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Abstract 

Ontario’s power generation system is undergoing significant changes towards a modern and 

sustainable electricity system. One significant objective for the planned system transition is to 

reduce CO2 emissions. CO2 emissions from Ontario’s power generation are expected to be cut 

significantly as coal is phased out and more renewables and natural gas capacity are incorporated 

into the provincial electricity supply. This restructuring of Ontario’s electricity system and 

associated reduction of CO2 emissions need to be monitored. 

Equally, the dynamics of CO2 in the atmosphere are also a major issue of interest in the scientific 

world and how the reduced CO2 emissions from power plants can influence the distribution of 

CO2 concentration remains an important question. In this regard, remote sensing which provides 

global-coverage, near real-time and 3-D information on atmospheric CO2 is proposed as a useful 

tool for monitoring the processes and phenomena of interest.  The ongoing space-based 

instruments such as GOSAT TANSO provide accurate CO2 concentration information at different 

altitudes especially near the Earth’s surface where interactions between power-generation CO2 

emissions and the atmosphere are intensive. These data can be used for both long-term CO2 

monitoring and short-term CO2 detection by measuring the emitting activities of power plants. 

Therefore, this project examines the use of remote sensing to estimate the change of CO2 

enhancements due to the variation of coal-fired power generation intensity and to evaluate the 

effect of Ontario’s energy decision/policy. 

Partial column CO2 data are more capable of presenting the surface CO2 fluxes compared to 

column CO2 data. By introducing the ‘background’ observations, the fossil fuel CO2 flux in the 

Nanticoke area can be clearly detected and identified. The reduction of coal-fired power 

generation by Nanticoke Generating Station leads to decreased enhancement of local atmospheric 

CO2 concentrations. It is shown that Ontario’s decision to shut down coal-fired power plants is an 

effective measure to reduce atmospheric CO2 and to mitigate climate change. More policies and 

actions are encouraged along with new monitoring techniques that include remote sensing tools. 

Keywords:  

Climate change, Nanticoke coal-fired power plants, CO2 emissions, remote sensing CO2 retrieval, 

CO2 surface flux, CO2 seasonality 
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Chapter 1:  Introduction 

‘CO2 can be considered the mobile component of the carbon cycle’ since it determines most 

carbon exchange processes among the soil, ocean, and atmosphere (Houweling et al.,2004). As a 

primary and long-lived greenhouse gas (GHG), CO2 has always influenced the global climate, but 

attention has focused on its increasing concentration since the industrial age (CO2 and CH4 

account for 80% of the global warming effect). According to the Intergovernmental Panel on 

Climate Change (IPCC) 2013, the atmospheric CO2 concentration has increased since 1750 due to 

human activity. This mainly results from increasing combustion of fossil fuel, but includes other 

anthropogenic factors such as land use change and cement production.  

It has been a primary political and scientific concern to better estimate CO2 sources and sinks at 

various spatial and temporal scales. Traditionally, measurements of CO2 are obtained from 

surface network, aircraft and ship sampling; however representations of CO2 are vulnerable to the 

sparsity of spatial coverage. In addition, the surface network is limited in its capability of 

representing the complex atmospheric mixing in mid-high troposphere where the surface signal is 

diluted. In this regard, an increasing attention is devoted to the application of remote sensing 

observations in estimating CO2 fluxes. Particularly, the increased spatiotemporal resolution and 

accuracy of satellite instrument measurements makes remote sensing a practical tool for 

monitoring CO2 emissions at regional scales, thereby enhancing our understanding of the 

dynamic processes that influence the atmospheric CO2 concentrations. 

This research is conducted in the context of Ontario and its government’s decisions. Ontario’s 

electricity system has evolved quickly in the 21
st
 century as the province endeavored to reduce 

GHG emissions. As more clean and renewable sources are incorporated into the electricity system, 

the province is committed to phasing out coal for electricity generation by the end of 2014 

[Ontario Power Authority (OPA), 2010]. Nanticoke power generating station (GS) is the largest 

coal-fired GS operated by Ontario Power Generation (OPG). It is located on the north shore of 

Lake Erie (location coordinates: 42.80°N, 80.05°W). As generating units have been shut down or 

put on stand-by, the emissions of CO2 and air pollutants have decreased.  

In this research, remote sensing CO2 retrieval data are used to examine whether the change of 

atmospheric CO2 concentration is observable as Nanticoke GS’s electricity output changes over 
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time. The reliability of using remote sensed CO2 data to monitor ground CO2 emissions is also 

investigated.  

1.1 Background 

In order to set the background for this research, this section briefly introduces the significant 

conclusions/findings, unresolved issues, and national/international concerns in relevant research 

fields, including: climate change, energy consumption, GHG emissions, CO2 measurements, and 

influential factors on CO2 concentrations. More details are discussed in the ‘Literature Review’ 

chapter. 

1.1.1 Climate Change, Energy Consumption and GHG 

GHG emissions from the consumption of energy are considered to be a major contributor to 

climate change. The global consumption of primary energy increased at an average annual rate of 

2.0% (Jovanovic et al.,2010). The annual CO2 emissions from fossil fuel combustion and cement 

production were 8.3 [7.6 to 9.0] GtC
12

/year
1
 averaged over 2002-2011. In 2011, the emissions 

were 9.5 [8.7 to 10.3] GtC
12

/year which is 54% above the 1990 level. Annual CO2 emission from 

anthropogenic land use changes are 0.9 GtC
12

/year averaged over 2002-2011 (Stocker et 

al.,2013b). An excess of fossil fuels exploitation and combustion not only result in negative 

impacts environmentally, but also seriously challenge the security of energy supply.  

An extensive literature has focused on GHG emissions from energy consumption and their role in 

causing climate change (Hohmeyer,1988, Kim and Dale,2005, Norman et al.,2006, Soytas et 

al.,2007, Ou et al.,2009), as well as policies towards mitigating climate change (Wigley et 

al.,1996, Zhang,1998, Nakicenovic and Swart,2000, Jean-Baptiste and Ducroux,2003, Blyth and 

Lefevre-Marton,2005, Leiserowitz,2006, Mattoo et al.,2009).  

The mitigation of climate change requires urgent attention from both policy makers and the 

general public and calls for a collective effort internationally. The fourth assessment report by the 

IPCC suggested significant reductions in GHG emissions with a great potential of outcomes from 

energy and industrial processes. The fifth IPCC report enhances the understanding of climate 

                                                           
1 1 GtC (1 Gigatonne of carbon) = 1015 grams of carbon, which equals to 3.667 GtCO2 
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change and the negative role of GHG with a series of clear and robust conclusions in a global 

assessment of climate change science.  

As of 2007, eighteen EU members had set national targets for GHG emissions reduction. 

Particularly, the EU Greenhouse Gas Emission Trading Scheme (EUETS) launched in 2005 

allowed for trading carbon credits among countries (Ellerman and Buchner,2007). A number of 

developing countries had also proposed GHG emission reduction targets to fight climate change. 

Most climate/energy policies emphasize cost-effective CO2 reduction measures, energy 

conservation and development of sustainable energy systems. These policies have experienced 

modifications and adjustments during the transition of the  energy system (Kern and Smith,2008). 

Canada is the 5
th
 largest producer of energy in the world. Even though for domestic use Canada 

consumes a small fraction of energy in terms of global consumption, its per capita energy use is 

among the highest across the world (Hofman and Li,2009). Canada has high potentials to curtail 

its energy consumption and associated GHG emissions while securing its energy supply and 

maintaining its overall competitiveness. The Government of Canada specifically Natural 

Resources Canada (NRCan) identifies adaptions to climate change as a top priority, and aims to 

reduce GHG emission levels to mitigate the severity and impacts of climate change. However, 

energy jurisdictions of the federal and provincial governments are separated. Though the federal 

government has the authority to sign international treaties, regulate international and inter-

provincial trade and set national product and environmental standards, the provincial 

governments have the constitutional responsibility over energy and natural resources management. 

Therefore, the mitigation of climate change requires close and concerted collaborations among 

provincial and federal governments.   

The electricity sector contributes a large share of GHG emissions in Canada. The supply mix of 

the electricity system varies among provinces and changes over time. In Ontario, the electricity 

system has undergone a significant transition since the 1950s when the province was highly 

dependent on hydroelectric power and coal (Planning,1980). Nuclear generating facilities were 

brought into service between early 1970s and early 1990s. Prior to 2003, there was no long-term 

energy plan in Ontario (Ministry of Energy Ontario, 2010). At that time, 25% of the provincial 

electricity supply came from coal-fired power generation. As the demand for electricity grew and 

the infrastructures aged, new renewables sources were incorporated into the electricity system. In 

the past decade, Ontario made progress on building and maintaining a clean, reliable and 

affordable electricity system (OPA, 2014). Most importantly, Ontario’s phasing out coal for 
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power generation is the largest climate change initiative in North America (OPA, 2013). Ontario 

had virtually eliminated coal from the electricity system by 2013, when coal accounted for 2% of 

total power generation and the GHG emissions were reduced by 90% compared to 2003 (OPA, 

2014). At the same time, the supply changed from net deficit to net surplus as the demand 

remained nearly flat. Moreover, Ontario is devoted to creating a less energy-intensive future 

when the demand for energy is not closely linked to economic growth (OPA, 2013).  

