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Abstract

This thesis presents a systematic study of two modes of program execution: syn-
chronous and asynchronous. In synchronous mode, program components are tightly cou-
pled. Traditional procedure call represents the synchronous execution mode. In asyn-
chronous mode, program components execute independently of each other. Asynchronous
message passing represents the asynchronous execution mode. The asynchronous mode of
execution introduces communication overhead in the execution of program components.
However it improves the temporal locality of data in a program by facilitating temporal
and spatial reorganization of program components. Temporal reorganization refers to the
batched execution of program components. Spatial reorganization refers to the schedul-
ing of components on different processors in order to avoid the over-subscription of cache
memory. Synchronous execution avoids the communication overhead. The goal of this
study is to systematically understand the trade-offs associated with each execution mode
and the effect of each mode on the throughput and the resource utilization of applications.
The findings of this study help derive application designs for achieving high throughput in
current and future multicore hardware.
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Chapter 1

Introduction

The architecture of computer hardware has undergone considerable change in the past
five decades, which is evident in: 1) the presence of high speed processor structures that
hide the gap between the speed of a processor and the latency of main memory and 2) the
availability of more than one instruction execution unit embedded on a single processor
chip. Since 1970, the CPU frequency has increased 50%-100% every year while the main
memory latency has decreased at a rate of just 7% [14]. This growing disparity between the
speed of a processor and the speed of main memory is known as the memory wall problem
[38]. Cache memory plays an important role in masking the effects of the memory wall
problem.

Cache memory was introduced by Wilkes in 1965 as a slave memory between main
memory and processor to hold the information that has been most recently used by the
processor [37]. Since then there have been numerous advancements in cache memory design.
Current computers contain three levels of cache memory with the last level being shared
among cores on the same processor chip. In current computers, cache memory is hundreds
of times faster than main memory. Although the capacity of cache memory is minuscule
compared to the capacity of main memory, cache memory proves to be an effective solution
for the memory wall problem because of the temporal and the spatial locality [8] exhibited
by the data and the code of a program.

Another innovation in computer hardware is the invention of Chip Multi Processors
(CMP). Power requirements of a processor chip increases exponentially with the increase
in CPU clock speed [16]. This effect has forced the design of processor chips with more
than one CPU embedded to utilize the available transistors. Such chips are known as the
Chip Multi Processors (CMPs) and each embedded CPU is called a processor core. The
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advent of CMPs enables concurrent programming where multiple tasks make progress in
overlapping time periods utilizing the parallelism provided by the underlying hardware.
Figure 1.1 represents the hardware model of current computers versus the hardware model
of legacy machines.
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Figure 1.1 Evolution in computer hardware.

Current computer hardware resources can be categorized as:

1. Supervised resources, the usage of which is arbitrated by the operating system. The
size of these resources available for allocation changes over time. Examples of super-
vised resources include CPU time and main memory.

2. Unsupervised resources, the usage of which is transparent to the operating system
and is controlled by hardware mechanisms. The usage of such resources is not super-
vised by the operating system. Examples of unsupervised resources include transla-
tion look-aside buffer(TLB), multilevel cache memory, instruction pipeline, hardware
prefetcher [34] and branch predictor [27].

Maximization of the throughput and the utilization of a computer system is realized
when the resources provided by the system are used efficiently by multiple tasks running
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in the system. Current operating systems use the working set model [8] to achieve optimal
allocation of main memory space among multiple processes. However the problem of
efficient usage of the unsupervised resources is often ignored by the design of both the
current operating systems and applications.

The aim of this study is to understand the impact of program design on an applica-
tion’s usage of cache memory, which in turn affects the throughput and CPU utilization
of the application. The design of a program is described based on two execution modes
namely synchronous mode and asynchronous mode. In the synchronous mode, the execu-
tion of program components are tightly coupled. Procedure call represents the synchronous
execution mode. In the asynchronous mode, the program components are loosely coupled
using message passing, thus allowing the components to be executed independently of each
other.

The synchronous execution mode potentially affects the temporal locality of data in
a program by executing components sequentially. In order to preserve temporal locality,
program components can be reorganized and executed on different cores using the asyn-
chronous execution mode. However, the asynchronous mode introduces communication
overhead in a program. This research investigates the trade-offs of each execution mode
under various scenarios. A microbenchmark and a real-world application called Memcached
[2] has been used for this purpose. The microbenchmark results are applied to improve
the throughput of the Memcached server. The modified server design achieves up to 32%
improvement in its throughput, conforming to the results of the microbenchmark.

The rest of the thesis is organized as follows. Chapter 2 elaborates on the modes
of execution: their characteristics and the factors associated with each mode that can
potentially affect the cache usage of a program. It also introduces the program model used
to build the microbenchmark and defines necessary new terms used later in the thesis. The
design and the implementation of the microbenchmark along with the experiment results
are presented in Chapter 3. Memcached experiments and results are presented in Chapter
4. Chapter 5 presents the previous research relevant to this work. The thesis is concluded
in Chapter 6.
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Chapter 2

Execution Component Model

2.1 Program Model

Program design is an important factor determining the cache usage behaviour of a
program. For the general treatment of the modes of execution and their impact on cache
memory usage, a program P is modelled as a collection of execution components (ECs)
where each execution component represents a synchronous execution path of the program.

P = {S1, S2, S3, .....Sn} where Si is an execution component

A loop is an example of an execution component. Similarly, a procedure call is an
example of an execution component. This program model is referred to as the Execution
Component Model. The terms component and execution component are used interchange-
ably for the rest of the thesis. Depending on the program design, a component can be
executed either in the synchronous or in the asynchronous execution mode.

To understand the effect of the execution modes on the cache usage behaviour of a
program, the metric reuse distance (also known as LRU stack distance) [10] is used. The
reuse distance of a data element in a sequential program is a measure of the volume of data
accessed between two successive references to the element. Reuse distance is approximated
as the number of distinct cachelines accessed between two successive references of the same
data element. Reuse distance is one of the widely used metric in analyzing the locality
behaviour of a program.
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2.2 Synchronous mode

Using the Execution Component Model, the modes of execution can be described as
follows. A program’s design is said to adopt the synchronous mode of execution when
the design of the program results in tight temporal coupling of program components. An
example is shown in Figure 2.1.

