
Weak Invariant Simulation and
Analysis of Parameterized Networks

by

Mohammad Hadi Zibaeenejad

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer engineering

Waterloo, Ontario, Canada, 2014

c© Mohammad Hadi Zibaeenejad 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Mohammad Hadi Zibaeenejad

ii

Abstract

Multi-process networks figure in many engineering applications such as communica-
tion networks, transportation networks, manufacturing and logistic systems, and computer
hardware and software. Parameterized discrete event systems provide a convenient means
of modeling such networks when the number of subprocesses is arbitrary, unknown or
time-varying. Unfortunately, some key properties of these networks, such as nonblocking
and deadlock-freedom, are undecidable. Moreover, mathematical tools supporting anal-
ysis of these networks are limited. This thesis introduces a novel mathematical notion,
weak invariant simulation and proposes an efficient method to check whether a finite-state
generator weakly invariantly simulates another finite-state generator with respect to a spe-
cific subalphabet. This new simulation relation is first used to define a tractable subclass
of parameterized ring networks of isomorphic subprocesses in which deadlock-freedom is
decidable. Within this framework, a procedure is given to determine the reachable dead-
locked states of the network. The effectiveness of the procedure is demonstrated by the
deadlock analysis of a version of the dining philosophers problem.

To generalize the results on ring networks, we consider a network consisting of several
linear parameterized sections but exhibiting a branching topology. To model these networks
we introduce Generalized Parameterized Discrete Event Systems (GPDES). The difficulty
in analysis of a GPDES is the fact that some of the subprocesses interact with several
parameterized sections of the network. Hence the analysis proposed in this thesis involves
careful study of interaction among different branches of the network. Here again, we use
‘weak invariant simulation’ to limit the behavior of subprocesses of the network. Then we
investigate interactions among different components of the network, using a dependency
graph. The dependency graph is a directed graph developed to characterize reachable
partial deadlocks caused by generalized circular waits in the proposed GPDES. Our results
implicitly characterize reachable generalized circular waits as a language accepted by a
finite automaton. Our framework allows for modeling and analysis of new parameterized
problems. We investigated deadlock in a large-scale factory as an illustrative example.

iii

Acknowledgements

First and foremost, I would like to thank Professor John G. Thistle for his fantastic
supervision during the course of my PhD program. This thesis is the outcome of hours of
fruitful discussion with him. He taught me how to deal with new and complex problems
in a rigorous and formal manner. Prof. Thistle’s immense knowledge and integrity were
always inspiring to me.

Second, I am grateful to Professor R. S. Sreenivas of University of Illinois for insightful
evaluation my dissertation as an external examiner. I also appreciate his presence in the
oral defense session despite his busy schedule and traveling difficulties. I would like to
express my gratitude to my advisory committee members Professors Nancy Day, Shreyas
Sundaram, and Patrick Lam for their technical comments and suggestions.

Third, I send my special thanks to my friend Amirhossein Vakili for useful discussions
and to my brother Ali Zibaeenejad for his help and guidance. The most sincere appreciation
goes to my parents, Professor M. Javad Zibaeenejad and Khadijeh Mohammadi for their
unconditional love and support in my entire life specially during my difficult life as an
international student in Canada.

Last but not least, I would like to thank my dearest wife, Ensieh Mollazadeh, for her
selfless support and wonderful companionship.

iv

Dedication

This work is dedicated to the Lord.
I praise him for his guidance and blessings.

v

Table of Contents

List of Figures viii

1 Introduction and Related Work 1
1.1 Related Work . 5
1.2 Preliminaries . 7

1.2.1 Discrete Event Systems Basics . 7
1.2.2 Graphs . 9

2 Weak invariant simulation: Properties and algorithms 10
2.1 Weak invariant Simulation . 11

2.1.1 Invariant simulation: a comparative perspective 11
2.1.2 Weak invariant simulation: definition 16
2.1.3 Properties of weak invariant simulation 17

2.2 Conclusion . 24

3 Analysis of parameterized ring discrete event systems 25
3.1 The network model . 26

3.1.1 Parameterized discrete event systems 26
3.1.2 The ring network model . 27

3.2 Properties of The Proposed Network Model 31
3.3 The Deadlock Analysis Procedure . 36

vi

3.4 Illustrative example: parameterized dining philosophers 38
3.5 Conclusion . 40

Appendices 41

3.A Proof of Lemma 2 . 41
3.B Proof of Claim . 41

4 Analysis of generalized PDES 43

4.1 The network model . 44
4.1.1 Linear parameterized discrete event systems 44
4.1.2 Generalized parameterized discrete event systems 45

4.2 The deadlock analysis . 48
4.2.1 Forward dependency property . 51
4.2.2 Dependency graph . 55
4.2.3 Technical details of the analysis . 58
4.2.4 Applicability of the results to general networks 65

4.3 Illustrative example: small factory . 66
4.4 Conclusion . 70

Appendices 72

4.A Proof of Proposition 9 . 72
4.B Proof of Proposition 10 . 73

5 Conclusion and Future Work 75

References 78

vii

List of Figures

2.1 Examples demonstrating incomparability of invariant simulation with two-
nested simulation and completed simulation 13

2.2 The relations among our notion of invariant simulation, bisimulation and
other types of simulation . 14

3.1 An example of a decidable parameterized ring network 28
3.2 The illustration of proof of Lemma 2 . 31
3.3 The illustration of relations between states in the proof of Theorem 2 . . . 34
3.4 Dining philosophers example dynamics and Structure of Gi−1 � ∆i−1‖Gi as

described in Proposition 1 . 39

4.1 Subprocesses GN and G1 and the weak invariant simulation relation between
them in the proof of Lemma 4 . 53

4.2 A specific generalized PDES network . 58
4.3 Subprocesses Gj, Gj+1 and Pj+1 and the weak invariant simulation relation

between them in the proof of Proposition 11 59
4.4 The Large-scale factory example . 67
4.5 The structure of distinguished subprocesses of the large-scale factory example 68
4.6 The structure of the buffers and production line G 69
4.7 The structure of the production lines P and P ′ 70
4.8 The dependency graphs of large-scale factory example and its full, consistent

subgraphs . 71

viii

Chapter 1

Introduction and Related Work

The evolution of digital technology has enabled the engineering of complex dynamic sys-
tems such as computer networks [27] and automated manufacturing systems [36] and trans-
portation networks [46]. Such systems require the design of many layers of control: at low
levels, traditional control theory, based on detailed differential-equation models, supports
the design of relatively small-scale control loops; but higher-level problems of the coordi-
nation of multiple interacting subsystems are often better formulated in terms of more ab-
stract discrete-event models, characterized by abrupt, instantaneous, asynchronous events.

Control theorists have worked over the last few decades toward the development of a
comprehensive theory of the control of Discrete-Event Systems (DES) [35,37,51–54]. Their
efforts are exemplified by the supervisory control theory of Ramadge and Wonham [34].

Supervisory control bears a substantial relationship to formal verification of computer-
based systems, with the significant exception that it is aimed primarily at formal synthesis.
It has employed similar models, tools and techniques as formal verification. These allow
for a range of different representations of discrete-event systems, but for computational
purposes, finite automata have furnished a convenient prototype.

Supervisory control proposes modular synthesis techniques and abstraction as means
of addressing the central challenge of computational complexity [22, 31, 39]. A key stum-
bling block in the engineering of discrete event systems is the combinatorial explosion that
occurs when models of N subprocesses are composed, yielding an overall process model
of size exponential in N . This thesis identifies a class of systems which admit analysis
procedures that are independent of any specific value of N . A simple example is a buffer
in a manufacturing system, which can be modeled as a family of isomorphic interacting

1

buffer cells. Control policy for avoidance of buffer overflow and underflow is essentially
independent of the specific buffer capacity.

This thesis considers families of finite-state systems, in which each member corresponds
to a different value of some system parameter (such as a buffer capacity). Such models
are called parameterized systems. More specifically, we shall study networks consisting of
a finite but arbitrarily large number of similar finite-state subprocesses. We shall suppose
that subprocesses are isomorphic – each being obtained through suitable relabellings of a
‘template’ process – and consider the infinite family of finite state systems obtained by
letting the number of subprocesses range over the natural numbers. In these networks,
subprocesses interact via execution of shared events (a shared event between subprocesses
can occur only if all the subprocesses are in a state that can perform the shared event).
Such ‘parameterized networks’ furnish useful models of communication and transportation
networks, manufacturing systems, etc. More generally a parameterized network is com-
posed of arbitrary numbers of isomorphic subprocesses. Formally, such systems can be
modeled as infinite families of finite-state systems. Practical examples of parameterized
networks include wireless sensor networks, transportation networks, manufacturing sys-
tems and subprocesses in operating systems. Parameterized models are particularly useful
when the number of subprocesses is unknown, time-varying, or very large.

Specific motivation for using this network model arose from prior studies of the de-
velopment of call-processing services in telecommunications networks within the formal
framework of discrete-event control [48]. In these networks, development of telecommuni-
cations services is considered as the design of decentralized supervisors. Using parametrized
modeling is particularly useful since the number of users of such networks vary over time.

Parameterized systems have received considerable attention in the model-checking lit-
erature [2, 12, 40]. Indeed, if the underlying logic of a hardware or software system is in
essence independent of specific parameter values, one might expect to be able to establish
correctness without focusing on the individual finite-state models that arise when param-
eters are instantiated. Similarly, in control, it is to be expected that many instances of
control problems give rise to control logic that is in essence independent of the values of
specific parameters. Ideally, one might be able to adapt prototypical synthesis methods for
finite-automaton models in such a way as to extract from the controller design the essential
parameter-independent underlying logic.

It is natural to ask how much analysis can be done independently of any specific param-
eter value. Unfortunately, key problems such as that of checking the nonblocking property
for parameterized networks are undecidable [32]. That is to say there is no algorithm
that will determine whether there exists a parameter value for which the network blocks.

2

Behrer et al. have proposed a control synthesis procedure for parameterized networks [5];
but their synthesis procedure does not address blocking issues.

Our long term goal is to develop effective nonblocking supervisor synthesis methods
for parameterized systems. Given the undecidability of checking nonblocking property
in a parameterized system, we focus on the related problem of locating reachable dead-
locks in a parameterized systems. Detecting deadlocks in distributed networks is a classic
problem which is extensively studied [11]. A deadlocked state is a state from which no
more transitions are possible. As will be shown below computing reachable deadlocks in
a parameterized network is undecidable. Therefore, in this thesis our main aim would be
investigating the existence of nontrivial classes of parameterized systems for which efficient
deadlock analysis is possible.

A key feature of nontrivial deadlocks in distributed systems is the presence of a ‘circular
wait’ or ‘deadly embrace’ [17]. As stated in [47], in a circular wait, the only available action
by each subprocess requires a resource that is being held by another subprocess. In order
to focus on this central feature, in this thesis we consider networks with the topology of
a ring. In the sense that it allows us to address the central issue of circular waits, the
restriction to ring topologies does not represent a substantial loss of generality. Indeed in
an arbitrary topology, nontrivial deadlocks take place within subnetworks that form closed
walks, and contain circular waits.

Therefore we first focus on parameterized ring networks. A ring network is a structure
in which each component can only interact with its immediate neighbors. The deadlock
analysis is still generally undecidable in these networks [41]. In our setting, subsystem
interactions with immediate neighbors are modeled by shared events. A shared event
between two neighbors can occur if both neighbors are in a state that can perform the
shared event. As a part of our research we introduce the new mathematical notion of
weak invariant simulation. Using this notion, we propose a ring network model such that
each subsystem interacts with both immediate neighbors, but can only be permanently
blocked by shared events with its ‘counter-clockwise’ neighbor. In this sense, our model
generalizes that of [15]. Furthermore, our proposed model is general enough to admit
realistic examples such as a version of the Dining Philosophers Problem which occurs in
some concurrent systems.

After analysis of parameterized ring network models, we consider networks consisting of
multiple parameterized sections, with branching topologies. To model these networks, we
introduce Generalized Parameterized Discrete Event Systems (GPDES). A GPDES consist
of fixed number of ‘linear ’parameterized sections as well as fixed number of ‘distinguished’
subprocesses. Distinguished subprocesses may have an arbitrary structure, which is dis-

3

similar to that of any other subprocess. Each linear parameterized section contains several
isomorphic subprocesses: each subprocess in a linear parameterized section of the network
is obtained by relabeling of a template. The number of subprocesses in each parameterized
section is arbitrary.

For both ring networks and the more general branching topologies modeled by a
GPDES, we show that the existence of reachable (partial) deadlocks is decidable. Our
results can be interpreted in automata- or language-theoretic terms. In Chapter 3, we char-
acterize the set of deadlock states of a parameterized ring network as a regular language
over the finite alphabet of state symbols of subprocesses. This constitutes the language
accepted by a finite automaton. In network topologies that incorporate branching, our
results implicitly characterize deadlock states as the set of finite trees accepted by a par-
ticular finite automaton. The results are consequently related to regular model checking,
in which states are represented as regular languages [6].

This thesis is organized as follows: in the following section, we will survey some of the
related work reported in the literature. In Section 1.2, preliminary notions and notations
from discrete events systems and graph theory are introduced.

Chapter 2 introduces the process algebraic notion of weak invariant simulation, com-
pares weak invariant simulation to other simulation relations in the literature, and inves-
tigates properties of weak invariant simulation. The content of this chapter has appeared
in [59, 60]: weak invariant simulation was introduced in its initial form in [59], and later
in more general form (applicable to nondeterministic DES) in [60]. Properties of weak
invariant simulation are also covered in [60].

Using weak invariant simulation, Chapter 3 defines a tractable subclass of parameterized
ring networks of isomorphic subprocesses in which deadlock-freedom is decidable. Within
this framework, this chapter gives a procedure to determine the reachable deadlocked states
of the network. The content of this chapter appeared in [58]. Chapter 4 considers a network
consisting of several linear parameterized sections but exhibiting a branching topology and
introduces Generalized Parameterized Discrete Event Systems (GPDES) to model these
networks. This chapter proposes a deadlock analysis procedure for these networks using a
dependency graph. The dependency graph is a directed graph we developed to characterize
reachable partial deadlocks caused by generalized circular waits in the proposed GPDES.
An early result related to this chapter appeared in [57]. The rest of the material of this
chapter is submitted for publication [55,56].

Finally, chapter 5 concludes the thesis and gives future directions for research.

4

1.1 Related Work

In supervisory control theory the controlled process is described as the generator of a for-
mal language, while the controller, or supervisor, is constructed from a recognizer for a
specified target language that represents the desired closed-loop system behavior. It is gen-
erally required that supervision yield a system that is nonblocking – in the sense that a set
of prespecified ‘marked’ states is reachable from any other reachable state. A nonblocking
modular supervisor synthesis procedure is proposed in [49]. In [26], decentralized supervi-
sory control was introduced. Decentralized supervisory control deals with the idea of local
supervisors that respectively ensure the satisfaction of local specifications. In this setting,
the effectiveness of distributed local supervision is compared to that of global supervision.
In general the main goal of any modular or decentralized supervisor synthesis method is
reducing the complexity of the design procedure [43]. However, such approaches may yield
a blocking supervisor owing to the conflict among individual local supervisors.

Some algorithms for synthesis of supervisors for parametrized DES are available [3, 5].
However none of them yield nonblocking supervisors. In fact it is shown in [44] that
solvability of the decentralized nonblocking synthesis problem is undecidable even when
the generator is represented as a finite automaton.

Blocking states can interpreted as representing deadlock or livelock. Deadlock occurs
when the system reaches a non-marking state from which any more transition is impossible.
On the other hand livelock occurs when the system is trapped in endless cycles that do not
lead to a marking state. Detecting deadlocks in distributed networks is a classic problem
which is extensively studied. Most deadlock detection methods use exhaustive search over
global system structure to find deadlocked states [8]. None of the available algorithms
is suitable for finding the set of blocking states in a general parametrized network with
arbitrarily large number of subsystems.

Model checking of parameterized networks is challenging and generally undecidable
[1], but computer scientists have developed techniques for model checking a variety of
subclasses of parameterized networks [10,13–16]. A common approach is establishing cut-
offs [10, 13, 14, 16]. Cut-offs are relatively small bounds on parameter values such that
once the property of interest is successfully verified in every system limited by the cut-off
bounds, the property is guaranteed to hold in the original parameterized network. Cut-offs
are usually highly specialized to certain classes of parameterized networks and properties.
Emerson and Kahlon [13] establish model-checking cut-offs for networks consisting of a
finite number of classes of isomorphic subprocesses, where interaction is modeled via shared
variables, transitions in one subprocess being enabled by a guard formula depending on the

5

states of other subprocesses. But here the formal logic considered – a particular fragment
of the branching-time temporal logic CTL∗ minus the ‘next’ operator (CTL∗\X) – cannot
in general express the possibility or impossibility of deadlock of a complete network [45].
In [10], a restrictive token-passing modeling framework and linear-time temporal logic
without the next operator (LTL \X) are considered. However, LTL \X cannot express
the (im)possibility of deadlock [14].

Again using cut-off techniques, [14–16] consider model checking of parameterized net-
works with the topology of a ring. Specifically, [16] studies the case of component sub-
processes that interact only through the passing of a single ‘unary’ token, which carries
no information other than its presence, and travels only in one direction around the ring.
As in [13], the logic is a particular fragment of CTL∗ \X that cannot in general express
the (im)possibility of deadlock of the network. In [15], a given token can be passed only
a bounded number of times, and the logic is the same as in [10] and cannot express the
(im)possibility of deadlock. On the other hand, [14] addresses deadlock explicitly, but the
model is once again a restrictive token-passing framework, one in which each subprocess
shares a token with each neighbor in the ring, and must collect both of them before releas-
ing either. With these restrictions, it is shown that deadlock analysis for a ring network
can be reduced to that of a ring of at most five subprocesses. In contrast, our analysis is
in essence based on the study of the synchronous product of just two subprocesses.

As an extension of [32], we show that the problem of checking the deadlock freedom
property in parameterized networks of finite-state systems is generally undecidable [58].
Most deadlock detection methods use exhaustive search over the global system structure to
find blocking states [8]. There are some algorithms available that exploit symmetry of the
system for deadlock detection. For instance in [28], states with similar paths to possible
deadlock are merged into a ‘virtual’ state. It is shown that forming virtual states reduces
the complexity of deadlock detection. This method is not effective for detecting deadlock
states in parameterized networks with arbitrarily large numbers of processes. There exist
parameterized verification methods that use other abstraction techniques [23, 25]. These
verification procedures can be used in finite state network systems with an arbitrarily large
number of processes, however achieving a suitable abstracted model is a challenge and
usually entails an iterative procedure called ‘guard-strengthening’. The abstracted model
‘over-approximates’ the behaviors of an arbitrary number of processes. In the guard-
strengthening procedure an insightful engineer has to modify the abstracted model at
each step. If such a procedure results in satisfaction of the safety property, one may
conclude that the property holds in the original parameterized network. However, there is
no guarantee that a suitable abstraction can be found and this non-automated procedure
may never terminate.

6

Synthesizing nonblocking supervisors for distributed systems has been addressed be-
fore. However designing such a supervisor for a parametrized networks raises some serious
challenges that have only been partially addressed within the supervisory control and
model-checking literature.

Attie and Emerson addressed the problem of synthesizing concurrent programs with
arbitrary process interconnection schemes from temporal logic specifications [3]. They syn-
thesize a system with N subsystems from a ‘pair-system’. Assuming that the pair-system
has the desired correctness property, they show that the global system with N subsys-
tems also has that property if certain technical assumptions are satisfied. Therefore their
method depends on the existence of synthesis method for a pair-system. The result of this
synthesis method must satisfy the symmetry assumptions, (i.e. symmetrical with respect
to interchanging subsystems). For deadlock freedom, they assumed that the pair-system
is deadlock free, and satisfies a ‘wait-for-graph’ condition. In this case they guarantee
that the global system with N subsystems is also deadlock free. Roughly speaking, the
wait-for-graph assumption guarantees that circular wait chains cannot form.

In [5], Bherer et al. proposed a control scheme for parameterized discrete event systems
when specifications are given in terms of predicates and are isomorphic for all subsystems.
They used the synthesis idea in [3] to design a modular supervisor for each subsystem offline,
and generalize it in an online procedure. Although the method reduces the complexity of
design of centralized control, it does not deal with blocking or deadlock freedom at all.

The control synthesis procedure proposed by Bherer et al. in [5] does not address
blocking issues. In fact, the general problem of checking the nonblocking property in
parameterized networks is undecidable. In the special case where all subprocesses are
identical, it was shown in [32] that the problem of checking blocking is decidable, if and
only if there are no broadcast messages. Indeed, the case of identical subprocesses without
broadcast messages reduces to the home space problem for Petri nets. However, the case
where the subprocesses are isomorphic but not identical does not admit such a reduction
as the corresponding undecidability result shows [32].

1.2 Preliminaries

1.2.1 Discrete Event Systems Basics

One of the conventional ways of presenting a DES is using state machines or generators [50].
In the following we shall use the terms generator and automaton interchangeably. A

7

nondeterministic generator is formally defined as a 5-tuple G = (X,Σ, ξ, x0, Xm), where
X is a state set, Σ a finite alphabet representing a finite event set, ξ : X × Σ → 2X
a nondeterministic transition relation (where 2X is the power set of X), x0 an initial
state1, and Xm a marked state set. The condition ξ(x, σ) 6= ∅ means that the transition
ξ(x, σ) is defined. We denote by Σ+ the set of all nonempty finite strings of events in
Σ, and Σ∗ = Σ+ ∪ {ε}, where ε denotes the empty string (the identity element for string
concatenation). The transition function extends to ξ : X × Σ∗ → 2X in a standard
manner [50].

The closed behavior of G is the sublanguage L(G) = {s ∈ Σ∗|ξ(x0, s) 6= ∅}. In some
cases, it is convenient to change the initial state of a given generator to study the lan-
guage generated from a different initial state. The language generated by finite transition
structure G, when the initial state is x, is denoted by L(G→x). Formally, L(G→x) =
{s ∈ Σ∗ : ξ(x, s) 6= ∅}. The marked behavior of G is denoted by Lm(G) and defined
as {s ∈ L(G)|ξ(x0, s) 6= ∅ & ξ(x0, s) ∩Xm 6= ∅}. The language Lm(G) consists of all pre-
fixes of strings in Lm(G). The generator G (and its corresponding DES) is nonblocking if
L(G) = Lm(G), meaning that all generated strings extend to marked strings.

The natural projection [50] onto event set Σ̂ ⊆ Σ is denoted by PΣ̂ and defined as
PΣ̂ : Σ∗ → Σ̂∗, such that

PΣ̂(ε) = ε; PΣ̂(α) =
{
α, if α ∈ Σ̂;
ε, if α /∈ Σ̂;

PΣ̂(αβ) = PΣ̂(α)PΣ̂(β).

