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Abstract 

Li-ion batteries have a predominant market share as mobile energy storage devices, especially in 

consumer electronics. New concepts for electrode material designs are, however, necessary to boost 

their energy and power densities, and most importantly, the long term cycle stability. This will allow 

for these devices to gain widespread acceptance in electric vehicles, an area with immense market 

potential and environmental benefits. From a practical perspective, new electrode materials must be 

developed by simplistic, environmentally friendly and low cost processes. 

As a new class of electrode materials, mesoporous Sn/SnO2/Carbon composites with uniformly 

distributed Sn/SnO2 embedded within the carbon pore walls have been rationally designed and 

synthesized. These nanocomposites have been characterized by x-ray diffraction (XRD), scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron 

spectroscopy (XPS), and tested as negative electrodes in a cell using lithium foil as the counter 

electrode. The inclusion of metallic Sn in SnO2/CMK3 resulted in a unique, ordered structure and 

provided a synergistic effect which resulted in an impressive initial reversible capacity of 799 mAh g-

1. In addition, at a high current of 800 mAg-1, the heterogeneous structure was able to provide a stable 

capacity of 350 mAhg-1 and a retention capacity of ~ 670 mAh g-1 after 60 cycles. 

While Sn/SnO2 composites have been deemed very promising, Si materials boast improved energy 

storage capacities, inspiring us to investigate these materials as new anode structure. A novel one-pot 

synthesis for the sub-eutectic growth of (111) oriented Si nanowires on an in-situ formed nickel 

nanoparticle catalyst prepared from an inexpensive nickel nitrate precursor is developed. Anchoring 

the nickel nanoparticles to a simultaneously reduced graphene oxide support created synergy between 

the individual components of the c-SiNW-G composite, which greatly improved the reversible charge 
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capacity and its retention at high current density when applied as an anode for a lithium-ion battery. 

The c-SiNW-G electrodes in a Li-ion battery achieved excellent high-rate performance, producing a 

stable reversible capacity of 550 mAh g-1 after 100 cycles at 6.8 A g-1 (78% of that at 0.1 A g-1). Thus, 

this process creates an important building block for a new wave of low cost silicon nanowire materials 

and a promising avenue for high rate Li-ion batteries.   

While excellent rate capability was obtained by using SiNW/graphene based material, simplifying the 

process may drive Si based materials to commercialization.  A novel, economical flash heat treatment 

to fabricate silicon based electrodes is introduced to boost the performance and cycle capability of Li-

ion batteries. The treatment results in a high mass fraction of Si, improved interfacial contact, 

synergistic SiO2/C coating and a conductive cellular network for improved electronic conductivity, as 

well as flexibility for stress compensation. The developed electrodes achieve first cycle efficiency of 

~84% and a maximum charge capacity of 3525 mA h g-1, which is almost 84% of silicon’s theoretical 

maximum. Furthermore, a stable reversible charge capacity of 1150 mA h g-1 at 1.2 A g-1 can be 

achieved over 500 cycles. Thus, the flash heat treatment method introduces a promising avenue for the 

production of industrially viable, next-generation Li-ion batteries.  

Even though we obtained a dramatic improvement to a treated electrode based on commercial silicon, 

we still need to boast the cycle stability and high areal capacity achieved by higher electrode loading.  

Thus, we report a scalable approach that relies on covalent binding commercially available Si 

nanoparticles (SiNP) to sulfur-doped graphene (SG) followed by shielding them with cyclized 

polyacrylonitrile. The covalent synergy led to improved material property that can deliver stable 

reversible capacity of 1033 mAh g-1 for more than 2000 cycles at a rate of 1 A g-1. The areal capacity 

was 3.5 mAh cm-2 at 0.1 A g-1, approaching the commercial demand. The spatial arrangement of Si 

after cycling reveals that it was confined in nanowires morphology. This reveals that the solid 
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electrolyte interphase remains stable leading to superior cyclability. Our DFT calculations revealed 

covalent hybrid interaction between Si, S, and C leading to stable material configuration. Furthermore, 

the structure synergy facilitated lithium diffusion, which strongly supports our results. This simple, low 

cost, feasible, and safe approach provide new avenues for engineering electrode structure for enhanced 

performance. 
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Chapter 1  Introduction 

1.1 Challenges and Motivation 

 

With limited global supplies and concerns of climate change public attention has been drawn toward 

the development of eco-friendly technologies such as hybrid electric vehicles (HEVs) and electric 

vehicles (EVs), grid scale energy storage, power electronics, control systems as well as the high-end 

mobile devices. Currently, Li ion batteries (LIB) are the most commonly used technologies in these 

systems due to their attractive high gravimetric and volumetric energy densities compared to other 

energy storage technologies such as lead acid, Ni-Cd and Ni-MH batteries1 Lithium ion batteries are 

becoming more common in portable electronic devices due to their high energy density, lack of memory 

effect, and high charge and discharge rate capabilities. However, with the ever increasing demands, the 

current technology cannot meet the stringent requirements for application in electric vehicles or hybrid 

electric vehicles that require higher power, in addition to high energy density. Intensive research efforts 

have been focused on developments that push conventional capabilities of LIB technology. These 

efforts include research to improve all aspects of LIBs, including developing novel active materials for 

the anode and cathode, separators, electrolytes and overall cell and stack designs. The active materials 

in the electrodes play an important role in determining the LIB energy density, power density and cycle 

stability. The current technology utilizes micro-sized particles based on carbon (graphite) as the anode 

materials in which lithium intercalates during battery charging. Because of the small capacity and the 

limitation of lithium diffusion, the current technology need to be upgraded to be able to provide higher 

energy and power densities.  

 

Alternate anode material need to be developed in order for LIBs to meet the demands of next generation 

devices and applications. Anodes based on tin (Sn) or silicon (Si) provide higher energy density than 
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graphite. In terms of specific capacity, Si has the highest theoretical value of 4200 mAh g-1. Sn is not 

far behind with 65-75% of the Si capacity. In addition, these elements are abundant, non-toxic, and 

inexpensive. However, due to the nature of the reactions during lithiation and delithiation, these 

materials have 3 major challenges: 

i) Large volume change during lithiation/delithiation results in material degradation and 

capacity loss. 

ii) Low current efficiency and unstable solid electrolyte interphase (SEI). 

iii) Loss of electrode integrity including electronic isolation between particles. 

 

Several solutions to overcome these issues have been proposed. One common approach is to 

incorporate the active material into a matrix conductive material. This matrix plays a bifunctional role, 

serving both as a conducting skelton, and to improve the mechanical integrity of the electrode by 

accommodating the volume changes occurring during battery cycling. Even though these electrodes 

have a lower initial capacity because of the additives, they show relatively stable cycling. Another 

approach focuses on minimizing stresses caused by volume changes by rationally controlling the 

morphology and nanostructures of the electrode materials. For example, Silicon nanoparticles were 

embedded in a carbon matrix through a multistep process creating void spaces that accommodate 

volume changes during lithiation/delithiation.2 Mesoporous silicon sponges were used to minimize the 

pulverization during lithiation/delithiation. The silicon sponge delivered a capacity of 750 mAh g-1 and 

80% capacity retention. 3 Self-healing chemistry by forming hydrogen bonds was used to stabilize 

silicon microparticles anodes, providing longer cycle life. 4 Another method concerning the polymeric 

structure of the electrode was introduced by Cui et al. 5 They used in-situ polymerization of conducting 

hydrogel to coat the silicon nanoparticles, providing porous space for volume expansion of Si particles.5 

The sophisticated and tedious synthesis of nanostructured silicon however leads to excessive costs that 
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render silicon anodes more expensive than the current graphite ones. New concepts are required to 

develop these advanced non-graphite electrode structures that are inexpensive, and allowing researchers 

to capitalize on the immense theoretical energy storage density of the materials. 

1.2 Objective of this work 

 

In this thesis, a focus is placed on the development of a new generation anode materials for LIBs. The 

main objectives are: 

1- Develop controlled nanostructure of Sn based materials; 

2- Controlled synthesis of silicon nanowires grown directly on graphene; 

3- Introducing a new method to treat the Si-based anodes leading to changes in the electrode nano-

architectures and providing impressive performance; and, 

4- Introducing sulfur-doped graphene as a support for Si in the electrode structure.  

The next generation anode materials is shown schematically in Figure 1-1. 
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Figure 1-1. Chart introducing different possibilities of anode material. 

 

1.3 Thesis outline 

 

This thesis consists of several chapters. An introduction, which includes the motivation and objective 

of the work is provided in Chapter 1. In Chapter 2, the background and a literature review is included, 

in which the working principals of lithium ion batteries are introduced and discussed. In addition, a 

brief introduction to each component of the lithium-ion battery is shown. The results and discussions 

from the research activities are introduced in Chapters 3-6, broken down into sub-tasks for the overall 

project. The synthesis and electrochemical performance of Sn-based material was introduced in Chapter 

3. A hybrid nanostructure of Sn/SnO2 was incorporated into the nanochannels of ordered mesoporous 

carbon (CMK3).  The results reveals better performance than the conventional graphite based lithium 
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ion battery. In the subsequent Chapters (4-6) several successful approaches for using silicon based 

material are developed. In Chapter 4, a one-pot synthesis of Si nanowires on in-situ formed nickel 

nanoparticle on graphene are reported. The nanostructure created synergy between the individual 

components of the c-SiNW-G composite, which greatly improved the reversible charge capacity and 

it’s retention at high current density when applied as an anode for a lithium-ion battery. In Chapter 5, 

a novel, economical flash heat treatment of the fabricated silicon based electrodes (starting with 

commercially available silicon nanoparticles) is introduced. The treatment reveals a high mass fraction 

of Si (90%) binder free matrix, improved interfacial contact, synergistic SiO2/C coating and a 

conductive cellular network for improved conductivity, as well as flexibility for stress compensation. 

The enhanced electrodes achieve first cycle efficiency of ~84% and a maximum charge capacity of 

3525 mA h g-1, almost 84% of silicon’s theoretical maximum. In Chapter 6, a scalable approach that 

relies on covalent binding commercially available Si nanoparticles (SiNP) to sulfur-doped graphene 

(SG) followed by shielding them with cyclized polyacrylonitrile. The covalent synergy led to improved 

material property that can deliver stable reversible capacity of 1033 mAh g-1 for more than 2000 cycles 

at a rate of 1 A g-1. The areal capacity was 3.5 mAh cm-2 at 0.1 A g-1, approaching the commercial 

targets. Chapter 7 summarizes the conclusions of the results and introduces proposed future research 

directions. 
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Chapter 2  Background and literature review 

2.1 Principles of Li-ion Batteries 

 

Electrochemical energy storage systems are extremely important for efficient utilization of renewable 

energy, for the advancement of portable electronics, and for directing the future of electric vehicles. 

Batteries are on the forefront of the devices that can perform this task. They efficiently convert chemical 

energy into electric energy through coupled redox reactions. Various batteries have been developed 

(Figure 2.1), among which Li-ion batteries have the highest gravimetric and volumetric energy 

densities. This is due to the fact that lithium is the most electropositive metal with a standard potential 

of 3.04 V vs SHE. It is also the lightest as well (6.94 g/mole).6 The general composition of a battery 

(see Figure 2.2) is a cathode (+ve), an anode (-ve) which are separated using a separator, and an 

electrolyte. The traditional Li-ion battery is composed of graphite as the anode and a lithiated transition 

metal oxide as the cathode (source of lithium). They are separated using a porous polymer membrane 

e.g. polypropylene. The electrolyte is usually a lithium salt such as LiPF6 dissolved in a mixture of 

organic solvents e.g. ethylene carbonate (EC), dimethyl carbonate (DMC) etc. The following is the 

chemistry of a typical lithium ion battery during discharge: 

Lithium travels from the lithiated graphite (LixC6) to intercalate to Li1-xCoO2 (lithium cobalt oxide, a 

typical cathode material):  

Anode x LiC6     
ௗ௜௦௖௛௔௥௚௘
ሱۛ ۛۛ ۛۛ ሮۛ  x Li+  + x e- + x C6      (2.1) 

Cathode Li1-xCoO2 + x Li+ + x e-  
ௗ௜௦௖௛௔௥௚௘
ሱۛ ۛۛ ۛۛ ሮۛ  LiCoO2    (2.2) 

This type of cell operates at 3.7 V with a capacity of 150 mAh g-1. 
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Figure 2-1. Comparison of gravimetric and volumetric energy densities of different battery 

technologies.7 

In order to consider reliability of lithium ion batteries, the following conditions need to be met;8 

1. The electrode materials have to maintain chemical and mechanical stability during cycling. 

2. Low cost of the materials and reduced environmental impact. Cheaper elements like Fe, Ni, 

Mn are preferred than Co based material. 

3. Safety: the design should avoid leaks or fires. 

4. Long cycle life: the battery should provide enough deep discharge cycles that satisfy the 

consumer. This means that the electrode materials should be very stable providing reversible 

electrode reactions with minimal losses.  

5. The battery components should be stable at the temperature range of operating conditions. 

6. High energy and power density to satisfy the market need. 
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Figure 2-2. Schematic illustrations for the lithium-ion battery. 

 

2.2 Cathode materials 

 

First of all, any cathode material should have a higher potential with respect to lithium. Intercalation 

compounds that can accommodate lithium with high capacity are ideal candidates. These materials 

should also have some properties in common; e.g., high electronic conductivity, facilitated lithium 
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diffusion, and structure stability. Lithiated transition metal oxides are commonly used as cathode 

materials for lithium ion battery. 7, 9 They can be classified based on their structure as follows: 

2.2.1 Layered structure  

This class of the inorganic materials has the general formula as (LiMO2, where M is Co, Ni , Mn, etc.).  

They are cubic closed packed arrangement, in which lithium and cobalt ions occupy octahedral sites in 

alternating layer (Figure 2.3). If the lithium is completely removed, the oxygen layers rearrange 

themselves to give CoO2. 10 Lithium cobalt oxide materials have a theoretical capacity of 272 mAh g-1. 

However, the practical capacity is only 140 mAh g-1 if charged up to 4.2 V. The reason for that, if this 

material is over-charged, there are several phase transition and structure changes that may result in the 

collapse of the crystal structure of the material.10 This can infer that we can only extract 0.5 moles of 

lithium per mole of LiCoO2 while maintaining the structure integrity of the material. The toxicity of 

cobalt and the high price in comparison to other transition metals, along with safety issue are making 

the continuing success of this material a challenge.      

 

 Figure 2-3. Layered structure, LiMO2, e.g. LiCoO2. 



 

 10 

2.2.2 Spinel Structure 

A typical spinel cathode material is LiMn2O4. In this structure, the anion lattice is cubic closed packed 

oxide and the cations are distributed among the available octahedral and tetrahedral sites. 11-15 There 

are two steps during the discharge of LiMn2O4. The first step is at ca. 4.0 V, whereas the second one 

follows at 3.0 V.  It is recommended to avoid discharging up to 3.0 V to avoid distortion of the spinel 

caused by Jahn-Teller Effect. In this case the capacity would be limited to about 120 mAh g-1, 

corresponding to a plateau at 4.0 V. The capacity fading for this material is attributed to several factors. 

Manganese ions may dissolve into the electrolyte and generate strain on the crystal during cycling. 16, 

17 It is possible to improve cycle stability, and possibly the capacity, by doping this structure with other 

transition metals. The formula would be LiMxMn2-xO4, where M could be Ni, Fe, Ti, Cu, Zn, etc. 18-20 

 

Figure 2-4. A representative structure of spinel, LiMn2O4. 21 
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2.2.3 Olivine structure 

The most common cathode material having the olivine structure is LiFePO4 (Figure 2.4). 22 The 

structure is orthorhombic, where each Li and Fe is surrounded by six oxide ions in an octahedral 

structure and the phosphate group, PO4, has a tetrahedral structure. The LiFePO4 discharge with a 

characteristic plateau at 3.4V leading to a capacity of 170 mAh g-1, which is even better than LiCoO2. 

