
Specification Based Bug Detection
for Embedded Software

by

Sandeep Chaudhary

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Sandeep Chaudhary 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Traditional compilers do not automatically analyze processor specifications, thousands
of pages of which are available for modern processors. The specifications describe con-
straints and requirements for processors, and therefore, are useful for software develop-
ment for these processors. To bridge this gap, our tool em-SPADE analyzes processor
specifications and creates processor-specific rules to detect low-level programming errors.
This work shows the potential of automatically analyzing processor specifications to detect
low-level programming errors at compile time.

em-SPADE is a compiler extension to automatically detect software bugs in low-level
programs. From processor specifications, em-SPADE preprocessor extracts target-specific
rules such as register use and read-only or reserved registers. A special LLVM pass in em-
SPADE then uses these rules to detect incorrect register assignments. Our experiments
with em-SPADE have correctly extracted 652 rules from 15 specifications and consequently
found 20 bugs in ten software projects. In addition, we explore the use of data mining
techniques to learn more about the nature and type of complex checkable rules other than
access and reserved bit rules. After applying the frequent itemset mining technique on
three specifications, we found that the mining can report complex checkable rules from the
specifications with a precision of 53.53% to 82.22% and recall of 36.88% to 75.18%. Thus,
the data mining approach is useful for learning complex type of rules in large specifica-
tions. These techniques help us identify complex rules. In addition, insights gained from
the mining results can be used to improve and standardize specifications. The work is gen-
eralizable to other types of specifications and shows the clear prospects of using processor
specifications to enhance compilers.

iii

Acknowledgements

I would like to thank my supervisors Dr. Sebastian Fischmeister and Dr. Lin Tan for the
guidance they have provided for more than two years. They gave me freedom to explore
different aspects of what I wanted to work on, and always supported me in going at my own
pace. I am greatly thankful for their invaluable suggestions and motivation they provided
me during our meetings. I would also like to thank Dr. Reid Holmes, and Dr. Ondrej
Lhotak, for agreeing to read my Thesis.

I would like to thank my close friends, Shrinu, Rakesh, Rupinder, Shivam and Karan
for making my stay at Waterloo memorable. Because of our various activities such as
road trips, campings, insightful discussions and laughter sessions, I never felt lonely at this
place, but rather enjoyed it to the fullest.

Finally, I would like to thank and dedicate this thesis to my parents who have constantly
been a pillar of strength and support.

iv

Dedication

To my parents for their unconditional love, support and motivation.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Problem Statement 4

3 Related Work 7

4 Background 9

4.0.1 Frequent Itemset Mining . 9

5 The Framework 11

5.1 Rule Extractor . 11

5.1.1 Rules to Extract . 12

5.1.2 How to Extract the Rules . 13

5.1.3 Conversion of Rules to XML Format 15

5.2 LLVM Checker . 16

6 Techniques for Complex Rules 18

6.1 Data Mining . 18

6.1.1 Manually Defined Rule Templates 19

vi

7 Experimental Method 22

7.1 Subjects & Design . 22

7.2 Apparatus . 24

7.3 Measures . 25

7.4 Procedure . 25

8 Results 30

8.1 Errors and Warnings Detected . 30

8.1.1 RO-Writes . 30

8.1.2 Reserved-Writes . 31

8.2 Specification Analysis Results . 32

8.3 Data Mining Results . 33

9 Performance 39

9.0.1 Rule Extractor Overhead . 39

9.0.2 LLVM Checker Overhead . 39

9.0.3 Scalability of em-SPADE . 40

9.0.4 Frequent Itemset Mining Overhead 40

10 Discussion 41

10.1 The Need to Modify the Source Code to Get LLVM Bitcode 41

10.2 False Positives & False Negatives . 42

10.3 Incorrect Data in Specifications . 42

10.4 Generality of em-SPADE to other Specifications 42

10.5 Practical Use of Data Mining Techniques 43

11 Conclusion and Future Work 44

References 46

vii

List of Tables

7.1 Summary of detected bugs . 24

7.2 Data about extracted reserved-bit rules from training specifications 26

7.3 Data about extracted read-write only rules from training specifications . . 27

7.4 Data about extracted reserved-bit rules from evaluation specifications . . . 28

7.5 Data about extracted write-read only rules from evaluation specifications . 29

8.1 Summary of Frequent Itemset Mining Result 33

viii

List of Figures

2.1 General framework of em-SPADE . 6

5.1 Layout of PRR1 register in ATmega640/V 12

5.2 An example of reserved bit rule in XML 16

ix

Chapter 1

Introduction

Building embedded systems is time-consuming and it is hard to fix bugs in embedded
systems after deployment. Therefore, helping developers build such systems is key to the
development process. Because of this reason, automated techniques for bug detection are
of great use for embedded software.

Embedded system developers have to write software at low level. This means that they
directly program different types of hardware, such as registers, memory, timers, interrupt
controllers, I/O controllers, and other peripheral controllers. Developers have to initialize
hardware and have to work at the register level. Knowing what to do depends on the
processor specification and varies between processors. This variability between processors
becomes a likely source of bugs. Bugs might occur for a variety of reasons such as—
developers’ unawareness of such constraints, insufficient knowledge, human errors, etc.
Compilers are unable to catch such bugs, because these bugs are not syntactical issues.

Embedded system devices usually come with specifications that state constraints and
requirements for these devices. Developers should strictly adhere to the rules and con-
straints mentioned in the specification describing how to use the device and associated
hardware. Because of often only minor variation between devices, developers often rely
on knowledge from similar devices and consequently often introduce bugs that incorrectly
modify registers.

Thus, it is imperative to utilize specifications to detect bugs in embedded software.
Our analysis demonstrates that it is possible to extract invariant rules from specifications
and use the extracted rules to automatically check for bugs in embedded software.

Thousands of microcontrollers are currently available and each microcontroller has its
own specification. Specifications are large and can extend over one thousand pages. Read-

1

ing the specification before programming a microcontroller is a laborious and tiresome
activity. Large volume of information in specifications can cause unintentional mistakes.
While analyzing 15 ATMEL AVR specifications, we found 72 registers on average in each
specification. With this many registers, one can expect register-related constraints to be
many-folds the number of registers.

We manually studied processor specifications to understand what rules are available in
processor specifications and how to extract these rules. The focus of this study was on
the processor specifications for the AVR family of microcontrollers, which are embedded
devices manufactured by ATMEL corporation. To understand the generality of extracting
rules from processor specifications, we also studied a specification for NXP semiconductors
qualitatively. This qualitatively study demonstrated that rules across different line of
devices remain generic to a good extent; thus, it is possible to build a general rule extractor.

The main focus of this project is to extract and check two common types of constraints:
(1) access to “read/write only” registers, and (2) reserved registers. Register bits can be
read-only, write-only, or read/write bits. Some bits in registers can be reserved which
requires that users do not set reserved bits to one. The implemented rule extractor auto-
matically extracts such rules from processor specifications.

In addition, we explore the use of data mining techniques to facilitate the extraction
more complex rules. We demonstrate that it is possible to group sentences that contain
rules using frequent itemset mining [4] technique. This grouping is particularly helpful in
identifying similar types of rules. Our experiments show that the grouping of sentences
closely matches with a list of manually created templates. Developers can use the insights
gained from the mining results to quickly extract information from specifications. Specifi-
cation writers can use the grouping of sentences to improve specifications. Many sentences
in specifications have the same or similar meanings but use different words or different
word orders. Specification writers can use the data mining results to standardize specifica-
tions by choosing the most appropriate sentence from the grouping. They can also create
a conciser dataset by removing synonyms.

Our tool, em-SPADE, is a static analysis based checker which compares the source code
against the extracted rules to automatically detect bugs. Currently em-SPADE checks the
validity of register assignments in underlying source code.

The novelty of this work is that em-SPADE is able to automatically make use of infor-
mation present in specifications to perform static analysis. This thesis demonstrates that
the large volume of the information in specifications can be leveraged for bug detection.

The rule extractor of em-SPADE currently uses simple heuristics to automatically de-
duce rules from specifications. In the future, we plan to incorporate natural language

2

processing techniques to extract more complex rules from, for instance, English sentences.
This will increase the utility of em-SPADE.

We performed experiments for the family of AVR microcontrollers from ATMEL. To
test em-SPADE, we collected code from two sources: (1) application notes from ATMEL
for their AVR microcontrollers, and (2) github repository.

em-SPADE found inconsistencies for several AVR microcontrollers. We evaluated em-
SPADE on 15 specifications and ten open source embedded software projects. em-SPADE
extracted a total of 409 read-write only rules with an accuracy of 99.20% and a total of
243 reserved bit rules with an accuracy of 94.88%. We used em-SPADE to check these
rules against the source code of the projects, and found 16 warnings related to read-only
rules and 4 errors related to reserved bit rules. These bugs are important because writing
to a read-only bit or reserved bits might lead to unintended side effects. While such
actions might be fine with one revision of the chip, future revisions might alter the use
of, for instance, the reserved bits and consequently introduce subtle bugs in previously
functionally correct code.

Using Frequent Itemset Mining [5] on three AVR specifications, we demonstrate that
it is possible to automatically identify specification sentences that contain rules and group
these sentences by the types of rules. The sentences matching the templates can be used
for extracting concrete information.

Organization of the rest of the thesis is as follows. Section 2 describes the problem
statement in detail. Section 3 discusses related work. In Section 4, we provide background
knowledge on Frequent Itemset Mining [5] and Supervised classification [15]. Section 5
describes the idea and approach of em-SPADE in detail. Section 6 describes the approaches
used for identifying complex types of rules. Section 7 discusses experimental methods.
Section 8 discusses the bugs detected by the LLVM [13] checker and the rules extracted by
the rule extractor. In Section 9, we describe the performance of em-SPADE. Section 10
discusses the limitation, effectiveness and generality of the tool. Finally, in Section 11, we
make concluding remarks and discuss future work.