//thread

while(...){

component A execution

component B execution

}

Figure 2.1 Synchronous mode of execution.

The synchronous execution mode increases the reuse distance of a data element in a
program by sequential execution of components. The increase in the reuse distance affects
the temporal locality of data. Consider the pseudocode given in Figure 2.1. Let component
A access data element d. The reuse distance of d depends on the size of the data accessed
by both the components A and B. This distance affects the temporal locality of the data
element d. The synchronous execution mode potentially leads to two cache effects namely
the data displacement and the data invalidation effects, which bring down the throughput
and increase the consumption of CPU resource by a program.

2.2.1 Data displacement effect

Consider a single thread executing the while loop given in Figure 2.1. When the
combined data size of components A and B exceed the capacity of cache memory, the data
of component A is replaced by the data of component B in the cache memory and vice
versa during each iteration. This eviction leads to many cache misses in the program. The
behaviour is known as the data displacement effect and it occurs when the reuse distance
of a data element in a program exceeds the total number of cache lines available at a cache
level. The data displacement effect refers to the over-subscription of cache memory.
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2.2.2 Data invalidation effect

This effect is related to the current design of cache memory which maintains a coherent
view of data across all the caches in the system. Consider a parallel application in which
multiple threads execute the while loop given in Figure 2.1. When the data accessed by
component A and component B are private to the threads, only the data displacement
effect occurs. Now consider that the component B contains data shared among multiple
threads. The modification of the shared data by threads running on multiple cores leads
to the data invalidation effect. When a thread running on a core pi modifies a shared data
element, the value of the data stored in the cache memory of all the other cores p(j 6=i)

is invalidated. This leads to costly cache misses in the application and the behaviour is
known as the data invalidation effect.

The data invalidation effect potentially leads to internal thrashing of a program.
Internal thrashing of a program is the fall in the throughput of a program when the degree of
parallelism in a program increases beyond a threshold. Internal thrashing occurs whenever
the increase in the number of threads increases the probability of cache misses in a program.
With the data invalidation effect, an increase in the number of threads might increase the
probability of shared data being modified leading to more invalidations. Internal thrashing
due to the data invalidation effect is solved by restricting the execution of the component
that modifies the shared data to a single core. One method of achieving this is to decouple
the execution of a component that modifies shared data and execute that component on a
single core in the asynchronous mode.

2.3 Asynchronous Mode

A program’s design is said to follow the asynchronous mode of execution when the
design of the program decouples the execution of two components temporally. For example,
in Figure 2.2, component A and component B are decoupled by means of message passing.
To preserve the sequential execution order of component A and component B as shown in
Figure 2.1, message passing uses the send-receive-reply semantics [13], where the sender
blocks until it receives a reply from the receiver. The reply is non-blocking.

In this study, in the asynchronous mode, the message passing semantics used between
two communicating components are blocking buffered send, blocking receive and non-
blocking reply. These semantics force sequential execution of communicating components
explicitly. The message size is fixed. The communicating components work in the same
address space. The message is always guaranteed to reach the receiver once sent.

6



//thread: loop A

while(...){

component A execution

send request to thread 2

wait for result

}

//thread: loop B

while(...){

receive request from thread 1

component B execution

return result

}

Figure 2.2 Asynchronous mode of execution.

In the asynchronous mode of execution, program components run independently of
each other and communicate via asynchronous message passing. Such a model of exe-
cution introduces communication overhead in the execution of a program. However, the
asynchronous execution mode allows program components to be reorganized in time and
space to improve the temporal locality of data.

2.3.1 Temporal reorganization of program components

Temporal reorganization means reordering the execution of components on a single
core so that the operations with similar memory footprints are performed together. Con-
sider an event-driven program that reads requests received from clients and performs a tree
look-up operation for each request. The temporal locality of data in such a program can be
improved by batching the requests that access the same subtrees and performing look-up
operations for those requests together. Batching is achieved by means of queueing the
requests. Batching of requests leads to the deferred execution of the look-up operations.
However, it improves the temporal locality of data in the program.

Temporal reorganization is relevant to event-driven applications such as webservers
and graphical user interfaces where the critical execution path is a loop that is also a
pipeline. In such applications, the execution of the critical path is divided into multiple
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stages where the data flows from one stage to another. The asynchronous mode based on
message passing facilitates batched and concurrent execution execution of stages.

2.3.2 Spatial reorganization of program components

Spatial reorganization refers to reorganizing the execution of program components
across different cores to improve cache utilization. Consider the pseudocode given in Figure
2.2. In the spatial reorganization, component A and component B are scheduled to run on
different cores to reduce the reuse distance of the data elements in both the components by
using separate caches, which also avoids the data invalidation effect described in Section
2.2.2. Consider the scenario described in Section 2.2.2 which leads to the data invalidation
effect. To avoid the effect, the execution of the components A and B is reorganized as shown
in Figure 2.2. In Figure 2.2, multiple threads execute component A in parallel. However,
component B which modifies the shared data is always executed by a single thread bound
to a single core. Messages are passed between the threads executing component A and
the thread executing component B modifies the shared data. Such reorganization avoids
the data invalidation effect by restricting the execution of component B to a single core.
Spatial reorganization is enabled by multicore hardware. This study focuses only on the
effects of the spatial reorganization of program components.

It can be conjectured that the components in a loop are ideal candidates for spatial
and temporal organization. In general, the components which share minimal or no data
with other components, and those that are reused extensively in a program are the best
candidates for reorganization.

2.3.3 Communication overhead

The asynchronous execution method introduces communication overhead in the execu-
tion of a program. This study examines the communication overhead of the asynchronous
execution method. Message size is considered as one of the factors that can affect the
communication overhead and hence, the throughput of a program.

