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Abstract

In this work, novel electrostatic micro-electro-mechanical system (MEMS) sensor and

sensors are introduced and demonstrated. First, a novel bifurcation-based MEMS ethanol

vapor sensor is demonstrated. In contrast to traditional gas sensors that measure in analog

mode (quantify) gas concentration, this sensor does not quantify the gas concentration.

Rather, it detects its gas concentration in binary mode, reporting (1) for concentrations

above a preset threshold and (0) for concentrations below the threshold. The sensing

mechanism exploits the qualitative difference between the sensor state before and after

the static pull-in bifurcation in electrostatic MEMS. The transition between these states

is the bifurcation used in detection. A driving circuit with a resolution of 1 mV was used

to drive the sensor at a point close to the pull-in limit to achieve maximum sensitivity.

The sensor was able to detect concentrations as low as 5 ppm of ethanol vapor in dry

nitrogen, equivalent to a detectable mass of 165 pg. Gas detection was verified electrically

and optically through a detection circuit and a CCD camera, respectively.

Second, a novel tunable MEMS magnetic field sensor is demonstrated in this work. It

measures torsional vibrations excited via Lorentz force. The sensor sensitivity and dynamic

range can be tuned by varying a bias voltage. Experimental demonstration shows that the

sensor sensitivity can be changed from 0.436 (mm/s)/mT at 6 V bias to 0.87 (mm/s)/mT

at 1 V bias. Unlike most commercial magnetic sensors, this magnetic sensor achieves a

higher bandwidth (182 kHz) and a tunable sensitivity adjustable on-the-fly.
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Chapter 1

Introduction

1.1 Inertial Sensors

A Micro-Electro-Mechanical Systems (MEMS) fabrication technology combine electrical

and mechanical capabilities in one device at a very small scale, micro-scale ∝ 10−6m. It

has the ability to produce devices that can mimic larger-scale devices performance which

has shifted the way researchers, designers, and manufacturers think. It has introduced

significant fabrication advantages, such as high-speed, high precision, small size, low cost

and low power consumption, into the field of electronic and mechanical applications.

MEMS devices are mass produced which help bring down costs. The size and cost of

the large scale devices has restricted there applications. The demand for low cost and

small size technology is especially advantageous; for instance; surgeons may require micro

forceps to perform intricate medical procedures. Size reduction of MEMS devices also

allows for performance enhancements, such as integration of several sensors on the same

die. The wide range of MEMS applications also stems from their improved sensitivity

when deployed as sensors. MEMS have seen application in a wide range of fields, such as
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automotive, chemical, medical, biological, safety, aviation, and telecommunication sectors,

where they are well known consumer products today.

MEMS devices are predominately made of silicon which is a semiconductor that can

deal easily with electrical signals. Most MEMS are fabricated using surface or bulk micro-

machining [1]. Surface micromachining process is a standard process based on patterning

of thin film layers atop of the substrate. It depends on depositing and etching different film

layers on the substrate to create MEMS structures. It is commonly utilized commercially

in IC manufacturing [2]. Using surface micromachining, MEMS devices can be integrated

with ICs on one chip, thereby enhancing their mechanical and electrical characteristics and

further reducing their cost [1, 2].

Bulk micromachining is also a standard process depends on depositing thin film layers

atop of the substrate and selectively etching the substrate to create MEMS structures.

It is less expensive than surface micromachining because it involves a lower number of

fabrication steps than surface micromachining. In addition, bulk micromachining is very

useful for structures that need thicker substrates. Most commercially available MEMS

pressure and inertial sensors are fabricated by bulk micromachining [1].

MEMS devices are transducers that transform one form of energy to another. They

are classified into sensors or actuators depending on their application [3]. In this research,

we focus on inertial sensors, which is the most commercially class of MEMS today. They

include MEMS accelerometers, gyroscopes, magnetometer, and gas sensors [4, 2, 5]. The

small size, low cost, and high performance of MEMS inertial sensors have allowed them to

lead the market. Roben and Mounier [6] forecasted that the price of inertial sensors will

drop by 40% to 60% over the next five years due to increased unit numbers and a rise of

competition.
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MEMS accelerometers have been widely used in automotive applications, such as seat

belt control and air bag deployment [7, 2]. Accelerometers are designed to measure the

acceleration of a body moving in space [1]. Many of them use a sprung proof mass to

measure the acceleration along a signal axis [8]. For example, Jianbing et al. [9] introduced

an accelerometer that determines acceleration along single planar axis by measuring the

differential capacitance between two sets of parallel plates when the proof mass moves. It

uses a thin SOI handle layer to enhance its sensitivity obtain a sensitivity of 2.25 V/g and

a linearity of 0.5%. Accelerometers are also used in a broad range of applications, such as

pedometers, earthquake detection, wii remote controllers, hard drive protection in laptops,

and picture stabilization in camcorders [4, 2].

Gyroscopes represent another popular MEMS inertial sensor. They measure angular

velocity and are commonly used in navigation systems [10, 2]. The operating principle of

vibratory MEMS gyroscopes is to excite oscillations in a drive mode that interacts with a

small rotation to produce, via Coriolis force, motions along a sense-mode [1]. Chen et al.

[11] introduced a tuning fork gyroscope that uses a magnetic force to excite a drive-mode

along the x-axis; when a rotation is introduced into z-axis, Coriolis force causes a change

in the capacitance of a parallel plate capacitor aligned along the sense-mode direction

(y-axis).

The small size of MEMS sensors has the advantage of allowing for integration, and

thereby enhancing overall performance and offering new capabilities. Inertial Measure-

ment Units (IMUs) are a prime example of this approach to sensing. They combine ac-

celerometers, gyroscopes and magnetometers in one chip to measure a motion in space

[12]. IMUs are used to measure translational acceleration along three axes and angular

rotations around three axes as well as to reduce drift errors. For example, Ding et al. [13]

introduced an IMU specifically designed for medical applications, such as tracking forearm
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posture over time.

In this research effort, we address two categories of inertial sensors: gas sensors and

magnetic sensors. The sensors considered here are based on novel operational principles

that will be discuss in details in chapters 2 and 3.

1.2 Gas Sensors

Micro-mass sensors have been widely used as sensing platforms for inertial gas sensors in

chemical, medical and automotive application [14, 15, 16]. The platform is coated by a

detector material with high selectivity to a target gas. They detect the presence of the

target gas in ambient air as a small variation in the sensor mass, on the order of nano-

to atto-gram [14]. The response of gas sensors can be measured optically [17, 18, 19,

20, 16], capacitively [21], or piezoresistively [22, 23]. Optical readout is more accurate

than other measurement techniques. MEMS gas sensors have been realized; however, they

have significant challenges, such as stability, selectivity and sensitivity of the functional

material, detection range, response time, hysteresis, power consumption, reliability and

cost effectiveness [24, 15].

There are two commonly used detection techniques in gas sensors, which are static

and dynamic sensing modes. The static mode measures variation in mass as a change in

structural displacement. Jensenius et al. [22] used a pezioresistor to monitor the static

deflection of a microcantilever obtained a minimum detectable concentration of 10 ppm of

alcohol vapour in dry nitrogen. A Wheatstone bridge was used to measure the change in the

voltage across the piezoresistor before and after detection of alcohol. Zhu et al. [23] used

a piezoresistor to measure the static deflection of a V-shaped cantilever beam equipped by

a layer TTF-C4P to detect trinitrobenzene vapour. They obtained a minimum detectable
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concentration of 10 ppb of trinitrobenzene vapour in dry of nitrogen. Datskos and Sauers

[17] employed static sensing of a gold-coated microcantilever to detect 2 mercaptoethanol

vapour in dry of nitrogen. The lowest concentration detected optically was 65 ppb.

In dynamic sensing mode, the sensor measures the shift in one of its resonant frequencies

induced by a mass sorbed onto a detector material due to the presence of a target gas

in ambient air. This sensitivity of this sensing mode is higher than that of static or

forced response sensing by 1-2 order of magnitude [25, 26]. Therefore, it has the ability

to increase absolute mass detection capabilities and can be utilized as highly sensitive

biological sensors, enabling single cell, virus, and double-stranded DNA molecule detection

[27].

Park et al. [16] introduced a mass sensor to monitor the evaporation of microdroplets

of water and dimethyl sulfoxide (DMSO). They measure the change in a membrane’s

natural frequency induced by the change in the magnitude of the added mass as it varies

during evaporation. Zribi et al. [15] presented a sensor that detects humidity level and

carbon dioxide concentration by measuring the shift in the natural frequency of a coated

membrane. They measured a minimum resolution of 1 ppm of water vapor and 0.7% vol

of CO2 in dry nitrogen. Dohn et al. [21] presented an electrostatic microcantilever mass

sensor that measures added mass by detecting the change in the beam resonant frequency.

The frequency shift is measured as the time-averaged current obtained from intermittent

contact, during oscillations, between the cantilever beam and an electrode. This method

was reported to reduce system noise and enhance detection of the frequency shift to a

resolution of 1/80000 in ambient conditions. IIic et al. [14] introduced a nanocantilever

detector that can detect a virus by measuring a shift in resonance frequency corresponding

to its mass. They experimentally achieved a minimum detectable mass of 3 fg.

Dufour et al. [28, 29] investigated the effect of the sensor mode shapes on its quality
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factor in gas and liquid media. Three vibrational modes of a microcantilever beam sensor

were studied: in-plane (lateral) bending, out-of-plane (transverse) bending, and elongation

(axial). They compared experimentally the quality factor for each mode in air and three

liquids and found that the quality factor of the out-of-plane bending mode is one-order

of magnitude higher in air than in liquids. In liquids, the quality factor of the in-plane

bending mode was two-orders of magnitude higher than that of the out-of-plane bending

mode. They showed that the dominant effect responsible for reducing the quality factor of

the out-of-plane bending mode in liquids was hydrodynamic forces.

We note that most of the static and dynamic sensors described, thus far, are made of

cantilever beams. This is because the sensitivity of an inertial sensor is proportional to its

structural compliance [19, 18, 20, 21], which is particularly high in cantilever beams.

A special class of inertial sensors seeks to use nonlinearities and the bifurcation they

cause to enhance sensor sensitivity [30, 31, 5]. Zhang et al. [25, 32] showed that the

sensitivity of an electrostatic MEMS mass sensor is highly increased by replacing the tra-

ditional frequency shift measurand, the natural frequency, with the bifurcation point of a

subcritical pitchfork bifurcation resulting from principle parametric resonance. They used

platinum to detect water vapour and measured a minimum mass of 0.7 pg water vapour.

Yie et al. [33] developed a parametric amplification technique that can be used to achieve

high quality factor and, thereby, enhance the sensor sensitivity. They showed experimen-

tally enhancement in the quality factor of their mass sensor at atmospheric pressure when

parametric amplification was implemented.

