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Abstract

Given a set of n elements that are partitioned into equivalence classes, we study the
problem of assigning unique labels to these elements in order to support the query that
asks whether the elements corresponding to two given labels belong to the same equivalence
class. This problem has been studied by Katz et al. [15], Alstrup et al. [2], and Lewenstein
et al. [16]. Lewenstein et al. [16] showed that with no auxiliary data structure, a label space
of size

∑n
i=1b

n
i
c is necessary and sufficient to represent the equivalence relation. They also

showed that if the labels were to be assigned from the set {1, . . . , n}, a data structure of
Θ(
√
n) bits is necessary and sufficient to represent the equivalence relation and to answer

the equivalence query in Θ(lg n) time. In this thesis, we give an improved data structure
that uses Θ(

√
n) bits and can answer queries in Θ(1) time, when the label space is of size

n. Moreover, we study the case where we allow the label space to be of size cn for any
constant c > 1. We show that with such a label space, a data structure of Θ(lg n) bits is
necessary and sufficient to represent the equivalence relation and to answer the equivalence
query in constant time. We believe that our work can trigger further work on tradeoffs
between label space and auxiliary data structure space for other labeling problems.
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Chapter 1

Introduction and Motivation

Given a partition of an n-element set into equivalence classes, our problem is to preprocess
the set, assigning a unique label to each element, to obtain a data structure with minimum
space to quickly support the following query: given two labels, determine whether their
corresponding elements are in the same equivalence class. We call such queries ‘equivalence
queries’. This is a fundamental data structures problem and it has various applications
such as testing whether two vertices are in the same connected component in an undirected
graph or in the same strongly connected component in a directed graph. We study the
problem from the perspective of succinct data structures. Our aim is to develop data
structures whose size is within a constant factor of the information theoretic lower bound.
Designing succinct data structures is an area of interest in theory and practice motivated
by the need for storing large amount of data using the smallest space possible. For succinct
representations of dictionaries, trees, arbitrary graphs and partially ordered sets see [5, 20,
11, 19, 4, 10, 8, 3, 7, 18].

Kannan, Naor and Rudich [14] were the first to introduce the concept of labeling
schemes to answer graph adjacency queries. Katz, Katz, Korman and Peleg [15] extended
this notion to support graph flow and connectivity queries. They studied the problem of
assigning (not necessarily distinct) labels to graph nodes so that queries can be answered by
just looking at the labels of the queried nodes. They showed that to answer k-connectivity
queries the length of each label has a lower bound of Ω(k lg n) bits. For the problem that
is considered in this thesis k = 1, their lower bound implies a dlg ne lower bound for the
length of each label. However, in some situations we may want to distinguish between
individual nodes within the same component, so we may want to give unique labels to each
node. Lewenstein et al. [16] studied this problem in two models:
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• In the first model, the query is to be answered by only examining the labels of the
queried elements without having any auxiliary information stored other than the
value of n. They called this problem the direct equivalence queries problem. They
tightened the lower bound in [2] to a label space of

∑n
i=1b

n
i
c, which can be represented

in lg n + lg lg n − Ω(1) bits, and proved that it is sufficient. Moreover, they showed
that one can solve the problem using lg n + lg lg n + 2 bits such that equivalence
queries can be answered in Θ(1) time.

• In the second model, the n-element s are to be assigned unique labels from the set
{1, . . . , n}. They showed that an auxiliary data structure of Θ(

√
n) bits is necessary

and sufficient to represent the equivalence class information. They supported the
query in such a structure in Θ(lg n) time. Moreover, they developed structures where
queries can be answered:

– in O(lg lg n) time using O(
√
n lg n/lg lg n) bits, and

– in O(1) time using O(
√
n lg n) bits of space.

In this thesis, we give an improved data structure that uses Θ(
√
n) bits and can answer

queries in Θ(1) time, when the label space is of size n. Moreover, we notice an inversely
proportional relation between label space and auxiliary data structure size. If the label
space is in the range of

∑n
i=1b

n
i
c, no data structure is required. Once the label space range

is decreased to n, a data structure of size O(
√
n) bits is necessary. We further investigate

this relation. Our work is motivated by the fact that unless n is a power of two or a little
less than a power of two, we can increase the label space by a constant factor without
increasing the number of bits required to store each address. To be more specific, we
investigate the case where the labels are to be assigned from the set {1, . . . , cn} where
c > 1 (c can be a real value less than 2). We show that an auxiliary data structure whose
size is Θ(lg n) bits is necessary and sufficient to represent the equivalence class information
in this case. Such a structure can be completely stored in cache memory. Moreover, we
can support the query in such a structure in Θ(1) time.

This thesis is divided as follows. In chapter 2 we cover the succinct representation
of bit vectors. In chapter 3, we cover the direct equivalence query problems. In chapter
4, we revise the main data structure of [16] and provide a data structure with improved
query time. In chapter 5 we present our data structure to represent the equivalence class
information using O(lg n) bits in the model where the label space is cn for any c > 1.
Moreover, we give a data structure that represent the equivalence class information using
O(lg n/lg f(n)) bits in the model where the label space is f(n) · n where f(n) ∈ ω(1) and
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f(n) ∈ O(lg n). In chapter 6, we show that Ω(lg n) bits are necessary when the label space
is cn. Finally, we conclude our work in chapter 7.