Intuitively, PΣ̂ ‘erases’ event symbols that do not belong to Σ̂. The natural projection
inverse-image map is P−1

Σ̂ : Σ̂∗ → Σ∗ such that P−1
Σ̂ (s) = {t ∈ Σ∗ : PΣ̂(t) = s}.

The language generated by the synchronous product of two given languages L1 and L2
is defined by L1‖L2 := P−1

Σ1 (L1) ∩ P−1
Σ2 (L2).

L(G1‖G2) = P−1
Σ1 (L(G1)) ∩ P−1

Σ2 (L(G2))

The converse of a binary relation R ⊆ X1 ×X2 is given by Rc := {(x2, x1) ∈ X2 ×X1 :
(x1, x2) ∈ R}. For a given set S, |S| denotes the cardinality of that set. For any language
L, [L]n, 0 ≤ n denotes the set of elements of L with length n. N is the set of natural
numbers. For two binary relations R1 and R2, R2 ◦ R1 is the composition of the two
relations. Formally, R2 ◦R1 = {(x3, x1) : ∃(x3, x2) ∈ R2 & (x2, x1) ∈ R1}.

1Our notation x0 for the initial state is not the typical one: we write 0 as a superscript because we
reserve subscripts on state symbols to represent components of tuples of states – e.g. x = (x1, x2).

8

1.2.2 Graphs

For the purpose of this thesis, a directed graph D is an ordered pair (V,A), where V is
the vertex set and A is the set of ordered pairs of vertices called arcs. Considering an
arc (u1, u2), u2 is a direct successor of u1, and u1 is a direct predecessor of u2. For two
vertices u0, uk ∈ V , a u0 − uk walk is an alternating sequence u0, a1, u1, a2, ..., ak, uk of
vertices and arcs such that ai = (ui−1, ui), for 1 ≤ i ≤ k. A nontrivial walk contains at
least one arc. Direct successors of a vertex u0 are vertices that can be reached from u0 by
a walk containing exactly one arc. A directed graph D is strongly connected if for every
pair u, v ∈ V , D contains both u − v and v − u walks. For more information on graph
theory see [9].

Notation: the converse of a binary relation R ⊆ X1 ×X2 is given by Rc := {(x2, x1) ∈
X2 ×X1 : (x1, x2) ∈ R}. For two binary relations R1 and R2, R2 ◦ R1 is the composition
of the two relations. Formally, R2 ◦ R1 = {(x3, x1) : ∃(x3, x2) ∈ R2 & (x2, x1) ∈ R1}. For
any language L, Ln, 0 ≤ n denotes the set of elements of L with length n.

9

Chapter 2

Weak invariant simulation:
Properties and algorithms

Process algebra was initially developed by Milner in the form of the Calculus of Com-
municating Systems (CSS) [30]. It represents a widely accepted framework for modeling
and analysis of concurrent systems [4, 19]. Its semantics defined in terms of simulation
relations that describe similarities in the behavior of different processes. For the purpose
of this thesis, we introduce the new process relation weak invariant simulation.

In this chapter we define the notion of weak invariant simulation for a nondeterministic
PDES and give some insight into its properties. It should be emphasized that our simu-
lation relation is not intended to provide a useful new semantics for concurrent systems.
Rather, it is adapted to a particular task of analyzing synchronous products, as presented
in Chapter 3. We nevertheless compare weak invariant simulation to other simulation re-
lations reported in the literature. Moreover, we propose an efficient procedure to check
whether a process invariantly weakly simulates another process with respect to a specific
subalphabet. The greatest lower bound of all weak invariant simulations between two sub-
processes is also introduced. As an application of weak invariant simulation, we define a
nontrivial class of PDES for which the deadlock freedom property (see Chapters 3 and 4.)

10

2.1 Weak invariant Simulation

2.1.1 Invariant simulation: a comparative perspective

In this section we define a new simulation relation: Invariant Simulation. This relation is
a key element in our characterization of a PDES network model with a decidable deadlock-
freedom property.

Simulation relations originated in [30]. In addition, [19] and [4] report completed sim-
ulation, ready simulation, two-nested simulation and bisimulation as distinct simulation
relations. We first state the definitions of these relations from [4], and then define in-
variant simulation, which originates here. Finally we relate all types of simulation by
comparing them with respect to subset inclusion.

Consider generators Gi = (Xi,Σi, ξi, x0i, Xmi), i = 1, 2. We assume no relationship
between the alphabets Σ1 and Σ2, but if their intersection is empty, then the only simulation
relations between G1 and G2 will be trivial ones.

Definition 1. A simulation is a binary relation S ⊆ X1 × X2 between states of the two
generators G1 and G2 such that for each (x1, x2) ∈ S and every α ∈ Σ2, if x̂2 ∈ ξ2(x2, α),
then there exists x̂1 ∈ ξ1(x1, α) and (x̂1, x̂2) ∈ S. Intuitively this means by induction that
any sequence of events undertaken by G2 from x2 can also be executed by G1 from x1.

– A simulation C is a completed simulation if for each (x1, x2) ∈ C, x1 is a deadlocked
state if and only if x2 is a deadlocked state.

– A simulation R is a ready simulation if for each (x1, x2) ∈ R, we have

(∀α ∈ Σ1)[ξ1(x1, α) 6= ∅ ⇒ ξ2(x2, α) 6= ∅]. (2.1)

This additional condition means that the sets of immediately executable events in x1
and x2 are exactly the same.

– A simulation T is a two-nested simulation if T c is contained in a simulation. Two-
nested simulation of x2 by x1 inductively means that x1 can imitate execution of
events by x2 and vice-versa.

– A simulation Bi is a bisimulation if its converse Bi c is also a simulation.

Next, we formally define invariant simulation as a new and distinct simulation relation.

11

Definition 2. A simulation relation IS ⊆ X1×X2 is invariant if for any pair (x1, x2) ∈ IS
and for all α ∈ Σ2, we have

(∀x̂1 ∈ ξ1(x1, α))(∀x̂2 ∈ ξ2(x2, α))[(x̂1, x̂2) ∈ IS]. (2.2)

This ‘invariance’ property simply asserts that, as long as the two generators execute the
same events, the simulation relation is preserved. Note that if the second universal quan-
tifier in (2.2) is replaced with an existential quantifier, the result is simply the definition
of an ordinary simulation relation.

By virtue of their ‘invariance’ property, the particular invariant simulation relations
employed in our application will be preserved whenever shared events between the respec-
tive generators are synchronized. For this property, it will suffice to use a weak version of
invariant simulation which will be introduced shortly.

We use infix notation for simulation relations. Assume H is one of the aforementioned
simulation relations. G1HG2 denotes simulation of generator G2 by G1. Generator G1
simulates G2 if there exists simulation H such that (x01 , x02) ∈ H.

Generators G1 and G2 in Figure 2.1(b) demonstrate the difference between two-nested
simulation and bisimulation. In this example which was taken from [38], G1 is two-nested
simulating G2 and G2 is two-nested simulating G1, but there is no bisimulation relation
between the two generators.

The following proposition helps us to compare the newly defined invariant simulation
to other simulation relations by means of the partial ordering of subset inclusion.

Proposition 1. The following relationships among different types of simulation relations
exist:

(a) Every ready simulation is a completed simulation.

(b) Every two-nested simulation is a ready simulation.

(c) An invariant simulation need not be a two-nested simulation, a ready simulation or a
completed simulation and vice versa.

(d) An invariant simulation need not be a bisimulation and vice versa.

Proof. (a) By definition of ready simulation and completed simulation.

12

1G 2G 1G 2G

)(a)(b

G

)(c

01x 02x

1x 2x

Figure 2.1: Examples demonstrating incomparability of invariant simulation with two-
nested simulation, completed simulation and bisimulation: (a) Subprocess G1 is invariantly
simulating G2, but there is no completed simulation of G2 by G1 (and no simulation of G1
by G2). (b) Process G1 is two-nested simulating G2, but there is no invariant simulation
of G2 by G1. Furthermore, the pair (x01, x02) does not belong to a bisimulation. (c)
An example showing that bisimulation does not imply invariant simulation: The identity
relation on the states of generator G is a bisimulation, but not an invariant simulation.

(b) Let T be a two-nested simulation. Assume G1T G2, or equivalently (x01, x02) ∈ T . By
definition of two-nested simulation, (x02, x01) is contained in a simulation, therefore
for all α ∈ Σ1, by the definition of simulation, if ξ1(x01, α) 6= ∅, iff ξ2(x02, α) 6= ∅.
Therefore G1 is ready simulating G2.

(c) The proof is done by counterexamples. Consider the generators presented in Figure
2.1(a). Process G1 invariantly simulates G2, but there is no completed simulation of
G2 by G1. Therefore, invariant simulation is not stronger than completed simulation.
According to this, using parts (a) and (b) of this Proposition, we conclude that invariant
simulation is not stronger than two-nested or ready simulation.
Conversely, consider the generators in Figure 2.1(b), which was originally presented
in [38]. It easy to check that G1 is two-nested simulating G2. Furthermore, G1 is
completed simulating G2. On the other hand, if (x01, x02) belongs to an invariant
simulation relation then by the definition of invariant simulation, state pair (x1, x2)
should also belong to an invariant simulation, which is not the case in this example.
Therefore G1 is not invariantly simulating G2.

13

Bisimulation Invariant
Simulation

Two-nested
Simulation

Ready
Simulation

Completed
Simulation

Two-nested Invariant
simulation

Figure 2.2: The relationships among our notion of invariant simulation, bisimulation and
other types of simulation relations.

(d) By the example of Figure 2.1(a), the converse of an invariant simulation need not be
a simulation. Hence invariant simulation does not imply bisimulation. On the other
hand, the identity relation for the generator presented in Figure 2.1(c) is a bisimulation,
but this generator does not invariantly simulate itself.

To complete the picture of the relationship of invariant simulation to other simulation
relations, it is convenient to define a two-nested invariant simulation as an invariant simu-
lation whose converse is contained in another invariant simulation. It turns out that such
a relation is also a bisimulation:

Proposition 2. Consider invariant simulations IS1 ⊆ X1×X2 and IS2 ⊆ X2×X1, then
IS1 ∩ ISc2 ⊆ X1 × X2 is a bisimulation. Consequently, if IS1 is a two-nested invariant
simulation, with ISc1 ⊆ IS2, then IS1 is a bisimulation.

Proof. First we show that IS1 ∩ ISc2 is a simulation. Suppose (x1, x2) ∈ IS1 ∩ ISc2 and
ξ2(x2, α) 6= ∅. Then since IS1 is a simulation we have

ξ1(x1, α) 6= ∅, (∵ IS1 is a simulation)

14

and due to invariance of IS1 and IS2,

(∀x′1 ∈ ξ1(x1, α))(∀x′2 ∈ ξ2(x2, α))[(x′1, x′2) ∈ IS1 ∩ ISc2]

By the symmetric argument, (IS1 ∩ ISc2)c = ISc1 ∩ IS2 is also a simulation. Hence
IS1 ∩ ISc2 is bisimulation.

Now, if IS1 is a two-nested invariant simulation, then for some such IS2, ISc1 ⊆ IS2;
that is, IS1 ⊆ ISc2. Hence IS1 = IS1 ∩ ISc2, a bisimulation.

The above proposition implies that two-nested invariant simulation is stronger than
bisimulation. The Hasse diagram of Figure 2.2 displays the relationships among all the
afore-mentioned types of simulation.

The next proposition states that the property of invariant simulation is preserved under
relational composition with a bisimulation.

Proposition 3. Let Bi ⊆ X1 ×X1 be a bisimulation and IS ⊆ X1 ×X2 be an invariant
simulation. The composition Bi ◦ IS ⊆ X1 ×X2 is also an invariant simulation.

Proof. By Proposition 1, bisimulation is stronger than all types of simulation relations
except invariant simulation. The proof for these relations is immediate. For the case that
I is an invariant simulation the proof is as follows:

It is easy to check that B◦I is a simulation. We will show that it is in fact invariant . For
this purpose, consider three subprocesses G0, G1 and G2. Let x0, x1 and x2 be states of the
respective subprocesses such that (x0, x1) ∈ B and (x1, x2) ∈ I. Then (x0, x2) ∈ B ◦ I. If
Σ1∩Σ2 = ∅, the proof is trivial. Suppose therefore that for some σ ∈ Σ1∩Σ2, x̂0 ∈ ξ0(x0, σ)
and x̂2 ∈ ξ1(x2, σ). Because B is a bisimulation, there must exist x̂1 ∈ ξ1(x1, σ) 6= ∅, such
that

(x̂0, x̂1) ∈ B.

But x̂2 ∈ ξ1(x2, σ), and (x1, x2) ∈ I, therefore (x̂1, x̂2) ∈ I. On the other hand, (x̂0, x̂1) ∈
B, hence (x̂0, x̂2) ∈ B ◦ I. In other words, simulation B ◦ I is invariant. Hence for all
s0 ∈ Σ∗0 and s2 ∈ Σ∗2, if ξ0(x0, s0) 6= ∅ and ξ2(x2, s2) 6= ∅, we have

(PΣ̂(s2) = PΣ̂(s0))
⇒ (ξ0(x0, s0), ξ2(x2, s2)) ∈ B ◦ I.

15

2.1.2 Weak invariant simulation: definition

In this subsection we define a weak version of invariant simulation, which proves to be
useful in our subsequent analysis. Consider generators Gi = (Xi,Σi, ξi, x0i, Xmi), 0 < i ≤ 2
and a natural projection PΣ̂ : Σ∗ → Σ̂∗ with Σ = Σ1 ∪ Σ2 and Σ̂ ⊆ Σ.

Definition 3. A weak simulation of G2 by G1 with respect to Σ̂ is a binary relation
WS ⊆ X1 × X2 between states of the two generators G1 and G2 such that for each
(x1, x2) ∈ WS and every l2 ∈ Σ∗2, if x̂2 ∈ ξ2(x2, l2) 6= ∅, there exists l1 ∈ Σ∗1 such that
x̂1 ∈ ξ1(x1, l1) and the following hold

1. PΣ̂(l2) = PΣ̂(l1)

2. (x̂1, x̂2) ∈ WS

A weak bisimulation w.r.t. Σ̂ is a weak simulation w.r.t. Σ̂ whose converse is also a weak
simulation w.r.t. Σ̂.

Definition 4. Let I be a weak simulation relation of G2 by G1 with respect to Σ̂. The weak
simulation relation I is a weak invariant simulation w.r.t. Σ̂ if for any pair (x1, x2) ∈ I
and for all l1 ∈ Σ∗1 and l2 ∈ Σ∗2 and all x̂1 ∈ ξ1(x1, l1) and x̂2 ∈ ξ2(x2, l2), we have

PΣ̂(l1) = PΣ̂(l2)⇒ (x̂1, x̂2) ∈ I.

Generator G1 weakly invariantly simulates generator G2 if (x01 , x02) ∈ I, where I is a weak
invariant simulation w.r.t. Σ̂.

Remark 1. The weak versions of the simulation relations can be considered to be the same
as the original versions, but applied to the following modified (generally nondeterministic)
generator, in which event labels have intuitively been projected onto the subalphabet Σ̂:

Gwi := (Xi, Σ̂ ∩ Σi ∪ {ε}, ξwi, x0i, Xmi),

where

ξwi :Xi × (Σ̂ ∩ Σi) ∪ {ε} → 2Xi

(x, σ) 7→
⋃
{ξi(x, s) : PΣ̂(s) = σ}.

In other words, the Gwi features the same state set as Gi; but whenever Gi has a sequence
of transitions from x1 to x2 labelled by a string s ∈ Σ∗i , if PΣ̂(s) = σ ∈ (Σ̂ ∩ Σi) ∪ ε, then
Gwi has a state transition from x1 to x2 labelled by σ.

16

Remark 2. For deadlock analysis of interacting generators G1 and G2, weak invariant
simulation relations with respect to Σ̂ are particularly useful when Σ1 ∩ Σ2 ⊆ Σ̂ . In
the case where Σ̂ does not contain all the shared events between G1 and G2, simulation
of G2 by G1 does not give us enough information regarding possible deadlocks caused by
interaction between these two subprocesses.

The next corollary is an extension of Proposition 1. It states that with respect to a
specific set, for instance Σ̂, the composition of a weak bisimulation and any type of weak
simulation relation is a simulation of the same type with respect to Σ̂.

Corollary 1. Let I be a weak invariant simulation w.r.t. Σ̂ and B be a weak bisimulation
relation with respect to Σ̂. Composition B ◦ I is a weak invariant simulation w.r.t. Σ̂.

Proof. By Proposition 3 and Remark 1.

2.1.3 Properties of weak invariant simulation

In this section, we investigate properties of weak invariant simulation in greater detail.
In particular, we introduce an algorithm to decide weak invariant simulation of a given
generator by another.

The results of this section will be used extensively in the analysis of parameterized
networks in the second part of the thesis (see Chapters 3 and 4). To prepare for these
applications, we introduce some of our notation for parameterized networks here. In par-
ticular, we denote generators Gi, where i is an integer subscript; we shall similarly index
our weak invariant simulations and the corresponding subalphabets. For example, Ii will
denote a weak invariant simulation relation between Gi−1 and Gi with respect to a subal-
phabet denoted Σ̂i.

Under synchronization of shared events, a weak invariant simulation of Gi by Gi−1 with
respect to Σ̂i ⊆ Σi−1 is preserved by transitions that do not involve events in the set Σ̂i\Σi.
The following proposition aims to show this.

Proposition 4. Consider two arbitrary generators Gj = (Xj,Σj, ξj, x
0
j , Xmj), j ∈ {i−1, i},

that are components of a synchronous productG =
∥∥∥N
k=1

Gk = (X,Σ, ξ, x0, Xm), withN ≥ i.
For any state x ∈ X of the synchronous product, let xi−1 and xi respectively denote the
corresponding states of Gi−1 and Gi. If Ii is a weak invariant simulation relation w.r.t.

17

Σ̂i ⊆ Σi−1, then

(∀x ∈ X)(∀s ∈ ((Σ \ Σ̂i) ∪ Σi)∗)
[(xi−1, xi) ∈ Ii & x̂ ∈ ξ(x, s)⇒ (x̂i−1, x̂i) ∈ Ii]. (2.3)

Proof. The proof is evident from the definition of weak invariant simulation. From s ∈
((Σ \ Σ̂i) ∪ Σi)∗, we have PΣ̂i

(s) ∈ (Σi ∩ Σ̂i)∗. Therefore PΣ̂i
(PΣi

(s)) = PΣi
(PΣ̂i

(s)) =
PΣ̂i

(s). On the other hand, Σ̂i ⊆ Σi−1; hence PΣ̂i
(PΣi−1(s)) = PΣi−1(PΣ̂i

(s)) = PΣ̂i
(s).

Accordingly, PΣ̂i
(PΣi−1(s)) = PΣ̂i

(PΣi
(s)) and (2.3) is satisfied by the definition of weak

invariant simulation.

To further analyze properties of weak invariant simulation of one generator by another,
we define the following structure.

Definition 5. For a given generator Gi, Gi � ∆i is the restriction of the generator to a
subalphabet ∆i and is formed by erasing transitions with events that belong to the set
Σi \∆i. Formally, Gi � ∆i = (Xi,∆i, ξ̂i, x

0
i , Xmi) and

ξ̂i(xi, σ) =
{
ξi(xi, σ), if σ ∈ ∆i;
∅, if σ ∈ Σi \∆i.

The next result applies whenever the condition Σi−1 ∩ Σi ⊆ Σ̂i ⊆ Σi−1 is satisfied (see
Remark 2). For two finite-state generators Gi−1 and Gi such that Gi−1 weakly invariantly
simulates Gi w.r.t. Σ̂i, this lemma gives a procedure to calculate a binary relation which
is the greatest lower bound of all weak invariant simulation relations w.r.t. Σ̂i between
Gi−1 and Gi that include the initial pair (x0

i−1, x
0
i). Specifically, the relation is the state set

of the synchronous product of Gi and Gi−1 � ∆i−1, where ∆i−1 is chosen so as to exclude
events in Σ̂i that are not common to Σi−1 and Σi.

Lemma 1. Consider two arbitrary generators Gi−1 = (Xi−1,Σi−1, ξi−1, x
0
i−1, Xmi−1) and

Gi = (Xi,Σi, ξi, x
0
i , Xmi) and assume that Σi−1∩Σi ⊆ Σ̂i ⊆ Σi−1. Let ∆i−1 = Σi−1\(Σ̂i\Σi)

and Ri be the state set of the synchronous product (Gi−1 � ∆i−1)‖Gi. We have:

(a) The binary relation Ri is contained in all weak invariant simulation relations of Gi by
Gi−1 w.r.t. Σ̂i that include the pair of initial states (x0

i−1, x
0
i).

(b) If Ri is a weak simulation w.r.t. Σ̂i, then it is a weak invariant simulation w.r.t. Σ̂i.

18

(c) If generator Gi−1 weakly invariantly simulates Gi w.r.t. Σ̂i, then Ri is a weak invariant
simulation.

Proof. (a) Consider an arbitrary weak invariant simulation Ii w.r.t. Σ̂i with (x0
i−1, x

0
i) ∈ Ii.

We will show that Ri is contained in Ii. Consider an arbitrary pair (xi−1, xi) ∈ Ri. For
some l ∈ (Σi−1∪Σi)∗, we have (xi−1, xi) ∈ ξ̃i((x0

i−1, x
0
i), l), where ξ̃i is the transition function

of automaton Gi−1 � ∆i−1‖Gi. Let PΣj
(l) = lj, j = i− 1, i. Since Σi−1 ∩ Σi ⊆ Σ̂i ⊆ Σi−1,

by the definition of the transition function ξ̂i−1 of Gi−1 � ∆i−1, we have

(∀t ∈ L(Gi−1 � ∆i−1‖Gi))(PΣi−1∩Σi
(t) = PΣ̂i

(t)). (2.4)

Again, from the fact that Σi−1 ∩ Σi ⊆ Σ̂i ⊆ Σi−1, we have PΣ̂i
(li) = PΣi−1∩Σi

(li) =
PΣi−1∩Σi

(l); but

PΣi−1∩Σi
(l) = PΣ̂i

(l) (by (2.4))
= PΣ̂i

(li−1) (∵ Σ̂i ⊆ Σi−1).

Hence, PΣ̂i
(li) = PΣ̂i

(l) = PΣ̂i
(li−1). Therefore, by the definition of weak invariant simula-

tion and the fact that (x0
i−1, x

0
i) ∈ Ii, we have (xi−1, xi) ∈ Ii. This shows that Ri ⊆ Ii.

(b) Suppose Ri is a weak simulation w.r.t. Σ̂i and let (xi−1, xi) ∈ Ri. Consider strings
si ∈ L(G→xi

i) and si−1 ∈ L(G→xi−1
i−1). If PΣ̂i

(si) = PΣ̂i
(si−1), si−1 contains no events

in Σ̂i \ Σi. Hence ξ̂i−1(xi−1, si−1) 6= ∅ (where, again, ξ̂i−1 is the transition function of
Gi−1 � ∆i−1). By the structure of the synchronous product Gi−1 � ∆i−1‖Gi, we have

(∀x̂i−1 ∈ ξ̂i−1(xi−1, si−1))(∀x′i ∈ ξi(xi, si))[(x̂i−1, x
′
i) ∈ Ri]. (2.5)

Since si−1 and si are arbitrary elements of L(G→xi−1
i−1) and L(G→xi

i) that have the same
Σ̂i projection, it follows from (2.5) that Ri has the invariance property. Therefore Ri is a
weak invariant simulation w.r.t. Σ̂i.