LiFePO4 has excellent cycling performance, when considered along with its being abundant and 

environmentally benign, as a very promising cathode material. The drawback is the low electrical 

conductivity. To improve its electrochemical properties it is required to be carbon coated.23 

Conductivity also can be improved by doping with another element such as niobium. 24  Another trend 

in improving the material is achieved by controlling the particle size and lowering the defects, thereby 

facilitating lithium diffusion. 25 

 

 

Figure 2-5. Olivine structure of LiFePO4. 
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Table 1. Lists of different commercial cathode materials with their properties.26, 27 

 

Material structure Shape of 
the 
discharge 
curve 

Average 
potential 
vs. 
Li+/Li 
(V) 

Practical 
capacity 
mAh g-1 

Safety Cost 

LiCoO2 Layered Flat 3.9 160 Fair High

LiNi0.8Co0.15Al0.05O2 Layered Sloping 3.8 200 Fair Fair 

LiNi1/3Mn1/3Co1/3O2 

(NMC) 

Layered Sloping 3.8 200 Good Low 

LiMn2O4 (LMO) Spinel Flat 4.1 110 Good Low 

LiFePO4 (LFP) Olivine Flat 3.45 160 Good Low 

 

2.3 Anode Materials 

One of the major components for a lithium-ion battery is the anode. Metallic lithium was the first choice 

as an anode material for lithium ion batteries, especially during the 1970s and 1980s, because it has a 

low density and high capacity. Nevertheless, the lithium-based lithium ion batteries were not successful 

because of safety issues. Lithium forms dendrites during repeated cycles, eventually to the point that it 

penetrates the separator and short circuits the battery. Research has therefore been focused on finding 

alternative anode materials. The ideal anode materials ideally meets the following criteria: 

1. High gravimetric and/or volumetric capacity. 

2. High Coulombic efficiency, especially for the first cycle. 

3. Abundant, safe, environmentally benign and cheap. 

4. Stable for cycling 

5. Compatible with the electrolyte. 
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2.3.1 Graphite anodes 

In commercial lithium ion batteries, the active anode materials are comprised of graphite (Figure 2-6). 

It is a cheap material and can accept lithiation through intercalation reaction at low operation voltages 

(~0.1V vs Li/Li+). It can be charged up to LiC6 which is translated into a maximum theoretical capacity 

of 372 mAh g-1.  

 

Figure 2-6: Graphite crystal structure showing the stacking of graphene sheets and the unit cell.28 

 

However, the existing anode materials cannot meet all of the requirements. This creates challenges for 

research and development to find a new anode material that can fit the requirements.  
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2.3.2 Lithium-metal alloys 

It has been discovered that lithium can react with other elements forming a family of intermetallic 

compounds, Figure 2-5. 29-32 For example, lithium can be stored by reacting with silicon, forming 

Li4.4Si that corresponds to a gravimetric capacity of 4200 mAh g-1 (similar with Sn and Ge). The 

electrochemical reaction during alloying is simple. However, during the reaction, there is a dramatic 

volume change, whereby in the case of silicon, the volume change is up to 300%. These expansions 

and contractions during charging and discharging results in accumulated stresses and eventually 

fracturing of the electrode materials. The mechanical degradation leads to loss of electronic contact, 

and instability of the solid electrolyte interphase (SEI). This results in decreased Coulombic efficiencies 

and an eventual dramatic loss in capacity. Table 2 list different anode materials with their capacities 

and the average potential at which they react with lithium. Comparing the gravimetric and volumetric 

capacities of different elements as in Figure 2-7, and also considering the abundance, cost, safety of 

the element, it can be concluded that Sn and Si are the choice as a promising anode material for lithium-

ion batteries. 

Figure 2-8 compares the different anode and cathode materials in terms of the capacity and the voltage. 

As can be seen the anode materials have lower potential while the cathode materials have higher 

potential. The difference between them, in a cell, constitutes the cell voltage. The great advantage for 

lithium-ion batteries system is the high cell voltage, which can reach up to 4.5 V. This is the highest 

among all type of batteries. 
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Table 2: List of different anode materials for lithium ion batteries.27 

 

 Anode 
material 

Theoretical specific capacity 

mAh g-1 

Potential, V vs Li/Li+ 

 Li metal 3862 0 

Carbon Graphite 372 0.1 

Alloy Al (LiAl) 

Sn(Li21Sn5) 

Sb (Li3Sb) 

Si(Li4.4Si) 

Cu6Sn5 
(Li22Sn5 + 

6Cu) 

993 

948 

660 

4200 

605 

0.35 

0.42-0.66 

0.9 

0.5 

0.1 

Spinel Li4Ti5O12 
(Li7Ti5O12) 

175 1.56 

 

 

Figure 2-7. Comparing the gravimetric and volumetric capacities of different anode materials29. 
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Figure 2-8. Illustrating the lithium ion capacity and electrochemical reduction potentials with respect 

to lithium metal for conventional anodes and cathodes.33 

 

2.4 Electrolytes for lithium ion batteries 

The electrolyte shuttles lithium ions between the anode and the cathode. Thus, the electrolyte should 

be good ionic conductor and stable at high voltages (up to 4.5 V). Nonaqueous electrolytes are 

commonly used for this purpose. The electrolyte is basically composed of a salt and a solvent. The salt 

is an inorganic materials that have lithium, e.g. lithium hexafluoro phosphate (LiPF6), lithium tetra 

fluoroborate (LiBF4), and lithium perchlorate (LiClO4). The solvent is a mixture of organic compounds, 

most commonly linear or cyclic carbonates. The carbonate solvents currently in use are; ethylene 

carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate 

(DEC). The organic solvents may suffer partial decomposition on the surface of the electrode. This is 

commonly called solid electrolyte interphase. The products are favorably electrically insulating but 

highly lithium ion conducting. Thus preventing subsequent decomposition process, and passivate the 
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electrode surface without sacrificing the performance. A list of some solvents that are commonly used 

for lithium ion batteries, with their physical properties, is provided in Table 3. One important property 

for the electrolyte is potential window, which can allow for utilization of high voltage cathode 

materials.34 

2.5 Binders for lithium ion batteries 

Binders are polymeric materials that bind the electrode component together to maintain good electrode 

integrity. Battery efficiency depends on electrode engineering, so the role of the binder is just as 

important as the active material itself. All components harmoniously generate a synergy that controls 

the battery performance. The binder has to withstand the spatial changes inside the electrode during 

charge/discharge cycles. One common binder is poly(vinylidene) fluoride (PVDF). It can be used for 

both anode and cathode materials. PVDF has good electrochemical stability and strong adhesion 

holding the electrode material tight to the current collectors. PVDF requires N-Methyl-2-pyrrolidone 

(NMP) as a solvent, and it can persist at high cell voltages. Moreover, PVDF has a good resistance 

versus changes in temperatures, excellent mechanical strength, and good processing performance. 
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Table 3. List of different solvents commonly used in the electrolyte of lithium ion batteries with their 

physical properties34, 35 

Structure  Melting point

(oC) 

Boiling point

(oC) 

Viscosity 

(cP at 25 oC)

Dielectric constant 

(at 25 oC) 

O

O

O

ethylene carbonate  

36.4  248  1.9 (40 oC)  89.78 

O

O
O

propylene carbonate  

‐48.8  242  2.53  64.92 

O

O

O

dimethyl carbonate  

4.6  91  0.59 (20 oC)  3.11 

O

O

O

diethyl carbonate  

‐74.3  126  0.75  2.81 

O

O

OH

ethylmethyl carbonate  

‐53  110  0.65  2.96 
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Chapter 3 Synthesis of Sn/SnO2 into Mesoporous Carbon 

 

 

The following section is based on previously published work36 by Hassan, F. M. et al,  

Electrochimica Acta, 87, (2013) 844-852. 

“Sn/SnO2 Embedded in Mesoporous Carbon Nanocomposites as Negative Electrode for 

Lithium Ion Batteries” 

Reproduced with permission. 

 

3.1 Introduction 

 

Fossil fuel supply limitations and concerns of climate change due to steadily increasing greenhouse gas 

emissions has drawn public attention toward the development of eco-friendly technologies such as 

hybrid electric vehicles (HEVs) and electric vehicles (EVs). Among various energy storage systems, 

lithium (Li) ion batteries currently present the best performances to meet the applications’ demands 

because of its high gravimetric and volumetric energy density, long cycle life and low self-discharge 

rate. However, it remains a significant technical challenge to increase the capacity, rate capabilities and 

durability of Li ion batteries in order to meet the steadily increasing energy density demands for large-

size applications.  

Metallic tin (Sn) is one of the best candidates as a negative electrode material for next generation Li 

ion batteries because it’s capacity is more than two times higher than that of  conventional graphite 

electrodes. According to the mechanism of the reaction between Sn and Li, up to 4.4 Li atoms can 
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associate with each Sn atom, leading to a theoretical capacity of 994 mAhg-1 37-39 . Nevertheless, large 

volume changes during alloying/de-alloying of Sn with Li causes mechanical degradation in the form 

of pulverization and cleavage of the electrode materials, inevitably resulting in poor cycle stability. An 

alternative candidate to Sn-based materials is SnO2, which has a two-step energy storage mechanism 

occurring during battery operation. First, the irreversible formation of Li2O will occur, followed by the 

reversible formation of a LixSn alloy. The first reaction provides a buffer matrix of the materials to 

improve the cycle stability and contributes to the irreversible capacity. Conversely, the second reaction 

contributes to the reversible capacity which is maintained due to mitigated mechanical degradation 

owing to the buffer matrix remaining from the first reaction. Because of the initial formation of Li2O, 

SnO2 gives a lower theoretical capacity (782 mAhg-1) than that of metallic Sn (994 mAhg-1).39 

Although SnO2 provides improved long-term cycle stability compared to metallic Sn, after only a few 

cycles of alloying/de-alloying reactions with Li, aggregation of Sn may occur which can break down 

the Li2O buffer matrix and eventually show the same mechanical degradation problems as that of 

metallic Sn. Various research efforts to improve the capabilities of SnO2 materials have been reported, 

including the incorporation of  SnO2 into carbon-based material composites such as carbon nanotubes 

(CNTs)40-44, graphene45-49 and porous carbon50, which have been demonstrated to provide remarkable 

improvements. The carbon-based materials provide high surface areas and a rigid structure to maintain 

mechanical integrity of the SnO2 based composites, and conductive pathways to facilitate electron 

transport during the alloying/de-alloying cycles.  

Ordered mesoporous carbon51 provides host sites for nano-sized metal oxide to be formed, and its 3-

dimensional conductive structure enhances conductivity of the metal oxide based electrode. In addition, 

it can be suggested that confining the metal oxide particles in the rigid skeleton can suppress large 

volume change during alloying/de-alloying cycles. Herein, we report the synthesis of Sn-based 

mesoporous carbon composites as a negative electrode material for Li ion batteries. We initially 
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prepared SnO2 embedded in CMK-3, then after controlled heat treatment we were able to partially 

reduce SnO2 to form Sn/SnO2/CMK3 or completely reduce it to Sn/CMK-3. Sequence of the synthesis 

is schematically illustrated in Figure 3-1. These materials were investigated as electrode material for 

Li ion battery. Based on the results from the study, Sn/SnO2/CMK-3 composite introduced the best 

performances regarding capacity and cycle stability. 

 

 

Figure 3-1. Schematic view of the synthesis of Sn-based/CMK-3 

 

3.2 Experimental 

3.2.1 Synthesis of CMK-3 

 

First of all, mesoporous SBA-15 as a silica template was prepared using the triblock copolymer, 

EO20PO70EO20 (Pluronic P123), as the surfactant and tetraethylorthosilicate (TEOS) as the silica source 

based on the procedure described by Zhao et al.52.  Then 1 g of SBA-15 was mixed with a solution 
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containing 1.25 g of sucrose and 0.14 g of H2SO4 in 5 g of H2O, following the method reported by Jun 

et al.53. The mixture was put in a drying oven for 6 h at 373 K, and subsequently the oven temperature 

was increased to 433 K and maintained there for 6 h. After collecting the sample, the sample was treated 

again with 0.8 g of sucrose, 0.09 g of H2SO4 and 5 g of H2O followed by another heat treatment at 373 

and 433 K as previously stated. The sample was carbonized at 1173 K under a nitrogen gas. The product 

was washed with 5 wt% HF aqueous solutions at room temperature to remove the silica template. 

Lastly, CMK-3 was filtered, washed with distilled water and dried at 393 K. 

3.2.2 Synthesis of Sn-based materials/CMK-3 

 

Initially, 100 mg of CMK-3 were dispersed in 250 ml of 0.13 M HCl (prepared using deionized water 

and concentrated HCl). Then 800 mg of SnCl2.2H2O were dissolved in 150 ml DI H2O and this solution 

was added to the dispersed CMK-3 solution drop wise while magnetic stirring. After that, the solution 

was kept stirring for 4 h at room temperature (298 K). Finally the composite SnO2/CMK-3 was 

separated by filtration and subsequent washing with DI several times. The residue was dried in an oven 

at 373 K for 1 day. The composite powder was separated into 3 parts. The first and the second parts 

were subjected to annealing at 673 and 823 K for 5 h under flowing Ar atmosphere (100 sccm). The 

third part was annealed at 1073 K for 5 h in a mixture of Ar and 10% H2 gas. 

3.2.3 Characterization 

 

XRD was conducted to confirm the CMK-3 structure and Sn-based materials’ phases in the CMK-3. 

The structural properties and morphology of Sn-based/CMK-3 were characterized by TEM and SEM. 

N2 adsorption–desorption isotherms were used to analyze pore sizes and surface areas by the Brunauer–

Emmett–Teller (BET) method. Thermal gravimetric analysis (TGA) was carried out to investigate the 
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ratio of Sn-based materials and CMK-3. X-Ray photoelectron spectroscopy (XPS) was also conducted 

to support the composition of Sn-based/CMK-3 products. The electrochemical performances were 

conducted with coin type cells. For the working electrode, a slurry consisting of 70 % of active material, 

10 % super-p as a conductive material and 20 % polyvinylidene fluoride (PVdF) as a binder was 

prepared in N-methyl-2-pyrrolidone (NMP) and was coated on Cu foil. The electrode was dried in the 

drying oven at 373 K for 1 hr, followed by being placed in the vacuum oven at 373 K for overnight. 

The coin cells were fabricated in an argon-filled glove box with the working electrode and the Li metal 

as the reference and counter electrode. A polypropylene separator was employed to separate the two 

electrodes and 1M LiPF6 in 1:1 ethylene carbonate (EC) and dimethyl carbonate (DMC) (Novolyte, 

USA) was used as the electrolyte. Galvanostatic charge/discharge test was carried out at the voltage 

range of 0.01 to 3.00 V (except SnO2 powder, 0.01 to 1.50 V) with current density of 100 mA g-1 based 

on Sn-based materials/CMK-3 mass. For rate capability test the current densities were varied from 100 

to 800 mA g-1. 

3.3 Results and Discussions 

 

In this study, SnO2/CMK-3 was first prepared as a reference of the study and then treated by alteration 

of annealing temperature and atmosphere to transform into metallic Sn. It was confirmed that the 

amount of SnO2 in CMK-3 is 58.2 % by Thermogravimetric analysis (TGA) (Figure 3-2). Figure 3-3 

shows nitrogen adsorption-desorption isotherms and pore size distributions of pure CMK-3, SnO2 / 

CMK-3 which was annealed at 673 K and SnO2 which was obtained from SnO2 / CMK-3 after burning 

CMK-3 away in air atmosphere at 773 K. Distinct step for pure CMK-3 Between 0.4 and 0.5 of relative 

pressure (P/Po) was observed indicating typical mesoporous material characteristics. After 

incorporation of SnO2 into CMK-3, the distinct step in the relative pressure curve disappeared because 

synthesized SnO2 into CMK-3 blocks the pore of CMK-3 (Figure 3-3a). Another evidence is 
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introduced by pore size distribution curves. SnO2/CMK-3 composite shows lower intensity and smaller 

pore size in the materials (Figure 3-3b). The Brunauer-Emmett-Teller (BET) specific surface areas of 

pure CMK-3, SnO2/CMK-3 composite and SnO2 from SnO2/CMK-3 were calculated based on Figure 

3-3a. The BET surface areas decreased from 1556 m2g-1 for pure CMK-3 to 536 m2g-1 for SnO2/CMK-

3 composite suggesting that SnO2 is successfully formed into the pore of CMK-3 and reduced the 

surface area. On the other hand, the surface area of the SnO2 nanoparticles is 136.6 m2g-1, which is 

reasonable value for nano-sized SnO2 particles.  

