at position jj in 

SiSi if H(P;Si[j;j+m¡1])·¯H(P;Si[j;j+m¡1])·¯ where HH is the Hamming distance measure.  

Consensus pattern adds some flexibility to solid pattern. It is more suitable for modeling motifs by 

allowing motif site variations. Consensus patterns serve as boxes in a flexible gap pattern, the 

sequence pattern that is central to the research in this thesis. Chapter 3 focuses on how to select a 

representative set of consensus patterns as boxes for assembling flexible gap patterns instead of all 

available ones.  

Example 1. Table 2 shows an example of a pattern P = GTATP = GTAT for the sequence dataset in Table 

1. As a solid pattern, it has two exact matches in the input sequences and its quorum is 2. As a 
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consensus pattern, it has an additional approximate match GCATGCAT starting from position 5 in sequence 

1. The quorum for this consensus pattern is 2 as well. 

Table 2. An example solid pattern and consensus pattern for sequences shown in Table 1 

Pattern  LPLP  

GTATGTAT (solid) fS1[9;12];S3[8;11]gfS1[9;12];S3[8;11]g 

GTATGTAT (consensus) fS1[5;8];S1[9;12];S3[8;11]gfS1[5;8];S1[9;12];S3[8;11]g 

 

The computational efficiency and the evaluation of pattern quality for capturing motifs are the two 

major themes in the pattern discovery approach. Consider the input sequences of the total length LL, 

the theoretical size of solid patterns is O(L2)O(L2). Hence, straightforward enumeration methods for 

generating solid patterns and consensus patterns can take O(L3)O(L3) and O(L4)O(L4) time respectively. These 

methods are impractical for large sequence datasets. More efficient methods were therefore developed 

for discovering solid patterns and consensus patterns. 

Instead of considering all solid patterns, Verbumculus [41] discovers unusual solid patterns of size 

linear to the input size by considering only strings represented by the internal nodes of a suffix tree. 

The concepts of maximal solid patterns [42] [43] are proposed to extract a minimal size of solid 

patterns in the input sequences without information loss. A maximal pattern is the one that cannot be 

further extended at both ends by adding additional characters without reducing its number of 

occurrences. Non-maximal patterns are redundant since their positional information is completely 

captured by their corresponding maximal patterns. The number of maximal patterns is linear to the 

input size.  

To discover consensus patterns in input sequences, WINNOWER [44] requires the input of the 

length of the pattern to be identified and the number of mismatches allowed. It finds from each 

sequence a pattern occurrence such that the Hamming distance between occurrences is at most 2 

times the number of mismatches by transforming this problem to finding a clique of a certain size in a 

graph. The paper proposed by Sagot [45] takes a very different approach from WINNOWER to solve 

the problem. It builds a generalized suffix tree [46] for the input sequences. The method is based on 

the fact that the occurrence of a consensus pattern corresponds to a path spelled from root in the 

generalized suffix tree. It is similar to the exhaustive enumeration but with a clever pruning strategy 

for the suffix tree. Weeder [47] differs from Sagot’s method [45] by redefining the valid occurrences 

of a consensus pattern. The valid occurrence of a pattern not only needs to be within a certain number 
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of mismatches from the consensus but is more strictly defined as follows: Given an error ratio, any 

valid prefix of an occurrence cannot have more than a number of mismatches specified as the prefix 

length multiplying that error ratio. The unknown motif length problem makes consensus pattern 

finding methods infeasible. In practice, Weeder is confined to explore only patterns of length 6, 8 and 

10 with respectively 1, 2 and 3 mismatches allowed to further reduce the huge computational cost. 

The size of the set of consensus patterns can be as large as O(L2)O(L2) or O(j§jl)O(j§jl) where ll is the 

maximum pattern length to be considered. The typical length of a simple motif can be up to 12. 

However, even considering only patterns of length 8, the number of consensus patterns is bounded by 

4848. Hence, the use of the set of consensus patterns as the assembling elements for flexible gap pattern 

generation is not feasible. In Chapter 3, a set of maximal patterns, which is a subset of consensus 

patterns, is used instead as a starting point to extract representative patterns. The rationale is that the 

well conserved part of a simple motif would be represented by a maximal pattern under low 

frequency threshold. This thesis develops a linear time algorithm based on the suffix tree to extract 

maximal patterns. However, the number of maximal patterns is still large. Hence, this thesis proposes 

the concept of representative patterns to further reduce the number of patterns to be used as boxes. 

Solid patterns and consensus patterns are only suitable for modeling simple motifs. As for rigid 

gapped motifs, deterministic methods attempt to model them by using rigid patterns. A rigid pattern is 

a solid pattern defined over an extended alphabet §0§0 that includes the original alphabet and 

degenerate characters from IUPAC nucleotide code. A degenerate character can match some 

nucleotides in the original alphabet, including a special character ‘N’ called a wild card character that 

can match any nucleotide. Each occurrence of a rigid pattern has the same length. Hence, rigid pattern 

is only appropriate for modeling rigid gapped motifs.  

However, rigid pattern discovery encounters an exponential search space O(2L)O(2L) due to the 

introduction of the wild card [43]. Thus, rigid pattern discovery methods often constrain the number 

of wild cards and their positions in the pattern and the quorum as well as employ pattern redundancy 

reduction to alleviate the huge computational burden. TEIRESIAS [48] defines a window length and 

requires at least a sufficient number of solid characters (not wild card character) in the window. 

MADMX [49] requires the ratio of the number of wild cards to the pattern length smaller than a 

threshold. SPLASH [50] requires that any substring of a certain length in a rigid pattern, starting with 

a solid character, has a sufficient number of solid characters. The wild card density constraint helps to 

narrow down the search space. These rigid pattern discovery methods also focus on discovering only 
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maximal rigid patterns. A maximal rigid pattern cannot be further extended by adding any solid 

character to it or made more specific by replacing a wild card to a solid character without decreasing 

its frequency. The concept of irredundant patterns (a specific type of pattern redundancy) is proposed 

to further exclude exploring more patterns during the pattern generation process [51]. An irredundant 

pattern is a maximal rigid pattern which cannot be covered by its maximal superpatterns. A set of 

irredundant patterns thus form a motif base where all maximal patterns can be generated. Different 

motif bases are compared and discussed in [52] [53]. However, the size of the motif base is 

exponential in the minimum required quorum. In an extreme case, when the minimum required 

quorum is set to 2, the paper [54] shows that the size of the motif base is linear in the input size and 

can be extracted in linear time. However, a small quorum threshold would lead to a majority of 

patterns having a small number of occurrences close to the minimum quorum in the motif base. A 

pattern without sufficient quorum in input data is unlikely meaningful.  

In fact, rigid pattern discovery methods are more suitable for discovering rigid gapped motifs from 

sequences of a protein family.  In such case, the input dataset is relatively small and the minimum 

quorum can be set to a large number (i.e. half of the number of input sequences). On the contrary, 

DNA sequence datasets are often large and DNA motifs could have a relatively low quorum.  

VARUN [55] extends rigid pattern to extensible pattern by incorporating flexible gaps into rigid 

patterns, and discovers maximal extensible patterns. A flexible gap in a maximal extensible pattern 

cannot be replaced by a fixed number of wild cards without decreasing its occurrences. However, 

allowing flexible gaps in the pattern further increases the computational cost that is already very 

demanding. Like those rigid pattern discovery methods, Varun is also specifically designed for motif 

discovery in protein sequences. In fact, Varun is confined to rigid mode when it was applied to DNA 

sequences in its original paper. The Varun program crashed for the smallest dataset in the experiment 

even with a small maximum distance for the flexible gap (i.e. 5). Similarly, subtle-varun [56], a 

follow-up method to detect subtle motifs in DNA sequences using Varun as a precursor, allows only a 

small maximum distance. Hence, subtle-varun is more suitable for discovering degenerated simple 

motifs due to small local insertions and deletions in their motif sites. 

There are also some non-classical rigid pattern methods that tailor to a specific type of DNA 

motifs. For example, RSAT [57] defines a specific rigid pattern composed of two solid patterns of 

length 3 with a fixed number of wild cards in between them. RSAT was restricted to only discover 

dyads, a specific rigid gapped motif in Yeast. Similarly to RSAT, YMF [58] designs a specific rigid 
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pattern that can contain 4 nucleotides as well as ambiguous characters {R,Y,W,S} from IUPAC codes 

but restrict the wild cards in the middle. The constraint imposed by YMF make it better to identify 

rigid gapped motifs composed of two component motifs, however, the computational cost can be high 

for large gap range. The maximum pattern length allowed is 23 and the maximum number of wild 

cards allowed is 13 in the YMF program.  DREME [59] is specifically designed for finding the 

conserved regions of simple motifs in ChIP-seq datasets. It focuses on the rigid patterns defined over 

an IUPAC alphabet consisting of a regular DNA alphabet and 11 ambiguous characters. It limits the 

length of the pattern in the range of 4 to 8 bp and allows only limited number of ambiguous characters 

in the pattern. It first obtains solid patterns without ambiguous characters and calculates a p-value by 

Fisher’s exact test, which indicates pattern enrichment in the input data relative to the control set. The 

control set of sequences can be constructed by randomly shuffling the set of input sequences if it is 

not given. It then heuristically tries to replace some characters in a solid pattern by ambiguous 

characters to form a new rigid pattern satisfying the condition that all solid patterns compatible with 

this rigid pattern are all significant. It outputs the best rigid pattern and erases all its occurrences in 

the input sequences by replacing them with a special symbol not in the alphabet. The whole process is 

repeated to obtain the next best pattern until the E-value of a pattern is below a particular threshold. 

2.2.3 The Combined Approach 

Some methods combine both probabilistic and deterministic approaches. For example, CisFinder [60] 

starts with solid patterns of length 8 based upon the empirical observation of TFBS length. It then 

creates 8 rigid patterns with specific gap configurations for each solid pattern by inserting wild cards. 

A position frequency matrix (PFM) associating to a rigid pattern is obtained as follows: The 

frequency of a nucleotide at a site in this PFM is obtained as the frequency of its associated rigid 

pattern with the corresponding site replaced by that nucleotide. A PFM for the control sequence set is 

obtained similarly. An intermediate PFM is obtained by the subtraction of these two matrices and its 

negative entries are replaced by 0. Finally, the PWM for a rigid pattern is obtained by normalizing the 

intermediate PFM. It groups similar PFMs into clusters to reduce redundancy. CisFinder can identify 

simple motifs as quickly as DREME but also has the ability to find rigid gapped motifs of specific 

gap configurations specified beforehand. MEME-Chip [61] combines the results from MEME and 

DREME. MEME in practice can identify only several simple or rigid gapped motifs. DREME 

complements MEME by identifying the well conserved regions of simple motifs quickly. MDscan 

[62] is specifically designed for ChIP-seq datasets which contain peaks ranked by their signal quality. 



 

 22 

It utilizes the fact that top ranked sequences often contain strong TF binding motifs. It first 

enumerates solid patterns of a user defined length as seeds in the top 5 input sequences. All solid 

patterns with Hamming distance less than a threshold to the seed are used to form an initial PWM for 

that seed. A score is designed for evaluating the seeds. The 10-50 seeds with highest scores are 

retained and refined. MDmodule [63] further improves MDscan by reducing redundant PWMs. It is 

very efficient and hence allows the user to try different motif lengths. 

2.2.4 Summary   

Both the PWM model and sequence pattern models confine to a fixed motif length. No flexible 

gaps of large maximum distance are allowed. Hence, these methods are only able to discover simple 

motifs and rigid gapped motifs. They are not capable of finding co-binding motifs where there exists 

a flexible gap between adjacent component motifs.  

Among the probabilistic methods, despite the fact that many methods are based on Gibbs sampling, 

MEME, an improved version of the EM method, remains one of the best in motif discovery. In 

practice, MEME, which scans motif length from 8 to 50 and is able to report several potential distinct 

PWMs, is effective and reasonably efficient to uncover simple and rigid gapped motifs in a large 

dataset, and is widely used by biologists in identifying motifs in ChIP-seq datasets.  

For the deterministic methods, though there has been considerable effort in developing methods for 

finding rigid gapped motifs, it still remains a difficult task. Most of the newly developed ones are 

only applicable to certain restricted settings such as YMF. Comparatively, some probabilistic 

methods like MEME perform better. Nonetheless, some deterministic methods, such as Weeder, 

which discover consensus patterns, have been reported to achieve comparable performance in 

identifying simple motifs as the probabilistic methods. 

The combined approach, which takes advantages of both the probabilistic and deterministic 

approaches, generally improves motif discovery performance. MEME-Chip and MDmodule are two 

such state-of-the-art methods in this approach. These two methods are specially tailored to handle 

ChIP-seq datasets. CisFinder has similar speed to MDmodule but is more or less confined to motifs 

with specific gap configurations. 

Though these simple motif and rigid gapped motif discovery methods cannot directly discover co-

binding motifs, they may provide discovered motifs as component motifs for building co-binding 

motifs. However, the issue is that most methods aim at finding one or several best motifs in a dataset, 
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thus many other less dominant motifs would be missed while they can be parts of a strong co-binding 

motifs. In certain cases, some deterministic methods can output a large set of consensus patterns as 

boxes for building flexible gap patterns, but the sheer size of flexible gap patterns resulting from box 

combinations makes it infeasible to use all of them. Chapter 3 of this thesis is dedicated to the task of 

extracting a more compact set of consensus patterns for discovery of flexible gap patterns. 

In this thesis, the state-of-the-art methods, MEME, Weeder, MEME-Chip and MDmoudle, are 

included for comparison in experiments later in Chapter 6. A final note is that since the occurrences 

of a pattern outputted by all these deterministic methods has the same length, these occurrences can 

be aligned together to form a PWM for that pattern as PWM is widely accepted as the motif 

representation for many well-known databases. In the experiments in Chapter 6, all discovered 

sequence patterns reported by a deterministic method including the one developed in this thesis 

DFGP would be converted to their PWM representations for comparison purpose.  

2.3 Discovery of Co-binding Motif 

Similar to simple motif and rigid gapped motif discovery, methods in co-binding motif discovery can 

be grouped into the probabilistic approach and the deterministic approach. The probabilistic approach 

models a co-binding motif by putting together two PWMs and with the constraint of a flexible gap in 

between. The PWMs are used to model simple motifs. The gap constraint is often enforced by a two 

stage Gibbs sampling process. It samples a sequence segment matching the first PWM and then 

samples another sequence segment matching the second PWM within the range of the flexible gap. 

The deterministic approach models a co-binding motif by a flexible gap pattern composed of a 

number of boxes. Each box is a consensus pattern for modeling a simple motif. It then devises 

algorithms and data structures in an attempt to enumerate all frequent flexible gap patterns more 

efficiently. There is also another approach that transforms the input sequences into a new sequence 

dataset. In the new dataset, each sequence corresponds to a possible sequence segment compatible to 

a co-binding motif template. The length of each sequence is the sum of the lengths of component 

motifs. It then utilizes the transformed dataset to find co-binding motifs. This approach is referred to 

as sample based approach in this thesis. In this section, the probabilistic approach is first presented. 

The deterministic approach is discussed following an introduction to flexible gap pattern discovery. 

The sample based approach is then presented. Finally, a summary of the uniqueness of the proposed 

method DFGP in comparison to existing deterministic methods is provided. 
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2.3.1 The Probabilistic Approach 

Bioprospector [64], Co-Bind [65] and BiPad [66] are methods that model co-binding motifs through 

two PWMs with user-defined motif lengths. To incorporate the flexible gap constraint between two 

PWMs, they constrain the instances for the two PWMs to be within the flexible gap constraint whose 

range is specified by the user during the search process. Bioprospector seeks to maximize a score that 

combines the information content of the two PWMs adjusted by the number of model instances 

found. Co-Bind attempts to find PWMs that maximize the probability that both instances of the two 

PWMs simultaneously occupy in all input sequences. BiPad optimizes the objective function 

capturing both the information content of PWMs and the gap penalty by using a greedy search 

strategy. Co-Bind assumes one co-binding instance per sequence. BiPad can handle the case of one or 

zero instance per sequence. Bioprospector can handle the case of many instances or zero instance per 

sequence. 

The foremost issue of this approach is that these methods are easily trapped into the local optimum 

solution. The main reason is that the instances of a co-binding motif may not appear very frequently 

in the input sequences unlike the case of finding simple and rigid gapped motifs where the primary 

motifs often have high enrichment in the dataset. This creates a huge difficulty for the two step 

sampling process. It was observed in the experimental results in this thesis that the first PWM 

obtained by Bioprospector often captures a primary motif in a ChIP-seq data yet the second PWM has 

very low information content, indicating that the second one is very poor in capturing motifs. In 

addition, these methods require specific knowledge of both the component motif lengths as well as 

the range of the flexible gap, further impairing its effectiveness in finding co-binding motifs. In 

practice, they may need to try a large amount of combinations of parameter values to render 

reasonable yet unguaranteed results. Finally as these methods seek to output only one best solution, 

they may miss many equally important co-binding motifs. Among these methods, only Bioprospector, 

which is the best of this kind, is included for comparison. Co-Bind is significantly slower than 

Bioprospector and there is no access to the BiPad program. 

A related method is GLAM2 [67]. It uses one PWM to model motif but allows flexible gaps among 

motif sites by incorporating arbitrarily insertions and deletions during Gibbs sampling process. It 

relaxes the requirement that the lengths of sequence segments sampled be the same as the motif 

length for the PWM. This method suffers extensive search as it requires exploring an enormous space 

during sampling and editing. Thus, it is easily led to a solution far from optimum for large datasets. In 



 

 25 

addition, it is unclear that the arbitrary deletion and insertion scoring scheme specifically designed for 

protein sequences would work for DNA sequences. As pointed out in the original paper, discovering 

complex gapped DNA is a more speculative application of GLAM2. Nonetheless, it is also included 

for comparison in the thesis.  

2.3.2 Introduction to Flexible Gap Pattern Discovery 

Here flexible gap pattern discovery is formally introduced. A flexible gap pattern consists of a 

number of boxes with a flexible gap in between two consecutive boxes. 

Definition 7. Flexible Gap Pattern  

A flexible gap pattern G= (Pi)1·i·rG= (Pi)1·i·r is a tuple of  rr consensus patterns co-occurring in sequential 

order with r¡1r¡1 flexible gaps between them where P iP i is a consensus pattern. The special symbol "¡¡" 

is used to represent a flexible gap, which constrains Pi+1Pi+1 to occur within a predefined maximum 

distance dd after P iP i . GG can be explicitly expressed as P1¡ : : :¡Pi¡Pi+1 : : :¡PrP1¡ : : :¡Pi¡Pi+1 : : :¡Pr. 

An element P iP i of a flexible gap pattern is called a box. The generic template for flexible gap 

patterns requires the two parameters rr and dd where rr is the number of boxes and dd is the maximum 

allowable distance between consecutive boxes. A flexible gap pattern models a co-binding motif in 

the way that each box corresponds to a component simple motif. Let G(x) = (Pi)1·i·xG(x) = (Pi)1·i·x be a prefix 

pattern with xx boxes for GG where 1·x· r¡11·x· r¡1. When r=1r=1, GG contains only one box and is 

considered as 1-box flexible gap pattern, which has no prefix pattern. This special case is included 

just for illustrative purpose. In flexible gap pattern discovery, when asked to report flexible gap 

patterns of rr boxes, all their prefix gap patterns G(x)G(x) where 2·x· r¡12·x· r¡1  are also included in the 

output. Note that 1-box patterns are excluded. The occurrence of flexible gap pattern is defined 

below. 

Definition 8. Flexible Gap Pattern Occurrence 

An occurrence of a flexible gap pattern GG with rr boxes (r¡1r¡1 flexible gaps) is denoted by 

¿ = (½i)1·i·r¿ = (½i)1·i·r, which specifies the location of GG in the input sequences where ½i½i represents an 

occurrence of box pattern P iP i. The flexible gap constraint requires that ½i+1½i+1 is within dd distance from 

½i½i. More specifically, it requires that the starting position of ½i+1½i+1 is within dd gaps after the end 

position of ½i½i, that is, e(½i)+2· s(½i+1)· e(½i)+1+de(½i)+2· s(½i+1)· e(½i)+1+d and sid(½i) = sid(½i+1)sid(½i) = sid(½i+1) for 
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i=1; ::; r¡1i=1; ::; r¡1. ¿¿  can be explicitly expressed as ½1¡ : : :¡½i ¡½i+1 : : :¡½r½1¡ : : :¡½i ¡½i+1 : : :¡½r. All occurrences of GG 

forms an occurrence list LG = f¿1; ¿2; : : : ; ¿jLGjgLG = f¿1; ¿2; : : : ; ¿jLGjg. 

Let sid(¿) = sid(½1)sid(¿) = sid(½1), s(¿) = s(½1)s(¿) = s(½1), e(¿) = e(½r)e(¿) = e(½r) and ®(¿) = e(¿)¡s(¿)+1®(¿) = e(¿)¡s(¿)+1 be the sequence ID, 

the starting position, the end position and the span of an occurrence ¿¿  respectively for convenience. 

Let  ¿(x) = (½i)1·i·x¿(x) = (½i)1·i·x be a prefix occurrence of  ¿¿  where 1·x· r¡11·x· r¡1. Similarly, the number of 

occurrences kGkG of GG is the size of LGLG and the quorum qGqG of GG is the number of sequences in which GG 

occurs. 

Example 2. Table 3 shows an example flexible gap pattern G=GTT-CGG=GTT-CG of two boxes where 

each of which is a consensus pattern with the number of allowable mismatches being one. The 

maximum distance dd is 5. An orange dashed box is an occurrence of the first box, the consensus 

pattern GTTGTT. A blue dashed box is an occurrence of second box, the consensus pattern CGCG. This 

flexible gap pattern has 8 occurrences in the input sequences in Table 1 as shown by solid arcs. The 

first occurrence of GG in the sequence S1S1 is GTT..CAGTT..CA where the second box CACA matching the 

consensus CGCG with one mismatch is at distance 2 from the first box GTTGTT exactly matching the 

consensus GTTGTT. 

Table 3. An example flexible gap pattern  GG (an occurrence is shown by two Boxes linked by an 

arc) in the sample dataset in Table 1. 

G=GTT-CGG=GTT-CG 

 
 

Given parametersfr;d; thfgfr;d; thfg, the task is to discover frequent flexible gap patterns from input 

sequences S1; S2; : : : ; SNS1; S2; : : : ; SN .  Note that the generic template used for defining the flexible gap patterns 

is very relaxed. It does not impose constraints for the box length and the minimum distance between 

two consecutive boxes. In the next section, deterministic methods for discovering co-binding motifs 
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will be discussed. The structured models they consider are exactly the same as the flexible gap pattern 

defined except that additional parameters are introduced to constrain the flexible gap patterns to be 

searched. 