Younis and Alsaleem [26] introduced two analogue microcantilever-based electrostatic

MEMS sensors that measure added mass as a shift in bifurcation point of a cycle-fold

bifurcation due to primary resonance and subcritical pitchfork bifurcation due to the sub-

harmonic resonance of order one-half. They measured a minimum detectable mass of
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1.07 µg corresponding to a frequency shift of 0.7 Hz. Kumar et al. [34] demonstrated

the feasibility of a bifurcation-based piezoelectric sensor to detect methanol in dry nitro-

gen using poly(4-vinyl pyridine). It utilizes the frequency shift in the location of a cyclic

fold bifurcation due to primary resonance. Harne et al. [35] demonstrated the feasibility

of a mass sensor that detects added mass through the shift in the location of cyclic-fold

bifurcation in the vicinity of primary resonance of a bistable beam.

Nayfeh and co-workers [31, 30] proposed two types of binary sensors based electrostatic

MEMS: a static sensor and a dynamic sensor. The static sensor is actuated by DC voltage,

whereas the dynamic sensor adds an AC component. The measurands of the static and

dynamic sensors are the frequency shift in the location of a saddle node bifurcation and a

cyclic-fold bifurcation, respectively. In this research effort, we develop a novel gas sensor

that can detect ethanol in dry nitrogen based on the static binary sensing technique.

1.3 Magnetic Sensors

Magnetic sensors are indispensable in many industrial applications. The demand for mag-

netic sensors is increasing, especially in electronic compasses and navigation systems [36].

Most commercially available magnetic sensors are based on anisotropic magneto-resistance

(AMR) or Hall effect. AMR sensors have higher sensitivity, smaller dynamic range, better

thermal stability, and lower DC offset than Hall effect sensors [37]. On the other hand,

Hall effect sensors have a wider bandwidth and are immune to hysteresis and saturation

phenomena that limit the performance of AMR sensors [38]. To avoid these limitations,

research has focused on development of MEMS magnetic sensors based on the Lorentz

force. However, the sensitivity of these sensors is relatively low. Hence, most of them

operate at resonance to take advantage of dynamic amplification [38, 39].
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The Lorentz force resulting from interaction between current and magnetic field is used

in MEMS magnetic sensors to excite bending [38, 40, 41] and torsional [42] modes of

vibration. Piezoresistors [39, 43] and capacitors [36, 44, 38] are then used to measure the

resulting strain and displacement, respectively. Langfelder et al. [45] compared the use

of parallel-plate, comb-finger and fringe-field capacitance in measuring vibrations due to

external magnetic fields. They found that fringe-field sensing has higher sensitivity and

quality factor than parallel-plate or comb-finger sensing under the same experimental setup

and on the same die. Frangi et al. [46] found that introducing holes into the stator in a

comb-finger capacitor reduces mechanical dissipation and, hence, increases the resolution of

its capacitive sensing. Their results show that optimizing the holes in the stator electrodes

increases the sensitivity up to four times beyond a regular comb-finger to reach 4.5 aF/(µT

mA) at 1 mbar.

Kádár et al. [47] introduced a magnetic sensor made of a coil placed on top of a

plate to excite its torsional mode via Lorentz force at 2.5 kHz. The sensor was placed

inside a vacuum chamber (5 Pa) to increase its quality factor to Q = 700. Its sensitivity

and bandwidth were measured as 400 mV/µT and 20–25 Hz, respectively. Li et al. [42]

presented a comb-finger magnetic sensor exploiting the first torsional mode of a beam at

21.29 kHz. Its resolution was measured 210 nT/
√
Hz in a magnetic field of 450 µT. Stifter

et al. [48] introduced a magnetic sensor made of a U-shaped cantilever beam resonating at

4.36 kHz in its first out-of-plane bending mode. They used two techniques to measure the

magnetic field strength: a laser vibrometer to measure out-of-plane displacement and two

electrodes to measure the displacement capacitively. The sensor resolution was reported

to be 15 nT
√
Hz.

The small size of MEMS magnetometers allow multi-axis magnetometers that measure

magnetic field strength using one magnetometer per axis on the same chip [36, 40, 41, 44].
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Chang et al. [38] presented a CMOS-MEMS resonant magnetic sensor to measure magnetic

field strength along an in-plane and an out-of-plane axes. The in-plane magnetic coil is fab-

ricated from metal/tungsten layers by using TSMC 0.35 m 2P4M process. They measured

a resolution of 296.5nT/
√
Hz along the in-plane axis and a resolution of 121.6 nT/

√
Hz

along the out-of-plane axis.

In this research effort, we develop in chapter 3 a novel magnetometer that can detect

magnetic field strength via Lorentz force.

1.4 Auther’s Current Contribution

My contribution in this work include experimental and analytical studies to compare the

sensor performance to previous predictions reported in Khater [49]. I carried out this

work under the supervsion of Dr. M. Khater, and S. Park, in addition to professor E.

Abdel-Rahman. I hereby acknowledge that a part of the work presented in Chapter 2 and

Chapter 3 have been published and adapted from:

• M. E., Khater, M., Al-Ghamdi, S., Park, K. M. E. Stewart, E. M. Abdel-Rahman,

A. Penlidis, A. H. Nayfeh, A. K. S. Abdel-Aziz, and M. Basha. ”Binary MEMS gas

sensors,” Journal of Micromechanics and Microengineering, vol. 24, pp. 065007/1-9,

2014.

• S., Park, M., Al-Ghamdi, M., Khater, M. E., E. M., Abdel-Rahman, M., Yavuz,

”Adjustable sensitivity MEMS magnetic sensor,” ASME International Design Engi-

neering Technical Conferences, 2014.
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Chapter 2

MEMS Gas Sensors

Binary gas sensors detect the presence of a target gas in its vicinity in a binary fashion.

Compared to commercial sensors which quantify the concentration of a gas in analog mode,

a binary gas sensor does not measure the concentration of the gas. Rather, it indicates

the state of gas concentration using a discrete signal with two states only: ‘1’, above a

threshold, and ‘0’, below it. The electrostatic pull-in phenomenon is exploited here to

create those discrete (binary) output states.

2.1 Gas Sensor

2.1.1 Sensor design

The sensor was fabricated using the PolyMUMPs fabrication process [50]. It features two

cantilever beams, 125 × 5 × 1.3 µm, supporting a 30 × 60 × 1.3 µm sense-plate where

a detector polymer is placed. The structure is fabricated in Poly2 structural layer. A

polysilicon electrode is patterned on the substrate directly under the sense-plate, out of
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Figure 2.1: A picture of the sensor under white light profilometer

layer Poly0, to act as ground for the electrostatic field, Fig. 2.1. The beams attach to the

plate on both sides in order to maximize torsional stiffness. Two gold pads are patterned

at the roots of the support beams to apply potential difference between the plate and the

substrate electrode. The pads are also used to drive a current through the semi-conductive

polysilicon structure to reset the sensor via Joule heating.

The following design criteria and constraints were used in developing the sensor:

• Maximize the sense-plate to increase the surface area used to deposit the detector

polymer and decrease the actuation voltage.

• Maximize the distance between the two actuation electrodes and the ground electrode

to reduce leakage current.

• Minimize the cantilever beams cross-sectional dimensions to reduce the sensor stiff-
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ness and, therefore, reduce the actuation voltage.

• Eliminate release holes to prevent polymer solution leakage during deposition.

2.1.2 Polymeric sensing materials

Two different polymeric sensing materials with affinity to ethanol vapor, polyaniline doped

with 10% weight nickel oxide (PANI-10% NiO) and poly 2,5-dimethyl aniline (P25DMA),

were deposited onto separate sensors [51]. Each polymer was dispersed in a 1% solution

of glycerol. Glycerol was used to facilitate deposition since it did not completely wet the

surface of the sense-plate, thereby keeping the polymer solution from running off the plate

edge. An average of three drops of the polymer-glycerol solution were deposited onto

each sense-plate. The glycerol was then evaporated off in air, leaving the polymers on the

sense-plate. The sensors, with their respective sensing materials, were then evaluated for

sensitivity towards ethanol.

2.1.3 Electrostatic actuation

The binary gas sensor employs electrostatic actuation, applying a voltage difference be-

tween a moving and a fixed plate, an attraction force is developed resulting in moving

the two plates towards each other [1, 52]. Electrostatic actuation is widely-used in MEMS

where it provides the least power requirements amongst all actuation techniques, since its

current requirements are minimal. Further, electrostatic actuation provides high energy

density and a well-regulated force over small, micro-sized, perturbations [52]. Moreover,

electrostatic actuation does not put significant restrictions on the sensor design process,

thus providing for a lower cost and simpler fabrication process and operating conditions

compared to other actuation methods.
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2.1.4 Detection mechanism

Pull-in instability technique is used in this project as a binary logic where the system can

either, detect ’1’ or not detect ’0’, the gas of interest in vicinity. When the sensor is actuated

using a DC voltage, it responds by a static deflection of the sense-plate. The sense-plate

collapses onto the fixed electrode when the DC voltage exceeds a ‘pull-in’ voltage Vp. The

sensor is excited at a point that is very close to pull-in, namely, saddle node bifurcation.

The sensing mechanism exploits the qualitative difference between the sensor-state before

and after pull-in. The transition between these two states is the static bifurcation used in

detection. The two qualitatively different sensor states, before and after pull-in, serve as

the binary sensor states representing the state of a gas concentration in air.

Applying an operating voltage V◦ close to the pull-in voltage, the mass added by ethanol

molecules sorbed to the detector polymer will cause the sense-plate to collapse onto the

substrate when it reaches a critical value. As the concentration of the target gas in air

increases, the number of gas molecules captured by the detector polymer will increase

until their ‘added mass’ reaches that critical value. The magnitude of the set-off voltage,

δV = Vpi − V◦, determines the size of the critical mass and the threshold concentration

above which ethanol in air triggers a detection signal; pull-in. The difference between the

sensor impedance before and after pull-in is used as a metric to electrically detect ethanol

concentrations above the threshold level.

2.1.5 Drive/Detection circuit

Stabilizing the operating voltage V◦ is necessary to reduce the sensor noise floor. A PC-

controlled low-noise, high-precision, driving circuit was designed by Dr. Park [53] to regu-

late the actuation voltage. A USB-to-Serial converter connects the PC to a micro-controller
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Figure 2.2: Schematic of the driving/detection circuit

and powers a circuit board. The micro-controller passes user commands to a Digital-to-

Analog Converter (DAC). A voltage reference supplies the DAC with a low noise reference

voltage of 4.096 V resulting in a DAC resolution of 62.5 µV. A non-inverting amplifier with

a gain of 3 increases the actuation voltage range to [0 − 11.7] V, which is then buffered

by an operational amplifier. A charge pump supplies a voltage of 12 V to the amplifier

and buffer, while a negative bias generator supplies them with a negative power rail of

-0.23 V to allow their output voltage to reach down to 0 V. The measured resolution of

the actuation circuit is 250µV.