3

Chapter 2

Problem Statement

em-SPADE bridges the gap between device specifications and the source code that executes
on the device. As described in Section 1, specifications detail requirements and constraints
that developers need to follow. However, since the volume of this information is vast,
it is probable that developers unknowingly violate some constraints. For example, the
specification for ATUC128L3U [34] has 964 pages. If developers want to write some code
for the ATUC128L3U, they will need to read the entire document. This tedious task creates
a likely scenario of making mistakes.

The goal of em-SPADE is to provide reliability by doing cross-validation of embedded
software with the corresponding specification. To demonstrate the usefulness of em-SPADE
at a basic prototype level, we are only looking at two types of constraints specified in
documents. These constraints are related to value assignment to a different register bits.
The first type is about register bits designated as read-only or write-only. If a register bit is
read-only and developers write to it, then em-SPADE will issue a warning for this because
writing to a read-only register bit might change register behavior. We will use RO-Writes
to refer to writes to read-only register bits.

The other type is related to reserved bits in registers. If some bit is designated as a
reserved bit, developers should not write one to it. If it is present in the source code,
then em-SPADE will report an error for this violation. Reserved bits might get some
functionality in future versions of the device, so incorrectly writing to them might disrupt
some intended future functionality. We will use Reserved-Writes to refer to writes to
reserved register bits.

In specifications, it is standard to use ‘:’ between two register bits to represent a range.
For example, “Bits 4:0” represents five bits i.e., 4, 3, 2, 1 and 0. We will use this notation

4

throughout the thesis.

In the following, we present one example of each type of rule for the ATmega640/V
microcontroller:

1. “TCCR5C—Timer/Counter 5 Control Register C
Bit 4:0—Reserved Bits
These bits are reserved for future use. For ensuring compatibility with future devices,
these bits must be written to zero when TCCRnC is written.” [31]

2. Bits 7, 6, 4 are read-only bits in the Timer/Counter 1 Interrupt Mask Register
(TIMSK1). [31]

Therefore, em-SPADE is addressing the problem of improper value assignment to reg-
ister bits. The goal of em-SPADE is to provide reliability with respect to two types of
probable issues: (1) RO-Writes, and (2) Reserved-Writes. RO-Writes and Reserved-Writes
are likely scenarios in the context of microcontroller code. em-SPADE achieves this goal
by cross-checking microcontroller code with corresponding rules in the specification. Since
specifications are proses in English language, em-SPADE needs to employ heuristics to
automatically extract rules of interest. We discuss the heuristics in detail in Section 5.
Our aim is to automate the entire toolchain including the rule extractor. Though, several
natural language processing techniques are available for extracting rules, em-SPADE is
using simple heuristics for now.

The second issue that we address in this thesis is to learn and extract more complex
checkable rules about different entities in microprocessors. Examples of such type of com-
plex rules are the following:

1. “The WDR (Watchdog Reset) instruction should always be executed before the Watch-
dog Timer is enabled.”

2. “When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be
disabled by clearing its Interrupt Enable bit in the ACSR Register.”

3. “Bit 5 SE: Sleep Enable The SE bit must be set (one) to make the MCU enter the
sleep mode when the SLEEP instruction is executed.”

4. “The Stack Pointer must be set to point above 0x60.”

5

Rule Extractor LLVM Checker
Errors

Warnings

Source Code

RulesSpecification

Figure 2.1: General framework of em-SPADE

6

Chapter 3

Related Work

To the best of our knowledge, em-SPADE is the first to automatically analyze processor
specifications for automatic bug detection.

Our work consists of two parts: (1) extracting invariants from device specifications,
and (2) applying the invariant rules to find bugs in embedded software. Therefore, we
discuss work related to rule extraction from natural language documents, and work related
to static analysis based bug detection in embedded software.

Fehnker et al. [10] present an automatic bug detection tool which uses static analysis
to find bugs in microcontroller software. They examine three types of issues: (1) incorrect-
interrupt-handling check; (2) incorrect-timer-service check; and (3) register-to-reserved-bits
check. The last check detects similar bugs as em-SPADE. However, the idea of their paper
is different from em-SPADE. They manually create rules in the form of CTL formulae for
these three types, and their static analysis tool detects bugs based on the rules. Although
the bug detection process is partially automatic, automating the rule extraction process is
unaddressed, which is exactly the main contribution of em-SPADE.

Dinesh et al. [8] present techniques to extract formal specifications from legal docu-
ments, which, are in natural language. They derive CTL specifications from the document
which model checking tools can use for verification of models. The specifications are ob-
tained with the use of intermediate semantic representation of different sentences. On the
similar line of work, Pandita et al. [23] discuss about extracting formal method specification
from natural language text of API documents.

iComment [36] proposes to detect bugs by analyzing comments in the code. They use
NLP, statistical and machine learning techniques to analyze comments in source code. The

7

paper presents the novel idea of automatically analyzing comments to extract programming
rules. iComment uses the extracted rules to automatically detect inconsistencies between
comments and source code. Based on the analysis, the tool indicates either bugs or bad
comments. On the similar line of work, Padioleau et al. [22] discuss the taxonomies and
characteristics of comments in operating system (OS) codes. Empirical data presented in
the paper shows that comments in OS code are not merely explanations and it is possible
to exploit comments for software bug detection.

PR-Miner [17] extracts general programming rules from large software projects and
uses them to automatically detect violations in the code. It uses a data mining tech-
nique called frequent itemset mining to extract implicit programming rules. AccMon [44]
presents automatic detection of memory related bugs using program counter based in-
variants. Alattin [37] is an alternative pattern mining technique for detecting neglected
conditions. RRFinder [39] automatically mines resource-releasing specifications for API
libraries. Xie et al. [41, 40] discuss mining techniques for software engineering and program
source code data.

Our implementation of rule checker is static which uses LLVM to issue warnings or
errors at compile time. The rule checker can be implemented at run-time as well. Csallner
and Xi [7], and Smaragdakis and Csallner [28] discuss about combined static and run-time
approaches. Engler et al. [9] discuss concepts that lay the foundation of static analysis.
The originality of their paper is that they extract the checking information from the code
itself and use them to find inconsistencies in the code. The tool can be used to find bugs
in source code without any prior knowledge of the system. Hallem et al. [12] describe a
framework for performing system specific static analysis.

8

Chapter 4

Background

In this section, we present the background about frequent itemset mining and supervised
classification. The classification model for complex rules is based on the knowledge gained
from frequent itemset mining, and is a supervised classification model.

4.0.1 Frequent Itemset Mining

Frequent Itemset Mining [5] is a data mining technique that generates frequently appearing
sets of variables in a transactional database. Frequent itemset mining technique analyzes
the transactions to find frequently appearing variables. In its simplest form, this mining
technique can produce the set of variables that often appear in transactions. The technique
can be applied based on the desired support [16] of the sets. The support of an itemset
is the percentage of sets that contain all of the items listed in that itemset. The frequent
itemset mining can also be used for association rule learning which help discover interesting
relationship between variables. Freely available tools such as apriori package [6] perform
frequent itemset mining as well as association rule learning.

We treat each sentence as a transaction and the words in it as transaction items. The
frequent itemset mining perform the grouping of words based on their frequency in the
transactions. The resulting groups help us understand the association of keywords in
sentences, which is essential in discovering new type of rules. We present an example of
two sentences from ATmega169 specification to explain the use of frequent itemset mining
in our work.

1. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by
clearing the ACIE bit in ACSR.

9

2. When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be
disabled by clearing its Interrupt Enable bit in the ACSR Register.

3. Bit 4 - WDCE: Watchdog Change Enable - This bit must be set when the WDE bit
is written to logic zero.

4. The SE bit must be written to logic one to make the MCU enter the sleep mode when
the SLEEP instruction is executed.

5. When entering ADC Noise Reduction mode, the Analog Comparator should be dis-
abled.

If we set the minimum support to 50%, the frequent itemset mining algorithm generated
the itemset <When, Analog, Comparator, disabled> from the sentences above. One can
observe that these keywords belong to the first two sentences which means that there is
a good level of similarity between the first two sentences. In this case, they represent
the same type of rule. Such grouping of sentences can help users find large number of
sentences belonging to the same type, which is much more efficient than users examining
all sentences one by one. Note that we applied stopword filtering to exclude generic common
and meaningless words.

10

Chapter 5

The Framework

This section describes the two components of em-SPADE: (1) Rule extractor, and (2)
LLVM checker. The idea of em-SPADE is to extract invariant rules from specifications
and use them to detect bugs in embedded software. Therefore, these are related to the two
components of em-SPADE respectively. em-SPADE follows the static analysis approach
by issuing warnings or errors at compile time to indicate bugs. The automatic approach of
extracting rules from specifications is based on heuristics and does not involve any natural
language processing.

Figure 2.1 presents a schematic view of em-SPADE. The first component of em-SPADE,
i.e., the rule extractor, takes a microcontroller specification as input and gives the extracted
rules in XML format as output. The second component of em-SPADE, i.e., the LLVM
checker, takes the XML rules and software code as input and produces errors and warnings
as output. We discuss the two components in detail in following subsections.

5.1 Rule Extractor

To gather preliminary data, we first performed an extensive study of four specifications
to understand the types of rules. Three of the specifications are for AVR microcontrollers
(i.e., ATtiny4 [32], ATmega640/V [31], and ATUC256L3U [34]) and one is for the ARM-
M3 based microcontrollers (i.e., UM10360 [35]). The ATtiny4 and ATmega640/V are 8-bit
AVR microcontrollers with different sizes of in-system programmable flash. ATUC256L3U
is 32-bit Atmel AVR Microcontroller. LPC17xx family are ARM Cortex-M3 based micro-
controllers. Section 4.1.1 presents examples of manually extracted rules for ATmega640/V [31]
and ARM-M3 processors.