1.1.2 CO2 Measurements  

CO2 is a primary concern for climate change. In order to estimate the sources and sinks of CO2 

and evaluate the performance of CO2 emissions reduction, the atmospheric CO2 concentrations 

need to be measured with high accuracy.  

In situ measurements have been a major tool to estimate and understand CO2 spatial and temporal 

variability. A long history of research and applications demonstrate the reliability and accuracy of 

in situ measurements using various types of instruments (Webster and May,1987, Vourlitis et 

al.,1993, Ray et al.,1999, Gibert et al.,2007, Machida et al.,2008, Deutscher et al.,2010, 

Chevallier et al.,2011, Fang et al.,2014). Ground-based instruments are very insensitive to 

aerosols which can change the optical depth of signals (sunlight). The bias of CO2 concentration 

retrieval due to aerosols can thus be mostly eliminated and the accuracy of the results is usually 

very high. In particular, the Fourier Transform Infrared Spectrometry (FTIR) measurement, 

which is normally used from ground-based platforms, has been demonstrated as capable of 

detecting particular materials (e.g. CO2, CO, CH4, N2O, and H2O) and their scattering effects in 

the atmosphere to enable the estimation of their abundances.  

However, in situ networks are challenged by the stringent requirements for the identification of 

CO2 sources and sinks at global and regional scales. In general, the sparse spatial coverage of 

surface network is the foremost problem for geographical and political reasons. This creates a 

great need and opportunity for developing and applying remote sensing techniques in CO2 studies.  

The first application of space-based measurements for CO2 concentration was in 1979 using 

NOAA-TOVS data after the NOAA polar orbiting meteorological satellite was launched to 

provide constant observation of the earth surface and the atmosphere (Smith et al.,1979). The 

results showed a high agreement with surface observations and aircraft measurements (Chédin et 

al.,2002a).  
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Considering the absorption characteristics of atmospheric CO2, two main spectral ranges [thermal 

infrared (TIR) and near infrared (NIR)] are used by space-based instruments for retrieving 

atmospheric CO2 information. The Atmospheric Infrared Sounder (AIRS) onboard Aqua 

spacecraft is the first TIR instrument measuring clouds, abundances of trace components in the 

atmosphere such as CO2, CH4, CO, SO2, and O3 etc. Prior to wide use of TIR soundings, 

feasibility studies showed that although uncertainties in atmospheric conditions such as water 

vapor and temperature can dominate, a careful averaging of retrieved CO2 data is able to capture 

the change of column CO2 abundance at an acceptable level (1% or less). Additionally, it has 

been suggested that 50 TIR channels are adequate for resolving the tropospheric CO2 abundances 

(Chédin et al.,2003a).  

However, TIR is not sensitive to lower atmosphere where the dispersion of CO2 is very complex. 

In contrast, NIR is expected to be capable of inferring the CO2 concentrations near the surface 

especially within the boundary layer. 

The Scanning Imaging Absorption spectrometer for Atmospheric Chartography (SCIAMACHY) 

onboard the ENVISAT satellite is the first instrument measuring CO2 (along with other trace 

gases) column abundances through NIR channels on a long-term basis (Bovensmann et al.,1999). 

For the first time the regional CO2 sources and sinks have been estimated using space-based 

measurements. However, the transmission of SCIAMACHY is affected by two factors: the 

degradation of optical components and the varying ice-layer on channel 7 and 8 detectors 

(Lichtenberg et al.,2006). Using the version 0.4 of Weighting Function Modified (WFM) DOAS 

retrieval algorithm, the spatiotemporal patterns of measured CO2 dry air mole fraction (indicated 

as XCO2 hereafter) and modelled XCO2 are in reasonable agreement, but the amplitude of 

measurements are much higher than the variability of model data (Buchwitz et al.,2005). This 

discrepancy is mainly attributable to the ice-layer on channel 8 detector and partially because of 

the retrieval algorithm. Since the ice-layer problem was solved and the algorithm was improved 

from the older version, the quality of retrieved CO2 data could be significantly higher than 

previous studies that used the same set of spectral data (Buchwitz et al.,2006).  

In general, after the launch of SCIAMACHY, an improved accuracy (less than 1%) can be 

consistently achieved compared to previous instruments (Buchwitz and Burrows,2003, 

Bramstedt,2008, Bergamaschi et al.,2009, Bramstedt et al.,2009, Reuter et al.,2010). However, 

SCIAMACHY cannot provide accurate trace gases information over water due to lack of a 

targeted glint mode. In addition, key surface and atmospheric parameters cannot be retrieved such 
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as the vertical profile of trace gas, pressure and temperature profiles, aerosols and surface albedo. 

The uncertainties in these parameters that are not retrieved contribute to the systematic errors and 

need to be quantified (Buchwitz et al.,2000). .  

The project Greenhouse Gases Observing Satellite (GOSAT, or 'IBUKI') was started early in 

2009 with two sensors onboard: the Thermal and Near-infrared Sensor for Carbon Observation 

Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-

CAI). GOSAT is the world's first spacecraft specifically dedicated to measuring the 

concentrations of CO2 and CH4. By measuring both TIR and NIR radiances, GOSAT is able to 

observe both column amounts and vertical profiles of the trace gases. Estimates of the global 

distribution of CO2 and CH4 can be obtained as well as the spatiotemporal variability of their 

sources and sinks (Fraser et al.,2011, Houweling et al.,2012, Basu et al.,2013, Byckling et 

al.,2013, Maksyutov et al.,2013, Basu et al.,2014a).  

The quality of GOSAT retrieval is highly dependent on calibration. An early study on CO2 and 

CH4 retrieval indicated that the measured latitudinal differences agreed with ground-based 

measurements and other space-based observations whereas the absolute gas concentrations were 

underestimated (Yokota et al.,2009). Preliminary validation studies also inferred that the first 

year retrievals were biased low by -0.05% compared to ground-based high-resolution FTS (Butz 

et al.,2011, Morino et al.,2011). As the calibration and validation are improved in recent years, 

the agreement of GOSAT retrievals with accurate in situ measurements is improved 

correspondingly. A recent validation study showed that the GOSAT XCO2 agreed with aircraft-

based measurements with a negative bias of 0.68ppm (1.82ppm over ocean) and a standard 

deviation of 2.56ppm (1.04ppm over ocean) (Inoue et al.,2013). 

Currently, there are five XCO2 retrieval algorithms developed by four research groups/institutes . 

Each algorithm has gone through continuous modifications and upgrades. CO2 data retrieved by 

each algorithm are in reasonable agreement with ground-based measurements at reference sites. It 

is crucial to note, however, that the inter-comparison among different retrievals in the regions 

away from the reference sites showed variable inter-product consistency (Takagi et al.,2013).  

The utility of GOSAT CO2 observations have gone beyond the original focus of studying natural 

CO2 sources and sinks. Attempts have been made to use GOSAT observations for detecting large 

point sources (LPS). A JPL team conducted a megacity CO2 study in which robust and 

statistically significant XCO2 enhancements were observed for Los Angeles and Mumbai. It was 
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estimated that a small change in XCO2 (0.7ppm) in Los Angeles can be captured by GOSAT 

observations at a 95% confidence level (Kort et al.,2012).  

To summarize, space-based observations have provided extensive opportunities for studying 

natural GHG concentrations and fluxes and anthropogenic GHG emissions. As the instruments 

are improved and getting more specialized in a specific type of GHG e.g. CO2 or CH4, the 

understanding of trace gas dynamics and relationship with human activity are enhanced. Further 

efforts are needed to obtain higher accuracy and to estimate CO2 at various spatiotemporal scales.  

1.1.3 CO2 Concentration Factors 

Despite the considerable successful studies on CO2 concentration and the inspiring potentials of 

space-based observations, it is crucial to understand the influential factors on the observed CO2 

concentration. A number of factors are introduced in this section and discussed in more detail in 

Chapter 2, including the atmospheric transport of CO2, temperature, pressure and relative 

humidity. 

The motion of CO2 in the atmosphere is driven by three principle forces: gravity, pressure 

gradients and the Coriolis effect
2
. The transport of CO2 partially determines the pattern of CO2 

concentration given the spatial distribution of CO2 fluxes (Rayner et al.,1999). However, this 

process shows variations at different spatiotemporal scales, including spatial scales such as local 

plume spread, regional mesoscale transport and global scale, and temporal scales such as hourly, 

diurnal, synoptic, seasonal and interannual cycles (Maksyutov et al.,2008). For example, from a 

global perspective, it was discovered in an intercontinental study that the fastest vertical transport 

occurs to the emissions from Asia while the emissions from Europe are most likely to stay in the 

lower troposphere; the emission tends to transport via the upper troposphere from the upwind 

continent to a receptor continent with an approximate period of 4 days, followed by the arrival of 

foreign tracers transported through the lower troposphere. Assuming a life time of 2 days, all 

continents are dominated by domestic tracers except Australia; however, when assuming a 20-day 

life time, all the continents are ‘contaminated’ by foreign emissions even in an emission-intensive 

continent (Stohl et al.,2002). 