1.1 Computational Model

The computational model used in this thesis is the word random access machine model,
or the word RAM model [1, 9]. The word RAM model is a realistic and natural model for
describing modern computers. Data is stored in words consisting of w ∈ Ω(lg n) bits, where
n is the input size. Words can be read and written in constant time. Moreover, arithmetic
(addition, subtraction, multiplication, and division) and bitwise boolean operations (AND,
OR, NOT, XOR, SHIFT etc.) can be done in O(1) time on a constant number of words.
We measure the running time of an algorithm in this model by counting the number of
memory accesses and operations performed on words. The space cost can be measured by
counting the number of words or the number bits used by the algorithm.

1.2 Definitions

In this section, we briefly describe the required definitions and background. An integer
partition p of n is a multiset of positive integers that sum to n. We call these positive
integers the class sizes of p, and we denote by |p| this number of classes. We say that a
partition p of n dominates a partition q of m where n > m if q fits in p. To be more precise
p dominates q if:

• |p| ≥ |q| and

• for 1 ≤ i ≤ |q|, the ith largest class size (breaking ties arbitrarily) in p is at least as
big as the ith largest class size in q.

For example, the partition {7, 7, 6} of 20 dominates the partition {5, 5} of 10, but not the
partition {8, 2} of 10. Given a partition p of n, we define a part q of size k to be a collection
of class sizes in p that sum to k. We say that a size s fills q if q contains bk/sc classes of
size s and a class of size k mod s. Finally we say that two parts intersect if they share at
least one common class; otherwise, they are non-intersecting. For example the partition
{1, 4, 5} of 10 has the following parts:

• Part {1} of size 1.
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• Part {4} of size 4.

• Part {5} of size 5.

• Part {1, 4} of size 5.

• Part {1, 5} of size 6.

• Part {4, 5} of size 9.

• Part {1, 4, 5} of size 10.

We say that 5 fills the part {4, 5}. The parts {4, 5} and {4} are intersecting, while the
parts {4, 5} and {1} are non-intersecting.
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Chapter 2

Bit Vectors

For the sake of completeness and since bit vectors are used extensively throughout this
thesis, we cover them in this chapter. A bit vector is a simple way to represent a set S
from the universe [m], where [m] denotes the set {0, 1, . . . ,m−1}. If i ∈ S, we set the ith bit
in the bit vector to 1, otherwise we set it to 0. It is not hard to see that membership queries
(checking whether a given element in [m] belongs to S) can be answered in constant time
by probing a single bit. In addition to membership queries, we would also like to support
the following operations:

• rank(i): returns the number of 1s up to position i.

• select(i): return the position of the ith 1.

Given a bit vector of length m, Jacobson [13] gave a structure that takes o(m) additional
bits of space and can support rank and select by making O(lgm) bit inspections. How-
ever, the bits inspected were not necessarily contiguous and might depend on previous
values read. Munro [17] enhanced this structure to support both operations in constant
time, without increasing the space bound. In this chapter, we describe the details of this
structure.

Supporting Rank. To answer rank queries in constant time, we store the following:

• Break the vector into blocks of size dlg2me, and store in a table T1 the number of
1s up to the last position of each block. Also, store in T1 references to all tables T2i
(described below) where 0 ≤ i ≤ dn/dlg2mee. T1 requires O(m/lgm) bits.
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• Break the blocks into sub-blocks of size 1
2
dlgme, and for each block i store in a table

T2i the number of 1s from the start position of the block up to the last position of
each sub-block. T2i requires O(lgm lg lgm) bits. The total space required by all such
tables is O(m lg lgm/lgm) bits.

• For every possible sub-block, store a table T3 that gives the number of 1s up-
to every possible position. Since there is O(

√
m) distinct sub-blocks, T3 requires

O(
√
m lgm lg lgm) bits.

To answer rank(x), Let i = bx/dlg2mec be the index of the block containing x, compute
j1 the number of ones up to position (i · dlg2me) using table lookup on T1. Let k =
b(x− i · dlg2me)/(1

2
dlgme)c be the index of the sub-block containing x, using table lookup

on T2i compute j2 the number of ones up to the last position in the (k − 1)-th sub-block
of the ith block of S. Finally using table lookup on T3, get j3 the number of ones up to
position (x− i · dlg2me− k · 1

2
dlgme) in the kth sub-block of the ith block of S, and return

(j1 + j2 + j3).

Supporting Select. Supporting select queries is more complex than supporting rank
queries. We store the following:

• In a table T1, store the position of every dlgm lg lgme)-th 1 bit in the bit vec-
tor. Also, store in T1 references to all tables T2i (described below) where 0 ≤ i ≤
dn/dlgm lg lgmee. T1 requires O(m/lg lgm) bits.

• Let r be the sub-range between the ith 1 and the (i+1)th 1 in T1. If r ≥ dlgm lg lgme2,
store all the positions of all ones in this subrange in the table T2i. In this case, T2i
would require O(lg2m lg lgm) bits. However there can be at most m/dlgm lg lgme2
such sub-ranges. Thus the total space required by such tables would be O(m/lg lgm)
bits. If r < dlgm lg lgme2 store the position of every dlg r lg lgme-th one bit in the
sub-range. In this case, T2i would require O(r/lg lgm) bits, and the total space of
such tables is O(m/lg lgm) bits.

