
Design and Analysis of an Adjacent
Multi-bit Error Correcting Code for

Nanoscale SRAMs

by

Adam Neale

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Adam Neale 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Increasing static random access memory (SRAM) bitcell density is a major driving
force for semiconductor technology scaling. The industry standard 2x reduction in SRAM
bitcell area per technology node has lead to a proliferation in memory intensive applications
as greater memory system capacity can be realized per unit area. Coupled with this
increasing capacity is an increasing SRAM system-level soft error rate (SER). Soft errors,
caused by galactic radiation and radioactive chip packaging material corrupt a bitcell’s
data-state and are a potential cause of catastrophic system failures. Further, reductions in
device geometries, design rules, and sensitive node capacitances increase the probability of
multiple adjacent bitcells being upset per particle strike to over 30% of the total SER below
the 45 nm process node. Traditionally, these upsets have been addressed using a simple
error correction code (ECC) combined with word interleaving. With continued scaling
however, errors beyond this setup begin to emerge. Although more powerful ECCs exist,
they come at an increased overhead in terms of area and latency. Additionally, interleaving
adds complexity to the system and may not always be feasible for the given architecture.

In this thesis, a new class of ECC targeted toward adjacent multi-bit upsets (MBU)
is proposed and analyzed. These codes present a tradeoff between the currently popular
single error correcting-double error detecting (SEC-DED) ECCs used in SRAMs (that are
unable to correct MBUs), and the more robust multi-bit ECC schemes used for MBU
reliability. The proposed codes are evaluated and compared against other ECCs using a
custom test suite and multi-bit error channel model developed in Matlab as well as Verilog
hardware description language (HDL) implementations synthesized using Synopsys Design
Compiler and a commercial 65 nm bulk CMOS standard cell library. Simulation results
show that for the same check-bit overhead as a conventional 64 data-bit SEC-DED code, the
proposed scheme provides a corrected-SER approximately equal to the Bose-Chaudhuri-
Hocquenghem (BCH) double error correcting (DEC) code, and a 4.38x improvement over
the SEC-DED code in the same error channel. While, for 3 additional check-bits (still 3
less than the BCH DEC code), a triple adjacent error correcting version of the proposed
code provides a 2.35x improvement in corrected-SER over the BCH DEC code for 90.9%
less ECC circuit area and 17.4% less error correction delay.

For further verification, a 0.4-1.0 V 75 kb single-cycle SRAM macro protected with a
programmable, up-to-3-adjacent-bit-correcting version of the proposed ECC has been fab-
ricated in a commercial 28 nm bulk CMOS process. The SRAM macro has undergone neu-
tron irradiation testing at the TRIUMF Neutron Irradiation Facility in Vancouver, Canada.
Measurements results show a 189x improvement in SER over an unprotected memory with
no ECC enabled and a 5x improvement over a traditional single-error-correction (SEC)
code at 0.5 V using 1-way interleaving for the same number of check-bits. This is compa-
rable with the 4.38x improvement observed in simulation. Measurement results confirm an

iii

average active energy of 0.015 fJ/bit at 0.4 V, and average 80 mV reduction in VDDM I N

across eight packaged chips by enabling the ECC. Both the SRAM macro and ECC circuit
were designed for dynamic voltage and frequency scaling for both nominal and low voltage
applications using a full-custom circuit design flow.

iv

Acknowledgements

I would like to take this opportunity to express my gratitude and thanks to my super-
visor Professor Manoj Sachdev at the University of Waterloo. I could not have asked
for a better supervisor to work with. Without his guidance, knowledge, kindness, and
patience, this work would not have been possible. I would also like to thank my examining
committee Dr. Bill Bishop, Professor Vincent Gaudet, Professor Edlyn Teske-
Wilson, and Professor Ali Sheikholeslami. I realize how valuable everyone’s time is,
and how much of it is required to be a part of a Ph.D. examining committee. Thank you
for agreeing to be a part of mine, and thank you for all of your valuable comments and
suggestions.

It has been a great pleasure to be a part of the CMOS Design and Reliability (CDR)
Group for the last six years throughout this degree and my M.A.Sc. degree. The dedication
and talent within this group and its simple but powerful motto of “Aim High” has always
inspired me to strive for my best in everything I do. My sincere appreciation goes out to
all of the past and current members of this group especially Dr. David Rennie, Dr. Jaspal
Singh Shah, and Pierce Chuang.

I would also like to thank the varsity track and field team for supporting me throughout
my studies. Having running as an outlet has allowed me to stay physically active, and
remain (quasi-)sane over the last four years. Thank you Shane, Kate, Jacob, Oly, Lawrence,
Trevor, Justin, Chantel, Kofi, Jenny, Nathan, Mo, Tommy, and everyone else.

Lastly, I would like to acknowledge the funding that I received throughout the duration
of my degree from the Natural Sciences and Engineering Research Council (NSERC),
Waterloo Institute for Nanotechnology (WIN), and the University of Waterloo. Thank
you for believing in my ability to do research.

v

Contents

List of Tables xi

List of Figures xiii

List of Abbreviations xix

1 Introduction 1

1.1 Problem Statement . 1

1.2 Soft Error Mechanisms . 2

1.3 Soft Errors in SRAM . 4

1.4 SRAM Soft Error Mitigation Strategies . 9

1.4.1 Process . 9

1.4.2 Circuit . 10

1.4.3 Architecture . 10

1.5 Goal of This Research . 14

1.6 Outline . 15

2 Error Correcting Codes in Computer Memories 16

2.1 The Communication Channel . 16

2.2 Recent Advances in Coding Theory . 18

2.3 SRAM Organization . 19

2.4 Error Types . 22

2.5 ECC Classifications . 24

vi

2.6 Mathematical Foundation . 25

2.6.1 Algebraic Definitions for ECC . 26

2.6.2 Generator and Parity Check Matrices 29

2.6.3 Syndrome . 32

2.6.4 Encoding-Decoding Example . 34

2.7 Performance Metrics . 35

2.7.1 Area Overhead . 35

2.7.2 Performance Impact . 36

2.7.3 Robustness . 37

2.8 Example Codes . 38

2.8.1 Single-Parity-Bit Codes . 38

2.8.2 Hamming SEC Codes . 39

2.8.3 Hamming SEC-DED Codes . 41

2.8.4 Hsiao SEC-DED Codes . 41

2.8.5 BCH Codes . 42

2.8.6 Reed-Solomon Codes . 43

2.8.7 Dutta SEC-DED-DAEC Codes . 44

2.9 Summary . 46

3 Proposed Class of Error Correction Codes 47

3.1 Code Structure . 47

3.1.1 Design Constraints . 49

3.2 Code Design Procedure . 51

3.2.1 Degree of Adjacent Error Detection 52

3.2.2 Degree of Burst Error Detection . 55

3.2.3 Required Number of Check-bits . 55

3.2.4 Column Vector Selection Procedure for DAEC 56

3.2.5 Check- and Syndrome-bit Generation XOR Logic Depth and Check-
bit Selection . 59

3.2.6 Row Weight Balancing . 60

vii

3.2.7 Triple Adjacent-bit Error Correction 61

3.2.8 Encoder-Decoder Circuit . 63

3.3 Encoding Process . 64

3.4 Encoding, Error Injection, Decoding Example 65

3.4.1 Encoding . 66

3.4.2 Error Injection . 66

3.4.3 Decoding . 67

3.5 H-Matrix Generation and Verification . 68

3.5.1 Construction Algorithm . 68

3.6 Evaluation . 69

3.6.1 Error Correction and Detection Capabilities 71

3.6.2 Implementation Area . 71

3.6.3 Encoder and Decoder Propagation Delay 74

3.6.4 Miscorrection Probability . 76

3.6.5 Implementation Summary . 77

3.6.6 Modified Codes . 78

3.7 Summary . 85

4 Implementation, Verification, and Measurement 86

4.1 Soft Error Rate Modeling . 86

4.1.1 Error Channel Model . 86

4.1.2 Simulation Results - Corrected-SER vs. Raw-SER 89

4.2 Test Chip Design . 95

4.2.1 Memory Organization . 98

4.2.2 Memory Address Space . 99

4.2.3 Memory Bitcell . 101

4.2.4 Row Conditioning Circuitry . 104

4.2.5 Column Conditioning Circuitry . 105

4.2.6 ECC Circuit . 109

viii

4.2.7 Timing and Control Circuitry . 112

4.2.8 Performance Simulations . 116

4.2.9 Printed Circuit Board Design . 116

4.3 Silicon Measurement . 119

4.4 Radiation Testing . 124

4.4.1 Experimental Setup . 126

4.4.2 Measurement Results . 127

4.5 Vendor Cell SER Estimation . 133

4.5.1 Critical Charge SPICE Estimations 133

4.5.2 Parameter Extraction . 135

4.5.3 SER Performance . 138

4.6 Summary . 142

5 Conclusions and Future Work 143

5.1 Contributions to the Field . 143

5.1.1 A New Class of Error Correcting Codes for Adjacent Multi-bit Upsets143

5.1.2 Soft Error Rate Modeling . 144

5.1.3 28 nm Test Chip Design and Implementation 144

5.1.4 Soft Error Rate Estimations for Vendor Cells 145

5.1.5 Publications . 145

5.2 Future Work . 145

A Implemented H-Matrices 147

A.1 16 Data-bit Codes . 147

A.1.1 SEC-DED-DAEC-yAED . 147

A.1.2 SEC-DED-TAEC-yAED . 148

A.2 32 Data-bit Codes . 149

A.2.1 SEC-DED-DAEC-yAED . 149

A.2.2 SEC-DED-TAEC-yAED . 150

A.3 64 Data-bits . 151

ix

A.3.1 SEC-DED-DAEC-yAED . 151

A.3.2 SEC-DED-TAEC-yAED . 152

A.4 Increased Identity Matrix Size Codes . 153

A.4.1 32 Data-bits . 153

A.4.2 64 Data-bits . 154

A.5 Increased Check-bit Codes . 155

A.6 Optimized Code . 155

A.7 Dutta Codes . 156

A.8 BCH Codes . 157

A.9 Reed Solomon Codes . 158

B Details of Test Chip 159

C Publications From This Work 169

References 171

x

List of Tables

1.1 MCU bit width and percentage of the total SER for 45 nm, 32 nm, and
22 nm technologies [6] . 7

2.1 Code Parameters for RS SbEC-DbED Codes 44

2.2 (22, 16) SEC-DED-DAEC Dutta Code Column Uniqueness Table 46

3.1 (24, 16) I5 SEC-DED-DAEC-7AED Column Uniqueness Table 59

3.2 Set of 3-bit Columns with Various Column Weights 61

3.3 (24, 16) I5 SEC-DED-TAEC-6AED Column Uniqueness Table 62

3.4 H-Matrix Code Comparison Summary . 79

3.5 Synthesis Results Comparison Summary 80

3.6 Increased Identity Matrix Size Code Comparison 82

3.7 (24, 16) I5 Optimized Code Example . 84

4.1 Example Error Distribution Before and After Error Correction Using the
SEC-DED-TAEC-8AED Code . 88

4.2 MCU bit width and percentage of the total SER comparison between the
4-state Markov chain model and 22 nm technology in [6] 89

4.3 ECC Check-bit Overheads . 89

4.4 Test Chip Operating Modes . 98

4.5 Test Chip 16-bit Memory Address Space 100

4.6 8-bit Byte Divisions for 75-bit Codewords 101

4.7 Implemented 6T Bitcell Sizing . 102

4.8 Programmable Error Correction Controller 110

xi

4.9 Features of Fabricated 28 nm Test Chip . 121

4.10 VDDMIN Measurement for 8 Test Chips 122

4.11 Average Power Measurement for 2 Test Chips Capable of 400 mV Operation 122

4.12 Measured Error Injection Example . 123

4.13 Design Comparison . 124

4.14 Soft Error Rate Calculation from Radiation Test Data for 0.4 V to 1.0 V . 129

4.15 SER using Different Data Patterns for VDD = 0.5 V, time = 2 hours 131

4.16 28 nm SRAM Bitcell SER Comparison at Nominal (1.0 V) Supply Voltage 139

4.17 28 nm SRAM Bitcell MCU Width Comparison at 500 mV Supply Voltage 142

B.1 Pin Description for ICTWTAN3 120 PGA Test Chip - Pins 120-61 167

B.2 Pin Description for ICTWTAN3 120 PGA Test Chip - Pins 60-1 168

xii

List of Figures

1.1 Charge generation and collection phases in a reverse-biased junction and the
resultant current pulse caused by the passage of a high-energy ion [4]. . . . 3

1.2 6-Transistor SRAM Cell. Assuming the cell is holding the data (Q =
1, QB = 0), the drain diffusions for devices N1 and P2 are sensitive to
particle induced upsets. 5

1.3 SRAM parameters - normalized cell area, normalized Qcrit, and operating
voltage as a function of technology node [4], [10]. 6

1.4 System-SER, bit-SER and percentage MCU of the total SER as a function
of technology node [6]. 7

1.5 Frequency distribution of the number of soft errors generated per SEU due
to neutron irradiation of 65 nm and 90 nm SRAMs [16]. 8

1.6 Maximum adjacent MBU width as a function of technology. Derived from [18,
19, 16, 20, 6]. 8

1.7 ECC Block Diagram . 11

1.8 Types of Interleaving . 13

2.1 Block diagrams for the communication channel and memory storage systems
including ECC blocks. Adapted from [49, 50]. 17

2.2 Computer memory hierarchial organization structure. SRAM is typically
used as the main building block for system registers, on-chip cache, and
various buffers. 20

2.3 N ×M SRAM Array with Peripheral Circuitry 21

2.4 MCU Upset Classifications . 22

2.5 MBU Upset Classifications . 23

2.6 (n, k) codeword structure. The n-bit codeword consists of k data-bits and
r parity check-bits. 25

xiii

2.7 Minimum Hamming Distance Example . 27

2.8 Provided that dmin = 4, the code is capable of either 1-bit error correction,
3-bit error detection, or 1-bit error correction with 2-bit error detection. . . 28

2.9 Example H-matrix Configurations Using Sub-matrices 31

2.10 Area overhead comparisons for SEC, SEC-DED, DEC BCH, and DEC-TED
BCH codes of various data lengths. 36

2.11 Encoder and decoder of the Hamming (7,4) SEC code. 40

2.12 (8,4) Hamming and Hsiao SEC-DED Matrices 42

2.13 (26, 16) BCH DEC Syndrome Generation Logic 43

2.14 (25, 16) b = 3 Reed Solomon code byte organization 44

2.15 (22, 16) SEC-DED-DAEC Dutta code. Adapted from [44]. 45

3.1 Generalized (n, k) IL H-matrix structure for the proposed class of ECCs . 48

3.2 Example (23, 16) I4 SEC-DED-DAEC-5AED Code 48

3.3 Example (24, 16) I5 SEC-DED-DAEC-7AED Parity Check Matrix 51

3.4 Identity matrix check-bit organization. Selecting check-bits in this manner
allows for adjacent error detection. 53

3.5 Degree of adjacent error detection versus identity matrix size, L 54

3.6 Column vector selection procedure. 57

3.7 Example (24, 16) I5 SEC-DED-TAEC-6AED Parity Check Matrix 62

3.8 For the DAEC and TAEC codes, each codeword bit can be involved in
3 and 6 different correctable error patterns respectively. By OR’ing the
decoded syndrome value for each of these error patterns together, it can be
determined if a particular bit was involved in an error. By implementing this
circuitry for each codeword bit, and error location vector can be generated. 63

3.9 (24, 16) I5 SEC-DED-TAEC-6AED Encoder Generator Matrices 64

3.10 Matlab Solution Solver Flow Graph . 68

3.11 H-matrix construction algorithm . 70

3.12 Adjacent and burst error detection for the proposed codes as a function of
IL matrix size compared with the SEC-DED-DAEC Dutta, BCH DEC, and
RS S3EC-D3EC codes. 72

xiv

3.13 Check- and syndrome-bit generation XOR logic gate count and synthesized
area for the proposed 16 data-bit SEC-DED-DAEC-yAED code implemen-
tations, (22, 16) SEC-DED-DAEC Dutta code, (25, 16) RS code, and (26,
16) DEC BCH code. 73

3.14 Synthesized area comparison between the proposed 16 data-bit DAEC and
TAEC code implementations for the equivalent number of check bits. . . . 74

3.15 Synthesized propagation delay estimation for the proposed 16 data-bit SEC-
DED-DAEC-yAED code implementations, (22, 16) SEC-DED-DAEC Dutta
code, (25, 16) RS code, and (26, 16) DEC BCH code. 75

3.16 Synthesized propagation delay comparison between the proposed 16 data-
bit DAEC code implementations and the TAEC implementations for the
equivalent number of check bits. 76

3.17 Miscorrection probabilities for 2-random and 3-random bit errors for the
proposed 16 data-bit SEC-DED-DAEC-yAED code implementations, (22,
6) Hsiao SEC-DED code, (22, 16) SEC-DED-DAEC Dutta code, (25, 16)
RS code, and (26, 16) DEC BCH code. 77

3.18 Degree of adjacent and burst error detection for Increased Identity Matrix
Size codes compared to their equivalent SEC-DED-DAEC-yAED codes for
the same number of check-bits. 81

3.19 Miscorrection probabilities for 16 Data-bit Increased Check-bit codes. . . . 82

3.20 Optimized (24, 16) I5 code with maximum row weight of 8. 84

4.1 Radiation Induced Noise Channel Models 87

4.2 Corrected-SER vs. raw-SER for (72, 64)-I3 SEC-DED-DAEC-3AED, (72,
64) SEC-DED, and (78, 64) BCH DEC codes using a 4-state Markov chain
error channel model. 90

4.3 Corrected-SER vs. raw-SER for (75, 64)-I6 SEC-DED-TAEC-8AED, (78,
64) BCH DEC, and (79, 64) Reed Solomon S5EC-D5ED codes using a 4-
state Markov chain error channel model. 91

4.4 Simulated corrected-SER vs. raw-SER for various ECC schemes using 1-way
interleaving. 92

4.5 Simulated corrected-SER vs. raw-SER for various ECC schemes using 2-,
and 4-way interleaving. 93

4.6 Simulated corrected-SER as a function of word interleaving for various ECC
schemes at a raw-SER of 1200 FIT/Mb. 95

xv

4.7 System level SER/device for 2 to 16 MB data capacity for various ECC
schemes at a raw-SER of 1200 FIT/Mb using 2-way interleaving. 96

4.8 6T SRAM macro and error correction circuit block diagram with input/output
databus interface and voltage domain level shifters. 97

4.9 SRAM Macro Block Diagram . 99

4.10 Row organization for 1-, 2-, and 4-way interleaving. 100

4.11 SRAM bitcell design comparison with vendor supplied bitcells 102

4.12 SRAM bitcell layout configurations . 103

4.13 Hierarchical 2-input AND Gate-based 8-to-256 Address Decoder Unit . . . 104

4.14 Wordline Driver Circuit . 105

4.15 Precharge and Equalize Circuit . 106

4.16 4-to-1 Differential Column Multiplexer Circuit 107

4.17 Write Driver Circuit . 108

4.18 Current Latch-Based Sense Amplifier Circuit with Read Data Latch 109

4.19 Implemented (75, 64) I6 SEC-DED-TAEC-8AED Code H-matrix 110

4.20 4-input transmission-gate based XOR circuit schematic and XOR gate com-
parision. 111

4.21 Programmable Syndrome Decoder Selector Logic Bit-slice 111

4.22 Timing Block Select Circuitry . 112

4.23 An inverter-delay-line-based pulse generator is used for generating internal
timing signals based solely on the rising edge transition of the input clock
signal (CLK). 113

4.24 Write and read timing control signals with ECC functionality. 115

4.25 Simulated memory timing performance with and without ECC enabled as
a function of supply voltage. Simulations performed at (TT/27 oC), (SS/-
25 oC), and (FF/85 oC). 117

4.26 PCB for test chip measurements . 118

4.27 PCB for external controller card . 119

4.28 75 kb SRAM Macro with ECC Full Chip Layout 120

4.29 75 kb SRAM Macro with ECC Die Photo 121

4.30 Measured error injection example. Additional ECC functionality is required
to perform error corrections as the injected error size increases. 123

xvi

4.31 NIF neutron beam spectrum compared with the atmospheric spectrum [81]. 125

4.32 TRIUMF NIF test facility and test station equipment setup. 128

4.33 Superposition of all soft error measurement error location bitmaps for VDD =
500 mV. 129

4.34 Raw error rate (radiation induced soft errors plus weak cells) vs. VDD with-
out ECC protection. 130

4.35 Radiation induced SER plus VDD induced weak bitcell rates for each ECC
mode. Weak bitcell upsets only occur at the 400 mV datapoints. 132

4.36 Radiation induced SER for each ECC mode at VDD = 500 mV for 1-, 2-,
and 4-way interleaving. 134

4.37 6T SRAM Bitcell Critical Charge Testbench 135

4.38 By incrementally increasing the peak charge, Q, deposited by an exponential
current pulse, iinjected(t), the critical charge, Qcrit, necessary to corrupt a
bitcell can be determined. 136

4.39 Critical charge as a function of supply voltage VDD for the implemented
bitcell and vendor supplied cells. 136

4.40 Extraction of charge collection efficiency, Qs, and proportionality constant, k.137

4.41 Measured and modeled SER vs. VDD. Modeled data is within 15% of
measured data for all data points except for one point at VDD = 0.6 V,
Measured = 417.95 FIT/Mb, Model = 541.80 FIT/Mb, Percent Difference
= 29.6%. 138

4.42 MCU width bounds for vendor supplied cells can be determined from their
Qcrit, bitcell width, and Qo upper and lower bound parameter extracted
from the implemented bitcell’s simulated and radiation test data. In this
example, a particle strike causing a 3-MCUWL using the implemented bitcell
could create an upset ranging from a 5-MCUWL to a 9-MCUWL for an array
implemented using the vendor’s dense bitcell. 141

A.1 16 Data-bit SEC-DED-DAEC-yAED Codes 147

A.2 16 Data-bit SEC-DED-TAEC-yAED Codes 148

A.3 32 Data-bit SEC-DED-DAEC-yAED Codes 149

A.4 32 Data-bit SEC-DED-TAEC-yAED Codes 150

A.5 64 Data-bit SEC-DED-DAEC-yAED Codes 151

A.6 64 Data-bit SEC-DED-TAEC-yAED Codes 152

xvii

A.7 32 Data-bit SEC-DED-DAEC-yAED IIMS Codes 153

A.8 64 Data-bit SEC-DED-DAEC-yAED IIMS Codes 154

A.9 16 Data-bit SEC-DED-DAEC-yAED ICB Codes 155

A.10 Optimized (24, 16) I-5 Code with maximum row weight of 8 Check-bits(1-
8) = Columns{1 4 13 6 12 8 24 10} . 155

A.11 Various Length Dutta Codes . 156

A.12 Various Length BCH Codes . 157

A.13 Various Length Reed Solomon Codes . 158

B.1 ICTWTAN3 - 6T SRAM + ECC + I/O + Level Shifter Circuit Level Block
Diagram . 160

B.2 ICTWTAN3 - Full Chip Layout . 161

B.3 ICTWTAN3 - Die Photo . 161

B.4 ICTWTAN3 - Die Pad Frame Connectivity 162

B.5 ICTWTAN3 - Bonding Diagram - Two tiered bonding using two short wires
and conductive interposers, die in center of package cavity. Bonding by
Corwil Technology Corportation [79] . 163

B.6 ICTWTAN3 - Bonding Diagram - Two tiered bonding using single long wire,
die in center of package cavity. Bonding by Quik-Pak [78] 163

B.7 ICTWTAN3 - 120 Pin Grid Array (PGA) Package Pin Configuration . . . 164

B.8 ICTWTAN3 - Pin Map . 165

B.9 ICTWTAN3 - Testboard for Device Under Test 166

B.10 ICTWTAN3 - External Controller Card for Device Under Test 166

xviii

List of Abbreviations

GF (2) Binary Galois Field

Qcol Collected Charge

Qcrit Critical Charge

Ir r × r Identity Matrix

an Neutron Fluence Acceleration Factor

at Irradiation Time Acceleration Factor

dmin Minimum Hamming Distance

G-matrix ECC Generator Matrix

H-matrix ECC Parity Check Matrix

6T 6 Transistors

BCH Bose Chaudhuri Hocquenghem

BL/BLB SRAM Complementary Bitline and Bitline Bar Pair

CMOS Complementary Metal Oxide Semiconductor

DAEC Double Adjacent Error Correction

DEC Double Error Correcting

DEC-TED Double Error Correcting Triple Error Detecting

DED Double Error Detecting

DICE Dual Interlocking Cell Element

xix

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correcting Code, or Error Correction Code

EG-LDPC Euclidean Geometry Low Density Parity Check

FF Fast n-type Transistor Devices, Fast p-type Transistor Devices

FIT Failures in Time, 1 FIT = one failure in 109 device-hours

HDL Hardware Description Language

HK+MG High κ Dielectric plus Metal Gate

ICB Increased Check-Bit codes

IIMS Increased Identity Matrix Size codes

JEDEC Joint Electron Device Engineering Council

LET Linear Energy Transfer

MBU Multi-Bit Upset

MCU Multi-Cell Upset

NIF Neutron Irradiation Facility

PCB Printed Circuit Board

PGA Pin Grid Array

RAM Random Access Memory

RS Reed-Solomon

SbEC-DbED Single Byte Error Correcting Double Byte Error Detecting

SBU Single Bit Upset

SEC Single Error Correcting

xx

SEC-DED Single Error Correcting Double Error Detecting

SEC-DED-xAEC-yAED Single Error Correcting Double Error Detecting x-bits Adja-
cent Error Correcting y-bits Adjacent Error Detecting

SEC-DED-DAEC Single Error Correcting Double Error Detecting Double Adjacent Er-
ror Correcting

SET Single Event Transient

SEU Single Event Upset

SOI Silicon on Insulator

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random Access Memory

SS Slow n-type Transistor Devices, Slow p-type Transistor Devices

TAEC Triple Adjacent Error Correction

TRIUMF Tri-University Meson Facility

TT Typical n-type Transistor Devices, Typical p-type Transistor Devices

UE Uncorrectable Error

VDDMIN Minimum Operating Supply Voltage

VLSI Very Large Scale Integration

WL SRAM Wordline

xAEC A variable degree of Adjacent Error Correction

yAED A variable degree of Adjacent Error Detection

zBED A variable degree of Burst Error Detection

xxi

Chapter 1

Introduction

This chapter provides an introduction to the soft error problem in nanoscale integrated
circuits with an emphasis on SRAMs. The sources of soft errors and their underlying
mechanisms are first described, and the increasing SRAM soft error rate in light of tech-
nology scaling is used as the main motivating factor driving this research.

1.1 Problem Statement

Driven by consumer demand for increased functionality and reduced power consumption,
transistor device dimensions and chip operating voltages for the complementary metal oxide
semiconductor (CMOS) technology used in computer electronics continues to scale. The
increased demand for chip functionality has caused a proliferation in memory intensive
applications. New applications requiring large capacity memory modules can occupy a
considerable portion of a chip’s total area. To fulfill the demand for increasing on-chip
storage capacity, while mitigating against chip real estate penalties, embedded memories
are being designed using state-of-the-art technologies with minimum features sizes currently
on the order of 14-16 nm [1, 2, 3]. These gains however do not come without an associated
cost. Technology scaling, coupled with reduced operating voltage, can lead to an increase
in a memory cell’s sensitivity to external radiation effects [4]. This issue is particularly
noticeable in static random access memory (SRAM), and Flash-based memories [5]. As
devices scale deep into the sub-45 nm regime, radiation induced soft errors become a serious
reliability challenge facing embedded memories [6].

Soft errors arise as a result of energetic neutrons from galactic particles and from alpha
particles emitted by chip packaging material [7]. Originally termed “antenna pickup”,
seemingly random upsets in digital electronics were reported as early as the 1940’s, but it
was not until the 1970’s that radiation was considered to be a potential source of these

1

upsets [7]. In 1978, Intel reported that radioactive uranium contamination was causing
“soft fails” in some of their dynamic random access memory (DRAM) and microprocessor
chips [8], then in 1979, Ziegler and Lanford predicted that cosmic rays could cause a major
electronic reliability problem at both terrestrial sites and aircraft altitudes [9]. The high
energy particles create free electron-hole pairs as they pass through semiconductor devices
which can lead to large current/voltage transients if they come within close proximity of a
transistor’s depletion region. These single event transients (SET) appear at circuit nodes
and can unintentionally corrupt data stored in memory cells and other storage elements.
When a SET leads to the data corruption of one of these storage elements it is defined as
a single event upset (SEU). An SEU corrupting a single-bit of data is classified as a single
bit upset (SBU), while an SEU corrupting multiple data cells is defined as a multi-cell
upset (MCU). A MCU that corrupts multiple bits within the same logical memory word
is defined as a multi-bit upset (MBU). Since each of these upsets corrupt the data state
but do not necessarily permanently damage the device itself, they are referred to as soft
errors.

Until recently, large node capacitances and high noise margins in storage devices have
prevented soft errors at ground level from becoming a major concern. As a byproduct
of aggressive technology scaling and increased bitcell packing density however, the nature
of soft errors is changing, and designers are being forced to deal with these issues dur-
ing earlier stages of the design cycle. Although many solutions have been developed for
high reliability in extreme environments such as military and aerospace applications, they
are not necessarily being adopted for commercial applications at ground level due to the
significant area, performance, and power consumption penalties they incur where these
metrics are at a higher premium. Additionally, as bit-cell packing densities increase, many
adjacent cells are now being corrupted by a single SEU as the external radiation source
remains constant. SEUs that would have once caused only a single SBU are now causing
MBU and MCUs. This leads to the failure of traditional error mitigation strategies, and
severely limits the prospect of continued device scaling [10].

1.2 Soft Error Mechanisms

When an energetic cosmic neutron enters a silicon substrate, it can either pass directly
through the substrate, or cause a disturbance by striking an atom, thereby generating
an ion [11]. Alpha particles are already ionized and therefore can cause a disturbance
directly on contact with the substrate. The magnitude of these disturbances depends on
the linear energy transfer (LET) of the ion or particle, and is measured in megaelectron
volt square centimeter per milligram (MeV-cm2/mg). The LET is dependent on the mass
and energy of the particle, and the material through which it is traveling. The reverse-
biased p-n junctions are the most charge-sensitive areas of a circuit [4]. This is due to the

2

(a) (b) (c) (d)

Figure 1.1: Charge generation and collection phases in a reverse-biased junction and the
resultant current pulse caused by the passage of a high-energy ion [4].

high electric field within their depletion region allowing for efficient charge collection [7].
Charge collection generally occurs within a few microns of the junction, and the collected
charge (Qcol) for these events range from 1 to several 100 fC depending on the type of ion,
its trajectory, and energy over the path through or near the junction.

At the onset of an ionizing radiation event, as shown in Figure 1.1(a), a cylindrical
track of electron-hole pairs is created in the wake of the incident ion’s path. When one of
these ion tracks is in the vicinity of a reverse biased junction, carriers are quickly collected
by the junction’s electric field creating a large current/voltage transient at the particular
circuit node Figure 1.1(b). This high intensity charge collection process happens briefly
over the period of no more than a nanosecond, and is then followed by more a subdued
phase of diffusion dominated charge collection lasting over several hundred nanoseconds
Figure 1.1(c). This phase continues until all of the excess carriers have been collected,
recombined, or diffused away from the junction area. The resulting current transient
associated with this phenomena is shown in Figure 1.1(d).

The amount of charge collected at a junction is inversely proportional to the distance
from which the radiation event occurs. The farther away the strike is from the junction,
the lower the probability that the event will cause an upset. The overall charge collection
process is further complicated however, as circuit nodes do not exist in isolation, but
rather as part of a more complex circuit structure with many nodes in close proximity to
one another. The magnitude of Qcol depends on a complex combination of factors including
the size of the device, biasing of the surrounding circuit nodes, substrate structure, device
doping, the type of ion, its energy, its trajectory, the initial position of the event within
the device, and the data-state of the device itself.

3

For an upset to occur, the Qcol must exceed a certain critical value. This minimum
critical charge threshold (Qcrit) is defined as the minimum amount of charge necessary to
trigger a change in the data state of the storage device. A SET will only cause an upset
in the event that Qcol > Qcrit, otherwise the storage element will be able to return to
its original state, and no upset will occur. The Qcrit has several dependencies of its own
including, node capacitance, operating voltage, and strength of any feedback components,
and is used as a figure of merit to assess the soft error susceptibility of a particular storage
element.

The soft error rate (SER) is used to measure the frequency of occurrence of soft errors. It
is measured in terms of failures in time (FIT), where one FIT is the equivalent to one failure
in 109 device-hours. SER is typically normalized either per-bit to describe the cell-level soft
error susceptibility or per-device as a measure of the system-level susceptibility. To put the
SER into perspective, the aggregate failure rate for traditional “hard” failure mechanisms
(such as gate oxide breakdown, metal electronmigration, latch-up, etc...) in advanced
technologies is typically in the range of 50-200 FIT/device. Whereas the unabated SER
for memories can easily exceed 50 000 FIT/device [4]. As an example, if we consider a
16 MB SRAM (as in the Intel Xeon L3 cache [12]) and assume a bit-level SER of 100-
1000 FIT/Mb [5], this provides between 19 200-192 000 FIT/device.

While Qcrit remains essentially unchanged for scaled DRAMs, the critical charge in
SRAM and Flash memories scale with the technology, and as memory bit-cell densities in-
crease, system-level soft error rates continue to grow [4, 5]. Due to the different data storage
mechanisms and shear contrast in capacity between Flash and SRAM memories, mitiga-
tion design approaches exploiting these differences can lead to more targeted, memory-
type-specific solutions. Since on-chip embedded SRAM constitutes more that 50% of the
die area for state-of-the-art microprocessors and systems-on-chip (with this value expected
to increase in the future), this work is in the context of SRAM soft error mitigation. Al-
though many of the concepts could be transferred to other memory types, SRAM scaling
limitations are at the forefront computer memory research, and are of immediate concern.

1.3 Soft Errors in SRAM

The conventional six-transistor (6T) SRAM bit-cell, shown in Figure 1.2, stores one bit of
data and its complement in a cross coupled inverter pair. Since the inverters continuously
drive one another, the cell is able to retain its data provided the power supply remains
on. For the sake of explanation, we can assume the cell is holding the data ‘1’ and ‘0’
at the nodes Q and QB respectively. Under these conditions, transistors N1 and P2 are
off, and the drain diffusion junctions of these devices are reverse biased and sensitive to
upset. When an energetic particle strikes one of these sensitive cell diffusions, the charge

4

BL BLB

WL WL

VDD

VSS

N1 N2

P1 P2

N3 N4
Q=1 QB = 0

Particle
Strike

Sensitive
Diffusion

Sensitive
Diffusion

(a) Schematic

VSS

VSS

VDD

VDD

N1 P1

P2N3

N2

N4

Sensitive

Diffusions
Particle

Strike

(b) Layout [13]

Figure 1.2: 6-Transistor SRAM Cell. Assuming the cell is holding the data (Q = 1, QB =
0), the drain diffusions for devices N1 and P2 are sensitive to particle induced upsets.

collected at the junction results in a transient current through the struck transistor [14].
As this current flows through the device, the restoring transistor (P1 for N1 and N2 for
P2) sources current in an attempt to balance the particle-induced SET. As current flows
through the restoring transistor, a voltage transient occurs at the struck drain’s storage
node. If this transient voltage exceeds the switching threshold of the inverter that is being
driven by the node, then the inverter can switch, causing the forward feedback action of
the inverter pair to unintentionally latch the transient data. Assuming the cell data is
reversed (i.e., Q = 0, and QB = 1), then the upset sensitive diffusions are the drains of
transistors N2 and P1 respectively.

Bit-cell area, critical charge, and operating voltage are shown as a function of technology
node in Figure 1.3. Transistor device scaling allows for a roughly two-fold reduction in
SRAM bit-cell area per technology generation [15]. These shrinking device dimensions
lead to a reduction in the Qcrit necessary to corrupt a bit-cell. Coupled with reductions in
SRAM operating voltage, technology scaling should lead to an increase in the bit-level SER;
however, the reduction in device depletion region cross sectional area leads to a decrease in
cell charge collection efficiency. For the 180 nm and 130 nm nodes these effects essentially
cancel one another out and lead to a saturation in the bit-level SER shown in Figure 1.4.
As the supply voltage saturates below 100 nm technologies however, the bit-level SER
begins to decrease. Despite this decrease, the system-level SER increases with technology
generation. This is shown by the seven-fold increase in system-level SER between the
130 nm and 22 nm nodes brought on by the increase in memory system capacity per unit
area made possible by the smaller cell size.

The reduction is SRAM bitcell cross sectional area also reduces the distance between
adjacent bitcells. This, coupled with a lower Qcrit, allows for not only lower energy particles

5

0 50 100 150 200 250
0

5

10

15

Technology (nm)

C
e

ll
A

re
a

 a
n

d
 C

ri
ti
c
a

l
C

h
a

rg
e

,
Q

c
ri
t

(a
.u

.)

0 50 100 150 200 250
0

1

2

3

O
p

e
ra

ti
n

g
 V

o
lt
a

g
e

 (
V

)

Cell Area

Critical Charge, Qcrit

Operating Voltage

Figure 1.3: SRAM parameters - normalized cell area, normalized Qcrit, and operating
voltage as a function of technology node [4], [10].

to cause SEUs but for more cells to be upset per particle strike [17]. Also shown in
Figure 1.4 is the MCU percentage of the total (system) SER as a function of technology
generation from the 250 nm to 22 nm node [6]. From the figure, we can see that MCUs
comprise over 30% of the SER below the 45 nm node.

Although the MCU percentage of the total SER is increasing, not all MCUs are of the
same size and shape. If an MCU occurs down a single bitline column, each of the cells will
reside in a separate memory word and can be recovered individually. It is the upsets that
corrupt multiple bits within the same memory word (i.e., MBUs) that require a higher
degree of circuit complexity to correct. A distribution of the percentage of different width
upsets for 45 nm, 32 nm, and 22 nm technologies is shown in Table 1.1 [6]. From the table it
is clear that the number and size of these upsets increase with scaling. Further, Figure 1.5
shows a measured same-word MBU distribution for a 65 nm and 90 nm SRAM [16]. The
figure shows that the frequency of larger sized MBUs decays exponentially with the number
of bits upset per SEU. This means that although, the proportion of MBUs is on the rise,
the majority of MBUs will still be comprised of only a small number of bits.

Despite the rarity of larger MBUs, there is still a non-zero probability of their occur-
rence. In Figure 1.6 the maximum adjacent upset size per particle strike is shown as a
function of technology scaling. The data presented with squares has been collected from a

6

0 50 100 150 200 250
0

1

2

3

4

5

Technology (nm)

S
E

R
 (

a
.u

.)

0 50 100 150 200 250
0

10

20

30

40

50

M
C

U
 o

f
T

o
ta

l
S

E
R

 (
%

)

System SER

Bit SER

MCU of Total SER

Figure 1.4: System-SER, bit-SER and percentage MCU of the total SER as a function of
technology node [6].

Table 1.1: MCU bit width and percentage of the total SER for 45 nm, 32 nm, and 22 nm
technologies [6]

Technology % of Total Bit width
(nm) SER 2 3 4-8 >8 Max (bits)

45 2.2 1.9 0.2 0.1 <0.1 6
32 3.1 2.6 0.2 0.3 <0.1 16
22 3.6 3.0 0.2 0.3 0.1 18

7

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Error Bits per Single Event Upset (bits)

F
re

q
u
e
n
c
y
 (

%
)

90nm, VDD = 1.2V

65nm, VDD = 1.1V

Figure 1.5: Frequency distribution of the number of soft errors generated per SEU due to
neutron irradiation of 65 nm and 90 nm SRAMs [16].

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

Technology (nm)

M
a

x
im

u
m

 A
d

ja
c
e

n
t

M
B

U
 W

id
th

 (
b

it
s
)

Ibe Simulated Data, 2010

Experimental Data

Figure 1.6: Maximum adjacent MBU width as a function of technology. Derived from [18,
19, 16, 20, 6].

8

series of radiation experimental results ranging from 130 nm to 65 nm, and shows between
12-15 adjacent-bit upsets at the 65 nm node [18, 19, 16, 20]. The data presented with
circles uses a predictive model ranging from 250 nm to 22 nm and predicts 10 adjacent-bit
upsets at the 65 nm node, and 18 adjacent-bit upsets at the 22 nm. The actual number
of adjacent bit upsets depends heavily on the design and layout of the SRAM bitcell, but
this data provides an indication of what to expect for a given technology. Finally, it also
provides an indication that for scaling to continue, SRAM SEU mitigation strategies must
move beyond their current SBU focus, and increase their robustness to adjacent MBUs.

1.4 SRAM Soft Error Mitigation Strategies

Recent developments in raw material purification during the semiconductor fabrication
process has lead to a significant reduction in alpha particle induced upsets caused by
packaging material [21]. Reducing cosmic neutron induced upsets unfortunately proves
to be a greater challenge. Concrete has been shown to reduce the cosmic radiation flux
at a rate of approximately 1.4x per foot of concrete thickness [4]. Thus, by operating
a system in a basement surrounded by many feet of concrete, the SER due to cosmic
neutrons can be reduced. While this may be a viable option for mainframes, it is not
very practical for personal computers or other portable electronic devices. Therefore,
rather than reducing cosmic radiation flux, cosmic neutron induced soft errors require on-
chip mitigation strategies to minimize the SER. The soft error mitigation strategies for
SRAMs can be classified into three separate categories, including: process-, circuit-, and
architectural-level techniques.

1.4.1 Process

The primary method for soft error mitigation at the process level is to reduce the amount
of charge collection at sensitive nodes. This can be achieved by increasing the doping of
the p-well [22], using triple [23] or quadruple-well [24] structures, or utilizing a silicon-on-
insulator (SOI) substrate. SRAM SERs have been reported with a 5x reduction relative to
bulk CMOS when fabricated in a partially-depleted SOI technology [25]. Although process-
level techniques significantly improve the soft error performance of SRAMs, the techniques
do require modification of the standard CMOS fabrication process. Therefore these tech-
niques are not readily available to companies that do not have control over the fabrication
process, such as fab-less design groups. Additionally, process mitigation techniques require
additional processing costs, which may further detract from their practicality.

