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Abstract

The recent progress in renewable energy (RE) technologies has led to the erection of

RE power plants (REPPs) up to the order of several hundred megawatts. Unlike their

predecessors, which generally appeared in the form of dispersed generation (DG) coupled

mainly with distribution systems, such large REPPs are naturally part of high-voltage

transmission networks and hold non-negligible proportions of the generation. On the other

hand, RE-based DGs are becoming pervasive in modern distribution systems. As a result,

the fault ride-through (FRT) requirement has become an essential part of modern grid

codes.

This dissertation investigates the challenges brought about by the FRT requirement

now affecting protection of systems with which REPPs are integrated. On the transmis-

sion level, it explores the performance of distance relays that are installed at an REPP

substation and protect the neighboring line. The analyses are founded upon time-domain

simulation of detailed REPP models with FRT capability. The studies include squirrel

cage induction generator and doubly-fed induction generator (DFIG)-based wind farms,

as well as full-scale converter-interfaced REPPs. The exclusive fault behavior of REPPs

is scrutinized to identify possible relay maloperations and their root causes. The relay

malfunctions revealed by this dissertation are restricted to systems with REPPs, and are

not among the known distance relay failures that can occur in conventional power systems.

If a communication link with minimal bandwidth requirement is in place, distance relays

provide non-delayed fast tripping over the entire length of the line. This feature is retained

by devising modified relaying algorithms.

On the distribution level, the dissertation examines the effects of RE-based DGs on

directional relays and on fault type classification methods. DFIG-based wind turbines con-

stitute an appreciable portion of today’s DG power. Conventional directional elements are

shown to be adversely affected when a distribution system incorporates DFIG-based wind

DG. An effective method is proposed to identify the fault direction using the waveshape

properties of fault signals.

Microgrids are the building blocks of future smart distribution systems. Protective de-

vices of smart and fault-resilient microgrids are not expected to trip the healthy phases
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during unbalanced short-circuits. Thus, some utilities as well as relay manufacturers have

started contemplating single- and double-pole tripping for distribution systems. Selective

phase tripping demands fault type classification. This dissertation reveals that existing

industrial methods that exploit the phase difference between sequence currents and the

magnitudes of phase and sequence currents misidentify the fault type in microgrids that

include photovoltaic and/or Type IV wind DGs. Using phase and sequence voltages, two

new classifiers are proposed to determine the fault type for not only microgrids with dif-

ferent DGs, but for any three-phase system.
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Chapter 1

Introduction

1.1 Description of the Problem

Non-hydro renewable energy (RE) sources used to be integrated primarily with distribution

systems in the form of distributed generation (DG). These sources constituted an insignif-

icant share of the generation and were inconsequential to the balance of power in the grid.

In addition, depending on the RE technology involved, these sources were subject to a

variety of transient disturbances that could potentially damage certain components of an

RE facility in the event of grid faults. On the other hand, grid connection of the DGs over

short-circuit conditions formed non-controlled islands within distribution systems, which

led to power quality and public safety issues. As a result, RE sources were always tripped

once the voltage at their point of interconnection (POI) dropped following the inception

of a fault [1, 2].

The past decade, however, has observed major technical developments in the RE in-

dustry as well as increased concerns over climate change. Hence, REs are now among the

key players in the global supply of energy, and RE power plants (REPPs) up to the order

of several hundred megawatts have been erected in many countries. These changes have

necessitated new measures to assure stable operation of power systems in the presence

of REPPs and to get maximum benefit from existing resources. Consequently, grid codes
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Figure 1.1. FRT curve for REPPs in the European Union.

(GCs) have evolved in recent years putting new constraints on REPPs. With respect to

operation during stressed conditions, one major concern of system operators has been con-

current tripping of all REPPs in the vicinity of a short-circuit, which reduces the accessible

power substantially and exacerbates the disturbance further. Therefore, the requirement

for REPPs to ride through faults was among the early GC changes; doing so facilitates

recovery from disturbances by raising the available generation capacity [3].

The fault ride-through (FRT) article of a GC introduces a time-voltage curve that

specifies the conditions under which an REPP must remain connected to the grid after a

fault is initiated. Although variations exist among different GCs in regard to the specifics

of the FRT curve, it normally is a stepwise/linear graph. Take, for instance, the FRT profile

of the European union countries, displayed in Figure 1.1 [4]. The time and voltage values in

this figure are specified at a national level. An REPP must avoid tripping for the operating

points that lie above the curve. This area includes very low, or even for some countries

zero, POI voltages within the first ten cycles after the fault inception. The REPP is then

allowed to be disconnected from the grid unless the voltage recovers in a linear/stepwise

fashion [5].

The FRT requirement has made protection of the systems that incorporate REPPs an

avenue of research over the last few years. The challenges faced are twofold.
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1.1.1 Protection of REPPs during Faults

The internal components of an REPP undergo a variety of transients during grid faults.

The type of the transient and the components that are in danger depend on the RE source,

e.g., wind or solar, as well as on the technology involved in the REPP. For instance, as

soon as a disturbance causes a voltage drop at the terminal of an induction generator

(IG) based wind farm (WF), large overcurrents flow in the IGs’ rotor circuits, which may

damage the rotor-side converter of a doubly-fed IG (DFIG) [6]. Similar overcurrents are

observed during voltage recovery. Various FRT techniques have been proposed to enable

REPPs to ride through faults without inflicting any damage on REPP facilities [7–9].

1.1.2 Protection of Systems with REPPs

The DGs’ contribution to faults can create several adverse effects on protective relaying

of distribution systems. The DGs can cause mis-coordination of overcurrent elements in

distribution networks, or may result in bidirectional fault currents for distribution systems

in which power flow has traditionally been unidirectional. Some RE-based DGs have also

limited short-circuits, to which overcurrent elements are hardly sensitive [10]. Many pub-

lications have studied such DG effects on distribution protection and presented creative

solutions [11,12]. Nevertheless, many of the offered remedies include requirements such as

communication infrastructure that cannot be readily met in today’s distribution systems.

In addition, the unique fault properties of some types of RE-based DGs, e.g., DFIG-based

wind DGs, have not been fully analyzed in the literature to date. For example, the next

chapters of this dissertation will demonstrate that the fault current relation used in [13],

which is one of the main studies on the protection of DFIG-equipped distribution systems,

is not fully accurate.

On the other hand, the ratings of modern REPPs are increasing rapidly. For example,

more than 50 photovoltaic farms rated above 50 MW are currently operating. Furthermore,

many large photovoltaic farm projects, some of which are rated up to about 1 GW, have

been planned and are under development [14]. Moreover, gigawatt level WF projects are

already operational in Europe [15]. Consequently, an ever increasing share of REs, particu-
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larly wind and solar, is connected to high-voltage (HV) and extra HV (EHV) transmission

grids in several countries [16]. Fault analysis and setting of the protective relays through-

out such grids have historically been founded upon the fact that synchronous generators

(SGs) energize the system. SGs, however, are either absent or not directly coupled with

the grid in REPPs. Hence, REPPs’ fault behavior is different from that of conventional

power plants. This difference can directly affect the performance of relays, especially the

ones in the proximity of REPPs, such as the relays that protect the lines emanating from

REPPs.

While the aforementioned FRT challenge and protection of distribution systems have

been researched extensively, the negative impacts of REPPs on protective relaying of HV

and EHV grids have not received particular attention in the literature. For example, one

main study among the few publications on this topic is [17], which proposes new zone char-

acteristics for distance relays of WFs’ neighboring lines. Meanwhile, WFs are represented

in [17] by voltage sources in the same way that conventional power plants are modeled.

Later chapters of this dissertation will prove that such modeling is not precise for relaying

purposes and leads to maloperation of protection systems. Another example is [18], which

discusses the effect of offshore WFs with HV dc (HVDC) links on distance protection.

The phenomena described in [18] can occur in any system, not just systems that include

offshore WFs, and has been dealt with by protection engineers for decades. Moreover, this

paper studies the operation of only the relays that are located at the remote end of the line

connected to an HVDC converter station and does not investigate the relay installed at

the converter station. Another drawback is the limitation of the solution proposed in [18]

to three-phase short circuits. Besides shortcomings in the literature, even in practical ap-

plications, protective relays are currently installed in transmission systems that include

REPPs without taking certain distinctive features of the fault behavior of RE sources into

account.

1.2 Research Objectives

Protection challenges of RE systems can be approached from two different angles.
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1. Altering the control systems of REPPs such that their adverse effects on protection

systems are eliminated,

2. Modifying protective relaying schemes so as to accommodate the changes made by

REPPs.

The first approach normally leads to fault signals that are not GC-compatible. More-

over, a new control strategy that addresses the effect of an REPP on a specific type of relay

in a certain part of the grid may aggravate the response of another relay type in a differ-

ent part of the grid. For instance, the methods that attempt to reduce the fault current

of REPPs, e.g., [19], address the overcurrent relay coordination problems in distribution

systems, but violate the GC requirements for short-circuit contribution of REPPs [20,21].

Additionally, they can result in malfunction of non-overcurrent-based relays deployed in

HV and EHV networks. This latter is not a minor drawback, as the manufacturers of

power electronic converters used in RE facilities do not design system-specific products,

and are not normally aware of the protection system details of the network that a converter

is going to be integrated with. That is why, to the best of the author’s knowledge, the

methods that follow the first approach have not reached a practical level.

As a protective relaying study, the outcome of this research work is intended to assist

relay manufacturers in developing relays that operate successfully in systems with REPPs.

To reach this goal, the REPPs are modeled according to the existing industrial practices,

without requiring any change in their converter or control system details. Thus, the need

for communication between relay manufacturers and wind turbine and solar panel manu-

facturers, which are by and large separate entities, is obviated.

On this basis, the dissertation has been driven by two objectives.

1. To investigate the transmission level challenges, impedance-based distance relays, which

are usually utilized as either the primary, or the back-up protection for HV and EHV

lines [22], are inspected. The focus is on the performance of distance relays that are

installed at an REPP substation and protect the neighboring line. The analyses are

founded upon time-domain simulation of detailed practical REPP models with FRT ca-

pability. The studies include squirrel cage IG (SCIG) and DFIG-based WFs, as well as
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full-scale converter-interfaced WFs and photovoltaic farms. The unique fault properties

of REPPs is scrutinized to identify possible relay maloperations and their root causes.

The relay malfunctions revealed by this research are restricted to systems with REPPs,

and are not among distance relays’ imperfections that have been identified in conven-

tional power systems. If a communication link with minimal bandwidth requirement is

in place, distance relays provide non-delayed fast tripping over the entire length of the

line. The objective is to retain this feature of distance protection by devising modified

relaying algorithms.

2. On the distribution level, this study investigates the effect of the exclusive fault behav-

ior of RE-based DGs on the operation of protective relaying systems. Furthermore, the

protection of microgrids, as the building blocks of future smart distribution systems, are

studied. Protective devices of smart and fault-resilient microgrids are not expected to

trip the healthy phases during unbalanced short-circuits. Thus, some utilities as well as

relay manufacturers have started contemplating single- and double-pole tripping for dis-

tribution systems. Selective phase tripping demands fault type classification. Fault type

classification methods in microgrids that incorporate RE-based sources are discussed in

detail.

In meeting these objectives, the following constraints are placed on the developed so-

lutions to facilitate their practical implementation.

1. No extra hardware other than the currently available facilities should be required.

2. The solutions should not involve alteration of the existing GCs.

1.3 Dissertation Outline

This dissertation is divided into two main parts: the next three chapters, which concen-

trate on transmission system protection, and the subsequent two chapters, which focus on

distribution system protection. The individual chapters are organized as follows.
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Chapter 2 reveals some serious defects of distance protection for the lines connected to

IG-based WFs during balanced faults. Detected failures can easily result in unnec-

essary WF tripping, thus jeopardizing the objectives pursued by the FRT articles of

the GCs. In response, a novel pilot scheme along with a fault current classification

technique is proposed to address these problems for both types of IG-based WFs, and

the accurate non-delayed protection of a distance relay over the entire line length is

restored.

Chapter 3 demonstrates that the interactions between full-scale converter-interfaced

REPPs (CIREPPs) and distance relays are profoundly and adversely influenced by

the CIREPPs’ fault properties. A CIREPP model developed for relaying studies high-

lights the CIREPP characteristics that most endanger the protection system. The

scenarios elaborated in this chapter include in-zone short-circuits missed by the re-

lay at the CIREPP substation, and incorrect tripping for out-of-zone faults, which

would neutralize FRT schemes. The findings of Chapter 3 also hold true for the ac

lines emanating from voltage-sourced converter (VSC)-based HVDC connections.

Chapter 4 begins by explaining why the countermeasures currently deployed by relays to

tackle the infeed problems identified in Chapter 3 fail in the presence of a CIREPP.

Then, a new formula to calculate impedance which prevents maloperation in the

event of line to line to ground (LLG) faults is devised for the relay’s phase element.

In addition, a communication-assisted method with minimal bandwidth requirement

is proposed for balanced and line to line (LL) faults. The issues that should be taken

into consideration for single line to ground (SLG) faults are also discussed.

Chapter 5 shows how the fault behavior of DFIG-based wind DGs can result in mal-

operation of directional overcurrent relays of distribution systems. A fault current

classification technique is also suggested to replace the conventional directional el-

ement during problematic conditions and provide accurate fault direction quickly

based on the current’s waveshape properties.

Chapter 6 ascertains that existing industrial fault type classifiers, which operate based on

the angles and magnitudes of phase and sequence currents, misidentify the fault type
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in microgrids that include photovoltaic and Type IV wind DGs. Two new classifiers

are developed to determine the fault type for not only microgrids with different DGs,

but for any three-phase system. The effects of system imbalance, high-impedance

faults and different DG control strategies over disturbances on the proposed classifiers

are examined.

Chapter 7 concludes the dissertation, highlights its contributions, and suggests topics

for future research.
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Chapter 2

Distance Protection of Lines

Connected to IG-Based WFs

Although Type IV wind turbine is a rapidly expanding technology, the majority of today’s

wind energy facilities still incorporate IGs [23]. The SCIG was the dominant technology in

early WFs. Despite some drawbacks, SCIGs are cost-effective and continue to constitute

a non-negligible share of the currently installed wind capacity [24, 25]. More importantly,

DFIGs are widely employed in modern wind energy systems, particularly for the high power

level, due to various advantages, e.g., variable speed operation accompanied by reduced

converter size [26].

As mentioned in Chapter 1, WFs are increasingly integrated with transmission sys-

tems, for which distance relaying is normally the protection of choice. This chapter unveils

some major problems with distance protection of the lines connected to IG-based WFs

during balanced short-circuits. It is shown that for the SCIG-based WFs, distance protec-

tion becomes insecure, while for the DFIG-based WFs, the relay performance is utterly

unreliable, due to operating scenarios that are unique to such WFs, and are not addressed

in the existing relaying practices. As a result of the incorrect impedances measured by the

distance relay at the WF substation, the very objectives sought by the FRT requirement

of the new GCs are not met.

A modified permissive overreach transfer trip (POTT) scheme together with a fault
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current classification technique are devised to address these new problems for both SCIG-

and DFIG-based WFs. Similar to a conventional distance relay, non-delayed tripping is

obtained over the full length of the line by means of a communication link with mini-

mal bandwidth. A thorough performance evaluation verifies the merits of the suggested

method for all possible scenarios. The most likely condition confronted by distance relays is

DFIG-based WFs with crowbar resistance, for which the obtained results are particularly

promising.

2.1 IG-Based WFs and Distance Relays: Problem

Statement

The short-circuit behavior of IGs has been extensively analyzed in several publications

[27–29]. This section investigates how this behavior affects a distance relay that is installed

at a WF substation and is intended to protect the line that connects the WF to the rest

of the grid.

2.1.1 SCIG-Based WFs

The general relation for an SCIG balanced fault current consists of a decaying dc and a

decaying ac component, expressed by (2.1) [29].

if (t) =
Vm

1− s

((
1

X ′
− 1

Xσs + 1.5Xms

)
e−t/T

′
cos ((1− s)ω1t+ θ) +

1

X ′
e−t/Ta cos(θ)

)
(2.1)

For simplicity and without loss of generality for the purpose of this study, a single cage

SCIG is considered. Vm is the voltage amplitude, ω1 is the fundamental angular frequency,

s is the IG slip, X ′ is the motor transient reactance, Xσs and Xms are the leakage and

magnetizing reactances of the stator winding, T ′ is the short-circuit transient time constant,

which is inversely proportional to the rotor resistance, Ta is the stator time constant, and

θ is the fault inception angle.
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Figure 2.1. Single line diagram of the test power system with IG-based WF.
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Figure 2.2. Typical current of a single SCIG for a balanced grid fault.

Figure 2.1 shows the test system, which is simulated using PSCAD/EMTDC program.

The system details are presented in Appendix A. Figure 2.2 displays the current at the

terminal of one of the SCIGs in the test system. A balanced short-circuit occurs at t=3 s

with a fault resistance, Rf , of 1 Ω. The post-fault period in Figure 2.2 consists of the

following three stages.

1. Immediately after the onset of the fault, based on the constant flux linkage theorem [30],

the SCIG can be represented by a voltage source in series with an impedance [31]. During

this initial short interval, the current rises appreciably.

2. Afterward, the decrease in the SCIG air-gap flux, caused by the voltage drop at the

machine terminal, reduces the fault current. The decrease in the fault current is for

both the ac and the dc components.

3. The current described by (2.1) is derived based on the assumption that the fault causes

exactly zero voltage at the SCIG terminal and leads to its complete demagnetization.
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Figure 2.3. Fault current of the SCIG-based WF for a balanced fault on line 24.

As a result, the current finally reaches zero. In practice, overhead line faults typically

include some levels of fault resistance, which cause nonzero fault voltage, and hence the

SCIG does not fully demagnetize. Thus, the current of Figure 2.2 does not fall to zero

in the third stage due to the fault resistance, and the SCIG eventually sustains a fairly

small fault current.

Let us analyze how the above sequence of stages in the fault current is reflected in

the impedance plane and affects the performance of a distance relay located at the WF

substation. Figure 2.3 displays the fault current flowing out from bus 1 of the system in

Figure 2.1 when bus 1 is connected to the SCIG-based WF. The fault location is on line

24 next to bus 2, and the fault instant is t= 3 s. The high-frequency content of phases B

and C currents is caused by resonance between the line inductance and the power factor

(PF) correction capacitor required for SCIGs.

DS12 is the distance relay that is located at bus 1 and protects line 12 of the system.

A quadrilateral characteristic is used for DS12. Meanwhile, the findings of this study are

applicable to other distance relay characteristics, such as mho, as well. Also, the results

of this study are independent of the relay polarization type. Therefore, for the sake of

simplicity, DS12 is self-polarized. The currents and voltages are sampled at 3840 Hz. DS12

measures the voltage phasor using full-cycle discrete Fourier transform (FCDFT) digital

filters. The current phasor is obtained by means of the conventional least error squares

(CLES) based digital filters discussed in [32], which utilize Taylor series expansion to

suppress the decaying dc offset of fault current.
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For the above-mentioned fault, line 24 must be tripped instantaneously, and the re-

mainder of the system, i.e., the area including the WF, bus 2, and source 3, can continue

to operate faultlessly. The fault lies in zone two of DS12, and so, DS12 must trip as the

backup relay if the fault persists for more than a delay time, typically of around 200∼ 300

ms. The resistance and reactance measured by the phase A to ground (AG) element of

DS12 are plotted with respect to time in Figure 2.4(a). It is observed that, unlike distance

relay measurements for conventional systems, the resistance and reactance calculated for

this case are not constant after the fault and exhibit significant variations.

The above fluctuations are directly reflected in the impedance plane of the relay in

Figure 2.4(b). Once the fault happens, the impedance correctly moves from the load region

to zone two of DS12; however, after the considerable decline in the ac component of the

fault current, the measured impedance moves away from zone two. As shown in Figure

2.5, soon after the initial post-fault transients disappear, the SCIG-based WF acts as a

source that produces active power, but absorbs reactive power. The base power in Fig-

ure 2.5 is 1 MVA. Active power generation is due to the incomplete demagnetization of

the SCIGs. Reactive power, however, is absorbed since the reactive power generated by

the PF correction capacitors decreases because of the voltage drop after the fault. Active

power generation and reactive power consumption by the WF explain why the impedance

eventually lies in the fourth quadrant of Figure 2.4(b).

Figure 2.4(c), which zooms in on the impedance plane around zones one and two of

DS12, depicts that the impedance stays at zone two only for a limited time after the

fault. In its way toward the fourth quadrant, the impedance enters zone one at t=3.123 s,

resulting in instantaneous false tripping of line 12 before the 200∼ 300 ms delay time of zone

two is passed. Even if the measured impedance does not enter zone one in its transient path

toward the fourth quadrant, still DS12 does not operate correctly, as it fails to perform the

backup operation for a fault at the beginning of the next line since the impedance leaves

zone two quickly. As a result, except for the very short interval after the fault, a distance

relay installed at an SCIG-based WF substation exhibits a totally inaccurate performance,

which includes incorrect disconnection of the WF from the grid and/or failure to provide

the backup functionalities. Similar observations are made for the other five elements of

DS12, as well.
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Figure 2.4. Performance of the AG element of DS12 for SCIG-based WF after the fault of

Figure 2.3, (a) Time variations of the measured R and X, (b) Operating point in the impedance

plane, (c) Magnified view of the impedance trajectory.
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Figure 2.5. Power at the WF terminal after the fault of Figure 2.3,

(a) Wide view, (b) Magnified view.

2.1.2 DFIG-Based WFs

Although a variety of FRT techniques have been proposed for DFIGs in the literature,

these generators are, in practice, almost always equipped with crowbar circuits by the

manufacturers to protect the converters during severe voltage drops [33, 34]. A balanced

fault on the line connected to the WF is among the most severe faults and results in

crowbar activation. Once the crowbar is activated, the short-circuit behavior of a DFIG is

conceptually the same as that of an SCIG [33]. Nonetheless, some parameters of the fault

current can be quite different in the case of a DFIG, the most important of which, from

the distance relaying perspective, is the machine slip. The slip of an SCIG is very small,

so the (1− s) factor in (2.1), which appears in the frequency of the ac component, can be

neglected. In contrast, the slip of a DFIG changes in a range of ±30%, commensurate with
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wind speed. Thus, (1−s) would no longer be a negligible term and causes a range of 42∼ 78

Hz for DFIG fault currents in 60 Hz systems. As will be demonstrated in the following, the

effect of off-nominal frequency of a DFIG fault current proves fatal to distance protection.

A distance relay operates based on the fundamental frequency voltage and current phasors.

For example, the phase B ground (BG) element of a distance relay computes the impedance

by

ZBG =
VB

IB +K oI o
(2.2)

where VB and IB are the fundamental frequency phasors for phase B voltage and cur-

rent, K o is the zero-sequence compensation factor, and I o is the zero sequence current.

Protective relays are actually equipped with frequency tracking techniques, as in [35], to

adaptively modify their digital filters in the event of frequency excursion conditions and

compute the voltage and current phasors accurately. During frequency excursions, both

voltage and current frequency exhibit the same deviation from the nominal frequency.

Hence, impedance measurement relations, such as (2.2), still offer a true measure of the

distance to the fault location.

Conversely, in the case of DFIG-based WFs during balanced faults, only the current fre-

quency significantly deviates from the nominal frequency. The voltage frequency is dictated

by the bulk grid and remains within a narrow margin of 60 Hz. Moreover, modern com-

mercial distance relays employ complete or partial memory polarization. The frequency of

the pre-fault memorized voltage is closely tied with the nominal frequency.

Fairly different voltage and current frequencies make balanced short-circuit behavior

of DFIG-based WFs a unique operating condition, which is an unfamiliar situation from

the protective relaying perspective. For such conditions, (2.2) and other relations for

impedance calculation do not hold true anymore, since these formulas are founded upon

manipulating phasor quantities that correspond to the same frequency.

To validate the above analysis, the SCIG-based WF in the system discussed in Section

2.1.1 is replaced by the DFIG-based WF detailed in Appendix A. Again, a balanced fault is

placed on line 24 next to bus 2 at t=3 s, and the performance of DS12 is analyzed. At this

stage, the crowbar resistance is kept at zero. The effect of nonzero crowbar resistances is

studied later on. Figure 2.6 shows the phase B fault current contribution of the DFIG-based
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Figure 2.6. Phase B fault current of DFIG-based WF after a fault on line 24.

WF for a sub-synchronous and a super-synchronous rotor speed, which result in positive

and negative slips, respectively. This figure illustrates the direct relationship between the

fault current frequency and the rotor speed. To present a quantitative analysis of the

frequencies, the normalized spectrum for the currents and voltages of the faults of Figure 2.6

is displayed in Figure 2.7. The spectrums are obtained by applying fast Fourier transform

(FFT) to the first 300 ms of the fault signals. In the case of the sub-synchronous speed,

the main peak of the current spectrum in Figure 2.7(a) is around 50 Hz, whereas the main

peak of the voltage spectrum is at 60 Hz. For the super-synchronous case, however, the

current spectrum is centered around 73 Hz in Figure 2.7(b), while the main peak of the

voltage spectrum is again at 60 Hz. The nonzero values of the current spectra in Figure

2.7 for frequencies other than 50 and 73 Hz originate from the exponential terms in the

current relation.