The contact detection circuit is composed of a buffer to minimize loading, a comparator

to compare a measured actuation voltage against a commanded actuation voltage, and a

LED to indicate contact. The gas sensor is connected to the high impedance non-inverting

input of the buffer, which is used to measure the actuation voltage of the gas sensor and

has very low input bias current (10 fA).

When the sense-plate touches the bottom electrode, contact introduces a shunt resis-
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tance to a capacitive voltage divider, draining charge from the gas sensor and reducing the

voltage of the gas sensor. When its voltage drops below a threshold value, the comparator

changes its output from logic low to logic high, turning on the LED in order to indicate the

contact. The block diagram of the low noise, high precision drive circuit and the contact

detection circuit is presented in Fig. 2.2.

2.2 Sensor Model

The gas sensor [30, 49, 53] is made of an electrostatic MEMS actuator, a sense-plate

supported by a microcantilever beam, as shown in Fig. 2.3. The plate is coated with

a detector polymer, coupled to an electrode located at a distance d underneath it, and

actuated by DC voltage. The detection mechanism is built on sensing the change in the

location of a static bifurcation point due to an added mass (sorbed ethanol molecules) to

the plate.

d
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Fixed 

electrode

Anchor

VDC  VAC(t)
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Fixed 
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Figure 2.3: A schematic of the gas sensor

We adopt the model developed by Nayfeh et al. [54] for electrostatic MEMS gas sensors.

The model is extended to account for the weight of the sense-plate, detector polymer, and
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added-mass. It treats the microbeam as an elastic continuum, an Euler-Bernoulli beam,

and the plate as a rigid body. The beam width, thickness, cross-sectional area, and moment

of area are denoted b, h, A, and I, respectively. The micro plate mass and mass moment

of inertia per unit length are denoted m̂p and Jc = 1
3
m̂pL̂

2
c . The subscript c stands for the

center of mass of the plate and L̂c is the distance from the beam end to the center of mass.

The sensor equation of motion is derived using Hamilton’s principle as [55, 54, 49]:

ρA ¨̂w(x̂, t̂) + c ˆ̇w(x̂, t̂) + EI ŵiv(x̂, t̂) = 0 (2.1)

subject to the boundary conditions:

ŵ(0, t̂) = 0 , ŵ′(0, t̂) = 0 (2.2)

EIŵ′′(L, t̂) = m̂pgL̂c − m̂pL̂c
¨̂w
(
L, t̂
)
− (m̂pL̂

2
c + J) ¨̂ ′w(L, t̂) +

εbp(VDC + VAC)2

2ŵ′2(L, t̂)[ 2L̂cŵ
′(L, t̂)

d− ŵ(L, t̂)− 2L̂cŵ′(L, t̂)
− ln

d− ŵ(L, t̂)

d− ŵ(L, t̂)− 2L̂cŵ′(L, t̂)

] (2.3)

EIŵ′′′(L, t̂) = m̂p
¨̂w(L, t̂) + m̂pL̂c

¨̂ ′w(L, t̂)− m̂pg −
εbp (VDC + VAC)2

2ŵ′(L, t̂)

2L̂cŵ
′(L, t̂)

(d− ŵ(L, t̂))(d− ŵ(L, t̂)− 2L̂cŵ′(L, t̂))

(2.4)

where ŵ(x, t) is the displacement of the beam, d is the unactuated gap between the plate

and the substrate, and ĉ is the viscous damping coefficient. The overdot stands for the

derivative with respect to time t̂ and the prime stands for the derivative with respect to

position along the beam axis x̂.

For convenience, we introduce the nondimensional variables

w =
ŵ

d
, x =

x̂

L
, t =

t̂

T
(2.5)

where T is a time scale. Substituting Eq. (2.5) into Eqs. (2.1) and (2.2), we obtain the
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nondimensional equation of motion in the form

ẅ(x, t) + c ẇ(x, t) + wiv(x, t) = 0 (2.6)

subject to the boundary conditions

w(0, t) = 0 , w′(0, t) = 0 (2.7)

w′′(1, t) = MpLc −MLcẅ(1, t)− 4

3
ML2

cẅ
′(1, t) +

α(VDC + VAC)2

w′2(1, t)[ 2Lcw
′(1, t)

1− w(1, t)− 2Lcw′(1, t)
− ln

1− w(1, t)

1− w(1, t)− 2Lcw′(1, t)

] (2.8)

w′′′(1, t) = −Mp +Mẅ(1, t) +MLcẅ
′(1, t)

− 2α(VDC + VAC)2

w′(1, t)

Lcw
′(1, t)

(1− w(1, t))(1− w(1, t)− 2Lcw′(1, t))

(2.9)

where

α =
εbpL

4

2EId3
, T =

√
ρAL4

EI
, c =

ĉL4

EIT
, (2.10)

Lc =
L̂c

L
, M =

m̂p

ρAL
, and Mp =

m̂pgL
3

EId
(2.11)

and Mp is the nondimensional plate weight.

We proceed to develop a closed-form expression for the static deflection, denoted ws(x),

under DC voltage and estimate the maximum range of travel. The static problem can be

formulated by setting the time derivatives and the AC forcing term in Eqs. (2.6) and (2.7)

equal to zero, which yields

wiv
s (x) = 0 (2.12)
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subject to the boundary conditions

ws(0) = 0 , w′s(0) = 0 (2.13)

w′′s (1) = MpLc +
αV 2

DC

w′s(1)2[ 2Lcw
′
s(1)

1− ws(1)− 2Lcw′s(1)
− ln

1− ws(1)

1− ws(1)− 2Lcw′s(1)

] (2.14)

w′′′s (1) = −Mp −
2αV 2

DC

w′s(1)

Lcw
′
s(1)

(1− ws(1))(1− ws(1)− 2Lcw′s(1))
(2.15)

where the primes denote derivatives with respect to x.

The general solution of Eq. (2.12) can be expressed as

ws(x) = Ax3 +B x2 + C x+D (2.16)

Using the first two boundary conditions yields C = D = 0. The last two boundary

conditions result in the following nonlinear algebraic equations:

6A+ 2B = MpLc +
αV 2

DC

(3A+ 2B)2

[ 2Lc(3A+ 2B)

1− A−B − 2Lc(3A+ 2B)

− ln
1− A−B

1− A−B − 2Lc(3A+ 2B)

] (2.17)

6A = −Mp −
2αV 2

DC

3A+ 2B

Lc(3A+ 2B)

(1− A−B)(1− A−B − 2Lc(3A+ 2B))
(2.18)

which can be numerically solved for A and B.

The sensor structural material is polysilicon with ρ = 2300 Kg/m3 and E = 160 GPa.

The air permittivity is ε = 8.854 × 10−12 F/m. The design dimensions of the sensor are

listed in Table 2.1.

Figure 2.4 shows the variation of the static deflection, wc = ws(1) + Lcw
′
s(1), of the

plate center of mass with the DC voltage obtained by solving Eqs. (2.17) for a given VDC

and substituting the resulting values of A and B into Eq. (2.16). The pull-in voltage
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Table 2.1: Sensor design dimensions

L (µm) b (µm) h (µm) Lp (µm) bp (µm) hp (µm) d (µm)

125 5 1.5 60 30 1.5 2.75

was calculated as Vpi = 6.98 V with plate deflection at pull-in, wpi, equal to 32% of the

initial gap d as depicted in the figure. The lower branch of solutions (solid line) represents

stable equilibrium solutions, whereas the upper branch of solutions (dashed line) represents

unstable equilibrium solutions. The two branches of solutions collide at this point, resulting

in their destruction due to a saddle-node bifurcation. Beyond Vpi, there are no equilibrium

positions [56].

2.3 Sensitivity Analysis

The sensitivity of static-detection sensors is defined as the ratio of the change in normalized

deflection δw to the change in normalized mass δm

Sm =
δw

δm
(2.19)

For an un-actuated sensor, this reduces to a constant value

Sm =
γ

k

where γ is a normalization constant and k is the linear structural stiffness.

For actuated electrostatic sensors, the structural stiffness is function of the actuation

voltage and, therefore, sensitivity will vary with voltage. Thus, we develop a closed-form

sensitivity formula for static-detection electrostatic MEMS sensors. For a sensor set at an
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Figure 2.4: Nondimensional deflection of the plate center wc as a function of VDC

operating voltage V◦, we perturb the plate mass by δm and use Eq. (2.16) and Eqs. (2.17)

to evaluate the perturbed plate deflection wc + δw and write

δw = (1 + 3Lc) δA+ (1 + 2Lc) δB (2.20)

Substituting this equation into Eq. (2.19), we obtain

Sm = (1 + 3Lc)
δA

δm
+ (1 + 2Lc)

δB

δm
(2.21)

The perturbed deflection coefficients are determined by solving Eqs. (2.17) analytically [49]

to obtain

Sm =
12αV 2

◦ Lc(1 + Lc)(A + B) + 18Lc + 10

16αV 2
◦ Lc(1 + 3Lc + 3A + 3B)− 12

(2.22)
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where terms of order O(ε3) and higher have been neglected. The formula indicates that

sensitivity is not only function of compliance, represented by Lc, but also the strength of

the electrostatic field, represented by αV 2
◦ .

Figure 2.5: Sensitivity Sm as a function of operating voltage V◦

We solved Eq. (2.21) numerically to calculate the sensitivity of the sensor as a function of

the operating voltage V◦, Fig. 2.5. Our results show that sensitivity increases monotonically

with V◦ and approaches a maximum as V◦ → Vpi. This is in agreement with Eq. (2.19)
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since static pull-in corresponds to the sensor linear stiffness approaching zero (k → 0).

Therefore, it is advantageous to use electrostatic MEMS sensors and to operate them

as close as possible to the pull-in limit. In fact, the sensitivity of a binary mass sensor

operated by triggering pull-in, represents an upper bound on the sensitivity of static-

detection electrostatic MEMS sensors.

2.4 Parameter Identification

2.4.1 Sensor dimensions

Uncertainties in the large in-plane dimensions of the sensor are insignificant compared to

uncertainties in the small capacitor gap distance, structural layer thickness, and width

of the cantilever beams. We used a white light profilometer [57] to measure the in-plane

dimensions of the beams and sense-plate as listed in Table 2.2. We found that they are

almost identical to the design values except for the beam width which was found to be

b = 5.5 µm.

Table 2.2: Measured sensor dimensions

L (µm) b (µm) h (µm) Lp (µm) bp (µm) hp (µm) d (µm)

124 5.5 1.3 60 30 1.3 2.15

In order to estimate the beam thickness, we matched the voltage-displacement curve

predicted by our model to that measured experimentally as shown in Fig. 2.6. The beam

thickness required to obtain matching between the experiment and model predictions was

h = 1.3 µm. Moreover, Fig. 2.6 also gives an estimate of the capacitor gap distance as
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d = 2.15 µm. The close agreement between model and experimental results indicate that

the model predicts well the sensor displacement until pull-in.