9

1.4.2 Circuit

Circuit and architecture-level techniques provide simpler solutions to reduce the SER com-
pared to process-level techniques. At the circuit level, the SRAM bitcell can be soft error
hardened by either slowing down the cell’s response to current/voltage transients or by in-
creasing the cell’s critical charge at its sensitive nodes. The cell’s response to the transient
can be reduced by adding either a resistor in the cell’s feedback path [26] or a coupling
capacitor between the cell’s storage nodes [27]. The cell’s critical charge can be increased
either through cell transistor sizing, or by adding redundant storage nodes to the cell. The
dual interlocking cell element (DICE) [28] and Quatro [29] cell topologies each use four
data storage nodes rather than the traditional two for the 6T SRAM cell to store the cell’s
data. These techniques generally come at the expense of increased cell area. The DICE
cell for instance incurs an approximately 80% area overhead relative to the conventional
6T cell [30].

1.4.3 Architecture

While circuit-level mitigation techniques are able to improve SRAM SER, they incur a
significant area overhead. Since these techniques require over-sized or additional cell com-
ponents, a hardened memory array can be significantly large compared to an un-hardened
array, thus reducing the benefit of scaling. This area penalty can be reduced by using
architectural-level solutions. There are four factors that make architecture-level mitiga-
tion techniques more attractive than circuit-level techniques. First, the definition of what
an error is lies at the architecture level; an error may not even cause an issue if new data
is written to the cell before the corrupted data is read. Second, the error may result from
a physical weakness of the cell (e.g., process variability) in addition to a particle strike. In
this case, circuit hardening may not help. Third, architecture-level solutions can incur less
area overhead than circuit-level techniques. For example, a single error correcting double
error detecting (SEC-DED) error correcting code (ECC) has an overhead of 8 check-bits
for every 64 data-bits (i.e., 13%) [31], whereas radiation-hardened cells can have an area
overhead on the order of 30-100% depending on the aggressiveness of the technique [32].
Finally, ECC can also be used to correct hard errors or parametric faults, which is another
limiting factor to SRAM yield.

Error Correcting Codes

ECCs provide channel encoding in the form of parity check-bits to protect user data as
it is stored in the memory array. The check-bits can then be recalculated and compared
against the previously written bits whenever the word is read from memory. Any upsets

10

Check and Syndrome
Bit Generator

Data-bits

Stored
Codeword

Retrieved
Codeword

Syndrome
Decoder Error

Corrector

NOR

OR

AND

Corrected
Codeword

Uncorrectable
Error

Error
Detected

MERGE

Syndrome bits

Check-bits

1-bit

1-bit

Error Location bits

ENCODE/WRITE OPERATION

DECODE/READ OPERATION

Figure 1.7: ECC Block Diagram

will result in discrepancies between the two sets of check-bits, also known as the syndrome.
The syndrome can be used to correct or detect upsets depending on the code’s complexity.
This process is shown in Figure 1.7. Following the generation of a particular syndrome
pattern, it can be decoded into an error location. This error location vector can then by
applied against the originally received codeword to correct any errors. In the event that
an error can be corrected, the correction process is completed transparent to the outside of
the memory. Additional combinational logic is used to determine whether an error can be
corrected or detected. If used in a multi-tiered cache memory system, detected errors can
send a request for data to be re-written from a higher level in the memory hierarchy. The
types of errors that can be corrected or detected depend on the encoding of the check-bits,
and the sophistication of these errors types have a direct impact on the overhead of the
scheme.

Error correcting codes used in early computer memory systems were designed using
the class of SEC-DED codes created by Hamming in 1950 [33]. A SEC-DED code is
capable of correcting one single-bit error and detecting two single-bit errors in a codeword.
The double-error-detecting capabilities serves to guard against data loss. In 1970, Hsiao
improved upon the efficiency of these codes by introducing odd column weight codes to
the SEC-DED family [31]. For the same coding efficiency as Hamming’s algorithm, odd-
weight-column codes provide improvements over the Hamming codes in terms of speed,
cost, and reliability of the decoder logic. As a result, odd-weight-column codes have been
widely implemented by the computer industry worldwide [34], and are still in use today [35].
Hamming codes are discussed in more detail in Section 2.8.2, and 2.8.3, while Hsiao codes

11

are discussed in Section 2.8.4.

Although Hamming and Hsiao SEC-DED codes are capable of correcting one error and
detecting all possible double errors, it is becoming apparent that they will not be able
to provide adequate protection against MBUs in modern aggressively scaled SRAMs [35].
To address this concern, codes utilizing a higher degree of check-bits and/or encoder-
decoder logic are required. An effective approach to mitigate MBUs is through multi-
bit error correcting codes. The Bose Chaudhuri Hocquenghem (BCH) codes [36], Reed-
Solomon (RS) codes [37], Golay codes [38], Euclidean Geometry Low Density Parity Check
(EG-LDPC) codes [39], and Two-dimensional error codes [40] have all been designed to
deal with multiple bit errors in memories. Due to their high decoding complexity and
redundancy requirement however, the implementation of these codes is not popular for
high-speed RAM applications [41]. Further, high-speed embedded SRAMs require hard,
fixed cycle time, decoding strategies and cannot rely on probabilistic soft-decoders using
iterative, multi-cycle, solution methods such a Turbo [42] and LDPC [43] codes. The issue
is that, while more powerful ECCs exist, they come at too high a penalty compared to the
SEC-DED codes for everyday applications [35]. For example, a double error correcting-
triple error detecting (DEC-TED) BCH codes require twice the number of check-bits and
an approximately 60% increase in delay as compared to a SEC-DED code. Therefore,
extending ECC cache protection capabilities for use in next generation microprocessors is
still an open issue.

To address this issue, Dutta, in 2007, presented a single error correcting-double error
detecting-double adjacent error correcting (SEC-DED-DAEC) coding algorithm [44]. For
the same check-bit overhead, and only slightly increased decoder size, these codes offer
all of the protection of a SEC-DED code with the added benefit of 2-bit adjacent error
correction to help mitigate against adjacent-MBUs. While these codes offer an alternative
to SEC-DED and more powerful codes, there is still a great deal of design space between
the two mitigation options to be explored. SEC-DED, BCH, RS, and SEC-DED-DAEC
codes are discussed in more detail, complete with design examples, in Chapter 2, while the
proposed class of ECC codes is presented in Chapter 3.

Interleaving

Interleaving is a method of extending ECCs to protect against adjacent-MBUs [45]. Rather
than storing a word’s bits in adjacent memory cells, interleaving physically separates the
logical bits of multiple words throughout a memory row. This concept is illustrated in
Figure 1.8(a).

In the bit-interleaving example in Figure 1.8(a), the data from four 4-bit words have
been interleaved to form a 16-bit row in the memory. Notice that the first bit in the row
is bit-0 from word 0, the second bit is bit-0 from word 1, the third bit is bit-0 from word

12

W0

B0

W0

B1

W0

B2

W0

B3

WORD 0

W1

B0

W1

B1

W1

B2

W1

B3

WORD 1

W2

B0

W2

B1

W2

B2

W2

B3

WORD 2

W3

B0

W3

B1

W3

B2

W3

B3

WORD 3

W0

B0

W0

B1

W0

B2

W0

B3

W1

B0

W1

B1

W1

B2

W1

B3

W2

B0

W2

B1

W2

B2

W2

B3

W3

B0

W3

B1

W3

B2

W3

B3

BIT-INTERLEAVED MEMORY ROW

(a) Bit Interleaving

WORD 0 WORD 1 WORD 2 WORD 3

BYTE-INTERLEAVED MEMORY ROW

W0

B0

W0

B1

Byte 1

W0

B2

W0

B3

Byte 2

W1

B0

W1

B1

Byte 1

W1

B2

W1

B3

Byte 2

W2

B0

W2

B1

Byte 1

W2

B2

W2

B3

Byte 2

W3

B0

W3

B1

Byte 1

W3

B2

W3

B3

Byte 2

W0

B0

W0

B1

Byte 1

W1

B0

W1

B1

Byte 1

W2

B0

W2

B1

Byte 1

W3

B0

W3

B1

Byte 1

W0

B2

W0

B3

Byte 2

W1

B2

W1

B3

Byte 2

W2

B2

W2

B3

Byte 2

W3

B2

W3

B3

Byte 2

(b) Byte Interleaving

Figure 1.8: Types of Interleaving

13

2, and the fourth bit is bit-0 from word 3. Next, the fifth bit in the memory row is bit-1
from word 0. This data pattern is repeated throughout the memory row. For the byte
interleaving example in Figure 1.8(b), the same four 4-bit words are each comprised of two
2-bit bytes. The four word’s bytes are then interleaved throughout the memory row. The
byte organized Reed Solomon codes lend themselves more readily to byte-wise interleaving.
This will be discussed in more detail in Section 2.8.6 and Section 4.1.2.

By storing data in this interleaved manner, adjacent-MBUs can be distributed across
multiple logical words to form multiple upsets that can be corrected individually. Inter-
leaved data can be selected using a series of multiplexers, and as such the number of
interleaved word is referred to as the number of ‘ways’ that the data can be selected as
input. The 4-way interleaving scheme shown in Figure 1.8(a) is capable of dividing a 4-bit
adjacent MBU into four separate SBUs across four separate words. Each of these SBUs
can then be corrected by a simple single-bit correcting ECC. Interleaving can be added
to an ECC scheme to extend the adjacent-error reliability of the system. Situations do
arise however in which the degree of interleaving is limited or infeasible such as in register
files or fixed aspect ratio memories [46]. In these situations, MBU error correction and
detection becomes the sole responsibility of the implemented ECC.

Memory Scrubbing

Memory scrubbing is a method for preventing errors from accumulating beyond the error
handling capabilities of an ECC [47]. Rather than performing the error correction or de-
tection procedure when a word is being read from memory, scrubbing circuits continuously
cycle through the memory array preemptively addressing any errors upon their detection.
This prevents separate SEUs that could be handled by the ECC from accumulating over
time to become uncorrectable upsets by the time they are eventually read from memory.
Choosing the scrubbing cycle time interval presents a trade-off between power consumption
and product reliability, as excessive scrubbing may needlessly exercise the memory when it
could be sitting idle, and relies heavily on the system’s end application. Scrubbing has been
used in some implementations to remove the ECC logic from the SRAM read circuitry’s
critical path to improve the system’s read cycle time; however, this benefit comes at the
cost of system reliability and data integrity [48].

1.5 Goal of This Research

The main focus of this research is to explore the design space between SEC-DED and DEC-
TED codes to develop a class of light-weight, soft error robust ECCs targeted toward on-chip
embedded SRAMs in state-of-the-art technologies. These codes target the adjacent-MBUs

14

more prevalent in advanced technology nodes and provide a varying degree of adjacent error
correction (xAEC) and adjacent error detection (yAED) while maintaining overheads less
than those of the multi-bit ECCs. These gains are realized through the use of the check-
bit difference between the SEC-DED and DEC-TED codes, and are verified both through
simulation and test chip irradiation measurement results.

1.6 Outline

The thesis is organized as follows. Chapter 2 describes error correcting codes for SRAM.
Chapter 3 presents the proposed class of adjacent-MBU robust ECCs complete with high-
level model and synthesized circuit results in comparison to other ECCs. Chapter 4 pro-
vides SER reduction verification in the form of simulation results and radiation measure-
ments for a test chip fabricated in a 28 nm bulk CMOS technology. Finally, Chapter 5
concludes the report and summarizes the contributions of this research.

15

Chapter 2

Error Correcting Codes in Computer
Memories

This chapter discusses error correcting codes in the context of embedded SRAMs. A brief
mathematical foundation for ECCs is provided, and the codes used for comparison in sub-
sequent chapters are discussed.

2.1 The Communication Channel

Error correcting codes are an effective technique for improving data integrity when trans-
mitting information over a channel. The channel encoding procedure involves adding re-
dundancy in the form of parity check-bits and encoding-decoding logic circuits to improve
data robustness to noise during transmission. The channel encoding problem is one of
designing an ECC with sufficient error handling capabilities while maintaining its area and
delay penalties to within the system specifications. The most appropriate choice of ECC
depends on the system application and the behaviour of the noise in the channel.

In traditional data communication systems, data is transmitted spatially over a channel.
This is illustrated in Figure 2.1(a) [49]. Data originates from a source and is first prepared
for channel transmission. Preparation can take place in the form of data-compression source
encoding for efficient data transfer rates, ECC channel encoding for transmission reliability,
and modulation for the actual propagation through the channel. Data is then transmitted
spatially over the channel from point A to point B. At any point during transmission noise
may corrupt a portion of the outgoing data. Once received by the receiver, data can then
be demodulated and used by the receiving system. This process involves an inversion, or
decoding, of the encoding processes.

16

Modulator
Source
Encoder

Channel
Encoder

Encoder

Transmitter

Source
Data

Demodulator
Source
Decoder

Channel
Decoder

Decoder

Receiver

Data
Destination

Transmission
Medium

Channel

Noise
Source

(a) Communication Channel

Write
Circuitry

ECC
Encoder

Encoder

Transmitter – Write Operation

Input
Databus

Read
Circuitry

ECC
Decoder

Decoder

Receiver – Read Operation

Data
Destination

Bit-cell

Channel – Time

Cosmic Rays,
-particles

(b) Memory System

Figure 2.1: Block diagrams for the communication channel and memory storage systems
including ECC blocks. Adapted from [49, 50].

17

The communication channel model is directly applicable for memory systems, as is
shown in Figure 2.1(b) [50]. Instead of data being transmitted spatially however, it is
transmitted temporally (through time) as it resides in the memory cell. During a write
operation, data originating from an external source (input databus) is channel encoded
by the ECC and then prepared for storage by the memory’s write circuitry. As the data
resides in memory, it “travels” temporally while it is susceptible to external radiation
induced noise (i.e., galactic radiation and alpha particles). Upon a read request, the data
is demodulated by the memory’s read circuitry, and then channel decoded by the ECC.
Once error handling is complete, the data is then placed on the memory’s output databus.

Since both of these domains undergo channel encoding, the concepts of error control
coding theory can be applied to either discipline. System specifications dictate which class
of code is most appropriate for the given application. For example, while data communica-
tion systems may require large amounts of information to be transmitted serially over long
distances, very-large-scale-integration (VLSI) on-chip embedded memory systems store
data in much smaller segments and transmission occurs in parallel to ensure high-speed
data rates. With the end application in mind, ECCs can be designed to leverage these
system-level properties for optimal performance.

This work focuses on ECCs for high-speed, high-density VLSI on-chip embedded mem-
ory applications. These systems typically have a fixed dataword length, and require single
cycle read and write execution. In SRAMs in particular, the memory cell packing density
combined with a low critical charge influences the size and type of upsets that occur in
scaled technologies.

2.2 Recent Advances in Coding Theory

Recent advances in coding theory have focused on high noise channel environments for
applications such as mobile communication systems and deep space satellite communica-
tion [51]. In these environments, the emphasis is on reliable information transfer rather
than bandwidth or latency constraints. Turbo codes, first presented in 1993 [42], and Low
Density Parity Check (LDPC) codes, presented and dismissed in 1963 [43] then rediscovered
in 1996 [52], have been at the forefront of error correction research recently [53, 54, 55].
Both codes use an iterative, probabilistic decision making approach to progressively in-
crease the system’s confidence in the fidelity of the received codeword.

Turbo codes work by iteratively comparing and modifying the results of two separate
decoder units until they converge on the same output solution. This process can upwards
of 10 cycles to complete [56]. Turbo codes have been used extensively in the 3G and
4G mobile long term evolution (LTE) telephony standards, and IEEE 802.16 (WiMAX)
wireless metropolitan network standard [57, 58]. Alternatively, LDPC codes use multiple,

18

smaller decoder units to provide soft probabilistic decisions on the most likely data being
received by each decoder unit. The decoders with high confidence in their output data,
pass this information to the lower confidence decoders to iteratively build up the overall
confidence in the received codeword. LDPC codes are currently used in the digital video
broadcasting standard (DVB-S.2) for satellite transmission of digital television, 10GBase-T
Ethernet, and the Wi-Fi 802.11n and 802.11ac high throughput specifications of the Wi-Fi
802.11 standard [59, 60, 61].

While these codes provide a high level of error protection, the selection of an error
correcting code for a particular application depends heavily on the bit error rate of the
error channel in which it will be exposed to and the required performance specifications.
For high-speed, high-density on-chip embedded memory applications, performance is a
critical factor and a multi-cycle delay penalty can be excessively prohibitive. Further,
for low error rates when error correction is only necessary for a small fraction of read
or write operations, this penalty becomes unnecessarily crippling to system performance.
This makes the iterative decision making Turbo codes and LDPC codes poor candidates
for embedded, high-speed SRAM cache memory applications. To counteract the high
performance penalty, codes that include the encoding and decoding operations within the
single write and read cycle memory access are preferred [11, 19].

In the context of high-speed embedded SRAMs, selective bit placement codes, described
in more detail Section 2.8.7, are emerging as a leading candidate for light-weight error
correction due to their minimal impact in terms of performance and additional number of
check-bits. A shortcoming of these codes however is their potential for miscorrection, an
issue that is partially addressed with the proposed class of in Chapter 3.

2.3 SRAM Organization

Due to its high random access speeds and compatibility with the CMOS logic process,
SRAM has had a long history of being at the top of the computer memory hierarchy [13].
The memory hierarchy refers to the hierarchical configuration of memory storage units
in modern computer systems. By blending a series of fast, but less dense, low capacity
memories with dense, but slower, higher capacity memory types, the system presents the
illusion of having a single high-speed, high-capacity storage unit. The pyramid-like hierar-
chy, shown in Figure 2.2, is indexed using multiple tiers, or levels, to describe the functional
purpose of each memory unit. The large-to-small capacity configuration reflects the in-
creasing speed requirement and cost per bit (both in real estate and monetary terms) as
the pyramid is traversed from the bottom level-5 (L5) remote secondary storage tier to the
topmost (and closest to the central processing unit) level-0 (L0) register tier. Historically,
SRAMs have occupied the L0-L2 range of the hierarchy, but due to recent scaling advance-

19

On-chip L2
Cache (SRAM)

On-chip L1
Cache (SRAM)

Reg-
isters

Main Memory
(DRAM, Flash)

Local Secondary Storage
(HDD, Optical, Flash)

Remote Secondary Storage
(Web Server, Cloud Storage, Local Network, etc…)

Sp
ee

d
, c

o
st

/b
it

C
ap

ac
it

y

High Capacity
Storage

High Speed
Operation

L0

L1

L2

L3

L4

L5

Figure 2.2: Computer memory hierarchial organization structure. SRAM is typically used
as the main building block for system registers, on-chip cache, and various buffers.

ments, some system implementations have inserted an additional on-chip (embedded) L3
SRAM cache between the L2 and main memory hierarchy layers [62]. SRAM bitcells can
be optimized at the transistor level for high performance using slightly larger device sizes
(these would be used for L0 and L1 memories), or for density, using near minimum device
features sizes, for L2 and L3 memories. In Section 4.2.3 and Section 4.5.3 three different
vendor supplied SRAM cells are considered; these cells have been optimized for high-speed,
high-performance (e.g., very high speed), and high-density.

A typical SRAM block configuration consists of an N × M array of memory cells,
organized as N horizontal rows and M vertical columns [63]. This is shown in Figure 2.3.
As shown in Figure 1.2, the 6T SRAM bit-cell has three external data signals, including:
wordline (WL), and a pair of complementary bit-lines (BL and BLB). These cells are
designed for data to be accessed in a row-wise manner. When a read or write operation
is performed, the memory’s address decoder enables an entire row’s WL. This exposes the
bit-cells’ data to its respective column-wise BL/BLB pair. This allows an entire row of
data to be read or written to within a single cycle, while accessing data in a column-wise
fashion would require a full read cycle for each bit of data to be read. The organization
of an SRAM array hence lends itself readily to a row-wise ECC scheme. Therefore, the
check-bits for each dataword are typically contained within the same row as the dataword
itself. This allows for codewords (data-bits and their respective check-bits) to be read or

20

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

SRAM
bitcell

BL1 BLB1 BL2 BLB2 BLM-1 BLBM-1 BLM BLBM

WL1

WL2

WLN-1

WLN

Column1 Column2 ColumnM-1 ColumnM

Row1

Row2

RowN-1

RowN

N Rows

M Columns

Column Decoder,
Read/Write Drivers

R
o

w
 D

ec
o

d
er

Control
Logic

Input/Output
Databus

CLK
R/W
CS

Address
Databus

Figure 2.3: N ×M SRAM Array with Peripheral Circuitry

21

(a) 4-MCUBL (b) 3-MCUWL (c) (4x2) 5-MCUCluster (d) SBU

Figure 2.4: MCU Upset Classifications

written to within a single cycle, and it also mitigates against column-wise MCUs. Much like
bit-interleaving discussed in Section 1.4.3, x-bit MCUs occurring vertically along a column
will be distributed across multiple codewords. This results in x more manageable SBUs
as opposed to a more disruptive x-bit MBU within the same codeword. MBUs occurring
horizontally throughout a codeword are those most disruptive to the memory system. These
are the focus of multi-bit ECCs.

2.4 Error Types

Error types are classified by the number of bits that they upset, and the matter in which
they upset them. Single bit upsets, or SBUs, as the name implied are those in which only
one bit within the memory word is corrupted by the error mechanism. Correction and
detection of these errors are the simplest for ECCs to deal with. Multi-cell upsets, or MCUs,
also as the name implies, involved the corruption of multiple bitcells. Multi-bit upsets, or
MBUs, are a specific type of MCU in which multiple bits within the same memory word
have been corrupted. These error types can be significantly more challenging to handle.
The distinction between MCUs and MBUs depends on the organization of the memory
words. MCUs can be classified into three different categories: a). MCUs running down a
single bitline MCUBL, b). MCUs running along a single wordline MCUWL, and c). MCUs
spread across multiple bitlines and wordlines MCUCluster. All MCUs are prefaced with the
number of corrupted bits involved in the upset, e.g., 3-MCUWL, while MCUCluster includes
the upset’s size in terms of wordline width by bitline height, e.g., (4x2) 5-MCUCluster. Since
memory words are traditionally organized row-wise, the MCU types most likely to cause
MBUs beyond the error handling capabilities of the ECC are the MCUWL and MCUCluster.
Each of these patterns are shown in Figure 2.4 along with a single bit upset pattern.

MBUs occur within the same logical memory word and can be further classified into
three separate sub-categories. These include: random, adjacent, and burst errors. Each

22

Particle
Strike

Particle
Strike

Particle
Strike

1-bit1-bit 1-bit

(a) 3-Random Error MBU

Particle
Strike

5-bits

(b) 5-Adjacent Error MBU

Particle
Strike

4-bits

4-bits

Particle
Strike

Particle
Strike

4-bits

4-bits

Particle
Strike

(c) Four separate examples of 4-Burst Error MBUs

Uncorrupt Bit Corrupt Bit

Figure 2.5: MBU Upset Classifications

of these error types are illustrated in Figure 2.5, and a numerical prefix is added to each
MBU type to indicate the extent of the error (i.e., a 2-random error indicates an upset of
two randomly separated bits within the memory word).

A random MBU is the occurrence of multiple SBUs accumulating over time leading to
the upset of multiple bits within a memory word. There is no correlation between these
temporal errors occurring within the memory word. An example 3-random error is shown
in Figure 2.5(a). Memory scrubbing can be combined with an ECC scheme to prevent
the accumulation of multiple SBUs. If the scrubbing interval is less than the mean time
between errors, then most of the temporal MBUs can be eliminated [32].

An adjacent MBU is a single upset that corrupts multiple side-by-side adjacent bits
within a memory word. Figure 2.5(b) shows an example of a 5-adjacent error. In the
example, all five adjacent bits have been corrupted. These errors make up a significant
portion of the total SER as the memory cell size is reduced below that of the effective

23

cross-section of the imposing radiation source [20].

Burst MBUs are similar to the adjacent MBU; however, not all of the adjacent bits
are necessarily upset. The size of a burst error is defined by the distance between the
two most extreme upset bit positions within the memory word. The corruption status
of the intermediary bits between these two extreme bits is irrelevant and may vary. For
instance, the burst errors shown in Figure 2.5(c) are all examples of 4-burst errors. The
error mechanism for these is similar to the adjacent MBU, but not all of the affected bits
are corrupted. This may occur due to fabrication process variability increasing the critical
charge of one of the affected bits relative to the others, or a cell having a data-dependent
asymmetrical critical charge (i.e., if the memory cell has been designed to hold a ‘1’ more
effectively than a ‘0’). Adjacent and burst error are both examples of spatial MBUs. They
each affect multiple bits separated by a physical distance and are caused by a single particle
strike.

Finally, without temporal knowledge, random errors may appear as either burst or
adjacent errors. The 3-random error in Figure 2.5(a) for instance could be considered
an 8-burst error if no temporal information is included with the error pattern. Likewise,
the 4-burst error in Figure 2.5(c) affecting all four bit positions can also be considered a
4-adjacent error. Errors can be categorized as multiple types depending on the context of
the situation.

2.5 ECC Classifications

Error control coding theory has been studied for over half a century [33]. During this time
designers have developed a multitude of error correcting and detecting codes and algorithms
for mitigation against upsets and ensuring data reliability in both communication and
memory systems. On-chip embedded VLSI memories rely predominately on algebraic bit-
error control codes to ensure data integrity. Each coding algorithm provides a certain
amount of error protection for an associated overhead in terms of delay and die area.
Intuitively, an ECC offering n-bits of correcting capability will have a higher overhead
than a code offering (n− 1)-bits of correcting capability.

Algebraic coding theory applies to those codes that can be expressed algebraically [50].
Within this area, there are two major coding classifications: linear block codes, and con-
volution codes. Convolution codes process input data streams in a serial manner and work
by associating a code sequence with a data sequence. Due to the serialized nature of
the codes, they are often used in serial communication systems. In contrast, linear block
codes process predefined lengths of data-bits in parallel to form useable codewords. Since
memory data is already divided into predefined size blocks of datawords, memory systems
lend themselves more readily to using linear block codes. Linearity is an important feature

24

k data-bits r check-bits

n code-bits

Figure 2.6: (n, k) codeword structure. The n-bit codeword consists of k data-bits and r
parity check-bits.

of these codes. It dictates that the sum of any two codewords forms another codeword.
This property is used extensively in determining the validity of a received codeword. Error
correcting linear block codes can be classified using three main parameters:

1. The error handling capability they provide,

2. The length of the dataword they are designed to protect, k, and

3. The overall length of the resulting codeword, n.

For example, a k = 32-bit dataword using 7 check-bits to provide SEC-DED protection
has a codeword length of n = 39 bits, and is expressed as a (39, 32) SEC-DED code. The
organization structure of these bits is illustrated in Figure 2.6. The dataword, of length
k-bits, stores the actual information relevant to the user. This information is encoded to
form an n-bit codeword, where n = k+ r, and r represents the number of parity check-bits
used to encode the data.

For a k-bit dataword, there are 2k possible datawords. For a linear block code, this set
of 2k valid codewords forms a k-dimensional subspace C in the 2n possible n-bit codeword
vector space V. Each of the codewords in C has a one-to-one correspondence with its
respective dataword. Due to the linearity of these codewords, the modulo-2 sum of any
two valid codewords must form another valid codeword within the subspace. In circuit
design, this bit-wise modulo-2 addition can be performed using XOR gates [11].

2.6 Mathematical Foundation

The research in error correcting codes relies to a large extent on powerful structures in
modern algebra. Many of the multi-bit error correcting codes are based on the structure of

25

rings and Galois fields. This adds a significant level of complexity to their implementation.
Fortunately, single-random-bit and multiple-adjacent-bit codes can be constructed under
binary GF (2) Fields, requiring only two elements in the symbol library, i.e. ‘0’, and ‘1’.
This minimizes the required mathematical and implementation complexity. Since memory
designers do not necessarily have a strong background in algebraic coding theory, an effort
has been made to explain the following ECCs in their simplest terms using circuit terminol-
ogy, while minimizing the mathematics to only what is necessary. The section begins with
some discussion on the basic algebraic terms used in coding theory, and then considers the
basic structure of the parity check matrix and syndrome decoder. The material presented
in this section has been adapted from [11, 50, 64].

2.6.1 Algebraic Definitions for ECC

In Hamming’s 1950 seminal work he defined the two important concepts of code weight and
code distance, and by combining these concepts he defined a minimum distance requirement
for each code [33]. Each of these concepts are presented in turn below.

Hamming Weight

The Hamming weight, or simply weight, of a vector u = (u0, u1, . . . , un−1), denoted by
w(u), is the number of nonzero elements of u. For instance, the vector d = (1101 1101),
has a Hamming weight of 6, or w(d) = 6.

Hamming Distance

The Hamming distance between two vectors u and v, denoted by d(u,v), is the Hamming
weight in u− v. The Hamming distance is equal to the number of positions by which the
two vectors differ. That is,

d(u,v) = w(u− v) = w(v− u). (2.1)

The Hamming distance and Hamming weight can be used to understand the error
control capabilities of a particular code. For instance, when the codeword v is transmitted,
and the received word r is received, the Hamming distance between v and r, given by
d(v, r), is equal to the number of errors introduced in the channel. This value is also
expressed by the Hamming weight of the error vector e = v− r, w(e).

26

(a) (2,1) Code, dmin = 2

(100) (101)

(110) (111)

(000) (001)

(010) (011)

(b) (3,2) Code, dmin = 2

(100) (101)

(110) (111)

(000) (001)

(010) (011)

(c) (3,1) Code, dmin = 3

Figure 2.7: Minimum Hamming Distance Example

Minimum Hamming Distance

The minimum Hamming distance, dmin, of a linear block code is the minimum distance
between all pairs of codewords. The metric is critical in determining the random error
handling capabilities of a code. Minimum Hamming distance is illustrated in Figure 2.7.

If we let the four point plane in Figure 2.7(a) represent a (2, 1) code where C =
{00, 11} represents the set of valid codewords, then we can see by inspection that the
minimum distance between valid codewords is two, that is dmin = 2. Extending this
concept to Figure 2.7(b), if we let the eight point cube represent a (3, 2) code in which
C = {000, 011, 110, 101} represents the set of valid codewords, then this code also has
dmin = 2. If instead we let the cube represent a (3, 1) code with C = {000, 111} representing
the set of valid codewords, as shown in Figure 2.7(c), we can see that this code has a
dmin = 3.

Based on the previous example, it can be rationalized that if the code has a minimum
distance of at least d, then the code can detect any error pattern of weight d − 1 or less.
Since valid codewords are each separated by a distance of dmin, a received codeword with
up to d− 1 errors will result in an invalid codeword. The validity of a codeword can then
be determined by the ECC.

In terms of error correction, a code with a minimum Hamming distance of

dmin ≥ 2t+ 1 (2.2)

can correct all patterns of t or fewer errors. This is shown with the aid of an example in
Figure 2.8 for a code with dmin = 4. For any valid codeword that has suffered an SBU, there
is only one valid codeword within a distance of d = 1 away from the corrupted codeword.
It is therefore safe to assume that this is the valid codeword. If two bits are upset, then

27

Valid
Codeword

Invalid
Codeword

Invalid
Codeword

Invalid
Codeword

Valid
Codeword

SBU
Correction

SBU
Correction

2-Random Error
Detection

3-Random Error
Detection

3-Random Error
Detection

Using Error Detection Only

Using Error Correction or Error Correction and Detection

Figure 2.8: Provided that dmin = 4, the code is capable of either 1-bit error correction,
3-bit error detection, or 1-bit error correction with 2-bit error detection.

there are two potential candidate codewords to ”correct” the word to. Since the code has
no way to determine which is the correct codeword, no correction can be performed. If
only error detection is being implemented, the ECC can detect up to three error bits since
dmin − 1 = 3.

When performing a combination of both error correction and detection, for a minimum
Hamming distance

dmin ≥ t+ d+ 1 (2.3)

the code can correct any combination of t-bit errors and detect up to d-bit errors where
d ≥ t. To visualize this, consider again Figure 2.8, for which dmin = 4. In this case,
the ECC can correct single bit errors (t = 1) and detect double bit errors (d = 2). In the
event of a triple bit error, this code could potentially miscorrect the error to form a different
codeword than the original. Miscorrections are discussed in more detail in Section 2.7.3. By
increasing the minimum Hamming distance for an ECC, more sophisticated error handling
can be performed. The proposed set of codes rely on having a non-minimum Hamming
distance between codewords differing in adjacent bit positions, while still meeting a given
minimum Hamming distance requirement for codes differing in non-adjacent bit positions.

28

2.6.2 Generator and Parity Check Matrices

The characteristics of a linear block code can be completely described by either its gener-
ator matrix, G, or its parity check matrix, H. The G-matrix is responsible for encoding
(generating) the check-bits during a write operation, while the H-matrix is responsible for
calculating the syndrome-bits used for the decoding process. The syndrome, and syndrome
decoding process, will be discussed in more detail in Section 2.6.3.

Traditionally, the generator matrix G is an r × k matrix used to generate the set of r
parity check-bits c = (c0c1 . . . cr−1) for a given k-bit dataword. Each of the r rows in G
correspond to a check-bit calculation, while each of the k columns corresponds to a specific
data-bit in the dataword. The matrix is organized as follows:

G =

d0 d1 · · · dk−1

c0 h0,0 h0,1 · · · h0,k−1

c1 h1,0 h1,1 · · · h1,k−1
...

...
...

. . .
...

cr−1 hr−1,0 hr−1,1 · · · hr−1,k−1

.
For a given dataword, d = (d0d1 . . . dk−1), the r check-bits are calculated according to

c = d ·GT , (2.4)

where GT is the transpose of G. That is,

c0 = d0h0,0 ⊕ d1h0,1 ⊕ · · · ⊕ dk−1h0,k−1

c1 = d0h1,0 ⊕ d1h1,1 ⊕ · · · ⊕ dk−1h1,k−1

...

cr−1 = d0hr−1,0 ⊕ d1hr−1,1 ⊕ · · · ⊕ dk−1hr−1,k−1.

For all calculations, all hi,j belong to the set {0, 1}, and all calculations are performed
modulo-2, using the XOR function. By appending the r check-bits to the k-bit input
dataword, the n-bit codeword v is generated as v = [d c]. This gives the codeword
v = (d0d1 . . . dk−1 c0c1 . . . cr−1).

To decode the received codeword, the r × n parity check matrix, H is defined. In its
simplest form, H = [G Ir] where G is the generator matrix and Ir is the r × r identity
matrix. Since the parity check matrix contains the generator matrix, the H-matrix is
sufficient to describe the ECC. The generalized H-matrix is given by

29

G

The product of a codeword v and the transpose of the parity check matrix, HT provides
what is defined as the syndrome, S. For a valid codeword, the syndrome is equal to the
null vector, that is, S = 0 = (00 · · · 0). This occurs since

v ·HT =
[
d c
]
·
[
GT

Ir

]
(2.5a)

= dGT ⊕ cIr (2.5b)

= c⊕ c (2.5c)

= 0. (2.5d)

Equation 2.5a comes from direct substitution of definitions, that is v = [d c] and H =
[G Ir]. Equation 2.5b comes from matrix multiplication. Equation 2.5c is a substitution
of Equation 2.4, while Equation 2.5d is a direct result of the XOR function. This occurs
because v is a codeword in the subspace C. By inspection of the parity check matrix H,
it can be seen that by concatenating the encoding generator matrix G and the identity
matrix Ir, the syndrome is the recalculation of each of the encoded check-bits compared
with their respective stored value of the originally encoded check-bits. Provided that no
upsets have occurred, the stored and recalculated check-bit values will be identical, and
thus when XOR’ed together will produce the null vector, 0. The calculation of a non-zero
syndrome value indicates the detection of a invalid codeword.

Parity check matrices are not necessarily limited to the H = [G Ir] format. H-matrix
of the form [G Ir] can be modified by matrix row matrix operations and still maintain
their random error correcting and detecting properties [11]. Other forms of H-matrices
can consist of the concatenation of a series of sub-matrices, each responsible for providing
certain error correction and detection or performance based properties. Figure 2.9 shows a
set of alternative H-matrix organization examples. For each matrix, the subscript provides
the size of the sub-matrix, while the superscript acts as the sub-matrix index. The Single
Parity Bit code shown in Figure 2.9(a) and described in Section 2.8.1 consists of a single,
1 × n all-1’s matrix row, while the Extended Hamming SEC-DED code (Figure 2.9(b))

30

HSingle-Parity-Bit =
[
11×n

]
(a) Single Parity Bit code

HExtended Hamming SEC-DED =

[
G(r−1)×k I(r−1)×(r−1) 0(r−1)×1

11×n

]
(b) Extended Hamming SEC-DED code

HBCH DEC =
[
Gr×k Ir×r

]
=

[
H1

(r/2)×k I((r/2)×(r/2) 0(r/2)×(r/2)

H2
(r/2)×k 0(r/2)×(r/2) I(r/2)×(r/2)

]
(c) BCH DEC code

HReed-Solomon =

Ib×b Ib×b · · · Ib×b · · · Ib×b
Ib×b H1

b×b · · · Hi
b×b · · · H2b−2

b×b

Ib×b H2
b×b · · · H2i

b×b · · · H
2(2b−2)
b×b

(d) Reed-Solomon SbEC-DbED code

HExtended Reed-Solomon =

Ib×b Ib×b · · · Ib×b · · · Ib×b Ib×b 0b×b 0b×b
Ib×b H1

b×b · · · Hi
b×b · · · H2b−2

b×b 0b×b Ib×b 0b×b

Ib×b H2
b×b · · · H2i

b×b · · · H
2(2b−2)
b×b 0b×b 0b×b Ib×b

(e) Extended Reed-Solomon SbEC-DbED code

Figure 2.9: Example H-matrix Configurations Using Sub-matrices

31

described in Section 2.8.3 horizontally appends the Single Parity Bit H-matrix to a [G Ir]
formatted Hamming SEC code (along with an r − 1 × 1 all-0’s row) to provide double
random bit error detection. The BCH DEC code (Figure 2.9(c)) described in Section 2.8.5
can be expressed in either the H = [G Ir] format or divided into in sub-matrices determined
by its construction process. For the Reed-Solomon codes (Figure 2.9(d) and Figure 2.9(e)),
the horizontally concatenated b × b identity matrices align with the byte boundaries for
the code, and help provide the within-byte error correction capabilities for the code. The
repeated identity matrix structure is leveraged for the set of proposed codes to provided
its adjacent error detection capabilities, and in conjunction with other sub-matrices, helps
facilitate the adjacent error correction functionality. The repeated identity matrix structure
is described in more detail in Section 3.2.1.

2.6.3 Syndrome

Once data has been written into memory, it will not necessarily remain constant. As the
data resides in memory, it is continually being exposed to external radiation such as alpha
particles and galactic rays. This leaves the memory cells susceptible to upsets. These upsets
must be recognized and handled by the ECC decoder. To model this mathematically, we
let v = [d c] = (d0d1 . . . dk−1c0c1 . . . cr−1) be a codeword written into memory. Since this
codeword is stored under noisy circumstances, we can let r = (d′0d

′
1 . . . d

′
k−1c

′
0c
′
1 . . . c

′
r−1) be

the received codeword during a read operation. The received code word r may or may
not differ from the transmitted codeword v. The addition of errors to the vector v can be
expressed by the vector sum modulo-2 (i.e., XOR) as

r = v⊕ e (2.6)

where e = (e0e1 . . . en−1) is an n-bit vector representative of the error pattern injected into
the transmitted codeword. For ei = 1 the i-th element of r is not equal to the corresponding
i-th element of v. This indicates an error at the i-th element in the received codeword r.
When ei = 0, the i-th elements in r and v are the identical, and thus the i-th element of
r does not contain an error.

Upon receiving r, the decoder must determine the existence of errors within the re-
ceived codeword. Depending upon the extent of the error, appropriate error correction or
detection may occur. When r is received, the syndrome generator performs the following
computation

S = r ·HT. (2.7)

32

The output of the generator S = (S0S1 · · ·Sr−1) is defined as the syndrome of r. If
S = 0, then v is considered to be a valid codeword, and no detectable errors exist within r.
If S 6= 0, then an error has occurred and r is not a valid codeword. A critical feature of the
syndrome calculation is its independence of the transmitted codeword v. The syndrome
calculation is solely dependent only on the error pattern e. Since r is the vector sum of v
and e, we have the following computation,

S = r ·HT = (v⊕ e) ·HT = (v ·HT)⊕ (e ·HT).

Since v ·HT = 0 from Equation 2.5, S depends only on the error vector e, where

S = e ·HT. (2.8)

Once the syndrome has been calculated, it must be processed to determine the originally
transmitted codeword, v. To correct a particular error pattern, the error must map to a
unique error correcting syndrome. In the simplest case, if S = 0, then the error vector
e = 0 and no error has occurred. In the event that S 6= 0, then two possible cases arise:

1. The syndrome is identical to an error correcting syndrome, or

2. The syndrome does not match an error correcting syndrome.

Based on the syndrome calculation procedure, the generated syndrome value will always
produce the modulo-2 linear combination (XOR combination) of the columns in the H-
matrix corresponding to the upset bits in the received codeword. That is, provided that
a single-bit-error occurred, the syndrome pattern will match the i-th column vector of H
corresponding to the i-th bit in r. Therefore, to facilitate for single-bit-error correction,
all of the H-matrix column vectors must be unique, and non-zero. The correction of other
error types depends on the uniqueness of their syndrome values. This will be discussed in
more detail in Section 3.1.1. Once the error location has been identified, error correction
can proceed by inverting the bit(s) in error and then forwarding the corrected data to the
output data bus and optionally rewriting the corrected data back into memory.

In the event that S 6= 0 and the syndrome does not match an error correcting syndrome,
then an error has been detected, but its location cannot be determined. This situation
occurs when the error type is beyond that of the ECC’s correcting capability. This infor-
mation can be forwarded external to the memory and handled at the system-level. How
the system handles the detection of the error will depend on its application, but from the
memory standpoint, the error has been recognized, and it is left to the user or system
to determine how to proceed. For example, if an error is detected in a multi-tiered cache
memory system, the dataword can be reloaded from a higher level in the memory hierarchy.

33

2.6.4 Encoding-Decoding Example

The following is an example of the encoding-decoding process for a (7,4) Hamming SEC
code. The generation of this code is described later in Section 2.8.2. The H-matrix contains
three rows (one for each check/syndrome-bit) and seven columns (one for each code-bit).
The matrix is the concatenation of the encoding generator matrix G and the identity
matrix, Ir = I3.

HSEC = [G I3] =

d0 d1 d2 d3 c0 c1 c2

S0 1 1 1 0 1 0 0
S1 1 0 1 1 0 1 0
S2 1 1 0 1 0 0 1

Consider the k = 4-bit dataword d = (1100). Multiplying d by the transpose of G

provides the parity (or check) bits c = (010).

c = d ·GT = (1100) ·

1 1 1
1 0 1
1 1 0
0 1 1

 = (010)

This can also be expressed as,

c0 = d0 ⊕ d1 ⊕ d2 = 1⊕ 1⊕ 0 = 0

c1 = d0 ⊕ d2 ⊕ d3 = 1⊕ 0⊕ 0 = 1

c2 = d0 ⊕ d1 ⊕ d3 = 1⊕ 1⊕ 0 = 0

Appending c to d provides the codeword v = [d c] = (1100 010). This codeword is
then stored in memory. Provided that no bits are upset before the codeword is read from
memory, the syndrome produces the null vector, that is S = v ·HT

SEC = (000) = 0.

