
A Task Offloading Framework for
Energy Saving on Mobile Devices

using Cloud Computing

by

Majid Altamimi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Majid Altamimi 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Over the last decade, mobile devices have become popular among people, and their
number is ever growing because of the computing functionality they offer beyond primary
voice communication. However, mobile devices are unable to accommodate most of the
computing demand as long as they suffer the limited energy supply caused by the capacity
of their small battery to store only a relatively small amount of energy. The literature
describes several specialist techniques proposed in academia and industry that save the
mobile device energy and solve this problem to some extent but not satisfactorily. Task
offloading from mobile devices to cloud computing is a promising technique for tackling the
problem especially with the emergence of high-speed wireless networks and the ubiquitous
resources from the cloud computing. Since task offloading is in its nascent age, it lacks
evaluation and development in-depth studies.

In this dissertation, we proposed an offloading framework to make task offloading pos-
sible to save energy for mobile devices. We achieved a great deal of progress toward
developing a realistic offloading framework. First, we examined the feasibility of exploit-
ing the offloading technique to save mobile device energy using the cloud as the place to
execute the task instead of executing it on the mobile device. Our evaluation study reveals
that the offloading does not always save energy; in cases where the energy for the compu-
tation is less than the energy for communication no energy is saved. Therefore, the need
for the offloading decision is vital to make the offloading beneficial. Second, we developed
mathematical models for the energy consumption of a mobile device and its applications.
These models were then used to develop mathematical models that estimate the energy
consumption on the networking and the computing activities at the application level. We
modelled the energy consumption of the networking activity for the Transmission Control
Protocol (TCP) over Wireless Local Area Network (WLAN), the Third Generation (3G),
and the Fourth Generation (4G) of mobile telecommunication networks. Furthermore, we
modelled the energy consumption of the computing activity for the mobile multi-core Cen-
tral Processing Unit (CPU) and storage unit. Third, we identified and classified the system
parameters affecting the offloading decision and built our offloading framework based on
them. In addition, we implemented and validated the proposed framework experimentally
using a real mobile device, cloud, and application.

The experimental results reveal that task offloading is beneficial for mobile devices
given that in some cases it saves more than 70% of the energy required to execute a
task. Additionally, our energy models accurately estimate the energy consumption for
the networking and computing activities. This accuracy allows the offloading framework
to make the correct decision as to whether or not offloading a given task saves energy.

v

Our framework is built to be applicable to modern mobile devices and expandable by
considering all system parameters that have impact on the offloading decision. In fact, the
experimental validation proves that our framework is practical to real life scenarios. This
framework gives researchers in the field useful tools to design energy efficient offloading
systems for the coming years when the offloading will be common.

vi

Acknowledgements

All thanks and praise is to ALLAH Almighty, the most beneficent, the most merciful,
who helped and gave me the ability and knowledge to successfully complete this thesis.

I would like to express my thanks and deep gratitude to my supervisor, Professor
Kshirasagar Naik, who was always with me with endless support, encouragement, and
friendly discussions. He taught me how to have different thinking strategies and how to
have novel solutions. This work would have not been done without his advice and valuable
comments.

I would like to thank Professor Krishnaiyan Thulasiraman, Professor Ajit Singh, Pro-
fessor Otman Basir, and Professor Mahesh Pandey, for the effort to read my thesis and give
me their feedback with very valuable comments and suggestions that purify and clarify my
thesis.

I sincerely acknowledge the scholarship I received from the King Saud University in
Saudi Arabia and its representative here in Canada, the Saudi Culture Bureau, for provid-
ing me the opportunity to successfully build my career.

My deepest appreciation, and my grateful thanks go to my father, Lafi, and my mother,
Alyah Altamimi, who were the permanent source of love, encouragements, and support.
Their prayers are the only reason behind my success. Foremost amongst the individuals
to whom I am thankful is my wife, Shatha Altamimi, for her overwhelming love, ceaseless
patience, and continuous motivation. Being away from her parents does not prevent her to
fill our family with gladness during our long journey to accomplish my goal. My children,
Meshari, Moayad, and Refal, are the ones who make my life colourful, enjoyable, and full
of fun.

I am indebted to my brothers and sisters, my father-in-law, and my mother-in-law for
their support, help, and love.

vii

Dedication

To my parents... I am proud of you
To my wife.. I am with you

To my children... I am for you

ix

Table of Contents

List of Tables xv

List of Figures xvii

List of Abbreviations xxi

List of Notation xxv

1 Introduction 1

1.1 Research Motivation and Objectives . 2

1.2 System Models . 4

1.2.1 Energy Model of Mobile Devices . 4

1.2.2 Energy Model of Mobile Applications 5

1.2.3 Network Model . 12

1.3 Problem Definition . 13

1.4 Thesis Contributions . 16

1.4.1 Evaluate Offloading Energy Costs 17

1.4.2 Develop Energy Models for the Offloading Framework 18

1.4.3 Propose and Develop Offload Framework 18

1.5 Thesis Organization . 20

xi

2 Background and Literature Review 21

2.1 Smartphones . 21

2.1.1 History of Smartphones . 21

2.1.2 Smartphone Definition . 25

2.1.3 Smartphone as a Source of Data . 25

2.1.4 Smartphone Usages . 25

2.1.5 Multimedia on Smartphones . 26

2.2 Cloud Computing . 26

2.2.1 An Overview on Cloud Computing 26

2.2.2 Cloud Computing Definition . 27

2.2.3 Cloud Computing Services . 28

2.2.4 Cloud Computing Implementations 29

2.3 Offloading . 30

2.3.1 Offloading Definition . 30

2.3.2 Offloading Techniques . 30

2.3.3 Offloading to Cloud Computing . 31

2.3.4 Offloading Frameworks . 33

2.4 Energy Saving Techniques for Mobile Devices 36

2.4.1 Cloud Computing for Mobile Devices 36

2.4.2 Saving Mobile Device Energy by the Offloading 37

3 Evaluating Offloading Energy Costs 39

3.1 Preamble . 39

3.2 Methodology . 40

3.3 Experiments on Network Related Application 42

3.4 Experiments on Cloud Applications . 46

3.5 Limitations of Our Approach . 53

3.6 Summary and Discussion . 54

xii

4 Modelling the Networking Energy Consumption 55

4.1 Preamble . 55

4.2 Literature of the Networking Energy Modelling 57

4.2.1 Modelling Studies . 57

4.2.2 Networking Measurement Studies 58

4.3 WLAN Analytical Energy Model . 59

4.3.1 File Download Case . 61

4.3.2 File Upload Case . 62

4.4 Mobile Data Analytical Energy Model . 63

4.4.1 Background . 64

4.4.2 Energy Models . 65

4.5 Experimental Validation . 68

4.5.1 Methodology . 68

4.5.2 File Transfer over WLAN Networks 72

4.5.3 File Transfer over 3G and 4G Networks 74

4.5.4 Offloading Case Study . 79

4.6 Summary and Discussion . 80

5 Modeling the Hardware Energy Consumption 83

5.1 Preamble . 83

5.2 Hardware Profiling Literature . 86

5.3 Profiling Models . 88

5.3.1 CPU Profile . 89

5.3.2 Storage Unit Profile . 91

5.3.3 Application Profile . 92

5.4 Experimental Validation . 93

5.4.1 Experimental Setup . 94

5.4.2 Experimental Results . 94

xiii

5.4.3 Applicability Validation . 98

5.4.4 Application Total Energy . 100

5.5 Summary and Discussion . 102

6 The Proposed Offloading Framework 105

6.1 Preamble . 105

6.2 System Parameters . 107

6.2.1 User Profile . 108

6.2.2 Application Profile . 108

6.2.3 Content Profile . 108

6.2.4 Hardware Profile . 109

6.2.5 Network Profile . 109

6.2.6 Battery Profile . 110

6.2.7 Location Profile . 110

6.2.8 Cloud Computing Profile . 111

6.2.9 Profiles Summary . 111

6.3 Offloading Framework and Decision Procedure 113

6.4 Proof-of-Concept Implementation . 115

6.4.1 Practical Implementation . 115

6.4.2 A Case Study . 118

6.4.3 The Offloading Decision . 119

6.5 Summary and Discussion . 121

7 Conclusions and Future Research 129

7.1 Conclusions . 129

7.2 Future Research . 130

References 131

Author’s Publications 145

xiv

List of Tables

1.1 Power consumption of a hardware module at different states 11

2.1 Summary of mobile system generations . 24

2.2 Examples for cloud computing and its services 29

3.1 Energy consumption (µJ/B) of smartphone 45

3.2 Properties of the video files . 50

4.1 IEEE 802.11g system parameters . 60

4.2 Average power consumption (mW) . 73

4.3 Parameters obtained from the experiments 73

4.4 RRC parameter values . 77

6.1 List of symbols used in profiles formulation 112

6.2 Boxes implementation . 118

6.3 Experimentally obtained profile parameters 120

xv

List of Figures

1.1 The general energy model of a mobile device 1 5

1.2 The energy model of an application . 6

1.3 Execution time distribution . 7

1.4 Series time execution of the hardware modules for web browsing 8

1.5 Parallel time execution for the hardware modules for video streaming . . . 8

1.6 Power breakdown of mobile devices . 12

1.7 The network model . 13

1.8 The trends of the mobile device technologies 15

1.9 Our offloading framework . 19

2.1 Mobile technologies evolution . 23

2.2 Evolutions to cloud computing . 27

2.3 Offloading decision areas . 32

2.4 Research area of the offloading framework 34

2.5 Communication requirements for cloud services 37

3.1 Smartphones power consumption for progressive download via WLAN . . . 41

3.2 Upload power consumption . 43

3.3 Download power consumption . 43

3.4 Upload data rate . 44

3.5 Download data rate . 44

xvii

3.6 Power consumption for playing from the device 45

3.7 Power consumption in progressive download of a video file 46

3.8 Encoding scenarios where the original file exists on the smartphone 48

3.9 Encoding scenarios where the original file exists on the MCC 49

3.10 Total energy consumed by App1 and the default MCC settings 51

3.11 Total energy consumed by App1 and the customized MCC settings 52

3.12 Total energy consumed by App2 and the default MCC settings 52

3.13 Total energy consumed by App2 and the customized MCC settings 53

4.1 3G and 4G RRC status . 65

4.2 Experiments setup . 69

4.3 Example for power and data rate for different TCP and RRC status 70

4.4 Total energy consumption for file downloading over WLAN 71

4.5 TCP trace: Time versus file size . 72

4.6 Experiment measurements and estimation model 74

4.7 Energy consumption for WLAN versus file size 75

4.8 RTT statistics . 76

4.9 Statistics of TCP throughput . 77

4.10 Statistics of mobile power consumption . 78

4.11 3G energy consumption . 78

4.12 4G energy consumption . 79

4.13 Total energy consumption for an offloading case study 80

5.1 Profiling overview for energy estimation . 85

5.2 Power consumption of the mobile hardware components 86

5.3 Power consumption for playing a Youtube video in a multi-core CPU . . . 90

5.4 CPU power consumption at different utilization 92

5.5 Experiments setup . 94

xviii

5.6 Pmin for CPU profiling of Samsung Galaxy Note 3 96

5.7 Pmax for CPU profiling of Samsung Galaxy Note 3 97

5.8 FFmpeg application profiling (KB/s: Kilo Bytes per second) 98

5.9 Pmin and Pmax for CPU profiling of Samsung Galaxy Nexus 99

5.10 FFmpeg application profiling on Samsung Galaxy Nexus 100

5.11 Total application energy consumption on Samsung Galaxy Note 3 101

5.12 Total application energy consumption statistics 102

5.13 Total application energy consumption on Samsung Galaxy Nexus 103

5.14 Total execution time for encoding a video file 104

6.1 Proposed offloading framework . 113

6.2 Offloading decision flowchart . 116

6.3 Offloading gain with WLAN interface . 123

6.4 Offloading gain with 3G interface . 125

6.5 Offloading gain with 4G interface . 127

xix

List of Abbreviations

1G The first Generation mobile system

2G The second Generation mobile system

3G The Third Generation mobile system

3GPP 3rd Generation Partnership Project

4G The Fourth Generation mobile system

ACK Acknowledgement

ARQ Automatic Repeat reQuest

CC Cloud Computing

CDMA Code-Division Multiple Access

CQI Channel Quality Index

CTS Clear to Send

CW MAC Contention Window

DIFS Distributed InterFrame Spacing

DRX Discontinuous Reception

DTX Discontinuous Transmission

DVFS Dynamic Voltage and Frequency Scaling

EDGE Enhanced Data Packet for Global Evolution

xxi

FTP File Transfer Protocol

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communication

GUI Graphic User Interface

HSDPA High Speed Downlink Packet Access

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICT Information and Communication Technology

LAN Local Area Network

LTE Long Term Evolution

MAC Media Access Control

MC Mobile Computing

MCC Multimedia Cloud Computing

MCS Modulation and Coding Schemes

MIMO Multiple-Input and Multiple-Output

MobCC Mobile Cloud Computing

NRA Network Related Applications

PaaS Platform as a Service

PDC Japan Personal Digital Cellular

PHY Physical layer

RLC Radio Link Control

RRC Radio Resource Controller

xxii

RSS Received Signal Strength

RTS Request to Send

SaaS Software as a Service

SIFS Short Inter-Frame Space

SIN Signal to Noise ratio

SISO Single-Input and Single-Output

SMS Short Message Service

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

TTI Transmission Time Interval

UE User Equipment

UMTS Universal Mobile Telecommunications Systems

WLAN Wireless Local Area Network

WNI Wireless Network Interfaces

WPAN Wireless Personal Area Network

XaaS Everything as a Service

xxiii

List of Notation

Apps Set of mobile device applications

An The application n on the mobile device

OS Operating System of the mobile device

HM Set hardware modules of the mobile device

Mr The module r in the mobile device

x Number of applications on the device

y Number of hardware modules

MCm Set of computing modules

MTr Set of communication modules

MSn Set of sensing modules

MUi Set of user interface modules

HMk Set of hardware modules that are required by the application A

TAM Required time by the module M for the application A

ρ(t) Probability density function of the execution time

xxv

µ Expected value of the execution time

σ Distribution variance of the execution time

TA Total execution time for the application A

TAs Total time of series execution for the application A

TAp Total time of parallel execution for the application A

U Set of mobile device users

Uj User j in the set U

Cj Configurations of the user Uj

Bj Behaviour of the user Uj

kAUj Number of used modules by the application A if the user is Uj

TAUj Total execution time of the application A if the user is Uj

P a
M Active power consumed by the module M

TAUj Total execution time of the module M for the application A if the
user is Uj

EA
M Energy consumed by the module M for the application A

EA Total energy consumed by the application A

EApps Total energy consumed by all mobile device applications (Apps)

T iM Idling time of the module M

P i
M Idling power consumed by the module M

T sM Sleeping time for the module M

xxvi

P s
M Sleeping power consumed by the module M

Eis Energy consumed by idle and sleep modules

EB Energy capacity of the mobile device battery

QoS Quality of Service

QoE Quality of Experience

mb Number of MAC backoff stages

Ts Total packet transmission time for successful transmission

Tc Total packet transmission time for collide transmission

TRTS Transmission times for the RTS packet

TCTS Transmission times for the CTS packet

TACK Transmission times for the ACK packet

TD Transmission times for the data packet

Lmax Packet payload

HMAC MAC Header

TPHY Transmission times for the physical layer header

σ Physical channel time slot

Rdata Data rate

τ The probability that a node sends a packet at a random time slot

F Transmission file size in bytes

xxvii

Fs MAC frame size in bytes

PRX Power consumption at receiving

PTX Power consumption at transmitting

TTACK TCP acknowledgement transmission time

NdACK
The number of TCP acknowledgements received

TH The transmission time for the MAC header

Ndseg The number of TCP segments sent without acknowledgements in
file downloading

Rs Server limited data rate

NuACK
The number of TCP acknowledgements received

Nuseg The number of TCP segments sent without acknowledgements in
file uploading

E3G/4G Energy consumption by the 3G or 4G interfaces

Eps Promotion signalling energy consumption

Etrx Transmission energy consumption

Etail Tail energy consumption

Pps Promotion signalling power consumption

Ptrx Transmission power consumption

Ptail Tail power consumption

Tps Promotion signalling time

xxviii

Ttrx Transmission time

Ttail Tail time

RTCP Data rate limitation by the TCP

R3G/4G Data rate limitation by the 3G or 4G networks

CWD TCP congestion window

RTT Round-trip time

IWD TCP initial window size

Tss Time for the TCP slow-start to reach CWD

Fss The data transferred during the TCP slow-start

γ The growth of the TCP window size

EWNI The energy consumed by the wireless network interface

EOS The energy consumed by the operating system

Ps CPU static power

Pd CPU dynamic power

cp CPU capacitance

v CPU supply voltage

f CPU clock frequency

Pc CPU core power

Pb multi-core CPU base power

xxix

Pmc multi-core CPU total power

Pcpu CPU total power

Pmin CPU power at zero utilization

Pmax CPU power at 100% utilization

U CPU utilization

Psu Storage unite power consumption

Rsu Storage unite data rate of the writing/reading

T Expected execution time

I Total number of application instructions

cc Number of CPU cycles per instruction

NS Networking Status

Tu User threshold time for the offloading

EA Application total energy

QoSA Application Quality of Service

UA Application utilization to the CPU

RA Application throughput

Ec Total energy consumed by the component c

Tc Total time of using the component c

Pc Average power consumed by the component c

xxx

ENT Total energy consumed in networking

TNT Total networking time

PNT Average power consumption in networking

R A Network data rate

e The energy efficiency of a communication module

Eoff Total offloading energy

EB Remaining energy on the device battery

NTi The availability binary variable for the network i

CCj The availability binary variable for the cloud j

T cc Total time of the task in the cloud

T off Offloading threshold time

QoScc Cloud application supported Quality of Service

G The offloading gain in Joule

tG Offloading gain in battery life time

xxxi

Chapter 1

Introduction

These days, the number of mobile devices (i.e., smartphones and tablets) has been growing
dramatically, more than other computing devices. The new mobile devices are rich in data
resources, such as sensors and camera, and rich in user interfaces, such as speakers and
colourful screens. The Internet connectivity gives their users the ability to communicate
with each other through social networking and online gaming. Moreover, mobile users can
share their daily life with friends and followers by text, picture, or video clip. Accordingly,
the mobile devices are noticeably the largest contributors to social networks [1, 2]. As a
result, advanced mobile devices are required to handle these functionalities, most of which
are known as intensive computing tasks.

However, mobile devices are constrained by their small batteries that store a limited
amount of energy. Battery technology is not making a consistent progress with the semi-
conductor technology in term of increasing the energy density (i.e., Joules per cubic cen-
timetre) that can accommodate the energy consumed by the semiconductor components
of a mobile device. Therefore, the major concern for mobile device users is the limited
energy capacity of their devices. As limited battery capacity is a significant issue, industry
and academic researchers have been extensively addressing the issue from the hardware
level up to the application level. Smart batteries, power scheduling, efficient operating
systems and applications, efficient graphical user interfaces, energy-aware communication
protocols, and task offloading are all examples of these methodologies and techniques [3].

Task Offloading is a promising solution to overcome many of the mobile device lim-
itations, especially the energy limitation [4]. As current mobile devices feature Internet
connectivity with fast wireless networks, reaching remote computing resources is practical.
In the era of cloud computing, remote computing resources are accessible at anywhere and

1

CHAPTER 1. INTRODUCTION

anytime. Cloud computing provides its users with virtually unlimited computing resources
from its data center [5]. Based on these observations, a mobile device is able to offload any
specific computing task to the cloud for remote task execution on the cloud and receive
the result with less energy consumption than executing that task on the device itself [6, 7].

However, offloading is a critical technique that depends on the system parameters of
both the mobile device and the cloud. For example, offloading is not beneficial if the
mobile device consumes energy on offloading the task more than on execute executing it
on the device. Therefore, an offloading decision is vital to make the offloading beneficial for
mobile devices. This offloading decision engine estimates the required energy in both cases
and then decides to whether or not the mobile devices will save energy by the offloading a
given task.

The aim of this thesis is to implement an offloading framework that is suitable for
implementation in mobile devices and applicable to the cloud computing environment,
which provides the offloading capability to mobile devices. We consider all sources of the
system parameters and classify them as profiles, where we build the framework based on
them. These profiles let the proposed framework to accurately make the correct offloading
decision that save energy on mobile devices. In addition, we develop energy estimation
models for these profiles to estimate the energy cost of the networking and computing
activities that is needed for the offloading decision.

1.1 Research Motivation and Objectives

In the recent years, mobile devices become essential on people life and their usages having
relatively a great breadth that includes but not limited to gaming, stock marketing, online
media, and communicating. The advanced capabilities of these devices encourage the
multimedia (i.e., photo, audio, and video) and their applications to be hosted by mobile
devices. However, the main concern for mobile device users is the battery cycle life. While
the multimedia is resource intensive application, they drain most of the battery energy.
Thus, the users demand solutions that give them the ability to have advanced multimedia
applications on their devices.

The communication and semiconductor technologies present a noticeable positive trend
in the recent years. The Internet becomes ubiquitous and low-priced, where in contrasts
its bandwidth grows dramatically. Wireless communications are one of the most developed
technologies in the 21st century. The wireless speed is increasing everyday and wireless
access points available almost everywhere. Semiconductor technology supports small and

Majid Altamimi’s PhD Thesis 2

1.1. RESEARCH MOTIVATION AND OBJECTIVES

light devices by high dense electronics, which associates the mobility with much enhanced
functionalities. On the other hand, Cloud Computing (CC) is a new computing paradigm
that provides unrestricted computing resources to the end-users. The computing resources
are provided as services that are available on-demand, anywhere, and anytime. The key
feature of the CC is that the end-users have the computing recourses in the form pay-per-
use model and have no responsibility for operating or managing the cloud infrastructure.

The offloading technique is a promising technique to overcome the limited energy prob-
lem for the mobile devices. Offloading a task from mobile device to CC is a feasible solution
with the assistance of the advances on the Internet, wireless communications, and CC.

In this research, we have the following objectives:

1. Introduce the concept of Mobile Cloud Computing (MobCC), which a cloud comput-
ing provides its services especially to mobile devices (Published in [7]);

2. Develop and analysis accurate mathematical models for the energy consumption of
the mobile devices (Section 1.2);

3. Examine the feasibility of the offloading from mobile devices to the cloud in case of
saving energy, and introduce the concept of Multimedia Cloud Computing (MCC)
(Chapter 3 and Published in [8]);

4. Build mathematical models that estimate the energy cost for the networking activity
(Chapter 4 and Published in [9]);

5. Build mathematical models that estimate the energy cost for the computing activity
(Chapter 5 and Published in [10]);

6. Implement and develop offloading algorithms that perform the offloading decision
(Section 6.4 and Published in [11]);

7. Profile the system parameters and formulate them as mathematical models that allow
the offloading algorithms to estimate the energy cost (Section 6.2 and Published in
[12]);

8. Build a comprehensive offloading framework that describe the decision approach for
offloading implementation on mobile devices (Section 6.3 and Published in [12]); and

9. Validate our developed models and the proposed offloading framework by conducting
sets of experiments on real mobile devices and clouds using real applications and
scenarios (Chapters 4-6).

3 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

1.2 System Models

At the beginning of studying the energy aspect for mobile devices, it is important to have
detailed energy models for the system. These energy models give us the ability to identify
how and where the energy is consumed. Furthermore, with the help of these models, we can
analyze and develop our proposed system, which is the offloading framework. Therefore,
we model the mobile device with respect to the energy consumption. Consequently, we
model the energy consumption of an application on a mobile device. Finally, we present
the network model for the offloading technique.

1.2.1 Energy Model of Mobile Devices

A user of a mobile device uses the device by a set of applications (Apps) that contains
x number of applications, which is presented as the set Apps = {A1, A2, · · · , Ax}, where
An is the application number n in the Apps set. These applications interact with the
device operating system (OS). Besides, the OS interacts and manages the device hardware
according to the application requests and requirements. The device hardware consists of a
set of hardware components that we name each component as a “Module”. A mobile device
has a set of modules (HM) that contains y number of modules, which can be presented as
a set HM = {M1,M2, · · · ,My}, where Mr is the module number r in the HM set.

In particular, there are different types of modules to perform different tasks. For ex-
ample, computing modules (MCm) are to do the computation tasks; and similarly, the
communication modules (MTr) are to do the communication tasks. These modules are
directly connected to the mobile device battery that powers all of these modules. Im-
portantly, the battery is rechargeable to support the device mobility with no need for
replacement. Figure 1.1 shows our perspective model of the mobile device hardware and
the corresponding energy flow.

Majid Altamimi’s PhD Thesis 4

1.2. SYSTEM MODELS

User Interface Modules

MUi

Computing Modules

MCm

Sensors Modules

MSn

Communication Modules

MTr

User

Uj

Application

1

Operating System (OS)

CPU

Battery

Application

n

Application

x

GPU RAM

LCD

3G WLAN BT

GPSMic Cam. Gyro Acc.

Keys

HD

Touch

Cell.

Prox.

IR

Figure 1.1: The general energy model of a mobile device 1

1.2.2 Energy Model of Mobile Applications

In this section, we implement and develop an energy model for a general mobile application.
Assume an application A requires some of the hardware modules (HMk) to run properly,
where HMk is a subset of modules from the set HM (i.e., HMk ⊆ HM). That is, the
number of modules required by an application A should be less than or equal to the total
number of hardware modules (kA ≤ y). As a result, there is a number kA associated with
each application. In fact, the application A uses several modules for some time according

1Cell.: Cellular voice telecommunication technology, 3G: Third Generation mobile telecommunications,
WLAN: Wireless Local Area Network, BT: Bluetooth communication technology, IR: Infrared communi-
cation technology, GPS: Global Positioning System, Prox.: Proximity sensor, Mic.: Microphone, Cam.:
Camera ,Gyro.: Gyroscope sensor, Acc.: Accelerometer sensor, CPU: Central Processing Unit, GPU:
Graphic Processing Unit, RAM: Random Access Memory, HD: Hard Disk, LCD: Liquid crystal display,
Keys: Keyboards, and Touch: Touch Screen.

5 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

User

Uj

Operating System (OS)

Battery

Application

n

M1 M2 Mr Mk

QoE

An

MkTAnT1

AnT2

An

MrT

AnT

a

MP 1

a

MP 2

a

MrP
a

MkP

Ank

(Cj, Bj)

Figure 1.2: The energy model of an application

to its functionalities and requirements. Thus, the application A runs a module M for a
time TAM , where M is a module in the module set HMk (M ∈ HMk). Figure 1.2 depicts
this energy model for the application A. In the following subsections, we present the model
for the time and the power based on this figure because the energy is function of the time
and power.

Time Modelling

It is important to note that the time (TAM) is not a constant for a specific application
and module and it could be continuous or discrete time (e.g., intermittent periods of
time). In particular, it could follow an arbitrary probability distribution function as it has
been approved in [13, 14, 15], which defined by the application, the used modules, and

Majid Altamimi’s PhD Thesis 6

1.2. SYSTEM MODELS

Execution

time (t)

Probability

Density

An

MrT

)(t

Figure 1.3: Execution time distribution

the user behaviour as we explain next. Figure 1.3 shows an arbitrary probability density
function ρ(t) of the execution time, where µ and σ are the expected value and the variance,
respectively. For simplicity, we assume the execution time equals the expected execution
time of the distribution as expressed in Eq. (1.1).

TAM = E [T] = µ (1.1)

The total time required by an application A to finish its tasks is given by TA. In reality,
there are series and parallel execution patterns for the modules by the application A. If
the application A executes the modules in series as presented in Fig. 1.4, the total time
TAs equals the sum of time required by all HMk modules to finish application A tasks.

TAs =
k∑
r=1

TAM (1.2)

On the other hand, if the execution is performed in parallel as presented in Fig. 1.5, the
total time TAp equals the maximum time required by all HMk modules to finish application
A tasks.

TAp = max
16r6k

TAM (1.3)

7 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

Execution

time (t)

Typing Downloading

All

Smartphone

modules

Web

MTrT0

Displaying

Web

MUiT
Web

MUiT

Compiling

Web

MCmT

Figure 1.4: Series time execution of the hardware modules for web browsing

Execution

time (t)

Communication

modules
Downloading

Play
Graphic

modules

Video

MTrT
Video

MUiT0

Processing

Video

MCmT

Computation

modules

Figure 1.5: Parallel time execution for the hardware modules for video streaming

Majid Altamimi’s PhD Thesis 8

1.2. SYSTEM MODELS

In general, the application A could execute the modules by these two execution patterns
together in a hybrid pattern. Therefore, the total time for an application A equals the
maximum of times required by series and parallel execution.

TA = max
(
TAss, T

A
ps

)
(1.4)

where TAss =
∑ks

r=1 T
A
M and TAps = max16r6kp T

A
M are the execution time of modules subsets

that run on series and parallel, respectively.