Figure 2.6: Plate center displacement wc as a function of the actuation voltage V◦ obtained

experimentally (solid line) and numerically (dashed line)

2.4.2 Pull-in voltage

A laser vibrometer [58] is used to measure the sensor response. It uses the difference in

a laser beam frequency and phase before and after it reflects from the plate center to

determine the sensor displacement wc and velocity ẇc.
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Figure 2.7: A screen capture of the laser vibrometer interface showing displacement of the

plate center wc (solid line) during pull-in. Superimposed is the actuation triangular wave

(dashed line)

In order to determine the pull-in voltage, a triangular wave is applied to the sensor

using the driving circuit. The frequency of the triangular wave is set to 3 Hz to ensure a

quasi-static response. The maximum voltage of the waveform is monotonically increased

until pull-in occurs. Pull-in is detected via the vibrometer as a sudden change in the plate

deflection. It is verified optically by the formation of alternating bright and dark fringe

fields on the cantilever and sense-plate and electrically by the contact LED of the detection

circuit turning on.

A screen capture from the laser vibrometer interface, Fig. 2.7, shows a picture of the

laser spot positioned over the sense-plate and the measured plate displacement over time

in response to a triangular wave varying from 0 - 7 V at a frequency of 3 Hz. As the voltage

increases linearly, the plate moves down towards the substrate. It undergoes pull-in at the

peak of the triangular wave and stays in contact with the substrate as the voltage drops

until it approaches 0 V.

This experimental procedure provides an estimate of the pull-in voltage accurate up to

0.1 V due to residual dynamic effects caused by the time-varying voltage of the triangular
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wave. To obtain a better estimate of the pull-in voltage, an operating voltage V◦ close

to but less than the estimated pull-in voltage is applied to the sensor. The voltage V◦

is increased in steps of 1 mV, allowing transients to die out after each step, until pull-in

occurs. This procedure provides an enhanced estimate of the pull-in voltage accurate up

to 1 mV.

2.4.3 Quality factor

We measured the quality factor of the sensor in atmospheric pressure by applying a pulse

train with an amplitude of 4 V, a frequency of 1 kHz, and a 5% duty cycle. Using laser

vibrometer, we obtained the frequency-response curve of the sensor, Fig. 2.8. The damped

natural frequency was measured from the curve as fd = 24 kHz. The quality factor was

determined from the curve using the half-power bandwidth method as Q = 0.92 indicating

that the sensor is highly damped. We also measured the settling time from the time-domain

response to the pulse train as ts = 20 µs shown in Fig. 2.9.

Figure 2.8: A screen capture of the laser vibrometer interface showing the FFT of the

sensor frequency-response under a pulse train
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Figure 2.9: A screen capture of the laser vibrometer interface showing the time response

of the sensor under a pulse train

2.5 Experimental Limitations

2.5.1 Static charge shock

Static charges are generated from contact between two surfaces, such as fabrics. All ma-

terials are made of atoms and electrons; thus, electrons can move from one material to

another upon contact. Low humidity helps to accumulate static charges [59]. The hu-

man body is a good insulator (highly resistive) as a result, it accumulates static charges.

Thus, if an operator wears fabric material and/or rubber shoes static charges tend to ac-

cumulate on his/her body. Upon touching a chip, the static charges are released into the

specimen through electrical connections resulting in charge shock and stiction either in

line-contact or area-contact. Operators were instructed to wear Electrical Discharge Strips

(EDS) connected to the common ground of vibrometer to protect the specimen from static

charges.
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2.5.2 Dielectric charging

Electrostatic charging poses a serious impediment to experimental measurements. It occurs

due to buildup of static charges on dielectric layers in a MEMS, which turns them into

voltage sources within the MEMS. Specifically, charge buildup on a dielectric layer within

the actuation capacitor with the same polarity as the excitation voltage will reduce the

effective voltage drop across the capacitor. This is particularly exacerbated by the sense-

plate coming into contact with the bottom electrode during pull-in.

In our experiments, we observed that pull-in voltage increased after repeated pull-

in cycles. To rule out the formation of debris on top of the bottom electrode (due to

impact during pull-in) as a source of this phenomenon, three sensors were broken to able

to investigate the bottom electrode by obtaining SEM pictures in three cases:

i) after seven pull-in cycles, Fig. 2.10(a),

ii) after three pull-in cycles, Fig. 2.10(b), and

iii) for a fresh (never pulled-in) sensor, Fig. 2.10(c).

Examining the pictures in Fig. 2.10, we found no debris on the bottom electrode in all

three cases, thereby ruling out debris formation as a source of drift in pull-in voltage.

We postulate that increase in pull-in voltage after repeated pull-in cycles occurs due to

the formation of a native oxide layer on the bottom polysilicon electrode due to extended

exposure to air. Literature shows that extended exposure of bare polysilicon surfaces to

air leads typically to the formation of 1− 3 nm thick native oxide layers [60, 61]. However,

devices fabricated using PolyMUMPs have been shown to possess an extremely thick, up to

30 nm, native oxide layer [62]. This layer of silicon dioxide serves as a dielectric layer that
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(a) (b) (c)

Figure 2.10: SEM pictures of the bottom electrode for sensors: (a) after seven pull-in

cycles, (b) after three pull-in cycles, and (c) no pull-in

contributes to contact resistance and leads buildup of trapped charges, thus modifying the

pull-in voltage [63, 64]. The maximum observed increase in pull-voltage was ∼ 100 mV.

2.5.3 Contact resistance

Once the electrostatic actuator goes into pull-in, the sense-plate and bottom electrode are

transformed from a capacitor into a resistor resulting in a drastic drop in voltage across

the plate and bottom electrode. We found that the sense-plate came into contact with the

bottom electrode following pull-in in one of two sates: over an area (area-contact) or along

a line (line-contact). An LCR meter, Agilent Technologies Inc. U1700 [65], was used to

measure contact resistance, impedance, and phase difference between current and voltage

across the ‘capacitor’ under both conditions.

Area-contact

Area-contact occurs when the whole sense-plate collapse onto the bottom electrode trans-

forming the capacitor into a resistor with current draining across the contact area. Sev-
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eral experiments were conducted to characterize area-contact, measure resistance and

impedance across the junction, and the results are listed in Table. 2.3. The results show

that typical resistance and impedance in area-contact is on the order of kΩ. The small

difference between the values of resistance and impedance indicate that capacitive loading

across the junction is minimal.

Table 2.3: Measured resistance and impedance for two sensors in area-contact

Sensor Index Resistance (kΩ) Impedance (kΩ)

A.3 4.35 4.41

A.4 3.97 4.41

Area-contact can also be characterized optically using a CCD camera. Comparison of

the cantilever beams before and after pull-in, Figure 2.11, shows fringe fields (lines) appear

along the beams following pull-in due destructive light interference over the slopped beam

profile. On the other hand, no fringe fields are observed on the sense-plate when it lies

level over the bottom electrode in area-contact following pull-in.

Line-contact

Line-contact occurs when the sense-plate is partially pulled-in to come into contact with

the substrate along a line. We found that this condition introduces a large resistance

between the sense-plate and bottom electrode due to the small contact area. The measured

resistance and impedance for three sensors that pulled-in along a line are tabulated in

Table. 2.4. In all cases, the LCR meter measured a contact resistance larger than its

maximum measurement range, R1 > 200 MΩ.
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(a) (b)

Figure 2.11: Pictures of (a) the unactuated sensor (0 V) and (b) the sensor in area-contact

subsequent to pull-in

On the other hand, the magnitude of the overall impedance across the microplate and

bottom electrode Zt was found to be at least one order-of-magnitude less than contact

resistance. This is due to the continued presence of a capacitor connected in parallel with

the resistance between the microplate and the substrate, Fig. 2.12. As a result, the overall

impedance across the microplate-substrate junction can be written as

Zt =
−R1

i
ΩC1

R1 − i
ΩC1

≈ lim
R1→∞

−R1
i

ΩC1

R1 − i
ΩC1

= − i

ΩC1

(2.23)
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Table 2.4: Measured resistance and impedance for three sensors in line-contact

Sensor Index Resistance (MΩ) Impedance (MΩ)

A.3 > 200 15.4

A.4 > 200 17.0

C.4 > 200 17.7

Figure 2.12: Electrical components of line-contact phenomena

Line-contact can also be observed optically using a CCD camera as shown Fig. 2.13. In

this case, fringe lines form on the cantilever beams and the sense-plate as a result of the

sense-plate lying at an angle with respect to the substrate (slopping towards it).

Capacitor phase shift

There is no phase difference between current and voltage across a resistor. Current leads

voltage across a capacitor by a phase angle of 90◦. This suggests that a potential technique

to detect pull-in electrically is to measure the phase difference between current and voltage

across the microplate-bottom electrode junction. We used the LCR meter to measure the

phase lead of current with respect to voltage for three sensors, Table. 2.5.

The phase difference for two sensors detected optically to be in line-contact with the
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(a) (b)

Figure 2.13: Pictures of (a) the unactuated sensor and (b) the sensor in line-contact sub-

sequent to pull-in

substrate, sensors A.3 and A.4, was close to zero indicating current passage through a

resistive load. The phase difference for a sensor detected optically to be in-flight, sensor C.6

,was 90◦ indicating the absence of resistive load (sensor in-flight). Therefore, measurement

of phase difference between voltage and current across the electrostatic capacitor can be

used as a contact detector.

The presence of a thick dielectric layer over the bottom electrode can undermine this

detection method. Specifically, we measured the resistance, impedance, and phase differ-

ence for a sensor after pull-in as listed in Table. 2.6. While the measured phase shift 89.4◦

imply no contact, optical inspection showed that the sensor was in area-contact. We pos-

tulate that the dielectric layer within the pulled-in capacitor was thick enough to provide

contact resistance significantly larger than the capacitor reactance (R1 →∞). As a result,

the impedance was dominated by the capacitor reactance and the phase shift stayed to 90◦
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Table 2.5: Measured impedance and phase shift between microplate and bottom electrode

doe three sensors

Sensor Index Impedance (MΩ) Phase shift (◦) Status

A.3 15.4 0.2 Line-contact

A.4 17.0 0.6 Line-contact

C.6 17.7 90 No contact

Table 2.6: Measured resistance, impedance, and phase shift for a sensor pulled-in in area-

contact

Resistance (kΩ) Impedance (MΩ) phase shift (◦) Status

> 200 6.684 89.4 Area contact

after pull-in. This scenario undermines the usability of phase shift as a contact detector.

2.5.4 Limitation of the detection circuit

The detection circuit, Fig. 2.14, described in section 2.1.5 measures the voltage drop across

the electrostatic capacitor. An LED turns on when the voltage across the electrostatic

capacitor drops below a threshold value due to charge draining to the ground after pull-in.