For a synchronous rotor speed, DS12 performance for a DFIG-based WF is similar to

that for an SCIG. To investigate DS12 operation for sub- and super-synchronous speed

conditions, two different frequency tracking approaches are tested.

1. The common frequency tracking practice of modern digital relays is to calculate the

voltage frequency. The obtained frequency is used to update all of the relay subroutines,

including the digital filters that measure the current phasor [36,37]. Figure 2.8 depicts

the time variations of the resistance and reactance measured by the BG element of

DS12 using this method for the sub- and super-synchronous cases of Figure 2.6. The

resultant impedances, shown in the characteristic plane of DS12 in Figure 2.9, exhibit
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Figure 2.7. Current and voltage spectra for the faults shown in Figure 2.6,

(a) s=+20%, (b) s=−20%.

chaotic and completely unreliable trajectories after the fault, because the digital filters

that compute the current phasor are based on the voltage’s 60 Hz frequency, while

the actual current frequencies are substantially different. For Figures 2.9(a) and (b), the

impedance spuriously enters the first zone 44 ms and 18.5 ms after the fault, respectively,

and causes incorrect disconnection of line 12 and the WF from the system.

2. In the second approach, the voltage and current frequencies are found separately, and

the corresponding digital filters are updated accordingly. This approach provides correct

phasors for both voltage and current. However, as discussed earlier and shown in Figure

2.10, since the voltage and current phasors correspond to different frequencies, the BG

element of DS12 again fails to measure the correct impedance to the fault. For Figures

2.10(a) and (b), the impedance enters zone one 54.7 ms and 17 ms after the fault,
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Figure 2.8. Time variation of the impedance of DS12 for DFIG-based WF during the faults of

Figure 2.6 using the first frequency tracking approach, (a) s=+20%, (b) s=−20%.

respectively, leading to unnecessary disconnection of line 12 and the WF.

It should be noted that, unlike the DS12 performance for SCIG-based WFs, the impedance

measured by DS12 is not correct even for the very short interval immediately after the fault.

Furthermore, the discussed problem obviously applies to all six elements of DS12.

2.2 Proposed Solution

This section devises a solution for protecting the lines connected to IG-based WFs. The

objective is to address the previously-discussed problems while maintaining distance relays’

fast non-delayed protection over the entire line length. First, the layout of a new modi-
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Figure 2.9. Performance of DS12 for DFIG-based WF during the faults of Figure 2.6 using the

first frequency tracking approach, (a) s=+20%, (b) s=−20%.

fied POTT scheme is outlined. Then, the details of a proposed fault current classification

technique used by the modified POTT scheme are discussed.

2.2.1 Modified POTT Scheme

A distance relay is not able to provide non-delayed tripping over 100% of the line length

unless it is linked with the relay on the other end of the line through a communication link.

The key feature of this channel that distinguishes distance relays as a preferred choice for

HV grids is its very low bandwidth requirement. A variety of pilot schemes are already

deployed to reach fast and selective distance relaying. Among them, POTT is a relatively

simple, yet competent one, and is widely practiced in industrial applications [38].
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Figure 2.10. Performance of DS12 for DFIG-based WF during the faults of Figure 2.6 using

the second frequency tracking approach, (a) s=+20%, (b) s=−20%.
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DS21DS12

Forward zone of DS12

Forward zone of DS21

Overlapping area

Figure 2.11. POTT scheme operation principle.

Figure 2.11 illustrates an overview of the conventional POTT logic for line 12 of the

test system. DS21 is the distance relay located next to bus 2 and protects line 12. If

the impedance measured by DS21 falls within the reach of its directional over-reaching

zone, there is a fault either on line 12, or on bus 1, or inside the WF. The setting of this
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over-reaching zone is about 150% of the line length. On the other hand, if the impedance

measured by DS12 drops below its directional over-reaching zone setting, there exists a

fault on either line 12, or on bus 2, or on the lines connected to the right of bus 2. The

only overlap between the DS12 and DS21 zones is line 12. As a result, once DS21 detects

a fault within its over-reaching zone, it sends a trip signal to DS12. DS12 trips line 12 if

a trip signal sent by DS21 is accompanied by the detection of a fault within its own over-

reaching zone. DS21 also operates based on the same logic. The communication channel

over which the data is exchanged requires minimal bandwidth, since each relay transmits

only a trip/no-trip signal.

The conventional POTT scheme fails to operate accurately for the lines connected to

IG-based WFs during balanced short-circuits, due to incorrect impedances measured by

the relays. A modified POTT scheme is developed to tackle this problem. For this modified

POTT scheme, the relays at the two line extremities detect fault direction, not based on the

measured impedance, but according to the fault current waveshape attributes. As will be

demonstrated later on, the waveshapes of balanced fault currents of IG-based WFs possess

distinctive features, which can be utilized to distinguish them from fault currents of bulk

HV power systems that the WFs are integrated with. Also, the instantaneous tripping

signal of DS21 is blocked if the fault current features the short-circuit behavior of IGs.

Figure 2.12 illustrates the decision making process of DS12 according to the modified

POTT scheme. This scheme is triggered by a disturbance detector (DD) unit similar to the

ones developed in [39, 40], which detects the occurrence of a disturbance promptly using

a few current samples. Then, a fault type classifier that compares the negative and zero

sequence components of voltage and current with a suitable threshold, e.g., 0.1 pu, deter-

mines whether the fault is balanced. The modified POTT scheme is then implemented. If

the later-discussed fault current classification technique identifies the current to be gener-

ated by the IG-based WF, the fault lies in the forward direction of DS12, and it transmits

a trip signal to DS21. In addition, if such condition is accompanied by the receipt of a

trip signal from DS21, then DS12 trips the line. Also, DS21 issues a trip command if the

receipt of a trip signal from DS12 is simultaneous with the detection of a forward fault. As

a result, non-delayed tripping is obtained over the full length of the line. It is to be noted

that both relays send only a trip/no-trip signal.
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Figure 2.12. Flowchart of the proposed approach for DS12 operation.

2.2.2 Fault Current Classification

As suggested by the fault currents depicted in Figures 2.2, 2.3 and 2.6, the ac components

of IG balanced fault currents exhibit a fast decaying nature. This rapid decline leads to

a marked contrast between the initial peak-to-peak values of the current. The relative

percentage difference between the first two peak-to-peak values of the fault current for

each phase is defined by

δ1φ =
PtP1 − PtP2

PtP2

× 100 (2.3)

in which PtP1 and PtP2 are the first and the second peak-to-peak values of the fault

current, respectively. The SCIG fault current of Figure 2.2 in phase A has been redrawn

in Figure 2.13(a). It is shown that PtP1 and PtP2 are 11.27 pu and 8.47 pu, respectively,

which yields δ1φ = 33.03%. Also, δ1φ for phases B and C of the fault current, shown in

Figure 2.2 is 32.94% and 33.51%, respectively. The sum of δ1φ for all three phases is denoted

by δ3φ, and equals 99.48% for this SCIG fault current. Section 2.3.1 will demonstrate that
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Figure 2.13. Comparison between fault currents of IG-based WFs and bulk power systems, (a)

Phase A current of Figure 2.2, (b) Current described by (2.4) for τ=40 ms and θ=−π/2 rad.

δ3φ even grows considerably larger in the case of DFIGs, which are the typical IG type

employed in the WFs connected to HV grids, where distance protection is used.

Equivalent Thevenin sources are conventionally used to find the aggregate fault current

of bulk HV power systems. This practice has been historically proved to be successful

for protective relaying studies [41], and results in fault currents that are comprised of a

fundamental frequency signal, some levels of its harmonics and a decaying dc offset. Since

harmonics affect the peak-to-peak values similarly, they can be neglected for the present

analysis, and the phase A fault current is expressed by

ifa(t) = Im

(
sin(ω1t+ θ)− sin(θ) e−t/τ

)
(2.4)
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Figure 2.14. Indices obtained for bulk power system fault currents with respect to the dc

offset magnitude and time constant, (a) δ1φ, (b) δ3φ.

where τ is the decaying dc time constant and θ determines the decaying dc initial magnitude

[42]. The normalized ifa(t) of (2.4) for τ = 40 ms and θ =−π/2 rad (i.e., the maximum

amplitude for the decaying dc) has been displayed in Figure 2.13(b). Comparing Figures

2.13(a) and (b) reveals a marked difference between the fault currents produced by IGs

and the fault currents of bulk power systems. Unlike Figure 2.13(a), in Figure 2.13(b), the

difference between the two initial peak-to-peak values is small because it is due to only the

decaying dc component of current, even though maximum amplitude is considered for the

dc offset in this figure. PtP1 and PtP2 are 2.15 pu and 2.10 pu, respectively, resulting in

δ1φ=2.50%, which is negligible compared to the δ1φ obtained for Figure 2.13(a).

To find the highest possible value of δ1φ for the current described by (2.4), θ and τ of

(2.4) were varied in the ranges of [−π, π] rad and [1, 100] ms, respectively. Figure 2.14(a)
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Figure 2.15. Fault current of SCIG-based WF with high-frequency pollution.

plots δ1φ measured for each pair of θ and τ . The largest δ1φ equals 10.84% and corresponds

to θ=1.22 rad and τ=8 ms. The same value is obtained for δ1φ of the other two phases by

shifting θ in (2.4) by ±2π/3 rad. Adding up δ1φ of the three phases would yield δ3φ for each

pair of θ and τ , which is plotted in Figure 2.14(b). It should be noted that the maximum

of δ1φ does not happen for all three phases simultaneously, as δ1φ depends on θ. δ3φ reaches

21.05% at its maximum in Figure 2.14(b). This maximum δ3φ along with a security margin

can distinguish the two classes of fault current. An extensive analysis, a portion of which

will be presented in the next section, revealed that by considering a security margin of

about 200%, δ3φ = 60% is an effective threshold for fault current classification. In other

words, the 60% threshold is used to discriminate between the currents that correspond to

the above classes of fault current.

To find the peak-to-peak values, appropriate extremums of the fault current must be

located first. This stage should be immune to the effect of high-frequency components

superimposed on the fault current due to noise, resonance, etc. Such high-frequency content

is observed in Figure 2.15, which shows a fault current of the SCIG-based WF in the test

system. The PF correction capacitor has been increased in this case to boost the resonance

and display a fault current with larger high-frequency contamination. A simple pair of rules

is established for finding extremums, so that only the extremums that best represent the

fundamental frequency signal variations are located. These rules are as follows.

1. The extremums caused by the high-frequency contents are larger than only a few samples

around them. To avoid such extremums, therefore, the proposed method determines a
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current sample as a maximum or minimum if that sample is larger or smaller, respec-

tively, than all samples inside a sufficiently long symmetrical neighborhood. A 10 ms

long interval was found to be effective.

2. Resonance exhibits a rapidly decaying nature, and the resultant extremums occur in the

initial few milliseconds after the fault. On the other hand, the extremums associated with

the fundamental frequency signal appear after at least a quarter of a period, depending

on the dc offset of the current. Therefore, no extremum is located during the first

quarter-cycle of the fault current.

It is also possible to remove high-frequency pollution by means of a low-pass filter

(LPF). However, thanks to the simplicity and effectiveness of the above approach, applying

an LPF is not needed.

2.3 Performance Evaluation

To investigate the merits of the proposed method, the test system shown in Figure 2.1 and

described in Appendix A was simulated. Bus 1 was connected either to an SCIG-based or to

a DFIG-based WF. The overhead lines were simulated using the frequency-dependent line

model. The generated fault signals were imported to Matlab, where they were processed

according to the developed scheme. The objective was to determine whether this scheme

could provide reliable protection for line 12 of the system using the waveshape properties

of the fault current.

Numerous studies were carried out to scrutinize the performance of the proposed tech-

nique. Various parameters that affect the fault current waveshape of IG-based WFs, such

as wind speed, crowbar resistance, fault resistance, fault inception angle, fault location,

etc., were changed, and the operation of the proposed method was verified. Wind speed was

kept constant throughout each case, as the decision-making process is much faster than the

time span of wind speed variations. Table 2.1 displays some of the results obtained when

bus 1 is connected to the SCIG-based WF. This table highlights δ1φ and δ3φ measured by

DS12 for different faults on line 12 (i.e., in the forward direction of DS12), SCIGs’ slip
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Table 2.1
Performance of the Proposed Method for SCIG-Based WF

Fault location Rf (Ω) Slip (%)
δ1φ (%)

δ3φ (%)
Phase A Phase B Phase C

Next to Bus 2

10

-0.213 28.1 28.5 28.8 85.4

-0.565 27.7 28.0 28.1 83.8

-1.069 27.5 27.7 27.6 82.8

5

-0.213 33.4 30.6 30.0 94.0

-0.565 33.1 30.2 29.4 92.7

-1.069 32.6 29.8 29.0 91.4

0.5

-0.213 37.1 33.2 35.9 106.2

-0.565 36.7 33.0 35.2 104.9

-1.069 36.1 32.4 34.9 103.4

Middle of the line

10

-0.213 28.6 29.1 29.2 86.9

-0.565 29.1 28.5 27.5 85.1

-1.069 29.1 28.3 27.4 84.8

5

-1.069 32.2 30.8 31.8 94.8

-0.565 32.0 30.5 31.5 94.0

-0.213 31.6 29.9 31.2 92.7

0.5

-0.213 37.1 33.7 35.9 106.7

-0.565 36.8 33.2 35.5 105.5

-1.069 36.1 32.5 35.1 103.7

Next to Bus 1

10

-0.213 30.6 29.4 28.6 88.6

-0.565 30.3 29.0 28.1 87.4

-1.069 29.9 28.7 27.8 86.4

5

-0.213 34.0 31.5 30.9 96.4

-0.565 33.4 30.9 30.6 94.9

-1.069 33.1 30.5 30.1 93.7

0.5

-0.213 38.3 33.7 36.4 108.4

-0.565 38.0 33.5 36.0 107.5

-1.069 37.4 33.2 35.6 106.2
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at the fault instant and fault resistances. Slip variations occur because of different wind

speeds at the fault time. δ1φ shown in Table 2.1 is safely above the maximum value depicted

in Figure 2.14(a). Furthermore, the values obtained for δ3φ exceed the 60% threshold by

a wide margin. In addition, some of the achieved results when the DFIG-based WF was

connected to bus 1 are reported in Table 2.2. Crowbar resistance for all cases of Table 2.2 is

zero. The displayed indices can correctly classify the fault currents. The proposed method

was also examined when underground cable, instead of overhead line, connected the WF

to the grid, and equally successful results were obtained.

Apart from the results displayed in Tables 2.1 and 2.2, some cases are graphically

discussed. First, the effect of crowbar resistance for DFIG-based WFs is studied. Then, the

performance of the proposed method for internal WF faults is reviewed.

2.3.1 Effect of Crowbar Resistance

For the DFIG fault currents discussed so far, the crowbar resistance was zero. Meanwhile,

non-zero crowbar resistance improves the fault behavior of a DFIG by decreasing the

reactive power consumption, reducing the fault current magnitude and damping torque

oscillations [33]. Such positive effects together with the higher power ratings of DFIGs

explain why a DFIG-based WF with non-zero crowbar resistance is the most likely IG-

based WF to be connected to HV grids, where distance relaying is practiced.

Figure 2.16 shows the fault currents measured at bus 1 for a balanced short-circuit

on line 12 at t= 3 s. Rotor speed is 1.2 pu at the fault time. The crowbar resistance

is Rcb = 0.03 pu for this case. The two initial peak-to-peak values of the phase A fault

current are 4.35 pu and 2.69 pu, which yields δ1φ=61.81%. Furthermore, similar significant

differences between the fault current peak-to-peak values lead to δ1φ equal to 62.48% and

63.22% for phases B and C, respectively. Consequently, δ3φ is 187.51%, which is more

than triple the 60% threshold. Hence, the relay at the WF substation can accurately

recognize the forward direction of the fault, and the modified POTT scheme trips line 12

instantaneously. Obviously, δ3φ increases further if a larger Rcb, such as the 0.3 pu value

suggested in [43], is involved.
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Table 2.2
Performance of the Proposed Method for DFIG-Based WF

Fault location Rf (Ω) Slip (%)
δ1φ (%)

δ3φ (%)
Phase A Phase B Phase C

Next to Bus 2

10

25 44.4 45.2 44.8 134.4

-0.1 35.2 36.1 36.5 107.8

-25 27.3 27.6 27.5 82.4

5

25 49.8 48.8 49.5 148.1

-0.1 40.4 38.1 40.1 118.6

-25 31.5 30.1 30.9 92.5

0.5

25 54.1 53.7 54.2 162.0

-0.1 44.7 42.2 45.1 132.0

-25 35.0 33.2 34.6 102.8

Middle of the line

10

25 44.8 45.7 45.7 136.2

-0.1 36.9 37.1 36.6 110.6

-25 28.4 29.1 28.8 86.3

5

25 50.8 49.5 50.3 150.6

-0.1 41.1 40.2 40.8 122.1

-25 32.0 30.6 31.7 94.3

0.5

25 54.8 54.3 54.9 164

-0.1 44.5 44.4 45.2 134.1

-25 35.2 34.3 34.9 104.4

Next to Bus 1

10

25 45.9 46.1 46.5 138.5

-0.1 37.5 38.1 37.9 113.5

-25 28.7 29.5 29.3 87.5

5

25 51.5 49.9 51.2 152.6

-0.1 42.1 40.6 41.9 124.6

-25 32.2 31.4 32.1 95.7

0.5

25 55.4 54.8 55.1 165.3

-0.1 44.9 45.1 46.2 136.2

-25 35.3 35.3 36.0 106.6
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Figure 2.16. Fault currents of DFIG-based WF for nonzero crowbar resistance,

(a) Phase A, (b) Phase B, (c) Phase C.

δ3φ for the fault of Figure 2.16 is substantially larger than δ3φ for the previously-

discussed SCIG cases and the DFIG cases that had zero crowbar resistance. The positive
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impact of the crowbar resistance on the operation of the proposed technique was expected.

Rcb is connected in series with the rotor winding, and raises the effective resistance of the

rotor circuit. As noted in Section 2.1.1, the decaying rate of the ac component of an IG

fault current is determined by the short-circuit transient time constant, i.e., T ′ of (2.1),

which is inversely proportional to the rotor resistance.

2.3.2 Internal WF Faults

Fault currents passing through DS12 during internal WF faults are generated by the sources

at buses 3 and 4, which account for the bulk grids connected to these buses. Various short-

circuits were placed inside the WF and on bus 1 during different operating conditions, and

the proposed method was tested. Two of the studied cases are discussed here.

2.3.2.1 Thevenin sources at buses 3 and 4

The common and historical practice for fault analysis is to employ equivalent Thevenin cir-

cuits to represent part of a power system that feeds the faulted section [41]. This approach,

particularly, leads to very accurate results if that part of the system is large. This is the

actual scenario for the HV and EHV networks that deploy distance relays. Therefore, the

same approach is adopted in this subsection to represent the power systems behind buses 3

and 4. Figure 2.17 shows the currents sensed by DS12 during an out-of-zone short-circuit

at bus 1 at t= 10 s, for which the line relay must avoid instantaneous tripping. δ1φ for

phases A, B and C is 2.96%, 2.71% and 1.92%, respectively, leading to δ3φ=7.59%, which

is far less than the 60% threshold. Thus, the proposed method considers reverse direction

for the fault, and prevents instantaneous line tripping.

2.3.2.2 SGs at buses 3 and 4

If the grids connected behind buses 3 and 4 are not large, their Thevenin source repre-

sentation is not fully accurate. Although this is not the typical situation for the HV and

EHV grids that the WFs are integrated with, it is worth investigating. To analyze this
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Figure 2.17. Currents for a reverse fault,

(a) Phase A, (b) Phase B, (c) Phase C.

condition, actual SG models are used in this study. Apart from the steady-state ac and the

transient dc components, the three-phase fault current of an SG also includes transient and
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subtransient decaying ac components. The time constant of the transient ac component is

in the order of seconds, and its amplitude variation is not sensed within the short window

used by the proposed method. The subtransient component might vary inside the window

under study. However, the subtransient component is only one of the four main compo-

nents of an SG fault current, and also its relative magnitude with respect to the other

fault current components drops significantly as the fault location moves away from the

SG terminal [29]. Consequently, the decline in the magnitude of the entire ac component

becomes very gradual for the faults that are not very close to the SG terminal. Actually,

the almost uniform magnitude of the ac component of SG fault currents is a main reason

behind the successful practice of using Thevenin sources for fault studies [41].

On this basis, the worst case scenario during reverse faults for DS12 occurs when,

instead of an HV grid, buses 3 and 4 are each connected directly to an SG through a

transformer with very low leakage impedance. Therefore, the relative magnitude of the

subtransient component of the SG fault current becomes maximum, and in turn, the ac

component of the current has the highest possible decay rate. Indeed, single SGs connected

to buses 3 and 4 is a hypothetical scenario, which cannot be the case for real HV grids,

but it is considered here to demonstrate the performance of the proposed method for the

worst possible condition. The currents measured by DS12 after a fault on bus 1 at t=10 s

are shown in Figure 2.18. The difference between the two initial peak-to-peak values of

the fault currents has increased with respect to Figure 2.17, and δ1φ has reached 10.14%,

14.72% and 15.06% for phases A, B and C, respectively. Nevertheless, δ3φ equals 39.92%,

which is securely below the threshold. Hence, the reverse direction of the fault is correctly

identified.

2.4 Conclusion

The impedance measured by a relay at an SCIG-based WF substation does not truly repre-

sent the fault location a few cycles after a balanced short-circuit occurs. The consequences

are zone one operation for the faults located on the next lines and failure to perform

back-up functionalities. For DFIG-based WFs, it is impossible to measure a meaningful
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Figure 2.18. Currents for a reverse fault on bus 1 when buses 3 and 4 are connected to SGs,

(a) Phase A, (b) Phase B, (c) Phase C.

impedance, as the frequencies of the fault current and voltage can be well apart. The

impedance exhibits a totally chaotic trajectory, which is not reliable even for the short
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period after the fault. The likely corollaries are zone one operation of the WF substation

relay for the faults requiring back-up operation and delayed tripping for the faults inside

zone one.

The proposed modified POTT scheme provided quick and non-delayed protection over

the entire line, while the minimal bandwidth requirement of distance relays for the commu-

nication link was maintained. The relay detects the fault direction according to the current

waveshape properties. The developed current classification technique takes advantage of

the high decay rate for the peak-to-peak values of IG fault currents. Encouraging results

were obtained for both types of IG-based WFs, particularly for the DFIG-based WFs with

crowbar resistance, which is the typical scenario where distance relaying is practiced.
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Distance Protection of Lines

Emanating from CIREPPs: Problem

Statement

This chapter investigates the problems associated with distance protection of transmis-

sion lines connected to CIREPPs, which have been left unnoticed in relaying literature.

CIREPPs consist primarily of photovoltaic farms and Type IV WFs, which are both grow-

ing globally at exponential rates. Due to converter similarities, this study is equally ap-

plicable to the ac lines emanating from VSC-based HVDC substations, another rapidly

expanding technology [44].

As power plants have been traditionally composed of SGs, modeled by Thevenin equiv-

alent circuits for fault studies [41], the conventional wisdom from the protective relaying

perspective has been that CIREPPs can also be represented similarly, with the only con-

sideration being a large source impedance to take account of the CIREPPs’ modest fault

current contribution. However, a CIREPP’s fault behavior is governed by its control sys-

tem that determines the switching pulses of the grid-side converter [45]. The objectives and

settings of this control system can be quite different depending on the host system GC, the

internal references, and the adopted reference frame, among other factors. Thus, modeling

a CIREPP with all of its complications by a simple source is not accurate, especially over
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fault conditions.

On this basis, Section 3.1 proceeds with a brief overview of the GC articles that a

CIREPP’s control system must take into consideration and are found to influence the

CIREPP-relay interactions by later sections. Section 3.2 describes the system under study,

the control structure of the CIREPP coupled with this system, and how it satisfies GC

requirements. The analysis of the distance relay’s possible maloperation for zone one

balanced faults is covered in Section 3.3, and is extended to unbalanced faults in Section

3.4. Section 3.5 studies relay failures during zone two faults. The different relay operation

for a conventional source is demonstrated in Section 3.6. Section 3.7 presents the concluding

remarks.

3.1 GC Articles for Fault Conditions

Besides FRT capability, modern GCs determine active and reactive power requirements

that REPPs have to comply with. Apart from the power requirements that are to be met

over normal operation, European GCs (EU-GCs) impose regulations specific for faulty

conditions, and typically give higher priority to reactive power support from REPPs [46].