Exploring the energy consumption on a mobile device should consider the user config-
urations and behaviour since the impact of the user is crucial on battery powered device
[16, 17]. Recent mobile devices give their users the ability to configure many of their oper-
ating system and applications features for the users’ convenience. For instance, a user can
set the scale of the screen brightness and can select one favourite wireless data network. In
addition, the usage pattern for a user is different from one user to another. For example,
some users prefer to listen to music on the mobile device and others prefer to do web
browsing and emailing.

Each user can be distinguished by his/her configurations and behaviour. If we represent
a user by Uj, then we can present this as a pair of the user configurations and behaviour as
Uj = (Cj, Bj) as shown in Fig. 1.2. As a result, we have a set of users U = {U1, U2, · · · , Uz},
which comprises all possible of combinations (i.e., z) of users configurations and behaviour.

A user Uj configures an application A by enabling and disabling some of this application
configurable settings and features [18, 19, 20]. Consequently, the application A enables and
disables its modules MA based on the user Uj configurations. For example, a user could
disable the GPS coordination to be embedded in the captured photos where this action
prevents the camera application from using the GPS module. Therefore, the actual used
modules by an application A are less than HMk because of the user Uj configurations
Cj. We represent the set of actual used modules by MA

Uj, which size equals to kAUj where
kAUj ≤ kA ≤ k.

On the other hand, the user behaviour affects the execution time of the applications
[13, 14]. To illustrate this effect, assume the user U1 has a preference to watch high
definition (HD) videos while the user U2 has a preference to watch standard definition
(SD) videos. As a result, the downloading time of HD video for user U1 is definitely longer
than the time for SD video in U2 case. Therefore, the behaviour Bj of user Uj is the
key factor that shapes the distribution of the execution time of an application. Since the
execution time highly depends on the user behaviour we reformat the execution time as a
function on the user behaviour and presented as T (A,Uj).

9 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

Power Modelling

Assuming a module M consumes instantaneous power equals p(t), and stays for period of
time equals T . Then, the average consumed power P by a module for a period of time is
given by the following expression.

P =
1

T

∫ T

0

p(t)dt (1.5)

Importantly, the active power depends on the type of the task. For instance, usually
the transmission power is higher than the receiving power for the communication modules.
Another example is that the power consumed for LCD depends on the brightness of the
screen. Thus, the active power has d discrete levels and takes only one level at time.
Therefore, the active power is presented as P a =

{
P a1, P a2, · · · , P ad

}
, where P al is the

active power of level l.

Energy Modelling

If the consumed power by a module M is equal to P a
M at active mode, then the energy

consumed (EA
M) by this module for an application A is given as the required time (TAM)

by an application A for module M times the active power (P a
M) of this module as in Eq.

(1.6).

EA
M = T

(A,Uj)
M × P a

M (1.6)

The total energy consumed EA for finishing application A tasks is equal to the sum
of all energy consumed by the modules required by this application as expressed in the
following equation:

EA =

kAUj∑
r=1

EA
M

=

kAUj∑
r=1

T
(A,Uj)
M × P a

M . (1.7)

Majid Altamimi’s PhD Thesis 10

1.2. SYSTEM MODELS

Table 1.1: Power consumption of a hardware module at different states
Modules state Power consumption (mW)

Single module Aggregate for all modules

Sleep 3 - 31 68.6
Idle 7 - 80 268.8

Active 50 - 927 320 - 1355

As a result, the energy consumed by all applications can be driven as given by next
equation as a sum of energy consumed by each applications.

EApps =
x∑

n=1

EAn (1.8)

The previous models are results for the analysis of the modules in the active state. To
complete our energy models, we extend the energy models to consider others operating
states as follows. We assume that the OS manages the modules in an energy efficient
way. At this case, the modules switch to inactive mode, which is either idle or sleep mode.
The idle mode occurs when a module is fully powered but not receiving any task. In
contrast, the sleeping mode occurs if a module is powered partially but can not receive any
task. To illustrate this amount of power consumption, Table 1.1 shows the average power
consumption measurements for a mobile device module [21]. For further measurements on
power consumption on mobile device modules, see [22, 21].

The module M stays in idle mode for time equals T iM and consumes power equals P i
M ,

then it switches to sleep mode and stays for time equals T sM and consumes power equals
P s
M . Accordingly, the total energy consumed by the modules for inactive mode (i.e., Eis :

Energy in idle and sleep modes) is given in Eq. (1.9).

Eis =

y∑
r=1

(
T

(i,Uj)
M × P i

M + T
(s,Uj)
M × P s

M

)
(1.9)

Finally, the total energy consumed by a mobile device equals the energy consumed by
the modules in both state of active and inactive. Since the mobile device is powered by
a battery, the energy capacity should accommodate the energy required by the hardware
modules as described in Eq. (1.10). Figure 1.6 shows an example of the power breakdown
of mobile devices where the system power is the sleep power P s in our analysis, idle power
is P i, and others for modules at active power P a

M [13].

11 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

Figure 1.6: Power breakdown of mobile devices

Supply = Demand

EB = EApps + Eis

=
x∑

n=1

EA +

y∑
r=1

(
T

(i,Uj)
M × P i

M + T
(s,Uj)
M × P s

M

)
=

x∑
n=1

k∑
r=1

(
T

(A,Uj)
M × P a

M

)
+

y∑
r=1

(
T

(i,Uj)
M × P i

M + T
(s,Uj)
M × P s

M

)
(1.10)

where EB is the usable energy capacity of the mobile device battery.

1.2.3 Network Model

Our network model consists of two major parts: mobile devices and cloud computing
where both are linked to the Internet, as depicted in Fig. 1.7. The mobile devices are
connected to the Internet through a Wireless Local Area Network (WLAN) (i.e., WiFi)
or a cellular data access point (3G/4G) (i.e., HSDPA/LTE). These mobile devices provide
computing and communication functionalities to the end-users by the mobile applications.
For instance, the users can play/record a video or audio, and show/capture photos. On
the other hand, the cloud provides the end users with all computing functionalities such as

Majid Altamimi’s PhD Thesis 12

1.3. PROBLEM DEFINITION

Mobiles Mobiles

Figure 1.7: The network model

storage and processing from its data center. Moreover, the cloud has a capability to deal
with task offloading and assumed it has applications that perform the same tasks as the
mobile applications do.

1.3 Problem Definition

Mobile devices are becoming increasingly popular because of their capabilities and func-
tionalities. With powerful operating systems (e.g., Windows Mobile, Android, Apple iOS,
BlackBerry, and Symbian), mobile devices are able to run heavy applications that are
almost similar to desktop computer applications. There is a growth of multimedia appli-

13 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

cations on mobile devices because of the capabilities of mobile devices such as compact
camera, microphone, and relatively wide and colourful screen [15]. Multimedia applica-
tions occupy from 7% to 21% of mobile usage [14]. Nevertheless, these applications drain
most of mobile device battery [23].

Multimedia applications are well known as intensive applications in terms of resources
such as processing, memory usage, and communication. Due to the limited energy capacity
of the mobile battery, mobile developers set rules on the device multimedia capability to
limit the energy consumed by these type of applications. Because of these rules, the mobile
device battery would last longer but with limited multimedia capabilities. For instance,
a mobile device can render only a narrow range of multimedia file formats. An example
of this is the HTC Nexus One, which can recognize and play only H.263, H.264, and m4v
video formats [24]. If the user of this device wants to watch a video in Flash Video (flv)
format for example, which is very common to website hosting, it is obligatory to convert
the flv to another format supported by this device. The same difficulty applies to other
video formats as well. Moreover, applications that process the multimedia contents are very
rare due to their massive energy consumption. Video and audio encoding, which converts
media files from one format to another, speech recognition, which converts spoken words
to text, and face detection, which allocates and identifies the human face, are all examples
of multimedia processing applications.

In recent years, the advance in battery technology has not kept pace with other technolo-
gies. On the other hand, the communications, software, and semiconductor technologies
that are involved in the mobile device show great progress. According to Moore’s law,
which describes the long-term trend in the history of computing hardware, the number of
transistors on the integrated circuit can double every two years. In contract, the battery
capacity increases by 5% every year [25]. This difference in the pace of technologies pro-
duces a gap between energy demand and supply as depicted in Fig. 1.8 [26]. In fact, this
gap grows by 4% annually [27].

Reducing the energy consumption of the mobile devices has been studied extensively
and many methodologies and techniques have been proposed. Smart batteries, power sleep
mode, power scheduling, efficient operating system and applications, efficient graphic user
interface (GUI), and redesign and implement energy-aware communication protocols, all
are examples of these methodologies and techniques. For an in depth survey, see this
comprehensive report [3].

In the era of the cloud computing, most of the mobile device constraints can be eased
off by offloading heavy applications from the mobile to the cloud [4]. Cloud computing
has virtually unlimited computing resources such as processing and storage. With current

Majid Altamimi’s PhD Thesis 14

1.3. PROBLEM DEFINITION

Figure 1.8: The trends of the mobile device technologies

15 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

increasing and development on the wireless and the Internet bandwidth, the offloading is
promising to overcome the problem of energy capacity in mobile devices. Mobile devices
can take the cloud capabilities to request a multimedia processing in an efficient way. For
example, a mobile can upload a video file to the cloud, and then request from the cloud to
convert that file into a desired format fitting the device capability. Thus, task offloading
to the cloud is promising as ICT technology to fill the gap between demand and supply
energy of the mobile devices.

Filling the gap by offloading mobile applications to the cloud introduces a new area
that has to be investigated, studied, and examined for good insights into the feasibility of
this technique. Task offloading from mobile devices to the cloud is essential to enhance
their computing capabilities and at the same time save their battery energy. However,
task offloading introduces another challenge due to the impact of system parameters on
the offloading performance. This challenge is to perform the offloading decision correctly
before executing the offloading processes. An accurate offloading framework allows mobile
devices to obtain the correct decision as to whether or not to perform the task offloading
based on the system parameters at the time of making the decision. In this work, we
tackle this challenge by developing an offloading framework that gives mobile devices the
ability to make the correct offloading decision accurately. The framework accomplishes the
correct decision after it collects all of the system parameters that have direct influence on
the offloading decision.

1.4 Thesis Contributions

The focus of this thesis is to solve the mobile device energy problem in a feasible solution
with the help of other systems in Information and Communication Technology. Integrated
Mobile Computing (MC) with the Cloud Computing (CC) is a feasible option to overcome
the energy problem of the mobile devices. We introduce this integration by taking the
increasing of the Internet bandwidth as an advantage for the offloading technique. With
the existence of the CC, the energy constraint of the mobile devices can be relaxed by
offloading heavy tasks from the MC to the CC. An example of heavy task is the video
encoding where there is no existing encoding efficient application for mobile devices. Since
the offloading to CC is in its nascent state and undeveloped, at least to the best of our
knowledge, it is important to understand whether the CC extends the battery life or not.
Then, we develop an offloading framework that allows to save energy by the offload heavy
tasks. The following subsections highlight our contributions in the thesis.

Before that, we would like to mention to the fact that the mobile devices include smart-

Majid Altamimi’s PhD Thesis 16

1.4. THESIS CONTRIBUTIONS

phones, tablets, and some mobile gaming and music devices. Nevertheless, the mobile de-
vices came to be known as the smartphone, though the two seem to be used interchangeably
in this work. In fact, the smartphone represent the cutting-edge device among these de-
vices, which is the most who suffers from limited the energy problem. Therefore, we use the
word smartphone hereafter in many places; mostly, when we talk about a specific mobile
device that we conduct experiments on it.

1.4.1 Evaluate Offloading Energy Costs

At the beginning of studying the offloading technique, we address the problem of running
multimedia video applications on mobile devices, and we investigate the benefit of using
offloading framework in this regard. We present an extensive evaluation of the energy
costs of mobile devices and setup a large number (more than a hundred) of experiments on
mobile devices to measure their energy for running multimedia applications. Furthermore,
we experimentally evaluate the energy cost on mobile devices when the offloading technique
is used. This evaluation has been conducted on a real mobile device and cloud.

Our results give researchers much insight into the energy cost of such applications,
which is important to implement offloading algorithms. Indeed, the measurement of energy
costs in this study helps the developers of mobile devices and cloud to design efficient
algorithms that save mobile device energy. The results show that the cloud provides the
mobile devices with more functionalities and save mobile device energy from 30% to 70%.
To our knowledge, this is the first study to evaluate energy costs of applications on mobile
devices connected to the cloud. Specifically, by the means of experiments, we show the
following:

• We measured the energy costs for playing an online video and show the different
phases of energy consumption, such as ‘download only’, ‘download-and-play’, and
‘play only’.

• As energy consumptions vary with time, we have measured the costs of sending
and receiving file over HTTP and FTP protocols via 3G and WLAN interfaces, and
present the statistics of the results.

• We investigated whether or not mobile devices save energy by using cloud encoding
service. This investigation is done by evaluating the energy costs for uploading and
downloading a video file to and from cloud using HTTP and FTP protocols though
3G and WLAN connections. Then, we compare the results with the energy costs of
doing video encoding on the mobile device for the same video.

17 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

• In the aforementioned investigation, we consider two broad experimental scenarios
related to the location of the original file to be encoded.

Chapter 3 corresponds to this contribution that we published in [8].

1.4.2 Develop Energy Models for the Offloading Framework

Modelling the energy consumption of the mobile device is essential for any development
for energy saving techniques. For this reason and because of the lack of detailed energy
modelling in the literature, we build a comprehensive mathematical energy model for mo-
bile devices. Such modelling is relatively undeveloped for the mobile devices, where this
fact motivates us to develop such modelling.

The accurate model provides the best control and management on the energy consump-
tion. This is because awareness of the energy consumption parameters gives understand-
ing where the energy consumed. The offloading technique is critical because it depends
on many factors such as application and network characteristics. Each application and
network has several parameters that affect the energy consumption and consequently the
offloading decision. Develop and implement accurate offloading framework, which makes
the accurate decision, needs precise modelling to the energy consumption. Thus, we model
the energy consumption on a mobile device for both of networking and computing activi-
ties. These models estimate the energy consumption of a given task in the case of offloading
it to the cloud and the case executing it on the device to allow the framework make the
correct decision.

Chapters 4 and 5 correspond to this contribution that we published in [9] and [10],
respectively.

1.4.3 Propose and Develop Offload Framework

After we develop the models for the energy consumption and for the offloading technique,
we propose a framework for the offloading technique. This framework describes the of-
floading processes and algorithms to make the correct offloading decision. We consider an
accurate offloading engine that make the offloading decision supported by the developed
models. Figure 1.9 shows our proposed framework for task offloading that we develop,
implement, and validate.

Chapter 6 corresponds to this contribution that we published in [11] and [12].

Majid Altamimi’s PhD Thesis 18

1.4. THESIS CONTRIBUTIONS

Where to

decide?
User Profile

Modules

Profile

Application

Profile

Content

Profile

Network

Profile

Cloud Profile

Location

Profile

Battery Profile

Information Gathering

Smartphone

Decision

Cloud

Decision

Offloading

Decision

Do the

Offloading

YES

Offloading

Decision

YES

Run the

application on

the Smartphone

NONO

Offloading Engine

Smartphone

Figure 1.9: Our offloading framework

19 ECE, University of Waterloo

CHAPTER 1. INTRODUCTION

1.5 Thesis Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the background and
the literature review of the smartphone as a cutting-edge mobile device, cloud computing,
and offloading techniques. The evaluation results for the offloading to CC are shown in
Chapter 3. Chapters 4 and 5 address our development detail and procedure to model
the energy consumption of a mobile device on the networking and computing activities,
respectively. Our proposed offloading framework is described and validated in Chapter 6.
This dissertation concludes in Chapter 7 in addition to the future research.

Majid Altamimi’s PhD Thesis 20

Chapter 2

Background and Literature Review

In this chapter, we provide a background and a literature review on the smartphones,
cloud computing, offloading technique, and the offloading for smartphones. This chapter
is divided into four sections as follows. In the first section (2.1), we deliver a brief history
about smartphones and how they become important devices in the people life nowadays.
The second section (2.2) gives a wide view about the cloud computing, and its services and
implementations. We describe the offloading techniques in detail in the third section (2.3).
Finally, we review the literature of using the offloading technique especially to overcome
smartphone constraints in section (2.4).

2.1 Smartphones

In this section, we present an overview on the importance of smartphones as they promise
to be the future of the mobile computing.

2.1.1 History of Smartphones

Mobile devices have been started as voice devices at early ’80 using analog radio telephone
system that is knowing as the first generation (1G) mobile system. Then in early ’90, the
technology moves up to the Second Generation mobile system (2G), which reshapes the
entire mobile system. The 2G succeeded in implementing the digital communication in the
mobile system. Indeed, it was implemented in four main systems: Global System for Mobile
Communication (GSM), Time-Division Multiple Access (TDMA), Japan Personal Digital

21

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Cellular (PDC), and Code-Division Multiple Access (CDMA one). In this generation, data
packet services were started such as Short Message Service (SMS) using circle-switch data.
For instance, the SMS provides a very low data rate for short messages where this service
represents the birth of data communication in addition to the voice communication in the
mobile systems. After that in early 2000, the data services have been upgraded by engaging
General Packet Radio Service (GPRS), which introduces the 2.5 Generation (2.5G). Soon
after this upgrade, the Enhanced Data Packet for Global Evolution (EDGE) has been
engaged. This last engagement introduces what is called 2.75 Generation (2.75G).

With the success of the 2G evolutions, more demands were increasing on high data rate,
network capacity, and frequency bandwidth. These demands drive to the 3rd Generation
(3G), which is developed into two systems. The first system is known as the Universal
Mobile Telecommunications Systems (UMTS) and CDMA2000, where the second system
is known as High Speed Downlink Packet Access (HSDPA). Today, the success of the 3G
is remarkable since the traffic of 3G data is increasing between %300 to %700 every year
[28].

In parallel to mobile system evolution, other wireless technologies such as Wireless
Local Area Network (WLAN) and Wireless Personal Area Network (WPAN) find their
way into mobile devices. For example, WLAN becomes popular service in many areas like
homes, campuses, coffee shops, airports, and hotels. The main driver for these technologies
to become common on the mobile devices is that they provide higher data rate with much
less cost than the cost of mobile system data. Hence, today many places provide free access
to their WLAN. Note that, the WLAN was invented as an extension to LAN and it does
not involve in the mobile system evolution. The primary difference between mobile systems
and other wireless system is that the mobile communication systems have coverage range
in few kilometres while the WLAN in few tens of meters and WPAN in few meters [29].

The advance in the mobile device technologies have played a role in the growing of the
mobile phones. In addition to the significant advance in the communication technology
as discussed above, advances in the hardware and software of mobile devices have the
major effects. The advances in the hardware of the mobile phone add auxiliary feature
to mobile devices such as Global Positioning System (GPS). Likewise, the advances on
the semiconductors technology lead to smaller and lighter mobile device and add more
capabilities and features. On the other hand, advances in the software support the mobile
phones with Internet services (e.g., web browsing, e-mailing, gaming, and office productive
applications).

The convergence of the mobile communication systems, which are the Internet, the
mobile computing, and the multimedia broadcasting, forms a new ubiquitous Information

Majid Altamimi’s PhD Thesis 22

2.1. SMARTPHONES

Figure 2.1: Mobile technologies evolution

and Communication Technology (ICT) system that is noticeable these todays and it will
be common in the near future. The Fourth Generation (4G) mobile communication system
is the most important step toward this convergence. The 4G road map is to reach all-IP
architecture where this road reduce the infrastructure cost, expansible, and accommodating
for future services on the computing, broadcasting, and the Internet. Moreover, the all-IP
architecture supports a seamless connectivity among heterogeneous networks called true
Internet mobility [30]. The 4G integrates all global networks and all terminal types in
one mobile environment [31]. In this evolution, the mobile phones move from voice centric
devices to Internet Protocol (IP) centric devices [29, 31, 32, 33].

The overall view of the mobile systems evolutions is shown in Figure 2.1 [33]. In
addition, Table 2.1 summarizes the evolution in the mobile systems and lists some key
characteristics of each system [31, 32].

23 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Table 2.1: Summary of mobile system generations
Technology 1G 2G 2.5G 3G 4G

Design Began 1970 1980 1985 1990 2000
Implementation 1984 1991 1999 2002 2010
Services Analog

voice
Digital
voice,
SMS

Packetized
data

Broadband
data

Completely
IP-based

Standards NMT,
AMPS,
Hicap,
CDPD,
TACS,
ETACS

GSM,
iDEN,
D-MPS

GPRS,
EDGE

WCDMA,
CDMA2000

Single
standard

Data Bandwidth 1.9 kbps 14.4 kbps 384 kbps 2 Mbps 200 Mbps
Multiplexsing FDMA TDMA,

CDMA
TDMA,
CDMA

CDMA CDMA

Core Network PSTN PSTN PSTN,
Packet

network

Packet
network

Internet

Coverage Area Large Medium Medium Small Smaller

Majid Altamimi’s PhD Thesis 24

2.1. SMARTPHONES

2.1.2 Smartphone Definition

The word smartphone (n.) has been added to Oxford dictionary in 2007, and it is defined
as

Any various telephones enhanced with computer technology. Now specially,
is a type of mobile phone, which incorporates the functions of palmtop com-
puter, personal digital assistant, or similar device.

As well, the mobile phone contains many intelligent functions; it starts to be called a
smartphone.

2.1.3 Smartphone as a Source of Data

Smartphone become an important source of data in the current ICT. People use smart-
phones to create and edit files, capture pictures, and recode videos and audio using the em-
bedded camera and microphone. Moreover, smartphones are able to provide their location
information using GPS technology. For example, current smartphone embeds the location
information on the captured image to create location-based albums. Today, smartphones
contain many types of sensors: three-axis gyroscope, accelerometer, digital compass, prox-
imity sensor, and ambient light sensor [34]. Each sensor is a source of data, which enhance
smartphones functionalities and capabilities.

The hardware and software of a smartphone support the capability to generate a huge
amount of data in many formats and types. Unfortunately, smartphones are able to gener-
ate data more than their capabilities. For instance, smartphones can capture pictures but
hardly do a processing on them such as face recognition or reformatting. In very rare cases,
smartphones are able to do some of these processing but they need an intensive processing
which drain their battery.

2.1.4 Smartphone Usages

The usages of smartphones are widely varying world wide from kids gaming to stock mar-
keting and president campaign. Social networks applications systems strengthen the need
for such smartphone capability [29]. These features become necessary and not auxiliary
any more. Furthermore, smartphone finds its way on business activities such as bank-
ing and trading in the stock market. That is because the smartphone fits the needs for

25 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

many people who need mobility, and computing on the same handheld device. All what is
needed on the packet that is much smaller then the regular paper notebook [35]. Examples
of smartphones capabilities are having soft-media (e.g., web news and TV), travel e-ticket,
e-shipping, e-print, online gaming, build in credit card, etc [36, 37, 38, 39, 40]. All of these
capabilities enforce the needing for the smartphone to become a popular mobile device.

2.1.5 Multimedia on Smartphones

With enhanced of smartphones capabilities, smartphones can access vast amount of Inter-
net contents. The social networks and news sites occupy around 80% of web sites [41].
Moreover, most of the web access comes from the mobile devices. In 2008, the number of
access from mobile phones beat the number of access from desktop computers [41]. This
is predictable as long as wireless speed grows the more people use the mobile and become
essential on their lifestyle [29, 42]. A similar study by Nielson company research finds that
Australians spend longer time on the Internet if they have faster Internet [43]. That could
be people move from other media like TV to online media like YouTube [35]. The mobile
usage for the Internet contents, such as news and social sites, grows rabidly in the recent
years according to Gartner Group’s report [1]. Most importantly, this report argues that
the percentage is escalating for the multimedia contents (i.e., image, audio, and video).
This means the multimedia on the web has high growing relatively to textual contents.

2.2 Cloud Computing

In this section, we present an overview of the cloud computing (CC) and its services, and
we provide some useful definitions of the cloud computing.

2.2.1 An Overview on Cloud Computing

Cloud computing is a new emerging computing paradigm. Cloud computing is Internet-
based computing services that are provided on-demand to the end-users. Cloud computing
provides its virtually unlimited resources of its infrastructure as services with minimum
effort needed by end-users. That is, the end-users of the cloud computing use cloud services
with no need to maintain, manage, or operate the cloud infrastructure. On the contrary,
cloud computing providers maintain, manage, and operate the cloud to keep the cloud
services run efficiently, seamlessly, and friendly for the end-users.

Majid Altamimi’s PhD Thesis 26

2.2. CLOUD COMPUTING

Figure 2.2: Evolutions to cloud computing

Cloud computing is built on a physical data centre that work as the infrastructure
for the cloud. The cloud data centre is a large-scale of server clusters, hard-disk storage
arrays, and local high-speed networks [44, 45]. It uses the Internet as a media to deliver
its services. As a result, it adopts the Internet protocols and offers all types of its services
over these protocols [46].

Cloud computing becomes into the reality as a result of advances in the networking,
semiconductor, and computing technologies. In the networking and semiconductor tech-
nologies, the growing in the Internet speed at the core of the Internet network and at
the end-users terminal gives the end-users the opportunity to access the cloud from the
Internet. In the computing technologies, the virtual computing, distributed computing,
and utility computing all enable the data centre to power the cloud functionalities and
provide the cloud services [47]. These technologies are not new but their convergence
together forms the cloud computing. However, the cloud computing is new in terms of
accessing the computing resources on-demand and the accountability of the utility usage
for paying-as-used basis. Cloud computing is a convergence of many ICT technologies such
as grid computing, utility computing, service oriented application, and computing virtual-
ization. It is the outcome of the evolution in the ICT technologies [5]. Figure 2.2 shows
the evolutions that lead to the CC [48].

2.2.2 Cloud Computing Definition

The term cloud come from the early using and drawing of cloud to represent the telephone
networks and then used for the Internet core network. The first introduction to the cloud
computing was at 60’s [49].

Since the cloud computing is in its early stages, the definition is debatable [46, 50]. A
comprehensive view of cloud computing definitions is presented and discussed in [50]. The

27 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

National Institute of Standards and Technology defines the cloud computing as

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action [51].

On the other hand, Cisco defines cloud computing as

IT resources and services that are abstracted from the underlying infrastruc-
ture and provided “on-demand” and “at scale” in a multitenant environment
[52].

2.2.3 Cloud Computing Services

The keys of CC are the virtualization of the computing and the scalability of the provisioned
services in an efficient way, where many users can share the same resources pool in a scalable
manner and in high availability. For that reason, the CC has to maintain the quality
of service (QoS) and quality of experience (QoE) of its services to the end-users. The
scalability means the cloud can scale up or down its resources as required to accommodate
their users requests. Besides, the availability means the cloud is available whenever the
end-users request the cloud services. The characteristics of cloud computing is surveyed in
[53].

The CC provisions several services of computation over the Internet. It can mainly
provision [47, 54]:

• Software as a Service (SaaS),

• Platform as a Service (PaaS),

• Infrastructure as a Service (IaaS), and

• Everything as a Service (XaaS).

SaaS is the cloud service that provides the end-users with software applications, which
are usually web-based applications. The end-users in this case use either the conventional

Majid Altamimi’s PhD Thesis 28

2.2. CLOUD COMPUTING

Table 2.2: Examples for cloud computing and its services
Cloud Services Type of offerings Examples

SaaS

• Virtual desktop
• Applications as web sites
• Office productivity
• Clients Apps

• IBM Blue Cloud
• Microsoft Exchange
• Google Doc
• Cisco WebEx & Weboffice

PaaS

• Apps servers
• File sharing
• Database

• Amazon SimpleDB/S3
• Google AppEngine
• Saleseforce.com
• GigaSpaces
• Microsoft Azure
• SunCloud

IaaS

• VLAN networks
• Logical disks
• Virtual servers

• Amazon Elastic Compute
Cloud (EC2)
• GoGrid
• Flexiscale
• Mosso
• Microsoft Live Mesh

web browser or a specific client to gain this service. PaaS is the cloud service where the
end-users can define and develop their own operating platform that executed by the cloud
servers in a virtual computing environment. IaaS is the cloud service where the users
have full access to the cloud infrastructure in case to implement their own platforms and
applications. XaaS is the representation for all or some of the previous services. Examples
of cloud computing include: Amazon Elastic Cloud, IBM Blue Cloud, Microsoft Windows
Azure , Google Doc and EnginApp, Salesforce.com, and Encoding.com. Table 2.2 lists the
cloud services and their outcomes with some existing examples of present developed cloud
computing.

2.2.4 Cloud Computing Implementations

The cloud computing is deployed and Implemented in one of the following models: private,
community, public, or hybrid [51, 47]. In private deployment model, the cloud infrastruc-

29 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ture is provisioned for individual user that could be an organization or a company. It may
be owned, operated, managed, and controlled by the user or by a third party. The de-
ployment of community cloud is similar to the private model except that the provisioning
is for a group of users who have similar interests. In the public deployment model, the
cloud infrastructure is provisioned for general public users and only owned and operated
by cloud service providers. The hybrid cloud deployment is formed by combining two or
more models but keeps each model distinguishable.