11

Figure 5.1: Layout of PRR1 register in ATmega640/V

5.1.1 Rules to Extract

While this thesis, for now, focuses only on the two mentioned types of rules, the initial
study investigated more types of constraints. Consequently, some rules listed below fall
outside the category of access type and reserved bit type of rules. These rules show the
great potential of generalizing our approach to other types of rules. Some rules from
ATmega640/V [31] are:

1. “XMCRB—External Memory Control Register B; Bit 6:3—Res: Reserved Bits; These
bits are reserved and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.”

2. “ACSR—Analog Comparator Control and Status Register; When changing the ACD
bit (i.e., bit 7), the Analog Comparator Interrupt must be disabled by clearing the
ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.”

3. Bits 6:4 in the Clock Prescale Register (CLKPR) are read-only bits.

4. “ADCSRB—ADC Control and Status Register B: Bit 7—Res: Reserved Bit; This bit
is reserved for future use. To ensure compatibility with future devices, this bit must
be written to zero when ADCSRB is written.”

5. “Bit 0—EERE: EEPROM Read Enable; When the correct address is set up in the
EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM
read.”

Some rules from the NXP UM10360 [35] are as follows:

1. “Reset Source Identification Register (RSID—0x400F C180); 31:4—Reserved, user
software should not write ones to reserved bits. The value read from a reserved bit is
not defined.”

12

2. Bit PLL0STAT in the PLL0 register is read-only and Bit PLL0FEED in the PLL0
register is write-only.

3. “PLL1 Status register (PLL1STAT—0x400F C0A8); 31:7—Reserved, user software
should not write ones to reserved bits. The value read from a reserved bit is not
defined.”

4. “PLL1 Feed register (PLL1FEED—0x400F C0AC); 31:8 —Reserved, user software
should not write ones to reserved bits. The value read from a reserved bit is not
defined.”

5. “External Interrupt Flag register (EXTINT - address 0x400F C140); 31:4—Reserved,
user software should not write ones to reserved bits. The value NA read from a
reserved bit is not defined.”

Processor specifications follow similar structure and content across chip vendors. The
first specification is for an ATMEL based microcontroller whereas the second specification
is for microcontrollers from NXP semiconductors. Although these specifications are from
different vendors, yet the extracted rules are substantially analogous. Therefore, if it is
possible to build a tool to extract rules from AVR microcontrollers, the tool should be able
to extract rules from other lines of microcontrollers with small or no modifications.

5.1.2 How to Extract the Rules

After this study showed that processor specifications are similar in structure and content,
we started creating the automatic rule extractor primarily for the AVR family of micro-
controllers. The rule extractor is based on the following observations:

1. The register description layout allows us to get information about the specific bits.
Figure 5.1 shows one such example for Power Control Register 1 (PRR1). Bits 7 and
6 in this register are designated as read-only bits while the rest of the bits are all
read and write bits.

2. Register names are in uppercase letters with few numeric characters. Lowercase
letters, if any, appear after the first three characters in the name. Also, register names
are acronyms with a given acronym description. Timer/Counter Control Register A
(TCCR0A) is an example from the ATmega640/V specification. USARTn Control
and Status Register B (UCSRnB) is another example from ATmega128 specification.

13

3. Reserved bits in registers have descriptions. We are able to look up these with
keyword searches. For example, EECR register in the ATmega640/V specification
has the following description about some reserved bits: “Bits 7:6 — Res: Reserved
Bits. These bits are reserved bits and will always read as zero.” We have observed
this kind of description in all AVR specifications and the NXP UM10360 specification.

Based on these observations, the rule extractor applies the following heuristics to extract
the reserved bit and read- and write-only rules:

Heuristics for Reserved Bit Rules – The extraction of reserved bit type of rules
starts with identifying the sentences that describe the reserved bits in registers. For this,
the rule extractor goes through the sentences and looks for related words such as ‘reserved’
and ‘unused’. Sentences of this type are converted to concrete checkable rules if reserved
bit numbers and the register name can both be found. Since the sentence describing the
bits is placed as per the bit numbers, it is easy to find the bit numbers given the sentence.
The extractor needs only look at the beginning of the sentence, and find the bit number or
range of bits. For an example, “Bits 5..0 Res: Reserved Bits - These bits are reserved bits
in the ATmega103(L) and will always read as zero.” is a description for reserved bit range 5
to 0 in ‘SPSR’ register in ATmega103. Note that the extractor uses regular expression such
as “\\Bit[\\s+s][\\s0-9:,.]*” for matching the bit numbers. This is a ‘Boost’ [27] based
regular expression which requires an extra backslash before any escape sequence involving
a backslash such as ‘\s’.

Extraction of the register name is simple. Unlike bit numbers, the register name might
not be available at the beginning of the sentence. However, the name is present in close
vicinity of the bit description. Based on our observation, the rule extractor looks at the
preceding 100 sentences for the register name. Register names are alphanumeric with all
letters in capital. Also, the name is based on the acronym of words which are also avail-
able along with the name. For example, “ADC Control and Status Register - ADCSR”
in ATmega103. One can observe that the register name ‘ADCSR’ is an acronym of ‘ADC
Control and Status Register’. One can use this observation to confirm the validity of the
extracted register name.

Heuristics for Read- and Write-only Rules – Extraction of read- and write-only
rules is based on the register description layout such as the layout shown in Figure 5.1. One
can observe that each bit in this register is designated as ‘R’, ‘W’ or ‘R/W’. ‘R’ represents
a read-only bit, ‘W’ represents a write-only bit and ‘R/W’ represents a read-write bit. For
read-only and write-only rules, we need the bit numbers which are read-only or write-only
along with the register name.

14

The rule extractor uses regular expression matching technique for identifying the regis-
ter description. It looks for the bit description pattern in the document, and then uses this
pattern to find the read-only or write-only category of each bit. The regular expression
used is - “[R/W]*\\s[R/W]*\\s[R/W]*\\s[R/W]*\\s[R/W]
\\s[R/W]*\\s[R/W]*\\s[R/W]*”. This is again a ‘Boost’ [27] based regex with the an ex-
tra backslash before the escape sequence ‘\s’. The eight occurrences of ‘R/W’ in the above
regular expression correspond to the eight register bits which are marked as either ‘R’ or
‘W’. This regex identifies register bits from register layouts such as the one in Figure 5.1.
Note that extraction of the register name is the same as it is for reserved bit rules.

The tool applies a combination of above mentioned heuristics and uses some stop words,
such as MCU and AVR, to extract the rules. Specifications of processors are generally
in PDF format. em-SPADE first converts it into text format using a free PDF-to-text
tool called pdftotext [25]. For comparison, we also tried other available tools such as
pdftxt, ebook-convert, pdf2ps, ps2ascii and ps2txt. pdftotext is better than all
of these in terms of preserving format and information. Once em-SPADE gets the text
form of the specification, it reshapes the text by getting rid of empty lines and merging
some lines to get the original register description layout. The tool relies on the Boost
regular expression libraries [27] to search for patterns and uses C++ containers available
in Standard Template Library (STL) to manipulate the intermediate data during rule
extraction. The rule extractor writes the rules into a simple text file, which the next
module of the tool converts to rules in XML format. The LLVM checker in em-SPADE
leverages these extracted rules directly to detect bugs.

5.1.3 Conversion of Rules to XML Format

em-SPADE uses XML to store extracted rules from specifications. The rules XML file is
an input to the LLVM checker along with the software code. Figure 5.2 shows an example
of a reserved bit rule in XML. The rule corresponds to bit 6 in External Memory Control
Register B (XMCRB) of ATmega640/V [31] microcontroller. In this example, the register
name is present in line 6 in Figure 5.2. The next line lists the location of the reserved bit
in the register. Figure 5.2 shows only the XML expression for the 6th bit of the XMCRB
register. Similar expressions can be written for other bits, i.e., 5:3.

15

1 <?xml version = ‘1.0’?>

<!DOCTYPE rules SYSTEM ‘rules.dtd ’>

3 <rules >

<equals >

5 <l>

<bit_id = ‘XMCRB ’

7 location = ‘6’ />

</l>

9 <r>

0

11 </r>

</equals >

13 </rules >

Figure 5.2: An example of reserved bit rule in XML

5.2 LLVM Checker

This subsection describes the static checker implemented in LLVM [13]. LLVM stands for
Low Level Virtual Machine. It is a compiler infrastructure that allows users to perform a
variety of optimizations on the source code with the help of LLVM passes. Building a pass
creates a shared object, which users can load using the LLVM optimizer tool opt [13]. Opt
can load LLVM specific bitcode files and perform optimizations written in the pass. Using
LLVM passes, we can also do static analysis of the source code. The checker of em-SPADE
is an implementation of an LLVM pass.

The pass implemented for em-SPADE performs static analysis based on the XML rules
file. Since, the rules of interest only have reserved bits and access type of rules, the pass
looks at assembly statements, which are assignments to some registers. The pass parses
the XML rules using libxml2 and verifies the validity of assignments. Assignments become
store instructions in LLVM intermediate representation (IR) of the program, so the LLVM
checker specifically looks at store instructions in the LLVM IR. The LLVM pass works on
a subclass of the FunctionPass [11] class. FunctionPass executes on all functions, and is
useful for inspecting the statements in various functions in a program. The pass works
by overriding an abstract virtual method inherited from FunctionPass. All the processing
in the pass happens within this function. The subclass created in the pass is registered
with a name and description. The LLVM optimizer requires this name to invoke the pass.
Note that the compilation of the pass creates a shared object file which is loaded using the
LLVM optimizer tool.