• After one more level of subdivision, the range size will be at most (lg lgm)4. We use
a precomputed table T3 that requires o(m) bits to store answers of all select queries
on every possible bit vector of that size.

To answer select(x), we check if x is a multiple of dlgm lg lgme. If so we can answer
select(x) using table lookup on T1. Let i = bx/dlgm lg lgmec. Using table lookup on T1,
get j1 the index of the (i · dlgm lg lgme)-th one in S and j2 the index of the ((i + 1) ·
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dlgm lg lgme)-th one in S. If r = j2 − j1 ≥ dlgm lg lgme2 we get j3 the index of the
(x− i · dlgm lg lgme)-th one in the subdivision between j1 and j2 using table lookup on T2i,
and we return (j1 + j3). Let k = b(x− i · dlgm lg lgme)/dlg r lg lgmec. Using table lookup
on T2i, get j4 the index of the (k · dlg r lg lgme)-th one in the subdivision between j1 and
j2, and j5 the index of the ((k+ 1) · dlg r lg lgme)-th one in the subdivision between j1 and
j2. Finally using table lookup on T3, we get j6 the index of the (x− i · dlgm lg lgme − k ·
dlg r lg lgme)-th one in the subdivision between j4 and j5, and return (j1 + j4 + j6).

An immediate use of rank and select queries, is the ability to support the successor and
predecessor queries.

Supporting Predecessor. The predecessor of an element x, is the largest element
y ≤ x such that y ∈ S. To answer predecessor(x) return select(rank(x)).

Supporting Successor. The successor of an element x, is the smallest element y ≥ x
such that y ∈ S. To answer successor(x) we check if x ∈ S if so we return x, otherwise we
return select(rank(x) + 1).

Theorem 1. ([17]) A bit vector of length m can be represented in m+ o(m) bits, such that
rank, select, membership, predecessor and successor queries can be answered in constant
time.
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Chapter 3

Direct Equivalence Query Problems

This chapter covers labeling schemes where elements are to be given unique labels, and
the equivalence query is to be answered by computing from the two labels without using
any auxiliary data except for the value of the number of elements n. We give tight bounds
on this problem in both the static and dynamic models. Storing n requires dlg ne bits.
However, note that we can round n to the nearest power of 2 and store it in dlg lg ne bits.

3.1 Direct Equivalence Query Problem

In the direct equivalence query problem, we give each element a unique label such that
we can answer the equivalence query by computing directly from the two labels without
using any auxiliary data except for the value of n. This problem was studied by Alstrup
et al. [2], where they showed that lg n+ Θ(lg lg n) bits of space are necessary and sufficient
to represent the labels. This bound was further strengthened by Lewenstein et al. [16] to
lg n+ lg lg n+ Θ(1)). In this section we review their results:

Theorem 2. ([16]) Let a partition of an n-element set into equivalence classes be given as
input to the direct equivalence query problem. Then a label space of

∑n
i=1 bn/ic is necessary

and sufficient to represent the labels.

Proof. Order the classes in decreasing order by their sizes. The key observation is that the
ith class contains at most bn/ic elements. For the upper bound, simply assign labels from
the set of integers in the range of

∑i−1
j=1 (bn/ic) + 1 to

∑i
j=1 bn/ic for the ith class.
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To show that this many labels are necessary, consider the collection C of n equivalence
relations. The relation Ci contains i classes of size bn/ic and one class of size n− i · bn/ic.

Consider the labels assigned by any labeling scheme for the above collection of equiva-
lence relations. The labels assigned to the relation C1 can be assigned to at most one class
of each of Ci, where 2 ≤ i ≤ n. The reason for this is that every pair of elements in C1 are
in the same equivalence class, so a conflict will occur if these labels were assigned to more
than one class of Ci. Now remove C1 and all the classes from Ci that have been assigned
the same labels as C1. Repeat the same argument with the labels assigned to C2, C3, up
to Cn in that order.

To answer the equivalence query in the above labeling scheme, given an integer label x,
we need to find the largest i such that

∑i
j=1 bn/ic < x. In order to support this query in

constant time, we slightly increase the address space. Order the classes in non-increasing
order by their sizes, and give the ith class label i. Order the elements within each class
arbitrarily. The label for an element x is given by a pair (i, j), where i is the label of the
class to which x belongs to, and j is the rank of x in class i. Since the size of i is not fixed,
prefix the label (i, j) by storing the length of i (i.e. dlg ie) in binary using dlgdlg nee bits.
The equivalence query can be answered in constant time by checking i. The number of
bits used per label is dlgdlg nee+ dlg ie+ dlgbn/ice which is at most lg n+ lg lg n+ 2.

Theorem 3. ([16]) Let a partition of an n-element set into equivalence classes be given as
input to the direct equivalence query problem. Then lg n+ lg lg n−Θ(1) bits are necessary
and sufficient to represent each of the labels. Moreover by using a label space of lg n +
lg lg n+ 2 bits the equivalence query can be answered in Θ(1) time.

3.2 Online Direct Equivalence Query Problem

In the problem, which we call the online direct equivalence query problem, each element
is to be given a unique label, and the equivalence query is to be answered by computing
directly from the two labels without using any auxiliary data except for the value of the
number of elements n. In contrast to the static setting, only n is known in advance, the
labeling scheme receives the partition as an online sequence of events, where each event
contain a class of the partition and its elements. Moreover, re-labeling elements is not
allowed.