We have to mention that the term cloud computing used hereafter for the public cloud
computing where the service provide over the public Internet [49, 46].

2.3 Offloading

In this section, we provide a background view about the offloading technique. Furthermore,
we discuss the literature of the offloading techniques, the offloading to the cloud computing,
and the offloading to save energy for the mobile devices.

2.3.1 Offloading Definition

The first introduction to the offloading concept was in early at 1970s for load balancing
between servers of a cluster. Offloading in general is defined as

The process or technique that is used to improve the performance, quality, or
efficiency of a computation task by delegating this task completely or partially
to a remote computing machine that is usually has a powerful computation
capability more than the local machine.

The computation capability could be in one or more of computation forms such as
processing, memory, storage, execution time, and energy consumption.

2.3.2 Offloading Techniques

Based on the definition, we should note that offloading a task requires communication
between local machine and remote machine. This reveals that the communication is the
key player for the offloading technique. However, this communication consumes energy

Majid Altamimi’s PhD Thesis 30

2.3. OFFLOADING

as well as the local processing. As a result, there is a trade-off between processing a
task locally and offloading it with respect to the energy saving. Technologies include
semiconductors, software, and communication could shift the trade-off point. Note that
the processor and the network interface are the most power consumer in a mobile device.
Therefore, the trade-off or the comparison is difficult and the offloading must be aware of
the computation cost and communication cost.

There are several purposes to do the offloading in general [55]. Firstly, as it is invented,
the offloading is used for load balancing between servers of a cluster. Secondly, increasing
the response time of an application or reducing the execution time. For instance, Wolski et
al. presented a framework for the computation grid to make offloading decision based on
the network bandwidth [56]. A scheduler performs the decision by predicting the cost of
running a task locally and remotely plus the cost of moving and gathering the task to and
from remote machines. Thirdly, the offloading can increase the quality of an application
because that the results of a powerful machine definitely are better than if they produced
from less computation power [55, 6]. Fourthly, energy saving could be gained from the
offloading technique for energy limited devices such as smartphones [57, 58]. In general,
the offloading technique substitutes many requirements of computing resources. Offloading
technique not only satisfies one benefit but also could provide more than one benefit at
the same time. For instance, it could provide quality improvement side by side with the
energy saving benefit.

2.3.3 Offloading to Cloud Computing

Kumar et al. [4] introduce the concept of computation task offloading to CC to attempt to
save mobile energy. They mathematically model the computation cost to run on a mobile
device and on the cloud. Based on their model, the factors that effect the offload decision
have been investigated. For a given computation task, the energy consumption on a mobile
device is given as

Em = Pc × C/M, (2.1)

where Pc is the power consumed by the device in Watts, C is the required computation
instructions to perform this task, and M is the speed of the mobile processor in instruction
per second. If this task is decided to be offloaded, then there is D amount of data have
to be sent and received to and from the cloud. For simplicity, the amount of data and the
power consumption to send and receive offloaded task was assumed be similar. The energy
cost of offloading transmission (i.e., send and receive) is given in the following equation

Etr = Ptr ×D/B, (2.2)

31 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.3: Offloading decision areas

where Ptr is the power consumed by the device to transmit the offloading data D, and B
is the bandwidth of the wireless network.

Assuming the mobile stay idling during the cloud processes the offloaded task, then the
energy of idling is giving as

Ei = Pi × C/S, (2.3)

where Pi is the mobile idle power, and S is the speed of cloud processing.

The offloading saves mobile energy if the sum of energy that consumed during trans-
mission and idling is less than the energy consumed for running the task on the mobile.
That is mathematically is expressed as the following inequality

Em > Etr + Ei. (2.4)

Based on this criterion, Fig. 2.3 shows the general decision areas for whether or not
to offload [59]. For instance, the offloading is beneficial if the computation C is large
while the amount of transmission data D is relatively small. This work concludes that
the decision of offloading highly depends on the network bandwidth B, the amount of
offloading transmission data D, and the computation of the task C.

Similarly, Lagerspetz et al. [60] analyze and measure the energy trade-off for offloading
a task to cloud computing. The analysis follows the same approach of Kumar et al. in [4].

Majid Altamimi’s PhD Thesis 32

2.3. OFFLOADING

The experiments conducted on Nokia N900 for indexing a text file. A desktop computer is
used on this experiment as a server on a cloud. The experiments show that the offloading
is beneficial and save mobile energy up to 97.6% if the WLAN is used for sending the data
and there is no receiving of the data again. Authors conclude that the trade-off decision
as always offloads if there is small transmission data and heavy computation task.

J. Kim presents six different software architecture patterns to overcome the constraints
on the mobile device [61]. These patterns are standalone, full offloading, partial offload-
ing, SaaS-based, CaaS-based, and offloaded CaaS-based. Those patterns are proposed to
provide different quality, performance, and energy consumption for the mobile device. An
analysis and mathematical model are presented for these patterns. According to the author
experimental results, the standalone architecture is energy efficient if the application size is
small. On the other hand, if the application size is large, the full offloading is the efficient
architecture. The partial offloading architecture is efficient if the size of the mobile part
application is small and the amount of data exchange with the cloud is small.

Miettinen et al. consider the opportunity to offload mobile device task to CC in case of
saving mobile energy [25]. An analysis is presented similar to the work in [4] for the trade-
off between energy cost of mobile application and energy cost of offloading communication.
The experimental results reveal the effect of different bearers and different location from the
provider transceiver. Moreover, the power consumption is highly affected by the network
(or wireless environment) quality. This work proofs that the video encoding is the most
intensive computing task.

2.3.4 Offloading Frameworks

Researchers have been studying the offloading problem and proposed several solutions
covering application models, offloading objectives, architectures, and approaches [62, 55,
63, 64, 65]. We classify the proposed frameworks in the literature and discussed an example
framework from each class that are shown in Fig. 2.4.

Yang et al. propose an offloading service to offload heavy mobile application to nearby
powerful PC called surrogate [73]. The offloading service is modelled and prototyped. The
purpose of this study is to reduce the response time of the application, where the cost
of the offloading is considered for the CPU, memory, and communication. However, the
energy cost not evaluated but the authors mentioned to these cost could positively save
mobile energy. Moreover, authors propose and study several offloading schemes such as
standalone, full offloading, and partial offloading.

33 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Offloading

Offload App
Offload parts
of the App

Performance
Shih-Hao [66]

Energy
our proposed

framework

Performance
CloneCloud [67],
and MACS [68]

Energy

Static decision
Cuckoo [69], and

ThinkAir [70]
Dynamic decision
MAUI [71], and
µCloud [72]

Figure 2.4: Research area of the offloading framework

In like manner, the offloading is proposed to save energy by it does not always save
energy on the mobile device [8, 74, 4]. Application partitioning is suggested to offload
parts of the application to make offloading beneficial by balancing the energy costs of
communication and computation [75, 73]. Application partitioning is not considered in
our work, but the proposed framework is a generic one to include application partitioning.
However, application partitioning needs some kind of an optimization solver, which adds
computation overhead on the offloading decision and reduces the offloading efficiency [76,
63].

Next, we discuss the proposed frameworks shown in each class we classified in Fig.
2.4. MAUI [71] and CloneCloud [67] are dynamic offloading frameworks that improve
application performance and save energy on mobile devices. These frameworks divide
an application into parts called methods and decide what optimum solution saves the
maximum amount of energy under the current networking condition; the optimum solution
identifies the methods that should be offloaded to the cloud. MAUI provides a fine-grained
energy saving offloading by periodically re-solving the formulated problem to adapt to the
changes in the networking environment. However, the overhead of periodically solving the
problem can weaken much of the effort to save energy. Moreover, this approach lacks to

Majid Altamimi’s PhD Thesis 34

2.3. OFFLOADING

models that predict the energy cost of the application methods in the case of offloading
and on device execution. In addition, MAUI and CloneCloud do not consider scalability
and software composition, whereas these features are addressed in µCloud [72].

ThinkAir addresses MAUI’s aforementioned lack of scalability by creating virtual ma-
chines (VMs) of a complete smartphone system on the cloud, and removes the requirements
on applications inputing environmental conditions that CloneCloud induces by adopting
an online method-level offloading [70]. Moreover, ThinkAir firstly provides an efficient
way of performing on-demand resource allocation, and secondly exploits parallelism by
dynamically creating, resuming, and destroying VMs in the cloud when needed.

Roelof et al. [69] proposed a framework to offload smartphone computation to a re-
mote cloud. The proposed framework is called Cuckoo, which is based on Android platform.
Cuckoo gives the ability to Android applications to decide dynamically whether to offload
a part of an application to remote cloud or execute it locally. Cuckoo can be integrated
with a development tool to handle both local and remote code. The authors also provide a
programming model for Cuckoo to application developers. The offloading decision is per-
formed based on context information that excluded to the remote resources are reachable
or not.

Dejan et al. [68] proposed an offloading framework called Mobile Augmentation Cloud
Services (MACS) that enables Android applications to adaptively execute on the cloud.
The framework is based on Android platform and considers application portioning in which
the framework decides which partitions of the application to execute locally and remotely
on the cloud. The offloading decision is formulated as an optimization problem according to
device and cloud parameters, such as remaining energy on the battery and the connection
bandwidth between the device and the cloud. In contrast to Cuckoo, MACS allows dynamic
application portioning whereas Cuckoo only allows a static partitioning at the time of
generating the application package.

Shih-Hao et al. [66] proposed a framework for mobile application execution on the
cloud which is built on the Android platform. The authors consider user protection against
eavesdropping from cloud providers by allowing the framework to take advantage of iso-
lated environment on cloud virtual machine. Moreover, the framework is developed to be
transparent and controllable by the mobile users. However, this framework is limited to
Android platform.

However, those frameworks are limited to Android platform and need to be generalized
to other mobile device platforms. Moreover, those frameworks lack a theoretical view and
they just focus on the practicality of the framework. For this reason, the authors choose
Android because its model is well understood and easy to manipulate. In contrast to those

35 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

works, we build a generic offloading framework that considers all system parameters. Most
importantly, our proposed framework is applicable to perform the offloading for any mobile
device and cloud platform.

2.4 Energy Saving Techniques for Mobile Devices

Reducing mobile device energy consumption has been studied extensively and many method-
ologies and techniques have been proposed. Smart batteries, power sleep mode or power
scheduling, efficient operating system and applications, efficient graphic user interface
(GUI), and redesign and implement energy-aware communication protocols, all are ex-
amples of these methodologies and techniques [3]. In this section, we narrow down our
survey to external assistance for the smartphone like proxy server and CC. We believe that
the new computation paradigm like CC promises to be a powerful extension for the mobile
computing.

2.4.1 Cloud Computing for Mobile Devices

Recently, mobile devices contain a wide variety of applications. However, there are some
limitations of using these applications due to mobile device limited resources and capabili-
ties such as CPU, memory, and connection bandwidth. An essential solution moves heavy
task that beyond the mobile device capability to somewhere else that compensate the re-
quired capabilities. Cloud computing has most of these requirements. CC that provides
these requirements for the smartphones and in general for mobile devices is the key to
introduce the concept of Mobile Cloud Computing (MobCC) [77, 7]. MobCC tackles the
energy problem for the smartphones since it has context aware capability to serve mobile
computing.

The MobCC has special characteristics to provide each cloud service as we see in Figure
2.5. For example, to provision a SaaS for the mobile device, less connection speed is
needed than provision IaaS; since in IaaS provisioning, the connection carries all traffic
from consumer platform to cloud infrastructure.

Wireless connection is the basic aspect in the mobile devices. This kind of connection
has special requirements that are summarized as following [77, 78]:

• Low data rate seamless connectivity,

Majid Altamimi’s PhD Thesis 36

2.4. ENERGY SAVING TECHNIQUES FOR MOBILE DEVICES

Figure 2.5: Communication requirements for cloud services

• On-demand availability and bandwidth scalability,

• Network and interface selection, and

• Context-aware connectivity.

2.4.2 Saving Mobile Device Energy by the Offloading

Othman et al. presented the early study for task offloading to save energy [79]. In the
literature, much work has been reported in the field of energy saving in smartphones using
the offloading techniques. We categorize the offloading approaches into three major classes:
(i) using the cloud computing [80, 4, 45]; (ii) using power-aware web proxy [80, 3]; and
(iii) using local powerful servers [73, 56, 81, 57]. In our study, we adopt the CC approach
for task offloading and we focus our study on the approaches that involve task offloading
to servers on the Internet in general.

Zhao et al. propose offloading schemes to offload the video encoding from the mobile to
a nearby powerful server [81]. This study focuses on the video applications since they are
computationally heavy. There are some applications do video decoding and encoding before
playing the video on the mobile device. Authors choose the H.264 video encoder because
it has the most advantages for the mobile devices such has it provides high compression.
They use the same mathematical model as in the previous works [4, 60]. Experimental
results show the offloading of video encoding is beneficial. Because the H.264 encoding
contains many modules, authors measure the exaction time for each module. Based on

37 ECE, University of Waterloo

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

these measurements, they introduce three offloading schemes: search-remote scheme, inter-
remote scheme, and remote scheme. The search-remote scheme is to offload the inter-mode-
decision module to the server. The inter-remote scheme is to offload inter-frames module
to the server. Finally, the remote scheme is to offload the entire encoding application to
the server. The experiments reveal that all of the proposed offloading schemes save the
mobile energy. In detail, remote scheme saves more energy than the inter-remote scheme
and the inter-remote scheme saves more energy than the search-remote scheme.

Kelenyi et al. proposed an offloading technique where the cloud servers are used as
a BitTorrent client to download torrent pieces [80]. A mobile device requests the torrent
process from the cloud to make the cloud do this task behalf of the mobile device. This
process offloads the BitTorrent download from the mobile device to the cloud. During
the time of cloud downloading the BitTorrent, the mobile device switches to sleep mode
until the cloud finishes the torrent processes and upload the torrent file in one shot to the
device. This strategy saves the energy of smartphones because downloading torrent pieces
from torrent peers consumes more energy than downloading a one burst of pieces from the
cloud.

Kumar et al. [4] introduce the concept of computation task offloading to CC to attempt
to save mobile energy. They mathematically model the computation cost to run on a
mobile device and on the cloud. Based on their model, the factors that effect the offload
decision have been investigated. This work concludes that the decision of offloading highly
depends on the network bandwidth, the amount of offloading transmission data D, and
the computation of the task.

Baliga et al. studied the energy cost for three cloud computing services: SaaS, PaaS, and
IaaS [45]. This study considers the total energy consumption on the user end, networking
and provide simple models for the expected energy consumed in each part of the system.

Besides these work, several issues have been addressed fro the offloading to save mobile
devices energy. As an illustration, choosing the optimum amount of data to be offloaded
has been addressed in the literature [61, 73, 82, 83, 71, 57], where the application is divided
into parts and offload some parts that keep the offloading inequality valid. On the other
hand, selecting the most energy efficient communication module and data center has been
studied in several works [56, 71]. A comparison is provided in their work between the
energy consumption for the system parts to show the impact of each part on the overall
system consumption.

Majid Altamimi’s PhD Thesis 38

Chapter 3

Evaluating Offloading Energy Costs

In this chapter, we present an evaluation study to examine the feasibility of the offloading
technique to save smartphone energy. We explain the methodology of our experiments and
discuss the statistics of our experimental results. We show the results of our experiments,
which we conduct for two major parts: network related application experiments and cloud
application experiments. The following sections give the details. The contributions of this
chapter are published in [8].

3.1 Preamble

The aim of this chapter is to examine the feasibility of the offloading in order to save smart-
phone energy. The experiments are performed to investigate whether or not a smartphone
saves energy by offloading to cloud computing (CC). Our results give researchers much in-
sight into the energy cost of such applications, which is important to implement offloading
techniques. Indeed, the measurement of energy costs in this chapter helps the developers
of CC to design efficient offloading that save energy of smartphones. The results show
that CC provides the smartphones with multimedia functionalities and saves smartphone
energy from 30% to 70%. To our knowledge, this is the first study to evaluate energy
costs of applications on smartphones connected to real CC. Specifically, by the means of
experiments, we show the following:

• We measured the energy costs for playing an online video and show the different
phases of energy consumption, such as ‘download only,’ ‘download-and-play,’ and
‘play only’ (Section 3.3).

39

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

• As energy consumptions vary with time, we have measured the costs of sending and
receiving file over Hypertext Transfer Protocol (HTTP) and File Transfer Protocol
FTP via 3G and WLAN interfaces, and present the statistics of the results (Figs.
3.2-3.5).

• We investigated whether or not smartphones save energy by using CC. This investi-
gation is done by evaluating the energy costs for uploading and downloading a video
file to and from CC using HTTP and FTP protocols though 3G and WLAN connec-
tions. Then, we compare the results with the energy costs of doing video encoding
on the smartphone for the same video (Figs. 3.10-3.13).

• In the aforementioned investigation, we consider two broad experimental scenarios
(Figs. 3.8 and 3.9) related to the location of the original file to be encoded (Figs.
3.10-3.13).

3.2 Methodology

A comparison study of energy cost for smartphone applications over different hardware
smartphones is presented in [20, 19]. This comparison demonstrates that not all smart-
phones are comparable with respect to configurations, but they exhibit the same kind of
energy cost behaviour for each application. To illustrate this, Fig. 3.1, which is from our
work in [20], shows the pattern of power consumption of some smartphones in downloading
and playing multimedia file. We choose Android OS as smartphone platform since it has
the biggest market share in the smartphone industry. We use Android based HTC Nexus
One as it is popular, easy to access its battery contact pins, and full of multimedia and
communication functionality. Hence, we use this smartphone in all our experiments for the
consistency of our experiments.

For general smartphone battery usage, we study the power consumption instead of
energy because the power gives a good insight the device consumption regardless of the
file size or the time required to finish a task. However, the total energy is used to show a
comparison between specific tasks as we see next. This is because the total energy is more
meaningful metric to compare one particular task executed on two different processing
rates. In addition, we measure the speed of the network interface to demonstrate the
obtained data rate at the user level.

The smartphones access the cloud via the Internet and the smartphone applications
that are connected to the cloud are considered as Network Related Applications (NRA).

Majid Altamimi’s PhD Thesis 40

3.2. METHODOLOGY

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 5 8

1
2

1
5

1
9

2
2

2
6

3
0

3
3

3
7

4
1

4
4

4
8

5
1

5
5

5
9

6
2

6
6

7
0

7
4

7
7

8
1

BlackBerry Nokia HTC Nexus One HTC HD2

P
o

w
e

r
(W

a
tt

s)

Time (Seconds)

[Till : Phase I - 'Download'] [- : Phase II - 'Playback & download']

[After : Phase III - 'Playback ']

Figure 3.1: Smartphones power consumption for progressive download via WLAN

At the beginning of studying NRA, network interfaces (i.e., 3G and WLAN) are considered
because each of these interfaces has its own characteristics, such as coding overhead. As a
result, each network interface consumes unequal level of power and provides different data
rates. Nevertheless, the Internet protocols (i.e., HTTP and FTP) should be taken into
account for NRA. In other words, the network interfaces and the used protocols are the
major factors that impact the energy costs of these applications. Thus, we examine the
energy costs of common network interfaces and Internet protocols for the smartphones.

For NRA multimedia applications there are two scenarios in downloading the content
from the cloud through the Internet: (i) progressive download, and (ii) download-and-play.
In progressive download, the process can be divided into three phases: (a) download from
the server; (b) when enough data is in cache, application starts playback; and (c) playback
continues after the download is complete. On the other hand, download and play consists
of two parts: (a) download the entire file from the server to the smartphone storage; and
(b) play the content form its local storage.

As it is understood, a smartphone is a set of hardware and software. The hardware
subsystems of a smartphone include CPU, RAM, HDD, sensors, and Wireless Network
Interfaces (WNI); besides, the software includes the operating system and applications.
The energy is consumed in a smartphone by these hardware parts, which are managed by
the operating system based on the needs of the applications. As a result, each application
requires a specific amount of energy depending on the services that are required by each
hardware part. In reality, these services are highly affected by the application settings

41 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

and configurations. Moreover, the users interact with smartphone applications in different
ways. Therefore, the same application leads to different amounts of energy consumption,
see Section 1.2.2. This is because of the large space of application settings, configurations,
and number of users interaction change the application response and use of the hardware
components [84, 20]. For this reason, we provide our results at the user level and avoid
breaking down the energy consumption for each hardware subsystem. Our results present
the overall energy or power consumptions by the applications since our focus in this study
is to compare the total energy consumed by the offloading process to the cloud and the
total energy consumed in smartphone to process a multimedia file.

3.3 Experiments on Network Related Application

We conduct sets of experiments to measure the power consumption and the obtained data
rate for uploading and downloading over HTTP and FTP protocols using the 3G and
WLAN interfaces. The results are shown in Fig. 3.2-3.5. Figures 3.2 and 3.3 show that
statistics of the power consumption for the examined Internet protocols over the 3G and
WLAN interfaces in the upload and download cases, respectively. Similarly, Figs, 3.2 and
3.5 show the statistics of the experimentally obtained data rate at the application level for
different Internet protocols over 3G and WLAN interfaces in the case of file uploading and
downloading, respectively.

We use box plot to represent the statistical details of the result. The box plot represents
from the bottom to the top the following statistics: the smallest observation, lower quartile
(Q1), median (Q2), upper quartile (Q3), and the largest observation. From these figures,
we observe that the FTP protocol supports higher data rate with less power consumption
than the HTTP protocol. By this aspect, the FTP protocol is more efficient for task
offloading.

From the energy saving point of view, the performance metric for network interfaces
and protocols is the energy consumption per byte. Table 3.1 displays the summary from
above figures the average energy consumption per byte obtained from our experiments.

On the other hand, we perform experiments for each of downloading scenarios, which are
download-and-play and progressive download, that are directly have effect on the offloading
technique. In download-and-play scenario, we configure the client to download a file from
the Internet and we measure the energy costs at the download time. The statistics of the
power consumption up to this point is shown in Figs. 3.2 and 3.3. After the download is
completed, we allow the media application to play the downloaded file while we read the

Majid Altamimi’s PhD Thesis 42

3.3. EXPERIMENTS ON NETWORK RELATED APPLICATION

3G−HTTP 3G−FTP WiFi−HTTP WiFi−FTP

800

1000

1200

1400

1600

1800

2000

2200

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.2: Upload power consumption

3G−HTTP 3G−FTP WiFi−HTTP WiFi−FTP

800

1000

1200

1400

1600

1800

2000

2200

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.3: Download power consumption

43 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

3G−HTTP 3G−FTP WiFi−HTTP WiFi−FTP

200

400

600

800

1000

1200

1400

1600

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.4: Upload data rate

3G−HTTP 3G−FTP WiFi−HTTP WiFi−FTP

200

400

600

800

1000

1200

1400

1600

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.5: Download data rate

Majid Altamimi’s PhD Thesis 44

3.3. EXPERIMENTS ON NETWORK RELATED APPLICATION

Table 3.1: Energy consumption (µJ/B) of smartphone
3G WiFi

Download
HTTP 11.3 4.92
FTP 6.10 1.92

Upload
HTTP 14.56 2.20
FTP 12.17 1.08

idle Audio Playing Video Playing

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.6: Power consumption for playing from the device

energy costs. At this point, the power consumption of playing the media is independent
of the network interface. At playing stage, the power consumption of playing the media is
shown in Fig. 3.6. We notice that the power consumption of this stage is similar for the
playing when the file is on the device local storage. We show the idle case in Fig. 3.6 as
a base for comparison purpose when the device is configured as the LCD is ON and the
client application is OFF.

In the progressive download scenario, we configure the media client to start playing
the video whenever there is enough data to start. After we measure the energy costs, the
phases of this scenario can be distinguished easily as three phases. The first phase occurs
when the client starts to download as much data as possible, which causes fluctuations in

45 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

3G WiFi Playing

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 3.7: Power consumption in progressive download of a video file

the power consumption as shown in Fig. 3.1. The second phase occurs when the client
downloads data at the same time of playing the video. Figure 3.7 shows the statistics of
the power consumption by the network interfaces at this phase. Finally, the last phase
of this scenario is when the device only plays the media after the download is completed.
The power consumption of this phase is shown in Fig. 3.7 similar to the case of playing
a video file regardless of the interface that has been used. The third phase consumes
more power than the playing from the storage that shown in Fig. 3.6. The rise in the
power consumption of the third phase may be due to the progressive download keeping
the downloaded file in the cache memory of the device where this memory is a new power
consumer element.

3.4 Experiments on Cloud Applications

The offloading to the cloud needs much evaluation with respect to the services that are
provided to smartphones, in our case the service is in the form of energy saving. In
fact, saving smartphone energy is necessary for all of the cloud services [85, 86, 87]. To
investigate whether or not smartphones save energy by using the offloading, we conduct

Majid Altamimi’s PhD Thesis 46

3.4. EXPERIMENTS ON CLOUD APPLICATIONS

further experiments on a real cloud. As we discussed before, video encoding requires heavy
processing that drains smartphone battery if it is performed on the smartphone processor.
On the other hand, the data exchange with the cloud over the Internet consumes energy
for a smartphone to offload the encoding to the cloud. In these experiments, we investigate
and measure the energy costs of using task offloading on HTC Nexus One smartphone.
These experiments are conducted on the encoding service of the encoding cloud computing
(i.e., www.encoding.com).

The Multimedia Cloud Computing (MCC), which is a special type of cloud computing,
provides the smartphones with encoding functionality to a wide range of multimedia for-
mats to convert from one format to another. The smartphones can provide the multimedia
file to the cloud in many ways: (i) FTP or HTTP file link, where the file exists on a web
server; (ii) Cloud file access link, where the file exists on a cloud; and (iii) direct upload,
where the file exists on the user device. Once the file is uploaded, desired output format is
specified and the conversion request will start. Finally, the MCC renders the converted file
to the smartphone in many ways: (i) upload to FTP to HTTP server; (ii) cloud storage;
and (iii) email link.

Most of the smartphones can play a narrow range of multimedia. For example, the
HTC Nexus One can recognize and play mp4, H.263, and H.264 video formats. If the user
of this device wants to watch Flash Video (flv) video, he needs to convert it to another
format supported by the same device. In particular, the flv format is very common to
website hosting but no client, except a YouTube client, can play it on smartphones. The
same difficulty applies to other video formats as well.

In the experimental setup, we consider all encoding scenarios for a multimedia file as
depicted in Figs. 3.8 and 3.9. Figures 3.8 and 3.9 depict two broad experimental scenarios
related to the location of the original file to be encoded. In Fig. 3.8, the original file
is available on the smartphone itself. On the other hand, the original file is available in
the cloud as in Fig. 3.9. For uploading and downloading files to and from the cloud,
we consider the energy implications of: (i) using the HTTP and FTP protocols at the
application level; and (ii) using the 3G and WLAN communications at the wireless access
interface level. Using Fig. 3.8, we compare the energy cost of locally performing file
encoding on a smartphone with the total energy cost of performing the same operation in
the cloud, including the uploading and downloading communication costs. Similarly, using
Fig. 3.9, we compare the energy cost of downloading an encoded file with the total energy
cost of downloading the original file and performing encoding on a smartphone. Therefore,
we perform experiments with eight scenarios for each of Figs.3.8 and 3.9. There are four
scenarios related to the location of the original file to be encoded as follows.

47 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

Internet

3G WiFi

Smartphone

MCC

Encoding
Server

Local
encoding

App

HTTP FTP

To/From network
interfaces

Original
File

Upload +
MCC encoding +

Download

Local encoding

Encoded
File

Figure 3.8: Encoding scenarios where the original file exists on the smartphone

1. The first scenario is the local encoding using the smartphone’s encoding application
(i.e., Local encoding in Fig. 3.8).

2. The second scenario is the offloading technique by uploading the original multimedia
file and doing the encoding by the MCC then downloading the encoded multimedia
file (i.e., Upload + MCC encoding + Download in Fig. 3.8).

3. The third scenario is the local encoding using the smartphone’s encoding application
but after download the original file from the MCC (i.e., Download + Local encoding
arrow Fig. 3.9).

4. The fourth scenario is the encoding using MCC after load the original file from
cloud storage then downloading the encoded multimedia file (i.e., MCC encoding +
Download arrow Fig. 3.9).