2.3.3 Deterministic Methods for Co-binding Motif Discovery 

SMILE [68], RISO [69], RISOTTO [70] and EXMOTIF [71] discover flexible gap patterns for 

identifying co-binding motifs. The generic template used by SMILE requires all the boxes to have the 

same length and introduces the minimum distance for all flexible gaps. It utilizes the suffix tree to 

speed up enumerating those frequent flexible gap patterns compatible to the defined template. RISO 

further introduces parameters to the generic template allowing a specific length for each box and the 

range for each flexible gap. RISO significantly improves the speed of SMILE by developing a new 

data structure box-link and using the factor tree, a truncated suffix tree. It claims to have an 

exponential gain compared to SMILE. RISOTTO further improves the speed and is 2 times faster 

than RISO. EXMOTIF generates all candidate boxes first and builds flexible gap patterns using solid 

patterns instead of consensus patterns as boxes via positional join of the boxes. It then obtains correct 

quorum for those flexible gap patterns by allowing using consensus patterns. EXMOTIF could take 

large memory space and its program crashes when a box length is set to be greater than 6 for a dataset 

of moderate size. In fact, the original paper did not use box length greater than 6. To evaluate the 

statistical significance of the discovered flexible gap patterns, they all adopt the Monte Carlo method 

first used in SMILE. This method basically creates sets of shuffle sequences with the same size as the 

input sequences. It obtains the quorum of each pattern in every shuffled sequence dataset and 

calculates the quorum average and standard deviation. The z-score for each pattern, which measures 

how significantly the observed quorum in the input sequences deviates from the expected one, is then 

computed. However, it is extremely slow when the number of discovered flexible gap patterns is 

huge. 

The problem of these deterministic methods is that they need a restricted template to narrow down 

the search space as well as to reduce the output size. Otherwise, they can take a considerable amount 

of runtime to extract patterns and unmanageable runtime to compute the pattern statistical 

significance. Consider the example of discovering flexible gap patterns of 2 boxes from a dataset of 

500 sequences (total size 150546 bp), using a restricted template that requires each box length to be 6, 

the maximum distance for the flexible gap to be 30 and the minimum quorum threshold to be 10% of 

the number of sequences, their best method RISOTTO outputted 1,976,770 patterns in 71 seconds and 
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took 2.72 days to compute pattern significance. Using a relaxed template that allows box length to 

range from 4 to 12 and the minimum quorum threshold set to 5%, RISOTTO took 1.75 hours to 

generate 59,730,851 patterns, not including the time for computing pattern significance. However, for 

motif discovery, the information about the motifs to be found is not available, and hence these 

methods either face an enormous space to search and huge output to handle or use a more restricted 

template but probably hampers their ability in identifying co-binding motifs in large datasets. 

RISOTTO is included for experimental comparison in Chapter 4. 

2.3.4 Sample Based Approach 

In the sample based approach, all possible instances compatible to a motif template are extracted from 

the input sequences to form a new sequence dataset. Further manipulation over the new dataset is 

performed to find co-binding motifs. The motif template used by MITRA [72] and MERMAID [73] 

specifies the length for each box and the range for the flexible gap. All possible substring 

combinations compatible to the template are extracted. Each substring pair is combined into a new 

sequence. Hence a sequence dataset containing sequences of length that is the sum of box lengths is 

constructed. MITRA considers only co-binding motifs of 2 components and uses its developed 

mismatch tree to find frequent consensus patterns (the mismatches allowed is the sum of the 

mismatches allowed for each box) in the newly constructed data. MERMAID uses each sequence in a 

new dataset to initialize a candidate PWM and carries out an iterative improvement search to optimize 

the quality of the PWM. L-SME [74] further modifies this approach as follows: It obtains all possible 

instances compatible to a motif template and further edits each instance into a set of transformed 

instances by carrying out mismatch, box swap and box skip operations. All these instances form a 

candidate set of flexible gap patterns. Instances are then associated with a unique sequence ID. L-

SME outputs those candidate instances that have sufficient quorum and uses the same Monte Carlo 

method to compute pattern significance. These methods suffer from the same problem as those 

deterministic methods discussed in the previous section. Using a relaxed template that allows box 

length to range from 4 to 12 and the maximum distance for the flexible gap set to be 30, the size of all 

possible co-binding motif instances to be extracted in the dataset of size 150546 bp is approximately 

365,826,780. Hence, this approach is impractical for large datasets.  
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2.3.5 Summary 

The existing probabilistic methods are incapable of identifying co-binding motifs in realistic datasets 

of large size due to its nature of being easily trapped into local optimality. The deterministic methods 

encounter a huge pattern space to process by using a relaxed motif template in order not to miss co-

binding motifs hidden in the dataset. The exhaustive enumeration of all flexible gap patterns 

compatible to the template brings great computational burden and results in an enormous output. The 

method that computes the pattern significance is unable to handle the output size. 

This thesis focuses on reducing both the computational burden and the huge output in a principled 

way rather than restricting the motif template. It also provides the novel statistical significance 

measures for flexible gap patterns overcoming the hurdles of the time consuming Monte Carlo 

method to obtain pattern significance. The developed method DFGP, which incorporates two 

proposed redundancy reduction methods and the statistical significance assessment into the pattern 

discovery process, is effective in identifying co-binding motifs in large datasets. The first reduction 

aims at obtaining a compact and representative set of consensus patterns as boxes for flexible gap 

pattern generation. The second reduction aims at reducing redundancy among occurrences of a 

flexible gap pattern. 

Unlike existing deterministic methods that use all frequent consensus patterns as boxes, DFGP 

manages to select a small subset that is non-redundant yet informative. The concept of representative 

patterns proposed to acquire such a subset is the focus of Chapter 3. Reducing the number of boxes to 

consider avoids exploring a large portion of the pattern space, thus drastically increasing the 

computational efficiency. The proposed reduction is novel and effective. The simple way to trim 

frequent consensus patterns according to their statistical significance using an arbitrary large 

threshold would miss those that are not highly significant if being considered alone. 

A flexible gap pattern can have a large set of occurrences among which much positional 

information is shared due to the presence of the flexible gap. This problem is inadequately addressed 

in the current literature. The concept of delegate occurrences and the method for extracting these 

occurrences are proposed in Chapter 4 of this thesis to address this problem. It is based upon the 

observation that many occurrences have other nested occurrences within themselves. Such 

occurrences are termed encompassing occurrences in this thesis. Extracting only delegate occurrences 

avoid counting those encompassing occurrences. The concept of delegate occurrences differs from the 

concept of interleaving occurrences in DyVerb by Apostolico et al. [75] in two aspects: (1) it applies 
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to only flexible gap pattern of two boxes, (2) it allows only solid patterns to be used as boxes and 

cannot handle consensus patterns. In addition, DyVerb can only deal with a small dataset and small 

maximum distance.  
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Chapter 3 

Discovery of Representative Patterns 

3.1 An Overview 

As shown in the previous chapter, the use of all frequent consensus patterns for building flexible gap 

patterns under a relaxed template is one of the factors that lead to the great computational burden for 

existing deterministic co-binding motif discovery methods. Without restricting the length of 

consensus patterns, there could be a large number of them. The research question in this chapter is 

how a much smaller yet still informative set of consensus patterns can be extracted from the sequence 

data to reduce the combination of boxes to be considered in the generation of flexible gap patterns. 

To obtain a compact set of consensus patterns, an obvious step is to start with a set of maximal 

solid patterns instead of all frequent consensus patterns. The set of maximal solid patterns captures 

frequent substrings in the input sequences and faithfully represents potential simple motifs with low 

frequency threshold. Furthermore, the set of consensus patterns considered in those deterministic 

methods may contain some patterns that are not even a substring of the input sequences as observed 

in L-SME [74]. However, the set of maximal patterns itself is still an unmanageably large set (i.e., 

thousands when a small frequency threshold is used) though it is relatively smaller than the original 

set of consensus patterns. To further reduce its size significantly, a simple strategy is to trim these 

patterns according to their statistical significance using an arbitrary large threshold. However, this 

would result in missing many of those patterns that are not highly significant by themselves alone 

[69]. To reduce these maximal patterns not in an ad hoc manner but in a systematic and rigorous way, 

the concept of representative patterns is proposed and the method DRP is developed to select such a 

representative subset of maximal patterns. The concept of representative patterns deals with the 

redundancy relations among patterns. The extracted set is much smaller yet representative. After such 

a set of representative patterns is obtained, they are converted to consensus patterns by allowing 

mismatches, and used as the boxes to construct flexible gap patterns.  

In the section 3.2, a linear time algorithm based on the generalized suffix tree is developed to 

extract a set of maximal solid patterns in the input sequences. The section 3.3 presents the concept of 

representative patterns and the method to extract them from a set of maximal patterns. 
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3.2 Discovery of Maximal Solid Patterns 

In this section, the well-known data structure of generalized suffix tree and its construction is 

introduced. The relationship between a maximal pattern and the internal nodes of the suffix tree is 

then established. The algorithm DMP [76] for extracting maximal patterns is to identify internal 

nodes that correspond to maximal patterns. 

3.2.1 Generalized Suffix Tree 

The generalized suffix tree, an efficient data structure for representing input strings, is well 

recognized in providing linear-time solutions to many string problems.  

Given a collection of multiple strings S1; S2; : : : ; SNS1; S2; : : : ; SN  over §§, the generalized suffix tree TT  

representing them is a rooted directed tree with the following properties. 

(1) Each internal node has at least two outgoing edges each of which is labelled with a non-empty 

substring in the input strings. No two edges going out of a node can have the edge-label starting 

with the same character. 

(2)  Each leaf node is labelled by a position (i; j)(i; j) indicating a suffix of a string SiSi starting at the 

position jj. The concatenation of the edge-labels on the path from the root to a leaf node exactly 

spells out the suffix of a string SiSi starting at the position jj. 

Most often, a termination character $ =2 §$ =2 § is appended to the end of each string to ensure that the 

suffix tree  TT  exists for the input strings. Figure 3 gives an example of TT  for two input strings. 

 

 



 

 33 

 

Figure 3. Generalized suffix tree TT  for multiple stringsfS1 =ATCGATCG$;S2 =GATCTC$gfS1 =ATCGATCG$;S2 =GATCTC$g. 

The square node is the root rr, the solid circles are the internal nodes and the hollow circles 

denote the leaf nodes. The internal nodes are numbered and are denoted by vjvj. ww is a leaf node 

associated with a position (1;1)(1;1). An edge is denoted by the two nodes it connects and is labelled 

with a substring. The label of edge (v3; v6)(v3; v6) is ATCATC. The concatenation of the edge-labels on the 

path from the root to the leaf node ww is the suffix of a string S1S1 starting at the position 11. 

3.2.2 Generalized Suffix Tree Construction 

We now describe a straightforward method for constructing the generalized suffix tree for the input 

strings S1; S2; : : : ; SNS1; S2; : : : ; SN . Let Si;jSi;j denote the jj-th suffix of the input string ii (e.g., S1;1S1;1 is the first suffix 

and also the entire string of S1S1). The algorithm sequentially inserts every suffixes of the input strings 

into the suffix tree. It begins with an initial tree T1;1T1;1 consisting of a single edge labelled with the first 

suffix S1;1S1;1. This edge connects the root and the leaf node labelled with position (1;1)(1;1); then it 

successively inserts the remaining suffixes into the growing tree. Let Ti;jTi;j denote the tree after the 

suffix Si;jSi;j has been inserted. 

The Ti;j+1Ti;j+1 tree is constructed by inserting the suffix Si;j+1Si;j+1 into Ti;jTi;j as follows: Starting from the 

root of Ti;jTi;j,  find the longest path label that matches the prefix of the suffix Si;j+1Si;j+1 by comparing and 

matching characters in the prefix to characters along the path label, until no further matches are 

possible. At the point when no further matches are possible, the algorithm is either at a node ww, or it 

is in the middle of an edge (u;v)(u;v). If it is in the middle of an edge, it breaks the edge (u;v)(u;v) into two 

edges (u;w)(u;w) and (w;v)(w;v) by inserting an internal node ww just after the last matched character and just 
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before the first mismatched character on the edge. Then (whether a new node ww has been created or 

whether it already exists at the point of mismatch), the algorithm creates a leaf node xx labelled with 

the position (i; j+1)(i; j+1) and an edge (w;x)(w;x) labelled with the unmatched part of the suffix Si;j+1Si;j+1. The 

tree now has the unique path from the root to the leaf node xx, and this path label is the suffix Si;j+1Si;j+1. 

The example for constructing the generalized suffix tree TT  in Figure 4 using the straightforward 

algorithm is given below. 

Position 1 2 3 4 5 6 7 8 9 

S1 A T C G A T C G $ 

S2 G A T C T C $   

 

 

Figure 4. The first six growing trees during the construction of the generalized suffix tree 

construction TT : (a) T1;1T1;1; (b) T1;2T1;2; (c) T1;3T1;3; (d) T1;4T1;4; (e) T1;5T1;5; (f) T1;6T1;6 

The straightforward generalized suffix tree construction method takes O(L2)O(L2) time for input strings 

whose total length is LL and hence it is not efficient for large input. However, a generalized suffix tree 

TT  can be constructed in O(L)O(L) time and space. The details of the suffix tree and its linear time and 

space construction algorithms can be found in [46]. 
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3.2.3 Extraction of Maximal Solid Patterns from Suffix Tree 

The generalized suffix tree is utilized in this thesis to develop the linear time algorithm DMP for 

discovering maximal solid patterns. A solid pattern is just a substring found in the input strings. The 

suffix tree in Figure 3 is used to illustrate the examples given in this section. 

A solid pattern in the input string is represented by the label of a path starting from the root of TT . A 

path label is the concatenated edge labels along the path. To find the occurrence list LPLP  for a pattern 

PP , characters in PP  are matched against characters along a path label. At the point when all characters 

are matched, the matching ends at or above a node xx. All starting positions of PP  in SS  can be found by 

listing all indices of the leaf nodes below xx. The positions of a pattern can be found because they 

correspond to certain suffixes in the string. For example, the path label of the pattern ATCATC ends at the 

node v1v1, its starting positions f(1;1); (1;5); (2;2)gf(1;1); (1;5); (2;2)g  can be obtained by traversing the leaf nodes 

under v1v1 because these leaf nodes, which correspond to the 1st and 5th suffixes of the string S1S1, and 

the 2nd suffix of the string S2S2, record the starting positions of  this pattern. With the starting positions, 

LPLP  can be easily constructed with the length of PP . By annotating each node xx with the number of leaf 

nodes k(x)k(x) found below xx, the number of occurrences kPkP  can be obtained by finding the 

corresponding node for PP . Hence, a frequent pattern PP  is represented by a path label ending at or 

above a node xx with k(x)¸ thfk(x)¸ thf .  

Recall that a maximal pattern is the one that cannot be further extended at both ends by adding 

additional characters without reducing its number of occurrences. Hence, a potential maximal pattern 

is represented by a path label ending at a node instead of above a node. A pattern with path label 

ending above a node cannot be maximal since it certainly has a superpattern with the same number of 

occurrences down the path. This superpattern is represented by the node where the path label of the 

pattern ends. For example, the pattern ATAT has the path label ending above v1v1 and hence it is not 

maximal. It has ATCATC with the same number of occurrences ending at v1v1.   

So far it is shown that each node corresponds to a potential maximal pattern. Note that a pattern is 

maximal if and only if it cannot be extended at either the left or the right end. Since the case of 

extending the right end of a pattern has been dealt with, it remains to handle the case of extending a 

pattern by adding a character to its left end. If the pattern has the same number of occurrences as the 

extended pattern, it cannot be maximal. With this observation, a special kind of structure element 

called a suffix link in TT  is used. 
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 Let vv  be an internal node in TT  and its path label be pl(v) = c®pl(v) = c® where cc is a character and ®® is a 

string. Let uu  be another internal node with pl(u) =®pl(u) =®. A pointer from vv  to uu  is called a suffix link 

denoted by SL(v) = uSL(v) = u. For example, in Figure 3, pl(v7) =ATCGpl(v7) =ATCG and pl(v8) =TCGpl(v8) =TCG, then 

SL(v7) = v8SL(v7) = v8.  

Since the suffix link connects a pattern P 0 = ®P 0 = ® and its superpattern P = c®P = c® with cc appended to the 

left of ®®,  the suffix link can be used to check whether or not a node corresponds to a closed pattern. 

A node uu  does not correspond to a maximal pattern if there is a node vv  with SL(v) = uSL(v) = u and 

k(v) = k(u)k(v) = k(u). For example, the pattern CGCG, though having the path label ending at v5v5, is not closed 

since we have SL(v8) = v5SL(v8) = v5 and k(v8) = k(v5) =2k(v8) = k(v5) =2. Hence, there is a one-to-one correspondence 

between a maximal pattern and a node in the suffix tree. 

To effectively use the suffix link to identify nodes corresponding to closed patterns, the nodes with 

longer path labels are processed first. After maximal patterns are obtained, simple repeat patterns 

such as AAAAAAAAAA are removed as they are unlikely to be part of simple motifs. Since there are 

abundant repetitive elements interspersed in the human genome, it is helpful that the input sequences 

are masked by repeat masking tools such as RepeatMasker [77] before discovering patterns. If 

otherwise, those repetitive elements are very likely to show up as strong over-represented patterns in 

the output, which hinders the motif discovery program’s ability to find real regulatory motifs. If the 

repetitive elements are masked in the input DNA sequences, there would be often a character such as 

‘N’ other than the four normal nucleotide codes in the masked sequences. Hence the patterns that 

contain characters not from the DNA alphabet are removed. Algorithm 3.1 DMP (Discovery of 

Maximal Patterns) for discovering maximal patterns from the input sequences is shown below. 
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Algorithm 3.1. DMP 

Input: sequence data fS1;S2; : : : ;SNgfS1;S2; : : : ;SNg, thfthf 

Output:  a set of maximal solid patterns MM 

1. Construct generalized suffix tree TT  for fS1;S2; : : : ;SNgfS1;S2; : : : ;SNg  

2. Traverse TT  to obtain all nodes with k(x)¸ thfk(x)¸ thf  and initially mark them as maximal. 

3. Sort the nodes in descending order according to the length of their path labels.  

4. For each node vv  

          If vv  is maximal, then output its corresponding pattern. 

          Set u=SL(v)u=SL(v) to be non-maximal if k(v) = k(u)k(v) = k(u). 

    End 

5. Remove maximal patterns that have simple repeats or contain a special mask character. 

3.3 Discovery of Representative Patterns 

The concept of obtaining representative patterns is to extract a compact subset of maximal patterns 

such that the patterns excluded have their representatives within the selected subset. In order to 

explain the concept of a pattern being represented by the other one, a similarity measure between two 

solid patterns is provided in definition 9. Since the pattern considered is essentially a string, the length 

of the longest common subsequence (LCS) [78] between two strings is used to define pattern 

similarity. Given two strings S1S1 and S2S2, their LCS is the string resulting from the deletion of certain 

characters from both strings such that the edited strings completely match each other and have the 

longest length. For example, the LCS for two strings ATC and AGC is AC and its length is 2.  

Definition 9. Pattern Similarity 

Given two patterns PiPi and PjPj, their similarity measure is defined as follows: 

sim(Pi; Pj) =
2¢jLCS(Pi;Pj)j

jPij+jPj j
sim(Pi; Pj) =

2¢jLCS(Pi;Pj)j

jPij+jPj j
 

When PiPi and PjPj are identical, sim(Pi;Pj) = 1sim(Pi;Pj) = 1; when they are completely different (i.e. do not 

have common subsequence), sim(Pi;Pj) = 0sim(Pi;Pj) = 0. 

A pattern can be represented by another pattern if they are similar and all patterns similar to it form 

a pattern neighborhood as defined below.  

Definition 10. Neighborhood of Pattern PP  

A pattern neighborhood NH(P)NH(P) for PP  consists of a set of patterns that are similar to PP . A pattern 

is similar to another pattern if their similarity is above a threshold thsths. Formally, 

NH(P) = fP 0 2MjP 0 6= P;sim(P 0; P) ¸ thsgNH(P) = fP 0 2MjP 0 6= P;sim(P 0; P) ¸ thsg where MM is the set of maximal patterns. 
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The neighbor patterns for a pattern are in composition close to that pattern in the sense that the 

pattern can undergo a limited number of edits to restore each of them. If this pattern is included in the 

selected set of representative patterns, excluding its neighbor patterns is probably not too risky since 

they are represented by the selected pattern. Suppose an excluded pattern captures a simple motif, its 

representative pattern is likely to capture this motif as well.  

Hence, the neighbor patterns of a pattern are considered as redundant with respect to this pattern. 

As a result of removing redundant patterns, the retained patterns become more distinct and the pattern 

set size is greatly reduced. Here the method DRP is developed to obtain a compact set of 

representative patterns such that they represent all maximal patterns. The set of representative 

patterns is formally defined in Definition 11.  

Definition 11. A set of representative Pattern RR 

A set of representative patterns RR is a subset of MM such that for each pattern P 2 RP 2 R,  

and MM is the union of RR with all neighborhoods of the patterns in RR.  

The method DRP given in Algorithm 3.2 selects the representative patterns as follows: When a 

solid pattern PP  is chosen as a representative pattern, its neighbor patterns are excluded. First, it 

selects the one having the largest neighborhood size and excludes those patterns within its 

neighborhood. It then selects the next pattern with the second largest neighborhood size and so forth 

until all maximal patterns are examined. The reason to select representative patterns in this manner is 

that a representative pattern having large support from its neighbor patterns could be more important 

in capturing simple motifs. Suppose that a representative pattern captures a simple motif, then its 

neighbor patterns could be formed by a degenerate motif or a partially overlapped motif of the simple 

motif. Hence, the enrichment of neighborhood patterns for a pattern provides some indications that it 

might be important and representative with biological relevancy. 

Another way to choose representative patterns is to model patterns as vertices in a graph. An edge 

between two vertices is formed if their corresponding patterns are similar. One might want to obtain a 

set of representative patterns by finding the minimal vertex cover, producing an even smaller set. 

However, the patterns, obtained by finding the minimal vertex cover, are not suitable for the 

definition of representative patterns since a pattern and some of its neighbor patterns can both be 

included in the output set. The proposed selection process is similar to a greedy algorithm for vertex 

cover problem that repeatedly chooses vertices incident to the largest number of currently uncovered 
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edges but differs in two aspects: (1) the vertices with edges incident to the chosen vertices are not 

considered and (2) edges are not removed during the search process. 