(c) If generator Gi−1 weakly invariantly simulates Gi w.r.t. Σ̂i, then there exists a weak
invariant simulation w.r.t. Σ̂i, containing (x0

i−1, x
0
i). Let H be such a relation. As was

shown in part (a) of the proof, Ri ⊆ H. Consider an arbitrary pair (xi−1, xi) ∈ Ri ⊆ H.
Fix an arbitrary string si ∈ Σ∗i such that ξi(xi, si) 6= ∅ (note that the empty string is such
a string). Since H is a weak simulation w.r.t. Σ̂i, and (xi−1, xi) ∈ H, by the definition of
weak simulation there exists si−1 ∈ Σ∗i−1 such that ξi−1(xi−1, si−1) 6= ∅ and

PΣ̂i
(si) = PΣ̂i

(si−1) (2.6)
⇒PΣi−1∩Σi

(si) = PΣi−1∩Σi
(si−1). (2.7)

19

Hence, by the structure of synchronous product Gi−1 � ∆i−1‖Gi, we conclude

(∀x′′i−1 ∈ ξi−1(xi−1, si−1))(∀x′i ∈ ξi(xi, si))[(x′′i−1, x
′
i) ∈ Ri]. (2.8)

From (2.6) and (2.8), we conclude that Ri is a weak simulation. Therefore by part (b), it
is a weak invariant simulation w.r.t. Σ̂i.

Note that if there does exist a weak invariant simulation of Gi by Gi−1 w.r.t. Σ̂i, then,
by (c), Ri is such a relation; and by (a), it is the smallest such relation. Hence it is indeed
the greatest lower bound of the set of all such relations.

Based on Lemma 1, the next theorem gives an algorithm to check whether a given finite-
state generator weakly invariantly simulates another, with respect to a specific subalphabet.

Theorem 1. Consider two arbitrary generators Gi−1 = (Xi−1,Σi−1, ξi−1, x
0
i−1, Xmi−1) and

Gi = (Xi,Σi, ξi, x
0
i , Xmi) and assume that Σi−1∩Σi ⊆ Σ̂i ⊆ Σi−1. Let ∆i−1 = Σi−1\(Σ̂i\Σi)

and Ri be the state set of synchronous product Gi−1 � ∆i−1‖Gi. Generator Gi−1 weakly
invariantly simulates Gi w.r.t. Σ̂i if and only if

(∀(xi−1, xi) ∈ Ri)
[PΣ̂i

(L(G→xi
i)) = PΣ̂i

(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))]. (2.9)

Proof. (If) Suppose (2.9) holds; we will show thatRi is a suitable weak invariant simulation.
Consider the automaton (Gi−1 � ∆i−1)‖Gi = (Ri,Σi−1 ∪ Σi, ξ̃i−1, x

0
i−1 × x0

i , Xmi−1 × Xmi)
and let (xi−1, xi) ∈ Ri. According to (2.9), for any si ∈ Σ∗i , we have

(ξi(xi, si) 6= ∅)
⇒ (PΣ̂i

(si) ∈ PΣ̂i
(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))).

Let w be a string in L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)) such that PΣ̂i
(si) = PΣ̂i

(w). Set si−1 =
PΣi−1(w). We have PΣ̂i

(si) = PΣ̂i
(w); therefore, because Σ̂i ⊆ Σi−1,

PΣ̂i
(si) = PΣ̂i

(PΣi−1(w))
⇔PΣ̂i

(si) = PΣ̂i
(si−1). (2.10)

So si−1 ∈ ∆∗i−1. Let ξ̂i−1 be the transition function of Gi−1 � ∆i−1. Since ξ̂i−1(xi−1, si−1) 6=
∅, according to the definition of ξ̂i−1, we have ξi−1(xi−1, si−1) 6= ∅. We conclude that for

20

all (xi−1, xi) ∈ Ri and si ∈ Σ∗i , if ξi(xi, si) 6= ∅, then there exists si−1 ∈ Σ∗i−1 such that
ξi−1(xi−1, si−1) 6= ∅ and PΣ̂i

(si−1) = PΣ̂i
(si). By the fact that Σi−1 ∩ Σi ⊆ Σ̂i, we have

PΣi−1∩Σi
(si) = PΣi−1∩Σi

(si−1). (by (2.10))

Again using (2.10), we conclude that si−1 contains no event in Σ̂i \ Σi. Therefore, by
the structure of the synchronous product Gi−1 � ∆i−1‖Gi, we have {(ξi−1(xi−1, si−1) ×
ξi(xi, si))} ⊆ Ri. Hence the binary relation Ri is a weak simulation w.r.t. Σ̂i. Indeed,
by Lemma 1(b), Ri is a weak invariant simulation w.r.t. Σ̂i. Since (x0

i−1, x
0
i) ∈ Ri, the

generator Gi−1 weakly invariantly simulates Gi w.r.t. Σ̂i.
(Only if) Consider an arbitrary weak invariant simulation Ii w.r.t. Σ̂i, with (x0

i−1, x
0
i) ∈ Ii.

According to Lemma 1(a), Ri is contained in Ii. If Ri = ∅, then (2.9) holds vacuously.
Consider then an arbitrary pair (xi−1, xi) ∈ Ri. Fix a string li ∈ L(G→xi

i). Since (xi−1, xi) ∈
Ii, there exists li−1 ∈ L(G→xi−1

i−1) such that PΣ̂i
(li−1) = PΣ̂i

(li). This means that li−1 ∈ ∆∗i−1,
so li−1 ∈ L((Gi−1 � ∆i−1)→xi−1). Moreover, because PΣ̂i

(li−1) = PΣ̂i
(li) and Σi−1 ∩ Σi ⊆ Σ̂i,

PΣi−1∩Σi
(li−1) = PΣi−1∩Σi

(li).

Hence, according to the restriction of Gi−1 to event set ∆i−1, and the structure of the
synchronous product Gi−1 � ∆i−1‖Gi, we have

(∃l ∈ L(Gi−1 � ∆i−1‖Gi)→(xi−1,xi))(PΣ̂i
(li) = PΣ̂i

(l)).

Because li ∈ L(G→xi
i) was chosen arbitrarily,

(∀li ∈ L(G→xi
i))

(∃l ∈ L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))[PΣ̂i
(li) = PΣ̂i

(l)].

Hence

PΣ̂i
(L(G→xi

i)) ⊆ PΣ̂i
(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi))). (2.11)

Conversely, no string l ∈ L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)) contains any symbols in Σ̂i \ Σi.
Therefore for any such string, PΣ̂i

(l) = PΣ̂i∩Σi
(l) = PΣ̂i

(PΣi
(l)). Let PΣi

(l) = li. Because
li ∈ L(G→xi

i), we have

(∀l ∈ L((Gi−1 � ∆i−1‖Gi))→(xi−1,xi))
(∃li ∈ L(G→xi

i))[PΣ̂i
(l) = PΣ̂i

(li)].

21

Hence

PΣ̂i
(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))

⊆ (PΣ̂i
(L(G→xi

i)). (2.12)

From (2.11) and (2.12), relation (2.9) follows. This completes the proof.

Whenever both generators are finite, Theorem 1 gives us a method to check whether
or not one generator weakly invariantly simulates the other. However, direct checking of
condition (2.9) by standard automata-theoretic means is computationally expensive, in the
sense that deciding inequivalence of finite-state automata is PSPACE-complete [18]. The
next corollary gives an alternative condition which is equivalent to (2.9).

Corollary 2. Let Σi−1 ∩Σi ⊆ Σ̂i ⊆ Σi−1, ∆i−1 = Σi−1 \ (Σ̂i \Σi), and Ri be the state set
of synchronous product Gi−1 � ∆i−1‖Gi as defined in Theorem 1. Generator Gi−1 weakly
invariantly simulates Gi w.r.t. Σ̂i if and only if the following condition holds for n = 1:

(∀(xi−1, xi) ∈ Ri)([PΣ̂i
(L(G→xi

i))]n
⊆ [PΣ̂i

(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))]n). (2.13)

(Recall that [.]n denotes the subset of strings of length n)

Proof. By Theorem 1, it suffices to show that the condition (2.13) is satisfied for any n ≥ 0
if and only if (2.13) is satisfied for n = 1.

(Only if) Immediate.
(If) In this part we assume (2.13) holds for n = 1, and prove by induction that it

holds for all n ≥ 0. For n = 0, condition (2.13) holds trivially. For n = 1, (2.13)
holds by assumption. This forms the base of the induction. For the induction step,
suppose that (2.13) holds for n. Fix (xi−1, xi) ∈ Ri. Let s ∈ Σ̂∗i and σi ∈ Σ̂i such that
sσi ∈ [PΣ̂i

(L(G→xi
i))]n+1 (if no such string exists, the result holds vacuously). Then there

exists tσi ∈ L(G→xi
i) such that PΣ̂i

(t) = s. By the inductive hypothesis,

s ∈ [PΣ̂i
(L(G→xi

i))]n
⊆ [PΣ̂i

(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)))]n.

This means that there exists t̂ ∈ L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)) such that PΣ̂i
(t̂) = s =

PΣ̂i
(t). Now, because Σi−1 ∩ Σi ⊆ Σ̂i, it follows by the structure of the synchronous

22

product that there exists t̃ ∈ L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)) such that PΣi
(t̃) = t. Note that

t̃ contains no symbols in Σ̂i \ Σi; therefore

PΣ̂i
(t̃) = PΣ̂i

(PΣi
(t̃)) = PΣ̂i

(t) = s. (2.14)

Let x′i ∈ ξi(xi, t)∩χi(σi) and x′i−1 be such that (x′i−1, x
′
i) ∈ ξ̃i((xi−1, xi), t̃). Since (x′i−1, x

′
i) ∈

Ri, by assumption we have σi ∈ [PΣ̂i
(L(G→x

′
i

i))]1 ⊆ [PΣ̂i
(L((Gi−1 � ∆i−1‖Gi)→(x′i−1,x

′
i)))]1.

Let r ∈ L((Gi−1 � ∆i−1‖Gi)→(x′i−1,x
′
i)) such that PΣ̂i

(r) = σi and consider therefore a string

t̃r ∈ L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi)).

Then PΣ̂i
(t̃r) ∈ PΣ̂i

(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi))). Because PΣ̂i
(r) = σi, we have

PΣ̂i
(t̃r) = PΣ̂i

(t̃)PΣ̂i
(r) = PΣ̂i

(t)σi
= sσi (by (2.14)).

Therefore sσi ∈ PΣ̂i
(L((Gi−1 � ∆i−1‖Gi)→(xi−1,xi))). Because sσi ∈ [PΣ̂i

(L(Gi)→xi)]n+1 is
arbitrary, (2.13) holds for n+ 1. This completes the induction.

Computation of the finite event set on either side of the inclusion of (2.13) requires only
the polynomial-time computation of an unobservable reach [20] (with Σ̂i considered to be
the observable subalphabet) and computation of the set of all Σ̂i events that may occur
within that unobservable reach. Once these events are known, it remains only to check the
inclusion. The computation of an unobservable reach in the deterministic case is linear in
the product of the cardinalities of the state set and the alphabet [20]. For nondeterministic
automata, by Tarjan’s depth-first search algorithm [42], it is of order at most the cardinality
of the set of transitions, as in Tarjan’s procedure each distinct transition is traversed
exactly twice. This estimate dominates the complexity of computing the set of Σ̂i events
that can occur within a given unobservable reach. Thus, computation of the subalphabet
on the right-hand side of the inclusion is O(|Xi−1|2|Xi|2|Σi−1 ∪ Σi|). But computation of
all such subalphabets can be performed in a single depth-first search of the synchronous
product, so the computation of all the necessary subalphabets is O(|Xi−1|2|Xi|2|Σi−1 ∪
Σi|). Checking inclusion of two event sets is at worst dominated by the complexity of
sorting them: O(Σ̂i)log(|Σ̂i|). So the overall time complexity of checking (2.13) is at most
O(|Xi−1|2|Xi|2|Σi−1 ∪ Σi|+ |Xi−1||Xi||Σ̂i|log(|Σ̂i|)).

23

2.2 Conclusion

Our goal is to develop methods to analyze global system properties of parameterized dis-
crete event systems and, in the first instance, of parameterized networks of isomorphic
subprocesses. To this end a new mathematical notion called weak invariant simulation has
been introduced in this chapter. We also investigated the relationships among weak invari-
ant simulation and existing comparative semantics in process algebra and established the
distinctness of weak invariant simulation. Furthermore, we proposed a computationally
efficient method to check existence of weak invariant simulation with respect to a specific
alphabet between two given generators. Other properties of weak invariant simulation
between two given generators are also studied. We established a procedure to decide ex-
istence of weak invariant simulation between two generators and calculated the greatest
lower bound of such relation between two generators.

24

Chapter 3

Analysis of parameterized ring
discrete event systems

In this chapter we introduce a class of parameterized networks for which the deadlock-
freedom property is decidable. The network considered in this chapter has the topology
of a ring (each subprocess directly interacts with its two ‘neighbors’ in the ring.) To
motivate the study, we show that the deadlock analysis of parameterized ring networks is
undecidable.

Then, to achieve decidability, we restrict the interactions between subprocesses. The
structural assumptions are formulated in terms of the new mathematical relation intro-
duced in Chapter 2: weak invariant simulation of one subprocess by another. We first
establish some properties of the network model. In particular, we show that our assump-
tions serve to ensure that while both immediate neighbors of a subprocess may prevent
it from executing a shared events, only one neighbor can permanently prevent an event
from occurring; in that sense, control only flows around the ring in one direction. Then we
propose a procedure for the deadlock analysis of the network. This procedure enables us
to determine all the reachable deadlocked states of our parameterized ring network. The
effectiveness of the proposed framework is demonstrated by analysis of a version of the
dining philosophers problem.

25

3.1 The network model

3.1.1 Parameterized discrete event systems

For the purposes of this thesis, a PDES G , with parameter N > 2, is a set of synchronous
products of M ∈ N isomorphic finite-state subprocesses modeled by generators. Formally,

G = {
∥∥∥M
i=1
Gi : M ∈ N}, (3.1)

where

Gi = (Xi,Σi, ξi, x
0
i , Xmi), (3.2)

with X1 = X2 = ... = XM . Subalphabet Σi = ΣLi
∪ ΣSi

, where subsets ΣLi
and ΣSi

contain local (unshared) event and shared event symbols respectively. For a fixed N , let
GN =

∥∥∥N
i=1
Gi = (X,Σ, ξ, x0, Xm) be an instance of PDES G with N subprocesses. In this

instance, Σ = ⋃N
i=1 Σi is the global alphabet set and ΣS = ⋃N

i=1 ΣSi
and ΣL = Σ \ ΣS

are shared event and local event subsets respectively. Shared events are shared between
exactly two subprocesses: thus a given event symbol σ belongs to at most two of the ΣSi

.
Shared events can only occur simultaneously in both such subprocesses. The initial state
of the ith subprocess is the ith component of x0 and denoted by x0

i . The states of GN take
the form of N-tuples x = (x1, x2, ..., xN), where xi is the state of the ith subprocess Gi.
In this chapter we refer to these N-tuples as ‘global states’. The set of all global states is
denoted X.

The system parameter N is an arbitrary natural number (greater than 2) that denotes
the total number of subprocesses in an instance of a PDES.

The problem of checking the nonblocking property for a PDES consisting of an arbi-
trary number N of finite-state subprocesses is algorithmically undecidable [32]. In other
words, the nonblocking property cannot be mechanically checked for a general network
of an arbitrary number of interacting isomorphic finite-state subprocesses. Similarly, the
closely related property of deadlock-freedom is undecidable (see Corollary 3 below). In this
chapter, we focus on the formulation of a decidable subproblem of checking the deadlock-
freedom of PDES.

A shared event between two subprocesses Gi−1 and Gi, 1 < i ≤ N , can occur only if
both subprocesses are in states that allow the shared event. If for instance Gi is in a state
that can reach marking states only by executing a shared event which cannot be executed
by Gi−1, then subprocess Gi is blocked. The following definition helps us to address this
issue.

26

Definition 6. In a PDES, for a shared event σi of the ith subprocess, 1 ≤ i ≤ N , companion
states of σi in the jth subprocess are states xj in Gj, for which ξj(xj, σi) 6= ∅. The set of
such companion states is χj(σi).
Remark 3. Weak invariant simulation can be used to formulate useful assumptions about
the network behavior. Consider PDES G and an instance GN of this PDES. For an
arbitrary i, j, 1 ≤ i, j ≤ N , assume that for a reachable global state x ∈ X, we have
(xi, xj) ∈ Ii, where Ii is a weak invariant simulation with respect to all the shared events
of Gi with any other subprocess. By the definition of weak invariant simulation, it can be
shown that for any σi ∈ Σi ∩Σj, if ξj(xj, σi) 6= ∅, then Gi can reach χi(σi) by a string l of
local events; hence lσi is executable from x in GN . In other words, in state x, Gi does not
block Gj from executing an event that is shared between them.

Note that if Gi transitions from xi to another state x̂i via a shared event that is not
in Σi ∩ Σj, then by the definition of weak invariant simulation, (x̂i, xj) is not necessarily
a member of Ii, and Gi may block Gj. In the next subsection, we propose a tractable
parameterized ring network in which for any i, 1 ≤ i < N , and any reachable state, Gi

does not permanently block its neighbor with higher index, namely Gi+1. To achieve this
property, we introduce network assumptions to ensure that regardless of the evolution of
the global network, weak invariant simulation of Gi+1 by Gi w.r.t. all the shared events of
Gi can always be (re-)established between states of the two neighbors in the ring (Theorem
2 below proves this property for our proposed ring network model).

3.1.2 The ring network model

In this thesis, a parameterized ring network is a PDES G that is a set of synchronous
products of N ∈ N isomorphic finite-state subprocesses arranged in a ring topology, with
each subprocess sharing events only with its immediate neighbors in the ring. Indices of
subprocesses of the ring network start with one and increase ‘clockwise’ over the ring till
they reach N . From this point on in the chapter terms i+ j and i− j are calculated using
modulo-N arithmetic over the complete residue system {1, 2, ..., N}. This is the same as
standard modulo-N arithmetic, except that the equivalence class of the integers modulo N
that contains zero is represented by N instead of zero. Thus in a ring PDES, Σi ∩ Σj 6= ∅
only if i − j = 1 or i − j = N − 1. For subprocess Gi with 1 ≤ i ≤ N , we assume that
the local event symbols in set ΣLi

have no index. Furthermore, shared event symbols in
set ΣSi

either have index i − 1 or index i: symbols in Σi−1 ∩ Σi (shared events between
generators Gi−1 and Gi) have index i − 1, while the symbols in Σi ∩ Σi+1 (shared events
between Gi and Gi+1) have index i. In a ring network, the companion states of a shared
event of the ith subprocess are states of the neighbor subprocesses Gi+1 and Gi−1.

27

2i

1i

1i

2i

2i

1i

0 2

3

4

2i

1
2i

1i

i

i

1i

1i

i

0 2

3

4

1i

1
1i

1iG
iG

Figure 3.1: The i− 1th and ith instance of a PDES that satisfies proposed ring
network model. Transitions with local events are unlabeled in this picture. In
this PDES, the state set of the synchronous product of Gi−1 and Gi can be taken
to be Vi, a weak invariant simulation of Gi by Gi−1 w.r.t. Σi−1 ∩ Σi. Wi =
{(0, 0), (0, 3), (0, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2),
(4, 3), (4, 4)} is a weak invariant simulation of Gi by Gi−1 w.r.t. the set of all shared events
of Gi−1. Note that state 1 of Gi−1 weakly simulates state 1 of Gi w.r.t. ΣSi−1 , but (1, 1) is
not a member of Wi since the invariance property fails.

For instance GN of PDES G with ring structure, we define a cyclic permutation κ to
relate the structures of subprocesses. There exists a bijection κ : Σ → Σ of order N such
that ∀α ∈ Σi, κ(α) ∈ Σi+1 and the following properties hold:

(∀σ ∈ ΣLi
)(κ(σ) = σ);

(∀σi ∈ Σi ∩ Σi+1)(κ(σi) = σi+1);
(∀α ∈ Σi)(∀x ∈ X)(ξi(x, α) = ξi+1(x, κ(α))),

where Xs is the common state set of all the subprocesses of GN . The first two of these
assumptions respectively specify how κ acts on local and shared events. The third specifies
the exact sense in which the subprocesses are isomorphic: they are identical up to this
permutation of the indices of shared events. To get from a subprocess to its neighboring
subprocess with larger index, the cyclic permutation κ should be applied once. This implies
that in a ring network GN , to get to Gj from Gi, it suffices to add j−i to every index of any
shared event of subprocess Gi. Subprocesses displayed in Figure 3.1 have this property.

The next corollary states that checking the deadlock-freedom property in a parameter-
ized network with ring topology is undecidable.

28

Corollary 3. It is undecidable whether the reachable states of a parameterized ring net-
work include deadlocked states.

Proof. By the proof of Theorem 3 of [32], given an arbitrary Turing machine M , a pa-
rameterized ring network can be constructed so that, if M halts on the empty input, a
sufficiently large instance of the parameterized network can faithfully simulate M ’s entire
run on the empty input. Moreover, the network can be programmed so that it deadlocks
if and only if a faithful simulation of M on the empty input shows the Turing machine
entering a halting state. (Indeed, in the construction used in [32], when a subprocess
detects that the simulation has entered a halting state, that subprocess deadlocks. It is
simple to modify the construction so that the deadlocked subprocess also signals all other
subprocesses to deadlock.)

It follows that the (undecidable) halting problem reduces to that of checking the pos-
sibility of deadlock either of a single subprocess in a parameterized ring network or of an
entire parameterized ring network. Both the latter problems are therefore undecidable.

Given the above result, in order to achieve decidability, we must restrict the generality
of our class of problems by introducing some structural assumptions. The rest of the
chapter is devoted to showing that the following assumptions suffice.