Take, for instance, the Spanish grid; within 150 ms after the beginning of a voltage dip at

the POI, the reactive current generated by a WF must be situated inside the shaded area

of Figure 3.1 [3, 47]. With the exception of a handful of utilities, POI is always the HV

side of the REPP main transformer. In Figure 3.1, V + and I+ are the positive sequence

voltage and current, respectively, Vn is the nominal voltage, and I+
Q is the positive sequence

reactive current, given by

I+
Q =

I+

Itot
sin(φ+) (3.1)

in which φ+ is the angle between V + and I+, and Itot is the total fault current. The lower

the voltage level, the larger the reactive current generated by the WF must be. Meanwhile,

during the 150 ms period, the WF is allowed to consume both active and reactive power

at the POI as long as they are limited to 10% and 60% of the rated power, respectively.

A broadly similar requirement with a faster response time is imposed by the German
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Figure 3.1. WFs’ reactive current during disturbances according to the Spanish GC.

GC [20]. The GCs that comply with the reactive current requirements of [46] are referred

to as EU-GCs in this dissertation.

On the issue of disturbance behavior, the current North American GCs (NA-GCs)

focus only on how REPPs must ride through the fault, and do not enforce any specific

regulation on the active or reactive components of REPP fault currents [48,49]. Thus, the

control system of an REPP would naturally attempt to satisfy the NA-GCs’ normal power

demand, which is 0.95 plus positive sequence PF, lead or lag.

HVDC links normally operate at a high PF. To the best of the author’s knowledge, there

is currently no unified GC that mandates reactive power generation during fault conditions

for HVDC substations. Only one very recent draft of a GC for HVDC connections, prepared

for public consultation by the European Network of Transmission System Operators for

Electricity (ENTSO–E), allows regional utilities to have specific reactive power demands

over fault conditions [50]. This draft does not impose any obligation in this regard, and

has not gained final approval yet. Therefore, similar to REPPs conforming to the NA-GCs,

HVDC links should be expected to operate at high PFs after a fault, particularly during

the immediate narrow time frames when transmission system relays have to take action.

3.2 Description of Test System and CIREPP

The following describes a test power system that includes a CIREPP, the structure of this

CIREPP and how it complies with different GC articles.
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Figure 3.2. Single line diagram of the test system, including the CIREPP.

3.2.1 Test System

Simulated using PSCAD/EMTDC program, the 230 kV, 60 Hz power system depicted in

Figure 3.2 was used to study the protection of line 25 connected to the 100 MW CIREPP

on bus 2. DS25 and DS52 are the distance relays located at buses 2 and 5, respectively, and

protect line 25. The voltage angles along with the positive- and zero-sequence impedances

of the sources at buses 1, 3 and 4 are

• Source 1: ]Vs1 =−7.1°, Z+
s1 =12.66] 83° Ω, Z o

s1 =11.1] 83° Ω,

• Source 3: ]Vs1 =−2.0°, Z+
s1 =7.76] 86° Ω, Z o

s1 =5.0] 86° Ω,

• Source 4: ]Vs1 =−6.9°, Z+
s1 =12.7] 82° Ω, Z o

s1 =11.2] 82° Ω.

The reactor at bus 5 is rated 75 MVAr. When the CIREPP generates its rated capacity

at unity PF, the voltages at buses 2 and 5 are 230.6] 3.0° and 228.2]−2.4° kV, respectively.

The lines are simulated using the frequency-dependent model, and their positive- and zero-

sequence impedances are Z+
L = 0.0357+j0.5077 Ω/km and Z o

L = 0.3630+j1.3262 Ω/km.

The lengths of lines 15, 25, 35 and 45 are 155, 100, 110 and 120 km, respectively.
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3.2.2 CIREPP Structure

The time spans associated with both wind speed and solar intensity variations are ap-

preciably longer than the short intervals considered for fault studies. In addition, the

fast dynamics of the RE source are essentially decoupled from the grid by the dc capac-

itor. Hence, the RE source together with the converter that provides the dc voltage are

represented by a controllable current source.

A large WF is composed of dozens of turbines connected to the farm substation through

underground cable. Each unit includes a back-to-back converter, an LPF and a transformer

that boosts the voltage up to the medium level. Modeling each turbine unit separately and

the cable system with its fine details is computationally intensive. Furthermore, it has been

shown that a single aggregated unit along with a π model representing the cable system is

able to simulate a WF accurately [51,52]. This process, designated as equivalencing, can be

similarly carried out for photovoltaic farms as well. As shown in Figure 3.2, equivalencing

practice was used to model the CIREPP in this study.

The main transformer of large REPPs is commonly three-winding, regularly configured

as ygdYG or ddYG. On the grid side, both configurations result in the same behavior.

For this study, the ddYG configuration is chosen. The transformer ratings are 150 MVA,

34.5/34.5/230 kV and X=0.1 pu.

3.2.3 CIREPP’s Control System and GC Compliance

The findings of this study are independent of the reference frame in which the CIREPP’s

control system is implemented. The synchronous dq frame with proportional integral (PI)

controllers, voltage feed-forward compensation and cross-coupling terms, detailed in [53],

is chosen, as it is widely deployed in the RE industry [54]. The phase-locked loop (PLL) of

the control system is immunized against unbalanced conditions using the method described

in [55].

After a voltage drop at the CIREPP’s POI, the active power transfer capability of the

grid-side converter reduces and, in turn, the dc link voltage rises [56]. In order for the

CIREPP to ride through faults, the dc link voltage must be restricted. Hence, as shown
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Figure 3.3. Structure of CIREPP’s higher level control system for GC compliance.

in Figure 3.2, a braking chopper circuit is connected in parallel with the capacitor to

suppress the dc voltage during disturbances. The maximum dc voltage allowed is 1.2 times

the nominal value, which is a common practice in industrial converters [57].

Figure 3.3 shows a simplified model of the reference current generation block used by

the control system. This system, which is similar to the ABB generic Type IV wind turbine

model discussed in [58], can comply with the aforementioned reactive power requirements

of the EU-GCs. The reference powers Pref and Qref determine the references for the d and q

components of the current, id−ref and iq−ref , respectively, during normal operation. Pref is

provided by the dc link voltage control loop, and Qref is determined based on the reactive

power control strategy adopted, e.g., to reach a certain PF. The GCs measure reactive

power at the POI, QPOI, while iq−ref determines the reactive current of the inverter’s filter

inductor. Therefore, a closed-loop control is used to regulate QPOI.

As discussed in [59], id−ref and iq−ref are passed through a saturation block to protect
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the switches by limiting the short-circuit currents to 1.2 times the rated current. Over

normal operation, priority is given to active power; thus, the limit for iq−ref , that is,

iq−max, is determined based on the 1.2 pu maximum current of the converter, imax, and the

actual d-axis current, id. The maximum allowed id−ref is the minimum of imax and id−rmp, a

limit that keeps active power ramp levels within the GC’s acceptable range. The reference

signals are finally passed through LPFs to remove noise and alleviate abrupt changes.

Once a voltage dip is detected, the reference current generation strategy switches in a

discrete manner. After the voltage dip flag (VDF) is raised, iq−ref is determined according

to the POI voltage and a look-up table (LUT) prepared based on the host system reactive

current requirement during disturbances. Similar to normal operation, I+
Q is regulated by

controlling iq−ref in a closed-loop manner. id−ref control loop remains the same; however,

higher priority is given to reactive power during disturbances in the case of EU-GCs. In

other words, id−max is determined based on imax and the actual iq. Being determined for

the positive sequence circuit, the reactive current requirements of EU-GCs are not phase

selective and potentially pose the risk of temporary overvoltages (TOVs) in healthy phases

during unbalanced faults. Therefore, iq−TOV is a limit applied to iq during disturbances to

keep the reactive power injection in the healthy phases and consequently the TOVs within

the GC’s acceptable range.

3.3 Zone One Balanced Faults

This section inspects the performance of DS25 for balanced faults in zone one, which cov-

ers 90% of line 25. Several case studies will be presented, through which the problematic

and non-problematic conditions from the line protection perspective and the underlying

causes for relay maloperation will be identified. The case studies take both the EU-GCs and

NA-GCs into account, and include different properties of fault, such as its resistance and

location within DS25’s zone one. The problem is described using a self-polarized impedance-

based relay with a quadrilateral characteristic and a large 100 Ω resistive reach. Further-

more, to validate the existence of the discussed problems in practical applications, the

responses of memory-polarized mho characteristics commonly deployed in commercial re-
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Figure 3.4. Measurements at the CIREPP’s POI for case 1, (a) Voltage, (b) Current.

lays are also scrutinized.

The voltages and currents are passed through a second-order Butterworth anti-aliasing

filter with a 1 kHz cut-off frequency. The voltage is measured by FCDFT, while the current

phasor is computed by FCDFT for control system and GC compliance application, and by

the one-cycle CLES-based digital filters for relaying purposes. At the sampling rate of 64

times per fundamental cycle, the measured impedance was updated for every 4 new pair

of voltage and current samples.

3.3.1 Case 1

Case 1 includes a bolted balanced fault at 60% of line 25. The fault occurs at t = 2 s,

and the greater than 90% voltage drop in Figure 3.4(a) is accompanied by the converter’s

44



Chapter 3. Distance Protec. of Lines Emanating from CIREPPs: Problem

Time (ms)

C
u
rr
en
t
(p
u
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
0

0.5

1

1.5 I+P I+Q

Figure 3.5. The active and reactive current of the CIREPP for EU-GC compliance in case 1.
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Figure 3.6. The impedance measured by DS25 for case 1.

maximum current in Figure 3.4(b). Before the fault, the CIREPP generates the nominal

power at unity PF. During the fault, the CIREPP attempts to meet the EU-GCs. The

CIREPP GC compliance is illustrated in Figure 3.5, which shows the significant quick

jump of the per-unit reactive current after the fault is initiated. In this figure, I+
P is the

positive sequence active current. The CIREPP’s rated peak current is used to per-unitize

the quantities displayed in Chapters 3 and 4. The impedances measured by the AG and

phase B to phase C (BC) elements of DS25, depicted in Figure 3.6, enter zone one in 14.5

ms and 13 ms, respectively, and the line is correctly tripped.

3.3.2 Case 2

The voltage and current of the previous case while the NA-GC is applied by the CIREPP

are shown in Figure 3.7. The PF curve of the CIREPP in Figure 3.8 indicates that the

45



Chapter 3. Distance Protec. of Lines Emanating from CIREPPs: Problem

Time (ms)

V
o
lt
a
g
e
(p
u
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

−1

−0.5

0

0.5

1 Phase A
Phase B
Phase C

(a)

Time (ms)

C
u
rr
en
t
(p
u
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

−1

−0.5

0

0.5

1

1.5 Phase A Phase B Phase C

(b)

Figure 3.7. Measurements at the CIREPP’s POI for case 2, (a) Voltage, (b) Current.

control system does not meet its objective, and the PF drops to about 0.09 one cycle

after the fault inception. Meanwhile, the low PF is not a failure of the CIREPP’s control

system. The zero fault resistance causes zero voltage at the fault location for all three

phases, and the CIREPP is coupled with an effectively dead circuit. Consequently, the

difference between the fault voltage and current angles is dictated by the mainly inductive

line impedance, over which the CIREPP has no control. As a result, similar to case 1, the

impedances measured by DS25 in Figure 3.9 fall inside zone one in about a cycle.

The above argument can be extended to case 1 as well. In fact, failure or success in GC

compliance for all zone one bolted balanced faults is determined not by the control system

of the CIREPP, but by the physical properties of line 25 impedance.

46



Chapter 3. Distance Protec. of Lines Emanating from CIREPPs: Problem

Time (ms)

P
F

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
0

0.2

0.4

0.6

0.8

1

Figure 3.8. PF of the CIREPP for NA-GC compliance in case 2.
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Figure 3.9. The impedance measured by DS25 for case 2.

3.3.3 Case 3

Unlike the above cases, actual faults usually include some level of fault resistance. Case 1

of Section 3.3.1 is repeated, while Rf is increased to 10 Ω. The fault voltage at the POI has

risen to 0.29 pu in Figure 3.10(a) compared to less than 0.1 pu in Figure 3.4(a), whereas the

fault current in Figure 3.10(b) equals the CIREPP’s maximum current limit again. Since

the voltage drop is above 50%, the control system attempts to increase the reactive current

up to the full capacity. In contrast to Figure 3.5, where the reactive current variation was

virtually instantaneous, because it was determined by the line impedance, the I+
Q shown

in Figure 3.11 undergoes a transient period influenced by the CIREPP’s control system.

When the initial transients disappear, the resistance and reactance measured by the

AG element of DS25, plotted with respect to time in Figure 3.12(a), are fixed at 0.33 Ω

and 124.67 Ω, respectively. The latter is in excess of the actual reactance to the fault by

47



Chapter 3. Distance Protec. of Lines Emanating from CIREPPs: Problem

Time (ms)

V
o
lt
a
g
e
(p
u
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

−1

−0.5

0

0.5

1 Phase A
Phase B
Phase C

(a)

Time (ms)

C
u
rr
en
t
(p
u
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

−1

−0.5

0

0.5

1

1.5 Phase A Phase B Phase C

(b)

Figure 3.10. Measurements at the CIREPP’s POI for case 3, (a) Voltage, (b) Current.
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Figure 3.11. The active and reactive current of the CIREPP for EU-GC compliance in case 3.

more than fourfold. Therefore, as shown in Figure 3.12(b), the operating point lies far

above zone one, making an impedance-based DS25 fail to trip the line. Unlike case 1, the

CIREPP does have full control over its current, as the voltage at the fault location is not
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Figure 3.12. Performance of DS25 for case 3, (a) Time variations of R and X measured by the

AG element, (b) Impedance plane of the AG and BC elements.

zero and the CIREPP is not completely isolated from the rest of the grid.

Contrary to conventional power plants with SGs, VSCs in RE and HVDC applications

are controlled through their currents, due to numerous advantages such as superior dynamic

performance and limited overcurrents [60]. Consequently, a CIREPP behaves as a controlled

current source that follows certain active and reactive power commands given by the host

system GC and/or dc link voltage control loop. The generated P and Q are translated into

certain resistance and reactance in the impedance plane, respectively. Take, for instance,

the phase A active and reactive power curves of the CIREPP for case 3, displayed in Figure

3.13, which exhibit high correlation with the R and X curves of Figure 3.12(a). Since the

control system of the CIREPP makes the current mainly reactive after the transients fade

out in Figure 3.11, P and Q are fixed at about 0.03 MW and 11.54 MVAr, respectively,
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Figure 3.13. Phase A power for case 3.

which correspond to R = 0.33 and X = 127.72 Ω, considering the 1.2 pu current. The

tiny difference between these values and the resistance and reactance pinpointed in Figure

3.12(a) arise from the fact that the 1.2 pu limit is for the converter current, while the relay

is at the POI.

For the same fault conditions, if the CIREPP’s current limit was set to 1.1 pu, Q would

decrease to 10.34 MVAr, resulting in X=135.66 Ω; i.e., the reactance calculated by DS25

jumps by about 8 Ω because of a minor change, not in the fault properties, but in the

CIREPP’s control system. Similarly, increasing the CIREPP’s current limit reduces the

impedance seen by the relay. In other words, the impedance measured for this case should

not be expected to lie along the transmission line replica impedance or inside the correct

zone of operation, as it is highly affected by the CIREPP’s control system.

Commercial distance relays utilize alternatives to impedance calculation to find the

zone in which the fault has occurred. For instance, several relays, such as [61] and [62],

compare the angle α between a polarizing and an operating quantity, denoted by Vpol and

Vop, respectively, to form a mho characteristic, i.e., α=]Vop−]Vpol. Vpol is normally the

memorized positive sequence voltage, since it is not affected by low fault voltages, and

provides a better fault resistance coverage. Vop is given by (3.2) for the AG element.

Vop−AG = VA − Zr (IA +K oI o) (3.2)

Zr is the reach impedance of the respective zone in (3.2). This method, termed as

α-based mho in this dissertation, asserts the trip signal of the relay’s n-th zone if the

50



Chapter 3. Distance Protec. of Lines Emanating from CIREPPs: Problem

α
(◦
)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
0

90

180

270

360 t = 2099.5
α

2
AG

= 275.0458

Time (ms)

t = 2099.5
α

1
AG

= 273.5847
Trip zone

α
1
AG

α
2
AG

(a)

D
is
ta
n
ce

m
(p
u
)

Time (ms)

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
−4

−2

0

2

4

mAG

Zone 1 reach
Zone 2 reach

(b)

Figure 3.14. Operation of the AG element of industrial mho elements for case 3,

(a) α-based mho, (b) m-based mho.

corresponding angle, denoted by αn, is inside the [90°, 270°] interval.

Another group of relays, such as [36] and [39], express the mho characteristic by finding

the per-unit distance to an AG fault using (3.3) [63]. This method, referred to as m-based

mho in this dissertation, defines similar relations for the other fault loops.

mAG =
real

(
VA V

∗
pol

)
real

(
Zr(IA +K oI o)V ∗pol

) (3.3)

The operation of commercial mho elements for case 3 is illustrated in Figure 3.14. α1

and α2 of the AG element of DS25 for case 3 approach the tripping zone in Figure 3.14(a)

during the transient response time of the CIREPP’s control system, but they maintain 3.5°

and 5° distance from the trip boundaries after the transients disappear. mAG decreases
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Figure 3.15. Measurements at the CIREPP’s POI for case 4, (a) Voltage, (b) Current.

down to around zone two reach setting after the fault inception in Figure 3.14(b), but jumps

significantly once the CIREPP increases the reactive current, causing a no-trip decision.

For a fault at zone one reach setting, the reactance and α1 measured by DS25 are 163 Ω

and 279°, respectively, which are at even greater distances from their trip zones.

3.3.4 Case 4

Case 2 of Section 3.3.2 is re-simulated, while the fault resistance is increased to 10 Ω. The

voltage and current of DS25 are shown in Figure 3.15. In contrast to case 2, where the

GC requirement was impossible to meet, the PF curve in Figure 3.16(a) indicates that the

CIREPP restores the control over the output current and keeps the PF above 0.95 shortly

after the fault inception. As a result, the CIREPP power for phase A in Figure 3.16(b)
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Figure 3.16. CIREPP’s NA-GC compliance for case 4, (a) PF, (b) Phase A power

is mainly active, and the reactive component takes a small negative value. These power

curves are directly reflected in the resistance and reactance measured by the AG and BC

elements of DS25, depicted in Figure 3.17(a). A large positive resistance is followed by a

small negative reactance, making the operating point fall in the fourth quadrant outside

zone one, and putting the dependability of DS25 in jeopardy.

Comparison of totally different impedances measured for the same fault condition in

Figures 3.12(b) and 3.17(a) reveals the high dependence of DS25 on the CIREPP’s control

system. Memory-polarized mho elements do not function properly either. α1
AG in Figure

3.17(b) is about 5° above the tripping zone. Only α2
AG is on the boundary of the [90°, 270°]

interval, which leads to unnecessary delayed tripping. The per-unit distance measured by

the m-based mho element in Figure 3.17(c) is also fixed at 1.14, resulting in delayed relay

operation.
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Figure 3.17. Performance of DS25 for case 4,

(a) Impedance measured by AG and BC elements, (b) α-based mho, (c) m-based mho
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3.4 Zone One Unbalanced Faults

Discussion of the relay maloperation for balanced faults in the last section was from the

viewpoint of the CIREPP’s active and reactive power generation. This approach cannot

properly explain the relay behavior in the event of unbalanced short-circuits. On the other

hand, it is instructive to examine the relay performance using the practices established

for studying the impact of remote infeed and fault resistance on distance protection. The

insight gained will be helpful in providing a clue to overcome the problems later on. This

approach is adopted to analyze zone one unbalanced faults.

3.4.1 Case 5

A phase B to phase C to ground (BCG) fault with 10 Ω fault resistance, the middle of

which was grounded, was simulated at 80% of line 25. The fault currents of the CIREPP

when it follows the NA-GC are depicted in Figure 3.18(a). Figure 3.18(b) displays the

currents at the remote end of the line, which are substantially larger. The impedance of

the BC element of DS25 in Figure 3.19(a) falls in the fourth quadrant outside zone one,

thereby failing to trip the line. Both the zone one and zone two angles of the BC element

of the α-based mho element remain outside the tripping area in Figure 3.19(b), as well.

Also, the m-based mho element spuriously measures a per-unit distance far above the reach

setting of zone one in Figure 3.19(c).

For the circuit of Figure 3.20, which demonstrates a BCG fault with Rph and Rg as

the phase-to-phase and phase-to-ground resistances at the fault, Kirchhoff’s voltage law

(KVL) can be expressed as

VBL − VCL = ZfIBL − ZfICL +Rph (IBL + IBR)−Rph (ICL + ICR) (3.4)

where Zf is the positive sequence impedance between the relay and the fault, and the L

and R subscripts denote local and remote end quantities, respectively. Rearranging the

terms in (3.4) and dividing the two sides over (IBL − ICL) yields the impedance measured

by the BC element in (3.5).
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Figure 3.18. Current measurements for case 5, (a) Local end, (b) Remote end.

ZBC = Zf +Rph

(
1 +

IBR − ICR
IBL − ICL

)
︸ ︷︷ ︸

MRf−BC

(3.5)

The primary effect of RphMRf−BC is normally on the resistive part of ZBC . That is why

a quadrilateral characteristic, whose resistive reach can be set independently, is known to

be more robust against the effect of fault resistance. Meanwhile, due to load flow in the

system before the fault inception, the phase angles of the local and remote end currents

are not identical, making MRf−BC a complex number, and adding a fictitious reactance to

ZBC . A distance relay would, therefore, be in danger of overreach or underreach [22].

Founded upon the voltage source modeling of the systems behind the relays, a basic

assumption in distance protection is that the phase difference between the two end currents
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Figure 3.19. Performance of BC element of DS25 for case 5,

(a) Measured impedance, (b) α-based mho, (c) m-based mho

is similar to that between the two end pre-fault voltages [64]. As a result, the angles of

the two end currents typically differ by only a few degrees, since a sizable phase difference
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Figure 3.20. Circuit diagram of phases B and C for a BCG fault

between the two end voltages may harbor the risk of instability. Therefore, the fictitious

reactance caused by the combined effect of remote infeed and fault resistance is normally

insignificant.

In a conventional power plant that operates as a voltage source, the phase angles

of fault currents are determined based on the system impedance and the source angle.

For a CIREPP, however, the converter current is governed by the control system and

according to the host system GC or the internal references. Therefore, the above routine

assumption regarding the phase difference between the line end currents does not hold

true. The local currents in phases B and C of Figure 3.18(a) are IBL = 0.893] 159.1°

and ICL = 2.515] 108.4° pu. For the remote end currents of Figure 3.18(b), IBR and

ICR equal 13.332] 165.4° and 13.117] 20.1° pu, respectively. Since the zero-sequence

component flowing through the ground of the CIREPP’s main transformer constitutes the

bulk of the local currents, (IBL − ICL), which appears in the denominator of MRf−BC and

is plotted in Figure 3.21(a), is much smaller than (IBR − ICR), enlarging the magnitude of

MRf−BC . More importantly, the phase difference between (IBL − ICL) and (IBR − ICR) in

Figure 3.21(b) exceeds 86°. Thus, RphMRf−BC becomes 9.02−j60.87 Ω. Considering Zf =

2.86+j40.62 Ω, Rph=5 Ω and Rg=0 Ω, the ZBC given by (3.5) would be 11.88−j20.25 Ω,

which agrees with the measurements shown in Figure 3.19(a) and causes the relay to

overreach.

3.4.2 Case 6

To demonstrate the heavy reliance of the above relay behavior upon the CIREPP’s con-

trol system, consider the same fault condition when the CIREPP meets the EU-GC. The
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Figure 3.21. The numerator and denominator of MRf−BC for case 5,

(a) Magnitude, (b) Angle.

currents at the local and remote end of the line are depicted in Figure 3.22. The resistance

and reactance measured by the BC element of DS25 are displayed with respect to time

in Figure 3.23(a). Similar to Figures 3.12 and 3.17(a), the two curves undergo notable

fluctuations caused by the CIREPP’s transient response. Inside the impedance plane of

Figure 3.23(b), the operating point initially falls inside zone one for less than 5 ms, and

then moves through zone two, eventually lying at Z=62.37+j70.98 Ω, outside the first two

zones. The period during which the impedance passes through the first two zones will be

much shorter if the CIREPP does not operate at unity PF and generates reactive power

prior to the fault–not an uncommon scenario for the EU-GCs.

(IBL−ICL) and (IBR−ICR) in Figure 3.24 are 2.080] 154.3° and 25.619]−176.6° pu,

respectively. Therefore, diametrically opposed to the impedance measured for case 5, where
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Figure 3.22. Current measurements for case 6, (a) Local end, (b) Remote end.

RphMRf−BC had a large negative imaginary part, the fictitious reactance added to ZBC is

58.81 + j29.96 Ω, leading to considerable underreach. The marked difference between ZBC

for cases 5 and 6 happens despite the identical pre-fault voltage angles at the two line ends

and exactly the same fault condition, which should result in equal underreach or overreach

according to well-established distance protection principles.