2.4 Process Structure

This study uses the problem of mutual exclusion to investigate the characteristics of
the synchronous and the asynchronous modes discussed in Sections 2.3 and 2.2. To solve
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the mutual exclusion problem, the synchronous mode adopts a procedure-oriented approach
that uses mutual exclusion primitives such as semaphores and locks. The asynchronous
mode adopts the proprietor paradigm based on message passing [13] to solve the problem.
In the proprietor paradigm, a proprietor is the sole owner of a shared resource, which in this
case is a memory location. Other processes can perform operations on the shared resource
only by sending messages to the proprietor requesting it to perform the operations on behalf
of them. The proprietor handles requests in the order of their arrival and handles only one
request at a time. It has to be noted that the proprietor paradigm allows no parallelism
since the proprietor handles only one request at a time and a sender blocks until a reply is
received. This is the same with the procedure-oriented approach for the mutual exclusion
problem. Another process structure that can be adopted by the asynchronous mode is
the administrator paradigm [13] which allows concurrent servicing of multiple requests.
This paradigm is adopted by Soares et.al. for parallel execution of system calls in the
asynchronous mode [29].

The characteristics of the execution modes are investigated using a microbenchmark.
The focus is on the effects of spatial reorganization of components in the asynchronous
mode. The design of the microbenchmark and the experiments are explained in detail in
Chapter 3.
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Chapter 3

Microbenchmark

The asynchronous execution method allows temporal and spatial reorganization of
the execution of program components. This study focuses only on the effects of spatial
reorganization. While it does not consider the advantages of batching, inherent to the
asynchronous method, this model allows examination of the communication overhead of
the asynchronous execution mode in a worst-case scenario.

For the purpose of this study, the microbenchmark contains a simple loop. The loop
is composed of a critical section component and a non-critical section component. In the
microbenchmark, the critical section component is considered as the candidate for spatial
reorganization based on the guidelines mentioned in Section 2.3.

3.1 Overview

The microbenchmark is a multi-threaded parallel application. The core logic of the
microbenchmark executes two execution components (ECs) namely the thread-local EC
and the critical section EC consecutively in a loop. The rest of the thesis refers to this
loop as the core loop. The thread-local EC scans a private array of size n1. The critical
section EC scans an array of size n2 each time modifying m distinct array elements, where
0 ≤ m < n2 ≤ n1. The size of each array element is equal to that of cacheline (64 bytes
on the test machine). The size of the data that is referenced by each EC is called the data
size of the EC.

The code for array read and array write is shown in Figure 3.1. The arrays are scanned
using a pointer chasing method where the value of an element at index i is used as the

10



Array read:

int currIdx=0;

while( buffer[currIdx] != 0) {

currIdx = buffer[currIdx]; //pointer chasing

}

Array write:

void walk(int divisor ){

while( buffer[currIdx] != 0) {

currIdx = buffer[currIdx]; //pointer chasing

counter++;

if( (counter & divisor) == 0 ) { // divisor is power of 2

buffer[currIdx+1]++; // cacheline modified

}

}

}

Figure 3.1 Microbenchmark code: array read and array write.

index of the next element that has to be read. At the end of the link, the last element refers
to the first element thereby creating a circular chain of elements from random positions.
Random positions are generated by shuffling a sequential array using the modern version
of the FisherYates shuffle [11]. The buffer is a physically contiguous chunk of memory, the
setup of which is explained in Section 3.3.3.

It has to be noted that in the microbenchmark, no data element is referenced more
than once during a single execution of a component. All the referenced elements are
distinct. With such a model, in the synchronous mode, if the combined data size of
the thread-local EC and the critical section EC exceeds the capacity of cache memory,
then a data element of one component might be replaced by a data element of another
component in the cache memory before the element is reused. Hence, this data access
model represents a worst-case access pattern for the synchronous mode. This model is
also adopted by Pingali et al. [25] for their study on temporal reorganization of program
components to improve the data locality in memory intensive programs.

11



3.2 Design

The core logic of the microbenchmark is executed in the synchronous as well as the
asynchronous mode.

3.2.1 Synchronous Execution Mode

Figure 3.2 shows the microbenchmark design for the synchronous execution mode of
ECs. The core logic is implemented as a single while loop composed of the thread-local
EC and the critical section EC. Instances of the while loop are created and are executed
in parallel in the microbenchmark. A lock is used to protect the critical section.

3.2.2 Asynchronous Execution Mode

The asynchronous execution mode is realized using message passing. In the asyn-
chronous execution mode, the critical section EC is instantiated as a separate thread known
as the asynchronous server thread or just the server thread. Inside the core loop, after the
execution of the thread-local EC, a request is sent to the server thread requesting the
critical section execution. The asynchronous client thread, which sent the request blocks
until its request is serviced and a reply is received from the server. Figure 3.3 shows
the microbenchmark design for the asynchronous execution mode. The figure shows 3
asynchronous client threads and a single server thread executing in parallel.

3.2.3 Asynchronous Communication

In the asynchronous execution mode, communication from clients to server is facil-
itated using a single message queue. To send a request to the server, a client adds a
message at the end of the queue and blocks for results. The server dequeues the message
asynchronously, services the request and unblocks the client. The server writes the results
to a shared variable before unblocking the client. Hence, the communication uses blocking
buffered send, blocking receive and non-blocking reply primitives for synchronization.

12
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3.3 Implementation

3.3.1 Message Queue

The message queue used in this study has been implemented as a circular ring buffer
using an array. The enqueue and the dequeue operations are mutually exclusive and are
protected by a lock. In all the microbenchmark experiments, the size of the queue is fixed
to be greater than the number of threads. Hence, the message queue is never full since any
client has only one outstanding request in the queue at any time t. The message queue
is a multi-producer single-consumer queue. The threads are blocked when a queue-empty
condition occurs.

The message queue is based on a single-copy design. In single-copy queues, a copy
of the message is passed to the server. Other design choices are zero-copy and double-copy
queue. In the zero-copy queue, a pointer to the message is passed from a client to the server.
In the double-copy queue, for each send-receive operation, a message is copied twice. The
message is copied from client to the queue during the send operation and from the queue
to the server during the receive operation. Message queues are used for a wide range of
applications like multiplayer online games, internet chat room, instant messaging services,
etc. The design adopted by a message queue varies according to its purpose. In this study,
a message queue is used for asynchronous communication between two components of a
program. Here, the single-copy design has been adopted where a pointer to the message
is stored in the queue during the send operation and the message is copied to the server
during the receive operation.

3.3.2 Tests

An overview of the tests included in the microbenchmark are shown in Figure 3.4. The
microbenchmark allows a user to study the data displacement and the data invalidation
effects of the synchronous mode, and the communication overhead of asynchronous mode.
The parameters of the tests are set using a configuration file.