                                                           
2 ‘In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame’. 

http://en.wikipedia.org/wiki/Coriolis_effect. For example, affected by Coriolis, the surface air in the two Hadley cells 

flows towards the equator with a slant to the west. 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Rotating_reference_frame
http://en.wikipedia.org/wiki/Coriolis_effect


8 

 

When CO2 is emitted from a surface source, there is a boundary between when CO2 is influenced 

by its characteristics or thermodynamics (e.g. pressure, gas temperature, etc.) and when it is 

influenced by meteorological conditions such as wind speed and direction, ambient air 

temperature and terrain (Heino and Kakko,1998). It is extremely complicated to measure or 

assess the dispersion of CO2 in the atmosphere especially in the atmospheric boundary layer 

(ABL) or planetary boundary layer (PBL). It is also known as the mixing layer where most 

dispersion and transport of gases occur. The dispersion of CO2 cannot be simply based on gas 

density. It is possible that CO2 is displaced on calm days when the average wind speed is 10km/h 

which can hardly be felt (Heino and Kakko,1998). 

Temperature (ambient air temperature) is a significant factor that influences CO2 concentration 

since it determines the dispersion of CO2 in the atmosphere.  In a CO2 dispersion study (Lac et 

al.,2013), it was discovered that an underestimated near-ground temperature could induce 

incorrect vertical transport scenario and lead to overestimated CO2 mixing ratio.  This implies 

that the dispersion of CO2 (as well as other comparable gases) is relatively inactive at low 

temperature and leads to a high CO2 concentration near the surface, and vice versa.  

Atmospheric temperature and pressure are the input parameters for remote sensing CO2 retrieval 

algorithms as indispensable elements of the ‘state vector’ for building a forward model. XCO2 is 

retrieved by surface pressure from O2 A band and CO2 profile from CO2 bands, and both the O2 

and CO2 absorption bands are dependent on temperature and surface pressure (Bösch et al.,2006). 

For NIR absorption, the temperature and pressure dependence is very strong (Frankenberg et 

al.,2005). Therefore, an error in temperature would result in inaccurate CO2 retrievals. Water 

vapor is another crucial factor for CO2 retrieval. Generally, a more severe problem arises from 

water vapor than temperature and pressure because it highly enhances the temperature 

dependence of absorption. Moreover, it makes it a challenge for yielding unbiased results for the 

state vector since a strong deviation is highly likely to exist between the actual state and the a 

priori assumptions (Frankenberg et al.,2005, Houweling et al.,2005).  

There are a number of other factors that could be taken into account for analyzing the observed 

CO2 concentrations. Considering the availability of weather/meteorological information from the 

weather stations and the access to physical parameters in the CO2 retrieval dataset, these three 

factors (i.e. temperature, pressure and humidity) are of special interest in this study. The influence 

of these factors and their uncertainties (if available) on XCO2 (or XCO2 derivatives) are analyzed 

in later chapters. 
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1.2 Statement of Problem  

Although space-based CO2 observations have been successfully used for various purposes, gaps 

exist in the body of knowledge. Some interesting questions still remain unanswered and the 

potential of space-based measurements is not fully exploited. 

The CO2 concentration near the surface rather than at mid-upper troposphere is expected to be 

mostly related to ground emissions. However, quite a few articles only use column XCO2 

measures, despite the strong signals of emissions from the surface being weakened with 

increasing height. Exploration of the potential of partial column CO2 information has not drawn 

close attention.   

Most studies using space-based observations are conducted at relatively large scales by averaging 

the retrievals within a large region and over a period of time. CO2 emissions at small scales such 

as LPS can be intense and easily captured by space-based instruments with mid-high spatial 

resolutions. However, this has not been a popular interest since currently the preference is to 

collect observations at reference sites where peer studies are available so that the reliability of 

CO2 retrievals can be estimated.  

Even though large facilities are required by certain jurisdictions to report CO2 emissions, e.g. 

Ontario’s CO2 reporting system, remote sensing CO2 instruments have not been used on 

management and policy-making levels as a direct tool for monitoring CO2 emissions from the 

large-size facilities.  

Considering the development of specialized remote sensing CO2 observations and common 

research interests, very few studies are on a long-term basis. CO2 seasonality studies are mostly 

extended to one year only. The advantages of constant and real-time observations by remote 

sensing instruments have been largely ignored possibly due to the lack of reference data. 

1.3 Primary Research Questions 

This dissertation will address several research questions: 

1. How can remote sensing CO2 observations be used to estimate surface CO2 fluxes? 

2. How can remote sensing CO2 observations be used in a scientifically innovative way? 
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3. How can partial column CO2 information be retrieved from existing observation datasets? 

4. What is the relationship of full/partial column CO2 information with the surface emissions 

from Nanticoke GS and what is the CO2 natural seasonality in Hamilton? 

5. How is Ontario’s ‘phasing out coal for power generation’ influencing the local CO2 

concentration in Nanticoke area? 

1.4 Research Approach 

This research is designed to answer the questions identified in the previous section. The main 

aspects of the proposed approach are as follows (see Chapter 3 for details): 

1. Space-based observations over the target site are collected from dataset distributed by the 

Atmospheric CO2 Observations from Space Task (ACOS).  

2. Background areas are identified using fossil fuel flux and biosphere flux distributed by 

CarbonTracker.  

3. Partial column CO2 amounts and concentrations are calculated based on ACOS retrieval 

algorithm Build3.3 and the enhancement of CO2 concentrations/abundances are calculated. 

4. The CO2 emissions from Nanticoke GS are represented by hourly generating output. 

5. The relationship between the enhancement of CO2 concentrations/abundances and GS output 

is analyzed by linear and nonlinear regressions. 

6. The influence of surface and meteorological parameters on surface XCO2 uncertainties and 

the model residuals are estimated using weather information collected from Hamilton Station 

and London Station.  

7. Column and partial column XCO2 are compared by presenting CO2 monthly/season variation 

in Hamilton. 

1.5 Significance 

The purpose of this research is to examine the feasibility of using partial column CO2 information 

to monitor and estimate fine-scale CO2 emissions from a LSP which is not limited to fossil-fueled 
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power plants. Few studies are focused on this topic. This research serves as a pilot study and it is 

expected to enlighten future studies on relevant topics.  

On the one hand, this research is significant because it strengthens the confidence in using space-

based CO2 observations: the space-based instruments provide measurements within reasonable 

accuracy and are less vulnerable to the limitation in spatial coverage than ground-based platforms; 

on the other hand, it fills the gap in knowledge and practice: the vertical structure of the 

atmosphere is considered and detailed information about the CO2 vertical profiles is analyzed to 

explore its relationship with surface fluxes. Moreover, this research not only benefits CO2 

researchers in generating innovative areas for CO2 studies, but also provides assistance in 

decision-making on CO2 reduction and management by advancing the development of remote 

sensing monitoring techniques. 

In this research a derived type of data (i.e. partial column CO2 amounts and concentrations) are 

retrieved based on available profiles of relevant parameters. Theoretically, partial column CO2 

amounts and concentrations are the optimal type of data for monitoring near-surface CO2 

concentrations and estimating surface CO2 flux. However, they are rarely seen in previous studies 

because not all algorithms retrieve or disclose relevant parameters that are necessary for making 

partial column CO2 products. Furthermore, LSP study is expected to become a popular research 

interest especially considering that a mission on CO2 observation with very high spatial resolution 

(1km by 1km) has been successfully launched by the Orbiting Carbon Observatory-2 (OCO-2) 

Team in NASA.  

In addition to the contribution to CO2 studies, this research also explores the possibility of 

estimating the performance of Ontario’s energy plans. The results explore the question of whether 

phasing out CO2-intensive power generation could lead to decreased local atmospheric CO2 

concentration. With desirable outcomes from this research, further CO2 reduction policies and 

actions are encouraged to improve the environment and mitigate climate change. 

1.6 Definition of Terms 

Normally CO2 concentration refers to the volume mixing ratio of CO2 in the atmosphere; 

however, in literature on the study of CO2 as well as in this dissertation, CO2 concentration and 

CO2 dry air mole fraction are interchangeable. Another widely used term in CO2 study is CO2 

abundance which refers to the amount of CO2 particles. 
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Column CO2 concentration is most often used in previous literatures and is denoted as XCO2. In 

this dissertation, XCO2 is not exclusive for column CO2 concentration but used for both column 

and partial column. Especially in Chapter 3 and Chapter 4, XCO2 refers to the CO2 concentration 

within the field of view (FOV) of the space-based instrument. 