Algorithm 3.2. DRP 

Input: sequence data fS1;S2; : : : ;SNgfS1;S2; : : : ;SNg, thfthf , thsths 

Output:  a set of representative consensus patterns RR 

1. Use Algorithm 3.1 DMP to extract the set of maximal patterns MM  

3. Calculate the similarity between patterns 

4. Assign the neighborhood size for each pattern and sort the patterns  

    according to the neighborhood size. Initially, all patterns in MM are marked as unchecked 

5. For each pattern PP  in MM          

           If PP  is unchecked 

               Add PP  to RR  

               Mark patterns in NH(P)NH(P) to checked 

           End 

   End 

   6. For each solid pattern in RR, convert it to a consensus pattern by allowing ¯̄  mismatches 

 

In this thesis, the number of mismatches ¯̄  for consensus patterns is fixed to 11. Fixing ¯̄  equal to 11 

is based on the observation that the core region of a simple motif is relatively better conserved. This 

phenomenon is also mentioned by the authors of DREME[59] and CisFinder [60]. Hence, a 

consensus pattern does not need too many variations when modeling this core motif region. Next, 

how to determine the parameter values is discussed. 

The frequency threshold thfthf cannot be set to a large value since this threshold is used to obtain 

frequent solid patterns. Otherwise, the simple motifs less conserved but important would be excluded 

from the set of representative patterns. Here thfthf  is set to max(0:05N;5)max(0:05N;5), requiring that a pattern 

occurs a small number of times relative to the number of sequences but not less than 5 times to reduce 

the risk of missing important simple motifs. This means that when N ¸ 100N ¸ 100, a pattern is expected to 

appear in 5% of input sequences. When N < 100N < 100, a pattern needs to occur at least 5 times to be 

considered. A low frequency threshold is used here to exclude those patterns unlikely to correspond 

to motifs in the dataset but allow many slightly frequent patterns to be considered. A low frequency 

threshold is important for finding co-binding motifs since they might not have high enrichment in a 

dataset. The low enrichment of co-binding motifs is one of the critical reasons why probabilistic 

methods for co-binding motif discovery perform poorly in many datasets. 



 

 40 

The similarity threshold thsths is an important parameter as it controls what is to be considered as a 

similar pattern. Setting it too high would result in a large number of representative patterns being 

retained while a low value would perceive two arbitrary patterns as similar, making the pattern 

neighborhood meaningless. By using LCS to measure the similarity between two patterns of length ll 

and l0l0 (assuming l · l0l · l0), the maximum similarity between them can be achieved is 2l
l+l0
2l

l+l0
. Under a 

specific threshold thsths, these two pattern are similar if 2l
l+l0

¸ ths
2l

l+l0
¸ ths. By rearranging the inequality,

l0¡l
l
· 2( 1

ths
¡ 1)l0¡l

l
· 2( 1

ths
¡ 1) is obtained. The threshold thsths controls the ratio of the length difference to the 

length of the shorter pattern. Setting thsths to 0.7, 0.8 and 0.9 results in 0.85, 0.5 and 0.2 for the value of 

this ratio respectively. Here ths = 0:8ths = 0:8 is used. This requires that the length difference between two 

similar patterns would not be overly large relative to the length of the shorter pattern (i.e. the length 

difference is at most half of the length of the shorter pattern). 

The reduction from the set of maximal patterns to the set of representative patterns is one of the 

two reductions in the proposed method DFGP. This significantly reduces the computational burden in 

discovering flexible gap patterns. Here the reduction ratio is estimated as follows: With ths = 0:8ths = 0:8, 

consider a pattern PP  of length l + 1l + 1 and its subpattern P 0P 0 of length ll, then sim(P;P 0) = 2l
2l+1

¸ 0:8sim(P;P 0) = 2l
2l+1

¸ 0:8 

and hence PP  and P 0P 0 are neighbors. Theoretically, for a given pattern PP , there could be 10 such 

neighbor patterns. Two of them are its subpatterns with one character less. They are obtained by 

removing a character from either end. Eight of them are its superpatterns with one character more, 

obtained by appending a character (one out of four nucleotides) to either end. Choosing PP  as a 

representative pattern would exclude these 10 patterns. Hence, approximately, jMj ¼ 11jRjjMj ¼ 11jRj and the 

reduction ratio ®=0:09®=0:09, meaning the size of the representative patterns could be only 9% of the 

original maximal patterns, possibly leading to the exclusion of exploring 99% of the box 

combinations during generation of flexible gap patterns of 2 boxes. 

Example 3. Figure 5 shows the set of representative patterns discovered by DRP from the input 

sequences in Table 1 using ths = 2ths = 2 (note that this is just a toy example and so the minimum required 

threshold of 5 occurrences does not apply here). Under ths = 2ths = 2, a maximal solid pattern needs to 

occur at least twice. Figure 5(a) shows the set of maximal patterns obtained by the method DMP. 

There are 15 maximal patterns in total.  The pattern ATGATG has 3 occurrences in the input sequences. 

This pattern is maximal since it cannot be further extended by adding a character to either end without 

decreasing the number of occurrences. Figure 5(b) shows the pattern neighborhoods for the maximal 
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patterns. Patterns ATAT and ATGTATGT are the neighbor patterns of the pattern ATGATG since both of them are 

similar to ATGATG. The pattern TATA does not have any neighbor pattern since it is not similar to any other 

maximal pattern. After the pattern neighborhoods are established. DRP selects the pattern with the 

largest pattern neighborhood and skips all its neighbor patterns. In this case, DRP selects the pattern 

ATGATG and excludes its neighbor patterns  ATAT and ATGTATGT. It then selects the next pattern GTTGTT and so 

forth. As a result, a set of representative patterns is selected. Patterns in shaded circles are 

representative patterns. DRP reduces the set of 15 maximal patterns to the set of 8 representative 

patterns. 

 

Figure 5. An example for extracting the set of representative patterns for input sequences in 

Table 1 with thf = 2thf = 2 . (a) The set of maximal patterns. The occurrences of the pattern ATG 

colored in red are shown in the input sequences. (b) The set of representative patterns. All 

maximal patterns are represented by the circles and similar patterns share an edge between 

them. The neighbor patterns for ATG are AT and ATGT as shown by the connected edges. 

Some patterns such as TA do not have neighbor patterns since they are not similar to any other 

pattern. The shaded circles are representative patterns.  
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Chapter 4 

Construction of a Flexible Gap Pattern and its Delegate 

Occurrences 

4.1 An Overview 

This chapter considers the construction of a flexible gap pattern GG of kk  boxes by appending a box PP  

to a flexible gap pattern G0G0 of k¡ 1k¡ 1 boxes. Section 4.2 presents the method COA (Complete 

Occurrences Assembling) that identifies the complete set of occurrences of GG during pattern 

construction.  Analysis of this method shows that the size of the complete set of occurrences increases 

greatly as the maximum distance dd and the number of boxes kk  increases. This poses a greater 

computational burden for larger dd and kk . The concept of delegate occurrences is proposed in section 

4.3 to exclude counting encompassing occurrences that have nested occurrences within themselves. 

The obtained set of delegate occurrences is more compact and less redundant. In contrast to the size 

of the complete set of occurrences, the size of the set of delegate occurrences does not depend upon 

either dd or kk . The method DOA (Delegate Occurrences Assembling), which efficiently identifies 

delegate occurrences during the flexible gap pattern construction, is thus developed. 

4.2  Construction of a Flexible Gap Pattern with Complete Occurrences  

A flexible gap pattern GG of kk  boxes is constructed by adding a box PP  to G0G0 while checking whether 

the occurrences of the new pattern GG meets the frequency threshold thfthf. 

A straightforward method can pair up each occurrence from the occurrence list LG0LG0 and LPLP  to form 

a potential occurrence for GG and check whether the newly formed occurrence is valid according to the 

conditions specified in definition 8 of flexible gap pattern occurrence. 

However, this would take O(jLG0j ¢ jLPj)O(jLG0j ¢ jLPj) time. Hence, it is quite time consuming. A better method, 

known as COA, is presented as follows: Consider two lists of sorted occurrences  Li
G0Li
G0 and Li

PL
i
P  from 

sequence ii  extracted from LG0LG0 and LPLP  respectively. This method as illustrated in Figure 6 goes 

through each occurrence in Li
G0Li
G0 and checks whether there exist occurrences from Li

PL
i
P  that are within  

distance dd after it. The occurrences in Li
PL
i
P  before it are skipped in the next checking step. For 

example, in Figure 6, after the occurrence of G0G0 marked by the arrow is checked, the occurrences of 

PP  before the arrow can be ignored when checking the next occurrence of G0G0. 
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Figure 6. The Identification of occurrences of flexible gap pattern GG during its construction 

from G0G0 and PP . A gray box represents an occurrence of G0G0 and the white box an occurrences of 

PP . The boxes connected with an arc form an occurrence of GG. For every occurrence of G0G0, 

simply checking whether there are occurrences of PP  within dd distance. 

COA identifies the complete occurrences of a flexible gap. However, it takes O(jLG0j ¢ d)O(jLG0j ¢ d) time as 

an occurrence of G0G0 can be associated with at most dd occurrences of PP . This also indicates that the 

size of the set of complete occurrences is O(jLGj) =O(jLG0jd)O(jLGj) =O(jLG0jd). Since the number of occurrences for 

a flexible gap pattern of one box (i.e., k = 1k = 1) can be asymptotic to the input size LL, the size of the 

occurrence list LGLG of a gap pattern of kk  boxes can be O(Ldk¡1)O(Ldk¡1). Hence jLG0j =O(Ldk¡2)jLG0j =O(Ldk¡2), and the 

time to extract the occurrence list of GG of kk  boxes from LG0LG0 and LPLP  is O(Ldk¡1)O(Ldk¡1). Thus, the 

computational time and space complexity increases considerably as the maximum number of gaps dd 

and the number of boxes rr increase. 

4.3 Construction of a Flexible Gap Pattern with Delegate Occurrences 

4.3.1 The Concept of Delegate Occurrences 

It is observed that many occurrences of a flexible gap pattern have nested occurrences within 

themselves. Figure 7 shows the complete occurrences of a frequent flexible gap pattern 

GTT¡CG¡GAGTT¡CG¡GA in the input sequences in Table 1 when thf = 2thf = 2 and d = 5d = 5 are used. There are 7 

occurrences in total. Occurrence 2 has Occurrence 1 nesting within it. Occurrence 3 has Occurrences 

1 and 2 nesting within it. These occurrences are referred to as encompassing occurrences. The formal 

definition of encompassing occurrences is given in Definition 12.  

Definition 12. Encompassing occurrence 

An occurrence ¿¿  of a flexible gap pattern GG is referred to as an encompassing occurrence if there 

exists an occurrence ¿ 0¿ 0 such that sid(¿ 0) = sid(¿)sid(¿ 0) = sid(¿), s(¿ 0) ¸ s(¿)s(¿ 0) ¸ s(¿), e(¿ 0) · e(¿)e(¿ 0) · e(¿) and the span 

®(¿ 0) < ®(¿)®(¿ 0) < ®(¿). Hence an encompassing occurrence strictly contains another occurrence within it. 
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Example 4. Occurrences 2 and 3 in Figure 7 are encompassing occurrences since each of them 

contains another occurrence (like Occurrence 2 contains Occurrence 1 as indicated by their spans 

®(¿2)>®(¿1)®(¿2)>®(¿1)). Note that Occurrences 3 and 4 do not contain each other since they have the same 

span. However, the prefix occurrences of Occurrences 4 to 6 are encompassing occurrences since 

these prefix occurrences all contain the prefix occurrence of Occurrence 1. 

 

Figure 7. Complete occurrences and delegate occurrences of the flexible gap pattern 

GTT¡CG¡GAGTT¡CG¡GA in sequences in Table 1 with thf = 2thf = 2 and d = 5d = 5. Each dashed box is an 

occurrence of the consensus patterns GTTGTT, CGCG and GAGA with 1 mismatch allowed. A flexible 

gap pattern occurrence is represented by dashed boxes linked by arcs and is numbered (from 1 

to 7). Occurrences 2 and 3 are encompassing occurrences since Occurrence 2 has Occurrence 1 

nesting within it, and Occurrence 3 has Occurrences 1 and 2 nesting within it. Both of them are 

hence not delegate occurrences. Occurrences 4, 5 and 6 are not delegate occurrences as well 

since their prefix occurrences are encompassing occurrences. Only Occurrences 1 and 7 are 

delegate occurrences for the pattern since they contain no nested occurrence.  

Encompassing occurrences are likely to form as a result of the flexible gap. Their number can be 

large with even a small value of dd especially in the case when consensus patterns instead of solid 

patterns are used as boxes for building flexible gap patterns. Here the concept of delegate occurrences 

is proposed to avoid counting encompassing occurrences, which greatly improves the computational 

efficiency. The formal definition is given below. 

Definition 13. Delegate occurrence 

An occurrence ¿¿  of a flexible gap pattern GG of rr boxes is a delegate occurrence if it and all its 

prefix occurrences ¿(x)¿(x) for 2·x· r¡12·x· r¡1 are not encompassing occurrences. Note that when r=1r=1, 
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every occurrence is considered a delegate occurrence. The delegate occurrence list of GG is denoted as 

DGDG. The number of occurrences and the quorum of GG counting only delegate occurrence is denoted 

as k̂Gk̂G and q̂ĜqG respectively. 

Example 5. As shown in Figure 7, Occurrences 1 and 7 are delegate occurrences since they and 

their prefix occurrences are not encompassing occurrences. Occurrences 2 and 3 are not delegate 

occurrences since they are encompassing occurrences. Occurrences 4, 5 and 6 are not delegate 

occurrences as well since their prefix occurrences are encompassing occurrences.  

Delegate occurrences are a subset of complete occurrences and its set size is shown to be O(L)O(L) 

linear to the input size. It is a more compact set that captures representative information about the 

complete set. Counting only delegate occurrences also avoids exploring artificial frequent 

occurrences especially when a low frequency threshold tftf  is used. It is clear that increasing dd alone 

would make some flexible gap patterns become frequent. Experimental results presented in Chapter 6 

will show that counting only the delegate occurrences instead of the complete occurrences does not 

impair the ability of DFGP for identifying co-binding motifs, indicating that delegate occurrences 

encapsulate critical information from the complete set.  

4.3.2 The Identification of Delegate Occurrences 

Next, the method for finding delegate occurrences of GG during its construction from G0G0 and PP  is 

presented (note that G0G0 is a prefix pattern of k¡ 1k¡ 1 boxes for GG and PP  is its last box ). A delegate 

occurrence of the synthesized GG can be obtained as the pair formed by a delegate occurrence of G0G0 

and its closest occurrence of PP . For example, in Figure 8, the delegate occurrence ¿ 02¿
0
2  of G0G0 and the 

occurrence ½2½2 form a delegate occurrence of GG while ¿ 0
1¿
0
1 cannot pair with ½2½2 to create a delegate 

occurrence of GG since ¿ 0
1¿
0
1 is not the one closest to ½2½2. 

Hence, a delegate occurrence ¿¿  of GG can be obtained by the closest pairing of a delegate occurrence 

¿ 0¿ 0 of G0G0 with an occurrence ½½  of PP , denoted as ¿ = (¿ 0; ½)¿ = (¿ 0; ½). The concept of closest pairing of two 

occurrences defined below is used to show how delegate occurrence could be obtained by 

synthesizing a delegate occurrence (of G0G0) with another nearby occurrence (of box PP ) into the new 

delegate occurrence of G. Note that ½½  should be within the maximum distance after ¿ 0¿ 0 to be a valid 

occurrence ¿¿  for GG.  The closest pairing [91] requires that there is no other delegate occurrence ¿ 00¿ 00 

after ¿ 0¿ 0 and before ½½ , and there is no other occurrence ½0½0 of box PP  before ½½  and after ¿ 0¿ 0. Formally, 

this is stated in definition 14. 



 

 46 

Definition 14. Closest pairing of ¿ 0¿ 0 with ½½  

The closest pairing of ¿ 0¿ 0 with ½½ , denoted as (¿ 0; ½)(¿ 0; ½), satisfies the following conditions: (1) the 

created occurrence ¿ = (¿ 0; ½)¿ = (¿ 0; ½) meets the flexible gap pattern occurrence requirement, (2) there is no 

delegate occurrence ¿ 00¿ 00 such that e(¿ 0) < e(¿ 00) < s(½)¡ 1e(¿ 0) < e(¿ 00) < s(½)¡ 1 (i.e., in between ¿ 0¿ 0 and ½½), and (3) there is 

no occurrence ½0½0 such that e(¿ 0) +1< s(½0) < s(½)e(¿ 0) +1< s(½0) < s(½). For example, in Figure 8, (¿ 01; ½2)(¿ 01; ½2) is not a closest 

pairing since there is ¿ 02¿
0
2 in between ¿ 0

1¿
0
1 and ½½ . 

 

 

Figure 8. The identification of delegate occurrences of a flexible gap pattern GG during its 

construction from G0G0 and PP  in the same sequence SiSi. The gray and white boxes along two lines 

represent the sorted delegate occurrences of G0G0 and sorted occurrences of PP  in the sequence SiSi 

respectively. Boxes linked by a dashed line represents a delegate occurrence of GG after the 

synthesis process. The arrow line indicates the gap range allowed by dd. In each case, like (¿ 01; ½2)(¿ 01; ½2) 

and (¿ 03; ½4)(¿ 03; ½4), the closest pairs are chosen. 

The following proposition shows that the ¿¿  created by the closest pairing of ¿ 0¿ 0 with ½½  is a delegate 

occurrence. 

Proposition 1. ¿ = (¿ 0; ½)¿ = (¿ 0; ½) specified in Definition 14 is a delegate occurrence of GG. 

Proof. The prefix occurrence ¿ 0¿ 0 is a delegate occurrence so all its prefix occurrences ¿(x)¿(x) for 

2·x· r¡12·x· r¡1 are not encompassing occurrences. Suppose ¿¿  is an encompassing occurrence, then it 

has a nested occurrence ¿®¿® within it. Note that the end position of the prefix occurrence ¿®(r¡1)¿®(r¡1) can 

either be the same as e(¿ 0)e(¿ 0) or after e(¿ 0)e(¿ 0). If this is not the case, ¿ 0¿ 0 has a nested occurrence and hence it 

is not a delegate occurrence, which leads to a contradiction. Consider the case when 

e(¿®(r¡ 1)) = e(¿ 0)e(¿®(r¡ 1)) = e(¿ 0),  let the last box of ¿®¿® be ½®½®, then s(½®)<s(½)s(½®)<s(½), violating the closest pairing 

condition (3). In the case when e(¿®(r¡ 1)) > e(¿ 0)e(¿®(r¡ 1)) > e(¿ 0), it violates the closest pairing condition 2. 

Hence, ¿¿  is not an encompassing occurrence and hence it is a delegate occurrence of GG. 
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To obtain the delegate occurrences for GG during its construction from G0G0 and PP , it follows the same 

approach as that of the method COA but can immediately check the next delegate occurrence of G0G0 

when the current one and an occurrence of PP  forms a closest pair (a delegate occurrence ) for GG. Let 

Di
G0Di
G0 and Li

PL
i
P  be two lists of sorted delegate occurrences from sequence ii for DG0DG0 and LPLP  respectively. 

Two index trackers IG0IG0 and IPIP  are used to keep track of the elements in the sorted lists Li
G0Li
G0 and Li

PL
i
P  

respectively. To check whether an element ¿ 0¿ 0 at IG0IG0 of Li
G0Li
G0 and an element ½½  at IPIP  of Li

PL
i
P  form a 

closest pairing, it suffices to check whether the starting position of ½½  is in the valid range that can be 

derived from the end position of ¿ 0¿ 0, the end position of ¿ 0n¿
0
n (the next occurrence of ¿ 0¿ 0) and the 

maximum distance dd. More specifically, the valid range is [e(¿ 0)+2;min(e(¿ 0)+ d+1; e(¿ 0n)+1)][e(¿ 0)+2;min(e(¿ 0)+ d+1; e(¿ 0n)+1)]. 

The valid range assures that ¿ 0¿ 0 and the first ½½  falling in this range forms a closest pair during the 

scanning of the occurrence list  Li
PL
i
P . In such case, both trackers are increased by 1.  

Figure 8 shows the process of identifying delegation occurrences during the pattern assemble step. 

The valid range for ¿ 0
1¿
0
1 is [e(¿ 01) +2; e(¿ 02) +1][e(¿ 01) +2; e(¿ 02) +1] and hence no occurrence of PP  falls into this range. The 

valid range for ¿ 02¿
0
2 is [e(¿ 02) +2; e(¿ 02) + d+1][e(¿ 02) +2; e(¿ 02) + d+1] and (¿ 02; ½2)(¿ 02; ½2) is a delegate occurrence. The valid range 

for ¿ 03¿
0
3 is [e(¿ 02) + 2; e(¿ 03) + 1][e(¿ 02) + 2; e(¿ 03) + 1] and (¿ 03; ½4)(¿ 03; ½4) is a delegate occurrence. This method referred to as DOA 

(delegate occurrence assembling) is presented in Algorithm 4.1. Since one delegate occurrence of G0G0 

can only pair with at most one occurrence of PP , the number of delegate occurrences is O(L)O(L) and 

DOA runs in O(L)O(L) time. 
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Algorithm 4.1. DOA 

Input: a flexible gap pattern G0G0, a box PP  and dd 

Output:  G= (G0; P)G= (G0; P) with DG = f¢ ¢ ¢ ;Di
G; ¢ ¢ ¢ gDG = f¢ ¢ ¢ ;Di
G; ¢ ¢ ¢ g 

1. Let f¢ ¢ ¢ ;Di
G0; ¢ ¢ ¢ gf¢ ¢ ¢ ;Di
G0; ¢ ¢ ¢ g and f¢ ¢ ¢ ;Li

P ; ¢ ¢ ¢ gf¢ ¢ ¢ ;Li
P ; ¢ ¢ ¢ g be the set of sorted occurrence lists for G0G0 and PP  

2. For each pair of lists Di
G0Di
G0 and Li

PL
i
P  from same sequence          

         Set index trackers IG0IG0 and IPIP  to 1  

         While IG0 · jDi
G0jIG0 · jDi
G0j and IP · jLi

P jIP · jLi
P j 

               Let  ¿ 0¿ 0 be the element at IG0IG0 of Di
G0Di
G0 and   

               ¿ 0n¿
0
n be the element at IG0 +1IG0 +1 of Di

G0Di
G0 and 

               ½½  be the element at IPIP  of Li
PL
i
P  

               Obtain the valid range as 

               V = [e(¿ 0)+2;min(e(¿ 0) +d+1; e(¿ 0n) +1)]V = [e(¿ 0)+2;min(e(¿ 0) +d+1; e(¿ 0n) +1)] 

                If ½½  is before VV 

                   IP = IP +1IP = IP +1 

                Else If ½½  is after VV 

                   IG0 = IG0 +1IG0 = IG0 +1 

                Else  

                   Add ¿ = (¿ 0; ½)¿ = (¿ 0; ½) to DGDG 

                   Increase IG0IG0 and IPIP  by 1 

                End 

         End 

End 
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Chapter 5 

Discovery of Flexible Gap Patterns 

5.1 An Overview 

In this chapter, the method DFGP (Discovery of Flexible Gap Patterns) that discovers flexible gap 

patterns for identifying co-binding motifs in the input sequences is presented. DFGP uses the 

representative consensus patterns obtained by the method DRP in Chapter 3 to build the flexible gap 

patterns. A flexible gap pattern is constructed from its prefix pattern and its last box using the method 

DOA provided in Chapter 4. The parameter settings and the runtime analysis are discussed in this 

chapter. The conversion of a flexible gap pattern to its PWM representation is then illustrated. Before 

presenting DFGP, Section 5.2 introduces the two statistical significance measures for ranking flexible 

gap patterns with complete occurrences and delegate occurrences respectively. Unlike the Monte 

Carlo method adopted by existing deterministic methods for co-binding motif discovery, these two 

measures are computationally efficient and do not add additional complexity into the pattern 

discovery process.    