This problem was studied by Dahlgaard et al. in [6]. In this section, we review their
results; however we provide alternative proofs.
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Theorem 4. ([6]) Let a partition of an n-element set into equivalence classes be given
as input to the online direct equivalence query problem. Then a label space of

∑n
i=1 i =

n(n+ 1)/2 is necessary and sufficient to represent the labels.

Proof. Order the classes in chronological order as they are received by the algorithm. Our
key observation is that the ith class contains at most n− i elements. For the upper bound,
simply assign label 1 for the last class (i = n) and assign labels from the set of integers
(
∑n−i

j=1 j) + 1 to
∑n−i+1

j=1 j for the ith class where 1 ≤ i < n.

To show that this many labels are necessary, consider the collection C of n equivalence
relations. The relation C1 contains one class with n-element s, and for 1 < i ≤ n relation
Ci contains i classes such that classes 1 till i− 1 contain only one element each, and class
i contains n− i elements.

Consider the labels assigned by any labeling scheme for the above collection of equiv-
alence relations. C1 requires n distinct labels. The first element in Ci, where 2 ≤ i ≤ n
will be assigned the same label as the first element in C1. However, the remaining n − 1
labels assigned to C1 cannot be assigned to any element in Ci or a conflict will occur. Now
remove C1 and the first elements of Ci. Repeat the same argument with the labels assigned
to C2, C3, up to Cn in that order.

To answer the equivalence query in the above labeling scheme, given an integer label
x, we need to find the largest i such that

∑n−i
j=1 j < x. Notice that

(n− i)(n− i+ 1)/2 < x ≤ (n− i+ 1)(n− i+ 2)/2

and

(n− i)(n− i+ 1) < 2x ≤ (n− i+ 1)(n− i+ 2)

and √
(n− i)(n− i+ 1) <

√
2x ≤

√
(n− i+ 1)(n− i+ 2).

Thus,

(n− i) ≤ b
√

2xc < (n− i+ 2)
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so i = n − b
√

2xc or i = n + 1 − b
√

2xc. We can check both cases in constant time, so
the query time is equivalent to the time needed to compute b

√
2xc which can be done in

O(lg lg n) time using Newton’s iterative method.

In order to support this query in constant time, we modify the labeling scheme so that
all classes have size equal to n. Given two integer labels x and y, they belong to the same
equivalence class if and only if bx/nc = by/nc.

Theorem 5. Let a partition of an n-element set into equivalence classes be given as input
to the online direct equivalence query problem. Then d2 lg ne − 1 bits are necessary and
sufficient to represent each of the labels and answer the equivalence query in Θ(lg lg n)
time. Moreover using a label space of d2 lg ne bits the equivalence query can be answered
in Θ(1) time.
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Chapter 4

Data Structures with Label Space n

In this chapter, we revise the main data structure of [16] and we give correction to lemma
2 and lemma 3 in [16]. Then, we provide an improved data structure using O(

√
n) bits

that answers queries in constant time.

We assume that the equivalence class is given by a tuple containing the sizes of the
classes, and our task is to give each element a unique label from the range 1 to n. We can
use an auxiliary data structure to answer the equivalence query. First we assign an implicit
ordering of the elements, where each element gets a label according to this ordering. Then,
given two labels the equivlance query is answered by looking at these two labels and the
augmented data structure.

The number of partitions of an n-element set into equivalence classes is the same as
the number of integer partitions of n, which by the Hardy-Ramanujan formula [12] is

asymptotically equivalent to 1
4n
√
3
eπ
√

2n
3 . Thus the information theoretic lower bound for

representing the equivalence class relation is Θ(
√
n) bits of space.

Let k be the number of distinct class sizes. For i = 1 to k, let si be the distinct
sizes of the classes, and let ni be the number of classes of size si. Order the classes in
non-decreasing order by γi = sini so that for i = 1 to k − 1, sini ≤ si+1ni+1. Notice that
since ∑k

i=1 sini = n and sini ≥ i for i = 1, . . . , k,

k is at most
√

2n.

12



4.1 Succinct Structure Using O(
√
n) bits

In this section, we design a data structure using O(
√
n) bits of space to represent the

equivalence class information and support the equivalence query in O(lg n) time. The
primary data structure is made up of two sequences:

• the sequence ~δ that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for i = 2, . . . , k
and

• the sequence ~n that consists of ni, for i = 1, . . . , k.

Elements of the two sequences are represented in binary. Since the length of each element
may vary, we store two other sequences that shadow the primary sequences. The shadow
sequences have a 1 at the starting point of each element in the shadowed sequence and a
0 elsewhere. Also store a select structure (see Chapter 2) on the two shadow sequences in
order to identify the 1s quickly.

Lemma 6. ([16]) For any integer i where 1 ≤ i ≤ n, |{δj | δj ≥ i}| ≤
√

2n/i.

Proof. Let δjt ≥ i and jt < jt+1, for t = 1, . . . , b. Then sjtnjt ≥ ti. Since∑b
t=1 ti ≤

∑b
t=1 sjtnjt ≤ n,

we have b(b+ 1)/2 ≤ n/i and b ≤
√

2n/i, so our claim holds.

Lemma 7. ([16])
∑k

j=1 lg(max{1, δj}) ∈ O(
√
n).