 

 

Figure 3-2. TGA curve of SnO2/CMK-3 as prepared. 
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Figure 3-3. (a) Nitrogen adsorption-desorption isotherms, (b) pore size distribution curve of the 

CMK-3, SnO2/CMK-3 composite and SnO2 (only for the isotherm). 

 

 

In addition, TEM images in Figure 3-4 exhibit direct evidence of SnO2 particles formed inside CMK-

3. The SnO2 particles can be found at the channels of CMK-3 in the SnO2/CMK-3 composite (Figure 

3-4b) while pure CMK-3 shows ordered spotless channels in Figure 3-4a even though the image is not 

clear because of the weak resolution between the CMK-3 skeletons. The ordered structure was 

confirmed by a low angle XRD pattern (inset in Figure 3-4a), introducing three peaks of (100), (110) 

and (200) which agree with two dimensional hexagonal structure (P6mm)53. Furthermore, a low angle 

XRD pattern for SnO2/CMK-3 (inset in Figure 3-4b) suggest that the ordered structure is maintained 

after incorporation of SnO2 which is also supported by the TEM image of SnO2/CMK-3 in Figure 3-

4b. The particle size can be estimated to ~ 2.5 nm which is less than the channel size of CMK-3 without 

aggregation of the particles.  
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Figure 3-4. TEM images of the (a) pure CMK-3 and (b) SnO2 incorporated CMK-3, inset: low angle 

X-ray diffraction (XRD) patterns. 

 

Figure 3-5 introduces a HRTEM image for the Sn/SnO2/CMK-3 composite material. The image 

(Figure 3-5a) reveals the detailed intrinsic nanostructure of these mixed Sn-based materials. The 

nanoparticles were evenly distributed inside the mesoporous carbon matrix. Several lattice spacing 

measurements correspond to SnO2 nanoparticles, e.g., 0.33 nm for the 110 plane, 0.26 nm for (101), 
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and 0.24 nm for (200), were successfully elucidated by the selected area electron diffraction (SAED) 

pattern. It was difficult to detect any lattice spacing correspond to metallic Sn, even though it was 

confirmed by XRD (cf Figure 3-9). This suggests that metallic tin is formed by reduction of carbon in 

a small fraction in the deep pores of the CMK-3. These buried nanoparticles of Sn, which are over-laid 

by several carbon and SnO2, were difficult to be detected by HRTEM. Furthermore, the elemental 

Energy-dispersive X-ray spectroscopy (EDX) mapping of the Sn/SnO2/CMK-3 sample was displayed 

in Figure 3-5c. It shows that the Sn/SnO2 nanoparticles were homogeneously distributed and clearly 

confirm that there is no agglomeration inside the material. The EDX elemental analysis (Figure 3-5b) 

showed that the molar ratio of Sn to O is slightly less than 1:2, which suggest that there is a small 

portion of metallic Sn is embedded in the material. 

 

Figure 3-6 shows the TEM for SnO2/CMK-3 after being subjected to annealing at 1073 K in a mixture 

of Ar and 10% H2 gases. This environment was suitable to reduce all SnO2 to metallic Sn. Because of 

the low melting point of tin and large surface energy, so the particles tend to diffuse on the surface of 

carbon forming larger particles, or tiny droplets, which eventually coalesce forming large islands of 

metallic Sn. The islands of metallic Sn are clearly shown by TEM images (Figure 3-6a), and TEM 

dark field, Figure 3-6c. Elemental mapping of the elements C, O and Sn, which was detected based on 

Figure 3-6c is also a strong evidence for Sn agglomeration. The process of agglomeration didn’t lead 

to collapse of the mesoporous carbon skeleton (Figure 3-6b). However, it may have caused some local 

break for parts of the nano carbon rods.  
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Figure 3-5. (a) High resolution TEM image (inset : SAED patterns), (b) EDS spectrum and (c) dark 

field TEM image of the Sn/SnO2/CMK-3 composites and the corresponding C, O, and Sn EDX 

elemental mapping. 

C 

Sn O

 (b) 

 50 nm 

 (c) 

 (a) 

 10 nm 
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Figure 3-6. (a) and (b) TEM images of different area of Sn/CMK-3 and (c) dark field TEM image 

and the corresponding C, O and Sn  EDX elemental mapping. 

 

Figure 3-7 Compares the SEM images of pure CMK-3 (Figure 3-7a), and SnO2/CMK-3 composite 

(Figure 3-7b). It can be noted that there is no distinct change between pure CMK-3 and SnO2/CMK-3 

composite. It is indicating that most SnO2 is formed interior of CMK-3 and the SnO2 do not destroy the 
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framework of the CMK-3. Figure 3-8 introduces SEM images of the SnO2 particles after burning 

CMK-3 from SnO2/CMK-3 composite. The aggregated particles are found in Figure 3-8a because high 

surface energy of nano-sized SnO2 cannot be kept without the CMK-3’s frameworks. However, on the 

surface of the SnO2 particles the trace of nano-sized SnO2 particles can be found and that morphology 

is attributed to the high surface area (Figure 3-8b).  

 

 

Figure 3-7. SEM images of (a) CMK-3 and (b) SnO2/CMK-3 composite. 

 

Figure 3-8. SEM images of (a) low resolution and (b) high resolution of SnO2 extracted for 

SnO2/CMK-3. 
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To confirm the phases of Sn-based materials, an XRD analysis was carried. Figure 3-9 shows the XRD 

patterns for the materials with different annealing conditions. The XRD patterns of the SnO2 / CMK-3 

treated by 673 K in Ar atmosphere and pure SnO2 obtained from the SnO2 / CMK-3 correspond to the 

tetragonal SnO2 with cassiterite structure (JCPDS No. 41-1445)54. Based on the peak broadness, it is 

assumed that the SnO2 particles are made up nanocrystalline size. The particle size can be estimated to 

~2.5 nm by using the Scherrer equation54, which is comparable with the channel size of CMK-3. With 

the increase in temperature up to 823 K in Ar, the XRD pattern suggests some SnO2 was reduced to 

metallic Sn (JCPDS No. 86-2265)54 in the carbon matrix resulting in coexistence of SnO2 and Sn in the 

CMK-3. By further reduction of SnO2 at higher temperature and hydrogen gas, it is confirmed by XRD 

pattern that all of SnO2 were reduced to metallic Sn and the XRD pattern also suggests that Sn is 

agglomerated to become larger particles. X-ray photoelectron spectroscopy (XPS) was conducted to 

examine the chemical composition of the surface of SnO2/Sn/CMK-3 composite. XPS spectrum proved 

that the material is composed of tin, oxygen and carbon elements (Figure 3-10a). High resolution 

spectrum for Sn element presents around 487 (Sn 3d5/2) and 496 eV (Sn 3d3/2) peaks for Sn4+ (Figure 

3-10b). Another high resolution spectra shows peaks at around 531 and 285 eV, attributed to the O1s 

from SnO2 and C1s from CMK-3, respectively (Figure 3-10c,d) 49. Based on those series 

characterization techniques, SnO2 and (or) Sn materials were successfully incorporated into CMK-3, 

and that the composition of the Sn-based materials can be controlled by the annealing conditions. In 

addition, EDX and XPS proposed strong evidences of chemical composition of CMK-3. 
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Figure 3-9. X-ray diffraction patterns of SnO2, SnO2/CMK-3, SnO2/Sn/CMK-3, and Sn/CMK-3 

composites. 
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Figure 3-10. (a) low resolution XPS spectrum of SnO2/Sn/CMK-3; high resolution XPS of (b) Sn3d, 

(c) O1s and (d) C1s in SnO2/Sn/CMK-3. 

 

Electrochemical performances were carried out by galvanostatic discharge and charge processes 

(Figure 3-11). Figure 3-11b demonstrates number of cycle .with retention capacity of the series 

products that were synthesized in this work. Figure 3-11a exhibits voltage and capacity curves of 

initial, 2nd and 3rd cycles of SnO2/Sn/CMK-3 electrode which shows superior cycle stability among the 

products. The electrode, consisting of SnO2/Sn/CMK-3 with carbon black and polyvinyldifluoride 

(PVdF) in a weight ratio of 70:10:20, is casted on a Cu current collector.  
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Figure 3-11. Galvanostatic (a) discharge and charge curves of SnO2/Sn/CMK-3 composite, (b) charge 

capacity of SnO2, SnO2/CMK-3, Sn/SnO2/CMK-3 and Sn/CMK-3 composites, and the Columbic 

efficiency of Sn/SnO2/CMK3,  at current rate of 100 mAg-1 with respect to the cycle number. 

 

 

The initial cycle in Figure 3-11a shows large irreversible capacity which is caused by conversion 

reaction of SnO2 with Li ion into Sn and Li2O, a solid-electrolyte interphase (SEI) layer formation and 

some irreversible reaction of Sn and CMK-3 during Li insertion and extraction. The SnO2 reaction 

mechanism has been proposed in other reports as below.39, 55, 56. 

SnO2 + 4Li+ + 4e-  Sn + 2Li2O (irreversible reaction)         (4.1) 

Sn + xLi+ + xe-  LixSn (0  x  4.4) (reversible reaction)      (4.2) 

 

According to the curves of subsequent cycles, irreversible capacity sharply decreased, indicating that 

most of irreversible reactions occurred during 1st discharge. The Sn/SnO2/CMK3 shows first cycle 

Coulombic efficiency of about 58%. This is attributed to the irreversible decomposition of SnO2 into 



 

 35 

active metallic tin surrounded by an inactive Li2O matrix, in addition to SEI formation. Subsequently, 

the cycle efficiency is maintained at almost 100% as the cycle number increases up to 100 cycles (see 

Figure 3-11 b, and Figure 3-12).  The initial charge capacities are 799, 616, 636, and 392 mAhg-1 for 

the SnO2/Sn/CMK-3, SnO2/CMK-3, Sn/CMK-3 and SnO2, respectively. As expected, metallic Sn 

contained materials give higher capacity based on their theoretical capacity54, 57. However, the capacity 

of Sn/CMK-3 is lower than SnO2/Sn/CMK-3. This is attributed to the fact that increasing the Sn content 

resulted in larger Sn particle sizes which provide less reactivity for Li alloying/de-alloying process58. 

After 30 cycles, retention capacities are about 88.6, 76.4, 49.6, and 22.7 % for the SnO2/Sn/CMK-3, 

SnO2/CMK-3, Sn/CMK-3 and SnO2, respectively. In particular, SnO2/Sn/CMK-3 exhibits the best 

performances in terms of initial capacity and cycle stability, indicative a synergistic effect existing in 

mixed phase Sn-based materials. This is consistent with a recent report by Wen et al. 49  who observed 

improved capacity and cycle performance for graphene based composites in the presence of both Sn 

and SnOx. It is assumed that metallic Sn contributes increase capacity and Li2O matrix from SnO2 

during 1st discharge suppresses Sn particles from agglomeration among the particles during Li 

alloying/de-alloying processes.57, 59. Moreover, CMK-3 plays critical role for the electrochemical 

performances. CMK-3 provides 3-dimensional electron pathway and large contact sites for the Sn-

based materials60. Additionally, its 3-dimensional frameworks maintain electrical contact with Sn 

materials which are likely agglomerated and then severely changed in their volume as Li alloying/de-

alloying proceeds and not only provide buffer space for the large volume change of Sn-based materials 

but also suppress the volume change. It is also worth noting that CMK-3 work as active material in the 

composite, partially contributing the specific capacity. These roles of CMK-3 can be directly supported 

by measuring the performance of Pure CMK3 (see Figure 3.12b). The initial cycle for pure CMK3 

shows a first charge capacity of 430 mAh g-1, the subsequent cycles show stable reversible capacity at 

about 390 mAh g-1 for more than 60 cycles. Additionally, referring to Figure 3-11b, SnO2/CMK-3 
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composite demonstrates high initial capacity and acceptable cycle stability which is attributed to the 

functions of CMK-3 in the composite. However, Sn/CMK-3 composite does not present good cycle 

stability. It is assumed during the reduction of SnO2 to metallic Sn, the particles were agglomerated to 

become bigger size and then could destroy the frameworks of CMK-3 during cycles. The growth of the 

size after conversion of SnO2 into Sn was confirmed by the TEM image (Figure 3-6) and XRD patterns 

(Figure 3-9). The rate performance along with cycle stability of SnO2/Sn/CMK-3 composite was tested 

and shown in Figure 3-12. The test was conducted from 100 to 800 mAg-1 of the current density with 

5 cycles to investigate cycle stability. At the highest current density of 800 mAg-1 the composite exhibits 

around 350 mAhg-1 with good stability which is close to the theoretical capacity of conventional 

graphite (372 mAhg-1) that can be achieved at the current density of 30 mAg-161. Furthermore, it has 

been reported that at the similar current density, lower than 50 mAhg-1 was obtained for the 

conventional graphite 61.  

 

In order to clarify the hybrid effect on the electrochemical performance of SnO2/CMK3, we calculated 

theoretically the capacity of physical mixture of SnO2/CMK3. We considered the theoretical capacity 

of SnO2 as 782 mAh g-1 and for CMK3 as 430 mAh g-1 (estimated from Figure 3.12b and the maximum 

charge capacity). Considering the mass ratio of 58.2% SnO2 and 41.8% CMK3 (as computed from TGA 

result Figure 3-2), the theoretical capacity of the hypothetical mixture can be calculated as follow: 

 

C theoretical for SnO2/CMK3  = (CSnO2 x mass% of SnO2) + (CCMK3 x mass% of CMK3)  

= 782 x 0.582 + 430 x 0.418 = 634.86 mAh g-1.      

         (4.3) 

Interestingly the observed capacity for SnO2/CMK3 is 616.23 mAh g-1 (based on the maximum charge 

capacity observed in Figure 3-11b). This value is comparable to the estimated theoretical capacity of 
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the hybrid SnO2/CMK3 material. On performing similar calculation for the hybrid Sn/SnO2/CMK3 

material, assuming after annealing there is minimal change in mass ratio of tin to carbon and assuming 

both Sn and SnO2 contribute 1:1 of their theoretical capacity which mean Ctheoretical of Sn/SnO2 is 888 

mAh g-1, then: 

 

C theoretical for Sn/SnO2/CMK3  = (CSnO2/Sn x mass% of SnO2/Sn) + (CCMK3 x mass% of CMK3)  

= 888 x 0.582 + 430 x 0.418 = 696.56 mAh g-1.     

         (4.4) 

This value is less than the observed, for this material, in Figure 3-11b which is 798.64 mAh g-1. This 

result points to a synergistic effect caused by embedding Sn nanoparticles along with SnO2 into the 

nanochannels of CMK3. For the above estimated value, we assumed a Sn to SnO2 ratio of 1:1; however 

in reality, the actual value of Sn is less. This means that the theoretical value should be less than 696.56 

mAh g-1 calculated for Sn and SnO2 present in unity, and greater than 634.86 mAh g-1 corresponding 

to only SnO2 with CMK3. This emphasizes the synergistic effect that exists between these components, 

with a capacity observed in excess of those predicted herein. 