5.2 Statistical Significance Measures 

Since the number of frequent flexible gap patterns discovered is often huge, it is exceedingly 

important for the discovery method to assess the importance of these patterns. Only after pattern 

ranking, a small number of top ranked patterns may then serve as guiding information for researchers 

for further study. Existing methods often use Monte Carlo simulation that generates a batch of 

randomly shuffled sequences of the same size as the input, and then estimates the expected quorum 

for a discovered pattern to compute the z-score, which measures the deviation of the observed 

quorum from the expected quorum. This approach is simple and straightforward. However, the sheer 

amount of patterns discovered makes this approach very time consuming. Here, two measures are 

proposed for evaluating the statistical significance of a flexible gap pattern with complete occurrences 

and with only delegate occurrences respectively. Both statistical measures do not add additional 

computational complexity into the pattern discovery process. Furthermore, these measures can 

provide a pruning strategy to exclude insignificant patterns to further expand into patterns with a 

higher number of boxes. 
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The measures for assessing the statistical significance of a flexible gap pattern GG of rr boxes are 

presented below. Its statistical significance is assessed in two different settings, namely, the case 

where complete occurrences are counted and the case where only delegate occurrences are counted. 

In both cases, the random model assumes that the prefix pattern G(r¡1)G(r¡1) and the last box P rP r occur 

uniformly at random in the input sequences. 

In the case of complete occurrences, the probability of observing an occurrence of G(r¡1)G(r¡1) in a 

position is estimated by its observed number of occurrences in the input sequence. Thus, 

pr(G(r¡1)) =
kG(r¡1)

L
pr(G(r¡1)) =

kG(r¡1)

L
. The probability of observing an occurrence of P rP r is estimated as 

pr(Pr) = kP

L
pr(Pr) = kP

L
. The probability pr(G)pr(G) of observing an occurrence of GG is equivalent to the probability 

of observing an occurrence of P rP r within dd distance after an occurrence of G(r¡1)G(r¡1). The probability 

that P rP r does not occur within distance dd is (1¡ pr(P r))d(1¡ pr(P r))d. Hence, pr(G)pr(G) is computed as  

pr(G) = pr(G(r¡ 1)) ¢ (1¡ (1¡ pr(Pr))d)pr(G) = pr(G(r¡ 1)) ¢ (1¡ (1¡ pr(Pr))d). 

In the case where only delegate occurrences are counted, the probability of observing a delegate 

occurrence of G(r¡1)G(r¡1) in a position is estimated by its observed number of delegate occurrences in 

the input sequence. More specifically, p̂r(G(r¡ 1)) =
k̂G(r¡1)

L
p̂r(G(r¡ 1)) =

k̂G(r¡1)

L
. The probability of observing an 

occurrence of P rP r is estimated as pr(Pr) = kP

L
pr(Pr) = kP

L
.  Let the probability that G(r¡1)G(r¡1) and P rP r form a 

delegate occurrence of GG with exactly distance ww in between them be p(w)p(w). It is the probability of 

observing an occurrence of P rP r at exactly distance ww after a delegate occurrence of G(r¡1)G(r¡1) and no 

other occurrence of each pattern in between. Hence, p(w) = p̂r(G(r¡1)) ¢ pr(Pr) ¢ µw¡1p(w) = p̂r(G(r¡1)) ¢ pr(Pr) ¢ µw¡1, where 

µ=(1¡ p̂r(G(r¡1))) ¢ (1¡pr(Pr))µ=(1¡ p̂r(G(r¡1))) ¢ (1¡pr(Pr)) is the probability of not observing both a delegate occurrence 

of G(r¡1)G(r¡1) and an occurrence of P rP r. Since ww can range from 11 to dd, the probability that a delegate 

occurrence of GG is formed by the closest pairing of G(r¡1)G(r¡1) with P rP r is p̂r(G) =
Pd

w=1 p(w)p̂r(G) =
Pd

w=1 p(w). After 

expansion, p̂r(G) = p̂r(G(r¡ 1)) ¢ pr(Pr) ¢ 1¡µd

1¡µ
p̂r(G) = p̂r(G(r¡ 1)) ¢ pr(Pr) ¢ 1¡µd

1¡µ
. 

The input data often comes as multiple sequences. Hence, motifs shared across many sequences are 

considered as more important than those having a large number of occurrences in a sequence.  It is 

generally accepted that motifs shared across sequences better reflect functionality. The quorum of a 

pattern therefore provides a better clue about its biological relevance. 

Here, Pearson’s Â2Â2 test is used to calculate the statistical significance of the discrepancy between 

the observed quorum of a pattern and its expected quorum. Given the probability pr(G)pr(G) of observing 
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an occurrence of GG (or p̂r(G)p̂r(G)  for a delegate occurrence) at a position in a sequence, the expected 

quorum can be computed. The assessment of statistical significance presented below uses pr(G)pr(G) for 

the complete occurrences case. The statistical significance for the case of delegate occurrence can be 

obtained by replacing pr(G)pr(G) by p̂r(G)p̂r(G) in the formulation. 

As in [43], the number of occurrences in a sequence SiSi is assumed to follow the Poisson 

distribution with its expected value ¹i = pr(G) ¢ jSij¹i = pr(G) ¢ jSij. By the law of rare events, the probability that 

there is no occurrence in sequence SiSi is e¡¹ie¡¹i. Hence, the probability pr(i)pr(i) that an occurrence appears 

at least once in the sequence SiSi can be computed as pr(i) = 1¡ e¡¹ipr(i) = 1¡ e¡¹i. Accordingly, the expected 

number of sequences that contain at least one occurrence of GG is 

qG =
PN

i=1 pr
(i) =N ¡

PN
i=1 e

¡pr(G)¢jSijqG =
PN

i=1 pr
(i) =N ¡

PN
i=1 e

¡pr(G)¢jSij. The statistical significance is then defined as follows: 

Definition 15. Statistical significance 

The statistical significance Â2(G)Â2(G) of a flexible gap pattern GG, which measures the deviation of the 

observed quorum from the expected quorum, is given below. 

 Â2(G) =
(qG ¡ qG)

2

qG

Â2(G) =
(qG ¡ qG)

2

qG

 

The statistical significance for the delegate occurrence case is similarly obtained as 

Â̂2(G) =
(q̂G¡q̂G)2

q̂G

Â̂2(G) =
(q̂G¡q̂G)2

q̂G

 where q̂G =N ¡
PN

i=1 e
¡p̂r(G)¢jSijq̂G =N ¡

PN
i=1 e

¡p̂r(G)¢jSij. A pattern GG is said to be significantly over-

represented if Â2(G)¸ 3:84Â2(G)¸ 3:84 (corresponding to a p-value of 0.05) and qG > qGqG > qG. The under-

represented pattern where qG < qGqG < qG is ignored. Equivalently, it is required that Â(G) =
qG¡qGp

qG

¸ 1:96Â(G) =
qG¡qGp

qG

¸ 1:96

. 

5.3 Method for Flexible Gap Pattern Discovery 

The efficient and scalable method DFGP for discovering flexible gap patterns is developed by 

incorporating (1) the use of representative consensus patterns as boxes for assembling flexible gap 

patterns, (2) the efficient method DOA that identifies delegate occurrences during the pattern 

assembling process, and (3) the pruning of statistically insignificant patterns to reduce the output size 

and prevent them from further expanding into patterns of more boxes. As shown in the experiments in 

Chapter 6, the top ranked flexible gap patterns are effective in identifying co-binding motifs in ChIP-

seq datasets and DFGP can efficiently handle large datasets. 
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5.3.1 DFGP 

The cross operation shown in Figure 9 pairs up a flexible gap pattern G0G0 of k¡ 1k¡ 1 boxes and a box 

P 2 RP 2 R (i.e. a representative pattern) and determines whether this pair (G0; P)(G0; P) can form a frequent 

flexible gap pattern GG of kk  boxes. DFGP implements this cross operation in a depth first search 

manner. It starts with each representative pattern and attempts to grow it to a pattern of more boxes 

using DOA until it reaches the maximum number of boxes, or it is not a frequent pattern, or it is not a 

statistically over-represented pattern. The cross operation implemented in a breadth first search 

manner needs to store occurrence information for each pattern of k¡ 1k¡ 1 boxes before expanding them 

into patterns of kk  boxes. When k ¸ 3k ¸ 3, it demands a significantly large amount of computational 

space. In contrast, depth first search needs only to keep track of the occurrence information of less 

than rr patterns. A stack is used to store patterns to be expanded. A counter is assigned to each pattern 

in the stack to check whether the expansion of this pattern is completed. The expansion is considered 

completed if this pattern has gone through pairing up with all consensus patterns. DFGP is 

summarized in Algorithm 5.1. 

 

Figure 9. Cross Operation to construct flexible gap patterns of k-1 boxes to k boxes patterns. 

Each solid rectangle represents a box. 
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Algorithm 5.1 DFGP 

Input: multiple sequences fS1;S2; : : : ;SNgfS1;S2; : : : ;SNg, thfthf, rr, dd 

Output:  a set of flexible gap patterns GG 

1. Obtain a list of representative patterns RR by DRP (Algorithm 3.2) 

2. Ensure that occurrences of each pattern in RR are grouped by sequence id  

    and sorted in the form of f¢ ¢ ¢ ;Li
P ; ¢ ¢ ¢ gf¢ ¢ ¢ ;Li
P ; ¢ ¢ ¢ g 

3. Put each pattern in RR to a stack TT and initialize the counter of each pattern to 1. 

4. While TT not empty 

       Let the pattern at the top of TT be G0G0, the counter of G0G0 be xx, the number of boxes of G0G0 be r0r0 

       If x > jRjx > jRj or r0 = rr0 = r (all patterns in RR are considered or maximum number of boxes is reached)           

            If r0 ¸ 2r0 ¸ 2 (ignore patterns of one box) 

                Add G0G0 to GG and discard occurrences of G0G0 

            End 

            Pop G0G0 from TT 

       Else 

            Obtain GG by DOA(G0;R[x]; d)DOA(G0;R[x]; d) and increase xx by 1 (Algorithm 4.1) 

             Set the counter of GG to 1 

             If jDGj ¸ thsjDGj ¸ ths and Â̂(G)¸ 1:96Â̂(G)¸ 1:96 (exclude expanding infrequent and insignificant patterns ) 

                 Push GG to TT 

             End 

       End      

End 

 

After a set of flexible gap patterns GG is obtained by DFGP, a simple post-processing method 

ExtractTopPatterns shown in Procedure 1 can be applied to extract the top ranked flexible gap 

patterns. This method goes over the ranked patterns and selects a top ranked pattern to include in the 

output if this pattern is not similar to the previous selected patterns according to the pattern similarity 

in definition 8. When measuring similarity between two flexible gap patterns GG and G0G0, they are 

represented in their explicit string form. They are similar if sim(G;G0) ¸ 0:8sim(G;G0) ¸ 0:8. This procedure aims to 

make output of top ranked patterns more distinct. 
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Procedure 1. ExtractTopPatterns 

Input: a set of flexible gap patterns GG and zz  number of top ranked patterns to extract 

Output:  the set of top patterns GzGz 

1. Sort the patterns in GG according to their statistical significance. Let xx be the index for GG, initially 

set to 11 

2. While jGzj< zjGzj< z 

         If G[x]G[x] is not similar to any pattern GG in GzGz 

            Add G[x]G[x] to GzGz 

        End 

        Increase xx by 1 

   End 

 

5.3.2 Parameter Settings 

As for setting the parameters, thfthf  is set to max(0:05N;5)max(0:05N;5) as discussed in Chapter 3 for DRP. In 

general, the maximum number of boxes in a flexible gap pattern rr is often set to 2 or 3 in DNA co-

binding motif discovery as a good starting point since the co-binding of two or three TFs is more 

common. A flexible gap pattern of more boxes could have a very low quorum and becomes 

infrequent. Maximum distance dd is relatively easy to specify since there is a physical constraint over 

the distance between interacting biomolecules. Setting it to 30 bp is often good enough to capture co-

binding motifs as suggested by the paper [2] studying the sequence features around genomic regions 

bounded by TFs. As the runtime does not depend upon dd, a large value can be used, in contrast to 

existing methods which often require a narrow range. However, too large a value for dd would 

possibly decrease the statistical significance of discovered patterns. It is expected that a consensus 

pattern can occur frequently after another one within a certain distance if the maximum distance 

allowed is very large. Hence, if DFGP does not produce any significant pattern, it is likely that dd is 

set too large. 

5.3.3 Runtime Analysis of DFGP 

Let the number of flexible gap patterns be N1; ¢ ¢ ¢ ;NrN1; ¢ ¢ ¢ ;Nr for different number of boxes. N1N1 is the 

number of patterns of 1 box (representative patterns), so N1 = jRjN1 = jRj. The generation of patterns of kk  

boxes from those of k¡ 1k¡ 1 boxes needs to go through Nk¡1Nk¡1 patterns in the expansion process, where 

each pattern is paired up with jRjjRj boxes. Each pairing for generating one flexible gap pattern by DOA 

takes O(L)O(L) time. Hence the total runtime for DFGP is O(
Pr¡1

k=1NkjRjL)O(
Pr¡1

k=1NkjRjL). The space requirement is 
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O(rL)O(rL). The runtime for DRP to obtain the set of representative patterns is O(L+ jMj2)O(L+ jMj2), which is 

negligible comparing to the runtime for the flexible gap pattern generation process. 

For r=2r=2, the runtime is O(jRj2L)O(jRj2L). For r ¸ 3r ¸ 3, without pruning insignificant patterns, 

Nk =O(Nk¡1jRj)Nk =O(Nk¡1jRj), and hence the total runtime is O(jRjrL)O(jRjrL). However, with pruning, 

Nk =O(°Nk¡1jRj)Nk =O(°Nk¡1jRj), where °°  is a trimming factor that reduces the number of patterns of kk  boxes. 

Experiments in Chapter 6 showed that °°  could be a small ratio and hence its runtime does not 

increase much for r=3r=3. 

Let DFGP-M be the method of DFGP except that it uses the set of maximal patterns instead of 

representative patterns as boxes. The DFGP-M runtime is O(jMjrL)O(jMjrL). It was shown in Chapter 3 for 

DRP that the set of representative patterns is a small subset of maximal patterns with a reduction ratio 

®® such that jRj=®jMjjRj=®jMj. The estimated ®® is approximately 0.09. For r=2r=2, DFGP is much faster than 

DFGP-M, showing a drastic runtime reduction by using only representative patterns for flexible gap 

pattern discovery. Experiments in Chapter 6 support this suggestion. 

Let DFGP-CO be the method of DFGP except that it obtains a complete set of occurrences for a 

flexible gap pattern by the method COA. The runtime of DFGP-CO is O(jRjrLdr¡1)O(jRjrLdr¡1). DFGP is O(d)O(d) 

times faster than DFGP-CO for r=2r=2. 

Combining the use of representative patterns, delegate occurrences and the pruning of insignificant 

patterns, DFGP is much more efficient to handle large datasets and is able to allow large maximum 

distance. 

5.3.4 Conversion of a Flexible Gap Pattern to its PWM Representations 

Occurrences of a flexible gap pattern identify specific segments in the input sequences and hence can 

be aligned together to produce PWMs representing it.  

A flexible gap pattern consists of a number of boxes allowing flexible gaps among them. By 

aligning the occurrences of each box in the flexible gap pattern, a PWM for that box can be obtained 

by counting the frequency of a character at a site. The gap distribution between two consecutive 

boxes can be obtained by counting the gaps between their occurrences. Let the major gap between 

two boxes be the one that appears most frequently. The major mode of a flexible gap pattern, which 

captures the majority binding mode of a co-binding motif, is obtained as follows: The boxes in the 

major mode are separated by a fixed distance. The occurrences for the major mode are selected as 
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follow. The selection process starts with all occurrences. It then sequentially identifies the major gap 

for each flexible gap and excludes occurrences whose corresponding gap is not the major gap along 

the way. The remaining occurrences are the occurrences of the major mode. In these occurrences, the 

gap between two box occurrences is the same and hence the span of these selected occurrences is the 

same. The sequence segments extracted between the start position and the end position of these 

occurrences for the major mode can be aligned to form the major mode PWM for a flexible gap 

pattern. Figure 10 shows an example of the flexible gap pattern CGTCACGTG-GGGCGGGGCGTCACGTG-GGGCGGGG and 

its corresponding PWMs. The pattern has a set of occurrences in the sequences. The occurrences of 

each box form a PWM. The gap distribution between box occurrences is obtained. The major gap is 

identified as 22, meaning that a substantial number of flexible gap pattern occurrences consist of two 

boxes separated by a fixed distance 22. The major mode PWM is formed by aligning those 

occurrences having a fixed distance of 22 between two boxes. 

 

Figure 10. The conversion of a flexible gap pattern to its PWM representations. The black 

dashed arrow points to the major gap in the gap distribution between two boxes of the flexible 

gap pattern. 
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Chapter 6 

Experiments 

6.1 An Overview 

The experiments presented in this chapter were designed and conducted to evaluate the performance 

of DFGP for identifying co-binding motifs in ChIP-seq datasets. DFGP is compared with the existing 

state-of-the-art motif discovery methods including RISOTTO [70], Bioprospector [64], GLAM2 [67], 

MEME [10], MEME-Chip [61], MDmodule [63] and Weeder [47]. Among these methods, RISOTTO 

and Bioprospector are specifically designed for finding co-binding motifs. GLAM2 was shown in its 

original paper to be able to find structural motifs in protein sequences and was speculated to be a 

possible application to find complex gapped motifs. Though the primary focus of DFGP aims at 

finding co-binding motifs, these experiments also help demonstrate its usefulness for identifying rigid 

gapped motifs and simple motifs as well since rigid gapped motifs are a special type of co-binding 

motifs where the distance between component motifs are fixed, and simple motifs are just the 

component motifs in co-binding motifs. Hence, those methods MEME, MEME-Chip and MDmodule 

which are capable of finding both rigid gapped motifs and simple motifs, and Weeder that is only 

suitable for simple motif discovery, are included in the experiments. The 68 ChIP-seq datasets used 

are a subset of 457 ENCODE datasets for human TFs. These datasets contain proposed co-binding 

motifs for TFs by a computational pipeline (CP) built by Wang et al. in a recent genome research 

paper [2]. There are five sets of experiments in total to be presented.  

The first set of experiments compares the performance of DFGP and other well-known motif 

discovery methods in terms of identifying the proposed co-binding motifs, canonical motifs and 

noncanonical motifs in the datasets as well as their runtimes. The second set compares the quality of 

the co-binding motifs found by DFGP and those proposed by the computational pipeline. The third 

set compares DFGP with DFGP-M which uses maximal patterns instead of representative patterns 

and DFGP-CO which counts complete occurrences instead of delegate occurrences to validate the two 

proposed redundancy reduction methods in the thesis. The fourth set demonstrates the performance of 

DFGP over varying parameter values. The fifth set evaluates the scalability of DFGP by using all 

peaks of the ChIP-seq datasets with an average size around 2.5 million bp. 

These experiments demonstrate that DFGP outperforms the existing co-binding motif discovery 

methods in terms of the accuracy of finding the proposed co-binding motifs in the datasets and the 
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runtime. DFGP achieves performance similar to the best simple motif and rigid gapped motif 

discovery method MEME-Chip in finding canonical motifs and noncanoncial motifs. Co-binding 

motifs found by DFGP in these datasets is shown to reveal novel biological insights previously 

unknown to authors of CP. The experiments also show that (1) the adaption of the two proposed 

redundancy reduction methods in DFGP drastically reduces the computational burden without 

sacrificing quality, (2) the effectiveness of the statistical significance measures for assessing flexible 

gap patterns and (3) DFGP is scalable to massive datasets.   

6.2 ChIP-seq Datasets 

Wang et al. developed the CP method and studied the sequence features around the genomic regions 

bounded by 119 human TFs. They analyzed 457 ChIP-seq datasets for these 119 TFs generated by 

ENCODE Consortium [79]. They used ChIP-seq datasets processed by the ENCODE uniform ChIP-

seq processing pipeline as described in [80]. A ChIP-seq dataset contains coordinates of genomic 

regions of length approximately 100 to 500 called peaks that are likely to be bounded by a target TF 

in the ChIP-seq experiment. Signal quality can be assigned to peaks by the SPP algorithm [81]. Hence 

the peaks in a ChIP-seq dataset can be ranked according to their signal quality. The ChIP-seq datasets 

of SPP-based peaks can be downloaded from http://factorbook.org (or 

http://encodeproject.org/ENCODE/downloads.html under TFBS SPP-based Peaks). These 

datasets were from the January 2011 freeze pipeline. The genomic coordinates in these ChIP-seq 

datasets are for the NCBI human reference genome at version GRCH37/HG19. The March 2012 

freeze pipeline (http://encodeproject.org/ENCODE/downloads.html under Transcription 

Factor ChIP-seq Uniform Peaks from ENCODE/Analysis) provides up-to-date ENCODE TF ChIP-

seq datasets, increasing from 457 to 690 datasets. The experiments in this thesis used the same ChIP-

seq datasets from the January 2011 freeze pipeline as the CP method for comparison purpose. The CP 

method identifies a canonical motif and several noncanonical motifs for each ChIP-seq dataset. They 

further identify co-binding motifs which are the canonical and noncanonical motif pairs in 68 out of 

457 datasets. Hence these 68 ChIP-seq datasets are used as benchmark datasets for evaluating DFGP 

and other motif discovery methods. These datasets can be found in the supplementary Table S3 of the 

CP paper where the predicted interaction mode between the canonical motif and the noncanonical 

motif is co-binding. These datasets are also summarized in the Appendix A of this thesis. For each 

dataset, the top ranked 500 peaks are extracted and repetitive elements in these sequences are masked 

by using the webserver of RepeatMasker [77]. All parameters for RepeatMasker are default values 

http://factorbook.org/
http://encodeproject.org/ENCODE/downloads.html
http://encodeproject.org/ENCODE/downloads.html
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except that the search engine was changed from Abblast to Rmblast to achieve better sensitivity. This 

ensures that motif discovery tools would not be biased towards discovering those known repetitive 

elements that are abundant and interspersed in the human genome. The masked sequences of each 

dataset serve as the input for motif discovery methods. Each input sequence dataset has 500 

sequences and its average size is 127152 bp with standard deviation 39044 bp. 