The infrared absorption bands are used by remote sensing techniques to detect CO2 in the 

atmosphere. The criteria for dividing and differentiating the infrared radiation vary among 

different research groups, institutions and individual articles. This study does not provide a 

standard for the division of infrared spectrum. Instead, the established, though sometimes 

overlapping, terminology such as ‘thermal infrared’, ‘near infrared’ and ‘short-wavelength 

infrared’ are used to match the research or literatures that are reviewed or cited.  

Ground-based CO2 observation networks specifically those using Fourier Transform 

Spectrometer (FTS) are different from conventional in situ measurements such as tower flask 

sampling. In this dissertation, the term ‘in situ measurement’ does not exclude ground-based FTS 

observations as in many literatures. However, when quoting the ‘ground-based observation’ such 

as the Total Carbon Column Observing Network (TCCON), it is differentiated from the 

conventional in situ network.   

1.7 Dissertation Outline 

In the next Chapter, the literatures on relevant research and practical fields to this study are 

reviewed, including climate change and GHG, energy planning and GHG emissions reduction, 

CO2 measurements particularly space-based observations, and the factors that influence CO2 

atmospheric concentration. 

Chapter 3 introduces the methods used to answer the research questions. 

Chapter 4 presents the results from the proposed methods.  

Chapter 5 interprets and discusses the results based on both Chapter 4 and the significant 

conclusions/findings in Chapter 2. 

Chapter 6 makes final conclusions on this study. 
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1.8 Summary 

This chapter introduces the fundamental background and motivations for designing and 

conducting this research.  

The purpose of this research is to fill the gaps in knowledge and practice that are described in 

Section 1.2. A number of research questions are put forward in Section 1.3. A research design is 

described in Section 1.4 to answer these questions and fulfill and purpose of this research. 

This research is expected to serve as a pilot study that provides insights for future studies. It is 

also expected to benefit not only CO2 research but also decision making on CO2 reduction as a 

tool for evaluating the performance of GHG reduction plans/actions. 

  



14 

 

Chapter 2: Literature Review 

2.1 Introduction  

As the concern for climate change rises, people are paying more attention to GHG emissions. The 

energy sector is a major source of GHG emissions and various types of measures are taken for 

reducing GHG emissions and mitigating climate change. It is expected that the effects of GHG 

emissions reduction (e.g. reducing local CO2 concentrations) can be measured and evaluated by 

means of advanced CO2 observation techniques.  

This chapter provides an overview of the literature on three dominant themes: 

1. Climate change, energy consumption and GHG emissions 

2. Remote sensing CO2 observations 

3. Influential factors on CO2 concentrations and CO2 observations 

This literature review enhances the understanding of the context of this research (in Section 2.2). 

It also introduces the key concepts and data sources for this research (in Section 2.3). In addition, 

this chapter summarizes several primary factors/issues that are necessary for interpreting the 

research results (in Section 2.4).  

2.2 Climate Change, Energy Use and GHG Emissions 

This section reviews the science of climate change and its relationship with GHG especially CO2. 

Ontario’s energy (electricity) system is taken as an example to introduce the measures that are 

taken to reduce GHG emissions and mitigate climate change. 

2.2.1 Climate Change 

The climate system is a complex and interactive system. It consists of five components: 

atmosphere, hydrosphere (oceans and other bodies of water), cryosphere (snow and ice), land 

surface, and biosphere (living things) (Team,2008). Climate is often defined as ‘average weather’ 
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regionally which is measured by major meteorological variables such as temperature, 

precipitation and wind over a period of time. Climate is differentiated from weather since the 

latter emphasizes short term meteorological variability. However, the change in weather over 

time identifies climate change (Change,2007).  

2.2.1.1 Effects of Climate Change 

Climate change is mainly caused by the GHGs in the atmosphere that absorb and emit radiations 

within thermal infrared (TIR). This process results in change of temperature, precipitation, snow 

and ice on the earth, sea level, and the occurrence of extreme events. 

Temperature is an important topic for climate change studies (accounting for 40% of these 

publications) (Andrew et al.,2013). Surface temperature has been rising globally since 1880 

based on various independent temperature datasets, e.g. historical direct instrumental 

measurements and recent remote sensing observations. A warming of 0.85 [0.65-1.06] °C is 

observed over this period (Stocker et al.,2013b). This conclusion on the rising temperature is in 

line with previous studies that explores the effects of climate change (Houghton et al.,2001, 

Walther et al.,2002, Berrang-Ford et al.,2011, Hansen et al.,2012).  

The rise of temperature is spatially and temporally variable. Since the late 1950s, the temperature 

of the troposphere has been rising slightly faster than surface temperature, while the stratosphere 

has cooled since 1979 (Change,2007). As for the oceans from a global perspective, the warming 

is largest near the surface (Stocker et al.,2013b). In addition, substantial decadal and interannual 

variability is observed using a single longest dataset available (IPCC 2013), as shown in Figure 

2.1. 
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Figure 2.1 Observed Globally Averaged Combined Land and Ocean Surface Temperature Anomaly 1850-2012 

Source: Climate Change 2013, Working Group I Contribution to the Fifth Assessment Report of the IPCC: the Physical 

Science Basis 

The change of precipitation pattern is another main focus of climate change studies. Among these 

studies the consistency is very high with respect to the impact of climate change on precipitation, 

e.g. wet areas get wetter especially in mid to high latitudes, dry and arid areas get more so 

generally throughout the subtropics; precipitation in high latitudes (Northern Hemisphere) 

increases and decreases in China, Australia and the Small Island States in the Pacific; more 

precipitation occurs in the form of rain instead of snow, etc. (Dore,2005, Jones et al.,2007, 

Bhutiyani et al.,2010, Berrang-Ford et al.,2011, Trenberth,2011). 

As global precipitation is affected by climate change, the risk of hydrological extreme events 

increases correspondingly. The intensity and frequency of floods increase (normally in spring 

when precipitation occurs as rain and the snow melts simultaneously) usually at short time scales 

associated with thunderstorms, orographic rainfalls, extratropical cyclones, etc.  On the other 

hand, the risk of droughts is increased (normally occurs in summer and lasts from months to 

years), which often lead to devastating wildfires and heat waves (Trenberth,2011).  
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The loss of ice and the rise of sea level can be observed globally with high confidence. According 

to the fifth Assessment Report of the IPCC, ‘the average rate of ice loss from glaciers around the 

world excluding glaciers on the periphery on the ice sheets was very likely 226 [91 to 361] Gt yr
-1

 

over the period 1971 to 2009, and very likely 275 [140 to 410] Gt yr
-1

 over the period 1993 to 

2009’. The average of sea level rise was 2.0 [1.7 to 2.3] mm yr
-1

 over the period 1971 to 2010 and 

3.2 [2.8-3.6] mm yr
-1

 for 1993 to 2010 (Church and White,2011, Gregory et al.,2013).  

In summary, all the above-mentioned changes provide strong evidence of climate change. 

Moreover, these changes became more obvious since the mid-20
th
 century.  

2.2.1.2 Forcings for Climate Change 

Climate change is driven by internal dynamics and external factors (called forcings). The external 

forcings consist of natural phenomena and anthropogenic change in atmospheric composition 

especially the GHGs (Change,2007).  

The earth surface temperature depends on the incoming energy from the sun and outgoing energy 

from the earth. A shift of this energy balance could make the earth surface warmer or cooler 

resulting in a variety of climate changes [United States Environmental Protection Agency (EPA), 

2012]. GHGs in the atmosphere absorb and re-emit the energy radiated from the earth, and ‘trap’ 

the energy in the lower atmosphere (EPA, 2012).  

The primary GHGs are water vapor, carbon dioxide, methane, nitrous oxide, and ozone. These 

GHGs are major causes for the increased temperature. Without these GHGs, the surface 

temperature would be approximately 33°C lower (Karl and Trenberth,2003, Solomon,2007).  

Since the start of the Industrial Renovation, combustion of fossil fuel (carbon based fuels such as 

coal, oil, and natural gas) and exploitation of forest have contributed to 40% increase of CO2 

concentration from 280ppm in 1750 (Prentice et al.,2001) to 392.6ppm in 2012 (NOAA/ESRL, 

2012). As stated before, the annual CO2 emissions from fossil fuel combustion and cement 

production in 2011 is 14.5% higher than the average annual emissions over 2002 to 2011 and 54% 

above the 1990 level.  

This occurred regardless of the large uptake capacity of natural CO2 sinks (Yadav and 

Mishra,2013). From 1750 to 2011, fossil fuel combustion, cement production, deforestation and 

other land use changes have released 555 [470 to 640] GtC into the atmosphere. Of these 
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anthropogenic CO2 emissions, 240 [230 to 250] GtC (43.2%) have accumulated in the 

atmosphere and the remaining are taken up by the ocean and land ecosystems (Stocker et 

al.,2013a). A majority of peer studies made a consistent conclusion that human activity is the 

main cause of increased atmospheric CO2 concentration and the dominant forcing for the 

observed warming since the mid-20
th
 century (Houghton and Woodwell,1989, Houghton,1996, 

Vitousek et al.,1997, Watson,2000, Oreskes,2004, Pielke,2005, Min et al.,2011, Montzka et 

al.,2011, Goudie,2013, Wang et al.,2013).  