Proof. Break the δ values into ranges of powers of two. Then∑k
j=1 lg(max{1, δj}) ≤

∑dlgne
p=1 p

√
2n/2p−1 = 2

√
n
∑dlgne

p=1
p

2p/2
∈ O(

√
n).

Similarly we prove that:

Lemma 8. ([16]) For any integer i where 1 ≤ i ≤ n, |{nj | nj ≥ i}| ≤
√

2n/i.

Proof. Let njt ≥ i and sjt < sjt+1 , for t = 1, . . . , b, then sjtnjt ≥ ti. Since

13



∑b
t=1 ti ≤

∑b
t=1 sjtnjt ≤ n

we have that b(b+ 1)/2 ≤ n/i and b ≤
√

2n/i, so our claim holds.

Lemma 9. ([16])
∑k

j=1 lg(ni) ∈ O(
√
n).

Proof. Break the n values into ranges of powers of two. Then∑k
j=1 lg nj ≤

∑dlgne
p=1 p

√
2n/2p−1 = 2

√
n
∑dlgne

p=1
p

2p/2
∈ O(

√
n).

Thus the space occupied by these sequences is O(
√
n). Assign labels to elements based

on the first sequence. To be more specific, for the classes of size si, assign label values from∑i−1
j=1 sjnj+1 to

∑i
j=1 sjnj. Next, we show how to implement the equivalence query. Given

an element labeled x, first find the predecessor p(x) of x, which is max{j |
∑j

i=1 sini < x}.
Given x and y, if p(x) 6= p(y) then x and y belong to different equivalence classes. If
p(x) = p(y), then we know that x and y belong to equivalence classes of the same size.

They are in the same equivalence class if and only if d(x−
∑p(x)

i=1 sini)/np(x)+1e is equal to

d(y −
∑p(y)

i=1 sini)/np(y)+1e. Using the select data structures saved we can find the value of
ni in constant time, so what is left is answering the predecessor query.

To answer the predecessor query efficiently, store the partial sum values
∑i

j=1 sjnj for
each i that is a multiple of lg n. Now, an O(lg n) range of the predecessor can be obtained
by doing a binary search for x on these stored partial sums. Once this range is found, the
actual predecessor can be computed by doing a linear search on the δ values in this range.
Since both operations take O(lg n) time, we obtain the following theorem:

Theorem 10. ([16]) Given a partition of an n-element set into equivalence classes O(
√
n)

bits are necessary and sufficient for storing the partition and to answer the equivalence
query in O(lg n) time if each element is to be given a unique label in the range {1, 2, . . . , n}.

4.2 Faster Method

To answer the equivalence query in O(1) time, we can store the partial sums in a fully in-
dexable dictionary [20] with the improved redundancy of [11] that supports the predecessor

query in constant time albeit using O(
√
n
1+ε

) bits of space. However, we show that the
predecessor can be supported in constant time using only O(

√
n) bits. As in the previous

section, we store the two sequences:
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• ~δ that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for i = 2 to k,

• ~n that consists of ni, for i = 1 to k,

and their shadow sequences. In addition, we store an array A, where A[i] = max{j |∑j
t=1 stnt ≤ i(i+ 1)/2}, for i = 1 to

√
2n. Now we claim:

Lemma 11. The predecessor p(x) of an integer x in the sequence
∑i

t=1 stnt, i = 1 to k is
in the range [A[b

√
2xc − 1], A[b

√
2xc − 1] + 5].

Proof. Let i = b
√

2xc − 1, notice that

i(i+ 1)/2 ≤ (
√

2x− 1)
√

2x/2 ≤ x

and

x ≤
√

2x(
√

2x+ 1)/2 ≤ (i+ 2)(i+ 3)/2

For j = A[i] + 1,
∑j−1

t=1 stnt ≤ i(i+ 1)/2, so j − 1 ≤ i and j ≤ i + 1. Since
∑j

t=1 stnt >

i(i+ 1)/2, sjnj ≥ i(i+ 1)/(2j) ≥ i/2. Hence,
∑j+5

t=1 stnt ≥ (i+ 2)(i+ 3)/2 ≥ x.

The actual value of p(x) can be obtained by checking at most six numbers. Moreover,
A can be stored using O(

√
n) bits by storing a bit vector that contains the values A[0] and

(A[i] − A[i − 1]) for all i = 1, . . . ,
√

2n represented in unary with a 0 separator between
each two consecutive values. To get the value of A[i], count the number of 1s before the
ith 0 in the bit vector.

In the standard word RAM model, computing
√
x is not a constant time operation.

The standard Newton’s iterative method uses O(lg lg n) operations. We describe a space
efficient method that uses a look-up to precomputed tables and finds

√
x in constant

time. We use two tables, one when the number of bits up to the most significant bit
of x is odd, denoted by O, and one when the number of bits is even, denoted by E.
For i = 1, . . . , d

√
2ne, we store in E[i] the value of b

√
i2dlg iec, and in O[i] the value of

b
√
i2dlg ie−1c.

Lemma 12. Let i = ai2
d dlg ie

2
e + bi, b

√
ic = E[ai] or E[ai] + 1 if dlg ie is even and O[ai] or

O[ai] + 1 otherwise.

15



Proof. Notice that E[ai + 1] ≤ E[ai] + 1 and O[ai + 1] ≤ O[ai] + 1. Moreover, since

ai2
d dlg ie

2
e ≤ x ≤ (ai + 1)2d

dlg ie
2
eour claim holds.