In the event that a bit error does occur, the syndrome will equal the column vector
of HSEC representative of the error. Consider the example where the third bit, d2, in the
codeword v is corrupted. Since v = [d c] = (d0d1d2d3 c0c1c2), the received codeword, r will
be (1110 010), notice the difference in the third bit. Calculating the syndrome produces
S = (110).

34

S = r ·HT
SEC = (1110 010) ·

1 1 1
1 0 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

= (110)

This syndrome pattern is equal to the third column vector in HSEC (or third row vector
of HT

SEC), indicating an error in the third position of the received codeword r. Once the
location of a bit error has been determined, it can be corrected by inverting the bit. The
corrected data can then be forwarded to the output data bus, and optionally rewritten into
the memory.

2.7 Performance Metrics

This section describes the high-level performance metrics used to evaluate and compare
ECCs. These measures are based solely on the parity check matrix and allow for a high-
level comparison during the pre-circuit design phase. Each of these metrics correspond to
a post-circuit implementation metric including, area overhead, performance impact, and
robustness.

2.7.1 Area Overhead

The area overhead associated with a particular ECC is measured in terms of the num-
ber of check-bits required for the code and the logic gate count of the encoder-decoder
logic circuitry. Since check-bits must be added for each stored dataword, the number of
check-bits required for a code will have a significant impact on the area overhead. For
instance, a (39, 32) SEC-DED code requires seven check-bits for every 32 data-bits. This
corresponds to a 21.9% increase in bit-cell array area. The number of required check-bits
for a given ECC corresponds directly with the number of rows in its parity check matrix.
Figure 2.10(a) shows the absolute number of check-bits required versus dataword length,
while Figure 2.10(b) expresses the check-bit area overhead as a percentage of data-bits per
codeword. These figures compare the associated check-bit overhead for SEC, SEC-DED,
DEC BCH, and DEC-TED BCH codes. Notice that the incremental number of check-bits
for a DEC code is always double that of a SEC code independent of dataword length. The
same is true for DEC-TED relative to SEC-DED codes. The proposed codes explore the
design space bounded by these curves.

35

0 50 100 150 200 250 300
5

10

15

20

Data−bits, k (bits)

C
h

e
c
k
−

b
it
s
,
r

(b
it
s
)

SEC

SEC−DED

DEC

DEC−TED

(a) Check-bits vs. Data-bits

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Data−bits, k (bits)

C
h
e
c
k
−

b
it
 A

re
a
 O

v
e
rh

e
a
d
 (

%
)

SEC

SEC−DED

DEC

DEC−TED

(b) Check-bit Area Overhead vs. Data-bits

Figure 2.10: Area overhead comparisons for SEC, SEC-DED, DEC BCH, and DEC-TED
BCH codes of various data lengths.

The area required for the check- and syndrome-bit generation logic is proportional to
its XOR logic gate count. Since each check- and syndrome-bit is generated using modulo-2
addition, XORing the indicated bits within each matrix row will generate the respective
check- or syndrome-bit value. The total number of 2-input XOR gates required to generate
these values is determined by the total weight (total number of 1’s) in the parity check
matrix. This is given by

2-Input XOR Gates(H) = Total Weight(H)− Number of Rows(H). (2.9)

Since an n-input XOR gate can be implemented using n − 1 2-input XOR gates, the
total number of 2-input XOR gates required per syndrome-bit is equal to that bit’s row
weight minus one. The total number of 2-input XOR gates required for the check and
syndrome calculations is equal to the total weight of the parity check matrix minus its
number of rows (or check-bits). Finally, since the check-bit value is regenerated during the
syndrome-bit calculation, the same hardware can be used for each set of calculations.

2.7.2 Performance Impact

Integrating an ECC circuit into a memory system will add an additional delay penalty
to each read and write operation. Although some ECC schemes exist where the circuit
is placed off of the memory’s read and write critical paths, they do so at the expense of
system reliability, compromising up-to-date data reliability for speed [48].

36

The maximum delay penalty associated with an ECC circuit is comprised of the de-
lay through the syndrome-bit generation XOR logic tree, syndrome decoder, and error
corrector during the ECC decoding phase. This value is always greater than the check-
bit generation delay during the encoding phase since each check-bit is regenerated during
the decoding phase. The syndrome-bit generation delay is determined by the maximum
number of XOR gate logic levels in the syndrome-bit generation logic, and is given by

Max Syndrome Logic Depth(H) = dlog2(Maximum Row Weight(H))e. (2.10)

Since an n-input XOR gate can be implemented using n − 1 2-input XOR gates, the
maximum number of XOR logic levels will be equal to the number of XOR gate delays
in the longest syndrome-bit XOR tree. This figure of merit can be used to compare the
relative speed penalties associated with various ECC implementations. Equation 2.10
assumes each of the syndrome-bit calculations are independent of one another. A modified
version of this equation is presented in Section 3.2.5 to include calculation dependencies.
This modification is required for the proposed codes.

2.7.3 Robustness

When an error occurs in a memory that is beyond the error handling capabilities of the
ECC, various outcomes may occur during a subsequent read operation. Since the ECC
has no means of determining that an error has occurred beyond its capability (otherwise,
the error would at least be detectable) the codeword will still be processed by the decoder
circuitry and a syndrome will still be generated. The ideal situation occurs when a non-
zero syndrome not matching any of the error correcting syndromes is produced. This error
will be detected as per any other non-error-pattern-matching syndrome.

More destructively, a syndrome can match one of the error correcting syndromes and the
error “correction” process will proceed, or the zero syndrome will be produced, indicated
that no error has occurred at all. Either way, undetected erroneous data will reach the
output data bus. Errors that go undetected by the ECC are called miscorrection errors.
As an example, if an error were to upset bits d0, d1, and d2 in the (7, 4) SEC code in
Section 2.6.4, this 3-adjacent error pattern would match that of the single-bit error for
bit c0. This miscorrection of bit c0 would produce an additional error in the codeword
leading to four corrupted bits rather than the intended corrected codeword. Miscorrection
probabilities for each error type can be calculated directly from the parity check matrix.

For a given error type, the miscorrection probability is equal to the number of error
patterns that are shared with error correcting syndromes divided by the total number of

37

error patterns producible for the given error type minus the number of error correcting
syndromes. The miscorrection probability of an e-random error for a particular (n, k) code
is given by

P (e-Random Error) =
Sharable Syndromes(

n
e

)
− e-column correcting syndromes

(2.11)

where Sharable Syndromes is the number of linear combinations of e columns vectors in the
H-matrix that falsely produce either an error correcting syndrome or the zero vector. This
value is then divided by the total number of e-bit combinations for the given codeword
size minus the number of e-column error correcting syndrome patterns. Miscorrection
probabilities can be calculated for any error type including, random, adjacent, and burst
errors.

2.8 Example Codes

In this section, a subset of the commonly used error correcting and detecting codes are
introduced with examples. These include: single-parity-bit [11], Hamming SEC and SEC-
DED [33], Hsiao SEC-DED [31], BCH [11], Reed-Solomon [65], and Dutta SEC-DED-
DAEC [44] codes. Each of these codes rely on the mathematical foundation presented in
Section 2.6. Any additional concepts required for a specific code are provided within the
code’s respective subsection.

2.8.1 Single-Parity-Bit Codes

The simplest form of error detection requires only one additional parity check-bit per
dataword. The check-bit ensures that the total number of 1’s in a stored codeword is
always even. For this reason, single-parity-bit codes are also known as even parity code.
The (k+1, k) even parity code is defined by the all 1’s 1× n H-matrix.

HSingle-Parity-Bit = (1 1 · · · 1)

As an example, assuming a eight-bit dataword d = (0111 0101), a parity bit, given by:
p = d1 ⊕ d2 ⊕ · · · ⊕ d8, produces a single parity check-bit of value ‘1’. This value is then
appended to d resulting in the stored codeword v = (d p) = (0111 0101 1). Notice that
the stored codeword contains an even number of 1’s. When the codeword is later read,
the decoder can determine its validity by ensuring the even parity of the codeword. The
reading of a non-even (i.e., odd) weight codeword indicates the detection an error.

38

Since this encoding scheme contains no information regarding the location of the bit-
error, it can only be used to detect errors. Additionally, in the event that two bits are
upset, the scheme would incorrectly return a valid codeword, thus showing the limitation
of the dmin = 2 code. By using multiple single-parity-bit codes and judiciously selecting
which bits in the dataword are used in each parity calculation, more complex codes with
increased degree of error correction and detection can be created.

2.8.2 Hamming SEC Codes

An example (7, 4) Hamming SEC code was shown in Section 2.6.4 to illustrate the basic
ECC encoding and decoding process. This code has a minimum Hamming distance dmin =
3, and is capable of correcting all single bit errors. Constructing a Hamming SEC H-matrix
requires that all column vectors be unique and non-zero. To meet these requirements,
n ≤ 2r − 1, where n is the codeword length, and r is the number of check-bits. The
encoder and decoder circuit implementations for the (7, 4) Hamming SEC code example
is shown in Figure 2.11.

The encoder check-bits are computed from the input dataword by the following equa-
tions using XOR gates:

c0 = d0 ⊕ d1 ⊕ d2

c1 = d0 ⊕ d2 ⊕ d3

c2 = d0 ⊕ d1 ⊕ d3.

During decoding, the syndrome S is calculated for the received word r = (d′0d
′
1d
′
2d
′
3 c
′
0c
′
1c
′
2)

as,

S0 = d′0 ⊕ d′1 ⊕ d′2 ⊕ c′0
S1 = d′0 ⊕ d′2 ⊕ d′3 ⊕ c′1
S2 = d′0 ⊕ d′1 ⊕ d′3 ⊕ c′2.

The syndrome S = (S0S1S2) is then decoded via a set of AND gates to indicate the
location of any single-bit errors that may have occurred. Error correction occurs only if the
binary syndrome pattern matches any of the binary column vectors in H. The erroneous
bit corresponding to the matching column vector is then corrected via bit-wise inversion
using an XOR gate.

39

d0
d1
d2
d3

d0
d1
d2
d3
c0
c1
c2

Input
Dataword

Encoded
Codeword

Check-bit Generator

(a) Encoder

d’0
d’1
d’2
d’3

d0
d1
d2
d3
c0
c1
c2

c’0
c’1
c’2

Received
Codeword

Corrected
Codeword

S0

S1

S2

Syndrome-bit Generator Syndrome Decoder

Error Corrector

(b) Decoder

Figure 2.11: Encoder and decoder of the Hamming (7,4) SEC code.

40

2.8.3 Hamming SEC-DED Codes

A Hamming SEC code can be extended to detect double-random-bit errors in addition to
its single-bit error correcting property to form a Hamming SEC-DED code. The code adds
an overall even parity check-bit to an existing Hamming SEC code. The HSEC matrix is
modified by adding an all 1’s row vector and a weight-1 column vector with upper r − 1
all 0’s to an existing (r − 1)× (n− 1) binary HSEC matrix. The H-matrix is written as

The overall parity-bit provides an even parity check for the entire codeword, including
both the data and check-bits. This is used in conjunction with the standard SEC check-
bits to provide the DED functionality when decoding the syndrome. If S = 0, then the
received codeword is error-free. If S 6= 0 and the overall parity bit is ‘1’, then an odd
number of errors have occurred. If the syndrome pattern is identical to a column vector
in the H-matrix, then the corresponding bit-error is corrected. If the syndrome pattern is
not identical to a column in H, then three or more odd number of errors have occurred.
These errors are detectable, but not correctable. Finally, in the event that S 6= 0 and the
overall parity bit is ‘0’, then an even number of errors have occurred and are detectable.
It can easily be shown that the maximum codeword length for an (n, k) binary SEC-DED
code is 2r − 1.

2.8.4 Hsiao SEC-DED Codes

Hsiao SEC-DED codes, also known as odd-weight-column codes, provide the same level of
coding efficiency as Hamming SEC-DED codes in terms of check-bit overhead but provide
improvements in terms of speed, area, and reliability of the decoding logic. Improvements
are realized through the implementation of the code’s double error detection functionality.
Rather than relying on an all 1’s row in its H-matrix, Hsiao codes leverage odd Hamming
weighted columns to produce the DED functionality. Since the sum of any two odd weight
vectors will result in an even weight vector, any double-bit errors will result in an even

41

1 1 1 0 1 0 0 0 (4)

1 0 1 1 0 1 0 0 (4)

1 1 0 1 0 0 1 0 (4)

1 1 1 1 1 1 1 1 (8)

 =

4 3 3 3 2 2 2 1 = (20)

[]HHamming =

Column Weights

Row
Weights

(a) Hamming

1 1 1 0 1 0 0 0 (4)

1 0 1 1 0 1 0 0 (4)

1 1 0 1 0 0 1 0 (4)

0 1 1 1 0 0 0 1 (4)

 =

3 3 3 3 1 1 1 1 = (16)

[]HHsiao =

Column Weights

Row
Weights

(b) Hsiao

Figure 2.12: (8,4) Hamming and Hsiao SEC-DED Matrices

weighted syndrome vector. This vector will be unique from all of the odd weighted column
vectors, and hence allows the Hsiao code to provide a minimum Hamming distance of
dmin = 4.

A comparison between the (8, 4) SEC-DED Hamming and Hsiao matrices is shown
in Figure 2.12. The Hsiao SEC-DED matrix has a lower total weight (16) compared to
the Hamming SEC-DED matrix (20). This results in a decrease in the total number of
XOR gates (Hsiao = 12, Hamming = 16), and a lower number of logic levels in the XOR
decoder tree (Hsiao = dlog2(4)e = 2, Hamming = dlog2(8)e = 3). These features produce
smaller decoders and reduced delay penalties for the Hsiao SEC-DED implementations as
compared to the Hamming SEC-DED implementations. For this reason, throughout the
remainder of this work, the Hsiao codes are used for all SEC-DED performance evaluations.

2.8.5 BCH Codes

Bose, Ray-Chaudhuri, Hocquenghem (BCH) codes provide error correcting capabilities be-
yond those of the Hamming and Hsiao SEC-DED codes. They were invented independently
by Hocquenghem in 1959 and by Bose and Ray-Chaudhuri in 1960 [11]. These polynomial-
based codes provide error correction for multiple random bit errors at the expense of an
increase in the number of check-bits and decoder complexity. BCH codes using higher or-
der Galois fields can be used to correct many random errors; however, these codes require
a substantial overhead in terms of area and delay and are not typically considered for use
in high-speed embedded memories. Here we briefly consider binary BCH codes used for
correcting two random bit errors. This scheme has, although in a very limited amount,
been used in some embedded SRAM applications [19, 12]. For a detailed description of
BCH codes, the reader is referred to any number of texts on coding theory [64, 50, 66].

42

D1 D3 D5 D10 D13 D16
D2 D4 D6 D12 D15 C9

S9

D1 D4 D8 D10
D2 D6 D9 D11 D14 C1

S1
D2 D5 D9 D11

D3 D7 D10 D12 D15 C2

S2

D3 D6 D10 D12
D4 D8 D11 D13 D16 C3

S3
D1 D5 D7 D10

D2 D6 D8 D12 D13 C4

S4

D2 D6 D8 D11
D3 D7 D9 D13 D14 C5

S5
D1 D3 D7

D2 D6 D11 D12 D15 C6

S6

D1 D6 D9 D11 D13 D16
D3 D7 D10 D12 D14 C7

S7
D2 D7 D10 D12 D14

D4 D8 D11 D13 D15 C8

S8

D1 D5 D8 D10
D3 D7 D9 D13 D16 C10

S10

Figure 2.13: (26, 16) BCH DEC Syndrome Generation Logic

The double error correcting (DEC) BCH code uses a generator polynomial g(x) and
its roots αi to construct an H-matrix in which every 4 columns are linearly independent
(i.e., every XOR sum of any two or fewer H-matrix columns is distinct, and can therefore
produce a distinct error correcting syndrome pattern). H-matrices for the implemented
(26, 16), (44, 32), and (78, 64) BCH DEC codes are provided in Appendix A.

BCH check- and syndrome-bits are generated in the same manner as the previously
presented single error correcting codes using XOR gates. The syndrome-bit generation
logic for the (26, 16) BCH DEC code is shown in Figure 2.13. Syndromes can be decoded
either serially using a linear feedback shift register (this method consumes minimal area,
but requires multiple clock cycles to execute), or in parallel (requiring a decoding circuit
for each correctable syndrome pattern). This requires a higher area overhead but can be
executed in a single cycle using combinational logic. All of the BCH DEC circuits in this
work have been designed for single cycle execution. For the (78, 64) BCH DEC code there
are 14 syndrome bits and

(
78
2

)
= 3003 double bit random bit error patterns given the 78-bit

codeword size. As such, the parallelized syndrome decoder is effectively a 14-to-78 decoder
with 78 correctable single bit syndrome patterns and 3003 correctable double bit patterns.

2.8.6 Reed-Solomon Codes

Reed-Solomon (RS) codes are a subclass of non-binary BCH codes in which error correction
is performed on symbols, or bytes, as opposed to individual bits [65]. Each byte consists
of a cluster of b-bits, and any sized burst error contained within a given byte can be
corrected. For this work, we consider the single byte error correcting-double byte error
detecting (SbEC-DbED) Reed Solomon codes. These are similar to SEC-DED codes, only
instead of handling bit errors, they consider byte errors. Figure 2.14 shows the byte-wise
organization for a (25, 16) code using a b = 3 byte size. Notice that the 25-bit codeword
has been segmented into dn/be = 9 bytes, eight equal to the b = 3 bytes size, and one of
size 1-bit, (25 mod 3 = 1).

43

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 C0 C1 C2 C3 C4 C5 C6 C7 C8

Byte 1
Byte 2

Byte 3
Byte 4

Byte 5 Byte 7
Byte 8

Byte 9
Byte 6

16 Data-bits
9 Check-bits

25 Code-bits

Figure 2.14: (25, 16) b = 3 Reed Solomon code byte organization

Table 2.1: Code Parameters for RS SbEC-DbED Codes
b(bits) nmax(bits) kmax(bits)

2 12 6
3 30 21
4 72 60
5 170 155

The RS code is able to correct any b-bit burst error pattern so long as it resides within
a single byte. To provide this level of error correction the code requires 3 check-bytes (3 · b
check-bits). If an upset crosses over the byte boundary however, it can be detected but not
corrected. By interleaving the bytes of multiple codewords, as in Figure 1.8(b), adjacent
bytes within a codeword can be separated by as many as b-bits multiplied by the degree of
interleaving, I, minus one, that is b · (I − 1). A limiting factor for the RS codes is that its
maximum codeword length is determined by the expression N = b · (2b + 2) and, as such
there is a maximum data-bit length k permitted per byte size, shown in Table 2.1. This
requires RS codes to provide a certain amount of error protection based on their number
of databits, and prohibits them from providing a lower check-bit overhead.

Similar to the BCH codes, RS codes can be decoded either serially over multiple clock
cycles or using a parallelized combinational logic decoder circuit in a single clock cycle.
In this work, parallelized decoders have been implemented, and the H-matrices for the
implemented (25, 16) S3EC-D3ED, (44, 32) S4EC-D4ED, and (79, 64) S5EC-D5ED RS
codes are listed in Appendix A.

2.8.7 Dutta SEC-DED-DAEC Codes

SEC-DED-DAEC Dutta codes [44] attempt to compromise between the low area overhead
of SEC-DED codes and the higher error correcting capabilities of BCH and Reed-Solomon
codes. They use the same number of check-bits as the Hsiao and Hamming SEC-DED
codes, but add an additional constraint on the H-matrix column selection procedure. This

44

MSB

LSB

44 3

Figure 2.15: (22, 16) SEC-DED-DAEC Dutta code. Adapted from [44].

constraint provides the DAEC property. To ensure proper functional operation for all
SEC-DED-DAEC codes, all column vectors within the parity check matrix are selected
such that:

1. All columns are non-zero, (i.e., no column consists of the null vector, 0),

2. All of the columns are distinct,

3. No linear dependencies exist involving 3 or fewer columns (i.e., the XOR of any two
columns does not equal any of the individual columns), and

4. The linear combination of any two adjacent columns does not equal any of the indi-
vidual columns or the linear combination of any other two adjacent columns.

The first three constraints are identical to those of the Hamming SEC-DED codes,
while the fourth constraint, proposed by Dutta, requires that the linear combinations of
any two adjacent columns vectors hi ⊕ hi+1 be distinct from one another and from each
individual column vector hi. While Constraints 1 and 2 provide distinct syndrome patterns
for all single-bit errors, Constraint 4 increases the set of error correcting syndromes to
include all 2-adjacent bit-errors. Figure 2.15 shows a (22, 16) SEC-DED-DAEC Dutta
code, and Table 2.2 provides the decimal equivalent for each of the code’s columns and
linear combination of 2-adjacent columns. For each column, the top row is considered to
be the most significant bit, while the bottom row is the least significant bit. The values
are listed in order starting with the left-most side of the H-matrix. Notice that each value
is distinct.

45

Table 2.2: (22, 16) SEC-DED-DAEC Dutta Code Column Uniqueness Table

Column Values, hi (22) { 44, 35, 11, 21, 42, 49, 7, 14, 28, 56, 41, 52, 19, 38, 13,
26, 32, 16, 8, 4, 2, 1 }

2-Adjacent Column XOR
Results, hi ⊕ hi+1 (21)

{ 15, 40, 30, 63, 27, 54, 9, 18, 36, 17, 29, 39, 53, 43, 23,
58, 48, 24, 12, 6, 3 }

A key feature of Dutta’s SEC-DED-DAEC code is that it uses the same number of check-
bits as the conventional Hamming and Hsiao SEC-DED codes. A drawback to this code
however is that to maintain the iso-check-bit overhead, some of the adjacent double-bit error
correcting syndromes are shared with some of the non-adjacent double-bit error syndrome
patterns. This leads to potential miscorrections for the 2-random-bit error type. The
miscorrection probability is determined using Equation 2.11. For the (22, 16) Dutta code,
we first consider the number of shareable syndrome patterns between the non-adjacent
2-random-bit error patterns and the correctable syndrome patterns. Through exhaustive
search, 135 sharable syndrome patterns are counted. For the 22-bit codeword size, there
are
(

22
2

)
= 231 possible 2-bit error patterns, of which n−1 = 21 of these have the bit errors

in adjacent positions, (there are therefore 231 − 21 = 210 non-adjacent two-bit syndrome
patterns). Therefore, using Equation 2.11, the probability of a non-adjacent 2-random
bit error being miscorrected as a correctable error pattern is equal to 135/210 = 64.3%.
Although this is undesirable, the miscorrection penalty can be justified in the context of
MBU soft errors since the likelihood of two adjacent-bit upsets is much higher than two
non-adjacent bit upsets. It is still however desirable to minimize this quantity; and as
such, this is considered with the proposed class of codes. H-matrices for the implemented
(22, 16), (39, 32), and (72, 64) SEC-DED-DAEC codes are listed in Appendix A.

2.9 Summary

In this chapter, relevant background material regarding the SRAM organization structure,
error type classifications, and ECC comparison metrics have been discussed. Further, all
of the ECC schemes used for comparison in the subsequent chapters have been introduced.

46

Chapter 3

Proposed Class of Error Correction
Codes

In this chapter the basic structure of the proposed codes is introduced and a set of rules for
constructing their parity check matrices is presented. The details of the code construction
procedure is then discussed, and an H-matrix solution solver/evaluator designed in Matlab
is described. A set of the proposed codes generated by the solver is then evaluated relative to
existing codes. The chapter concludes with the presentation of a number of modified codes
derived from the basic proposed code’s structure.

3.1 Code Structure

The proposed class of error correcting codes is designed to mitigate the soft error problem
for on-chip embedded SRAMs in aggressively scaled technologies. Radiation strikes that
would have appeared as SBUs in previous technology generations are now appearing as
burst and adjacent MBUs in sub-100 nm technologies. Further, these upsets not only
affect more bits, but become more frequent with continued scaling. As a baseline, the
proposed codes offer the traditional SEC-DED functionality found in Hamming and Hsiao
codes and the DAEC found in Dutta codes. They also offer scalable adjacent and burst
error detection (yAED, zBED), the option for triple adjacent error correction (TAEC),
and a reduction in miscorrection probabilities compared to other codes. Parity check
matrices have been constructed for the proposed codes with up to 11-bits of adjacent error
detection for memories with 16, 32, and 64 data-bits per codeword. In these codes, adjacent
error correction and detection is emphasized since these type of MBUs form the primary
error pattern limiting SEC-DED ECCs in scaled memory technologies. Additionally, they
emphasize a large degree of error detection coverage since if instantiated in a multi-tiered

47

Figure 3.1: Generalized (n, k) IL H-matrix structure for the proposed class of ECCs

H =

0000 1010 0000 0101 1010 111
0101 0101 0000 1010 0000 111
0101 1010 1010 0000 0101 000

1000 1000 1000 1000 1000 100
0100 0100 0100 0100 0100 010
0010 0010 0010 0010 0010 001
0001 0001 0001 0001 0001 000

Figure 3.2: Example (23, 16) I4 SEC-DED-DAEC-5AED Code

cache system, upon detection of an uncorrectable error, data can be reloaded from a higher
level in the memory system hierarchy.

The generalized H-matrix structure for the proposed class of ECCs is shown in Fig-
ure 3.1 and follows the conventional (n, k) naming nomenclature appended with an identity
matrix size, IL. The H-matrix structure leverages the repeated identity matrix configura-
tion seen in the Reed-Solomon matrix examples in Figure 2.9(d) and Figure 2.9(e), along
with a series ofHi sub-matrices that have each been designed using a selective bit-placement
strategy in the spirit of the Dutta codes presented in Section 2.8.7. The provided degree
of error protection coverage includes the standard SEC-DED coverage along with x-bits of
adjacent error correction, and y-bits of adjacent error detection (SEC-DED-xAEC-yAED).
An example (23, 16) I4 SEC-DED-DAEC-5AED code is shown in Figure 3.2. It provides
double adjacent error correction and 5-bits of adjacent error detection in addition to the
basis SEC-DED protection. For brevity, a particular code may be referred to using only its

48

xAEC. The matrix is divided into two separate portions (top and bottom) each responsible
for providing different behavior. The bottom portion consists of a series of horizontally
concatenated L × L identity matrices, IL, truncated to fit the n-bit codeword size. This
physically separates the code-bits used to calculate each of the syndrome-bits by a phys-
ical distance of L bitcells, and essentially mimics the bit-wise interleaving process within
the H-matrix. The top portion contains dn/Le sub-matrices, Hi. For each Hi sub-matrix
the odd column vectors are identical to one another, and likewise for the even column
vectors. For example, for a four column Hi sub-matrix (as in Figure 3.2), the first, and
third columns are identical to one another, and the same is true for the second and fourth
columns. The four column Hi sub-matrix is described by

Hi = (hoi , hei , hoi , hei) (3.1)

where hoi represents the odd column vectors for the i-th top portion sub-matrix and hei

represents the even column vectors. When vertically concatenated with its respective
bottom portion IL matrix, these Hi matrices each form a new (r × L) sub-matrix each
comprised of L unique columns. This property eases the code construction procedure, and
will be discussed in Sections 3.2.4.

3.1.1 Design Constraints

The proposed codes’ H-matrix structure is defined by a set of constraints designed to elicit
the desired error handling behaviour. The Constraints 1-4 are identical to those of the SEC-
DED-DAEC Dutta codes presented in Section 2.8.7, while Constraints 5 and 6 provided
the yAED and TAEC features respectively. Constraint 7 is a soft constraint designed to
reduce the miscorrection probabilities for various error patterns. The constraints for the
proposed codes’ parity check matrices are as follows:

1. All columns must be non-zero.

2. All columns must be distinct.

3. The XOR result of any two columns must not equal any of the individual columns.

4. The XOR result of any two adjacent columns must be distinct, and different from
any column in H.

5. The XOR result of any adjacent columns greater than two and less than or equal to
y must produce a non-zero vector not equal to any the error correcting syndromes.

49

6. The XOR result of any three adjacent columns must be distinct and different from
the single-bit and double-adjacent-bit error correcting syndromes. (Required for triple
adjacent error correction only).

7. The amount of sharable syndromes between adjacent and non-adjacent errors should
be minimized. (Soft constraint).

Constraint 1 ensures that all single-bit errors cause a non-zero syndrome and are thus
detectable. Constraint 2 guarantees that all of the single-bit error syndromes are unique
and thus correctable. Constraint 3 restricts the syndromes of all double-bit errors from
matching those of the single-bit errors, meaning that no linear dependencies exist involving
3 or fewer columns. This allows for all double bit errors to be detectable. These three
constraints provide the SEC-DED functionality. Constraint 4 ensures that the syndrome
of all adjacent double bit errors are distinct, and combined with Constraints 2 and 3
ensure that these syndromes are different from the single-bit error correcting syndromes.
This ensures that all single-bit and double-adjacent-bit error syndromes are distinct and
thus correctable. This provides the SEC-DED-DAEC functionality.

Constraints 5 and 6 provide the functionality that separates this work from previous
research. Constraint 5 allows for variable yAED functionality by ensuring that any error in
y-adjacent bits produces a detectable (non-zero) syndrome that does not conflict with the
error correcting syndrome patterns. The degree of error detectability is determined by the
size of the identity matrix, IL, used during the construction of the H-matrix. Constraint
6 provides the TAEC functionality. This constraint is not necessary for the DAEC codes,
but is required for the TAEC codes. By expanding the set of distinct syndrome patterns
to include those of all triple-adjacent-bit errors, these errors can be corrected in addition
to the double-adjacent-bit and single-bit errors. Including this functionality attempts to
increase the memory’s reliability in the presence of adjacent-MBU soft errors.

Constraint 7 is added as a soft constraint in an effort to minimize the miscorrection
probabilities of various error types. These miscorrections occur when non-zero syndrome
patterns match those of the correctable syndrome patterns (i.e., single-bit, double-adjacent-
bit, and triple-adjacent-bit error patterns), but the error is of a different error type. Tradi-
tionally, these errors are those beyond the error handling capabilities of the code; however,
with the introduction of adjacent error correction, some adjacent and non-adjacent errors
of the same bit-weight share syndrome patterns. Non-adjacent MBUs may therefore be
misinterpreted as adjacent MBUs of the same weight, thus resulting in a miscorrection.
This overlap in syndrome use comes as a result of the limitation of the code’s minimum
Hamming distance for its given number of check-bits. For the proposed codes, the miscor-
rection probabilities are less than those presented in [44] and can be further reduced by
increasing the IL matrix size. An effort is still made however to reduce the miscorrection
probability through careful selection of the syndrome-bit calculation equations.

50

Figure 3.3: Example (24, 16) I5 SEC-DED-DAEC-7AED Parity Check Matrix

3.2 Code Design Procedure

The design of a particular code’s H-matrix is essentially a search process to find a set of
column vectors that satisfies all of the constraints mentioned in Section 3.1.1. The process
of constructing H-matrices is NP-complete [44]. For a standard binary r× n matrix there
are 2r×n potential matrices; each of which form a potential candidate H-matrix solution.
Exhaustive search methods quickly become impractical as values of n and r become even
moderately large. For example, a (22, 16) code has 26×22 = 2132 possible solutions to
consider. Even for a Hsiao code that uses distinct, minimum, odd-weighted columns,
thereby limiting the search space, (and assuming the check-bit columns use the 1-weight
per column identity matrix) there are still

(
6
3

)
= 20 potential 3-weight column vectors for

the 16 data-bit columns. This yields
(

20
16

)
= 4845 column vector combinations, and for each

combination there are 16! column permutations. Therefore, the exhaustive search solution
space still contains 4845×16! candidate H-matrices (≈ 256.5), and this value only increases
for larger memory word sizes. For this reason, an effort has been made to narrow the
search space for the proposed SEC-DED-xAEC-yAED codes. As an example, a (24, 16)
I5 SEC-DED-DAEC-7AED code is shown in Figure 3.3. This H-matrix provides double
adjacent error correction and 7-bit adjacent error detection.

Each of the sub-matrices of the SEC-DED-DAEC-7AED H-matrix are clearly indicated.
The bottom portion of the matrix consists of a repeating I5 matrix structure, and is used
to invoke the 7AED behaviour. The top portion contains a set of dn/Le − 1 sub-matrices

51

of size ((r−L)×L) and one ((r−L)× (n mod L)) sub-matrix, where n is the codeword
length, r is the number of check-bits, and L is the identity matrix size. For the (24,
16) I5 SEC-DED-DAEC-7AED H-matrix, n = 24, k = 16, r = 8, and L = 5 produces
four (3 × 5) sub-matrices in the top portion each with a respective I5 matrix, and one
(3 × 4) sub-matrix with an associated truncated identity matrix in the bottom portion.
The column truncation is done to fit the 24-bit codeword length. The columns indicated
with a ‘C’ are those columns indicating the check-bit positions for the code. The check-
bit column selection procedure is described in Section 3.2.5. The check-bits are labeled
1 through 8. The bracketed number on the right-hand side of each matrix row is that
row’s row-weight. Finally, the set of decimal number pairs underneath the matrix title
is a consolidated code for the particular H-matrix implementation. Each pair represents
the decimal equivalent of the column vectors for each of the H-matrix’s top portion Hi

sub-matrices. Since the columns alternate between two values within each sub-matrix,
only two elements are needed to represent each sub-matrix. For each column, the first row
represents the most significant bit and the last row in the top portion represents the least
significant bit. With this mapping, it can be seen that the first, third, and fifth column of
the first top portion sub-matrix can be represented with a ‘0’, while the second and fourth
columns can be represented with a ‘4’. Continuing with this pattern provides the {(0,4),
(1,6), (4,2), (2,1), (5,0)} consolidated code. This code, paired with an identity matrix size
(L), codeword length (n), and list of check-bit columns is sufficient to completely describe
a parity check matrix for the proposed code class.

3.2.1 Degree of Adjacent Error Detection

An identity matrix is used to provide the variable yAED behaviour for the syndrome.
Larger AED coverage requires a larger identity matrix, and a parity bit is required for each
row of the matrix. The parity check-bits for the identity matrix rows (rows 4-8) in the
(24, 16) I5 example code are

c4 = b1 + b6 + b11 + b16 + b21

c5 = b2 + b7 + b12 + b17 + b22

c6 = b3 + b8 + b13 + b18 + b23

c7 = b4 + b9 + b14 + b19 + b24

c8 = b5 + b10 + b15 + b20

where ci represents the i-th check-bit and bi represents the i-th codeword bit. The symbol
b is used rather than d in this case to show that code-bits, including both check-bits and

52

b1 b2 b3 b4 b5 b6 b7 b8

c8
c7

c6
c5

c4

Figure 3.4: Identity matrix check-bit organization. Selecting check-bits in this manner
allows for adjacent error detection.

data-bits, are used in the calculation rather than strictly just the data-bits, d. This can
be generalized for an arbitrary codeword length of arbitrary identity matrix size as

c(r−L)+i = bi + bi+L + · · ·+ bi+L·bn−i
L
c ; i = 1, 2, . . . , L (3.2)

where L is the identity matrix size. An example of the XOR gate implementation of this
strategy is shown in Figure 3.4.

Using this implementation, the code-bits for each parity bit are separated by a physical
distance of L-bits. Any upset affecting an odd number of bits in a syndrome-bit equation
will generate a value of ‘1’. When a radiation strike upsets L-adjacent bits, only one bit
in each of the L syndrome-bit equations is affected. This produces the all 1’s syndrome
for this set of bits, thus generating a non-zero, detectable syndrome. For all adjacent
errors less than or equal to L, the error pattern will either be correctable, or produce a
detectable non-zero syndrome. As the adjacent error size grows beyond L, the corruption
of an even number of code-bits within a syndrome calculation will cancel one another out,
thus producing syndrome-bit values of ‘0’. A 2L adjacent bit error will result in an all
zero sub-syndrome for these check-bits, and thus error detection will rely solely on the
syndrome bits of the top portion of the H-matrix.

For adjacent-bit errors, this scheme is able to detect up to

53

2 3 4 5 6 7 8
0

2

4

6

8

10

12

Identity Matrix Size, (L)

D
e

g
re

e
 o

f
A

d
ja

c
e

n
t

E
rr

o
r

D
e

te
c
ti
o

n
 (

b
it
s
)

DAEC

TAEC

Figure 3.5: Degree of adjacent error detection versus identity matrix size, L

yAED = 2L− (xAEC + 1) bits (3.3)

where xAEC is the degree of adjacent-correctable-bit errors. For larger adjacent-bit errors,
the syndrome error patterns of the bottom portion of the H-matrix will match those of
correctable error syndrome patterns, and may produce miscorrections depending on the
error syndrome patterns produced by the top portion of the H-matrix. The degree of
yAED is therefore dependent on the amount of xAEC provided and the size of the identity
matrix, L. Figure 3.5 shows the degree of yAED for different sized identity matrices within
the H-matrix for different amounts of xAEC.

For the DAEC codes, the I3 will yield up to three bits of AED. This value increases
linearly with the size of the identity matrix, and implementations of the proposed code
have been instantiated for up to I7. The DAEC I7 codes are capable of providing up to 11
bits of AED. As for the TAEC codes, these will always yield a degree of error detection
one bit less than the DAEC codes for the same size identity matrix.

54

3.2.2 Degree of Burst Error Detection

In addition to providing adjacent error detection, AED, the proposed class of codes also
provide a certain degree of burst error detection, BED. The degree of BED is always less
than the degree of AED, and for the proposed codes is independent of the provided degree
of AEC. For the proposed codes

zBED = L− 1 (3.4)

where L is the size of the bottom portion identity matrix. BED is beneficial when not
all of the cells affected by a soft error are corrupted. This may occur when the Qcrit of
a storage cell is asymmetrical either due to data-value dependence or process variability.
Since Hamming, Hsiao, and Dutta codes are limited to an error detection level of only
two random bits, these codes are not capable of reliably detecting burst errors beyond
the trivial case of two adjacent bits, while the proposed codes offer scalable protection
proportional to L.

3.2.3 Required Number of Check-bits

The columns in the top portion of the H-matrix must be selected such that each complete
column (concatenation of the top and bottom column portions) comply with the constraints
detailed in Section 3.1.1. For this purpose, knowledge of the repeated identity matrix in
the bottom portion of the H-matrix can be leveraged during the construction of the top
portion.

First, the required number of check-bits, r, must satisfy the following relation

2r−L ≥
⌈n
L

⌉
(3.5)

where r is the number of check-bits, n is the length of the codeword, and L is the size of the
repeated identity matrix. This will ensure that there are a sufficient number of check-bits
such that each complete column is unique.

Additionally, since the bottom portion of the H-matrix contains the repeated IL matrix,
the top portion of the matrix consists of dn/Le sub-matrices each containing a maximum
of L columns. Since the IL is repeated, the i-th column of each top portion sub-matrix
will have an identical column from the bottom portion IL beneath it. To ensure the overall
column uniqueness constraint, the top portion of the H-matrix can be divided into L
bins (one for each column in the identity matrix) each containing at most dn/Le unique
columns. To express these dn/Le unique binary columns, at least 2r−L bits are required,

55

where r − L is the number of rows, or check-bits, used in the top portion of the matrix.
In the case of the (24, 16) I5 SEC-DED-DAEC-7AED code (r = 8, L = 5) there are
2r−L = 28−5 = 23 = 8 different columns to choose from and dn/Le = 5 columns to be
chosen per bin, or

(
8
5

)
= 56 different combinations.

3.2.4 Column Vector Selection Procedure for DAEC

In addition to the distinct column constraint (Constraint 2), the XOR result of all ad-
jacent column pairs must be distinct from one another and from all individual columns
(Constraints 3 and 4). The repeated IL matrix will ensure the XOR uniqueness result of
any two adjacent columns from any individual column. This is because the XOR result of
any two adjacent bottom portion columns will have a weight of two, whereas the individual
bottom portion column only have a weight of one. To ensure the XOR uniqueness result
of all two adjacent column pairs requires a careful selection of the top portion columns.

For an n-bit codeword, rather than attempting to find an ordered set of n unique
columns with n−1 unique adjacent column XOR pairs in one attempt, the problem can be
subdivided using a two-phase solution approach. Within the first phase, columns satisfying
the uniqueness constraints are selected for each individual Hi sub-matrix. These sub-
matrices are then arranged in the second phase to satisfy the overall uniqueness constraints
for the entire H-matrix. This procedure is described in Figure 3.6 using 3 × 4 Hi sub-
matrices concatenated with I4 matrices as an example. For clarity, decimal equivalent
values are used for the column values of each Hi matrix. For each of these column values,
the top row represents the most significant bit, and the bottom row represents the least
significant bit.

First, notice that the matrix shown in Figure 3.6(a) is a 3×4 Hi sub-matrix of the form
described in Equation 3.1 concatenated with the I4 matrix, and this matrix conforms with
all of the constraints listed in Section 3.1.1. For this matrix, only the two r−L bit column
vectors hoi = 0 and hei = 3 need to be considered to meet the constraint requirements. The
first phase of the solution method consists of finding a set of dn/Le distinct Hi = (hoi , hei)
column vector pairs with a distinct set of hoi ⊕ hei values. In the case of the Hi = (0, 3)
matrix, this gives a value of 3. In Figure 3.6(b) a second Hi sub-matrix (1, 2) is added.
The (0, 3), (1, 2) matrices each have individually unique columns, but they produce the
same hoi ⊕ hei values. This causes the H-matrix to fail Constraint 4. By replacing the
Hi pair (1, 2) with (4, 2), as is shown in Figure 3.6(c), these matrices produce distinct
hoi ⊕ hei values. Once the set of column vector pairs have been successfully selected, this
marks the end the Phase 1 solution.