Majid Altamimi’s PhD Thesis 48

3.4. EXPERIMENTS ON CLOUD APPLICATIONS

Internet

3G WiFi

Smartphone

MCC

Encoding
Server

Local
encoding

App

HTTP FTP

From network
interfaces

Encoded
File

Original
File

MCC encoding +
Download

Download +
Local encoding

Figure 3.9: Encoding scenarios where the original file exists on the MCC

49 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

Table 3.2: Properties of the video files
Converted mp4 at settings

Parameters Original flv Default Customized

Length (minutes:seconds) 3:31 3:31 3:31
File size (MB) 23.97 8.21 131.5
Frame width (pixel) 640 320 640
Frame height (pixel) 360 240 360
Data rate (Kbps) 909 258 5057
Frame rate (frame/s) 24 24 24
Audio bit rate (Kbps) 114 63 172
Channel 2 2 2
Audio sample rate (KHz) 44.1 44 44

In detail, we choose a song video in flv format and convert it into mp4 video format.
Table 3.2 lists the original and encoded video parameters. Each individual file format has
unique performance parameters such as the data bit rate. In both of MCC and smartphone
encoding application, the encoding parameters are kept to default settings. Unfortunately,
the settings are different as shown in Table 3.2. The default and customized parameters
are the parameters of encoded by MCC in default and customized setting, respectively.
For fair comparison, we customized the encoding parameter for the MCC that match
the parameters of the smartphone encoding application. Thanks to MCC that gives the
opportunity to configure the conversion parameters since the smartphone application does
not.

We present here the total energy costs for different network interfaces (i.e., 3G and
WLAN) and Internet protocols (i.e., HTTP and FTP). In these results, if a network inter-
face and an Internet protocol are used for uploading a file to the MCC, the same interface
and protocol are used for download the converted file. Therefore, there is no permutation
between network interfaces and Internet protocols in the uploading and downloading are
presented here. This is because we belief that the users tend to use the same configurations
at a time. Figure 3.10 reveals the capability of MCC to provide the cloud service that we
called Energy as a Service (EaaS) for mobile devices. The MCC provides at least 60%
reduction in energy when the 3G interface with HTTP protocol is used. In addition, this
figure shows the effect of the network interfaces and the Internet protocols on the energy
consumption. In general, the WLAN interface consumes less energy that the 3G interface
for transmitting the same amount of data. Similarly, the FTP protocol consumes less
energy than the HTTP protocol for transmitting the same amount of data.

Majid Altamimi’s PhD Thesis 50

3.4. EXPERIMENTS ON CLOUD APPLICATIONS

0

200

400

600

800

1000

1200

1400

App 1 HTTP FTP App 1 HTTP FTP

Local encoding Offloading: Upload + MCC encoding
+ Download

Downloading +
Local Encoding

MCC encoding + Download

To
ta

l e
ne

rg
y

co
ns

um
ed

 (J
)

3G

WiFi

Figure 3.10: Total energy consumed by App1 and the default MCC settings

Figure 3.11 shows the comparison when the MCC settings are identical as the settings of
the smartphone application. This figure shows the impact of the file size in the offloading
process since the customized settings required larger file size as show in Table 3.2. In
this case, the offloading does not save energy when the 3G interface is the only available
interface. From this figure, we can argue why we examine each of the network interfaces
and the Internet protocols. It is worth mentioning that the customized configurations
enlarge the encoded file without any noticeable improvement in the Quality of Experience
(QoE) to the end user.

On the other hand, for the local encoding application, we test two versions of the con-
verting application, which are PC-like applications, namely App1, on smartphone (i.e.,
MP3 Media Converter, version 1.1.0.3, by Ansha Team) and optimized version, namely
App2, for the smartphone (i.e., MP3 Media Converter (Neon), version 1.1.0.2, by Ansha
Team). The optimized version exploits the multimedia acceleration capability of the smart-
phone that is called Single Instruction Multiple Data (SIMD). All of these applications are
available on the application market of Android. Similarly, Fig. 3.12 and 3.13 compare the
total energy consumed in customized application (i.e., App2) and offloading to MCC with
default and customized settings, respectively.

51 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

App 1 HTTP FTP App 1 HTTP FTP

Local encoding Offloading: Upload + MCC encoding
+ Download

Downloading +
Local Encoding

MCC encoding + Download

To
ta

l e
ne

rg
y

co
ns

um
ed

 (J
)

3G

WiFi

Figure 3.11: Total energy consumed by App1 and the customized MCC settings

0

100

200

300

400

500

600

700

800

App 2 HTTP FTP App 2 HTTP FTP

Local encoding Offloading: Upload + MCC encoding +
Download

Downloading +
Local Encoding

MCC encoding + Download

To
ta

l e
ne

rg
y

co
ns

um
ed

 (J
)

3G

WiFi

Figure 3.12: Total energy consumed by App2 and the default MCC settings

Majid Altamimi’s PhD Thesis 52

3.5. LIMITATIONS OF OUR APPROACH

0

200

400

600

800

1000

1200

1400

1600

1800

2000

App 2 HTTP FTP App 2 HTTP FTP

Local encoding Offloading: Upload + MCC encoding
+ Download

Downloading +
Local Encoding

MCC encoding + Download

To
ta

l e
ne

rg
y

co
ns

um
ed

 (J
)

3G

WiFi

Figure 3.13: Total energy consumed by App2 and the customized MCC settings

3.5 Limitations of Our Approach

Our experiments show that the NRA performance highly depends on the network interfaces
and protocols. In general, it is shown that 3G interface consumes more power than the
WLAN interface. This means offloading a task via 3G interface has to be avoided in the
availability of WLAN interface. Moreover, the FTP protocol consumes less power than the
HTTP protocol. Recommending a single interface is difficult because each one provides
the end-users a unique experience. For instance, 3G interface supports a large range
communication while WLAN supports short range. However, choosing interface decision
depends on the NRA requirements such as having a specific data rate.

The experiment results show that some energy readings fluctuate widely caused by the
data rate of the cloud servers or caused by the change in the wireless network conditions.
This fluctuation also depends on the contents of the media as it has been proven in [88].
For example, the server provides a high data rate at the beginning of video progressive
download to guarantee a certain level of quality of experience. In contrast, the server uses
other procedure for the audio files. We limited our experiments to exclude the dependency
of the energy cost on the cloud and the network conditions.

In our comparison experiments, we have been limited to the local applications that have
fixed conversion parameters and produce a large file. For fair comparison, we customize
the conversion parameters on the MCC to match the conversion parameters of the local
applications. Therefore, the energy cost of downloading the converted file is quite high.

53 ECE, University of Waterloo

CHAPTER 3. EVALUATING OFFLOADING ENERGY COSTS

We should mention that the MCC converts a video file into a typical size, format, and
quality for Android smartphones if the target device is specified. Our experiments reveal
that the MCC auto conversion parameters would reduce the downloading energy costs for
the smartphone from 90% to 95% where the custom configuration could save from 30% to
70%.

In our experiments, we use the Internet protocol IPv4 that does not distinguish the
information contents. If the smartphones support IPv6, the experience is likely to be
different because this protocol offers QoS and multimedia priority procedure and could
offer efficient energy solution and offloading techniques [89].

3.6 Summary and Discussion

Our study clearly indicates that offloading heavy applications, namely multimedia applica-
tions, from smartphones to MCC is beneficial. The MCC significantly reduces the energy
consumption on smartphones. Moreover, the MCC enriches smartphones capabilities for
multimedia applications.

At this time when the CC is in its infant state, the importance of evaluating the benefit
of MCC to overcome smartphone constraints motivates us to conduct this study. A large
number of experiments have been performed for common network interfaces (i.e., 3G and
WLAN) and protocols (i.e., HTTP and FTP). The location of the original file has been
considered. This chapter provides a wide range of comparison between possible encoding
location, original file place, encoding configuration parameters, network interfaces, and
Internet protocols. The results reveal the potential of the cloud by reducing smartphones
energy consumptions on multimedia applications at least 30%.

At this point of our research, we argue that task offloading is beneficial and the need
for offloading framework is fundamental. The framework performs the offloading decision
accurately to whether or not the offloading is beneficial based on the system parameters. In
this case, we need to develop estimation models to the energy consumption for each system
components, which are the networking components and the computing components. The
networking components are used for transferring the data between the device and the
cloud in the case of the decision to offload the task. On the other hand, the computing
components are used to execute the task on the device locally. Estimating the energy for
these sets of mobile device components is the key for the offloading framework to make
the decision. In the next chapters, we model the energy consumption of the networking
components (i.e., Chapter 4) and of the computing components (i.e., Chapter 5).

Majid Altamimi’s PhD Thesis 54

Chapter 4

Modelling the Networking Energy
Consumption

Task offloading from mobile devices to the cloud is a promising strategy to enhance the
computing capability of mobile devices and prolong their battery life. However, task of-
floading introduces a communication cost for those devices. Therefore, consideration of the
communication cost is crucial for the effectiveness of task offloading. To make task offload-
ing beneficial, one of the challenges is to estimate the energy consumed in communication
activities of task offloading. Accurate energy estimation models will enable these devices
to make the right offloading decisions as to whether or not to perform task offloading,
based on the energy cost of the communication activities. Simply put, if the offloading
process consumes less energy than processing the task on the device itself, then the task is
offloaded to the cloud. To design an energy-aware offloading strategy, we develop energy
models for the WLAN, Third Generation (3G), and Fourth Generation (4G) interfaces of
mobile devices. These models make mobile devices capable of accurately estimating the
energy cost of task offloading. We validate the models by conducting an extensive sets of
experiments on five smartphones from different vendors. The experimental results show
that our estimation models accurately estimate the energy required to complete a task
offloading. The contributions of this chapter are published in [9].

4.1 Preamble

In order to make the offloading beneficial, the energy cost of offloading for a given task
should be estimated to compare it with the energy cost of executing the task locally. From

55

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

a smartphone point of view, the energy consumed during task offloading is mainly caused
by the networking activities. The focus of this study is to develop energy models for task
offloading caused by the networking activities. Specifically, we model the energy cost at
the application level considering all the details of the network stack (i.e., Transmission
Control Protocol (TCP), Media Access Control (MAC), and Physical layer (PHY)).

In this chapter, we develop and validate mathematical models for the energy that smart-
phones consume during network activities for task offloading. We consider in our models
the most common network interfaces: WLAN and 3G/4G. We conduct experiments on
popular smartphones (i.e., HTC Nexus One, LG Nexus 4, Samsung Galaxy S3, Black-
Berry Z10, and Samsung Galaxy Note 3) to validate our energy models. The experimental
results reveal that our energy estimation models are able to estimate the energy accurately.

This chapter makes the following contributions:

1. introduce mathematical models to estimate the energy consumed in a smartphone to
perform task offloading at the cases of:

(a) file downloading using WLAN and 3G/4G network interfaces; and

(b) file uploading using WLAN and 3G/4G network interfaces.

2. developed models so that provide an accurate estimation to the total energy con-
sumed for task offloading by only taking the amount of data that the smartphone
would transfer for task offloading as an input.

3. validate the energy models by means of implementation and measurement. In these
experiments, we measure the actual energy consumed in the smartphones for each of
the aforementioned network activities.

This chapter is organized as follows. We discuses the literature of modeling the energy
cost of smartphone networking in Section 4.2. In Section 4.3 and Section 4.4, we provide the
details of our energy estimation models for WLAN and 3G/4G networking, respectively.
The validation of the models and the experimental results are discussed in Section 4.5.
The discussion and summary are presented in Section 4.6.

Majid Altamimi’s PhD Thesis 56

4.2. LITERATURE OF THE NETWORKING ENERGY MODELLING

4.2 Literature of the Networking Energy Modelling

4.2.1 Modelling Studies

Developing mathematical models for the energy consumption is essential to make task
offloading beneficial with respect of energy cost. That is, the offloading decision depends
on the estimation of the energy cost, which is modelled mathematically, for offloading the
task to the cloud and for executing it locally. Modelling the energy consumption has been
developed extensively in the literature for the use of energy saving techniques such as task
offloading technique.

Zhang et al. [90] and Jung et al. [91] profiled the energy consumption of mobile device
hardware components including the wireless interfaces. The profiling is developed by ana-
lyzing the access event of the system to the component and the change in the power state,
which is provided from the Battery Monitoring Unit (BMU). Their mathematical models
are built based on the analysis to the experimental results. As a result, the models lack for
system analysis and the detail of the protocols. In addition, the BMU can not trace events
that are shorter than BMU update rate as in the case of wireless interfaces. Therefore,
the models are not accurate and not extendible for modelling the energy consumption of
the wireless interfaces.

In contrast, Xiao et al. [92] presented an energy cost model for IEEE 802.11g networks.
The model takes into account the impact of the transmission control protocol (TCP) and
Internet traffic flow characteristics on the power consumption of smartphones running dif-
ferent operating systems. The model abstracts the detailed operation of the IEEE 802.11g
protocol, such as the RTS-CTS packets exchange, the average back-off time, and the trans-
mission of ACK packets. Our MAC (media access control) energy model accurately takes
the detailed operation of IEEE 802.11 into consideration where it is developed based on
the IEEE 802.11g protocol parameters. Hence, it can be easily extended to other IEEE
802.11 standards.

The wireless interface of a mobile device with 3G/4G radio consumes deterministic
levels of power. These levels are associated with the radio resources that the interface
was granted form the network. For instance, the interface consumes a specific amount of
power during the data transfer period and another amount during signaling. Qian et al.
[93] and Huang et al. [94] showed these distinct levels of power consumption by tracing
the radio resources and power consumptions of the smartphones for 3G and 4G networks,
respectively. We use this concept to develop our models. Rather than consider the power
consumption of individual components inside the interface [95], we consider the overall

57 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

power consumption of the network interface, because we develop our models to be used at
the upper system level where one only sees the total power consumption of the interface.
This will simplify our models and reduce the parameters that are used for the offloading
decision.

4.2.2 Networking Measurement Studies

In the field of energy measurements for the networking on the mobile devices, Xiao et
al. [96] presented a case study of energy cost for mobile YouTube (m.youtube.com) on a
mobile device (Nokia S60) using 3G and WLAN networks. Energy cost data is collected
by the Nokia Energy Profile application that itself runs on the mobile device to measure
the current and the voltage of the device battery. The analysis reveals that 3G consumes
1.45 times more energy than WLAN. Moreover, download-and-play consumes more energy
than progressive download because the network modules continue to remain active for a
while after the download is finished.

Abogharaf et al. [97] proposed an energy-efficient and client-centric algorithm based on
experimental observations of data streaming. Their study shows the impact of communi-
cation parameters (i.e., buffer size, low water mark, and socket-reading size) on the energy
consumed during data streaming. The parameters affect the sleep behaviour of the wireless
network interface controller (WNIC). The proposed algorithm tunes those parameters in
an energy efficient way by utilizing the WNIC during the continuous active mode (CAM)
and maximizing the use of power saving mode.

Albasir et al. [98] measured the energy cost of web browsing for different contents, and
they observed that for web pages containing advertisements (ads) a smartphone consumes
more energy than the same web pages without ads. Based on this observation, a client-
server algorithm is proposed that saves energy by managing the web browsing contents.
The server adapts the contents of the web pages based on smartphone requests, where the
requests include battery-level and type of network connection.

The distinction between our work and the above work is that we consider the offloading
decision problem in the application layer by taking into account the impact of lower layers
on the energy consumption. We analyze the lower layer protocols to build reasonable and
realistic models. In addition, we keep our models extendible to the next generation of
wireless communication systems by developing our models based on the analysis to the
networking layer standards. Furthermore, we develop fine-grained mathematical models
first, and then we validate them experimentally. We do not drive the models from the
experimental results by extracting the statistical properties and analyzing the observations.

Majid Altamimi’s PhD Thesis 58

4.3. WLAN ANALYTICAL ENERGY MODEL

In the experiments, we measure the actual energy using external measurement equipment
to avoid measurements overhead such as BMU overhead, and to obtain very high precision
readings.

4.3 WLAN Analytical Energy Model

We consider a single-channel IEEE 802.11g WLAN network. Following the carrier-sense
multiple access with collision avoidance (CSMA/CA) protocol as described in the IEEE
802.11 standard [99], if a node has a data packet to transmit and senses the channel
to be idle for a period of Distributed InterFrame Spacing (DIFS), the node proceeds by
transmitting an RTS packet. If the channel is busy, the node defers its transmission until
an idle DIFS is detected and waits for a random backoff time in order to avoid collisions.
The backoff time counter is chosen uniformly in the range [0,Wi - 1], where i ∈ [0, mb],
mb is the number of backoff stages, and Wi is the current contention window (CW) size
in time slots. A time slot is the unit time in IEEE 802.11. The contention window at the
first transmission of a packet is set equal to CWmin. After an unsuccessful transmission,
the CW is doubled up to a maximum value

CWmax = 2mb × CWmin (4.1)

The backoff counter decreases at every slot time when the channel is sensed idle. The
counter is stopped when the channel is busy and resumed when the channel is sensed idle
again for more than DIFS. A station transmits the RTS packet when its backoff timer
reaches zero. If the destination station successfully receives the RTS packet, it responds
with a CTS packet after a short inter-frame space (SIFS) time interval. Upon the reception
of the CTS packet, the sender sends the data packet. The receiver then waits for an SIFS
time interval and transmits an acknowledgement (ACK) packet. If the ACK packet is not
received within a specified ACK timeout interval, the data packet is assumed to be lost
and a retransmission will be scheduled.

We assume a fixed packet size. The packet transmission time Ts is given by [100]:

Ts = TRTS + TCTS + 3SIFS + TACK + TD +DIFS (4.2)

and the packet collision time, which is the channel time wasted in a packet collision, is
given by:

Tc = TRTS +DIFS (4.3)

59 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

Table 4.1: IEEE 802.11g system parameters
System Parameter Value

Packet payload Lmax bits
MAC Header HMAC 208 bits
TPHY 26µs
TRTS 7.583µ + TPHY
TCTS 5.583µ + TPHY
TACK 5.583µ + TPHY
Slot Time (σ) 9 µs
Short Inter-Frame Space (SIFS) 10 µs
Distributed Inter-Frame Spacing (DIFS) 28 µs
Basic Rate 24 Mbps
Data Rate 6 ≤ Rdata ≤ 54 Mbps
CWmin 32
Backoff stages (mb) 5

The symbols TRTS, TCTS and TACK represent the transmission times for the RTS, CTS, and
ACK packets as given in Table 4.1 [99], respectively; TD is the data packet transmission
time, which is constant for a fixed packet size.

We model the case of a single user in the WLAN network. Therefore, the probability
that a node sends a packet at a random time slot can be give as [100]:

τ =
2

CWmin + 1
(4.4)

We assume that the file size is B bytes and each TCP segment is carried only in one
MAC frame. Therefore, the total number of MAC frames submitted to the AP by the
node under study is B

Fs
, where Fs is the MAC frame size in bytes.

In the following, we model the energy usage in two distinct cases, namely, file upload
and file download. For simplicity, we assume that the mobile device transceiver uses only
two power levels, namely, PRX when it is idle, in backoff mode, or receiving and PTX when
it is transmitting.

Majid Altamimi’s PhD Thesis 60

4.3. WLAN ANALYTICAL ENERGY MODEL

4.3.1 File Download Case

In this case, the mobile device is mostly receiving. Here, we address first the general
situation where there is no limitation on the file download rate from the cloud. Next, we
address the situation where the cloud restricts the file download rate. For every MAC
frame to be received, the mobile device has to send a CTS and an ACK frame. The mobile
device has to send a TCP ACK for every received TCP segment. During downloading a
file, a smartphone will be receiving a data frame for a time TD + 3SIFS + TPHY + TRTS
and it has to wait for the AP backoff time σ

τ
[100]. The smartphone also receives an

acknowledgement for the TCP ACK it sends to the AP after receiving a data frame of the
file being downloaded. On the other hand, the smartphone sends a TCP ACK using the
basic access method (i.e., only DATA-ACK) so it has to wait for an average backoff time of
σ
τ

[100]. It also has to send a MAC ACK and a CTS frame for each data frame it receives
from the AP. Therefore, the total energy consumed in a file download can be obtained as

Ed =

⌈
F

Fs

⌉
×
{

(TRTS + TACK + 3SIFS + TPHY + TD + TH)PRX+
(TACK + TCTS)PTX

}
+NdACK

(TH + TPHY + TTACK)PTX +
σ

τ
PRX (4.5)

where the TCP acknowledgement transmission time TTACK = ACKTCP

Rdata
and NdACK

is the
number of TCP acknowledgements received by the smartphone in the download case, which
is given as

NdACK
=

⌈
F

NdsegFs

⌉
(4.6)

where TD = Lmax

Rdata
, the transmission time for the MAC header TH = HMAC

Rdata
, the TCP

acknowledgement transmission time TTACK = ACKTCP

Rdata
, and Ndseg is the number of TCP

segments that can be sent without receiving an acknowledgement in the download case.

In fact, Eq. (4.5) estimates the consumed energy in downloading a file when the server
hosting the file has no limitation on the download data rate. If there is a limitation on the
download rate, there will be some idle time the mobile terminal will experience between
downloading a TCP segment and the subsequent segment. This case can be taken into
account by adding the term Dns to Eq. (4.5) as follows:

61 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

Edns =

⌈
F

Fs

⌉
×
{ (

σ
τ

+ TRTS + TACK + 3SIFS + TPHY + TD + TH
)
PRX+

(TACK + TCTS)PTX

}
+NdACK

(σ
τ

+ TH + TPHY + TTACK

)
PTX (4.7)

+Dns

where Rs is the server download rate and

Dns =

⌈
F
Fs

⌉
×

 [
Lmax

Rs
− σ

τ
− TRTS − TACK−

3SIFS − TPHY − TD − TH

]
−

(TACK + TCTS)

−(
1

Ndseg
(σ
τ

+ TPHY + TH + TACK)
)

PRX (4.8)

The term Dns takes into account the amount of energy consumed by the smartphone
while in idle state within the inter-arrival time (Lmax

Rs
) of two consecutive TCP segments.

4.3.2 File Upload Case

Similar to the download case, we address first the general situation where there is no
limitation on the upload rate to the cloud. Next, we address the situation where the
cloud restricts the file upload rate. In the upload case, we take into account that the
smartphone receives a TCP ACK for every frame of the uploaded file so it has to wait for
the backoff time σ

τ
that the AP takes to transmit the TCP ACK in addition to the TCP

ACK transmission time. The smartphone also has to send a MAC ACK for each TCP
ACK. For every frame the smartphone transmits, it receives a CTS, an ACK, and waits
for 3TSIFS and an average backoff time of σ

τ
. In addition to sending the data frame, the

smartphone sends an RTS for every data frame of the uploaded file. Therefore, the total
energy used for uploading a file can be given as

Eu =

⌈
F

Fs

⌉
×
{ (

σ
τ

+ TCTS + TACK + 3SIFS
)
PRX+

(TRTS + TH + TPHY + TD + TACK)PTX

}
+NuACK

(σ
τ

+ TTACK + TH + TPHY

)
PRX (4.9)

where NuACK
is the number of TCP acknowledgements received by the smartphone in the

upload case, which is given as

Majid Altamimi’s PhD Thesis 62

4.4. MOBILE DATA ANALYTICAL ENERGY MODEL

NuACK
=

⌈
F

NusegFs

⌉
(4.10)

where Nuseg is the number of TCP segments that can be sent without an acknowledgement
in the upload case.

Similar to the download case, if there is a limitation on the file upload rate, there will
be some idle time the mobile terminal will experience between uploading a TCP segment
of the file and the subsequent segment. This case can be taken into account by adding the
term Uns to Eq. (4.9) as in the following.

Euns =

⌈
F

Fs

⌉
×
{ (

σ
τ

+ TCTS + TACK + 3SIFS
)
PRX+

(TRTS + TH + TPHY + TD + TACK)PTX

}
+NuACK

(σ
τ

+ TTACK + TH + TPHY

)
PRX

+Uns (4.11)

where

Uns =

⌈
F
Fs

⌉
×

([
Lmax

Rs
− σ

τ
− TCTS − TACK − 3SIFS

]
−

(TRTS + TH + TPHY + TD + TACK)

)
−(

1
Ndseg

(σ
τ

+ TPHY + TH + TTACK)
)

PRX (4.12)

The term Uns takes into account the amount of energy consumed by the smartphone while
in idle state during the time (Lmax

Rs
) between uploading two consecutive TCP segments of

the file under consideration.

4.4 Mobile Data Analytical Energy Model

In this section, we present our models of energy consumption of a smartphone connected to
mobile data networks. Specifically, we develop our models for 3G and 4G mobile networks.

63 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

4.4.1 Background

The 3G and 4G networks contain a Radio Resource Controller (RRC), which manages all
communication between the user devices (i.e., user equipment, UE) and provider networks.
The aim of RRC is to provide high performance mobile connectivity by reducing signalling
latency and UE power consumption, and enhance the network throughput. From here, the
RRC has direct impact on the power consumption of the smartphone. Always-on keeps
the latency low, but drains the UE battery quickly. In contrast to always-connected, only
connected for data exchange minimizes the power consumption, but increases link setup
signalling and consequently increases the network latency. The trade-off between these two
cases is served by the RRC in which the radio resources take a specific status based on some
conditions to change between these statuses. The mechanism of RRC and specifications are
implemented and described in the 3rd Generation Partnership Project (3GPP) standards.
In general, the RRC defines two major states for the radio connection, which are RRC IDLE

and RRC CONNECTED. In the RRC IDLE state, the radio is in a low-power state and there is
radio resources are assigned to the UE. In this case, the UE tunes to the shared control
channel where it listens to control traffic. In the RRC CONNECTED state, the radio is in a
high-power state and a data connection is established where dedicated radio resources are
allocated to the UE. The transition to RRC CONNECTED only occurs when the UE hears from
the network broadcast that there is data to be received or the local buffer of transmission
exceeded its threshold. At that time, the UE initiates a connection by sending connection
request to the network through promotion signalling procedure [101]

In the 3G networks, the RRC CONNECTED state is divided into two sub-states for further
improvement, as depicted in Fig. 4.1(a). The CELL DCH state is the state where a device is
in a high-power state and network resources are assigned for data transfer. The CELL FACH

is an intermediate power state, where no dedicated network resources are assigned but a
shared low-speed channel. At CELL FACH, a device consumes significantly less power than
at CELL DCH. The buffer thresholds and the RRC timer govern the transitions among these
states. If the buffer state is not changed, the UE does not change the power state to lower
power state until the timer has expired. The timer keep the interface active waiting for
possible next network activity to reduce the signalling, but if nothing happens it switch to
lower power state. In fact, the UE wastes some UE energy called tail energy because of
this timer.

Similarly, the RRC CONNECTED is divided into three sub-states in the 4G networks as
shown in Fig. 4.1(b). The Active state is similar to the CELL DCH in the 3G. Similar
to the CELL FACH in the 3G, for better RRC performance the 4G networks use further
sub-states called Short Discontinuous Reception (Short DRX) and Long Discontinuous

Majid Altamimi’s PhD Thesis 64

4.4. MOBILE DATA ANALYTICAL ENERGY MODEL

CELL_DCH

CELL_FACH

CELL_PCH/

CELL_URA

IDLE

High Power

tDCH-FA

Low Power

tFA-PCH

Activity

detected

tPCH-idle

RLCbuffer >

RLCthreshold

Periodically

(a) 3G RRC status

Active

Short DRX

Long DRX

IDLE

High Power

tDCH-FA

Low Power

tFA-PCH

Activity

detected

tPCH-idle

(b) 4G RRC status

Figure 4.1: 3G and 4G RRC status

Reception (Long DRX) in the downlink, and Discontinuous Transmission (DTX) and Long
Discontinuous Transmission (Long DTX) in the uplink.

4.4.2 Energy Models

Based on the operation of the RRC states described above, the total energy consumed to
transfer data consists of three parts: promotion signaling, data transfer, and tail energy
[93, 94]. Figure 4.3 shows an example of these three parts in case of downloading data
over a 3G network.Therefore, the general energy consumption model follows the following
equation:

E3G/4G = Eps + Etrx + Etail (4.13)

where Eps, Etrx, and Etail are the energy consumed on promotion signaling, data transfer,
and tail timer, respectively.

The energy consumed for a given task equals the power multiplied by the duration that
the smartphone takes to finish the task, which is expressed as E = P × T . Then, Eq.

65 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

(4.13) becomes
E3G/4G = Pps × Tps + Ptrx × Ttrx + Ptail × Ttail (4.14)

As we discussed before that Tps and Ttail are deterministic for each mobile operator, Eps
and Etail will be constant for each given smartphone and mobile data provider. Therefore,
these two terms are calculated independently and added to the data energy consumption.
This addition is valid under the assumption that each data transfer establishes and uses
only one connection at a time. Another assumption can be that signalling was already
established for another data transfer and there is a second data transfer happening. The
addition can be determined based on the current status of the network interface. To
simplify these assumptions, the promotion signalling term is added if the interface is idle
otherwise it is not. The addition of the tail energy needs further studies on the prediction
of the data arrival.

The term Ptrx× Ttrx represents the total energy consumed for transfer the data, where
Ptrx is the power level of the mobile device adjusted by the Radio Link Control (RLC),
and Ttrx is the total time required to transfer the data over the network interface. As
we discussed early, Ptrx is constant for transferring any amount of data but the time Ttrx
depends on the amount of data (F) and the achieved data rate (Rtrx) for the given network
interface as expressed in the following equation:

Ttrx =
F

Rtrx

. (4.15)

It is well known that wireless networks suffer from limited resources (e.g., spectrum
scarcity), high error rate, and higher delay compared to wired networks. Therefore, recent
wireless networks target to increase spectrum utilization and reduce the delay as well
[102]. Due to these limitations, especially high error rate, the TCP protocol experiences
degradation of its performance. However, in the 3G and 4G mobile networks, new protocols
called Automatic Repeat reQuest (ARQ) and Hybrid-ARQ are implemented into lower
layers to recover from errors. As a result, performance of TCP is improved since it is
almost isolated form wireless channel effect. Nevertheless, TCP is still limited in some
cases by the delay occurring in the wireless networks because TCP is end-to-end control
protocol, which mean it relay on some sort of information exchange between connection
ends.