Any instance GN , N > 2, of our parameterized ring network model G , will be assumed
to satisfy the following properties for 1 ≤ i ≤ N :

(∀xi ∈ Xi)(∀x′i ∈ Xi)(∃t ∈ Σ∗i)[ξi(xi, t) = x′i], (3.3)
(∀σi−1 ∈ Σi−1 ∩ Σi)(|χi−1(σi−1)| ≤ 1), (3.4)
Gi−1ViGi, (3.5)
Gi−1WiGi. (3.6)

where Vi and Wi are weak invariant simulation relations of Gi by Gi−1 w.r.t. Σi−1 ∩ Σi

and ΣSi−1 respectively.
Assumptions (3.3) and (3.4) are conditions on the structure of individual subprocesses,

while assumptions (3.5) and (3.6) restrict the way subprocesses interact.
Assumption (3.3) ensures that in any individual subprocess there exists a path from

any state to any target state. In other words, the transition graph of each subprocess of
the network is strongly connected. In the context of nonterminating systems this technical
restriction is arguably mild: it simply rules out states that could become permanently
inaccessible as the subprocess evolves (even in the absence of synchronization with other

29

subprocesses). Condition (3.4) expresses that in generator Gi−1, each shared event in the
subset Σi−1 ∩Σi has at most one companion state. This means that potential interactions
of Gi−1 with Gi via a specific shared event in Σi−1 ∩ Σi can only occur if Gi−1 is in that
specific state. If (3.4) is not satisfied, suitable enrichment of the event alphabet would
make it hold (by distinguishing occurrences of the same event that can occur in distinct
states), but this alphabet enrichment could make the remaining assumptions (3.5), (3.6)
more stringent.

Assumption (3.5) states that Gi−1 weakly invariantly simulates Gi with respect to
Σi−1 ∩ Σi and assumption (3.6) means that Gi−1 weakly invariantly simulates Gi with
respect to ΣSi−1 . These assumptions ensure that the behaviors of Gi−1 and Gi over the
respective subalphabets are in some sense similar. Two weak invariant simulations with
respect to different subalphabets are not necessarily comparable; the significance of weak
invariant simulation depends critically on the subalphabet Σ̂i. In our network model the
relationsWi and Vi are in general incomparable w.r.t. set inclusion. As will be seen, these
assumptions add sufficient structure to make deadlock decidable.

Deadlock often arises through resource contention, and it may be helpful to interpret
(3.5) and (3.6) in that context. Events shared between Gi−1 and Gi can be thought of
as transfers of shared resources between Gi−1 and Gi. By Proposition 5 (below) and
the definition of weak invariant simulation, assumption (3.5) ensures that from all the
reachable states of the network, if interaction between Gi−1 and the rest of the network is
ignored, subprocess Gi−1 can always reach companion states of events shared between Gi−1
and Gi; thus Gi−1 can always potentially provide the resources necessary for subprocess Gi.
Violation of assumption (3.5) means that even if Gi−1 and Gi are isolated from the network,
Gi−1 may never be able to provide resources needed by Gi. This might indicate a ‘design
flaw’ in network architecture that can easily be identified by forming the synchronous
product of Gi−1 and Gi. On the other hand, if the states of Gi−1 and Gi are related byWi,
subprocess Gi−1 can eventually provide any resources requested by Gi. Now, it need not be
true that, in every reachable state of the network and for any i, the states of Gi−1 and Gi are
in fact related byWi; but, as shown in Theorem 2 below, regardless of network interactions
the weak invariant simulation relation Wi can be eventually reestablished between Gi−1
and Gi.
Remark 4. Checking properties (3.3 - 3.6) for all i, 1 ≤ i ≤ N , is not necessary. By
symmetry and the fact that the state sets of the subprocesses are identical, the Vi and Wi

can respectively be chosen to be identical subsets of state pairs for every i. The isomorphic
structure of the network then guarantees satisfaction of (3.3 - 3.6) for all i, 1 ≤ i ≤ N ,
if these properties are satisfied for any i. Properties (3.3) and (3.4) can be verified by
examining a single subprocess. Properties (3.5) and (3.6) can be checked by Corollary 2.

30

ir 1i l

1ir

1i

1i
l

ix

1ix

ix0

10 ix 1ix

ix

iW ii WB

iB

iW

Figure 3.2: The illustration of proof of Lemma 2.

There are practical ring networks exemplified by the dining philosophers problem [24]
that can be modeled to comply with the above assumptions. See Section 3.4 for more
detail. Figure 3.1 illustrates the i− 1th and ith instances of another network that satisfies
properties (3.3 - 3.6).

3.2 Properties of The Proposed Network Model

The following results shed light on the properties of the proposed network model and on
weak invariant simulation. The first states that relation Vi in our proposed network model
is preserved throughout the evolution of the network:

Proposition 5. For any instance GN of G with (3.3 - 3.6), for every x ∈ X and every i,
1 ≤ i ≤ N , (xi−1, xi) ∈ Vi.

Proof. From (3.5), we have for all i, (x0
i−1, x

0
i) ∈ Vi, where Vi is a weak invariant simulation

w.r.t. Σi−1 ∩ Σi. Since (Σi−1 ∩ Σi) ⊆ Σi, the result follows from Proposition 4.

On the other hand, becauseWi of assumption (3.6) are weak invariant simulations with
respect to ΣSi−1 , rather than Σi−1∩Σi, they need not be preserved throughout the evolution
of the network. However, the following lemma states that, regardless of the evolution of
GN , for some i, 1 ≤ i ≤ N , subsystems Gi−1 and Gi are in states xi−1 and xi respectively,
such that (xi−1, xi) ∈ Wi.

Lemma 2. Consider an instance GN of G satisfying (3.3 - 3.6). For all x ∈ X there exists
i such that the pair (xi−1, xi) ∈ Wi.

31

Proof. See appendix 3.A

Corollary 4. Consider an instance GN of G satisfying (3.3 - 3.6). For any s ∈ L(GN)
with PΣS

(s) 6= ε, let x ∈ ξ(x0, s) and i be such that the last occurrence of any shared event
in string s belongs to the set Σi−1 ∩ Σi. We then have (xi−1, xi) ∈ Wi, where xi is the ith
component of x ∈ X.

Proof. By the proof of Lemma 2 and the invariance of Wi.

If Gi−1 weakly invariantly simulates Gi w.r.t. Σ̂i ⊆ ΣSi−1 , the next proposition estab-
lishes a relationship between any state pair (xi−1, xi) ∈ Xi−1 ×Xi that belongs to a weak
invariant simulation w.r.t. Σ̂i, and the weak invariant simulation Ri defined in Lemma 1.

Proposition 6. Consider two arbitrary generators Gi−1 = (Xi−1,Σi−1, ξi−1, x
0
i−1, Xmi−1)

and Gi = (Xi,Σi, ξi, x
0
i , Xmi) in a ring network such that conditions (3.3), (3.4) and (3.6)

are satisfied. Let Σi−1 ∩ Σi ⊆ Σ̂i ⊆ ΣSi−1 and ∆i−1 = Σi−1 \ (Σ̂i \ Σi). Furthermore,
let Ri be the state set of synchronous product Gi−1 � ∆i−1‖Gi. For an arbitrary pair
(xi−1, xi) ∈ Xi−1×Xi, if there exists a weak invariant simulation Ii ∈ Xi−1×Xi w.r.t. Σ̂i,
such that (xi−1, xi) ∈ Ii, then

(∃si−1 ∈(Σi−1 \ Σ̂i)∗)
(∃x̃i−1 ∈ ξi−1(xi−1, si−1))[(x̃i−1, xi) ∈ Ri]. (3.7)

Proof. Suppose that, for all shared events σj ∈ ΣSi
, j ∈ {i − 1, i}, we have χi(σj) = ∅.

Then, the restriction of Gi−1 to ∆i−1 = Σi−1 \ (Σ̂i \ Σi) has no effect, for there are no
transitions defined in Gi for shared events, and, by isomorphism, there are none defined
in Gi−1 either. The synchronous product is therefore a shuffle product, so, for any pair
(xi−1, xi) ∈ Xi−1 × Xi, (xi−1, xi) ∈ Ri. Suppose therefore that for some σj ∈ ΣSi

, j ∈
{i − 1, i}, χi(σj) 6= ∅. Consider a string si ∈ (Σi \ Σ̂i)∗ such that for some σj ∈ ΣSi

,
ξi(xi, siσj) 6= ∅ and PΣ̂i

(si) = ε. The existence of such a string si is implied by assumption
(3.3): if χi(σj) 6= ∅, then there is a state in Gi where a σj transition is defined; that state
is reachable from xi, by (3.3); either it is reachable by means of local events of Gi or there
is a state that is so reachable where some other shared event of Gi can occur. If (xi−1, xi)
belongs to some weak invariant simulation w.r.t. Σ̂i, there exists si−1 ∈ Σ∗i−1 such that
ξi−1(xi−1, si−1σj) 6= ∅ and PΣ̂i

(si−1) = ε. Therefore let x̃i−1 ∈ ξi−1(xi−1, si−1) ∩ χi−1(σj).
Consider string risiσj ∈ Σ∗i such that ξi(x0

i , risiσj) 6= ∅ and xi ∈ ξi(x0
i , ri). By assumption

32

(3.6), Gi−1 simulates Gi w.r.t. ΣSi−1 . Therefore there exists string ti−1 ∈ Σ∗i−1 such that
ξi−1(x0

i−1, ti−1σj) 6= ∅ and

PΣSi−1
(ti−1) = PΣSi−1

(risi)
= PΣi−1∩Σi

(risi) (∵ risi ∈ Σ∗i).

But si ∈ (Σi \ Σ̂i)∗ and Σi−1 ∩ Σi ⊆ Σ̂i; therefore

PΣSi−1
(ti−1) = PΣi−1∩Σi

(ri). (3.8)

Hence PΣSi−1
(ti−1) ⊆ (Σi−1 ∩ Σi)∗; therefore PΣSi−1

(ti−1) = PΣi−1∩Σi
(ti−1) and by (3.8),

PΣi−1∩Σi
(ti−1) = PΣi−1∩Σi

(ri). Let x̂i−1 ∈ ξi−1(x0
i−1, ti−1) ∩ χi(σj). Then, by the structure

of the synchronous product, we have (x̂i−1, xi) ∈ Ri. On the other hand, by assumption
(3.4), x̃i−1 and x̂i−1 are one and the same; therefore (x̃i−1, xi) ∈ Ri.

Lemma 1 showed that, if there exists a weak invariant simulation relation between Gi−1
and Gi, then Ri is the smallest one. In contrast, while Ri need not be the largest weak
invariant simulation between Gi−1 and Gi, the above proposition states that, under our
network assumptions, it is in a technically precise sense ‘nearly that large’: if xi−1 weakly
invariantly simulates xi w.r.t. Σ̂i, then xi−1 has a successor state reachable via events in
Σi−1 \ Σ̂i that is related to xi by Ri.

The following theorem expresses the most important property of our proposed ring
network: if xi−1 does not weakly invariantly simulate xi w.r.t. ΣSi−1 , then there exists a
path in the global model from x to another global state x̂ such that (x̂i−1, x̂i) belongs to
the weak invariant simulation relation Wi w.r.t. ΣSi−1 . This means that regardless of the
evolution of the global network, the weak invariant simulation relation Wi can always be
established between any two neighboring subprocesses in our proposed network model.

Theorem 2. Consider an instance GN of G satisfying (3.3 - 3.6). For all x ∈ X and all i,
we have

(∃s ∈ Σ∗)[(ξ(x, s) 6= ∅) & (∃x̂ ∈ ξ(x, s))(x̂i−1, x̂i) ∈ Wi]. (3.9)

Proof. For any string l ∈ Σ∗ and any i, let li denote PΣi
(l). Fix x ∈ X. The proof is

by induction on index i. According to Lemma 2, there exists m, 1 ≤ m ≤ N such that
(xm−1, xm) ∈ Wm. Therefore by setting s = ε, we see that (3.9) holds for i = m. This
forms the base case of the induction.

33

Gx0 x~ x̂

jG

jx~

1jG

1ˆ jx

1jk j

jk

1jV

1jI

r

)(rP
j

1
ˆ

jI

jx

s
x

l

jx
jk̂

jx̂

x
k̂

j
j

Figure 3.3: The illustration of relations between states in the induction step of the proof
of Theorem 2: (a) Transitions with global strings l, l̃, k̂, s and r. String r is not explicitly
mentioned in the proof, but by the proof of the Claim, it does not contain any events
shared between Gj and Gj+1. Existence of global string k̂ is established in the last part
of the induction. (b) Weak invariant simulation relations between states of Gj and Gj+1.
Solid lines are transitions of subprocesses. String PΣj

(r) is the projection of string r in
part (a) of this figure. Vj+1 andWj+1 are a weak invariant simulation w.r.t. Σj ∩Σj+1 and
w.r.t. ΣSj

respectively.

Now we assume that for some j, we have

(∃s ∈ Σ∗)[(ξ(x, s) 6= ∅) & (∃x̂ ∈ ξ(x, s))(x̂j−1, x̂j) ∈ Wj] (3.10)

This forms the induction hypothesis.
Before the induction step, we prove a useful fact. According to the induction hypothesis,

there exists a string s ∈ Σ∗ such that for some x̂ ∈ ξ(x, s) 6= ∅, (x̂j−1, x̂j) ∈ Wj. We choose
such an s and x̂. Consider string l ∈ Σ∗ with x̂ ∈ ξ(x0, l); such a transition exists because
the synchronous product GN is by definition reachable. To facilitate the induction step,
we invoke the following:
Claim. There exists a string l̃ ≤ l such that

(∀x̃j ∈ ξj(x0
j , l̃j))((x̃j, x̂j+1) ∈ Wj+1) (3.11)

Proof. By Corollary 4; see Appendix 3.B for details.

34

To paraphrase, it is possible, by means of a prefix of l, for Gj to enter a state that is
in a weak invariant simulation relation with x̂j+1.

It remains to complete the induction step. The weak invariant simulation relations
established between states of neighboring subprocesses Gj and Gj+1 in this part of the
proof are displayed in Figure 3.3.

The case where for all αj ∈ Σj ∩ Σj+1, χj(αj) = ∅ or χj+1(αj) = ∅ is trivial, for in this
case, no shared event between Gj and Gj+1 can occur - and indeed, by isomorphism, no
shared event can occur anywhere in the network. Therefore we assume that there exists
αj ∈ Σj∩Σj+1 such that χj(αj) 6= ∅ and χj+1(αj) 6= ∅. Moreover, by assumption (3.3), the
state transition graph of each component subprocess of the network is strongly connected.
We accordingly fix αj ∈ Σj ∩ Σj+1 such that there exists kj+1 ∈ (Σj+1 \ (Σj ∩ Σj+1))∗ =
(Σj+1 \ ΣSj

)∗ with ξj+1(x̂j+1, kj+1αj) 6= ∅. By the claim, we choose an l̃ ≤ l and an
x̃j ∈ ξj(x0

j , l̃j) such that (x̃j, x̂j+1) ∈ Wj+1. By the definition of weak invariant simulation,
there exists k′j ∈ (Σj \ ΣSj

)∗ such that

ξj(x̃j, k′jαj) 6= ∅, and (3.12)
(∀yj ∈ ξj(x̃j, k′j))(yj, x̂j+1) ∈ Wj+1. (3.13)

According to (3.12) there exists x′j ∈ ξj(x̃j, k′j) ∩ χj(αj). By (3.13),

(x′j, x̂j+1) ∈ Wj+1. (3.14)

At this point, it suffices to show that x′j and x̂j+1 are components of some global state
reachable from x̂. For this, note that by Proposition 5, we have (x̂j, x̂j+1) ∈ Vj+1. Since
ξj+1(x̂j+1, kj+1αj) 6= ∅, there must exist k̂j ∈ Σ∗j such that (PΣj∩Σj+1(k̂j) = ε) & ξj(x̂j, k̂jαj) 6=
∅. Fix such a string k̂j and a state x′′j ∈ ξj(x̂j, k̂j) ∩ χj(αj). By assumption (3.4), x′j and
x′′j are the same state. Now k̂j ∈ Σ∗j contains only local events and events in Σj−1 ∩ Σj.
By the inductive hypothesis, we have (x̂j−1, x̂j) ∈ Wj. Because Wj is a weak simulation
with respect to ΣSj−1 , there exists a k̂j−1 ∈ Σ∗j−1 with the same ΣSj−1 projection as k̂j,
and therefore containing only local events and events in Σj−1 ∩ Σj. There must therefore
exist a global string k̂ ∈ L((GN)→x̂) such that PΣj−1(k̂) = k̂j−1 and PΣj

(k̂) = k̂j and, for
all i /∈ {j − 1, j}, PΣi

(k̂) = ∅. It follows that there exists x̄ ∈ X such that x̄ ∈ ξ(x, sk̂) and

x̄j = x′j ∈ ξj(x̂j, k̂j), and
x̄j+1 = x̂j+1 (∵ PΣj+1(k̂) = ε).

Therefore by (3.14), (x̄j, x̄j+1) ∈ Wj+1. This completes the induction.

35

In the next subsection, we apply the above fundamental network properties to the
analysis of deadlock.

3.3 The Deadlock Analysis Procedure

The next definition aims to characterize occurrence of a circular wait in our ring network.
It will be used in the next theorem to determine all the deadlocked states of the proposed
network.

Definition 7. Consider an instance GN of G satisfying (3.3 - 3.6). Fix i, 1 ≤ i ≤ N ,
and let Σ̂i = ΣSi−1 . Consider the synchronous product Gi−1 � ∆i−1‖Gi = (Ri,Σi−1 ∪
Σi, ξ̃i, x

0
i−1× x0

i , Xmi−1 ×Xmi
), where ∆i−1 = Σi−1 \ (Σ̂i \Σi) = Σi−1 \Σi−2. We define, for

any i, Rdi
⊆ Ri to be the subset of state pairs that satisfy the following property:

(∀σi ∈ Σi−1 ∪ Σi)[(ξ̃i((xi−1, xi), σi) 6= ∅)⇒ (σi ∈ Σi+1)]. (3.15)

Property (3.15) of state pair subset Rdi
expresses that whenever GN is in a state x ∈ X

such that for all i, (xi−1, xi) ∈ Rdi
, all the subprocesses are waiting for execution of a shared

event in their respective immediate neighbors with ‘larger’ index. These dependencies in
the direction of increasing indices result in a circular wait, and consequently deadlock.

The next theorem implies that checking deadlock-freedom in the proposed network
model is decidable. Furthermore it enables us to find the deadlocked states.

Theorem 3. Consider an instance GN of G satisfying (3.3 - 3.6). Let Σ̂i = ΣSi−1 , ∆i−1 =
Σi−1\Σi−2 and Gi−1 � ∆i−1‖Gi = (Ri,Σi−1∪Σi, ξ̃i, x

0
i−1×x0

i , Xmi−1×Xmi
). Furthermore let

Rdi
⊆ Ri be the set of state pairs that satisfy (3.15). The instance GN of PDES G contains

a (reachable) deadlocked state if and only if there exists state x ∈ X1×X2× ...×XN such
that

(∀i)((xi−1, xi) ∈ Rdi
). (3.16)

Proof. (If) We will first show that x ∈ X1 × X2 × ... × XN is reachable, and therefore a
state of GN . According to (3.16), for all i, 1 ≤ i ≤ N , (xi−1, xi) ∈ Rdi. But Rdi ⊆ Ri,
therefore

(xi−1, xi) ∈ Ri, (3.17)

36

and Ri is a weak invariant simulation w.r.t ΣSi−1 , according to Lemma 1(c) with Σ̂i = ΣSi−1 .
By assumption (3.3), for some σi−1 ∈ Σi−1 ∩Σi, there exists a string si ∈ (Σi \Σi−1)∗ and
an x′i ∈ Xi such that x′i ∈ ξi(xi, si)∩ χi(σi−1) (by the non-emptiness of Rdi). Hence by the
weak invariant simulation w.r.t. ΣSi−1 in (3.17), a state in χi−1(σi−1) must be reachable
from xi−1 by executing only local events. But by the definition of Rdi, no local event is
defined from xi−1; therefore xi−1 ∈ χi−1(σi−1).

On the other hand, since condition (3.16) holds for all i, the state pair (xi, xi+1) is
reachable in Gi � ∆i‖Gi+1. Accordingly, owing to the restriction of Gi to ∆i = Σi \ Σi−1,
xi is reachable from x0

i (the initial state of Gi) by a string ri that contains no event shared
with Gi−1. By (3.6), (x0

i−1, x
0
i) ∈ Wi, whereWi is a weak invariant simulation w.r.t. ΣSi−1 .

By existence of string ri and the definition of weak invariant simulation, we have

(x0
i−1, xi) ∈ Wi. (3.18)

But as stated earlier, there exists a path si ∈ (Σi\Σi−1)∗ such that x′i ∈ ξi(xi, si)∩χi(σi−1).
Therefore by (3.18) there exists a path of local events from x0

i−1 to a state x̂i−1 ∈ χi−1(σi−1).
Since xi−1, x̂i−1 ∈ χi−1(σi−1), by (3.4) we conclude that xi−1 and x̂i−1 are one and the same.
Because xi−1 is reachable from the initial state of Gi−1 by local events, we can use the same
argument for reachability of such states in all other subprocesses, and conclude that x is a
reachable global state in GN ; that is, x ∈ X.

Now suppose GN contains no deadlocked state, but (3.16) is satisfied. By the absence
of deadlock, there must exist some event for which a transition is defined in the global
state x. By assumption, such an event must be a shared event αj ∈ ΣS. Let i be such that
αj ∈ Σi−1 ∩ Σi ⊆ ΣSi−1 . Given that ξ(x, αj) 6= ∅, by (3.16), ξ̃i((xi−1, xi), αj) 6= ∅. But this
contradicts (3.15).

(Only if) Consider an arbitrary deadlocked state x ∈ X of GN . We will show that this
state satisfies property (3.16). For this, we shall apply Proposition 6; but that requires
us first to establish that, in a deadlocked state such as x, for all i, (xi−1, xi) belongs to a
weak invariant simulation with respect to Σ̂i = ΣSi−1 . According to Theorem 2, for any i,
if xi−1 is not in a weak invariant simulation relation with xi w.r.t. ΣSi−1 , then there exists
a string s ∈ Σ+ such that for some x̂ ∈ ξ(x, s), (x̂i−1, x̂i) ∈ Wi. By assumption x ∈ X is a
deadlocked state; therefore, for every i, we must have (xi−1, xi) ∈ Wi.

We are now in a position to apply Proposition 6, for any i, with Σ̂i = ΣSi−1 . Accordingly,
there exists a string si−1 of local events of Gi−1 and an x̃i−1 ∈ ξi−1(xi−1, si−1) such that
(x̃i−1, xi) ∈ Ri. But since x is a deadlocked state, this string of local events can only be
the empty string; hence (xi−1, xi) ∈ Ri.

37

Now suppose (xi−1, xi) /∈ Rdi; i.e., for some σj ∈ (Σi−1 ∪ Σi) \ Σi+1 the transition
ξ̃i((xi−1, xi), σj) is defined. But σj is not shared with Gi−2 (owing to the restriction Gi−1 �
∆i−1) or Gi+1. Therefore ξ(x, σj) 6= ∅. This contradicts the assumption that state x
is deadlocked. Hence (xi−1, xi) ∈ Rdi

. This means that property (3.16) holds for the
deadlocked state x.