This mechanism malfunctions when the voltage across the capacitor drops slowly after

pull-in due to high overall impedance Zt.

A test was conducted on the detection circuit to simulate contact-resistance during pull-

in and determine the maximum allowable shunt resistance. The detection circuit was loaded

with a 1 GΩ resistor connected in parallel to a 100 pF ceramic capacitor, representing the
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Figure 2.14: The gas sensor drive/detection circuit

sensor capacitance. The circuit required 4 minutes to discharge the capacitor and turn on

the LED. On the other hand, the detection circuit required longer time to detect contact

after each pull-in, ranging from a minimum of a few seconds, for a fresh sensor, up to tens

of minutes after seven pull-in cycles. The experiment indicates that pull-in cycles increases

contact resistance drastically.

2.6 Experimental setup

The experimental setup, Fig. 2.15, is composed of the sensor inside a test chamber, the

drive and detection circuit, and gas canister containing a pre-calibrated test gas charge.

It insures dual electrical and optical observation of the sensor, thus testing and verifying

the performance of the sensor and drive and detection circuit. A test chamber shown in

Fig. 2.16, volume 160 cm3, was designed to control the composition of the gas mixture to

which the sensor is exposed. The chamber is equipped with an electrical interface, BNC
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Figure 2.15: The experimental setup

port, to connect the sensor to the drive and detection circuit, and a quartz glass window

to allow for optical detection and measurement of the sensor response using a vibrometer.

The gas canister is used to release a pre-calibrated mixture of dry nitrogen and ethanol

into the test chamber by opening the canister valve to allow the gas to flow under its own

pressure into the chamber.

Experiments are conducted by placing the sensor inside the test chamber and com-

manding the drive circuit using a PC to apply the operating voltage V◦ to the sensor while

in ambient air. The canister valve is then fully opened and the gas mixture is allowed

to flow for three minutes into the test chamber to purge out air. Subsequently, gas flow

is reduced slowly to a minimum to protect against the possibility of gas flow sending the

sensor into a false detection. The sensor response is monitored continuously using a video

CCD camera to detect fringe fields and the LED in the drive and detection circuit.
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(a) (b)

Figure 2.16: The test chamber is equipped with (a) quartz glass window and (b) a BNC

port

2.7 Results

A series of experiments were conducted to determine the minimum detectable ethanol

concentration (detection limit) for sensors equipped with PANI-10% NiO and P25DMA.

The test gases were made of ethanol vapor in dry nitrogen at concentrations ranging from

1000 ppm to 5 ppm.
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2.7.1 Ethanol detection using PANI-10% NiO

To test the detection limit of the sensor equipped with PANI polymer, it was placed inside

the test chamber. The test gases had ethanol vapor concentrations of 1000, 100, and

50 ppm. We define the set-off voltage as the difference between the pull-in voltage Vpi and

the operating voltage V◦:

δV = Vpi − V◦

The following experiments were conducted:

1000 ppm ethanol vapor in dry nitrogen: The set-off voltage was set to δV = 20 mV. After

195 seconds, pull-in was observed to occur optically in area-contact, Fig. 2.17(a), and

electrically by turning the LED ON.

100 ppm ethanol vapor in dry nitrogen: The set-off voltage was set to δV = 15 mV. After

120 seconds, pull-in was observed optically to occur in line-contact, Fig. 2.17(b). Since

impedance of the pulled-in microplate was high, the LED turning on was significantly

delayed, several minutes, by beyond pull-in.

50 ppm ethanol vapor in dry nitrogen: The set-off voltage was set to δV = 1 mV. After

80 seconds, pull-in was observed optically to occur in line-contact. The results of the

experiments are summarized in Table 2.7. Since the actuation circuit resolution is 1 mV,

no further experiments were conducted.

The black spot appearing on the sense-plate in Fig. 2.17 is the PANI deposited on the

sense-plate. The fringe lines observed on the cantilever beams only in Fig. 2.17(a) indicate

area-contact, while The fringe lines observed on the sense-plate and cantilever beams in

Fig. 2.17(b) indicate line-contact. We conclude that the added mass in the 100 pm and

50 ppm ethanol vapor was less than that in the 1000 ppm ethanol vapor leading to line

instead of area-contact.
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(a) (b)

Figure 2.17: PANI-equipped sensor (a) in area-contact after detection of 1000 ppm ethanol

in dry nitrogen and (b) in line-contact after detection of 100 ppm ethanol in dry nitrogen

To estimate the added mass listed in Table. 2.7, we used the operating voltage V◦ to

determine the sensor sensitivity Sm from Fig. 2.5, and the displacement due to add mass

δw = wpi − wc

from Fig. 2.4. The added mass was then calculated as their ratio

δm =
δw

Sm

2.7.2 Ethanol detection using P25DMA

The P25DMA-equipped sensor was tested using gas mixtures with ethanol concentrations

of 50 and 5 ppm. The initial set off voltage was δV = 20 mV.
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Table 2.7: Experimental results for the PANI-equipped binary ethanol sensor (EtOH)

Set-off Voltage EtOH Concentration Estimated Mass Response Time

(mV) (ppm) δm (pg) (s)

20 1000 845 195

15 100 727 120

1 50 165 80

The following experiments were conducted:

50 ppm ethanol vapor in dry nitrogen: the operating voltage, V◦, was increased in steps of

1 mV with a hold-off period of 600 s after each step. The hold-off period is eight orders of

magnitude higher than the settling time, ts = 20 µs, guaranteeing elimination of transient

effects. Pull-in occurred at a set-off voltage of δV = 5 mV after 45 seconds. It was observed

to occur optically in line-contact.

5 ppm ethanol vapor in dry nitrogen: the operating voltage, V◦, was increased in steps of

1 mV with a hold-off period of 30 s after each step. The hold-off period is six orders of

magnitude higher than the settling time, ts = 20 µs, guaranteeing elimination of transient

effects. Pull-in occurred at a set-off voltage of δV = 1 mV after 7 seconds. It was observed

optically to occur in line-contact.

The results of the experiments are summarized in Table 2.8. Since the actuation circuit res-

olution is 1 mV, no further experiments were conducted. We note that all the experimental

results were repeated at least twice to ensure repeatability of detection.
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Table 2.8: Experimental results for the P25DMA-equipped binary ethanol sensor (EtOH)

Set-off Voltage EtOH Concentration Estimated Mass Response Time

(mV) (ppm) δm (pg) (s)

5 50 407 45

1 5 165 7.0

2.8 Discussion

The detection limit of the ethanol sensor equipped with PANI doped with 10% NiO was

50 ppm, whereas the detection limit for the sensor equipped with P25DMA was 5 ppm.

It is important to note that the minimum detectable concentration is dependent on the

minimum realizable set-off voltage δV and the type, amount, and distribution of the de-

tector polymer coating the sense-plate. Since the same procedure was used in preparing,

depositing, and testing the two detector polymers, our results show that the sensitivity of

P25DMA to ethanol vapor is one order-of-magnitude more than that of PANI doped with

10% NiO.

The minimum detectable mass was 165 pico-grams at a set-off voltage δV = 1 mV.

The fact that we could realize a level of mass sensitivity competitive with more elaborate

MEMS mass sensors using fringe field detection only shows the potential advantages of

bifurcation-based sensing. Further, we note that all experiments were conducted in air

on a probe station that was not isolated from ground vibration. Further, no precautions

were taken to protect the sensors against external disturbances. However, there was no

false positives reported in any of the series of experiments conducted with this sensor.

This observation indicates that the stability of MEMS inertial sensors against external
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disturbances is better than macro sized sensors because of the minute mass of the sense-

plate, on the order of a few nano-grams. The fact that our sensor is over-damped added

another layer of protection against external disturbances.
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Chapter 3

Magnetic Sensor

This chapter presents a novel MEMS magnetic sensor based on the Lorentz force. Most

magnetic sensors available commercially have a narrow dynamic measurement range. The

proposed magnetic sensor seeks to achieve a small size, a wide adjustable dynamic range,

and a programmable sensitivity. It utilizes a Lorentz force, generated by an alternating

current and an external magnetic field, to excite a torsional mode. This sensor has multiple

operating points that determine its sensitivity and dynamic range. Modal analysis is carried

out for the sensor and experiments are conducted to verify for the torsional mode and other

modes in its vicinity.

3.1 Principle of Operation

The magnetic sensor, Fig. 3.1, is based on the same structure used for the binary gas sensor

presented in chapter 2. Its torsional mode is excited by two signals Va and Vb applied to the

bonding pads of the cantilever beams. A phase difference of 180◦ is maintained between
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the two signals as follows

Va = Vdc + Vp1 sin(2πf◦t) (3.1)

Vb = Vdc + Vp2 sin(2πf◦t+ φ) (3.2)

where f◦ is the signal frequency. Because of the symmetry in the released sensor structure,

the voltage drop from one pad to the microplate is identical to that from other pad to

the microplate. When the amplitudes of Va and Vb are set to Vp1 = Vp2 and the phase

difference between them is set to φ = π, the voltage drop between the microplate and the

bottom (ground) electrode is equal to the DC bias Vdc of the excitation signals.

Figure 3.1: Isometric view of the magnetic sensor showing the excitation current (red

dotted lines), the external magnetic field (green dashed line), and the Lorentz force (blue

solid lines)

An electrostatic force develops, due to the bias voltage Vdc, between the microplate

and the bottom electrode. It moves the microplate downward to settle at a point in the

electrostatic field corresponding to the applied force.
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The excitation current~i(t) passing through the two cantilevers beams interacts with the

external magnetic field ~B(t) to induce a force ~FL orthogonal to the current and magnetic

field, Fig. 3.1, as per Lorentz Law [66],

~FL = lc~i(t)× ~B (3.3)

where lc is the length of the cantilever beam, Fig. 3.2,. The Lorentz force-pair acting on

the two beams are equal in magnitude, due to symmetry, and opposite in directions. The

force pair creates an excitation torque acting on the microplate

Tm = wlci(t)B (3.4)

where w is the distance between the center lines of the micro-beams. It drives microplate

into torsional oscillations at the common frequency of the actuation signals f◦. Slow

variations in the magnetic field strength ~B(t) over time modulate the amplitude of torsional

oscillation. As a result, the external magnetic field acts as a baseband signal modulating

the torsional oscillations of the microplate where the excitation current acts as a carrier

signal.

The linear relationship between the magnetic field ~B and Lorentz force, Eq. (3.3), allow

for a linear relationship between the magnetic field ~B and the measured; the microplate

oscillations. All three spatial components of the magnetic field can be measured using

three identical magnetic sensors placed along the axes of an orthogonal coordinate system.

The reversal of the magnetic field direction along an axis can be detected as a phase shift

of 180◦ in the phase angle between the microplate oscillations and the excitation signals.