Data Displacement Effect

Inside the core loop, the thread-local EC walks an array of n1 elements and the critical
section EC walks an array of n2 elements. Data displacement occurs when the combined
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Figure 3.4 Microbenchmark experiments.

data size of the ECs exceeds the capacity of cache memory in the synchronous execution
mode. The microbenchmark allows a user to set values for n1 and n2 at runtime.

Data Invalidation Effect

The data invalidation effect is simulated by modifying m out of the n2 cachelines
referenced by the critical section EC in the synchronous execution mode causing increasing
amounts of cache coherence traffic. The thread-local EC walks an array of n1 elements as
before. The microbenchmark allows a user to set the value of m at runtime.

Communication Overhead

In the single-copy design, the message size affects the communication overhead because
of the copy operation. To investigate the effect of the message size on the communication
overhead, the size s of the message passed between an asynchronous client and the server
is increased progressively in the experiments. Similar to the data displacement test, the
ECs scan different arrays without modifying any data. The microbenchmark allows a user
to set the value of s at runtime.
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3.3.3 Elimination of the System Effects

This section explains the hardware and system software mechanisms that might affect
the results of the experiments. It also explains how these effects are mitigated.

The microbenchmark is implemented as a kernel application in a simple, modular
kernel called KOS [1]. It is run as a kernel application to avoid the direct and the indi-
rect costs of mode switching [29] during system calls and interrupts. A simple modular
kernel has been chosen for better understanding and fine-grained control over the test
environment.

Eliminating operating system scheduler effects

In general, a CPU core is halted when an operating system scheduler does not find
any task to run. The CPU halt and wake up operations have latencies associated with
them. The execution time of a program is dominated by the overhead caused by the CPU
halt and wake up operations when the latency of work done between each halt-wake up
operation is minuscule compared to the latency of a single halt-wake up operation. The
microbenchmark results are found to be affected by the overhead of halting and waking up
the CPU for some of the experiments owing to the same reason. In KOS, allowing an idle
thread to spin for three preemption intervals before halting the CPU solves the issue.

Eliminating data prefetching effect

Each EC of the core loop scans an array. The effects of data displacement and data
invalidation is masked if the hardware prefetcher prefetches the array elements thereby
avoiding all the cache misses that might occur otherwise. To avoid the effect of the
prefetcher, a pointer chasing method is used to scan the array. The code in Figure 3.1
shows the array-walk based on pointer chasing.

Eliminating the effect of conflict misses

During the boot up stage of KOS, 32 MB of contiguous physical memory is requested
by the microbenchmark from the kernel. The physically contiguous chunk is used for
buffer allocation for array walks since a physically contiguous chunk achieves perfect cache
coverage [33] and avoids conflict misses that might occur otherwise.
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3.4 Results

3.4.1 Parameters, Metrics and Configuration

The parameters chosen for the microbenchmark experiments are listed in Table 3.1.
The number of threads represents the degree of parallelism of the application. The data
size of the ECs represents the memory demand of the application. The size of the message
sent from an asynchronous client to the server represents the communication overhead of
the asynchronous execution mode.

For each experiment, the throughput and the CPU utilization of the microbenchmark
are measured. The throughput is measured using a local counter inside the core loop that
is incremented during every iteration of the loop. The CPU utilization is measured using
Time Stamp Counters (TSC). The counter is used to count the CPU cycles during each
time interval a thread is active. The KOS scheduler notes the TSC counter value when
a thread is scheduled to run. The scheduler notes the TSC counter value again when the
thread is preempted or blocked. The difference between the noted values is calculated.
Summation of all the differences gives the CPU cycles consumed by the thread during the
experiment. Since the TSC counter is used to measure only the number of CPU cycles,
variation in tick rate due to dynamic frequency scaling does not affect the results. During
the experiments, each thread is bound to one of the cores. Hence, the TSC counter used
for a thread to measure the CPU cycles is always the same. The metrics used are listed
below.

1. Throughput: number of iterations of the core while loop

2. CPU utilization: CPU cycles consumed by a single iteration of the core while loop

Along with the above data, each experiment outputs the server-busy percentage as
well. It is the percentage of requests for which the asynchronous server thread found the
queue non-empty. This metric is measured by using a counter in the message queue that is
incremented every time the queue is found empty during a dequeue operation. The metric
is used to understand the behaviour of the microbenchmark in the asynchronous mode.

The configuration of the machine on which the experiments are run is shown in
Table 3.2. Each experiment is run for 30 seconds and is repeated 20 times. The results
represent the average of 20 runs. Each core is used by only one of the threads running in
the application. For all the experiments, the number of threads in the asynchronous mode
refers to the total number of threads including the asynchronous server thread.
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Parameter
Number of threads
Data size of the critical section EC (in cachelines)
Data size of the thread-local EC (in cachelines)
Number of cachelines modified inside the critical section
Size of the message sent from an asynchronous client to the server

Table 3.1 Microbenchmark parameters.

Model HP Proliant DL585 G6
Processor AMD Opteron 8431
Processor speed 2.4G
Number of sockets 4
Number of cores 24
L1 instruction cache 64K (per core)
L1 data cache 64K (per core)
L2 cache 512K (per core)
L3 cache 6144K
Cacheline size 64 bytes

Table 3.2 Microbenchmark experiment: Hardware configuration.

3.4.2 Data Displacement Experiment

In this experiment, the data size of the thread-local component is fixed to be 2048 cache
lines and the data size of the critical section component is gradually increased. The number
of threads in this experiment is fixed at 10 because the throughput of the microbenchmark
under the synchronous execution mode achieves its peak around this point for different
data sizes of the thread-local and the critical section EC. The results of the experiment
are shown in Figures 3.5a and 3.5b.