The above theorem reduces deadlock analysis of the global system to polynomial-time
analysis of the synchronous product Gi−1 � ∆i−1‖Gi. This analysis yields the set of state
pairs Rdi; the state pairs in turn determine whether it is possible for a given PDES instance
to deadlock.

Remark 5. Indeed, by isomorphism, the relation Rdi is the same for all i. According
to the above theorem, to check for potential deadlocks in our subclass of parameterized
ring networks, it suffices to check for cycles of states of individual subprocesses such that
successive pairs in a given cycle are related by Rdi. Given the synchronous product Gi−1 �
∆i−1‖Gi, the number of computational steps required to compute Rdi and to check for such
cycles is O(|Xi|2|Σi|).

For instance, consider Rdi = {(xa, xb), (xb, xc)}. Then it is impossible to satisfy (3.16)
for all i, because no cycle made up of states xa, xb and xc has the property that all pairs
of successive states are related by Rdi. However, if the pair (xc, xa) also belongs to Rdi,
then xa, xb and xc form a cycle of length 3 such that all pairs of successive states in the
cycle (namely (xa, xb), (xb, xc) and (xc, xa)) belong to Rdi. Therefore, condition (3.16) can
be satisfied for all i provided N is a multiple of 3. This example also shows that for some
parameterized ring networks, the network size plays a critical role in deadlock susceptibility.
For these PDES, Theorem 3 also provides information about specific size instances of a
PDES that are deadlock-prone.

3.4 Illustrative example: parameterized dining philoso-
phers

Dining philosophers is a classic multi-process example featuring isomorphic subprocesses.
Moreover, it is easily understood intuitively. Here we illustrate our methods by considering
the parameterized version: the problem of dining philosophers for an arbitrary number of
philosophers. This problem can be modeled using a PDES. The parameter of interest is the
number of philosophers and the problem corresponding to a specific number of philosophers
is a particular instance of the PDES. Our goal is to compute accessible deadlocked states

38

iG

il

1il

ifE

T

W

I

r

1if

1iG

1il

2il

1if

r̂

2if

E

I

T

W

il
1il

if 1if

),(ET

),(TT

),(EI

),(IT),(II),(TI

),(WE

il if

)(a)(b

r̂
r̂

r̂

r

r

Figure 3.4: (a) The model of two neighbor philosophers in the dining philosopher example.
(b) The structure of Gi−1 � ∆i−1‖Gi, as described in Lemma 1, for the dining philosophers
example.

of all instances of the PDES; for a specific instance, the possibility of deadlock can be
checked using known methods [25].

Assume that N > 2 philosophers are seated around a dining table. There is only
one fork between any two adjacent philosophers. Our model of individual philosophers is
similar to that of [21]. In order to eat, a philosopher must hold both adjacent forks. Each
philosopher is initially in a Thinking state. As a philosopher gets hungry, he first picks up
the fork on his right-hand side, and enters an Idle state. Then he picks up the fork on his
left and enters his Eating state. He relinquishes both forks when he has finished eating
and returns to the Thinking state. The Thinking state is the sole marking state. The
question is whether, whenever a philosopher picks up his right-hand side fork, he will be
able eventually to eat and to return to the Thinking state. A model of the ith and i− 1th,
1 ≤ i ≤ N , philosophers are depicted in Figure 3.4(a) (philosophers face inward and are
numbered clockwise from above). States T are E are Thinking and Eating states. State W
represents the case where a philosopher is thinking and waits for his right-hand side fork
to become available. State I is the Idle state. In the model of the ith philosopher, events r
and li respectively mean that philosopher i takes his right-hand side and left-hand side fork
(the left and right directions are from the viewpoint of the philosopher). Event fi means
philosopher i finishes eating and returns both forks. Consistently with the notation of this
chapter, in subprocess Gi events with subscript i (namely, li and fi) are shared between
Gi and Gi+1, events with subscript i − 1 (li−1 and fi−1) between Gi−1 and Gi. Events r̂

39

and r are local events; however they nevertheless model interaction between subprocesses,
by preempting, or being preempted by, shared events: For instance, consider the shared
resource (fork) between Gi−1 and Gi. When subprocess Gi executes event r (philosopher
i takes his right-hand side fork), it transitions from state T (thinking state) to state I
(idle state). Note that shared event li−1 which represents taking the left-hand side fork
by philosopher i − 1, is available from state T of Gi, but unavailable from state I of Gi.
Therefore as long as Gi is in state I (philosopher i is idle and holds his right-hand fork),
shared event li−1 cannot be executed by Gi−1 (philosopher i− 1 cannot take his left-hand
side fork). Similarly, if philosopher i− 1 takes his left-hand side fork (executes event li−1),
philosopher i moves to state W from state T , where he cannot pick up the same fork
(cannot execute event r).

It is easy to check that GN with Gi presented in Figure 3.4(a) complies with conditions
(3.3 - 3.6). Therefore, according to Theorem 3, we can locate the deadlocked states in
this problem by constructing the synchronous product Gi−1 � ∆i−1‖Gi depicted in Figure
3.4(b). As can be seen in the figure, the set Rdi of Definition 7 consists of pairs (I, I) and
(I, E). A given state x ∈ X is deadlocked if and only if (3.16) is satisfied for all i. The
only possible setting in which each pair of neighboring subprocesses is in (I, I) or (I, E)
is that in which all subprocesses are in state I (see Remark 5). This result can easily be
confirmed with intuitive reasoning.

3.5 Conclusion

In this chapter, we used the mathematical tool of ‘weak invariant simulation’ to define a
subclass of parameterized networks in which the deadlock-freedom property is decidable.
On the basis of the findings of Chapter 2, a method for deadlock analysis of a class of
parameterized ring networks was proposed. The analysis is based on a pair of subprocesses
and exploits the symmetry of a parameterized network in order to reason about global
system properties. The present chapter highlights application of weak invariant simulation
to deadlock analysis of parameterized networks with the topology of a ring; but most
nontrivial deadlocks in more general topologies arise as a result of a ‘circular wait’ or a
‘deadly embrace’ within a subnetwork having the topology of a closed circuit. In the next
chapter we extend the deadlock analysis to a class of parameterized networks with more
general topologies.

40

Appendix

3.A Proof of Lemma 2

For initial state x0, the proof is immediate by (3.6). For an arbitrary state x ∈ X, for some
string s ∈ Σ∗, we have x ∈ ξ(x0, s). If string s has no shared event, the desired property
holds for any i, according to Proposition 4 with Σ̂i = ΣSi−1 . In case the string s contains
any shared event, let i be such that σi−1 ∈ Σi−1 ∩ Σi is the last shared event symbol in s
and let rσi−1 be the longest prefix of s ending in σi−1, ri = PΣi

(r) and ri−1 = PΣi−1(r).
Let x̄i ∈ ξi(x0

i , ri) and li ∈ Σ∗i be such that xi ∈ ξi(x̄i, σi−1li) and PΣSi−1
(li) = ∅.

Similarly, let x̄i−1 ∈ ξi−1(x0
i−1, ri−1) such that xi−1 ∈ ξi−1(x̄i−1, σi−1li−1) where li−1 ∈ Σ∗Li−1

.
We shall show that (x̄i−1, x̄i) ∈ Wi, which will lead to the result. For this, note that
because xi ∈ ξi(x0

i , si), where si = PΣi
(s), by (3.6) and the definition of weak invariant

simulation there exists ŝi−1 ∈ L(Gi−1) such that

PΣSi−1
(ŝi−1) = PΣSi−1

(si).

Let r̂i−1 ∈ Σ∗i−1 be such that r̂i−1σi−1 is the longest prefix of ŝi−1 ending in σi−1. Then
PΣSi−1

(r̂i−1σi−1) = PΣSi−1
(riσi−1) and therefore PΣSi−1

(r̂i−1) = PΣSi−1
(ri).

Let x̂i−1 ∈ ξi−1(x0
i−1, r̂i−1) be such that ξi−1(x̂i−1, σi−1) 6= ∅. Then by definition of weak

invariant simulation (x̂i−1, x̄i) ∈ Wi. Since x̄i−1 and x̂i−1 are in χi−1(σi−1), by assumption
(3.4), they are one and the same. We therefore have (x̄i−1, x̄i) ∈ Wi; but this implies that
(xi−1, xi) ∈ Wi.

3.B Proof of Claim

We consider two cases. First, if PΣj∩Σj+1(l) = ε, we have PΣSj
(PΣSj+1

(l)) = ε and therefore
PΣSj

(lj+1) = ε. Let l̃ = ε. By assumption (3.6) of the network and the invariance of Wj+1,

41

we have (x0
j , x̂j+1) ∈ Wj+1.

Second, if PΣj∩Σj+1(l) 6= ε, assume that σj is the last event of l that belongs to the set
Σj ∩ Σj+1. Consider string l̃ = tσj ≤ l of maximal length. Let x̃ ∈ ξ(x0, l̃). By Corollary
4, we have (x̃j, x̃j+1) ∈ Wj+1.

Therefore by the invariance property and the fact that σj is the last event of lj+1 that
belongs to the set ΣSj

, we conclude that (x̃j, x̂j+1) ∈ Wj+1.
Hence in both cases, (3.11) holds. This proves the claim.

42

Chapter 4

Analysis of generalized PDES

In this chapter, we consider networks consisting of multiple parameterized sections, and
more general topologies. To model these networks, we introduce Generalized Parameterized
Discrete Event Systems (GPDES). A GPDES consist of fixed number of ‘linear ’param-
eterized sections as well as fixed number of ‘distinguished’ subprocesses. Distinguished
subprocesses may have an arbitrary structure, which is dissimilar to that of any other
subprocess. Each linear parameterized section contains several isomorphic subprocesses:
each subprocess in a linear parameterized section of the network is obtained by relabeling
of a template. The number of subprocesses in each parameterized section is arbitrary. In
our setting, subsystems interact with each other via execution of shared events. A shared
event between two subprocesses can occur if both subprocesses are in states that allow the
shared event. We assume that each event is shared between at most two subprocesses.

A GPDES can be represented by a directed graph, where arcs correspond to linear
parameterized sections and nodes are the distinguished subprocesses. The graph represen-
tation of a GPDES may contain several cycles. We characterize the dependencies in each
cycle of the network: for an arbitrary cycle, we first disable the events that are shared
with subprocesses outside of the cycle to get a ring network. In the resulting ring network,
we calculate state pairs with the forward dependency property. After carrying out this
calculation for all cycles of the network, we form the dependency graph. We show that
the specific subgraphs of the dependency graph represent reachable local deadlocks in our
proposed GPDES network. The proposed deadlock analysis procedure has polynomial-
time complexity. We illustrate our proposed method by deadlock analysis of a large-scale
factory.

43

4.1 The network model

4.1.1 Linear parameterized discrete event systems

Recall from Chapter 3 that a PDES P is an infinite set of synchronous products of M
isomorphic finite-state subprocesses, where M ranges over the set of natural numbers N.
Formally,

P = {
∥∥∥M
i=1
Pi : M ∈ N}, (4.1)

where

Pi = (Xi,Σi, ξi, x
0
i , Xmi), (4.2)

with X1 = X2 = ..., and M is the unspecified parameter. Subprocesses Pi, 1 < i < M , are
formed by appropriate relabellings of a template.

We are particularly interested in PDES with linear topology. PDES P has linear
topology if for any member

∥∥∥M
i=1
Pi ∈ P , subprocesses Pi, 1 < i < M has shared transitions

with both Pi−1 and Pi+1, but there is no event shared between P1 and PM . We assume
that shared events are shared between at most two subprocesses. For subprocess Pi of
a linear PDES, we assume that symbols in ΣLi

(local events) have no index, and shared
event symbols in set ΣSi

either have index i − 1 or index i: symbols in Σi−1 ∩ Σi (shared
events between generators Pi−1 and Pi) have index i − 1, while the symbols in Σi ∩ Σi+1
(shared events between Pi and Pi+1) have index i.

For a linear PDES with M subprocesses, we set P1 as the template, and define permu-
tation κ to form the rest of the subprocesses:

(∀α ∈ Σi)(∀x ∈ Xs)(ξi(x, α) = ξi+1(x, κ(α))).

where Xs is the common state set of all the subprocesses of P . Permutation κ : Σ→ Σ is
a bijection of order M such that for all i,

(∀σ ∈ ΣLi
)(κ(σ) = σ);

(∀σi ∈ Σi ∩ Σi+1)(κ(σi) = σi+1);

An event shared between two subprocesses Pi−1 and Pi, 1 < i ≤ M , can occur only if
both subprocesses are in states that allow the shared event. If for instance Pi is in a state

44

that can reach marking states only by executing a shared event which cannot be executed
by Pi−1, then subprocess Pi is blocked. The following definition helps us to address this
issue.

Definition 8. [60] Consider a network
∥∥∥M
i=1
Pi, with Pi = (Xi,Σi, ξi, x

0
i , Xmi), M ∈ N.

For a shared event σi of subprocess Pi , 1 ≤ i ≤ M , companion states of σi in subprocess
Pj are states xj, for which ξj(xj, σi) 6= ∅. The set of such companion states is χj(σi).
The notion of companion states can be extended to subalphabets: in the jth subprocess,
companion states of a given subalphabet Σ̂ are states xj in Pj, for which for some σi ∈ Σ̂,
ξj(xj, σi) 6= ∅.

4.1.2 Generalized parameterized discrete event systems

A GPDES consists of a fixed number of ‘distinguished’ subprocesses and fixed number
of linear parameterized sections. A distinguished subprocess can have a structure distinct
from those of other subprocesses. Each linear parameterized section consist of an arbitrary
number of isomorphic subprocesses uniformly indexed from 1 to parameter of the linear
parameterized section. We assume that each event symbol in the alphabet of the GPDES
is at most shared between two subprocesses. We refer to subprocesses that have shared
events between them as neighboring subprocesses.

In order to characterize the network topology, we use a strongly connected directed
graph: each vertex in the directed graph represents a distinguished subprocess and each
arc of the graph represents a linear parameterized section. The direction of each arc in the
graph representation is that of increasing indices of the linear parameterized section they
represent.

In the graph representation of the network, we name the vertices with multiple incoming
arcs input vertices, and the nodes with multiple outgoing arcs output vertices. In this
chapter, we consider networks with one input vertex and multiple output vertices; and
assume that the input vertex is not also an output vertex. The subprocesses correspond
to input vertex and output vertices are called input subprocess and output subprocess
respectively. As an example of this branching topology, see the graph representation of
large-scale factory in Figure 4.4.(a) of Section 3.4.

Checking the deadlock freedom property in the general network is undecidable [32].
Thus, in order to be able to carry out our analysis, we set assumptions on all cycles of
the network. Consider an instance of the GPDES network described above. Within this
instance, consider an arbitrary cycle. For simplicity, we relabel subprocesses of this cycle

45

from G1 to GN starting with the input vertex (note that any cycle must include the unique
input vertex.) We denote such cycle

GN =
∥∥∥N
i=1
Gi = (X,Σ, ξ, x0, Xm), (4.3)

with Gi = (Xi,Σi, ξi, x
0
i , Xmi), 1 ≤ i ≤ N . From this point on in the chapter, when we

refer to cycles, terms i + j and i − j are calculated using modulo-N arithmetic over the
complete residue system {1, 2, ..., N}. This is the same as standard modulo-N arithmetic,
except that the equivalence class of the integers modulo N that contains zero is represented
by N instead of zero. Thus in cycle GN , Σi ∩ Σj 6= ∅ only if i − j = 1 or i − j = N − 1.
We set Σi = ΣLi

∪ΣSi
, were ΣSi

is the set of shared events of Gi and ΣLi
is the set of local

(unshared) events of Gi.
For cycle GN , for all i, we assume the following:

(∀i)(∀xi ∈ Xi)(∀x′i ∈ Xi)(∃t ∈ Σ∗i)[x′i ∈ ξi(xi, t)], (4.4)
(∀i)(∀σi ∈ Σi ∩ Σi+1)(|χi(σi)| ≤ 1), (4.5)
(∀i)(GiVi+1Gi+1), (4.6)

where Vi+1 is a weak invariant simulation of Gi+1 by Gi w.r.t. Σi ∩ Σi+1.
In Chapter 3, we proposed a framework for deadlock analysis of parameterized ring

networks that are subject to four assumptions. Three of those assumptions are the same
as conditions (4.4) to (4.6). The fourth – and most restrictive – assumption was removed
here, which allows modeling of more complex parameterized networks.

Assumptions (4.4) and (4.5) are conditions on the structure of an individual subprocess;
assumption (4.6) restricts the way subprocesses interact. Assumption (4.4) states that the
transition graph of each subprocess of the network is strongly connected. By (4.5), each
shared event in the subset Σi−1 ∩Σi has at most one companion state in subprocess Gi−1.
In other words, interactions between Gi−1 with Gi via a specific shared event in Σi−1 ∩Σi

can only occur if Gi−1 is in that specific state. Assumption (4.6) states that Gi−1 weakly
invariantly simulates Gi with respect to Σi−1 ∩ Σi. from all the reachable states of the
network, if interaction between Gi−1 and the rest of the network is ignored, subprocess
Gi−1 can always reach companion states of events shared between Gi−1 and Gi. If this
condition is not satisfied, then Gi−1 may never be able to provide resources needed by Gi,
which may indicate a design flaw in the network structure. All three assumptions on the
linear parameterized sections of the network are arguably mild. For more discussion of
these three conditions see Chapter 3.

46

To make the analysis tractable we restrict the structure of the distinguished subpro-
cesses. For the unique input vertex G1, we assume

(∀α ∈ ΣN ∩ Σ1)(∀β ∈ Σ1 ∩ Σ2)[(χ1(α)) ∩ (χ1(β)) = ∅], (4.7)
(∀x ∈ R2)(x1W2x2), (4.8)

where R2 is the state set of synchronous product G1‖G2 and W2 is a weak simulation
w.r.t. ΣS1 . Assumption (4.7) expresses that if there is an event defined from any state of
G1 that is shared with G2 then there is no event shared with GN defined from that state.
If a subprocess does not satisfy this assumption, we can simply move one of the transition
with shared events to a new state and a add a local transition from the original state to
the new one. Assumption (4.8), expresses that all the state pairs in synchronous product
of G1 and G2 are in relation W2. This means that from any reachable global state, if G2 is
in a state in which a shared event with G1 is defined, G1 can always reach the companion
state of that shared event without executing any shared event. In other words, G1 can
always provide resources requested by G2. This is a relatively strong assumption, however
according to proposed graph representation of network, there is only one input node in the
network. Therefore this restriction is only applied to a single subprocess. This assumption
allows us to relax other assumptions on the parameterized sections of the network.

Let J be the index set of output vertices of GN in the network graph. For any output
subprocess Gj, j ∈ J , we have

(GjQj+1Gj+1), (4.9)

where Qj+1 is a weak invariant simulation w.r.t. ΣSj
\ Σj−1.

Assumption (4.9) expresses that as long as Gj executes no event shared with subpro-
cesses outside of GN , then execution of events shared between Gj and Gj+1 cannot be
blocked by subprocesses outside of GN . Indeed, subprocess Gj may execute a shared event
with the rest of the network, after which the simulation relation need not hold. In other
words, Gj can always provide resources for Gj+1 until a resource is requested from Gj by
subprocesses outside of cycle GN . This interpretation arguably shows the mildness of this
assumption.

For each parameterized section of the network, properties (4.4) and (4.5) can be ver-
ified by examining a single subprocess, then by isomorphism the property extends to all
subprocesses of the parameterized section. Similarly, (4.6) needs to be checked for only
two neighboring subprocesses for each parameterized section using Corollary 1 of Chapter
3. For the distinguished subprocesses, checking (4.8) and (4.9) respectively can also be
done by the procedure in Corollary 1 of Chapter 3. Checking (4.7) is trivial.

47

One of the important properties of Vi in assumption (4.6) of our proposed network
model is that it is preserved throughout the evolution of the network:

Proposition 7. Let GN be the cycle defined in (4.3). Then for all (xi−1, xi) ∈ Ri, where
Ri is the state set of synchronous product Gi−1‖Gi,

(xi−1, xi) ∈ Vi. (4.10)

Proof. By Proposition 1 of Chapter 3: specifically, by assumption, (x0
i−1, x

0
i) ∈ Vi, where

Vi is a weak invariant simulation w.r.t. Σi−1∩Σi. Since (Σi−1∩Σi) ⊆ Σi, the result follows
from the definition of weak invariant simulation.

4.2 The deadlock analysis

In order to locate circular waits among the subprocesses, we initially focus on the indi-
vidual cycles in the network graph. For that analysis, we disable transitions of certain
distinguished subprocesses in a cycle of the network graph to yield a subgraph with ring
structure. The next function will be used to restrict the transitions of subprocesses.

Definition 9. For a given generator Gi, Gi(
∆i→) is the restriction of the generator to a

transition function ξ̂ : Xi×∆i → Xi and is formed by erasing transitions with events that
belong to the set Σi \∆i, and unreachable states. Formally, Gi(

∆i→) = (X̂i,Σi, ξ̂i, x
0
i , Xmi

)
and

ξ̂i(xi, σ) =
{
ξi(xi, σ), if σ ∈ ∆i;
∅, if σ ∈ Σi \∆i.

,

and X̂i ⊆ Xi such that for all x̂i ∈ X̂i, ∃l ∈ Σ∗i such that x̂i ∈ ξ̂i(x0
i , l).

Note that the above operation does not alter the alphabet set of Gi; it prevents the
occurrence of any events in Σi \∆i by altering the transfer function of the generator.

Next, we define an isolated cycle in the GPDES network. For any cycle in the network,
the isolated version is calculated by disabling shared events of distinguished subprocesses
with the rest of the network:

Definition 10. LetGN be the cycle defined in (4.3). The isolated cycle ĜN = (X̂,Σ, ξ̂, x0, Xm)
is the ring network formed by restriction of all subprocesses of GN to transitions that are
not shared with subprocesses outside of GN . Formally, let ∆i = (Σi−1 ∩ Σi ∩ Σi+1) ∪ ΣLi

.
Then ĜN =

∥∥∥N
i=1

(Gi(
∆i→)).

48

Note that in GN , the only subprocesses that have events shared with subprocesses
outside of GN are G1 and Gj, j ∈ J , where J is the index set of output vertices of
GN . Therefore, in order to achieve the isolated cycle ĜN , we only need to restrict these
subprocesses.

We imposed restrictions on input and output vertices of each cycle by (4.7-4.9). The
next proposition expresses two properties of vertices of an isolated cycle that are input
and output vertices in the original network graph. Part (a) of the proposition expresses
that whenever states of two neighbors in the original network graph are in weak invariant
simulation relation of assumption (4.9), then these states belong to another weak invariant
simulation relation in the isolated cycle; however, part (b) indicates that assumption (4.8)
is essentially preserved for the restricted subprocesses of the isolated cycle.

Proposition 8. Consider cycle GN defined in (4.3), and isolated cycle ĜN .