Based on the discussed characteristics of the wireless networks and TCP protocol, we
can express the achieved data rate as

Rtrx = min{RTCP , R3G/4G}, (4.16)

Majid Altamimi’s PhD Thesis 66

4.4. MOBILE DATA ANALYTICAL ENERGY MODEL

where RTCP and R3G/4G are the rate limit due to TCP performance and the scheduler
of the wireless networks, respectively. We believe that this expression is practical and
simplifies the complex mathematical model developed in [103].

The rate of TCP is defined by the effective TCP Congestion Window (CWD), and the
Round-Trip Time (RTT) as expressed in the following equation:

RTCP =
CWD

RTT
. (4.17)

The rate R3G/4G is the rate achieved at the TCP layer, which is limited by the rate of the
lower layers (i.e., PDCP , MAC, PHY). In 3G/4G networks, the rate is adaptive to the
channel condition to maximize spectrum utilization. The adaptation is implemented for
each Transmission Time Interval (TTI). In the adaptation process, different Modulation
and Coding schemes (MCS) are used, taking into account the Received Signal Strength
(RSS) and Signal to Noise ratio (SIN). The receiver reports to the transmitter the
current channel condition using Channel Quality Index (CQI), which is calculated using
RSS and SIN . Then, the transmitter selects the MCS according to the mapping from
the reported CQI and the user equipment (UE) category to MCS. This mapping is out
of the focus of this work. We use in our calculation the achieved data rate R3G/4G at the
TCP layer. However, we conducted a set of field tests to do this mapping and we have
the same observation claimed in [104] that the TCP throughput is not affected by the SIN
after some threshold of SIN However, we conducted a set of field tests to do this mapping,
which will be our future work. The mapping goes from the RSS, SIN to CQI, and then
UE category to MCS, and then to R3G/4G.

In the TCP protocol, part of the congestion control is the slow-start at the beginning
of the connection from Initial Window size (IWD) until it reaches CWD. As we discussed
earlier, the power level does not depend on the data rate. Therefore, the mobile device will
consume the same power during the TCP slow-start as the power at high rate, as depicted
in Fig. 4.3. Hence, Equation (4.15) becomes

Ttrx = Tss +
F − Fss
Rtrx

(4.18)

where Tss is the time for the slow-start to reach CWD, and Fss is the amount of data
transferred during the slow-start stage. Their values can be calculated using the following
equations:

Tss = RTT × logγ(CWD/IWD), (4.19)

Fss = TCPsegment size × logγ(CWD/IWD), (4.20)

where γ is the exponential growth of the window size, usually it takes a value of 2.

67 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

4.5 Experimental Validation

In this section, we set up and conduct a set of experiments to validate the energy models.
We measure the actual energy consumed in five different smartphones in real circumstances
and a real cloud.

4.5.1 Methodology

We set up our experiments as depicted in Fig. 4.2. In this setup, we use five different types
of smartphones: HTC Nexus One, LG Nexus 4, Samsung Galaxy S3, BlackBerry Z10 and
Samsung Galaxy Note 3. These smartphones can access WLAN, 3G, or 4G networks. With
these networks, the smartphones upload and download files to and from the cloud. The
power supply can simultaneously power the smartphone and record the power consumption.
The power readings during the experiments are recorded on a laptop designated for this
purpose. To reduce the errors in the reading, we duplicate some experiments using two
types of power supplies: Keithly and Monsoon. We conclude that the error is less than
1%.

The total energy consumed in a smartphone for a communication task is the sum of
the energy consumed by several system parts as given in the following equation:

Etotal = EWNI + EOS, (4.21)

where Etotal is the total energy consumed for a communication task, EWNI and EOS are
the energy consumed by the wireless network interface (WNI) while transferring data, and
by the operating system (OS), respectively.

Our models are developed to calculate the energy consumed for data transfer as repre-
sented by EWNI . The aim of our experiments is to validate our energy models. However,
in our experiments, the overhead energy consumed by the operating system is unavoidable.
The EOS term is determined experimentally, and consequently, we distinguish the energy
consumed for transferring data from the total measured energy during the communication.
Figure 4.3 shows the real time power consumption of a smartphone when the system is idle
(low power consumption) and when a data block is transferred (the high power consump-
tion). Hence, to compare our model with the experimental measurements, we need to add
the energy consumed by the operating system to the models. Throughout this section,
the comparison between experimental results and models is presented with respect to the
energy consumed in the wireless interface EWNI .

Majid Altamimi’s PhD Thesis 68

4.5. EXPERIMENTAL VALIDATION

Figure 4.2: Experiments setup

69 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

0 10 20 30 40 50 60
0

500

1000

1500

Time (seconds)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

 (
m

W
)

0 10 20 30 40 50 60
0

1

2

3
x 10

5

D
a
ta

 r
a
te

 (
B

/s
)

Power

Data rate

signalling

FACH
timeout

Tail
energy

DCH timeout

idleDCH

FACH

TCP slow−start

Figure 4.3: Example for power and data rate for different TCP and RRC status

For these experiments, we choose a 10 Megabytes (MB) file to represent average multi-
media files. We use the same file for all of the experiments to keep the results consistent.
Figure 4.4 shows a comparison between the cumulative energy consumption of a smart-
phone obtained from experiments (total) and the total energy calculated by our models
(Model). Figure 4.4 also shows the energy consumed by the operating system (EOS) after
we separated it from the total energy experimentally, and the energy consumed by WNI
(EWNI) after we calculated it using Eq. (4.7). The results shown in Fig. 4.4 reveal that
our energy estimation model is very accurate. This figure shows the energy consumed in
system parts to demonstrate our methodology for our experiments. Hereafter, we only
show the total energy obtained by the experiments for the wireless interface and by the
mathematical models.

As the Internet traffic is bursty, bursts keep the wireless interface in the inactive mode,
or in the idle mode (i.e., power saving mode) if the waiting time for a traffic exceeds a
threshold amount [92]. To accurately measure the energy consumed during traffic exchange,
bursts traffic is avoided. One way to tackle this problem is to limit the traffic rate at the
server. For this purpose, we conduct set experiments on bursty traffic and non-bursty
traffic, then we compare their TCP traces, as shown in Fig. 4.5. This figure depicts the

Majid Altamimi’s PhD Thesis 70

4.5. EXPERIMENTAL VALIDATION

0 5 10 15 20 25
0

20

40

60

80

100

120

140

Transferred file size (MB)

C
o

m
u

la
ti
v
e

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

Total

E
OS

E
WNI

Model

Figure 4.4: Total energy consumption for file downloading over WLAN

TCP trace, where packet arrival time is shown on the x-axis and the amount of transferred
packets on the y-axis. The Bursty-Traffic line represents the flow of a bursty traffic. We
notice that most of the packets arrive at relatively short time, which is called bursts, and
few packets arrive on much longer time, which causes the interface to use power saving
mode. Moreover, we notice that the time between receiving bulk of packets is random. This
observation explains why the bursty traffic leads to inaccurate energy estimation, because
it keeps the wireless interface idle for random amount of time. To reduce the impact of
bursty traffic on energy consumption, we make sure there is no idle period during the
network activities when we measure the energy consumption. We obtain this by running a
set of download and upload tests and monitor the burst of the traffic using network analysis
software “Wireshark”. The resulting traffic is smooth as shown using the network analysis
software, by the Smooth-Traffic line in Fig. 4.5. This line shows that packets arrival is
uniformly distributed over the transfer time, where there is no idle time for the wireless
interface. This leads to accurate energy measurement for data transferring. For a more
detailed examination of the impact of traffic burstiness, see [105].

In our experiments, we perform more than 30 sets of experiments involving file down-
loading and uploading over a WLAN network, and again for file downloading and uploading
over 3G and 4G networks. Each set of experiments is repeated between three to five times.

71 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

x 10
7

P
a
c
k
e
t
s
e
q
u
e
n
c
e
 n

u
m

b
e
r

Elapsed time (seconds)

0

5

10

15

20

25

T
ra

n
s
fe

rr
e
d
 f
ile

 s
iz

e
 (

M
B

)

Smooth Traffic

Bursty Traffic

Figure 4.5: TCP trace: Time versus file size

The results of our experiments reveal that all tested devices have the same behaviour of
energy consumption during network activities. We obtain consistent results among the de-
vices, which emphasizes that our models are device independent and applicable to a wide
range of devices. The only difference is the amount of power consumption, as summarized
in Table 4.2. Since all devices behave similarly, we present an extensive statistics of the
experimental results only for the most modern device that we have at the time of our
experiments, namely, Samsung Galaxy Note 3. Moreover, we will not present the statistics
of the results for all tested devices due to limited space. On the other hand, all devices
achieve similar TCP throughput, which we show in this section.

4.5.2 File Transfer over WLAN Networks

We conduct our experiments for real circumstances and we confirm some parameters from
our experiment settings. Table 4.3 lists the values that we obtained from the experiments
for the parameters used in Eq. (4.1) to Eq. (4.11) and not listed in Table 4.1.

In the first set of experiments, we measure the total energy consumed by the smart-
phone during downloading a large file (10MB) over a WLAN network to validate our

Majid Altamimi’s PhD Thesis 72

4.5. EXPERIMENTAL VALIDATION

Table 4.2: Average power consumption (mW)
Smartphone

Network Activity UE1 UE2 UE3 UE4 UE5

WLAN
Download 485 580 670 1010 1044

Upload 830 780 850 1140 1280

3G
Download 730 700 1080 950 730

Upload 750 711 1125 1025 750

4G
Download NA NA 1100 965 1250

Upload NA NA 1130 1220 2300
UE1: HTC Nexus One, UE2: LG Nexus 4, UE3: Samsung Galaxy

S3, UE4: BlackBerry Z10, and UE5: Samsung Galaxy Note 3

Table 4.3: Parameters obtained from the experiments
Parameter Value

B 25MB
Rdata 54Mbps
Lmax 1448Bytes
Fs 1448Bytes
Ndseg 3
Nuseg 8
ACKTCP 32Bytes

73 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

0 20 40 60 80 100 120
0

500

1000

1500

2000

Download elapsed time (seconds)

A
v
e

ra
g

e
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

Experiment

Model

Figure 4.6: Experiment measurements and estimation model

energy estimation model in Eq. (4.7). Figure 4.6 shows a comparison between real time
experimental measurements and our energy estimation model for downloading a file over a
WLAN network. The cumulative energy is the sum of consumed energy for a task from the
beginning of the task to a given time. However, the cumulative energy consumed during
downloading a file is actually what is drained out of the smartphone battery. For that,
we compare the cumulative energy obtained from our experiments and our energy estima-
tion models that we developed in Eq. (4.7) for the download case. Figure 4.7 shows the
cumulative energy obtained from our model. The small vertical bars represent the 95%
confident interval of the experimental results around the models.

In the second set of experiments, we conducted similar experiments, but for file upload-
ing to validate Eq. (4.11). Figure 4.7 shows a comparison between the cumulative energy
measure in the experiments and the cumulative energy calculated from our model for file
uploading case.

4.5.3 File Transfer over 3G and 4G Networks

We conducted a set experiments to validate the energy estimation model for 3G and 4G
networks introduced in Eq. (4.13) for file transfer. We used the Wireshark software to

Majid Altamimi’s PhD Thesis 74

4.5. EXPERIMENTAL VALIDATION

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Transferred file size (MB)

C
o

m
u

la
ti
v
e

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

Upload

Download

Figure 4.7: Energy consumption for WLAN versus file size

determine experimentally the value of TCP throughput, RTT, IWD, CWD, and RCC
timers. Table 4.4 lists the parameters of RRC that we obtained experimentally.

Figures 4.8, 4.9, and 4.10 show the experimental statistics of RTT, TCP throughput,
and power consumption, respectively. In Fig. 4.8, we notice that the values of RTT in the
upload cases are much higher than the values in the download cases. Therefore, the data
rate of the uploading cases is limited by the TCP rate due to high RTT. In contrast, the
data rate is limited by the network rate for the download cases.

Figures 4.11 and 4.12 show the energy consumed for transferring different amount of
data using 3G and 4G networks, respectively. The solid lines show the energy calculated
using our proposed models, where the bars represent the amount of energy that the exper-
imental results deviate from the models with 95% confidence interval.

The standards of 4G networks adopted multiple-input and multiple-output (MIMO)
to be used whenever a UE has the MIMO capability to enhance the performance of the
wireless links. For this reason, we examined the MIMO capability on all of our devices
and found that only UE5 has this capability. In the case of using 4G networks, Fig. 4.12
depicts a comparison between the cumulative energy consumption for UE5 with MIMO
capability and without it, which is called single-input and single-output (SISO).

75 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

3G 4G

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

R
o
u
n
d
−

T
im

e
−

T
ri

p
 (

s
e
c
o
n
d
)

(a) Downloading RTT

3G 4G

0
.2

0
.4

0
.6

0
.8

R
o
u
n
d
−

T
im

e
−

T
ri

p
 (

s
e
c
o
n
d
)

(b) Uploading RTT

Figure 4.8: RTT statistics

Majid Altamimi’s PhD Thesis 76

4.5. EXPERIMENTAL VALIDATION

Table 4.4: RRC parameter values
Parameter Value

3G

tsignalling ' 1 s
tDCH−FACH 6.3 s
tFACH−PCH 3.7 s
Eps 0.56 J
Etail 6.61 J

4G

tsignalling ' 1 s
tActive−ShortDRX 2.5 s
tShortDRX−LongDRX 10.5 s
Eps 0.45 J
Etail download 7.1 J
Etail upload 9.31 J

3G Download 3G Upload 4G Download 4G Upload

1
2

3
4

T
C

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Figure 4.9: Statistics of TCP throughput

77 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

P
o
w

e
r

c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

Download Upload Download Upload

3G 4G

S
ig

n
a

lli
n

g

D
C

H

F
A

C
H

S
ig

n
a

lli
n

g

D
C

H

F
A

C
H

S
ig

n
a

lli
n

g

A
c
ti
ve

S
h

o
rt

 D
R

X
/D

T
X

S
ig

n
a

lli
n

g

A
c
ti
ve

S
h

o
rt

 D
R

X
/D

T
X

Figure 4.10: Statistics of mobile power consumption

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Transferred file size (MB)

C
o
m

u
la

ti
v
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Upload

Download

Figure 4.11: 3G energy consumption

Majid Altamimi’s PhD Thesis 78

4.5. EXPERIMENTAL VALIDATION

0 2 4 6 8 10 12
0

50

100

150

200

250

Transferred file size (MB)

C
o

m
u

la
ti
v
e

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

Upload−MIMO

Download−MIMO

Upload−SISO

Download−SISO

Figure 4.12: 4G energy consumption

4.5.4 Offloading Case Study

In this subsection, we examine the energy estimation models in case of task offloading. As
a case study, we consider the second offloading scenario (S2), which is depicted in Fig. 3.8,
because it involves file uploading and downloading. Therefore, we have this scenario as a
benchmark of our models to show their accuracy. Robust estimation of this scenario leads
to make reasonable offloading decisions; specially, decide between scenario S1 and scenario
S2.

The estimated energy is computed by only knowing the transferred file size (F) using
Eq. (4.7), Eq. (4.11), and Eq. (4.13). Based on the models, we study scenario S2 for
offloading a task, which encodes a video from one video format to another. This scenario
involves uploading a 23.97MB video clip in flv video format, doing the encoding in the
cloud from flv to mp4 video format, and then downloading a 8.21MB video clip in mp4
format. The details of encoding the video files are presented in [8]. Since the size of the
transferred files is known, we can use our energy estimation models to calculate the energy
cost on a smartphone that is consumed to perform the encoding offloading.

Figure 4.13 shows a comparison between experimental results and estimation models for
WiFi and 3G networks. This figure presents the total amount of energy consumed during

79 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

WLAN 3G 4G−SISO 4G−MIMO
0

10

20

30

40

50

60

70
T

o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Network type

Figure 4.13: Total energy consumption for an offloading case study

23.97MB file uploading, 8.21MB file downloading, and total task offloading. The vertical
bars represent the deviation of our models from the experimental results. Note that the
offloading involves both the uploading and downloading activities. As a result, the total
energy consumed in offloading is the sum of the energy consumed in both of uploading
and downloading activities. These results indicate that our models accurately estimate the
energy required for complete a task offloading. In addition, the results emphasize that our
models realistically estimate the energy consumed in the smartphone, which can reach a
correct offloading decision.

4.6 Summary and Discussion

The proposed energy models of WLAN, 3G, and 4G interfaces will allow smartphones to
make correct offloading decisions. We considered the details of the network stack from lower
level up to the transport level. This work estimates the energy cost by simple computations
without overhead energy cost that could be caused by complex mathematical calculations.
The models just need to know the amount of transferred data and some system parame-
ters, and they can provide good estimations of energy cost. Nevertheless, the introduced

Majid Altamimi’s PhD Thesis 80

4.6. SUMMARY AND DISCUSSION

models accurately estimate the task offloading energy consumption for 3G/4G and single
user WLAN networks. Moreover, our models not only helps for task offloading but also
opens new door for energy solutions that require predicting the energy consumption. We
emphasize that our models are sufficiently accurate, simple, and extendible.

In fact, we consider the simple energy model, which equals the transmission power
times expected transfer time, but when it is possible such as for the 3G/4G networking.
This is because; the power level takes a specific value at each state of RRC. However, this
is not the case in the WLAN (i.e., IEEE 802.11g) since the power level is different for
different data rate and it is change every time-slot. Therefore, we consider the details for
the MAC timing and the probability of transmission for each time-slot.

We limit the WLAN models to the IEEE 802.11g standard but we are able to model
for IEEE 802.11n standard in the same approach and analysis we used for IEEE 802.11g.
However, one of the main features in IEEE 802.11n is the MIMO spatial diversity that
are missing in all of current smartphones in the WLAN interface. They are only feature
by single WLAN antenna, which degrades the system to work as IEEE 802.11g. We have
experimentally approved this at the early stage of our work. For that reason, we defer our
work on IEEE 802.11n to the future work. In contrast, we consider the case of MIMO
in the 4G modeling since the 4G interface is featured with multi-antenna (e.g., Samsung
Galaxy Note 3 has two 4G antennas).

We would mention to the fact that the issue of burst traffic is only for the WLAN
networking. In the 3G and 4G networking, there is no burstiness experienced due to the
protocols of these networks that assign a dedicated data channel for each device during
data transferring. We developed our models to estimate the energy consumption for file
transferring. Therefore, it is intuitively that our modeling was developed to compute the
energy per bytes. Regardless of the shape of the traffic, our models predict the energy
consumed for any given transferred data. However, we use smooth just for the case of
WLAN and just for experimental purpose. As we elaborated, we smooth the traffic to
avoid the impact of the power saving mode, which could occur in the time between the
bursts. Moreover, the time between the bursts is random and modeling the randomness
of this time is out the scope of our work. Xiao et al. [92] discuss this issue and show the
impact of the burst traffic.

We would emphasize that our model can also compute the energy consumption of burst
traffic by considering the energy for the bursts and the time between them. The bursts
energy is computed similar to compute for smooth traffic but with consideration of the
data rate of the bursts. On the other hand, the energy consumed during the time between
the bursts can be computed by multiply the idle power by the time duration of that period.

81 ECE, University of Waterloo

CHAPTER 4. MODELLING THE NETWORKING ENERGY CONSUMPTION

The problem is that the time is not deterministic, which is most likely statistical, and if
it is long enough the power saving mode will be triggered. In this case, experimentally
examine the models will be complex, where we need to extract the power saving mode
parameters such as the mode timeout.

Todays WLAN system is a multi-user, multi-channel system supporting data transfer
with PCF (Point Coordination Function) and DCF (Distributed Coordination Function)
modes of operation (with hand-shake and without hand-shake) in an environment with
varying channel quality. Ideally, there is a need to develop energy models that encompass
the full range of capabilities and constraints of the WLAN system(s). However, we began
developing a model for the simplified case with the objective of incrementally developing
a model for the general case.

Majid Altamimi’s PhD Thesis 82

Chapter 5

Modeling the Hardware Energy
Consumption

Modelling the energy consumed in the task execution is crucial to help the developers to
build energy efficient applications. Therefore, the major challenge in the modelling ap-
proach is to accurately estimating the energy consumed for an application by the hardware
components, such as CPU, memory, storage unit, and network interfaces.

In this chapter, we develop and validate hardware and software profiling models and
procedures. We profile the smartphone CPU, where we consider multi-core CPUs and
the impact of Dynamic Voltage and Frequency Scaling (DVFS) mechanism on the power
consumption. In addition, we profile the smartphone storage unit by taking into account
the writing and reading rate to the unit. Moreover, we experimentally validate these
profiles on two diverse smartphones with different versions of the operating system. These
profiles empower mobile developers to estimate the energy consumption of an application
on a given hardware configuration. Thus, we demonstrate on a real case study how the
developers perform the profiling. In a case study, we profile an example application, apply
the developed CPU and storage unit profiles, and experimentally validate them. The
experimental results reveal that our profiles are able to estimate the application energy
accurately. The contributions of this chapter are published in [10].

5.1 Preamble

In the recent years, the problem of limited energy capacity of mobile devices became
significant after the emergence of a wide range of applications, many of them being not

83

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

energy efficient. The energy aspects of the devices in many cases have not been addressed.
For instance, some online video streaming and web browser applications are not energy
efficient as in the finding of Abogharaf et al. [97] and Albasir et al. [98]. The problem
is that the developers have no clue about the energy consumption of their application on
a particular device. As a result, many of today’s mobile applications do not utilize the
device resources efficiently. The cause of the problem is the existence of a knowledge gap
between hardware and application developers, where no energy models of the hardware are
provided to the application developers. Moreover, the social networking encourages mobile
users to use more multimedia than before especially with the capability to of the devices
to produce and process multimedia contents. These contribute to the concern regard the
energy of the devices.

Developing energy-aware applications needs information about the energy consumption
of the hardware components at the application level [106, 107]. This is achievable by means
of developing hardware and application profiles. The hardware profile contains a math-
ematical description of the power consumption for the hardware components at different
operating levels (e.g., idle, standby, and active). On the other hand, the application profile
is the mathematical description of the use of the hardware components by a given appli-
cation. In the profiling method, the developers use the hardware profile to estimate the
total energy consumed for running an application on a given hardware as depicted in Fig.
5.1. The energy profiling not only helps the developers to estimate energy consumption
for their application but also opens new door for energy solutions that require prediction
of the energy consumption. For example, task offloading from a mobile device to the cloud
needs to predict the energy consumed for the task before making decision whether or not to
offload the task. In this case, profiling the hardware allows the device to predict the energy
consumed by the device on the task in the cases of executing the task on the device or
offloading the task to the cloud; and consequently, the decision is made based on whether
or not the offloading saves energy.

To profile the energy consumption of a mobile device, it is crucial to identify the most
hardware components consume energy. In the modern mobile devices, it has been validated
that the LCD screen, networking interfaces, memory, CPU, and data storage unit (i.e.,
sd-card) are the most energy consumers [108]. The energy consumed by the LCD screen is
linearly proportional to the level of the brightness and the displayed color [109, 20, 109].
However, the energy consumed by the LCD screen does not impact the energy consumed
due to running an application. Therefore, we exclude LCD screen from our profiling
procedure. To determine the energy consumed by the memory, the memory activities are
associated with the CPU activities. Figure 5.2 shows the maximum power consumption
of the hardware components: CPU, Storage Unit (SU), and Memory (MEM). This figure

Majid Altamimi’s PhD Thesis 84

5.1. PREAMBLE

Estimation Models

Network
Interfaces

CPU

Storage
Unit

Memory

LCD

...

Sensors

Estimated
Energy

Hardware Profile

App A

Application Profile

Figure 5.1: Profiling overview for energy estimation

reveals the memory energy is less than 3% compare to the CPU power consumption.
Therefore, the energy consumed by the memory is considered as a part of the energy
consumed by the CPU. In fact, the energy consumed by the memory is very small compared
to the energy consumed by the CPU, which usually be ignored [108]. Profiling the energy
consumed by the CPU and the storage unit is the objective of our work in this chapter.

In this work, we present a procedure to profile the mutli-core CPU and the storage
unit of smartphones. We develop the procedure to be applicable to many smartphones.
The result of the procedure is mathematical models to profile applications without running
additional tests. These models accurately describe the hardware energy consumption. To
summarize, this chapter makes the following contributions:

• Profile multi-core CPU and storage unit of smartphones, where we model the power
consumption in these hardware components;

• Consider the impact of the Dynamic Voltage and Frequency Scaling (DVFS) mecha-
nism and the number of online cores on the CPU profile by modeling the CPU power
consumption as a function of the CPU clock frequency, and the number of online
cores, respectively;

• Model the power consumption of the storage unit as a function of the system clock
frequency and the rate of writing and reading tot eh unit.

85 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

500 1000 1500 2000

0
10

00
20

00
30

00
40

00

Frequency (MHz)

P
ow

er
 (

m
W

)

SU
MEM
CPU

1 Core

2 Cores

Figure 5.2: Power consumption of the mobile hardware components

• Profile an application as a case study to demonstrate the use of hardware components;
and

• Validate experimentally the profile models and procedures.

This chapter is organized as follows. The literature of modelling and profiling the
energy consumption of the hardware components are discussed in Section 5.2. In Section
5.3, we explain and develop profiling models and show the profiling procedure that we
follow to extract the models parameters. In Section 5.4, we present a case study for our
profiling procedure, and show how to apply the energy estimation models. Some summary
and concluding remarks are given in Section 5.5.

5.2 Hardware Profiling Literature

As the problem of limited energy in mobile devices becomes more acute, more research is
needed to tackle this problem. Multipurpose systems, like the ones on mobile devices, are
very complex; consequently, it is difficult to predict their power consumption [110]. The
power profiling approach is a promising one to tackle the problem [111].

Majid Altamimi’s PhD Thesis 86

5.2. HARDWARE PROFILING LITERATURE

In the literature, there are two approaches to profiling: post-profiling and pre-profiling.
Post-profiling provides information about the power consumption of an application on a
given device after running the application. In this profiling approach, the power infor-
mation is only available for the post processing. In contrast, pre-profiling predicts the
power consumption of an application on a given device before the application is started.
In this approach, the prediction is based on the power profiles expressed as lookup tables
or mathematical equations. This approach is important for making an offloading decision
such as whether or not to run an application to save energy.

Bugu is a post-profiling approach that drives the relationship between events and power
consumption on mobile devices to profile an application [112]. The system consists of two
parts: a Bugu server and Bugu client. The Bugu server collects the application power
information and provides it to Bugu clients after analyzing the power and the events from
the device. On the other hand, the Bugu client monitors the application power consump-
tion. Bugu does not breakdown the total power consumption to the power consumed by
the hardware components. Moreover, this approach does not consider hardware configura-
tions like online CPU cores and DVFS. PowerScope is a post-profiling system that profiles
both the hardware components and the application [113]. The energy consumption of the
hardware components is measured by external power meters. At the same time of measure
the power, software performs a statistical analysis to the system activities. The hardware
profiling is computed off-line by combining the statistical analysis with the measure power.
To profile an application, PowerScope analyzes the application and build mapping from the
application structure to the system events that statistically provided from the hardware
profiling.

In contrast to Bugu, Devscope [91] and PowerBooter [90] are pre-profiling approaches
that profile the hardware components of a mobile device by analyzing the access to the
components and the change in the power state [91]. The power state is provided from
the Battery Monitoring Unit (BMU). The output profiles are expressed in the form of
lookup tables and equations. The used method would be accurate if it uses an accurate
power meter since BMU is known to update at a very low rate and provides readings with
very low accuracy. It cannot trace very short events that are shorter than BMU update
rate as in the case of the Forward Access Channel FACH change in mobile networking
where the results show the error to be higher than 30% [91]. In addition, this system
has to be installed on a modified version of Android OS to give the ability of profiling
the applications dynamically. This work also does not consider the power consumption
of the storage unit or multi-core CPUs. Since the hardware components consume a fixed
amount of power at a given state, there is no need for a dynamic system and one-time
measurements is enough to profile a mobile device. In addition, the BMU always need

87 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

celebration and battery readings become unreliable overtime. The authors argue to use
dynamic system. Therefore, one time measurements is absolutely enough

Appscope [114] can profile an application using the models provided by Devscope. App-
scope uses the same concept of Devscope by monitoring the system events at the kernel
level for the call of the hardware components by the application. Similarly, pTop [115] and
Eprof [116] estimate the energy consumed for an application by tracing system calls for
the application. The energy of an application is computed by using the information of the
power consumption of the hardware components that the application uses, and the time the
application needs these components that is mathematical expressed as Eapp =

∑
i∈n Pi ∗ ti,

where Eapp is the total energy consumption for the application app, Pi is the average power
consumption of the component i, t is the total usage time for the component i by the ap-
plication, and n is the set of hardware components accessed by the application app. For
instant, Devscope provides Pi while Appscope measures ti to calculates Eapp. eCalc [117]
and eLens [107] use the same approach of Appscope but it analyzes the application at the
code-level. The application profiles in eCalc and in eLens show how much of the code uses
each hardware component by tracing the code at the development environment. Then, an
energy cost function estimates the energy consumed for each type code instructions to pro-
file the hardware components. The code is analyzed and the code instructions are counted
by the code analyzer. Based in that, the total energy is the sum of the calculated energy
from the energy cost functions. If the models from Devscope are accurate, the result of
Appscope will be accurate too. Therefore, we emphasis that Appscope is accurate using
our profiling models.