The bending-torsional motions of the sensor can be described using a lumped-mass

model as a set of two second-order ordinary differential equations describing the microplate
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Figure 3.2: Top view (left) of the magnetic sensor and the microplate (right) color coded

with measured displacement (red: high; green: low) when excited into torsional oscillations

vertical z and angular θ displacements [46, 67]:

mz̈ + cbż + kbz =
1

2

εwplpV
2
dc

(d− z)

( 1

2d− 2z − lpθ
+

1

2d− 2z + lpθ

)
(3.5)

Jθ̈ + ctθ̇ + ktθ = wlci(t)B + Te (3.6)

where m is the effective mass of the sensor, J is the second moment of inertia of the mi-

croplate around its center line, kb and kt are the effective bending and torsional stiffness

of the beams, and cb and ct are bending and torsional viscous damping coefficients com-

bining the energy losses due to structural, squeeze-film, and other damping sources. The

microplate length and width are denoted lp and wp, respectively, and the gap distance

between microplate and bottom electrode is donated d. The torque due to electrostatic

forces Te is described by:

Te = −ε0V 2 sin
2θ

2θ2

∫ lp

0

∫ 1
2
wp

−1
2
wp

( 1

d− ysinθ

)2

ydydx (3.7)

The magnitude of the electrostatic force, Fe, and electrostatic torque, Te, are proportional

to the square of the voltage drop between the microplate and bottom electrode V , which
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is not necessarily equal to Vdc. The harmonic components of the electrostatic force and

torque can be derived by squaring a generic waveform V = Vdc + Vp sin(2πf◦t) as:

V (t)2 = (V 2
dc + 1

2
V 2
p ) + 2VdcVp sin(2πf◦t)− 1

2
V 2
p cos(4πf◦t) (3.8)

∝ Fedc + Fe1 + Fe2

∝ Tedc + Te1 + Te2

where Fedc and Tedc are the static component, Fe1 and Te1 are the first harmonic compo-

nent, and Fe2 and Te2 are the second harmonic component. Eqs. (3.5) and (3.6) represent

a lumped model, Fig 3.3, for bending motions, due to electrostatic forces used to adjust the

sensor sensitivity, and torsional motions, due to electrostatic and electromagnetic torques.

Figure 3.3: (a) Top and (a) front views of the magnetic sensor

For bias voltages Vdc, Eq. (3.5), larger than zero, electrostatic forces will develop be-

tween the microplate and the bottom electrode. As a result, the microplate will move

downward to settle at a point closer to the bottom electrode, thereby increasing the elec-

trostatic field strength at the equilibrium point. Therefore, the magnitude of the bias

voltage can be used to set the operating point and sensitivity of the magnetic sensor. This

adjusts the sensitivity and dynamic range of the sensor in the following ways:
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– It decreases the natural frequency and stiffness of the sensor torsional motions result-

ing in larger sensor motions in response to the same level of Lornetz force (magnetic

field strength).

– A smaller capacitor gap increases the sensitivity of capacitive sensing for the same

size sensor motions.

– A smaller capacitor gap increases squeeze-film damping which decreases the size of

sensor motions in response to the same level of Lornetz force.

We note that the relationship between bias voltage (operating point) and sensitivity is not

linear or monotonic and, therefore, requires an optimization process to identify a set of

optimal operating points.

3.2 Numerical Model

A finite element model (FEM) of the magnetic sensor was created in COMSOL to calculate

its natural frequencies and mode shapes. The model was made of 4650 hexahedral elements.

It did not account for the electrostatic field or fluid-structure interactions. Fig. 3.4 shows

the first four mode shapes and natural frequencies of the magnetic sensor obtained from

eigenvalue analysis in COMSOL.

The first mode shape is the first out-of-plane bending, Fig. 3.4(a), with a natural

frequency of f1 = 34 kHz. The second mode shape is the first torsional mode, Fig. 3.4(b),

with a natural frequency of f2 = 198 kHz. The third mode shape is the first in-plane

bending, Fig. 3.4(c), with a natural frequency of f3 = 283 kHz. The fourth mode shape

is the second out-of-plane bending, Fig. 3.4(d), with a natural frequency of f4 = 368 kHz.
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The widely spaced modes reduce the possibility of modal interaction between the sensing

mode, the first torsional mode, and other modes of sensor vibrations.

Figure 3.4: The first four undamped mode shapes of the magnetic sensor obtained from

eigenfrequency analysis using COMSOL

3.3 Experimental Results

The natural frequencies and mode shapes of the first two modes were determined experi-

mentally by direct non-contact measurements of the sensor response using a laser vibrom-

eter, Polytec MSV400, and the experimental setup is shown in Fig. 3.5. Velocity decoder

VD-02 and displacement decoder DD-300 were used to measure the microplate velocity

and displacement, respectively. The measured resistance between bonding pads (a) and

(b), in Fig. 3.1, was found to be Rc = 1.517 kΩ.

A constant magnetic field was applied to the sensor throughout measurements of the

sensor response. The amplitude of the excitation signals Va and Vb was set to Vp1 = Vp2 =
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Figure 3.5: Experimental set-up showing the laser vibrometer, probe station, micro ma-

nipulators, and specimen

5 V throughout the experiments, while the excitation frequency was varied until maximum

response was obtained at resonance fi. The amplitude in the current loop was calculated

by Ohm’s law

Ic =
Vp
Rc

(3.9)

to be Ic = 6.6 mA.
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3.3.1 Modal response

We measured the natural frequencies and mode shapes of the first bending mode and

first torsional mode. A function generator supplied the excitation signals Va and Vb to

the bonding pads and a manual frequency sweep was carried out in the frequency range

[0, 400] kHz to locate the natural frequencies. Velocity was measured at the microplate

center, point A in Fig. 3.6, for the bending mode and at the microplate edge, point B, for

the torsional mode.

A line-grid made of 42 points on each of the cantilever beams and an area-grid made

of 133 points on the microplate were defined on the sensor strucure, Fig. 3.6. The ”multi-

scan” feature of the vibrometer was used to measure the response of the sensor at each grid

point, when the sensor was excited at a natural frequency. The measurements were used

in the PSV software to obtain the mode shape corresponding to that natural frequency.

Bending mode

To excite bending oscillations, the phase angle between the excitation signals Va and Vb

was set to φ = 0◦ and the bias voltage to Vdc = 0. This excitation regime resulted in the

application of a downward electrostatic force on the microplate but did not induce current

in the loop and, therefore or electromagnetic torque. The electrostatic force was made of

the Fe2 component, Eq. (3.8), only. As a result, the dominant excitation frequency was

twice the signals frequency 2f◦. Table 3.1 lists the measured velocity amplitude of point

A at the signal frequency f◦ and the excitation frequency 2f◦ for three selected cases,

f◦ = 7.5, 15.5, and 31 kHz, within a frequency sweep in the range f◦ = [0, 100] kHz.

The the natural frequency of the first out-of-plane bending mode was found at an

excitation frequency of 2f◦ = 31 kHz where the measured velocity amplitude of bending
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Figure 3.6: Two measured points, A and B, for the bending and torsional modes

Table 3.1: Bending mode excitation signals and their response

Case Vp1 (V) Vp2 (V) f◦ (kHz) v(f◦) (mm/s) v(2f◦) (mm/s)

1 5 5 7.5 0.241 5.00

2 5 5 15.5 0.182 5.93

3 5 5 31 0.317 4.96

motions reached a maximum of v(2f◦) = 5.93 mm/s. The first harmonic response appearing

at f◦ is due to an of amplification of DC noise by the AC signals Vpi resulting in an

electrostatic force component Fe1. The difference between the measured natural frequency

and that found by FEM in section 2.4.3 is due to inter-chip and intra-chip dimensional

variability as well as variation in material properties between the two PolyMUMPs runs

used to fabricate the sensors.

The first out-of-plane bending mode shape obtained from a multi-scan experiment with

an excitation frequency of 2f◦ = 31 kHz is shown in Fig. 3.7. The figure shows the sensor

strucure at a terminal position in the cycle of oscillations color coded with red representing
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Figure 3.7: The mode shape of the first out-of-plane bending mode obtained experimentally

at 2f◦ = 31 kHz

maximum displacement. Comparison of the experimentally obtained mode shape to that

obtained using FEM, Fig. 3.8, shows close agreement. The drop in the measured natural

frequency compared to that calculated using FEM is due to the absence of damping in the

FEM model. The effect of damping will be addressed in section 3.4.

Torsional mode

The phase angle between the excitation signals Va and Vb was set to φ = 180◦ and the bias

voltage to Vdc = 0 to excite the torsional mode. This setup is designed to apply electro-

magnetic torque and no electrostatic forces on the microplate, since it should results no

voltage drop across the actuation capacitor. While it induces current in the loop, the appli-

cation of an electromagnetic torque requires, in addition, the present of an electromagnetic

field B 6= 0. The velocity amplitude was observed at point B using the vibrometer. The

frequency spectrum of the response contained two peaks at the signal frequency f◦ and its

second harmonic 2f◦. No precautions were taken to reduce stray magnetic fields in the test

52



(a) (b)

Figure 3.8: Comparison of the first out-of-plane bending mode shape obtained by (a) FEM

at 34 kHz (b) and experimentaly at 31 kHz

environment.

Table 3.2: Torsional mode excitation signals and their response

Case Vp1 (V) Vp2 (V) f◦ (kHz) φ (◦) B (mT) v(f◦) (µm/s) v(2f◦) (µm/s)

1 5 5 31 180 0 22.5 645.5

2 4.5 4 31 180 0 12.8 467.3

5 4.5 4 182 180 27.8 9491.2 28.8

Two experiments were conducted to examine the torsional response of the sensor. The

first experiment, comprised of the first two test cases in Table 3.2. Initially, the excitation

signals were set amplitudes of Vp1 = Vp2 = 5 V and a common frequency of f◦ = 31 kHz.

The FFT of the measured velocity amplitude at point B contained only two peaks at the

signal frequency and its second harmonic. The magnitudes of those peaks were v(f◦) =

22.5 µm/s and v(2f◦) = 645.5 µm/s as listed in Case # 1, Table 3.2.

The peak at f◦ is due to a combination of amplification of DC noise by the AC signals

Vpi resulting in the electrostatic force component Fe1, and an electromagnetic torque caused
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by interaction between the current and stray magnetic fields. The peak at 2f◦ is due to

residual electrostatic forces caused by the finite width of the microplate and asymmetry in

the path resistance on either side, which produce a non-zero voltage drop across the plate.

The desired torsional vibrations occur at the signal frequency f◦ due to electromagnetic

torque, Eq.(3.4). In this context, the electrostatically driven bending motions appearing

at f◦ and 2f◦ represent spurious responses.