It is not unexpected that the CMK3 under unseen structure conditions could show high specific 

capacity. Reference 62 showed that CMK3 may have a reversible capacity level up to LixC6, where x = 

2.3 to 3. However, a satisfactory explanation for this high capacity has not been yet developed. In order 

to account for the high specific capacity for Sn/SnO2/CMK3, we have to think about the synergistic 

effect of the inclusion of Sn nanoparticles into SnO2 where both are embedded into the nanochannels 

of the CMK3. This unique structure is believed to enable less activation over-potential for the Li 

intercalation into CMK3 leading to more usable sites and consequently increasing the overall charge 

capacity of the composite material. 
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 Based on the rate capability and cycle stability results, it is proposed that the SnO2/Sn/CMK-3 

composite is an excellent negative electrode material for Li ion battery over the conventional negative 

electrode material.  

 

 

Figure 3-12. (a) Capacity of SnO2/Sn/CMK3 at various current rates from 100 to 800 mAg-1 with 

respect to the cycle number, (b) galvanostatic discharge and charge curves of pure CMK3 and the 

Coulombic efficiency at current rate of 100 mAg-1. 
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Chapter 4 Growth of SiNW on graphene 

The following section is based on previously published work  by Hassan, F. M. et al63 

ACS Applied Materials & Interfaces 2014, 6(16): 13757-13764 

“Sub-eutectic growth of single crystal silicon nanowires grown on, and wrapped with, graphene 

nanosheets: A high performance anode material for lithium ion battery”   

Reproduced with permission. 

 

4.1 Introduction 

 

The development of lithium-ion batteries (LIB) based on new high-performance materials is critical to 

meet the demands of an expanding array of mobile consumer and military electronics that incorporate 

this technology. Advances in the energy storage capabilities of LIBs is also integral to the future of 

electric transportation and grid scale energy storage, required to facilitate the integration of intermittent 

renewable energy sources into the grid. Specifically, alternative electrode technologies are needed to 

overcome the maximum theoretical capacity (372 mAh g-1) of graphite anode materials and their poor 

capacity retention at high current density.64-69 Silicon (Si) has emerged as a strong candidate for the 

future of commercial LIB anode designs because of its high theoretical storage capacity in comparison 

to graphite (4200 mAh g-1), natural abundance, low cost, and low discharge potential of 0-0.4 V vs 

Li/Li+.70-74  

Unfortunately, the commercial application of silicon-based anodes faces several challenges that arise 

due to its low intrinsic electrical conductivity (10-5 S cm-1), along with extreme volume expansion 

(400%) that occur during the alloying process with lithium (Li4.4Si). These volume expansions 

inevitably lead to pulverization of the electrolyte and/or rapidly degrading electrical connectivity of the 
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electrode, especially when using electrodes with high mass loadings.75-80 Furthermore, the intense 

lattice strain and surface stress can prevent stabilization of the solid electrolyte interphase layer (SEI), 

leading to low columbic efficiency. In efforts to overcome these challenges, various conductive-carbon 

composite materials have been utilized to encapsulate the silicon materials, thereby enhancing their 

performance retention after many cycles.81-90 Additionally, tailored nanostructures, such as Si 

nanowires (SiNWs), nanotubes or nanoporous structures have been used to achieve better durability 

through a combination of increased strain tolerance, shorter diffusion distances and enhanced charge 

transport.91-100  

In this regard, there is an evolving array of methods used for both the bottom-up and top-down growth 

of SiNWs that have been successfully demonstrated on planar Si surfaces.101, 102 However, the 

commonly utilized bottom-up method for SiNWs growth is the vapor-liquid-solid (VLS) catalytic 

growth mechanism, using gold (Au) nanoparticles that are chosen for their relatively low eutectic 

point.103-105 In addition to the aligned vertical growth SiNWs being demonstrated on Si(111) wafers 

using the VLS approach, SiNWs have also been grown on other substrates, such as Al2O3.106, 107 

Practical safety risks of the commonly used SiH4 gas precursors and the high cost of Au are however a 

major drawback to these methods. Additionally, the production capabilities are also limited due to the 

requirement of using well-defined 2D-planar surfaces as the growth substrate. To address this, it is 

recognized that new methods, which employ inexpensive catalyst metals and are applicable to bulk 

production of SiNWs, must be developed in order to capitalize on the highly promising application 

potential of these materials.38, 45-47 Recent investigations towards this goal includes the growth of 

SiNWs on Au-coated Al2O3 particles,106 and in  work concurrent to our own, the VLS growth of SiNWs 

from Au nanoparticles on the surface of reduced graphene oxide (rGO).108 

Herein we present a scalable method for the bottom-up processing of carbon-coated SiNWs on 

graphene (c-SiNW-G) using an inexpensive nickel nanoparticle (NiNP) catalyst. This procedure 



 

 41 

involves a sophisticated one-pot atmospheric pressure chemical vapor deposition (APCVD) synthesis, 

which incorporates several novel techniques. First, a uniform distribution of NiNPs on the surface of 

graphene was achieved by thermally shocking a mixture of nickel nitrate and graphene oxide, resulting 

in rapid decomposition of the nickel nitrate precursor and simultaneous in situ reduction of the graphene 

oxide. Second, the SiNWs were grown on the NiNP catalysts by a applying a unique variation to the 

silicide-assisted Vapor-Solid-Solid (VSS) mechanism.101, 109-111 The seed particles remained in the solid 

phase because of the sub-eutectic temperature of 900oC,111 well below the 993oC eutectic temperature 

required for the Ni-Si system to undergo a VLS growth mechanism.101 Furthermore, by exchanging the 

SiCl4 precursor after SiNWs growth with toluene, we illustrate a core-shell SiNW/C structure can be 

obtained. In addition to the elimination of expensive Au catalysts using this method, the ability to grow 

SiNWs anchored on graphene using SiCl4, along with the introduction of a controlled carbon coating 

by the injection of toluene represents a significant step toward the future development of practical high 

performance materials for LIBs. By growing SiNWs directly on graphene, a direct path is provided for 

electrical conductivity. Furthermore, by decorating the graphene sheets with well dispersed NiNPs, it 

provides a template for growing individual SiNWs that are not agglomerated together. 

 

4.2 Experimental Methods 

4.2.1 Synthesis of SiNW-G  

 

Prior to growing SiNWs on graphene and the fabrication of well dispersed NiNPs, graphene oxide (GO) 

was synthesized by a modified Hummer’s method.112 In a typical experiment, 150 mg of GO was 

dispersed in deionized water followed by drop-wise addition of 300 µL of 0.1M nickel nitrate 

hexahydrant (Ni(NO3)2.6H2O). The mixture was sonicated for 30 minutes and then left to dry at 60 ᵒC 
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under magnetic stirring. The GO-nickel nitrate mixture was then transferred to a quartz tube inside a 

furnace and rapidly pushed into the hot-zone at 700 ᵒC and held under argon atmosphere for 1 hour. 

The temperature was then increased to 900 ᵒC and H2 gas was purged for 30 minutes at 500 sccm before 

injecting 300 µL of SiCl4 into the quartz tube. After the SiCl4 was completely depleted and the SiNW-

G grown, toluene was injected (typically 50 µL) as a source of the carbon coating, before cooling the 

furnace down. The process generated approximately 30 mg of c-SiNW-G powder containing 48 wt% 

SiNW.   

4.2.2 Electrode fabrication  

 

Battery electrodes were fabricated by mixing the active c-SiNW-G material (70 wt.%) with 

polyacrilonitrile (PAN, 30 wt.%) and casting the slurry on a copper foil current collector. No further 

carbon additives were used. The electrodes were then heat treated at 550 ᵒC for 2 hours in Argon 

atmosphere to enhance the three dimensional conductivity of the composite electrode by partially-

pyrolyzing the polyacrylontirile binder. The initial starting thickness of the electrodes were about 15μm. 

The electrode remained intact and well attached to the current collector after heat treatment. 

4.2.3 Electrochemical performance  

 

Coin cells were assembled in an argon-filled glove box using the treated electrodes versus metallic 

lithium and using 1 M LiPF6 in 30 wt % ethylene carbonate (EC), 60 wt % dimethyl carbonate (DMC), 

and 10 wt % fluorinated ethylene carbonate (FEC). Galvanostatic cycling was initially performed 

between 0.01 – 2 V at 100 mA g-1 (C/20) for 5 cycles. After initial cycling the current rate was varied: 

one cell remained at 100 mA g-1 current for 100 cycles, and another cell was cycled at incremental rates 

of 0.1 A g-1, 0.5 A g-1, 1 A g-1, 2 A g-1, 4 A g-1 and 10 A g-1 to determine the rate capability of the 
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materials. As a reference material, graphene was tested under the same conditions and electrode 

preparation. Cyclic voltammetry (CV) was also performed, utilizing a 0.01-2 V range. In all 

measurements, the total mass of the electrode, including the mass of the silicon and the mass of the 

graphene, was considered when carrying out capacity calculations. 

4.2.4 Characterization  

 

Morphology of the electrode surfaces before and after treatment were characterized by scanning 

electron microscopy (SEM) using a LEO FESEM 1530 and transmission electron microscopy (TEM) 

using a JEOL 2010F TEM/STEM field emission microscope equipped with a large solid angle for high 

x-ray throughput, scanning, scanning-transmission and a Gatan imaging filter (GIF) for energy filtered 

imaging. Raman scattering spectra were recorded on a Bruker Sentterra system (532 nm laser).  Thermal 

Gravimetric Analysis (TGA) (TA instrument Q500, USA) was used to determine the mass ratio of 

graphene to SiNW. TGA testing was performed in air with a temperature range of 25 °C to 900 °C and 

a ramp rate of 10 °C min−1. XRD analysis was conducted using monochromatic Cu K x-rays (0.154 nm 

wavelength) and an Inel XRG 3000 diffractometer. 

4.3 Results and Discussions 

 

To verify the production of uniformly distributed NiNPs as a catalyst for SiNW growth, the samples 

were removed from the furnace after the initial thermal shock to decompose and reduce the NiN/GO 

mixture. The SEM image in Figure 4-1a illustrates that small, approximately 10-20 nm NiNPs 

uniformly distributed across the entire surface of graphene were formed from the decomposition of the 

crystalized salt clusters.  In Figure 4-1b and 4-1c, after injecting the SiCl4 and later toluene, worm-

like nanowires coated with carbon could be clearly observed by both SEM and TEM, respectively, 
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lying flat along the basal plane of graphene. High angle annular dark field (HAADF-STEM) imaging 

of the materials, which is very sensitive to atomic number, is shown in Figure 4-2a. This imaging 

technique creates an obvious variation in contrast which was used to probe the elemental distribution 

of the materials and to verify that the NiNPs do indeed catalyze and anchor the nanowire growth. 

Further, to prove the Si nanowire composition was not mistaken for carbon nanostructures formed 

during toluene injection, we additionally performed EDX mapping. The result shown in Figure 4-2a-

d clearly depicts the presence of SiNWs anchored to the NiNP catalyst. Furthermore, the blanketed 

carbon in Figure 4-2c and amorphous region at the SiNWs edge in Figure 4-1d indicate successful 

coating of a very thin carbon layer on the SiNWs, in addition to the underlying graphene support. 

High resolution TEM imaging and the corresponding FFT spectrum for the SiNW-G composites 

(Figure 4-1d and 4-1e) reveal that the SiNWs exhibits a single crystalline structure with 0.31 nm lattice 

spacing. This indicates that growth is oriented along the (111) crystal plane. In agreement with a 

previous fundamental investigation, the rapid heat treatment of the Si source and the resulting (111) 

crystal orientation suggests the formation mechanism involves generation of an intermediate NiSi 

phase, which promotes (111) crystal growth.109, 110 Using an inexpensive Ni catalyst to control the axial 

orientation in the <111> direction also suggests an increased percentage of (110) facets, which offer 

increased lithium ion diffusion into the core of the SiNWs,113 which promotes high-rate capabilities. 

The formation of a thin 2nm layer of amorphous carbon on the surface of the SiNWs is also confirmed 

by high-resolution TEM (Figure 5.1d). The carbon coating is intended to provide additional electronic 

conductivity, protect against surface oxidation of the narrow SiNWs and partially restrict expansion 

due to lithiation. 

To validate the proposed VSS growth mechanism on NiNPs, it is important to eliminate any concern 

that graphene may assist in the catalysis.114, 115 This would further help to verify the versatility of this 

inexpensive preparation method. To accomplish this, SiNWs were also produced without the addition 
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of graphene oxide, by growing SiNWs using SiCl4 precursor directly on bulk NiNPs after thermal 

decomposition of the nickel nitrate. This is illustrated by the characteristic TEM image shown in Figure 

4-1f and the EDX mapping shown in Figure 4-2e and 4-2f. Bulk preparation of pure SiNWs grown by 

this methodology could be applied in the future towards various applications, without the need to anchor 

the NiNPs on a specific support material. 

 

 

Figure 4-1. SEM images of a) Ni nanoparticles formed on graphene after thermal shock reduction of 

the nickel nitrate  and GO mixture and b) the resulting SiNWs grown on the intermediate in (a). c) TEM 

image of the c-SiNW-G composite, d) increased magnification TEM image representing the SiNWs 

within the c-SiNW-G composite, e) HRTEM and a corresponding FFT diffraction pattern shown in the 

inset for the SiNW, and f) the TEM image for SiNWs grown without graphene support. 

  

 



 

 46 

 

Figure 4-2. a) HAADF-STEM (High-Angle Annular Dark-Field) of c-SiNW-G , b) EDX mapping of 

Si for the area marked in  (a), c) EDX mapping of carbon, d) overlapping projection for the Si, C and 

Ni spectrums measured in c-SiNW-G, e) HAADF-STEM of SiNWs grown without graphene , and f) 

the EDX mapping for Si in (e). 

  

The structure of the c-SiNW-G composites was further investigated by XRD and Raman spectroscopy 

(Figure 4-3). As expected, the XRD (Figure 4-3a) patterns are consistent with a reference database 

pattern for the Si phase. No further residual peaks were observed in the c-SiNW-G composites that 

might correspond to residual nickel silicide or SiOx. It was also expected that for rGO, a broad low 

intensity peak at ~25o, which represents a shift to the inter-planar spacing interactions of graphite (002) 

might be observed. The absence of this peak suggests that the strong signal of the SiNWs and their 

presence in between the rGO sheets may suppress the weak graphitic interaction after GO reduction. 

However, three characteristic peaks observed in the Raman spectrum provided in Figure 4-3b confirms 

the presence of rGO after completing the one-pot synthesis. The first peak verifies the lattice vibration 

of crystalline Si (520 cm-1), while the other two highlight the presence of reduced graphene oxide within 
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the composite. The absence of Si-O-Si vibration and stretching peaks below 1000 cm-1 suggests 

minimal oxidation to the surface of the carbon-coated SiNWs during or after growth.100, 116, 117 

Furthermore, the strong D (~1350 cm-1) and G (~1580 cm-1) band peaks respectively signify a variety 

of planar defects and the restoration of sp2 binding within the graphitic lattice, respectively118, 119. 

Figure 4-3c demonstrates the TGA profile for the c-SiNW-G electrode material after annealing. As the 

temperature increases, a significant mass loss is observed from ca. 610 to 720 oC due to the carbon 

content being burned away. Following this, a mass increase is observed at higher temperature, which 

can be ascribed to the oxidation of silicon to silicon oxide. As a result, the Si wt.% in the c-SiNW-G is 

about 48%. 
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Figure 4-3. a) XRD diffraction patterns for the as-synthesized c-SiNW-G (top) and the reference 

XRD spectrum measured for SiNP (bottom). b) Raman spectroscopy for c-SiNW-G. c) TGA analysis 

for c-SiNW-G. 

 

In order to demonstrate the potential application of the SiNWs prepared using the inexpensive nickel 

catalyst, a series of investigations was conducted to determine the electrochemical performance in 

LIBs. The c-SiNW-G was dispersed as the active material in a slurry and deposited on a copper current 

collector before partially carbonizing the PAN binder. The anodes were then assembled into coin cells 
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with a lithium counter electrode and underwent galvanostatic charge-discharge (CD) cycling, cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS).  