The CP built by Wang et al. is briefly summarized as follows: They used a motif discovery tool 

together with motif quality assessment filters to find TF binding motifs in 457 ChIP-seq datasets. 

More specifically, they obtained sequence data in the [-50 bp, +50 bp] window around the summits of 

the top 500 peaks for each Chip-seq dataset, and applied MEME, a de novo motif discovery method, 

to discover up to 5 motifs per dataset. Hence 2285 motifs were obtained. They designed two quality 

assessment filters to exclude low quality motifs. In the first filter, a testing set was constructed from 

peaks ranked 501 to 1000 in the window of [-150 bp, +150 bp] around each peak summit. The control 

set was obtained from 100 random genomic regions that match the GC content of the testing set. In 

the second filter, a testing set was constructed from peaks ranked 501 and beyond in the [-150 bp, 

+150 bp] window and the control set was obtained from the regions of 300bp long flanking the 

window. The motifs were retained if they were more enriched in the testing set than in the control set. 

After filtering, 1092 motifs were left for further analysis. They manually merged redundant motifs by 

taking account of the literature support and information on DNA-binding domains of TFs to derive 79 

distinct motifs represented by PWMs which can be found in the supplementary Table S2 for their 

paper. The top ranked motif discovered from a dataset is called the canonical motif and others are 

called noncanonical motifs. They used FIMO [82] to scan the whole ChIP-seq dataset to look for 

peaks that contain the canonical motif. Similarly, the peaks containing the noncanonical motif were 

obtained. The percentage of peaks that contain both motifs, known as enrichment, was used as an 

indicator to determine whether or not to report such pair as a co-binding motif. They proposed that 68 

of out 457 datasets contain some co-binding motifs. They showed the distance between the canonical 

and the noncanonical motif in many co-occurring pairs has a preference within 30 bp.  

6.3 Evaluation Method 

If possible, each motif discovery method is asked to return 30 top ranked patterns in the form of 

PWMs. For DFGP, a flexible gap pattern of rr is associated with rr PWMs for its boxes and r¡1r¡1 

major mode PWMs for itself and its prefix patterns with at least 2 boxes. For Bioprospctor, a pattern 

contains two PWMs. For RISOTTO, a structured model of rr boxes produces rr PWMs for each box. 
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For GLAM2, MEME, MEME-Chip, MDmodule and Weeder, each reported pattern corresponds to 

one PWM. 

The 79 distinct motifs represented in PWMs provided by Wang et al. serve as a reference motif 

database. Those discovered patterns can be searched against this reference database to find matches. 

To determine whether a discovered PWM matches a motif in the motif reference database, TOMTOM 

[83] is used. Given a PWM, TOMTOM attempts to search for PWMs in a database that match the 

query by aligning the query PWM and a database PWM and calculating the similarity score for their 

overlapped part. PWMs in the database are reported to match the query PWM if the E-value of their 

matching score is above a threshold. As suggested by the authors of TOMTOM in the DREME paper 

[49], this threshold is set to 0.05. The E-value indicates if the motif database of the same size is 

randomly constructed, the expected number of matches to retrieve from such a database of random 

motifs. A query PWM may get multiple matches from the database, but only the match with the 

lowest E-value is kept. 

A discovered pattern matches a co-binding motif (in this case, a canonical and noncanonical motif 

pair) if any of its two PWMs match the canonical motif and noncanonical motif respectively or one of 

its PWM matches both the canonical and noncanonical motif where the matched regions need to be at 

least 5 sties apart. The latter case considers major mode PWMs from DFGP and single PWMs from 

GLAM2, MEME, MEME-Chip, MDmodule and Weeder that might capture co-binding motifs 

theoretically. A discovered pattern matches a canonical or a noncanonical motif if one of its PWM 

matches that motif. 

For the 68 datasets in the experiments, each dataset has one or two co-binding motifs. A method is 

said to succeed in finding co-binding motifs in a dataset if one of its top ranked patterns matches a co-

binding motif in that dataset. The performance of a method in identifying co-binding motifs, 

canonical motifs and noncanonical motifs is measured as the percentage of datasets in which it 

succeeds in finding those corresponding motifs. 

6.4 Parameter Settings for Motif Discovery Methods 

DFGP is run using its default settings. The minimum frequency thsths is set to max(0:05N;5)max(0:05N;5). In most 

experiments, the number of sequences is N =500N =500, hence ths = 25ths = 25. The number of boxes rr is set to 2 

to look for a canonical and noncanonical motif pair. The maximum number of gaps dd is set to 30 as 

suggested by Wang et al. since DFGP is insensitive to dd and its runtime does not depend on dd as well. 
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Hence, different values of dd can be tried, but dd in DFGP needs no fine tuning. In general, setting it to 

a large value such as 3030 is a good guess since there are physical constraints in the interactions 

between biomolecules. The latter experiment shows that a larger value such as 50 further improves 

the performance of DFGP. 

RISOTTO is run using the following parameters. The number of boxes for a structured model is set 

to 2. Each box length is set to 6, which is a good guess for the length of the core part of a TF motif. 

The number of mutations allowed for each box is set to 1, the same way as DFGP. The minimum and 

maximum distance between boxes is set to 1 and 10 respectively. The minimum required quorum is 

set to 0:1N = 500:1N = 50. RISOTTO can discover models from repeat masked sequences. However, its 

pattern significance evaluation program cannot shuffle sequences masked with “N” characters. The 

program is modified so that it shuffle the unmasked sequences instead of masked ones for computing 

the model score. The runtime of this program depends on the number of structured patterns outputted 

by RISOTTO. Using the settings above, RISOTTO outputs 532120 models in 41 seconds for a 

moderate size dataset (150546 bp). However, it took 7.65 hours to compute scores for the models. 

Increasing the maximum distance allowed from 10 to 30 leads to an output of 1976770 models and 

the ranking of these models took 2.72 days. The very time consuming computing process for 

assessing model statistical significance makes it impossible to try a more relaxed motif template such 

as allowing box length to range from 4 to 12 and the minimum quorum to be 25. RISOTTO under this 

setting generated 59730851 models in 1.75 hours, not including the time for computing statistical 

significance. Other parameters not mentioned are in default values. Its program can be obtained from 

the web at http://www.lx.it.pt/~asmc/software/risotto.html. 

Bioprospector is run with the following parameter settings. Bioprospector is a 2-box motif 

discovery method hence it is restricted to finding co-binding motifs of two components. The 

minimum and maximum distance between boxes is set to 1 and 30 respectively. Each box length can 

be 6, 8 and 10. So there are 9 combinations in total. For each combination of box lengths, 

Bioprospector is asked to return 3 top ranked patterns. Hence, the total number of patterns to be 

outputted is 27. The option to search for motifs in the reverse and complement sequences is turned on. 

Default values are used for other parameters not mentioned. 

The minimum required quorum for GLAM2 is set to 25. In the default settings, the program tries 

different motif lengths for PWM from 2 to 50. It adopts a faster algorithm which deviates slightly 

from the strict definition of simulated annealing. This option is changed to a slow algorithm that 

http://www.lx.it.pt/~asmc/software/risotto.html
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implements strict simulated annealing, trying to find the best motif. The alignment runs is increased 

from 10 to 30 in order to obtain 30 top ranked PWMs. The option to search for motifs in the reverse 

and complement sequences is turned on. 

MEME is run with most of its parameters set to default. In the default settings, it tries motif lengths 

for PWM ranging from 8 to 50. The option to search motif in reverse and complement sequences is 

enabled to increase its ability of finding motifs. MEME is asked to report only 5 PWMs per dataset 

because it takes increasingly longer time to discover more motifs. In these settings, it can take a 

couple hours to finish for a mid-sized dataset. 

MEME-Chip is run using its default settings. It tries motif lengths for PWM ranging from 6 to 30 

with the reverse and option to search off for its MEME part. Its DREME part tries sequence patterns 

of length from 4 to 8. MEME would report 3 PWMs and DREME would report about 6 sequence 

patterns, so there are approximately 9 patterns in total in the output. 

The programs for GLAM2, MEME and MEME-Chip can be obtained at 

http://meme.nbcr.net/meme/. 

MDmodule is run using default settings. PWMs with motif length ranging from 8 to 24 (its 

maximum allowed value) with step 4 was tried, and for each length, MDmodule is asked to report 5 

PWMs. Hence, there are 25 patterns in the output. Its program can be obtained at 

http://www.math.umass.edu/~conlon/mr.html. 

Weeder is run with default settings. It is fixed to find motif lengths 6, 8 and 10 in its program. The 

program can be obtained at http://159.149.160.51/modtools/. 

6.5 Results 

Five set of experiment results are presented. The first set focuses on the comparison between DFGP 

and other motif discovery methods in terms of the ability to find co-binding motifs, canonical motifs 

and noncanonical motifs, and the runtime. The second set compares the difference between co-

binding motifs found by DFGP and those found by the CP method. The third set compares DFGP 

with DFGP-M and DFGP-CO, which aims at demonstrating the benefits of DFGP when using 

representative patterns and delegate occurrences. The fourth set investigates how the performance of 

DFGP varies as its input parameters changes across a certain range. The final set shows the scalability 

of DFGP by applying it to whole ChIP-seq datasets of all peaks instead of top ranked 500 peaks. 

http://meme.nbcr.net/meme/
http://www.math.umass.edu/~conlon/mr.html
http://159.149.160.51/modtools/
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6.5.1 Comparison of DFGP with other Motif Discovery Methods 

Figure 11 shows the performance of motif discovery methods in identifying co-binding motifs, 

canonical motifs and noncanonical motifs proposed by the CP method in 68 ChIP-seq datasets. The 

details of the matching between discovered patterns and motifs for each method are shown in 

Appendix B. The top ranked flexible gap patterns by DFGP identify such co-binding motifs in 38% 

of datasets. This further recapitulates some of these proposed motifs. RISOTTO and Bioprospector 

has succeeded in finding co-binding motifs in 10% and 5% of the datasets. The ineffectiveness of 

RISOTTO to identify co-binding motifs is likely due to its restricted motif template. However, 

whether a more relaxed template can improve its performance in co-binding motifs identification 

cannot be tested since its pattern statistical significance evaluation program is too time consuming. 

Bioprospctor does not perform well in finding co-binding motifs. This is probably due to the presence 

of the dominant canonical motif and the relative low enrichments of co-binding motifs which 

aggravate the tendency of Gibbs Sampling method towards a local optimal solution. It is shown that 

GLAM2 is unable to identify co-binding motifs even though its authors have speculated that it might 

be able to find complex gapped motifs. Its accuracy in finding canonical motifs is close to that of 

MDmodule and Weeder and is just slightly lower than that of DFGP, MEME and MEME-Chip. 

However, its accuracy in finding noncanonical motifs is the lowest among all methods tested. This 

demonstrates that GLAM2 is more suitable for finding the most dominating simple motifs or rigid 

gapped motifs. MEME, MEME-Chip, MDmodule and Weeder are not designed for co-binding motif 

discovery and hence their inability to find co-binding motifs is anticipated. 
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Figure 11. The performance of motif discovery methods over 68 ChIP-seq datasets. The 

performance is measured by the percentage of datasets in which the canonical motif, the 

noncanonical motifs and the co-binding motifs are identified respectively by a method. 

As for identifying the canonical and noncanonical motifs, MEME-Chip achieves the best accuracy. 

The accuracy of DFGP is just a slightly lower than MEME-Chip, achieving the second best place. 

The performances of MEME, MDmoudle and Weeder are similar. RISOTTO, Bioprospector and 

GLAM2 perform poorly in finding noncanonical motifs. For RISOTTO, the possible reason is that 

the box length for a structured model is restricted to 6 and the top ranked models tend to identify 

dominating motif better than secondary motifs. For Bioprospector and GLAM2, the reason is that 

they always aim to find the best solution in the Gibbs sampling process. 

Figure 12 shows the average runtime for motif discovery methods over 68 datasets. The average 

runtimes for DFGP, MEME-Chip and Weeder are within 7, 10 and 11minuntes respectively and 

hence are very close. The average runtimes for Bioprospector, RISOTTO, MEME and GLAM2 are in 

the range of 1 to 5 hours. Note that GLAM2 is running in a slow but more accurate mode. By 

switching it to the fast mode, the average runtime drops from 5 hours to 5 minutes. The performance 

of fast mode GLAM2 leads to a slightly worse performance than the slow mode in finding 

noncanonical and co-binding motifs. Comparing with the co-binding motif discovery methods 

Bioprospector and RISOTTO, DFGP is approximately 8 and 18 times faster respectively. MDmodule 

with average runtime 15 seconds is the fastest method for simple motif and rigid gapped motif 

discovery. However, its performance for noncanonical motif identification is substantially worse than 
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MEME-Chip and DFGP. In addition, MDmodule expects that the input sequences are ranked. The 

reason MEME-Chip is much faster than MEME is that MEME-Chip runs its subprogram MEME in a 

less exhaustive way as indicated in their parameter settings. 

 

Figure 12. The average runtime of motif discovery methods over 68 ChIP-seq datasets. The y-

axis is in log2log2 scale. 

In summary, DFGP outperforms RISOTTO, Bioprospector and GLAM2 in terms of the capability 

of co-binding motif identification and the runtime. DFGP achieves similar performance as MEME-

Chip, one of the best simple and rigid gapped motif discovery methods, in terms of the capability of 

identifying canonical and noncanonical motifs as well as runtime. 

6.5.2 Comparison of DFGP with the Computational Pipeline 

Though 38% of the datasets in which co-binding motifs proposed by the CP method are found by 

DFGP, there are approximately 62% of the datasets for which DFGP fails to identify the proposed co-

binding motifs. To investigate this discrepancy, the enrichment of co-binding motifs proposed by the 

CP method and those proposed by DFGP in a dataset is compared. The enrichment of a co-binding 

motif in a ChIP-seq dataset is the percentage of peaks that contain the co-binding motif used by the 

CP method. The patterns discovered by DFGP undergo the following procedures to obtain co-binding 

motifs whose component motifs are known in the reference motif database. A top ranked flexible gap 

pattern reports a co-binding motif for a dataset if this pattern matches the canonical motif in that 

dataset and another motif not similar to the canonical motif in the reference motif database. If a motif 

is similar to a canonical motif, then the co-binding motif formed by them can have high enrichment 

but probably due to high overlapping of the two TF motifs. To obtain similar motifs for a motif in the 

motif database, this motif is used as a query motif for TOMTOM to extract matching motifs in the 
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database. The summary of motifs and their similar ones can be found in the Appendix C. Three co-

binding motifs MAX-USF, NFE2-AP1 and UA5-GABP proposed by the CP method are considered 

as exceptional cases though MAX, NFE2 and UA5 are similar to USF, AP1 and GABP respectively. 

After obtaining co-binding motifs found DFGP, their enrichment in the datasets is calculated as in 

the CP method. The details of the enrichment of each co-binding motif proposed by the CP method 

and DFGP are shown in Table S4 in Appendix D. In the table, co-binding motifs proposed by DFGP, 

which have higher enrichment than those by the CP method are all retained. For those datasets 

without higher enrichment co-binding motifs found by DFGP, the co-binding motif with the highest 

enrichment is retained.  

The summary result for enrichment of co-binding motifs proposed by both methods is shown in 

Figure 13.  Co-binding motifs found by DFGP have the same highest enrichment as those proposed 

by the CP method in 25% of the datasets, which are labelled as TYPE1 datasets. Co-binding motifs 

found by DFGP capture those motifs reported by the CP method but are novel and have higher 

enrichment in 13.2% of the datasets, which are labelled as TYPE2. In 27.9% of the datasets labelled 

as TYPE3, DFGP does not obtain co-binding motifs proposed by the CP method but find novel co-

binding motifs that have higher enrichment. DFGP fails to identify co-binding motifs that have higher 

enrichment than those reported by the CP method in the remaining 33.8% of the datasets, which are 

labelled as TYPE4. In summary, among 66% of 68 ChIP-seq datasets, DFGP identifies co-binding 

motifs that have higher or equal enrichment in the dataset. This indicates that, among 61.7% of the 

datasets for which DFGP fails to find the previous proposed co-binding motifs, around half of them 

contain stronger co-binding motifs. DFGP discovers higher enrichment co-binding motifs than the CP 

method in 41% of the datasets combining the TYPE2 and TYPE3 datasets. This suggests that the 

noncanonical motifs found in the motif discovery step by MEME of the CP method miss important 

TF motifs. 
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Figure 13. Four types of 68 ChIP-seq datasets. TYPE1: datasets where co-binding motifs agreed 

by Wang et al. and DFGP have the best enrichment. TYPE2: datasets where DFGP captures 

the co-binding motifs proposed by the CP method but has found other novel motifs that have 

better enrichment. TYPE3: datasets where DFGP does not capture co-binding motifs proposed 

by the CP method but identifies novel motifs that have better enrichment. TYPE4: datasets 

where DFGP fails to capture co-binding motifs proposed by the CP method and the motifs 

proposed by DFGP have lower enrichment.  

Here several examples are shown to illustrate that the CP method might miss some higher 

enrichment co-binding motifs and DFGP identifies some novel co-binding motifs that reveal novel 

biological insights. Wang et al. reported that the canonical motif YY1 and a noncanonical motif 

GABP form a co-binding motif for the four ChIP-seq datasets whose target TF is YY1. However, the 

co-binding motifs found by DFGP suggest that it is more probable that motif YY1 and an 

unannotated motif UA5 (a motif that is identified by the CP method and is similar to motif GABP) 

form a co-binding motif. The enrichment of YY1-UA5 is consistently higher than YY1-GABP in all 

the four YY1 datasets. In the dataset whose cell line is K562b 

(wgEncodeSydhTfbsK562bYy1UcdAlnRep0), YY1-UA5 is enriched in 23.5% of the peaks whereas 

the enrichment of YY1-GABP is 20.1%. In addition, the flexible gap pattern M16 discovered in this 

dataset shows that UA5 is more compatible to form a co-binding motif with YY1 in Figure 14. Note 

that in the dashed line box the characters “CC” match better with UA5 than GABP. More interesting, 

the co-binding motif YY1-UA5 also matches perfectly with another unannotated motif UA4 that has 

31.5% enrichment in the dataset. This indicates that the co-binding between YY1 and UA5 

significantly explains UA4, which is unnoticed by Wang et al. The existence of UA4 provides further 

evidence that YY1-UA5 is a strong co-binding motif in YY1 ChIP-seq datasets. The intermediate 

region between UA5 and YY1 is more conserved than the tail of UA5 alone. This indicates that some 
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UA5 site does not associate with YY1. In fact, UA5 occupies 30% of the peaks while the enrichment 

of YY1-UA5 is 23.5%. Nonetheless, most of the UA5 sites co-occur with YY1. UA4 and UA5 were 

reported as the canonical motifs in the ChIP-seq dataset whose target TF is THAP1. DFGP also 

discovers the co-binding motif YY1-UA5 which is enriched in 8% of the peaks in the THAP1 dataset. 

The enrichment of UA4 and UA5 in the dataset is 14% and 35% respectively.  Hence YY1-UA5 

contributes significantly to the existence of UA4. Based on the evidences that (1) YY1-UA5 

significantly explains the motif UA4, and (2) UA5 has higher enrichment than UA4 in the THAP1 

dataset, the hypothesis is that UA5 other than UA4 is the canonical motif responsible for the binding 

of THAP1 in DNA sequences. The CP method reports the canonical motif UA5 and a noncanonical 

motif GABP (a motif similar to UA5) in the THAP1 dataset forms a co-binding motif, yet missing the 

co-binding motif UA5-YY1.  

 

Figure 14. The co-binding motif YY1-UA5 in the ChIP-seq dataset 

wgEncodeSydhTfbsK562bYy1UcdAlnRep0. The motif within the black rectangle is the flexible 

gap pattern M16 discovered by DFGP in the dataset. Other motifs are from the motif reference 

database reported by Wang et al. The dashed line box shows that characters “CC” match better 

to UA5 than GABP.  

However, a small discrepancy between the enrichment of UA4 and YY1-UA5 indicates that UA4 

cannot be entirely the result of YY1-UA5. DFGP discovers another co-binding motif YY1-ESRRA in 

three of the four YY1 ChIP-seq datasets. The flexible gap pattern M2 discovered in the K562b cell 

line dataset as shown in Figure 15 demonstrates that YY1-ESRRA also contributes to the existence of 



 

 69 

UA4. Interestingly, YY1-ESRRA prefers the reverse and complementary orientation from the 

perspective of YY1-UA5. The enrichment of YY1-ESRRA in the K562b cell line dataset is 8.3%, 

revealing that this co-binding motif is a relatively weaker motif. The 31.8% combined enrichment of 

co-binding motifs YY1-UA5 and YY1-ESRRA probably explains the 31.5% enrichment of UA4 in 

the dataset. 

 

Figure 15. The co-binding motif YY1-ESRRA in the ChIP-seq dataset 

wgEncodeSydhTfbsK562bYy1UcdAlnRep0. The motif within the black rectangle is the flexible 

gap pattern M16 discovered by DFGP in the dataset. Other motifs are from the motif reference 

database reported by Wang et al. 

For those 30% of datasets that DFGP fails to find co-binding motifs with higher or equal 

enrichment than those reported by the CP method, there could be several reasons.  

Firstly, the interaction distance between the canonical and noncanonical motifs is in a range longer 

than the maximum distance of 30 specified in the experiments. For example, in a later experiment, 

when the maximum allowed distance increases to 50, the matching rate increases from 38% to 50%. 

Secondly, the enrichment of some co-binding motifs found by DFGP is actually very close to that 

of those reported by the CP method. The co-binding motif MAX-CTCF reported by the CP method 

enriches in 18.6% of peaks in the dataset wgEncodeSydhTfbsH1hescMaxUcdAlnRep0 while MAX-

SP1 found by DFGP has 18.4% enrichment. 