2.2.1.3 Climate Change Mitigation 

Taking into account the considerable GHG emissions generated by human activity, there is an 

urgent need to take measures to reduce GHG emissions and mitigate climate change. Climate 

change mitigation has been studied from diverse perspectives (politically, technologically and 

socially) in terms of evaluating mitigation potentials, contribution to sustainable development, 

risk, cost, etc.  

The major focus of climate policies and technologies is on reducing GHG emissions from the 

regional or national energy system. Possible options include, but are not limited to energy 

efficiency and conservation, renewable energy (RE), fossil fuel reduction/switching, nuclear 

power, carbon capture and sequestration (CCS) (Mitigation,2011). Each option has been 

investigated in depth in previous studies (Sutherland,1991, Grubb et al.,1993, Patterson,1996, 

Parker et al.,2003, Sims et al.,2003, St Denis and Parker,2009, Marvão Pereira and Marvão 

Pereira,2010, Zhou et al.,2010, Corner et al.,2011, Mitigation,2011, Edenhofer et al.,2012, 

Poortinga,2012, Suter and Shammin,2013, Levitan et al.,2014). Michel den Elzen et al. presented 

a set of technically feasible multi-gas emission pathways (envelopes) for stabilising greenhouse 

gas concentration at 450, 550 and 650 ppm CO2 equivalent (CO2e) and their trade-offs between 

direct abatement costs and probabilities to meet temperature targets (den Elzen et al.,2007). 

Based on an integrated assessment model, Keigo Akimoto et al. discovered that the optimal 

climate change mitigation should take into account various options among which energy saving is 

important throughout the 21
st
 century and CO2 sequestration is after the middle of the century 

(Akimoto et al.,2004). Using the ETSAP TIAM global energy systems model, Sanna Syri et al. 

discovered that the significant progress towards emission-free sources occur in the 21
st
 century; 

CCS, nuclear power, wind power, biotechnologies and energy efficiency measures are major 

contributors (Syri et al.,2008). 
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In particular, as the demand for energy and associated services are increasing, RE is expected to 

make a considerable contribution to the development of reliable and healthy energy system. If 

implemented properly, RE could enhance social and economic development, reduce negative 

environmental impacts and improve human well-beings (Mitigation,2011). As the conventional 

energy specifically fossil fuel is expected to be reduced or eliminated in specific regions, the 

challenge for securing the energy supply rises, but could be overcome as the RE technologies are 

becoming more mature. In the meanwhile, fossil fuel switching can be a ‘no-regrets’ 

environmental policy for reducing CO2 emissions without jeopardizing economic development as 

long as ‘the overall economic costs of reducing carbon dioxide emissions are considered’ 

(Marvão Pereira and Marvão Pereira,2010).  

The primary international treaty on climate change is the United Nations Framework Convention 

on Climate Change (UNFCCC). As an amendment to the UNFCCC and an international 

agreement on combating climate change, the Kyoto Protocol came into force in early 2005 and 

ended at the end of 2012. At present, most climate policies are centered to the post-Kyoto climate 

change mitigation regimes. The mitigation architectures have different impacts on different 

groups of countries. Dalia Streimikiene and Stasys Girdzijauskasa carried out an analysis on the 

post-Kyoto mitigation regimes and their impacts on sustainable development. They concluded 

that most assessments of climate change measures (as of 2009) are partial and incomplete. More 

holistic assessments were encouraged against economic, social and environmental dimensions of 

sustainable development, i.e. acceptability, availability and accessibility (Streimikiene and 

Girdzijauskas,2009). 

The mitigation against climate change needs efforts from all sectors. Not only government actions, 

but also spontaneous mitigations of energy consumers are needed in this course. Semenza et al. 

identified a number of cognitive, behavioral and structural obstacles to voluntary mitigation. The 

study also suggested government policy eliminate economic, structural and social barriers to 

change and advance accessible and economical alternatives (Semenza et al.,2008). Attention 

needs to be given to the social and psychological motivations regarding why these barriers to 

individual commitment exist even though the public are concerned about climate change (Stoll-

Kleemann et al.,2001). 

Coordination and cooperation among nations are also crucial to the success of mitigation against 

climate change. A major focus of debates over climate policy is on the design of instruments that 

impose a price on the emission of CO2 and/or other GHGs such as cap-and-trade and emission 
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taxes. However, it was found that these policy instruments could cause adverse competitiveness 

effects for the energy-intensive firms in developed countries when they make continuous efforts 

on combating climate change while major developing countries do not move forward (Aldy and 

Pizer,2011). 

By taking effective mitigation measures, the GHGs’ concentrations are expected to decrease and 

the negative impacts of climate change on the environment (rising temperature and sea level, etc.) 

could be alleviated. In this regard, an interesting question rises in terms of how long it takes for 

the mitigation measures to take effect.  

Mitigation against climate change is a long-term process since the severity of human-induced 

climate change is determined by not only the magnitude of the change but also the potential for 

irreversibility. No climate policies or actions are capable of yielding immediate outcomes on 

reversing climate change. The irreversibility of climate change was first highlighted by Matthews 

and Caldeira in 2008. Their study showed that global average temperature stabilized and 

remained at a nearly constant level following CO2 emissions (Matthews and Caldeira,2008). A 

comparison of 8 climate model simulations showed persistence of high global temperature for at 

least several centuries  across all models even though CO2 emissions were eliminated (Plattner et 

al.,2008). Solomon et al. found that the atmospheric CO2 concentration was irreversible for 1000 

years after the cessation of CO2 emissions; global average temperature increased as CO2 

concentration increased and then remained approximately constant (within ±0.5°C) until the end 

of the millennium; the rise of sea level was also irreversible (Solomon et al.,2009).  A recent 

study discovered that global temperature could be stabilized with aggressive mitigations, but the 

rise of sea level cannot be stopped over the next several centuries (Meehl et al.,2012). One major 

reason for the irreversibility of climate change is that the long-term warming legacy of 

anthropogenic GHGs is primarily determined by the CO2-induced warming while CO2 has a long 

life time in the atmosphere (Solomon et al.,2013). 

2.2.1.4 Skepticism about Climate Change 

Although scientific evidences are becoming more certain and political and media messages 

appear to be increasingly confident, skepticism about climate change exists and public attitudes 

and actions on climate change do not follow the scientific evidence closely. Skepticism in public 

attitudes is seen as a significant barrier to public engagement (Corner et al.,2012).  
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Some studies implied that this is because of ignorance and misunderstanding on the part of the 

public (Whitmarsh,2011) while others suggested that climate skepticism is rooted in people’s 

core values and worldviews (Poortinga et al.,2011). Public attitudes seem to be distinguished 

among different groups of peoples by considering their ages and socio-economic backgrounds. 

Based on a study in Britain, climate skepticism is particularly common among older individuals 

from lower socio-economic backgrounds who are politically conservative and hold traditional 

values; while it is less common among younger people from higher socio-economic backgrounds 

who hold self-transcendence and environmental values (Poortinga,2012).  

Skepticism can be beneficial to improving the existing knowledge and overcoming scientific 

uncertainty. However, skeptics on climate change simply ignore or vigorously criticize the strong 

evidences that support human-induced climate change; while on the other hand, any untenable 

argument, blog, or internet message that purports to refute climate change is embraced. ‘Denial’ 

and ‘denier’ are introduced as more accurate terms than ‘skepticism’ and ‘skeptic’ to define those 

who are against climate change and associated policies or regulations. The motivations vary 

considerably among the deniers from economics (e.g. fossil fuel industry) to individuals, but they 

share the common opposition to governmental regulatory efforts to ameliorate climate change 

(Dunlap and McCright,2011). Although the skeptical claims differ sometimes and evolve over 

time (such as ‘there is no warming and the unstable temperature is natural’, ‘the change is not 

caused by humans’ and ‘the change is no harm’), the themes of ‘no need for regulations’ remain 

unchanged (McCright and Dunlap,2000, Oreskes and Conway,2010, Dunlap and McCright,2011). 

By attacking climate science and individual scientists, the deniers seek to influence climate policy 

making by removing the scientific basis from such policies.  

Public reluctance on adaption to climate change or postponed actions can be highly detrimental to 

the effectiveness of existing climate policies and seriously jeopardize the policy making for the 

future. The need is urgent to enhance public awareness of the severe consequences of climate 

change. It is also crucial to weaken or eliminate the negative influence of public denial on climate 

policy implementation and policy making process by eliminating economic, structural and social 

barriers to change and advancing accessible and economical alternatives.  

Although there is a long way to go for mitigating climate change, it is encouraging and inspiring 

to see successful climate/energy policies and actions all over the world. The next sub-section 

introduces the electricity system of Ontario and how Ontario’s electricity system evolved in 

response to climate change policy.  
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2.2.2 Electricity System of Ontario 

Electricity is a major driver of the economy of Canada. The electricity system has undergone a 

significant change over the past two decades as Canada’s economy is prospering and population 

keeps growing (EIA,2011). A reliable and cost-effective electricity system is crucial to the 

prosperity of Canada and Canadians’ well-being.  