3.4.3 Other Fault Types

The problems associated with LLG faults in relation to the combined effect of remote infeed

and fault resistance are valid for LL faults as well. The positive and negative sequence

components are basically similar for LLG and LL short-circuits. The main difference is the

absence of the zero sequence component in LL fault currents. However, since the phase

currents are subtracted in the numerator and denominator of MRf−BC , the zero-sequence
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Figure 3.23. Performance of the BC element of an impedance-based DS25 for case 6,

(a) Impedance versus time, (b) Impedance plane.

current does not impact MRf−BC and the consequent relay malfunction. Take, for instance,

cases 5 and 6 without the ground at the fault, designated as cases 7 and 8, respectively.

The resultant ZBC is depicted in Figure 3.25. The impedances pinpointed in this figure

are quite close to those previously shown for cases 5 and 6, and are far outside zone one of

DS25.

In contrast to balanced, LLG and LL faults, for which the measured reactance may not

be even remotely close to the actual fault reactance, a distance relay performs more suc-

cessfully for SLG faults. That being said, the common countermeasures against underreach

and overreach of a ground distance element due to remote infeed does not yield successful

results if a CIREPP is connected to the line, requiring special precautions elaborated in

Chapter 4.
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Figure 3.24. The numerator and denominator of MRf−BC for case 6,

(a) Magnitude, (b) Angle.
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Figure 3.25. The impedance measured by the BC element of DS25 for cases 7 and 8.
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Figure 3.26. Current measurements for case 9, (a) Local current, (b) Infeed current.

3.5 Zone Two Faults

In the event of short-circuits on neighboring lines, DS25 is in danger of malfunction even

if the fault is bolted. While the relay suffered from lack of dependability in the last two

sections, the faults on adjacent lines may jeopardize the security of the protection system

and, in turn, neutralize the GCs’ FRT articles. The relay may also fail to provide the

anticipated back-up protection.

3.5.1 Case 9

The currents recorded by DS25 for a bolted zone two BCG fault on line 45, only 10 km

away from bus 5 when the CIREPP complies with the NA-GC are plotted in Figure 3.26(a).
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Figure 3.27. The impedance measured by the BC element of DS25 for case 9.
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Figure 3.28. Circuit diagram for a bolted BCG fault with intermediate infeed.

While DS25 operation must be delayed to let line 45’s relays clear the fault, the impedance

measured by the BC element of DS25 in Figure 3.27 illustrates that zone one of the relay

is asserted soon after the onset of the fault; thus, the line is tripped immediately. Any

FRT scheme implemented in the CIREPP is subsequently negated by the incorrect relay

operation.

Since the fault is solid, the relay malfunction is not caused by the currents flowing from

the remote end of line 45. The other currents present in the fault loop are the intermediate

infeeds, i.e., the currents flowing from lines 15, 35 and the reactor. Figure 3.26(b) shows

the sum of the infeed currents, which are appreciably larger than the local currents, due

to the CIREPP’s modest short-circuit capacity. Meanwhile, intermediate infeed has been

known to cause a distance relay to underreach [65,66], whereas the relay has overreached.

To investigate this issue, let us consider the circuit diagram of the fault in Figure 3.28.

The KVL for the BC loop can be expressed as

VBL − VCL = Z1 (IBL − ICL) + Z2 (IBL + IBif − ICL − ICif ) (3.6)
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where the if subscript denotes infeed quantities, Z1 is the impedance between the relay

and infeed location, and Z2 is the impedance between the infeed and the fault. Dividing

(3.6) over (IBL − ICL) yields

ZBC = Z1 + Z2 + Z2

(
IBif − ICif
IBL − ICL

)
︸ ︷︷ ︸

Mif−BC

(3.7)

Z2Mif−BC is the fictitious impedance added to ZBC by the intermediate infeed. Similar

to the discussion that followed (3.5), the difference between the angles of the local and

infeed currents in a conventional power system is considered to be almost equal to the

difference between the voltage angles before the fault, which is normally small. Therefore,

the imaginary part of Mif−BC is insignificant, and the angle of Z2Mif−BC is very close to

that of the fault impedance. That is why a distance relay has been traditionally known to

underreach in the presence of intermediate infeed [65,66].

Since the angles of CIREPP-generated currents are not related to pre-fault voltages and

are determined based on the GC requirements or internal references, the above analysis

does not hold true in the presence of a CIREPP. Even for the same GC, the angle of a

CIREPP fault current may be quite unpredictable. Take, for instance, the Spanish GC

where the operating point of a CIREPP can be anywhere inside the shaded area of Figure

3.1, or the German GC where the slope of the reactive current curve versus the voltage

drop can vary from 0 to 10 [20], or the NA-GC that allows any PF higher than 0.95. On

top of that, the GC reactive current requirements always permit a transient response time,

which is longer than operational times of distance relays. For example, the operating point

of a WF that complies with the Spanish GC is allowed to be outside the shaded area of

Figure 3.1 for 150 ms after the voltage drops, resulting in erratic current angles during

distance relay operation time spans.

After the transients fade out, the phase B and C infeed currents in Figure 3.26 are

11.578] 158.8° and 10.960] 11.7° pu, respectively. The DS25 current phasors are IBL =

0.484]−163.5° and ICL=2.074] 113.5° pu. Hence, as shown in Figure 3.29, the numerator

and denominator of Mif−BC are 21.614] 174.8° and 2.072]−79.9° pu, respectively, and

exhibit a significant phase difference. Therefore, the angle of Z2Mif−BC lags that of Z2 by
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Figure 3.29. The numerator and denominator of Mif−BC for case 9, (a) Magnitude, (b) Angle.

105.3°, which makes the reactance measured by DS25 smaller than the actual reactance to

the fault by about 18 Ω, and induces substantial overreach. Similar incorrect operation is

observed for mho elements as well.

3.5.2 Case 10

The fault of case 9 is simulated when the CIREPP conforms to the EU-GC. The local and

infeed currents are shown in Figure 3.30. At the relay side, the phase B and C currents

are 1.827] 130.4° and 2.031] 65.3° pu, respectively, making the denominator of Mif−BC

in Figure 3.31 equal to 2.083]−167.4° pu. For the infeed quantities, IBif =11.699] 160.0°

and ICif =10.799] 11.8° pu, leading to 21.638] 175.2° pu for the numerator of Mif−BC in

Figure 3.31. Plugging these values into (3.7), the reactance measured by the relay becomes
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Figure 3.30. Current measurements for case 10, (a) Local current, (b) Infeed current.

105.08 Ω, which is consistent with the impedance measured by DS25 in Figure 3.32, and is

almost twice the actual fault reactance. In contrast to case 9, where the intermediate infeed

caused overreach, DS25 underreaches for this case. The excessive magnitude of underreach

arises from the limited non-zero sequence components of the CIREPP currents and the

removal of the zero-sequence component due to the subtraction of the current phasors in

(3.7). Apart from the huge underreach, the impedance shown in Figure 3.32 includes a

significant resistive part as well, even though the fault is bolted.

These problems exist in spite of the fact that the infeed currents flow through less than

10% of the distance between the fault and DS25. The problems are exacerbated if the fault

location is farther from the infeed point or if there is a fault resistance. Cases 9 and 10

have discussed LLG faults, but the same problems also apply to LL and balanced faults.
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Figure 3.31. The numerator and denominator of Mif−BC for case 10,

(a) Magnitude, (b) Angle.
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Figure 3.32. The impedance measured by the BC element of DS25 for case 10.
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Figure 3.33. The impedance of the BC element of DS25 for the fault of Section 3.4 when the

CIREPP is replaced by a conventional source.

3.6 DS25 Operation for a Conventional Source

To further highlight the effect of a CIREPP on line 25 protection, the CIREPP was replaced

by a conventional source whose impedance and phase angle are 12.7] 88.9° Ω and 4.5°.

The active and reactive powers of this source are similar to those of the CIREPP. As

shown in Figure 3.33, the impedance calculated by DS25 for the zone one fault of Section

3.4 correctly enters zone one in less than one cycle. Unlike Figures 3.19(a) and 3.23(b),

which exhibited huge overreach and underreach, a less than 1 Ω overreach is observed. If

the fault is on the zone boundary, such small overreach can easily be addressed by tilting

the reactance element of the relay by a few degrees. The correct operation of DS25 in

Figure 3.33 stems from the relatively close angles of the two line end fault currents. The

magnitudes and angles of the terms in the numerator and the denominator of MRf−BC are

plotted in Figure 3.34. In contrast to Figures 3.21(b) and 3.24(b), the current magnitudes

and angles in Figure 3.34 are very close. Plugging the values pinpointed in Figure 3.34

into (3.5) yields the impedance shown in Figure 3.33.

The operation of DS25 was tested for the zone two fault of Section 3.5 as well. The

impedance in Figure 3.35 is almost at the edge of zone two. Nevertheless, this is the normal

underreach expected due to the intermediate infeed. In contrast to Figures 3.29(b) and

3.31(b), the numerator and denominator of Mif−BC , displayed in Figure 3.36, are almost

aligned, as a result of which the impedance in Figure 3.35 exhibits the normal zone two

underreach, and is also situated on the line replica impedance. Moreover, the comparable
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Figure 3.34. The numerator and denominator of MRf−BC for the fault of Figure 3.33,

(a) Magnitude, (b) Angle.

magnitudes of the local and infeed currents keep the amount of underreach small.

3.7 Conclusion

For non-bolted balanced faults in zone one of DS25, the CIREPP keeps control over the

current. The reactive current for EU-GCs translates into impedances close to the X axis.

The CIREPP’s large PF for the NA-GCs makes the impedance lie along the R axis. In

both cases, the measured impedance can be far away from the actual fault impedance and

is highly influenced by the parameters of the CIREPP’s control system, such as imax.

The common assumption regarding the phase difference between the line end currents

during a zone one fault is not valid for a line that emanates from a CIREPP. Consequently,
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Figure 3.35. The impedance of the BC element of DS25 for the fault of Section 3.5 when the

CIREPP is replaced by a conventional source.
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Figure 3.36. The numerator and denominator of Mif−BC for the fault of Figure 3.35,

(a) Magnitude, (b) Angle.
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it is highly likely that the underreach or overreach of DS25 due to the remote infeed during

LL or LLG faults will become very large. The relay may also underreach for a case where

it is normally expected to overreach.

The intermediate infeed has been known to cause distance relays to underreach. How-

ever, the angles of the local and infeed currents may be widely apart if a CIREPP is behind

the relay. Depending on the CIREPP’s control strategy, the relay may overreach during

zone two faults, which negates any FRT scheme, or experience a huge underreach and fail

to provide back-up operation.
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Chapter 4

Distance Protection of Lines

Emanating from CIREPPs: Solution

Description and Evaluation

Having unveiled the problems associated with distance protection of lines connected to

CIREPPs due to remote and intermediate infeed in Chapter 3, Section 4.1 describes why

the countermeasures currently deployed by commercial relays to tackle these problems

in a conventional power system fail in the presence of a CIREPP. Then, a new formula

to calculate impedance is devised in Section 4.2 for the phase element of the relay to

prevent maloperation in the event of LLG faults. In addition, Section 4.3 proposes a

communication-assisted method with minimal bandwidth requirement for LL and balanced

faults. Simplicity and independence from the GC requirements are among the objectives

of the presented solutions. Section 4.4 presents the overall trip logic of the proposed relay.

Comprehensive performance evaluations are carried out for different fault conditions in

Sections 4.5, 4.6 and 4.7 to verify the reliable operation of the proposed methods. Section

4.8 discusses the issues that should be taken into consideration for SLG faults. Section 4.9

concludes this chapter.
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Figure 4.1. The impedances measured by DS25 for cases 3 to 6 of Chapter 3.

4.1 Existing Countermeasures

One solution for the problems discussed in Chapter 3 is to deploy line current differential

relays. However, these relays require high-bandwidth communication infrastructure, which

is expensive and not always available. Even with a high-bandwidth channel, there is a

chance for the link failure [67], in which case the line is protected by the local back-up,

that is, the distance relay. Even for a healthy channel, the trip logic applied by many

utilities, such as Hydro One in Ontario, Canada, requires at least a zone two pick-up of

the distance element in order for the other elements to trip the line.

The following explains why the existing solutions for the impact of remote and inter-

mediate infeed fail to address the problems unveiled in Chapter 3 for the distance relays.

Due to close angles of the line end voltages, the combined effect of remote infeed and

fault resistance in a conventional system is usually insignificant and is, thus, sometimes

even ignored in practice [68]. Meanwhile, the polarizing quantity of mho distance elements

includes, at least partially, the memorized positive sequence voltage, which alleviates the

effect of fault resistance to some extent. Nevertheless, it was demonstrated in Chapter 3

that the magnitude of the problem in the presence of a CIREPP was great enough to make

memory-polarized mho elements malfunction as well. For quadrilateral characteristics, this

problem is typically resolved by tilting the top reactance element up or down, depending

on the power flow direction [69,70]. The tilting angle is normally determined according to

the phase difference between the line end voltages.

With the 230 kV base voltage and the 50.9] 85° Ω impedance of line 25 in the test
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system of Figure 3.2, the 100 MW active power, which was the rated capacity of the

CIREPP, can be transmitted through a 5.5° phase difference between the voltages at the

ends of line 25. Hence, based on the instruction given in [71], and considering the 45.7 Ω

and 100 Ω reactance and resistance reaches of zone one for the quadrilateral DS25, the

reactance element should be tilted by less than 2.5°. The tilting direction is clockwise, as

DS25 is at the power-sending end of the line. Figure 4.1 shows a quadrilateral characteristic

for DS25 with the reactance element of zone one tilted clockwise by 2.5°. The figure also

displays the impedances for cases 3 to 6 of Sections 3.3 and 3.4. For cases 4 and 5, the

tilting angle is obviously not sufficient to make the two impedances fall inside zone one.

Apart from the reactance element, the directional element has to be appreciably rotated

for these two cases as well–a function not included in available commercial relays. For

cases 3 and 6, the problem is even worse and of a different sort. Although DS25 is located

on the power-sending end of the line and should thus be expected to overreach due to

the remote infeed, it exhibits major underreach for these two cases. Therefore, tilting the

reactance element in the clockwise direction has actually increased the distance between

the impedance calculated by the relay and zone one, aggravating the problem further. In

other words, the common solutions that address the effect of remote infeed in industrial

relays are not successful for the lines emanating from CIREPPs.

Since intermediate infeed is considered to make distance relays underreach [65,66], for

setting zone one of a relay that protects a multi-terminal line or zone two, it is assumed

that all of the intermediate paths are out of service [72]. However, as was shown in case

9 of Section 3.5.1, for a CIREPP that complies with the NA-GCs, the intermediate infeed

caused the relay to overreach, which makes the above practice not only ineffective, but

harmful. In case 10 of Section 3.5.2, where the CIREPP complied with the EU-GCs, DS25

overreached excessively as a result of the intermediate infeed. For a fault at the expected

reach of zone two of DS25 on line 45, the reactance seen by the relay exceeds 153 Ω, three

times larger than the reactance of the entire line 25. Meanwhile, any reach setting for zone

two of DS25 that is larger than 105.6 Ω overlaps with zone two of the relay next to bus 5

protecting line 45 when the infeed paths are not in service, thereby violating the selectivity

of the protection system. The problem would be exacerbated for stiffer sources at buses 1

and 3, or shorter lengths for lines 15 and 35.
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Figure 4.2. Current measurements for case 11, (a) Local end, (b) Remote end.

4.2 Proposed Formula for LLG Fault Impedance

As discussed in Section 3.4.3, SLG faults do not pose a great risk to accurate operation

of a distance relay located at a CIREPP substation. It is instructive to grasp the reason

behind the correct operation of the relay for SLG faults in order to find a solution for

LLG faults. The test system used in this chapter is the same as that of Figure 3.2. Let

us consider an AG fault at 40% of line 25 with Rf =10 Ω. The CIREPP conforms to the

EU-GC, generating 80% reactive current 40 ms after the 20% drop in the positive sequence

voltage. The local and remote end currents of this fault, denoted as case 11, are depicted

in Figure 4.2.

The impedance between the relay and the fault is 1.43 + j20.31 Ω. The reactance

calculated by DS25 is only 2.1 Ω larger than the actual reactance to the fault, and the
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Figure 4.3. Impedance measured by the AG element of DS25 for case 11.

operating point lies correctly inside zone one of Figure 4.3 in less than 13 ms. Similar to

the LLG faults studied in Sections 3.4.1 and 3.4.2, the difference between the angles of the

positive sequence currents on the two ends of the line is considerable and approximately

equals 30°. However, the fictitious reactance seen by DS25 during SLG faults as a result

of the remote infeed is not mainly determined by the positive sequence current. The

impedance calculated by the AG element of a distance relay is expressed as

ZAG = Zf +Rf

(
IAL + IAR

IAL +K oI o
L

)
︸ ︷︷ ︸

MRf−AG

(4.1)

where K o is 1.726]−17.7° for line 25.

The numerator and denominator of MRf−AG in (4.1), along with the sequence com-

ponents that build up the denominator of MRf−AG, for the above-mentioned SLG fault

are depicted with respect to time in Figure 4.4. Stemming from the feed-forward com-

pensation of the converter’s output voltage, which is necessary to improve the transient

response of the control loop [53], the local current contains a negligible amount of negative

sequence component. Therefore, the positive sequence component of the local current, I+
L ,

is the only component in MRf−AG that is affected by the CIREPP’s control system. In

the denominator of MRf−AG, I+
L is added to (1 +K o)I o

L. The zero sequence current flows

through the ground of the CIREPP’s main transformer and is not impacted by the control

system. In the numerator, I+
L is added to I o

L and the remote end fault current, which
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is again unaffected by the CIREPP. As shown by the values pinpointed in Figure 4.4(a),

(1 +K o)I o
L, as well as the remote end fault current are substantially larger than I+

L , since

the CIREPP’s control system limits I+
L to 1.2 pu, whereas the other quantities are in the

order of normal grid fault currents. Therefore, the effect of I+
L on the phase difference

between the numerator and the denominator of MRf−AG in Figure 4.4(b) is small, and

the relay computes an almost true reactance irrespective of the CIREPP’s control system.

Moreover, in the presence of I o
L, the absolute value of MRf−AG denominator is comparable

with the numerator in Figure 4.4(a), which limits MRf−AG to a reasonable range and avoids

excessive real part for the impedance of Figure 4.3.

On this basis, there follows an attempt to devise a new relation for LLG fault impedance,

in which the positive-sequence component of the CIREPP current does not significantly

affect the ratio multiplied with the fault resistance. The equivalent circuit for a BCG fault

was shown in Figure 3.20. KVL between DS25 and the fault in phases B and C is expressed

as

VBL = Zf (IBL +K oI o
L) +Rph(IBL + IBR) +Rg(IBL + IBR + ICL + ICR) (4.2)

VCL = Zf (ICL +K oI o
L) +Rph(ICL + ICR) +Rg(IBL + IBR + ICL + ICR) (4.3)

The term K oI o
L is considered in the KVL relations to obtain the positive sequence

impedance [73]. By adding the above equations and dividing the two sides over (IBL +

ICL + 2K oI o
L), a new relation is proposed for the BCG fault impedance in (4.4).

Znew
BC =

VBL + VCL

IBL + ICL + 2K oI o
L

= Zf + (Rph + 2Rg)

(
IBL + ICL + IBR + ICR

IBL + ICL + 2K oI o
L

)
︸ ︷︷ ︸

M new
Rf−BC

(4.4)

As a base case study, let us verify the performance of (4.4) during a bolted fault, for

which the conventional elements also perform well. The accurate impedance calculation by

(4.4) for a bolted BCG fault at 40% of line 25 is illustrated in Figure 4.5(a), where ZBC ,

given by (3.5), and Znew
BC are compared and shown to be situated inside zone one during

the fault.

The proposed method can be used to modify the α- and m-based mho elements dis-

cussed in Chapter 3, as well. If, instead of (VBL−VCL) and (IBL− ICL), the BC element of
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Figure 4.4. The numerator and denominator of MRf−AG for case 11, (a) Magnitude, (b) Angle.
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a memory-polarized mho relay is energized by (VBL + VCL) and (IBL + ICL + 2K oI o
L), the

angle calculated by the α-based mho for the n-th zone, denoted by αn−newBC , will correctly

identify the fault zone. For instance, α1−new
BC for the above fault is compared with α1

BC in

Figure 4.5(b). Similar correct operation has been illustrated for the m-based mho element

in Figure 4.5(c). Not only do α1−new
BC and mnew

BC identify the fault accurately, their superi-

ority in terms of speed is evident, although all of the curves in Figures 4.5(b) and (c) are

obtained using the same window length. The pinpointed samples demonstrate that α1−new
BC

and mnew
BC enter the correct trip zone about 5 ms earlier than α1

BC and mBC , respectively.

Akin to ZBC , Znew
BC also moves away from Zf in the presence of remote and intermediate

infeed. However, it will be demonstrated in Section 4.5 that this movement is mainly along

the R axis in the case of the remote infeed, and any possible underreach or overreach can

easily be tackled through the existing remedies. For the intermediate infeed, Section 4.7

will show that Znew
BC does not suffer from the overreach or excessive underreach experienced

by conventional distance elements.

4.3 Proposed Method for LL and Balanced Faults

Due to the absence of the zero-sequence component, Znew
BC introduced in the foregoing

section does not address the problems caused by remote and intermediate infeed during

LL and balanced faults; thus, a separate method is needed for them. As discussed in

Chapter 2, a low-bandwidth communication channel is normally utilized to link the distance

relays installed at the two ends of transmission lines. Therefore, if both DS25 and DS52

identify the fault direction correctly, and transmit it to the relay on the other end of the

line, the in-zone and out-of-zone faults can be properly differentiated. This strategy is

employed by several pilot schemes, such as directional comparison blocking and POTT.

These schemes, however, operate for phase faults using only impedance elements, whose

autonomous operation for a line connected to a CIREPP was proved to be unreliable.

Moreover, as will be shown later on, a conventional directional element is not able to

determine the fault direction at a CIREPP substation. The following presents a solution to

identify the fault direction by exploiting the exclusive fault behavior of CIREPPs, together
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Figure 4.5. Operation of BC element of DS25 based on (4.4) for a bolted fault,

(a) Quadrilateral characteristic, (b) α-based mho, (c) m-based mho

with the impedance given by a distance element.

The logic to detect the direction of BC faults by DS25 consists of a four input AND
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gate. One distinctive feature of a converter fault current is its limited magnitude. The

first two inputs of the AND gate are asserted if line B and C’s current phasors are larger

than a fixed threshold, denoted by IPH−th. The converter fault currents do not normally

exceed 120% of the rated value [59]. Considering a safety factor that accounts for possible

transient overshoots following a short-circuit, 2 pu is assigned to IPH−th. Comparing the

current phasors, not the instantaneous samples or the root mean square (RMS) values,

with IPH−th, the impact of fault-induced overshoots becomes minimal.

The current flowing from the bulk power grid toward an internal CIREPP fault is

normally above IPH−th, making the first and/or second inputs of the AND gate deasserted,

unless the internal fault includes a sufficiently high apparent resistance. In that case, a

large negative resistance is seen by a distance relay at the CIREPP substation. Hence, the

third input to the AND gate is asserted if the real part of ZBC exceeds a fixed negative

threshold, −RBC−th. RBC−th should be lower than the maximum resistance seen by DS25

for an internal fault that causes phase currents larger than IPH−th. It should also be large

enough to remain unaffected by the noise and other possible transients during forward

faults that might result in temporary negative resistances. The low setting for IPH−th

makes reaching a reasonable compromise easy. For the test system used in this study, 20 Ω

was identified as an effective setting for RBC−th, satisfying both criteria.

The final input to the AND gate secures the relay operation further by checking if the

imaginary part of ZBC is larger than a fixed negative threshold, −XBC−th. In order to

assign XBC−th, let us consider (3.5) expressed in terms of the symmetrical components for

a relay at a CIREPP substation, that is,

ZBC = Zf +Rph

(
(a2 − a)I+

R + (a− a2)I−R

(a2 − a)I+
L

)
(4.5)

in which I− is the negative-sequence current and a= 1] 120°. For a BC fault, the phase

angles of I+
R and I−R differ by about 180°. Therefore, assuming I−R = h.I+

R , where h depends

on fault condition but is always an approximately real constant, (4.5) can be re-written as

ZBC = Zf +Rph
(1 + h)I+

R

I+
L

(4.6)

82



Chapter 4. Distance Protec. of Lines Emanating from CIREPPs: Solution

If the CIREPP conforms to the EU-GCs, based on which reactive currents of up to

100% are generated, I+
L will lag I+

R . Hence, as was shown in Figures 3.23(b) and 3.25, the

apparent reactance will be higher than the actual reactance to the fault. Therefore, a small

value can be assigned to XBC−th, as any negative reactance calculation would be due only

to noise and transients and is thus insignificant.