Thirdly, the canonical motif and the noncanonical motif of some co-binding motifs reported by the 

CP method may not form a co-binding motif directly but through an intermediate motif. For example, 
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in the dataset wgEncodeHaibTfbsGm12878Pbx3Pcr1xAlnRep0 whose target TF is PBX3, UA2 is the 

canonical motif appearing in 42% of the dataset. SP1 has 36% enrichment, and UA2-SP1 was 

reported by the CP method as the co-binding motif. However, DFGP discovers co-binding motifs 

UA2-NFY and NFY-SP1, which have 12% and 13.6% of enrichment in the dataset respectively, but 

does not identify UA2-SP1. These two co-binding motifs are shown in Figure 16.  

I therefore hypothesizes that UA2 and SP1 does not directly form a co-binding motif but through 

the bridge motif NFY. This is supported by the following evidences. In the three ChIP-seq datasets of 

TF SP1, the co-binding motif SP1-NFY is discovered by DFGP as the highest enrichment motif. 

Wang et al. reported this co-binding motif SP1-NFY in two of the three datasets and SP1-UA2 in one 

dataset. SP1-UA2 in the dataset wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep0 occupies 14.4% of 

peaks while SP1-NFY is enriched in 17.5% of the peaks. In the ChIP-seq dataset of TF NFY 

wgEncodeSydhTfbsK562NfybStdAlnRep0, Wang et al. reported the co-binding motif NFY-USF 

which is enriched in 16% of peaks. In contrast, DFGP discovers both SP1-NFY and NFY-UA2 which 

have 49.3% and 20% enrichment in the dataset. Interestingly, the co-binding motif SP1-UA2 does not 

show up as a top ranked pattern for all these ChIP-seq datasets of TF SP1, NFY and PBX3. The 

dataset of TF PBX3 is the only one that SP1-UA2 is more enriched than SP1-NFY and NFY-UA2. 

However, the reason is that both SP1 and UA2 are highly concentrated in the dataset with enrichment 

equal to 42% and 36% respectively. Though they co-occur in a large fraction of peaks, they could be 

far apart or irrelevant to functional co-binding for some of the peaks. This indicates that some of the 

co-binding motifs reported by Wang et al. might not directly involve in co-binding. DFGP avoids this 

issue by having the maximum distance to constraint motifs involved in co-binding as well as using 

statistical significance to assess the pattern quality instead of using only the enrichment statistics. This 

paper estimates that the functional co-binding of SP1 and UA2 in the PBX3 dataset is enriched in less 

than 12% of the peaks, a bit lower than the 20% enrichment of NFY-UA2. 
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(a) 

 

(b) 

Figure 16. The co-binding motifs (a) SP1-NFY and (b) UA2-NFY in the ChIP-seq dataset 

wgEncodeHaibTfbsGm12878Pbx3Pcr1xAlnRep0. The motifs within the black rectangle are the 

flexible gap patterns M1 and M3 discovered by DFGP in the dataset. Other motifs are from the 

motif reference database reported by Wang et al.  

Fourthly, the enrichment of some co-binding motifs reported by Wang et al. may be too low and 

therefore cannot be identified by DFGP. 

In summary, though the CP method developed by Wang et al. could proposed some novel co-

binding motifs, it has several limitations: (1) the co-binding motifs proposed might not be 

functionally relevant co-binding between its component motifs due to the lack of distance constraint 

between component motifs and the use of only enrichment statistics to evaluate; (2) the number of co-
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binding motifs proposed is limited since the number of motifs reported by MEME is up to 5; (3) a 

substantial number of important co-binding motifs with high enrichment could be missed since some 

of the components motifs are not strong alone and MEME searches motifs in a local optimal manner. 

In contrast, co-binding motifs discovered by DFGP have the distance constraint imposed between 

their component motifs and are statistically significant. Hence, these physically close component 

motifs are very likely to be functionally involved in the co-binding interaction. The discovered co-

binding motifs are not limited to a few canonical and noncanonical pairs but are more comprehensive 

and consistent. They reveal interesting biological insights previously unknown to researchers. 

6.5.3  Comparison of DFGP, DFGP-M and DFGP-CO 

This thesis proposes two novel reductions to drastically reduce the enormous computational burden of 

the deterministic approach for co-binding motif discovery. The first one is to use representative 

patterns instead of maximal patterns as boxes for constructing flexible gap patterns. It thus eliminates 

a great amount of box combinations. The second one is to extract a set of delegate occurrences 

instead of the complete set of occurrences during the process of building a flexible gap pattern from 

its prefix pattern and its last box. It thus achieves a runtime that is not dependent on the maximum 

allowed distance as well as the number of boxes. It is natural to question whether these two reduction 

methods would risk losing too much information. The following experiments compare the 

performance of DFGP, DFGP-M and DFGP-CO in terms of their ability to find co-binding motifs and 

the runtime. DFGP-M is the same as DFGP except that a large set of maximal patterns is used as 

boxes for flexible gap pattern assembling. DFGP-CO is the same as DFGP except that the method 

COA is used instead of DOA to extract a complete set of occurrences for a flexible gap pattern during 

its construction. 

As shown in Figure 17 (a), the use of representative patterns or counting only delegate occurrences 

does not impede the ability of DFGP in identifying co-binding motifs. There is only a very slight drop 

from 39.7% to 38.2% of datasets that contain top ranked patterns matching co-binding motifs 

proposed by Wang et al. The number of datasets where noncanonical motifs are found by DFGP-M 

decreases moderately, suggesting the top ranked patterns are stronger but many are redundant 

patterns. The Figure 17 (b) shows the runtime of these three methods. DFGP is 18.5 times and 3.5 

times faster than DFGP-M and DFGP-CO for the average runtime over 68 datasets. Hence, DFGP 

achieves great reduction in runtime without sacrificing the ability to identify co-binding motifs. This 

demonstrates the effectiveness of reducing redundant consensus patterns and flexible gap pattern 
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occurrences by the use of representative patterns and delegate occurrences. The ability of DFGP and 

DFGP-CO to identify co-binding also shows that the statistical significances defined for complete 

occurrences and delegate occurrences respectively are effective in ranking flexible gap patterns. 

 

Figure 17. The performance of DFGP, DFGP-M and DFGP-CO over 68 ChIP-seq datasets. (a) 

The percentage of datasets in which the canonical motif, the noncanonical motifs and the co-

binding motifs are identified respectively. (b) The average runtime. The y-axis is in log2log2 scale. 

6.5.4 Performance of DFGP as Parameter Values Vary 

DFGP has three parameters: the frequency threshold thfthf, the maximum distance allowed dd and the 

number of maximum number of boxes rr set in the flexible gap pattern discovery process. How these 

parameters affect the ability and runtime of DFGP in motif discovery are shown in this section. 

Though the similarity threshold thsths, which defines the pattern neighborhood for the extraction of 

representative patterns, is set to 0.8 according to the theoretical analysis in Chapter 3.3, its effect is 

also shown. 

The setting of rr depends upon the need of the user. Setting rr to 2 is usually a good starting point 

especially for ChIP-seq datasets. Flexible gap patterns of 2 boxes could provide abundant information 

about how TF pairs interact and can have an application in uncovering combinatorial regulatory code. 

Nonetheless,  increasing rr from 2 to 3 slightly improves the accuracy of finding the co-binding motifs 

proposed by the CP method as shown in Figure 18 (a). The matching accuracy for co-binding motifs 

increases slightly from 38% to 44%, showing that the flexible gap patterns of 3 boxes capture some 

more information, an indication of the capability and proficiency of DFGP in more general co-

binding motif discovery scenarios where rr could be increased. Such capability is very important to 

unveil the regulatory mechanisms in noncoding DNA regions. However, as expected in the current 
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research settings, there are not many patterns of 3 boxes discovered due to the fact that the frequency 

of a co-binding motif consisting of 3 simple motifs is often very low (i.e., combinations of three co-

binding TFs provides very specific regulatory role and have much less enrichment in a dataset). Thus, 

it is missed by DFGP with thf = 0:05Nthf = 0:05N . The runtime of DFGP shown in Figure 18 (b) does not 

increase much for r=3r=3 due to the statistical pruning which excludes insignificant 2-boxes patterns 

when expanding to 3-boxes patterns. 

 

Figure 18. The performance of DFGP over 68 ChIP-seq datasets for r=2r=2 and r=3r=3. (a) The 

percentage of datasets in which the canonical motif, the noncanonical motifs and the co-binding 

motifs are identified respectively. (b) The average runtime. 

To investigate the effect of the maximum distance dd, DFGP was run with its value changing from 

10 to 80 with a step size of 10. Figure 19(a) shows that the accuracy in matching co-binding motifs 

proposed by Wang et al. increases as dd increases from 10 to 50 and that the best matching rate 50% 

occurs at d= 50d= 50. This indicates that some co-binding motifs have a long interaction range or their 

component motifs do not directly co-bind. However, accuracy starts to decrease as dd continues to 

increase from 60 to 80. The reason is that the statistical significance for patterns decreases as the 

maximum distance becomes too large. As a result, some patterns become statistically insignificant 

and thence are excluded from the output. Nonetheless, setting dd to 30 is good enough for DFGP to 

explore co-binding motifs in a dataset and a suitable range for it is from 30 to 60. As expected, the 

runtime of DFGP does not depend upon dd as shown in Figure 19(b), which is an advantage in finding 

long range interacting biomolecules. 
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Figure 19.  The performance of DFGP over 68 ChIP-seq datasets as dd varies. (a) The percentage 

of datasets in which the canonical motif, the noncanonical motifs and the co-binding motifs are 

identified respectively. (b) The average runtime. 

To investigate the effect of the frequency threshold, thfthf  was varied from 0:01N0:01N to 0:09N0:09N with a 

step size of 0:02N0:02N. Since N =500N =500 in the experiments, DFNG was run with thfthf  ranging from 5 to 45 

with a step size of 10. A significant performance drop can be seen in Figure 20(a) at thf = 5thf = 5. A low 

frequency threshold introduces many noisy consensus patterns of long length due to repetitive 

elements in one or two sequences, which are not masked by the repetitive element mask program 

RepeatMasker. In addition, statistical significance is undermined with small samples. Hence, thfthf  

should not be too low to avoid this issue. This parameter value cannot be too high as well. Otherwise, 

weaker simple motifs would be excluded. As shown in Figure 20(a), the accuracy for the 

noncanonical motifs decreases as thfthf increases. A suitable range for thfthf is from 0:03N0:03N to 0:07N0:07N. 

The runtime of DFGP shown in Figure 20(b) decreases as thfthf  increases as the result of the decreasing 

number of consensus patterns. Note that when NN  is small, i.e. 10, other methods might be better 

alternatives. 
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Figure 20.  The performance of DFGP over 68 ChIP-seq datasets as thfthf  varies. (a) The 

percentage of the datasets in which the canonical motif, the noncanonical motifs and the co-

binding motifs are identified respectively. (b) The average runtime. 

To investigate the effect of the similarity threshold, thsths was varied from 0.7 to 0.9 with a step size 

of 0.05. Figure 21(a) shows that the performance of DFGP remains relatively the same as thsths varies 

from 0.9 to 0.75 but has a significant drop when thsths is set to 0.7. Hence, DFGP is not sensitive to the 

change of thsths when it is not set to a too small value, which would result in selecting too few 

representative patterns as the candidate boxes for assembling flexible gap patterns and thus causing 

great information loss. However, a large thsths would retain a large proportion of frequent solid patterns 

as representative patterns leading to the significant increase of the computational burden for DFGP. 

Hence, fixing thsths to 0.8 is justified by both the theoretical analysis and experimental results, and is a 

good tradeoff between the performance and the computational efficiency. 

 

Figure 21.The performance of DFGP over 68 ChIP-seq datasets as thsths varies. (a) The 

percentage of the datasets in which the canonical motif, the noncanonical motifs and the co-

binding motifs are identified respectively. (b) The average runtime. The y-axis is in log2log2 scale. 
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6.5.5 Scalability of DFGP 

In order to test the scalability of DFGP, it was run using the same parameter settings but was applied 

to 68 ChIP-seq datasets containing all peaks instead of the top ranked 500 peaks. The average dataset 

size is 2497165 bp and the standard deviation is 2055841 bp. Figure 22 shows the runtime of DFGP 

against the dataset size. It is approximately linear to the dataset size up to 6 million bp. The runtime 

of DFGP for those datasets of size beyond this number may be affected by the memory usage of 

DFGP. Though the space complexity of DFGP is linear in the input size, in handling such a great 

amount of data, the current implementation of the algorithm does not optimize memory usage and 

hence consumes all the 32GB memory available in the computer, causing unnecessarily frequent 

garbage collection. The average runtime is 10011 seconds (2.78 hours) with standard deviation 11438 

seconds. In practice, however, 500 to 2000 top ranked peaks in a ChIP-seq dataset are good enough 

for motif discovery. Low quality peaks on the contrary might add more noise to the datasets and 

hinder the performance of motif discovery. 

 

Figure 22. The runtime of DFGP for 68 ChIP-seq datasets with all peaks used.  
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Chapter 7 

Conclusion and Future Research 

7.1 Summary of Contribution 

Non-coding DNA regions are enriched with motifs bound by proteins and ncRNAs. These binding 

motifs are parts of the enormously complex regulatory network at work in eukaryotic organisms. 

Much of the complexity in the mechanism of gene expression regulation is attributed to the 

cooperating biomolecules exerting combinatorial control. In combinatorial regulation, regulatory 

biomolecules co-bind with others in near distance to provide specific regulatory behaviors. The 

observed intriguing gene expression patterns in the developmental processes and cell differentiation 

result from such combinatorial regulation. To decipher the combinatorial regulatory mechanism, 

identifying co-binding motifs for cooperating biomolecules in the non-coding DNA sequences is a 

crucial task. Discovering these co-binding motifs not only reveals the combinatorial regulatory codes 

but also achieves better specificity in binding sites prediction while discovering simple motifs 

corresponding to individual biomolecules alone would produce many false positives that are unlikely 

to function in vivo. 

This thesis addresses the problem of discovering co-binding motifs in genomic sequences. The 

combinatorial nature of cooperating biomolecules and their flexible interaction distance result in a 

unique challenging task of finding their corresponding co-binding motifs with component motifs 

separated by flexible gaps. Existing methods are ineffective for dealing with the following the 

difficulties: (1) relatively low enrichment of co-binding motifs in sequence datasets, (2) unknown 

lengths of component motifs and (3) potentially large distance between component motifs. The 

probabilistic approach is incapable of identifying co-binding motifs in realistic datasets as it is easily 

trapped into local optimal solutions during the search process. For deterministic approach using a 

relaxed motif template for generating flexible gap patterns, it faces the challenges of searching a huge 

pattern space and handling an enormous output due to its exhaustive enumeration nature and its lack 

of effective statistical significant measures for ranking discovered patterns. 

This thesis develops an effective and scalable method, known as DFGP, for identifying co-binding 

motifs in large datasets. This provides a useful tool to facilitate biologists to uncover combinatorial 

regulatory codes. DFGP does not require the users to specify component motif lengths. In addition it 

allows large maximum distance between component motifs. It resolves the computational burden and 
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the need of effective statistical significance measures faced by existing deterministic methods as 

follows: 

(1) The concept of representative patterns is proposed and the method DRP is developed to extract 

these patterns. The use of the compact and non-redundant set of representative patterns instead of all 

consensus patterns by DFGP to construct flexible gap patterns significantly reduces the computational 

burden by excluding a large number of consensus pattern combinations. 

(2) The concept of delegate occurrences is proposed for flexible gap pattern to reduce redundancy 

among pattern occurrences and the method DOA is developed to efficiently construct a flexible gap 

pattern with these delegate occurrences from its one box less prefix pattern and its last box, resulting 

in the runtime of DOA independent of the maximum distance parameter. 

(3) The statistical significance measures are developed for ranking flexible gap patterns with 

complete occurrences and delegate occurrences respectively. The measures fill the need of effective 

pattern significance assessment methods for existing deterministic methods that use the classical but 

extremely slow Monte Carlo method. 

Extensive experimental results show that (1) existing methods are ineffective for identifying co-

binding motifs in large ChIP-seq datasets, (2) DFGP outperforms the state-of-the-art methods in co-

binding motif discovery in terms of the capability of finding co-binding motifs and the speed, (3) 

DFGP achieves similar performance as one of the best methods MEME-Chip in finding simple motifs 

and rigid gapped motifs, (4) the co-binding motifs found by DFGP reveal interesting biological 

insights previously unknown, (5)  the two proposed redundancy reduction methods drastically reduce 

the computational burden without sacrificing quality, (6) the proposed statistical significance 

measures are effective for ranking flexible gap patterns, and (7) DFGP is scalable to massive datasets. 

7.2 Suggested Future Research 

 The following is a list of future research directions for extending the concepts and methods 

proposed in this thesis. 

1. The use of two frequency thresholds  

In this thesis, only one frequency threshold is used for obtaining both representative patterns and 

flexible gap patterns. The use of a smaller frequency threshold for representative patterns and a 

relative larger threshold for flexible gap patterns might improve DFGP on finding co-binding motifs 
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whose component motifs are more degenerated and tackling small size datasets where the solid 

pattern corresponding to the component motifs might appear less than 5 times. 

2. Applications of the statistical measure for existing deterministic methods 

The Monte Carlo method used by existing deterministic methods for co-binding motif discovery is 

very time consuming. The application of the statistical measure can help deal with ranking a huge 

output size. 

3. Extension of DFGP for protein sequences 

The problem of protein sequence divergence in a protein family makes unlikely the existence of a 

consensus pattern for a functional unit in the sequence. The use of ambiguous codes for amino acids 

might help to obtain a set of patterns of ambiguous amino acids as boxes for building flexible gap 

patterns for extracting structural motifs. 

4. Extension of DFGP for ncRNA sequences 

DFGP might be able to directly apply for related ncRNA sequences to extract conserved secondary 

structures that correspond to their functional roles in interacting with biomolecular complexes such as 

polycomb repressive complex 2. 

5. Extension of DFGP to support searching the reverse and complementary strand 

Currently DFGP only supports searching the forward strand. The easy attempt includes 

transforming the entire input sequences into reverse and complementary sequences, and using both 

forward and reverse strands as the new input. Certainly, there could be a better approach to handle 

this issue. 

6. Utilizing the gap distribution between two consecutive boxes in a flexible gap pattern 

The gap distribution for a flexible gap might serve as an indication of the pattern quality. 

 

  



 

 81 

Appendix A 

Table S1 The ENCODE ChIP-seq datasets used in experiments 

The 1st column is the name of a ChIP-seq dataset from ENCODE. The 2nd column is the transcription 

factor targeted in a ChIP-seq experiment. The 3rd column is the canonical TF binding motif for the 

targeted TF. The 4th column is the noncanonical TF binding motifs in a ChIP-seq dataset. The 5th 

column is the cell line for which a ChIP-seq experiment was performed. The 6th column is the dataset 

size in bp of the top ranked 500 peaks in a ChIP-seq dataset, which are the input to motif discovery 

methods. The canonical and noncanonical motifs are shown in the supplementary Table S2 and 

Figure S2 in the paper by Wang et al. [2]. These datasets can be downloaded from 

http://factorbook.org where the datasets are labeled as SPP or 

http://encodeproject.org/ENCODE/downloads.html under TFBS SPP-based Peaks. 

TF ChIP-Seq Dataset ChIP'ed TF 
Canonical 

Motif 

Noncanonical 

Motif 
Cell Line 

Dataset 

Size (500 

top 

ranked 

peaks) 

wgEncodeSydhTfbsK562CjunIfna6hStdAlnRep0 JUN AP-1;v-JUN GATA1 K562 121012 

wgEncodeSydhTfbsK562CjunIfng30StdAlnRep0 JUN AP-1;v-JUN GATA1 K562 92301 

wgEncodeSydhTfbsK562CjunIfng6hStdAlnRep0 JUN AP-1;v-JUN GATA1 K562 123102 

wgEncodeSydhTfbsK562CjunStdAlnRep0 JUN AP-1;v-JUN GATA1 K562 93730 

wgEncodeUchicagoTfbsK562EjunbControlAlnRep0 JUNB AP-1;v-JUN GATA1 K562 117524 

wgEncodeHaibTfbsHepg2JundPcr1xAlnRep0 JUND AP-1;v-JUN FOXA HepG2 110612 

wgEncodeSydhTfbsGm12878JundStdAlnRep0 JUND AP-1;v-JUN PU.1 GM12878 126233 

wgEncodeUchicagoTfbsK562EjundControlAlnRep0 JUND AP-1;v-JUN GATA1 K562 152911 

wgEncodeHaibTfbsHepg2Fosl2Pcr1xAlnRep0 FOSL2 AP-1 FOXA;HNF4 HepG2 131339 

wgEncodeSydhTfbsHelas3Ap2alphaStdAlnRep0 TFAP2A AP-2 AP-1 HeLa-S3 146888 

wgEncodeSydhTfbsHelas3Ap2gammaStdAlnRep0 TFAP2C AP-2 AP-1 HeLa-S3 174089 

wgEncodeSydhTfbsHepg2CebpbForsklnStdAlnRep0 CEBPB CEBPB FOXA HepG2 105321 

wgEncodeSydhTfbsHepg2CebpbIggrabAlnRep0 CEBPB CEBPB FOXA HepG2 120603 

wgEncodeHaibTfbsGm12878Atf3Pcr1xAlnRep0 ATF3 
CREB;CREB-

ext 
NRF1 GM12878 66184 

wgEncodeSydhTfbsK562Atf3StdAlnRep0 ATF3 CREB;CREB- GABP K562 103114 

http://factorbook.org/
http://encodeproject.org/ENCODE/downloads.html
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ext 