At the beginning of Figure 3.5a, when the data size of the critical section EC is
very low (< 64 cache lines), the throughput of the microbenchmark in the asynchronous
execution mode is lower due to the communication overhead. However, as the data size
of the critical section EC increases, the asynchronous mode achieves up to 3 times higher
throughput by avoiding the data displacement effect. In the asynchronous mode, the data
of the critical section EC is accessed from Level 1 cache whereas it is accessed from Level 2
memory in the synchronous mode. When the data size of the critical section EC eventually
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Figure 3.5 Data displacement experiment: thread-local EC data size: 2048
cachelines.
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exceeds Level 1 cache size, the throughput of the microbenchmark in the asynchronous
mode falls drastically and becomes equal with that of the synchronous mode. This is
clearly visible in the plot shown in Figure 3.5a, where the throughput falls drastically
in the asynchronous mode after the number of cachelines accessed by the critical section
EC exceeds 1024. The capacity of L1 cache in this experiment is 1024 cachelines. The
sharp drop in throughput of the synchronous mode due to the data displacement effect
is attributed to the worst case data access model adopted in the microbenchmark, where
there is no data reuse during a single iteration of the ECs.

Figure 3.5b shows that the asynchronous method uses up to 23% less CPU cycles
compared to the synchronous method when the size of the critical section data fits with
the Level 1 cache. In the synchronous mode, the microbenchmark experiences cache misses
inside the critical section due to the data displacement effect and accesses data from the
Level 2 cache. This contributes to the increased number of cycles consumed in the syn-
chronous mode. After the data size of the critical section EC exceeds Level 1 cache size,
both the synchronous and the asynchronous modes consume almost equal number of CPU
cycles.

3.4.3 Data Invalidation Experiment

For the data invalidation experiment, the number of cache lines modified inside the
critical section component is gradually increased. The experiment is repeated for an in-
creasing number of threads starting from 2 up to 12. The different number of threads
represents different levels of contention of the critical section in the synchronous mode.
The critical section contention is low when the number of threads is small and it increases
as the number of threads increases. In the asynchronous mode, the server-busy percent-
age increases as the number of threads increases and reaches 100% for 12 threads. The
results of the experiment do not change significantly beyond 12 threads. Figures 3.6a and
3.6b shows the throughput of the microbenchmark in the synchronous mode and in the
asynchronous mode respectively.

The throughput of the microbenchmark as well as the CPU utilization remains almost
constant for all the number of threads in the asynchronous mode. This is because the
critical section data is modified by only one thread on a single core pi during the experiment.
This avoids the cacheline invalidations that occur by modifying the shared data on multiple
cores. The throughput increases as the server-busy percentage increases and reaches the
peak value when the server-busy percentage is close to 100 at 12 threads.

In the synchronous mode, the throughput decreases as the number of cachelines
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Figure 3.6 Data invalidation experiment: thread-local EC data size: 2048
cachelines; critical-section EC data size:128 cachelines.
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modified increases, which is shown in Figure 3.6a. As the number of cachelines modified
increases, the cache misses inside the critical section increases which in turn increases the
execution time of the critical section execution. The execution time of the critical section
is referred to as the critical section execution latency. This increase in the latency reduces
the throughput of the microbenchmark.

In the synchronous mode, the throughput decreases linearly when the number of
threads is small. This is evident in the curve for 2 threads and 4 threads in Figure 3.6a.
For smaller number of threads, the critical section contention is low and the threads mostly
enter the critical section without having to wait for the entry. In such cases, the increase
in the latency of critical section execution results in the linear decrease in the throughput
of the microbenchmark.

The throughput of the microbenchmark in the synchronous mode falls exponentially
for larger number of threads which is shown in the curve for 8 threads and 12 threads in
Figure 3.6a. This is because, the increase in the number of threads results in the increase
of the critical section contention as well the number of cache misses inside the critical
section. When the critical section is contended, the threads wait to gain entry into the
critical section. In such cases, any increase in the critical section execution latency also
increases the waiting time of the threads, which in turn increases the contention of the
critical section further. Hence, the overhead of executing the critical section increases
with the number of cachelines modified. This increase in the overhead compounded by
the increase in the critical section execution latency results in the exponential decrease of
the throughput. It is also to be observed that, in the synchronous mode, the throughput
of the microbenchmark diminishes as the number of threads increases. This decrease is
shown in Figure 3.6a where the throughput of the microbenchmark is higher for 4 threads
than for 8 threads and the throughput of 8 threads is higher than 12 threads, when the
number of cachelines modified increases beyond 32. This indicates the internal thrashing
effect explained in Section 2.2.

In the synchronous mode, as shown in Figure 3.6c, the decrease in the throughput is
accompanied by a linear increase in the number of CPU cycles consumed per iteration of the
core while loop. The increase in the CPU cycles is attributed to the increase in the cache
misses that increases as the number of cachelines modified increases. The microbenchmark
performs better in the asynchronous mode than in the synchronous mode, by achieving
higher throughput while consuming lesser number of CPU cycles.
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Figure 3.7 Message size experiment: thread-local EC data size: 2048
cachelines; critical-section EC data size:128 cacheline.
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3.4.4 Message size experiment

In this experiment, the effect of the message size on the communication overhead
is studied. This experiment is relevant only to the asynchronous execution mode. The
datasize of the thread-local EC and the critical section EC is fixed to be 2048 cachelines
and 128 cachelines respectively. There are no data modifications within the critical section.
The data size of the critical section EC is fixed to be 1 cacheline so that the message passing
latency is greater than the critical section execution latency in the microbenchmark. In this
configuration, the throughput of the microbenchmark is influenced more by the message
passing latency. The number of threads are fixed at 5, 9 and 16 which represent low,
medium and high server-busy percentages respectively, when the message size is low (<
128 bytes).

The plot in Figure 3.7a shows the throughput of the microbenchmark for a set of
different message sizes and different number of threads in the microbenchmark. Figure
3.7a shows that the increase in the message size reduces the microbenchmark throughput.
In the single-copy design, the increase in the message size increases the message passing
latency.

Figure 3.7b shows the server-busy percentage. When the server-busy percentage is
less than 100, the increase in the message passing latency is compensated by the decrease
in the idle time of the server which is evident in the 5 threads curve in Figure 3.7b. Hence,
in such cases the throughput does not decrease significantly.