For the CIREPPs meeting the NA-GCs, which maintain a high PF, I+
L leads I+

R , and, as

was shown in Figures 3.19(a) and 3.25, the calculated reactance is smaller than the actual

fault reactance, potentially resulting in a negative apparent reactance. The largest negative

apparent reactance is obtained when the CIREPP operates at the lowest leading PF, so

I+
L leads I+

R more. Moreover, the higher the fault resistance is, the larger the respective

term becomes in (4.6), and the longer the impedance moves in the negative direction of

the X axis. Meanwhile, determining resistive coverage is a basic requisite for setting up

any quadrilateral distance element. The resistive reach setting can be used by a simulation

of the system under study for a CIREPP operating at the minimum allowed leading PF

to ascertain the appropriate setting for XBC−th. For the system used in this study, and

by considering fault resistances of up to 100 Ω and the CIREPP operating at 0.95 leading

PF, XBC−th=200 Ω secures accurate protection for line 25.

Considering the same directions for the currents of the two end relays, DS52 also uses

the logic used by DS25 to identify the fault direction. Obviously, an asserted output of the

AND gate of DS52 indicates a fault outside line 25.

4.4 Proposed Trip Logic

A combination of the proposed methods along with a conventional distance relay is utilized

to develop a comprehensive scheme to protect line 25. The schematic diagram of the

proposed decision logic for DS25 is displayed in Figure 4.6. TrAG, TrBC and TrABC

are the trip signals for AG, BC, and ABC fault loops, respectively. Similar logic is used

for other faults. The DDs of commercial relays are usually current-dependent [39, 62].

However, since the variation in the converter current during a fault is minute and might

be left unnoticed, it is proposed that the DD in the trip logic of Figure 4.6 detects a
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Figure 4.6. Proposed trip logic for DS25.

disturbance if the difference between the one-cycle-apart voltage samples for any of the

phases is sufficiently large, and the instantaneous voltage, defined by (4.7), falls below an

appropriate threshold, e.g., 0.9 pu.

vinst =
√
v2
α + v2

β (4.7)

vα and vβ are obtained by applying the Clarke transform to the three-phase voltages.

The output of this DD may also be ORed with a conventional current-dependent DD for

increased sensitivity during ground faults. Appropriate element of the relay is activated

by this DD along with a phase selection unit, a prevalent element in distance relays [74].

For an AG fault, if the zero-sequence current exceeds 50% of the rated current, Ir, the

output of the AG element of a conventional distance relay, denoted by 21AG, is copied into

TrAG. Although it is not a very common scenario, the step-up transformer between the

84



Chapter 4. Distance Protec. of Lines Emanating from CIREPPs: Solution

grid-side converter and the relay might be ungrounded. For instance, any DG connected

to the 44 kV level of the Hydro One network in Ontario, Canada, must be ungrounded,

and the system withstands the resultant TOVs during ground faults. As another example,

take distance relays installed inside modern WFs, such as the Nordsee-Ost offshore WF

in Germany. Off the shelf turbine transformers are not grounded on the HV side [75, 76].

Therefore, if a ground fault occurs between the grounding transformer and one of the

turbine relays, the fault current recorded by that relay does not include any zero-sequence

current. Therefore, a conventional distance relay fails to properly protect the cable inside

the farm for all fault types, including SLG faults. For such cases, the pilot directional

logic discussed in Section 4.3, whose output for the AG element is denoted by 67AGnew, is

deployed.

If phase B and C outputs of the phase selection unit pick up, the magnitude of the zero-

sequence current is examined. For a sufficiently large zero-sequence component, the trip

decision is up to the distance element devised in Section 4.2, whose output is designated

by 21BCnew. A low zero-sequence term handles the trip decision to 67BCnew, which stands

for the directional logic of Section 4.3 with phase B and C quantities. The same method

is used to protect the line during balanced faults.

4.5 Performance Evaluation for Zone One LLG Faults

A comprehensive study was carried out to scrutinize the performance of the suggested

solutions. A variety of parameters and conditions were inspected, including the fault type,

location and resistance, the GC, the CIREPP power at the fault instant, the converter cur-

rent limit, the winding configuration of the CIREPP’s transformer, and the grid stiffness,

among others. This section discusses the operation of the formula devised in Section 4.2

for LLG faults inside zone one of DS25.
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4.5.1 EU-GC

The proposed method was tested for case 6 in Section 3.4.2, which included a BCG short-

circuit at 80 km of line 25, when the CIREPP conformed with the EU-GCs. As discussed

earlier, the feed-forward compensation of the control system removes the negative sequence

component from the converter current almost completely. Meanwhile, the zero-sequence

current flows through the ground of the CIREPP’s main transformer. Therefore, the

denominator of M new
Rf−BC for DS25 is expressed in terms of the symmetrical components as

IBL + ICL + 2K oI o
L = (a2 + a)I+

L + (2 + 2K o)I o
L (4.8)

The magnitude and angle of the two terms on the right-side of (4.8) are plotted versus

time in Figure 4.7. It is evident that the zero-sequence term is appreciably larger than the

positive-sequence term, because of the converter’s limited overcurrent. As a result, both

the amplitude and phase angle of the denominator of M new
Rf−BC in Figure 4.7 are close to

those of the zero-sequence term. If the CIREPP’s control system is designed to generate

negative sequence current, then the combined magnitude of I+
L and I−L must be lower than

imax, maintaining the dominance of I o
L in the M new

Rf−BC denominator.

The numerator of M new
Rf−BC can also be written in terms of the symmetrical components

as

IBL + ICL + IBR + ICR = (a2 + a)I+
L + 2I o

L + 2I o
R + (a2 + a)I+

R + (a+ a2)I−R (4.9)

Similar to (4.8), the first term that includes I+
L is comparatively negligible. The phase

difference between I o
L and I o

R is not impacted by the CIREPP’s control system and is thus

small. For example, at the time instant pinpointed in Figure 4.7, I o
L and I o

R are 1.454] 93.8°

and 2.484] 96.8° pu, respectively. (a2 + a) equals −1, so with the 180° phase difference

between I+
R and I o

R during a BCG fault, the third term of (4.9) is in phase with I o
L, as well.

For a BCG fault, I−R and I o
R are in phase, so the last term of (4.9) becomes almost 180° out

of phase from I o
L. If |I−R | is less than the magnitude of the sum of the other terms, which

is the most likely scenario, then the whole numerator of M new
Rf−BC will be almost in phase

with I o
L. If |I−R | is larger than the sum of the other terms, then the numerator is 180° out
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Figure 4.7. The numerator and denominator of M new
Rf−BC for case 6 in Section 3.4.2,

(a) Magnitude, (b) Angle.
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of phase from I o
L. Considering the above discussion on the phase angle of the denominator,

the last term on the right side of (4.4) is primarily resistive. For a normal range of |I−R |,
this resistance is positive, while it is negative for excessively large values of |I−R |.

The last term on the right side of (4.4) includes a small amount of reactance as well,

because the angle of the M new
Rf−BC denominator is shifted from I o

L by ] (2+2K o). The level

of the reactance depends on ]K o. Distance relays are normally used for HV lines, where

]K o is small and negative. For instance, ]K o for three typical triangular configurations

of single-, twin- and quad-bundle 110 kV, 220 kV and 380 kV overhead lines with Al/St

435/35, 265/35 and 435/55 conductors is −1.1°, −2.3° and −8.3°, respectively [64]. That

is why several credible references consider it safe to approximate K o with a real number

for most overhead transmission lines [22]. Similarly, the default value for ]K o in many

commercial relays is zero [62,69], and some of them confirm the security of setting K o to a

real number [70]. In addition, the difference between the angles of the M new
Rf−BC numerator

and denominator is quite smaller than ]K o, as 2K o is added to 2 in the multiplier of I o
L

in (4.8).

Negative ]K o yields a positive imaginary part for M new
Rf−BC , which will, in turn, result

in relay underreach. This is more desirable than overreach for zone one, as it is inherently

an underreaching zone [22]. Due to low ]K o, the relay underreach can simply be addressed

by tilting the reactance element of the quadrilateral characteristic similar to [69] and [70].

Having said that, the tilting angle and direction are determined based on K o, not the power

direction and magnitude at the relay location. For a negative ]K o, the reactance element

should be tilted counterclockwise. Moreover, for applications involving underground cable,

where ]K o might be largely negative, the faults unseen at the end of the line can easily

be covered by means of the permissive underreach transfer trip (PUTT) scheme. This

solution is effective because the proposed method results in underreach for DS25.

To examine the worst case scenario, the lines of the system were modeled such that the

largest possible negative ]K o was obtained, while the standards of [77] were met. The

resultant K o was 1.726]−17.7°. Given the magnitudes and angles pinpointed in Figure

4.7, the rightmost term in (4.4) is 6.21+j1.77 Ω. With the 2.86+j40.62 Ω impedance to

the fault, (4.4) yields 9.07+j42.39 Ω, which is the same as the Znew
BC calculated by the

proposed BCG element, depicted in Figure 4.8(a), validating the above analysis. The α-
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Figure 4.8. Operation of the proposed BC element of DS25 for case 6 in Section 3.4.2,

(a) Znew
BC with quadrilateral characteristic, (b) α-based mho, (c) m-based mho

and m-based mho elements also provide accurate protection if they are energized by the

proposed voltage and current. Both α1−new
BC and mnew

BC enter the trip zone in Figures 4.8(b)
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Figure 4.9. The numerator and denominator of M new
Rf−BC for case 5 in Section 3.4.1,

(a) Magnitude, (b) Angle.

and (c) less than 15 ms after the fault inception.

4.5.2 NA-GC

The performance of the proposed method was tested for the same fault when the CIREPP

followed the NA-GC, i.e., case 5 of Section 3.4.1. The magnitude and angle of the terms in

M new
Rf−BC are plotted in Figure 4.9. The presence of the zero sequence component has again
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confined the phase difference between the numerator and denominator. Furthermore, they

are more comparable in magnitude. Therefore, the last term of (4.4) is only 7.29+j0.54 Ω,

leading to Znew
BC =10.15+j41.15 Ω, which is in agreement with the impedances provided by

the proposed BC element in Figure 4.10(a). The slight 0.53 Ω underreach is explained as

in the foregoing case study.

Comparing different GCs, it was found that the relay underreach was generally milder

when the CIREPP operated according to the NA-GCs. The difference between the impacts

of the two categories of GCs can be explained by the relative phase angles of the positive-

and zero-sequence terms in the denominator of M new
Rf−BC in Figures 4.7(b) and 4.9(b). I o

L

leads the zero-sequence voltage by the impedance angle of the CIREPP’s main transformer,

that is, about 90°. For NA-GCs, I+
L is approximately in phase with the positive sequence

voltage. Given that the positive- and zero-sequence voltages are almost aligned over a

BCG fault, I+
L lags I o

L by about 90°. That is why (a2 + a)I+
L leads the zero-sequence

term in Figure 4.9(b) by 89.9°. Consequently, the backward shift in the I o
L angle by the

(2 + 2K o) multiplier is somewhat lessened by (a2 + a)I+
L , and the denominator of M new

Rf−BC

leads (2 + 2K o)I o
L by 9.2°. Conversely, for EU-GCs, where I+

L lags the positive-sequence

voltage by up to 90°, (a2 + a)I+
L may shift the zero-sequence term in the denominator

of M new
Rf−BC in the backward direction, thereby widening the gap between the numerator

and the denominator angles and exacerbating the relay underreach. Indeed, as observed

in Figure 4.7, where the difference between the angles of the denominator and its zero

sequence term is less than 2°, this effect is limited by the low imax.

This issue can be taken into account by tilting angle of the reactance element of the

quadrilateral characteristic adaptively, based on the phase difference between the zero-

and positive-sequence currents. A weighting factor proportionate to the relative absolute

value of the positive- and zero-sequence currents may also be considered. Generally, as the

fault gets closer to DS25, the zero-sequence current increases while the positive sequence

component remains equal to imax, so the effect of I+
L on the relay underreach declines.

Similar to the quadrilateral characteristic, the new α- and m-based mho elements can

also detect the fault correctly. α1−new
BC and mnew

BC , displayed in Figures 4.10(b) and (c), lie

inside their trip zones less than one cycle after the fault is initiated.
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Figure 4.10. Operation of the proposed BC element of DS25 for case 5 in Section 3.4.1,

(a) Znew
BC with quadrilateral characteristic, (b) α-based mho, (c) m-based mho
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Figure 4.11. ZBC and Znew
BC for a BCG fault at 40% of line 25 with Rg=5 Ω and Rph=5 Ω,

(a) EU-GC, (b) NA-GC.

4.5.3 Other Values for Fault Resistance

The operation of the proposed method was tested for other combinations of Rg and Rph as

well, and satisfactory performance was observed. As a representative case, a BCG fault at

40% of line 25 with Rg =5 Ω and Rph=5 Ω is reviewed. Figures 4.11(a) and (b) compare

Znew
BC with ZBC when the CIREPP complies with the EU-GC and NA-GC, respectively.

The results obtained from a conventional distance relay are evidently inaccurate and GC-

dependent. For the EU-GC, ZBC undergoes a large 18.6 Ω underreach, while the NA-GC

leaves ZBC in the fourth quadrant; i.e., the in-zone fault is missed by the relay. The

proposed method, conversely, offers an accurate estimation of the fault reactance. Znew
BC

exhibits only 2.27 Ω and 1.31 Ω underreach for the EU-GC and NA-GC, respectively,

indicating its virtual GC independence.
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Figure 4.12. ZBC of DS25 for cases 7 and 12.

4.6 Performance Evaluation for LL and Balanced Faults

This section inspects fault direction identification for LL and balanced faults, which was

the basic requirement of the pilot scheme developed in Section 4.3, and compares the results

with those of conventional directional elements.

4.6.1 In-Zone Faults

For the BC fault in case 7 of Section 3.4.3, DS25 currents are below IPH−th. Therefore,

the proposed method compares the real and imaginary parts of ZBC with −RBC−th and

−XBC−th, respectively. As shown in Figure 4.12, ZBC is safely above both of the thresholds,

and DS25 declares a forward fault. Also, the phase B and C currents at the remote end,

shown in Figure 4.13(a), exceed 12 and 13 pu, respectively, so the AND gate of DS52 is

deasserted, and that relay declares a forward fault as well. Line 25 is, thus, identified to

be the fault location.

ZBC moves in the negative direction along the X axis for larger fault resistances. ZBC

for the same fault with 100 Ω resistance, denoted as case 12, is displayed in Figure 4.12 as

well, indicating the correct operation of DS25. In addition, the remote-end fault currents

of phases B and C in Figure 4.13(b) are above 5.5 and 6.0 pu, respectively. Thus, DS52

also identifies a forward fault. Figure 4.12 also shows a conventional directional element

and its failure to detect the fault direction for both cases.
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Figure 4.13. DS52 current for LL faults, (a) Case 7, (b) Case 12.

Many other LL and balanced forward faults were tested, and the overcurrent limit

together with the assigned thresholds for the real and imaginary parts of ZBC were able to

correctly identify the fault direction, whereas a conventional directional element was found

to be at risk of maloperation.

4.6.2 Out-of-Zone Faults

4.6.2.1 Internal CIREPP Faults

Numerous reverse faults inside the CIREPP were also simulated. A majority of those

faults have adequately large overcurrents, thereby deasserting the first two inputs of the

AND gate of DS25 and identifying a reverse fault. Two of the simulations that include low
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Figure 4.14. DS25 measurements for a reverse BC fault on the LV side of the CIREPP’s main

transformer, (a) Current, (b) Impedance of the BC element.

currents are reviewed here. Figure 4.14(a) plots DS25 current for a reverse BC fault with

10 Ω resistance on the low-voltage (LV) side of the main transformer. Although the fault

does not include a large resistance, the currents are lower than the IPH−th setting, as they

are limited not only by the fault resistance, but also by the transformer leakage reactance.

ZBC seen by DS25 is shown in Figure 4.14(b). In spite of the low fault resistance,

the real part of ZBC is sizable, as it is determined by the original fault resistance times

the square of the transformer winding ratio, which is 14.8, considering the 34.5/230 kV

voltage ratio and the ddYG configuration. Thus, ZBC is situated far away on the left side

of −RBC−th, specifying a backward fault and preventing line 25 tripping.

As discussed earlier, similar to the impedances located in the fourth quadrant for the

forward faults in cases 5 and 7 of Sections 3.4.1 and 3.4.3, ZBC may lie in the second quad-
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Figure 4.15. DS25 measurements for a reverse BC fault on the HV side of the CIREPP’s main

transformer, (a) Current, (b) Impedance of the BC element.

rant for internal CIREPP faults. Figure 4.15(a) depicts the current for a high resistance

BC fault on the HV side of the main transformer behind DS25. The current magnitude

is close to IPH−th. The resultant ZBC in Figure 4.15(b) is eventually placed in the second

quadrant, endangering the correct operation of a conventional directional element. The

proposed method, however, detects the reverse fault direction successfully, as the high fault

resistance restrains ZBC from moving to the right of −RBC−th.

4.6.2.2 Faults on Subsequent Lines

Similar to cases 3 and 4 of Sections 3.3.3 and 3.3.4, the impedance of DS25 for a balanced

zone two fault lies on the positive side of either the R or the X axis depending on the
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Figure 4.16. ZBC of DS52 for balanced faults on line 45.

GC, and identifies a forward fault. For DS52, however, the apparent impedance is almost

symmetrically located on the negative side of the axes. ZBC of DS52 during a bolted

balanced fault 20 km away from bus 5 on line 45 is shown in Figure 4.16 for the two

GCs. For the NA-GC, the impedance is located well above the R axis due to the 14 MVAr

reactive power consumed by line 25, which puts a conventional directional element, shown

by dashed red line, at risk. For the same reason, the magnitude of the imaginary part of

ZBC given by DS52 when the CIREPP complies with the EU-GC is smaller than that of

DS25. Meanwhile, the impedance of DS52 is placed in the reverse region for both GCs,

which avoids line 25 tripping.

4.7 Effect of Intermediate Infeed

This section investigates the operation of the formula suggested in Section 4.2 during LLG

faults on subsequent lines. KVL in phases B and C of the circuit diagram for a BCG fault

involving intermediate infeed, shown in Figure 3.28, yields

VBL = (Z1 + Z2)(IBL +K oI o
L) + Z2(IBif +K oI o

if ) (4.10)

VCL = (Z1 + Z2)(ICL +K oI o
L) + Z2(ICif +K oI o

if ) (4.11)

where Z1 and Z2 are the positive sequence impedance between the relay and the infeed, and

from the infeed up to the fault, respectively, and the if subscript denotes infeed quantities.
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The fault resistance is considered to be zero at this stage to investigate the effect of the

intermediate infeed exclusively. Adding (4.10) and (4.11), and dividing the result over

(IBL + ICL + 2K oI o
L) determines the effect of the intermediate infeed on Znew

BC .

Znew
BC = Zf + Z2

(
IBif + ICif + 2K oI o

if

IBL + ICL + 2K oI o
L

)
︸ ︷︷ ︸

M new
if−BC

(4.12)

Both the numerator and the denominator of M new
if−BC are similar to the denominator of

M new
Rf−BC and can, in turn, be expressed in terms of the symmetrical components akin to

(4.8). Consequently, it is ascertained that the angles of the numerator and the denomi-

nator of M new
if−BC are close to that of the local zero sequence current, which was absent in

Mif−BC of (3.7). Any phase difference between the numerator and the denominator arises

either from the difference between the angles of I o
L and I o

if , which is negligible, particu-

larly for homogeneous systems, or from the radically different angle of I+
L , whose effect is

insignificant because of the converters’ limited overcurrent.

4.7.1 EU-GC

Case 10 of Section 3.5.2 included a BCG fault 10 km away from bus 5 on line 45 when the

CIREPP followed the EU-GC. Figure 4.17 shows the magnitude and angle of the terms in

M new
if−BC , where the zero sequence component dominates the denominator of M new

if−BC and

makes it closely aligned with the numerator. Plugging the values pinpointed in Figure

4.17 into (4.12) yields Znew
BC = 4.17+j64.85 Ω, which is in agreement with Znew

BC shown in

Figure 4.18, substantiating the above analysis. Znew
BC is located slightly above zone two

of DS25, while the fault is inside the zone. Nevertheless, this is not a malfunction of the

proposed element. The location of Znew
BC stems from the regular infeed effect, which should

be taken into consideration in any application, with or without CIREPP. The important

issue is that, unlike a conventional distance element which suffered from an excessive 50 Ω

underreach for this case, DS25 has underreached by less than 10 Ω in Figure 4.18. In

addition, despite the zero Rf , the real part of ZBC included a 20 Ω fictitious resistance in

Figure 3.32, whereas Znew
BC is on the line replica impedance.
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Figure 4.17. The numerator and denominator of M new
if−BC for case 10 in Section 3.5.2,

(a) Magnitude, (b) Angle.

4.7.2 NA-GC

Case 9 of Section 3.5.1 is similar to the above case, with the exception that the CIREPP

conforms to the NA-GC. The magnitude and angles of the terms in M new
if−BC of DS25 are

plotted in Figure 4.19. The positive-sequence component is overshadowed by the zero-
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Figure 4.18. Znew
BC of DS25 for case 10 of Section 3.5.2.

sequence term in the denominator. Using the values pinpointed in Figure 4.19, Znew
BC

of (4.12) equals 7.58+j68.79 Ω, which is identical with the impedances in Figure 4.20.

Znew
BC exhibits a normal underreach caused by the intermediate infeed, not the substantial

overreach shown by ZBC for this case in Figure 3.27. Furthermore, the similarity between

the impedances in Figures 4.18 and 4.20 reveals the superiority of the proposed method

over conventional distance elements in terms of GC independence.

4.7.3 Combined Effect of Remote and Intermediate Infeed

To study the combined effect of remote and intermediate infeed, a BCG fault was placed

20 km away from bus 5 on line 45 with 10 Ω resistance. The impedances seen by DS25 for

the two GCs are displayed in Figure 4.21. For the EU-GC, there exists a drastic discrep-

ancy between ZBC and the actual fault impedance in both R and X directions in Figure

4.21(a). In contrast, the imaginary part of Znew
BC exhibits the natural underreach caused

by intermediate infeed. Its real part is also in the order of the actual fault resistance. A

similar scenario applies to the Znew
BC calculated for the NA-GC in Figure 4.21(b), signifying

its GC independence, while ZBC is not even remotely close to its anticipated position in

the impedance plane.
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Figure 4.19. The numerator and denominator of M new
if−BC for case 9 in Section 3.5.1,

(a) Magnitude, (b) Angle.

4.8 Relay Setting for SLG Fault Protection

As discussed earlier, ground distance elements generally perform well in the event of SLG

faults. Meanwhile, the settings of these elements that address the remote infeed effect

should not be similar to those of conventional relays. Let us assume a relay with a quadri-

lateral characteristic and a tiltable reactance element. The numerator of MRf−AG in (4.1)
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Figure 4.20. Znew
BC of DS25 for case 9 of Section 3.5.1.
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Figure 4.21. Operation of DS25 for a fault 20 km away from bus 5 on line 45 with 10 Ω

resistance, (a) EU-GC, (b) NA-GC.
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is written in terms of the symmetrical components as

IAL + IAR = I+
L + I o

L + I+
R + I−R + I o

R (4.13)

The limited I+
L can be neglected in (4.13). The angles of I o

L and I o
R are close, as none

of them are affected by the CIREPP’s control system. Moreover, I+
R , I−R and I o

R are ap-

proximately in phase for an AG fault. As a result, the numerator of MRf−AG is almost

aligned with I o
L. The denominator of MRf−AG is also described in terms of the symmetrical

components as

IAL +K oI o
L = I+

L + (1 +K o)I o
L (4.14)

Neglecting I+
L in (4.14), the denominator’s angle is shifted from I o

L by ] (1 + K o). As

discussed, if K o is not a real number, ]K o is normally small and negative. Consequently,

the numerator leads the denominator, regardless of the power flow direction. This is

confirmed by the impedance depicted for the AG fault of case 11 in Figure 4.3. Although

DS25 is at the power-sending end of line 25, and should be expected to overreach, it has

underreached by 2 Ω. The tilting angle for a relay installed at the CIREPP must therefore

be assigned according to ] (1 +K o).

I+
L can also influence the underreach. If I+

L leads I o
L appreciably, it alleviates the back-

ward shift in the angle of the zero sequence term in the denominator of MRf−AG. If the

CIREPP meets the NA-GC, I+
L leads more and results in less underreach. The effect of I+

L

on MRf−AG numerator is trivial, since the sum of the other terms is considerably larger.

Thus, the tilting angle chosen based on ] (1 + K o) can be adaptively modified according

to the magnitude and angle of I+
L and I o

L.