The second phase of the solution method consists of arranging the Hi matrices in a
manner such that the XOR result of the two adjacent columns in each pair of adjacent Hi

56

[
Hi

I4

]
=

0 0 0 0
0 1 0 1
0 1 0 1

I4

Hi (0,3)

hoi ⊕ hei 3
hei ⊕ hoi+1

-

(a)
0 0 0 0
0 1 0 1
0 1 0 1

I4

 ,

0 0 0 0
0 1 0 1
1 0 1 0

I4

Hi (0,3), (1,2)

hoi ⊕ hei 3, 3
hei ⊕ hoi+1

2

(b)
0 0 0 0
0 1 0 1
0 1 0 1

I4

 ,

1 0 1 0
0 1 0 1
0 0 0 0

I4

Hi (0,3), (4,2)

hoi ⊕ hei 3, 6
hei ⊕ hoi+1

7

(c)
0 0 0 0
0 1 0 1
0 1 0 1

I4

 ,

1 0 1 0
0 1 0 1
0 0 0 0

I4

 ,

1 0 1 0
0 0 0 0
1 1 1 1

I4

Hi (0,3), (4,2), (5,1)

hoi ⊕ hei 3, 6, 4
hei ⊕ hoi+1

7, 7

(d)
1 0 1 0
0 0 0 0
1 1 1 1

I4

 ,

0 0 0 0
0 1 0 1
0 1 0 1

I4

 ,

1 0 1 0
0 1 0 1
0 0 0 0

I4

Hi (5,1), (0,3), (4,2)

hoi ⊕ hei 4, 3, 6
hei ⊕ hoi+1

1, 7

(e)

Figure 3.6: Column vector selection procedure.
57

sub-matrices are distinct. For the case of an even IL matrix size, this requires that the set
of hei ⊕ hoi+1

values form a distinct set. In Figure 3.6(d), the column vector pairs (0, 3),
(4, 2), and (5, 1) are individually unique, and provide a valid Phase 1 solution; however,
the adjacent columns for adjacent Hi sub-matrices fail to satisfy Constraint 4. This can be
remedied by rearranging the Hi matrices as is shown in Figure 3.6(e), to produce a valid
Phase 2 solution. A complete solution consists of an ordered set of dn/Le Hi sub-matrices
that satisfy all of the constraints listed in Section 3.1.1, and reduces the required number
of columns to be considered down from n to a maximum of 2× dn/Le. For the (24, 16) I5

code, this reduces the number of columns to be considered from 24 down to 10. This allows
for the solution search space to be reduced from 2n×r candidate H-matrices down to

((
2r−L

dn/Le

)
× dn/Le!

)2

× dn/Le!

=
(

(2r−L)P(dn/Le)
)2 × dn/Le! (3.6)

potential candidates. In the first phase of the solution, each column in the set of the column

pairs can be arranged in
(

2r−L

dn/Le

)
combinations permuted dn/Le! ways. Since there are two

columns to be chosen per pair, this value is then squared. Once the Phase 1 column
pairs have been chosen, there are dn/Le! ways to arrange the pairs in Phase 2 of the
solution process. For the (24, 16) I5 SEC-DED-DAEC-7AED H-matrix in Figure 3.3, this
reduces the search space from 224×8 = 2192 candidate H-matrices down to (

(
8
5

)
×5!)2×5! ≈

232.3 candidate matrices. Additionally, by choosing only those vectors that will produce a
minimum matrix weight, this preselects 4 of the 5 Phase 1 columns to be chosen (i.e., 000,
001, 010, and 100), and limits the 5th choice to only 3 values (011, 101, or 110) reducing
the number of candidate columns to

(
3
1

)
, and the number of candidate solutions to 223.9.

By examining the example (24, 16) I5 SEC-DED-DAEC-7AED H-matrix in Figure 3.3
it is clear that the odd columns (1, 3, and 5) of each of the top portion’s sub-matrices are
identical, and the even columns (2, and 4) of each sub-matrix within the top portion are
identical as well. The matrix also satisfies all of the individual column and 2-adjacent XOR
column uniqueness constraints. By considering each column of the parity check matrix in
Figure 3.3 to be a binary value with its most significant bit in the first row, and least
significant bit in the r-th row, these values are converted to their decimal equivalents and
the uniqueness of this matrix is shown in Table 3.1.

The first two rows of the table contain data pertaining to the uniqueness of each com-
plete column of the (24, 16) I5 code example in Figure 3.3. The first row shows the 24
distinct decimal equivalent values of each column in the matrix, while the second row
shows the 23 distinct XOR results of each 2-adjacent column pair. Each of these data
values are listed from left to right. Although these uniqueness results are necessary to

58

Table 3.1: (24, 16) I5 SEC-DED-DAEC-7AED Column Uniqueness Table

Unabridged Data
Column Values, hi (24) {16, 136, 4, 130, 1, 48, 200, 36, 194, 33, 144, 72, 132,

66, 129, 80, 40, 68, 34, 65, 176, 8, 164, 2}
2-Adjacent Column XOR,
hi ⊕ hi+1 (23)

{152, 140, 134, 131, 49, 248, 236, 230, 227, 177, 216, 204,
198, 195, 209, 120, 108, 102, 99, 241, 184, 172, 166}

Consolidated Data
Column Pairs, Hi (5) {(0, 4), (1, 6), (4, 2), (2, 1), (5, 0)}
Phase 1 2-Adjacent Column
Pair XOR, hoi ⊕ hei (5)

{4, 7, 6, 3, 5}

Phase 2 2-Adjacent Column
Block XOR, hoi ⊕ hoi+1

(4)
{1, 5, 6, 7}

obtained the desired level of error handling, they can be expressed more succinctly in their
consolidated forms as shown in the final three rows in Table 3.1. Each of these rows con-
tain data pertaining to only the top portion of the H-matrix and leverage the knowledge
of the repeated identity matrix in its bottom portion. The third row contains the set of
column pairs used for each top portion sub-matrix in Figure 3.3, while the fourth and fifth
rows contain the Phase 1 and Phase 2 column pair XOR results respectively. The Phase
1 2-adjacent column pairs XOR results are 0⊕ 4 = 4, 1⊕ 6 = 7, 4⊕ 2 = 6, etc... and the
Phase 2 2-adjacent column block XOR results are 0 ⊕ 1 = 1, 1 ⊕ 4 = 5, 4 ⊕ 2 = 6, etc...
Notice the uniqueness of every first element and every second element in the set of column
pairs, as well as the uniqueness of the Phase 1 and Phase 2 XOR results. This uniqueness
is sufficiently equivalent to the unabridged uniqueness result shown in the first two rows of
the table, and is sufficient to provide the SEC-DED-DAEC-7AED coverage (Constraints
1-5) for the (24, 16) I5 code.

3.2.5 Check- and Syndrome-bit Generation XOR Logic Depth
and Check-bit Selection

The use of the repeated identity matrix in the bottom portion of the proposed codes’ H-
matrices facilitates the AED capability of the code; however, it prevents the use of the
Ir matrix (or the set of 1-weighted columns) for the check-bit columns. Since an all-zero
column vector within the bottom portion of the H-matrix will disrupt the AED capabilities
of the proposed codes, some check-bit columns will have a weight greater than one. This
causes the generation of some of the check-bits to be dependent upon the generation of
other check-bits. This has a negative impact on the maximum check-bit generation logic
depth, adding an additional delay penalty to the encoder logic. Functionally, any set of

59

r columns may be chosen to represent the check-bit locations, but by selecting the check-
bit columns such that no dependencies exist within the top portion rows, and limiting
the number of dependencies in the bottom portion rows the impact on encoder delay can
be minimized. The maximum encoder check-bit logic depth considering dependencies is
calculated as

Max Check-bit Logic DepthDep.(H) = dlog2(MRW(H)− 1)e+

⌈
log2

(⌈
r − L
L

⌉
+ 1

)⌉
(3.7)

where the first term represents the maximum check-bit delay without dependencies, and
the second term represents the delay overhead introduced by these dependencies. For this
calculation, MRW is the maximum row weight, and r−L is the number of rows in the top
portion of the H-matrix. Each of these rows create one dependency in the check-bit calcu-
lations for the bottom portion check-bits. These dependencies can be distributed amongst
the L bottom portion check-bit calculations, and the set of dependencies within each can
be calculated logarithmically. By ensuring no dependencies exist for the top portion rows,
and the dependencies are distributed throughout the bottom portion rows, the additional
encoder delay penalty can be limited to 1-2 logic levels for standard word lengths. The
syndrome-bit generation logic in the decoder does not have this dependency issue. Hence,
the maximum syndrome-bit generation logic depth is determined by Equation 2.10. This
allows for negligible or even reduced delay for syndrome-bit generation in the proposed
class of codes compared to the Hsiao or Dutta codes during a read operation.

3.2.6 Row Weight Balancing

Although the number of check-bits are fixed by the length of the codeword, optimizations
on the encoder-decoder design can still be done by judicious selection of the top portion H-
matrix columns. Optimizations can be performed by minimizing the total matrix weight
and by balancing the matrix row weights. By minimizing the total matrix weight, the
total number of XOR gates for implementing the check- and syndrome-bit generation
logic circuits can be reduced, and by evenly distributing the matrix weight across the
matrix rows, the maximum row weight can be minimized. As mentioned in Section 2.7.2,
minimizing the maximum matrix row weight reduces the number of logic levels in the
check and syndrome XOR logic trees, thereby reducing the encoder and decoder delays.
The overall matrix weight can be minimized by selecting those columns with minimal
weight. For example, in the case where there are three check-bits for the top portion of
the parity check matrix, there are 23 = 8 unique candidate columns to choose from. These
columns are grouped by their column weight in Table 3.2.

60

Table 3.2: Set of 3-bit Columns with Various Column Weights

Column Weight Elements in Set Column Elements Base2 Column Elements Base10

0 1 {000}2 {0}10

1 3 {001, 010, 100}2 {1, 2, 4}10

2 3 {011, 101, 110}2 {3, 5, 6}10

3 1 {111}2 {7}10

There are four different column weights for the eight different columns. The zero column
has a weight of 0, three columns exist with a weight of 1, three columns have a weight of
2, and one column has a weight of 3. By choosing those columns with minimum weight
first, and the higher weighted columns only when necessary, the total matrix weight can be
minimized. For example, for the (24, 16) I5 SEC-DED-DAEC-7AED code example where
5 unique columns must be selected from the 8 potential candidates, a minimum weight
of 23 can be obtained for the top portion of the matrix by selecting all of the columns
with weight 1 or less, and the one remaining column from the set of weight-2 columns. By
careful selection of the weight-2 column for the even and odd sets of columns, the rows
weights of the top portion of the matrix can be balanced.

Since the bottom portion of the H-matrix contains repeated IL matrices, the weight
of each column in the bottom portion of the H-matrix will always be 1. Further, the
row weight for each bottom portion row is determined by the number of IL sub-matrices.
The concept of row weight balancing will be leveraged to minimized the syndrome-bit
generation logic depth for the (24, 16) I5 code in Section 3.6.6.

3.2.7 Triple Adjacent-bit Error Correction

To construct an H-matrix capable of performing triple adjacent error correction the matrix
must satisfy all of the constraints listed in Section 3.1.1. Constraint 6, the need to have the
XOR result of any three adjacent columns unique from the XOR result of any other three
adjacent columns and the other error correcting syndromes is what provides the TAEC
capability. Due to the bottom portion IL matrix, the triple adjacent-bit error syndromes
are guaranteed to be distinct from the single and double adjacent-bit syndromes since
the bottom portion of the H-matrix contributes a weight of 1, 2, or 3 to the syndrome
for each single, double adjacent-bit, or triple adjacent-bit error respectively. TAEC H-
matrices have been constructed by exploring the set of DAEC H-matrices for the TAEC
property. An example (24, 16) I5 SEC-DED-TAEC-6AED code is shown in Figure 3.7,
and its accompanying uniqueness table is shown in Table 3.3.

As mentioned in Section 3.2.1, the degree of AED depends on the degree of AEC. For
the fixed amount of TAEC, the amount of AED is given by

61

(24, 16) I-5 Code

4 6, 0 4, 1 0, 2 1, 5 2

C C C C C C C C

1 4 6 8 5 3 7 2

1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 (9)

0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 (7)

0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 (7)

--

1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (5)

0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (5)

0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (5)

0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (5)

0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (4)

Figure 3.7: Example (24, 16) I5 SEC-DED-TAEC-6AED Parity Check Matrix

Table 3.3: (24, 16) I5 SEC-DED-TAEC-6AED Column Uniqueness Table

Consolidated Data
Column Pairs, Hi (5) {(4, 6), (0, 4), (1, 0), (2, 1), (5, 2)}
Phase 1 2-Adjacent Column
Pair XOR, hoi ⊕ hei(5)

{2, 4, 1, 3, 7}

Phase 2 2-Adjacent Column
Block XOR, hoi ⊕ hoi+1

(4)
{6, 5, 2, 4}

3-Adjacent Column XOR,
hi ⊕ hi+1 ⊕ hi+2 (22)

{220, 142, 199, 83, 25, 156, 14, 135, 179, 57, 28, 46, 7,
115, 89, 60, 78, 39, 211, 185, 92, 174}

62

1-Bit Errori

2-Adj-Bit Errori+1

2-Adj-Bit Errori

Error Locationi

(a) DAEC

1-Bit Errori

2-Adj-Bit Errori+1

2-Adj-Bit Errori

3-Adj-Bit Errori+1

3-Adj-Bit Errori

3-Adj-Bit Errori+2

Error Locationi

(b) TAEC

Figure 3.8: For the DAEC and TAEC codes, each codeword bit can be involved in 3 and 6
different correctable error patterns respectively. By OR’ing the decoded syndrome value for
each of these error patterns together, it can be determined if a particular bit was involved
in an error. By implementing this circuitry for each codeword bit, and error location vector
can be generated.

2L− (TAEC + 1) = 2L− 4 ; For L > 3 (3.8)

This is shown in Figure 3.5. For TAEC codes, adjacent errors wider than 2L− 4 may
lead to miscorrections.

3.2.8 Encoder-Decoder Circuit

The encoding and decoding processes for the proposed codes use standard XOR logic for
the check- and syndrome-bit generation in a manner identical to the Hamming and Hsiao
SEC-DED schemes. The syndrome decoder logic however, has been modified to include
correctable error matching signals for each of the adjacent bit upset syndrome patterns. For
the SEC-DED-DAEC-yAED codes, each code-bit can be involved in three correctable error
types: one single bit upset and two 2-adjacent bit upsets. By OR’ing the error matching
signals together for each code-bit error location the syndrome decoder can indicate which
particular bits have been involved in an upset. This modification is shown for a bitslice for
the DAEC codes in Figure 3.8(a). For the SEC-DED-TAEC-yAED codes, the syndrome

63

C1 D1 D2 D3 D4 C4 D5 C6 D6 C8 D7 C5 C3 C7 D8 D9 D10 D11 D12 D13 D14 C2 D15 D16

C1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
C2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1
C3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0

(a) Top Portion Generator Matrix, GTop

C1 D1 D2 D3 D4 C4 D5 C6 D6 C8 D7 C5 C3 C7 D8 D9 D10 D11 D12 D13 D14 C2 D15 D16

C4 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
C5 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
C6 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
C7 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
C8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

(b) Bottom Portion Generator Matrix, GBottom

Figure 3.9: (24, 16) I5 SEC-DED-TAEC-6AED Encoder Generator Matrices

decoder circuit is modified as shown in Figure 3.8(b), since these codes are able to correct
triple adjacent-bit errors, there are n− 2 additional error correcting syndrome patterns to
match. The i-th bit of the n-bit codeword will be corrected under one of any six conditions.
These are if: 1. a single-bit error occurred at the i-th bit, 2. a double adjacent-bit error
occurred at either the (i−1, i), or 3. (i, i+1) bits, or 4. a triple adjacent-bit error occurred
at the (i−2, i−1, i), 5. (i−1, i, i+1), or 6. (i, i+1, i+2) bits. By OR’ing the error matching
signals corresponding to each of these syndrome patterns, the upset of a particular code-bit
can be determined by the syndrome decoder. The area and performance implication of the
additional decoder complexity is considered in Section 3.6.2 and Section 3.6.3 respectively.

3.3 Encoding Process

The encoding process can be represented using two generator matrices, GTop and GBottom,
derived from the parity check matrix H. The matrix GTop is responsible for generating the
check-bits that do not contain any check-bit data dependencies, and is derived from the
top portion rows of the H-matrix. The matrix GBottom is derived from the bottom portion
rows of the H-matrix and generates check-bits that may contain check-bit dependencies.
The generator matrices GTop and GBottom are respectively equal to the top and bottom
portion rows of H with the exception that the i-th check-bit is removed from each of the
i-th rows. This follows from the logic discussed in Section 2.6.3. The encoding generator
matrices GTop and GBottom for the (24, 16) I5 SEC-DED-TAEC-6AED code are shown in
Figure 3.9.

The desired encoded codeword, v, consists of the original dataword d and the calculated
check-bits c distributed throughout the codeword. The arrangement of the (24, 16) I5 SEC-
DED-TAEC-6AED codewords is as follows

64

v = (c1d1d2d3d4 c4d5c6d6c8 d7c5c3c7d8 d9d10d11d12d13 d14c2d15d16)

The placement of the check-bits has been discussed in Section 3.2.5. For an input data
vector, d, the least significant check-bits, cLSBs, are calculated by setting all of the check-
bit values in v to zero, and then multiplying v by the transpose of the GTop generator
matrix as follows

cLSBs = v ·GT
Top.

The calculated cLSBs check-bits can then be assigned to their respective positions in
v. The most significant check-bits, cMSBs, are then calculated using the generator matrix
GBottom as follows

cMSBs = v ·GT
Bottom.

The calculated cMSBs check-bits are then assigned to their respective positions in v,
and the codeword can be stored in memory. Although this is mathematically represented
using a multi-step process, it can easily be implemented in a combinational XOR logic
circuit.

3.4 Encoding, Error Injection, Decoding Example

This section provides a full encoding and decoding example for the (24, 16) I5 SEC-DED-
TAEC-6AED code in Figure 3.7 in the event of a 3-adjacent bit error. For this example
we assume that the dataword d = (1010 1010 1010 1010) is to be transmitted, and the 3-
adjacent error e = (00011 10000 00000 00000 0000) is injected into the codeword v during
transmission.

65

3.4.1 Encoding

The GTop matrix in Section 3.3 provides the following cLSBs check-bit calculations

c1 = d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d14 ⊕ d15

c2 = d1 ⊕ d3 ⊕ d9 ⊕ d11 ⊕ d13 ⊕ d16

c3 = d7 ⊕ d8 ⊕ d10 ⊕ d12 ⊕ d14 ⊕ d15

while the GBottom matrix provides the following cMSBs calculations

c4 = c1 ⊕ d7 ⊕ d9 ⊕ d14

c5 = d1 ⊕ d5 ⊕ d10 ⊕ c2

c6 = d2 ⊕ c3 ⊕ d11 ⊕ d15

c7 = d3 ⊕ d6 ⊕ d12 ⊕ d16

c8 = d4 ⊕ d8 ⊕ d13.

The check-bit calculations are identical to the syndrome-bit calculations minus the
check-bit being calculated. Notice the dependencies in the c4, c5, and c6 equations on the
check-bits c1, c2, and c3 respectively. These bits must be calculated in the cLSBs check-bit
calculations before being used in the dependent cMSBs equations. Encoding the dataword
d = (1010 1010 1010 1010) produces the check-bits c =(cLSBs cMSBs) = (010 01011),
and inserting the check- and data-bits into their appropriate locations for the codeword v
provides

v = (c1d1d2d3d4 c4d5c6d6c8 d7c5c3c7d8 d9d10d11d12d13 d14c2d15d16)

= (01010 01001 11010 10101 0110).

This ends the encoding procedure, and the codeword v is written into memory.

3.4.2 Error Injection

When the SEU occurs, the 3-adjacent error is injected into the transmitted codeword v.
This can be represented by XORing the error vector e with the transmitted codeword v.

66

This produces the received codeword r, and mathematically describes the data corruption
process. At this point, the memory system has no knowledge of the data corruption. The
received codeword is given by

r = v⊕ e

(01010 01001 11010 10101 0110)

⊕ (00011 10000 00000 00000 0000)

(01001 11001 11010 10101 0110).

Notice the data corruption in bits d3, d4, and c4.

3.4.3 Decoding

During a read operation, the decoding process takes place. The decoder determines, if
possible, if an error has occurred and the location of the error. It then performs the error
correction. This process begins with the syndrome generation

S = r ·HT

= (0101 0011).

The syndrome value matches the XOR combination of the fourth, fifth, and sixth
columns in the H-matrix in Figure 3.7 (d3, d4, and c4), and is the decimal equivalent,
(83)10, of the fourth entry in the 3-Adjacent Column XOR Results row in Table 3.3. The
syndrome decoder translates the 8-bit syndrome pattern into the 24-bit error location
vector, ELoc

ELoc = (00011 10000 00000 00000 0000).

The syndrome decoder has functioned correctly if the error location vector, ELoc, is
equal to the injected error vector e. XORing the error location vector ELoc bitwise with
the received codeword r provides the corrected codeword, u

u = r⊕ ELoc

= (01010 01001 11010 10101 0110).

67

Candidate Solution Generator
Program Inputs:

- Codeword Length
- Identity Matrix Size
- Maximum Iteration Number

Column
Generator

Phase 1
Generator

Phase 2
Generator

Solution Evaluator

Verification
Solution
Profiler

Output
Data File

Yes

No Iterations
Remaining

Figure 3.10: Matlab Solution Solver Flow Graph

Since the 3-adjacent error type is within the error handling capability of the (24, 16) I5

SEC-DED-TAEC-6AED code, the corrected codeword, u, is identical to the originally
transmitted codeword v.

3.5 H-Matrix Generation and Verification

The two-phase solution method has been implemented in Matlab for constructing valid H-
matrices. The solver, illustrated in Figure 3.10, is divided into two components. The first
is a pseudo-greedy, H-matrix candidate solution generator, while the second component
evaluates the candidate H-matrix solution for compliance with the desired H-matrix rules,
discussed in Section 3.1.1. Provided that the candidate solution is a valid one, the matrix
is then profiled in terms of the metrics discussed throughout Sections 2.7 and 3.2.5, and
the data is output to a text file. In the event that the candidate solution is invalid, it is
returned to the candidate solution generator for modification and resubmission. Modifica-
tions are performed by randomly swapping columns that violate the matrix construction
constraints, and by reselecting candidate columns. This process is continued until the de-
sired number of solution iterations have been performed. The solutions solver was run on
each of the proposed matrix codes producing anywhere from over 100 to multiple thousands
of solutions. For each of the proposed codes, the solution with the lowest total weight and
miscorrection probabilities produced by the solution solver are presented in Section 3.6.

3.5.1 Construction Algorithm

The solver’s code construction algorithm, as detailed in Figure 3.11, takes the codeword
length, IL size, and maximum iteration counters for each phase of the solution as inputs,
and returns a set of valid H-matrices complete with a full performance evaluation as output
(provided that a set of solutions is found). The solver initially selects a set of candidate Hi

column vector pairs, H(o, e), where o and e are top portion column vectors, either randomly,

68

or by minimum weight. This is considered to be Phase 0. Each of these pairs represent the
odd and even column vectors in each of the Hi sub-matrices. To ensure overall H-matrix
column uniqueness, all of the o elements in each pair are distinct, and likewise for the e
elements. The XOR result of each Hi column vector pair is then calculated as c = o ⊕ e.
For the given set of column vectors, Phase 1 attempts to find sets of distinct c elements.
Distinct sets are stored and passed to Phase 2. For sets with duplicate c elements, the
e elements are randomly swapped, and the c elements are recalculated. This process is
iterated p1Max number of times for p0Max sets of column vector pairs. Provided a valid
set of Phase 1 solutions, Phase 2 attempts to order the list of Hi column vector pairs in such
a manner that the XOR result, d, of the adjacent columns of any two adjacent Hi column
vector pairs are distinct. For an odd IL size this requires the set of H(i).o⊕H(i+ 1).o be
unique, whereas for an even IL size, the results of H(i).e⊕H(i+1).o must be unique. Each
valid Phase 1 solution undergoes p2Max iteration attempts. All valid Phase 2 solutions
make up a set of valid H-matrices for the given set of input parameters.

3.6 Evaluation

H-matrices for the proposed scheme have been implemented and verified for functionality
using a custom test suite designed in Matlab for typical memory word sizes of 16, 32,
and 64 data-bits. Relevant high-level performance metrics have been extracted directly
from the codes’ H-matrices and compared with Hsiao SEC-DED [31], Dutta SEC-DED-
DAEC [44], BCH DEC [19], and Reed Solomon SbEC-DbED [11] codes. Both the BCH and
RS codes have been implemented using parallelize, single-cycle, syndrome-based decoders.
Further, synthesis results have been generated in Synopsys Design Compiler using Verilog
Hardware Description Language (HDL) code implementations and a commercial 65 nm
general purpose bulk CMOS technology standard cell library. The codes are compared
in terms of their provided error correction and detection capabilities, required number of
check-bits, encoder/decoder area, performance, and power consumption, as well as their
miscorrection probabilities for non-adjacent errors. The values reported for each of the
proposed codes are based on the H-matrix implementation found to have the minimum
miscorrection probability for the minimum decoder logic gate count using the solution
solver discussed in Section 3.5. The parity check matrices for all of the discussed codes are
included in Appendix A. A summary of all high-level performance metrics and synthesis
results are provided in Table 3.4 and Table 3.5 respectively in Section 3.6.5. For brevity,
the plots presented throughout this section focus on the 16 data-bit implementations.

69

Input: n,L, p0Max, p1Max, p2Max
Output: setOf(p2Solutions)

Object: H(i) Column vector pair, H(o, e)
o = Column vector 1; e = Column vector 2
c = o⊕ e

End Object

Object: List of H(i) column vector pairs, H
length = ceiling(n/L)
if L is Odd then

d = H(i).o⊕H(i+ 1).o . Odd IL Size
else

d = H(i).e⊕H(i+ 1).o . Even IL Size
end if

End Object

BEGIN CONSTRUCTION ALGORITHM
for p0 = 1 to p0Max do . Phase 0

Create list of H.length elements H(o, e) via:
1. Random Fill, 2. Minimum Weight,
3. Modification of an existing list
Calculate setOf(H(i).c)

for p1 = 1 to p1Max do . Phase 1
if setOf(H(i).c).isUnique AND

!setOf(p1Solutions).contains(H) then
Add H to setOf(p1Solutions)
Randomly swap a # of H(i).e elements

else
for each duplicate in setOf(H(i).c) do

Randomly swap dup− 1 H(i).e elements
end for

end if
Recalculate setOf(H(i).c)

end for . End Phase 1
end for . End Phase 0

if !setOf(p1Solutions).isEmpty then . Phase 2
for each entry in setOf(p1Solutions) do

Calculate setof(H.d)

for p2 = 1 to p2Max do
if setOf(H.d).isUnique AND

!setOf(p2Solutions).contains(H) then
Add H to setOf(p2Solutions)
Randomly swap a # of H(i)’s

else
for each duplicate in setOf(H.d) do

Randomly swap dup− 1 H(i)’s
end for

end if
Recalculate setOf(H.d)

end for
end for

end if . End Phase 2
END CONSTRUCTION ALGORITHM

Figure 3.11: H-matrix construction algorithm

70

3.6.1 Error Correction and Detection Capabilities

In terms of error correction, the Hsiao SEC-DED code can correct all single-bit errors. The
Dutta SEC-DED-DAEC codes extend this to provide double adjacent-bit error correction,
while the proposed codes can provide either double or triple adjacent-bit error correction
depending on implementation. The BCH DEC code provides double-bit error correction
for all adjacent and non-adjacent double bit errors alike, while the degree of adjacent
correction provided by the RS code depends on the location of the upset and can vary
between 1 and b where b is the code’s byte size. A double adjacent error that crosses over
a byte boundary within a Reed Solomon code cannot be corrected; however, any error
pattern contained entirely within a b-bit byte boundary can be corrected. The proposed
code and RS code are the only ones capable of detecting errors of size greater than two
bits. For both codes, this level of protection is a function of their embedded identity matrix
or byte size, IL or b, and is shown in Figure 3.12 in comparison with other codes. For the
Reed Solomon code, an error of size b + 2 adjacent-bits may go undetected if it resides
within three separate bytes; however, errors up to size 2b adjacent-bits can be detected
provided they reside entirely within two adjacent byte locations.

While the SEC-DED-DAEC Dutta code (6 check-bits for 16 data-bits) and BCH DEC
code (10 check-bits for 16 data-bits) each provide a maximum degree of 2-bit adjacent and
2-bit burst error detection, the proposed codes offer 5-11 bits of AED and 3-6 bits of BED
for the DAEC implementations and between 4-10 bits AED for the TAEC implementations
as the identity matrix is scaled from I4 up to I7. As the number of check-bits (and identity
matrix size) increases, the degree of AED increases by 2-bits/check-bit, while the degree of
BED increases by 1-bit/check-bit. For the cost of one additional check-bit over the (22,16)
Dutta (or Hsiao) code, the proposed (23, 16) I4 DAEC code offers 5-bits AED and 3-bits
BED, while for the same number of check-bits as the (26, 16) DEC BCH code the proposed
(26, 16) I7 DAEC code offers 11-bits AED and 6-bits BED.

3.6.2 Implementation Area

The silicon area requirement for syndrome decoder based error correction circuits is dom-
inated by the syndrome decoder circuit logic. This is made evident in Figure 3.13 which
shows the 2-input XOR logic gate count for the syndrome generation logic and the synthe-
sized area estimate for the complete ECC circuit (check/syndrome generator, syndrome
decoder, and error corrector) for each of the proposed 16 data-bit DAEC codes. As the
number of check-bits (and IL matrix size) increases, fewer XOR gates are required for the
check and syndrome bit generation logic. This reduces the size of the check/syndrome
generator, but the additional check-bit adds an extra input signal to the syndrome decoder
circuit, thereby increasing its complexity. This modification increases the syndrome de-

71

1 2 3 4 5 6 7 8 9 10 11 12

max(RS S3EC−D3ED)

min(RS S3EC−D3ED)

BCH DEC

TAEC−I7

DAEC−I7

TAEC−I6

DAEC−I6

TAEC−I5

DAEC−I5

TAEC−I4

DAEC−I4

Dutta DAEC

Hsiao SEC−DED

Degree of Adjacent/Burst Error Detection (bits)

C
o
d
e
 S

c
h
e
m

e

Degree of Burst Error Detection

Degree of Adjacent Error Detection

Figure 3.12: Adjacent and burst error detection for the proposed codes as a function of IL
matrix size compared with the SEC-DED-DAEC Dutta, BCH DEC, and RS S3EC-D3EC
codes.

72

0

25

50

75

100

ECC Type

X
O

R
 L

o
g

ic
 G

a
te

 C
o

u
n

t

Hsiao Dutta DAEC−I4 DAEC−I5 DAEC−I6 RS S3EC−D3ED BCH DEC
0

1000

2000

3000

4000

A
re

a
 (

µ
m

2
)

XOR Logic Gate Count

Area

Figure 3.13: Check- and syndrome-bit generation XOR logic gate count and synthesized
area for the proposed 16 data-bit SEC-DED-DAEC-yAED code implementations, (22, 16)
SEC-DED-DAEC Dutta code, (25, 16) RS code, and (26, 16) DEC BCH code.

coder logic and in turn the total ECC circuit area as the number of check/syndrome bits
is increased. This stresses the importance of implementing the ECC circuits to determine
their required area as opposed to relying solely on a generator logic gate count estimate.

The proposed (23, 16) I4 code incurs a 69.5% increase in circuit area over the traditional
SEC-DED implementation to achieve the double adjacent error correcting and triple adja-
cent error detecting functionality. This is significantly less than the 5.63x increase in area
required for the (26, 16) BCH DEC code implementation. Further, the incremental area
decreases as the memory word size increases; for the 64 data-bit codes, the proposed (73,
64) I4 code incurs only a 14.1% area overhead while the (78, 64) BCH DEC and (79, 64)
RS codes incur 19.12x and 3.13x area penalties respectively over the traditional (72, 64)
Hsiao SEC-DED scheme. This difference occurs because the addition of double adjacent
error correction requires only n− 1 additional correctable syndrome values, where n is the
codeword length. To achieve the double random error correction offered by the DEC code
requires an additional

(
n
2

)
syndrome values, while the RS code requires 2b − 1 additional

syndrome vectors for every b additional data-bits.

Adding the triple adjacent error correcting feature to the proposed set of codes inher-
ently increases the number of error correcting syndromes. This increase is reflected in the
circuit area as each syndrome pattern requires a syndrome-to-error-location circuit in the

73

Dutta I4 I5 I6 BCH DEC
0

500

1000

1500

2000

2500

3000

Code Scheme

A
re

a
 (

µ
m

2
)

Implementation Area − DAEC

Implementation Area − TAEC

Figure 3.14: Synthesized area comparison between the proposed 16 data-bit DAEC and
TAEC code implementations for the equivalent number of check bits.

syndrome decoder. Adding the TAEC feature to the (23, 16) I4 code requires an addi-
tional n− 1 = 21 syndrome patterns, at a cost of 31% additional circuit area, as shown in
Figure 3.14. The additional area impact incurred by the (25, 16) I6 DAEC code is a result
of additional delay optimizations.

Regardless of the chosen ECC scheme, its circuit area can be amortized over the memory
area. The ECC circuit area is governed by its error handling functionality and codeword
size, and is independent of the capacity of the memory that it is protecting. Doubling the
memory capacity will have a negligible impact on the ECC circuit area. Therefore, the
additional circuit area required for the adjacent error correction functionality can have a
minimal impact at the overall system level.

3.6.3 Encoder and Decoder Propagation Delay

For single-cycle memory, the ECC encoder and decoder propagation delays reside on the
write and read critical paths respectively. The encoder delay includes the time required to
calculate the check-bits for a write operation, while the decoder delay is the time required
to generate the syndrome, decode it, and then perform any necessary corrections during a
read operation. Minimizing the encoder and decoder delays is critical to maintaining high
speed operation. Provided that SRAM performance is typically limited by its read delay,

74

Hsiao Dutta DAEC−I4DAEC−I5DAEC−I6 RS BCH DEC
0

100

200

300

400

500

ECC Type

E
n

c
o

d
e

r
D

e
la

y
 (

p
s
)

0

1

2

3

4

5

C
h

e
c
k
−

b
it
 G

e
n

e
ra

ti
o

n
 X

O
R

 L
o

g
ic

 L
e

v
e

ls

Encoder Delay

Check−bit Generation XOR Logic Levels

(a) Encoder

Hsiao Dutta DAEC−I4DAEC−I5DAEC−I6 RS BCH DEC
0

100

200

300

400

500

ECC Type

D
e

c
o

d
e

r
D

e
la

y
 (

p
s
)

0

1

2

3

4

5

S
y
n

d
ro

m
e

−
b

it
 G

e
n

e
ra

ti
o

n
 X

O
R

 L
o

g
ic

 L
e

v
e

lsDecoder Delay

Syndrome−bit Generation XOR Logic Levels

(b) Decoder

Figure 3.15: Synthesized propagation delay estimation for the proposed 16 data-bit SEC-
DED-DAEC-yAED code implementations, (22, 16) SEC-DED-DAEC Dutta code, (25, 16)
RS code, and (26, 16) DEC BCH code.

and the decoding process is a more complex operation compared to the encoding process,
the synthesized ECC circuits have been optimized for decoder delay.

The encoder and decoder delays for the 16 data-bit codes is shown in Figure 3.15 and
overlaid with the XOR logic depth of the check (encode) and syndrome (decode) generation
logic. During the encoding process, the generation of the check-bits dominates the encoder
propagation delay, and hence the delay is proportional to the encoder logic depth. For
decoding, the decoder’s propagation delay is comprised of syndrome generation, syndrome
decoding, and error correction. Hence, the syndrome generation XOR logic depth and the
syndrome decoder complexity both impact the decoding time.

As seen in Figure 3.15(a), each of the ECC schemes require the same number of XOR
logic levels to encode the codeword’s check-bits. Hence, the encoder delay percentage
increase of even the (25, 16) RS code compared to the (22, 16) SEC-DED code is limited
to only 17.3%. In terms of decoder delay, Figure 3.15(b), the delay slightly increases as a
function of IL matrix size. Although, this increase is limited to 16.7% for the (24, 16) I5

DAEC code over the (22, 16) Hsiao code. Further, for the (25, 16) I6 DAEC code where
the XOR logic depth is reduced to 3 levels, the incremental delay is limited to only 2.6%
over the baseline (22, 16) Hsiao code.

The TAEC feature (Figure 3.16) adds no more than a 10% increase in decoder delay
relative to the (22,16) SEC-DED-DAEC code from [44] for any of the proposed 16 data-bit
codes. While for the 32 data-bit implementations, the TAEC (40, 32)-I4 code requires
only a 1.1% increase in decoder delay and 40.9% increase in area relative to the DAEC
(40, 32)-I4 implementation.

75

Dutta I4 I5 I6 BCH DEC
0

50

100

150

200

250

300

350

400

450

Code Scheme

D
e

c
o

d
e

r
D

e
la

y
 (

p
s
)

Decoder Delay − DAEC

Decoder Delay − TAEC

Figure 3.16: Synthesized propagation delay comparison between the proposed 16 data-bit
DAEC code implementations and the TAEC implementations for the equivalent number
of check bits.

3.6.4 Miscorrection Probability

For the proposed codes, the miscorrection probabilities are less than those presented in [44]
for the equivalent number of data-bits and can be further reduced by increasing the number
of check-bits. All miscorrection probabilities have been calculated using Equation 2.11 in
Section 2.7.3. This reduction is due to the increased codeword length increasing the number
of e-bit error combinations, and the code construction procedure reducing the number of
sharable syndromes. As the number of check-bits increases, the number of possible non-
zero syndromes increases while the number of error correcting syndromes for the code
remains fixed. This is shown in Figure 3.17.

For the (22, 16) Dutta code there is a 64.3% probability of a double random bit error
being misinterpreted as a 2-bit adjacent error, while this probability is reduced to 10.0%
for the (26, 16) I7 proposed code. For 3-bit random errors, the miscorrection probability
is reduced from 65.2% down to 14.0% for the same codes. The miscorrection probabilities
for the Hsiao SEC-DED and BCH DEC codes are intrinsically zero for double-bit errors
since the SEC-DED code does not perform any double error correction, and the DEC code
is capable of correcting all adjacent and non-adjacent double-bit errors alike.

Since the bottom partition H-matrix columns in the proposed codes are restricted to a
column weight of one, for any double bit error the bottom partition syndrome bits always
have an even weight. Since the added TAEC syndrome patterns are the XOR result of

76

Hsiao Dutta DAEC I4 TAEC I4 DAEC I5 TAEC I5 DAEC I6 TAEC I6 DAEC I7 RS BCH DEC
0

10

20

30

40

50

60

70

Code Scheme

M
is

c
o

rr
e

c
ti
o

n
 P

ro
b

a
b

ili
ty

 (
%

)

P(2−Random)

P(3−Random)

Figure 3.17: Miscorrection probabilities for 2-random and 3-random bit errors for the
proposed 16 data-bit SEC-DED-DAEC-yAED code implementations, (22, 6) Hsiao SEC-
DED code, (22, 16) SEC-DED-DAEC Dutta code, (25, 16) RS code, and (26, 16) DEC
BCH code.

three adjacent columns, the bottom partition syndrome will always have a weight of three,
thus preventing an overlap of the 2-bit random error and 3-bit adjacent error syndrome
patterns. Hence, the TAEC feature in the proposed class of codes results in a minimal
difference in the 2-bit random error miscorrection probability, P(2-Random). The slight
differences in P(2-Random) seen in Table 3.4 between any of the DAEC and TAEC codes for
the same IL size and number of data-bits is due to its column selection and arrangement as
opposed the added TAEC syndromes. For this same reason, the introduction of the TAEC
syndromes does increase the three bit miscorrection probability since these error types can
cause odd-column-weight syndrome patterns in the bottom partition sub-syndrome bits,
however these three bit random errors are significantly more rare than their adjacent error
counterparts.

3.6.5 Implementation Summary

The following section provides a comprehensive summary of results for the proposed codes
for 16, 32, and 64 data-bit implementations. A summary of results is included for the Hsiao
SEC-DED, Dutta SEC-DED-DAEC, BCH DEC, and Reed Solomon codes. Results have
been divided into two tables, Table 3.4 summarizes all of the high-level characterization
metrics extracted directly from the H-matrix, while Table 3.5 summarizes the synthesis
results for each of the implemented circuits. For the 32 and 64 data-bit implementations,

77

I3 DAEC codes were found that use the same number of check-bits as the traditional
SEC-DED codes. A I3 solution was not found for the 16 data-bit implementations.

H-Matrix Code Comparison

Table 3.4 summarizes the high-level characterization metrics extracted from the H-matrices
of the proposed codes for 16, 32, and 64 data-bit memory word sizes. Metrics include:
number of check-bits, error correction and detection ability, number of XOR logic levels
and gate count required in the encoder check-bit generation logic and decoder syndrome-
bit generation logic, and miscorrection probability for double and triple non-adjacent-bit
errors being being identified and falsely corrected as otherwise correctable errors.

Synthesis Results

Table 3.5 summarizes the synthesis results of the HDL implementations for each of the
proposed codes for 16, 32, and 64 data-bit memory word sizes. Synthesis results have been
generated in Synopsys Design Compiler using Verilog and a commercial 65 nm general
purpose bulk CMOS technology standard cell library. Metrics for each code include the
number of check-bits and error correction and detection ability as reference, as well as the
synthesized area, encoder/decoder propagation delay, and power estimations. Estimated
power is dynamic switching power.

3.6.6 Modified Codes

In addition to the SEC-DED-DAEC-yAED and SEC-DED-TAEC-yAED codes presented
in the previous sections, a variety of codes derived from these have been created as well.
These include: increased identity matrix size (IIMS) codes, increased check-bit (ICB)
codes, and optimized codes. Each of these slightly modify the code construction procedure
in favour of one set of metrics at the expense of another.