Figure 4-4a illustrates the CD voltage profile for the c-SiNW-G anodes cycled between 0.01-2 V @ 

0.1 A g-1. A large plateau in the first discharge cycle corresponds to the expected behavior of crystalline 

Si. Beyond the 1st cycle, the observed changes in the voltage profile are attributed to amorphization of 

the initially crystalline SiNW structure. This is supplemented by the added irreversible first cycle 

capacity loss of graphene (Figure 4-5, inset)120-122. The 1st cycle discharge capacity is 2200 mAh g-1 

with a coulombic efficiency of 64%. The second cycle has a capacity of 1416 mAh g-1, followed by a 

gradual decrease to only 931 mAh g-1
 at the 30th cycle. However, as depicted by the cycle rate test in 

Figure 4-4c, at higher current densities up to 10 A g-1 the c-SiNW-G composite was remarkably still 

able to deliver reversible capacity of 400 mAh g-1, providing sufficient electron and ion transport to 

support the partial lithiation reaction. Even after 70 additional cycles at 2 A g-1 the c-SiNW-G composite 

remained highly stable (730 mAh g-1). The charge-discharge profile in Figure 4-4d, taken from the last 

cycle of each rate investigated, reveals minimal variation in the shape or voltage of the plateau region 

below 2 A g-1, although at higher current density the development of slightly increased slope and over-

potential is observed. When further compared to pure graphene or pure SiNW active materials in the 

electrodes, there was a strong synergistic effect present for the c-SiNW-G. This synergy greatly 

improved capacity retention at high charge/discharge rates (~3.5x improvement at 2 A g-1 and ~10x at 

10 A g-1). To fully illustrate the rapid transport capabilities of the c-SiNW-G composite, a newly 

assembled cell underwent three conditioning cycles at 100 mA g-1 before directly cycling at a high 

current density of 6.8 A g-1.  As shown in Figure 4-4e, after 100 cycles, a stabilized capacity of 550 

mAh g-1 was achieved. Figure 4-4b compares the cycle performance, at 0.1 A g-1, for c-SiNW-G, with 

the non-carbon coated SiNW-G, and graphene. The figure shows that introduction of a thin carbon layer 

to SiNW-G significantly improves the cycle stability. Through heat-treatment of polyacrylonitrile 
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(PAN), its structural changes that include reconstruction of the conjugate pi bonding leads to enhanced 

conductivity 123. This is the reason that PAN was selected as an ideal binder in this work. To show this 

effect, we fabricated a cell using sodium salt of carboxy methyl cellulose (NaCMC) as a binder under 

the same conditions, although with elimination of the heat treatment step. This sample is labelled as c-

SiNW-G-CMC, and its cycle performance shown in Figure 4-4b demonstrates that its performance 

gradually decreases in comparison to the sample with PAN. 
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Figure 4-4. a) Voltage profile for a coin cell containing c-SiNW-G cycled at 0.1 A g-1, b) comparison 

of the cycle capability of SiNW-G with and without carbon coating using PAN, and c-SiNW-G using 

NaCMC, to that of pure graphene at 0.1 A g-1, c) is the rate capability of SiNW-G compared to  the 
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non-supported SiNWs, and graphene, d) is a comparison of the voltage profile of SiNW-G at various 

currents, and e) is the cycle capability of SiNW-G at 6.8 A/g. (N.B. All capacities are based on the mass 

of silicon and graphene). 
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Figure 4-5. Cycle performance of c-SiNW-G in comparison with graphene, the inset is the 

corresponding voltage profile. 
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Electrochemical cycling of c-SiNW-G by CV in Figure 4-6a illustrates a first cycle peak starting at 

0.15 V corresponding to the cathodic lithiation of crystalline Si to form LixSi. The anodic peaks at 0.32 

V and 0.51 V correspond to the delithiation of LixSi back to Si. Subsequent cycles show an additional 

cathodic peak appearing at 0.20 V which becomes broader and stronger with each of the initial cycles. 

Together with the increasing strength of the anodic peaks at 0.32V and 0.51 V, these observations relate 

to a gradual activation of the SiNWs materials and a degradation of Si crystallinity with the alloying/de-

alloying mechanism. The impedance spectra (Figure 4-6b) for the lithium-ion cells were modelled 

using the equivalent circuit provided in the Figure 4-6b (inset). In this circuit, R1 represents the contact 

resistance (or the electrode series resistance), R2 and R3 are the charge transfer resistances, CPE1 and 

CPE2 are the capacitances, and W is the Warburg diffusion resistance. A table of these calculated values 

is provided in Table 4. The general trend is that the graphene based lithium ion cell has relatively lower 

contact resistance values, which likely arise due to the high conductivity of graphene. The carbon coated 

SiNWs on graphene showed a synergistic enhancement of the performance represented by the lowest 

charge transfer resistance. This may be attributed to the enhanced conductivity provided by the carbon 

coating throughout the entire 3D structure.   
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Figure 4-6. a) Cyclic voltamogramm for a coin cell fabricated using c-SiNW-G, b) EIS for coin cells 

fabricated using c-SiNW-G, SiNWs, and graphene. 

 

Table 4. List of the equivalent circuit parameters of the modelled EIS data for the lithium ion cells. 

 

Parameter c-SiNW-G G SiNW 

R1 (ohms) 4.65 3.84 7.88 

R2 (ohms) 4.83 4.00 16.06 

R3 (ohms) 10.08 19.87 13.20 
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After cycling at high current density the SiNW-G anodes were extracted from their assembly and rinsed 

to remove the electrolyte. This was done to image the structural retention of SiNWs and to investigate 

amorphization of the (111) crystal plane after cycling. As previously mentioned, crystallinity along the 

axis of the wire would promote diffusion and would support the excellent capacity retention and cycle 

durability at high current density. A fundamental study which monitored in-situ lithiation/delithiation 

of SiNWs, noted stress occurs primarily at the Si-Si bond between the (111) planes during cycling, 

potentially leaving the crystal plane partial intact along the optimally oriented (111) nanowires.92, 113 

As depicted by TEM microscopy in Figures 4-7a and 4-7b, there was a general retention of SiNWs 

morphology, despite significant fragmentation and swelling of the SiNWs. However, after the 

amorphization of Si and degradation during cycling, HRTEM imaging and the corresponding FFT of 

the SiNW-G composites in Figure 4-7c clearly shows no visible retention of crystallinity in the (111) 

plane. EDX mapping in Figures 4-7d-f confirms the entangled SiNWs within the body of the carbon 

composite. Further, the oxygen presence corresponds to the formation of SEI and residual electrolyte 

that was not removed after rinsing the electrodes.  

In summary, we have developed a simple, one-pot synthesis methodology capable of growing bulk 

SiNWs on a low cost NiNPs catalyst. Furthermore, we illustrated the potential for these NiNPs to be 

simultaneously anchored to three dimensional support materials, enabling a large range of future 

application areas for this method of (111) SiNWs growth. After growing the carbon coated c-SiNW-G 

composite, we were able to show its excellent durability and retention of capacity at high current density 

(100th cycle: 550 mAh g-1 @ 6.8 A g-1) an anode in a LIB cell. Ultimately, this process creates an 

important building block for a new wave of low cost, high rate, silicon nanowire materials. 
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Figure 4-7. a) TEM image for SiNW-G electrode material after 100 cycles. b) HAADF-STEM, c) 

HRTEM, and d-f) EDX mapping for the elements silicon, carbon and oxygen, respectively, in SiNW-

G after cycling. 
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Chapter 5 Engineered Si electrode nano-architecture 

 

The following section is based on previously published work  by Hassan, F. M. et al124 

Nano Letters, 14 (2014) 277. 

“Engineered Si electrode nano-architecture: A scalable post-fabrication treatment for the 

production of next-generation Li-ion batteries”   

Reproduced with permission. 

Also these results were submitted as part of a patent application. 

Z. Chen, F. M. Hassan , US provisional patent “A simple low cost treatment technology for high 

capacity silicon based lithium ion battery”, filed on July 30, 2012 , USPTO, #:61/741,868.  

 

 

5.1 Introduction 

 

The pursuit of high performance lithium-ion battery materials is critical for applications including 

electric vehicles, consumer electronics and the storage of renewable energy. This requires a new 

generation of electrode materials with higher energy density and long cycle life, without compromising 

low production costs, safety or the scalability necessary for commercial deployment64, 65, 67, 114, 125. 

Silicon (Si) has emerged as a strong candidate to replace graphite as the anode material in commercial 

LIB design126. Its appeal arises from a high theoretical storage capacity of ~4200 mA h g-1, natural 

abundance and low cost, and low working potential 0-0.4 V vs. Li/Li+ 70, 71. However, the extreme 

volume change (~400%) experienced during lithiation/delithiation results in pulverization of the silicon 

and loss of the electrical connection, leading to rapid capacity loss72, 77, 79, 80. In addition, the solid 
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electrolyte interphase (SEI) layer on the Si surface, which has to bear the same volume expansion and 

contraction, will also crack, fracture, or delaminate from the Si, leading to low Columbic efficiency126.  

 

To inhibit expansion and overcome this limitation, one of the most attractive strategies is to tailor the 

nanostructure and buffer the mechanical strain by preparing Si/C composites, dispersing silicon 

particles within or coating them with a porous carbon80, 127-130. These techniques intend to improve cycle 

stability of Si, minimize direct exposure of Si to electrolyte to improve current efficiency, and enhance 

the electrical connection between Si and C. In a different strategy, Si-based electrodes can be directly 

prepared by the inclusion of commercial Si nanoparticles mixed into a functional polymer binding 

matrix131-136. In addition, the covalent linkages between the binder and the SiO2 surface layer on the Si 

particles can mitigate the mechanical damage caused by severe volume change, while providing an 

elastic network that extends throughout the entire electrode and maintains the electrodes integrity. 

However, these techniques are sensitive to: the dispersion quality of the active materials, a physically 

bonded Si-C interphase that becomes ineffective after cycling and the high inactive carbon/binder 

content required to achieve stable capacity137-140. 

 

Progressively, higher performance and more durable configurations have been achieved by utilizing 

sophisticated methodologies to produce Si and Si@carbon core-shell nanowires73, 98, 99, 102, 141, 142, as well 

as, porous composite structures coated with Si nanoparticles143-145. However, most of these reports 

utilize SiH4, an expensive and extremely hazardous gas, and delicate multi-step treatments of 

synthesized nano-structured silicon. Controlled growth of SiO2 coatings on these materials have also 

been shown to significantly decrease volume expansion, improving capacity retention during cycling 

when the coating was optimized to between 2-10 nm146, 147. For comparison, a recent report by Wang et 

al reveals nanowire performance retaining 1100 mA h g-1 after 1000 cycles97. This is in agreement with 
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previous investigations concerning carbon coating of Si particles, prior to cell assembly. The studies 

suggest that the main advantage of PVDF is release of HF which cause localized etching of SiO2 during 

carbonization, thereby controlling layer thickness148-150. 

 

In this present work, we present a safe, economical and short duration strategy for post-treatment of Si 

electrodes made with commercially-available Si-nanopowder (NP), to achieve high-performance. The 

single-step flash heat treatment (FHT) process, which simultaneously engineered the electrode matrix 

and the surface architecture of Si, is compatible with continuous roll-to-roll electrode processing. To 

our knowledge, this is the first time that the direct engineering of the electrode structure by the rapid 

post-treatment of commercial Si particles has been reported to be successful. Specifically, the benefits 

of the FHT post-process include: (1) the creation of a SiO2/C shell around the Si-NP which restricts 

volume expansion and stabilizes the SEI layer; (2) the carbonized binder generates a dense cellular 

network throughout the entire electrode, interconnecting the Si particles, boosting the electrical 

conductivity, and attributing to the enhanced electrode integrity and ; (3) manipulation of the copper 

current collector to catalyze graphene growth, resulting in a strong interfacial contact mechanically and 

electrically. In addition, all the binders were converted into graphitic carbon, which should give the 

electrode much better durability in the electrochemical environment. Also, the dispersion of Si powder 

in the binder before the FHT treatment would be much better since no conductive additive is needed. 

All of those synergetic functions contribute to the significantly improved performance in terms of cycle 

stability and rate capability (500 cycles, retaining capacity of 1150 mA h g-1 at a high discharge rate of 

1.2 A g-1).  
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5.2 Experimental Methods 

 

Electrodes for lithium ion battery testing were fabricated using commercially available silicon 

nanoparticles (Si-NP) with size range 50-70 nm was purchased from Nanostructured & Amorphous 

Materials, Inc., Houston, USA. For the working electrode, a slurry consisting of 60 % of active material 

(Si-NP) and 40 % polyvinylidene fluoride (PVdF) as a binder (with no conducting materials added) 

was prepared in N-methyl-2-pyrrolidone (NMP) and was coated on Cu foil. The average mass loading 

of silicon on the electrodes was 0.5 mg cm-2. The electrode was dried in a convection oven at 353 K for 

1 hr, followed by drying in the vacuum oven at 363 K for overnight. The electrodes were then subjected 

to the FHT process, see below. Coin type half cells were fabricated in an argon-filled glove box with 

the working electrode and a Li metal counter electrode. A polypropylene separator was employed to 

separate the two electrodes and the electrolyte composed of 1M LiPF6 in 30 wt% ethylene carbonate 

(EC), 60 wt% dimethyl carbonate (DMC), and 10wt% fluorinated ethylene carbonate (FEC). 

Galvanostatic charge/discharge test was carried out at a cut off voltage range of 0.05 to 1.00 V with 

different current densities for rate capability testing. Cyclic voltammetry, at a scan rate of 0.05 mV s-1 

between 1.0 and 0.05 V, and electrochemical impedance spectroscopy were conducted using a 

Princeton Applied Research VersaSTAT MC Potentiostat. For a reference coin cell, an electrode was 

prepared with the ratio of 60 wt% Si-NP, 20% Super-P as a conductive material and 20% 

polyvinylidene fluoride (PVdF) as a binder. These electrodes were used without FHT treatment.  

Flash heat treatment (FHT): electrodes were placed into a long quartz tube of a horizontal tube furnace 

such that they are kept outside the furnace during heating up to 900 oC. Once the temperature reached 

900 oC, the quartz tube was cautiously introduced into the furnace for rapid thermal shock of the 

electrodes, held for 20 minutes, then dragged back for rapid cooling. The treatment was performed 

under gas flow of 100 SCCM Ar/10%H2. 
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Morphology of the electrode surfaces before and after treatment were characterized by scanning 

electron microscopy (SEM) (LEO FESEM 1530) and transmission electron microscopy (TEM) JEOL 

2010F TEM/STEM field emission Transmission Electron Microscope, with a large solid angle for high 

X-ray throughput, scanning, scanning-transmission and a Gatan imaging filter (GIF) for energy filtered 

imaging and electron energy loss spectroscopy. Raman scattering spectra were recorded on a Bruker 

Sentterra system (532 nm laser).  