The value of b
√
ic can be computed by squaring the two values and comparing them

with i. Notice that for i ≤ n, ai ≤ d
√

2ne, and it can be computed by first finding the
most significant bit r of i, then masking the lower half of the bits, and finally shifting the
bits to the right by br/2c. Since the most significant bit can be found in constant time
with the standard word RAM model [9] and since E and O can be stored in O(

√
n) bits

by storing them in a similar method as we stored A, we have:

Lemma 13. ([16]) For i ≤ n, b
√
ic can be computed in constant time using a precomputed

table of O(
√
n) bits.

For each i, where at least one of δi’s bits locations in ~δ is a multiple of (ε lg n), store the
partial sum value

∑i
j=1 (sjnj) and the value of sini. Moreover, for every possible sequence

of δ values δ1, δ2, . . . , δi of length (ε lg n) and its corresponding shadow sequence, store
in a table T the values i and

∑i
j=1 (

∑j
k=1 δk). To compute

∑i
j=1 (sjnj) for an arbitrary

index i, find the biggest index k ≤ i that has it’s partial sum value stored. Notice that∑i
j=1 (sjnj) =

∑k
j=1 (sjnj) + (i− k)sknk +

∑i
j=k+1 (

∑i
l=k+1 δl). Since these values can be

obtained using table lookup on T , we can compute the partial sum at an arbitrary index
in constant time. Moreover, we can compute the value of sini for an arbitrary index i by
computing the partial sum at i − 1 and subtracting it from the partial sum at i. Finally,
we can compute si by computing sini and dividing it by ni. By choosing ε < 1/4, the size
of T becomes o(

√
n) bits, and we obtain the following theorem:

Theorem 14. ([16]) Given a partition of an n-element set into equivalence classes O(
√
n)

bits are necessary and sufficient for storing the partition and to answer the equivalence
query in constant time if each element is to be given a unique label in the range {1, 2, . . . , n}.
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Chapter 5

Data Structures with Extended Label
Space

In this chapter, we study the trade-off between label space and auxiliary data structure
size for the problem of supporting equivalence queries.

5.1 Data Structures with Label Space cn

In this section, we move on to designing data structures where the n-element s can be
freely labelled with unique labels in the range of 1 to cn. Our work is motivated by the
fact that unless n is a power of two or a little less than a power of two, we can increase
the address space by a constant factor without increasing the number of bits required to
store each address. The queries can be answered by looking at an auxiliary data structure.
We are interested in time and space efficient data structures that are within a constant
factor from the information theoretic lower bound. We first assign an implicit ordering of
the elements. Each element gets a label according to this ordering, and the queries are
answered by looking at these labels and the auxiliary data structure. Theorems 15 and 16
are to lead the reader to our main result in this section, which is Theorem 17.

Theorem 15. Given a partition of an n-element set into equivalence classes, O(lg2 n) bits
are sufficient for storing the partition and to answer the equivalence query in O(1) time
if the elements are to be given unique labels in the range {1, 2, . . . , cn} for any constant
c > 1.
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Proof. Given a partition, first round the size of each class to the nearest power of c. The
required address space will increase from n to at most cn because the size of each class
increased by at most a factor of c. Let k be the number of distinct class sizes (note that
k ≤ logc n). For i = 1 to k, let si be the distinct sizes of the classes and let ni be the
number of classes of size si. Order the classes in non-decreasing order by si so that for
i = 1 to k− 1, si ≤ si+1. Assign labels to elements such that classes of size si are assigned
values from

∑i−1
j=1 sjnj + 1 to

∑i
j=1 sjnj. Our data structure consists of:

• a fusion tree [9] T storing the values
∑i

j=1 sjnj for i = 1 to k. Since k ≤ logc n, T
supports predecessor queries in O(1) time.

• a sequence that consists of ni, for i = 1 to k.

• a sequence that consists of si, for i = 1 to k.

Given an element labeled x, we can find the predecessor p(x) of x in O(1) time by querying
T . Given x and y, if p(x) 6= p(y) then x and y belong to different equivalence classes. If
p(x) = p(y), then we know that x and y belong to equivalence classes of the same size.

They are in the same equivalence class if and only if d(x−
∑p(x)

i=1 sini)/np(x)+1e is equal to

d(y −
∑p(y)

i=1 sini)/np(y)+1e.

To further reduce the size of the data structure, round the size of each class to the
nearest power of

√
c, then round each ni value to the nearest power of

√
c. These operations

will increase the address space by at most a factor of (
√
c)2 = c. To store the equivalence

relation, it is sufficient to store the logarithm of the ni values, which can be done in
O(lg n lg lg n) bits.

Theorem 16. Given a partition of an n-element set into equivalence classes, O(lg n lg lg n)
bits are sufficient for storing the partition and to answer the equivalence queries in constant
time if each element has to be given a unique label in the range {1, 2, . . . , cn} for any
constant c > 1.

Next, we describe how to obtain a data structure whose size is O(lg n) bits. First
we round the size of each class to the nearest power of l = 21/d, where d is the smallest
integer such that l ≤

√
c, increasing the label space by at most a factor of

√
c. Next, we

make sure that the distinct class sizes fill non-intersecting parts whose size is a multiple
of s = bkn/(dlogl(n)e)c where k = c −

√
c. Since we have at most dlogl(n)e distinct class

18



sizes, this operation will increase our address space by at most kn, so the new address
space will have an upper bound of

n(
√
c+ k) = n(

√
c+ (c−

√
c))

= cn

as desired. Let the size of the part filled by blic be equal to cis (note that ci can be equal
to 0). Notice that

dlogl(n)e∑
i=0

ci ≤ cn/s

= cdlogl(n)e/k
∈ O(lg(n)).