wgEncodeSydhTfbsHelas3E2f4StdAlnRep0 E2F4 E2F4 NRF1 HeLa-S3 129519 

wgEncodeSydhTfbsK562bE2f4UcdAlnRep0 E2F4 E2F4 NF-Y;NRF1 K562b 119628 

wgEncodeHaibTfbsK562E2f6h50V0416102AlnRep0 E2F6 E2F4 MAX K562 199449 

wgEncodeSydhTfbsHelas3E2f6StdAlnRep0 E2F6 E2F4 MYC HeLa-S3 141727 

wgEncodeSydhTfbsK562bE2f6UcdAlnRep0 E2F6 E2F4 MAX;NF-Y K562b 210434 

wgEncodeHaibTfbsH1hescEgr1V0416102AlnRep0 EGR1 EGR1 GABP H1-hESC 75748 

wgEncodeHaibTfbsK562Egr1V0416101AlnRep0 EGR1 EGR1 AP-1 K562 102728 

wgEncodeHaibTfbsGm12878Elf1sc631V0416101AlnRep0 ELF1 ELF1 YY1 GM12878 191190 

wgEncodeSydhTfbsHepg2ErraForsklnStdAlnRep0 ESRRA ESRRA HNF4 HepG2 124882 

wgEncodeHaibTfbsHepg2Foxa1sc101058Pcr1xAlnRep0 FOXA1 FOXA HNF4 HepG2 168220 

wgEncodeHaibTfbsHepg2Foxa2sc6554V0416101AlnRep0 FOXA2 FOXA HNF4 HepG2 171879 

wgEncodeHaibTfbsH1hescGabpPcr1xAlnRep0 GABPA GABP YY1 H1-hESC 110949 

wgEncodeHaibTfbsK562GabpV0416101AlnRep0 GABPA GABP YY1 K562 184272 

wgEncodeHaibTfbsHepg2Hnf4ah171Pcr1xAlnRep0 HNF4A HNF4 CEBPB;FOXA HepG2 148184 

wgEncodeSydhTfbsHepg2Hnf4aForsklnStdAlnRep0 HNF4A HNF4 FOXA HepG2 87728 

wgEncodeHaibTfbsHepg2Hnf4gsc6558V0416101AlnRep0 HNF4G HNF4 CEBPB;FOXA HepG2 111995 

wgEncodeSydhTfbsGm12878MaxStdAlnRep0 MAX MAX PU.1;USF GM12878 129298 

wgEncodeSydhTfbsH1hescMaxUcdAlnRep0 MAX MAX CTCF H1-hESC 84065 

wgEncodeSydhTfbsHelas3MaxStdAlnRep0 MAX MAX USF HeLa-S3 91536 

wgEncodeSydhTfbsK562MaxStdAlnRep0 MAX MAX NRF1;USF K562 78423 

wgEncodeHaibTfbsGm12878Mef2aPcr1xAlnRep0 MEF2A MEF2 PU.1 GM12878 146230 

wgEncodeHaibTfbsGm12878Mef2csc13268Pcr1xAlnRep0 MEF2C MEF2 AP-1;PU.1 GM12878 100707 

wgEncodeOpenChromChipHepg2CmycAlnRep0 MYC MYC CTCF HepG2 87985 

wgEncodeOpenChromChipK562CmycAlnRep0 MYC MYC YY1 K562 63015 

wgEncodeSydhTfbsK562CmycIfna30StdAlnRep0 MYC MYC CTCF K562 132335 

wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep0 MYC MYC GABP K562 112919 

wgEncodeSydhTfbsK562NfybStdAlnRep0 NFYB NF-Y USF K562 188325 

wgEncodeSydhTfbsK562Nfe2StdAlnRep0 NFE2 NFE2 AP-1;USF K562 77353 

wgEncodeSydhTfbsGm12878NfkbIggrabAlnRep0 NFKB1 NFKB1 PU.1 GM12878 95177 

wgEncodeSydhTfbsGm12891NfkbIggrabAlnRep0 NFKB1 NFKB1 PU.1 GM12891 94398 

wgEncodeSydhTfbsHepg2bTr4UcdAlnRep0 NR2C2 NR2C2 GABP HepG2b 123595 

wgEncodeSydhTfbsK562bTr4UcdAlnRep0 NR2C2 NR2C2 GABP K562b 134503 

wgEncodeSydhTfbsHelas3Prdm1vIggrabAlnRep0 PRDM1 PRDM1 AP-1 HeLa-S3 92020 

wgEncodeHaibTfbsHepg2RxraPcr1xAlnRep0 RXRA RXRA FOXA HepG2 128422 
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wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep0 SP1 SP1 UA2 GM12878 158381 

wgEncodeHaibTfbsK562Sp1Pcr1xAlnRep0 SP1 SP1 NF-Y K562 113929 

wgEncodeHaibTfbsK562Sp2sc643V0416102AlnRep0 SP2 SP1 CTCF;NF-Y K562 148009 

wgEncodeSydhTfbsK562Stat1Ifna30StdAlnRep0 STAT1 STAT1 STAT2 K562 129336 

wgEncodeSydhTfbsK562Stat2Ifna30StdAlnRep0 STAT2 STAT2 STAT1 K562 132253 

wgEncodeHaibTfbsGm12878Tcf12Pcr1xAlnRep0 TCF12 TCF12 PU.1 GM12878 138708 

wgEncodeHaibTfbsH1hescTcf12Pcr1xAlnRep0 TCF12 TCF12 SOX2-OCT4 H1-hESC 75950 

wgEncodeSydhTfbsHepg2Tcf4UcdAlnRep0 TCF7L2 TCF7L2 FOXA;RXRA HepG2b 286925 

wgEncodeHaibTfbsGm12878Pbx3Pcr1xAlnRep0 PBX3 UA2 SP1 GM12878 133306 

wgEncodeHaibTfbsK562Zbtb7asc34508V0416101AlnRep0 ZBTB7A UA3 CTCF K562 84944 

wgEncodeHaibTfbsK562Thap1sc98174V0416101AlnRep0 THAP1 UA4;UA5 GABP;NRF1 K562 110833 

wgEncodeHaibTfbsGm12878Usf1Pcr2xAlnRep0 USF1 USF YY1 GM12878 112571 

wgEncodeHaibTfbsK562Usf1V0416101AlnRep0 USF1 USF NF-Y K562 131121 

wgEncodeSydhTfbsH1hescUsf2IggrabAlnRep0 USF2 USF YY1 H1-hESC 110058 

wgEncodeSydhTfbsK562Usf2StdAlnRep0 USF2 USF NF-Y K562 98022 

wgEncodeHaibTfbsGm12878Yy1V0416101AlnRep0 YY1 YY1 GABP GM12878 179740 

wgEncodeHaibTfbsK562Yy1V0416101AlnRep0 YY1 YY1 GABP K562 150546 

wgEncodeHaibTfbsK562Yy1V0416102AlnRep0 YY1 YY1 GABP K562 181777 

wgEncodeSydhTfbsK562bYy1UcdAlnRep0 YY1 YY1 GABP;USF K562b 146164 
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Appendix B 

Table S2 The matching of discovered patterns by motif discovery 

methods to motifs in ChIP-seq datasets 

This table shows the details of which top ranked pattern of a motif discovery method matches a motif 

in the 68 ChIP-seq datasets. The top ranked patterns are numbered from M1 to M30. The 1st column 

is the motif discovery method. The 2nd column is the TF ChIP-seq dataset. The 3rd, 4th and 5th columns 

show a top ranked pattern obtained by a method that matches the canonical motif, the noncanonical 

motifs and the co-binding motifs respectively in a ChIP-seq dataset if applicable. 

Method TF ChIP-seq Dataset Canonical Motif Noncanonical Motif Co-Binding Motifs 

 wgEncodeSydhTfbsK562CjunIfna6hStdAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M2;NA M3 M18;NA 

RISOTTO  M3;NA   

Bioprospector  M1;NA   

GLAM2  M2;M1   

MEME-Chip  M1;M4 M7  

MEME  M1;M3   

MDmodule  M1;M2   

Weeder  M1;M8 M9  

 wgEncodeSydhTfbsK562CjunIfng30StdAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M1;NA M14  

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M1;M2   

MEME-Chip  M1;M3 M5  

MEME  M1;M2   

MDmodule  M1;M2 M3  

Weeder  M1;NA M8  

 wgEncodeSydhTfbsK562CjunIfng6hStdAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M1;M14   

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M1;M2   

MEME-Chip  M1;M4 M7  

MEME  M1;M3   

MDmodule  M1;M2   
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Weeder  M1;NA M8  

 wgEncodeSydhTfbsK562CjunStdAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M2;M5 M15  

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M2;M6   

MEME-Chip  M1;M3 M5  

MEME  M1;M2   

MDmodule  M1;NA   

Weeder  M1;M6   

 wgEncodeUchicagoTfbsK562EjunbControlAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M1;NA M11 M24;NA 

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M6;M2   

MEME-Chip  M1;NA M4  

MEME  M1;NA   

MDmodule  M1;NA   

Weeder  M1;M6 M8  

 wgEncodeHaibTfbsHepg2JundPcr1xAlnRep0 AP1;vJUN FOXA AP1-FOXA;vJUN-FOXA 

DFGP  M2;M11 M4 M7;M11 

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M2;M1   

MEME-Chip  M1;NA M3  

MEME  M1;NA M3  

MDmodule  M1;NA M7  

Weeder  M1;NA   

 wgEncodeSydhTfbsGm12878JundStdAlnRep0 AP1;vJUN PU1 AP1-PU1;vJUN-PU1 

DFGP  M2;NA M20 M20;NA 

RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M4;M1 M27  

MEME-Chip  M1;NA M11  

MEME  M1;NA   

MDmodule  M1;NA   

Weeder  M1;NA   

 wgEncodeUchicagoTfbsK562EjundControlAlnRep0 AP1;vJUN GATA1 AP1-GATA1;vJUN-GATA1 

DFGP  M1;M26 M19  
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RISOTTO  M1;NA   

Bioprospector  M1;NA   

GLAM2  M1;M2   

MEME-Chip  M1;M2 M6  

MEME  M1;M3   

MDmodule  M1;M2   

Weeder  M1;M6 M9  

 wgEncodeHaibTfbsHepg2Fosl2Pcr1xAlnRep0 AP1 FOXA;HNF4 AP1-FOXA;AP1-HNF4 

DFGP  M2 M18;NA  

RISOTTO  M1 NA;M20 NA;M20 

Bioprospector  M1 M22;NA M22;NA 

GLAM2  M3   

MEME-Chip  M1 M4;NA  

MEME  M1 NA;M5  

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsHelas3Ap2alphaStdAlnRep0 AP2 AP1 AP2-AP1 

DFGP  M1 M10  

RISOTTO     

Bioprospector  M5 M3  

GLAM2  M1   

MEME-Chip  M1 M3  

MEME  M1 M2  

MDmodule  M2 M3  

Weeder  M1 M2  

 wgEncodeSydhTfbsHelas3Ap2gammaStdAlnRep0 AP2 AP1 AP2-AP1 

DFGP  M1 M22  

RISOTTO     

Bioprospector  M8 M12  

GLAM2  M1   

MEME-Chip  M1 M2  

MEME  M1 M2  

MDmodule  M2 M1  

Weeder  M1 M2  

 wgEncodeSydhTfbsHepg2CebpbForsklnStdAlnRep0 CEBPB FOXA CEBPB-FOXA 

DFGP  M1   

RISOTTO     

Bioprospector  M1 M16 M16 

GLAM2  M1   
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MEME-Chip  M1 M8  

MEME  M1 M3  

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsHepg2CebpbIggrabAlnRep0 CEBPB FOXA CEBPB-FOXA 

DFGP  M2   

RISOTTO     

Bioprospector  M1 M23 M23 

GLAM2  M1   

MEME-Chip  M1   

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsGm12878Atf3Pcr1xAlnRep0 CREB;CREBext NRF1 CREB-NRF1;CREBext-

NRF1 

DFGP  NA;M4   

RISOTTO  NA;M2   

Bioprospector     

GLAM2  NA;M3   

MEME-Chip  M11;M2   

MEME  NA;M3   

MDmodule     

Weeder  NA;M11   

 wgEncodeSydhTfbsK562Atf3StdAlnRep0 CREB;CREBext GABP CREB-GABP;CREBext-

GABP 

DFGP  NA;M9   

RISOTTO  NA;M5   

Bioprospector     

GLAM2  NA;M1   

MEME-Chip  M3;M3 M11  

MEME  M3;M3   

MDmodule  M13;M5   

Weeder  NA;M15   

 wgEncodeSydhTfbsHelas3E2f4StdAlnRep0 E2F4 NRF1 E2F4-NRF1 

DFGP  M4 M11  

RISOTTO     

Bioprospector  M13   

GLAM2  M3   

MEME-Chip  M1 M12  
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MEME  M1 M4  

MDmodule  M9   

Weeder  M1   

 wgEncodeSydhTfbsK562bE2f4UcdAlnRep0 E2F4 NFY;NRF1 E2F4-NFY;E2F4-NRF1 

DFGP  M5 M7;M6  

RISOTTO  M8 M27;NA  

Bioprospector  M12   

GLAM2  M1   

MEME-Chip  M1 M2;NA  

MEME  M1 M2;NA  

MDmodule  M4 M2;M5  

Weeder  M1   

 wgEncodeHaibTfbsK562E2f6h50V0416102AlnRep0 E2F4 MAX E2F4-MAX 

DFGP  M8   

RISOTTO  M7   

Bioprospector   M2  

GLAM2     

MEME-Chip  M1 M3  

MEME  M2   

MDmodule  M13 M2  

Weeder  M1   

 wgEncodeSydhTfbsHelas3E2f6StdAlnRep0 E2F4 MYC E2F4-MYC 

DFGP  M2   

RISOTTO  M24   

Bioprospector  M11   

GLAM2  M1   

MEME-Chip  M1 M7  

MEME  M1   

MDmodule  M2 M5  

Weeder  M1 M3  

 wgEncodeSydhTfbsK562bE2f6UcdAlnRep0 E2F4 MAX;NFY E2F4-MAX;E2F4-NFY 

DFGP  M5   

RISOTTO     

Bioprospector     

GLAM2     

MEME-Chip  M1 M2;M5  

MEME  M1   

MDmodule     

Weeder  M3   
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 wgEncodeHaibTfbsH1hescEgr1V0416102AlnRep0 EGR1 GABP EGR1-GABP 

DFGP  M1 M3  

RISOTTO  M13 M28  

Bioprospector  M2   

GLAM2  M1   

MEME-Chip  M1   

MEME  M1   

MDmodule  M1   

Weeder  M1 M20  

 wgEncodeHaibTfbsK562Egr1V0416101AlnRep0 EGR1 AP1 EGR1-AP1 

DFGP  M1   

RISOTTO  M2   

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1   

MEME  M1 M5  

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsGm12878Elf1sc631V0416101AlnRep

0 

ELF1 YY1 ELF1-YY1 

DFGP  M4 M13 M13 

RISOTTO     

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1 M10  

MEME  M1   

MDmodule  M1 M4  

Weeder  M1   

 wgEncodeSydhTfbsHepg2ErraForsklnStdAlnRep0 ESRRA HNF4 ESRRA-HNF4 

DFGP  M1 M5 M30 

RISOTTO  M1 M6  

Bioprospector  M1 M8  

GLAM2  M2 M4  

MEME-Chip  M1 M3  

MEME  M1 M2  

MDmodule  M1 M4  

Weeder  M1 M14  

 wgEncodeHaibTfbsHepg2Foxa1sc101058Pcr1xAlnRep0 FOXA HNF4 FOXA-HNF4 

DFGP  M5 M9  
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RISOTTO  M12   

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1   

MEME  M1   

MDmodule  M1 M3  

Weeder  M1   

 wgEncodeHaibTfbsHepg2Foxa2sc6554V0416101AlnRep

0 

FOXA HNF4 FOXA-HNF4 

DFGP  M4 M1  

RISOTTO     

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1   

MEME  M1   

MDmodule  M1   

Weeder  M1 M21  

 wgEncodeHaibTfbsH1hescGabpPcr1xAlnRep0 GABP YY1 GABP-YY1 

DFGP  M2 M28  

RISOTTO  M1   

Bioprospector  M1 M7  

GLAM2  M2   

MEME-Chip  M1 M7  

MEME  M1 M4  

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsK562GabpV0416101AlnRep0 GABP YY1 GABP-YY1 

DFGP  M1 M8  

RISOTTO  M1   

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1   

MEME  M1 M5  

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsHepg2Hnf4ah171Pcr1xAlnRep0 HNF4 CEBPB;FOXA HNF4-CEBPB;HNF4-

FOXA 

DFGP  M5 NA;M15 NA;M26 

RISOTTO  M9   
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Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1 NA;M3  

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsHepg2Hnf4aForsklnStdAlnRep0 HNF4 FOXA HNF4-FOXA 

DFGP  M1 M1 M1 

RISOTTO  M1   

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1 M8  

MEME  M1 M3  

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsHepg2Hnf4gsc6558V0416101AlnRep

0 

HNF4 CEBPB;FOXA HNF4-CEBPB;HNF4-

FOXA 

DFGP  M8 NA;M8 NA;M8 

RISOTTO  M1   

Bioprospector  M1 NA;M21 NA;M26 

GLAM2  M1   

MEME-Chip  M1 NA;M3  

MEME  M1 NA;M3  

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsGm12878MaxStdAlnRep0 MAX PU1;USF MAX-PU1;MAX-USF 

DFGP  M4 M21;M4 NA;M4 

RISOTTO  M2 NA;M19  

Bioprospector     

GLAM2  M1   

MEME-Chip  M1 NA;M3  

MEME  M1 M3;NA  

MDmodule  M11 NA;M1  

Weeder  M1 NA;M4  

 wgEncodeSydhTfbsH1hescMaxUcdAlnRep0 MAX CTCF MAX-CTCF 

DFGP  M1   

RISOTTO     

Bioprospector  M5   

GLAM2  M1   
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MEME-Chip  M1 M4  

MEME  M1 M3  

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsHelas3MaxStdAlnRep0 MAX USF MAX-USF 

DFGP  M1 M8 M8 

RISOTTO  M8 M4  

Bioprospector     

GLAM2  M2 M16  

MEME-Chip  M2   

MEME     

MDmodule  M2   

Weeder     

 wgEncodeSydhTfbsK562MaxStdAlnRep0 MAX NRF1;USF MAX-NRF1;MAX-USF 

DFGP  M1 M16;M5  

RISOTTO  M2 NA;M1  

Bioprospector  M16   

GLAM2  M1 NA;M3  

MEME-Chip  M1 M11;M3  

MEME  M1 M5;M3  

MDmodule  M14 M4;M1  

Weeder  M1 NA;M4  

 wgEncodeHaibTfbsGm12878Mef2aPcr1xAlnRep0 MEF2 PU1 MEF2-PU1 

DFGP  M7 M4 M9 

RISOTTO  M11 M23 M23 

Bioprospector  M10   

GLAM2  M1   

MEME-Chip  M1 M3  

MEME  M1 M2  

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsGm12878Mef2csc13268Pcr1xAlnRe

p0 

MEF2 AP1;PU1 MEF2-AP1;MEF2-PU1 

DFGP  M3 M12;M2 M25;M29 

RISOTTO  M2 NA;M4  

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1 M4;M3  

MEME  M1 M4;NA  
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MDmodule  M1   

Weeder  M1   

 wgEncodeOpenChromChipHepg2CmycAlnRep0 MYC CTCF MYC-CTCF 

DFGP  M1 M5  

RISOTTO  M30   

Bioprospector  M14 M21  

GLAM2  M1   

MEME-Chip  M1 M13  

MEME  M1   

MDmodule  M11   

Weeder  M2   

 wgEncodeOpenChromChipK562CmycAlnRep0 MYC YY1 MYC-YY1 

DFGP  M1   

RISOTTO  M20 M17  

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1 M5  

MEME  M1 M3  

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsK562CmycIfna30StdAlnRep0 MYC CTCF MYC-CTCF 

DFGP  M4   

RISOTTO  M25   

Bioprospector   M16  

GLAM2  M1   

MEME-Chip  M1 M7  

MEME  M1 M5  

MDmodule  M6   

Weeder  M2   

 wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep0 MYC GABP MYC-GABP 

DFGP  M4 M5  

RISOTTO  M8 M7  

Bioprospector  M10   

GLAM2  M1   

MEME-Chip  M1 M10  

MEME  M1 M4  

MDmodule  M6 M2  

Weeder  M2 M9  

 wgEncodeSydhTfbsK562Nfe2StdAlnRep0 NFE2 AP1;USF NFE2-AP1;NFE2-USF 
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DFGP  M4 M11;M1 M11;M20 

RISOTTO  M18 NA;M1  

Bioprospector  M4 M1;NA  

GLAM2  M3 M1;M23 M12;NA 

MEME-Chip  M1 M6;M2  

MEME  M1 NA;M2  

MDmodule  M1 NA;M2  

Weeder  M1 NA;M6  

 wgEncodeSydhTfbsGm12878NfkbIggrabAlnRep0 NFKB1 PU1 NFKB1-PU1 

DFGP  M3 M8  

RISOTTO  M1   

Bioprospector  M1   

GLAM2  M1 M24  

MEME-Chip  M1 M3  

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsGm12891NfkbIggrabAlnRep0 NFKB1 PU1 NFKB1-PU1 

DFGP  M1 M22 M22 

RISOTTO  M2   

Bioprospector  M2   

GLAM2  M1   

MEME-Chip  M1 M8  

MEME  M1   

MDmodule  M1   

Weeder  M1 M11  

 wgEncodeSydhTfbsK562NfybStdAlnRep0 NFY USF NFY-USF 

DFGP  M1   

RISOTTO  M1   

Bioprospector  M2   

GLAM2  M1   

MEME-Chip  M1 M7  

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsHepg2bTr4UcdAlnRep0 NR2C2 GABP NR2C2-GABP 

DFGP  M8 M1 M8 

RISOTTO     

Bioprospector  M4 M7  
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GLAM2   M1  

MEME-Chip  M2 M1  

MEME  M3 M1  

MDmodule   M1  

Weeder  M14 M1  

 wgEncodeSydhTfbsK562bTr4UcdAlnRep0 NR2C2 GABP NR2C2-GABP 

DFGP  M13 M1  

RISOTTO   M1  

Bioprospector  M5   

GLAM2     

MEME-Chip  M2 M1  

MEME  M1 M2  

MDmodule  M7   

Weeder  M9 M1  

 wgEncodeSydhTfbsHelas3Prdm1vIggrabAlnRep0 PRDM1 AP1 PRDM1-AP1 

DFGP  M1 M21 M21 

RISOTTO  M1   

Bioprospector  M5 M3  

GLAM2  M1   

MEME-Chip  M1 M4  

MEME  M1 M2  

MDmodule  M1 M2  

Weeder  M1 M10  

 wgEncodeHaibTfbsHepg2RxraPcr1xAlnRep0 RXRA FOXA RXRA-FOXA 

DFGP  M14 M10  

RISOTTO  M1   

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1 M2  

MEME  M1 M2  

MDmodule   M4  

Weeder  M1 M9  

 wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep0 SP1 UA2 SP1-UA2 

DFGP  M2 M1  

RISOTTO     

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M4 M6  

MEME  M3   
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MDmodule   M9  

Weeder     

 wgEncodeHaibTfbsK562Sp1Pcr1xAlnRep0 SP1 NFY SP1-NFY 

DFGP  M10 M1 M15 

RISOTTO  M9 M1 M9 

Bioprospector  M4 M1  

GLAM2  M1 M1 M1 

MEME-Chip  M3 M1  

MEME  M2 M1  

MDmodule  M7 M1  

Weeder   M1  

 wgEncodeHaibTfbsK562Sp2sc643V0416102AlnRep0 SP1 CTCF;NFY SP1-CTCF;SP1-NFY 

DFGP  M3 M14;M3 M14;M3 

RISOTTO   NA;M1  

Bioprospector  M3 NA;M16  

GLAM2  M2   

MEME-Chip  M8 NA;M1  

MEME  M4 NA;M1  

MDmodule  M8   

Weeder   NA;M3  

 wgEncodeSydhTfbsK562Stat1Ifna30StdAlnRep0 STAT1 STAT2 STAT1-STAT2 

DFGP  M4 M2 M5 

RISOTTO  M9 M1 M9 

Bioprospector   M1  

GLAM2   M1  

MEME-Chip  M2 M1  

MEME  M2 M1  

MDmodule  M3 M1  

Weeder  M1 M2  

 wgEncodeSydhTfbsK562Stat2Ifna30StdAlnRep0 STAT2 STAT1 STAT2-STAT1 

DFGP  M1 M3 M3 

RISOTTO  M1 M7 M19 

Bioprospector  M5   

GLAM2  M3   

MEME-Chip  M1 M2  

MEME  M1 M3  

MDmodule  M1   

Weeder  M1 M12  

 wgEncodeHaibTfbsGm12878Tcf12Pcr1xAlnRep0 TCF12 PU1 TCF12-PU1 



 