If the checker finds inconsistencies in assignments based on the rules file, it will produce
warnings and/or errors. Since, writing one to a reserved bit can cause problems for a
future versions of the device, em-SPADE reports reserved bit violations as errors. However,

16

violations of access type of rules produce warnings. It is important to mention that register
names in avr-libc are present as macros. Therefore, the tool does not find the register
names in the IR of the program. This necessitates another small module in em-SPADE
which creates a mapping of register names and corresponding macro values. It does the
mapping by parsing the specification header file in the library. Header files for all AVR
microcontrollers are available in avr-libc, which is a part of the avr-gcc toolchain. This
small module creates this mapping in an simple text file which the LLVM pass reads while
going through the IR of the program. These changes do not affect LLVM binaries as the
changes are only limited to mapping register name macros from headers files to text files.

em-SPADE compiles the program under test with debug options to get more informa-
tion about the instructions. Thus, em-SPADE is able to provide sufficient information
about the warnings and errors that it reports. This helps developers in locating bugs in
the program. Currently, em-SPADE only examines one-line instructions in LLVM inter-
mediate representation, and does not handles cases where writes to reserved or read-only
bits are data-dependent or conditional.

In summary, we have implemented em-SPADE in C++ that uses LLVM as back-end
for performing static analysis. em-SPADE uses pdftotext to parse specification PDF
documents in text form. Additionally, it uses C++ standard template library, Boost regex
library and libxml2 library. em-SPADE uses Clang as a front end to get the LLVM bitcode
from the source.

17

Chapter 6

Techniques for Complex Rules

In this section, we discuss the use of data mining technique in identifying and grouping
complex types of rules.

6.1 Data Mining

To gather knowledge about the complex type of rules from the specifications, we explored
the use of data mining technique on the textual data in specifications. Since the corpus
of text is large, we extracted modal verb sentences because sentences that contain modal
verbs, such as must and should, tend to contain rules. Modal verb sentences are key
to finding relevant sentences stating constraints or rules. To gain information from the
corpus of modal verb sentences from a set of specifications, we perform frequent itemset
mining to learn the most frequent words and their associations. We use the apriori algo-
rithm [6] for performing the frequent itemset mining. The apriori algorithm operates on
a database containing transactions. Each transaction is a set of items. For our purpose,
the transactions correspond to sentences, and itemsets are words in the sentences. Note
that these sentences do not contain any stopwords. This algorithm provides options for
setting parameters such as type of itemset, minimum/maximum number of items per set,
minimum/maximum support for a set, type of sorting on items, etc. Our technique selects
the closed itemset type and sets a value for minimum number of items. It also sets a value
for minimum support for a set, and chooses decreasing order for sorting.

To prepare the data for analysis, we perform punctuation correction such as forming
one word from hyphenated words by removing the hyphen. We then remove stop words

18

from the data by running a script. The data is now ready for apriori algorithm to perform
frequent itemset mining.

Insights gained from the mining results can be used to quickly extract information from
specifications and improve specification writing as following:

1. Reuse for other specifications. The grouping of sentences based on the frequent
itemsets will make it possible for developers to examine thousands of or more speci-
fications. Developers can examine groups of sentences and decide whether a group of
sentences contains rules or not. This would be less time consuming than examining
the entire specifications.

2. Improve specification writing. The frequent itemset based grouping will help
specification writers standardize specifications and write better specifications. Many
sentences in specifications have the same or similar meanings but use different words
or different word orders. We can use our results to help people use the same format
to standardize specifications.

3. Recommend the most appropriate sentence. Grouping produced by the fre-
quent itemset mining results can be used to recommend the most appropriate sen-
tences. In addition, specification writers can examine the groups and choose the most
appropriate sentence.

4. More concise datasets. It will enable finding synonyms from similar sentences,
e.g., write and set, logical one and one, etc. Synonyms are semantically related,
and therefore finding them helps developers quickly search for sentences with similar
meaning [42]. Specification writers can examine the synonyms and use the most
appropriate one to reduce unique keywords in specifications.

6.1.1 Manually Defined Rule Templates

Having manually identified a set of “checkable rules”, we propose Linear Temporal Logic
(LTL) formula [26] templates that represent these rules. Developers can use these templates
to identify rules of same type. A LTL formula shows the logical validity of conditions over
time. The following highlights the two LTL templates with example sentences for each
template.

1. Template: G(A⇒ B)
Description: This LTL formula template states that globally, ‘A’ implies ‘B’, where

19

‘A’ and ‘B’ are boolean expressions.
Examples:

(a) To save power, the ADC should be disabled before entering any sleep mode.
Explanation: In this, ‘A’ corresponds to ‘any sleep mode’ and ‘B’ corresponds
to the ‘ADC disable event’.

(b) When entering Idle mode, the Analog Comparator should be disabled if not
used.
Explanation: Here ‘A’ refers to the ‘idle mode’ and ‘B’ refers to ’analog com-
parator disable event’.

(c) This bit must be set (one) when the WDE bit is cleared, otherwise, the Watch-
dog will not be disabled.
Explanation: ‘A’ corresponds to “WDE == 0” and ‘B’ corresponds to “this bit
== 1”.

(d) The WDR (Watchdog Reset) instruction should always be executed before the
Watchdog Timer is enabled.
Explanation: In this example, ‘A’ is ‘watchdog timer enable event’ and ‘B’ is
‘WDR instruction execution event’.

(e) When writing ADCSR, a logical “0” must be written to this bit.
Explanation: ‘A’ here corresponds to ‘ADCSR write event’ and ‘B’ corre-
sponds to “this bit == 0”.

(f) To make the comparator trigger the Timer/Counter1 Input Capture interrupt,
the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.
Explanation: ‘A’ is “Timer/Counter1 Input Capture interrupt event” and ‘B’
is “ICIE1 == 0”.

(g) The SE bit must be set (one) to make the MCU enter the sleep mode when the
SLEEP instruction is executed.
Explanation: ‘A’ is “sleep instruction execution event” and ‘B’ is “SE == 1”.

(h) The EEMWE bit must be written to one before a logical one is written to
EEWE, otherwise no EEPROM write takes place.
Explanation: ‘A’ corresponds to “EEWE == 1” and ‘B’ corresponds to “EEMWE
== 1”.

(i) When waking up the SPI again, the SPI should be reinitialized to ensure proper
operation.
Explanation: Here ‘A’ is ’SPI wakeup event’ and ‘B’ is ‘SPI reinitialization’.

20

2. Template: G(A)
Description: This formula states that globally, boolean expression ‘A’ holds true.
Examples:

(a) This bit should never be programmed.
Explanation: Here ‘A’ is the boolean expression corresponding to ‘not pro-
gramming the bit’.

(b) The Stack Pointer must be set to point above 0x60.
Explanation: In this case, ‘A’ is the boolean expression for ‘stack pointer being
set above 0x60’.

(c) These bits are reserved and should be left unprogrammed.
Explanation: In this case, ‘A’ is the boolean expression corresponding to ‘un-
programming of the bits’.

Note that these templates can involve other LTL operators as well. For example, the LTL
representation of the second part of “It is recommended to write the Sleep Enable (SE)
bit to one just before the execution of the SLEEP instruction and to clear it immediately
after waking up” would be :

G((SLEEP INSTR)⇒ X(SE == 0))

Where ‘X’ represents the LTL operator called ‘next’. This LTL formuala states that
it is gobally the case that the ‘SE’ bit needs to be set to zero just after (i.e. in the next
state) the sleep instruction is executed.

21

Chapter 7

Experimental Method

This section discusses the experimental method under the following four subsections:

7.1 Subjects & Design

To test technical feasibility and understand how em-SPADE works in practice, we experi-
mented with several AVR processors from ATMEL. To experiment with the rule extractor
of em-SPADE, we randomly selected ten specifications for training. After training the rule
extractor, we randomly selected another set of five specifications for evaluating the rule
extractor of em-SPADE.

For evaluating em-SPADE’s capabilities of finding bugs, we looked at application notes [20]
and source from ATMEL. Application notes are general application programs for ATMEL
based microcontrollers. The application notes span over different domains such as auto-
motive, home appliances, industrial automation, mobile electronics, PC peripherals. em-
SPADE analyzed 81 application notes downloaded from ATMEL website. Source code of
these application notes contain 50 to 500 lines of code. Apart from this, em-SPADE also
analyzed projects for ATMEL AVR microcontrollers available at github.