4.9 Conclusion

The adverse effects of remote and intermediate infeed on a distance relay at a CIREPP

substation could not be addressed by existing solutions. A new formula was developed to

calculate the line impedance during LLG faults. The term added by the remote infeed and

the fault resistance in this formula has a very small imaginary part, which leads to accurate
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calculation of the fault reactance. Furthermore, the term added by the intermediate infeed

in the formula is small and along the line replica impedance.

A pilot scheme with minimal bandwidth requirement, which includes two directional

relays, was suggested for balanced and LL faults. Since a conventional directional element

was proved unreliable in applications involving CIREPPs, a new directional element was

devised using unique features of CIREPP fault currents together with the impedance given

by a distance relay. The proposed directional element performed successfully for the faults

inside the CIREPP, in zone one and more distant zones.

The underreach or overreach of the relay at the CIREPP substation due to remote

infeed during SLG faults is irrespective of the power direction and angle, and depends on

the zero sequence compensation factor of the line, as well as the relative magnitude and

angle of the local positive sequence current.
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Chapter 5

Fault Direction Identification for

Distribution Systems with

DFIG-Based DG

The previous chapters studied protection of transmission systems with RE sources. The

rest of the dissertation focuses on distribution systems with RE-based DGs. Distribution

systems have normally been composed of radial feeders supplied from only one end, as a

result of which the fault currents have been unidirectional. However, DG introduction has

led to fault currents that flow bi-directionally in modern distribution grids, thus neces-

sitating directional overcurrent relays to ensure selectivity of the protection system [78].

Directional overcurrent relays commonly operate according to the angle difference between

phasors of the fault current and a polarizing quantity, which is the zero-sequence, a line or

a memorized voltage signal [22].

The need for directional relays arises with almost all DG types. Meanwhile, some

relaying problems are exclusively associated with specific DGs, such as wind-based ones.

DFIG-based wind turbines constitute an appreciable portion of today’s wind power [23].

Based upon the findings presented in Chapter 2, the following unveils that conventional

directional elements malfunction during balanced short-circuits when a distribution system

incorporates DFIG-based wind DG. Section 5.1 shows that the conventional approach of
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Figure 5.1. Layout of a simple distribution system with a DFIG-based DG.

finding the phase angle between the fault current and a voltage signal fails to provide the

correct fault direction. A solution based on discrimination between DFIG and substation

short-circuit currents according to their waveshape properties is proposed in Section 5.2.

The efficacy of this solution is inspected by simulation results of IEEE 34 bus system in

Section 5.3. Concluding remarks are presented in Section 5.4.

5.1 Problem Description

To analyze the basic operation of a directional relay along with a DFIG-based DG, the

test system shown in Figure 5.1 is studied in this section. The crowbar resistance of the

DFIG is zero at this stage. The effect of non-zero crowbar resistance is studied later on.

At t=7 s, a balanced fault is placed on bus 4, i.e., the feeder without the DG. The phase

A current recorded by the relay at the beginning of the feeder with the DG is plotted

in Figure 5.2 for a sub- and a super-synchronous rotor speed, resulting in positive and

negative slips, respectively. The depicted waveshapes agree with the general fault current

pattern described by (2.1). Specifically, the dependence of the current frequency on the

slip is evident.

The relay installed at the beginning of the feeder with the DG in Figure 5.1, denoted by

DiR12, has to be directional in order to avoid unnecessary tripping as a result of the DG

contribution to the faults on the other feeder. Following the common directional relaying
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Figure 5.2. Balanced DFIG fault current for two sub- and super-synchronous rotor speeds.

practice for balanced short-circuits implemented in commercial digital directional elements,

such as in [79] and [80], DiR12 is memory-polarized, i.e., the angle of each phase current

is compared with that of the pre-fault voltage in the same phase. The results of this study

are independent of the directional relay characteristic angle; so, for the sake of simplicity,

the relay characteristic angle is chosen to be zero degrees. DiR12 measures the voltage

phasor using FCDFT. Due to the unconventional properties of a DFIG fault current, the

performance of DiR12 is inspected by the following three current phasor measurement

techniques (PMTs) developed so as to suppress the impact of the fault current’s decaying

dc offset on the measured phasor.

• The 1.25 cycles cosine filtering technique [32],

• The one-cycle CLES-based technique, and

• The one-cycle modified least error squares (MLES)-based method of [81].

The first two techniques are termed common PMTs, as they are widely used in modern

commercial relays [32]. The MLES method is a modified version of the CLES technique

and assumes exponentially decaying amplitude for the fundamental component, which is

the case for DFIG short-circuit currents.

Apart from the sampling rate, which is 3840 Hz in this chapter, the frequency of the

signal under study is also required to build up the digital filters associated with the above

PMTs. As discussed in Chapter 2, the main frequency tracking approach used in modern

industrial relays is to find the voltage frequency and update all of the relay subroutines,

including the digital filters that compute the current phasor.
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Figure 5.3. Phase difference between the current and memorized voltage for the fault of

Figure 5.2, considering voltage frequency for all digital filters, (a) s=+24%, (b) s=−20%.

The same frequency tracking approach is adopted to analyze the response of the com-

mon directional relaying practice based on the current and voltage phase angle difference.

Figure 5.3 plots the angle difference between the phase A memorized voltage and the

current recorded by DiR12 during the fault depicted in Figure 5.2 for both the sub- and

super-synchronous rotor speeds using the three current PMTs discussed above. The pos-

itive direction for the current recorded by DiR12 is assumed to be from bus 1 to bus 2.

Prior to the fault, the power flows from the substation to bus 2 and the load connected to

bus 3. Thus, the pre-fault phase difference between the voltage and the current of DiR12
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is correctly around zero, inside the [−90°,+90°] range. After the fault, however, the cur-

rent measured at the DiR12 location is the DFIG contribution to the fault on bus 4. In

other words, the current direction is reversed and flows towards bus 1, so the phase differ-

ence has to normally exit and remain outside the [−90°,+90°] interval following the initial

post-fault transient period of the PMTs in order to indicate the backward direction of the

fault. However, it is shown that the measured phase difference starts oscillating inside and

outside the [−90°,+90°] range for both rotor speeds, regardless of the PMT employed, as

a result of which DiR12 operation is utterly unreliable.

These phase oscillations occur because the current frequency is quite different from

the voltage’s 60 Hz frequency, which is used to build the digital filters that compute the

current phasor. Hence, there exists an apparent discrepancy between the current’s actual

fundamental frequency component and the measured one, which is oscillatory both in

magnitude and phase angle.

The above problem cannot be addressed simply by using the actual current frequency

to develop the digital filters of the current PMTs. To demonstrate this issue, the phase

differences shown in Figure 5.4 for the above fault conditions are obtained by considering

the current and voltage frequencies for calculating the current and voltage phasors, respec-

tively. Again, the phase differences for both sub- and super-synchronous cases oscillate

inside and outside the [−90°,+90°] interval, irrespective of the PMT utilized, periodically

indicating reverse and forward directions for the fault location. The oscillating phase dif-

ferences stem from the fact that the measured voltage and current phasors correspond

to different frequencies, thereby rotating at different speeds and making it theoretically

impossible to find a meaningful and fixed phase difference between them.

The problems observed for DFIG-based DGs do not apply to distribution systems with

SCIG-based DGs, as their fault current frequency is close to the nominal frequency.
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Figure 5.4. Phase difference between the current and memorized voltage for the fault of

Figure 5.2, considering voltage and current frequencies for their respective digital filters,

(a) s=+24%, (b) s=−20%.

5.2 Proposed Solution

5.2.1 Proposed Directional Relaying Scheme

It was demonstrated that the common directional relaying based on comparing the phase

difference between voltage and current signals fails to detect the fault direction when a

DFIG-based DG is involved. This section proposes a new approach to detect the fault

direction for such conditions according to the fault current’s waveshape properties. The
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Figure 5.5. Flowchart of the proposed scheme for fault direction identification in the presence

of DFIGs.

waveshapes of DFIG balanced fault currents include unique features that can distinguish

them from the fault currents flowing from the distribution substation.

Figure 5.5 illustrates the flowchart of the proposed scheme. A typical current-based

DD that operates based on the cycle-to-cycle comparison of current samples triggers this

scheme. If the fault is balanced, the waveshape recognition technique, discussed in the

next subsection, will determine whether the current possesses the distinctive waveshape

attributes of DFIG fault currents. The flow of a DFIG fault current at the relay location

signifies that the fault is between the distribution substation and the relay location, and the

fault direction is determined accordingly. In contrast, the absence of DFIG fault currents’

waveshape properties demonstrates that the current recorded by the relay is a substation

fault current, and the fault location is between the relay location and the DFIG-based

DG. The specified direction is then exported to the overcurrent element to make the final

tripping decision.
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5.2.2 Proposed Waveshape Recognition Technique

Thevenin equivalent based modeling of aggregate transmission systems results in substation

fault currents composed of a constant sinusoidal component and a decaying dc offset with an

equal or smaller magnitude, which were expressed by (2.4). The previously discussed PMTs

effectively suppress the decaying dc offset and provide the accurate fundamental frequency

phasor. For example, the current described by (2.4) is plotted in Figure 5.6(a) for θ=90°,

τ =40 ms, and Im=1. The figure also displays the magnitude of the phasors obtained by

the three current PMTs mentioned earlier. For all three techniques, the calculated phasor

remains virtually fixed at a very narrow margin of the fundamental component’s amplitude

following their initial response time.

A DFIG fault current and its measured phasor, however, exhibit a different pattern.

As a representative case, Figure 5.6(b) shows the current described by (2.1) for identical

unity ac and dc component amplitudes, and for dc and ac time constants equal to 40 ms

and 80 ms, respectively. The ac component frequency is 60 Hz. The above PMTs are

again employed to find the current phasor. The decaying nature of the ac component is

directly reflected in the measured phasors. The declining phasors of Figure 5.6(b) are in

clear contrast with the uniform pattern observed for the phasors plotted in Figure 5.6(a).

As defined by (5.1), ρ1φ calculates the relative percentage decline in the magnitude of

the measured phasor for the fault current in one phase.

ρ1φ =
|If1| − |If2|
|If2|

× |if−ext

If2

| × 100 (5.1)

In this relation, If1 is the maximum of the measured fault current phasor within the

first half-cycle after the initial response time of the employed PMT. If2 is the minimum

magnitude of the measured fault current phasor in the second half-cycle after the response

time of the PMT applied to the current. if−ext is the largest magnitude for the current

samples prior to If2 location and 4 ms after the DD activation. if−ext is supposed to be the

extremum associated with the fundamental component. The 4-ms delay avoids mistaking

the initial current extremums that might be generated due to resonance for the extremum

associated with the fundamental component.
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Figure 5.6. Comparison of the phasor measured for substation and DFIG fault currents, (a)

Current of (2.4) for θ=90°, τ=40 ms and Im=1, (b) Current of (2.1) for identical ac and dc

components, with 40 ms and 80 ms time constants, respectively.

If1 and If2 obtained by different PMTs along with if−max and the resultant ρ1φ are

tabulated in Table 5.1 for the two currents shown in Figure 5.6. The almost uniform phasor

measured for the current of Figure 5.6(a) has led to very small ρ1φs, whereas the indices

obtained for Figure 5.6(b) are large due to the DFIG fault current’s decaying trend. In

other words, ρ1φ is capable of differentiating between the fault currents flowing from the

distribution substation and a DFIG-based DG. The gap between ρ1φ for substation and

DFIG fault currents is widened by the second ratio on the right side of (5.1), as the dc

offset of a substation fault current never exceeds its fundamental component’s amplitude,

which is not the case for DFIG fault currents.

The choice of PMT for finding the parameters required by (5.1) affects the measured ρ1φ.
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Table 5.1
Parameters of (5.1) for the Currents Shown in Figure 5.6

Fault current if−max PMT If1 If2 ρ1φ (%)

Figure 5.6(a) 1.812

CLES 1.006 0.9953 1.96

MLES 1.007 0.9945 2.29

COS 1.014 0.9883 4.77

Figure 5.6(b) 1.717

CLES 0.8998 0.7277 55.8

MLES 0.9902 0.8017 50.35

COS 0.8956 0.7273 54.63

The MLES technique tailors the CLES technique to cope with a decaying ac component,

and provides excellent results for both of the synthetic currents depicted in Figure 5.6.

However, the gain responses of the sine and cosine digital filters associated with the MLES

technique, displayed in Figure 5.7(a), indicate that this technique is extremely prone to

fault current high-frequency contaminations. Harmonics are not considered for developing

the filters whose frequency responses are shown in Figure 5.7(a). Considering harmonics

reduces the filter gain for the harmonics to zero, but further deteriorates the frequency

responses for the non-harmonic components, which are quite likely to be present in the

fault current due to noise, resonance, and so on. The frequency responses of the CLES

technique’s sine and cosine filters, plotted in Figure 5.7(b), illustrate that common PMTs

do not suffer from this deficiency.

On the other hand, some oscillations are superimposed on the phasors measured by

the common PMTs when the current’s fundamental magnitude is variable, because such

currents include non-harmonic components in their spectrum. However, as observed in

Figure 5.8, which displays the normalized spectrum of the current in Figure 5.6(b), the

resultant components are mostly situated in the low-frequency region, and are thereby

damped by the sine and cosine filters associated with the common PMTs. As shown

in Figure 5.7(b), even for the higher frequency components, except for the cosine filter’s

response inside a limited interval, the CLES filters’ gains are lower than unity. As a result,

the mentioned oscillations in the phasors provided by the common PMTs are relatively

small and do not obscure the phasors’ overall decaying pattern for DFIG fault currents.

Among the common PMTs, the CLES technique is chosen for its faster speed than the
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Figure 5.7. Frequency response of the digital filters, (a) MLES method, (b) CLES method.

Frequency (Hz)

|i
(f
)|

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Figure 5.8. Normalized spectrum of the current shown in Figure 5.6(b).

cosine filtering method.

ρ3φ is defined as the sum of ρ1φs for the three phase currents. Because of the quite

large value of ρ1φ, and subsequently of ρ3φ, for DFIG fault currents, a fixed thresholding
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Figure 5.9. Indices obtained for the currents described by (2.4) with respect to the fault

inception angle and dc offset time constant, (a) ρ1φ, (b) ρ3φ.

approach is applied to classify fault currents. The threshold setting criterion is founded

upon the maximum indices obtained for the fault currents described by (2.4). The set of

three-phase currents expressed by (2.4) is obtained by adding ±120° to θ. In (2.4), θ and

τ were varied in the ranges of [−180°,+180°] and [1, 100] ms, respectively, and the phasors

for each pair of θ and τ were inspected. The results, plotted in Figure 5.9, show that ρ1φ

of phase A and ρ3φ reach 6.17% and 9.81% at their maximum, respectively. Considering a

100% plus safety factor to address any effect of noise and other transients, ρ3φ= +20% is

selected as the threshold for fault current classification.
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Figure 5.10. The diagram of IEEE 34 bus system with a DFIG-based DG.

5.3 Simulation Results

The performance of the proposed method was comprehensively studied for the IEEE 34 bus

system, simulated in the PSCAD/EMTDC program, as a benchmark distribution system

model. The simulated currents were exported to Matlab, where the proposed method was

implemented. The test system as well as the specifications of a DFIG-based DG connected

to bus 848 on the far right end of the system are displayed in Figure 5.10. The control

mechanism for the DFIG converters along with the wind turbine specification and the pitch

angle control system are based on the industrial models of [82]. After the DG is connected,

the feeders shown by a black solid line must be protected by directional relays in order to

ensure selectivity of the protection system.

Fault direction was determined using the proposed method for a variety of conditions.

The tests included different fault locations, wind speeds, fault inception angles, crowbar

resistances, etc., and were conducted for different relay locations. The results were promis-

ing and corroborated the efficacy of the proposed method. A part of these results that
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Table 5.2
Performance of the Proposed Method for Different Faults

Fault location Relay location Slip (%)
ρ1φ(%)

ρ3φ(%) Fault direction
Phase A Phase B Phase C

B806 B814 +22 19.5 17.9 13.4 50.8 I †

B816 B828 +22 22.9 21.6 17.7 62.2 I

B852 B858 +22 25.4 24.3 20.1 69.8 I

B840 B844 +22 27.2 25.7 21.8 74.7 I

B816 B814 +22 0.4 4.7 0.2 5.3 J ‡

B806 B814 0 18.3 16.2 12.1 46.6 I

B816 B828 0 22.2 20.3 16.6 59.1 I

B852 B858 0 24.6 22.7 18.4 65.7 I

B840 B844 0 26.3 24.5 20.8 71.6 I

B816 B814 0 0.3 4.7 0.3 5.3 J

B806 B814 -25 17.5 14.9 11.0 43.4 I

B816 B828 -25 21.7 19.5 15.5 56.7 I

B852 B858 -25 23.3 21.3 17.1 61.7 I

B840 B844 -25 25.4 23.6 20.0 69 I

B840 B858 -25 0.4 4.8 0.3 5.5 J

† Towards the substation.

‡ Towards the DG.

corresponds to zero crowbar resistance is reported in Table 5.2. Some of the performed

tests are graphically presented in this section. First, two case studies that include different

fault locations and wind speeds are reviewed. Then, the effect of crowbar resistance is

analyzed, and finally, the operation of the proposed method for a fault current flowing

from the substation is demonstrated.

5.3.1 Case Studies

5.3.1.1 Fault on Bus 842

A balanced fault is placed on bus 842 at t= 9 s, when the DFIG slip is +6.7%, and the

crowbar resistance is zero. The three phase currents recorded at bus 844 are depicted in
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Figure 5.11. A relay at bus 844 must classify the current as a DFIG fault current and, in

turn, identify the fault direction towards the distribution substation, that is, bus 800. The

decaying pattern of the ac component and the measured phasor is obvious for all phases,

and ρ1φ equals 38.58%, 22.59% and 16.47% for phases A, B and C, respectively, which is

fairly above the maximum ρ1φ found in Figure 5.9(a). As a result, ρ3φ becomes 77.64%,

i.e., about four times larger than its threshold, and the current is correctly labeled as a

DFIG one.

5.3.1.2 Fault on Bus 802

The current recorded by the relay located at bus 832 for a fault on bus 802 at t= 9 s is

shown Figure 5.12. Due to the increased wind speed, the DFIG slip at the fault instant

is −20%. Here again, the crowbar resistance of the DFIG is zero. Unlike the last-studied

fault, which was relatively close to the DG, this fault is located farthest from the DFIG,

and therefore the short-circuit is not severe, leaving higher voltage at the DG terminal and

a lower level of demagnetization for the DFIG. Therefore, the decline rate of the phasors

in Figure 5.12 has reduced, compared to those of the previously discussed fault currents.

Nevertheless, ρ1φ is still as large as 20.86%, 22.14% and 11.27% for phases A, B, and C,

respectively, adding up to ρ3φ=54.27%, which is more than twice the 20% threshold, and

can reliably identify the DFIG type of the fault current.

5.3.2 Effect of Crowbar Resistance

For all of the faults studied so far, the crowbar resistance was zero. However, in practice,

some resistance is added to the crowbar circuit, as it improves the DFIG operation during

disturbances by decreasing the short-circuit current level, dampening generator’s torsional

oscillations, etc. [33]. Figure 5.13 shows the currents recorded at bus 842 for a fault on bus

860, while the machine slip is −18% and the crowbar resistance is 0.1 pu. The decaying rate

of the sinusoidal component in Figure 5.13 is significantly larger than that of the previously

shown fault currents, as a result of which ρ1φ has grown to 853.64%, 478.90% and 465.80%

for phases A, B and C, respectively, and ρ3φ equals 1798.34%, which is considerably in
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Figure 5.11. Currents recorded at bus 844 for a fault on bus 842,

(a) Phase A, (b) Phase B, (c) Phase C.
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Figure 5.12. Currents recorded at bus 832 for a fault on bus 802,

(a) Phase A, (b) Phase B, (c) Phase C.
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Figure 5.13. Currents recorded at bus 842 for a fault on bus 860 with non-zero resistance for

the crowbar, (a) Phase A, (b) Phase B, (c) Phase C.

excess of the assigned threshold. The improved performance of the proposed method when

resistance is inserted into the crowbar path was expected. The crowbar resistance raises
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the effective resistance of the rotor circuit. Thus, the short-circuit transient time constant,

i.e., T ′ in (2.1), is decreased, and the amplitude of the ac component declines faster.

Consequently, ρ3φ grows excessively, and the proposed method performs exceptionally well

for the more commonly observed shape of DFIG fault currents.

5.3.3 Substation Fault Currents

The almost constant ac magnitude for the substation short-circuit currents leads to very

small values for ρ3φ. For the fault studied in Section 5.3.2, the current flowing through bus

852, which originates from the substation, is shown in Figure 5.14. The measured phasors

exhibit constant magnitudes for all three phases, and ρ1φ is as small as 0.24%, 4.86% and

0.10% in phase A, B and C respectively, resulting in ρ3φ=5.2%, which is safely below the

set threshold. Hence, the proposed method identifies the fault location to be between the

relay location and the DG. The proposed method was tested for several other substation

fault currents, and ρ3φ did not reach even half of its threshold.

5.4 Conclusion

The frequency of memorized voltage that polarizes directional elements during balanced

short-circuits is closely tied with the nominal frequency. The fault current frequency for

DFIG-based wind DGs, however, may considerably deviate from the nominal frequency

depending on wind speed. On this basis, the impossibility of finding fault direction through

the common method of phase angle comparison between the current and voltage phasors

was demonstrated. In addition, a novel method was proposed to address this problem by

classifying fault currents according to their waveshape properties. The decaying pattern

of the ac component for DFIG fault currents proved to be a key feature in discriminating

such currents from the short-circuit currents that originate from the distribution substation.

The index ρ1φ measured the percentage decline in the current phasor within the two cycles

after the fault inception. The sum of ρ1φ for the three phases was able to reliably classify

fault currents. Operation of the proposed method was tested for the IEEE 34 bus system.
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Figure 5.14. Currents recorded at bus 852 for a fault on bus 860,

(a) Phase A, (b) Phase B, (c) Phase C.
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Successful results were obtained regardless of the relay and fault location. Particularly

promising performance was observed when a resistance is placed along the DFIG’s crowbar

path, which is the most likely situation in practice.
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Chapter 6

Fault Type Classification in

Microgrids with PVDGs

Stemming from the different operation modes and the diversity of generation technolo-

gies, the protection of a microgrid can be challenging [83]. Traditional relaying schemes for

LV and medium voltage systems may fail to protect a microgrid, particularly if converter-

interfaced renewable DGs, such as photovoltaic DGs (PVDGs), are involved, as is often the

case. Similar to CIREPPs discussed in Chapters 3 and 4, PVDGs have limited fault cur-

rents, to which the overcurrent elements are normally insensitive [84]. Various publications

offer protection solutions for microgrids by means of adaptive and communication-assisted

techniques [84–89]. Despite their successful fault detection, these methods do not provide

information on the fault type.

Next-generation microgrids are expected to be smart and fault-resilient, and should

thus maintain the operation of sound phases during the unbalanced short-circuits, which

account for the majority of faults. On the other hand, single-phase protective devices

are increasingly installed in modern distribution systems. That is why several proposals

have been put forward by the industrial community to apply single- and double-pole trip-

ping in distribution systems [90]. With the prospect of substantial improvement to system

reliability, this plan has already been put into practice by some utilities and relay manu-

facturers [91,92]. The Alabama Power Company and Progress Energy Florida are cases in
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point [92, 93].

Selective phase tripping requires fault type classification by the microgrid protection

system. In transmission system relays, fault type classification is an imperative subrou-

tine, the output of which is needed for several functions, e.g., single-pole autoreclosure

and blocking of ground distance elements during phase faults. An early fault type identi-

fication method still used by some relay manufacturers is based on the magnitudes of the

impedances measured for different fault loops [94]. The inaccuracy of this approach for

short lines, among other shortcomings, led to the development of several classifiers exploit-

ing the phase differences between the superimposed sequence currents [95–97], which have

been proven effective for conventional power systems. Some of these methods, however,

need high-bandwidth communication infrastructure [96, 97], which is not normally avail-

able in LV and medium voltage systems. Another group of relays utilize overcurrent-based

methods using phase and sequence currents with satisfactory performances for conventional

systems [69,98]. Many classifier based on artificial intelligence, decision tree, mathematical

morphology, pattern recognition and wavelet transform, among other methods, have also

been proposed in the literature [99–103], but have remained without industrial applica-

tion to date, due to practical limitations, including noise sensitivity, complexity and high

computational burden.

This chapter studies fault selection for a microgrid. The test microgrid is overviewed

in Section 6.1. Section 6.2 reveals that the existing fault type classifiers malfunction for

microgrids that include PVDGs. The analogy between the grid-side converters makes this

study equally applicable to the systems with Type IV wind DG. The unveiled problems

can also be encountered in transmission systems to which CIREPPs are connected. Two

new methods are developed in Section 6.3 to determine the fault type for not only a

microgrid with PVDG, but any three-phase system. Section 6.4 verifies the performance of

the proposed classifiers. It is shown that they perform successfully for both the autonomous

and grid-connected modes of a microgrid, and do not require communication facility. Their

other salient features include robustness against fault resistance and high-frequency noise,

as well as independence from PVDG’s PF in the course of faults. Section 6.5 concludes

this chapter.
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Figure 6.1. Single line diagram of the test microgrid.