To represent the equivalence class relation it is sufficient to store the ci values. Our data
structure consists of a single bit vector ψ that stores the ci values in unary with a 0
separator between each two consecutive values. We also store a select structure on ψ
to identify the 1s and 0s quickly, and we store a rank structure to count the 1s and 0s
quickly. Finally, we store the values of 2i/d for i = {1, . . . , d − 1}. The space required is
O((c/k + 1)dlogl(n)e) ∈ O(lg n) bits.

Assign labels to elements such that classes of size blic are assigned values from the
range

∑i−1
j=0 cjs to (

∑i
j=0 cjs)− 1.

Implementing the equivalence query Now given an element labeled x, we can
determine the size of the equivalence class that x belongs to by getting the number
of zeroes i before the bx/sc-th 1 in ψ. Once we find i we know that x belongs to an
equivalence class of size blic. Given two elements x and y, if they belong to classes with
different sizes, then x and y are not in the same equivalence class.

If x and y both belong to a class of size blic, then calculate j the number of 1s before
the i-th 0 in ψ. x and y are in the same equivalence class if and only if b(x− js)/blicc =
b(y − js)/blicc. To calculate blic, notice that blic = b2i/dc = b2bi/dc2(i mod d)/dc. We can
calculate 2bi/dc in constant time using bitwise left shift operator (2bi/dc = 1 << bi/dc), and
we have the value of 2(i mod d)/d stored. Thus, we can calculate blic in constant time. All
other operations take constant time, so we obtain the following theorem:

Theorem 17. Given a partition of an n-element set into equivalence classes, Θ(lg n) bits
are sufficient for storing the partition and to answer the equivalence query in Θ(1) time
if each element is to be given a unique label in the range {1, 2, . . . , cn} for any constant
c > 1.
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5.2 Data Structures with Label Space f (n) · n

In this section, we generalize the techniques presented in the previous section to design
a data structure where the n-element s can be freely labelled with unique labels in the
range of 1 to f(n)n where f(n) is an increasing function such that f(n) ∈ ω(1) and
f(n) ∈ O(lg(n)).

Theorem 18. Given a partition of an n-element set into equivalence classes and a function
f(n) where f(n) ∈ ω(1) and f(n) ∈ O(lg(n)), O(lg(n)/ lg(f(n))) bits are sufficient for
storing the partition and to answer the equivalence query in O(1) time if the elements are
to be given unique labels in the range {1, 2, . . . , f(n)n}.

Proof. Let l = 2blg (f(n)/2)c, we round the size of each class to the nearest power of l,
increasing the label space by at most a factor of l. Then, we make sure that the distinct class
sizes fill non-intersecting parts whose size is a multiple of s = b2dlg(n)ef(n)/(4dlogl(n)e)c.
Since we have at most dlogl(n)e distinct class sizes, this operation will increase our address
space by at most 2dlg(n)ef(n)/4, so the new address space will have an upper bound of:

n(f(n)/2) + 2dlg(n)ef(n)/4 ≤ n(f(n)/2) + 2nf(n)/4

= f(n)n

as we desired. Let the size of the part filled by li be equal to cis. Notice that

dlogl(n)e∑
i=0

ci ≤ f(n)n/s

≤ 4dlogl(n)e
∈ (lg(n)/lg(f(n)))

To represent the equivalence class relation, we store the value of dlg(n)e and f(n) using
O(lg lg(n)) bits. Moreover, we store the unary representation of the ci values with a 0
separator between each two consecutive values in a single bit vector ψ. We also store
a select structure on ψ to identify the 1s and 0s quickly, and we store a rank structure
to count the 1s and 0s quickly. Assign labels to elements such that classes of size li are
assigned values from the range

∑i−1
j=0 cjs to (

∑i
j=0 cjs)−1. To answer the equivalence query,

we first calculate the value of s and l. Now given an element labeled x, we can determine
the size of the equivalence class that x belongs to by getting the number of zeroes i before
the bx/sc-st 1 in ψ. Once we find i we know that x belongs to an equivalence class of
size li (we can compute li in constant time since l is a power of 2). Given two elements
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x and y, if they belong to classes with different sizes, then x and y are not in the same
equivalence class. If x and y both belong to a class of size li, then calculate j the number
of 1s before the i-th 0 in ψ. Then x and y are in the same equivalence class if and only if
b(x− js)/lic = b(y − js)/lic.
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Chapter 6

Lower Bounds

In this chapter, we show that the space bound of Theorem 17 and Theorem ?? is optimal
for the range of label space used. Without loss of generality, to make our calculations
easier, we assume that n is a power of 2.

For any constant c > 1, let Scn be the set of all partitions of bcnc and Sn the set of all
partitions of n. While one partition of bcnc can dominate many partitions of n, we argue
first that at least (lg n)/2c partitions of bcnc are necessary to dominate all partitions of n.
Let S be the smallest set of partitions of bcnc that dominates all the partitions of n. Our
first claim is that:

Lemma 19. |S| ≥ lg n/(2c).