The 15 specifications in the training and evaluation set cover a wide variety of micro-
controllers. They represent three subfamilies: (1) ATmega, (2) ATtiny, and (3) AT90S.
These 15 specifications dictate requirements and constraints for 39 AVR microcontrollers.
With 39 microcontrollers spanning over three subfamilies, the training and evaluation set
becomes representative of AVR microcontrollers. Therefore, the selected set of 15 spec-

22

ifications representing 39 AVR microcontrollers provides a good variability and scale for
testing em-SPADE. The 15 specifications are the following:

1. AT90S2313 – 8-bit AVR Microcontroller with 2K Bytes of In-System Programmable
Flash (Rev. 0839IAVR06/02)

2. AT90S8515 – 8-bit AVR Microcontroller with 8K Bytes In-System Programmable
Flash (Rev. 0841G09/01)

3. ATmega169, ATmega169V – 8-bit AVR Microcontroller with 16K Bytes In-System
Programmable Flash (Rev. 2514PAVR07/06)

4. ATtiny25/V, ATtiny45/V, ATtiny85/V – 8-bit AVR Microcontroller with 2/4/8K
Bytes In-System Programmable Flash (Rev. 2586NAVR04/11)

5. ATtiny24, ATtiny44, ATtiny84 – 8-bit AVR Microcontroller with 2/4/8K Bytes In-
System Programmable Flash (Rev. 8006KAVR10/10)

6. ATmega103, ATmega103L – 8-bit AVR Microcontroller with 128K Bytes In-System
Programmable Flash (Rev. 0945IAVR02/07)

7. ATmega8, ATmega8L – 8-bit AVR Microcontroller with 8K Bytes In-System Pro-
grammable Flash (Rev. 2486ZAVR02/11)

8. ATmega128, ATmega128L – 8-bit Atmel Microcontroller with 128KBytes In-System
Programmable Flash (Rev. 2467XAVR06/11)

9. ATtiny13, ATtiny13V – 8-bit AVR Microcontroller with 1K Bytes In-System Pro-
grammable Flash (Rev. 2535JAVR08/10)

10. ATmega48/V, ATmega88/V, ATmega168/V – 8-bit Atmel Microcontroller with 4/8/16K
Bytes In-System Programmable Flash (Rev. 2545TAVR05/11)

11. ATmega640/V, ATmega1280/V, ATmega1281/V, ATmega2560/V, ATmega2561/V
– 8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Programmable
Flash (Rev. 2549PAVR10/2012)

12. ATtiny4, ATtiny5, ATtiny9, ATtiny10 – 8-bit AVR Microcontroller with 512/1024
Bytes In-System Programmable Flash (Rev. 8127EAVR11/11)

13. ATmega48PA, ATmega88PA, ATmega168PA, ATmega328P – 8-bit AVR Microcon-
troller with 4/8/16/32K Bytes In-System Programmable Flash (Rev. 8161DAVR10/09)

23

Table 7.1: Summary of detected bugs
Project Total Reserved-Writes RO-Writes
Optiboot 1 1 0
Libpolulu 3 3 0
AVR064 2 0 2
AVR130 3 0 3
AVR132 3 0 3
AVR312 2 0 2
AVR314 2 0 2
AVR318 1 0 1
AVR319 1 0 1
AVR441 2 0 2

Aggregate 20 4 16

14. AT90S8535, AT90SL8535 – 8-bit AVR Microcontroller with 8K Bytes In-System
Programmable Flash (Rev. 1041H11/01)

15. ATtiny261/V, ATtiny461/V, ATtiny861/V – 8-bit AVR Microcontroller with 2/4/8K
Bytes In-System Programmable Flash (Rev. 2588EAVR08/10)

For data mining experiments, we randomly selected the following three AVR specifica-
tions from ATMEL:

1. ATmega103, ATmega103L – 8-bit AVR Microcontroller with 128K Bytes In-System
Programmable Flash (Rev. 0945IAVR02/07)

2. ATmega169, ATmega169V – 8-bit AVR Microcontroller with 16K Bytes In-System
Programmable Flash (Rev. 2514PAVR07/06)

3. ATtiny13, ATtiny13V – 8-bit AVR Microcontroller with 1K Bytes In-System Pro-
grammable Flash (Rev. 2535JAVR08/10)

7.2 Apparatus

We performed the experiments on a Lenovo T420 machine which has an Intel Core i5-2520M
processor running at 2.50 GHz. It has 4.0 GB RAM memory and is running Ubuntu 12.10
which has 3.5.0-26-generic version of the Linux kernel.

24

We manually collected the data about the rule extractor by inspecting the generated
rules file for each specification. Then, we compared these rules with the manually extracted
rules to calculate different metrics. Source codes of AVR based software were downloaded
from ATMEL AVR and github websites.

7.3 Measures

We use the following metrics about the extracted rules from different specifications in the
training and evaluation set: (1) Actual Total Rule, (2) True Positives (TP), (3) False
Positives, (4) False Negatives, (5) Precision, (6) Recall, and (7) F1 score. Actual Total
Rule gives the number of manually extracted rules from the specifications. True positives
(TP) are the correct rules reported by em-SPADE. False positives (FP) are the incorrect
rules reported by em-SPADE which are not actual rules. False negatives (FN) are the rules
that em-SPADE missed to report.

Precision (P) is the fraction of extracted rules that are correct. Precision is defined as:

P =
TP

TP + FP

Recall (R) is the fraction of correct rules that em-SPADE extracts. It is defined as:

R =
TP

TP + FN

F1 score is a measure of accuracy which takes both precision and recall into account:

F1 = 2 ∗ P ∗R
P + R

F1 score reaches its best value at one and worst value at zero.

7.4 Procedure

We performed the testing by categorizing the software code according to the specifications
in the training and evaluation set. For example, to test microcontroller software for bugs

25

Table 7.2: Data about extracted reserved-bit rules from training specifications
Specification Actual Tool FP FN P (%) R (%) F1

AT90S2313 15 12 0 3 100.00 80.00 0.89
AT90S8515 12 12 0 0 100.00 100.00 1.00
ATmega169

ATmega169V
12 11 1 1 91.67 91.67 0.92

ATtiny25/V

ATtiny45/V

ATtiny85/V

16 15 1 1 93.75 93.75 0.94

ATtiny24

ATtiny44

ATtiny84

18 18 0 0 100.00 100.00 1.00

ATmega103

ATmega103L
14 12 1 2 92.31 85.71 0.89

ATmega8

ATmega8L
10 8 1 2 88.89 80.00 0.84

ATmega128

ATmega128L
14 13 3 1 81.25 92.86 0.87

ATtiny13

ATtiny13V
17 15 0 2 100.00 88.24 0.94

ATmega48/V

ATmega88/V

ATmega168/V

33 28 1 5 96.55 84.85 0.90

Aggregate 161 144 8 17 94.74 89.44 0.92

against the ATtiny13 specification, we first extracted the rules from this specification. em-
SPADE took the same rules file as input to perform bug detection test on the set of all
ATtiny13 software. Therefore, we needed to vary the specification and the LLVM specific
bitcode file of the microcontroller software for testing em-SPADE. We generated the LLVM
specific bitcode file using the LLVM front-end tool Clang.

26

Table 7.3: Data about extracted read-write only rules from training specifications
Specification Actual Tool FP FN P (%) R (%) F1

AT90S2313 18 15 0 3 100.00 83.33 0.91
AT90S8515 16 13 0 3 100.00 81.25 0.90
ATmega169

ATmega169V
46 39 0 7 100.00 84.78 0.92

ATtiny25/V

ATtiny45/V

ATtiny85/V

29 27 1 2 96.43 93.10 0.95

ATtiny24

ATtiny44

ATtiny84

29 25 0 4 100.00 86.21 0.93

ATmega103

ATmega103L
21 14 2 7 87.50 66.66 0.76

ATmega8

ATmega8L
29 20 0 9 100.00 68.96 0.82

ATmega128

ATmega128L
30 23 0 7 100.00 76.67 0.87

ATtiny13

ATtiny13V
23 22 0 1 100.00 95.65 0.98

ATmega48/V

ATmega88/V

ATmega168/V

45 44 0 1 100.00 97.78 0.99

Aggregate 286 242 3 44 98.78 84.61 0.91

27

Table 7.4: Data about extracted reserved-bit rules from evaluation specifications
Specification Actual Tool FP FN P (%) R (%) F1

ATmega640/V

ATmega1280/V

ATmega1281/V

ATmega2560/V

ATmega2561/V

20 19 1 1 95.00 95.00 0.95

ATtiny4

ATtiny5

ATtiny9

ATtiny10

24 24 2 0 92.31 100.00 0.96

ATmega48PA

ATmega88PA

ATmega168PA

ATmega328P

33 27 1 6 96.43 81.82 0.88

AT90S8535

AT90SL8535
17 16 0 1 100.00 94.12 0.97

ATtiny261/V

ATtiny461/V

ATtiny861/V

16 13 1 3 92.86 81.25 0.87

Aggregate 110 99 5 11 95.19 90.00 0.92

28

Table 7.5: Data about extracted write-read only rules from evaluation specifications
Specification Actual Tool FP FN P (%) R (%) F1

ATmega640/V

ATmega1280/V

ATmega1281/V

ATmega2560/V

ATmega2561/V

54 53 0 1 100.00 98.15 0.99

ATtiny4

ATtiny5

ATtiny9

ATtiny10

34 31 0 3 100.00 91.18 0.95

ATmega48PA

ATmega88PA

ATmega168PA

ATmega328P

46 42 0 4 100.00 91.30 0.95

AT90S8535

AT90SL8535
23 18 0 5 100.00 78.26 0.88

ATtiny261/V

ATtiny461/V

ATtiny861/V

28 23 0 5 100.00 82.14 0.90

Aggregate 185 167 0 18 100.00 90.27 0.95

29

Chapter 8

Results

This section discusses the bugs, i.e., errors and warnings, that em-SPADE reported, and the
rules that rule extractor of em-SPADE extracted from the AVR family of microcontroller
specifications. In the first subsection, we provide a detail description of the errors and
warnings that em-SPADE found for some application note projects and github projects.

8.1 Errors and Warnings Detected

em-SPADE found a total of 20 errors and warnings in ten projects. An overall summary of
these bugs is available in Table 7.1. Table 7.1 lists four columns: (1) Project, (2) Total, (3)
Reserved-Writes, and (4) RO-Writes. The first column lists the name of the project. The
second column tells the total bugs (errors and warnings) found in the particular project.
Third and fourth columns tell the number of Reserved-Writes and RO-Writes bugs found
in the project respectively. An elaborate discussion on these two type of bugs is available
as follows:

8.1.1 RO-Writes

em-SPADE found 16 RO-Writes type of bugs in eight projects which are application notes
published by ATMEL. Although writing to read-only bits might not cause a program to
fail, it is bad programming practice and can cause new bugs in future revisions. There-
fore, we consider RO-Writes as bugs. These bugs correspond to three specifications, i.e.,
ATmega169, ATtiny13 and ATtiny24. In all these cases, specifications dictate that the

30

registers have read-only bits that are initialized with 0 but developers incorrectly write 1
to those register bits. The next two paragraphs provide two examples of RO-Writes bugs
which em-SPADE found.