When the server is saturated, the throughput of the microbenchmark falls signifi-
cantly with the increase in the message size. This effect is visible in the curve for 8 threads
in Figure 3.7a, where the throughput fall is steep after the server-busy percentage is close
to 100. The reason for the steep fall is as follows. When the server-busy percentage is close
to 100, the increase in the message passing latency of a single request increases the latency
of all the other requests that are pending in the queue. This increases the communication
overhead in the microbenchmark and leads to a significant fall in throughput. The increase
in the number of asynchronous client threads after the server saturates increases the num-
ber of pending requests in the queue. This, in turn increases the communication overhead
further. Hence, the throughput is lower for 16 threads than for 9 threads. Hence, it can
be inferred that the increase in the message size adversely affects the peak throughput of
an application.

24



3.4.5 Trade-offs of Synchronous vs Asynchronous Execution Modes

The microbenchmark experiments show that the synchronous execution of components
is beneficial when the reuse distance d is lesser than the capacity of cache memory. For
example, the implementation of the asynchronous execution mode for this microbenchmark
study utilizes a lock to add and remove messages from the queue. The communication
overhead introduced by the asynchronous execution method is tolerable when the data
locality in an application is improved by the reorganization of program components. Hence,
a good application design balances the communication overhead and the cache utilization
to decide the execution mode that has to be adopted for the execution of a component.
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Chapter 4

Real-world Application

The results of the microbenchmark experiments are applied in a real world application
called the Memcached server. The results of the Memcached experiments are found be in
agreement with the microbenchmark results.

For the experiments, the Memcached server is modified to execute a critical section
EC in the asynchronous mode. The throughput of the modified version of the server is
compared with that of the unmodified version for different values of the parameters chosen.
The experiments are run on Linux since KOS does not supported all the needed software
libraries yet.

4.1 Memcached Server

Memcached [2] is a real-world, distributed, in-memory, key-value storage server that
uses a hash table for quick look up of data. Memcached is an event-driven application based
on client-server architecture. The server maintains a key-value store that is populated and
queried by clients.

This experiment uses two types of Memcached operations: GET and SET. The GET
operation retrieves information from the key-value storage. The SET operation either
updates the value of an existing key or adds a new key-value pair to the store.

The total memory available for the key-value store is specified during the start up of
the Memcached server. The total memory available is called the software cache as opposed
to the hardware cache memory.
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4.1.1 Memcached Server Internals

The write operations (SET) to the hash table in a Memcached server application uses
a global lock called the cache lock. If the server’s cache is full when adding a new key-
value pair, a server thread looks for expired items for replacement before replacing the least
recently used items in the cache. All these operations are encapsulated in a routine called
do item alloc() which is protected by the cache lock. The read operation (GET) to
the hash table is protected by granular locks called item lock[]. The do item alloc()

routine also uses item lock[].

Memcached has an event-driven component that creates a number of worker threads
to handle incoming requests. The number of worker threads can be set by the user. Each
worker thread handles only a particular set of client connections.

4.2 Memcslap, a Memcached Benchmarking Tool

Memcslap [3] is a benchmarking tool for the Memcached server. It simulates Mem-
cached clients and collects server statistics. The Memcslap tool provides a rich set of
parameters for fine-grained control of an experiment. Relevant to this research are the
percentage of GET and SET operations, the number of Memcached client threads, the du-
ration of the experiment, and the number of concurrency levels per client. The concurrency
level determines the number of requests a client can send consecutively before waiting to
hear back the results from the server. Each concurrency level opens one or more socket
connections to a Memcached server. The default number of socket connections is one. At
the end of each experiment, the Memcslap tool outputs the throughput of the Memcached
server represented by the number of requests serviced per second.

In this study, the Memcached clients and the server are run on the same computer.
In such a set up, it is found that the number of Memcached client threads has to be set
equal to the number of server threads to keep the server threads from starving for requests.
Any concurrency level (per client thread) greater than 20 seems to have no effect on the
number of requests sent per second by a client.

4.3 Memcached Modifications

Profiling the Memcached server using AMD CodeXL tool for 100% of SET operations
has revealed that the routine do item alloc() called during the SET operation experiences
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a large number of cache misses as the number of threads increase. The Memcached server
has been modified to execute this EC asynchronously. The cache lock that protects the
EC is left intact since the lock protects other critical sections in the application as well.

During the experiments, the message passing latency is found to be high which ad-
versely affects the peak throughput of the Memcached server. The server experiences
low throughput in the asynchronous mode inspite of the improved cache utilization. The
increase in latency can be attributed to the following reasons.

1. The enqueue and the dequeue operations of the message queue are mutually exclusive
and are protected using a lock. The threads, which try to access the queue, might
be suspended and rescheduled later by the operating system if the lock is held by
another thread.

2. The asynchronous server blocks itself when the queue is empty and is woken up by
the client when a new message is added in the empty queue. The block and wake up
operations make costly system calls that increase the latency [29] of the mechanism.

Hence few modifications are made to the asynchronous method to reduce the message
passing latency. The modifications are as follows.

1. The message queue is changed to the zero-copy design to avoid the overhead of
copying the message from a client to the server. In the zero-copy design, a message
sent by an asynchronous client is not copied into the local buffer of the asynchronous
server. Rather a pointer to the message structure is passed from a client to the
server. This design does not represent a general use case, but is useful for the current
problem since the client does not modify the message until the server completes its
request. After sending a message, the client blocks until it receives results from the
server. So, the data remains safe.

2. Asynchronous client threads spins for a short interval of time, polling the availability
of results at regular intervals before blocking themselves. The client threads break
from the busy loop as soon as result is available. The clients block themselves if the
result is not available at the end of the busy loop interval. This technique is to avoid
the costly system calls made during the block and wake up operations.

3. The asynchronous server, instead of dequeueing a single item from the message queue,
dequeues all the available items in a single remove operation.

28



4.4 Configuration

The Memcached version used in this study is 1.4.20. The configuration of the computer
used for the experiments is given in Table 4.1. The machine runs Linux kernel v3.2.0-35.
The version of the gcc compiler is 4.9.0. The experiment configuration is given in Table
4.2. The experiment is repeated thrice for each set of parameter values and the average
value of the throughput is calculated. Each time the experiment is run for five minutes.
The asynchronous server is bound to a core where as the worker threads have no CPU
affinity. The worker threads can run on any core in the machine. The size of a key is 64
bytes and the size of value is 1024 bytes which are the default values used by the Memcslap
tool.