6.1 Test Microgrid

Simulated by PSCAD/EMTDC program, the 34.5 kV, 60 Hz system of Figure 6.1 is used

for this study. The system parameters are shown in the figure. The system is balanced at

this stage. The 9.2 MW PVDG at bus 4 along with a synchronous DG (SDG) connected

to bus 3 can supply all of the loads. Therefore, the substation breaker can be opened,

allowing the system to operate as an isolated microgrid. During the grid-connected mode,

the SDG is normally open. R14 is one of the relays that protect the feeder between buses 1

and 4. The fast dynamics of the photovoltaic source are essentially decoupled from the grid

by the dc capacitor. Thus, the photovoltaic source together with the dc-dc converter are

represented by a controllable current source. The specifications of the PVDG transformer

are 14 MVA, 4.16/34.5 kV, X=0.1 pu and dYG. The PVDG can ride through faults using

a braking chopper circuit [56].

6.2 Performance of Existing Fault Type Classifiers

6.2.1 Current Angle-based Methods

The relative angles of the superimposed sequence currents are utilized by many relays,

e.g., [62], to determine the fault type. The approach developed in [95] and adopted by [62]
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Figure 6.2. Angles of superimposed sequence currents of R14 for a bolted AG fault at bus 2

when the PVDG is not in service.

ensures accuracy for all conditions, including a microgrid with conventional sources. Take,

for instance, the system of Figure 6.1 in the grid-connected mode when the PVDG is not

in service. The angles of the three superimposed sequence currents of R14 for a bolted AG

fault at bus 2 are within approximately 4° of each other in Figure 6.2, identifying the fault

type accurately.

Proper classification for this AG fault when the PVDG is in service entails aligned se-

quence components for the superimposed currents flowing from the PVDG. Conventional

power plants connected to transmission networks, where the method of [62] has been uti-

lized for years, deploy SGs, modeled by voltage sources for fault studies [41]. Therefore,

the characteristics of fault currents, including their angles, are determined by the fault

properties, such as its type and impedance. A PVDG, in contrast, is connected to the

grid/microgrid through a VSC, which operates as a current source [45]. If the HV winding

of the PVDG transformer is grounded star, as is normally the case, then the angle of the

PVDG zero-sequence current is still mainly determined by the fault properties. The pos-

itive and negative sequence currents, however, are regulated by the control system of the

VSC and its internal references.

Figure 6.3 displays the PVDG’s grid interface and the current control loop for its grid-

side converter in the rotating reference frame with PI controllers [45]. A PLL similar to

that of [55] provides the dq quantities. The d-axis reference current is given by an outer

control loop that regulates the dc link voltage. The reactive power of the converter is
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Figure 6.3. The PVDG’s current control loop and grid interface.

controlled through the q-axis reference current. PVDGs operate at 0.95 plus PF in North

America. Meanwhile, requirements in Europe for reactive current generation by the RE-

based sources up to the rated capacity during faults, mentioned in Chapter 3, result in

non-zero iq−ref [55].

The signals added to the outputs of the PI controllers in Figure 6.3 include Vgd and

Vgq, which denote the d and q components of the grid voltage, Vg. Besides the decoupling

function, the addition of Vgd and Vgq to the controllers’ outputs also improves the transient

response of the converter [45,59]. That is why voltage feed-forward is normally present in

the stationary reference frame controllers as well. In fact, the voltage feed-forward makes

the disturbances and transients of Vg also appear in the voltage of the converter side of the

LC filter, Vt.

For example, consider the above AG fault at t= 2 s when the PVDG is connected to

the system and generates its rated power at unity PF before the fault. After the fault

inception, the converter generates equal active and reactive powers, complying with EU-

GCs. The unbalanced voltages on the LV side of the PVDG transformer are displayed

in Figure 6.4(a). As a result of the voltage feed-forward, Vt exhibits similar imbalance.

Therefore, the difference between the power-frequency content of Vg and Vt, which is the

voltage across the LC filter and determines the converter current, becomes balanced. Figure

6.4(b) shows this voltage for the above fault after being passed through an LPF to eliminate

the switching pulses. This disturbance-free voltage leads to the converter current of Figure

6.5(a). Figure 6.5(b) illustrates that the magnitude of the negative and zero sequence
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Figure 6.4. PVDG voltage for a bolted AG fault at bus 2,

(a) Voltage at the LV side of the transformer, (b) Voltage across the inverter’s LC filter.

components of the current are negligible, and only the positive sequence current increases

by about 20% following the fault. The limited rise in the current comes from a saturation

block applied to the reference currents to protect the converter against overcurrents.

Since the currents injected by the PVDG do not follow the regular pattern of AG fault

currents, the angles of the superimposed sequence currents of R14, shown in Figure 6.6, do

not select the faulted phase correctly. The ∆ sign in the figure designates the superimposed

signals. ∆I− leads ∆I+ by 128.0°, which falls under the sector defined for BG faults in [62].

Meanwhile, ∆I o lags ∆I− by 110.6°, indicating a CG or an ABG fault. Hence, the method

of [62] is unable to identify the fault type. The same scenario applies to other sequence

current-based classifiers.
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Figure 6.5. PVDG current at the LV side of the transformer for the fault of Figure 6.4,

(a) Instantaneous current, (b) Magnitude of sequence components.
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Figure 6.6. Angles of superimposed sequence currents of R14 for the fault of Figure 6.4.
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6.2.2 Current Magnitude-based Methods

Another classification approach is based on the changes in the magnitudes of the phase or

LL currents after a fault. Let us first analyze the basic current magnitude-based approach,

according to which the phases with the largest overcurrents are the faulted ones [104]. This

method is employed by the existing selective phase tripping devices utilized in distribution

systems [91, 93]. However, it is not used by transmission system relays, as it is vulnerable

to weak infeeds and might suffer from system imbalance, particularly for high resistance

faults. Meanwhile, it will be unveiled that the presence of PVDGs makes this method

unreliable even for a perfectly balanced microgrid with no weak infeed. The following

demonstrates that,

1. the unfaulted phases may have larger overcurrents when the system includes PVDGs,

and

2. the overcurrent levels are highly dependent on PVDG’s reactive current level during

faults.

Figure 6.7(a) shows the HV-side current of the PVDG transformer when it operates at

unity PF during a bolted BCG fault at bus 2 of the grid-connected microgrid. Although

phase A is healthy, its current is 0.27 kA, exceeding phase B’s current by about 0.1 kA.

The larger phase A current originates from the angle between the converter-generated

fault current and the zero sequence current flowing through the ground of the PVDG

transformer. As discussed, the converter’s negative sequence current is negligible, and the

current of Figure 6.7(a) consists of only the positive and zero sequence components, whose

magnitudes and angles are plotted in Figures 6.7(b) and (c), respectively. The sequence

components have been measured with respect to phase A. The positive sequence current of

phase B lags the −2.9° positive sequence angle in Figure 6.7(c) by −120°. As a result, the

phase difference between the positive and zero sequence components for phase B current

becomes 139.7°, whereas the same quantity for phase A is 100.4°. In other words, the

two sequence components nearly cancel each other in phase B current, which drops below

even the pre-fault level. Unlike the case of weak infeed, for which the close phase current

magnitudes make phase selection difficult, the basic overcurrent-based classifier clearly
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Figure 6.7. PVDG current at the HV side of the transformer during a BCG fault when the

PVDG’s PF is unity, (a) Instantaneous current, (b) Magnitude of sequence components, (c)

Angle of sequence components.
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Figure 6.8. PVDG current at the HV side of the transformer during a BCG fault when the

PVDG generates rated reactive current, (a) Instantaneous current, (b) Magnitude of sequence

components, (c) Angle of sequence components.
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Figure 6.9. Superimposed LL currents of the PVDG for the fault of Figure 6.4.

misidentifies the fault type, even though the zero sequence component does not dominate

the PVDG current in Figure 6.7.

Figure 6.8 depicts the PVDG current for the same fault when the PVDG complies with

the requirements of EU-GCs and generates the rated reactive current during the fault.

Figure 6.8(a) shows that the change in the reactive current of the PVDG raises phase B

current beyond the other currents. The zero sequence term in Figures 6.8(b) and (c) is

similar to that in Figure 6.7. Conversely, the angle of the positive sequence component

is shifted backwards by about 90° to meet the reactive current requirement. As a result,

the phase difference between the zero and positive sequence terms of phase B current

has reduced to 43.3°, i.e., these two components do not cancel each other anymore. The

classification provided by the basic current magnitude-based method is thus dependent on

the PVDG’s PF and unreliable.

To address the effect of weak infeeds, current magnitude-based classifiers of commercial

relays normally remove the zero sequence current. Hence, the variable angle between the

positive and zero sequence currents should no longer be a problem. Meanwhile, these

methods select incorrect phases for other reasons. Take, for instance, the classifier of [69],

which compares the magnitudes of the superimposed LL currents. In a conventional system,

an SLG fault results in two large superimposed LL currents that include the faulted phase,

and the third signal is zero. However, the superimposed LL currents of the PVDG for the

AG fault of Figure 6.4, displayed in Figure 6.9, are identical in magnitude since the zero

sequence component is not present in the LL quantities and the negative sequence term is
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removed from the PVDG current by the voltage feed-forward signal. A three-phase fault

would consequently be detected by [69]. Similar maloperation is observed for LLG faults.

The current magnitude-based method of [98] defines the following two delta signals for

each phase current.

DELΦ = |IΦ − IΦ−prf − I o|2 (6.1)

DEL1Φ = |IΦ − IΦ−prf |2 (6.2)

The prf subscript denotes pre-fault quantities, and Φ is the respective phase. To detect

an SLG fault, DEL of the faulted phase must be larger than 2.25 times DEL of each of

the remaining phases. For an LLG fault, 2.25DEL of the unfaulted phase is lower than the

DEL of the other phases. If DEL signals do not identify an unbalanced fault, then DEL1

signals are used with the same rule to identify an LLG fault. If none of these conditions

are met, a balanced fault is deduced.

DEL and DEL1 for the PVDG current during the BCG fault of Figure 6.7 are shown

in Figure 6.10. The base to per-unitize the currents is the rated current of the PVDG.

The removal of the zero-sequence term in (6.1) and the absence of the negative sequence

current have made the DEL of all phases identical in Figure 6.10(a). Hence, DEL1 signals

are checked for an LLG fault. Since DEL1 includes the zero sequence term, it is affected

by the angle between the positive and zero sequence currents, which was previously proved

to be dependent on the PVDG’s reactive current level. That is why the relation between

the DEL1 curves of Figure 6.10(b) is similar to the current magnitudes of Figure 6.7, and

the method of [98] mistakes them for the DEL1’s of a CAG or a balanced fault, depending

on when the decision is made. Even for the BCG fault of Figure 6.8, where phase A has a

lower current, 2.25DEL1A is larger than DEL1C , and the fault type is misidentified again.

6.3 Proposed Solutions

This section presents two new fault type classifiers that work for not only the microgrids

with PVDGs, but for any three-phase system. Let us first investigate the relations between

the angles of the sequence voltages for two SLG and LLG faults. Unlike the methods
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Figure 6.10. The parameters of [98] for the fault of Figure 6.7, (a) DEL, (b) DEL1.

reviewed in the last section, which relied on superimposed quantities, the following analysis

focuses on total fault voltages, as the angles of the superimposed voltages will later be

shown to be affected by the PVDG’s PF over faults. As displayed by Figure 6.11(a), in

which the f and n subscripts designate the fault location and the system neutral, the

sequence circuits calculated with respect to phase A are connected in series for an AG

fault. KVL for the outer loop is expressed by (6.3).

V +
f + V −f + V o

f − 3RfI
o
f = 0 (6.3)

Neglecting Rf at this stage, the sum of the negative and zero sequence voltages is out

of phase from V +
f in (6.3) by 180°. On the other hand,

V −f = −Z−totI−f (6.4)
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Figure 6.11. Sequence elements for an AG fault,

(a) Sequence circuits connection, (b) Voltage phasors.

V o
f = −Z o

totI
o
f (6.5)

Z−tot and Z o
tot are the total impedances of the negative and zero sequence circuits, re-

spectively. Since I−f and I o
f are equal for an AG fault, phase lead of the negative sequence

voltage over the zero sequence voltage, denoted by δo, is similar to the phase difference

between Z−tot and Z o
tot, which is very small [22]. Consequently, as illustrated by Figure

6.11(b), δo and the phase lead of the negative sequence voltage over the positive sequence

voltage, designated by δ+, are around 0° and 180°, respectively, for a bolted AG fault.

The phase differences between the sequence voltages of R14 for the AG fault of Figure

6.4, plotted in Figure 6.12(a), are in close proximity of 0° and 180°. Stronger sources in

a system provide stiffer positive sequence voltages, as a result of which δ+ and δo equal

these angles more precisely.

In the presence of fault resistance, 3RfI
o
f leads the aligned V −f and V o

f by the zero

sequence impedance angle. Thus, as shown by Figure 6.11(b), in order for V −f +V o
f −3RfI

o
f

to be out of phase from V +
f by 180°, V −f and V o

f advance in phase. The higher Rf is, the

larger δ+ should be. The distribution utilities traditionally consider 40 Ω as the maximum

resistance between a downed conductor and the ground [105]. Larger fault resistances have
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Figure 6.12. R14 voltage angles for the fault of Figure 6.4, (a) Rf =0 Ω, (b) Rf =100 Ω.

also been reported in the literature [106]. For Rf =100 Ω, Figure 6.12(b) depicts the angles

of R14 sequence voltages during the AG fault of Figure 6.12(a). The high Rf makes the

voltage drop at the PVDG terminal small, and the converter continues to operate at unity

PF. δ+ has reduced to −108.5° compared to Figure 6.12(a).

To study extreme scenarios, significantly larger fault resistances were also tested. It was

found that variations of ]V −f and ]V o
f with respect to Rf do not follow a linear pattern,

and increasing Rf further has virtually no effect on the angles between the sequence volt-

ages. Figure 6.13 plots δ+ and δo versus Rf for unity PF operation of the PVDG during

the above AG fault. The saturation-like curve of δ+ arises from the fact that elevated levels

of resistance to the ground result in lower zero sequence current, thereby preventing the

3RfI
o
f term in (6.3) from growing unboundedly large. Also, δo is shown to be independent

of Rf .
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Figure 6.13. Voltage angle variations with respect to fault resistance for an AG fault on bus 2

during unity PF operation of PVDG, (a) δ+, (b) δo.

Figure 6.14(a) shows parallel connection of the sequence circuits calculated with respect

to phase A for a BCG fault. The resistance between the two phases at the fault location

is 2Rph, the middle of which is grounded through Rf . KVL for the left loop is

V +
f = V −f +Rph

(
I+
f − I

−
f

)
(6.6)

Rph consists of mainly the arcing resistance, which is relatively small in microgrids due

to the short spacing between the conductors. Thus, the effect of Rph will later be analyzed

by simulations and is neglected at this point. As a result, δ+ becomes zero for a BCG

fault. KVL for the right loop in Figure 6.14(a) is

V −f = V o
f − 3RfI

o
f +Rph

(
I−f − I

o
f

)
(6.7)
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Figure 6.14. Sequence elements for a BCG fault,

(a) Sequence circuits connection, (b) Voltage phasors.

Neglecting Rph, V
−
f and V o

f are aligned for zero Rf , and as depicted in Figure 6.14(b),

δo is zero for a solid BCG fault as well. As an example, the similar angles of R14 sequence

voltages for the BCG fault of Figure 6.7 are displayed in Figure 6.15(a).

The zero sequence current leads V o
f by ]Z o

tot. Therefore, as shown by Figure 6.14(b),

in order for V o
f −3RfI

o
f to be aligned with V −f during resistive faults, V o

f advances in phase

and raises δo in the negative direction. To study a severe condition, the fault of Figure

6.15(a) is re-simulated with Rf =100 Ω, and the angles are shown in Figure 6.15(b), where

δ+ remains unchanged, but δo has grown by −77.6° compared to Figure 6.15(a). Akin

to SLG faults, increasing Rf further for LLG faults does not alter the voltage angles. δ+

and δo of R14 for the above BCG fault, plotted versus Rf in Figure 6.16, exhibit uniform

curves for large fault resistances.

6.3.1 Voltage Angle and Magnitude-based Classifier

Similar values are obtained for δo during other fault types if the sequence components are

calculated with respect to the faulted phase for SLG faults and the unfaulted phase for
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Figure 6.15. R14 voltage angles for the fault of Figure 6.7, (a) Rf =0 Ω, (b) Rf =100 Ω.
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Figure 6.17. δo zones for different fault types.

LLG faults. As a result, when phase A is the reference phase, δo lies in the vicinity of 240°

and 120° during BG and CG faults, respectively. For ABG and CAG faults, δo is close to

120° and 240°, respectively. Hence, three zones, each corresponding to one SLG and one

LLG fault, are defined around the mentioned angles for δo in Figure 6.17. Given that Rf

makes the zero sequence voltage lead the negative sequence voltage during LLG faults, the

three zones of δo have been shifted backward from the symmetrical position around the

above angles by 30°.

A key feature of δo zones in Figure 6.17 is that the two faults associated with each

zone include opposing phases. Classification of such faults can effectively be carried out

by means of phase voltage magnitudes. For instance, δo is situated inside zone 1 during

both AG and BCG faults. Meanwhile, the change in the magnitude of phase A voltage

compared to that for the other two phases is a characteristic difference between these two

faults. This feature, along with the value of δo, is the basis for the proposed classification

logic illustrated by Figure 6.18. Magnitudes of phase voltages are inspected using (6.8).

∆VΦ = |VΦ| − |VΦ−prf | (6.8)

To identify an AG fault, δo must be in zone 1, and ∆VA has to be lower than both

∆VB and ∆VC . For a BCG or BC fault, a zone 1 δo is accompanied by a ∆VA exceeding
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Figure 6.18. Logic circuit of the voltage angle and magnitude-based classifier.

both ∆VB and ∆VC . To differentiate between LL and LLG faults, |V o| is compared with

the unbalance threshold, UBth, which equals the %Imbalance, defined by [107], before the
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fault detection plus a safety factor, say 2% of the rated voltage. UBth is thus immune to

load imbalance and does not need to be set by the user. Moreover, |V −| must be higher

than UBth to identify an asymmetrical fault. Fault classifiers of commercial relays raise a

VOID flag if the fault signals follow none of the known signatures [62]. The same approach

is adopted by the proposed method.

6.3.2 Voltage Angle-based Classifier

The values of δ+ for other fault types are similar to those of the previously discussed

AG and BCG faults if sequence components are calculated with respect to the faulted

phase for SLG faults and the unfaulted phase for LLG faults. Therefore, when phase A

is the reference phase, δ+ is close to 120° and 240° for CAG and ABG faults, respectively.

For BG and CG faults, δ+ lies in the neighborhood of 300° and 60°, respectively. Figure

6.19 defines appropriate zones for δ+ around these angles. The δ+ zones for SLG faults

are shifted forward from the symmetrical position about the respective angles to take the

effect of fault resistance into account. Rf does not affect δ+ during LLG faults, so the

zones in Figure 6.19 are symmetrical about their corresponding angles.

Positions of δo and δ+ inside the zones in Figures 6.17 and 6.19 are the basis for the

classification logic proposed in Figure 6.20. No δ+ and δo pair follows more than one of
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the patterns in Figures 6.17 and 6.19, so this classifier can reliably identify the fault type.

As in Figure 6.18, |V −| and |V o| are used to determine balanced faults and discriminate

between LL and LLG faults.

Unlike the classifier proposed in the last subsection, this new method exploits the angle

of the positive sequence voltage, which varies along the path from the fault location to the

relay due to load flow. Phase difference between positive sequence voltages along a feeder

is small, as its large amounts harbor the risk of instability. For distribution systems, in

particular, voltage phase differences along feeders are in the order of a fraction of a degree,

as the load levels are not high [108,109]. Even for HV systems with higher load levels and

larger phase variations, enough allowance has been made through sufficiently large security

margins in the δ+ zones of Figure 6.19.

6.4 Performance Evaluation

The proposed methods were tested for a variety of conditions in the microgrid of Figure

6.1. The studies included various fault and relay locations, fault resistances and PVDG’s

PF, and were carried out for both autonomous and grid-connected modes. The fault type

could be identified within a cycle after fault inception. This speed is enough even for

instantaneous overcurrent relays. The angle and magnitude-based classifier can make a

reliable decision in half a cycle if the system is not severely unbalanced.

6.4.1 Grid-Connected Mode

Tables 6.1 and 6.2 report the angles of the sequence voltages and the changes in the phase

voltage magnitudes, respectively, for R14 during different SLG and LLG faults at bus 5.

The microgrid is in the grid-connected mode, and the PVDG operates at unity PF. It was

found that Rf =50 Ω sufficed to observe the maximum effect of fault resistance on the

voltage angles, a conclusion in line with the findings from Figures 6.13 and 6.16. LL faults

are excluded because they result in almost the same δ+ and voltage changes that are given

for LLG faults.
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Table 6.1
Voltage Angles for Grid-Connected Mode During Faults at Bus 5 when PVDG’s

PF Is Unity

Fault type 2Rph (Ω) Rf (Ω) ]V + (°) ]V − (°) ]V ◦ (°)

AG N/A 0 -1.0 177.7 -173.1

50 -2.6 -120.6 -113.1

BG N/A
0 -1.0 -62.3 66.9

50 -2.6 -0.5 126.9

CG N/A
0 -1.0 57.7 -53.1

50 -2.6 119.4 6.9

ABG

0
0 0.0 -128.3 129.8

50 -0.6 -129.5 -170.2

10
0 -5.6 -101.6 146.7

50 -5.2 -104.6 -173.3

BCG

0
0 0.0 -8.3 9.8

50 -0.6 -9.5 69.8

10
0 -5.6 18.4 26.7

50 -5.2 15.4 66.8

CAG

0
0 0.0 111.7 -110.2

50 -0.6 110.6 -50.2

10
0 -5.6 138.4 -93.3

50 -5.2 135.4 -53.3

The results in Table 6.1 identify the fault type correctly with a high margin between

δ+ and δo and their corresponding zone boundaries. For example, for the high-resistance

AG fault shown in the second row, δ+ and δo maintain distances of 28° and 37.5° from the

boundaries of the associated zone boundaries. Also, the variations in the phase voltage

magnitudes in Table 6.2 can correctly discriminate between the SLG and LLG faults.

6.4.2 Autonomous Mode

Similar correct classification is observed for the bus 2 faults of Tables 6.3 and 6.4, which

display the angles and magnitude variations of R14 voltages during the autonomous mode.

The PVDG complies with the reactive current requirements of EU-GCs during the faults.

Sustained voltages below 90% are categorized as undervoltage disturbance by [107]. Since
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Table 6.2
Voltage Magnitude Variations for Grid-Connected Mode During Faults at Bus 5

when PVDG’s PF Is Unity

Fault type 2Rph (Ω) Rf (Ω) ∆VA (kV) ∆VB (kV) ∆VC (kV)

AG N/A
0 -6.623 -0.611 -0.984

50 -0.657 -0.370 0.217

BG N/A
0 -0.986 -6.624 -0.612

50 0.218 -0.650 -0.370

CG N/A
0 -0.613 -0.986 -6.624

50 -0.370 0.217 -0.658

ABG

0
0 -9.039 -7.761 -1.478

50 -8.077 -6.284 -0.137

10
0 -5.780 -7.453 -1.094

50 -4.521 -6.879 0.017

BCG

0
0 -1.477 -9.036 -7.757

50 -0.137 -8.074 -6.281

10
0 -1.093 -5.778 -7.452

50 0.018 -4.520 -6.879

CAG

0
0 -7.761 -1.479 -9.037

50 -6.285 -0.139 -8.075

10
0 -7.453 -1.093 -5.778

50 -6.879 0.017 -4.521

the SDG at bus 3 is a weak source, the voltage level before the fault is 86.6% of the rated

value. Although such a weak voltage support is not practical, it is considered to study the

worst case scenario. As a sample case in Tables 6.3, the angles for the BCG fault with

Rf = 50 Ω and Rph = 0 Ω are displayed in Figure 6.21. δ+ and δo equal 0.9° and −67.6°,

respectively, identifying a BCG fault. Also, ∆VB and ∆VC are substantially lower than

∆VA for this case in Table 6.4. Similar to the cases studied in Section 6.2, current-based

methods malfunction for most of the cases in Tables 6.3 and 6.4.