The supply mix of the electricity system varies among provinces and changes over time. A series 

of major changes to Ontario’s electricity system started from the mid 20
th
 century when coal-fired 

GS were established to supplement hydro-electric capacity and were followed by nuclear 

generating facilities in the 1970s and 1980s to meet the increasing demand for electricity. 

Ontario’s electricity system went through another significant change after 2002. Considering the 

aging of large generating infrastructures and the impacts of dirty power generation on human 

well-being, an increasing amount of clean and renewable sources were desired for power 

generation. A variety of policies were made and actions were taken to advance and adjust to this 

change. Some landmark programs (e.g. feed-in-tariff program) received positive feedbacks from 

the public and scholars and were regarded as beneficial to modernizing the electricity system 

while achieving the goal of GHG emissions reduction (Stokes,2013, Pal,2014). 

2.2.2.1 Electricity Demand and Supply 

By 2010, Ontario achieved a net surplus supply situation. The demand was declining and the 

supply growing. The demand for electricity is expected to remain approximately flat for the next 

decade (OPA, 2013).  

As of 2005, the provincial demand for electricity had been increasing at an annual rate of 

approximately 0.5% over the past decade (OPA, 2005). This was mainly because of population 

growth, economic growth and climate variability (Statistics Canada, 2007; Ontario Ministry of 

Finance, 2006; Energy Information Administration, 2004). As the total electricity demand was 

forecast to rise continuously, the supply was proposed to grow to meet such demand. As of June 

2012, Ontario’s electricity generation capacity had increased by 13% since September 2003 

(Ontario Clean Air Alliance, 2012). 

However, in recent years (2011-2013), Ontario’s electricity demand has been falling and is 

expected to remain no higher than the current levels for the next few years (Zahedi et al.,2013). 
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The falling demand for electricity does not necessarily imply an economic downturn or low 

economic growth; on the contrary, Ontario was recovering from the economic recession in 2008 

and the GDP increased steadily over the period of 2009-2012 (there was a decrease of GDP in 

2009 compared to 2008, i.e. 1.46%) (Statistics Canada, 2013). The reduced demand is mainly 

attributable to effective energy conservation, increased energy efficiency and the transition of 

Ontario’s economy to be more efficient and less energy intensive (OPA, 2014). Ontario’s annual 

energy demand over the 2000-2013 period is shown in Table 2.1. 

Table 2.1 Ontario Annual Energy Demand 

Year Total Demand (TWh) Increase over Previous Year (%) 

2000 147 2.1 

2001 147 0 

2002 153 4.1 

2003 152 -0.70 

2004 153 1.10 

2005 157 2.30 

2006 151 -3.80 

2007 152 0.70 

2008 148 -2.30 

2009 139 -6.10 

2010 142 2.20 

2011 141.5 -0.35 

2012 141.3 -0.14 

2013 140.7 -0.42 

Source: IESO, 2014 (http://www.ieso.ca/Pages/Power-Data/Demand.aspx) 

A significant change is also seen on the supply side especially since 2003. In 2003, nuclear, 

hydroelectric and coal power generation supplied the majority of electricity in Ontario. Concerns 

arose with respect to the adequacy and reliability of the generation facilities as the infrastructures 

were aging and the electricity demand continued to increase. Ontario encountered a shortfall in 

supply in 2003 as the provincial generating capacity dropped by 6% while the demand increased 

by 8.5% compared to 1996. On the other hand, Ontario was dependent on coal-fired power 

generation. Coal provided 25% of the Ontario’s electricity supply in 2003. Combustion of coal 

not only accounted for approximately 90% of provincial GHG emissions in the electricity sector 

but also produced detrimental air pollutants. The average annual financial, health and 

environmental cost of coal was calculated to be $4.4 billion (OPA, 2014).  

http://www.ieso.ca/Pages/Power-Data/Demand.aspx
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In this regard, Ontario endeavored to achieve a reliable, clean and cost-effective electricity 

system mainly through incorporating more renewable sources for electricity generation, reducing 

the use of coal, and fossil fuel switching from coal to natural gas. Taking participating utilities in 

the IESO-administered market for example, the change of supply mix over the period 2003-2013 

is summarized in Table 2.2. The figures indicated newly installed or refurbished in the case of 

nuclear (positive) or retired (negative) capacity in that year.  

Table 2.2 Ontario Electricity Supply Mix Change from 2003 to 2013: IESP Participants. (in MW) 

Year Nuclear Natural Gas Coal Hydro Wind Others (Wood Waste, Bio-Gas, etc.) Total 

2003 1285      1285 

2004 782 612  80   1474 

2005 515  -1130    -615 

2006  117   396  513 

2007    20 76  96 

2008  1547  24 233  1804 

2009  1966  137 380  2483 

2010  992 -2000  101 47 -860 

2011   -980  248  -732 

2012 1552 438 -221  99  1868 

2013   -3001  372 40 -2589 

Total 4134 5672 -7332 261 1905 87 4727 

Source: IESO, 2014 (http://www.ieso.ca/Pages/Power-Data/Supply.aspx) 

Most increased renewable sources, excluding hydro, across the province are not reflected in the 

IESO database. Presently, Ontario has more than 18500 MW of renewables online or announced 

consisting of more than 9000MW of hydroelectric capacity and more than 9500MW of wind, 

solar and bioenergy capacity, etc. The target capacity is 9300MW for hydro by 2025 and 

10700MW for wind, solar and bioenergy by 2021 which together account for about half of the 

installed capacity (OPA, 2013). Coal-fired power generation was dramatically reduced, i.e. less 

than 3% (2013) vs 25% (2003) of total supply.  

http://www.ieso.ca/Pages/Power-Data/Supply.aspx


25 

 

New electricity sources were cleaner and less GHG-intensive than coal. As of 2013, SO2 

emissions due to coal-fired power generation were reduced by 93%; NO emissions dropped by 

90%; mercury level was at its lowest over the past 45 years; and there was a reduction in GHG 

emissions by almost 90%, compared to the 2003 level (OPA, 2014).  

As a consequence of rising supply and falling demand, the market price of electricity in 2013 

(2.65 cents/kWh) has dropped by 54% since 2003 (5.76 cents/Kwh) (IESO, 2014). However, the 

consumers have not benefited from the reduced market price since the Global Adjustment Charge 

is imposed in order to compensate the rate paid to electricity generator and conservation and 

demand management programs. Moreover, considering the limited capability of nuclear GS to 

lower the output when demand declines (Caldicott,2013), it is highly likely that there is an 

excessive surplus of supply for numerous hours. In this case, Ontario pays consumers in 

Manitoba, Quebec and the U.S. to take away the excess electricity (OEB, 2012). As a result, this 

further increases the cost of Ontario’s electricity system. 

Considering the projected electricity demand and the cost for maintaining existing large 

generating facilities, the government proposed a series of plans while securing a reliable 

electricity supply: deferring the construction of nuclear capacity at Darlington, early retiring 

Pickering GS (the cost of Pickering GS is among the highest in the North America), and shutting 

down the coal-fired units (OPA, 2014). More flexible, dispatchable and cost-effective options 

such as renewable sources and combined heat and power natural gas-fired power generation are 

expected to play more important roles in securing the electricity supply. None of these can be 

achieved without efficient, reasonable and Ontario-suitable policies and plans.  

2.2.2.2 Clean Electricity Generation 

Ontario has a series of policies on improving the province’s electricity system and reducing GHG 

emissions. Ontario is making progress on its journey to achieve the long-term goal—a reliable, 

modern, clean and sustainable electricity system that emphasizes economic, environment and 

social benefits. 

Clean energy is a major principle for policy making and policy instruments especially since 2003 

when the McGuinty Government and the Liberal Party came into power. In Canada, many 

jurisdictions are reforming their electricity sector with policies to promote the use of clean energy 
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as an effort to reduce GHG emissions and boost economic development(Jaccard et al.,2011, 

Holburn,2012). Ontario is one of the two most active jurisdictions (the other is British Columbia). 

In Ontario, there was no long-term energy plan before 2003. In 2004, OPA was established as the 

province’s long-term planner. OPA is a part of Ontario’s electricity system associated with the 

Ministry of Energy and a variety of other organizations including OEB, IESO, OPG and 

Ontario’s non-utilities generators (NUGs), Hydro One and other electricity distributors, and a 

number of electricity retailers. These organizations play different roles in ensuring the reliability, 

cost-effectiveness and sustainability of Ontario’s electricity system in a collaborative manner. 

The Ministry of Energy is responsible for proposing the provincial energy policy framework to 

direct Ontario’s electricity system development and regulate the electricity market; OPA 

endeavors to ‘procure new generation, initiate conservation measures and craft a long-term plan 

for the electricity sector’; OEB regulates the electricity and natural gas sectors; IESO is 

responsible for monitoring and managing daily operations; OPG and NUGs generate electricity 

using various sources of fuel; Hydro One and other distributors deliver the electricity to the 

consumers (OPA, 2011).  