 

5.3 Results and Discussions 

5.3.1 FHT treatment and electrode structure 

 

Figure 5-1 illustrates FHT of the as-prepared Si-NP/PVDF (60/40 wt%) electrode on copper foil, in 

addition to the impact on electrode structure. The FHT process is detailed within the experimental 

section and briefly involves moving the electrodes through a high temperature furnace purged with a 

mixture of Ar(g) and H2(g) , at a constant rate. The high ramp results in carbonization of the polymer 

matrix starting at ~450oC (Thermal gravimetric Analysis (TGA), Figure 5-2), also determined by the 

visual change in color of the electrodes from a light brown to black. For practical manufacturing 

consideration, after FHT the Si content within the electrodes increased to 87.2 wt% and no deflagration 

of the electrode occurred. The electrode materials prepared by FHT result in an electrode structure with 

good adherence to the current collector and with excellent flexibility (not brittle). This is clearly 

demonstrated in Figure 6-3, whereby we subjected one of the FHT electrodes to bending. No rupture 

or microcrack formation arising from the tensile stress was observed. This flexibility was attributed to 

the polymer carbonization leading to an interconnected carbon network with a coherent, intact structure. 
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This is supported by a recent study by Chen et al151, whereby they obtained an elastic carbon foam 

through carbonization of a polymer for use as flexible electrodes. Raman was used to study the change 

in chemical structure before and after FHT (Figure 5-1bc). As expected, a strong peak centered at 520 

cm-1 was observed for the non-treated electrode, corresponding to the lattice vibration of crystalline 

silicon. After FHT, this peak broadens and shifts to slightly lower wave numbers, this is attributed to 

formation of stresses created by a difference in the thermal expansion coefficient between Si and C152-

155.  This stress is determined to be consistent over a large area by mapping the FWHM of the Silicon 

peak before and after FHT (insets, Figures 5-1bc). In addition, two peaks arise at 283 and 927 cm-1 

after FHT, which may correspond to the Si-O-Si bending and stretching vibrations of silica on the Si-

NP surface, respectively156, 157. Carbonization of the polymer binder is confirmed by the introduction 

of carbons characteristic D and G band peaks at 1335 cm-1 and 1600 cm-1, with an Id/Ig ratio of 0.72. 

The shape and position of these peaks is explained by structural disorder and defects within the mostly 

amorphous carbon158-160. Further, several Raman peaks attributed to polyvinylidene fluoride (PVDF) 

before treatment are no longer present after FHT, as evidenced by the disappearance of the F peak  in 

the Energy Dispersive X-ray chart of the treated electrode (EDX, Figure 5-5).  
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Figure 5-1. a) Schematic of the flash heat treatment process (FHT) showing optical micrographs for 

the electrode surface before and after FHT and the Raman spectrum for the electrode surface both, b) 

before FHT and c) after FHT. The insets in (b) and (c) correspond to Raman mapping of the FWHM 

of the Si peak.  
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Figure 5-2. TGA for PVDF under nitrogen atmosphere. 

 

 

Figure 5-3. Optical micrograph showing the electrode after flash heat treatment (FHT), the electrode 

material sticks tightly to the copper surface such that bending does not cause exfoliation. This reveals 

sufficient mechanical stability to sustain handling during cell fabrication. 
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XRD patterns in Figure 5-4 show the analysis for the electrode surface after FHT (Figure 5-4a) along 

with the reference peaks of silicon, copper, and copper silicide. The presence of copper silicide is not 

un-expected after heating both Si and Cu at 900oC161. However, shielding of the SiNP by carbon should 

minimize the formation of copper silicide, as judged by the very small peak at a d-spacing of 2.46 A. 

We believe this only occurs at the current collector interface and that it also may contribute to the good 

adherence of the electrode coating. Experimentally we obtained a charge capacity equivalent to almost 

84% of silicon’s theoretical maximum (see later), indicating minimal consumption of Si in side 

reactions during the FHT process. Inspecting Figures 5-2 a and b, it is interesting to note the phase 

orientation of Si created by the FHT process. The (111) peak of Si becomes inhibited and other Si peaks 

such as (331) were enhanced. In a similar finding, this peak shift was found to be associated with HF 

etching of Si162 . Schematic of the electrode cross section is shown in Figure 5-5 a-b. Topography of 

the electrode surface before and after FHT is shown by SEM imaging in Figure 5-5 c-e, and EDX 

shown in the inset reveal the disappearance of the fluorine peak. This is a sign for fully carbonization 

of PVDF. 

Investigation of the Si-NP surface structure and morphology after FHT is represented by high resolution 

TEM and Electron Energy-Loss Spectroscopy (EELS) analysis in Figure 5-6. The dispersed particles 

remain interconnected by the carbonized PVDF matrix and reveal an amorphous ~10 nm carbon shell 

around Si, illustrated by Figure 5-6a-c. Electron diffraction of a large area (SAED, Figure 5-6d) 

confirms that Si remains crystalline after FHT. A native SiO2 layer is expected on the as-received Si 

surface,129, 163 however there is no clear separation between the amorphous SiO2 and carbon coatings. 

In order to accurately map the atomic contributions, EELS (Figure 5-6f), <1 nm spatial resolution164, 

was performed across a particles diameter  (Figure 5-6e, red line). Overlap of the O and C content 

within the coating suggests that the FHT process forms an entangled coating of SiO2 and carbon. A 

similar confirmatory result is found from the EDX line scan available in Figure 5-7. This phenomenon 
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is likely described by the decomposition of the PVDF matrix, releasing traces of HF which are 

consumed locally due to the partial etching SiO2 
148-150

 . It is suspected that this etching regulates the 

formation of porous SiO2 165-168  and allows carbon to deposit within the surface cavities created. 

Practically, the combined SiO2 and C coating may have a synergistic effect, the higher surface area 

anchoring the carbon shell and increasing both electrical and ionic conductivity through the SiO2 layer. 

In addition, upon cycling the SiO2 should interact with Li+ forming a stable Li2Si2O5 phase, reported to 

effectively reduce Si volume expansion146, 147 .  
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Figure 5-4. (a) XRD pattern for the electrode surface after FHT and (b) shows the reference peaks of 

silicon (JCPDS 5-0565), copper (JCPDS 4-0836), and copper silicide (JCPDS 23-0223). 
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Figure 5-5. (a-b), Schematic of the electrode surface before and after FHT. (c-d), SEM micrographs 

for the electrode surface before and after FHT treatment, the insets of both figures show the EDS 

elemental analysis indicating carbonization by disappearance of fluoride peak, (e) is a SEM cross 

section of the electrode in (d). 
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Figure 5-6. a) Low magnification TEM image of the electrode surface after FHT. b) Higher 

magnification TEM image zooming to a small area of (a), c) HRTEM image across the edge of one Si 

particle, d) Selected electron diffraction (SAED) taken from a large area of the electrode surface, e) a 

HAADF-STEM image of a few silicon particles on the electrode surface with carbon coating and f) 

Electron energy loss spectroscopy (EELS) profile analysis across the particle labeled in (e), the inset in 

(f) is a schematic depicting the core silicon and the shells of SiO2 and carbon layer. 

 



 

 69 

 

 

Figure 5-7. (a) HAADF-STEM across a Si-NP from the FHT-treated electrode and its associated 

EDS elemental line scan across the particle as marked in (a). 

 

 

5.3.2 Electrochemical Performance 

 

The electrochemical performance of the treated electrode at low current (0.1 A g-1) and a voltage range 

of 1.5 to 0.005 V is shown in Figure 5-8. It reveals that the FHT treated Si electrode achieves a first 

cycle efficiency of ~ 84% and a maximum charge capacity of 3525 mA h g-1 which is almost 84% of 

the maximum theoretical capacity of silicon. Figure 5-9 shows the electrochemical performance 

characterization of the FHT treated electrodes after assembling them into coin cells, using lithium metal 

as the counter electrode. Cells depicting the voltage profile and durability in Figures 5-9a-b were 

initially cycled at 0.12 A g-1 from 1 - 0.05 V for 5 cycles, before shifting to a moderately high rate of 

1.2 A g-1 for long-term testing. First cycle charge and discharge capacities of the coin cells made using 
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the FHT process were 2505 and 1955 mA h g-1 respectively, which corresponds to 78% columbic 

efficiency. The stability of the electrode structure led to reversible discharge capacity of 2240 mA h g-

1 (1806 mA h cm-3) after 5 cycles at 0.12 A g-1 and stable capacity of 1350 mA h g-1 after switching to 

1.2 A g-1. The effectiveness of the SiO2/C shell and cellular carbon matrix holding the electrode together 

is made apparent by the retention of 1150 mA h g-1 after 500 cycles, with 99.8% cyclic efficiency. 

Further, Figures 5-9 d-e illustrate the voltage profile of the FHT treated electrodes in response to 

varying discharge/charge rates, even at a high rate of 2.5 A g-1 the cells began to stabilize after only 10 

cycles. This is in sharp contrast to the untreated electrodes (60:20:20 wt%, Si:PVDF:Super-P), which 

degraded rapidly, retaining only 13.5% of its charge capacity after only 20 cycles at 0.1 A g-1 (Figure 

5-10). The improvements for the electrodes subjected to FHT are attributed to improved interfacial 

contact between the Si and carbon, along with good electronic conductivity throughout the electrode.  

To further elucidate lithiation/delithiation stability, cells made with treated electrodes were subjected 

to both Cyclic Voltammetry (CV, Figure 5-9c) and Electrochemical Impedance Spectroscopy (EIS, 

Figure 5-9f). Inspection of the first cycle CV for the treated Si electrode reveals that, in the cathodic 

branch the peak starting at ~ 0.15 V corresponds to the conversion of the Si to the LixSi phase. The two 

peaks at ~ 0.32 and 0.51 in the anodic branch corresponds to delithiation of the LixSi phase to Si. After 

further cycles, an additional broad peak at ~ 0.20 V appears during the cathodic scan and the anodic 

peaks at ~ 0.32 and 0.51 V become broader and stronger, which is a common characteristic for the 

transition from crystalline silicon to amorphous silicon due to lithiation/delithiation73, 169-171. The 

increasing CV curve area is due to initial activation of the material, enabling more Li to react with Si, 

which is consistent with both the findings of others73, 172 and our results introduced in Figure 5-9a,b. 

Stability of the electrodes macrostructure is supported by results of the EIS spectrum taken from cells 

after discharge cycles 15, 30 and 100, respectively. Extrapolation of the curves semi-circular regime 

reveals that the real charge transfer resistance decreases from 65 Ω after only 15 cycles, to 37 Ω upon 
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completion of 100 cycles. The lower values of ESR reveal that the FHT process renders the electrodes 

with sufficient conductivity and further confirm the perceived stability of the electrode matrix and the 

SiO2/C coating created by the FHT process during electrochemical cycling. The alloying reaction with 

Si is able to occur more quickly after long-term cell conditioning and the ESR improvement strongly 

suggests stability of the electron and ion pathways which could otherwise impede charge transfer.  

 

 

Figure 5-8. (a) Galvanostatic voltage profile at 0.1 A/g with cut off voltage of 1.5 to 0.005 V for a 

coin cell fabricated using an electrode subjected to FHT , (b) the corresponding cycle capability at 0.1 

A/g. (the first cycle efficiency is ~84%). 
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Figure 5-9. (a) Galvanostatic voltage profile showing cycle 1-3 at 0.12 A g-1 and cycles 30, 100 and 

500 at 1.2 A g-1, (b) Cycle capability for the cell shown in (a), (c) Cyclic voltamogram for a coin cell 

measured at scan rate of 0.05 mV s-1 between 1.0 and 0.05 V (vs Li+/Li), (d) Galvanostatic voltage 

profile at different rates, (e) Cycle performance showing the rate capability, and (f) EIS for the coin 

cell after discharge of the cycles 15, 30 and 100. 

 

Figure 5-10. (a) Galvanostatic voltage profile at 0.1 A/g with cut off voltage of 1.5 to 0.005 V for a 

coin cell fabricated using electrode with 6:2:2 ratio of SiNP: Carbon : PVDF without subjecting the 
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electrode to FHT, (b) the corresponding cycle capability of the non-treated electrode cycled at 0.1 

A/g. (the first cycle efficiency is ~70%). 

 

After the completion of long term electrochemical cycling using the FHT processed electrodes, the coin 

cell was opened to facilitate further investigation of changes to the surface morphology using HAADF-

STEM (Figure 5-11a-e).  This figure shows that after 500 cycles the formed amorphous silicon is caged 

in a sponge-like carbon that persists against expansion and contraction during lithiation/delithiation 

even after this long cycling.  A large area EDX scan reveals the positional mapping of the Si and C 

distribution (Figure 5c and d, respectively). High resolution of a single representative Si particle 

suggests the amorphous SiO2/carbon coating remains in strong contact with the carbon shell. In addition 

to the stable particle coating, Figure 5-11f depicts by TEM the detection of graphene-like sheets taken 

from the electrodes after cycling. The existence of graphene within the treated electrode is supported 

by literature revealing carbon diffusion into copper can catalyze the formation of monolayer graphene 

adsorption at high temperatures173-178. This suggests that the graphene sheets are assumed to exist on 

the current collector surface. Further, TEM analysis depicted in Figure 5-12 confirms graphene sheets 

are indeed forming during the FHT processing of a copper electrode coated with only PVDF. These 

results verify that the FHT process is also able to successfully alter the current collector/electrode 

interface, potentially enhancing electrode stability. 
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Figure 5-11. a) High-Angle Annular Dark field Scanning Transmission Electron micrograph 

(HAADF-STEM) of the electrode surface after being cycled for 500 cycles of charge/discharge, b) 

TEM image showing a few Si particles included in their carbon cage and interconnecting even after 

500 cycles, c and d) EDS elemental mapping of Si, and C for the area selected in image a. e) 

HAADF-STEM zoomed in to a silicon particle as labeled in (a). (f) TEM micrograph for part of the 

electrode surface after cycling. 
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Figure 5-12. (a-b) TEM images for different areas for graphene nanosheets prepared by spreading a 

thin film of PVDF on copper foil followed by FHT treatment, (d) HRTEM for an edge of the 

graphene sheet. 
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Chapter 6 Covalent binding of Si to S-doped graphene 

The following section is based on published manuscript prepared by Hassan, F. M. et al,  

Fathy M Hassan, et al .  “Covalent synergy of silicon-sulfur-graphene as peculiar material design for 
cutting-edge lithium-ion battery”, to be submitted to Nature Materials. Manuscript #NM14123597 , 
Submitted on December 9, 2014. 

Also these results were submitted as part of a patent application: 

F. M. Hassan, Z. Chen, Xingcheng Xiao, US provisional patent “A process of making nano-hybrid 

sulfur-doped graphene/silicon composites and using as electrodes for lithium batteries”, filed on 

October, 2014 by General Motors, US , P030743.  

 

6.1 Introduction 

 

The widespread market success of high performance portable electronics and hybrid (or electric) 

vehicles strongly depends on further technological progress of commercially available rechargeable 

batteries179. Lithium ion batteries (LIBs) are considered the most likely energy storage configuration to 

satisfy these demands,180, 181 however require significant advances in terms of power density, energy 

density, cycle life, and safety, as well as lower production costs. Current LIB systems utilize graphite 

anodes, where energy is stored by intercalating lithium into the graphite layers. This arrangement, while 

commercially successful, can only deliver a maximum theoretical capacity of 370 mAh g-1.182 

Incorporating additional components offers the potential to dramatically improve this capacity, 

whereby silicon can provide up to 4,200 mAh g-1 in theory. While Si-based composites offer immense 

promise as new generation anode materials, extreme changes in volume during lithiation and 

delithiation lead to structural degradation and debilitating performance loss over time that impedes their 

practical application.32, 75, 126, 182-190 
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Significant efforts have been devoted to tackling these problems by engineering Si-based electrodes at 

the nanoscale.79, 145, 183, 191, 192 For example, silicon nanoparticles (SiNP) were embedded in a carbon 

matrix through a multistep process to create nanosized void spaces for accommodating volume changes 

during lithiation/delithiation.2 Mesoporous silicon sponges have also been prepared by electrochemical 

etching of B-doped Si wafers, which were used to minimize the pulverization of silicon. With an 

additional carbon coating, these materials delivered a capacity of 500 mAh g-1 for 1000 cycles (at a rate 

of 1 A g-1, and an areal capacity of ca. 1.5 mAh cm-2). 3 Another promising method involved in-situ 

polymerization of a conducting hydrogel to coat the SiNP, providing porous space for the large volume 

expansions.5 In order to further improve the performance at a high active material electrode loading, 

the same group proposed another novel electrode design concept, utilizing silicon nanostructures 

analogous to pomegranates to stabilize the solid electrolyte interphase and to provide stable cycling up 

to 1000 cycles. 193  

Instead of designing fancy Si nanostructures, herein we introduce a new electrode design concept that 

capitalizes on the strong covalent interactions occurring between Si and sulfur. This involves wrapping 

SiNP with S-doped graphene (SG), and then shielding this composite arrangement with cyclized 

polyacrylonitrile (PAN).  We first disperse SG in dimethylformamide (DMF) by ultra-sonication, and 

then mix it with commercially available SiNP. After that, we add a solution of PAN in DMF to the Si-

SG mixture, and ultrasonicate them together to make a homogenous slurry. The obtained slurry is 

directly cast on a Cu current collector and then subjected to a sluggish heat treatment (SHT), which we 

use to refer to a 10 min heat treatment under inert gas at 450oC, using a heat up and cool down time of 

2 hrs. Using this overall procedure, we avoid any sophisticated and tedious synthesis processes to 

prepare nanostructured silicon composites, while at the same time enabling a high electrode loading of 

the active material for practical applications.  
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6.2 Results and Discussions  

6.2.1 Characterization of the electrode materials 

 

Figure 6.1 a and b schematically illustrate the fabrication process and the structure of the composite at 

the nanoscale, along with optical images of the electrode before and after SHT, respectively. The high 

angle annular dark field (HAADF) scanning transmission electron microscope (STEM) image in 

Figure 6.1 c shows that SG wraps the SiNP, which are invariably dispersed within the nanosheets 

matrix.   The TEM image in Figure 6.1 d (along with the high resolution TEM images in Figure 6.1 e 

and f of an individual SiNP) reveal that amorphous carbon (from PAN) forms a shell around the SiNP 

with a thickness of ca. 5 nm. The crystallinity of the SiNP can also be verified by the HRTEM image 

shown in Figure 6.1 f and the corresponding FFT pattern shown as the inset.  