To reduce those spurious motions, we adjusted the amplitude of the excitation signals

to counteract the asymmetry in the path resistance and minimize the residual electrostatic

actuation. Minimum response at f◦ was obtained for, the signal amplitudes of Vp1 = 4.5 V

and Vp2 = 4 V where the measured velocity amplitudes were v(f◦) = 12.8 µm/s and

v(2f◦) = 467.20 µm/s. Reducing the microplate response further, specially at 2f◦, is

not feasible given the current design of the microplate, which imposes a significant sheet

resistance within the plate, and the presence of stray magnetic fields.

Figure 3.9: The first torsional mode shape obtained experimentally at f◦ = 182 kHz

The second experiment, Case # 3, applied electromagnetic torque to the sensor to

investigate its torsional response. A magnetic field B = 27.8 mT was applied to the
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sensor while it was excited with the optimal signal amplitudes obtained in Case # 2 and

a manual frequency sweep was carried out in the frequency range f◦ = [0− 400] kHz. The

maximum velocity of point B v(f◦) = 9491.2 µm/s was found at the natural frequency

of the first torsional mode f◦ = 182 kHz. For these operating conditions, the spurious

motions due to residual electrostatic forces and plate bending at the second harmonic were

v(2f◦) = 28.8 µm/s which is equivalent to a signal-to-noise ratio of SNR = 22.6.

(a) (b)

Figure 3.10: Comparison of the first torsional mode shape obtained by (a) FEM at 198 kHz

and (b) experimentally at 182 kHz

The first torsional mode shape, Fig. 3.9, was obtained from a multi-scan experiment

with an excitation frequency of f◦ = 182 kHz and a magnetic field strength of B = 27.8 mT.

The figure shows the sensor strucure at a terminal position in the cycle of oscillations

color coded with red representing maximum absolute displacement and green representing

minimum absolute displacement. Comparison of the experimentally obtained mode shape

to that obtained using FEM, Fig. 3.10, shows close agreement. The drop in the measured

natural frequency compared to that calculated using FEM is due to the absence of damping

in the FEM model. The effect of damping will be addressed in section 3.4.
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3.4 Sensor Demonstration

The sensor can be operated in either forced or resonant modes. Forced mode operation

calls for exciting the sensor at a constant frequency faraway from resonance. Resonant

mode operation calls for exciting the sensor with a signal frequency in the vicinity of a

torsional natural frequency. In this case, we chose to operate the resonant mode at the

first torsional natural frequency, f◦ = 182 kHz, to obtain maximum response for a given

electromagnetic torque and damping level.

3.4.1 Forced mode

In this section, we compared the sensor response for two test conditions: in the presence

and absence of a magnetic field, B = 27.8 mT and B = 0 mT, respectively, with the same

operating conditions as listed in Table 3.3. In both cases, the optimal signal amplitudes

were used to excite the sensor at a common frequency of f◦ = 31 kHz and the response

velocity was measured at point B. Two peaks in the frequency domain were observed at

the signal frequency f◦ and its second harmonic 2f◦.

Table 3.3: Forced-mode sensing

Case Vp1 (V) Vp2 (V) f◦ (kHz) φ (◦) B (mT) v(f◦) (µm/s) v(2f◦) (µm/s)

1 4.5 4 31 180 0 12.8 467.3

2 4.5 4 31 180 27.8 288.6 444.9

The measured velocity amplitude at the forcing frequency f◦ increased 23 times, Ta-

ble 3.3, once an external magnetic field, B = 27.8 mT, was introduced. The FFTs of

the measured velocity at B in the presence and absence of the magnetic field are shown

in Fig. 3.11. In comparison, the change in the response at the second harmonic, caused
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Figure 3.11: The FFTs of the measured velocity amplitude at point B in (a) the absence

and (b) presence of an external magnetic field B = 27.8 mT when operated in forced-mode

f◦ = 31 kHz

by residual electrostatic forces, due to the introduction of the external magnetic field was

minimal changing from v(2f◦) = 467.3 to v(2f◦) = 444.9 µm/s.

3.4.2 Resonant mode

Table 3.4: Resonant-mode sensing

Case Vp1 (V) Vp2 (V) f◦ (kHz) φ (◦) B (mT) v(f◦) (mm/s) v(2f◦) (µm/s)

4 4.5 4 182 180 0 0.350 13.5

5 4.5 4 182 180 27.8 9.381 28.8

Resonant-mode sensing was employed to increase the magnetic sensor sensitivity and

bandwidth. Towards that end, the signal frequency was set equal to the first torsional
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natural frequency f◦ = 182 kHz. The same operating conditions were applied to the sensor,

Table 3.4, and its response, velocity of point B, was measured in the presence and absence

of a magnetic field, B = 27.8 mT and B = 0 mT, respectively. The velocity amplitude

at f◦ increased 27 times from 0.34 mm/s to 9.38 mm/s once the external magnetic field

B = 27.8 mT was introduced. The FFTs of the measured velocity at point B in the presence

and absence of the magnetic field is shown in Fig. 3.12. The velocity of the response to

the residual electrostatic force at 2f◦ = 364 kHz was minimal, v(2f◦) = 28 µm/s, in fact

indistinguishable from the noise floor, Fig. 3.12.
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Figure 3.12: The FFTs of the measured velocity amplitude at point B in (a) the absence

and (b) presence of an external magnetic field B = 27.8 mT when operated in resonant-

mode f◦ = 182 kHz

Comparing the results shown in Figs. 3.11 and 3.12, it is evident that the sensor can be

operated in either forced or resonant-modes. However, resonant-mode operation increases

the sensitivity and the SNR of the sensor from 23 to 27. Specifically, comparison between
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Figure 3.13: Compassion between the FFTs of the sensors response to an external magnetic

fieldB = 27.8 mT in (a) forced-mode (f◦ = 31 kHz) and (b) resonant-mode (f◦ = 182 kHz)

operation

the two sensor modes, Fig. 3.13, shows that the response increased 32-folds for the same

external magnetic field when operated in resonant-mode.

The difference between forced-mode and resonant-mode operation is due to the dynamic

amplification obtained by operating in the vicinity of the natural frequency. It is directly

proportional to the quality factor of the sensor. Since the microplate has no release holes

and experiments were conducted under atmospheric pressure, the squeeze film damping

effect of the air cushion between the microplate and the bottom electrode resulted in

significant damping. Comparing the undamped natural frequencies obtained using FEM to

the damped natural frequencies obtained experimentally, we calculated the quality factor

of the first out-of-plane bending mode as Q = 1.47 and of the first torsional mode as

Q = 1.27. We conclude that the increased sensitivity and amplified response of resonant-

mode operations realized above are quite modest. Further improvements to sensitivity and
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response size can be obtained by operating the magnetic sensor in vacuum. Experience

and literature suggests that soft vacuum should improve the quality factor by two orders-

of-magnitude [68].

3.5 Sensor Calibration

3.5.1 Calibration using a Gaussmeter

To calibrate the sensor, we conducted an experiment to measure its response to variable

magnetic strengths under identical operating conditions. The sensor chip was housed

inside a specially designed test chamber that measures (8.5×5.5×2.8) cm. Two permanent

magnets were attached to the side walls of the test chamber parallel to each other, Fig. 3.14,

such that a north and a south pole were facing each other. A breadboarded inside the test

chamber was used to mount the sensor chip carrier. The excitation signals were delivered

to the two bonding pads of the sensor through the breadboard and the chip carrier.

The velocity of the microplate response at point B was measured as the magnetic field

strength was varied by adding pairs of identical magnets to the test chamber walls. In each

case, the resulting magnetic field strength was measured using the sensor under test. A

Gaussmeter, AlphaLab Inc. GM-2 [69], served as a truth measure and used to measure the

magnetic field strength at the mid-point between the magnet stacks attached to opposite

walls. During the experiment, the number of permanent magnet pairs placed inside the

test chamber was increased from one to five pairs adding one pair at a time.

The sensor was operated in resonant mode. Throughout the experiment, the excitation

signals were set to Vp1 = Vp2 = 5 V with a phase difference φ = 180◦ and a common

frequency of f◦ = 182 kHz resulting in the passage of a current Ic = 6.6 mA in the current
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Figure 3.14: The magnetic sensor mounted inside the Gaussmeter test chamber

Table 3.5: The peak amplitude in the FFT of the measured velocity at the microplate edge

as a function of the magnetic field strength B for a bias voltage of Vdc = 0 V.

# of magent pairs B (mT) v(f◦) (mm/s)

1 29.90 15.260

2 30.91 16.696

3 31.75 17.476

4 32.42 18.878

5 33.25 20.238

loop. Tables 3.5 and 3.6 list the magnetic field strength measured using the Gaussmeter

and the peak amplitude in the FFT of the measured velocity at the microplate edge (point

B) as the number of magnet pairs increased from one to five for two test cases where the

bias voltage was set to Vdc = 0 V and Vdc = 2 V.

The calibration curves of the sensor for both test cases are shown in Fig. 3.15. The sen-

sor sensitivity, the slope of the magnetic field strength-microplate velocity curves, increased
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Table 3.6: The peak amplitude in the FFT of the measured velocity at the microplate edge

as a function of the magnetic field strength B for a bias voltage of Vdc = 2 V

# of magent pairs B(mT ) v(f◦) (mm/s)

1 29.9 31.486

2 30.9 33.959

3 31.7 37.924

4 32.4 40.454

5 33.2 46.306

from 1.48 (m/s)/T (blue line) at Vdc = 0 V to 2.9 (m/s)/T (red line) at Vdc = 2 V. The

bias voltage creates an electrostatic field between the microplate and the bottom electrode

and applies a static force bringing the microplate downward to an equilibrium point closer

to the bottom electrode. The results show, increasing the bias voltage Vdc increases the

sensor sensitivity and the absolute value of the measured microplate velocity.

Figure 3.15: The calibration curves of the sensor for bias voltages of Vdc = 0 V (blue line)

and Vdc = 2 V (red line)
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3.5.2 Calibration using a Hall Effect sensor

The sensor chip was housed inside a specially designed test chamber that measures (10.6×

6.3×1.8) cm3. Two permanent magnets were attached to the side walls of the test chamber

parallel to each other, Fig. 3.16, such that a north and a south pole were facing each

other. A breadboarded inside the test chamber was used to mount the sensor chip carrier.

The excitation signals were delivered to the two bonding pads of the sensor through the

breadboard and the chip carrier.

Figure 3.16: The magnetic sensor mounted inside the Hall effect test chamber

A Hall effect sensor, Allegro MicroSystems LLC A1360 [70], was placed beside the

sensor chip carrier and served as a truth measure of the magnetic field strength between

the magnet stacks attached to opposite walls shown in Fig. 3.16. During the experiment,

the magnetic field strength, B = 64 mT, was fixed inside the test chamber. Using Hall effect

sensor has an advantage that can introduced a fixed and accurate read out measurement

compared to gauassmeter device.