In our profiling methods, we use an accurate approach that precisely measures the
power consumption at any system event. In addition, we consider the impact of DVFS,
multi-core CPU, and storage unit of mobile devices. The only study, to the best of our
knowledge, considers the DVFS mechanism is the study presented in [118]. However, this
study is implemented for BitsyX platform and not for mobile system, where the goal of
is to determine the optimal operating frequency at which the CPU consumes minimum
energy for a given task.

5.3 Profiling Models

In this section, we present our profiling models and procedures for smartphone multi-core
CPUs, storage units, and applications.

Majid Altamimi’s PhD Thesis 88

5.3. PROFILING MODELS

5.3.1 CPU Profile

Modern mobile devices are loaded with many types of sensors and multimedia producers,
such as GPS, accelerometer, compact camera, and microphone. Consequently, there is a
growth in multimedia applications on mobile devices especially with the emergence of social
networking, which encourage mobile users to use more multimedia than before. Therefore,
many of today’s mobile devices are equipped with mutli-core CPU to accommodate the
growing computing need. However, these CPUs consume much more energy than single
core CPUs. Therefore, the CPU of mobile device have been given the ability to turn-off
some cores as needed in contrast to the desktop computers, which usually keep all cores
on. The manufactures of the hardware or the assembler usually develop a CPU driver
to control the CPU cores. This driver enables the Operating System (OS) to control the
CPU cores. Thus, the decision of how many cores are needed is implemented in the OS.
To demonstrate the effect of multi-core CPU on the power consumption, we conducted
experiments on playing video streamed from a remote server.

Figure 5.3 shows the total power consumption over the time of playing a YouTube
video on a 4-core smartphone, namely Samsung Galaxy Note 3. This figure shows the
power consumed for different number of online cores for playing the same video after we
enforce the OS to the desired number of online cores. Moreover, we compared that with
the power consumed after we let the OS selects the best number of online cores based on its
own algorithm. The OS algorithm increases the number of online cores if the OS foresees
high computation tasks, as it is shown in the figure at the beginning of the buffering stages.
Then, the OS reduces the number to 1 online core when the computation is low. We notice
from the figure that the power consumption goes through a deterministic cycle of states
based on the number of online cores. The total energy consumed are: 764, 808, 813, 839,
787 Joules, for the case of 1,2,3,4 online cores, and dynamic OS configuration, respectively.
In this work, we target a multi-core CPU since they will become a common on the mobile
devices.

To model the energy consumption of the CPU, we should mention to two important facts
about the power consumption of a modern CPU in general. First, the power consumption
is a function of the CPU clock frequency; and second, the CPU power cost is proportional
to the CPU usage. In this subsection, we show and describe these relationships in detail.

First, the total power consumed by a CPU is the sum of the static and the dynamic
power [119]. The static power (Ps) is the dissipated power caused by the leak current. This
power is constant for each CPU chip design. On the other hand, the dynamic power is the
dissipated power cause by the switching activities of transistors. This power (Pd) linearly
depends on the capacitance (cp) being switched inside the CPU chip, the square of the

89 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

0 100 200 300 400 500 600

10
00

12
00

14
00

16
00

18
00

20
00

Download and play a Youtube video

Time (s)

P
ow

er
 (

m
W

)

1 core
2 cores
3 cores
4 cores
dynamic

download + buffer + play

play

download + buffer

Figure 5.3: Power consumption for playing a Youtube video in a multi-core CPU

CPU supply voltage (v), and the CPU clock frequency (f) [120, 119]. The mathematical
expression for the dynamic power is expressed as:

Pd = cpv2f. (5.1)

The value of the capacitance is constant for each individual CPU, which depends on
the CPU chip design. On the other hand, the values of the supply voltage and the clock
frequency have been set up to be constant, but modern CPU technologies adopt to set these
values dynamically through a technique called Dynamic Voltage and Frequency Scaling
(DVFS). The advantage of adjusting the voltage or the frequency dynamically is to reduce
the CPU power consumption. This technique is widely deployed in current CPUs, especially
for the mobile devices, where energy is a scarce resource. A programmable clock generator
is used to change the frequency and a DC-DC converter to change the voltage. The
mechanism to change the voltage is a built-in feature of the CPU, whereas the frequency
can be controlled by the OS.

Since we do not have control on the voltage, we combined the capacitance and the
voltage notations in Eq. (5.1) into one notation called α. As a result, the total power
dissipation of the CPU follows the following general equation:

Majid Altamimi’s PhD Thesis 90

5.3. PROFILING MODELS

P = Pd + Ps

= αf + β (5.2)

where β is a constant representing the static power and the power consumed independently
of the clock frequency, which is the power to activate the circuits.

Equation (5.2) considers only a single core CPU. In fact, a multi-core CPU acts as
a combination of single core CPUs. Hence, the total power consumption of a multi-core
CPU denoted by Pmc, will also be a combination of the power consumed by each core, as
represented in Eq. (5.3).

Pmc = Pb + Pc × n (5.3)

where Pb is the base power to activate a multi-core CPU, Pc is the power consumed in each
individual core, and n is the number of active cores. We multiply Pc by n because CPUs
are identical cores. Consequently, the multi-core version of Eq. (5.2) is written as:

Pmc = αbf + βb + [αcf + βc]× n (5.4)

Another fact concerning power consumption is that the CPU consumes power as a
function of the CPU usage (i.e., utilization) [121]. The CPU usage is defined as the
function of time for which a CPU is executing instructions. The relationship between the
CPU power consumption and the CPU usage is a linear relationship as expressed in Eq.
(5.5).

Pcpu = Pmin + (Pmax − Pmin)× U (5.5)

where Pmin and Pmax are the power consumed by the CPU at zero and 100% utilization,
respectively, and U is the CPU utilization at a given time when the power is calculated.
This observation validated after we conducted and experiments to measure the average
power at different CPU utilizations on Samsung Galaxy Note 3. We obtained exact power
values that match Eq. 5.5, where Pmin = 400mW and Pmax = 1600mW . Figure 5.4 shows
the real-time power consumption of the CPU at several levels of CPU utilizations.

To calculate the total power consumed by the CPU, we use Eq. (5.5), where Pmin and
Pmax are calculated using Eq. (5.4) at zero and 100% utilizations.

5.3.2 Storage Unit Profile

The storage unit consumes power based on the amount of data written/read into/from the
unit, because the unit only activates the cells that are targeted for the writing or reading

91 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

OS only
U = 25%

P=700 mW

U = 50%

P=1000 mW

U = 75%

P=1300 mW

U = 100%

P=1600 mW

0

Time (s)

20 40 60

P
o

w
e

r
(W

)

3

4

1

2

Figure 5.4: CPU power consumption at different utilization

activity. In the case of solid-state storage units, namely flash storage (e.g., sd-card), the
power to just turn-on the unit is negligible, since there is no need for a motor. However,
the speed of the bus that activates the cells for writing/reading determines the power
consumed by the unit. Usually, this speed takes the value of the CPU frequency of the
embedded system, such as modern smartphones. As a result, the power consumption of
the storage unit will be a function of the data rate and the system frequency as expressed
in the following equation:

Psu = γ ×Rsu × f, (5.6)

where Psu is the average power consumed by the storage unit, R is the data rate of the
writing/reading activities, and f is the system frequency. A base cost is absent in the
equation because the amount of power to activate the unit is negligible.

5.3.3 Application Profile

In this subsection, we want to deploy an application profile model. The aim of application
profiling is to model the usage of the hardware components by an application. We consider
the energy aspects of the application that help application developers to estimate the total
energy consumed by the application on a particular device. In this work, we profile the
hardware by taking into consideration the CPU and the storage unit components. For
applications that use networking interfaces, we refer the reader to our work on network
profiling [9]. Therefore, the focus of this work is on applications that do not need networking
activities.

Majid Altamimi’s PhD Thesis 92

5.4. EXPERIMENTAL VALIDATION

We profile the application by studying the impact of the application on the CPU and
the storage unit. For the impact on the CPU, we need to know how much the application
could consume CPU time, which reflects on the CPU utilization and consequently the
power consumption expressed in Eq. (5.5). Moreover, the expected execution time is
important to calculate the total energy of the application. The expected execution time is
calculated as:

T = I × cc× 1

f
, (5.7)

where T is the total execution time, I is the total number of instructions of the application
for a given task, cc is the number of CPU cycles, and f is the CPU frequency [122]. The
first term (I) is program dependent, which is a constant for a given application doing
a specific task. Similarly, the second term (cc) is CPU architecture dependent, which is
constant for a particular CPU. The third term (1

f
) implies that the execution time depends

on the CPU frequency in a reciprocal relationship. It is obvious that increasing the CPU
frequency reduces the execution time.

On the other hand, the impact of an application on the storage unit can be determined
by specifying the application throughput. Here, throughput is the total amount of data
read from and written to the storage unit per second by the application. Therefore, the
throughput is given by:

RA =
Dataread

T
+
Datawrite

T
(5.8)

Substituting T with its value from Eq. (5.7), we get

RA = δf, (5.9)

which represents the throughput as a first degree polynomial function of the frequency,
and where δ is the relationship constant.

5.4 Experimental Validation

In this section, we validate our developed profiles by conducting experiments on real smart-
phones and applications. We perform the experiments on two different smartphones feature
with multi-core CPUs and different versions of the OS. The purpose of the experiments is
to evaluate empirically the value of the constants appear in profiling equations. For the
CPU profile, we experimentally identify the values of αb, βb, αc, and βc in Eq. (5.4), where
this equation is used for both of Pmax and Pmin in Eq. (5.5). In the storage unit profile,

93 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

Smartphone

Power readings

+

Laptop

Monsoon

Power

Monitor

 - -

Figure 5.5: Experiments setup

we experimentally determine the value of γ in Eq. (5.6) For the application profile, we
experimentally extract the value of δ in Eq. (5.9), the total time T in Eq. (5.7), and U in
Eq. (5.5).

In the following subsections, we present and explain the experimental set up, the pro-
filing procedure, and the results.

5.4.1 Experimental Setup

We set up our experiments as depicted in Fig. 5.5. In this setup, we use Samsung Galaxy
Note 3 and Samsung Galaxy Nexus smartphones, which features a four-core and two-
core CPUs, named Quad-core 2.3 GHz ARMv7 and Dual-core 1.2 GHz CPU ARMv7,
respectively. In addition, these devices have Android 4.3 with the Kernal Version 3.4.0
and Kernel Version 3.0.72, respectively, as the operating system. We choose Android
OS because it allows us to easily access many features as we describe in the following
subsections; and it has the biggest market share in the smartphone industry. The power
supply simultaneously powers the smartphone and records the power consumption as a
time series. The power readings during the experiments are recorded on a separate laptop.

5.4.2 Experimental Results

In the experiments, we write several scripts that change the system parameter at the
kernel level to profile the CPU, the storage unit, and the application. We use the predefined
operating points of the system frequency, which is available in the file scaling available-

frequencies under the directory /sys/devices/system/cpu/. The scripts initialize the
desired frequency in the file scaling setspeed under the same directory to force the CPU

Majid Altamimi’s PhD Thesis 94

5.4. EXPERIMENTAL VALIDATION

to use that frequency. Moreover, Linux kernel controls the number of online cores by
writing in the file online the ID number of the core that the kernel wants to bring it
online.

CPU Profile

In the CPU profiling, the scripts write the ID number of the core and the desired frequency
in the kernel files as discussed above. The scripts generate load for the CPU by making its
utilization 100%. At this time, the average power consumed by the device is Pmax in Eq.
(5.5). In the same way, we measure Pmin. The scripts disable all applications in the user
domain and only the OS is run on the CPU to minimize the CPU usage. At the same time
of running the profiling scripts, the power meter records the power readings. In reality, the
recorded power is not Pmin since the OS was running on the CPU and consuming some
of CPU time. We overcome this difficulty of directly measure Pmin by writing scripts that
record the CPU usages at the time of recording the power consumption where only the OS
is running. After knowing the value of Pmax and the recorded U , we can apply Eq. (5.5) to
realize the value minimum power consumed by the CPU (Pmin). These steps are repeated
for each operating frequency and different number of online cores.

Figure 5.6 and 5.7 show the change in Pmin and Pmax, respectively, as a function of
CPU frequency. Each point depicts the obtained power at the corresponding operating
frequency points. The dotted lines represent the curve fitting that we expressed in Eqs.
(5.10) and (5.11) as a corresponding to the models in the previous section. We obtain
the value of αb, βb, αc, and βc in Eq. (5.4) by using curve fitting tools on MATLAB that
use linear regression approach. We configure the fitting to the first degree polynomial.
The result values are given for the models in Eqs. (5.10) and (5.11), where the obtained
models have multiple R-squared value between 94-99. To reduce the number of scheduling
interruption, all applications in the user domain are disabled and only the OS is run on
the CPU. Moreover, disabling the applications allows us to control the CPU usage.

Pmin =

{
0.03f + 51, n = 1

0.2f − 30, n > 1
(5.10)

Pmax = 0.47f − 1340 + [0.175f + 1310]× n (5.11)

95 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

500 1000 1500 2000

0
20

0
40

0
60

0
80

0
10

00

Frequency (MHz)

P
ow

er
 (

m
W

)

4 online cores

3 online cores

2 online cores

1 online core

Models

Model for 2−4 cores

Model for 1 core

Figure 5.6: Pmin for CPU profiling of Samsung Galaxy Note 3

Storage Unit Profile

In storage unit profiling, we use similar scripts but we add a workload to write into and read
from the storage unit. We obtain the power consumed by the storage unit by subtracting
the power that we know the CPU consumed from the total power consumed by the device.
The obtained power is

Psu = 10−3Rf, (5.12)

where Psu is the power consumed by the storage unit in mW, R is the writing/reading rate
to the unit in kB, and f is the clock frequency in MHz.

Application Profile

In the application profile, we also use scripts to force the system for a specific number of
online cores and working frequency. After that, another set of scripts trace the system
parameters such as CPU usages, writing and read rate to the storage unit, and total
execution time. These parameters are used to calculate the total energy consumed by the
application using the profiling models. The CPU utilization is obtained from the kernel

Majid Altamimi’s PhD Thesis 96

5.4. EXPERIMENTAL VALIDATION

500 1000 1500 2000

0
20

00
40

00
60

00
80

00
10

00
0

Frequency (MHz)

P
ow

er
 (

m
W

)

4 online cores

3 online cores

2 online cores

1 online core

Models

Figure 5.7: Pmax for CPU profiling of Samsung Galaxy Note 3

file /proc/stat. The writing and the reading rate can be traced from the application log.
The total execution time is retrieved from the kernel file /proc/uptime.

The application that we use in this case study is FFmpeg encoding. It was compiled
for Android platform and installed on the device. The most important feature of this
application is the supporting of multi-threading, which can utilize multi-core CPU when
we test it on our device. We use it to encode a 23.97 MB flv video file into a 20.94 MB
mpeg video file. The same input file and encoding parameters are used for consistency in
our experiments. The experiments show that the encoding application utilizes the CPU
at 100%, 70%, 50%, and 40% for 1,2,3, and 4 online cores, respectively. Moreover, the
application throughput is shown in Fig. 5.8, the dotted lines represent the fitting curves
that we expressed in Eq. (5.13). However, the linear fitting does not perfectly match the
actual measurement lines because there is a small curvature on the measurement lines in
the cases of more than one online core. The curvature increases as the number of online
cores increases. For better results, we correct this by adding second-degree terms to give
a better match as expressed in Eq. (5.13).

97 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

Frequency (MHz)

T
hr

ou
gh

pu
t (

K
B

/s
)

4 online cores

3 online cores

2 online cores

1 online core

Models

Figure 5.8: FFmpeg application profiling (KB/s: Kilo Bytes per second)

RA = 3× 10−6f 2 + 48× 10−3f − 22

+
[
−7× 10−6f 2 + 18× 10−3f + 19

]
× n

(5.13)

5.4.3 Applicability Validation

When we developed our profiling, we kept in mind that the best profiling method is the
one that is device independent and can be performed on a large number of devices with
different versions of OS. Therefore, we aimed at making our profiling applicable to all
Android devices. We conducted another set of experiments on another Android device and
another version of Android, named Samsung Galaxy Nexus, and obtain the results on the
same way we used with Samsung Galaxy Note 3. We used similar scripts that we used
before for Samsung Galaxy Note 3, but we took into account the hardware configuration
range such as the number of cores and the clock frequency range. The number of predefined
operating points for this device is four points, namely, 350, 700, 920, and 1200 MHz.

Majid Altamimi’s PhD Thesis 98

5.4. EXPERIMENTAL VALIDATION

400 600 800 1000 1200

0
10

00
20

00
30

00
40

00

Frequency (MHz)

P
ow

er
 (

m
W

)

2 online cores

1 online core

Models

Pmax

Pmin

Figure 5.9: Pmin and Pmax for CPU profiling of Samsung Galaxy Nexus

The first set of experiments is conducted to profile the idle power Pmin as depicted in
Fig. 5.9. The models for the lines in Fig. 5.9 are expressed in Eq. (5.14).

Pmin = 0.35f + 1921 +
[
4× 10−3f + 205

]
× n (5.14)

Similarly, the second set of experiments are to profile the maximum CPU power Pmax.
The results are presented in Fig. 5.9 and their models are expressed in Eq. (5.15).

Pmax = 0.462f + 736 + [0.5f − 96]× n (5.15)

The storage unit for this device is profiled using storage unit profiling scripts. The
obtained expression for the power consumption of the storage unit is given in Eq. (5.16).

Psu = 0.4× 10−3Rf, (5.16)

To profile the application, we used the application profiling scripts that we used before,
but again take into account the hardware configurations. The application throughput on

99 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

400 600 800 1000 1200

0
20

40
60

80
10

0

Frequency (MHz)

T
hr

ou
gh

pu
t (

K
B

/s
)

2 online cores

1 online core

Models

Figure 5.10: FFmpeg application profiling on Samsung Galaxy Nexus

this device for different number of online cores are shown in Fig. 5.10, and their fitting
models are expressed in Eq. (5.17).

RA = −13× 10−6f 2 + 60f − 17

+
[
−4× 10−6f 2 + 20f + 8.3

]
× n

(5.17)

5.4.4 Application Total Energy

In this subsection, we show how the developers use the profiles to calculate the total
energy consumed by a smartphone for an application. The total application energy is
calculated by multiplying the total power consumption (i.e., CPU and storage unit) by the
total execution time. Figure 5.11 shows the comparison between the energy consumption
obtained from the experiments (the solid lines) and from the profile models (dotted lines).
This figure further corroborates the fact that for a fixed task the total energy is constant
regardless of the CPU frequency [122]. This is because the execution time decreases as the

Majid Altamimi’s PhD Thesis 100

5.4. EXPERIMENTAL VALIDATION

500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Frequency (MHz)

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
ou

ls
)

4 online cores

3 online cores

2 online cores

1 online core

Dynamic

Models

Figure 5.11: Total application energy consumption on Samsung Galaxy Note 3

frequency increases as expressed in Eq. (5.7). The difference between the energy levels of
the online cores is due to the energy consumed to activate the cores, similar to the difference
between Pmin and Pmax for different online cores. Figure 5.12 depicts the statistical total
energy consumed for a fixed task execution in a multi-core CPU.

We conducted another set of similar experiments, but we let the OS choose the required
number of online cores. The experimental results from this set is plotted in Fig. 5.11 for
the comparison with forced online core selections (i.e., 1,2,3, and 4 cores). The line for the
dynamic core selection clearly illustrates that after 960 MHz the OS turns-on the four cores
while it activates just one core otherwise. Figure 5.13 shows obtained from the experiments
conducted on Samsung Galaxy Nexus.

One can notice from Fig. 5.11 that one core is the best option to execute any task. This
observation scarifies the benefit of using multi-core CPUs. However, another important
factor we should consider is the total execution time for the task. Figure 5.14 shows the
total execution time for the same encoding task versus clock frequency of the CPU. This
figure reveals the benefit of using multi-core CPUs since more cores mean less time is
needed to finish the task. In the case of one core at low clock frequency, the execution time
is very long because most of the CPU time is for the OS at these system configurations.

101 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

1 core 2 cores 3 cores 4 cores Dynamic

15
0

20
0

25
0

30
0

35
0

40
0

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
ou

le
s)

Figure 5.12: Total application energy consumption statistics

We notice in this figure that the execution time has a reciprocal relationship to the clock
frequency as expressed in Eq. (5.7).

5.5 Summary and Discussion

The energy aspects of the mobile devices in many cases have not been addressed well.
The problem is that the developers have no clue about the energy consumption of their
application on a particular device. In this chapter, we develop hardware and software
profiling models and procedures. These profiles empower mobile developers to estimate
the energy consumption of an application on a given device. Moreover, we described how
to profile modern multi-core CPUs, storage units, and applications under the Android
platform. The results of the real experiments on two different smartphones reveal the
validation and accuracy of our profiling procedures.

However, the OS overhead on the modelling is experimentally unavoidable. Therefore,
we keep the OS at the lowest operating point where we disable unnecessary OS services.
In this case, the changing on the usage for the hardware components is caused by the test

Majid Altamimi’s PhD Thesis 102

5.5. SUMMARY AND DISCUSSION

400 600 800 1000 1200

0
20

0
40

0
60

0
80

0

Frequency (MHz)

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
ou

ls
)

2 online cores

1 online core

Dynamic

Models

Figure 5.13: Total application energy consumption on Samsung Galaxy Nexus

application. As a result, we can model the application based on this change. Another way
to over come this overhead is by assuming the OS as separate application. Because the
energy consumption of the applications is additive, as we modelled in Subsection 1.2.2, we
substitute the energy of the OS for measuring the energy of the test application.

In modelling the computing activities, we ignore the energy consumption of the memory
because it is relatively small compared with other components. But, that could have
impact on the system for applications that need long execution time. On the other hand,
we developed the model for each hardware component individually but in some cases the
dependency between components cannot be ignored, which depends on the characteristics
of the application. Additionally, the behaviour of the system could be different when
more than one application simultaneously running on the shared CPU affected by of the
OS scheduler. This impact the total execution time but not the energy required for an
application because we modelled the energy based on the used CPU timing (i.e., CPU
load) for the application.

In the application profiling, we avoid the complexity of application branching and we
model the application for one task. To extend our models and make it applicable to multi-
task application, the application can be divided into tasks where each task is modelled using

103 ECE, University of Waterloo

CHAPTER 5. MODELING THE HARDWARE ENERGY CONSUMPTION

500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

30
0

Frequency (MHz)

T
im

e
(s

)

4 online cores

3 online cores

2 online cores

1 online core

Dynamic

Figure 5.14: Total execution time for encoding a video file

similar approach that we used. Thus, We emphasize the energy model for application that
we developed in 1.2.2 is the starting point for any energy modelling of an application.

Majid Altamimi’s PhD Thesis 104

Chapter 6

The Proposed Offloading Framework

Task offloading from the mobile device to the cloud is essential for enhancing their comput-
ing capabilities, and saving their battery energy at the same time. However, task offloading
introduces a new challenge due to the impact of system parameters on the offloading per-
formance. This challenge is to make an offloading decision correctly before executing the
offloading processes. An accurate offloading framework allows the mobile devices to make
the correct decision as to whether or not to perform the task offloading based on the system
parameters at the time of making the decision.

In this chapter, we tackle this challenge by developing an offloading framework that
gives mobile devices the ability to make the correct offloading decision. The framework ac-
complishes the correct decision after it collects the required system parameters that have
a direct influence on the offloading decision. We consider all sources of system param-
eters and classify them as profiles to build the framework based on these profiles. We
implemented and validated these profiles experimentally on real-life scenarios for a real
smartphone, a smartphone application, and cloud. The experimental results show that our
proposed framework is practical to accomplish the appropriate offloading decisions. The
contributions of this chapter are published in [11] and [12].

6.1 Preamble

Task offloading is a promising solution to overcome many device limitations, especially the
energy limitation [4]. As current mobile devices feature Internet connectivity with fast
wireless networks, reaching remote computing resources is practical. In the era of cloud

105

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

computing, remote computing resources are accessible anywhere and anytime. Cloud com-
puting provides its users with virtually unlimited computing resources from its data centres
[5]. Based on these observations, a mobile device is able to offload specific computing tasks
to the cloud for remote task execution on the cloud and receive the results with less energy
consumption than executing that task on the device itself [6, 7].

In our previous work that presented in Chapter 3 and published in [8], we examined
the feasibility of offloading from smartphones to cloud, where we focused on energy as the
performance metric. We conducted a set of experiments for four real-life scenarios and
evaluated the energy cost on smartphones in the case of using the offloading technique
over different network interfaces and Internet protocols. The results reveal that offloading
is beneficial in most scenarios as presented in the result figures shown in Chapter 3.

However, offloading is a critical technique that depends on the system parameters
of both the mobile device and cloud. For example, offloading is not beneficial if the
mobile device is connected to the Internet using a 3G network interface and the HTTP
Internet protocol, as shown with our experimental results in Chapter 3. Therefore, we
realized that to make offloading beneficial for mobile devices, an offloading decision is
vital. Consequently, we developed an offloading decision engine on a real smartphone and
cloud that performs the offloading decision as to whether or not the mobile device will save
energy by offloading a given task [11].

The aim of this chapter is to design an offloading framework that is suitable for imple-
mentation in mobile devices and applicable to the environment of the cloud computing,
which provides the offloading capability to mobile devices. In this framework, we take into
account all of the system parameters that affect on offloading decision. We consider all
sources of system parameters and classify them as profiles, and we build the framework
based on these profiles. These profiles let the proposed framework accurately make the cor-
rect offloading decision to save energy on mobile devices. This chapter makes the following
contributions:

• developing a general offloading framework to offload tasks from mobile devices to
cloud computing;

• classifying the system parameters based on their sources to build accurate framework;

• developing an offloading procedure for making the offloading decision using these
profiles; and

• validating experimentally the proposed framework on real device, application, and
cloud.

Majid Altamimi’s PhD Thesis 106

6.2. SYSTEM PARAMETERS

The remaining sections of the chapter are organized as follows. Section 6.2 represents
the system parameters and the formulation for the proposed offloading framework. The
description of the proposed offloading framework is presented in Section 6.3. We illustrate
the implementation of our proposed offloading framework in Section 6.4. This chapter is
concluded in Section 6.5.

6.2 System Parameters

Offloading a task from a mobile device that requires sending the task load (i.e., information,
specifications, and data) to a powerful computing machine – in our case the cloud – for
executing the task remotely, and then receiving the results of the remote execution. The
offloading decision for a given task is affected by the system parameters. We identify these
parameters based on the need for actually making an offloading decision. In this section,
we describe these parameters, and in the next section we show how these are used to make
an offloading decision.

Simply put, an offloading decision is made based on the result of a comparison between
the estimated energy cost for task offloading and the estimated energy cost for local ex-
ecution of the task [11]. Estimating the energy needs to perform some calculations using
system parameters, where these parameters come into play. In this framework, we consider
and describe these parameters based on the following eight sources:

1. user,

2. application,

3. content,

4. hardware,

5. battery,

6. network,

7. location, and

8. cloud.

We classify the parameters from each source in a separate profile to build a general and
expandable offloading framework. In the following, we explain these profiles and their
parameters.

107 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

6.2.1 User Profile

The user profile includes the parameters that are user dependent. The user of the mobile
device controls and manages the parameters in this profile. In fact, mobile device users
configure their devices for a set of configurations suitable for their needs. For example,
the user could enable or disable the networking interfaces according to the needs and their
location. In the context of task offloading, we limit the user profile to two parameters.
The first parameter describes the status of networking, which is either enabled or disabled.
We represent this parameter by Networking Status (NS) binary variable. The second
parameter (Tu) represents the maximum time that the user allows for the offloading [123].