Increased Identity Matrix Size Codes

Increased identity matrix size codes maximize the size of the repeated identity matrix, IL, in
the bottom portion of the proposed code’s H-matrix for an equivalent number of check-bits
as one of the standard proposed SEC-DED-DAEC-yAED codes. This is done by minimizing
the required number of check-bits in the top portion of the H-matrix, rather than simply
using a one-to-one increasing correspondence between the number of check-bits for a code
and its identity matrix size. These codes provide an increased level of adjacent and burst

78

Table 3.4: H-Matrix Code Comparison Summary
16 Data-bit Codes

Generator XOR Logic Miscorrection Probability
(n, k) I-Size Code Check- xAEC yAED zBED Logic Levels Gate P(2-Random) P(3-Random)

bits Encode Decode Count (%) (%)
(22, 16) SEC-DED [31] 6 1 2 2 4 4 48 0.0 65.2
(22, 16) DAEC [44] 6 2 2 2 4 4 48 64.3 65.2

(23, 16) I4 Proposed, DAEC 7 2 5 3 4 4 42 28.6 38.6
(24, 16) I5 Proposed, DAEC 8 2 7 4 4 4 39 15.8 25.3
(25, 16) I6 Proposed, DAEC 9 2 9 5 4 3 36 13.0 18.4
(26, 16) I7 Proposed, DAEC 10 2 11 6 4 3 35 10.0 14.0
(23, 16) I4 Proposed, TAEC 7 3 4 3 4 4 42 29.0 65.3
(24, 16) I5 Proposed, TAEC 8 3 6 4 4 4 39 16.2 39.7
(25, 16) I6 Proposed, TAEC 9 3 8 5 4 3 36 13.0 27.2

(26, 16) BCH DEC [19] 10 2 2 2 4 4 94 0.0 4.6
(25, 16) RS S3EC-D3ED [11] 9 1-3* 4-6* 4-6* 4 4 70 0.7 18.7

32 Data-bit Codes
Generator XOR Logic Miscorrection Probability

(n, k) I-Size Code Check- xAEC yAED zBED Logic Levels Gate P(2-Random) P(3-Random)
bits Encode Decode Count (%) (%)

(39, 32) SEC-DED [31] 7 1 2 2 4 4 96 0.0 59.6
(39, 32) DAEC [44] 7 2 2 2 4 4 96 57.3 59.6

(39, 32) I3 Proposed DAEC 7 2 3 2 7 5 98 49.8 60.8
(40, 32) I4 Proposed DAEC 8 2 5 3 5 4 88 24.8 36.4
(41, 32) I5 Proposed, DAEC 9 2 7 4 5 4 84 21.4 29.0
(42, 32) I6 Proposed, DAEC 10 2 9 5 5 4 80 9.0 18.1
(40, 32) I4 Proposed, TAEC 8 3 4 3 5 4 88 25.8 60.3
(41, 32) I5 Proposed, TAEC 9 3 6 4 5 4 84 21.8 43.7
(42, 32) I6 Proposed, TAEC 10 3 8 5 5 4 80 9.3 25.7

(44, 32) BCH DEC [19] 12 2 2 2 5 5 200 0.0 1.4
(44, 32) RS S4EC-D4ED [11] 12 1-4* 5-8* 5-8* 5 5 157 0.0 4.1

64 Data-bit Codes
Generator XOR Logic Miscorrection Probability

(n, k) I-Size Code Check- xAEC yAED zBED Logic Levels Gate P(2-Random) P(3-Random)
bits Encode Decode Count (%) (%)

(72, 64) SEC-DED [31] 8 1 2 2 5 5 208 0.0 55.6
(72, 64) DAEC [44] 8 2 2 2 5 5 208 54.6 55.6

(72, 64) I3 Proposed DAEC 8 2 3 2 7 5 211 47.8 57.0
(73, 64) I4 Proposed DAEC 9 2 5 3 7 5 191 25.8 35.4
(74, 64) I5 Proposed, DAEC 10 2 7 4 6 5 177 17.1 24.7
(75, 64) I6 Proposed, DAEC 11 2 9 5 6 5 172 11.0 18.0
(74, 64) I5 Proposed, TAEC 10 3 6 4 6 5 177 18.3 36.6
(75, 64) I6 Proposed, TAEC 11 3 8 5 6 5 172 11.4 25.3

(78, 64) BCH DEC [19] 14 2 2 2 6 6 445 0.0 0.9
(79, 64) RS S5EC-D5ED [11] 15 1-5* 6-10* 6-10* 6 6 364 0.3 1.3

*Correction and detection capabilities for each the Reed-Solomon codes depend on the error location

79

Table 3.5: Synthesis Results Comparison Summary
16 Data-bit Codes

Delay Optimized Synthesis Results
(n, k) I-Size Code Check- xAEC yAED zBED Area Delay (ns) Power

bits (µm2) Encode Decode (µW)
(22, 16) SEC-DED [31] 6 1 2 2 462.24 0.208 0.298 192.2
(22, 16) DAEC [44] 6 2 2 2 604.44 0.230 0.325 245.2

(23, 16) I4 Proposed, DAEC 7 2 5 3 783.72 0.230 0.337 263.5
(24, 16) I5 Proposed, DAEC 8 2 7 4 826.20 0.234 0.335 250.0
(25, 16) I6 Proposed, DAEC 9 2 9 5 1069.2 0.227 0.306 320.5
(26, 16) I7 Proposed, DAEC 10 2 11 6 836.28 0.243 0.348 242.2
(23, 16) I4 Proposed, TAEC 7 3 4 3 1026.0 0.237 0.358 325.7
(24, 16) I5 Proposed, TAEC 8 3 6 4 978.48 0.251 0.357 285.1
(25, 16) I6 Proposed, TAEC 9 3 8 5 990.72 0.237 0.359 288.3

(26, 16) BCH DEC [19] 10 2 2 2 2606.4 0.238 0.413 732.6
(25, 16) RS S3EC-D3ED [11] 9 1-3* 4-6* 4-6* 1050.44 0.244 0.351 355.4

32 Data-bit Codes
Delay Optimized Synthesis Results

(n, k) I-Size Code Check- xAEC yAED zBED Area Delay (ns) Power
bits (µm2) Encode Decode (µW)

(39, 32) SEC-DED [31] 7 1 2 2 829.80 0.248 0.327 372.6
(39, 32) DAEC [44] 7 2 2 2 1177.56 0.252 0.357 521.4

(39, 32) I3 Proposed DAEC 7 2 3 2 925.56 0.359 0.459 403.1
(40, 32) I4 Proposed DAEC 8 2 5 3 954.36 0.329 0.439 391.6
(41, 32) I5 Proposed, DAEC 9 2 7 4 1313.64 0.339 0.419 519.3
(42, 32) I6 Proposed, DAEC 10 2 9 5 1341.36 0.328 0.405 505.3
(40, 32) I4 Proposed, TAEC 8 3 4 3 1344.96 0.324 0.444 511.7
(41, 32) I5 Proposed, TAEC 9 3 6 4 1619.28 0.321 0.421 582.1
(42, 32) I6 Proposed, TAEC 10 3 8 5 1512.72 0.304 0.444 526.8

(44, 32) BCH DEC [19] 12 2 2 2 9267.84 0.349 0.523 4393
(44, 32) RS S4EC-D4ED [11] 12 1-4* 5-8* 5-8* 1781.64 0.262 0.427 684.8

64 Data-bit Codes
Delay Optimized Synthesis Results

(n, k) I-Size Code Check- xAEC yAED zBED Area Delay (ns) Power
bits (µm2) Encode Decode (µW)

(72, 64) SEC-DED [31] 8 1 2 2 1611.0 0.307 0.395 779.7
(72, 64) DAEC [44] 8 2 2 2 2386.8 0.309 0.424 1017.0

(72, 64) I3 Proposed DAEC 8 2 3 2 1623.2 0.388 0.530 721.3
(73, 64) I4 Proposed DAEC 9 2 5 3 1837.4 0.373 0.506 739.8
(74, 64) I5 Proposed, DAEC 10 2 7 4 2066.0 0.366 0.483 857.0
(75, 64) I6 Proposed, DAEC 11 2 9 5 2399.4 0.313 0.458 979.8
(74, 64) I5 Proposed, TAEC 10 3 6 4 3112.9 0.370 0.464 1207.0
(75, 64) I6 Proposed, TAEC 11 3 8 5 2784.2 0.369 0.494 985.1

(78, 64) BCH DEC [19] 14 2 2 2 30811.6 0.386 0.598 14831.0
(79, 64) RS S5EC-D5ED [11] 15 1-5* 6-10* 6-10* 5035.32 0.352 0.519 1642.0

*Correction and detection capabilities for each the Reed-Solomon codes depend on the error location

80

(41,32) DAEC (42,32) DAEC (73,64) DAEC (74,64) DAEC (75,64) DAEC
0

2

4

6

8

10

12

14

16

Code Scheme

D
e
g
re

e
 o

f
A

d
ja

c
e
n
t/
B

u
rs

t
E

rr
o
r

D
e
te

c
ti
o
n
 (

b
it
s
)

Adjacent Error Detection − Standard Proposed Code

Adjacent Error Detection − IIMS Code

Burst Error Detection − Standard Proposed Code

Burst Error Detection − IIMS Code

Figure 3.18: Degree of adjacent and burst error detection for Increased Identity Matrix Size
codes compared to their equivalent SEC-DED-DAEC-yAED codes for the same number of
check-bits.

error detection without an increase in the number of check-bits. Figure 3.18 compares
the amount of provided error detection for the IIMS codes versus their equivalent SEC-
DED-DAEC-yAED code for the same codeword size (i.e., same number of both check- and
data-bits), while Table 3.6 compares the other metrics for the codes. The table includes
both the IIMS codes and their SEC-DED-DAEC-yAED equivalents. IIMS codes have been
created for the 32 and 64 data-bit DAEC codes.

Since each of the IIMS codes use an identity matrix one bit size larger than its SEC-
DED-DAEC-yAED code with an equivalent number of check-bits, the IIMS code provides
an additional two bits of AED and one additional bit of BED. This improvement comes
at the cost of an increase in the code’s miscorrection probabilities. The impact on silicon
area and encoder/decoder performance is implementation dependent.

Increased Check-bit Codes

By increasing the number of check-bits beyond its minimum requirement for a given identity
matrix size, the miscorrection probabilities of a code can be reduced. This can be performed
for any type of code including Dutta, Hsiao, Hamming, BCH, or RS codes. An example is
shown in Figure 3.19.

81

Table 3.6: Increased Identity Matrix Size Code Comparison
32 Data-bit Codes

Synthesis Results Miscorrection Probability
(n, k) I-Size Code Check- xAEC yAED zBED Area Delay (ns) P(2-Random) P(3-Random)

bits (µm2) Encode Decode % %
(39, 32) DAEC [44] 7 2 2 2 1177.56 0.252 0.357 57.3 59.6

(41, 32) I5 Proposed, DAEC 9 2 7 4 1313.64 0.339 0.419 21.4 29.0
(41, 32) I6 Proposed, IIMS 9 2 9 5 1591.20 0.307 0.391 24.5 33.5
(42, 32) I6 Proposed, DAEC 10 2 9 5 1341.36 0.328 0.405 9.0 18.1
(42, 32) I7 Proposed, IIMS 10 2 11 6 1316.88 0.261 0.379 16.5 24.5

64 Data-bit Codes
Synthesis Results Miscorrection Probability

(n, k) I-Size Code Check- xAEC yAED zBED Area Delay (ns) P(2-Random) P(3-Random)
bits (µm2) Encode Decode % %

(72, 64) DAEC [44] 8 2 2 2 2386.8 0.309 0.424 54.6 55.6
(73, 64) I4 Proposed DAEC 9 2 5 3 1837.4 0.373 0.506 25.8 35.4
(73, 64) I5 Proposed, IIMS 9 2 7 4 2542.68 0.361 0.48 34.6 45.3
(74, 64) I5 Proposed, DAEC 10 2 7 4 2066.0 0.366 0.483 17.1 24.7
(74, 64) I6 Proposed, IIMS 10 2 9 5 2107.08 0.363 0.477 23.0 32.0
(75, 64) I6 Proposed, DAEC 11 2 9 5 2399.4 0.313 0.458 11.0 18.0
(75, 64) I7 Proposed, IIMS 11 2 11 6 1898.64 0.409 0.515 16.2 23.9

(23,16)−I4 DAEC (24,16)−I4 DAEC (25,16)−I4 DAEC
0

5

10

15

20

25

30

35

40

Code Scheme

M
is

co
rr

ec
tio

n
P

ro
ba

bi
lit

y
(%

)

P(2−Random)

P(3−Random)

Figure 3.19: Miscorrection probabilities for 16 Data-bit Increased Check-bit codes.

82

By adding an additional check-bit to a (23, 16) I4 SEC-DED-DAEC-5AED code to
make a (24, 16) I4 SEC-DED-DAEC-5AED code, the double-random-bit error miscorrec-
tion probability is reduced by 51.7% and the triple-random-bit error miscorrection proba-
bility is reduced by 43.8%. Since the size of the identity matrix is not changed, there is no
added benefit to the degree of error detection. As the number of check-bits increases, the
miscorrection probabilities progressively decrease. For the (25, 16) I4 SEC-DED-DAEC-
5AED code, the 2-random and 3-random miscorrection probabilities decrease by 69.6%
and 54.9% from the (23, 16) I4 DAEC-5AED code’s 2-random and 3-random miscorrec-
tion probabilities respectively. ICB codes have practicality in fail-safe applications where
miscorrection must be minimized.

Optimized Codes

By using the existing set of codes as an initial starting point, certain codes can be optimized
to improve their performance. The (24, 16) I5 SEC-DED-DAEC-7AED has been found to
be the best example of this. The (24, 16) I5 code in Figure 3.3 has row weights of 9, 7,
and 7 in the top portion of its H-matrix. The calculation of their syndrome-bits require 4,
3, and 3 XOR logic levels respectively. If the first syndrome-bit with row weight 9 can be
reduced to a row weight of 8, then it too can be calculated in log2(8) = 3 XOR logic levels.
This can be achieved through row weight balancing to produce row weights of 8, 8, and
7 data-bits per syndrome-bit calculation. Unfortunately, this cannot be achieved while
remaining in compliance with the column interleaving construction procedure discussed
in Section 3.2.4, as by inspection, modifying a set of interleaved columns will affect at
a minimum two columns, and simply shift the row weight of 9 from the first row of the
H-matrix to either its second or third row. If instead, the interleaving guideline is relaxed
and only a single column is modified, then the row weights can be balanced to minimize
the maximum row weight. This column rearranging procedure has been performed on the
parity check matrix in Figure 3.20 and the columns have been rearranged to ensure they
still meet the DAEC criterion (Constraint 4).

Notice that this optimized parity check matrix has the same total weight as the previous
implementation, and thus uses the same number of XOR gates for syndrome generation,
but the row weights in the top portion of the matrix have been balanced to maintain a
maximum row weight of 8. This allows for each of the top portion syndrome bits to be
calculated within 3 XOR logic levels. This new optimized code is compared against the
(22, 16) Dutta code and standard (24, 16) I5 SEC-DED-DAEC-7AED proposed code in
Table 3.7.

Notice that the optimized code requires one less XOR logic level for its syndrome-bit
generation logic as compared to the standard proposed (24, 16) I5 code and the (22, 16)

83

Figure 3.20: Optimized (24, 16) I5 code with maximum row weight of 8.

Table 3.7: (24, 16) I5 Optimized Code Example
(24, 16) I5 Optimized Code Performance Example

Generator XOR Logic Synthesis Results Miscorrection Probability
(n, k) I-Size Code Check- Logic Levels Gate Area Delay (ns) P(2-Random) P(3-Random)

bits Encode Decode Count (µm2) Encode Decode % %
(22, 16) DAEC [44] 6 4 4 48 604.44 0.230 0.325 64.3 65.2

(24, 16) I5 Proposed, DAEC 8 4 4 39 783.72 0.230 0.337 28.6 38.6
(24, 16) I5 Proposed, Optimized 8 4 3 39 1031.4 0.223 0.312 24.5 33.5

84

Dutta code. This optimization yields a 7.4% improvement in synthesized decoder logic
delay over the standard proposed scheme and a 4% improvement over the Dutta code.

Relaxing the strict column interleaving guideline can reduce the total number of XOR
gates used in the syndrome generation logic for other codes; however, the (24, 16) I5 code
is the only one that has been found for which the maximum syndrome-bit logic level depth
can be reduced. This is due to the initial row weight values of the code being within such
close proximity to a logic depth power-of-2 boundary. Other codes that show promise for
a reduction in check-bit generation delay include the (39, 32) I3 SEC-DED-DAEC-3AED
code and the (42, 32) I7 IIMS code.

3.7 Summary

In this chapter, the basic structure of the proposed error correction codes has been pre-
sented along with a set of constraints for constructing and showing each code’s validity.
An algorithm is presented for searching of acceptable codes. Finally, various high level and
circuits-based performance metrics have been considered and compared against existing
codes for 16, 32, and 64 data-bit implementations.

85

Chapter 4

Implementation, Verification, and
Measurement

This chapter presents a soft error channel model and simulation results for a set of 64 data-
bit error correcting codes in the presence of the error channel. The design of a SRAM+ECC
test chip implemented in a 28 nm technology is then presented with neutron radiation
test data. The radiation data is used in conjunction with SPICE-based critical charge
simulations to estimate the soft error rates of a set of vendor designed SRAM bitcells.

4.1 Soft Error Rate Modeling

Although multi-cell upsets have been shown to make up over 35% of the total SER below
the 32 nm process node, not all of these upsets necessarily result in errors [11]. The MCUs
that can cause the most potential harm are the multi-bit upsets, those upsets that corrupt
multiple bits within the same memory word. These upsets have been shown to make
up approximately 3% of the total SER at the 32 nm node and, as shown in Table 1.1,
increase with technology scaling [6]. In this section, a multi-bit upset error channel model
is presented and applied against a collection of 64 data-bit error correction codes.

4.1.1 Error Channel Model

For an embedded memory system, radiation induced soft errors occur while the data resides
in the memory’s bitcells. The error channel exists temporally, between the time that data
is written to a particular memory location, and when it is later read. The binary symmetric
channel model, shown in Figure 4.1(a), provides a simple single-bit error model. It assumes

86

0 0

1 1

e

e

1 - e

1 - e

(a) Binary Symmetric Channel
Model

No
Error

Error

e1
e2

1 - e1

1 - e2

(b) Gilbert-Elliott Channel Model

No
Error

1 Bit
Upset

e1

1 - e1 1 - e2

2 Bit
Upset

e2

>2 Bit
Upset

e3
e4

1 – e3 1 – e4

(c) 4-State Markov Chain Channel Model

Figure 4.1: Radiation Induced Noise Channel Models

an equal probability, ε, for a bit flipping its state from either 1→ 0 or 0→ 1, and probability
1 − ε for maintaining its data within the channel. This is sufficient for SBUs; however,
when an error can generate MBUs, a more sophisticated model is required to determine
the number of bits upset per particle strike.

The Gilbert-Elliott model, shown in Figure 4.1(b), is a well known channel model
used to represent burst errors [67]. It uses a 2-state Markov chain to indicate transitions
between a ‘good’ error-free state and a ‘bad’ error state. This can be used for adjacent
bit upsets where ε1 is the probability of an error occurring and, ε2 is the probability of
successive adjacent bits also being upset. 1 − ε1 and 1 − ε2 are the probabilities of a bit
not being upset based on the state of its adjacent bit. This can be used to inject error
patterns into a transmitted codeword. First, an error pattern is generated by applying a
binary symmetric channel to the transmitted codeword with ε = ε1. Then, for each error,
its size is determined by iterating through its adjacent bits using ε2 as the probability of
successively increasing its error size.

In this work, the Gilbert-Elliott model is extended using the 4-state Markov chain
shown in Figure 4.1(c). The two additional states are added to provide a more accurate
representation of the MBU behavior observed in [6]. Like the Gilbert-Elliott channel model,

87

Table 4.1: Example Error Distribution Before and After Error Correction Using the SEC-
DED-TAEC-8AED Code

Error Size Before Correction After Correction
(adjacent-bits) Count % Count %

1 9635 96.30 0 0.00
2 317 3.16 0 0.00
3 19 0.19 0 0.00
4 15 0.15 15 44.12
5 10 0.10 10 29.41
6 3 0.03 3 8.82
7 2 0.02 2 5.88
8 2 0.02 2 5.88
9 2 0.02 2 5.88

Total 10005 100.0 34 100.0
ε1 = 10−6, ε2 = 0.036, ε3 = 0.15, ε4 = 0.6

ε1 represents the occurrence of an error and ε2 the probability of the upset affecting multiple
bits, ε3 and ε4 are then used to determine the size of the upset. 1− ε2, 1− ε3, and 1− ε4 are
the probabilities of a given bit not being upset when the respective number of its adjacent
bits have been upset.

The 4-state Markov chain error channel model is used to compare the effectiveness of
each of the ECCs discussed in Section 4.1.2 using a custom SER test suite developed in
Matlab. The simulations show each code’s corrected-SER as a function of its raw-SER in
terms of errors/bit-year after being exposed to the error channel. All simulations generate
a minimum of 104 errors per datapoint to ensure statistical significance of the results. The
channel parameters have been tuned to resemble the data presented in [6] for a 22 nm
technology using ε1 equal to the raw-SER, ε2 = 0.036 the MBU percentage of the total
SER, ε3 = 0.15, and ε4 = 0.6. Table 4.1 shows an example distribution of the number
of errors before and after the ECC correction process is performed by the TAEC code for
a raw-SER of 10−6 errors/bit-year, and Table 4.2 shows this same raw error distribution
in comparison to the 22 nm technology in [6]. In this example, MBUs make up 3.69% of
the total SER, and all of the single, double-adjacent, and triple-adjacent bit errors have
been corrected, the distributions are within 5% of the distribution in [6] for error sizes up
to 8 bits. By increasing the simulation run time, a greater number of the larger, lower
probability upsets will occur, and potentially increase the maximum width upset.

While failures in time (FIT)/Mb is more commonly used to measure SER, the error/bit-
year unit lends itself more readily to the simulation environment (1 FIT = 1 error per 109

device hours, and 1 FIT/Mb = 8.354x10−12 errors/bit-year). In Section 4.1.2, results are

88

Table 4.2: MCU bit width and percentage of the total SER comparison between the 4-state
Markov chain model and 22 nm technology in [6]

% of Total Bit width
Error Channel SER 2 3 4-8 >8 Max (bits)

4-state Markov Chain Model 3.69 3.16 0.19 0.30 0.02 9
22 nm technology [6] 3.6 3.0 0.2 0.3 0.1 18

Table 4.3: ECC Check-bit Overheads
Code n r k Overhead

(bits) (bits) (bits) (%)
(72, 64) SEC-DED 72 8 64 12.5

(72, 64)-I3 SEC-DED-DAEC-3AED 72 8 64 12.5
(75, 64)-I6 SEC-DED-TAEC-8AED 75 11 64 17.2

(78, 64) BCH DEC 78 14 64 21.9
(79, 64) RS S5EC-D5ED 79 15 64 23.4

first presented in terms of errors/bit-year, then in terms of FIT/Mb in the International
Technology Roadmap for Semiconductors (ITRS) anticipated sub-2000 range, and finally
at the system level in terms of FIT/device.

4.1.2 Simulation Results - Corrected-SER vs. Raw-SER

The check-bit overheads for the 64 data-bit codes considered in this work are shown in
Table 4.3. Of these codes, the SEC-DED code has the lowest overhead, but is only capable
of correcting single-bit errors and detecting two-bit random errors. The SEC-DED-DAEC-
3AED (DAEC) and SEC-DED-TAEC-8AED (TAEC) codes presented in Chapter 3, are
designed for small adjacent error correction and detection, and provide 2-bit adjacent
correction/3-bit adjacent detection, and 3-bit adjacent correction/8-bit adjacent detection
respectively. The BCH DEC code is capable of correcting any random two-bit error pattern,
and hence requires roughly twice the number of check-bits as the SEC-DED code, while
the Reed Solomon (RS) code is capable of single 5-bit-byte error correction and double
5-bit-byte error detection (S5EC-D5ED). Depending on implementation, both the BCH
and RS codes can require multiple clock cycles to perform their error correction/detection
procedure.

In Figure 4.2 the solid line indicates the situation where no ECC is applied. In this
case, the corrected-SER is equal to the raw-SER. The SEC-DED and BCH DEC codes
provide roughly one to two orders of magnitude SER improvement over the unprotected
base case respectively. For the same check-bit overhead as the basic SEC-DED code, the

89

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Raw SER (errors/bit−year)

C
o

rr
e

c
te

d
 S

E
R

 (
e

rr
o

rs
/b

it
−

y
e

a
r)

No ECC

(72, 64)−I3 DAEC

(72, 64) SEC−DED

(78, 64) BCH DEC

Figure 4.2: Corrected-SER vs. raw-SER for (72, 64)-I3 SEC-DED-DAEC-3AED, (72, 64)
SEC-DED, and (78, 64) BCH DEC codes using a 4-state Markov chain error channel model.

DAEC code provides a SER improvement between that of the SEC-DED and BCH DEC
codes. For error rates greater than 10−3 errors/bit-year, the probability of multiple non-
adjacent upsets occurring within the same codeword is still relatively high, and hence the
DAEC code performs roughly equal to the SEC-DED code. For lower error rates, the
probability of multiple independent upsets occurring within the same word is reduced, and
hence adjacent bit upsets dominate the number of MBUs. This allows the corrected-SER of
the DAEC code to approach that of the BCH DEC code for a 42.8% reduction in check-bit
overhead.

In Figure 4.3 the TAEC code is compared against the MBU correcting BCH DEC and
Reed Solomon S5EC-D5ED codes. Again, for higher SERs, the BCH code provides better
random error correcting performance relative to the adjacent error correcting TAEC and
RS codes since the probability of multiple non-adjacent upsets occurring within the same
codeword is higher. For lower SERs however, adjacent MBUs are more prominent and
the TAEC code outperforms the BCH DEC code providing a 1.5x-2.35x improvement in
corrected-SER.

According to the ITRS guidelines, SRAM bit-level SER is expected to be below 2000
FIT/Mb over the next decade [10]. Translating the simulated error rates into units of
FIT/Mb provides the data shown in Figure 4.4. Data is shown for raw (uncorrected)
SERs between 0 and 2000 FIT/Mb. Again, the solid line indicates the situation where
no ECC is applied. Applying the SEC-DED code provides an approximate 30x reduction

90

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Raw SER (errors/bit−year)

C
o

rr
e

c
te

d
 S

E
R

 (
e

rr
o

rs
/b

it
−

y
e

a
r)

No ECC

(75, 64)−I6 TAEC

(78, 64) BCH DEC

(79, 64) RS S5EC−D5ED

Figure 4.3: Corrected-SER vs. raw-SER for (75, 64)-I6 SEC-DED-TAEC-8AED, (78, 64)
BCH DEC, and (79, 64) Reed Solomon S5EC-D5ED codes using a 4-state Markov chain
error channel model.

91

200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

1

10

100

1000

10000

Raw SER (FIT/Mb)

C
o
rr

e
c
te

d
 S

E
R

 (
F

IT
/M

b
)

No ECC

(72, 64) SEC−DED

(72, 64)−I3 DAEC

(75, 64)−I6 TAEC

(78, 64) BCH DEC

(79, 64) RS S5EC−D5ED

Figure 4.4: Simulated corrected-SER vs. raw-SER for various ECC schemes using 1-way
interleaving.

in SER, while the BCH DEC and RS codes provide roughly 120x SER improvement over
the unprotected baseline. For the same check-bit overhead as the basic SEC-DED scheme,
the DAEC code provides a SER improvement comparable to that of the BCH DEC and
RS codes, while for a cost of three additional check-bits, the TAEC code provides a SER
improvement of approximately 300x over the raw-SER, and 2.25-2.5x over the BCH DEC
and RS codes. For an unprotected raw-SER of 1200 FIT/Mb, the SEC-DED protection
reduces the SER to 40.83 FIT/Mb, while the BCH DEC, DAEC, and TAEC codes provide
corrected-SERs of 9.33, 9.32, and 4.13 FIT/Mb respectively.

Applying interleaving in conjunction with the various ECC schemes provides the corrected-
SERs shown in Figure 4.5. Figure 4.5(a) provides the 2-way interleaving data, while Fig-

92

200 400 600 800 1000 1200 1400 1600 1800 2000
0.001

0.01

0.1

1

10

100

1000

10000

Raw SER (FIT/Mb)

C
o

rr
e

c
te

d
 S

E
R

 (
F

IT
/M

b
)

No ECC

(72, 64) SEC−DED

(72, 64)−I3 DAEC

(75, 64)−I6 TAEC

(78, 64) BCH DEC

(79, 64) RS S5EC−D5ED

(a) 2-way Interleaving

200 400 600 800 1000 1200 1400 1600 1800 2000
0.001

0.01

0.1

1

10

100

1000

10000

Raw SER (FIT/Mb)

C
o
rr

e
c
te

d
 S

E
R

 (
F

IT
/M

b
)

No ECC

(72, 64) SEC−DED

(72, 64)−I3 DAEC

(75, 64)−I6 TAEC

(78, 64) BCH DEC

(79, 64) RS S5EC−D5ED

(b) 4-way Interleaving

Figure 4.5: Simulated corrected-SER vs. raw-SER for various ECC schemes using 2-, and
4-way interleaving.

93

ure 4.5(b) shows the situation when 4-way interleaving is applied. Applying additional
degrees of interleaving improves the corrected-SER for each coding scheme. A comparison
of the corrected-SERs for each code as a function of interleaving is shown in Figure 4.6
using a fixed raw-SER of 1200 FIT/Mb. The corrected-SER of the (72, 64)-I3 DAEC code
is within 0.3 FIT/Mb of the (78, 64) BCH code for each interleaving scheme while requir-
ing 6 fewer check-bits. This occurs since the adjacent upsets dominate the error channel
causing the added random error correction protection to provide only a margin benefit.

The Reed-Solomon code benefits most in terms of improved corrected-SER by increasing
the degree of interleaving. This is due to the code’s arrangement and byte-wise nature of
its interleaving scheme. Without any interleaving (1-way interleaving), errors as small as
two adjacent bits can cause uncorrectable upsets if these errors occur within two separate
bytes of the RS scheme. This causes the corrected-SER for the RS code to be on the same
order as the I3 DAEC and BCH codes while requiring the greatest number of check-bits.
By adding one additional degree of interleaving however, the same susceptible two adjacent
bits are separated by an entire b-bit byte distance. For the presented (79, 64) S5EC-D5ED
code, b = 5, and as such a minimum 7-adjacent bit upset would be required to upset two
bytes within the same codeword; hence, the code can provide a minimum 6-adjacent bit
error correction using 2-way interleaving.

The (75, 64)-I6 TAEC code is able to provide a SER of approximately half that of
the RS code with no interleaving applied, and within approximately 0.1 FIT/Mb for 2-
and 4-way interleaving while requiring four fewer check-bits. Using 2-way interleaving,
the (75, 64)-I6 TAEC code can correct errors of up to 6 adjacent-bits, or using 4-way
interleaving, 12 adjacent-bits. This shows that for an equivalent degree of interleaving, the
proposed codes can provide a cost effective solution in terms of check-bits relative to their
multi-bit correcting code counterparts, while still providing an adequate amount of soft
error protection.

The bit-level SER can be translated into a device or system-level SER by multiplying
the bit-level SER by the total capacity of the memory system. The memory capacity for
modern microprocessor embedded L2 and L3 SRAM cache is on the order of megabytes
(MB), where 1 MB = 8 Mb. For instance, AMD’s two-core x86, 64-bit Steamroller CPU
(fabricated in a 28 nm HK+MG process) contains a 2 MB L2-cache shared between the
two cores [68], while Intel’s 22 nm Haswell processors use an 8 MB L3-cache paired with
a 128 MB L4 in-package embedded DRAM module [69]. Further, the high performance
variant of Intel’s 65 nm Xeon processor family contains a 16 MB shared L3-cache [62]. In
Figure 4.7, the 1200 raw-SER/Mb data with 2-way interleaving is mapped to the system
level for 2, 4, 8, and 16 MB data capacities. For an 8 MB data capacity, the SER/device
for the BCH DEC, DAEC, RS, and TAEC schemes are respectively 179.4, 185.7, 13.4,
and 21.75 FIT/device; this is down from 76800 FIT/device (1200 FIT/Mb × 8Mb/MB ×
8MB/device) for the case of the unprotected array without ECC.

94

(72,64) SEC−DED (72,64)−I3 DAEC (75,64)−I6 TAEC (78,64) BCH DEC (79,64) RS S5EC−D5ED
0.01

0.1

1

10

100

Code Scheme

S
E

R
 (

F
IT

/M
b

)

1−way

2−way

4−way

Figure 4.6: Simulated corrected-SER as a function of word interleaving for various ECC
schemes at a raw-SER of 1200 FIT/Mb.

4.2 Test Chip Design

A test chip has been fabricated in a low power, 28 nm HK+MG bulk CMOS process using
a full-custom design flow. The design includes a 75 kb 6T SRAM macro protected using a
(75, 64)-I6 SEC-DED-TAEC-8AED code based on the theory presented in Chapter 3 and
leverages the MCU shaping strategies discussed in Section 4.2.3. A block diagram of the
circuit is shown in Figure 4.8. The ECC decoder and column multiplexing circuits have
been modified such that the degree of adjacent error correction, C, and interleaving, I,
are programmable between 0- (off), 1- (SEC), 2- (DAEC), and 3- (TAEC) bits, and 1-,
2-, and 4-way interleaving. The maximum MCU width that can be completely corrected
by the memory is the selected interleaving-correction product, I · C. Enabling the TAEC
feature in conjunction with the 4-way interleaving scheme allows for the correction of up
to 12 adjacent-bits. The test chip features seven operating modes listed in Table 4.4. The
circuit operating mode is determined by the Read/Write (R/W) and ECC input control
signals. The Read and Write Bypass modes allow the SRAM read and write operations to
be tested independent of the ECC, while the ECC Test Decode and Encode modes allow
for isolated testing of the ECC circuit independent of the memory. These modes have been
included for the initial chip ramp up testing. The Read ECC, Read ECC with Writeback,
and Write ECC operating modes are for full-functionality operation, using the memory
and ECC together. The Writeback feature allows read data to be written back into the
SRAM array following an error correction operation. This can be used to prevent the
accumulation of bit errors over time. Further, the chip includes two timing configurations,
one for high-speed testing up to 700 MHz at 1 V, and one for low-speed testing down to

95

2 4 6 8 10 12 14 16
1

10

100

1000

10000

100000

1000000

Data Capacity (MB)

S
y
s
te

m
−

S
E

R
 (

F
IT

/d
e
v
ic

e
)

No ECC

(72, 64) SEC−DED

(72, 64)−I3 DAEC

(75, 64)−I6 TAEC

(78, 64) BCH DEC

(79, 64) RS S5EC−D5ED

Figure 4.7: System level SER/device for 2 to 16 MB data capacity for various ECC schemes
at a raw-SER of 1200 FIT/Mb using 2-way interleaving.

96

Figure 4.8: 6T SRAM macro and error correction circuit block diagram with input/output
databus interface and voltage domain level shifters.

97

Table 4.4: Test Chip Operating Modes
Input Signals

ECC ECC ECC Mode
Mode R/W Test Enable Writeback Description

Read Bypass 1 0 0 X Memory read test, ECC disabled
Write Bypass 0 0 0 X Memory write test, ECC disabled

ECC Test Decode 1 1 1 X ECC decoder test, memory disabled
ECC Test Encode 0 1 1 X ECC encoder test, memory disabled

Read ECC 1 0 1 0 Read/decode operation
Read ECC with Writeback 1 0 1 1 Read/decode operation writeback to array

Write ECC 0 0 1 X Write/encode operation
1 - On, 0 - Off, X - Don’t Care

920 kHz at 400 mV.

To elicit the largest possible number of multi-cell upsets, the circuit has been imple-
mented in a commercial low power, 28 nm bulk CMOS process. At the time of design,
this was the most advanced technology available to Canadian academia through the Cana-
dian Microelectronics Corporation (CMC) [70]. To the best of our knowledge, no other
Canadian university had fabricated in this technology for purposes other than initial kit
characterization. This posed a number of unique challenges, but was necessary to design
the smallest bitcell possible.

4.2.1 Memory Organization

The memory, shown in Figure 4.9, has been designed as a single 75 kb SRAM macro
(64 kb data, 11 kb parity) organized in a 256 row by 300 column bitcell arrangement.
The memory capacity was constrained by the 1.23 mm x 1.23 mm die area allotment by
CMC, and the inclusion of another project on the chip. Increasing the memory capacity
would allow for more radiation data at the increased monetary cost for additional die
area. The macro block can be tiled to facilitate a rapid increase in memory capacity. A
64 data-bit word size was chosen to allow for single cycle memory access if the memory
were to be implemented in a 64-bit processor. Recently, 64 data-bit processors have been
emerging in the mobile market space [71]. Four codewords have been placed per memory
row, and can be logically accessed to achieve 1-, 2-, or 4-way interleaving. This has been
done for comparison purposes. Each arrangement is shown in Figure 4.10 where each
square represents a bitcell in the memory row, and ‘W’ and ‘B’ are used to indicate the
word and bit address information for each bitcell. Combined with the 11 ECC check-bits,
each 64-bit dataword consists of 75 code-bits, and hence arranging four codewords per row
yields the 300-bit row size. Limiting the number of rows to 256 entries allows the array
to be accessed using an 8-bit row address decoder and maintains read and write memory

98

Column Precharge

Write Drivers

SRAM Array
75kb = (64kb data + 11kb parity)

300 Columns
4 interleaved 75-bit codewords

2
5

6
 R

o
w

s

R
o

w
 D

ri
ve

rs

8
-t

o
-2

5
6

 R
o

w
 A

d
d

re
ss

 D
ec

o
d

er

Interleaved Column Multiplexors

Read Sense Amplifiers

Read Data Latchs

Tristate BuffersP
er

ip
h

er
al

 D
ri

ve
rs

Ti
m

in
g

C
ir

cu
it

ry

8

75

DATABUS

75

CORRECTED WORD

11

CHECK

ROW ADDRESS

1
ARRAY SELECT

1
CLK

3
ECC CONTROL

1
TIMING SELECT

1
R/W

2
COLUMN ADDRESS

1

ED

1

UEDATA OUT CLK

SRAM

1

Figure 4.9: SRAM Macro Block Diagram

operations above 1 GHz at the nominal 1 V supply voltage. Following the original circuit
design for 1.25 GHz operation, additional timing guard bands were added limiting the final
nominal supply voltage operating speed to 700 MHz. This was done to ensure functional
yield since this was the first time fabricating using this design process technology.

4.2.2 Memory Address Space

The implemented test chip uses a 16-bit memory address space shared with another memory
design on the chip. As shown in Table 4.5, the address space has been partitioned into
four main sections: array select (2 bits), row select (8 bits), word select (2 bits), and byte
select (4 bits). The address signals are available to both memories at all times; however,
only one array is accessed at a time. The array select signals act as a one-hot encoding to
control which memory array on the test chip is being accessed and has control of the shared
output data bus. When the address bits A(15:14) = ‘01’, the memory array discussed in
this thesis is active and controls the output data bus. The row select signals, A(13:6),

99

(a) 1-way

(b) 2-way

(c) 4-way

Figure 4.10: Row organization for 1-, 2-, and 4-way interleaving.

Table 4.5: Test Chip 16-bit Memory Address Space
A(15:14) A(13:6) A(5:4) A(3:0)

Array Select Row Select Word Select Byte Select
2 Arrays 256 Rows 4 Words 10 Bytes

A(15) A(14) Select MSB A(13) .. LSB A(6) A(5) A(4) Select MSB A(3) .. LSB A(0)
0 0 - 0000 0000 Row 0 0 0 Word 0 0000 .. 0111 Byte 0-7
0 1 Yes 0000 0001 Row 1 0 1 Word 1 1xx0 Byte 8
1 0 - 1111 1110 Row 254 1 0 Word 2 1xx1 Byte 0
1 1 - 1111 1111 Row 255 1 1 Word 3 -

provide the 8-bit input address to the 8-to-256 row decoder to select which of the 256 rows
in the memory array to access. The word select signals, A(5:4), determine which of the
four 75-bit memory words is accessed per 300-bit row selected by the row address decoder.
Finally, since the chip is a pin-limited design (as can be seen in Figure 4.28, where the
120-pin pad frame complete with I/O ring takes up a considerable amount of the allocated
die area) it was not feasible for each bit on the 75-bit output data bus to have a dedicated
output pin. As such, the 75-bit output data had to be muxed-down to an 8-bit bus using a
set of four byte select control signals, for a total of 12 pins (8 data + 4 control). The byte
select control signals, A(3:0), make up the four least most significant bits in the memory’s
address space. Under this output bus sizing constraint, a complete 75-bit word can still be
accessed within a single cycle operation; however, to retrieve the 75 bits of read data from
the array’s output data bus requires 10 clock cycles for the data to be read one 8-bit byte
at a time on the chip-level output data bus.

The partitioning of the 75-bit codewords into 8-bit bytes is shown in Table 4.6. Notice
that for Byte 9, only the 3 least significant bits contain codeword data, and the remaining
5 more significant bits have been hardcoded to return zero. Further, since 75 does not
fit evenly within a power of two boundary, when cycling over the four byte select address

100

Table 4.6: 8-bit Byte Divisions for 75-bit Codewords
Byte 9 Byte 8 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

00000 + Bit(74:72) Bit(71:64) Bit(63:56) Bit(55:48) Bit(47:40) Bit(39:32) Bit(31:24) Bit(23:16) Bit(15:8) Bit(7:0)
75-bit codeword = 1 3-bit byte + 9 8-bit bytes

space from A(3:0) = (1010) to (1111), these bytes alternate between the data being stored
in Byte 8 and Byte 9 for A(0) = 0 and 1 respectively. This issue could be resolved by
placing only the 64 data-bits on the output data bus and using only 3 bits for byte select
(23 bytes × 8 bits/byte = 64 bits); however, for functional test purposes retrieving the
codeword’s check- and syndrome-bits is vital. For practical lab measurements, the entire
address space is cycled and any redundant or unused address locations are pruned during
post processing. Finally, this bus muxing architecture is only necessary for functional chip
verification. If used in an embedded environment, the entire 75-bit codeword could use a
complete 75-bit internal data bus for routing data within a single cycle.

4.2.3 Memory Bitcell

Modern process development kits include reduced geometry SRAM design rules and ven-
dor supplied bitcells for improving the SRAM bitcell density beyond that possible using
standard logic design rules. The technology we were using had these cells available for pre-
layout, schematic based simulations, but prohibitive additional cost and licensing prevented
their use for post-layout extracted netlists and fabrication. The implemented SRAM bitcell
was therefore designed using logic design rules and made to mimic the stability performance
of the vendor supplied dense cell (smallest area) configuration. This came at the cost of
additional bitcell area and cell leakage current. Figure 4.11 provides a comparison between
the vendor supplied dense, high speed (higher read current), and high performance (very
high read current) cells and two cells designed using the logic design rules. All simulations
were performed under the worst case process corner for the given measurement, nominal
supply voltage (1.0 V), and nominal operating temperature (27 oC). All results have been
normalized to the vendor dense cell values. One cell was designed as a proportionally
scaled-up version of the dense cell configuration such that the minimum logic design rule
geometry was used for the minimum feature size in the vendor supplied dense cell. This
configuration requires a 2.47x increase in estimated cell area and 70% additional leakage
current over the dense cell configuration. Since these are pre-layout implementations, the
area estimate is the sum of each cell’s individual transistor W × L products. The bitcell
implemented in the test chip was sized in an effort to match the stability margins (read
static noise margin, and write margin) for the dense cell, while requiring less area than
the scaled-up bitcell design. Final bitcell sizing is shown in Table 4.7. The implemented
bitcell’s stability metrics are within 5% of the vendor supplied dense cell configuration,

101

Vendor − Dense Vendor − High Speed Vendor − High Performance Dense Scale−up Dense Stability
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Bitcell Designs

N
o
rm

a
liz

e
d
 t
o
 V

e
n
d

o
r

D
e
n
s
e
 C

e
ll

(a
.u

.)