(a) Let j ∈ J , where J is the index set of output vertices. Assume (xj, xj+1) ∈ Qj+1,
where Qj+1 is the weak invariant simulation of Gj+1 by Gj w.r.t. Σj \ Σj−1. We then
have (xj, xj+1) ∈ V̂j+1, where V̂j+1 is the weak invariant simulation of Ĝj+1 by Ĝj w.r.t.
ΣGi
∩ ΣGi+1 .

(b) Let R̂2 be the state set of the synchronous product Ĝ1‖Ĝ2. For all (x1, x2) ∈ R̂2,
(x1Ŵ2x2), where Ŵ2 is the weak invariant simulation of Ĝ2 by Ĝ1 weak invariant
simulations w.r.t. all shared events of G1.

Proof. (Part (a)) By assumption (xj, xj+1) ∈ Qj+1. Therefore by the definition of weak
invariant simulation, for any lj+1 ∈ Σ∗j+1 with ξj+1(xj+1, lj+1) 6= ∅, there exists string
lj ∈ Σ∗j such that ξj(xj, lj) 6= ∅,

PΣj\Σj−1(lj) = PΣj\Σj−1(lj+1), (4.11)

and for all x′j ∈ ξj(xj, lj) and x′j+1 ∈ ξj+1(xj+1, lj+1), (x′j, x′j+1) ∈ Qj+1. But lj+1 ∈ Σ∗j+1,
therefore

PΣj\Σj−1(lj+1) = PΣj∩Σj+1(lj+1). (4.12)

This means that lj contains no event shared with Pj+1; therefore ξ̂j(xj, lj) 6= ∅ and
PΣj\Σj−1(lj) = PΣj∩Σj+1(lj). By (4.11) and (4.12), PΣj∩Σj+1(lj) = PΣj∩Σj+1(lj). Hence
by the definition of weak invariant simulation, (xj, xj+1) ∈ V̂j+1. Note that because the
pair (x′j, x′j+1) is also member of Qj+1, we can use the same argument for this pair to
conclude it belongs to V̂j+1.

49

(Part(b)) By the fact that R̂2 ∈ R2, (4.8) and the definition of weak invariant simula-
tion. Details are omitted due to similarity to proof of part(a).

The following lemma expresses an important property of our proposed network: con-
sider cycle GN defined in (4.3) and let ĜN be the isolated version of GN . Then regardless
of the evolution of the network, all the shared events of a given subprocess Ĝi, 1 < i ≤ N ,
with the neighbor of ‘lower’ index, namely Ĝi−1, can eventually be executed via a string
whose execution does not change the states of subprocesses Ĝi+1 to ĜN .

Lemma 3. Consider GN defined in (4.3) and let ĜN = (X̂,Σ, ξ̂, x0, Xm) be the isolated
version of GN . For all x ∈ X̂ and all i 6= 1, we have

(∀σi−1 ∈ Σi−1 ∩ Σi)[(ξi(xi, σi−1) 6= ∅)
⇒ (∃s ∈ (Σ \ Σ̃)∗)(ξ̂(x, sσi−1) 6= ∅)], (4.13)

where Σ̃ = ⋃N
k=i Σk.

Proof. ĜN has the topology of a ring network. Let j ∈ J , where J is the index set of
output vertices. According to Proposition 8.(a), ĜjViĜj+1 and by Proposition 8.(b), for
all x ∈ R̂2, xjW2xj+1, where R̂2 is the state set of the synchronous product Ĝ1‖Ĝ2. Let
x ∈ X̂ be such that for some i 6= 1 and σi−1 ∈ Σi−1 ∩ Σi,

ξi(xi, σi−1) 6= ∅. (4.14)

According to Proposition 7, (xi−1, xi) ∈ Vi, therefore by (4.14) and the definition of weak
invariant simulation, there exists a string li−1 ∈ (Σi−1 \ Σi)∗ such that χi−1(σi−1) ∈
ξi−1(xi−1, li−1). If li−1 has no events shared with Gi−2 (consists of local events only);
χi−1(σi−1) can be reached in the global model by a local string of Gi−1. This satisfies
(4.13).

For the case that li−1 contains shared events with Gi−2, the proof of reachability of
χi−1(σi−1) in Gi−1 within the global model is by induction on subprocess indices. To form
the base case of the induction, let i = 2. By assumption (4.8), for any x ∈ X, x1W2x2.
By (4.14), we have ξ2(x2, σ1) 6= ∅; then, according to the definition of weak invariant
simulation, there exists string l1 ∈ (ΣL1)∗ such that ξ1(x1, l1σ1) 6= ∅. Since l1 consists of
only local events of G1, we have l1 ∈ (Σ \ ⋃Nj=2 Σj)∗ and satisfies (4.13). This forms the
base case of the induction.

50

For the induction hypothesis, assume (4.13) holds when i is replaced with some k > 1;
we will show that (4.13) holds for k + 1. Suppose that for some event σk ∈ Σk ∩ Σk+1,
we have ξk+1(xk+1, σk) 6= ∅. Then by the same reasoning as above, there exists a string
lk ∈ (Σk \ Σk+1)∗ such that χk(σk) ∈ ξk(xk, lk). The only possible shared events of lk are
with Gk−1. Let αk−1 be the first shared event of lk with Gk−1. According to the induction
hypothesis, there exists string s ∈ (Σ \ ⋃Nj=k Σj)∗ such that ξ(x, sαk−1) 6= ∅. Therefore
shared event αk−1 can be executed within the global model by a string s that contains no
event in ⋃Nj=k Σj. The proof for reachability of the rest of the shared events of lk within the
global network is similar. Since (Σ \ ⋃Nj=k Σj) ⊆ (Σ \ ⋃Nj=k+1 Σj), we conclude that there
exists a string ŝ ∈ (Σ \ ⋃Nj=k+1 Σj)∗ such that PΣk

(ŝ) = lk and ŝ can be executed within
the global model. Since χk(σk) ∈ ξk(xk, lk) and ξk+1(xk+1, σk) 6= ∅, σk can be executed and
this completes the proof.

4.2.1 Forward dependency property

Here we define a forward dependency property based on synchronous products of neighbor-
ing subprocesses in an isolated cycle of the network. This property aims to characterize
the occurrence of a circular wait. According to Lemma 3, in an isolated cycle all the events
of a subprocess shared with the neighbor of ‘lower’ index, can eventually be executed.
Therefore the only shared events that may be blocked in an isolated cycle are the ones
that are shared with the neighbor of ‘larger’ index. A state pair in a synchronous product
of two neighboring subprocesses is forward dependent if the only event defined from it in
the synchronous product is an event shared with the larger-index neighbor.

Definition 11. Consider cycle GN = ‖Gi, 1 ≤ i ≤ N defined (4.3) and let ĜN =
(X̂,Σ, ξ̂, x0, Xm) be the isolated version of GN . For any i, 1 ≤ i ≤ N , let R̂i be the
state set of the synchronous product Ĝi−1‖Ĝi = (R̂i,Σi−1 ∪Σi, δi, x

0
i−1× x0

i , Xmi−1 ×Xmi
).

For a state pair (xdi−1 , xdi
) ∈ R̂i, we define the following property

(∀σi ∈ Σi−1 ∪ Σi)[(δi((xdi−1 ,xdi
), σi) 6= ∅)
⇒ (χi+1(σi) 6= ∅)]. (4.15)

A state xd ∈ X1 × X2 × ... × XN , is forward dependent if for all i, (xdi−1 , xdi
) ∈ R̂i and

(xdi−1 , xdi
) satisfies (4.15). We denote by Xd ⊆ X the set of all forward dependent states

of cycle GN .

If a state pair (xi−1, xi) ∈ R̂i satisfies (4.15), it means that the only transitions available
from this pair in the synchronous product Ĝi−1‖Ĝi are shared with the neighbor of ‘larger’

51

index in the isolated cycle, namely Ĝi+1. For a reachable state x in ĜN , if property (4.15)
holds for all i, then all the subprocesses of ĜN are waiting for execution of an event shared
with their respective immediate neighbors with larger index. Note that for such a state x,
there can be events shared with subprocesses outside of cycle GN defined from x1 or xj,
i ∈ J , where J is the index set of output vertices of GN . Execution of these shared events
may break the circular wait within the cycle. Therefore existence of a circular wait in a
cycle of the network may not necessarily cause a deadlock. We introduce the dependency
graph in Section 4.2.2 to locate generalized circular waits among multiple cycles of the
network which cause a local deadlock.

Reachability of forward dependent states

For deadlock analysis, we initially consider cycle GN = (X,Σ, ξ, x0, Xm) in (4.3) and its
isolated version ĜN . We shall show that any state xd ∈ Xd that satisfies the forward
dependency property (4.15) is reachable in ĜN . This in turn means that xd is reachable
in GN . The next proposition is the first step in proving this reachability. It states that
in GN , if there exists xd ∈ Xd and a reachable state x ∈ X of GN such that for some k,
1 ≤ k ≤ N , xdk

and xk are one and the same, then there exists an executable string l that
takes Gk−1 from xk−1 to xdk−1 and contains no event from alphabets of subprocesses Gk to
GN .

Proposition 9. Consider GN = ‖Gi = (X,Σ, ξ, x0, Xm), 1 ≤ i ≤ N , defined in (4.3). Let
ĜN = ‖Ĝi = (X̂,Σ, ξ̂, x0, Xm), 1 ≤ i ≤ N , be the restricted version of GN . Consider state
xd ∈ Xd of Definition 11, and a state x ∈ X̂. For any k ∈ {2, 3, ..., N}, if xk and xdk

are
one and the same, then there exists a string l ∈ (Σ \ ⋃Nr=k Σr)∗ such that ξ̂(x, l) 6= ∅ and
xdk−1 ∈ ξ̂k−1(xk−1, PΣk−1(l)), where ξ̂k−1 is the transition function of Ĝk−1.

Proof. See the appendix.

Now, using the above proposition, the next lemma shows that any state in the state set
of an arbitrary cycle of our proposed network that satisfies forward dependency property
of Definition 11 is reachable within the isolated cycle, and hence in the global GPDES
network.

Lemma 4. Consider cycle GN = (X,Σ, ξ, x0, Xm) in (4.3), and let ĜN = (X̂,Σ, ξ̂, x0, Xm)
be the isolated version of GN . If the state subset Xd in Definition 11 is nonempty, then all
of its members are reachable in ĜN .

52

NG

0
Nx

1G 2G

Nd
x

0
1x

1d
x

1v

1

0
2x

1

2w
1v

1v

2k1k

Nα

Nα
Nk

Figure 4.1: Subprocesses GN and G1 and the weak invariant simulation relation between
them in the proof of Lemma 4.

Proof. The transitions and weak invariant simulations that appear in this part of the proof
are shown in Figure 4.1. Consider an arbitrary xd ∈ Xd. For any i, 1 ≤ i ≤ N , by Definition
11, we have (xdi−1 , xdi

) ∈ Ri. Therefore by (4.6) and Proposition 7, we have

(∀i)(xdi−1 , xdi
) ∈ Vi, (4.16)

where Vi is a weak invariant simulation w.r.t. Σi−1 ∩ Σi. By (4.8) and reachability of
(xd1 , xd2) in G1‖G2,

(xd1 , xd2) ∈ W2. (4.17)

where W2 is a weak invariant simulation w.r.t. ΣS1 .
According to the definition of isolated cycle ĜN , the only subprocesses affected by

isolation are G1 and Gj, j ∈ J , where J is the index set of output vertices. Therefore Ĝ2

and G2 are one and the same. This means that Ĝ2 satisfies (4.4). By this assumption,
there must exist a path in Ĝ2 from xd2 to an event in Σ1 ∩ Σ2. Therefore by (4.17),
and the definition of weak invariant simulation, there exists a transition defined from
xd1 . But according to (4.15), the only transitions defined from xd1 are via events that

53

are shared transitions with Ĝ2. Let σ1 ∈ Σ1 ∩ Σ2 be such that ξ1(xd1 , σ1) 6= ∅. By the
definition of Xd, χ2(σ1) is nonempty. Again by (4.4), there exists a string k2 ∈ Σ∗2 such that
χ2(σ1)∩ξ2(x0

2, k2) 6= ∅. By (4.8), (x0
1, x

0
2) ∈ W2; therefore by the definition of weak invariant

simulation there exists string k1 ∈ ((Σ1 ∩ Σ2) ∪ ΣL1)∗ such that χ1(σ1) ∩ ξ1(x0
1, k1) 6= ∅.

Therefore by (4.5) and the fact that k1 ∈ ((Σ1 ∩Σ2)∪ΣL1)∗, we have xd1 ∈ ξ̂1(x0
1, k1) 6= ∅.

In other words, xd1 is reachable in Ĝ1. On the other hand, by setting i = 1,

(x0
N , x

0
1) ∈ V1. (by (4.6))

Therefore by the definition of weak invariant simulation, and the fact that k̂1 contains no
event shared with GN ,

(x0
N , xd1) ∈ V1. (4.18)

By (4.4), there exists a shared event αN ∈ ΣN ∩ Σ1 whose companion state in G1 is
accessible from xd1 via strings in (Σ1 \ΣN)∗. According to (4.16), we also have (xdN

, xd1) ∈
V1, and by (4.15) the only transitions defined from xdN

are shared transitions with G1.
Hence

ξN(xdN
, αN) 6= ∅. (4.19)

But (x0
N , xd1) ∈ V1, therefore there must exist a string kN ∈ (ΣN \ Σ1)∗ such that

χN(αN) ∈ ξN(x0
N , kN) (by (4.5) and (4.19))

But isolation of GN has no effect on GN (because according to network structure, GN is
not a distinguished subprocess); therefore (xdN

∈ ξ̂N(x0
N , kN)). String kN belongs to the

set (ΣN \ Σ1)∗, in other words it contains no event shared with G1. By Lemma 3, all the
shared events of kN with ĜN−1 can eventually be executed, therefore ĜN can reach xdN

within the global system.
By Proposition 9, (xdN−1 , xdN

) can be reached in the isolated cycle ĜN . But again, we
use Proposition 9 and the fact that ĜN−1 can reach xdN−1 , to show that xdN−2 ,xdN−1 , and
xdN

are simultaneously reachable in ĜN . With the same reasoning and after N − 1 times
application of Proposition 9, it can be shown that state xd ∈ Xd is reachable ĜN . Since
ĜN is the restricted version of GN .

54

4.2.2 Dependency graph

The forward dependent states of isolated cycles need not represent partial or global dead-
locks in the global GPDES network. For the purpose of this chapter, we define local
deadlocks. A local deadlock refers to the case where the subprocesses of one or multiple
cycles in the GPDES network cannot execute any event regardless of the evolution of the
rest of the network.
Definition 12. Let X ′ be the state set of subprocesses of a strongly connected subgraph of
the network graph (that is, the Cartesian product of the state sets of these subprocesses);
then x ∈ X ′ is a local deadlocked state if no transition is possible from x within the global
network.

Our global analysis is a generalization of an analysis of individual isolated cycles of the
network. We relate the local deadlocks to forward dependent states by construction of a
directed graph called the dependency graph.

The procedure to calculate arcs (AD) and vertices (VD) of the dependency graph is
given in Algorithm 1: to build the graph, we first calculate the set of state pairs that
satisfy (4.15) for each isolated cycle of the network graph (set Depend). All states x′ or
x′′ such that (x′, x′′) ∈ Depend are the vertices of the dependency graph. All pairs (x′, x′′)
such that (x′, x′′) ∈ Depend are the arcs of the dependency graph.

Construction of the dependency graph involves the following operations. First locat-
ing all cycles of the network graph; given the fact that the network has only one input
vertex, the time complexity of this operation is the same as depth first traversal of a
tree: O(|V |), where V is the vertex set of network graph. Second, for each cycle, calcu-
lation of isolated cycles of the network graph with time complexity O(|A||V |M2

1), where
A is the arc set of the network graph and M1 is the maximum number of events in all
the subprocess of the network. Finally execution of Algorithm 1 with time complexity
O((M2

4M1)(|A| + |V |2)), where M2 is the maximum numbers of states in all subprocess
of the network. Therefore the overall complexity of the construction of the dependency
graph is O(|A||V |M2

1 + (M2
4M1)(|A|+ |V |2)).

The next definition states the consistency property of a subgraph of the dependency
graph and explains how a consistent subgraph of the dependency graph represents a state
of a part of the network – specifically of a strongly connected subgraph of the network
graph.
Definition 13. A strongly connected subgraph D̄ of the dependency graph D , is consistent
if it contains a state of the input vertex and does not contain two states of any distinguished
subprocess.

55

Algorithm 1 The creation of dependency graph D .
for all linear PDES of the network graph do
S =synchronous products of two neighboring subprocesses
Depend = pairs in state set of S that satisfy (4.15) ∪ Depend

end for
for all isolated cycles in the network graph do

Uniformly label subprocesses from Ĝ1 to ĜN

for all k ∈ K, where K is the index set distinguished subprocesses do
Sk = Ĝk−1‖Ĝk, Sk+1 = Ĝk‖Ĝk+1.
Depend = pairs in state set of Sk and Sk+1 that satisfy (4.15) ∪ Depend

end for
end for
VD = the set of all states x′ or x′′ such that (x′, x′′) ∈ Depend
AD = all pairs (x′, x′′) such that (x′, x′′) ∈ Depend.

A consistent subgraph D̄ represents a set of states; each member of the set is the state
of subprocesses of a strongly connected subgraph of the network graph: if a vertex is the
state of a distinguished subprocess, the vertex represents the state of that distinguished
subprocess. The direct successors of that vertex in D̄ represent the states of adjacent
subprocesses in parameterized sections of the network. In turn, a direct successor of one
of the latter vertices represents the state of a possible neighboring subprocess whether it
be a distinguished subprocess or another subprocess in the same parameterized section.

For an example of consistent subgraphs and the states they represent see the case study
of the chapter (Section 4.3).

The next proposition expresses that for any component xi of a forward dependent state
x, there exists an event defined from xi in Gi that is shared with Gi+1. Then it shows
that any state represented by a cycle in a consistent subgraph of the dependency graph is
reachable in the corresponding isolated cycle of the network.

Proposition 10. Consider cycle GN = (X,Σ, ξ, x0, Xm) in (4.3), and let

ĜN = (X̂,Σ, ξ̂, x0, Xm)

be the isolated version of GN . Let x ∈ X be represented by a cycle in a consistent subgraph
of the dependency graph D and J be the index set of output vertices of GN in the network
graph. (a) For any j ∈ J , (xj, xj+1) ∈ Qj+1, where Qj+1 is the weak invariant simulation

56

of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1. (b) For any xj, i ∈ J , 1 ≤ j ≤ N , there exists an event

σ ∈ Σj ∩ Σj+1 such that ξ̂j(xj, σj) 6= ∅. (c) Any such state x is reachable in ĜN .

Proof. See the appendix.

To formulate an appropriate generalization of circular waits, we define full subgraphs.
This property deals with the issue of output subprocesses in deadlock analysis: a state of
an output subprocess may have events shared with subprocesses of different parameterized
sections of the network. In a deadlock, none of these shared events can be executed.
Therefore, to locate deadlocks we need to consider subgraphs of the dependency graph that
take account of all such events that are possible in a given state of the output subprocess.

Definition 14. Let D̄ be a subgraph of the dependency graph D . In D̄ , consider vertex
xj of an output subprocess Gj in the network graph. For every event σ defined from xj in
Gj that is shared with a direct successor of Gj in the network graph, let Y σ be the state set
of that direct successor. Subgraph D̄ is full if for every such xj and σ, and some yσ ∈ Y σ,
D̄ contains the arc (xj, yσ).

By Proposition 10, the existence of an arc in the dependency graph indicates the forward
dependency of the corresponding state pair in the arc.

Consistent subgraphs are strongly connected by definition. It follows that full, con-
sistent subgraphs represent sets of states that constitute generalized circular waits. In
support of this interpretation, we have the following claim.

Claim 1. Any full, consistent subgraph of the dependency graph represents a set of locally
deadlocked states in the proposed GPDES network.

Our goal is to detect all reachable generalized circular waits in the global network. The
output-reachability property defined below provides a necessary and sufficient condition
for the reachability of states represented by a full, consistent subgraph of the dependency
graph.

Definition 15. Consider a full, consistent subgraph of the dependency graph D , and let
x be a state that it represents. Let J be the index set of output vertices. This subgraph
is output-reachable if every state xj of Gj, j ∈ J , is reachable in Gj by local events and
events shared with its unique direct predecessor in the network graph.

57

1jG

1G jG

2jG

NG

1NG

2G 3G 1jG

1jP2jP1MP
MP

1G jG

Cycle number
one.

Cycle number
one.

Cycle number
two.

Cycle number
two.

Figure 4.2: (a) Graph representation of a network with branching which has two cycles
and three parameterized sections (b) Equivalent presentation of the network in part (a).

While a consistent subgraph represents a set of states each corresponding to specific
instance of the GPDES, it determines a unique state xj, j ∈ J of any output subprocess.
To check output-reachability of a subgraph, it suffices to check the appropriate reachability
of all states xj, j ∈ J , within the respective Gj.

The next claim deals with the reachability of the set of locally deadlocked states cal-
culated by Claim 1.

Claim 2. A state represented by a full, consistent subgraph of D is reachable in global
GPDES G if and only if that subgraph is output-reachable.

Claims 1 and 2 will be proved as Theorem 5 below. The rest of the chapter concerns
technical details that lead to the proof of the theorem.

4.2.3 Technical details of the analysis

The proof of the above claim in the proposed network topology is involved. To aid read-
ability, we therefore first consider the particular network structure of Figure 4.2 and carry

58

j
G

0

1jG

0

1jP

0

β α

γ δ

jy

1jy

1jy

δ

β

α

γ

2l

1l

12

3 4

Figure 4.3: Subprocesses Gj, Gj+1 and Pj+1 in the proof of Proposition 11. The unlabeled
transitions in Gj contain only local events and events shared with Gj−1. In order for
y′j,y′j+1,y′′j+1 to be simultaneously reachable in the global network, there must a path in Gj

from state 0 to y′j that contains both γ and δ. This path is shown by solid transitions. The
dotted transition l1l2 in Gj consist of local events and events shared with Gj−1.

out the deadlock analysis (Theorem 4). Then we generalize the results to proposed network
topology by induction on the structure of the network (Theorem 5).

Let D be the dependency graph of the network structure of Figure 4.2 and y be a state
represented by a full, consistent subgraph of D . In y, assume yj is the state of output
subprocess Gj. The following proposition establishes a relation between reachability of y
in the global network and the path defined from y0

j to yj in Gj.

Proposition 11. Consider cycleGN = (X,Σ, ξ, x0, Xm) in (4.3), and the network structure
of Figure 4.2. Let Pj+1 = (XPj+1 ,ΣPj+1 , ξPj+1 , x

0
Pj+1

, XmPj+1
). Let y be a state represented

by a full, consistent subgraph D̄ of the dependency graph of the network. Assume events
α ∈ Σj+1 and β ∈ ΣPj+1 are defined from yj in Gj. State y is reachable in the global
network if and only if D̄ is output-reachable.