6.2.2 Application Profile

In this profile, we include the parameters that are application dependent. These parameters
are keys for computing the total energy consumed by the application, if the task executed
on the mobile device. Assume that a mobile application A consumes energy equal to EA

and provides the user with some sort of quality of service denoted as QoSA. To compute
EA, we need to know how the application interacts with the hardware components since
the energy consumption is due to the application’s usage of some hardware components.
For instance, A utilizes the CPU with amount of UA (e.g., 40%), and writes into and reads
from the storage unit with a rate equal to RA. We identify the QoS in the application
profile to let our offloading framework having the ability to do offloading without sacrificing
the quality of the task to saving energy. Ideally, the developer of an application knows the
application profile at the implementation time. In this case, we assume that the application
profile parameters are already included in the application package.

6.2.3 Content Profile

This profile contains the parameters that describe the task content affects the energy con-
sumption of the task. In fact, with respect to the energy consumption, the only parameter
we need in this profile is the size of the content. We assume the user wants to process a
content file of F bytes using A. Based on the value of F , the offloading framework cal-
culates the energy consumption for this task in case of execute it locally on the device or
remotely on the cloud. The content profile can be known easily by reading the metadata
of the content file.

Majid Altamimi’s PhD Thesis 108

6.2. SYSTEM PARAMETERS

6.2.4 Hardware Profile

In this profile, we show the parameters that indicate how the hardware components con-
sume energy as these interact with an application. Assume that the mobile device consists
of hardware components and each component consumes a specific amount of power Pc
to serve mobile applications. For instance, the CPU as a hardware component consumes
some power (PCPU) to process the computation task given by an application. Similarly,
if the mobile device sends or receives data over the wireless interface, then the wireless
components consume some power for this task. The energy consumed Ec by a component
c is given by

Ec = Tc × Pc (6.1)

where Tc is the period of time when the component is in use, and Pc is the power consump-
tion of the component. The value Tc is application and content dependent as we explain
later in this chapter. The value of Pc usually is constant but sometimes it depends on
other hardware configurations. For example, the power consumed by the CPU, PCPU , is a
function of the CPU frequency [10]. The manufacture and device maker usually precisely
specify the hardware profile of each of component in the device they produce.

The total energy consumed for an application A is the sum of the energy consumed by
each component used by this application, which is calculated as

EA =
∑
CA

Ec (6.2)

where CA is the set of hardware components that A uses.

6.2.5 Network Profile

In this profile, we explain the parameters that are network dependent. Each wireless net-
work has its own purpose and characteristics; therefore, different types of wireless networks
implement different communication protocols and radio interfaces. As a result, during wire-
less communication, the energy consumption of the mobile device is highly influenced by
the chosen type of the wireless network, see Chapter 4 and [9]. The energy consumed in
networking ENT is equal to the active time of the wireless component (TNT) multiplied by
the power consumption of the wireless component (PNT) as given in Eq. (6.3).

ENT = TNT × PNT (6.3)

109 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

For the wireless component, the active time is the time required to transfer a certain amount
of data at the rate of R bytes per second. In the offloading technique, the transferred data
is the amount of data (i.e., F bytes) to be offloaded. Since different wireless interfaces
consume different level of power while supporting different data rates, considering only the
power consumption or the supported data rate is not enough to have an insight into the
energy cost of the communication modules. We introduce a metric that helps tackle this
issue called the energy efficiency by a communication module e in bytes per Joule; e is
equal to the supported data rate over the power consumed of a communication module.

The energy consumption for a communication module given the amount of data and
the supported data rate is given as in Eq. (6.4).

ENT = TNT × PNT
=

F

R
× PNT

=
F

e
(6.4)

6.2.6 Battery Profile

This profile is developed to allow our offloading framework to consider the capacity of the
battery and ensure the completion of the offloading process in case the offloading engine
decides to offload the task. We denote the remaining energy on the device battery as EB

at any time instant. If the offloading energy is estimated to be Eoff , then the remaining
energy on the battery should be greater than or equal to Eoff to make sure that the device
is able to complete the offloading. This constraint is presented as

Eoff ≤ EB. (6.5)

It is worth noting that the battery profile is already developed on all current mobile
devices and can be obtained from the operating system.

6.2.7 Location Profile

We consider the location profile to determine the available network infrastructure and the
reachable cloud from the current location. One example of the need for such a profile is that
many Internet providers limit their coverage to a specific geographical region. Moreover,

Majid Altamimi’s PhD Thesis 110

6.2. SYSTEM PARAMETERS

even though the cloud is accessible worldwide, some countries restrict the access to limited
destinations. As a result, task offloading to the cloud has to consider this limitation.
The parameters of this profile are binary in nature. For example, the network parameter
is NTi = 1, if the network i is available and NTi = 0, otherwise. Similarly, the cloud
parameter is CCj = 1 and CCj = 0 for an available and unavailable cloud, respectively,
from the current location of the mobile device. The parameters of this profile are:

NTi =

{
1 if the network i is available
0 if the network i is unavailable

(6.6)

CCj =

{
1 if the cloud j is available
0 if the cloud j is unavailable

(6.7)

The location profile can be obtained by sending probe packets to all known clouds from
the current location through any available network such as WLAN or cellular data. Exam-
ining the network interfaces at the OS level can retrieve the availability of the networks.

6.2.8 Cloud Computing Profile

In this profile, we show the parameters that describe a cloud with respect to task offloading.
The cloud profile consists of the status of the cloud and the supported Quality of Service
(QoS) at current time. The status in our case is the queue of processing requests. The
waiting time of the offloading request in the cloud queue T cc must not exceed offloading
threshold T off . Moreover, the supported cloud QoS (QoScc) should be greater than or
equal to the minimum QoS required by the application (QoSA).

T cc ≤ T off (6.8)

QoScc ≥ QoSA (6.9)

The cloud profile is known by including the cloud status in the response of the location
probe.

6.2.9 Profiles Summary

Finally, we summarize the profiles as in Table 6.1, which lists all notations and symbols
used in our profiles formulation.

111 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

Table 6.1: List of symbols used in profiles formulation

Profile
Parameter

Symbol Description

1 User
NS Network Status
Tu User maximum time for the offloading to finish

2 Application

EA Total energy consumed by the application A
QoSA Quality of service provided by the application A
UA CPU utilization due to app. A
RA Application throughput

3 Content F The size of the task content

4 Hardware
Ec Total energy consumed by a component c
Tc Total time of using a component c
Pc Power consumed in a hardware component c

5 Network

ENT Total energy consumed in networking
TNT Total networking time
PNT Average power consumption in networking
R A Network data rate
e The energy efficiency of a communication module

5 Battery
Eoff Total offloading energy
EB Remaining energy on the device battery

7 Location
NTi The availability binary variable for the network i
CCj The availability binary variable for the cloud j

8 Cloud
T cc Total time of the task in the cloud
T off Offloading threshold time
QoScc Cloud application supported Quality of Service

Majid Altamimi’s PhD Thesis 112

6.3. OFFLOADING FRAMEWORK AND DECISION PROCEDURE

User Profile Network Profile

Collect profile
parameters

Application Profile Cloud Profile

Offloading
decisionContent Profile Location Profile

Do the offloading
Execute the task

on the deviceHardware Profile Battery Profile

Yes No

Offloading Engine

Figure 6.1: Proposed offloading framework

6.3 Offloading Framework and Decision Procedure

In the following, we describe how previous profiles are integrated together to build our
proposed offloading framework, as depicted in Fig. 6.1. It shows how the profiles are used
to make an offloading decision.

In this section, we describe how the proposed framework works. The offloading frame-
work performs the following procedure, which is represented as a flow chart in Fig. 6.2.
The step numbers in the following procedure correspond to the box numbers in the decision
flow chart.

1. When an application A is started and the user wants to perform some tasks, the
offloading process is started immediately.

2. The engine calls for the user profile to check if any wireless network is enabled. The
user profile contains user configurations, which is stored on the smartphone system
files. Sometimes, the user disables networking feature, such as roaming, to avoid

113 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

extra charge. If the networking feature is disabled, then there is no point in going
further in the process so end the offloading process (i.e., Case 1).

3. If the networking is enabled, the engine calls the location profile to determine the
available networks and online clouds. This calling step includes paging for all enabled
networks and pinging all known clouds. The results are built into sets NT and CC.

4. Based on the CC set, the engine finds the set CCA, which is the cloud that has a
clone for A. At the same time, the selected cloud should provide QoScc similar to
or better than what the smartphone application could provide. The value of CCA,
which takes on value 0 or 1, and the value of QoScc can be included in the response
to the request for cloud profiles. A request is sent to all clouds in CC.

5. If the set CCA is empty, the offloading process stops trying to offload and ends the
procedure (i.e., Case 2).

6. If there is at least one cloud that has a clone for A, then select the network that
provides lower energy consumption per byte e.

7. Now, the engine calculates the expected energy Eoff needed to offload the task, and
the expected time to complete it.

8. An important step in the offloading engine is to check if the battery has enough energy
to complete the offloading. This step is accomplished by evaluating the condition
Eoff ≤ EB. Moreover, the time to complete the offloading should not exceed the
time limit Tu defined by the user, where T off = TNT + TCC . Otherwise, the engine
terminates the decision procedure (i.e., Case 3).

9. If offloading can be done by using the remaining battery capacity and within the
time limit, the last step is to calculate the total energy consumed EA, if the task is
performed by the local application.

10. Based on this energy, a decision can be made as to whether the offloading will be
beneficial to the smartphone or not. Calculate the gain G as the difference between
the energy consumed for the application and for the offloading, which is given as

G = EA − Eoff . (6.10)

11. The final decision is made based on gain G; if the gain is positive, the offloading will
be beneficial to the mobile device, when the offloading starts (i.e., Case 5 and Case
4 if G is negative).

Majid Altamimi’s PhD Thesis 114

6.4. PROOF-OF-CONCEPT IMPLEMENTATION

12. In any case where the decision procedure is terminated, the engine lets the device
execute the task locally.

6.4 Proof-of-Concept Implementation

In this section, we present the applicability of our proposed framework to real life scenarios.
The state of the art in the framework implementation is presented in subsection 6.4.1.
Then, we show a case study for the implementation of our proposed offloading framework
in a real life scenario.

6.4.1 Practical Implementation

In this subsection, we discuss and explain the practical methods to implement our frame-
work and the state of the art in the implementation. We address the implementation of the
boxes 2 through 10 in Fig. 6.2 and the possible decisions and computations. The summary
of the state of the art is listed in Table 6.2.

We discuss the implementation of the boxes in the following corresponding points:

2. For this step, the user profile is a matrix that contains all of the user current config-
urations, such as screen brightness and speaker volume [20]. This profile parameters
can be specified easily using an approach similar to the one described by Shye et al.
[124].

3. The location profile can be obtained using a service discovery protocol to all known
clouds from the current location through any available network, such as WLAN or
cellular. In fact, examining the available networks is already implemented in the
operating systems of modern mobile devices and it can be retrieved via system calls
[125]. Moreover, the service discovery protocol has a response from the cloud that is
reachable from the current mobile location [126, 127]. Based on the probe responses,
the offloading engine builds the sets CC and NT , which contain the reachable clouds
and available networks, respectively.

4. In this step, the characteristics of the application can be known in the application
design and implementation stages. Application developers determine the character-
istics of their application with the Software Development Kits (SDK) [128, 129]. In

115 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

Start
1

Networking
Enabled?

User Profile

2

Find CC and NTLocation Profile

3

Find CCA, where
QoScc ≥ QoSA

App and
Cloud Profiles

4

CCA empty?
5

Select NTi, where
e is minimum

Hardware and
Network Profiles

6

Calculate
Eoff = F

eNTi

Content Profile

7

Eoff ≤ EB

T off ≤ Tu
Battery Profile

8

Calculate
EA given F

Content Profile

9

Eoff ≤ EA?
10

Offload End
11 12

Call

Yes

No

Call

Call

No

Yes

Call

Call

Call

Yes

No

Call

Yes

No

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 6.2: Offloading decision flowchart

Majid Altamimi’s PhD Thesis 116

6.4. PROOF-OF-CONCEPT IMPLEMENTATION

this case, we assume that the application profile parameters are already included in
the application package. On the other hand, the cloud profile is known by including
the cloud status in the response of the location probe packets that has been per-
formed in the previous step. Giving the QoS provided the application and the cloud,
the engine constructs the set CCA that contains all clouds that provide QoScc equal
to or greater than the QoSA of the application.

5. This step examines whether the result CCA is empty or not.

6. In this step, we assume that the makers for each hardware component specify power
consumption of their components, which is usually provided in the components’ data-
sheets. Otherwise, the literature shows a tremendous amount of methods to experi-
mentally profile the power consumption of the hardware components [8, 9]. Therefore,
we assume that these parameters are stored in a specific file to be used our offloading
engine.

7. The offloading engine calculates the expected energy (Eoff) consumed to offload the
given task, given the task parameters from the content profile. For instance, the
content profile used in this step is the size of the data (F) that has to be transferred
during the offloading, which can be obtained from the meta-data of the task file.

8. The battery profile has been already developed on all current mobile devices. For
instance, the remaining energy on the battery (EB) is accessible by the operating
system [130, 131]. As a result, this profile can be easily determined. In this step,
the offloading engine only compares the obtained battery energy with the calculated
offloading energy from the previous step.

9. Several approaches have been presented in [9, 132, 133, 117], and one of them can be
adopted to calculate the energy (EA) consumed by the mobile components to run a
given application (A).

10. In this step, the offloading engine examines whether or not the offloading is beneficial
to the mobile device. The offloading is only beneficial if the energy consumed to
offload the given task is less than or equal to the energy consumed to execute the
given task locally.

117 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

Table 6.2: Boxes implementation
Box number State of the art

2 Use the profiling methods [20, 124]
3 Use service discovery protocol to build the sets CC and

NT [125, 126, 127]
4 The provided QoS is included in the application package

[128, 129]
5 A comparison
6 Use the models developed by [8]
7 Use the models developed by [9]
8 Use battery profiling that already developed on the mobile

device [130, 131]
9 Estimate application consumed energy by [132, 133, 117]
10 A comparison

6.4.2 A Case Study

In this subsection, we present a real life case study of the implementation of our proposed
framework. We implement and validate it experimentally with the help of previous Chap-
ters (Ch. 4 and Ch. 5). We describe in detail the experimental setup and the profile’s
implementation procedure. Moreover, we show how the offloading decision is performed
experimentally.

Experimental Setup

The aim of the experiments is to retrieve the profiles for a smartphone for this case study.
In this case study, we profile an encoding application, a video file as the task content,
hardware components of a smartphone, and several wireless networks. We set up our
experiments as depicted in Figs. 4.2 and 5.5. In this setup, we use a Samsung Galaxy
Note 3 smartphone, which features a four-core CPU, called Quad-core 2.3 GHz ARMv7.
In addition, the device is powered by Android 4.3 with the Kernal Version 3.4.0 as the
operating system. We choose Android OS because it allows us to easily access many
features as we describe in the following subsections; and it has the biggest market share
in the smartphone industry. This device accesses the Internet through WLAN, 3G, or
4G networks. Using these networks, it can upload and download files to and from the
cloud. The power supply simultaneously powers the smartphone and records the power

Majid Altamimi’s PhD Thesis 118

6.4. PROOF-OF-CONCEPT IMPLEMENTATION

consumption as a time series. The power readings during the experiments are recorded on
a separate laptop.

Experimental Results

The experimental results show the profile of an application, task content, hardware com-
ponents of a smartphone, and wireless networks. The methods and the approaches have
been extensively presented and explained in detail in the previous chapters. The summary
of the obtained profiles is briefly listed in Table 6.3. The value on this table obtained from
the experiments that we conducted similar to the experiments explained in the previous
chapters.

6.4.3 The Offloading Decision

Without loss of generality, we assume that the parameters of the remaining profiles are
known such as the user enable the networking, the battery has enough energy to offload
the task, all known clouds are reachable through all wireless networks from the current
location, and cloud has a clone for the application. Therefore, we omit cases 1 to 3 in
this analysis. Box 10 is the key in the offloading decision in which the engine compares
the energy consumed for local execution of the task and the energy for offloading the task.
For a given device and a specific application, the profiling parameters are constants as we
can see in Table 6.3. However, the only variables are the size of the task data (F), the
operating frequency of the CPU (f), the number of online CPU cores (n), and the used
wireless interface in the case of offloading the task.

Figures 6.3 – 6.4 show the computed gain in Joules from Eq. (6.10) using Eqs. (4.5)
– (4.20) for WLAN, 3G, and 4G networks, and Eqs. (5.5) – (5.9) for FFmpeg application.
FFmpeg is an open source package that have libraries and programs for handling multi-
media data. The white area on the surface represents the operating points where the task
is not to be offloaded. On the other hand, the dark area represents the operating points
where an offloading will be beneficial. Points in the dark regions mean more energy saving
due to the offloading. In these figures, we limit the range of F to show the critical areas in
the offloading decision. The offloading engine calculates the gain at only one point given
the value of F , F cc, f , n, and the available network with highest energy efficiency.

For example, given a task that encodes a 25 MB flv video file (F = 25 MB) into a
25MB mpeg video (F cc = 25MB), the operating frequency of the CPU is 300MHz (f =
300 MHz), and all 4-cores are online (n = 4), then the total estimated energy consumed

119 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

Table 6.3: Experimentally obtained profile parameters
Profile Parameter name Parameter

symbol
Value

Hardware

CPU clock fre-
quencies

f (300, 422.4, 652.8, 729.6, 883.2, 960,
1036.8, 1190.4, 1267.2, 1497.6, 1574.4,
1728,1958.4, 2265.6) MHz

number of online
cores

n 1,2,3, or 4

WLAN 1280 mW
Upload power
consumption

Pup 3G 750 mW

4G 2300 mW
WLAN 1044 mW

Download power
consumption

Pdown 3G 730 mW

4G 1250 mW

CPU power Pcpu
Pmax 0.47f − 1340 + [0.175f + 1310]× n

Pmin

{
0.03f + 51, n = 1

0.2f − 30, n > 1

Storage unit
power consump-
tion

Psu 10−3RAf

Applications

CPU utilization UA 1, 0.7,0.5, and 0.4 for n=1,2,3, and 4,
respectively

Throughput RA

{
−4× 10−6f 2 + 66× 10−3f − 3, n = 1

−10× 10−6f 2 + 24× 10−3f + 26, n > 1

Contents File size F 23 MB

Network

WLAN nun
Signaling energy Eps 3G 0.56 Joules

4G 0.45 Joules
WLAN nun

Tail energy con-
sumed

Etl 3G 6.61 Joules

4G 9.31 Joules
WLAN 6.75 MB/s

Data rate

Rup 3G 1.16 MB/s
4G 1.03 MB/s

WLAN 6.75 MB/s
Rdown 3G 2.08 MB/s

4G 2.13 MB/s
WLAN Download
energy

Edown
⌈

F
1448

⌉
{339.5PRX + 63.17PTX}+⌈

F
4344

⌉
{34.59PTX}+ 148.5PRX

WLAN Upload
energy

Eup
⌈

F
1448

⌉
{241.7PRX + 309.5PTX}+⌈

F
11580

⌉
{183.1PRX}

Majid Altamimi’s PhD Thesis 120

6.5. SUMMARY AND DISCUSSION

by the application (EA) equals 480 Joules and the total estimated energy consumed to
offload the task (Eoff) over 3G network equals 18 Joules. As a result, the computed gain
equals 462 Joules, which means the offloading is beneficial since it is positive.

In term of battery life, the energy that the offloading saves for the mobile device equals
the gained energy over the power consumption of the device. If we know that the power
consumption of the device equals 35mW at the idle state, then the gain in term of battery
life is given as tG = G

Pidle
= 462 Joules

35mW
= 220minutes. That means the device will stay at idle

state for 3.6 hours longer if it offloads that task to the cloud. The overhead is negligible
since we only need to compute two linear simple equations as we demonstrated above.

6.5 Summary and Discussion

Extending the capabilities of these devices beyond their battery energy capacity is possible
by offloading tasks to the cloud. However, making a correct task offloading decision is
crucial to making the offloading beneficial, which happens only when the energy consumed
in the offloading process is less than the energy consumed without it. Therefore, the major
challenge in task offloading is to accurately make the offloading decision. In this chapter,
we developed a comprehensive framework for task offloading and we introduce a set of
parameters that are necessary to perform the task offloading. The experimental validation
shows the performance of our proposed offloading framework on several real life scenarios.
It should be emphasized that our proposed framework is realistic and applicable to all
mobile cloud computing structures. We would extend our work to consider more system
parameters such as cloud waiting time and security parameters.

121 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(a) 1 Core

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−50

0

50

100

150

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(b) 2 Cores

Majid Altamimi’s PhD Thesis 122

6.5. SUMMARY AND DISCUSSION

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−50

0

50

100

150

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(c) 3 Cores

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

100

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(d) 4 Cores

Figure 6.3: Offloading gain with WLAN interface

123 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(a) 1 Core

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−50

0

50

100

150

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(b) 2 Cores

Majid Altamimi’s PhD Thesis 124

6.5. SUMMARY AND DISCUSSION

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

100

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(c) 3 Cores

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(d) 4 Cores

Figure 6.4: Offloading gain with 3G interface

125 ECE, University of Waterloo

CHAPTER 6. THE PROPOSED OFFLOADING FRAMEWORK

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

−10

0

10

20

30

40

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(a) 1 Core

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−50

0

50

100

150

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(b) 2 Cores

Majid Altamimi’s PhD Thesis 126

6.5. SUMMARY AND DISCUSSION

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

100

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(c) 3 Cores

0
1

2
3

4
5

x 10
6

0

1000

2000

3000
−20

0

20

40

60

80

File size (MB)Frequency (MHz)

O
ff
lo

a
d
in

g
 g

a
in

 (
J
o
u
le

s
)

(d) 4 Cores

Figure 6.5: Offloading gain with 4G interface

127 ECE, University of Waterloo

Chapter 7

Conclusions and Future Research

7.1 Conclusions

In recent years, the smartphone become one of the most essential devices on the hand of
many people. The advances in the Internet, wireless communication, and the semiconduc-
tor technologies contribute to the popularity of the smartphones. However, the limited
energy capacity of smartphones slows and limits the growth of smartphones capabilities.
In this dissertation, the bright future of task offloading motivates us to proposed offloading
framework that saves mobile devices energy with the aid of the cloud computing. The
offloading technique promises to save energy and enriches the computing functionality of
mobile devices. Since the offloading to the cloud is in its infant state, an in-depth study is
required to evaluate and develop it.

Our evaluation study clearly indicates that offloading heavy applications such as mul-
timedia applications from mobile devices to the cloud is beneficial. We conducted a large
number of experiments for common network interfaces (3G/4G and WLAN) and Internet
protocols (HTTP and FTP). The results reveal the potential of the cloud by reducing the
energy consumptions at least 30%. Nevertheless, in some system configuration no energy
is saved by the offloading. Therefore, the need offloading decision is crucial to offload a
task whenever it is beneficial. In fact, the offloading framework needs energy estimation
models to make the right decision.

Hence, we developed energy models for WLAN, 3G, and 4G wireless networks to allow
the offloading framework to make correct offloading decisions. In these energy models, we
considered the details of the network stack from lower level up to the transport level. The

129

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

models just need to know the amount of transferred data and some system parameters,
and they can provide accurate estimations of energy cost.

For the computing energy consumption, we developed hardware and software energy
models. These models empower mobile developers to estimate the energy consumption of
an application on a given device. Moreover, we described how to profile modern multi-core
CPUs, storage units, and applications under the Android platform. The results of the
real experiments on two different smartphones reveal the validation and accuracy of our
profiling procedures.

Finally, we used the developed models for the computing that networking to develop
an offloading framework. In this framework, we introduced a set of parameters that are
necessary to perform the offloading decision. We experimentally validated our offloading
framework on several real life scenarios. The validation study emphasizes that our proposed
framework is realistic and applicable to the mobile and cloud augmentation.

7.2 Future Research

This dissertation raises a number studies merit further investigation. The proposed en-
ergy models of WLAN, 3G, and 4G not only helps for task offloading but also opens new
door for energy solutions that require predicting the energy consumption. Our developed
mathematical models for WLAN can be extended to recent WLANs and broadband net-
work standards such as IEEE 802.11n and 802.11ac networks. Moreover, the impact of
the number of WLAN network users on the energy consumption is needed because most
of todays WLANs are multi-user networks. In addition, the impact of device mobility is
worth examining for the networking models.

On the other hand, we avoid the application branching and we model the application for
only one task. To extend our models and make it applicable to multi-task application, the
application can be divided into tasks where each task is modelled using similar approach
that we used. Furthermore, the real-time application and the effect of the user interfaces
and user interactions with the application would be considered.

Finally, the offloading framework can be extended to consider more system parameters
such as cloud waiting time and security parameters. Similarly, the offloading decision can
be made in the cloud after uploading the system parameters as we proposed in Fig. 1.9.
These highlight the importance of our study and the challenge for future research.