Assignment “TIFR1 = 0xFF;” in Main.c in AVR064 project sets all eight bits in TIFR1
register to one. Project AVR064 is intended for the ATmega169 microcontroller and the
corresponding specification dictates that bits 7:6 and 4:3 in Timer/Counter1 Interrupt
Flag Register (TIFR1) are read-only bits. Hence, setting bits 7:6 and 4:3 to one in TIFR1
register is a violation of the read-only rule and, therefore, the assignment is a bug.

Another example is the assignment “PORTB = 0xFF;” in WakeupTimer/main.c in
AVR132. This assignment sets all eight bits in PORTB register to one. The project is
intended for the ATtiny13 microcontroller. The ATtiny13 specification dictates that bits
7:6 in Port B Data Direction Register (PORTB) are read-only bits. Hence, setting bits 7:6
to one in PORTB register is a violation of the read-only rule and, therefore, the assignment
is a bug.

8.1.2 Reserved-Writes

em-SPADE found one Reserved-Writes type of bug in Optiboot [21]. Optiboot is an opti-
mized bootloader for Arduino [2], and is a quarter of the size of the default bootloader. It
allows larger Arduino programs and makes Aurduino programs upload faster. Therefore,
it plays an important part as Aurduino bootloader. Optiboot has two target MCUs, i.e.,
ATtiny84 [33] and ATmega168/V [30]. In both these specifications, bits 7:6 and 4:3 in
Timer/Counter1 interrupt flag register (TIFR1) are reserved. However, bynase.c in Opti-
boot sets all these bits in TIFR1 register to one. This is a violation of the above mentioned
reserved bit rule for ATtiny84 and ATmega168/V microcontrollers.

em-SPADE found three Reserved-Writes type of bugs in a library called libpolulu0-avr
[18]. The Pololu AVR Library is a collection of support functions for programming AVR-
based Pololu products or for using Pololu products with AVRs. It is designed for use with
the free avr-gcc compiler. Most of the library can also be used together with the Arduino
environment. This project targets the following microcontrollers—ATmega48pa [29], AT-
mega88pa [29], ATmega168pa [29], ATmega328p [29], ATmega48/V [30], ATmega88/V [30]
and ATmega168/V [30].

For all these microcontrollers, bits 7:3 in Pin Change Interrupt Flag Register (PCIFR)
are reserved. However, in two files in libpolulu project i.e., PololuWheelEncoders.cpp and
OrangutanPulseIn.cpp, these bits are set to one as “PCICR = 0xFF;”. This is a vio-
lation of the reserved bits rule for all seven microcontrollers. Therefore, the mentioned

31

assignment is a bug for libpolulu-avr project. In these specifications, bits 7:6 and 4:3 in
Timer/Counter1 interrupt flag register (TIFR1) are reserved. However, in OrangutanSer-
vos.cpp, the assignment “TIFR1 = 0xFF;” sets all the register bits to one which violates
the requirement of reserved bits 7:6 and 4:3 in TIFR1 register. Therefore, this statement
is also buggy.

The reported 20 bugs in Reserved-Writes and RO-Writes category span across ten AVR
projects and 13 different AVR microcontrollers. It is evident that such bugs are prevalent
in microcontrollers codes. Therefore, em-SPADE is useful in detecting register assignment
bugs in microcontroller software.

8.2 Specification Analysis Results

Table 7.2 and 7.3 show the data about extracted rules for the ten specifications in the
training set. Similarly, Table 7.4 and 7.5 show the data about extracted rules for the five
specifications in the evaluation set. Table 7.2, 7.3, 7.4 and 7.5 list the same metrics for
access and reserved-bits types of rules.

Reserved bit rules and read-write only rules are present separately in both tables. Each
row in these tables starts with the specification name followed by data about reserved bit
rules and read-write only rules. Within reserved bit rules and read-write only rules, the
tables list seven entries. Within reserved bit rules and read-write only rules multicolumns,
column “Actual” reports the number of manually extracted rules. Column “Tool” reports
the number of correct rules that em-SPADE extracted. In the next two columns, the tables
show the number of false positives (FP) and the number of false negatives (FN). The next
two columns report precision (P) and recall (R) in percentage. The last column lists the
F1 score which is a collective measure of precision and recall. The range of F1 score in the
tables is from zero to one.

Table 7.2 and 7.3 show that the overall precision is 94.74% and 98.78% for reserved bit
rules and the read-write only rules in the training set. Also, the overall recall is 89.44% and
84.61% for reserved bit rules and the read-write only rules in the training set. Table 7.4
and 7.5 show that the overall precision is 95.19% and 100.00% for reserved bit rules and
read-write only rules in the evaluation set. And the overall recall is 90.00% and 90.27%
for reserved bit rules and read-write only rules in the evaluation set.

The F1 score of reserved bit rules is 0.92 for both training and evaluation set. The
F1 score of read-write only rules is 0.91 for the training set and 0.95 for the evaluation
set. The F1 score of higher than 0.9 for training and evaluation set indicates that the rule

32

Table 8.1: Summary of Frequent Itemset Mining Result
Itemsets Support Total Reported TP FP FN P (%) R (%) F1

4 1 164 101 63 40 61.58 71.63 0.66
5 1 69 52 17 89 75.36 36.88 0.50
3 2 198 106 92 35 53.53 75.18 0.62
4 1.3 90 74 16 67 82.22 52.48 0.64
5 0.8 102 78 24 63 76.47 55.32 0.64

extractor of em-SPADE is accurate, precise, and effective. In addition, it indicates that
the rule extractor works accurately for specifications outside of the training set.

Table 7.2, 7.3, 7.4 and 7.5 show the number of false positives and false negatives for
rules extracted from all the specifications. The main reason attributed to both, the false
positives and false negatives, is the failure of the heuristics in some cases. In majority
of the observed cases, the heuristics fail due to conversion of PDF specifications to text
form by pdftotext. While converting, pdftotext sometimes produces unordered lines or
misaligned text for register description layouts. This type of incorrect conversion negatively
affects the rule extractor heuristics, which results in false positives and false negatives. In
the future, we can use advanced conversion tools or analyze the manufacturers’ source files
of specifications to reduce false positives and false negatives.

8.3 Data Mining Results

We used frequent itemset mining to identify checkable rules from the set of modal verb
sentences. We conducted experiments with different values of minimum support and min-
imum number of items in the itemset. The dataset contains modal verb sentences from
three ATMEL AVR specifications mentioned in the previous section. We report the number
of true positives, false positives, false negatives along with precision and recall. Table 8.1
presents these values for five sets of minimum support and minimum number of items in
itemsets. Note that the three specifications contain a total of 141 checkable rules. In the
table, the first column reports the ‘minimum number of items’ parameter for the frequent
itemset mining algorithm, and the next column reports the ‘minimum support’ parameter.
The next column presents the ‘total reported sentences based on the itemsets’. The next
three columns report the true positives, false positives and false negatives. The remaining
three columns report the metrics precision, recall and F1 score.

33

We also present the grouping of sentences for five itemsets that contain four or five
words. The five groupings are:

Itemset: must when disabled changing

All the sentences containing this itemset follow the first LTL template.

1. When changing the ACD bit, the analog comparator interrupt must be disabled by
clearing the ACIE bit in ACSR. (ATmega169)

2. When changing the ACIS1/ACIS0 bits, the analog comparator interrupt must be
disabled by clearing its interrupt enable bit in the ACSR register. (ATmega169)

3. Interrupts must be disabled when changing prescaler setting to make sure the write
procedure is not interrupted. (ATmega169)

4. When changing the ACD bit the analog comparator interrupt must be disabled by
clearing the ACIE bit in ACSR. (ATmega103)

5. When changing the ACIS1/ACIS0 bits, the analog comparator interrupt must be
disabled by clearing its interrupt enable bit in the ACSR register. (ATmega103)

6. Interrupts must be disabled when changing prescaler setting to make sure the write
procedure is not interrupted. (ATtiny13)

7. When changing the ACD bit, the analog comparator interrupt must be disabled by
clearing the ACIE bit in ACSR. (ATtiny13)

8. When changing the ACIS1/ACIS0 bits, the analog comparator interrupt must be
disabled by clearing its interrupt enable bit in the ACSR register. (ATtiny13)

Itemset: must when bit written

Again, all the sentences containing this itemset follow the first LTL template.

1. The SE bit must be written to logic one to make the MCU enter the sleep mode
when the SLEEP instruction is executed. (ATmega169)

2. This bit must be set when the WDE bit is written to logic zero. (ATmega169)

3. The EEMWE bit must be set when the logical “1” is written to EEWE otherwise no
EEPROM write takes place. (ATmega103)

34

4. When writing ADCSR, a logical “0” must be written to this bit. (ATmega103)

5. When address and data are correctly set up, the EEWE bit must be written to one
to write the value into the EEPROM. (ATmega169)

6. When the correct address is set up in the EEAR register, the EERE bit must be
written to a logic one to trigger the EEPROM read. (ATmega169)

7. For ensuring compatibility with future devices, this bit must be written to zero when
TCCR1B is written. (ATmega169)

8. For compatibility with future devices, these bit must be written to zero when UBRRH
is written. (ATmega169)

9. To ensure compatibility with future devices, this bit must be written to zero when
ADCSRB is written. (ATmega169)

10. When the correct address is set up in the EEARL register, the EERE bit must be
written to one to trigger the EEPROM read. (ATtiny13)

11. The SE bit must be written to logic one to make the MCU enter the sleep mode
when the SLEEP instruction is executed. (ATtiny13)

Itemset: must bit written register

In the sentences containing this itemset, eight sentences follow the first LTL template,
and two non-rule modal-verb sentences.