Read Static Noise Margin

Write Margin

Cell Read Current

Retention Leakage Current

Area Estimation

Figure 4.11: SRAM bitcell design comparison with vendor supplied bitcells

Table 4.7: Implemented 6T Bitcell Sizing

Device Pair Width (nm) Length (nm)
Access Transistors 115 45
Driver Transistors 165 45
Load Transistors 80 77

and come at a cost of 84.8% additional estimated bitcell area and 55.3% additional cell
leakage current. Actual implemented layout area is considered in Section 4.5.3.

To help limit the number of MBUs caused by MCUWL and MCUCluster, the 6T bitcell
has been designed using a wide cell layout as opposed to a tall cell configuration. These
two layout configurations are shown in Figure 4.12. Not only does this reduce the height
of the bitline columns, leading to lower bitline capacitance and in turn better performance,
but it increases the physical distance between adjacent bitcells in each row [72]. Using
this topology, the bitcell wells and VDD/VSS supply rails are also run vertically down each
column. Since charge has a greater tendency to stay within a well or substrate boundary,
the probability of upsetting row-wise adjacent cells is limited [73]. Although using these
techniques do increase the MCUBL probability, the upset cells reside in different words, and
can thus be corrected via ECC. The effect of this MCU shaping will be seen in the radiation
data presented in Section 4.4.2. The implemented SRAM bitcell is shown in Figure 4.12(c),
and its dimensions are 1.02 µm by 0.379 µm giving a bitcell area of 0.387 µm2. This bitcell
area is between those of industry reported, vendor supplied cells in 65 nm (0.495 µm2 [74])
and 45 nm (0.315 µm2 [75]) technologies using the SRAM design rules.

102

(a) Tall bitcell configuration [30] (b) Wide bitcell configuration [13]

(c) Implemented wide bitcell

Figure 4.12: SRAM bitcell layout configurations

103

A0A1

Y0

Y1

Y2

Y3

(a) 2-to-4 bit Decoder

A1:0A3:2

Y0

Y15

DEC
2to4

DEC
2to4

(b) 4-to-16 bit Decoder

A3:0A7:4

Row0

Row255

DEC
4to16

DEC
4to16

(c) 8-to-256 bit Decoder

Figure 4.13: Hierarchical 2-input AND Gate-based 8-to-256 Address Decoder Unit

4.2.4 Row Conditioning Circuitry

The row conditioning circuitry consists of an 8-to-256 address decoder and a series of word-
line drivers for each row in the array. The address decoder is responsible for functionally
selecting one of the 256 rows in the SRAM array based on the 8-bit input row address,
while the wordline driver serves two purposes, it: 1). gates the row signal such that the
row’s wordline is only accessed when necessary based on the generated timing signals, and
2). provides a driver such that the functional row signal can drive the large wordline load.
The decoder is implemented using a conventional, hierarchical pre- and post-decode archi-
tecture, logarithmically dividing the input address. The 8-to-256 decoder is hierarchically
constructed from smaller decoder units by successively dividing the address equally in half
and using a series of 2-input AND gates act as gaters for subportions of the full address
space. This is shown in Figure 4.13.

The 2-to-4 bit address decoder unit, shown in Figure 4.13(a), takes a two bit binary
address (A1A0) and selects the appropriate output signal (Y3..0). Two of these units can
the be used as a pre-decoder unit for a 2-input AND gate plane post-decoder, shown in
Figure 4.13(b), to create a 4-to-16 bit address decoder. This process is repeated using
two 4-to-16 bit decoder units as the pre-decoder for the final 8-to-256 bit address decoder.
In this implementation, AND gates are used rather than a series of NAND/NOR gates
in order to drive the large intermediate loads presented from long metal lines and large
capacitive fanout per signal. For example, each of the 32 pre-decoder outputs in the 8-to-
256 decoder has to drive 16 AND gates in the post-decoder as well as a long interconnect
spanning the full height of the decoder (approximately equal to the 256 row height of the

104

WLE

Rowi WLi

Figure 4.14: Wordline Driver Circuit

SRAM macro array).

The address decode process has been designed to be performed in parallel with the
bitline precharging phase of the cell access operation. This reduces overall latency of the
system, but requires the row select signal to be gated since its contamination delay may
be less than the bitline precharge duration. The wordline driver, shown in Figure 4.14,
serves two functions: it provides a drive buffer for the row select signal to drive the large
capacitance on the wordlines, and it acts as a gating element for the row select signal.
The wordline control signal is gated by the wordline enable signal (WLE) generated by the
timing control block. The wordline is thus only high if both its corresponding row select
signal and the WLE signal is high. This prevents the unintentional activation of the WL
signal during other operating phases (e.g., bitline precharge, bitline discharge for write,
etc...).

If a correctable error is detected by the error correction circuit and the ECC writeback
functionality is enabled, the wordline signal will be activated and deactivated twice during
a read operation (once during the initial read, then again during the writeback operation).
Since data will be written back to the same address that it was just read from, the address
does not need to be recalculated, but rather the WLE signal can just be reactivated allowing
the row signal to pass through to the wordline. This results in a reduction in switching
activity in the address decoder, and in turn a reduction in switching power.

4.2.5 Column Conditioning Circuitry

While the row conditioning circuitry is responsible for selecting the appropriate row for
data access, the column conditioning circuitry is responsible for preparing and performing
the bitline functionality for both read and write operations. This includes: precharging the
bitlines to the supply voltage prior to each read or write operation, applying the appro-
priate data to the bitlines prior to a write operation, and sensing a sufficiently resolvable
differential voltage during a read operation. Further, by storing more than one memory
word per row, the x-y memory array aspect ratio can be made closer to unity (more square).
This allows for data to be stored across more columns using fewer cells per column. This
allows for a significant reduction in the capacitance per bitline, significantly improving

105

VDD

PRE
Q1 Q2

Q3
BLi BLBi

Figure 4.15: Precharge and Equalize Circuit

read access times where bitlines are being discharged through near minimum sized bitcells,
at the expense of a larger wordline capacitance which may be overcome using a larger
peripheral wordline driver circuit. By storing multiple memory words per row, additional
word selection column multiplexer circuitry is included per column. In this section, each
of the column conditioning circuits are considered in turn.

Precharge and Equalize

One precharge and equalize circuit, shown in Figure 4.15, is placed within each of the 300
columns within the implemented SRAM array. When the precharge control signal is low,
both bitlines are charged up to the supply voltage VDD. At the same time, transistor Q3
equalizes the potential of the two bitlines. The equalize device serves two purposes. First,
in the even that one of the bitlines is already high while the other bitline is low (e.g., after
a write operation) it provides a second charging path to bring the low bitline up to VDD

by sharing charge between the two bitlines. This allows for faster precharge times. Second,
by equalizing each bitline pair, any precharge voltage mismatch due to process variability
can be eliminated, removing one more potential source of offset voltage necessary to be
overcome by the read bitcell.

Column Multiplexer

In the implemented SRAM macro four codewords are stored per memory row. Since only
one word is accessed at any given time, the read/write circuitry can be shared across four
columns of data. To facilitate the selection of which column should be passed to the read

106

WORD 0

BLi BLBi

WORD 1

BLi+1 BLBi+1

WORD 2

BLi+2 BLBi+2

WORD 3

BLi+3 BLBi+3

SABLi

SABLBi

Figure 4.16: 4-to-1 Differential Column Multiplexer Circuit

circuitry (or which ‘way’ the data comes from), four columns worth of bitline pairs are
passed to a differential multiplexer, shown in Figure 4.16, and one is fed through to a sense
amplifier circuit based on the state of the input word address. The two bit word address
is decoded to a one-hot-of-four, active-low, select signal using a 2-to-4 bit address decoder.
Since during a read operation, one of the bitlines is at VDD while the other bitlines is at
VDD minus some small delta, both bitlines are near VDD and as such a single PMOS pass
transistor can be used as the gating element for each bitline. By gating the column select
signal, the column multiplexer can also acts as an isolation circuit between the bitline and
read circuitry. A write driver circuit is used to perform the four to one column selection
function for the write circuitry.

Write Driver

The write driver’s basic functionality is to selectively discharge one of the bitlines per
column based on the input data to condition the bitlines for a write operation. To reduce
discharge time, discharging can be performed through a single large NMOS transistor with
the control circuitry driving the transistor’s gate. The write driver circuit implemented in
the test chip is shown in Figure 4.17. Similar to the column multiplexer, a one-hot column
select signal (active high) is used to only discharge the bitlines for the columns of the
codeword being written. This signal is gated with a write enable (WE) signal generated by
the timing control block such that bitlines are only discharged during the proper phase of
the access operation. Finally, to facilitate the ECC writeback functionality, a control signal
is used to choose the data written by the write driver. For a standard write operation,
data is taken from the input data bus, while for a writeback operation following an error
correction, the data comes from the ECC’s corrected output data bus.

Sense Amplifier and Read Data Latch

Sense amplifiers are an important component within the SRAM memory macro unit. The
primary function of the sense amplifier is to amplify the small analog differential voltage,

107

BLBiBLi

COLSEL

WE

WDATA

ECCWBDATA

ECCSEL

Figure 4.17: Write Driver Circuit

∆VBL, developed across the highly capacitive bitlines during a read-access operation to a
full swing digital output signal. The time required to fully discharge the large capacitance
on the bitlines themselves through the near minimum sized bitcells is extremely prohibitive
to high speed operation, and as such a sense amplifier is employed to accelerate the read
operation. A current latch-based sense amplifier, shown in Figure 4.18, has been imple-
mented for each of the 75 codeword bits within the SRAM macro. The current latch-based
sense amplifier was chosen due to its favorably low input offset variability, σSAoffset

, at
low supply voltage compared to other sense amplifier topologies. In this configuration, the
input bitlines are decoupled from the digital outputs, preventing the need for the amplifier
to assist in fully discharging one of the bitlines. This serves two benefits: first, a speed im-
provement is realized by only needing to discharge a much smaller output capacitance with
the assistance of amplifier’s gain, and second a power saving is realized by not completely
discharging large bitline capacitance.

The circuit works by precharging the internal Q and Qb nodes of the bistable storage
element to VDD. This forces the Q and Qb nodes into a metastable state, where any
slight deviation from this point will allow the forward feedback action of the cell to rapidly
transition it into a bi-stable state. By enabling the sense amplifier through the SAE signal,
and applying the differentially sensed bitline voltage, ∆VBL, across the gates of the input
transistors, the device with the higher voltage input (VDD) will discharge its internal node

108

BL

Q Qb

SAE

BLB

SAE

SAE

SAOUTSAOUTb

VDD

LATCHEN

LATCHENb

RDATA

Sense Amplifier Read Data Latch

LATCHENb

LATCHEN

LA
TC

H
EN

b

LA
TC

H
EN

Figure 4.18: Current Latch-Based Sense Amplifier Circuit with Read Data Latch

more quickly than the side controlled by the lower input voltage (VDD −∆V). This will
drive the storage element to a set of full swing outputs. The full swing output value is then
passed to a latching element. This latch is transparent when the sense amplifier is enabled
allowing it to sample the new data. The latch holds its data when the sense amplifier is
disabled, thus the read output data is held within the latching element until new data is
read.

Each sense amplifier is shared via the column multiplexer circuitry across four columns.
This relaxes the area constraint of the sense amplifier allowing it to be fit within the
column-pitch of four bitcells rather than constrained within the width of a single cell. In
doing so the input offset voltage variability, σSAoffset

, can be minimized since the transistor

threshold variability σVth is proportional to 1
√
W · L. By having a larger area footprint

in which to layout the cell, larger devices with lower variability can be used, and hence
reduce the variability in sense amplifier input offset voltage needed to be overcome.

4.2.6 ECC Circuit

Rather than implementing multiple error correcting circuits, increasing circuit complex-
ity and requiring additional die area, a modified version of the (75, 64) I6 SEC-DED-
TAEC-8AED code was implemented for on-chip error correction and detection. The check-
and syndrome-bit generation XOR logic equations are dictated by the H-matrix in Fig-

109

H =

000000 000000 010101 000000 101010 000000 000000 000000 111111 010101 000000 101010 111
010101 010101 010101 000000 010101 101010 101010 000000 000000 101010 000000 101010 000
000000 010101 000000 101010 000000 010101 111111 101010 101010 010101 000000 000000 000
000000 101010 000000 101010 000000 000000 010101 010101 000000 000000 101010 010101 000
010101 000000 101010 010101 000000 000000 000000 000000 000000 101010 101010 010101 111

100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100
010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010
001000 001000 001000 001000 001000 001000 001000 001000 001000 001000 001000 001000 001
000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000
000010 000010 000010 000010 000010 000010 000010 000010 000010 000010 000010 000010 000
000001 000001 000001 000001 000001 000001 000001 000001 000001 000001 000001 000001 000

Figure 4.19: Implemented (75, 64) I6 SEC-DED-TAEC-8AED Code H-matrix

Table 4.8: Programmable Error Correction Controller

Input Signals
ECC Enable DAEC TAEC Error Correction Enabled

0 X X None, ECC disabled
1 0 0 Single
1 1 0 Double adjacent
1 0 1 Don’t use case
1 1 1 Triple adjacent

1 - On, 0 - Off, X - Don’t Care

ure 4.19 and the XOR logic gates have been implemented using fully-differential, 4-input
transmission-gate (TG) based XOR’s optimized for power-delay product. The circuit and
a comparison with other gates is shown in Figure 4.20. The circuit has been designed for
low voltage functional operation down to 300 mV and shows faster propagation delay and
lower power-delay product compared to a 4-input differential cascode voltage switch logic
(DCVSL) XOR, cascaded 2-input DCVSL XORs, and the low voltage/low delay XOR gate
in [76].

The syndrome decoder has been modified to use different sets of syndrome vectors
based on the configuration of a set of error correction control signals. Based on the control
signal settings, shown in Table 4.8, the decodable syndrome vectors, and in turn the degree
of provided error correction can be programmed. This allows a variable degree of error
correction capabilities to be compared within a single circuit test vehicle. The syndrome
decoder consists of an 11-to-222 decoder, similar to an address decoder, cascaded with the
syndrome selector circuit. The decoder takes as input the 11 calculated syndrome-bits
and determines which, if any, of the 222 distinct correctable error patterns have occurred.
These outputs are fed into the programmable syndrome selector circuit. Each codeword bit
can be involved in three distinct triple adjacent bit error patterns, two double adjacent bit
error patterns, and one single bit error pattern. These bit error pattern decoded syndromes
are gated by the DAEC and TAEC control signals as shown in the selector circuit bit-slice
in Figure 4.21. The selector gates the multiple adjacent bit error decoded syndromes and
then, for each codeword bit location, an OR gate is used to determine if the particular bit

110

(a) Implemented 4-input transmission-gate based XOR schematic

4−Input DCVSL Cascaded DCVSL Cascaded Low−Voltage 4−Input TG
0

1

2

3

4

5

6

7

8

9

XOR Implementation

D
e

la
y
,

P
o

w
e

r−
D

e
la

y
 P

ro
d

u
c
t

(a
.u

.)

Normalized Delay

Normalized Power−Delay Product

(b) Comparison

Figure 4.20: 4-input transmission-gate based XOR circuit schematic and XOR gate com-
parision.

Figure 4.21: Programmable Syndrome Decoder Selector Logic Bit-slice

111

ARRAYSEL
GCLK

TIMINGSEL

High Speed
Timing Block

Low Speed
Timing Block

HSCLK

LSCLK

CONTROL
SIGNALS

Figure 4.22: Timing Block Select Circuitry

has been involved in any of the three error types. Once the bit error locations have been
established, the error corrector circuit performs a bitwise XOR operation on the original
75-bit read codeword and the error location vector produced by the syndrome decoder.
This process is similar to that shown in Figure 1.7. The error corrector circuit has been
implemented using 75 2-input transmission gate based XOR gates. The corrected codeword
output is forwarded to the output databus where it can optionally be written back to the
memory array. Writing the data back to the memory overwrites any corrupted data from
the processed codeword.

4.2.7 Timing and Control Circuitry

The intended purpose of the designed memory system is for embedded dynamic voltage
and frequency scaling (DVFS) applications in which operating frequencies could potentially
be in the gigahertz range. Externally generating these signal speeds for circuit board-
level testing is however infeasible barring very sophisticated test equipment. As such, the
memory system has been designed using an edge-triggered, self-timed timing mechanism
for generating all of the memory circuit’s internal timing signals based solely on the rising
edge of the input clock and the functional operating mode signals. Both a high and
low speed timing block have been included in the design. This is shown in Figure 4.22.
The high-speed block is intended for nominal supply voltage (1.0 V), full-speed operation,
while the low-speed block has been included for functional test purposes and low voltage
(400 mV) operation. The selection between timing signals is determined by an external
timing select (TIMINGSEL) signal, while the entire timing block unit is gated by an array
select (ARRAYSEL) signal. The rising edge of the global clock signal (GCLK) is used to
initiate the sequence of timing events given that the ARRAYSEL signal is true.

The timing control circuit is responsible for generating the memory array’s row and
column conditioning signaling. For the row circuitry, this includes the wordline enable
(WLE) signal while for the column circuitry this includes the: column and sense amplifier
precharge signals (PRE and SAPRE), write enable (WRITEEN), sense amplifier enable
(SAE), and sense amplifier latch enable (LATCHEN) signals. The sequencing of each

112

CLKIN
A B PULSEOUT

tDELAY tPULSE

(a) Schematic

CLKIN

A

B

PULSEOUT tDELAY tPULSE

(b) Timing Diagram

Figure 4.23: An inverter-delay-line-based pulse generator is used for generating internal
timing signals based solely on the rising edge transition of the input clock signal (CLK).

signal is determined by: 1). whether a read or write operation is being performed (R/W),
2). the ECC mode determined by the ECC test (ECCTEST), ECC enable (ECCEN),
and ECC writeback (ECCWB) signals, and 3). the status of the error correction circuit’s
error detected (ED) and uncorrectable error (UE) signals. These signals (not shown in
Figure 4.22) act as control inputs to the timing block units.

All timing signals are generated using an inverter-delay-line-based pulse generator cir-
cuit derived from the rising edge of the input clock signal. This is shown in Figure 4.23.
The input clock rising edge is propagated through a non-inverting delay element to node
A. This is then passed to one of the inputs of an AND gate. The arrival of a rising edge at
node A raises the output of the AND gate. Node B, acting as the second input to the gate,
is a delayed, inverted copy of A. The difference between the rising transition at node A
and the falling transition at node B determines the pulse width of the AND gate’s output
high phase. By varying the clock-to-A delay, the low phase of the output signal can be
varied, while by varying the A-to-B delay, the output high phase can be varied. Since
the delay is generated using only the rising edge of the input clock, the output signal is
independent of the input signal’s frequency. This allows for full-speed testing while using
a low-speed external input clock. By using this inverter-delay-line-based pulse generator
architecture the internal SRAM timing signaling can be generated using the just the input

113

clock (either HSCLK or LSCLK) and a series of clock-shapers (AND gates) based on the
functional operating mode signals. The write with ECC encoding signaling is shown in
Figure 4.24(a) and read with ECC decoding with error correction and writeback is shown
in Figure 4.24(b).

During a write operation (Figure 4.24(a)), the arrival of the input clock signal (CLK)
initiates the generation of the write timing control signals. Write data is placed on the
ECC circuit’s input data bus and the additional check-bits to be written (ECCDATA) are
first calculated. The bitlines (BL/BLB) are then precharged to VDD. This operation is
control via the active-low precharge signal (PRE). Next, the write enable (WE) signal, not
shown, selectively discharges one of the bitlines to ‘0’ based on the write data. In this
example, the check-bit signal (ECCDATA) is a ‘1’, so BLB is pulled low, while BL remains
high. The bitcell is then exposed to the bitlines by raising the wordline (WL). This allows
the cell’s internal data (Q/Qb) to take on the new data value. Finally, after the data is
written, the WL is then lowered. In this example, we can see that during the next clock
cycle, the bitlines are reset to VDD during the next precharge phase. If the ECC circuit is
disabled, no check-bits are calculated, and only the data-bits are written to the array.

The read operation including ECC writeback (Figure 4.24(b)) is a more involved opera-
tion. Similar to the write operation, all read timing control signals are generated based on
the rising edge of the input clock (CLK). The active-low precharge signal (PRE) ensures
the bitlines (BL/BLB) are both initialized to VDD. In this example, this is already the
case. The address decoding operation, not shown, happens concurrently with the precharge
operation. Following the precharge phase, the bitlines are left to float at VDD, and the read
evaluation phase begins. By enabling the wordline signal (WL), one of the floating bitlines
begins to slowly discharge through the accessed bitcell. After a sufficient differential bitline
voltage, ∆VBL, has been developed to overcome the sense amplifier’s input offset voltage,
Voffset, the sense amplifier and read data latch are enabled via the sense amplifier enable
(SAE - shown) signal and the read latch enable (LATCHEN - not shown) signal respec-
tively. Following the successful reading of data, the read latch enters hold mode, and both
the wordline and sense amplifier are turned off. This would mark the end of a traditional
read operation without error correction. With the ECC unit enabled however, read data is
then passed to the ECC’s input data bus where it is inspected for errors. The ECC, after
a fixed propagation delay, then computes the error detected (ED) and uncorrectable error
(UE) status signals, and the corrected output data (CORRECTEDDATA). Provided that
an uncorrectable error has not occurred (i.e., UE = 0), the output data can then be read
off of the corrected data’s output data bus. Finally, if the ECC writeback functionality is
enabled, the circuit is prepared for writing in the event that the ECC detects a correctable
error, (i.e., ED = 1 and UE = 0). To facilitate this, the precharge circuit charges the
bitlines back up to VDD immediately after the read operation, and a write operation is
performed with the corrected data after it has been calculated. This process is identical to

114

QbQb
QQ

CLKCLK

PREPRE

BLBL
BLBBLB

WLWL

ECCDATAECCDATA

ECC Encode

Precharge Precharge

Selective Bitline
Discharge

Wordline Accesses
Bitcell

Write Cell Data

Initiate
Operation

Initiate Next
Operation

(a) Write signaling with ECC encoding

CORRECTED_DATACORRECTED_DATA

EDED

CLKCLK

BLBBLB
BLBL

WLWL

RDATARDATA

PREPRE

SAESAE

QbQb

QQ

UEUE

Writeback
Precharge

Read Operation
Precharge

Initiate
Operation

Initiate Next
Operation

Selective Bitline
Discharge For Writeback

 Access Bitcell
For Read

 Access Bitcell
For Writeback

Sense
Read Data

Read Data on
Read Data Bus

Develop DVBL

ECC Computation
and Error Correction

Writeback
Corrected Data

(b) Read signaling with ECC correction and writeback

Figure 4.24: Write and read timing control signals with ECC functionality.

115

the standard write operation in which one of the bitlines are selectively discharged based
on the writeback data. The cell is then exposed to the bitlines via raising the wordline and
the corrected data is written into the cell.

4.2.8 Performance Simulations

By using an edge-triggered, self-timed timing-control circuit, all read/write memory op-
erations can be generated and verified at full-speed while using a low-speed, externally
generated test clock. Although this allows for full-speed functional operation, it prohibits
in-lab performance timing measurements. In light of this, Figure 4.25 provides Fast Sim-
ulation Program with Integrated Circuit Emphasis (SPICE)-based, full-chip performance
data as a function of supply voltage across global process corners. Included in the figure is
the maximum memory operating frequency for both the high-speed (Figure 4.25(a)) and
low-speed (Figure 4.25(b)) test modes with the ECC circuit enabled and disabled.

The main curve data is simulated at TT/27 oC, while the upper and lower bounds are
simulated at FF/85 oC and SS/-25 oC respectively; these are the best and worst case timing
corners. Initially, this may seem counter intuitive since at nominal supply voltage timing
performance degrades as a function of temperature. At lower supply voltages however,
in sub-65 nm technologies, increasing temperature has a positive impact on device perfor-
mance. This is due to the temperature induced threshold voltage shift enhancing transistor
drain current due to the increase in overdrive voltage (|VGS − V th|). At lower supply volt-
ages, this effect outweighs the temperature induced carrier mobility degradation, and as
such, drain current, and in turn device speeds, improve with increased temperature [77].
The high-speed test mode provides memory only operation between 701.7 MHz at 1.0 V
and 16.7 MHz at 0.5 V. Enabling the ECC invokes a 15-25% performance penalty, reduc-
ing the operating frequencies to 519.75 MHz and 14.34 MHz respectively. The low-speed
timing mode has been included for operation below 0.5V. It was designed to operate down
to 200 mV, however functional memory operation ceases below 400 mV. The low-speed
timing mode operates between 158.5 MHz at 1.0 V and 1.1 MHz at 0.4 V without ECC. En-
abling the ECC invokes a 7-16% performance penalty and reduces the maximum operating
frequency to 146.8 MHz at 1.0 V and 920 kHz at 0.4 V respectively.

4.2.9 Printed Circuit Board Design

A four layer printed circuit board (PCB) has been designed to perform various measure-
ments on the test chip. The top and bottom layers are for signal routing, while the inner
layers are power and ground planes. The fully populated PCB is shown in Figure 4.26.
The test chip has been packaged and wire bonded in a 120 pin grid array (PGA) package

116

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

100

200

300

400

500

600

700

800

900

VDD, (V)

M
a

x
im

u
m

 O
p

e
ra

ti
n

g
 F

re
q

u
e

n
c
y
 (

M
H

z
)

SRAM Only

SRAM+ECC

(a) High-Speed Timing Mode

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

20

40

60

80

100

120

140

160

180

VDD, (V)

M
a

x
im

u
m

 O
p

e
ra

ti
n

g
 F

re
q

u
e

n
c
y
 (

M
H

z
)

SRAM Only

SRAM+ECC

(b) Low-Speed Timing Mode

Figure 4.25: Simulated memory timing performance with and without ECC enabled as
a function of supply voltage. Simulations performed at (TT/27 oC), (SS/-25 oC), and
(FF/85 oC).

117

Figure 4.26: PCB for test chip measurements

using a double tier wire bonding configuration. A total of ten dies were packaged: five by
the vendor Quik-Pak in San Diego, CA [78] using long, single-wire wire bonds, and another
five by Corwil in Milpitas, CA [79] using two short wires and conductive interposers. Mul-
tiple vendors were contracted due to the technical complexity of the tight pitched 22.5 µm
staggered, double-tiered bonding requirements. The chip layout, bonding diagrams, and
pin description is provided in Appendix B. The core supply voltages for the memory array
(VDD-6T), ECC (VDD-ECC), and peripheral circuits (VDD-PER) have been supplied in-
dependently to facilitate current measurements for each voltage region. Additional voltage
supplies are provided for the 1.8 V and 1.0 V level converters, buffers, and ESD circuits
within the input and output drivers circuitry. Address, data, and control signals can be
driven by both jumpers and off-board ribbon cables. The off-board socket connections
allow for the connection of remote test equipment. A separate controller card, shown in
Figure 4.27, was designed to control the test chip in conjunction with a data generator
through the ribbon cables during the radiation testing procedure.

118

Figure 4.27: PCB for external controller card

4.3 Silicon Measurement

Measurements of the silicon test chip have been performed in two phases. First, functional
and performance testing was conducted at the CMOS Design and Reliability Group re-
search test lab at the University of Waterloo. This was followed by radiation induced soft
error measurements at the Tri-University Meson Facility (TRIUMF) Canada’s National
Laboratory for Particle and Nuclear Physics, located in Vancouver, Canada.

The top-level chip layout and die photo for the silicon test chip is shown in Figure 4.28
and Figure 4.29 respectively and its features are listed in Table 4.9. A total of ten dies were
packaged; however, two chips were found to have shorted wire bonds. The potential for this
was expected due to the complexity of the fine pitched wire bonding requirements. Both of
these shorts were deemed to be show stopping, resulting in a 20% chip-level yield loss. One
short was between a pair of VDD/VSS supply rails making the chip completely inoperable,
while the other was between a VDD supply rail and an address line, thus creating a stuck-
at-1 fault on the address bus effectively halving the memory address space. In total eight
dies were deemed sufficiently operational for test.

The minimum operating voltage (VDDMIN) distribution for the set of eight functional,
packaged chips is shown in Table 4.10 in 50 mV increments with and without the SEC-DED

119

Figure 4.28: 75 kb SRAM Macro with ECC Full Chip Layout

120

Figure 4.29: 75 kb SRAM Macro with ECC Die Photo

Table 4.9: Features of Fabricated 28 nm Test Chip

Process 28 nm LP HK+MG Bulk CMOS
Nominal Supply Voltage 1.0 V
Memory Capacity 75 kb = 64 kb data + 11 kb parity

256 rows x 300 columns x 1 bank
Configuration 75 bit codeword = 64 data bits + 11 parity bits

4-way interleaving
Die: 1.23 mm x 1.23 mm

Physical Size SRAM: 366.1 µm x 146.6 µm
ECC: 139.4 µm x 89.3 µm

Bitcell Area 1.02 µm x 0.379 µm = 0.387 µm2

(logic design rules)
Performance/Energy 0.92 MHz, 0.015 fJ/bit @ 0.4 V
ECC (75, 64)-I6 SEC-DED-TAEC-8AED
ECC Features Selectable single, double,

or triple adjacent error correction
Minimum Operating Voltage 400 mV with ECC, 500 mV without ECC

121

Table 4.10: VDDMIN Measurement for 8 Test Chips

Number of Chips
VDDMIN (mV) 400 450 500 550 600
Without ECC 0 0 3 1 4

With ECC 2 1 4 1 0

Table 4.11: Average Power Measurement for 2 Test Chips Capable of 400 mV Operation
Operating SRAM ECC ECC/(ECC+SRAM) Total = SRAM+ECC

Voltage Active Leakage Active Leakage Active Leakage Active Leakage Leakage
(V) (µW) (µW) (µW) (µW) (%) (%) (µW) (µW) (%)
1.0 16.97 9.33 0.76 0.66 4.29 6.60 17.73 9.99 36.0
0.4 0.83 0.24 0.07 0.07 7.78 22.6 0.90 0.31 25.6

Low-Speed Test Mode, Input Clock Frequency 500 kHz

ECC feature enabled. Enabling the ECC reduces VDDMIN by an average of 80 mV over
the chipset, and allows for operation as low as 400 mV on two of the eight packaged chips.
Since weak cell failure is a random failure mechanism, enabling the additional adjacent
error correction modes provides negligible improvement in VDDMIN .

To measure power consumption, an ammeter was connected in series with the SRAM
and ECC supply voltage pins (VDD-6T and VDD-ECC) to monitor the average current as
the address space was continually cycled. Multiplying the average current by the supply
voltage provides the average power consumption. Under the same conditions, all individual
read and write power measurements were within 6% of one another, and as such have been
averaged into an single active power value. The leakage power is the power consumed while
the memory remains in the idle/unaccessed mode. The SRAM and ECC average measured
power consumption for the two chips capable of operating down to 400 mV is shown for
supply operating voltages of 1.0 V and 0.4 V in Table 4.11. Measurement was performed
using a 500 kHz clock in the low-speed test mode. For the ECC circuit, the active and
leakage power consumption measurements were comparable since only the memory circuit
was being gated in the retention mode; new input data was still being passed to the ECC
as the address space was being cycled in the measurement test mode. At 1 V, the total
average active power consumption was 17.73 µW with the ECC contributing 4.29% of this
power. Reducing the supply voltage to 0.4 V reduced the active power consumption 94.9%
to 0.9 µW. By removing the configurable interleaving and ECC circuitry, the chip’s power
consumption could be further reduced.

The degree of adjacent error correction is programmable using an off-chip configuration
register with setting described in Table 4.8. In Figure 4.30 an ECC test mode is used to
inject a progressively increasing sized error (1-3 adjacent-bits) into a codeword. For each
error, the codeword is read using the circuit’s ECC operating modes (No ECC, single-

122

UE

TAEC

DAEC

SEC

Single bit error 2 adjacent bit error 3 adjacent bit error

SEC

Corrects Error

DAEC

Corrects Error

TAEC

Corrects Error

N
o

 E
C

C

S
E

C

D
A

E
C

T
A

E
C

N
o

 E
C

C

S
E

C

D
A

E
C

T
A

E
C

N
o

 E
C

C

S
E

C

D
A

E
C

T
A

E
C

Figure 4.30: Measured error injection example. Additional ECC functionality is required
to perform error corrections as the injected error size increases.

Table 4.12: Measured Error Injection Example

Uncorrectable Error (UE) Correction Type
Error Type No ECC SEC DAEC TAEC

Single X X X X
2-Adjacent X X X X
3-Adjacent X X X X

X- Indicates a correctable error
X - Indicates an uncorrectable error

error-correction (SEC), DAEC, and TAEC). An oscilloscope is used to capture the error
correction register and the ECC’s Uncorrectable Error (UE) status signal for each read
cycle. As the size of the error increases, more advanced ECC modes are required to
correct the error. This is detailed in Table 4.12. When the ECC is disabled, none of the
injected errors are correctable. Enabling the basic ECC allows for the single-bit error to be
corrected, while enabling the DAEC feature allows for both the single-bit and 2 adjacent
bit error to be corrected. Finally, enabling the TAEC feature allows for the 3 adjacent bit
error to be corrected.

Table 4.13 provides a comparison of this work with other ECC protected SRAM ar-
rays. These memories are each protected using SEC-DED schemes. Since the arrays are of
different sizes, an effort has been made to create a fair comparison by quantifying average
and leakage energy per bit. Due to differences in array architectures and process tech-

123

Table 4.13: Design Comparison

This work JSSC [48] JSSC [29] CICC [80]
Year 2014 2006 2009 2013

Technology 28 nm LP 130 nm 90 nm 28 nm HP
VDD (V) 0.4 0.4 0.8 1.0
Topology 6T+ECC 6T+Hidden ECC 6T+ECC 8T, no ECC

Memory Size (kb) 75 38 68.5 512
Speed (MHz) 0.92 27 100 -

Leakage (pA/bit) 10.1 91.8 230 353
Average Energy (pJ) 1.16 1.55 @ 0.3 V 5.34 9.58
Average Energy / bit 0.015 0.04 @ 0.3 V 0.08 0.018

(fJ/bit)

nologies however, direct chip-to-chip measurement comparison is difficult. Nevertheless,
normalizing to the bit-level provides a more objective measure for comparison than directly
between arrays. We see that for the same VDD, the proposed SRAM consumes 88.9% less
leakage current and 62.5% less average access (read and write) energy per bit compared
to [48]. [48] is able to maintain high access speed even at low voltage by removing the
ECC circuit from the critical path. This is done by performing the error correction process
at periodic intervals rather than as the data is read, and can lead to issues regarding data
integrity if corrupted data is read prior to a correction cycle. Compared to [80], designed
in a similar technology node (28 nm), the proposed SRAM consumes 16.6% less energy per
bit for read and write access and has 97.1% less leakage current per bit. Scaling the supply
voltage on the proposed SRAM to the nominal 1.0 V supply increases the leakage current
to 121 pA/bit, which is still 2.92x less than the high performance (HP) cell in [80]. The
leakage current ratio between the simulated vendor supplied, high performance SRAM cell
and the proposed cell in the same process development kit shown in Figure 4.11 is 2.00x.
This provides some insight into the differences between different vendor’s provided bitcells.
The leakage current for the High Performance cell in the used low-power kit, is still low
relative to the cell in [80] using a high performance kit.

4.4 Radiation Testing

Accelerated high-energy neutron beam testing was conducted at the Tri-University Meson
Facility’s (TRIUMF) Neutron Irradiation Facility (NIF) in Vancouver, Canada [81]. All
testing was conducted in compliance with the Joint Electron Device Engineering Council
(JEDEC) JESD89A measurement standard: Measurement and Reporting of Alpha Parti-
cle and Terrestrial Cosmic Ray Induced Soft Errors in Semiconductor Devices [82]. The

124

Figure 4.31: NIF neutron beam spectrum compared with the atmospheric spectrum [81].

neutron beam’s energy spectrum, as shown in Figure 4.31, has been shaped to mimic that
of atmospheric neutrons, while its fluence has been accelerated to reduce irradiation time.
The NIF average beam fluence during the experiment was 2.08x106 neutrons/cm2-s, which
is approximately 3.75x108 times the average neutron fluence at sea level in New York
City. New York City is commonly used as a normalization location for SER measurement
data [7]. All SER measurements have been converted to FIT/Mb according to the following
acceleration factor scaling equation,

SER = Number of Upsets× 109

atan
× 1 Mb

Array Size
(4.1)

where an is the neutron fluence acceleration factor, (e.g., 3.75x108), at is the irradiation
time or time acceleration factor, and 1Mb/Array Size is the memory array capacity scaling

125

factor. The neutron fluence acceleration factor, an, varies between experiments based on
the number of counted neutrons, and the neutron absorption ratio. The number of neutrons
that the circuit is exposed to during the experiment is given by

Neutron Exposure = CF× Monitor Count without PCB

Monitor Count with PCB
× Counted Neutrons (4.2)

where the calibration factor (CF) is approximately 2.7x103, the neutron monitor count
with and without the PCB in place is the neutron absorption ratio and is measured by
counting the number of neutrons without and with the presence of the device under test
each over a 10 second snapshot. Finally, Counted Neutrons is the total number of neutrons
that pass through the chip and are collected by the neutron monitor counter throughout
the duration of the experiment. The neutron exposure provides a cross section in terms
of neutrons/cm2. Dividing this value by the time duration provides the neutron fluence at
the test facility, and normalizing this rate by the standardized fluence at New York City
gives the acceleration factor, an. That is

an =
Neutron Exposure

Duration of Experiment× FluenceNY C
(4.3)

4.4.1 Experimental Setup

The test facility and equipment setup at the TRIUMF NIF is shown in Figure 4.32. A
500 MeV cyclotron is used to establish a high energy 450 MeV proton beam line. The
proton beam is targeted at an aluminum plate beam dump inside a water tank. As protons
collide with the aluminum beam dump, neutrons are emitted and flow through a channel
guide connected to the tank. The neutron beam channel guide has a vertical access aperture
in the shielding at a distance of 2.6 m from the beam dump, with an access point 5 m
above the channel. This vertical access point through the concrete shielding is shown in
Figure 4.32(b). The device under test is mounted on a track and lowered down the access
point where it is bombarded by the neutron beam. Cables connect the device under test
to a monitoring station above the vertical access point shown in Figure 4.32(c). Testing
the memory consists of the following test procedure:

1. Write a known data pattern to the memory array with the neutron beam on, but the
circuit out of the beam path.

2. Read the memory array and compare the data pattern against the known written
pattern. This ensures proper functionality of the memory and indicates the location
of any weak bit-cells.

126

3. Measure the neutron beam fluence without the device under test in the beam path.

4. Lower the circuit into the neutron beam path.

5. Re-write the known data pattern into the memory array.

6. Allow the device under test to be exposed to the neutron beam for a measured period
of time.

7. Measure the neutron beam fluence. The ratio between the beam fluence with and
without the device under test in the beam line is the neutron absorption ratio.

8. Read the entire address space. Any differences between the read data and originally
written known pattern is recorded as an error.

9. Repeat steps 5-8 until the total desired measurement time is reached. Measurements
are done in multiple write/read operations to prevent the accumulation of errors over
time.

Radiation test data has been collected across a supply voltage range of 1.0 V down to
375 mV using the All-0, All-1, and Checker Board test data patterns. The duration of each
experiment ranged from 2 to 10 hours of irradiation time. Data sampling was performed
with the ECC Writeback feature disabled such that multiple degrees of error correction
could be used to process the same data sets.

4.4.2 Measurement Results

In this section, the soft error rate measurement data is presented as functions of supply
voltage (VDD), written data pattern, error correction mode, and error correction mode
with bit-interleaving. Figure 4.33 shows a visualization of the superposition of all of the
soft error measurement error location bitmaps for VDD = 500 mV. The figure shows an
x-y representation of the memory array’s bitcells with 256 rows and 300 columns. Upset
bitcells are represented with a black square, and the upset patterns in rows 1-64 and
columns 225-300 has been enhanced to show the different error types.

SER vs. VDD

Table 4.14 and Figure 4.34 presents the radiation test data and raw-SER performance
without applied ECC as a function of supply voltage. SER acceleration coefficients vary
for each test case due to differences in irradiation times and variability in the neutron beam
fluence at the test facility. At nominal supply voltage (1.0 V), MCUs make up 12.5% of

127

(a) TRIUMF Neutron Irradiation Facility setup

(b) PCB mounting station above the neutron
beam

(c) Test equipment monitoring station

Figure 4.32: TRIUMF NIF test facility and test station equipment setup.

128

Bitline Column

W
o

rd
li
n

e
 R

o
w

1 75 150 225 300

1

64

128

192

256

Bitline Column

W
o

rd
li
n

e
 R

o
w

225 300

64

SBU

2-MCUWL

2-MCUBL

(2x4) 5-MCUCLUSTER

Figure 4.33: Superposition of all soft error measurement error location bitmaps for VDD =
500 mV.