Proof. Let y′ and y′′ be the components of y corresponding to states of cycles one and two

59

respectively. Then y′1 to y′j and y′′1 to y′′j are one and the same, corresponding to states of
G1 to Gj respectively.

(If) According to Proposition 10(c), y′ and y′′ are forward dependent states. By Propo-
sition 10(c) and Lemma 4 state y′ is reachable in isolated cycle number one and therefore
within the global network. Let states y′1 to y′j be the new initial states of G1 to Gj re-
spectively. We will show that cycle number two can reach y′′ from these initial states
and without changing the states of subprocesses Gj to GN−1 of cycle number one. By
output-reachability assumption, there exists a path in Gj from the initial state to yj = y′j
consisting of local events and events shared with Gj−1. So by (4.9) and the definition of
weak invariant simulation,

(y′j, x0
Pj+1

) ∈ QPj+1

where QPj+1 is the weak invariant simulation of Pj+1 by Gj w.r.t. ΣSj
\Σj−1. Therefore by

Proposition 8.(a), (y′j, x0
Pj+1

) ∈ V̂Pj+1 , where V̂Pj+1 is a weak invariant simulation of Pj+1

by Ĝj w.r.t. events shared between Ĝj and Pj+1 (Pj+1 is not affected by the isolation
of the cycle number two). Therefore by Proposition 8.(b), cycle number two satisfies the
assumptions of Lemma 4. In fact, by the proof of Lemma 4, y′′ is reachable in isolated
cycle number two. This means that components y′ and y′′ of y are simultaneously reachable
within the global network.

(Only if) Assume that state y is reachable within the global state network. We will
show that there exists string r containing only local events and events shared with Gj−1
such that yj ∈ ξj(x0

j , r). By assumption, shared events β and α are defined from yj. Since
y is a forward dependent state, by Proposition 10(a),

(y′j, y′j+1) ∈ Qj+1,

where Qj+1 is the weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1. By (4.4),

and the fact that α is defined from y′j, there exists string s′j+1 ∈ (Σj+1 \Σj)∗ and event σ ∈
Σj ∩ Σj+1 such that ξj+1(y′j+1, s

′
j+1σ) 6= ∅. Again by (4.4), there exists string sj+1 ∈ Σ∗j+1

such that y′j+1 ∈ ξj+1(x0
j+1, sj+1). Therefore by (4.5) and the definition of weak invariant

simulation there also exists a path sj from the initial state of Gj to y′j such that the
projections of sj and sj+1s

′
j+1 onto the set ΣSj

\ Σj−1 are the same. If sj contains only
local events and events shared with Gj−1, the result holds. Assume therefore that all such
sj contain an event in Σj ∩ Σj+1. But given that ξj+1(x0

j+1, sj+1s
′
j+1σ) 6= ∅, in order for

(4.9) to hold, any sj+1 must also contain such an event γ. Similarly, consider any path
from x0

Pj+1
to χPj+1(β), and assume it contains an event δ ∈ Σj ∩ ΣPj+1 (see Figure 4.3.)

60

By assumption y′j, y′j+1 and y′′j+1 are simultaneously reachable in the global network.
Therefore, there must exist a string l ∈ Σ∗j such that xj ∈ ξj(x0

j , l) and l contains suitable
events γ and δ. String sj+1 is defined from x0

j+1 in Gj+1; therefore by (4.9) there must
exist a path from x0

j to yj that contains δ but no event in Σj ∩ ΣPj+1 (does not contain
γ). With similar reasoning for Pj+1, there must exist a path from x0

j to xj that contains δ
but no event in Σj ∩ Σj+1 (hence does not contain γ). Since by (4.5) companion states of
shared events γ and δ are unique in Gj, there exists a string from x0

j to yj that contains no
event in Σj ∩ Σj+1 or Σj ∩ ΣPj+1 . This is demonstrated in Figure 4.3. Consider the state
labellings of this figure for the rest of the proof. By (4.9), GjQj+1Gj+1, where Qj+1 is the
weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj

\ Σj−1. Therefore by the definition
of weak invariant simulation, pair (3, y′j+1) ∈ Qj+1. Since the transition between states 3
and 1 consists of only local events and events shared with Gj−1, therefore (1, y′j+1) ∈ Qj+1.
Since Gj+1 can reach companion state of α from y′j+1, by (4.5) there must exists path l2
from state 1 to y′j, containing only local events and events shared with Gj−1. On the other
hand, by (4.9) Gj weakly invariantly simulates Pj+1 w.r.t. ΣSj

\ΣPj−1 . Since δ is reachable
from initial state of Pj+1, by the definition of weak invariant simulation and (4.5), there
must exist a path l1 from initial state of Gj to state 1. Therefore l1l2 constitutes a path
from initial state of Gj to y′j containing only local events and events shared with Gj−1.
Therefore y′ and y′′ are components of a state represented by an output-reachable subgraph
of the dependency graph.

Note that in a network with branching topology Gj may have multiple direct successors
in the graph network, and l may contain events shared with the rest of the direct successors
of Gj in the graph network. However, the general proof is similar to that presented above.

Using the above proposition, we are able to perform deadlock analysis for the network
structure of Figure 4.2. The deadlock analysis involves the following question: is a forward
dependent state represented by a dependency graph in fact a deadlocked state? The next
theorem provides a response for the case of the network structure of Figure 4.2. As we
stated in the network description, there are two types of special vertices in the network
graph: the input vertex and output vertices. The argument of the theorem is based on
shared events defined from the state of an output subprocess.

Theorem 4. Consider a GPDES with the network structure of Figure 4.2. Let D be the
dependency graph of this GPDES. Let GN = (X,Σ, ξ, x0, Xm). Consider state x ∈ X.

(a) Assume there is no event defined from xj in Gj that is shared with subprocesses

61

outside of GN . State x is a (reachable) local deadlock if and only if it is represented
by a consistent subgraph of D .

(b) Assume there is an event defined from xj in Gj shared with Gj+1, and another event
shared with a subprocess outside of GN , say Pj+1. Let Y be the state set if cycle
number two in Figure 4.2(b). States x and y ∈ Y consist of components of a reachable
local deadlock if and only if x and y are components of an output-reachable state
represented by a full, consistent subgraph of D .

Proof. Part (a): (If) Assume x is represented by a full, consistent subgraph of D , but is
not a deadlocked state. According to Proposition 10(c), x is a forward dependent state.
Therefore by Lemma 4 state x is reachable in ĜN , and therefore is reachable within the
global network. By assumption state x is not deadlocked; therefore for some event β ∈ Σj,
ξ(x, β) 6= ∅. By the structure of the network, only G1 and Gj have events shared with
subprocesses outside of GN . But by assumption, there is no event defined from xj in Gj

that is shared with subprocesses outside of GN . By (4.8) and the definition of forward
dependent states, there is an event shared with G2 defined from x1 in G1. Therefore by
(4.7), there is no event defined from x1 that is shared with PM . This means that β is
an event defined in one of the subprocesses of isolated cycle ĜN . Since x is a forward
dependent state, by (4.15) β must be a shared event. Let i, 1 ≤ i ≤ N be such that
β ∈ Σi−1 ∩ Σi. Given that ξ(x, β) 6= ∅, if δi is the transition function of Ĝi−1‖Ĝi, we
have δi((xdi−1 , xdi

), β) 6= ∅. But by (4.15), χi+1(β) 6= ∅. This means that a β transition
is defined both in Ĝi+1 and in Ĝi−1. This contradicts the network assumption that only
neighboring subprocesses have events shared between them.

(Only if) Consider an arbitrary reachable local deadlocked state x ∈ X. We will show
that this state belongs to the subset Xd of Definition 11. Since x is a reachable state, then
for all i, 1 ≤ i ≤ N ,

(xi−1, xi) ∈ Ri, (4.20)

where Ri is the state set of the synchronous product Gi−1‖Gi.
Suppose that for some i, (xi−1, xi) does not satisfy (4.15); i.e., for some σ ∈ (Σi−1 ∪

Σi) \ Σi+1 the transition δi((xi−1, xi), σ) is defined. By assumption, σ is not an event
shared with subprocesses outside of GN . If σ is a local event or σ ∈ Σi−1 ∩Σi, then it can
be executed and this contradicts the assumption that x is a deadlocked state. If σ is in
Σi−2∩Σi−1, this means that ξi−1(xi−1, σ) 6= ∅. We consider two cases: first, if σ /∈ ΣN ∩Σ1,
then by Lemma 3, σ can eventually be executed, a contradiction. If σ ∈ ΣN ∩ Σ1, then
ξ1(x1, σ) 6= ∅ (because δi((xi−1, xi), σ) 6= ∅). Note that Lemma 3 is inapplicable for shared

62

events between GN and G1, so it cannot be directly used to derive a contradiction. From
(4.6) and (4.22), we have, by Proposition 7, (xN , x1) ∈ V1; therefore by the definition of
weak invariant simulation, there exists a string lN ∈ (ΣN \Σ1)∗ such that ξN(xN , lNσ) 6= ∅.
If lN is the empty string, then σ can be executed. If the first symbol of lN is a local event,
then this local event can be executed. If the first symbol of lN is some event ΣN∩ΣN−1, then
by Lemma 3, this event can eventually be executed within the global model. Execution
of any event is a contradiction of the assumption that x is a deadlocked state. Hence we
conclude that (xi−1, xi) satisfies (4.15). This, together with (4.22) means x is in fact a
member of Xd.

Now we show that for all i, (xi−1, xi) ∈ R̂i, where R̂i is the state set of the synchronous
product Ĝi−1‖Ĝi. Because G1 and Gj are the only subprocesses that have shared events
with subprocesses outside of GN , for i 6= 1, j, subprocesses Gi and Ĝi are the same.
Therefore we only need to show (xi−1, xi) ∈ R̂i for i = 1, 2, j, j + 1. By (4.20), (4.6) and
Proposition 7, (xi−1, xi) ∈ Vi. According to (4.4), there must exist an event defined from
xj. With the reasoning provided above, this event must be in Σj ∩ Σj+1. Again by (4.4),
there exists lj+1 ∈ (Σj+1 \ Σj)∗ such that for some σ ∈ Σj ∩ Σj+1, ξj+1(xj+1, lj+1σ) 6= ∅.
Therefore by (4.9), and the fact that events defined from xi are in Σj ∩ Σj+1, we must
have ξj(xj, σ) 6= ∅. Let sj+1 be the string labeling any path from x0

j+1 to xj+1. Consider
string sj+1lj+1. Since ξj+1(xj+1, sj+1lj+1) 6= ∅, by (4.9), there must exist a string sj ∈ Σ∗j
such that ξj(xj, sjσ) 6= ∅ and PΣSj

\Σj−1(sj) = PΣSj
\Σj−1(sj+1lj+1). But lj+1 ∈ (Σj+1 \ Σj)∗;

therefore

PΣSj
\Σj−1(sj) = PΣSj

\Σj−1(sj+1). (4.21)

Since sj+1 ∈ Σ∗j+1, sj contains no event shared with Pj+1. By (4.5), companion state of
σ in Gj is unique, therefore (xj−1, xj) ∈ R̂j. By (4.21), PΣj∩Σj+1(sj) = PΣj∩Σj+1(sj+1).
Therefore (xj, xj+1) ∈ R̂j+1. Similar reasoning can be used to show that (xN , x1) ∈ R̂1 and
(x1, x2) ∈ R̂2. Therefore for all i, 1 ≤ i ≤ N ,

(xi−1, xi) ∈ R̂i, (4.22)

Part (b): By Proposition 11, states x and y are simultaneously reachable. Here we
will only show that x and y are components of a local deadlock if and only if x and y are
components a state represented by a full, consistent subgraph of D .

(If) We assume that x and y are components of a state represented by a full, consistent
subgraph of D , and show that they are components of a local deadlock. States x and y are
forward dependent states; by Proposition 10(b) some event α ∈ Σj+1 (β ∈ ΣPj+1) is defined

63

from xj in Gj. Furthermore, by the forward dependency property no local events or events
in Σj−1 are defined from xj. Without loss of generality, we assume that only α and β are
defined from xj. Event β is shared with Pj+1, but Pj+1 to Pj+M are in states yj+1 to yj+M .
Since y is a forward dependent state, the only events defined from yk, j + 1 ≤ k < j +M ,
are shared with respective neighbors of ‘larger’ index. The only shared event defined from
yj+M is shared with G1. This forms a circular wait. Therefore no event other than α can
occur from state y. But since β cannot be executed and cycle number one is in a forward
dependent state x, by part (a) of the theorem no event (including α) can be executed from
x. Therefore x and y are components of a local deadlocked state.

(Only if) Consider states x′ ∈ X and y′ ∈ Y such that there is an event defined from
xj in Gj that is shared with Pj+1. Assume that x′ and y′ are simultaneously reachable
local deadlocked states; then x′1 to x′j are the same as y′1 to y′j. We will show that x′ and
y′ are forward dependent states. Since y′ is a local deadlocked state for cycle number two,
no event shared between Gj and Pj+1 can be executed. Therefore by the proof of the ‘only
if’ section of part (a) of the theorem, x′ ∈ Xd. Since x′ is a local deadlock, no event shared
between Gj and Gj+1 can be executed. By similar reasoning, y′ ∈ Yd.

Considering cycle GN in cycle number one, Theorem 4 provides a deadlock analysis
for reachable states of GN based on the state of the distinguished subprocess Gj. The
analysis is done by forming the dependency graph. For each forward dependent state x, a
necessary and sufficient deadlock condition is given based on the transitions defined from
xj (the component of x corresponding to states of Gj). Part (a) of the above theorem gives
the deadlock condition for the case where there is no event defined from xj in Gj that is
shared with subprocesses outside of GN . If there is an event defined from xj shared with
Pj+1, and another event defined from xj shared with Gj+1, then part (b) of the theorem
provides the deadlock condition for both cycle one and two. Finally, if there is an event
defined in xj shared with Pj+1 but no other event defined in xj shared with Gj+1, then by
interchanging cycle number one and two, part (a) of the theorem applies for cycle number
two.

Based on the analysis of the network in Figure 4.2, we are able to perform the deadlock
analysis for the general network with proposed topology. The following theorem, formerly
stated as Claims 1 and 2, relates reachable local deadlocks to states represented by specific
subgraphs of the dependency graph.

Theorem 5. Consider GPDES G with proposed branching topology. Let D be the de-
pendency graph of this GPDES. For any full, consistent subgraph D̄ of D we have: (a)
Any state x represented by D̄ is a local deadlocked state. (b) Any such x is reachable in
the global network if and only if D̄ is output-reachable.

64

Proof. (a) Similar to proof of Theorem 4(b): Since S is a full subgraph of the dependency
graph D , by the definition of forward dependency, any event defined from any state of one
subprocess is shared with the ‘next’ subprocess (the next subprocess in the direction of
network graph arcs). This forms a generalized circular wait among the states presented by
S and consequently a local deadlock.

(b) (If) Consider a full, consistent output-reachable subgraph S of D . Assume that x
represented by this subgraph. We show that x is reachable in G . The proof is by induction
on the structure of this subgraph. Since S is consistent, it contains a cycle that includes
the input vertex. By Lemma 4 the state x ∈ Xd of this cycle is reachable within the global
network. This forms the base case of the induction. Now consider a consistent subgraph
S ′ of S and assume it represents a reachable state set in G . If S ′ and S are the same;
we then have the the result by assumption. Otherwise, there must exist an output vertex
in S ′ and an arc from that vertex that exists in S but not in S ′. Therefore there exists
a consistent subgraph S ′′ of S that is formed by adding a path to S ′ from an output
vertex to the input vertex. By assumption, the state represented by S ′ is reachable. Now
consider the cycle in S ′′ that includes the new path. By the proof of Theorem 4(b),
the state represented by this cycle and the state represented by S ′ are simultaneously
reachable. This completes the induction. Therefore S represents a reachable state in
GPDES G .

(Only if) Similar to the proof of the ‘only if’ part of Proposition 11.

4.2.4 Applicability of the results to general networks

The framework presented in this chapter can be extended to more general network topolo-
gies. In this thesis, we considered a GPDES network represented by directed graph. We
assumed two specific limitations for the graph representation of the network:

(a) network graph contains only one input node;

(b) network graph is strongly connected.

The main purpose of the first assumption is avoidance of cumbersome mathematical proofs.
The results of this chapter can be extended to the case of a network represented by a
strongly connected graph and contains multiple input nodes. However, all the input nodes
of the network must satisfy (4.7) and (4.8). For this extension, we use a slightly different
version of the definition of consistency of subgraphs of the dependency graph:

65

Definition 16. A strongly connected subgraph D̄ of the dependency graph D , is consistent
if it contains a state of any input vertex and does not contain two states of any distinguished
subprocess.

In the above updated version of the definition, a consistent subgraph is required to
contain at least one of the input nodes. Using this definition, it can easily be shown that
the result of Theorem 5 holds for the extended network.

The second assumption on the graph representation of the network is the strong con-
nectivity. Since our main concern is calculation of reachable generalized circular waits,
this assumption is arguably natural. In any case, this assumption may also be removed;
however the extension of results involves re-writing some the proofs without the use of
notion of isolated cycle. Note that in a network without strong connectivity assumption,
there may be some subprocesses that do not belong to any cycle. The results of the paper
are not dependent on the use of isolated cycles. This notion is employed mainly because
of the similarity of the analysis of isolated cycles to that of ring networks (Chapter 2).
Algorithm 1 can also be re-written without use of isolated cycles, by appropriate disabling
of events of output nodes in specific steps of the algorithm.

4.3 Illustrative example: small factory

To illustrate our framework, we present a large-scale factory consisting of three ‘distin-
guished’ machines, A1, A2 and A3, three parameterized production lines P , P ′ and G, and
two parameterized buffers, B and B′. Figure 4.4.(a) shows the graph representation of the
network and Figure 4.4.(b) is the equivalent GPDES of network graph.

The distinguished subprocess A1 with event set {in, s1, fN , cM , c
′
M ′} provides workpieces

required for the factory by either receiving parts from factory input (local event in), or
from production lines G, P and P ′ by events fN , cM and c′M ′ respectively.

The ith and i− 1th, 1 < i < NG, subprocesses of production line G are shown is Figure
4.6(a). A workpiece can be sent back and forth between subprocesses of this production
line. Subprocess Gi receives parts from Gi−1 by event fi−1 and enters state 2. In this state,
it decides to either process the part (local event proc) or return the part to Gi−1 by first
executing event ri−1. This event prepares Gi−1 to receive a part from Gi. From state 3,
Gi can return a part to Gi−1 by executing bi−1 or it can send the piece back to state 2 by
local event re. A processed part in state 4 will be sent to the next subprocess by event fi
unless Gi receives handshaking event ri from Gi+1.

66

i d
1A

1B
1NB 2A

3A

1GGNG

1B

2NB

1P

MP

1P

MP

)(a

)(b

1A

3A

2A
B

G

B
P

P

Figure 4.4: (a) Graph representation of large-scale factory example. B and B′ are buffers
and G, P and P ′ are production lines. Arcs indicate a linear parameterized section and
nodes indicate a distinguished subprocess. A1 is an input node; A2 and A3 are output
nodes. (b) Subprocesses of large-scale factory GPDES. M , M ′, NG are parameters of
production lines P , P ′ and G; N1 and N2 are parameters of buffer B and B′ respectively.

Subprocesses of buffers B and B′, have similar structure that is depicted in Figure
4.6(b) and 4.6(c). We assume buffer B and B′ have N1 and N2 buffer cells respectively.
The ith subprocess of B (B′) receives a part from i−1th subprocess of B (B′) by executing
event si−1 (s′i−1) and sends a part to the next subprocess by executing event si (s′i).

The distinguished subprocess A2 decides what to do with the workpieces: it receives a
part from the buffer B (event sN1), and examines the part. It can send the workpiece out
of the factory by execution of local event d. It can also send the workpiece to production
line G by event f0, or to buffer B′ by event s′0. Subprocess G1 can return a part to A2 by
performing event b0.

The distinguished subprocess A3 receives workpieces from buffer B′ by event s′N2 and
sends the workpiece to production line P and P ′ by events c0 and c′0. Subprocess A3
can engage in the workpiece processing with P and P ′ by executing events d0 and d′0
respectively. Event h0 is a handshaking signal between P ′1 and A3, indicating that P ′1 have
successfully sent the workpiece to P ′2.

67

0s
Nf

MM cc ,
`

i
2

1

10, jsb 0, fd

2

0r

0s

1

2Ns

0c
3

0d

0c
0d

2

1

1

4
1

0e

Figure 4.5: The structure of distinguished subprocesses of the large-scale factory example.
(a) Subprocess A1. (b) Subprocess A2. (c) Subprocess A3.

In production line P , a subprocess Pi, 1 < i < M , receives a workpiece from neighbor
Pi−1 by event ci−1. Then it decides between two actions: it can salvage the workpiece for
its material by executing local event sal, or it can process the workpiece together with Pi−1
by executing shared event di−1. In this case subprocess Pi sends the processed workpiece
to Pi+1 by event ci and informs Pi−1 that the workpiece was sent by performing hi−1.

In production line P ′, a subprocess P ′i , 1 < i < M ′, receives a workpiece from neighbor
P ′i−1 by event c′i−1. Then it processes the workpiece together with P ′i−1 by executing shared
event di−1. From state 1, Pi can also produce its own workpiece by local event pr, then
send the workpiece to subprocess P ′i+1 and process it together with that subprocess (events
ci and di).

It is easy to check that all three cycles in the graph representation of the network satisfy
(4.4-4.6) and the distinguished subprocesses satisfy (4.7-4.9). Since the network described
above satisfies the assumptions of our proposed framework, we can use the results of Theo-

68

23

4

ib1ifif 1ib

ir

1ir

1

3

4

1ib2if
1if 2ib

1ir

2ir

1

2

proc

re

proc

re

iG 1iG

2is 1is is1is is1is1is2is

1

2 2 2 2

1 1 1

(a)

(b) (c)

1iB iB iB
1iB

Figure 4.6: The structure of i− 1th and ith subprocesses of (a) production line G, (b) buffer
B, (c) Buffer B′.

rem 5 for deadlock analysis. The first step for deadlock analysis is to build the dependency
graph by application of Algorithm 1. The dependency graph of for the GPDES network
of this example is given in Figure 4.8.(a). Full and consistent subgraphs of dependency
graph D are D1 and D2, depicted in Figure 4.8 part (b) and (c), respectively. Both of these
subgraphs are output reachable.

Subgraph D1 represents the following state set: subprocess A1 is in state 1, subprocesses
of buffer B are in state 2, subprocess A2 is in state 2, subprocesses of buffer B′ are in state
2, A3 is in state 2 , subprocesses of P ′ are in state 2. According to D1, first subprocess of
P , namely P1, is in state 5 and the next subprocess of P , P2, is in state 3. Similarly for
all the Pi, 1 ≤ i ≤ M , if i is an odd number, then Pi is in state 5 and if i is even, then Pi
is in state 3. Since in D1, state 3 of P is connected to state 2 of A1, the last subprocess of
P , namely PM , is in state 3. In other words, the represented state set is for the case that
production line P has an even number of subprocesses (M is even). According to Theorem

69

1ic
1id

id

2

1

4

3

ic

2ic
2id

1id

1ic

1ic

1id 1ie

id ie

2

1

4

3
ic

2ic

2id 2ie

1id 1ie

1ic

5

2

1

4

3

5

salsal

pr

2

1

4

3

pr

Figure 4.7: (a) The structure of i− 1th and ith subprocesses of (a) production line P and
(b) production line P ′.