1. Consequently the high byte OCR1AH or OCR1BH must be written first for a full 16
bit register write operation. (ATmega103)

2. All interrupts are assigned individual enable bits which must be written logic one
together with the global interrupt enable bit in the status register in order to enable
the interrupt. (ATmega169)

3. When the correct address is set up in the EEAR register, the EERE bit must be
written to a logic one to trigger the EEPROM read. (ATmega169)

4. In these cases the waveform generation mode (wgm13:0) bits must be set before the
top value can be written to the ICR1 register. (ATmega169)

35

5. The PRSPI bit in “Power Reduction Register PRR” on page 34 must be written to
zero to enable SPI module. (ATmega169)

6. The PRUSART0 bit in “Power Reduction Register PRR” on page 34 must be written
to zero to enable USART module. (ATmega169)

7. The power reduction ADC bit PRADC in “Power Reduction Register PRR” on page
34 must be written to zero to enable the ADC module. (ATmega169)

8. The PRLCD bit in “Power Reduction Register PRR” on page 34 must be written to
zero to enable the LCD module. (ATmega169)

9. All interrupts are assigned individual enable bits which must be written logic one
together with the global interrupt enable bit in the status register in order to enable
the interrupt. (ATtiny13)

10. When the correct address is set up in the EEARL register, the EERE bit must be
written to one to trigger the EEPROM read. (ATtiny13)

Itemset: must bit written one logic

Again, all the sentences containing this itemset follow the first LTL template.

1. All interrupts are assigned individual enable bits which must be written logic one
together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. (ATmega169)

2. The EEMPE bit must be written to one before a logical one is written to EEPE
otherwise no EEPROM write takes place. (ATtiny13)

3. When the correct address is set up in the EEAR register, the EERE bit must be
written to a logic one to trigger the EEPROM read. (ATmega169)

4. The CLKPCE bit must be written to logic one to enable change of the CLKPS bits.
(ATmega169)

5. To enter any of the five sleep modes, the SE bit in SMCR must be written to logic
one and a sleep instruction must be executed. (ATmega169)

6. The SE bit must be written to logic one to make the MCU enter the sleep mode
when the SLEEP instruction is executed. (ATmega169)

36

7. The IVCE bit must be written to logic one to enable change of the IVSEL bit.
(ATmega169)

8. All interrupts are assigned individual enable bits which must be written logic one
together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. (ATtiny13)

9. The CLKPCE bit must be written to logic one to enable change of the CLKPS bits.
(ATtiny13)

10. To enter any of the three sleep modes the SE bit in MCUCR must be written to logic
one and a SLEEP instruction must be executed. (ATtiny13)

11. The SE bit must be written to logic one to make the MCU enter the sleep mode
when the SLEEP instruction is executed. (ATtiny13)

12. A logic one must be written to WDE regardless of the previous value of the WDE
bit. (ATtiny13)

Itemset: must bit written enable

In the sentences containing this itemset, all follow the first LTL template.

1. All interrupts are assigned individual enable bits which must be written logic one
together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. (ATmega169)

2. The CLKPCE bit must be written to logic one to enable change of the CLKPS bits.
(ATmega169)

3. The IVCE bit must be written to logic one to enable change of the IVSEL bit.
(ATmega169)

4. The PRTIM1 bit in “Power Reduction Register PRR” on page 34 must be written
to zero to enable timer/counter1 module. (ATmega169)

5. The PRSPI bit in “Power Reduction Register PRR” on page 34 must be written to
zero to enable SPI module. (ATmega169)

6. The PRUSART0 bit in “Power Reduction Register PRR” on page 34 must be written
to zero to enable USART module. (ATmega169)

37

7. The power reduction ADC bit PRADC in “Power Reduction Register PRR” on page
34 must be written to zero to enable the ADC module. (ATmega169)

8. The PRLCD bit in “Power Reduction Register PRR” on page 34 must be written to
zero to enable the LCD module. (ATmega169)

9. All interrupts are assigned individual enable bits which must be written logic one
together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. (ATtiny13)

10. The CLKPCE bit must be written to logic one to enable change of the CLKPS bits.
(ATtiny13)

38

Chapter 9

Performance

We discuss the performance of em-SPADE in terms of overhead caused by the LLVM pass
and overhead caused by the rule extractor. We also discuss the scalability of em-SPADE
with respect to large concatenated specifications.

9.0.1 Rule Extractor Overhead

Overhead caused by the rule extractor of em-SPADE is not important because rule extrac-
tion is a one time task for each processor specification. Once em-SPADE extracts the rules
from a particular specification, the LLVM checker can use the same rules file to detect bugs
in any software intended for the processor. For each of the 15 specifications in the training
and evaluation set, we measured the overhead caused by the rule extractor individually.
From the data about the individual overhead for each specification, we calculated the mean
overhead. The mean overhead is 4.41 seconds of CPU time which accounts for the amount
of CPU time spent in user-mode and kernel mode within the rule extractor process. Note
that the rule extractor process can be run individually to record its overhead.

9.0.2 LLVM Checker Overhead

To gather data about overhead produced by the LLVM pass implementation, we ran em-
SPADE on four randomly chosen projects using rules from the 15 specifications individually.
To calculate the overhead caused by the LLVM checker, we run the LLVM compilation step
with and without the LLVM checker. The difference between the CPU time of compilation

39

with the LLVM checker and the CPU time of compilation without the LLVM checker
accounts for the overhead caused by the LLVM checker. Based on the data from the 60
runs, we calculated the mean overhead caused by the LLVM checker. The mean overhead
caused by the checker is 1.79 seconds of CPU time.

9.0.3 Scalability of em-SPADE

We tested the scalability of em-SPADE with respect to large specification. To test the
scalability of the rule extractor, we combined 15 specs using pdftk [24] to get one large
combined PDF file of 3857 pages. The rule extractor completed the extraction in 24.25
seconds which included 24.10 seconds of CPU time. The mean overhead caused by LLVM
checker of em-SPADE in this case was 2.22 seconds of CPU time.

9.0.4 Frequent Itemset Mining Overhead

The apriori algorithm to perform frequent itemset mining needs to run for modal verb
sentences in each specification. To get a sense of overhead caused by the apriori algorithm,
we performed experiments on the three specifications. Since the run time of the apriori
algorithm depends on parameters such as ‘support’ and ‘number of items in the itemset’, we
conducted the experiments for a particular set of parameters. We set the values of support
and number of items as 1% and 4. By conducting five runs of the apriori algorithm on
each specification, we measured the CPU time for each run. We calculated the mean of all
the 15 runs, and got a mean overhead of 0.017 seconds of CPU time.

40

Chapter 10

Discussion

In this section, we discuss four important points about em-SPADE which provide details
about the limitation, effectiveness and generality of em-SPADE. In below subsections, we
discuss the following specific points:

10.1 The Need to Modify the Source Code to Get

LLVM Bitcode

As mentioned earlier, we have implemented the checker as a LLVM pass. Building the pass
creates a shared object which the LLVM optimizer tool can load. The pass works on the
LLVM specific binary bitcode file of the source code under inspection. em-SPADE needs
to compile the source code using clang to get the LLVM binary. Clang is the front end
for LLVM compiler infrastructure. Clang needs ‘emit-llvm’ option to generate the LLVM
specific bitcode output. Most of the projects em-SPADE analyzed were for avr-gcc [3]
compiler. Avr-gcc is a port of GCC which creates binaries for AVR [20] processors. To
compile such source codes using clang, we manually need to make some changes such as
adding the required header files in the code, providing the path to the include directory
of avr library and commenting out a few lines if required. However, in doing so we make
sure that none of the changes made put em-SPADE at an advantage in any way as far as
finding errors and warnings are concerned.

41

10.2 False Positives & False Negatives

em-SPADE did not find any false positives while analyzing the embedded software projects.
However, since the rule extractor reports false positives, it is probable that em-SPADE may
report false positive bugs if the register corresponding to the false rule is assigned some
value in the software.

Since the rule extractor is based on heuristics, em-SPADE does not guarantee that it ex-
tracts all the rules from specifications. Low recall, specially for ATmega103/ATmega103L
and ATmega8/ATmega8L, in Table [1] suggests that em-SPADE misses some actual rules.
Inspecting these specifications and the tool heuristics, we found that the limitation comes
from pdftotext [25]. Pdftotext fails to preserve the register description layout in the
text format which negatively affects the heuristics. Following the current line of work such
as [1], [14], [19], [38] and [43], em-SPADE seeks a balance between false positives and false
negatives.

10.3 Incorrect Data in Specifications

The underlying assumption in the context of em-SPADE is that specifications contain
correct rules. If there is incorrect data in the specification, then em-SPADE might report
false bugs or miss bugs. If developers reference the specification to develop a project, then
em-SPADE will not report any bugs because of the consistency between the project code
and specification, even though the data in specification is incorrect. However, if developers
write projects with the help of their prior knowledge or experience about the device, then
em-SPADE will report the bug caused by the inconsistency between project code and
the specification. Since specifications act as standard reference guide for developers, it is
reasonable to assume their correctness.