Model Supermicro AS-2042G-6RF
Processor AMD Interlagos 6274
Processor speed 2.2G
Number of sockets 4
Number of cores 64
L1 instruction cache 16K (per core)
L1 data cache 64K (per core)
L2 cache 2048K (per core)
L3 cache 6144K
Cacheline size 64 bytes
Operating system Linux
Kernel version v3.2.0-35

Table 4.1 Memcached experiment: System configuration.

Number of Memcached server process 1
Number of Memcached server threads 1 to 30
Number of Memcached client threads same as the number of server threads
Memcached client concurrency 20 per client

Table 4.2 Memcached experiment: Parameter values.
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4.4.1 Metrics

The metrics used in the experiments are the throughput of the Memcached server and
the average critical section cycles.

The throughput of the Memcached server application is displayed in the output of the
Memcslap tool. The throughput refers to the average number of SET and GET operations
performed by the Memcached server in one second.

The metric, average critical section cycles is the average number of CPU cycles spent
by the Memcached server inside the critical section of the do item alloc routine. It is
measured using the TSC counter using the RDTSC instruction. It represents the cache
misses incurred by the Memcached server inside the critical section. This is because the
cycles spent inside the critical section increases as the number of cache misses inside the
critical section increase. The average number of CPU cycles does not include the cycles
spent to acquire and release the cache lock. The value of the TSC counter is read after
the lock is acquired and before the lock is released during each critical section execution.
The difference in the counter values denotes the number of cycles spent inside the critical
section. The average number CPU cycles for one critical section is calculated by dividing
the total number of CPU cycles spent inside the critical section by the number of critical
section executions.

In the asynchronous mode, the asynchronous server thread which executes the
do item alloc routine is bound to a single core. Hence, the TSC counter used is always
the same. However, in the synchronous mode, the worker threads that execute the critical
section are not bound to any core. Hence, they use the TSC counter of the core on which
they currently execute. The TSC counters in the machine used for the experiments are
not always synchronized and there exists a difference between the values of two different
TSC counters in the system. However, this difference does not affect the results of the
experiments, because it is assumed that each worker thread executes the entire critical
section on the same core. The assumption is validated by running the experiments with
each worker thread bound to a core as well as with the worker threads not bound to any
core. In both the cases, the curves obtained by plotting the average number of CPU cycles
against the number of threads, shows the same pattern.

4.5 Results

Figures 4.1a, 4.1b and 4.1c shows the throughput of the Memcached server application
for different percentages of GET and SET operations. The throughput of the modified
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version increases by 32%, 13% and 1% for 30%, 25% and 20% SET operations respectively.
The throughput increase is only marginal for 20% of SET operations because the contention
of the cache lock reduces as the percentage of SET operations reduce.

The increase in the throughput of the modified version is attributed to the reduced
number of cache misses inside the do item alloc routine. This is because in all the experi-
ments, the average critical section CPU cycles remains almost constant in the asynchronous
mode whereas it increases with the increase in the number of worker threads in the syn-
chronous mode. The same effect is also observed in the microbenchmark during the data
invalidation experiment explained in Section 3.4.3.

The effect of the internal thrashing is seen in the curves of both the modified and
the unmodified version. The fall in the throughput of the unmodified version is steeper
due to the data invalidation effect in the SET operations. Notice that the throughput of
the unmodified version increases as the percentage of GET operations increase. However
for the modified version, the throughput remains almost the same. This behaviour implies
the latency of SET and GET operations are almost the same in the modified version.

Thus, the results of the Memcached experiment reinforces the microbenchmark re-
sults showing that preserving locality in a program by adopting both synchronous and
asynchronous modes of execution improves its throughput.
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(a) Memcached experiment:
70% GET and 30% SET ops.
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Figure 4.1 Memcached experiment results.
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Chapter 5

Related Work

5.1 On Locality of Data

To analyze the cache usage behaviour of applications, the concept of LRU stack dis-
tance [19] has been introduced by Mattson in 1970. Since then it has been used as a
basic tool for locality behaviour and memory systems research. Ding et al. [10] redefine
the LRU stack distance as reuse distance to analyze the behaviour of a program and to
find reuse patterns consistent across all inputs. This research uses the concept of reuse
distance to describe the effect of the execution modes on the temporal locality of data in
an application.

Early methods of restructuring programs [12, 17, 20] have focused on reordering com-
putations and data accesses in a program to promote data reuse. Compile time strategies
for reordering include cache blocking techniques [17] which group computations onto data
tiles to promote data reuse, loop transformation techniques [12, 20] and data layout trans-
formations [5]. Runtime transformations for irregular applications, where the data reuse
pattern of which is unknown at compile time, have also been studied [9, 21]. Ding et al.
[9] use the inspector-executor strategy [7] to learn the data access patterns of a process,
and use the knowledge for dynamic reorganization of computations and data. In [21], data
and computations are reordered using various techniques such as space-filling curves [28].

With the advent of multicore processors, distributing computations and data across
cores to improve locality has been considered. In affinity-based scheduling [30], data locality
is preserved by scheduling a task on a core where the task’s data has already been cached.
Scheduling decisions are made based on the information on processor-cache affinity. Affinity
scheduling adopts thread migrations to spread computations and avoid capacity misses.
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Splitting a sequential program into a group of computations and reordering the com-
putations with the aid of fine-grained threads has been considered by Philbin et al. [24]
and Pingali et al. [25]. Fine-grained threads mean that the overhead of the thread primi-
tives is low both in time and space. Philbin et al. split a sequential program into separate
units of computations with no data dependency between them. Each unit of computation
represents an independent fine-grained thread and the threads are scheduled to result in
fewer cache misses in a program. To achieve this, the scheduling algorithm uses infor-
mation about the address ranges that would be accessed by the threads. Pingali et al.
consider a program as a series of logical operations, which are short streams of compu-
tations and the operations are reordered to improve the temporal locality of data in the
program. Two transformations, namely early execution and deferred execution are used.
These transformations batch the execution of one or more logical operations. The concepts
presented in [24, 25] about splitting a program into multiple logical operations is similar to
the Execution Component Model used in this research. The focus of these studies is tem-
poral reorganization, where as the current study focuses on spatial reorganization. Also,
in contrast to the current study, the methods used by Philbin and Pingali do not allow
communication between the reordered components.