It is well established that sluggish heating can cyclize PAN, whereby cyclized PAN can provide 

stabilization of electrode structures. 194, 195 The characteristic exothermic peak for PAN cyclization is 

shown by differential scanning calorimetry (DSC) in Figure S1a (Appendix I), with the results 

consistent with previous reports.196, 197  Upon treatment, PAN loses about 20% of its mass as shown by 

TGA, with results provided in Figure S1b (Appendix I). After cyclization, PAN has a π-conjugate 

structure that is believed to lower the electronic and charge transfer resistances of the electrode, as 

evidenced by the electrochemical impedance spectroscopy shown in Figure S2 (Appendix I).  The 

cyclized PAN (c-PAN) forms an effective shielding around the SiNP, which are already anchored on 

SG through covalent interactions as confirmed by DFT calculations discussed vide infra.  In addition, 

c-PAN sticks between the SG nanosheets, providing a 3-D dimensional, interconnected structure that 

enables enhanced conductivity and material robustness, as shown schematically in Figure 6.1b. 

Inspecting the HRTEM images introduced in Figure 6.1 and the EDX mapping in Figure S3(Appendix 
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I), it can be proposed that every SiNP is caged in a carbon shell of c-PAN. It is also clearly observed 

that there is no agglomeration of SiNP.  

 

 

 

 

Figure 6-1.  Schematic of sluggish heat treatment. a) an optical image of the as-fabricated electrode 

made of SiNP, SG and PAN, b) the electrode after SHT, c) HAADF-STEM image and d) TEM image 

of the SG-Si electrode,  e, f) HRTEM images zooming in on a SiNP in the SG-Si electrode, and (f, 

inset) FFT pattern of the SiNP.  

 

The elemental analysis after SHT determined by the XPS survey spectrum from the SG-Si electrode is 

shown in Figure 6.2a, confirming the existence of Si, S, C, N and O. Figure 6.2b shows the core-level 
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spectra of S in both pure SG and in the SG-Si electrode. In pure SG, the S2p doublet corresponding to 

the sulfide (C-S-C) structure is observed at 164.0 and 165.2 eV and labeled (1) and (2). These peak 

locations are in good agreement with the reported S2p3/2 and S2p1/2 spin orbit couplet198-200.  The other 

minor peaks labeled as (3) in Figure 6.2b and located at higher binding energies are attributed to 

oxygen bound to sulfur (-SOx).201 For SG-Si, the peak corresponding to S gets significantly broader 

and is shifted to a higher binding energy. We believe that this shift may be an indication of the covalent 

interaction formed between most of S and Si atoms. It should be noted that a higher binding energy of 

S (~ 168 eV) was observed when a sulfur-containing organic compound was adsorbed on silicon202, 

and a similar phenomenon may exist within SG-Si electrode.  The core-level spectra in Figure 6.2 c 

shows the typical elemental Si peak (1) located at 99.4 eV, with the minor peaks at higher binding 

energies (~103.4 eV) related to oxygenated silicon or silicon bonded to sulfur.203  While the spectra of 

C in Figure 6.2 d shows several common peaks, the first one (1) centered at 284 eV corresponds to sp2 

hybridized graphitic type carbon. Peak (2), centered at 284.6 eV, denotes the presence of sp3 bonded 

carbon. Finally, peaks (3) and (4) are characteristic of oxygenated carbon and peak (5) is related to 

Plasmon loss features.204-206 Figure 6.2 e displays a high-angle annular dark field scanning transmission 

electron microscope (HAADF-STEM) image of the SG-Si electrode, while Figure 6.2 f displays the 

corresponding electron energy loss spectroscopy (EELS) image of the highlighted area in image Figure 

6.2 e. The pixels in the EELS image correspond to 3.4 nm x 3.4 nm each. The yellow color is related 

to Si, while the red color is sulfur (mixed red and yellow give orange with different degrees relative to 

the concentration). It can be inferred that sulfur follows the circumference of the SiNP. The 

corresponding spectrum of the EELS based elemental mapping is shown in Figure S4(Appendix I). It 

again confirms the presence of Si, S, N and C, whereby S comes from the SG and N from the cyclized 

PAN. Raman spectra of PAN films before and after SHT is shown in Figure 6.2 g. While no features 

appear before SHT, two characteristic peaks at ~1346cm-1 and ~1605 cm-1 are observed after SHT. 
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These peaks correspond to the “D” and “G” bands from the structural defects and disorder from sp3-

carbon atoms and the plane vibration of the sp2-carbon atoms in two-dimensional lattice of the cyclized 

PAN, respectively. The same features appeared with the electrode materials after subjecting them to 

SHT, Figure 6.2 h. 

 

 

Figure 6-2. Electrode material characterization for SG-Si. a), XPS survey spectra confirming the 

elements Si, S, C, N and O, b) High-resolution XPS spectra of S in pure SG, and in SG-Si, c) High 

resolution XPS of Si 2p in SG-Si, d)  High-resolution XPS spectra of C in SG-Si, e) HAADF-STEM 
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image of SG-Si, and f) EELS mapping of the elements Si(yellow) and S (red), with each pixel in Figs 

d-f representing 3.4 x 3.4 nm, g) Raman spectra for PAN film on copper before and after SHT, h) 

Raman spectra for SG-Si-PAN electrode surface before and after SHT. 

 

6.2.2 Electrochemical performance 

 

Figure 6.3a presents the typical galvanostatic charge/discharge profiles of the SG-Si based electrode 

tested at 0.1 A g-1 between 1.5 and 0.05 V. The observed plateau in the first discharge curve represents 

alloying of crystalline silicon with lithium.145, 207 The SG-Si delivers an initial discharge capacity of 

2865 mAh g-1, based on all masses of SG, c-PAN and Si, with a high first cycle Coulombic efficiency 

of 86.2%. If not mentioned, all reported capacities are based on the total mass of SG, c-PAN and Si. 

The voltage profiles of the subsequent cycles show slightly different behaviour, which is common for 

the lithiation process of amorphous Si formed during the first cycle. It is noteworthy that the areal 

charge capacity is about 3.5 mAh cm-2, which is close to the performance targets for next generation 

highly energy dense lithium ion batteries.191  Figure 6.3 b shows the cycling stability of the SG-Si at 

0.1 A g-1. A stable cyclability up to 100 cycles can be obtained, with an average capacity of 3360 mAh 

g-1 (~ 3.5 mAh cm-2), measured relative to the total mass (Si-SG-PAN). These results compare very 

favourably to a recently published report191. The charge storage behavior was also characterized by 

cyclic voltammetry (CV). Figure 6.3 c shows the first 5 cycles of the SG-Si electrode in a coin cell at 

a scan rate of 0.05 mV s-1. In the cathodic scan, there are two distinctive peaks appearing at 0.27 and 

0.22 V vs Li/Li+, indicating the formation of Li12Si7 and Li15Si4 phases, respectively.208, 209  In the anodic 

direction, the corresponding two peaks are located at 0.31 and 0.49 V, representing the dealloying of 

LixSi to Si. All anodic and cathodic peaks become broader and stronger as a result of cycling, which is 

a common feature attributed to the conversion of Si into an amorphous phase during 
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lithiation/delithiation.  The rate capability of the SG-Si electrode is shown in Figure 6.3 d, revealing 

the excellent kinetics of the SG-Si electrode at different currents up to 4 Ag-1. Moreover, the robust 

structure enables a very stable cycling, where a capacity of ca.1033 mAh g-1 can be maintained for more 

than 2200 cycles at a rate of 2 Ag-1. On the other hand, a similar electrode structure prepared by 

replacing SG with non-doped graphene gives an inferior rate capability and cycling stability, as shown 

in Figure 6.3 e. The high capacity of the G-Si persists only for 65 cycles, then fades gradually, reaching 

~ 200 mAh g-1 after 800 cycles. Such a capacity fading is attributed to the degradation of the Si structure 

leading to the loss of conductivity and instability in the solid electrolyte interphase (SEI) structure. The 

significantly different electrochemical performances put a spotlight on the important role of sulfur in 

binding the SiNP to the surface of SG, which encouraged us to further investigate it using density 

functional theory (DFT) calculations discussed below. A coin cell made of a SiNP/PAN electrode, 

fabricated using SiNP and PAN subjected to a SHT, shows poor rate performance. In addition, its cycle 

stability persist for only 65 cycles and then degrades rapidly to almost zero capacity (Figure 6.3 f). 

These results emphasize the important role of the covalent binding between Si and SG to enable the 

impressive performance seen in Figure 6.3 d. 

 

In order to test the behavior of SG-Si in a realistic full cell setup, a coin cell consisting of a SG-Si anode 

and a commercial LiCoO2 cathode was assembled. The cell was first charged from OCV to 4.3 V and 

then cycled between 2.5 to 4.3 V (Figure S6 (Appendix I)). The first cycle efficiency is ca. 84% and 

the cell was able to give an areal capacity of ca. 3 mAh cm-2 at a rate of 0.1 Ag-1 with respect to the SG-

Si/PAN mass. When the rate increased 10 times to 1 Ag-1, the capacity is decreased to 0.9 mA cm-2 or 

~ 800 mAh g-1 (SG-Si), and remains relatively stable with minimum capacity loss for up to 100 cycles. 

After cycling the coin cell for 2200 cycles (Figure 6.3 d), the cell was disassembled and the SG-Si 

electrode was subjected to further characterization. Figure 6.4 a shows a HAADF-STEM image of the 
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electrode structure and Figure 6.4 b-d provide the corresponding colored EELS mapping for the 

elements S, C, and Si, respectively (each pixel is 3.4 x 3.4 nm). This characterization emphasises the 

conversion of the electrode materials to a wire-like morphology after cycling. The location of the SiNP 

is associated with regions of high sulfur and carbon.  

 

 

Figure 6-3. Electrochemical performance of SG-Si. a) Voltage profile of SG-Si anode at 0.1 A g-1, b) 

the corresponding cycle stability, c)  cyclic voltammogram curves of the SG-Si coin cell, d) rate 

capability of SG-Si anode followed by cycle stability at 2Ag-1, e) rate capability of G-Si anode 

followed by cycle stability, f) rate capability of Si-PAN anode followed by cycle stability.  
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 It can be noted that the SiNP, after 2200 repetitive expansion and contraction cycles, fractured and 

pulverized into smaller particles. However, those fractured Si particles are still confined within the 

continuous channels of the c-PAN shell, which is overlaid on SG and maintains the electrical 

connection between Si and graphene. Furthermore, the graphene layer prevents the direct contact of the 

electrolyte to Si. As a result, the fractured Si will not induce new SEI formation.  Most of the SEI layer 

forms only on the outer surface of graphene, which shows very minimal volume expansion and 

contraction. The synergy of the interactions among Si/SG/c-PAN leads to very excellent cycle 

efficiency and capacity retention, as shown in Figure 6.3 d.    
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Figure 6-4. Characterization of SG-Si electrode material after cycling for 2400 cycles. a) HAADF-

STEM image of the SG-Si electrode after cycling, c-e) the elements mapping by EELS for the area 

marked in image. N.B.  Each pixel in Figs d-f represents 3.4 x 3.4 nm. 

 

6.2.3 Quantum mechanics calculations 

 

In the present study, the graphene surface was modeled using a hydrogenated graphene cluster (C54H18), 

which is also referred as H passivated graphene (see Figure S8 (Appendix I)). The optimized bonding 

distances of C–C (1.42 Å) and C–H (1.09 Å) in this model are in good agreement with that for bulk 

graphite. 210 Based on this H passivated C54H18 cluster, a structure of sulfur-doped graphene (SG) is 

proposed. The optimized SG structure with some key structural parameters is shown in Figure S9 

(Appendix I). It can be seen that the SG has a distorted configuration. In all the calculations, all the 

atoms in the cluster were allowed to relax.  

In order to describe the interactions between the Si and graphene, the bonding energies (BE) of Si were 

defined by equation (1): 

ܧܤ ൌ ௌ௜ି௚௥௔௣௛௘௡௘ܧ െ ௚௥௔௣௛௘௡௘ܧ െ  ௌ௜       (6.1)ܧ

where ܧௌ௜ି௚௥௔௣௛௘௡௘, ܧௌ௜, and ܧ௚௥௔௣௛௘௡௘ represent the energies of the Si-bound to the graphene 

structure, the Si atom, and the graphene structure, respectively. 

Si adsorption on different sites of the SG was studied. The results are compared with those obtained on 

undoped graphene. Figure 6.5 a (i) presents the configuration of the stable Si adsorption on graphene 

(G-Si), with Si sitting at the bridge site with adsorption energy of 0.45eV. Two stable configurations 

for Si adsorption on sulfur doped graphene were observed. The first is represented as SG-Si(A), which 

reveal the bonding of Si to location (A), Figure 6.5 a (ii). The second represents binding to location 
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(B) and represented as SG-Si(B), Figure 6.5 a (iii). In SG-Si(A), Si was found to bind to S and two 

“saturated” C atoms (C7 and C8 ), with the corresponding binding energy of -2.02 eV. On the other 

hand, at the second position, SG-Si(B), Si binds to S and two C’s at the defect sites (C2 and C3) forming 

two Si-C and one Si-S bonds, leading to a binding energy of -3.70eV. The higher binding energy in the 

latter case indicates Si would be more energetically favorable to bind to the defect C2 and C3 atoms. 

Most importantly, the results show that Si attached on SG structure has a much higher binding energy 

than that on graphene (G-Si). This result introduces a strong explanation for the much longer cycle 

stability in SG-Si than in G-Si. Figure 6.5 b introduces the highest occupied molecular orbital (HOMO) 

and the lowest unoccupied molecular orbitals (LUMO) for the G, SG, SG-Si(A) and SG-Si(B). The 

difference between the LUMO and HOMO contribute to band gap of the substance. The respective 

band gap values are 1.91, 1.14, 0.61 and 0.29 eV for the G, SG, SG-Si(A) and SG-Si(B). This indicates 

that introducing sulfur to graphene increases its intrinsic conductivity as evidenced by the lower in the 

band gap. The adsorption of Si to the SG surface further improves the intrinsic conductivity of the 

support structure indicating a covalent synergy of Si with SG with enhancement of the electron density 

in the SG matrix. 