10.4 Generality of em-SPADE to other Specifications

Since the rule extractor in em-SPADE makes no specific assumption about ATMEL AVR
specifications, em-SPADE should be generalizable to other type of specifications. The
heuristics used to extract rules from specifications are applicable to other families of mi-
crocontrollers. Our study of NXP LPC17xx microcontrollers gives credence to this belief.
Some example rules from these microcontrollers are present in Section 5. One can observe

42

that these rules are similar to the extracted rules from ATmega640/V [31] which have been
listed earlier.

10.5 Practical Use of Data Mining Techniques

We have shown that the frequent itemset mining can be used to know whether a group
of sentences contains rules. Such grouping can also help people standardize specifications.
Sentences that have the same meaning can be written in a fixed and defined way without
any ambiguity.

43

Chapter 11

Conclusion and Future Work

In this thesis, we propose a new approach to extract rules from processor specifications
automatically and check source code against these rules to detect bugs in embedded sys-
tems automatically. We build the prototype em-SPADE, which automatically extracts
652 rules correctly from 15 specifications with precisions of 81.25–100.00% and recalls of
80.00–100.00%. em-SPADE detects 20 bugs in ten ATMEL and AVR software projects
automatically, which demonstrates the effectiveness of the approach.

We also demonstrate the use of data mining techniques for learning about complex rules
from processor specifications automatically. Our experiments with three AVR specifica-
tions using frequent itemset mining show that the learning provided closely matches with
manually identified rule templates. Data mining techniques can also be used to standardize
the processor specifications.

As part of future work, we can use em-SPADE to analyze specifications for processors
from other manufacturers. The rules extracted from these specifications can be used to
check consistency in corresponding programs. As mentioned earlier, our study of NXP
LPC17xx specification demonstrates that em-SPADE would be applicable to other families
of microprocessors with little or no modification. Conducting experiments with em-SPADE
on other microprocessor specification would prove this explicitly.

In addition to this, the tool can be enhanced to extract information from other types
of specifications such as ethernet chips, PCI bus, SCSI bus, SPI bus, SPI chips, UART
bus, UART chips, etc. Rules extracted from such types of specifications will be useful for
writing firmwares and drivers.

Additionally, the rule extractor can also be enhanced to extract other type of rules
from processor specifications such as rules from timing diagrams and rules about electrical

44

properties of the processor. To further improve the precision and recall of the rule extractor,
we can use advanced PDF-to-text conversion tools or analyze the manufacturers’ source
files of PDF specifications. In addition, we plan to port em-SPADE to gcc framework to
avoid the issues of generating LLVM IR e.g., mapping of register names and corresponding
macro values for generating IR. Another possible future extension is detecting assignment
violations involving function calls.

45

References

[1] P. Anderson. Detecting bugs in safety-critical code. In Dr. Dobb’s Journal, 2008.

[2] Arduino. http://www.arduino.cc/.

[3] Avr-gcc. http://gcc.gnu.org/wiki/avr-gcc.

[4] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(6):437–456, 2012.

[5] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(6):437–456, 2012.

[6] Christian Borgelt and Rudolf Kruse. Induction of association rules: Apriori imple-
mentation. In Compstat, pages 395–400. Springer, 2002.

[7] Christoph Csallner and Tao Xie. DSD-Crasher: A hybrid analysis tool for bug finding.
In ISSTA, pages 245–254. ACM, 2006.

[8] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Bonnie Webber. Extracting Formal
Specifications from Natural Language Regulatory Documents. In Proceedings of the
Fifth International Workshop on Inference in Computational Semantics, 2006.

[9] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles,
SOSP ’01, pages 57–72, New York, NY, USA, 2001. ACM.

[10] Ansgar Fehnker, Ralf Huuck, Bastian Schlich, and Michael Tapp. Automatic Bug
Detection in Microcontroller Software by Static Program Analysis. In Proceedings of
the 35th Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM ’09, pages 267–278, Berlin, Heidelberg, 2009. Springer-Verlag.

46

http://www.arduino.cc/
http://gcc.gnu.org/wiki/avr-gcc

[11] LLVM FunctionPass. http://llvm.org/doxygen/classllvm_1_1Pass.html.

[12] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and language
for building system-specific, static analyses. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI ’02,
pages 69–82, New York, NY, USA, 2002. ACM.

[13] The LLVM Compiler Infrastructure. http://llvm.org/.

[14] Holger M. Kienle, Johan Kraft, and Thomas Nolte. System-Specific Static Code
Analyses: A Case Study in the Complex Embedded Systems Domain. Software Quality
Control, 20(2):337–367, June 2012.

[15] Sotiris B Kotsiantis, ID Zaharakis, and PE Pintelas. Supervised machine learning: A
review of classification techniques, 2007.

[16] Wenke Lee and Salvatore J Stolfo. Data mining approaches for intrusion detection.
In Usenix Security, 1998.

[17] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically Extracting Implicit Pro-
gramming Rules and Detecting Violations in Large Software Code. In Proceedings of
the 10th European Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, ESEC/FSE-
13, pages 306–315, New York, NY, USA, 2005. ACM.

[18] Pololu AVR Library. http://www.pololu.com/docs/0J20.

[19] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A. Popa, and Yuanyuan Zhou. MUVI: Automatically Inferring Multi-variable
Access Correlations and Detecting Related Semantic and Concurrency Bugs. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, pages 103–116, New York, NY, USA, 2007. ACM.

[20] Atmel AVR Microcontrollers. http://www.atmel.com/products/

microcontrollers/avr/default.aspx.

[21] Optiboot. https://code.google.com/p/optiboot/.

[22] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to Programmers—
Taxonomies and Characteristics of Comments in Operating System Code. In Proceed-
ings of the 31st International Conference on Software Engineering, ICSE ’09, pages
331–341, Washington, DC, USA, 2009. IEEE Computer Society.

47

http://llvm.org/doxygen/classllvm_1_1Pass.html
http://llvm.org/
http://www.pololu.com/docs/0J20
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
https://code.google.com/p/optiboot/

[23] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Parad-
kar. Inferring Method Specifications from Natural Language API Descriptions. In Pro-
ceedings of the 2012 International Conference on Software Engineering, ICSE 2012,
pages 815–825, Piscataway, NJ, USA, 2012. IEEE Press.

[24] Pdftk. http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.

[25] Pdftotext. http://linux.die.net/man/1/pdftotext.

[26] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[27] Boost Regex. http://www.boost.org/doc/libs/1_53_0/libs/regex/doc/html/

index.html.

[28] Yannis Smaragdakis and Christoph Csallner. Combining static and dynamic reasoning
for bug detection. In Proc. 1st International Conference on Tests And Proofs (TAP),
pages 1–16. Springer, 2007.

[29] ATMEL ATmega48PA/ATmea88PA/ATmega168PA/ATmega328P specification doc-
ument.

[30] ATMEL ATmega48V/ATmea88V/ATmega168V specification document.

[31] ATMEL ATmega640/V specification document.

[32] ATMEL ATtiny4 specification document.

[33] ATMEL ATtiny84 specification document.

[34] ATMEL ATUC256L3U/ATUC128L3U specification document.

[35] NXP UM10360 specification document.

[36] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*iComment: Bugs or Bad
Comments?*/. SIGOPS Oper. Syst. Rev., 41(6):145–158, October 2007.

[37] Suresh Thummalapenta and Tao Xie. Alattin: Mining alternative patterns for de-
tecting neglected conditions. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 283–294. IEEE Computer So-
ciety, 2009.

48

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://linux.die.net/man/1/pdftotext
http://www.boost.org/doc/libs/1_53_0/libs/regex/doc/html/index.html
http://www.boost.org/doc/libs/1_53_0/libs/regex/doc/html/index.html

[38] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premkumar T.
Devanbu. To What Extent Could We Detect Field Defects? An Empirical Study of
False Negatives in Static Bug Finding Tools. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012, pages 50–
59, New York, NY, USA, 2012. ACM.

[39] Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. Iterative mining
of resource-releasing specifications. In Automated Software Engineering (ASE), 2011
26th IEEE/ACM International Conference on, pages 233–242. IEEE, 2011.

[40] Tao Xie, M. Acharya, S. Thummalapenta, and K. Taneja. Improving software relia-
bility and productivity via mining program source code. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–5, April
2008.

[41] Tao Xie, Jian Pei, and A.E. Hassan. Mining software engineering data. In Software
Engineering - Companion, 2007. ICSE 2007 Companion. 29th International Confer-
ence on, pages 172–173, May 2007.

[42] Jinqiu Yang and Lin Tan. SWordNet: Inferring semantically related words from
software context. Empirical Software Engineering, 2013.

[43] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan Lu,
and Thomas Reps. ConSeq: Detecting Concurrency Bugs Through Sequential Errors.
In Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 251–264, New
York, NY, USA, 2011. ACM.

[44] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel Midkiff,
and Josep Torrellas. AccMon: Automatically Detecting Memory-Related Bugs via
Program Counter-Based Invariants. In Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 37, pages 269–280, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

49

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Related Work
	Background
	Frequent Itemset Mining

	The Framework
	Rule Extractor
	Rules to Extract
	How to Extract the Rules
	Conversion of Rules to XML Format

	LLVM Checker

	Techniques for Complex Rules
	Data Mining
	Manually Defined Rule Templates

	Experimental Method
	Subjects & Design
	Apparatus
	Measures
	Procedure

	Results
	Errors and Warnings Detected
	RO-Writes
	Reserved-Writes

	Specification Analysis Results
	Data Mining Results

	Performance
	Rule Extractor Overhead
	LLVM Checker Overhead
	Scalability of em-SPADE
	Frequent Itemset Mining Overhead

	Discussion
	The Need to Modify the Source Code to Get LLVM Bitcode
	False Positives & False Negatives
	Incorrect Data in Specifications
	Generality of em-SPADE to other Specifications
	Practical Use of Data Mining Techniques

	Conclusion and Future Work
	References