The motivation to promote renewable energy through political influence rather than market 

mechanism originated when the Liberal Party were in office in 2003 (Hoberg and 

Rowlands,2012). At that time, the government was committed to shutting down the coal-fired 

power stations by the end of 2007. It was expected that the renewable sources would be capable 

of offsetting the supply shortfall. A significant practice in using renewable energy for electricity 

generation was carried out in March 2006. The McGuinty Government announced the first feed-

in-tariff program in North America, i.e. the Renewable Energy Standard Offer Programme 

(RESOP). However, this program was suspended in May 2008. The RESOP was argued as a 

failure in attracting its target audience of small developers (Holburn,2012). Major causes for its 

failure were discussed such as unanticipated transmission constraints and program design 

problems (Mabee et al.,2012, Nishimura,2012). Despite the demise of this program, the 

innovation (in North America) was remarkable and it provided valuable lessons for further steps 

in renewable energy policy. 

The Green Energy and Green Economy Act was created to expand renewable energy generation, 

encourage energy conservation and promote the creation of clean energy jobs (Ontario Ministry 

of Energy, 2013). This Act passed into law in May 2009 and enacted the FIT and microFIT 

program which considered wind, solar, bioenergy and waterpower as qualified energy sources. 
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The FIT program was intended for projects larger than 10kW while the microFIT projects that 

were 10kW or smaller focused on the residential sector. Within the first year, applications totaled 

over 15000MW. For the first phase of FIT and microFIT programs, about 2000 contracts were 

executed with approximately 4662MW of capacity as of August 7
th
 2012 (not all of them were 

online or proceeded). As of September 10
th
 2013, the total supply of OPA contracted capacity in 

service was 4541MW consisting of 185MW of waterpower (4.08%), 1224MW of solar (26.94%), 

60.4MW of bioenergy (1.33%) and 3072MW of wind (67.64%). The clean energy capacity is still 

rising. The total capacity of solar, waterpower and bioenergy is expected to reach 10700MW 

across the province (OPA, 2014). 

Despite implementation challenges and political resistance to the FIT program, e.g. argument on 

the cost of the FIT program, local resistance to wind farms and criticism about the transparency 

of program implementation, promoting renewable energy for electricity generation is beneficial to 

Ontario from a holistic and long-term perspective. The electricity supply can be secured by 

incorporating various types of energy sources. The diverse supply mix makes the province less 

dependent on specific energy sources that may confront temporary shortages such as nuclear 

power. Motivations and/or measures on cutting down the cost of renewable energy deployment 

specifically the FIT program (e.g. reduce the rate paid to the generators) are expected to stimulate 

innovation of renewable energy technology considering that currently the renewable sources are 

mainly wind and solar. This further encourages Ontario to pursue a leader position in green 

energy in North America. The proportion of renewable energy in total electricity production in 

Ontario is higher than that in Ontario’s major competitor New York (27% vs 23% in 2013), 

though the proportions of non-hydro renewables in both jurisdictions are very close and the use of 

coal for power generation by New York is also decreasing, i.e. less than 10% in recent years 

[OPA, 2014; The U.S. Energy Information Administration (EIA), 2014].  

2.2.2.3 GHG Emissions Reduction 

Canada is committed to tackling climate change through sustained action to build a low-carbon 

economy that includes reaching a post 2020 global climate change agreement (Environment 

Canada, 2013), which requires the total GHG emissions to be reduced by 17% by 2020 relative to 

2005 emission levels (737Mt CO2e). In 2011, CO2 and CH4 accounted for 92% of total GHG 

emissions in Canada, 79% and 13% respectively. The energy sector was responsible for the 

majority of Canada’s GHG emissions, i.e. 81% or 572Mt CO2e, resulting from stationary 
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combustions, transportation and fugitive sources. The remaining 19% came from the agriculture 

sector (8%), industrial sector (8%) and waste sector etc. (3%). 

Canada is only half way to meeting the target of ‘17% reduction’. Figure 2.2 shows Canada’s 

emission trends for 2005-2011 by sector. The electricity sector is a major contributor, as in 2011 

‘emissions from electricity and heat generation have been the largest driver of the overall 

downward trend, dropping by 30Mt since 2005, primarily the result of reduced generation by coal, 

switching to renewable resources and improved efficiencies in combustion generation’ 

(Environment Canada, 2014). In 2011, the emissions from manufacturing decreased by 12.1Mt 

(11%), but transportation emissions rose by 10.6Mt (5.8%) mainly due to diesel transport. As 

published in October 2013, the national emissions trend indicates that the national gross GHG 

emissions would be 734Mt in 2020 as a result of joint efforts across the country (Environment 

Canada, 2014). This is 128Mt lower than the emissions if no actions were taken since 2005. The 

gap between the projected emissions and the target is estimated to be 122Mt. 

 

Figure 2.2 National Emission Trends for 2005-2011 by Major Sector 

Source: Canada’s National Inventory Report Submitted to the UNFCCC in 2013 

In Ontario, the total GHG emissions are decreasing. Table 2.3 presents Ontario’s GHG emissions 

by sector in 1990, 2000 and over the period 2005-2011 excluding 2006. Based on the GHG 
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emissions from most sectors and/or subsectors, the emissions in 2009 are exceptionally lower 

than the others most likely due to the impacts of the recession of global economy, e.g. the energy 

sector ‘shrank’ and the industrial processes ‘slowed down’. Since energy and industrial processes 

are two primary sectors that contribute to provincial GHG emissions, the total emissions in 2009 

are the lowest observed.  

Table 2.3 Ontario’s GHG Emissions by Sector (in kt CO2e) 

Sector 1990 2000 2005 2007 2008 2009 2010 2011 

Energy 131000 165000 161000 156000 148000 129000 135000 132000 

Stationary Combustion 81700 104000 95600 93600 87000 69000 72700 70900 

Electricity and Heat Generation 25500 43100 34100 32600 27100 14800 19600 14800 

Transport 47800 60300 64200 60500 59000 58400 60700 59000 

Fugitive Sources 1210 1540 1610 1640 1630 1610 1660 1650 

Industrial Processes 29900 23400 27400 27400 26800 20400 21900 22600 

Agriculture 10000 9600 9700 10000 9700 10000 10000 9600 

Waste 6000 6000 6700 6800 6700 6700 6700 6800 

Solvent & Other Product Use 66 170 150 130 130 100 94 96 

Total 177000 205000 205000 200000 191000 166000 174000 171000 

Source: Canada’s National Inventory Report Submitted to the UNFCCC in 2013 

Note: Based on sector categorization by the IPCC, ‘stationary combustion’, ‘transport’ and ‘fugitive sources’ are three 

subsectors of ‘Energy’, and ‘electricity and heat generation’ (the so-called electricity sector) is a subsector of 

‘Stationary Combustion’. 

Ontario’s decision to shut down its coal-fired power plants is the largest climate change initiate in 

North America. From 2010 to 2011, the emissions from the electricity sector decreased by 4.8Mt 

(24%). Overall, Ontario’s electricity sector experienced a decrease of 19Mt (56%) compared to 

the 2005 level mostly attributable to the closures of coal-fired power plants. 

By making intensive efforts on reducing GHG emissions and ‘greening’ the electricity system, 

Ontario acts as a significant role model in meeting the federal target on the reduction of GHG 

emissions. Notably, there are still great potentials for Ontario to reduce GHG emissions from 
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other sectors such as transport and waste disposal. Technological innovations are expected to play 

significant roles in achieving the long-term goal (Bahn et al.,2013, Schneider et al.,2013, 

Streimikiene et al.,2013, Takata et al.,2013). Moreover, policies are indispensable for promoting 

specific types of advanced low-carbon technologies while emphasizing the cost-effectiveness 

taking into account environmental, economic and social benefits from a holistic perspective. 

Given the high political priority to advance policies that reduce GHG emissions, an important 

need is to be able to systematically measure and monitor GHG emissions. One approach to meet 

this need is to use remote sensing technologies and modelling techniques.  

2.3 Remote Sensing CO2 Observations 

The atmospheric GHG concentrations are determined by a series of factors in addition to the 

surface emissions, e.g. meteorological conditions, atmospheric transport and distribution of 

sources and sinks. Though GHG emissions are monitored and reported regularly under particular 

regulations in some regions (e.g. the UNFCCC requires Parties
3
 to report their national emissions 

and removals of GHGs, and Ontario requires large emitting facilities to report their annual GHG 

emissions to the Ministry of Environment), direct observations of global or regional GHG 

concentrations are currently limited to the research domain and rarely involved in political 

practice such as evaluation of policy instruments and GHG management. A better understanding 

of the GHG concentrations and their distribution associated with the physical processes or factors 

that determine the concentrations can provide insights into a broader and more comprehensive 

policy framework for climate mitigation. In this regard, remote sensing is a valuable and 

promising tool for providing sufficient accurate measurements of GHG concentrations globally 

and locally.  