Proof. Consider the subset Q of Sn defined as follows:

• Q contains lg n+ 1 partitions, and

• the ith partition, for i = 0 to lg n, qi of Q contains n/2i classes of size 2i.

Let p be a partition of bcnc that dominates partitions qj1 , qj2 , . . . , qjm of Q where j1 < j2 <
. . . < jm.

To dominate qjm , p must contain at least n/2jm classes of size 2jm . Since p dominates
qji+1

, for any 1 ≤ i < m, there must exist at least n/2ji+1 classes of size greater then 2ji in
p. Therefore, for p to dominate qji , p must contain at least

n/2ji − n/2ji+1 ≥ n/2ji − n/2ji+1

≥ n/2ji+1
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additional classes of size greater than or equal to 2ji . Consequently:

cn ≥ n+
m−1∑
k=1

2jkn/2jk+1

≥
m∑
k=1

n/2

≥ mn/2

and m ≤ 2c. Thus any partition of bcnc can dominate at most 2c partitions of Q, and to
dominate Q we need a minimum of (lg n+ 1)/(2c) ∈ Ω(lg n) partitions of bcnc. Since Q is
a subset of Sn, our claim holds.

Extending the above argument, we show

Lemma 20. Let k ≥ 1 be any integer such that lg (n/k) > 2ck, then |S| ≥
(blg(n/k)c

k

)
/
(b2ckc

k

)
.

Proof. Without loss of generality and to make our calculations easier, we assume that k is
a power of 2. Divide n into k parts each of size n/k. Let Q be the set formed by filling
each part with a distinct power of 2, clearly |Q| =

(blg(n/k)c
k

)
.

Let p be a partition of bcnc such that p dominates m parts filled by the following
distinct powers of 2: 2j1 , 2j2 , . . . , 2jm where j1 < j2 < . . . < jm.

To dominate the part filled by 2jm , p must contain at least n/(k2jm) classes of size 2jm .
Since p dominates the part filled by 2ji+1 , for any 1 ≤ i < m, there must exist at least
n/(k2ji+1) classes of size greater than 2ji in p. Therefore, for p to dominate the part filled
by 2ji , p must contain at least

n/(k2ji)− n/(k2ji+1) ≥ n/(k2ji)− n/(k2ji+1)

≥ n/(k2ji+1)

additional classes of size greater than or equal to 2ji . Consequently

cn ≥ n/k +
m−1∑
i=1

2jin/(k2ji+1)

≥
m∑
i=1

n/(2k)

≥ mn/(2k)

23



and m ≤ 2ck. Thus any partition of bcnc can dominate at most b2ckc distinct parts, and
any partition of bcnc can dominate at most

(b2ckc
k

)
partitions of Q. Hence, to dominate Q

we need a minimum of
(
lg(bn/k)c

k

)
/
(b2ckc

k

)
partitions of bcnc. Since Q is a subset of Sn our

claim holds.

The information theoretic lower bound for space to represent the equivalence class
information is given by lg(|S|) ≥ lg(

(blg(n/k)c
k

)
/
(b2ckc

k

)
), if we choose k = dlg n/4ce we get

our desired bound lg(|S|) ∈ Ω(lg n).

Theorem 21. Given a partition of an n-element set into equivalence classes, Θ(lg n) bits
are necessary and sufficient for storing the partition if each element is to be given a unique
label in the range {1, 2, . . . , cn} for any constant c > 1. Moreover, the equivalence query in
such a structure can be answered in O(1) time.
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Chapter 7

Conclusion and Future Work

In this thesis, we first reviewed the succinct representation of static bit vectors and we
showed how to support the operations rank, select, successor and predecessor in constant
time using only o(n) additional bits. Then we covered the Direct Equivalence Query Prob-
lems. We showed that a label space of lg n+ lg lg n−Θ(1) bits is necessary and sufficient
for the Direct Equivalence Query Problem, and a label space of 2 lg n− 1 bits is necessary
and sufficient for the Online Direct Equivalence Query Problem.

Then we reviewed data structures for representing equivalence class information once
the label space is n. We showed that a data structure of size Θ(

√
n) bits is necessary and

sufficient for storing the equivalence class information once the label space is n, and we
showed that the equivalence query can be supported in Θ(1) time using such structure.

Finally, we discussed the trade-off between label space and auxiliary space for the
fundamental problem of supporting equivalence queries. Our main result is to show that
once labels are assigned from the range cn a data structure whose size is Θ(lg n) bits is
necessary and sufficient to represent the equivalence classes. Our scheme allows an implicit
labeling of elements and supports equivalence queries in Θ(1) time. The main motivation
behind our work is that when n is not a power of 2 or slightly less than a power of 2, we
can increase the address space without increasing the number of bits required to store each
label. Thus, for most values of n, our result is achieved using an optimal number of bits,
which is dlg ne bits.

Apart from providing, what we believe, a non-trivial data structure requiring only
Θ(lg n) bits, we have also touched upon the interesting tradeoff issue between auxiliary
space and the label space. As there is a huge body of research in ‘labeling schemes’ (see
[2]), investigation into such a tradeoff for other labeling schemes maybe interesting.

25



References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of
computer algorithms, 1974. Reading: Addison-Wesley, pages 207–209, 1987.

[2] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances
in trees. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 689–698, 2003.
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