With the increase in the number of cores per CMP, specializing cores to offload
certain tasks to improve locality has been considered [18, 29]. This approach involves
communication between off-loaded tasks and other tasks in the system. For example,
Remote Core Locking [18] adopts message passing to execute the critical sections in an
application, on separate cores. In FlexSC [29], the execution of system calls are moved
to separate cores using similar approach. This research has a different focus and uses
the critical section problem to systematically study the effects of the execution modes on
the temporal locality of data in programs by offloading critical section execution on to a
separate core.

5.2 Accelerating Critical Sections

The microbenchmark used in this study represents applications that have one or more
critical sections in their performance-critical execution paths. In the microbenchmark
experiments, the temporal locality of the data in the critical section is improved using the
asynchronous execution method which improves the throughput of the microbenchmark.

The problem of accelerating critical sections to improve the throughput of a program
has been addressed in [18, 31, 32]. Suleman et al. [32] recommend asymmetric multicore
computers to accelerate critical sections. In this method, the execution of a critical section
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is accelerated by executing it on a core with higher clock speed. Sridharan et al. [31]
propose thread migrations to execute a critical section on the same core where it has been
executed previously. This transfer is to improve the locality of the data in the critical
section. In the Remote Core Locking (RCL) method [18], critical sections are executed
on a dedicated core using a server thread. The threads in the application send messages
to the server requesting the execution of critical section. Each thread uses a dedicated
cache line to send messages to the server. The RCL method includes special optimizations
to handle multiple critical sections. The methods used in RCL and in the current study
are somewhat similar. However, this research differs from RCL and the other works by
providing a systematic study of the execution modes.

5.3 Programming Paradigms

A programming paradigm [22] is a model of programming, the concepts of which drive
the structure of a program written using that paradigm. A programming language provides
constructs to implement a program using one or more programming paradigms.

Traditional computers with a single CPU execute programs in the synchronous mode
inherently. The Von Neumann Architecture [35], which is the fundamental model of com-
puters, has a single CPU that executes instructions sequentially. Hence, early programming
paradigms such as procedural programming and functional programming have assumed a
synchronous model of hardware and sequential execution of instructions. The applications
developed using the languages based on such paradigms naturally adopt the synchronous
execution mode.

The advent of multicore processors has led to the design of concurrent programming
paradigms. In concurrent models of computation, tasks are allowed to make progress in
overlapping time periods. Such models adopt asynchronous execution as their fundamental
design characteristic to exploit the parallelism of the underlying hardware. This research
shows that a good application design adopts both modes of execution to improve the
temporal locality of data.

The compilers of the existing programming languages incorporate optimization tech-
niques [12, 17, 20] and reorder computations to improve locality. This research tends to
alter the control flow of an application by changing application design to improve locality.
A flexible solution for this problem is to design programming languages that would enable
compilers to optimize the control flow of a program by adopting appropriate execution
modes.

35



To enable such optimization of the control flow, the programming languages need
to express the data flow of a program along with the control flow. They have to sup-
port the features of both imperative programming, which expresses the control flow, and
declarative programming, which expresses the logic without the control flow. The Jade
Programming Language [26], which is an extension of C language, provides constructs to
decompose computations into tasks and declare the data dependency between the tasks.
The Jade compiler adopts sequential execution if there exists data dependency between
tasks; otherwise it executes the tasks in parallel.

5.4 Software Systems based on Message passing

Since the advent of CMPs, the number of cores in desktop and server machines is
increasing every year. Intel has introduced its 72 core x86 Knights Landing Chip at the
end of 2013. Processor chips with thousands of cores are expected to be built in the future
[4, 6]. Researchers consider message passing as the key to build software systems that
exploit the parallelism that would be provided by future hardware [15, 23, 36]. In [15],
Holland et al. propose lightweight channels and messages based programming model for
future multicore computers. They observe that when the software systems running on
super computers ran into scalability issues in 1990s, the solution has been to move from a
shared-memory to a share-nothing model based on message passing.
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Chapter 6

Conclusion

This thesis presents a systematic study of two modes of program execution namely
synchronous and asynchronous modes. The goal of the study is to understand the trade-offs
associated with each execution mode and the effect of the execution modes on a program’s
throughput and resource usage. The asynchronous mode allows spatial and temporal
reorganization of program components. This study focuses only on the effects of spatial
reorganization.

A microbenchmark has been designed for the purpose of this study. The microbench-
mark results show that the communication overhead associated with the asynchronous
execution mode is tolerable when the reorganization of components leads to improved
temporal locality in a program. In such cases, a program achieves high throughput un-
der the asynchronous mode. The synchronous mode is advantageous when the combined
data size of program components that are executed synchronously fits within a cache level.
The synchronous mode creates longer execution paths in a program by sequential exe-
cution of components. Hence, it increases the reuse distance of the data elements in a
program. Data displacement and data invalidation are the two effects associated with the
synchronous execution mode that affect the cache usage of a program adversely. It is con-
cluded that an application design that balances the communication overhead and the cache
utilization achieves high throughput in current multicore hardware. The findings of the
microbenchmark experiments are applied to improve the throughput of a real-world dis-
tributed in-memory key-value storage server. The server application is modified to execute
one of its program components in the asynchronous mode. The modified design achieves
32%, 13% and 1% higher throughput for 30%, 25% and 20% of SET operations respec-
tively. The improvement in throughput is attributed to the improved temporal locality of
data in the application.
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This study focuses only on the effects of the spatial reorganization on the temporal
locality of data in applications. A more general model would accommodate both spatial
and temporal reorganization of components. Also, the general properties of the ECs that
are potential candidates for reorganization is yet to be understood. The message queue
used in this work is a circular ring buffer which is implemented using a fixed-size array. In
real-world applications such as web servers, the number of requests is large at times and
varies from time to time. For such applications, queues that grow and shrink dynamically
are preferred over those that are statically sized. Investigation of the asynchronous mode
with such queues is relevant for applications with highly varying workloads. Improving
the usage of cache memory by means of application design is one approach. A more
flexible solution would be to design programming languages, the constructs of which allow
automatic identification and reorganization of program components to improve the data
locality. All these issues are left for future work.
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