Table 4.14: Soft Error Rate Calculation from Radiation Test Data for 0.4 V to 1.0 V
VDD Time Total Errors SBU MCU MCUBL MCUWL MCUCluster MCU MCUCluster + Fluence 109

anat
SER

(V) (hr) (%) MCUWL (%) (n/cm2 · h) (FIT/Mb)
1.0 3.25 16 14 2 2 0 0 12.5 0.00 8.53x109 0.7215 157.62
0.8 2 16 14 2 2 0 0 12.5 0.00 7.36x109 1.3578 296.60
0.6 10 123 106 17 14 0 3 13.8 2.44 7.45x109 0.2684 450.75
0.5 10 189 148 41 35 2 4 21.7 3.17 6.96x109 0.2872 741.10
0.4 2 68 58 10 9 1 0 14.7 1.47 7.90x109 1.2658 1174.85

129

0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

VDD (V)

R
a
w

 E
rr

o
r

R
a
te

 (
F

IT
/M

b
)

Soft Errors + Weak Cells

Soft Errors

Figure 4.34: Raw error rate (radiation induced soft errors plus weak cells) vs. VDD without
ECC protection.

the total SER with none of the upsets belonging to the MCUWL or MCUCluster categories.
By scaling the supply voltage, the SER increases exponentially. At 500 mV MCUs make
up 21.7% of the total SER and the MCUWL + MCUCluster total accounts for 3.17% of the
total SER. These values are consistent with those predicted in [6] and the SER model in
Section 4.1. Additionally, MCUBL makes up over 80% of the measured MCUs across the
entire supply voltage range, this can be attributed to the MCU shaping strategies discussed
in Section 4.2.3. By reducing the supply voltage below 500 mV, random single-bit weak
cells begin to emerge and influence the measured error rate. These weak cells, making
up approximately 25% of the total error rate, can be observed prior to irradiation, and
have been filtered out of the SER data in Table 4.14. Due to their random, as opposed to
adjacent bit upset behavior, they do have an impact on the ECC correction process and
are therefore shown in Figure 4.34 and the ECC mode comparison shown in Figure 4.35.
In Figure 4.34 the raw error rate is shown as a function of supply voltage for a series of
radiation experiments for different time intervals and data patterns. The memory is fully
functional, and the error rate consists of only radiation induced soft errors when the supply
voltage is scaled from 1 V down to 500 mV. Below this voltage, weak bitcells influence the
number of measured errors. This can be seen in the increased error rate above the fitted
curve. Below 400 mV, weak cells and other peripheral circuit failures dominate the error
rate yielding the memory inoperable. This is seen in the extreme increase in the number

130

Table 4.15: SER using Different Data Patterns for VDD = 0.5 V, time = 2 hours

Pattern Total Errors SBU MCU % MCU Fluence SER
(n/cm2 · h) (FIT/Mb)

All 0’s 40 32 8 20.0 7.83x109 697.56
All 1’s 34 25 9 26.5 6.64x109 698.84

CB 37 29 8 21.6 7.13x109 708.53

of measured errors.

SER vs. Data Pattern

Experiments were performed using All-0, All-1, and Checker Board (CB) data patterns for
irradiation times of 120 minute each. This data is summarized in Table 4.15. Each of these
data patterns provide SER’s within 1.5% of each other and a total MCU count within one
upset for all data patterns. The error rate showed minimal dependence on data pattern.

SER vs. ECC Mode

By applying an increasing amount of adjacent ECC correction, the corrected-SER can
be reduced for a given supply voltage. In Figure 4.35, the corrected-SER is plotted for
0.6 V, 0.5 V, and 0.4 V using 1-way interleaving for each of the four ECC correction modes
(No ECC, SEC-DED, DAEC, and TAEC). When no ECC is applied the corrected-SER is
equal to the raw-SER. By applying even the basic SEC-DED scheme, the SER is reduced by
37x (∼97%) at 500 mV. The remaining errors are those MBUs beyond the error correcting
capabilities of the SEC-DED code. By applying the DAEC feature, the double adjacent-bit
upsets are removed (a 5x SER reduction over SEC-DED, 189x reduction over no ECC, or
∼99.5% of the total raw-SER) and only those upsets affecting more than two adjacent bits
remain. Since all upsets in the 500 mV dataset are less than or equal to three adjacent bits,
enabling the TAEC feature is able to remedy all of the upsets. Each of these corrected-
SERs are on the same order as those predicted in Section 4.1.2 for the given raw-SER.
Similar benefits can be seen by using additional interleaving, however this option may not
always be available depending on the memory’s specifications. For the 400 mV dataset,
one radiation induced upset occurred in a non-adjacent bit location in the same memory
word as a corrupted weak bitcell. Although detectable, the added error mechanism adds
to the overall error rate experienced at the 400 mV setting. Additional random bit ECC
protection would be necessary to correct both types of upsets simultaneously. This would
allow for a further potential reduction in VDDMIN .

131

No ECC SEC−DED DAEC TAEC
1

10

100

1000

10000

ECC Modes

S
E

R
 +

 W
e
a
k
 B

it
c
e
ll

R
a
te

 (
F

IT
/M

b
)

0.6 V

0.5 V

0.4 V

Figure 4.35: Radiation induced SER plus VDD induced weak bitcell rates for each ECC
mode. Weak bitcell upsets only occur at the 400 mV datapoints.

132

SER vs. ECC Mode with Bit-Interleaving

Figure 4.36 shows how interleaving combined with ECC impacts the SER. The dataset
shows the radiation induced SER for each ECC mode at VDD = 500 mV using 1-, 2-,
and 4-way interleaving. Without ECC applied, interleaving on its own has no impact on
correcting upsets. By applying the basic SEC-DED scheme, the SER is reduced by 37x
using 1-way interleaving, 195x for 2-way interleaving, and eliminated completely using 4-
way interleaving. Applying the DAEC code corrects all errors for 2-way interleaving, while
the TAEC feature is required to correct all errors for 1-way interleaving. Provided a larger
capacity memory circuit, increased irradiation time, or smaller bit cell (as will be discussed
for a set of vendor cells in Section 4.5.3) more of the lower-probability, larger errors would
emerge, providing richer datasets and the potential to more accurately model the error
rates for the higher correction-interleaving protected configurations.

4.5 Vendor Cell SER Estimation

In this section, estimates are made regarding the anticipated SER performance of the
supplied vendor cells for the 28 nm process used for fabrication. These cells are more likely
to be used in commercial products. Critical charge, Qcrit, for the implemented bitcell
and vendor cells is first determined as a function of supply voltage by SPICE simulations.
The results are then used in conjunction with the radiation test data to extract relevant
process parameters. These parameters are used to estimate the bit- and system-level SER
performance for the vendor cells.

4.5.1 Critical Charge SPICE Estimations

For estimating SRAM bitcell critical charge, Qcrit, a two component exponential function,
shown in Equation 4.4 [30] is used to model a current pulse being injected into one of the
bitcell’s internal storage nodes, shown in Figure 4.37. This models the transient current
pulse shown in Figure 1.1.

iinjected(t) =
Q

τf − τr
(
e−t/τf − e−t/τr

)
(4.4)

Here, Q is the peak charge deposited by the current pulse, and τr and τf are the pulse’s
rise and fall time constants. The pulse has a short rise time and a long fall time. The critical
charge is calculated through successive SPICE simulation in which the peak charge, Q, is
successively increased until the bitcell data changes state. This is shown in Figure 4.38. For

133

No ECC SEC−DED DAEC TAEC
1

10

100

1000

ECC Modes

S
E

R
 (

F
IT

/M
b
)

1−way

2−way

4−way

Figure 4.36: Radiation induced SER for each ECC mode at VDD = 500 mV for 1-, 2-, and
4-way interleaving.

134

Q Qb

VDD

‘0’ ‘1’
B
L

B
LB

WL WL

iinjected(t)

Figure 4.37: 6T SRAM Bitcell Critical Charge Testbench

the implemented bitcell, the cell is able to maintain its data (Figure 4.38(a)) after exposure
to a particle strike modeled by the exponential current pulse. While in Figure 4.38(b), for
an small incremental increase in the peak of the current pulse, the cell data is corrupted.
By numerical integration of the injected current, the critical charge can be determined.
Critical charge for the implemented bitcell and three vendor supplied cells is shown in
Figure 4.39 as a function of supply voltage at (TT/27 oC).

The implemented cell, designed using logic design rules, uses larger device sizes com-
pared to the vendor cells, and as such has a larger Qcrit across the entire supply voltage
range. Of the four cells, the high speed vendor cell has the lowest critical charge consis-
tently equal to 60-70% of the implemented cell’s Qcrit. At the nominal 1.0 V supply, the
implemented bitcell has a critical charge of 2.13 fC, while the vendor dense, high speed, and
high performance cells have critical charges of 1.46 fC, 1.39 fC, and 1.71 fC respectively.
This data in conjunction with the data in the next section will be used to estimate the
vendor cell’s SER.

4.5.2 Parameter Extraction

In [83] an empirical model is developed for relating the bit-level SER to the critical charge,
Qcrit. The model is described using the following exponential relationship between SER
and Qcrit:

SER = k × F × A× exp

(
−Qcrit

Qs

)
. (4.5)

135

QbQb

QQ

i_injectedi_injected

(a) No Data Corruption

QbQb

QQ

i_injectedi_injected

(b) Data Corruption

Figure 4.38: By incrementally increasing the peak charge, Q, deposited by an exponential
current pulse, iinjected(t), the critical charge, Qcrit, necessary to corrupt a bitcell can be
determined.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

VDD (V)

C
ri
ti
c
a
l
C

h
a
rg

e
,
Q

c
ri
t
(f

C
)

Implemented

Vendor − Dense

Vendor − High Speed

Vendor − High Performance

Figure 4.39: Critical charge as a function of supply voltage VDD for the implemented bitcell
and vendor supplied cells.

136

0.8 1 1.2 1.4 1.6 1.8 2 2.2
1.5

2

2.5

3

Critical Charge, Qcrit (fC)

ln
(S

E
R

/F
*A

),
 (

F
IT

−
h
/M

b
−

n
e
u
tr

o
n
s
)

Measured Data

Linear Regression, y = −0.9421x + 3.6209

Figure 4.40: Extraction of charge collection efficiency, Qs, and proportionality constant, k.

In the expression, k is a proportionality constant, F is the high energy neutron beam
fluence in particles/cm2-h, A is the sensitive area of the circuit in cm2 (in this case we use
the bitcell area), and Qs is the charge collection efficiency of the device in fC. The charge
collection efficiency is process dependent and depends on both the substrate doping and
carrier mobility. If k and Qs can be determined, the SER can be calculated for a given
bitcell since F is a controllable parameter, A is known at design time, and the Qcrit can
be calculated using the SPICE simulation method discussed in Section 4.5.1.

Both k and Qs can be extracted from the radiation test data by using the measured
SER and high energy neutron beam fluence from the radiation experiment. By rearrang-
ing Equation 4.5 and taking the natural logarithm, the following linear equation can be
produced as a function of Qcrit:

ln

(
SER

F × A

)
=

(
− 1

Qs

)
Qcrit + ln k. (4.6)

By plotting the known data on the left-hand side of Equation 4.6 for a number of Qcrit

values at different supply voltages, a linear regression will produce a line with slope −1/Qs

and y-intercept ln(k). This is shown in Figure 4.40 for supply voltages of 0.6 V, 0.8 V, and
1.0 V. From this, extracted values of k = 37.3711 FIT-h/Mb-neutron and Qs = 1.0614 fC
can be obtained, and substituted into Equation 4.6 to give:

137

0.4 0.5 0.6 0.7 0.8 0.9 1
100

200

300

400

500

600

700

800

900

1000

1100

VDD (V)

S
E

R
,

(F
IT

/M
b

)

Measured Data

Linear Regression Model

Figure 4.41: Measured and modeled SER vs. VDD. Modeled data is within 15% of
measured data for all data points except for one point at VDD = 0.6 V, Measured = 417.95
FIT/Mb, Model = 541.80 FIT/Mb, Percent Difference = 29.6%.

SER = 37.3711× F × A× exp

(
− Qcrit

1.0616

)
. (4.7)

By using the Qcrit values calculated across the supply voltage range, Equation 4.7 can
be compared against the measured radiation data. This is shown in Figure 4.41. The
model is within 15% of all but one of the measured SER data points across the entire
0.4 V to 1.0 V voltage range. The model gives a reasonable estimate for predicting SER
performance.

4.5.3 SER Performance

Since the vendor cells can be fabricated in the same process as the radiation tested imple-
mented bitcell, the extracted k and Qs parameters from Section 4.5.2 can be used with the
vendor cell Qcrit data from Section 4.5.1 to estimate the vendor cell’s SER performance.
This is summarized in Table 4.16.

Using Equation 4.5, the bit-level SER for each bitcell can be calculated in terms of
FIT/Mb. The layout area A for each bitcell is provided in Table 4.16. As to be expected,

138

Table 4.16: 28 nm SRAM Bitcell SER Comparison at Nominal (1.0 V) Supply Voltage

Bitcell Area Array Area Capacity Bit-SER System-SER
Cell (µm2) (mm2) (MB) (FIT/Mb) (FIT/Device)

Implemented 0.387 29.721 9.375 165.24 12 393
Vendor - Dense 0.120 29.721 29.52 96.66 22 827

Vendor - High Speed 0.152 29.721 23.31 130.78 24 387
Vendor - High Performance 0.152 29.721 23.31 96.74 18 040

Array Area = Implemented bitcell area × 75 kb capacity × 1000 macro tiles

the bit-level SER decreases for the smaller bitcells despite their reduced Qcrit. This is
similar to the scaling trend data shown in Figure 1.4. The array area is limited to the area
of the bitcell array and does not include the address decoder and additional row/column
peripheral circuitry associated with the SRAM macro. It is calculated by multiplying the
implemented bitcell’s area by its 75 kb capacity then by 1000 macro tiles to achieve a
9.375 MB capacity (8 MB data plus 1.375 MB parity). This array area is then used to
calculate the potential array capacity provided by each of the vendor cells for the same
given die area. The dense vendor cell has a bitcell area that is 31% of the implemented cell
and hence can yield a capacity 3.15x greater than that of the logic design rule implemented
cell. Considering each of the bitcell’s fixed area capacities as their device area, the system-
level SER in terms of FIT/device can be calculated by multiplying each cell’s bit-level SER
by its capacity. Again, much like the the scaling trends seen in Figure 1.4, despite their
reduced per-bit SER, the system-level SER of the smaller (or scaled) cells increases due
to their increased capacity per fixed unit area relative to the larger cells. This data can
be used to provide bit- and system-level SER estimates for memories designed using the
vendor bitcells at design time. For the vendor dense cell to have the same system-SER
as the implemented cell, the vendor dense cell’s capacity can be reduced to 16.02 MB.
This would require 16.133 mm2 of die area, 54.3% that of the logic design rule cell, while
achieving a 1.71x greater capacity. Applying any of the ECC schemes presented in this
chapter will reduce the bit-level SER, and in turn produce a reduction in the system-level
SER. For instance, reducing the power supply to 0.5 V for the implemented cells would
produce a system-SER of 55 582.5 FIT/device for the 9.375 MB capacity cache. Enabling
the DAEC ECC could reduce this to 294 FIT/device.

Finally, an estimate can be made for the maximum MCUWL upset size for each of
the vendor cells by considering the implemented cell’s maximum MCUWL upset size in
conjunction with each cell’s critical charge and bitcell area. For the implemented cell, a
3-adjacent bit same row upset was observed during one of the radiation experiments when
the supply voltage was equal to 500 mV. Assuming the high energy particle directly struck
the cell’s most sensitive diffusion, the sensitive diffusions in the adjacent most cells within
the same row are each separated by a distance of one bitcell width, w, from the upset’s

139

point of origin. Assuming that the charge dissipates exponentially as a function of distance
from the strike location, which has been observed in [84], we can determine the collected
charge as a function of distance from the strike location. That is:

Qcol(d) = Qo × e−d, (4.8)

where Qcol(d) is the collected charge at distance d from the strike origin and Qo is the
charge deposited at the origin. If Qcol(d) ≥ Qcrit at the adjacent bit’s sensitive node, then
we can assume that the cell will be upset. We can determine a lower and upper bound,
with the aid of Figure 4.42, on the maximum number of adjacent upset cells by considering
the case where Qcol(d) = Qcrit when 1). d is equal to the width of one bit, i.e., d = w,
and, 2). when d is just less than the distance necessary to corrupt the next most adjacent
bit, i.e., d = 2w − δ. This models the cases when Qo is just large enough for a 3-bit upset
to occur, and when Qo is just shy of creating a larger upset. Assuming a small quantity
for δ (0.01 µm), width w = 1.02 µm, and using the implemented cell’s Qcrit at the voltage
at which the upset occurred, (Qcrit at 500 mV = 0.595 fC), Qo is calculated for the lower
bound as Qo|LB = 1.652 fC and for the upper bound as Qo|UB = 4.536 fC respectively.

By rearranging Equation 4.8, the distance d at which Qcol = Qcrit, given a charge Qo

deposited at the strike origin, can be determined for each vendor cell. This is given by:

d = −ln

(
Qcrit

Qo

)
. (4.9)

Assuming the vendor cells have the same aspect ratio as the implemented cell, each of
their respective widths, wcell, can be determined. By normalizing the distance d at which
Qcol = Qcrit by each cell’s width and taking the floor of this value, the number of upset
cells to one side of the originally upset cell can be determined. Multiplying this value by
2 and adding one gives the total number of adjacent upset bitcells for the given particle
strike.

MCUWL Size = 2×
⌊

d

wcell

⌋
+ 1. (4.10)

A summary of this process is provided in Table 4.17 for each of the vendor cells. As
to be expected, due to its lowest critical charge and bitcell area, the dense cell has the
largest anticipated MCUWL size ranging from 5 to 9 bitcells. Of the implemented ECC
and interleaving schemes, the only configuration that could correct the 9-adjacent MCUWL

upset would be the TAEC ECC combined with 4-way interleaving, no other configuration
could correct an upset of this size. This emphasizes the need for additional adjacent error
correction and detection capabilities as semiconductor technology continues to scale.

140

w
2w - d

Sensitive
Diffusions

Bitcells:
Implemented

Bitcells:
Vendor - Dense

Case 1:
Lower Bound

Q
co

l(d
)

Qo|UB

d

Q
co

l(d
)

Qo|LB

w w

Qcrit imp.

d

2w - d 2w - d

Case 2:
Upper Bound

dmin dense

Qcrit dense

dmin dense

dmax dense

Qcrit imp.
Qcrit dense

dmax dense

MCUWL|min

MCUWL|max

Strike
Origin

Strike
Origin

Sensitive
Diffusions

wcell

Figure 4.42: MCU width bounds for vendor supplied cells can be determined from their
Qcrit, bitcell width, and Qo upper and lower bound parameter extracted from the im-
plemented bitcell’s simulated and radiation test data. In this example, a particle strike
causing a 3-MCUWL using the implemented bitcell could create an upset ranging from a
5-MCUWL to a 9-MCUWL for an array implemented using the vendor’s dense bitcell.

141

Table 4.17: 28 nm SRAM Bitcell MCU Width Comparison at 500 mV Supply Voltage
Bitcell Area wcell Qcrit dmin dmax MCUWL|min MCUWL|max

Cell (µm2) (µm) @ 500mV (fC) (µm) (µm) (Bitcell) (Bitcell)
Implemented 0.387 1.020 0.595 1.020 2.030 3 3

Vendor - Dense 0.120 0.568 0.372 1.490 2.500 5 9
Vendor - High Speed 0.152 0.640 0.372 1.490 2.500 5 7

Vendor - High Performance 0.152 0.640 0.471 1.254 2.264 3 7
Qo|LB = 1.652 fC and Qo|UB = 4.536 fC

4.6 Summary

In this chapter, an error channel model has been presented for estimating size and frequency
of multi-bit upsets in scaled technologies. Simulations have been performed to determine
the corrected soft error rates produced by various 64 data-bit error correcting codes in
the presence of this error channel. Further, a silicon test chip designed and fabricated
in a 28 nm process technology is discussed, and presented with simulation and radiation
measurement data. This data is then used to estimate the bit- and system-level soft error
rates for a set of vendor designed SRAM bitcells in the same 28 nm technology.

142

Chapter 5

Conclusions and Future Work

This chapter summarizes the contributions of this research and outlines a potential research
direction moving forward.

5.1 Contributions to the Field

As external radiation sources remain constant and semiconductor technology scales deep
into the sub-45 nm regime, radiation induced multi-bit soft error vulnerability continues
to increase in semiconductor devices. With on-chip embedded SRAM using near-minimum
feature-size devices and consuming over 50% of the die area in state-of-the-art microproces-
sors and system-on-chip designs, SRAM is particularly susceptible to upsets. Increasingly
reliable SRAM designs utilizing modern soft error mitigation techniques are becoming a
necessity. In this research, the influence of soft errors in SRAM is investigated at the ar-
chitectural level, and the utility of adjacent bit error correcting codes is explored. Further,
techniques have been experimentally validated through test chip implementation and ac-
celerated neutron irradiation tests. The main contributions and from this research include:

5.1.1 A New Class of Error Correcting Codes for Adjacent Multi-
bit Upsets

We have proposed a new error correcting code sub-class for modern soft error reliability.
The codes are targeted toward mitigating the adjacent multi-bit upsets most prominent in
scaled SRAM technologies, and provide a middle ground between the currently favoured
SEC-DED ECC schemes and the more robust, but more complex, multi-bit correcting
schemes. By using a number of check-bits between the two codes, a greater degree of

143

error reliability targeted specifically toward the error patterns found in aggressively scaled
technologies is provided compared to the SEC-DED codes for an area overhead less than
the traditional multi-bit codes. The code’s design procedure and full performance analysis
is provided complete with encoding and decoding examples.

5.1.2 Soft Error Rate Modeling

A multi-bit upset error channel model has been developed to estimate the frequency and
distribution of radiation induced error types. The error model is used to estimate the
corrected soft error rates for various error correcting codes as a function of raw error rate
after being exposed to the channel model. The proposed model is in agreement with the
error size distributions presented in [6]. The model has been used to provide corrected-
SER estimates for Hsiao SEC-DED, BCH DEC, and S5EC-D5ED Reed-Solomon codes,
as well as DAEC and TAEC versions of the proposed code class using 1-, 2-, and 4-way
interleaving.

5.1.3 28 nm Test Chip Design and Implementation

A test chip has been successfully designed and implemented in a 28 nm bulk CMOS tech-
nology to provide silicon validation for the proposed set of codes across a wide range of
input parameters and to establish the full-custom design flow for the process development
kit. This kit was chosen to allow for the smallest possible SRAM bitcell area and largest
possible number of multi-cell upsets during radiation testing. At the time of design, this
28 nm technology was the most advanced process available to Canadian academia through
the Canadian Microelectronics Corporation, and to the best of our knowledge no other
university had fabricated in this technology for purposes other than initial kit character-
ization. The chip contains a 75 kb 6T SRAM macro with a configurable implementation
of the proposed ECC class allowing for selectable degrees of adjacent error correction and
interleaving. The chip was designed for dynamic voltage and frequency scaling, providing
full functional operation from 1 V at 700 MHz down to 500 mV at 16.5 MHz with no ECC,
and 400 mV at 0.92 MHz with the ECC enabled. Having successfully completed the full
development cycle and created a series of design automation scripts for this technology,
design time can be reduced and yield/performance confidence increased for future chip
implementation development cycles.

Additionally, we have performed an industry standard accelerated neutron irradiation
test on the fabricated test chip. This has verified the soft error behaviour for the pro-
cess technology, and shown the applicability of the proposed ECC schemes for mitigating
multiple adjacent-bit soft errors. Further, all soft error data has been presented in raw,

144

non-normalized form. This data is typically closely guarded by industry developers and ob-
fuscated through normalization. Thus, any group interested in soft error rate measurement
should be able to benefit from this work.

5.1.4 Soft Error Rate Estimations for Vendor Cells

Since it was not possible to perform irradiation tests on the vendor supplied SRAM bitcells,
process specific parameters were extracted from the radiation test data using the bitcell
implemented using logic design rules, and used to extrapolate SER estimates for the vendor
cells. This data provides raw, non-normalized SER estimates for near-state-of-the-art
industry-designed embedded SRAM bitcells.

5.1.5 Publications

This work has been published in one IEEE journal article and has appeared in one IEEE
international conference proceeding. Two additional IEEE journal articles are currently
under peer review. A full list of these works, and other publications written throughout
the duration of this Ph.D., has been provided in Appendix C.

5.2 Future Work

As semiconductor technology continues to scale, it is anticipated that both the percentage
and size of multi-cell and multi-bit upsets will continue to grow. As such, the need for
adjacent-cell soft error mitigation will increase. Furthermore, the demand for reduced
power consumption will continue to push SRAM toward lower voltage designs. This will
not only further exacerbate soft error rates, but lead to an increase in the number of VDD-
induced weak bitcells. To address this, a potential future research direction would be the
investigation of light weight error correction codes capable of many multiple-adjacent-bit
correction. For example, the extension of a BCH double error correcting code to include
adjacent-bit error correction for one (or both) of its bit errors. Or, another alternative
would be to consider multiple-byte or multiple-burst Reed-Solomon error correcting codes.
This would allow for reliable soft error and weak bitcell protection in the ultra-low voltage
SRAM domain while ensuring minimal area and performance overhead.

Another consideration for future research is in the validation of the assumptions made
regarding the SERs for the vendor supplied SRAM bitcells. By obtaining access to the ex-
tracted layout views for these cells, larger capacity arrays could be implemented, irradiated,
and compared to the data sets collected in this work.

145

Finally, having successfully gone through the 28 nm full-custom test chip development
cycle (and having developed several design automation components in the process) other
designs can be implemented in this technology. This is useful for showing how a particular
design behaves in light of aggressive technology scaling.

146

Appendix A

Implemented H-Matrices

A.1 16 Data-bit Codes

A.1.1 SEC-DED-DAEC-yAED

(23, 16) I-4 Code
0 3, 5 2, 1 0, 2 4, 4 1, 6 6,

0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 1 1 1 (9)
0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 1 1 1 (9)
0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 (8)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 (6)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 (6)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 (6)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 (5)

(a) SEC-DED-DAEC-5AED (23, 16) I-4
Code Check-bits(1-7) = Columns{17 15 20
1 10 3 12}

(24, 16) I-5 Code
0 4, 1 6, 4 2, 2 1, 5 0,

0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 0 (9)
0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 (7)
0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 1 0 1 0 (7)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (5)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (5)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (5)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (5)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (4)

(b) SEC-DED-DAEC-7AED (24, 16) I-5
Code Check-bits(1-8) = Columns{11 12 8
1 22 3 24 5}

(25, 16) I-6 Code
0 2, 1 0, 4 4, 2 1, 6

0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 1 (7)
0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 (7)
0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 (6)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 (5)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 (4)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 (4)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 (4)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 (4)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 (4)

(c) SEC-DED-DAEC-9AED (25, 16) I-6
Code Check-bits(1-9) = Columns{13 2 9
1 8 3 10 5 12}

(26, 16) I-7 Code
1 0, 0 4, 2 2, 4 1,

0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | 1 0 1 0 1 (6)
0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 | 0 0 0 0 0 (7)
1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 1 0 1 0 (6)
--
1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 (4)
0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 (4)
0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 (4)
0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 (4)
0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 (4)
0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 (3)
0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 (3)

(d) SEC-DED-DAEC-11AED (26, 16) I-7
Code Check-bits(1-10) = Columns{22 16 3
8 2 10 4 12 6 14}

Figure A.1: 16 Data-bit SEC-DED-DAEC-yAED Codes

147

A.1.2 SEC-DED-TAEC-yAED

(23, 16) I-4 Code
0 3, 2 4, 4 1, 5 2, 1 0, 6 6,

0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 1 1 1 (9)
0 1 0 1 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 1 1 1 (9)
0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 0 0 0 (8)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 (6)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 (6)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 (6)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 (5)

(a) SEC-DED-TAEC-4AED (23, 16) I-4 Code Check-bits(1-
7) = Columns{9 14 19 1 18 3 20}

(24, 16) I-5 Code
4 6, 0 4, 1 0, 2 1, 5 2,

1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 (9)
0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 (7)
0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 (7)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (5)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (5)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (5)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (5)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (4)

(b) SEC-DED-TAEC-6AED (24, 16) I-5 Code Check-bits(1-
8) = Columns{1 22 13 6 12 8 14 10}

(25, 16) I-6 Code
2 0, 4 4, 1 2, 0 1, 6

0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 (7)
1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 (7)
0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 (6)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 (5)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 (4)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 (4)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 (4)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 (4)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 (4)

(c) SEC-DED-TAEC-8AED (25, 16) I-6 Code Check-bits(1-
9) = Columns{7 14 15 19 2 21 4 23}

Figure A.2: 16 Data-bit SEC-DED-TAEC-yAED Codes

148

A.2 32 Data-bit Codes

A.2.1 SEC-DED-DAEC-yAED

(39, 32) I-3 Code
4 12, 0 11, 3 10, 6 0, 1 6, 9 9, 7 2, 11 5, 2 8, 8 4, 5 1, 10 7, 12 3,

0 1 0 | 0 1 0 | 0 1 0 | 0 0 0 | 0 0 0 | 1 1 1 | 0 0 0 | 1 0 1 | 0 1 0 | 1 0 1 | 0 0 0 | 1 0 1 | 1 0 1 | (15)
1 1 1 | 0 0 0 | 0 0 0 | 1 0 1 | 0 1 0 | 0 0 0 | 1 0 1 | 0 1 0 | 0 0 0 | 0 1 0 | 1 0 1 | 0 1 0 | 1 0 1 | (15)
0 0 0 | 0 1 0 | 1 1 1 | 1 0 1 | 0 1 0 | 0 0 0 | 1 1 1 | 1 0 1 | 1 0 1 | 0 0 0 | 0 0 0 | 1 1 1 | 0 1 0 | (18)
0 0 0 | 0 1 0 | 1 0 1 | 0 0 0 | 1 0 1 | 1 1 1 | 1 0 1 | 1 1 1 | 0 0 0 | 0 0 0 | 1 1 1 | 0 1 0 | 0 1 0 | (18)
--
1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | 1 0 0 | (13)
0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | (13)
0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | 0 0 1 | (13)

(a) SEC-DED-DAEC-3AED (39, 32) I-3 Code Check-
bits(1-7) = Columns{28 29 27 13 4 11 6}

(40, 32) I-4 Code
2 6, 9 2, 10 0, 1 12, 6 8, 5 10, 4 3, 8 4, 0 1, 3 5,

0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 0 1 0 1 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | (12)
0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | (14)
1 1 1 1 | 0 1 0 1 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | (16)
0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 1 1 1 1 | (14)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | (10)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | (10)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | (10)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | (10)

(b) SEC-DED-DAEC-5AED (40, 32) I-4 Code Check-
bits(1-8) = Columns{29 30 3 36 33 10 35 12}

(41, 32) I-5 Code
1 0, 0 10, 2 1, 8 3, 4 2, 3 4, 10 8, 9 9, 12

0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 1 | 1 1 1 1 1 | 1 (16)
0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 (6)
0 0 0 0 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 1 0 1 0 1 | 0 0 0 0 0 | 0 (15)
1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 1 1 1 1 | 0 (15)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 (9)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 (8)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 (8)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 (8)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 (8)

(c) SEC-DED-DAEC-7AED (41, 32) I-5 Code Check-
bits(1-9) = Columns{32 23 24 5 6 2 8 4 10}

(42, 32) I-6 Code
2 8, 6 9, 4 1, 0 4, 8 0, 10 6, 1 2,

0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | (12)
0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | (12)
1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 1 0 1 0 1 | (15)
0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | (9)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | (7)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | (7)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | (7)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | (7)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | (7)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | (7)

(d) SEC-DED-DAEC-9AED (42, 32) I-6 Code Check-
bits(1-10) = Columns{25 20 3 16 19 26 21 28 23 30}

Figure A.3: 32 Data-bit SEC-DED-DAEC-yAED Codes

149

A.2.2 SEC-DED-TAEC-yAED

(40, 32) I-4 Code
2 10, 9 2, 8 5, 1 0, 6 8, 3 12, 5 3, 4 1, 0 4, 10 6,

0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | (12)
0 0 0 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 1 0 1 0 | 1 0 1 0 | 0 1 0 1 | 0 1 0 1 | (14)
1 1 1 1 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 1 1 1 1 | (16)
0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 1 1 1 1 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | (14)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | (10)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | (10)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | (10)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | (10)

(a) SEC-DED-TAEC-4AED (40, 32) I-4 Code Check-bits(1-8) = Columns{9 34 3 32 33
14 35 16}

(41, 32) I-5 Code
0 8, 5 5, 8 4, 3 0, 1 3, 6 1, 2 6, 4 2, 12

0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 (6)
0 0 0 0 0 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 1 | 1 (16)
0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 1 | 1 1 1 1 1 | 0 1 0 1 0 | 0 (15)
0 0 0 0 0 | 1 1 1 1 1 | 0 0 0 0 0 | 1 0 1 0 1 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 (15)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 (9)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 (8)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 (8)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 (8)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 (8)

(b) SEC-DED-TAEC-6AED (41, 32) I-5 Code Check-bits(1-9) = Columns{11 12 33 29 1
17 3 19 5}

(42, 32) I-6 Code
0 4, 1 0, 2 8, 6 9, 4 1, 8 6, 10 2,

0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | (12)
0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | (12)
0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 1 1 1 1 1 | (15)
0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | (9)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | (7)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | (7)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | (7)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | (7)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | (7)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | (7)

(c) SEC-DED-TAEC-8AED (42, 32) I-6 Code Check-bits(1-10) = Columns{31 2 15 28 1
8 3 10 5 12}

Figure A.4: 32 Data-bit SEC-DED-TAEC-yAED Codes

150

A.3 64 Data-bits

A.3.1 SEC-DED-DAEC-yAED

(72, 64) I-3 Code
20 9, 17 0, 2 28, 5 1, 14 11, 16 2, 1 17, 8 18, 6 4, 9 16, 10 6, 21 14, 3 8, 19 12, 4 3, 24 21, 18 5, 26 25, 0 20, 13 7, 22 24, 11 19, 25 22, 12 10,

1 0 1 | 1 0 1 | 0 1 0 | 0 0 0 | 0 0 0 | 1 0 1 | 0 1 0 | 0 1 0 | 0 0 0 | 0 1 0 | 0 0 0 | 1 0 1 | 0 0 0 | 1 0 1 | 0 0 0 | 1 1 1 | 1 0 1 | 1 1 1 | 0 1 0 | 0 0 0 | 1 1 1 | 0 1 0 | 1 1 1 | 0 0 0 | (30)
0 1 0 | 0 0 0 | 0 1 0 | 0 0 0 | 1 1 1 | 0 0 0 | 0 0 0 | 1 0 1 | 0 0 0 | 1 0 1 | 1 0 1 | 0 1 0 | 0 1 0 | 0 1 0 | 0 0 0 | 1 0 1 | 0 0 0 | 1 1 1 | 0 0 0 | 1 0 1 | 0 1 0 | 1 0 1 | 1 0 1 | 1 1 1 | (29)
1 0 1 | 0 0 0 | 0 1 0 | 1 0 1 | 1 0 1 | 0 0 0 | 0 0 0 | 0 0 0 | 1 1 1 | 0 0 0 | 0 1 0 | 1 1 1 | 0 0 0 | 0 1 0 | 1 0 1 | 0 1 0 | 0 1 0 | 0 0 0 | 0 1 0 | 1 1 1 | 1 0 1 | 0 0 0 | 0 1 0 | 1 0 1 | (28)
0 0 0 | 0 0 0 | 1 0 1 | 0 0 0 | 1 1 1 | 0 1 0 | 0 0 0 | 0 1 0 | 1 0 1 | 0 0 0 | 1 1 1 | 0 1 0 | 1 0 1 | 1 0 1 | 0 1 0 | 0 0 0 | 1 0 1 | 1 0 1 | 0 0 0 | 0 1 0 | 1 0 1 | 1 1 1 | 0 1 0 | 0 1 0 | (30)
0 1 0 | 1 0 1 | 0 0 0 | 1 1 1 | 0 1 0 | 0 0 0 | 1 1 1 | 0 0 0 | 0 0 0 | 1 0 1 | 0 0 0 | 1 0 1 | 1 0 1 | 1 0 1 | 0 1 0 | 0 1 0 | 0 1 0 | 0 1 0 | 0 0 0 | 1 1 1 | 0 0 0 | 1 1 1 | 1 0 1 | 0 0 0 | (30)
--
1 0 0 | (24)
0 1 0 | (24)
0 0 1 | (24)

(a) SEC-DED-DAEC-3AED (72, 64) I-3 Code Check-bits(1-8) = Columns{16 38 45 7 11 55 5 57}

(73, 64) I-4 Code
3 4, 9 26, 5 10, 0 20, 2 12, 10 16, 17 0, 24 17, 6 2, 1 24, 20 18, 12 1, 16 8, 18 9, 28 28, 8 3, 4 6, 26 5, 11

0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 1 1 1 1 | 0 0 0 0 | 0 1 0 1 | 1 1 1 1 | 0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 1 1 1 1 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 (28)
0 0 0 0 | 1 1 1 1 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 1 0 1 | 1 1 1 1 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 1 (29)
0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | 1 1 1 1 | 0 0 0 0 | 1 1 1 1 | 0 1 0 1 | 0 (24)
1 0 1 0 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | 1 1 1 1 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 1 0 1 | 1 0 1 0 | 1 (25)
1 0 1 0 | 1 0 1 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 1 0 1 | 1 (21)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 (19)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 (18)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 (18)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 (18)

(b) SEC-DED-DAEC-5AED (73, 64) I-4 Code Check-bits(1-9) = Columns{49 50 67 36 37 13 26 15 28}
(74, 64) I-5 Code
0 18, 24 1, 1 3, 4 9, 9 2, 10 0, 20 16, 2 24, 5 20, 18 5, 16 8, 3 12, 8 4, 12 10, 17 17,

0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 1 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 (24)
0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 1 0 1 0 1 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 1 1 1 1 1 | 0 0 0 0 (25)
0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 (20)
0 1 0 1 0 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 (20)
0 0 0 0 0 | 0 1 0 1 0 | 1 1 1 1 1 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 (24)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (15)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (15)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (15)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (15)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (14)

(c) SEC-DED-DAEC-7AED (74, 64) I-5 Code Check-bits(1-10) = Columns{51 52 18 24 15 1 27 3 29 5}

(75, 64) I-6 Code
1 24, 2 12, 0 9, 6 1, 16 8, 24 3, 4 2, 12 6, 20 16, 3 0, 9 20, 8 4, 17 17,

0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 1 1 (21)
0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 (24)
0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 1 1 1 1 1 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 (24)
0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 (18)
1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 1 1 (21)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 (13)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 (13)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 (13)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 (12)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 (12)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 (12)

(d) SEC-DED-DAEC-9AED (75, 64) I-6 Code Check-bits(1-11) = Columns{25 26 39 40 5 13 56 15 58
17 60}

Figure A.5: 64 Data-bit SEC-DED-DAEC-yAED Codes

151

A.3.2 SEC-DED-TAEC-yAED

(74, 64) I-5 Code
0 18, 10 0, 12 2, 3 10, 8 4, 24 1, 2 24, 16 8, 4 9, 18 5, 9 12, 1 3, 5 20, 20 16, 17 17,

0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 1 0 | 1 1 1 1 1 | 1 1 1 1 (24)
0 0 0 0 0 | 1 0 1 0 1 | 1 0 1 0 1 | 0 1 0 1 0 | 1 0 1 0 1 | 1 0 1 0 1 | 0 1 0 1 0 | 0 1 0 1 0 | 0 1 0 1 0 | 0 0 0 0 0 | 1 1 1 1 1 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 (25)
0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 0 1 0 1 0 | 0 0 0 0 0 | 1 1 1 1 1 | 1 0 1 0 1 | 0 0 0 0 (20)
0 1 0 1 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 1 1 1 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 (20)
0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 1 1 1 1 1 | 1 0 1 0 1 | 0 0 0 0 0 | 1 1 1 1 (24)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (15)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (15)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (15)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (15)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (14)

(a) SEC-DED-TAEC-6AED (74, 64) I-5 Code Check-bits(1-10) = Columns{36 37 43 14 60 1 7 3 9 5}

(75, 64) I-6 Code
0 9, 2 12, 1 24, 6 1, 16 8, 8 4, 12 6, 4 2, 20 16, 9 20, 3 0, 24 3, 17 17,

0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 1 1 (21)
0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 (24)
0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 1 1 1 1 1 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 (24)
0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 (18)
0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 1 1 1 (21)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 (13)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 (13)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 (13)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 (12)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 (12)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 (12)

(b) SEC-DED-TAEC-8AED (75, 64) I-6 Code Check-bits(1-11) = Columns{25 26 45 11 24 1 62 3 64
5 66}

Figure A.6: 64 Data-bit SEC-DED-TAEC-yAED Codes

152

A.4 Increased Identity Matrix Size Codes

A.4.1 32 Data-bits

(41, 32) I-6 Code
3 0, 2 6, 7 1, 1 4, 0 2, 4 3, 6 7,

0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 1 1 1 1 (17)
1 0 1 0 1 0 | 1 1 1 1 1 1 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 1 1 1 1 1 (23)
1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 (17)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 (7)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 (7)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 (7)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 (7)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 (7)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 (6)

(a) SEC-DED-DAEC-9AED (41, 32) I-6 IIMS Code Check-bits(1-9) = Columns{31 26 21
25 2 27 4 29 6}

(42, 32) I-7 Code
1 0, 6 3, 5 2, 4 4, 2 1, 0 6,

0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 1 0 1 0 1 0 1 | 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | (18)
0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | (17)
1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | (14)
--
1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | (6)
0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | (6)
0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | (6)
0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | (6)
0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | (6)
0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | (6)
0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | (6)

(b) SEC-DED-DAEC-11AED (42, 32) I-7 IIMS Code Check-bits(1-10) = Columns{22 16
3 36 2 38 4 40 6 42}

Figure A.7: 32 Data-bit SEC-DED-DAEC-yAED IIMS Codes

153

A.4.2 64 Data-bits

(73, 64) I-5 Code
5 10, 13 12, 15 4, 8 6, 9 13, 12 11, 2 8, 1 2, 7 15, 14 14, 4 9, 0 5, 11 7, 6 0, 10 3,

0 1 0 1 0 | 1 1 1 1 1 | 1 0 1 0 1 | 1 0 1 0 1 | 1 1 1 1 1 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 1 0 1 0 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 0 0 0 0 | 1 0 1 (39)
1 0 1 0 1 | 1 1 1 1 1 | 1 1 1 1 1 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 1 | 1 1 1 1 1 | 1 0 1 0 1 | 0 1 0 1 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 0 0 (40)
0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 1 0 1 0 | 1 0 1 0 1 | 0 1 0 1 0 | 1 1 1 1 1 | 1 1 1 1 1 | 0 0 0 0 0 | 0 0 0 0 0 | 1 1 1 1 1 | 1 0 1 0 1 | 1 1 1 (35)
1 0 1 0 1 | 1 0 1 0 1 | 1 0 1 0 1 | 0 0 0 0 0 | 1 1 1 1 1 | 0 1 0 1 0 | 0 0 0 0 0 | 1 0 1 0 1 | 1 1 1 1 1 | 0 0 0 0 0 | 0 1 0 1 0 | 0 1 0 1 0 | 1 1 1 1 1 | 0 0 0 0 0 | 0 1 0 (34)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 (15)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 (15)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 (15)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 (14)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 (14)

(a) SEC-DED-DAEC-7AED (73, 64) I-5 Code Check-bits(1-9) = Columns{16 12 33 40 56 67 58 69
60}

(74, 64) I-6 Code
3 4, 9 6, 10 11, 12 10, 5 9, 2 1, 8 2, 0 5, 1 12, 4 0, 6 8, 11 3, 13 13,