Throughout the experiment, the excitation amplitude signals were set to Vp1 = Vp2 =
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2.5 V with a phase difference φ = 180◦ and a common frequency of f◦ = 182 kHz with

zero DC bias, Vdc = 0 V, resulting in the passage of a current Ic = 3.3 mA in the current

loop. A multi-scan points, Fig. 3.17(a), of the laser vibrometer for an 133 point area-grid

over the microplate and a 42 point line-grid over each of the support beams were utilized

to record displacement and velocity. The measured velocity and displacement at point A

were averaged over microplate and with no DC voltage, Vdc = 0 V shown in Fig. 3.17(b).

(a) (b)

Figure 3.17: (a) The area-grid and the line-grid AC used to measure the displacement and

velocity of the microplate (b) Averaged frequency responses of the magnetic sensor excited

by Ic= 3.3 mA sinusoidal current loop at 182 kHz with zero DC bias and external magnetic

field of 64 mT

The configurations of the sensor at three phase angles within the torsional oscillations

cycle are presented in Fig. 3.18(a). We measured displacement along line AC, Fig. 3.17(a),

on the microplate grid points, yellow line, at different phases, φ = 0◦, 90◦ and 270◦. The

microplate starts the cycle φ = 0◦ level with the measured displacement at point A close

to zero (1.1 nm); after a quarter of a period φ = 90◦, one side of the microplate is displaced

up while the other is displaced down with the displacement at point A reaching a cycle

maximum (33 nm); and after another half cycle φ = 270◦ the two sides of the microplate
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reverse direction with the displacement at point A reaching a cycle minimum (-33 nm).

The minimal bias (displacement) along the microplate width at φ = 0◦, a node along the

plate centerline and antisymmetric displacement profiles at quarter and three quarters of

the period φ = 90◦ and 270◦; all characteristics of a rigid body torsional mode of vibration.

The displacement and velocity of points A, B, and C in Fig. 3.17(a) are shown in Fig.

3.18(c) for a period of torsional oscillations. Comparing the velocity and displacement

curves for all three points shows that the phase angles were identified correctly. The

displacement measured along the centerline of the microplate, point B, is very close to

zero throughout the cycle with a maximum measured displacement of ±80 pm, indicating

minimal contributions of the bending mode to the overall microplate motion. The average

signal-to-noise ratio (SNR) extracted from comparison of the displacement amplitude at

points A and C to those at point B is SNR = 52.3 dB.

The static pull-in voltage of the sensor was measured experimentally as 6.9 V. We

examined the sensor response in the operating range by measuring the frequency response

of point A velocity at equally-spaced seven operating points Vdc = 0, 1, 2, 3, 4, 5, and 6 V at

the same excitation torsional waveform Vp = 2.5 V and φ = 180◦. The sensor was placed

in an external magnetic field of B = 64 mT. The frequency-response curves are presented

in Fig. 3.19 for a frequency sweep in the range f◦ = [0, 200] kHz.

The response is dominated by the resonant motion in the vicinity of the torsional mode

natural frequency ft = 182 kHz. The response in the vicinity of the spurious bending mode

natural frequency fb = 31 kHz is not discernible (within the noise floor). All frequency-

response curves are single valued and no evidence of nonlinearity, asymmetry, can be

observed in those curves. Moreover, the measured peak response at resonance varies with

the bias voltage indicating variation in the sensor response as the electrostatic field strength

and gap distance vary.
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(a) (b)

(c)

Figure 3.18: (a)The configuration of the sensor at phase angles φ = 0◦, 90◦, and 270◦

within the torsional oscillations cycle.(b) The measured displacement of the grid point

along line AC on the microplate at phase angles φ = 0◦, 90◦, and 270◦ and (c) the measured

displacement (blue solid lines) and velocity (red dashed lines) of points A, B, and C during a

period of oscillations. Excitation current amplitude and frequency were set to Ip = 3.3 mA

and f◦ = 182 kHz and the external magnetic field to B = 64 mT

We generated the calibration curves of the magnetic sensor, Fig. 3.20, at seven operating

points Vdc = 0, 1, 2, 3, 4, 5, and 6 V. The sensor was operated in resonant mode using the

torsional waveform Vp = 2.5 V, φ = 180◦ and an excitation frequency of f◦ = 182 kHz.

Each calibration line represents a least-square linear fit of the measured velocity amplitude

of point A as the external magnetic field strength is varied in the range of 56.8–79.8 mT.
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Figure 3.19: The frequency-response of point A velocity for a sensor bias voltage of Vdc =

0, 1, 2, 3, 4, 5, and 6 V, when excited by a current with amplitude and frequency of Ip =

3.3 mA and f◦ = 182 kHz in a magnetic field of B = 64 mT (0 dB = 1 m/s)

For a given magnetic field strength, the absolute value of the measured velocity increases

as bias voltage increases from 0 to 4 V, thereby decreasing the magnitude of the minimum

measurable magnetic field. For voltages beyond that range, the absolute value of the

measured velocity decreases as the voltage increases.

Table 3.7 lists the sensitivity and noise equivalent magnetic field strength, where the

noise floor was set to 0.34 mm/s as reported above, section 3.4.2, for each operating point.

Two domains can be identified in the sensor response. In the bias voltage range of 0–4 V,

the sensitivity and noise equivalent field strength are relatively high and change slowly with

bias voltage. On the other hand, in the bias voltage range 4–6 V, they drop precipitously as

voltage increases. The difference in sensitivity and noise equivalent field strength between
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Figure 3.20: The calibration curves of the magnetic sensor for seven operating points at

Vdc = 0, 1, 2, 3, 4, 5 and 6 V

the operating point at 1 V and 6 V is more than 100% demonstrating the sensor capability

of on-the-fly sensitivity tuning by varying the bias voltage.

In the current sensor setup, variation in sensitivity among the different operating points

is primarily due to elevated squeeze film damping levels experienced by the sensor as the

microplate approaches the substrate under increased electrostatic forcing (Vdc > 4 V).

In practical deployment where capacitance will be used to measure the sensor response,

further sensitivity improvements will be derived from increased bias voltage and stronger

electrostatic fields that will increase variation in capacitance for the same amount of dis-

placement.
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Table 3.7: Sensor sensitivity and noise equivalent field strength at seven operating points

Bias (V) Sensitivity
(
(mm/s)/mT

)
Noise equivalent field (mT)

0 0.866 26.0

1 0.870 24.8

2 0.834 21.6

3 0.838 21.4

4 0.728 11.0

5 0.649 17.5

6 0.436 15.7

Figure 3.21: Measured velocity amplitude of point A as a function of bias Vdc for three

levels of magnetic field strength

We conducted an experiment to delineate the operating range where the higher bias

voltage increases sensitivity from the range where it decreases sensitivity. The torsional

waveform Vp = 2.5 V and φ = 180 ◦ was used to drive the magnetic sensor at its torsional

resonant resonance (f◦ = 182 kHz), while the bias voltage increased from 0 to 6 V at a
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constant magnetic field B. The experiment was repeated for three levels of the external

magnetic field B = 68.2, 73.0, and 76.6 mT.

Fig. 3.21 shows that the measured velocity increases consistently with increased mag-

netic field. It also shows that for a given magnetic field strength, the measured signal

increases monotonically in the range [0 − 4] V and decreases in the range [4 − 6] V. This

shows that the magnetic sensor operating point can be tuned within the former range to

achieve higher sensitivity and latter range to achieve a larger dynamic range and a smaller

noise equivalent field.
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Chapter 4

Conclusions and Future Work

We developed and demonstrated to inertial MEMS sensors: an ethanol vapor sensor and

an adjustable sensitivity magnetic field sensor.

4.1 Binary Gas Sensor

We utilized a novel sense mechanism that exploits the qualitative change in the sensor state

before and after a static bifurcation in electrostatic MEMS, static pull-in, to implement

a binary gas sensor. It indicates that the ambient ethanol concentration has exceeded a

threshold amount by going into pull-in and sending a binary detection signal. Our imple-

mentation shows that this sense mechanism has the advantage of reducing requirements

on readout electronics and enhancing robustness. Further, we showed that the sensitivity

of bifurcation-based binary sensors represent the upper bound on the sensitivity of similar

sized statically detected MEMS sensors.

The binary ethanol sensor was able to detect a concentration of 5 ppm in dry nitrogen

at a set-off voltage of δV = 1 mV. We estimate the corresponding minimum detectable
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mass is 165 pg. We also found that the sensitivity of P25DMA to ethanol vapor is one

order-of-magnitude more than that of PANI doped with 10% NiO.

Our results show the viability and robustness of inertial MEMS sensors against external

disturbances. This is particularly true for static-detection sensors designed to realize a

low quality factor and, therefore, damp out those disturbances. Finally, we note that

the binary sensor sensitivity depends on the voltage regulator resolution. Improving the

operating voltage V◦ resolution can lower the set off voltage δV and further increase the

sensor sensitivity.

4.2 Magnetic Field Sensor

We introduced a novel tunable MEMS magnetic sensor. It detects external magnetic

fields by exploiting Lorentz force to excite a torsional vibration mode. We demonstrated

that the coupling between electrostatic and electromagnetic actuation was minimal with

a SNR = 52.3 dB and that the sensor response was linear for magnetic field strength up

to B = 79.8 mT. We also demonstrated that the sensor sensitivity, minimum measurable

field strength, and dynamic range can be tuned on-the-fly by varying the bias voltage. The

sensor achieves better sensitivity and higher bandwidth when operated in resonant mode

at ft = 182 kHz. Finally, we identified two regions in the sensor parameter space; one

region where the sensor sensitivity increased with bias voltage and another region where

the higher bias voltage increased damping and reduced the sensor sensitivity.
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4.3 Future Work

4.3.1 Dynamic Gas Sensor

The dynamic bifurcation-based sense mechanism should be explored. This mechanism

exploits a dynamic bifurcation, a cyclic-fold bifurcation in this case, to implement binary

dynamic gas sensors. A biased AC waveform will excite the sensor close to the cyclic-

fold bifurcation and seek to use added mass to trigger the bifurcation, thereby maximizing

sensitivity. A detector polymer will be deposited on the sense-plate to sorb ambient ethanol

vapor. The frequency shift due to added mass will then trigger the sense-plate to go into

pull-in due. The sensitivity of the dynamic gas sensor was predicted to be two orders-of-

magnitude better than static bifurcation-based gas sensor [55].

4.3.2 Magnetic Field Sensor

The sensor was demonstrated in air to simplify the experimental procedure. Packaging the

magnetic sensor in a vacuum will increase its sensitivity by several orders-of-magnitude

and shrink the size of the undesirable operating region as the contribution of squeeze-film

to overall damping is eliminated. Further, sensor deployment will require that it detects

the displacement of the microplate by measuring capacitance variation in the microplate as

it oscillates. This will add another layer of sensitivity improvement as higher bias voltage

increases the strength of the electrostatic field and, therefore, the measured (output) signal.
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