Some relays that specify the fault type using the angles of the superimposed currents

switch to the angles of the superimposed voltages if the current-based approach does not

recognize any of the known fault patterns [62]. The classification criterion for the superim-

posed voltages is the same as that of the currents. The following studies the superimposed

voltage-based approach. Take, for instance, the angles of the superimposed sequence volt-
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Table 6.3
Voltage Angles for Autonomous Mode During Faults at Bus 5 when PVDG

Generates Reactive Current

Fault type 2Rph (Ω) Rf (Ω) ]V + (°) ]V − (°) ]V ◦ (°)

AG N/A
0 -39.4 132.4 160.1

50 -22.6 -156.2 -148.7

BG N/A
0 -39.5 -107.6 39.9

50 -22.6 -36.2 91.3

CG N/A
0 -39.3 12.5 -79.8

50 -22.6 83.8 -28.8

ABG

0
0 -38.1 -156.7 87.0

50 -48.7 -167.8 140.1

10
0 -58.5 -153.4 96.5

50 -57.0 -161 138.6

BCG

0
0 -38.1 -36.7 -33.0

50 -48.7 -47.8 19.9

10
0 -58.5 -33.4 -23.5

50 -57.0 -41.0 18.6

CAG

0
0 -38.1 83.3 -153.0

50 -48.6 72.2 -99.9

10
0 -58.5 86.6 -143.5

50 -57.0 79.0 -101.4

ages for the above BCG fault, plotted in Figure 6.22(a). ∆V − leads ∆V + by 120.5°; the

signature of a BG fault in [62]. In addition, ]∆V −−]∆V o =−67.6°, which is closer to the

sector of ABG and CG faults in [62]. This method’s failure stems from the fact that the

angles of the superimposed voltages are determined by the superimposed PVDG currents,

whose angles differ from those of conventional sources, and are regulated by the PVDG

control system. Thus, changing the reactive current of the PVDG alters the phase differ-

ence between the superimposed voltages. If the PVDG operates at unity PF, the angles

of the superimposed voltages change to the curves of Figure 6.22(b). The 170.1° phase

difference between ∆V − and ∆V + indicates a BCG fault in [62], whereas ∆V − lags ∆V o

by 68.2°, which is closer to the sector of BG and CAG faults in [62].

Proper operation of the proposed method, however, is unaffected by changes in the

PVDG’s reactive current level. The angles of the sequence voltages for the above fault
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Table 6.4
Voltage Magnitude Variations for Autonomous Mode During Faults at Bus 5

when PVDG Generates Reactive Current

Fault type 2Rph (Ω) Rf (Ω) ∆VA (kV) ∆VB (kV) ∆VC (kV)

AG N/A
0 -21.436 1.463 -3.029

50 -5.148 -1.659 0.103

BG N/A
0 -3.073 -21.437 1.395

50 0.104 -5.147 -1.657

CG N/A
0 1.502 -3.002 -21.438

50 -1.657 0.107 -5.146

ABG

0
0 -21.293 -21.431 -4.937

50 -13.099 -13.295 -1.169

10
0 -17.309 -19.076 -6.136

50 -10.786 -15.229 -2.255

BCG

0
0 -4.936 -21.293 -21.431

50 -1.171 -13.100 -13.297

10
0 -6.136 -17.309 -19.076

50 -2.265 -10.791 -15.234

CAG

0
0 -21.430 -4.934 -21.293

50 -13.286 -1.148 -13.091

10
0 -19.076 -6.135 -17.308

50 -15.225 -2.243 -10.781

during unity PF operation, shown in Figure 6.23, yield δ+ =−4.2° and δo =−68.2°, which

are similar to those of Figure 6.21 and inside their respective zones for a BCG fault. Also,

∆VA, ∆VB and ∆VC are −1.999, −14.335 and −12.943 kV; i.e., both of the proposed

methods select the faulted phases correctly.

6.4.3 Unbalanced Microgrid

Microgrids might not be perfectly balanced during normal operation. To verify the perfor-

mance of the proposed classifiers for an unbalanced system, the loads at different buses of

the test microgrid were changed to the values displayed in Table 6.5. The resultant voltage

and current at R14 location for the autonomous mode along with their sequence compo-

nents are displayed in Figures 6.24 and 6.25. The pinpointed samples in Figures 6.24(b)
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Figure 6.21. R14 voltage angles for the autonomous microgrid when the PVDG generates

reactive current during a BCG fault at bus 2 with Rf =50 Ω.

Table 6.5
Loads of the Unbalanced Microgrid in MW and MVAr

PA QA PB QB PC QC

Bus 1 0.30 0.05 0.40 0.07 0.35 0.00

Bus 2 1.50 0.00 1.20 0.30 1.00 0.25

Bus 3 1.20 0.10 0.80 0.20 0.70 0.30

Bus 4 1.20 0.11 1.70 0.20 1.40 0.30

Bus 5 0.60 0.08 1.70 0.30 1.30 0.05

and 6.25(b) indicate that the percentage voltage and current imbalances exceed 6.2% and

88%, respectively, which are categorized as severe imbalance [107]. The weak SDG, again,

results in low pre-fault phase voltages, equal to 26.590, 24.174 and 24.483 kV in phases

A, B and C, respectively. The angles and magnitude variations of R14 voltages for bus 5

faults when the PVDG meets the reactive current requirements of EU-GCs are displayed

in Tables 6.6 and 6.7. These results indicate accurate operation of the proposed methods

for highly unbalanced systems. As an example, the angles of the sequence voltages during

the bolted AG fault of Table 6.4 are plotted in Figure 6.26.

The failure of superimposed voltages to classify faults was earlier shown for a high-

impedance fault. Similar inaccuracy is observed for faults with lower resistances as well.

For example, the angles of the superimposed voltages for the above AG fault are shown

in Figure 6.27. The 73.1° difference between ]∆V − and ]∆V + signifies a CAG fault and
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Figure 6.22. Angles of R14 superimposed voltages during the fault of Figure 6.21,

(a) PVDG generates reactive current, (b) PVDG operates at unity PF.

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

−45

0

45

t = 2099.11
6 V

o = 44.6335

Time (ms)

A
n
g
le

(◦
)

t = 2099.11
6 V

+ = -19.3177

t = 2099.11
6 V

− = -23.5194

6 V
+ 6 V

− 6 V
o

Figure 6.23. R14 voltage angles for the fault of Figure 6.21 when the PVDG’s PF is unity.
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Figure 6.24. R14 voltage in the autonomous unbalanced microgrid during normal operation,

(a) Phase voltages, (b) Sequence voltages.

leads to misclassification by [62].

6.5 Conclusion

The voltage feed-forward of the current control loop eliminates the negative sequence cur-

rent of PVDGs. In addition, the angle of positive sequence current of a PVDG is de-

termined by the internal references of the control system. Consequently, the fault type

classifiers based on the angles of the superimposed sequence currents were shown to mal-

function in systems with PVDG. Current magnitude-based classifiers also were found to

be adversely affected by the variable phase difference between the positive and negative

sequence currents, as well as the identical phase overcurrents of a PVDG converter.
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Figure 6.25. R14 current in the autonomous unbalanced microgrid during normal operation,

(a) Phase currents, (b) Sequence currents.
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Figure 6.26. R14 voltage angles for the autonomous unbalanced microgrid when the PVDG

generates reactive current during a bolted AG fault at bus 5.
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Table 6.6
Voltage Angles for Autonomous Unbalanced Microgrid During Faults at Bus 5

when PVDG Generates Reactive Current

Fault type 2Rph (Ω) Rf (Ω) ]V + (°) ]V − (°) ]V ◦ (°)

AG N/A
0 -28.7 138.9 166.6

50 -16.7 -129.7 -154.0

BG N/A
0 -23.9 -92.8 50.4

50 -13.8 -28.3 86.9

CG N/A
0 -27.7 16.7 -59.7

50 -15.2 71.4 -10.9

ABG

0
0 -20.5 -152.8 97.0

50 -31.7 -162.3 156.0

10
0 -37.5 -153.4 103.6

50 -38.6 -156.3 155.1

BCG

0
0 -19.8 -31.8 -25.8

50 -31.3 -42.1 25.1

10
0 -36.6 -33.9 -20.4

50 -38.1 -37.8 23.3

CAG

0
0 -22.6 81.9 -148.3

50 -35.2 71.5 -86.2

10
0 -39.7 81.9 -141.9

50 -42.8 75.6 -87.3

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
−180

−90

0

90

180

270 t = 2099.11
6 ∆V

o = 173.5807

Time (ms)

A
n
g
le

(◦
)

t = 2099.11
6 ∆V

− = 144.2165

t = 2099.11
6 ∆V

+ = -142.6634

6 ∆V
+ 6 ∆V

− 6 ∆V
o

Figure 6.27. Angles of R14 superimposed voltages during the fault of Figure 6.26.

Distinctive zones were defined for the phase difference between the total sequence volt-

ages. The first proposed classifier relied on the fact that each zone defined for δo corre-
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Table 6.7
Voltage Magnitude Variations for Autonomous Unbalanced Microgrid During

Faults at Bus 5 when PVDG Generates Reactive Current

Fault type 2Rph (Ω) Rf (Ω) ∆VA (kV) ∆VB (kV) ∆VC (kV)

AG N/A
0 -18.793 2.795 -1.339

50 -5.855 -2.739 1.361

BG N/A
0 -0.370 -16.204 4.943

50 0.241 -5.108 -1.735

CG N/A
0 2.396 -0.693 -16.956

50 -2.464 1.079 -5.067

ABG

0
0 -20.592 -15.652 -5.224

50 -15.397 -8.489 2.328

10
0 -18.577 -16.031 -5.942

50 -12.828 -10.608 1.734

BCG

0
0 -6.432 -17.984 -15.851

50 1.016 -12.940 -8.623

10
0 -7.243 -16.089 -16.197

50 0.348 -10.666 -10.483

CAG

0
0 -18.201 -5.922 -18.896

50 -11.447 0.605 -14.316

10
0 -18.524 -6.742 -16.929

50 -13.441 -0.521 -12.159

sponded to two SLG and LLG faults that included opposing phases. The voltage mag-

nitude was thus exploited to differentiate between the two possible faults. The unique

pair of δo and δ+ zones associated with each fault type was utilized to devise the second

classification logic. Correct operation of the proposed methods for the grid-connected and

autonomous modes of a microgrid, together with their robustness against various PVDG

control strategies, fault resistance, system imbalance and load levels were validated by

simulation studies.
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Conclusions

7.1 Summary

The effect of the FRT requirement of modern GCs for REPPs on protective relaying sys-

tems has been investigated. The studies were based on time-domain simulation of complete

REPP models using PSCAD/EMTDC program and relaying algorithms implemented in

the Matlab environment. The objective of the studies was twofold: Detecting the prob-

lems that are exclusively associated with RE systems and left unnoticed by other studies,

and devising modified relaying algorithms to circumvent these problems without the need

for extra hardware or change in the GC articles for REPPs. The studies were divided into

two main parts: transmission and distribution system protection.

• For transmission systems, this dissertation has focused on the following subjects.

1. Distance protection of lines adjacent to SCIG- and DFIG-based WFs : It was proved

that the impedance measurements provided by a distance relay installed at the substa-

tion of an IG-based WF do not truly represent the actual distance between the relay

and the location of a balanced fault. The problem arises from the unconventional fault

behavior of these sources, which affects the relations employed by a distance relay to

measure impedance. A computationally efficient method has been proposed to address
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this problem such that fast non-delayed tripping of distance relays over the entire length

of the line is restored using the commonly available communication links with minimal

bandwidth between the two line end relays.

2. Distance protection of lines connected to CIREPPs and VSC-based HVDC substations :

A variety of operating conditions and faults on the lines that are in close proximity

to CIREPPs underwent scrutiny. It was shown that the control system operation and

different GC requirements about the fault current contribution of REPPs clearly in-

fluenced the fault behavior of CIREPPs and, subsequently, the impedance measured

by distance relays installed at CIREPP substations. The relay malfunctions led to de-

layed or no-trip decisions during zone one faults, together with instantaneous tripping

or failure to provide back-up protection for faults on subsequent lines. Once the sce-

narios resulting in maloperation of protection systems had been pinpointed, simple yet

effective solutions were devised to modify the operation of the two line end relays.

• For distribution systems, this research work included the topics listed below.

1. Impact of DFIG-based wind DGs on directional relays : Directional relays are indis-

pensable components of DG-equipped distribution grids. The conditions in which the

existing relays fail to determine the fault direction correctly were detected, and the root

causes for their failure were identified. Modifications were proposed to rectify directional

relay maloperations.

2. Protection of distribution systems in the context of smart microgrids : The new trends

adopted by distribution utilities and relay manufacturers in North America were pre-

sented to corroborate how improved reliability has heightened the need for selective

phase tripping and, thus, fault type classification in smart microgrids. However, the

available literature on microgrid protection has ignored selective phase tripping. Mean-

while, it was revealed that fault behavior of photovoltaic and Type IV wind DGs pre-

vents the existing relays from accurate fault type classification. Two new classifiers

developed in this study are immune to the fault characteristics of RE-based DGs and

can therefore be applied in microgrid protection systems, as well as any other three-

phase system.

161



Chapter 7. Conclusions

7.2 Contributions

The contributions fall roughly into two categories: the diagnosis of previously unknown

relay failures and the proposal of solutions to address these problems.

7.2.1 Diagnosis of Relay Failures

The followings are among the failures of the existing protection systems in the presence of

the RE-based sources that this dissertation has identified.

1. Based on the constant flux linkage theorem, an SCIG operates as a voltage source

immediately after a balanced fault. After a few cycles, however, the SCIG generates

some active power but absorbs reactive power, as the reactive power generated by the PF

correction capacitors of an SCIG-based WF falls sharply due to the substantial voltage

drop. For a distance relay at the WF substation, the positive active and negative reactive

powers of an SCIG are translated into impedances situated in the fourth quadrant

of the complex plane, not along the line replica impedance. In its way towards the

fourth quadrant, the impedance measured during a fault on a subsequent line passes

through zone one of the relay, causing immediate spurious tripping, whereas only back-

up protection is required.

2. The fault current expression of DFIGs is similar to that of SCIGs once the crowbar

circuit is activated to ride through balanced faults. In this expression, the frequency

of the ac component is related to the machine slip, which is commensurate with the

wind speed. As a result, the fault current frequency ranges between 42 Hz to 78 Hz

for 60 Hz systems. Meanwhile, the frequency of fault voltage is dictated by the grid

and equal to the nominal frequency. In addition, the polarizing quantity of commercial

distance relays is mainly comprised of the memorized voltage, whose frequency is also

closely tied with the nominal frequency. Different current and voltage frequencies make

the phasor-based relations on which distance protection is founded fail to calculate a

meaningful impedance, regardless of the relay’s frequency tracking approach. Hence,
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the measurements obtained from a distance relay at the substation of a DFIG-based

WF are chaotic and unreliable.

3. Despite the received wisdom within the protective relaying community, a Thevenin

equivalent circuit does not suffice to model CIREPPs. For solid lines, the relay at a

CIREPP substation can measure the impedance to the fault correctly. In the pres-

ence of fault resistance, however, the CIREPP regains control over the fault current

angle and attempts to satisfy the host system GC. For EU-GCs, the domination of the

reactive component of the fault current during balanced faults results in impedances

located along the reactance axis. For NA-GCs, conversely, the measured impedance ap-

proaches the resistance axis due to the high PF requirement. For both cases, the relay

measurement can be utterly remote from the actual impedance between the relay and

the fault location. Furthermore, the current saturation limit of the CIREPP’s control

system is among the internal CIREPP parameters that impact the measured impedance

considerably.

The phase difference between the two line end currents in the event of zone one faults in

conventional systems is similar to that between the two end pre-fault voltages. Moreover,

this phase difference is normally small, as large values endanger stability. As a result,

for distance relays in a conventional system,

a) the level of overreach and underreach caused by the remote infeed is typically in-

significant, and

b) using pre-fault voltage angles, it is easy to predict whether the relay overreaches or

underreaches, and by how much.

The above premises and neither of the subsequent conclusions hold true when CIREPPs

are involved. The angle of the local fault current for the relay at the CIREPP substation

is determined by the control system and may be radically different from the angle

of the remote end current. Therefore, the term added by the fault resistance effect

to the impedance measured by a phase distance element is most likely to include a

large imaginary component, leading to incorrect fault reactance calculation and delayed

tripping or no-trip decisions during zone one faults. This problem is exacerbated by
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the limited amplitude of CIREPP fault currents. For SLG faults, on the other hand,

the ground distance elements in the CIREPP substation consistently underreach, even

though they are located at the power sending end of the line.

4. For a relay at a CIREPP substation, the odds are that the angles of the local and

intermediate infeed currents differ enormously. Consequently, intermediate infeed may

unexpectedly result in relay overreach for NA-GCs, while it is known to cause relay

underreach in conventional systems. For EU-GCs, on the other hand, the substan-

tial difference between the magnitude of the intermediate infeed current and the lim-

ited CIREPP current can make the relay underreach so excessive that zone two of the

CIREPP relay may overlap with zones two and three of the relays on subsequent buses,

jeopardizing the selectivity of the protection system.

5. Commercial directional relays currently determine the fault direction by comparing the

angle between the fault current and a polarizing quantity, which is normally a fault

or memorized voltage. Meanwhile, the frequency of balanced DFIG fault currents can

significantly deviate from the nominal frequency. The conventional elements fail to

identify the fault direction in distribution systems that include DFIG-based DGs, as

it is impossible to measure the angle between two phasors that correspond to different

frequencies.

6. The following two groups of fault type classification approaches that are currently de-

ployed by transmission system relays can also be applied at the distribution level.

a) Approaches that are built upon the angle difference between sequence currents,

b) Approaches that rely on the phase and sequence current magnitude.

A PVDG converter operates as a current source that suppresses the negative sequence

current during asymmetrical faults using voltage feed-forward compensation in its con-

trol loops. Moreover, the angle of the PVDG’s positive sequence current is regulated

such that the target PF is achieved. Therefore, the angle of the sequence currents

cannot select the faulted phase(s) correctly in microgrids that include PVDGs.

The magnitudes of PVDG phase currents depend on the angle between the converter-

generated positive sequence current and the zero-sequence current that flows through the
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ground of the PVDG transformer. This angle is affected by the PVDG’s PF. As a result,

the current of the unfaulted phase may exceed fault currents. Hence, the methods that

are founded upon the phase currents’ magnitudes fail to identify the faulted phase(s) in

microgrids with PVDGs. The non-zero sequence portion of phase currents is not able

to classify faults either, as the only non-zero sequence term of PVDG currents is the

positive sequence component.

7.2.2 Proposal of Solutions

This dissertation has presented the following solutions for the above-discussed relay failures.

1. IG balanced fault currents were discriminated from the bulk grid fault currents by

inspecting the current waveshape properties. The relay at the substation of the IG-based

WF determined the fault direction by comparing the two initial consecutive peak-to-

peak values of the current. Accurate fault direction identification by the two line end

relays along with a modified POTT scheme with minimal bandwidth requirement was

used to distinguish between the faults on the line connected to an IG-based WF and

the WF internal faults and the faults on subsequent lines. The result was fast non-

delayed protection over the entire line length. Successful performance of this solution

was observed particularly for DFIG-based WFs with non-zero crowbar resistance, which

is the most probable scenario in practice.

2. By adding the KVL relations of the two faulted phases during LLG faults, a new formula

was developed to measure the impedance by phase distance elements. This formula

includes the zero sequence current of the two line ends in the numerator and denominator

of the factor multiplied with the fault resistance. Since the zero sequence current is

not affected by the CIREPP’s control system, the angles of the numerator and the

denominator are similar, and the fictitious impedance added by the fault resistance is

mainly along the R axis, leaving the measured reactance largely unaffected. For the relay

at the CIREPP substation, the proposed element underreaches, which is the preferred

behavior for zone one faults, as it does not affect the relay security. In addition, the

amount of underreach is very small.
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Furthermore, the term added by the intermediate infeed to the impedance calculated

using this new formula is almost a real number. As a result, the effect of intermediate

infeed on the measured impedance is always the expected underreach. Moreover, the

presence of the zero sequence component in the denominator of the term added due to

the intermediate infeed effect keeps this term relatively small. Thus, the relay at the

CIREPP substation can be coordinated with subsequent relays without violating the

protection system selectivity.

3. A new directional relaying scheme for LL and balanced faults was proposed for the relays

that protect the line adjacent to a CIREPP. This new element specifies fault direction

based on the phase current magnitudes together with the impedance measured by a

conventional distance element. New zones inside the impedance plane are defined to

distinguish between forward and reverse faults. The line is protected by means of a pilot

scheme, such as directional comparison blocking or POTT, equipped with two of these

directional elements. The same strategy can be applied to protect the line during SLG

and LLG faults if the HV winding of the CIREPP’s transformer is not grounded.

4. The direction of the reactance element tilting for a conventional quadrilateral distance

characteristic, used to address the effect of fault resistance during SLG faults, should be

counterclockwise. The tilting angle is determined based on the angle of the zero-sequence

compensation factor of the protected line.

5. The decline rate of the fundamental frequency phasor of fault currents was proposed to

detect the balanced fault direction in distribution systems with DFIG-based wind DG.

Even though the ac component of DFIG fault currents exhibits a decaying nature, the

digital filters that assume constant amplitude for the current were shown to provide

more reliable and less noisy phasors. The currents that have the decaying property of

DFIG-based DGs are the ones flowing toward a fault located between the relay and

the substation, that is, the reverse direction. Other current waveshapes indicate forward

faults.

6. During solid AG faults, the positive sequence voltage is 180° out of phase from the

in-phase negative and zero sequence voltages calculated with respect to phase A. The-
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oretical and simulation analysis verified that the negative and zero sequence voltages

advance in phase almost equally in the presence of fault resistance; meanwhile, this

phase shift exhibits a saturation-like relationship with Rf . Similar relations hold true

over other SLG faults if the sequence voltages are computed with respect to the faulted

phase. During a bolted BCG fault, the three sequence voltages remain in-phase. The

fault resistance makes the zero sequence voltage advance in phase, while the angles of

the other sequence voltages remain almost intact. Similar relations are obtained dur-

ing other types of LLG fault if the sequence voltages are measured with respect to the

unfaulted phase.

On this basis, two fault classifiers using the sequence and phase voltages were introduced.

The angle and magnitude-based classifier defines three zones for the phase difference

between the zero and negative sequence voltages. Each zone corresponds to one SLG

and one LLG fault that include opposing phases, and can thus be differentiated using

the phase voltage magnitudes. The angle-based classifier defines six zones for the phase

difference between the positive and negative sequence voltages besides the already de-

fined zones for the phase difference between the negative and zero sequence voltages.

Each pair of these zones is related to only one fault type. These techniques are immune

to high-impedance faults and specify the fault type correctly in microgrids with PVDGs

during both the grid-connected and isolated modes of operation, as well as in highly

unbalanced systems.

7.3 Future Work

Further research on the protection of RE systems may include the topics listed below.

1. Protection of microgrids using communication-assisted techniques,

2. Effect of REPPs on line current differential relays,

3. Operation of wide area protection systems in the presence of REPPs.
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Appendix A

Description of the Test System in

Chapter 2

The details of the 69 kV, 60 Hz test power system shown in Figure 2.1 are as follows. The

line constants along with the source parameters are as follows.

Lines: Zl1 =0.3621] 84.4° Ω/km, Zl0 =1.6130] 72.9° Ω/km,

Sources: ZS3 =24.7] 89° Ω, ZS4 =6.4] 89° Ω

Either an SCIG-based or a DFIG-based WF, whose specifications are given below, is

connected to bus 1.

A.1 SCIG-Based WF

The SCIG-based WF consists of ten wind turbines. The collector system includes two

parallel paths, each having five wind turbines that are 0.5 km apart. The collector system

is comprised of underground cables with the following impedances, taken from [51].

R=3.51×10−5 Ω/m, X=2.804×10−5 Ω/m.

The specifications of the SCIGs are

169



Appendix A. Description of the Test System in Chapter 2

IG rating: Sn = 2.5 MVA, Vn = 0.480 kV, Rs = 0.010 pu, Rr = 0.0053 pu, Xm = 4 pu,

Xs=0.106 pu, Xr=0.12 pu.

PF correction capacitor: C=4.5 µF.

Transformer for each turbine: 2.6 MVA, 0.480/34.5 kV, ygD.

WF main transformer: 27.5 MVA, 34.5/34.5/69 kV, ygdYG.

A.2 DFIG-Based WF

The DFIG-based WF is comprised of eight wind turbines with the following specifications.

IG rating: Sn = 1.5 MVA, Vn = 0.575 kV, Rs = 0.0071 pu, Rr = 0.005 pu, Xm = 2.9 pu,

Xs=0.1714 pu, Xr=0.1563 pu.

DC-link rated voltage and capacitor: Vdc=1200 V, C=2 mF.

Transformer for each turbine: 1.6 MVA, 0.575/34.5 kV, ygD.

WF main transformer: 13 MVA, 34.5/34.5/69 kV, ygdYG.

The collector system is similar to that of the SCIG-based WF, with the exception that

each of the two paths includes four wind turbines.

The control system for the DFIG converters as well as the wind turbine specifications

and control loops are based on the industrial models of [82].
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