Majid Altamimi’s PhD Thesis 130

References

[1] N. Jones, “Mobile Web Trends 2007 to 2011,” Gartner Group, Tech. Rep. G00148175,
Jun. 2007. 1, 26

[2] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
20112016,” Feb. 2012. [Online]. Available: http://www.cisco.com/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-520862.pdf 1

[3] K. Naik, “A Survey of Software Based Energy Saving Methodologies for Handheld
Wireless Communication Devices,” Dept. of ECE, University of Waterloo, Waterloo,
ON, Canada, Tech. Rep. 2010-13, 2010. 1, 14, 36, 37

[4] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Offloading Com-
putation Save Energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010. 1, 14, 31, 32, 33,
34, 37, 38, 105

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud Computing
and Emerging IT Platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599 – 616,
2009. 2, 27, 106

[6] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When Mobile Terminals Meet
the Cloud: Computation Offloading as the Bridge,” Network, IEEE, vol. 27, no. 5,
pp. 28–33, 2013. 2, 31, 106

[7] M. Altamimi and K. Naik, “The Concept of a Mobile Cloud Computing to Reduce
Energy Cost of Smartphones and ICT Systems,” in Proceedings of the First inter-
national conference on Information and Communication on Technology for the Fight
against Global Warming (ICT-GLOW’11). Springer-Verlag, Aug. 2011, pp. 79–86.
2, 3, 36, 106

131

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf

[8] M. Altamimi, R. Palit, K. Naik, and A. Nayak, “Energy-as-a-Service (EaaS): On the
Efficacy of Multimedia Cloud Computing to Save Smartphone Energy,” in IEEE 5th
International Conference on Cloud Computing (CLOUD), Jun. 2012, pp. 764 –771.
3, 18, 34, 39, 79, 106, 117, 118

[9] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy Cost Models of Smart-
phones for Task Offloading to the Cloud,” to appear in IEEE Transactions on Emerg-
ing Topics in Computing (TETC). 3, 18, 55, 92, 109, 117, 118

[10] M. Altamimi, K. Naik, P. Srivastava, and B. Plourde, “A Hardware Profiling Proce-
dure for Smartphone App Developers to Estimate Energy Cost,” submitted to IEEE
81st Vehicular Technology Conference (VTC2015-Spring). 3, 18, 83, 109

[11] M. Altamimi and K. Naik, “A Practical Task Offloading Decision Engine for Mo-
bile Devices to Use Energy-as-a-Service (EaaS),” in 2014 IEEE World Congress on
Services (SERVICES), Jun. 2014, pp. 452–453. 3, 18, 105, 106, 107

[12] ——, “A Framework to Offload Tasks from Mobile Devices to Cloud,” submitted to
ACM Transactions on Modeling and Performance Evaluation of Computing Systems.
3, 18, 105

[13] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures,” in Microarchitec-
ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, Dec.
2009, pp. 168 –178. 6, 9, 11

[14] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin,
“Diversity in Smartphone Usage,” in Proceedings of the 8th international conference
on Mobile systems, applications, and services. ACM, 2010, pp. 179–194. 6, 9, 14

[15] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin, “A First Look
at Traffic on Smartphones,” in Proceedings of the 10th annual conference on Internet
measurement, 2010, pp. 281–287. 6, 14

[16] M. Viviani, N. Bennani, and E. Egyed-Zsigmond, “A Survey on User Modeling in
Multi-application Environments,” in Advances in Human-Oriented and Personalized
Mechanisms, Technologies and Services (CENTRIC), 2010 Third International Con-
ference on, Aug. 2010, pp. 111 –116. 9

132

[17] C. Liang, “User Profile for Personalized Web Search,” in Fuzzy Systems and Knowl-
edge Discovery (FSKD), 2011 Eighth International Conference on, vol. 3, Jul. 2011,
pp. 1847 –1850. 9

[18] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting Battery Statis-
tics: Understanding the energy demands on mobile handsets,” in Proceedings of the
second ACM SIGCOMM workshop on Networking, systems, and applications on mo-
bile handhelds, ser. MobiHeld ’10. ACM, 2010, pp. 9–14. 9

[19] R. Arya, R. Palit, and K. Naik, “A Methodology for Selecting Experiments to Mea-
sure Energy Costs in Smartphones,” in Wireless Communications and Mobile Com-
puting Conference (IWCMC), 2011 7th International, Jul. 2011, pp. 2087 –2092. 9,
40

[20] R. Palit, R. Arya, K. Naik, and A. Singh, “Selection and Execution of User Level
Test Cases for Energy Cost Evaluation of Smartphones,” in Proc. of the 6th Int.
Workshop on Automation of Software Test, 2011, pp. 84–90. 9, 40, 42, 84, 115, 118

[21] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a Smartphone,” in
Proceedings of the 2010 USENIX conference on USENIX annual technical conference,
2010, p. 21. 11

[22] G. Perrucci, F. Fitzek, and J. Widmer, “Survey on Energy Consumption Entities on
the Smartphone Platform,” in Vehicular Technology Conference (VTC Spring), 2011
IEEE 73rd, May 2011, pp. 1 –6. 11

[23] J. Zhang, D. Wu, S. Ci, H. Wang, and A. Katsaggelos, “Power-Aware Mobile Mul-
timedia: a Survey,” Journal of Communications, vol. 4, no. 9, pp. 600–613, 2009.
14

[24] HTC Nexus One Google: Technical Specs. HTC. Accessed Apr. 2012. [Online].
Available: http://www.htc.com/us/support/nexus-one-google/tech-specs/ 14

[25] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile Clients in Cloud
Computing,” in Proc. of the 2nd USENIX conference on Hot topics in cloud com-
puting (HotCloud’10), 2010, p. 4. 14, 33

[26] J. Paradiso and T. Starner, “Energy Scavenging for Mobile and Wireless Electronics,”
Pervasive Computing, IEEE, vol. 4, no. 1, pp. 18 – 27, January-March 2005. 14

133

http://www.htc.com/us/support/nexus-one-google/tech-specs/

[27] S. Robinson, “Cellphone Energy Gap: Desperately Seeking Solutions,” Strategy An-
alytics, Tech. Rep., Mar. 30 2009. 14

[28] A. Brydon and M. Heath, “Will 3G Networks Cope?: 3G traffic and capacity fore-
casts, 2009-2014,” Unwired Insight Limited, Tech. Rep., Sep. 2009. 22

[29] J. De Vriendt, P. Laine, C. Lerouge, and X. Xu, “Mobile Network Evolution: a
Revolution on the Move,” IEEE Communications Magazine, vol. 40, no. 4, pp. 104–
111, 2002. 22, 23, 25, 26

[30] F. Bonomi, “The Future Mobile Infrastructure: Challenges and Opportunities,”
IEEE Wireless Communications Magazine, vol. 17, no. 5, pp. 4–5, 2010. 23

[31] A. H. Khan, M. A. Qadeer, J. A. Ansari, and S. Waheed, “4G as a Next Generation
Wireless Network,” in Proc. Int. Conf. Future Computer and Communication, 2009,
pp. 334–338. 23

[32] J.-Z. Sun, J. Sauvola, and D. Howie, “Features in Future: 4G Visions from a Technical
Perspective,” in Proc. IEEE Global Telecommunications Conf. GLOBECOM ’01,
vol. 6, 2001, pp. 3533–3537. 23

[33] A. Akan and C. Edemen, “Path to 4G Wireless Networks,” in Proc. IEEE 21st
Int Personal, Indoor and Mobile Radio Communications Workshops (PIMRC Work-
shops) Symp, 2010, pp. 405–407. 23

[34] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A
Survey of Mobile Phone Sensing,” IEEE Communications Magazine, vol. 48, no. 9,
pp. 140–150, 2010. 25

[35] A. Dillistone, R. Moreno, and C. Voisey, “Market Perspective: Commercial Mobile
Video,” in Proceedings of the 3rd workshop on Mobile video delivery, ser. MoViD ’10,
2010, pp. 69–72. 26

[36] AirPrint. Wikipedia.org. Accessed Nov. 2014. [Online]. Available: http://en.
wikipedia.org/wiki/AirPrint 26

[37] (2011, Jan. 15) Sony Unveil Smartphone Gaming Solution. Cloud Computing Online.
26

[38] R. Cheng. (2011, Jun. 2) New Smartphone Targets Avid Gamers. Online. The Wall
Street Journal. 26

134

http://en.wikipedia.org/wiki/AirPrint
http://en.wikipedia.org/wiki/AirPrint

[39] Z. Stern. (2010, Dec. 1) Process Credit Cards Anywhere: 5 Smartphone Alternatives.
PCWorld. [Online]. Available: http://www.pcworld.com/businesscenter/article/
211924/ 26

[40] B. Reed. (2010, Nov. 16) Big telcos aim to replace credit cards with smartphones.
Network World. [Online]. Available: http://www.networkworld.com/news/2010/
111610-isis-smartphones-credit-cards.html 26

[41] I. Union, “The World in 2010: ICT Facts and Figures,” Oct. 20 2010. [Online].
Available: www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf 26

[42] ARMONK. (2007, Aug. 22) IBM Consumer Survey Shows Decline of TV as Primary
Media Device. Online. IBM. 26

[43] K. Algar. (2011, Apr. 11) Faster internet speeds will increase consumer time online:
Nielsen report. [Online]. Available: http://www.current.com.au/2011/04/11/article/
26

[44] S. Zhang, S. Zhang, X. Chen, and S. Wu, “Analysis and Research of Cloud Computing
System Instance,” in Proc. Second Int. Conf. Future Networks ICFN ’10, 2010, pp.
88–92. 27

[45] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, “Green Cloud Computing:
Balancing Energy in Processing, Storage, and Transport,” Proceedings of the IEEE,
vol. 99, no. 1, pp. 149–167, Jan. 2011. 27, 37, 38

[46] O. Manifesto, “Open Cloud Manifesto,” www.opencloudmanifesto.org, vol. 20, pp.
1–7, 2009. 27, 30

[47] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in
Proc. 24th IEEE Int Advanced Information Networking and Applications (AINA)
Conf, 2010, pp. 27–33. 27, 28, 29

[48] I. Bojanova and A. Samba, “Analysis of Cloud Computing Delivery Architecture
Models,” in Advanced Information Networking and Applications (WAINA), 2011
IEEE Workshops of International Conference on, Mar. 2011, pp. 453 –458. 27

[49] Cloud Computing. Wikipedia.org. Accessed Nov. 2014. [Online]. Available:
http://en.wikipedia.org/wiki/Cloud computing 27, 30

135

http://www.pcworld.com/businesscenter/article/211924/
http://www.pcworld.com/businesscenter/article/211924/
http://www.networkworld.com/news/2010/111610-isis-smartphones-credit-cards.html
http://www.networkworld.com/news/2010/111610-isis-smartphones-credit-cards.html
www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
http://www.current.com.au/2011/04/11/article/
http://en.wikipedia.org/wiki/Cloud_computing

[50] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break in the
Clouds: Towards a Cloud Definition,” SIGCOMM Comput. Commun. Rev., vol. 39,
pp. 50–55, Dec. 2008. 27

[51] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft) Rec-
ommendations of the National Institute of Standards and Technology,” Nist Special
Publication, vol. 15, no. 800-145, pp. 1–3, Sep. 2011. 28, 29

[52] “Cisco Cloud Computing - Data Center Strategy, Architecture, and Solutions,”
White Paper, Cisco, 2009. 28

[53] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The Characteristics of Cloud
Computing,” in Proc. 39th Int Parallel Processing Workshops (ICPPW) Conf, 2010,
pp. 275–279. 28

[54] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing Archi-
tecture,” in Proc. Seventh Int Information Technology: New Generations (ITNG)
Conf, 2010, pp. 684–689. 28

[55] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation Offloading
for Mobile Systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129–140,
2013. 31, 33

[56] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using Bandwidth Data to Make
Computation Offloading Decisions,” in Proc. IEEE Int. Symp. Parallel and Dis-
tributed Processing, 2008, pp. 1–8. 31, 37, 38

[57] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R. Chan-
dramouli, “Studying Energy Trade Offs in Offloading Computation/Compilation in
Java-Enabled Mobile Devices,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 15, no. 9, pp. 795–809, Sep. 2004. 31, 37, 38

[58] B. Gao, L. He, L. Liu, K. Li, and S. Jarvis, “From Mobiles to Clouds: Developing
Energy-Aware Offloading Strategies for Workflows,” in Grid Computing (GRID),
2012 ACM/IEEE 13th International Conference on, Sep. 2012, pp. 139 –146. 31

[59] R. Ferzli and I. Khalife, “Mobile Cloud Computing Educational Tool for Image/video
Processing Algorithms,” in Proc. IEEE Digital Signal Processing Workshop and
IEEE Signal Processing Education Workshop (DSP/SPE), 2011, pp. 529–533. 32

136

[60] E. Lagerspetz and S. Tarkoma, “Mobile Search and the Cloud: The Benefits of Of-
floading,” in Proc. IEEE Int Pervasive Computing and Communications Workshops
(PERCOM Workshops) Conf, 2011, pp. 117–122. 32, 37

[61] J. Kim, “Architectural Patterns for Service-based Mobile Applications,” in Proc.
IEEE Int Service-Oriented Computing and Applications, 2010, pp. 1–4. 33, 38

[62] A. Khan, M. Othman, S. Madani, and S. Khan, “A Survey of Mobile Cloud Comput-
ing Application Models,” IEEE Communications Surveys Tutorials, vol. 16, no. 1,
pp. 393–413, First 2014. 33

[63] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile Cloud Computing:
Architecture, Applications, and Approaches,” Wireless Communications and Mobile
Computing, vol. 13, no. 18, pp. 1587–1611, 2013. 33, 34

[64] L. Guan, X. Ke, M. Song, and J. Song, “A Survey of Research on Mobile Cloud
Computing,” Computer and Information Science, ACIS International Conference
on, vol. 0, pp. 387–392, 2011. 33

[65] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile Cloud Computing: A Survey,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 84 – 106, 2013. 33

[66] S.-H. Hung, C.-S. Shih, J.-P. Shieh, C.-P. Lee, and Y.-H. Huang, “An Online Migra-
tion Environment for Executing Mobile Applications on the Cloud,” in Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth Interna-
tional Conference on, 2011, pp. 20–27. 34, 35

[67] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic
Execution Between Mobile Device and Cloud,” in Proceedings of the Sixth Conference
on Computer Systems, 2011, pp. 301–314. 34

[68] D. Kovachev and R. Klamma, “Framework for Computation Offloading in Mobile
Cloud Computing,” International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 1, pp. 6–15, 2012. 34, 35

[69] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A Computation Offload-
ing Framework for Smartphones,” in Mobile Computing, Applications, and Services,
ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, M. Gris and G. Yang, Eds. Springer Berlin Hei-
delberg, 2012, vol. 76, pp. 59–79. 34, 35

137

[70] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Unleashing the Power of
Mobile Cloud Computing using ThinkAir,” CoRR, pp. 1–17, 2011. 34, 35

[71] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “MAUI: Making Smartphones Last Longer with Code Offload,” in
Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services, 2010, pp. 49–62. 34, 38

[72] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and B. S. Lee, “µCloud:
Towards a New Paradigm of Rich Mobile Applications,” Procedia Computer Science,
vol. 5, no. 0, pp. 618 – 624, 2011. 34, 35

[73] K. Yang, S. Ou, and H.-H. Chen, “On Effective Offloading Services for Resource-
Constrained Mobile Devices Running Heavier Mobile Internet Applications,” IEEE
Communications Magazine, vol. 46, no. 1, pp. 56–63, 2008. 33, 34, 37, 38

[74] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving Portable Com-
puter Battery Power through Remote Process Execution,” SIGMOBILE Mob. Com-
put. Commun. Rev., vol. 2, pp. 19–26, Jan. 1998. 34

[75] Z. Li, C. Wang, and R. Xu, “Computation Offloading to Save Energy on Handheld
Devices: A Partition Scheme,” in Proc. of International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems. ACM, 2001, pp. 238–246. 34

[76] C. Wang and Z. Li, “Parametric Analysis for Adaptive Computation Offloading,” in
Proceedings of the ACM SIGPLAN 2004 conference on Programming language design
and implementation, ser. PLDI ’04, 2004, pp. 119–130. 34

[77] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access Schemes for
Mobile Cloud Computing,” in Proc. Eleventh Int Mobile Data Management, 2010,
pp. 387–392. 36

[78] H. J. La and S. D. Kim, “A Conceptual Framework for Provisioning Context-aware
Mobile Cloud Services,” in Proc. IEEE 3rd Int Cloud Computing, 2010, pp. 466–473.
36

[79] M. Othman and S. Hailes, “Power Conservation Strategy for Mobile Computers Using
Load Sharing,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 2, pp. 44–51, Jan.
1998. 37

138

[80] I. Kelenyi and J. K. Nurminen, “CloudTorrent - Energy-Efficient BitTorrent Con-
tent Sharing for Mobile Devices via Cloud Services,” in Proc. 7th IEEE Consumer
Communications and Networking Conf. (CCNC), 2010, pp. 1–2. 37, 38

[81] X. Zhao, P. Tao, S. Yang, and F. Kong, “Computation Offloading for H.264 Video
Encoder on Mobile Devices,” in Proc. IMACS Multiconference Computational Engi-
neering in Systems Applications, 2006, pp. 1426–1430. 37

[82] A. Olsen, F. Fitzek, and P. Koch, “Optimizing the Number of Cooperating Terminals
for Energy Aware Task Computing in Wireless Networks,” in Wireless Personal
Multimedia Communications Symposia, 2005. 38

[83] S. Gitzenis and N. Bambos, “Joint Task Migration and Power Management in Wire-
less Computing,” IEEE Transactions on Mobile Computing, vol. 8, no. 9, pp. 1189–
1204, 2009. 38

[84] A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan, “Power of Clouds
in Your Pocket: An Efficient Approach for Cloud Mobile Hybrid Application De-
velopment,” in Proc. IEEE Second Int Cloud Computing Technology and Science
(CloudCom) Conf, 2010, pp. 496–503. 42

[85] W. Itani, A. Chehab, and A. Kayssi, “Energy-Efficient Platform-as-a-Service Security
Provisioning in the Cloud,” in Proc. Int Energy Aware Computing (ICEAC) Conf,
2011, pp. 1–6. 46

[86] S. Ferretti, V. Ghini, F. Panzieri, and E. Turrini, “Seamless Support of Multimedia
Distributed Applications Through a Cloud,” in Proc. IEEE 3rd Int Cloud Computing
(CLOUD) Conf, 2010, pp. 548–549. 46

[87] M. Rodriguez-Martinez, J. Seguel, M. Sotomayor, J. P. Aleman, J. Rivera, and
M. Greer, “Open911: Experiences with the Mobile Plus Cloud Paradigm,” in Proc.
IEEE Int Cloud Computing (CLOUD) Conf, 2011, pp. 606–613. 46

[88] J. F. M. Bernal, L. Ardito, M. Morisio, and P. Falcarin, “Towards an Efficient
Context-Aware System: Problems and Suggestions to Reduce Energy Consump-
tion in Mobile Devices,” in Proc. Ninth Int Mobile Business and 2010 Ninth Global
Mobility Roundtable (ICMB-GMR) Conf, 2010, pp. 510–514. 53

[89] H. Yuan, C.-C. J. Kuo, and I. Ahmad, “Energy Efficiency in Data Centers and
Cloud-Based Multimedia Services: An Overview and Future Directions,” in Proc.
Int. Green Computing Conf, 2010, pp. 375–382. 54

139

[90] Y. Zhang, N. Ansari, and H. Tsunoda, “Wireless Telemedicine Services over Inte-
grated IEEE 802.11/WLAN and IEEE 802.16/WiMAX Networks,” IEEE Wireless
Communications Magazine, vol. 17, no. 1, pp. 30–36, 2010. 57, 87

[91] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “DevScope: A Nonintrusive and
Online Power Analysis Tool for Smartphone Hardware Components,” in Proceed-
ings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. ACM, 2012, pp. 353–362. 57, 87

[92] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Ylä-Jääski, “Practical
Power Modeling of Data Transmission over 802.11g for Wireless Applications,” in
Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking, 2010, pp. 75–84. 57, 70, 81

[93] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Profiling Re-
source Usage for Mobile Applications: A Cross-layer Approach,” in Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’11. ACM, 2011, pp. 321–334. 57, 65

[94] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A Close
Examination of Performance and Power Characteristics of 4G LTE Networks,” in
Proceedings of the 10th International Conference on Mobile Systems, Applications,
and Services. ACM, 2012, pp. 225–238. 57, 65

[95] M. Lauridsen, P. Mogensen, and L. Noel, “Empirical LTE Smartphone Power Model
with DRX Operation for System Level Simulations,” in IEEE 78th Vehicular Tech-
nology Conference, Sep. 2013, pp. 1–6. 57

[96] Y. Xiao, R. S. Kalyanaraman, and A. Yla-Jaaski, “Energy Consumption of Mobile
YouTube: Quantitative Measurement and Analysis,” in Proc. Second Int. Conf. Next
Generation Mobile Applications, Services and Technologies NGMAST ’08, 2008, pp.
61–69. 58

[97] A. Abogharaf and K. Naik, “Client-Centric Data Streaming on Smartphones: An
Energy Perspective,” in 2013 International Conference on Selected Topics in Mobile
and Wireless Networking (MoWNeT), 2013, pp. 36–41. 58, 84

[98] A. Albasir, K. Naik, and T. Abdunabi, “Smart Mobile Web Browsing,” in Aware-
ness Science and Technology and Ubi-Media Computing (iCAST-UMEDIA), 2013
International Joint Conference on. IEEE, 2013, pp. 671–679. 58, 84

140

[99] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Std. 802.11a-1999, 1999. 59, 60

[100] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination
Function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp.
535–547, 2000. 59, 60, 61

[101] I. Grigorik, High Performance Browser Networking: What Every Web Developer
Should Know about Networking and Web Performance. ” O’Reilly Media, Inc.”,
2013. 64

[102] J. D. Gibson, Mobile Communications Handbook, 3rd, Ed. CRC press, 2012. 66

[103] M. Assaad and D. Zeghlache, TCP performance over UMTS-HSDPA systems. CRC
Press, 2006. 67

[104] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl, “Anatomizing
Application Performance Differences on Smartphones,” in Proceedings of the 8th In-
ternational Conference on Mobile Systems, Applications, and Services. ACM, 2010,
pp. 165–178. 67

[105] K. Ullah and J. Nurminen, “Applicability of Different Models of Burstiness to En-
ergy Consumption Estimation,” in Communication Systems, Networks Digital Signal
Processing (CSNDSP), 2012 8th International Symposium on, Jul. 2012, pp. 1–6. 71

[106] A. Kansal and F. Zhao, “Fine-Grained Energy Profiling for Power-Aware Application
Design,” SIGMETRICS Perform. Eval. Rev., vol. 36, pp. 26–31, Aug. 2008. 84

[107] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Mobile Application Energy
Consumption using Program Analysis,” in Software Engineering (ICSE), 2013 35th
International Conference on, May 2013, pp. 92–101. 84, 88

[108] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a Smartphone,” in
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Confer-
ence. USENIX Association, 2010, pp. 21–21. 84, 85

[109] R. Mittal, A. Kansal, and R. Chandra, “Empowering Developers to Estimate App
Energy Consumption,” in Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking. ACM, 2012, pp. 317–328. 84

141

[110] K. Naik, Y. Ali, V. Mahinthan, A. Singh, and A. Abogharaf, “Categorizing Configu-
ration Parameters of Smartphones for Energy Performance Testing,” in Proceedings
of the 9th International Workshop on Automation of Software Test. ACM, 2014,
pp. 15–21. 86

[111] A. Noureddine, R. Rouvoy, and L. Seinturier, “A Review of Energy Measurement
Approaches,” SIGOPS Oper. Syst. Rev., vol. 47, no. 3, pp. 42–49, Nov. 2013. 86

[112] Y. Li, H. Chen, and W. Shi, “Bugu: an Application Level Power Profiler and Analyzer
for Mobile Devices,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 17, no. 3, pp. 27–28, 2013. 87

[113] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the Energy
Usage of Mobile Applications,” in Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications. IEEE Computer Society, 1999, pp.
2–9. 87

[114] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application Energy
Metering Framework for Android Smartphone Using Kernel Activity Monitoring,”
in Presented as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12). Boston, MA: USENIX, 2012, pp. 387–400. 88

[115] T. Do, S. Rawshdeh, and W. Shi, “pTop: A Process-level Power Profiling Tool,” in
Proceedings of the 2nd Workshop on Power Aware Computing and Systems (Hot-
Power’09), 2009. 88

[116] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside My App?:
Fine Grained Energy Accounting on Smartphones with Eprof,” in Proceedings of the
7th ACM European Conference on Computer Systems. ACM, 2012, pp. 29–42. 88

[117] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Android Applications’
CPU Energy Usage via Bytecode Profiling,” in Green and Sustainable Software
(GREENS), 2012 First International Workshop on, 2012, pp. 1–7. 88, 117, 118

[118] K. Choi, W. Lee, R. Soma, and M. Pedram, “Dynamic Voltage and Frequency Scal-
ing Under a Precise Energy Model Considering Variable and Fixed Components
of the System Power dissipation,” in Computer Aided Design, 2004. ICCAD-2004.
IEEE/ACM International Conference on, Nov. 2004, pp. 29–34. 88

[119] S. Kaxiras and M. Martonosi, Computer architecture techniques for power-efficiency.
Morgan and Claypool Publishers, 2008. 89, 90

142

[120] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold voltage scaling
for low power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp.
1210–1216, Aug. 1997. 90

[121] L. Barroso and U. Holzle, “The Case for Energy-Proportional Computing,” Com-
puter, vol. 40, no. 12, pp. 33–37, Dec. 2007. 91

[122] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2012. 93, 100

[123] W. Zhang, Y. Wen, and H.-H. Chen, “Toward Transcoding as a Service: Energy-
Efficient Offloading Policy for Green Mobile Cloud,” Network, IEEE, vol. 28, no. 6,
pp. 67–73, Nov. 2014. 108

[124] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda, “Characterizing and Model-
ing User Activity on Smartphones: Summary,” SIGMETRICS Perform. Eval. Rev.,
vol. 38, no. 1, pp. 375–376, Jun. 2010. 115, 118

[125] Android ConnectivityManager Class. Android Developer. Accessed Dec.
2014. [Online]. Available: https://developer.android.com/reference/android/net/
ConnectivityManager.html 115, 118

[126] P. Papakos, L. Capra, and D. S. Rosenblum, “VOLARE: Context-aware Adaptive
Cloud Service Discovery for Mobile Systems,” in Proceedings of the 9th International
Workshop on Adaptive and Reflective Middleware. ACM, 2010, pp. 32–38. 115, 118

[127] T. Han and K. M. Sim, “An Ontology-Enhanced Cloud Service Discovery System,”
in Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, vol. 1, 2010, pp. 17–19. 115, 118

[128] A. Diaz, P. Merino, and F. J. Rivas, “Mobile Application Profiling for Connected
Mobile Devices,” IEEE Pervasive Computing, vol. 9, no. 1, pp. 54–61, 2010. 115, 118

[129] C. Thompson, J. White, B. Dougherty, and D. Schmidt, “Optimizing Mobile Ap-
plication Performance with ModelDriven Engineering,” in Software Technologies for
Embedded and Ubiquitous Systems, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, vol. 5860, pp. 36–46. 115, 118

[130] Apple iOS Get Battery Status. Apple Developer. Accessed Dec. 2011. [Online]. Avail-
able: https://developer.apple.com/library/ios/samplecode/BatteryStatus/ 117, 118

143

https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.apple.com/library/ios/samplecode/BatteryStatus/

[131] Android BatteryManager Class. Android Developer. Accessed Nov. 2014. [Online].
Available: http://developer.android.com/reference/android/os/BatteryManager.
html 117, 118

[132] R. Palit, A. Singh, and K. Naik, “Modeling the Energy Cost of Applications on
Portable Wireless Devices,” in Proceedings of the 11th international symposium on
Modeling, analysis and simulation of wireless and mobile systems, 2008, pp. 346–353.
117, 118

[133] P. Bellasi, W. Fornaciari, and D. Siorpaes, “Predictive Models for Multimedia Appli-
cations Power Consumption based on Use-Case and OS Level Analysis,” in Design,
Automation and Test in Europe Conference Exhibition, 2009. DATE ’09., 2009, pp.
1446–1451. 117, 118

144

http://developer.android.com/reference/android/os/BatteryManager.html
http://developer.android.com/reference/android/os/BatteryManager.html

Author’s Publications

[1] M. Altamimi, K. Naik, and X. Shen, “Parallel Link Rendezvous in Ad Hoc Cogni-
tive Radio Networks,” in Proc. IEEE Global Telecommunications Conf. GLOBECOM
2010, 2010, pp. 1–6.

[2] M. Altamimi and K. Naik, “The Concept of a Mobile Cloud Computing to Reduce
Energy Cost of Smartphones and ICT Systems,” in Proceedings of the First inter-
national conference on Information and Communication on Technology for the Fight
against Global Warming (ICT-GLOW’11). Berlin, Heidelberg: Springer-Verlag, Au-
gust 2011, pp. 79–86.

[3] R. Palit, M. Altamimi, K. Naik, and A. Singh, “Challenges and Opportunities in De-
signing Next Generation Energy-efficient Smartphones,” in invited paper in the pro-
ceedings of the 1st International Conference on Advanced Computing (ICoAC 2011),
Chennai, India, December 14-16 2011.

[4] M. Altamimi, R. Palit, K. Naik, and A. Nayak, “Energy-as-a-Service (EaaS): On the
Efficacy of Multimedia Cloud Computing to Save Smartphone Energy,” in IEEE 5th
International Conference on Cloud Computing (CLOUD), June 2012, pp. 764 –771.

[5] M. Altamimi and K. Naik, “A Practical Task Offloading Decision Engine for Mo-
bile Devices to Use Energy-as-a-Service (EaaS),” in 2014 IEEE World Congress on
Services (SERVICES), June 2014, pp. 452–453.

[6] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy Cost Models of Smart-
phones for Task Offloading to the Cloud,” to appear in IEEE Transactions on Emerg-
ing Topics in Computing (TETC).

[7] M. Altamimi, K. Naik, P. Srivastava, and B. Plourde, “A Hardware Profiling Proce-
dure for Smartphone App Developers to Estimate Energy Cost,” submitted to IEEE
81st Vehicular Technology Conference (VTC2015-Spring).

145

[8] M. Altamimi and K. Naik, “A Framework to Offload Tasks from Mobile Devices to
Cloud,” submitted to ACM Transactions on Modeling and Performance Evaluation of
Computing Systems.

146

	List of Tables
	List of Figures
	List of Abbreviations
	List of Notation
	Introduction
	Research Motivation and Objectives
	System Models
	Energy Model of Mobile Devices
	Energy Model of Mobile Applications
	Network Model

	Problem Definition
	Thesis Contributions
	Evaluate Offloading Energy Costs
	Develop Energy Models for the Offloading Framework
	Propose and Develop Offload Framework

	Thesis Organization

	Background and Literature Review
	Smartphones
	History of Smartphones
	Smartphone Definition
	Smartphone as a Source of Data
	Smartphone Usages
	Multimedia on Smartphones

	Cloud Computing
	An Overview on Cloud Computing
	Cloud Computing Definition
	Cloud Computing Services
	Cloud Computing Implementations

	Offloading
	Offloading Definition
	Offloading Techniques
	Offloading to Cloud Computing
	Offloading Frameworks

	Energy Saving Techniques for Mobile Devices
	Cloud Computing for Mobile Devices
	Saving Mobile Device Energy by the Offloading

	Evaluating Offloading Energy Costs
	Preamble
	Methodology
	Experiments on Network Related Application
	Experiments on Cloud Applications
	Limitations of Our Approach
	Summary and Discussion

	Modelling the Networking Energy Consumption
	Preamble
	Literature of the Networking Energy Modelling
	Modelling Studies
	Networking Measurement Studies

	WLAN Analytical Energy Model
	File Download Case
	File Upload Case

	Mobile Data Analytical Energy Model
	Background
	Energy Models

	Experimental Validation
	Methodology
	File Transfer over WLAN Networks
	File Transfer over 3G and 4G Networks
	Offloading Case Study

	Summary and Discussion

	Modeling the Hardware Energy Consumption
	Preamble
	Hardware Profiling Literature
	Profiling Models
	CPU Profile
	Storage Unit Profile
	Application Profile

	Experimental Validation
	Experimental Setup
	Experimental Results
	Applicability Validation
	Application Total Energy

	Summary and Discussion

	The Proposed Offloading Framework
	Preamble
	System Parameters
	User Profile
	Application Profile
	Content Profile
	Hardware Profile
	Network Profile
	Battery Profile
	Location Profile
	Cloud Computing Profile
	Profiles Summary

	Offloading Framework and Decision Procedure
	Proof-of-Concept Implementation
	Practical Implementation
	A Case Study
	The Offloading Decision

	Summary and Discussion

	Conclusions and Future Research
	Conclusions
	Future Research

	References
	Author's Publications