0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 1 1 (32)
0 1 0 1 0 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 1 1 (26)
1 0 1 0 1 0 | 0 1 0 1 0 1 | 1 1 1 1 1 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 0 1 0 1 0 | 1 1 1 1 1 1 | 0 0 (30)
1 0 1 0 1 0 | 1 0 1 0 1 0 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 0 1 0 1 0 1 | 0 0 0 0 0 0 | 0 1 0 1 0 1 | 1 0 1 0 1 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 1 1 1 1 1 1 | 1 1 (32)
--
1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 0 0 0 0 | 1 0 (13)
0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 1 (13)
0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 1 0 0 0 | 0 0 (12)
0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 (12)
0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 (12)
0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 0 0 (12)

(b) SEC-DED-DAEC-9AED (74, 64) I-6 Code Check-bits(1-10) = Columns{37 2 33 34 43 56 45 58
47 60}

(75, 64) I-7 Code
2 1, 1 0, 0 10, 4 3, 9 4, 3 8, 8 6, 6 2, 10 5, 5 9, 12 12,

0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 1 1 1 1 1 (26)
0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 1 1 1 1 1 (26)
1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 0 1 0 1 0 1 0 | 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 | 0 1 0 1 0 1 0 | 1 1 1 1 1 1 1 | 1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 (28)
0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 1 0 1 0 1 0 1 | 1 0 1 0 1 0 1 | 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 | 0 1 0 1 0 1 0 | 1 1 1 1 1 1 1 | 0 0 0 0 0 (28)
--
1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 0 0 | 1 0 0 0 0 (11)
0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 0 0 | 0 1 0 0 0 (11)
0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 0 0 | 0 0 1 0 0 (11)
0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 0 0 | 0 0 0 1 0 (11)
0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 0 0 | 0 0 0 0 1 (11)
0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 1 0 | 0 0 0 0 0 (10)
0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 0 1 | 0 0 0 0 0 (10)

(c) SEC-DED-DAEC-11AED (75, 64) I-7 Code Check-bits(1-11) = Columns{42 30 3 4 15 9 17 11 19
13 21}

Figure A.8: 64 Data-bit SEC-DED-DAEC-yAED IIMS Codes

154

A.5 Increased Check-bit Codes

(24, 16) I-4 Code
0 8, 3 12, 2 4, 8 2, 4 0, 1 1,

0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | (6)
0 0 0 0 | 0 1 0 1 | 0 1 0 1 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | (6)
0 0 0 0 | 1 0 1 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | (6)
0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 1 1 1 | (6)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | (6)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | (6)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | (6)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | (6)

(a) SEC-DED-DAEC-5AED (24, 16) I-4 ICB Code
Check-bits(1-8) = Columns{13 10 11 24 1 18 3 20}

(25, 16) I-4 Code
16 8, 1 0, 2 16, 4 1, 0 4, 8 2, 24

1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 (5)
0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 1 (5)
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 1 0 1 | 0 0 0 0 | 0 (4)
0 0 0 0 | 0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 0 0 0 | 0 1 0 1 | 0 (4)
0 0 0 0 | 1 0 1 0 | 0 0 0 0 | 0 1 0 1 | 0 0 0 0 | 0 0 0 0 | 0 (4)
--
1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 (7)
0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 1 0 0 | 0 (6)
0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 0 1 0 | 0 (6)
0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 0 0 1 | 0 (6)

(b) SEC-DED-DAEC-5AED (25, 16) I-4 ICB Code
Check-bits(1-9) = Columns{1 2 15 24 5 17 6 19 8}

Figure A.9: 16 Data-bit SEC-DED-DAEC-yAED ICB Codes

A.6 Optimized Code

(24, 16) I-5 Code
4 6 4 2 4 | 0 4 0 4 0 | 1 0 1 3 1 | 2 1 2 1 2 | 5 2 5 0

1 1 1 0 1 | 0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 0 (8)
0 1 0 1 0 | 0 0 0 0 0 | 0 0 0 1 0 | 1 0 1 0 1 | 0 1 0 0 (7)
0 0 0 0 0 | 0 0 0 0 0 | 1 0 1 1 1 | 0 1 0 1 0 | 1 0 1 0 (8)
--
1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 0 | 1 0 0 0 (5)
0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 0 | 0 1 0 0 (5)
0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 0 | 0 0 1 0 (5)
0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 0 | 0 0 0 1 (5)
0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 1 | 0 0 0 0 (4)

Figure A.10: Optimized (24, 16) I-5 Code with maximum row weight of 8 Check-bits(1-
8) = Columns{1 4 13 6 12 8 24 10}

155

A.7 Dutta Codes

(22,16) SEC-DED-DAEC Dutta Code

1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 | 1 0 0 0 0 0 (9)
0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 | 0 1 0 0 0 0 (8)
1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 | 0 0 1 0 0 0 (10)
1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 | 0 0 0 1 0 0 (9)
0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 | 0 0 0 0 1 0 (9)
0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 | 0 0 0 0 0 1 (9)

(a) SEC-DED-DAEC (22, 16) Dutta Code
Check-bits(1-6) = Columns{17 18 19 20 21 22}

(39,32) SEC-DED-DAEC Dutta Code

1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 | 1 0 0 0 0 0 0 (15)
0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 | 0 1 0 0 0 0 0 (14)
1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 | 0 0 1 0 0 0 0 (15)
0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 | 0 0 0 1 0 0 0 (15)
0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 | 0 0 0 0 1 0 0 (14)
1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 | 0 0 0 0 0 1 0 (15)
0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 | 0 0 0 0 0 0 1 (15)

(b) SEC-DED-DAEC (39, 32) Dutta Code Check-bits(1-
7) = Columns{33 34 35 36 37 38 39}

(72, 64) SEC-DED-DAEC Dutta Code

1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 | 1 0 0 0 0 0 0 0 (27)
1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 | 0 1 0 0 0 0 0 0 (26)
0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 | 0 0 1 0 0 0 0 0 (29)
1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 | 0 0 0 1 0 0 0 0 (30)
1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 | 0 0 0 0 1 0 0 0 (29)
1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 | 0 0 0 0 0 1 0 0 (32)
0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 | 0 0 0 0 0 0 1 0 (29)
0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 | 0 0 0 0 0 0 0 1 (30)

(c) SEC-DED-DAEC (72, 64) Dutta Code Check-bits(1-8) = Columns{65 66 67 68 69 70 71 72}

Figure A.11: Various Length Dutta Codes

156

A.8 BCH Codes

BCH2 (26, 16)

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 (8)
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 (7)
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 (7)
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 (6)
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 (9)
0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 (11)
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 (9)
0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 (9)
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 (9)
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 (8)

(a) (26, 16) BCH DEC Code Check-bits(1-
10) = Columns{1 2 3 4 5 6 7 8 9 10}

BCH DEC (44, 32)

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 (19)
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 (19)
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 (21)
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 (20)
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 (15)
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 (15)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 (15)
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 (14)
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 (17)
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 (19)
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 (19)
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 (19)

(b) (44, 32) BCH DEC Code Check-bits(1-12) = Columns{1 2 3 4 5 6 7 8
9 10 11 12}

BCH DEC (78, 64)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 (32)
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 (31)
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 (30)
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 (30)
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 (29)
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 (34)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 (38)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 (38)
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 (31)
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 (32)
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 (31)
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 (31)
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 (41)

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 (31)

(c) (78, 64) BCH DEC Code Check-bits(1-14) = Columns{1 2 3 4 5 6 7 8 9 10 11 12 13 14}

Figure A.12: Various Length BCH Codes

157

A.9 Reed Solomon Codes

RS(25,16) S3EC-D3ED

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 (7)
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 (6)
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 (6)
1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 (9)
0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 (12)
0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 (11)
1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 (9)
0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 (10)
0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 (9)

(a) S3EC-D3ED (25, 16) RS Code Check-bits(1-
9) = Columns{17 18 19 20 21 22 23 24 25}

RS(44,32) S4EC-D4ED

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 (9)
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 (9)
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 (9)
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 (9)
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 (14)
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 (18)
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 (16)
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 (15)
1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (18)
0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 (17)
0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 (18)
0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (17)

(b) S4EC-D4ED (44, 32) RS Code Check-bits(1-12) = Columns{33 34 35
36 37 38 39 40 41 42 43 44}

RS(79,64) S5EC-D5ED

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (14)
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (14)
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 (14)
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 (14)
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 (13)
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 (27)
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 (25)
0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (38)
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (34)
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (30)
1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 (30)
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (27)
0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 (32)
0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 (31)
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (29)

(c) S5EC-D5ED (79, 64) RS Code Check-bits(1-15) = Columns{65 66 67 68 69 70 71 72 73 74 75 76 77
78 79}

Figure A.13: Various Length Reed Solomon Codes

158

Appendix B

Details of Test Chip

75 kb 6T SRAM Macro with a Modified (75, 64)-I6

SEC-DED-TAEC-8AED Error Correction Code

Technology: 28nm HK+MG bulk LP-CMOS

CMC Run Code: 1302CT

Design Name: ICTWTAN3

Die Area Proper: 1.230mm * 1.230mm = 1.513mm2

Die Area with 57µm Scribe Lines: 1.287mm * 1.287mm = 1.656mm2

Tape-out Date: May 28th, 2013

Packaging by: Corwil Technology Corporation and Quik-Pak

159

Figure B.1: ICTWTAN3 - 6T SRAM + ECC + I/O + Level Shifter Circuit Level Block
Diagram

160

Figure B.2: ICTWTAN3 - Full Chip Layout

Figure B.3: ICTWTAN3 - Die Photo

161

Figure B.4: ICTWTAN3 - Die Pad Frame Connectivity

162

Figure B.5: ICTWTAN3 - Bonding Diagram - Two tiered bonding using two short wires
and conductive interposers, die in center of package cavity. Bonding by Corwil Technology
Corportation [79]

Figure B.6: ICTWTAN3 - Bonding Diagram - Two tiered bonding using single long wire,
die in center of package cavity. Bonding by Quik-Pak [78]

163

Figure B.7: ICTWTAN3 - 120 Pin Grid Array (PGA) Package Pin Configuration

164

Figure B.8: ICTWTAN3 - Pin Map

165

Figure B.9: ICTWTAN3 - Testboard for Device Under Test

Figure B.10: ICTWTAN3 - External Controller Card for Device Under Test

166

Table B.1: Pin Description for ICTWTAN3 120 PGA Test Chip - Pins 120-61
Pin Location Pin Number Pad Side Pad Ring Pad Number Pin Name Description Direction Type

A1 120 - - - NC No Connect - -
B3 119 Top Outer 1 UEOUT Uncorrectable Error Flag Output Digital
C4 118 Top Inner 1 VDDPER VDD Periphreal Circuits, 1V0 Nominal Power Analog
A2 117 Top Outer 2 EDOUT Error Detected Flag Output Digital
A3 116 Top Inner 2 VSS-A Adam Ground Power Digital
B4 115 Top Outer 3 ECCEN ECC Enable Input Digital
C5 114 Top Inner 3 VDDECC VDD Error Correction Block Power Analog
A4 113 Top Outer 4 ECCWRITEBACK ECC Writeback Enable Input Digital
B5 112 Top Inner 4 VSS-A Adam Ground Power Digital
A5 111 Top Outer 5 ECCTEST ECC Unit Test Mode Enable Input Digital
C6 110 Top Inner 5 VDDECC VDD Error Correction Block, 1V0 Nominal Power Analog
B6 109 Top Outer 6 CLKOUT-A Clock Out - Adam Output Digital
A6 108 Top Inner 6 VSS-A Adam Ground Power Digital
A7 107 Top Outer 7 GNDE-I/O IO Ring Ground Power Digital
C7 106 Top Inner 7 VDDE-I/O IO Ring VDD 1V8 Power Digital
B7 105 Top Outer 8 DIN< 1 > Data Input < 1 > Input Digital
A8 104 Top Inner 8 DIN< 0 > Data Input < 0 > Input Digital
B8 103 Top Outer 9 DIN< 3 > Data Input < 3 > Input Digital
C8 102 Top Inner 9 DIN< 2 > Data Input < 2 > Input Digital
A9 101 Top Outer 10 DIN< 5 > Data Input < 5 > Input Digital
B9 100 Top Inner 10 DIN< 4 > Data Input < 4 > Input Digital
A10 99 Top Outer 11 DIN< 7 > Data Input < 7 > Input Digital
C9 98 Top Inner 11 DIN< 6 > Data Input < 6 > Input Digital
B10 97 Top Outer 12 DIN< 9 > Data Input < 9 > Input Digital
A11 96 Top Inner 12 DIN< 8 > Data Input < 8 > Input Digital
B11 95 Top Outer 13 TIMINGSEL TIMING SELECT (1V0, 400mV) Input Digital
C10 94 Top Inner 13 DIN< 10 > Data Input < 10 > Input Digital
A12 93 Top Outer 14 GND-I/O Core Ground in I/O Power Digital
B12 92 Top Inner 14 VDD-I/O Core VDD in I/O, 1V0 Power Digital
C11 91 - - - NC No Connect - -
A13 90 - - - NC No Connect - -
C12 89 Right Outer 1 TAEC Triple Adjacent Error Correction Select Input Digital
D11 88 Right Inner 1 VSS-A Adam Ground Power Digital
B13 87 Right Outer 2 DAEC Double Adjacent Error Correction Select Input Digital
C13 86 Right Inner 2 VDD6T VDD 6T Array, 1V0 Nominal Power Analog
D12 85 Right Outer 3 DINFFSEL< 0 > Data Input FF Mux Select < 0 > Input Digital
E11 84 Right Inner 3 VSS-A Adam Ground Power Digital
D13 83 Right Outer 4 DINFFSEL< 1 > Data Input FF Mux Select < 1 > Input Digital
E12 82 Right Inner 4 VDDPER VDD Periphreal Circuits, 1V0 Nominal Power Analog
E13 81 Right Outer 5 GNDE-I/O IO Ring Ground Power Digital
F11 80 Right Inner 5 VDDE-I/O IO Ring VDD 1V8 Power Digital
F12 79 Right Outer 6 DOUT< 7 > Data Output < 7 > Output Digital
F13 78 Right Inner 6 DOUT< 6 > Data Output < 6 > Output Digital
G13 77 Right Outer 7 DOUT< 5 > Data Output < 5 > Output Digital
G11 76 Right Inner 7 DOUT< 4 > Data Output < 4 > Output Digital
G12 75 Right Outer 8 DOUT< 3 > Data Output < 3 > Output Digital
H13 74 Right Inner 8 DOUT< 2 > Data Output < 2 > Output Digital
H12 73 Right Outer 9 DOUT< 1 > Data Output < 1 > Output Digital
H11 72 Right Inner 9 DOUT< 0 > Data Output < 0 > Output Digital
J13 71 Right Outer 10 VDDE-I/O IO Ring VDD 1V8 Power Digital
J12 70 Right Inner 10 GNDE-I/O IO Ring Ground Power Digital
K13 69 Right Outer 11 VDD-I/O Core VDD in I/O, 1V0 Power Digital
J11 68 Right Inner 11 GND-I/O Core Ground in I/O Power Digital
K12 67 Right Outer 12 CLKOUT-J Clock Out - Jaspal Output Digital
L13 66 Right Inner 12 VBL Bitline Voltage Input Analog
L12 65 Right Outer 13 GNDE-I/O IO Ring Ground Power Digital
K11 64 Right Inner 13 VDD-J VDD for array peripheral Power Analog
M13 63 Right Outer 14 VDDE-I/O IO Ring VDD 1V8 Power Digital
M12 62 Right Inner 14 VSS-J Jaspal Ground Power Digital
L11 61 - - - NC No Connect - -

167

Table B.2: Pin Description for ICTWTAN3 120 PGA Test Chip - Pins 60-1
Pin Location Pin Number Pad Side Pad Ring Pad Number Pin Name Description Direction Type

N13 60 - - - NC No Connect - -
M11 59 Bottom Outer 14 GNDE-I/O IO Ring Ground Power Digital
L10 58 Bottom Inner 14 VDDH Level Converter VDD High 1V0 Power Digital
N12 57 Bottom Outer 13 VDDE-I/O IO Ring VDD 1V8 Power Digital
N11 56 Bottom Inner 13 VSS-J Jaspal Ground Power Digital
M10 55 Bottom Outer 12 GNDE-I/O IO Ring Ground Power Digital
L9 54 Bottom Inner 12 VDD8T VDD for 8T Array Power Analog

N10 53 Bottom Outer 11 VDDE-I/O IO Ring VDD 1V8 Power Digital
M9 52 Bottom Inner 11 VSS-J Jaspal Ground Power Digital
N9 51 Bottom Outer 10 GNDE-I/O IO Ring Ground Power Digital
L8 50 Bottom Inner 10 VDD-J VDD for array peripheral Power Analog
M8 49 Bottom Outer 9 VDD-I/O Core VDD in I/O, 1V0 Power Digital
N8 48 Bottom Inner 9 GND-I/O Core Ground in I/O Power Digital
N7 47 Bottom Outer 8 GNDE-I/O IO Ring Ground Power Digital
L7 46 Bottom Inner 8 VDD8T VDD for 8T Array Power Analog
M7 45 Bottom Outer 7 VDDE-I/O IO Ring VDD 1V8 Power Digital
N6 44 Bottom Inner 7 VSS-J Jaspal Ground Power Digital
M6 43 Bottom Outer 6 GNDE-I/O IO Ring Ground Power Digital
L6 42 Bottom Inner 6 VWL Wordline Voltage Input Analog
N5 41 Bottom Outer 5 VDDE-I/O IO Ring VDD 1V8 Power Digital
M5 40 Bottom Inner 5 VSS-J Jaspal Ground Power Digital
N4 39 Bottom Outer 4 GNDE-I/O IO Ring Ground Power Digital
L5 38 Bottom Inner 4 VDDT VDD for the Timing Block Input Analog
M4 37 Bottom Outer 3 VDDE-I/O IO Ring VDD 1V8 Power Digital
N3 36 Bottom Inner 3 VSS-J Jaspal Ground Power Digital
M3 35 Bottom Outer 2 GNDE-I/O IO Ring Ground Power Digital
L4 34 Bottom Inner 2 VDD8T VDD for 8T Array Power Analog
N2 33 Bottom Outer 1 RW-J Read/Write - Jaspal Input Digital
M2 32 Bottom Inner 1 VDD-J VDD for array peripheral Power Analog
L3 31 - - - NC No Connect - -
N1 30 - - - NC No Connect - -
L2 29 Left Outer 14 VDDE-I/O IO Ring VDD 1V8 Power Digital
K3 28 Left Inner 14 GNDE-I/O IO Ring Ground Power Digital
M1 27 Left Outer 13 CLKIN-J Clock In - Jaspal Input Digital
L1 26 Left Inner 13 VDD8T VDD for 8T Array Power Analog
K2 25 Left Outer 12 ADDR< 0 > Address Input < 0 > Input Digital
J3 24 Left Inner 12 ADDR< 1 > Address Input < 1 > Input Digital
K1 23 Left Outer 11 ADDR< 2 > Address Input < 2 > Input Digital
J2 22 Left Inner 11 ADDR< 3 > Address Input < 3 > Input Digital
J1 21 Left Outer 10 ADDR< 4 > Address Input < 4 > Input Digital
H3 20 Left Inner 10 ADDR< 5 > Address Input < 5 > Input Digital
H2 19 Left Outer 9 ADDR< 6 > Address Input < 6 > Input Digital
H1 18 Left Inner 9 ADDR< 7 > Address Input < 7 > Input Digital
G1 17 Left Outer 8 ADDR< 8 > Address Input < 8 > Input Digital
G3 16 Left Inner 8 ADDR< 9 > Address Input < 9 > Input Digital
G2 15 Left Outer 7 ADDR< 10 > Address Input < 10 > Input Digital
F1 14 Left Inner 7 ADDR< 11 > Address Input < 11 > Input Digital
F2 13 Left Outer 6 ADDR< 12 > Address Input < 12 > Input Digital
F3 12 Left Inner 6 ADDR< 13 > Address Input < 13 > Input Digital
E1 11 Left Outer 5 ADDR< 14 > Address Input < 14 > Input Digital
E2 10 Left Inner 5 ADDR< 15 > Address Input < 15 > Input Digital
D1 9 Left Outer 4 GNDE-I/O IO Ring Ground Power Digital
E3 8 Left Inner 4 VDDE-I/O IO Ring VDD 1V8 Power Digital
D2 7 Left Outer 3 CLKIN-A Clock In - Adam Input Digital
C1 6 Left Inner 3 VDD6T VDD 6T Array, 1V0 Nominal Power Analog
C2 5 Left Outer 2 RW-A Read/Write - Adam Input Digital
D3 4 Left Inner 2 VSS-A Adam Ground Power Digital
B1 3 Left Outer 1 VDD-I/O Core VDD in I/O, 1V0 Power Digital
B2 2 Left Inner 1 GND-I/O Core Ground in I/O Power Digital
C3 1 - - - NC No Connect - -

168

Appendix C

Publications From This Work

• A. Neale, M. Jonkman, and M. Sachdev, “Adjacent-MBU Tolerant SEC-DED-
TAEC-yAED Codes for Embedded SRAMs”, to appear in Circuits and Systems II:
Express Briefs, IEEE Transactions on, DOI: 10.1109/TCSII.2014.2368262.

• A. Neale and M. Sachdev, “A 0.4 V 75 kbit SRAM Macro in 28 nm CMOS Featuring
a 3-Adjacent MBU Correcting ECC”, in Proc. IEEE 2014 Custom Integrated Circuits
Conference (CICC), San Jose, CA, 15-17 September 2014.

• A. Neale and M. Sachdev, “A New SEC-DED Error Correction Code Subclass for
Adjacent MBU Tolerance in Embedded Memory,” Device and Materials Reliability,
IEEE Transactions on , vol.13, no.1, pp.223,230, March 2013.
DOI: 10.1109/TDMR.2012.2232671.

169

Other Accepted Publications During Ph.D.

• A. Neale, and M. Sachdev, “Success Mechanisms for STEM Student-Athletes, in
Opportunities and New Directions (OND ’12), University of Waterloo, Waterloo,
Ontario, Canada, April 2012.

• A. Neale, O. Grant, and M. Sachdev, “The Road to Success for STEM Student-
Athletes, in Proc. of the 119th Annual American Society for Engineering Education
Conference and Exposition (ASEE ’12), Austin, TX, June 2012, pp. 1-25.

• A. Neale, and M. Sachdev, “Learning to Juggle: The Challenges and Benefits to
being an Engineering Graduate Student and Collegiate Athlete”, in Proc. of the
119th Annual American Society for Engineering Education Conference and Exposi-
tion (ASEE ’12), Austin, TX, June 2012.

• A. Neale and M. Sachdev, “Digitally programmable SRAM timing for nano-scale
technologies,” in Proc. Int. Symp. on Quality Electronic Design (ISQED), 2011,
San Jose, CA pp.1,7, 14-16 March 2011 doi: 10.1109/ISQED.2011.5770776

170

References

[1] Taejoong Song, Woojin Rim, Jonghoon Jung, Giyong Yang, Jaeho Park, Sunghyun
Park, Kang-Hyun Baek, Sanghoon Baek, Sang-Kyu Oh, Jinsuk Jung, Sungbong Kim,
Gyuhong Kim, Jintae Kim, Youngkeun Lee, Kee Sup Kim, Sang-Pil Sim, Jong Shik
Yoon, and Kyu-Myung Choi. 13.2 A 14nm FinFET 128Mb 6T SRAM with VMIN-
Enhancement Techniques for Low-Power Applications. In Solid-State Circuits Confer-
ence Digest of Technical Papers (ISSCC), 2014 IEEE International, pages 232–233,
Feb 2014.

[2] Yen-Huei Chen, Wei-Min Chan, Wei-Cheng Wu, Hung-Jen Liao, Kuo-Hua Pan, Jhon-
Jhy Liaw, Tang-Hsuan Chung, Quincy Li, G.H. Chang, Chih-Yung Lin, Mu-Chi Chi-
ang, Shien-Yang Wu, S. Natarajan, and J. Chang. 13.5 A 16nm 128Mb SRAM in
High-k; Metal-Gate FinFET Technology with Write-Assist Circuitry for Low-VMIN
Applications. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014 IEEE International, pages 238–239, Feb 2014.

[3] R. Schenker and V. Singh. Foundations for Scaling Beyond 14nm. In Custom Integrated
Circuits Conference (CICC), 2013 IEEE, pages 1–4, Sept 2013.

[4] R.C. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor Technolo-
gies. Device and Materials Reliability, IEEE Transactions on, 5(3):305 – 316, Sept.
2005.

[5] C. Slayman. Soft Error Trends and Mitigation Techniques in Memory Devices. In
Reliability and Maintainability Symposium (RAMS), 2011 Proceedings - Annual, pages
1 –5, Jan. 2011.

[6] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba. Impact of Scaling on
Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule.
Electron Devices, IEEE Transactions on, 57(7):1527 –1538, July 2010.

[7] J.F. Ziegler and H. Puchner. SER - History, Trends and Challenges - A Guide for
Designing with Memory ICs. Cypress Semiconductor Corporation, 1st edition, 2004.

171

[8] Timothy C. May and Murray H. Woods. A New Physical Mechanism for Soft Errors
in Dynamic Memories. In Reliability Physics Symposium, 1978. 16th Annual, pages
33 –40, April 1978.

[9] J. Ziegler and W. Lanford. The Effect of Sea Level Cosmic Rays on Electronic De-
vices. In Solid-State Circuits Conference. Digest of Technical Papers. 1980 IEEE
International, volume XXIII, pages 70–71, Feb 1980.

[10] International Roadmap for Semiconductors. http://www.itrs.net/, 2011.

[11] E. Fujiwara. Code Design for Dependable Systems - Theory and Practical Applications.
John Wiley and Sons, Inc., 2006.

[12] Wei Chen, Szu-Liang Chen, Siufu Chiu, R. Ganesan, V. Lukka, W.W. Mar, and
S. Rusu. A 22nm 2.5MB Slice On-die L3 Cache for the Next Generation Xeon Pro-
cessor. In VLSI Circuits (VLSIC), 2013 Symposium on, pages C132–C133, June 2013.

[13] H. Yamauchi. Embedded Memories for Nano-Scale VLSIs, chapter Chapter 3 - Embed-
ded SRAM Design in Nanometer-Scale Technologies. Springer Science and Business
Media, LLC.

[14] P.E. Dodd and L.W. Massengill. Basic Mechanisms and Modeling of Single-Event
Upset in Digital Microelectronics. Nuclear Science, IEEE Transactions on, 50(3):583
– 602, June 2003.

[15] D.J. Rennie, T. Shakir, and M. Sachdev. Design Challenges in Nanometric Embedded
Memories. In Signals, Circuits and Systems (SCS), 2009 3rd International Conference
on, pages 1 –8, Nov. 2009.

[16] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruckerbauer. Investiga-
tion of Increased Multi-Bit Failure Rate Due to Neutron Induced SEU in Advanced
Embedded SRAMs. In VLSI Circuits, 2007 IEEE Symposium on, pages 80–81, June
2007.

[17] G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S. Pontarelli, M. Re, and A. Sal-
sano. Design of a Fault Tolerant Solid State Mass Memory. Reliability, IEEE Trans-
actions on, 52(4):476 – 491, Dec. 2003.

[18] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Characterization of Multi-bit Soft
Error Events in Advanced SRAMs. In Electron Devices Meeting, 2003. IEDM ’03
Technical Digest. IEEE International, pages 21.4.1 – 21.4.4, Dec. 2003.

172

[19] R. Naseer and J. Draper. Parallel Double Error Correcting Code Design to Mitigate
Multi-bit Upsets in SRAM s. In Solid-State Circuits Conference, 2008. ESSCIRC
2008. 34th European, pages 222 –225, Sept. 2008.

[20] A.D. Tipton, J.A. Pellish, J.M. Hutson, R. Baumann, X. Deng, A. Marshall, M.A.
Xapsos, H.S. Kim, M.R. Friendlich, M.J. Campola, C.M. Seidleck, K.A. LaBel,
M.H. Mendenhall, R.A. Reed, R.D. Schrimpf, R.A. Weller, and J.D. Black. Device-
Orientation Effects on Multiple-Bit Upset in 65 nm SRAMs. Nuclear Science, IEEE
Transactions on, 55(6):2880 –2885, Dec. 2008.

[21] H. Kobayashi, N. Kawamoto, J. Kase, and K. Shiraish. Alpha Particle and Neutron-
induced Soft Error Rates and Scaling Trends in SRAM. In Reliability Physics Sym-
posium, 2009 IEEE International, pages 206 –211, April 2009.

[22] Sai-Wai Fu, A.M. Mohsen, and T.C. May. Alpha-Particle-Induced Charge Collection
Measurements and the Effectiveness of a Novel p-well Protection Barrier on VLSI
Memories. Electron Devices, IEEE Transactions on, 32(1):49 – 54, Jan 1985.

[23] D. Burnett, C. Lage, and A. Bormann. Soft-Error-Rate Improvement in Advanced
BiCMOS SRAMs. In Reliability Physics Symposium, 1993. 31st Annual Proceedings.,
International, pages 156 –160, March 1993.

[24] J.D. Hayden, R.C. Taft, P. Kenkare, C. Mazure, C. Gunderson, B.-Y. Nguyen,
M. Woo, C. Lage, B.J. Roman, S. Radhakrishna, R. Subrahmanyan, A.R. Sitaram,
P. Pelley, J.-H. Lin, K. Kemp, and H. Kirsch. A Quadruple Well, Quadruple Polysili-
con BiCMOS Process for Fast 16 Mb SRAM’s. Electron Devices, IEEE Transactions
on, 41(12):2318 –2325, Dec 1994.

[25] E.H. Cannon, D.D. Reinhardt, M.S. Gordon, and P.S. Makowenskyj. SRAM SER in
90, 130 and 180 nm Bulk and SOI Technologies. In Reliability Physics Symposium
Proceedings, 2004. 42nd Annual. 2004 IEEE International, pages 300 – 304, April
2004.

[26] S. E. Diehl, A. Ochoa, P. V. Dressendorfer, R. Koga, and W. A. Kolasinski. Error
Analysis and Prevention of Cosmic Ion-Induced Soft Errors in Static CMOS RAMs.
Nuclear Science, IEEE Transactions on, 29(6):2032 –2039, Dec. 1982.

[27] F. Ootsuka, M. Nakamura, T. Miyake, S. Iwahashi, Y. Ohira, T. Tamaru,
K. Kikushima, and K. Yamaguchi. A Novel 0.20 um Full CMOS SRAM Cell Us-
ing Stacked Cross Couple with Enhanced Soft Error Immunity. In Electron Devices
Meeting, 1998. IEDM ’98 Technical Digest., International, pages 205 –208, Dec 1998.

173

[28] T. Calin, M. Nicolaidis, and R. Velazco. Upset Hardened Memory Design for Submi-
cron CMOS Technology. Nuclear Science, IEEE Transactions on, 43(6):2874 –2878,
Dec 1996.

[29] S.M. Jahinuzzaman, J.S. Shah, D.J. Rennie, and M. Sachdev. Design and Analysis
of A 5.3-pJ 64-kb Gated Ground SRAM With Multiword ECC. Solid-State Circuits,
IEEE Journal of, 44(9):2543–2553, Sept 2009.

[30] S.M. Jahinuzzaman. Modeling and Mitigation of Soft Errors in Nanoscale SRAMs.
PhD thesis, University of Waterloo, 2008.

[31] M. Y. Hsiao. A Class of Optimal Minimum Odd-weight-column SEC-DED Codes.
IBM Journal of Research and Development, 14(4):395 –401, July 1970.

[32] S.S. Mukherjee, J. Emer, and S.K. Reinhardt. The Soft Error Problem: An Archi-
tectural Perspective. In High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on, pages 243 – 247, Feb. 2005.

[33] R.W. Hamming. Error Correcting and Error Detecting Codes. Bell Sys. Tech. Journal,
29:147–160, April 1950.

[34] C. L. Chen and M. Y. Hsiao. Error-Correcting Codes for Semiconductor Memory
Applications: A State-of-the-Art Review. IBM Journal of Research and Development,
28(2):124 –134, March 1984.

[35] D. Rossi, N. Timoncini, M. Spica, and C. Metra. Error Correcting Code Analysis
for Cache Memory High Reliability and Performance. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pages 1 –6, March 2011.

[36] Xinmiao Zhang and K.K. Parhi. High-Speed Architectures for Parallel Long BCH
Encoders. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
13(7):872 –877, July 2005.

[37] Y.S. Kavian, A. Falahati, A. Khayatzadeh, and M. Naderi. High Speed Reed-Solomon
Decoder with Pipeline Architecture. In Wireless and Optical Communications Net-
works, 2005. WOCN 2005. Second IFIP International Conference on, pages 415 – 419,
March 2005.

[38] V. Pless. Decoding the Golay Codes. Information Theory, IEEE Transactions on,
32(4):561 – 567, Jul 1986.

[39] H. Naeimi and A. DeHon. Fault Secure Encoder and Decoder for NanoMemory Ap-
plications. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(4):473 –486, April 2009.

174

[40] Ming Zhu, Liyi Xiao, Shuhao Li, and Yanjing Zhang. Efficient Two-Dimensional Error
Codes for Multiple Bit Upsets Mitigation in Memory. In Defect and Fault Tolerance
in VLSI Systems (DFT), 2010 IEEE 25th International Symposium on, pages 129
–135, Oct. 2010.

[41] Ching-Yi Chen and Cheng-Wen Wu. An Adaptive Code Rate EDAC Scheme for Ran-
dom Access Memory. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, pages 735 –740, March 2010.

[42] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In Communications, 1993. ICC ’93 Geneva.
Technical Program, Conference Record, IEEE International Conference on, volume 2,
pages 1064–1070 vol.2, May 1993.

[43] Robert G. Gallager. Low Density Parity Check Codes. PhD thesis, Massachusetts
Institute of Technology, 1963.

[44] A. Dutta and N.A. Touba. Multiple Bit Upset Tolerant Memory Using a Selective
Cycle Avoidance Based SEC-DED-DAEC Code. In VLSI Test Symposium, 2007. 25th
IEEE, pages 349 –354, May 2007.

[45] Sanghyeon Baeg, ShiJie Wen, and R. Wong. SRAM Interleaving Distance Selection
With a Soft Error Failure Model. Nuclear Science, IEEE Transactions on, 56(4):2111
–2118, Aug. 2009.

[46] S.M. Abbas, Sanghyeon Baeg, and Sungju Park. Multiple Cell Upsets Tolerant
Content-Addressable Memory. In Reliability Physics Symposium (IRPS), 2011 IEEE
International, pages SE.1.1 –SE.1.5, April 2011.

[47] S.S. Mukherjee, J. Emer, T. Fossum, and S.K. Reinhardt. Cache Scrubbing in Micro-
processors: Myth or Necessity? In Dependable Computing, 2004. Proceedings. 10th
IEEE Pacific Rim International Symposium on, pages 37 – 42, March 2004.

[48] T. Suzuki, Y. Yamagami, I. Hatanaka, A. Shibayama, H. Akamatsu, and H. Ya-
mauchi. A Sub-0.5-V Operating Embedded SRAM Featuring a Multi-bit-Error-
Immune Hidden-ECC Scheme. Solid-State Circuits, IEEE Journal of, 41(1):152–160,
Jan 2006.

[49] F.G. Stremler. Introduction to Communication Systems. Addison-Wesley Publishing
Company, 3rd edition, 1990.

[50] W.W. Peterson and Jr. E.J. Weldon. Error-Correcting Codes. MIT Press, 2nd edition,
1972.

175

[51] S. Papaharalabos, D. Benmayor, P.T. Mathiopoulos, and Pingzhi Fan. Performance
Comparisons and Improvements of Channel Coding Techniques for Digital Satellite
Broadcasting to Mobile Users. Broadcasting, IEEE Transactions on, 57(1):94–102,
March 2011.

[52] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low density parity
check codes. Electronics Letters, 32(18):1645–, Aug. 1996.

[53] Sang Hoon Lee, Jia Ae Seok, and Eon Kyeong Joo. Serial concatenation of LDPC
and turbo code for the next generation mobile communications. In Wireless and
Optical Communications Networks, 2005. WOCN 2005. Second IFIP International
Conference on, pages 425–427, March 2005.

[54] Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin, and An-Yeu Wu. An 8.29 mm2

52 mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13 mum
CMOS Process. Solid-State Circuits, IEEE Journal of, 43(3):672–683, March 2008.

[55] J.C. Porcello. Designing and implementing Low Density Parity Check (LDPC) De-
coders using FPGAs. In Aerospace Conference, 2014 IEEE, pages 1–7, March 2014.

[56] M.A. Jordan and R.A. Nichols. The effects of channel characteristics on turbo code
performance. In Military Communications Conference, 1996. MILCOM ’96, Confer-
ence Proceedings, IEEE, volume 1, pages 17–21 vol.1, Oct 1996.

[57] 3GPP - 3rd Generation Partnership Project. http://www.3gpp.org, 2014.

[58] IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless
Access Systems. IEEE Std 802.16.1-2012, pages 1–1090, Sept 2012.

[59] Digital Video Broadcasting Project. https://www.dvb.org, 2014.

[60] IEEE Standard for Ethernet - Section 6. IEEE Std 802.3-2012 (Revision to IEEE Std
802.3-2008), pages 1–0, Dec 2012.

[61] IEEE Standard for Information Technology - Telecommunications and Information
Exchange Between Systems - Local and Metropolitan Area Networks - Specific Re-
quirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-
1999), pages 1–1076, June 2007.

[62] Simon Tam, S. Rusu, Jonathan Chang, S. Vora, B. Cherkauer, and D. Ayers. A
65nm 95W Dual-Core Multi-Threaded Xeon Processor with L3 Cache. In Solid-State
Circuits Conference, 2006. ASSCC 2006. IEEE Asian, pages 15–18, Nov 2006.

176

[63] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits. Prentice
Hall, 2nd edition, 2003.

[64] S. Lin and Jr. D.J. Costello. Error Control Coding: Fundamentals and Applications.
Prentice Hall, 2nd edition, 2004.

[65] I.S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. In SIAM
Journal of Applied Mathematics, pages 300–304, June 1960.

[66] A. Vanstone and P. C. van Oorschot. An Introduction to Error Correcting Codes with
Applications. Kluwer Academic Publishers, 1st edition, 2001.

[67] H. Labiod. Performance of Reed Solomon Error-Correcting Codes on Fading Channels.
In Personal Wireless Communication, 1999 IEEE International Conference on, pages
259–263, 1999.

[68] K. Gillespie, H.R. Fair, C. Henrion, R. Jotwani, S. Kosonocky, R.S. Orefice, D.A
Priore, J. White, and K. Wilcox. 5.5 Steamroller: An x86-64 Core Implemented in
28nm Bulk CMOS. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, pages 104–105, Feb 2014.

[69] N. Kurd, M. Chowdhury, E. Burton, T.P. Thomas, C. Mozak, B. Boswell, M. Lal,
A Deval, J. Douglas, M. Elassal, A Nalamalpu, T.M. Wilson, M. Merten, S. Chen-
nupaty, W. Gomes, and R. Kumar. Haswell: A Family of IA 22nm Processors. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE In-
ternational, pages 112–113, Feb 2014.

[70] Canadian Microelectronics Corporation. http://www.cmc.ca, 2014.

[71] Qualcomm - Snapdragon. http://http://www.qualcomm.com/snapdragon, 2014.

[72] R.W. Mann, T.B. Hook, P.T. Nguyen, and B.H. Calhoun. Nonrandom Device Mis-
match Considerations in Nanoscale SRAM. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 20(7):1211–1220, July 2012.

[73] K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara. SRAM Immunity to Cosmic-
Ray-Induced Multi Errors Based on Analysis of an Induced Parasitic Bipolar Effect.
Solid-State Circuits, IEEE Journal of, 39(5):827–833, May 2004.

[74] K. Utsumi, E. Morifuji, M. Kanda, S. Aota, T. Yoshida, K. Honda, Y. Matsubara,
S. Yamada, and F. Matsuoka. A 65nm Low Power CMOS Platform with 0.495 um2
SRAM for Digital Processing and Mobile Applications. In VLSI Technology, 2005.
Digest of Technical Papers. 2005 Symposium on, pages 216–217, June 2005.

177

[75] H. Pilo, V. Ramadurai, G. Braceras, J. Gabric, S. Lamphier, and Yue Tan. A 450ps
Access-Time SRAM Macro in 45nm SOI Featuring a Two-Stage Sensing-Scheme and
Dynamic Power Management. In Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International, pages 378–621, Feb 2008.

[76] Chien-Cheng Yu, Wei-Ping Wang, and Bin-Da Liu. A 3-input XOR/XNOR for Low-
Voltage Low-Power Applications. In Circuits and Systems, 2000. IEEE APCCAS
2000. The 2000 IEEE Asia-Pacific Conference on, pages 505–508, 2000.

[77] R. Kumar and V. Kursun. Temperature-Adaptive Energy Reduction for Ultra-Low
Power-Supply-Voltage Subthreshold Logic Circuits. In Electronics, Circuits and Sys-
tems, 2007. ICECS 2007. 14th IEEE International Conference on, pages 1280–1283,
Dec 2007.

[78] Quik-Pak. http://www.icproto.com, 2014.

[79] Corwil Technology Corporation. http://www.corwil.com, 2014.

[80] M. Yabuuchi, H. Fujiwara, Y. Tsukamoto, M. Tanaka, S. Tanaka, and K. Nii. A
28nm High Density 1R/1W 8T-SRAM Macro with Screening Circuitry Against Read
Disturb Failure. In Custom Integrated Circuits Conference (CICC), 2013 IEEE, pages
1–4, Sept 2013.

[81] E.W. Blackmore, P. E. Dodd, and M.R. Shaneyfelt. Improved Capabilities for Proton
and Neutron Irradiations at TRIUMF. In Radiation Effects Data Workshop, 2003.
IEEE, pages 149–155, July 2003.

[82] Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced
Soft Errors in Semiconductor Devices. In JEDEC Test Standard 89A, Sep. 2006.

[83] P. Hazucha and C. Svensson. Impact of CMOS Technology Scaling on the Atmospheric
Neutron Soft Error Rate. Nuclear Science, IEEE Transactions on, 47(6):2586–2594,
Dec 2000.

[84] N. Seifert, V. Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia, S. Mukherjee, N. Nassif,
J. Krause, J. Pickholtz, and A Balasubramanian. On the Radiation-Induced Soft Error
Performance of Hardened Sequential Elements in Advanced Bulk CMOS Technologies.
In Reliability Physics Symposium (IRPS), 2010 IEEE International, pages 188–197,
May 2010.

178