Hirshfeld charge analysis was also conducted to evaluate the stability of Si on G and SG. The calculated 

charge distribution before and after the Si adsorption on G and SG are given in Table S1 (Appendix 

I). The results show that Si has a positive charge after its adsorption on G and SG, which indicates that 

there are electrons flow from the Si atom to the graphene substrate upon Si adsorption. However, the 

electron flow is more significant for Si adsorption on SG than that on G, because Si deposited on SG 

has a larger positive charge than that on G. This may be a reason for the positive shift of binding energy 

of sulfur in SG-Si. Table S1 also shows that the C atoms that are bonded with the Si atom in SG-Si, 

such as C7 and C8 in SG-Si(A),C2 and C3 in SG-Si(B), have more negative charges than in G-Si (C2 and 
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C3). All these observations indicate that the bonding between Si and SG is stronger than that on G, 

providing further support for the stability of Si on SG. 

To better understand the covalent synergy between Si and graphene substrates, the projected density of 

states (PDOS) of the Si atom over G and SG were calculated, based on the electron structure and 

bonding. As shown in Figure 6.6 a, there is a harmonic 2p-2p overlaps between the C1-2p and C2-2p 

states at the whole energy level (from 0 to -10eV) in SG, showing the strong interaction between the 

two C atoms. However, for Si and C, the harmonic overlap occurs only between Si4-2p and C2-2p at a 

narrow energy level (-2~-4eV), indicating a weak interaction between Si4 and C1 atom. For. SG-Si (B), 

a large overlap between the C6-2p and S5-2p state was observed (see Figure 6.6 b), indicating a strong 

S-C bonding. Figure 6.6 c shows that, more Si9-2p state is occupied in SG-Si (B) and well mixed with 

C2-2p state at a much broader energy level (from -1 to -9eV) as compared with that in G-Si. 

Additionally, there is also a harmonic overlap between Si4-2p and S5-2p state (see Figure 6.6 d). The 

analysis of the PDOS revealed that the covalent synergy was mainly due to the mixing between the C-

2p and Si-2p states and the C2-Si9 bond is much stronger than the C2-Si4 bonding in G-Si, which 

attributes to the significantly improved cycle stability. 

The mobility of this adsorbed Li atom was also studied. Figure S11 (Appendix I) shows the transition 

state along the diffusion pathway. It was found that, for Li atom diffuses away from the aforementioned 

most stable sites in G-Si, it needs to overcome an energy barrier of 0.75eV, as shown in Figure S11a 

(Appendix I).  However, the study of Li surface diffusion on SG-Si(B) cluster shows that Li diffusion 

proceeds with a barrier of 0.53eV, Figure S11b (Appendix I), which is slightly lower than that found 

on G-Si. This observation indicates that S-doped graphene could boost the mobility for Li atoms on Si-

SG interphase, which facilitate the charge transfer.  

It can be seen that Si bonds more strongly to SG than on G. One reason is the covalent interaction of Si 

atoms with the sulfur atom. The second reason is because the increased charge density on the defective 
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carbon adjacent to sulfur. This indicates a covalent synergy for the interaction between Si and SG 

leading to a superior material electrochemical performance. It is clearly shown that, even after 2200 

cycles of charge/discharge, the amorphous SiNP re-organised into channels of the cyclized PAN and 

the sulfur pathway on graphene, as seen in Figure 6.4. 

In summary, the novel design of a Si-based electrode through the covalent binding of commercial SiNP  

and SG along with cyclized PAN offers exceptional potential in the practical utilization of Si anodes 

for Li-ion battery technologies. This covalent synergy enables superior cycling stability along with a 

high areal capacity of the electrode which is close to that of commercial technologies. Such a rational 

design and scalable fabrication paves the way for the real application of Si anodes in high-performance 

lithium-ion batteries.      
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Figure 6-5. DFT quantum calculations for G-Si and SG-Si systems. a) Geometries and binding 

energy (BE) of the stable Si adsorption configurations on i): graphene, referred as G-Si; ii) and iii): on 

sulfur doped graphene, referred as S-G-Si(A) and S-G-Si(B), respectively, C atoms are colored grey, 

H atoms white, S atom yellow, Si atom brown. Some of the important atoms were labeled, and they 

correspond to the atoms in Table S1, and b) The DFT calculated band gap together with the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for different 

graphene substrates.  

 

 

Figure 6-6. Projected density of states (PDOS) for Si atom and the individual C atoms involved in (a) 

Si adsorption on graphene, G-Si, and (b-d) sulfur doped graphene, SG-Si(B).  
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6.3 Materials and Methods 

6.3.1 Preparation of S doped graphene (SG)  

 

100 mg of graphene oxide (GO) prepared by a modified Hummer’s method199, 200, 211 was mixed with 

100 mg of phenyl disulfide (PDS) by grinding. The materials were loaded into a tube furnace and kept 

outside the heating zone until the furnace temperature reached 1000oC. The sample was then slid into 

the heating zone where it remained for 30 minutes under argon protection, followed by cooling to room 

temperature. Graphene was prepared under identical conditions without PDS. 

6.3.2 Electrode fabrication and testing  

 

Electrodes were fabricated using commercially available (Nanostructured & Amorphous Materials, 

Inc., Houston, USA) silicon nanoparticles (SiNP) with a size range of 50-70 nm. A slurry consisting of 

50 wt% SiNP, 30 wt% polyacrylonitrile (PAN) , 19wt% sulfur-doped graphene and 1 wt% graphene 

oxide (GO) was prepared in dimethylformamide (DMF).The addition of GO was to induce cyclization 

of OAN by oxidation. The slurry is mixed under alternating magnetic stirring and ultrasonic radiation 

(1 hour each, for 3 times). The slurry was then coated on Cu foil, dried in a convection oven at 353 K 

for 1 h, and then in a vacuum oven at 363 K overnight. Circular working electrodes of 1 cm2 were cut 

with the average mass loading of silicon on the electrodes ranging from 0.8-1.5 mg cm-2. The electrodes 

were then subjected to the SHT process. They were placed into a quartz tube of a horizontal tube 

furnace. Then subjected to slow heating up to 450oC in 2 hours, then holding for 10 minutes then furnace 

cooling (almost in another 2 hours). The treatment was performed under Argon gas flow of 100 SCCM. 

 Coin type half cells were fabricated in an argon-filled glove box with the working electrode and a Li 

metal counter electrode. The electrolyte used was 1M LiPF6 in 30 wt% ethylene carbonate (EC), 60 
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wt% dimethyl carbonate (DMC), and 10wt% fluorinated ethylene carbonate (FEC). Galvanostatic 

charge/discharge testing was carried out at a cut off voltage range of 0.05 to 1.5 V with different current 

densities for rate capability testing. Cyclic voltammetry, at a scan rate of 0.05 mV s-1 between 1.5 and 

0.05 V, was conducted using a Princeton Applied Research VersaSTAT MC Potentiostat. One reference 

coin cell electrode was prepared with the same composition as above except for the SG was replaced 

with graphene. Another reference electrode was fabricated using the ratio of 70 wt% Si-NP, 30% 

polyacrylonitrile as a binder. These electrodes were subjected to SHT treatment.  

6.3.3 Material Characterization 

 

The morphologies of the electrode material were imaged using a transmission electron microscopic 

(TEM, JEOL 2010F TEM/STEM field emission microscope) equipped with a large solid angle for 

high-X-ray throughput, and a Gatan imaging filter (GIF) for energy filtered imaging. Thermal 

Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were measured using TA 

instrument Q500.  The TGA testing was performed in air with a temperature range of 25 °C to 850 °C 

and a ramp rate of 10 °C min−1. Raman spectroscopy were recorded using Bruker Senterra device, 

applying laser with wavelength of 532 nm. 

6.3.4 Computational Method  

 

The DFT calculations were carried out using the Amestrdam Density Functional “ADF” 212, 213. The 

electron wave functions were developed on a basis set of numerical atomic orbitals (NAOs) and of 

Slater type orbitals (STOs). In addition the triple polarization (TZP) basis of Slater-type orbitals was 

utilized. We used PBE−D3 to perform the  calculations 214 where the generalized gradient 

approximation (GGA) for the exchange and correlation energy terms is used. This explicitly takes into 
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account the dispersion correction. This is a widely used function for catalysis applications and can 

produce reliable energetics on graphene systems. 215, 216   
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Chapter 7  Conclusions and suggestions for future work 

 

7.1 Conclusions and Summary 

 

In conclusion, SnO2 embedded in CMK-3 was prepared to investigate the electrochemical 

performances as anodes in a Li ion battery. Initially, Sn ion precursors were incorporated into CMK-3 

and then annealed at different temperature under variable environmental conditions to obtain 

SnO2/Sn/CMK-3 and Sn/CMK3. In terms of initial capacity, cycle stability and rate capability, 

SnO2/Sn/CMK-3 demonstrated the best performances which are superior to the conventionally used 

graphite. It is proposed that metallic Sn contributes to the higher initial specific charge capacity of 799 

mAhg-1 compared to other previously reported Sn-based composites. 47, 217. Meanwhile, the promising 

cycle stability and rate capability is attributed to the 3-D structure of the mesoporous carbon, CMK-3. 

The specific capacity of 350 mAhg-1 was achieved at the current density of 800 mAg-1 and the retention 

capacity of 670.9 mAhg-1 was obtained at 50 cycles. With the remarkable rate capability and cycle 

stability, the SnO2/Sn/CMK-3 composite is considered as highly promising negative electrode materials 

for next generation Li ion batteries. 

After that, we have developed a simple, one-pot synthesis methodology capable of growing bulk SiNWs 

on low cost NiNP catalysts. Furthermore, we illustrated the potential for these NiNPs to be 

simultaneously anchored to three dimensional support materials, enabling a large range of future 

application areas for this method of (111) SiNWs growth. After growing the carbon coated c-SiNW-G 

composite, we were able to show its excellent durability and retention of capacity at high current density 

(100th cycle: 550 mAh g-1 @ 6.8 A g-1) as an anode in a LIB cell. Ultimately, this process creates an 

important building block for a new wave of low cost, high rate, silicon nanowire materials. 
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Additionally, the success of developing a simple strategy to treat the Si-based electrode to dramatically 

improve the performance reveals an elegant approach to solving an old problem, providing a scalable 

methodology for treating commercial Si particles. The flash heat treatment provides an effective 

approach to engineer, in a single step: the interfacial contact with copper, the binding matrix and the 

creation of a synergistic SiO2/C coating. The treated electrodes possess built-in void space for rapid ion 

transport and successfully retain strong contact between the SiO2/C shell and the Si-NP, promoting 

efficient electron transport even after long-term cycling. As a result the enhanced electrodes allow for 

the controlled expansion of Si and achieve high reversible capacity (2240 mA h g-1 @ 120 mA g-1), as 

well as, good rate capability and durability (1150 mA h g-1 @ 1200 mA g-1 over 500 cycles). Further, 

elimination of binder facilitates high temperature operation in industrial applications which limit the 

current electrode design standard. The emphasis of a simplified process represents a promising avenue 

for the production of industrially viable high-performance Si-based electrodes, which could be 

extended for roll-to-roll manufacturing of next-generation lithium-ion batteries.   

Finally, the novel design of Si-based electrode through covalent binding commercial Si nanosized 

particles and surfur-doped graphene along with cyclized PAN offers exceptional potential in the 

practical utilization of Si anodes and other energy storage applications. This covalent synergy enables 

the electrode with superior cycling stability along with a high areal capacity which is close to that of 

commercial electrodes. Such a rational design and scalable fabrication paves the way for real 

application of Si anodes in high-performance lithium-ion batteries. 

7.2 Suggestions for Future Work    

 

As a suggestion for future work it is likely to propose the following prospective: 



 

 96 

1-   Regarding Sn-based materials, it is important to propose a nanostructure based on Sn 

chalcogenides. In this regard, the sulfur might be able to contribute to reversible capacity, 

unlike oxygen in SnO2. If this happens, it will increase the Coulombic efficiency of the first 

cycle, in addition to increasing the overall capacity of the anode material. 

2- Because the degradation of Sn based electrodes may be minimized by controlling the particle 

size down to a critical size that compensate mechanical instability, the synthesis of Sn 

nanoparticles with sizes down to 10 nm is proposed. This nanostructure can be supported by 

SG and shielded with cyclized PAN. This may introduce a robust new design with high 

volumetric capacity and long cycle stability. 

3- As this goes with cyclized PAN, I suggest a more in depth study that elucidates structural 

changes in PAN as a function of temperature. These elucidated concepts can then be applied to 

other electrode materials, including cathode material. 
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Appendix I Supporting Figures for Covalent Binding of Si to S-doped 

Graphene (Chapter 6) 

 

 

 

 

Figure S1. Differential scanning calorimetry (DSC) for polyacrylonitrile (PAN) in nitrogen showing 

a characteristic peak at ~ 300oC, which corresponds to PAN cyclization as proposed in (b), c) 

thermogravimetric analysis for PAN in both air and in nitrogen. During cyclization in nitrogen there 

is more loss in mass which reveals it is more efficient than in air. By cyclization PAN loses ~ 20% of 

its mass. 
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Figure S2. Electrochemical impedance for a coin cell fabricated using PAN-coated copper foil vs 

lithium, same method of cell testing as described in the experimental section. The figure reveals that 

both the electrode series resistance and the charge transfer resistance have been decreased after the 

sluggish heat treatment.  
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Figure S3. a) TEM image of SG-Si electrode material, b-f) the corresponding EDX mapping of the 

elements carbon, oxygen, silicon, sulfur, and nitrogen, respectively, and g) overlaid colour map of 

carbon (green), silicon (red), and sulfur (blue). 
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Figure S4. Electron energy loss spectrum for SG-Si electrode after sluggish heat treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Cyclic voltammogram curves of G-Si anode material in coin cell. 
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Figure S6. (top) Voltage profile for a full cell battery based on SG-Si anode and LiCoO2 cathode, and 
(bottom), the corresponding cycle stability at 1 Ag-1 with respect to SG-Si, the inset is the first 5 
cycles at 0.1Ag-1.  
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Figure S7.  TEM image of SG-Si electrode material after being cycled for 2400 cycles of charge 

discharge, b-f) the corresponding EDX mapping of the elements carbon, oxygen, silicon, sulfur, and 

nitrogen, respectively. 
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Figure S8. The optimized geometry of H passivated graphene (G): top view (top) and side view 

(bottom). C atoms are colored grey, H atoms white. 
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Figure S9. The optimized geometry of sulfur-doped graphene (S-G): top view (top) and side view 

(bottom). C atoms are colored grey, H atoms white, S atom yellow. 
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Table S1. Hirshfeld charges distribution before and after Si adsorption on the sulfur doped 

graphene (SG), atoms labeling are indicated in Figures S7 and S8. 

 Si adsorption on G  Si adsorption on SG  

Atoms G G-Si  SG SG-Si(A) SG-Si(B)  

C
1
 -0.001 -0.004  0.010 -0.006 -0.004  

C
2
 -0.001 -0.028  0.003 -0.022 -0.113  

C
3
 -0.001 -0.029  0.004 -0.013 -0.100  

C
4
(or Si4)  0.120  -0.016 -0.001 -0.019  

S
5
    0.093 0.214 0.206  

C
6
    -0.016 -0.035 -0.024  

C
7
    -0.003 -0.070 -0.013  

C
8
    -0.009 -0.028 -0.006  

Si9      0.190 0.145  
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Figure S10. Geometries and bonding energy (BE) of the stable Si4 cluster adsorption configurations 

on a): graphene; b): on sulfur doped graphene. C atoms are colored grey, H atoms white, S atom 

yellow, Si atom brown. 
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Figure S11. Li adsorption and transition state quantifying the diffusion barrier for a) G-Si and b) SG-

Si 
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