5, this is a reachable local deadlocked state set. Similarly, subgraph D2 represents another
set of locally deadlocked states. Note that subgraph D2 represents a set of local deadlocked
states for the case that M is odd: for all the Pi, 1 ≤ i ≤ M , if i is an odd number, then
Pi is in state 3 and if i is even, then Pi is in state 5. In D2, state 3 of P is connected to
state 2 of A1, therefore last subprocess of P , namely PM , is in state 3. There are no other
full, consistent subgraph of the dependency graph D ; hence there are no other generalized
circular waits in the network graph.

4.4 Conclusion

The deadlock analysis of a generalized parameterized discrete event network with branching
topology was addressed in this chapter. Since these networks generally contain several

70

1
2A

P3 P5
3

2A

3
3A

P3P2

B2

2
2AB2

G5

(a)

1
2A

P3 P5 3
3A

B2

2
2AB2

G5
1

2A

P3 P5
3

2A

P2
B2

2
2AB2

G5
(b) (c)

Figure 4.8: (a) The Dependency graph D of large-scale factory example. (b) D1 : a full,
consistent subgraphs of the dependency graph D . (c) D2: another full, consistent subgraph
of D .

cycles, we initially carry out an analysis for each cycle of the network: for an arbitrary
cycle in the network, we first disable events that are shared with subprocesses outside
of the cycle to obtain a ring network. In the resulting ring network, we characterize
the circular wait condition and reachable deadlocked state (Lemma 4). However, the
resulting deadlocked states in the isolated ring are not necessarily deadlocked when we
consider the interaction between the cycle with the rest of the network by enabling the
disabled shared events. Therefore we developed the dependency graph to cover possible
interaction scenarios between the cycle and the rest of the network, and to verify the
potential occurrence of deadlock caused by generalized circular waits in a subgraph of the
network graph.

71

Appendix

4.A Proof of Proposition 9

Proof. As mentioned earlier, only the distinguished subprocesses G1 and Gj, j ∈ J , where
J is the index set of output vertices, are affected by isolation of the cycle GN . Let j ∈ J .
By (4.6), for all i 6= 1, j, ĜiViĜi+1. But according to Proposition 8.(a), ĜjVjĜj+1. By
Proposition 8.(b) and definition weak invariant simulation, it can easily be shown that
Ĝ1V2Ĝ2. Hence for all i, 1 ≤ i ≤ N ,

ĜiViĜi+1 (4.23)

By assumption, xd ∈ Xd; so we have (xdk−1 , xdk
) ∈ Rk, where Rk is the state set

of synchronous product Gk−1‖Gk. Therefore, by assumption (4.6) and Proposition 7,
(xdk−1 , xdk

) ∈ Vk; but xk and xdk
are the same states, hence

(xdk−1 , xk) ∈ Vk. (4.24)

Then again, x is a reachable state in ĜN , so (xk−1, xk) ∈ R̂k, where R̂k is the state set
of synchronous product Ĝk−1‖Ĝk. Therefore, by (4.23) and Proposition 7, (xk−1, xk) ∈ Vk.
By assumption (4.4) of the network and the definition of Xd, there exists a shared event
βk−1 ∈ Σk−1 ∩ Σk that is reachable in Ĝk from xk = xdk

via a string in (Σk \ Σk−1)∗. The
pair (xdk−1 , xdk

) satisfies the forward dependency property (4.15), therefore any transition
defined from xdk−1 in Ĝk−1 is shared with Ĝk. Consequently by (4.24) and the definition
of weak invariant simulation, we have

ξ̂k−1(xdk−1 , βk−1) 6= ∅. (4.25)

On the other hand, because βk−1 is accessible from xk via a string in (Σk \ Σk−1)∗,
and (xk−1, xk) ∈ Vk, by the definition of weak invariant simulation there exists a string

72

l̂k−1 ∈ (Σk−1 \ Σk)∗ and a state x̃k−1 ∈ χk−1(βk−1) such that

x̃k−1 ∈ ξ̂k−1(xk−1, l̂k−1)

Therefore by assumption (4.5) of the network and (4.25), there exists a lk−1 ∈ (Σk−1 \Σk)∗
such that

xdk−1 ∈ ξ̂k−1(xk−1, lk−1).

However, such an lk−1 may contain events shared with Ĝk−2. According to Lemma 3, for
any i, 1 < i ≤ N , all these shared events can be executed in the ĜN by strings with empty
projection into ⋃Nr=k Σr. By repeating this argument, it can be shown that there exists a
global string l ∈ (Σ \ (⋃Nr=k−1 Σr))∗ such that PΣk−1(l) = lk−1 and lk−1 can be executed in
Gk−1 within ĜN .

4.B Proof of Proposition 10

Proof. (a) By assumption x ∈ X represented by a cycle in a consistent subgraph of the
dependency graph D . Therefore consider an arc (xj, xj+1), j ∈ J in the dependency graph.
By the definition of forward dependence, (xj, xj+1) is reachable in the synchronous product
of Ĝj‖Ĝj+1, where Ĝj and Ĝj+1 are the isolated versions of Gj and Gj+1 in isolated cycle
ĜN . Therefore by (4.9) and the definition of weak invariant simulation,

(xj, xj+1) ∈ Qj+1 (4.26)

where Qj+1 is the weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1.

(b) By (4.4) and the fact that x is a forward dependent state, there exists a string
lj+1 ∈ Σ∗j+1 such that ξj(xj+1, lj+1) 6= ∅ and PΣj

(lj+1) 6= ε. Therefore by (4.26), there must
exists a string lj ∈ Σ∗j such that PΣSj

\Σj−1(lj+1) = PΣSj
\Σj−1(lj). By definition of forward

dependence, there is no local event defined from xj, therefore the first event of lj is in
Σj ∩ Σj+1.

(c) Note that only input and output subprocesses are affected by isolation of a cycle.
Therefore, we only have to show the reachability of x1 and xj, j ∈ J . For xj, by part
(b), there exists an event σ ∈ Σj ∩ Σj+1 such that ξ̂j(xj, σj) 6= ∅. therefore consider
string kj+1 ∈ Σ∗j+1 such that ξj+1(x0

j+1, kj+1σ) 6= ∅. Then by (4.26) there exists kj ∈ Σ∗j+1
such that ξj(x0

j , ljσ) 6= ∅ and PΣSj
\Σj−1(kj+1) = PΣSj

\Σj−1(kj). Therefore kj contains no

73

event shared with the rest of direct successors of Gj in the network graph. By (4.5), the
companion state if σ is unique in G1, therefore xj ∈ ξj(x0

j , lj) and hence reachable in the
isolated cycle. By (4.8) reachability of x1 can be shown similarly.

74

Chapter 5

Conclusion and Future Work

Networks with arbitrarily large numbers of isomorphic subprocesses appear in areas such
as computer software and hardware, transportation networks and manufacturing systems.
Parameterized discrete event systems (PDES) provide a framework for modeling these net-
works. This modeling is specifically useful when the number of subprocesses is arbitrary,
unknown or time-varying. Unfortunately, key problems such as checking the nonblock-
ing property in these networks are undecidable. Moreover mathematical tools supporting
analysis of these networks are very limited. In Chapter 2, we first introduce a novel mathe-
matical notion, weak invariant simulation, which is adapted to the analysis of synchronous
products of nondeterministic discrete event systems. Then we compare weak invariant sim-
ulation to other simulation relations in the literature. Moreover, we propose an efficient
method to check whether a process invariantly weakly simulates another process with re-
spect to a specific subalphabet. The greatest lower bound of all weak invariant simulations
between two processes is also introduced.

To deal with undecidability results, in Chapter 3 we restrict the model of each subsystem
in the network as well as communication between subsystems to seek a decidable model.
In particular, we consider only networks with a ring topology – processes are arranged in
a ring, and interact directly only with their immediate neighbors in the ring. Blocking in
such networks is still undecidable [33], but here we introduce assumptions on the structure
of processes that render analysis more tractable. Specifically, our assumptions ensure that,
while both immediate neighbors may prevent a process from executing shared events, only
one neighbor can permanently prevent an event from occurring. We utilize weak invariant
simulation to define a tractable subclass of parameterized ring networks of isomorphic
subprocesses in which deadlock-freedom is decidable. Within this framework, we give an
efficient procedure to determine all the reachable deadlocked states of the ring network.

75

In Chapter 4, we consider a network consisting of several linear parameterized sections
but exhibiting a branching topology. To model these networks we introduce Generalized
Parameterized Discrete Event Systems. The difficulty in analysis of a GPDES is the
fact that some of the subprocesses interact with several parameterized sections of the
network. Hence the analysis proposed in this chapter involves careful study of interaction
among different branches of the network. Since the general problem is undecidable, we
use our previously developed mathematical notion ‘weak invariant simulation’ to limit the
behavior of subprocesses of the network. Then we investigate interactions among different
components of the network, using a dependency graph. The dependency graph is a directed
graph developed to characterize reachable partial deadlocks caused by generalized circular
waits in the proposed GPDES. Our results implicitly characterize reachable generalized
circular waits as a language accepted by a finite automaton. Our framework allows for
modeling and analysis of new parameterized problems. We investigated deadlock in a
large-scale factory as an illustrative example.

Formal verification aims to answer the question of whether a system satisfies a speci-
fication. Most developed model checking algorithms perform an exhaustive search of the
state-space of the system to determine satisfaction of the specification. Therefore they are
only applicable to finite-state systems. Although each instance of a parameterized system
is finite, any parameterized system satisfies a specification if all possible instances of the
parameterized system satisfies that specification. This means that in general, checking sat-
isfaction of a property in a parameterized system involves exploring an infinite state-space.

Exploration of an infinite state-space is possible by implicit representation for sets of
states. Verification of systems using a ‘symbolic’ representation of their states is known
as symbolic model checking [29]. The application of symbolic model checking to infinite
systems is possible, however the termination of such procedures is not guaranteed. Regular
model checking is a form of symbolic model checking where regular expression are used as
the symbolic representation for state sets [6]. There has been a significant effort to extend
the applicability of regular model checking to parameterized and infinite-state systems.
These approaches are mainly based on using abstractions and ad-hoc decision procedures
[7].

Our work is related to regular model-checking, insofar as it characterizes (albeit implic-
itly) the set of reachable deadlocked states as a language accepted by a finite automaton.
In the case of parameterized ring networks (Chapter 3), the automaton runs on strings over
the alphabet of subprocess state symbols; accepted strings correspond to circular waits.
In the case of branching topologies (Chapter 4), the automaton is an automaton on finite
trees, where the nodes of the tree are labeled by subprocess state symbols and accepted
trees represent full, consistent output-reachable subgraphs of the dependency graph.

76

These results are particularly useful in light of limitations of previous efforts. (Note for
instance that though [14] addresses the deadlock analysis of parameterized networks, its
modeling framework does not admit treatment of the example of Figure 3.1.)

Nonblocking supervision of networks can guarantee satisfaction of control objectives as
well as liveness of the network. For a specific network parameter, i.e specific number of sub-
systems, nonblocking supervision of the network is possible using a ‘monolithic’ synthesis
approach; that is building a global network model and designing a centralized supervi-
sor. However, this method has two major drawbacks. First, the computational complexity
of monolithic supervisor design increases exponentially with number of the network sub-
systems (network parameter). Therefore the synthesis procedure may be impractical for
large network parameters. Second, the whole procedure should be repeated if the network
parameter changes.

In [3], deadlock freedom of a parametrized system synthesized from a nonblocking pair
system is investigated. This is done using a technical assumption called a ‘wait-for-graph
assumption’, which roughly guarantees that circular waiting chains cannot form. Using
this result requires a symmetric nonblocking supervisor design for each subsystem in the
pair system. However, there is no algorithm for designing such supervisor. As a matter of
fact, automatic design of such a supervisor is still undecidable [44].

Synthesizing a scalable nonblocking supervisor method based on the template model
is a challenge. This is a long-term goal. First one needs to design a procedure for the
blocking analysis of parameterized networks based on calculated deadlocked states. Then
based on the result of blocking analysis, a nonblocking supervisor has to be designed to
prevent transitions to blocking states. Unfortunately the supervisor itself induces blocking
by disabling some transitions. The typical solution to this problem is designing a possibly
blocking supervisor and finding the blocking states of the supervised system, and iterating
the two aforementioned procedures until the supervised system is nonblocking.

———————————————————————-

77

References

[1] K R Apt and D C Kozen. Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett., 22:307–309, May 1986.

[2] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Ying Xu, and Lenore Zuck. Parame-
terized verification with automatically computed inductive assertions? In Computer
Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 221–234.
Springer Berlin / Heidelberg, 2001.

[3] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent systems with many
similar processes. ACM Trans. Program. Lang. Syst., 20:51–115, January 1998.

[4] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, New York, NY, USA, 1st
edition, 2009.

[5] Hans Bherer, Jules Desharnais, and Richard St-Denis. Control of parameterized dis-
crete event systems. Discrete Event Dynamic Systems, 19:213–265, 2009.

[6] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model
checking. In Computer Aided Verification, pages 403–418. Springer, 2000.

[7] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn
Hwang. Symbolic model checking: 10 20 states and beyond. In Logic in Computer
Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium on e, pages
428–439. IEEE, 1990.

[8] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection.
ACM Trans. Comput. Syst., 1:144–156, May 1983.

[9] Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs & digraphs. CRC Press,
2010.

78

[10] Edmund Clarke, Muralidhar Talupur, Tayssir Touili, Helmut Veith, and Technis-
che Universitï£·t Munchen. Verification by network decomposition. In In 15th
Concur, LNCS 3170, pages 276–291. Springer, 2004.

[11] Ahmed K Elmagarmid. A survey of distributed deadlock detection algorithms. ACM
Sigmod Record, 15(3):37–45, 1986.

[12] E. Emerson and Vineet Kahlon. Model checking large-scale and parameterized re-
source allocation systems. In Tools and Algorithms for the Construction and Analysis
of Systems, volume 2280 of Lecture Notes in Computer Science, pages 55–69. Springer
Berlin / Heidelberg, 2002.

[13] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the
few. In 17th International Conference on Automated Deduction, pages 236–255, 2000.

[14] E. Allen Emerson and Vineet Kahlon. Model checking large-scale and parameterized
resource allocation systems. In Proceedings of the 8th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS ’02, pages
251–265, London, UK, 2002. Springer-Verlag.

[15] E Allen Emerson and Vineet Kahlon. Parameterized model checking of ring-based
message passing systems. In Computer Science Logic, pages 325–339. Springer, 2004.

[16] E. Allen Emerson and Kedar S. Namjoshi. On reasoning about rings. International
Journal of Foundations of Computer Science, 14(04):527–549, 2003.

[17] M.P. Fanti and MengChu Zhou. Deadlock control methods in automated manufactur-
ing systems. Systems, Man and Cybernetics, Part A: IEEE Transactions on Systems
and Humans, 34(1):5 – 22, 2004.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[19] R.J. van Glabbeek. The linear time – branching time spectrum (extended abstract). In
J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR ’90, Theories of Con-
currency: Unification and Extension, Amsterdam, August 1990, volume 458, pages
278–297, 1990.

[20] NejibBen Hadj-Alouane, StÃľphane Lafortune, and Feng Lin. Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under partial
observation. Discrete Event Dynamic Systems, 6:379–427, 1996.

79

[21] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 26:100–106,
1983.

[22] J. Komenda, J.H. van Schuppen, B. Gaudin, and H. Marchand. Supervisory control of
modular systems with global specification languages. Automatica, 44(4):1127 – 1134,
2008.

[23] Sava Krstic. Parametrized system verification with guard strengthening and parameter
abstraction. In Proceedings of 4th Workshop on Automated Verification of Infinite-
State Systems, AVIS ’05, 2005.

[24] Leslie Lamport. The synchronization of independent processes. Acta Informatica,
7:15–34, 1976.

[25] Yongjian Li. Mechanized proofs for the parameter abstraction and guard strengthening
principle in parameterized verification of cache coherence protocols. In Proceedings
of the 2007 ACM symposium on Applied computing, SAC ’07, pages 1534–1535, New
York, NY, USA, 2007. ACM.

[26] F. Lin and W. M. Wonham. Decentralized supervisory control of discrete-event sys-
tems. Information Sciences, 44(3):199–224, 1988.

[27] A. Mannani and P. Gohari. Decentralized supervisory control of discrete-event systems
over communication networks. IEEE Transactions on Automatic Control, 53(2):547
–559, march 2008.

[28] Charles E. McDowell. A practical algorithm for static analysis of parallel programs.
Journal of Parallel and Distributed Computing, 6(3):515–536, 1989.

[29] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

[30] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1989.

[31] S. Mohajerani, R. Malik, and M. Fabian. A framework for compositional synthe-
sis of modular nonblocking supervisors. Automatic Control, IEEE Transactions on,
59(1):150–162, Jan 2014.

[32] S. Nazari and J.G. Thistle. Blocking in fully connected networks of arbitrary size.
IEEE Transactions on Automatic Control, 57(5):1233 –1242, May 2012.

80

[33] Siamak Nazari. Analysis of Parameterized Networks. PhD Thesis, Electrical and
Computer Engineering, University of Waterloo, 2008.

[34] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim., 25:206–230, January 1987.

[35] Peter Ramadge and W. Murray Wonham. Control of discrete event systems. Proceed-
ings of the IEEE, 77(1):81–98, 1989.

[36] I. Romanovski and P.E. Caines. On the supervisory control of multiagent product
systems. IEEE Transactions on Automatic Control, 51(5):794–799, may 2006.

[37] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Di-
agnosability of discrete-event systems. IEEE Transactions on Automatic Control,
40:1555–1575, 1995.

[38] Davide Sangiorgi. An introduction to Bisimulation and Coinduction. Cambridge Uni-
versity Press, 2011.

[39] K.W. Schmidt and J.E.R. Cury. Efficient abstractions for the supervisory con-
trol of modular discrete event systems. Automatic Control, IEEE Transactions on,
57(12):3224–3229, 2012.

[40] Antti Siirtola and Juha Kortelainen. Algorithmic verification with multiple and nested
parameters. In Formal Methods and Software Engineering, volume 5885 of Lecture
Notes in Computer Science, pages 561–580. Springer Berlin / Heidelberg, 2009.

[41] Ichiro Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett.,
28:213–214, July 1988.

[42] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[43] J. G. Thistle. Supervisory control of discrete event systems. Mathematical and Com-
puter Modelling, 23(11-12):25–53, 1996.

[44] J.G. Thistle. Undecidability in decentralized supervision. Systems and Control Letters,
54(5):503–509, 2005.

[45] Rob J. van Glabbeek, Bas Luttik, and Nikola Trcka. Computation tree logic with
deadlock detection. Logical Methods in Computer Science, 5(4), 2009.

81

[46] P. Varaiya. Smart cars on smart roads: problems of control. IEEE Transactions on
Automatic Control, 38(2):195–207, feb 1993.

[47] N. Viswanadham, Y. Narahari, and T.L. Johnson. Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using petri net models. Robotics and
Automation, IEEE Transactions on, 6(6):713 –723, 1990.

[48] K.C. Wong, J.G. Thistle, R.P. Malhame, and H.-H. Hoang. Supervisory control of
distributed systems: Conflict resolution. Discrete Event Dynamic Systems, 10:131–
186, 2000.

[49] W. Wonham and P. Ramadge. Modular supervisory control of discrete-event systems.
Mathematics of Control, Signals, and Systems (MCSS), 1:13–30, 1988.

[50] W. M. Wonham. Lecture notes on supervisory control of discrete event systems, 2012.
Available at http://www.control.utoronto.ca/cgi-bin/dldes.cgi, [Jan. 30, 2013].

[51] W.M. Wonham and B.A. Brandin. Supervisory control of timed discrete-event sys-
tems. IEEE Transactions on Automatic Control, 39(2):329–342, 1994.

[52] W.M. Wonham and K.C.Wong. Hierarchical control of discrete-event systems. Discrete
Event Dynamic Systems: Theory and Applications, 6(3):241–273, 1996.

[53] W.M. Wonham and F. Lin. On observability of discrete-event systems. Information
Sciences, 44(3):173–198, 1988.

[54] W.M. Wonham and P.J.Ramadge. On the supremal controllable sublanguage of a
given language. SIAM Journal on Control and Optimization, 25(3):637–659, 1987.

[55] M. H. Zibaeenejad and J. G. Thistle. Dependency graph: an algorithm for analysis
of generalized parameterized networks. Submitted to American Control Conference
(ACC), 2015.

[56] M. H. Zibaeenejad and J. G. Thistle. A framework for analysis of generalized param-
eterized networks. Submitted as journal publication.

[57] M. H. Zibaeenejad and J. G. Thistle. Deadlock analysis of generalized parameterized
discrete event systems with ring topology. pages 370–375, May 2014. Proceedings of
12th IFAC - IEEE International Workshop on Discrete Event Systems.

82

[58] M. H. Zibaeenejad and J. G. Thistle. Weak invariant simulation and its application
to analysis of parameterized networks. Automatic Control, IEEE Transactions on,
59(8):2024–2037, Aug 2014.

[59] M.H. Zibaeenejad and J.G. Thistle. Invariant weak simulation and analysis of param-
eterized networks. In American Control Conference (ACC), 2012, pages 6108–6113,
2012.

[60] M.H. Zibaeenejad and J.G. Thistle. Weak invariant simulation: Properties and algo-
rithms. In American Control Conference (ACC), 2013, pages 911–916, June 2013.

83

	List of Figures
	Introduction and Related Work
	Related Work
	Preliminaries
	Discrete Event Systems Basics
	Graphs

	Weak invariant simulation: Properties and algorithms
	Weak invariant Simulation
	Invariant simulation: a comparative perspective
	Weak invariant simulation: definition
	Properties of weak invariant simulation

	Conclusion

	Analysis of parameterized ring discrete event systems
	The network model
	Parameterized discrete event systems
	The ring network model

	Properties of The Proposed Network Model
	The Deadlock Analysis Procedure
	Illustrative example: parameterized dining philosophers
	Conclusion

	Appendices
	Proof of Lemma 2
	Proof of Claim

	Analysis of generalized PDES
	The network model
	Linear parameterized discrete event systems
	Generalized parameterized discrete event systems

	The deadlock analysis
	Forward dependency property
	Dependency graph
	Technical details of the analysis
	Applicability of the results to general networks

	Illustrative example: small factory
	Conclusion

	Appendices
	Proof of Proposition 9
	Proof of Proposition 10

	 Conclusion and Future Work
	References