 97 

DFGP  M4 M9  

RISOTTO  M1   

Bioprospector     

GLAM2  M1   

MEME-Chip  M1 M3  

MEME  M1 M2  

MDmodule  M1 M2  

Weeder  M1   

 wgEncodeHaibTfbsH1hescTcf12Pcr1xAlnRep0 TCF12 SOX2OCT4 TCF12-SOX2OCT4 

DFGP  M6   

RISOTTO  M2   

Bioprospector  M4   

GLAM2  M8   

MEME-Chip  M7 M3  

MEME   M2  

MDmodule   M6  

Weeder   M13  

 wgEncodeSydhTfbsHepg2Tcf4UcdAlnRep0 TCF7L2 FOXA;RXRA TCF7L2-FOXA;TCF7L2-

RXRA 

DFGP   M6;NA  

RISOTTO     

Bioprospector     

GLAM2  M1 NA;M10  

MEME-Chip  M1 M3;NA  

MEME  M1   

MDmodule  M1 NA;M9  

Weeder  M1 M9;NA  

 wgEncodeHaibTfbsGm12878Pbx3Pcr1xAlnRep0 UA2 SP1 UA2-SP1 

DFGP  M2 M1  

RISOTTO     

Bioprospector  M11 M1  

GLAM2   M1  

MEME-Chip  M2 M4  

MEME  M4 M3  

MDmodule  M2 M9  

Weeder     

 wgEncodeHaibTfbsK562Zbtb7asc34508V0416101AlnRe

p0 

UA3 CTCF UA3-CTCF 

DFGP  M2 M4  



 

 98 

RISOTTO  M5   

Bioprospector  M5   

GLAM2  M1   

MEME-Chip  M1 M2  

MEME  M5 M1  

MDmodule  M7 M11  

Weeder  M2 M1  

 wgEncodeHaibTfbsK562Thap1sc98174V0416101AlnRep

0 

UA4;UA5 GABP;NRF1 UA4-GABP;UA4-

NRF1;UA5-GABP;UA5-

NRF1 

DFGP  M1;M4 M7;M14 M13;NA;M28;M18 

RISOTTO  M16;M21 M21;NA NA;NA;M21;NA 

Bioprospector     

GLAM2  NA;M4   

MEME-Chip  M1;M2 M5;M3 NA;NA;M5;NA 

MEME  M1;M2 NA;M4  

MDmodule  M1;NA NA;M13  

Weeder  M4;M3 M13;NA  

 wgEncodeHaibTfbsGm12878Usf1Pcr2xAlnRep0 USF YY1 USF-YY1 

DFGP  M1   

RISOTTO  M2 M6  

Bioprospector  M3   

GLAM2  M1   

MEME-Chip  M1 M12  

MEME  M1 M3  

MDmodule  M1 M13  

Weeder  M1 M11  

 wgEncodeHaibTfbsK562Usf1V0416101AlnRep0 USF NFY USF-NFY 

DFGP  M1 M18 M18 

RISOTTO  M1   

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1 M9  

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeSydhTfbsH1hescUsf2IggrabAlnRep0 USF YY1 USF-YY1 

DFGP  M1 M17 M17 

RISOTTO  M1 M6 M6 
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Bioprospector     

GLAM2  M1   

MEME-Chip  M1 M7  

MEME  M1 M2  

MDmodule  M1 M11  

Weeder  M1   

 wgEncodeSydhTfbsK562Usf2StdAlnRep0 USF NFY USF-NFY 

DFGP  M1   

RISOTTO  M2   

Bioprospector     

GLAM2  M1   

MEME-Chip  M1 M9  

MEME  M1   

MDmodule  M1   

Weeder  M1   

 wgEncodeHaibTfbsGm12878Yy1V0416101AlnRep0 YY1 GABP YY1-GABP 

DFGP  M1 M3 M3 

RISOTTO  M1   

Bioprospector  M4   

GLAM2  M1   

MEME-Chip  M1 M6  

MEME  M1 M5  

MDmodule  M1   

Weeder  M1 M23  

 wgEncodeHaibTfbsK562Yy1V0416101AlnRep0 YY1 GABP YY1-GABP 

DFGP  M1 M21  

RISOTTO  M4   

Bioprospector  M1   

GLAM2  M1   

MEME-Chip  M1 M8  

MEME  M1   

MDmodule  M1   

Weeder  M1 M14  

 wgEncodeHaibTfbsK562Yy1V0416102AlnRep0 YY1 GABP YY1-GABP 

DFGP  M1   

RISOTTO  M1   

Bioprospector  M7   

GLAM2  M1   

MEME-Chip  M1 M6  
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MEME  M1   

MDmodule  M1 M17  

Weeder  M1   

 wgEncodeSydhTfbsK562bYy1UcdAlnRep0 YY1 GABP;USF YY1-GABP;YY1-USF 

DFGP  M1 M7;M18 M16;M18 

RISOTTO  M1   

Bioprospector  M7   

GLAM2  M1   

MEME-Chip  M1 M6;M5  

MEME  M1   

MDmodule  M1 M17;M4  

Weeder  M1 M14;NA  

 

Here is the summary for the above 68 datasets. The table below shows the percentage of the 

datasets where the canonical motif, the noncanonical motifs and the co-binding motifs are found by a 

method. 

Method Canonical Motif Found Noncanonical Motif Found Co-Binding Motifs Found 

DFGP 98.52941 75 38.23529 

RISOTTO 77.94118 29.41176 10.29412 

Bioprospector 80.88235 26.47059 5.882353 

GLAM2 91.17647 16.17647 2.941176 

MEME-Chip 100 88.23529 1.470588 

MEME 97.05882 55.88235 0 

MDmodule 91.17647 44.11765 0 

Weeder 91.17647 47.05882 0 
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Appendix C 

Table S3 Similar Motifs among 79 motifs obtained by Wang et al. [2] 

In the table, the 2nd column indicates motifs that are similar to the one in the 1st column. 

Motif Similar Motifs 

A-Box  

AP1 NFE2;v-Maf 

AP2  

B-Box  

BARHL2  

BHLHE40 MAX;MYC;USF 

CEBPB CREB 

CREB v-JUN;CEBPB 

CREB-ext  

CTCF  

CTCF-ext  

E2F1 E2F4;UA3 

E2F4 E2F1;EGR1 

EBF1  

EGR1 SP1;E2F4 

ELF1 ELK4;GABP;ETS1;UA5 

ELK4 ELF1;GABP;ETS1;UA5 

ESR1 ESRRA;RXRA;NR3C1 

ESRRA RXRA;ESR1;NR2C2 

ETS1 GABP;ELK4;ELF1 

FOXA  

GABP ELF1;ELK4;ETS1;UA5 

GATA1 GATA1-ext;TAL1;GATA3 

GATA1-ext GATA1;TAL1 

GATA3  

GFI1  

HNF4 RXRA;NR2C2;ESRRA 

HSF1  

MAX MYC;USF;BHLHE40;ZEB1 

MEF2  

MYC MAX;BHLHE40;USF 

NFE2 v-Maf;AP1 

NFKB1  

NFY NFY-UA2 

NFY-UA2 UA2;NFY 

NR2C2 RXRA;HNF4;ESRRA 

NR3C1 ESR1 

NRF1  
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PAX5  

POU2F2 SOX2-OCT4 

PRDM1 STAT2;PU1 

PU1 PRDM1;ETS1 

REST  

RFX5  

RUNX1  

RXRA ESRRA;ESR1;HNF4;NR2C2;UA3 

SOX2 SOX2-OCT4 

SOX2-OCT4 POU2F2 

SP1 EGR1;ZNF281 

SREBF1  

SRF  

STAT1 ETS1 

STAT2 PRDM1 

TAL1 GATA1;GATA1-ext 

TBP  

TCF12 ZEB1 

TCF7L2  

TEAD1  

UA1  

UA10  

UA11  

UA12  

UA2 NFY-UA2 

UA3 RXRA 

UA4 YY1 

UA5 GABP;ELF1;ELK4 

UA6  

UA7  

UA8  

UA9  

USF MAX;BHLHE40;MYC 

YY1 UA4 

ZEB1 TCF12 

ZNF143 ZNF143-ext;UA9 

ZNF143-ext ZNF143 

ZNF263 EGR1 

ZNF281 SP1;EGR1 

v-JUN CREB;CEBPB 

v-Maf NFE2;AP1;FOXA 
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Appendix D 

Table S4 Comparison of co-binding motifs proposed by DFGP and 

Wang et al. [2] 

This table compares the enrichment of the co-binding motifs proposed by Wang et al. and those 

proposed by DFGP in their corresponding ChIP-seq datasets. The enrichment of a co-binding motif is 

the fraction of peaks in a ChIP-seq dataset where a TF motif pair (a co-binding motif) occurs. The 

number in a parenthesis after a motif pair indicates the fraction of peaks containing this pair. The 1st 

column is the ChIP-seq dataset. The 2nd column is the co-binding motifs proposed by Wang et al. The 

3rd column is the co-binding motifs proposed by DFGP. The datasets can be grouped into 4 types 

based upon co-binding motifs proposed by Wang et al. and DFGP. The 4th column shows the type for 

a dataset.  

TYPE 1 datasets are those where the co-binding motifs proposed by DFGP and Wang et al. have the 

best enrichment. TYPE 2 datasets are those where DFGP captures the co-binding motifs proposed by 

Wang et al. but has found other novel motifs that have better enrichment. TYPE 3 datasets are those 

where DFGP does not capture co-binding motifs proposed by Wang et al. but has found novel motifs 

that have better enrichment. TYPE 4 datasets are those where DFGP fails to capture co-binding 

motifs proposed by Wang et al. and the motifs proposed by DFGP have lower enrichment. Those 

motifs proposed by DFGP, bolded in the column 3, have better or equal enrichments compared with 

those by Wang et al. in 66% of 68 ChIP-seq datasets. 

Dataset Co-Binding  Motifs by Wang et al. Co-Binding  Motifs by DFGP TYP
E 

wgEncodeSydhTfbsK562CjunIfna6hStdAlnRep0 AP1-GATA1(0.12604) AP1-GATA1(0.12604) 1 

wgEncodeSydhTfbsK562CjunIfng30StdAlnRep0 AP1-GATA1(0.11274) 
 

4 

wgEncodeSydhTfbsK562CjunIfng6hStdAlnRep0 AP1-GATA1(0.13455) 
 

4 

wgEncodeSydhTfbsK562CjunStdAlnRep0 AP1-GATA1(0.075197) AP1-UA12(0.14375) 3 

wgEncodeUchicagoTfbsK562EjunbControlAlnRep0 AP1-GATA1(0.095682) AP1-GATA1(0.095682) 1 

wgEncodeHaibTfbsHepg2JundPcr1xAlnRep0 AP1-FOXA(0.065756) AP1-FOXA(0.065756) 1 

wgEncodeSydhTfbsGm12878JundStdAlnRep0 AP1-PU1(0.12012) AP1-STAT2(0.14344);AP1-PU1(0.12012) 2 

wgEncodeUchicagoTfbsK562EjundControlAlnRep0 AP1-GATA1(0.064083) AP1-TCF12(0.068922) 3 

wgEncodeHaibTfbsHepg2Fosl2Pcr1xAlnRep0 
AP1-HNF4(0.099777); 
AP1-FOXA(0.078929) 

 
4 

wgEncodeSydhTfbsHelas3Ap2alphaStdAlnRep0 AP2-AP1(0.18148) AP2-ZNF263(0.32565) 3 

wgEncodeSydhTfbsHelas3Ap2gammaStdAlnRep0 AP2-AP1(0.15088) AP2-SP1(0.38072) 3 

wgEncodeSydhTfbsHepg2CebpbForsklnStdAlnRep0 CEBPB-FOXA(0.055536) 
 

4 

wgEncodeSydhTfbsHepg2CebpbIggrabAlnRep0 CEBPB-FOXA(0.05543) 
 

4 



 

 104 

wgEncodeHaibTfbsGm12878Atf3Pcr1xAlnRep0 CREBext-NRF1(0.098726) 
 

4 

wgEncodeSydhTfbsK562Atf3StdAlnRep0 CREBext-GABP(0.12768) 
 

4 

wgEncodeSydhTfbsHelas3E2f4StdAlnRep0 E2F4-NRF1(0.41629) E2F4-SP1(0.64056) 3 

wgEncodeSydhTfbsK562bE2f4UcdAlnRep0 
E2F4-NRF1(0.41116); 
E2F4-NFY(0.16844) E2F4-SP1(0.58268) 3 

wgEncodeHaibTfbsK562E2f6h50V0416102AlnRep0 E2F4-MAX(0.073022) E2F4-UA5(0.13395) 3 

wgEncodeSydhTfbsHelas3E2f6StdAlnRep0 E2F4-MYC(0.25443) 
 

4 

wgEncodeSydhTfbsK562bE2f6UcdAlnRep0 
E2F4-MAX(0.11922); 
E2F4-NFY(0.079512) 

 
4 

wgEncodeHaibTfbsH1hescEgr1V0416102AlnRep0 EGR1-GABP(0.20465) 
 

4 

wgEncodeHaibTfbsK562Egr1V0416101AlnRep0 EGR1-AP1(0.068074) 
EGR1-ZNF281(0.59685); 
EGR1-UA12(0.18081) 3 

wgEncodeHaibTfbsGm12878Elf1sc631V0416101AlnRep
0 ELF1-YY1(0.069905) 

ELF1-ZNF263(0.17873); 
ELF1-UA6(0.09621);ELF1-YY1(0.069905) 2 

wgEncodeSydhTfbsHepg2ErraForsklnStdAlnRep0 ESRRA-HNF4(0.37209) ESRRA-HNF4(0.37209) 1 

wgEncodeHaibTfbsHepg2Foxa1sc101058Pcr1xAlnRep0 FOXA-HNF4(0.10673) 
 

4 

wgEncodeHaibTfbsHepg2Foxa2sc6554V0416101AlnRe
p0 FOXA-HNF4(0.095183) 

 
4 

wgEncodeHaibTfbsH1hescGabpPcr1xAlnRep0 GABP-YY1(0.096735) GABP-SP1(0.32456);GABP-NRF1(0.16935) 3 

wgEncodeHaibTfbsK562GabpV0416101AlnRep0 GABP-YY1(0.088093) GABP-PU1(0.13195) 3 

wgEncodeHaibTfbsHepg2Hnf4ah171Pcr1xAlnRep0 
HNF4-FOXA(0.097266); 
HNF4-CEBPB(0.043767) HNF4-FOXA(0.097266) 1 

wgEncodeSydhTfbsHepg2Hnf4aForsklnStdAlnRep0 HNF4-FOXA(0.12373) 
HNF4-UA12(0.24385);HNF4-
FOXA(0.12373) 2 

wgEncodeHaibTfbsHepg2Hnf4gsc6558V0416101AlnRe
p0 

HNF4-FOXA(0.10344); 
HNF4-CEBPB(0.052682) HNF4-FOXA(0.10344) 1 

wgEncodeSydhTfbsGm12878MaxStdAlnRep0 
MAX-USF(0.46239); 
MAX-PU1(0.16148) MAX-USF(0.46239) 1 

wgEncodeSydhTfbsH1hescMaxUcdAlnRep0 MAX-CTCF(0.18607) 
 

4 

wgEncodeSydhTfbsHelas3MaxStdAlnRep0 MAX-USF(0.18114) MAX-USF(0.18114) 1 

wgEncodeSydhTfbsK562MaxStdAlnRep0 
MAX-USF(0.52444); 
MAX-NRF1(0.23282) 

 
4 

wgEncodeHaibTfbsGm12878Mef2aPcr1xAlnRep0 MEF2-PU1(0.089433) MEF2-PU1(0.089433) 1 

wgEncodeHaibTfbsGm12878Mef2csc13268Pcr1xAlnRe
p0 

MEF2-PU1(0.11819); 
MEF2-AP1(0.066254) 

MEF2-STAT2(0.13723); 
MEF2-PU1(0.11819); 
MEF2-AP1(0.066254) 2 

wgEncodeOpenChromChipHepg2CmycAlnRep0 MYC-CTCF(0.35156) MYC-SP1(0.36133) 3 

wgEncodeOpenChromChipK562CmycAlnRep0 MYC-YY1(0.026341) MYC-SP1(0.11919) 3 

wgEncodeSydhTfbsK562CmycIfna30StdAlnRep0 MYC-CTCF(0.21945) 
 

4 

wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep0 MYC-GABP(0.090244) 
 

4 

wgEncodeSydhTfbsK562Nfe2StdAlnRep0 
NFE2-AP1(0.59695); 
NFE2-USF(0.057579) NFE2-AP1(0.59695);NFE2-USF(0.057579) 1 

wgEncodeSydhTfbsGm12878NfkbIggrabAlnRep0 NFKB1-PU1(0.15437) 
 

4 

wgEncodeSydhTfbsGm12891NfkbIggrabAlnRep0 NFKB1-PU1(0.13005) 

NFKB1-ETS1(0.15014); 
NFKB1-EBF1(0.13524); 
NFKB1-PU1(0.13005) 2 

wgEncodeSydhTfbsK562NfybStdAlnRep0 NFY-USF(0.16206) 
NFY-SP1(0.49356);NFY-ZNF281(0.46438); 
NFY-EGR1(0.4035);NFY-UA2(0.20269) 3 

wgEncodeSydhTfbsHepg2bTr4UcdAlnRep0 NR2C2-GABP(0.17384) NR2C2-GABP(0.17384) 1 

wgEncodeSydhTfbsK562bTr4UcdAlnRep0 NR2C2-GABP(0.20522) 
 

4 

wgEncodeSydhTfbsHelas3Prdm1vIggrabAlnRep0 PRDM1-AP1(0.20711) PRDM1-AP1(0.20711) 1 

wgEncodeHaibTfbsHepg2RxraPcr1xAlnRep0 RXRA-FOXA(0.091234) 
 

4 

wgEncodeHaibTfbsGm12878Sp1Pcr1xAlnRep0 SP1-UA2(0.14446) SP1-NFY(0.17505) 3 
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wgEncodeHaibTfbsK562Sp1Pcr1xAlnRep0 SP1-NFY(0.30515) SP1-NFY(0.30515) 1 

wgEncodeHaibTfbsK562Sp2sc643V0416102AlnRep0 
SP1-NFY(0.45124); 
SP1-CTCF(0.32298) SP1-NFY(0.45124);SP1-CTCF(0.32298) 1 

wgEncodeSydhTfbsK562Stat1Ifna30StdAlnRep0 STAT1-STAT2(0.16609) STAT1-STAT2(0.16609) 1 

wgEncodeSydhTfbsK562Stat2Ifna30StdAlnRep0 STAT2-STAT1(0.087684) STAT2-STAT1(0.087684) 1 

wgEncodeHaibTfbsGm12878Tcf12Pcr1xAlnRep0 TCF12-PU1(0.098749) 
 

4 

wgEncodeHaibTfbsH1hescTcf12Pcr1xAlnRep0 TCF12-SOX2OCT4(0.067414) 
 

4 

wgEncodeSydhTfbsHepg2Tcf4UcdAlnRep0 
TCF7L2-RXRA(0.14831); 
TCF7L2-FOXA(0.12074) 

 
4 

wgEncodeHaibTfbsGm12878Pbx3Pcr1xAlnRep0 UA2-SP1(0.19661) 
 

4 

wgEncodeHaibTfbsK562Zbtb7asc34508V0416101AlnRe
p0 UA3-CTCF(0.43336) UA3-EGR1(0.5674);UA3-ZNF281(0.54297) 3 

wgEncodeHaibTfbsK562Thap1sc98174V0416101AlnRe
p0 

UA5-GABP(0.20193); 
UA5-NRF1(0.13218) UA5-GABP(0.20193);UA5-NRF1(0.13218) 1 

wgEncodeHaibTfbsGm12878Usf1Pcr2xAlnRep0 USF-YY1(0.079729) 
USF-SP1(0.32358);USF-NRF1(0.14249); 
USF-ELF1(0.11366);USF-ELK4(0.11366) 3 

wgEncodeHaibTfbsK562Usf1V0416101AlnRep0 USF-NFY(0.13712) 
USF-ZNF281(0.26947);USF-SP1(0.20093); 
USF-EGR1(0.17719);USF-NFY(0.13712) 2 

wgEncodeSydhTfbsH1hescUsf2IggrabAlnRep0 USF-YY1(0.091205) 

USF-ZNF281(0.41745);USF-SP1(0.35299); 
USF-EGR1(0.32573);USF-ELK4(0.10252); 
USF-YY1(0.091205) 2 

wgEncodeSydhTfbsK562Usf2StdAlnRep0 USF-NFY(0.32493) USF-SP1(0.3857) 3 

wgEncodeHaibTfbsGm12878Yy1V0416101AlnRep0 YY1-GABP(0.060914) 
YY1-EGR1(0.14927);YY1-SP1(0.14402); 
YY1-UA5(0.076771);YY1-GABP(0.060914) 2 

wgEncodeHaibTfbsK562Yy1V0416101AlnRep0 YY1-GABP(0.091199) YY1-UA5(0.10861) 3 

wgEncodeHaibTfbsK562Yy1V0416102AlnRep0 YY1-GABP(0.075493) YY1-SP1(0.18887);YY1-UA5(0.092772) 3 

wgEncodeSydhTfbsK562bYy1UcdAlnRep0 YY1-GABP(0.20148) YY1-UA5(0.23472);YY1-GABP(0.20148) 2 
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