This section introduces the basic spectral properties of CO2 and provides a brief description of 

major satellite-borne infrared sounders for CO2 observation. The GOSAT CO2 observations are 

then discussed including the instrument specifications and a comparison of different retrieval 

                                                           
3 The UNFCCC divides countries into three main groups: Annex I Parties, Annex II Parties and Non-Annex I Parties. 

Annex I Parties include the industrialized countries that were members of the OECD (Organisation for Economic Co-

operation and Development) in 1992, plus countries with economies in transition (the EIT Parties). Annex II Parties 

consist of the OECD members of Annex I, but not the EIT Parties. Non-Annex I Parties are mostly developing 

countries (UNFCCC, 2014).  

https://unfccc.int/parties_and_observers/parties/annex_i/items/2774.php
https://unfccc.int/parties_and_observers/parties/non_annex_i/items/2833.php
https://unfccc.int/parties_and_observers/parties/annex_i/items/2774.php
https://unfccc.int/parties_and_observers/parties/non_annex_i/items/2833.php
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algorithms based on GOSAT spectral data. In addition, the reliability of GOSAT CO2 

observations is examined based on the calibration and validation work in the literature.  

2.3.1 Overview 

CO2 absorbs the radiation from the earth and reemits part of the energy back to the surface. This 

is the primary process that keeps the heat in the lower atmosphere and results in increasing 

temperatures. The spectral absorption characteristics of CO2 are distinguished from other GHGs. 

Therefore, it provides an opportunity to measure the abundance or concentration of CO2 using a 

particular range of spectrum.  

The electromagnetic spectrum is divided into 7 segments: Gamma Ray (less than 0.01nm), X-Ray 

[0.01-10nm], Ultraviolet [10-380nm], Visible [380-700nm], Infrared [700nm-1mm], Microwave 

[1mm-1m] and Radio [1mm-100000km]. The radiation by the earth is in the range between 5µm 

and 60µm. The primary spectrums absorbed by CO2 are three narrow bands in the infrared 

wavelength range, i.e. 2.7µm, 4.3µm and 15µm (Horvath,1993), as shown in Figure 2.3.  

 

Figure 2.3 CO2 Absorption Spectrum 

Source: Data compiled by: Coblentz Society, Inc. Data compilation copyright by the U.S. Secretary of Commerce on 

behalf of the U.S.A.  

Note: CO2 absorption spectrum varies in the weak absorption bands among different articles and studies but there is a 

consistency with the three strong bands. 

As for the division of infrared radiation, there are a number of criteria. The International 

Commission on Illumination (CIE) recommends the division of infrared radiation into three bands: 

IR-A [0.7µm -1.4µm], IR-B [1.4µm-3µm] and IR-C [3µm-1000µm]. The ISO20473 specifies 

three schemes: near-infrared (NIR) [0.78µm-3µm], mid-infrared (MIR) [3µm-50µm] and far-

http://webbook.nist.gov/cgi/cbook.cgi?Contrib=COBLENTZ
http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Type=IR-SPEC&Index=1#copyright


32 

 

infrared (FIR) [50µm-1000µm]. Astronomers typically divide the infrared spectrum as NIR [(0.7-

1) µm to 5µm], MIR [5µm to (25-40) µm] and FIR [(25-40) µm to (200-350) µm] (NASA, 2007). 

Another commonly used scheme is NIR [0.75µm-1.4µm], short-wavelength infrared (SWIR) 

[1.4µm-3µm], mid-wavelength infrared (MWIR) [3µm-8µm], long-wavelength infrared (LWIR) 

[8µm-15µm] and FIR [20µm-1000µm] (Byrnes,2009). In addition, thermal infrared is a widely 

used term in remote sensing specifying the range between 3.5µm and 20µm or 5.6µm and 1mm. 

Most remote sensing applications make use of the 8µm to 13µm range. The main NIR absorption 

bands of CO2 are 1.4µm, 1.6µm, 2.0µm, 2.7µm and 4.3µm (Rothman et al.,2009). Particularly, 

the 1.6µm (the CO2 weak absorption band) is mostly exclusive to CO2 among the GHGs. 

Considering the possibility that the literature on remote sensing CO2 observations and 

measurements adopts different schemes, e.g. the SCIAMACHY channel 7 [1.94µm-2.04µm] was 

referred as NIR (Buchwitz et al.,2004), SWIR (Hoogeveen et al.,2007) or NIR/SWIR (Buchwitz 

et al.,2010), this study does not provide a standard for the subdivision of infrared spectrum. 

Instead, the established, though sometimes overlapping, terminology such as NIR or SWIR are 

used to match the research or literatures that are reviewed or cited.  

2.3.2 Measuring CO2 from Space 

CO2 concentrations are measured by both in situ and satellite-borne instruments. For in situ 

measurements, ground-based CO2 observations using flask sampling are widely used by NOAA 

to provide long-term records of CO2 concentrations, e.g. Climate Monitoring and Diagnostics 

Laboratory (Saitoh et al.,2009).  Instruments onboard aircrafts are mainly used for obtaining CO2 

concentrations in upper troposphere (Matsueda et al.,2002). Ground-based CO2 measurements 

served as the primary data source for estimating the strength of CO2 sources and sinks until recent 

years when space-based instruments were developed to make up for the limitations of ground-

based measurements (Saitoh et al.,2009), i.e. spatiotemporal sparsity for CO2 sources and sinks 

estimation (Rayner and O'Brien,2001, Houweling et al.,2004). Measuring atmospheric 

components from space are challenging. The target signal must be separated from radiative 

interference from temperature, surface and cloud parameters, water, and other trace gases 

(Kulawik et al.,2012). However, remote sensing instruments provide a unique perspective on the 

state of the environment from short term to long term and on a local to global scale (Clerbaux et 

al.,2009). By using Earth’s or atmosphere’s thermal radiation, reflected solar radiation or solar 

radiation itself, remote sensing sounders are demonstrated capable of valuable information on air 
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quality (Richter et al.,2005), emission sources (Frankenberg et al.,2008) and climate change 

issues (Worden et al.,2008). 

2.3.2.1 HIRS 

The High-Resolution Infrared Radiation Sounder (HIRS) is one of the three instruments installed 

on the TIROS Operational Vertical Sounder (TOVS) onboard NOAA’s series of polar orbiting 

satellites. These series of satellites have been providing continuous measurements of the earth’s 

surface and atmosphere since 1979. The HIRS observes the earth-emitted radiation in the infrared 

with 19 infrared channels covering 3.8µm to 15µm (there is another channel in the visible).  

HIRS radiances have been used for estimating the temporal variations of CO2 concentration at 

different scales by analyzing the 4.3µm and 15µm bands. The signatures of annual and seasonal 

variations of CO2 along with other GHGs were captured using the 19 channels of HIRS on TOVS 

and the results showed a high agreement with the knowledge of atmospheric cycle of trace gases 

that was known to that date (Chédin et al.,2002a, Chédin et al.,2002b, Chédin et al.,2003b). At 

finer temporal scales, 48 maps of monthly mean mid-tropospheric CO2 concentration were 

produced at a resolution of 15°x15°. The method-induced standard deviation of the CO2 retrievals 

was estimated to be of the order of 3ppm (less than 1%). In particular, the impact of El Nino 

Southern Oscillation (ENSO) events was clearly seen and confirmed by in situ observations and 

model simulations (Chédin et al.,2003c). By analyzing the night-minus-day difference of CO2 

concentration, the diurnal variations of CO2 caused by biomass burning was well detected which 

was in accordance with the recorded activities of diurnal and seasonal biomass burning (Chédin et 

al.,2005).  

2.3.2.2 IASI 

The Infrared Atmospheric Sounding Interferometer (IASI) is a passive IR remote sensing 

instrument onboard the European MetOp-A platform. It uses an accurately calibrated Fourier 

Transform Spectrometer operating in the 3.7µm-15.5µm spectral range and an associated infrared 

imager operating in the 10.3µm-12.5µm spectral range [National Centre for Space Studies 

(CNES), 2014].  

The major goal of IASI mission is to provide temperature and humidity profiles for use in the 

understanding and making atmospheric forecasts. It also provides the quantification of 
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atmospheric components such as CO2, CH4 and O3 (EUMETSAT, 2014). Studies on using IASI 

to measure CO2 alone are very few. A pre-launch feasibility analysis indicated that for CO2 

retrieval using IASA data, a careful averaging over area of 500 by 500 km
2
 and 2 weeks should 

be able to extract change at the level of 1% or less in the total column CO2 amount (Chédin et 

al.,2003a). In 2009, the IASI CO2 data for the first operation year of MetOp (2008) were used to 

retrieve the upper tropospheric CO2 from 11 to 15km, in clear-sky conditions, in the tropic and 

over the ocean (Crevoisier et al.,2009). The precision was estimated to be 2ppm (~0.5%) over an 

area of 5°× 5° on a monthly temporal scale. The study identified ‘a strong seasonal cycle of 4ppm 

in the northern tropics’; ‘a more complex seasonal cycle in the southern tropics, in agreement 

with in situ measurements’; ‘a latitudinal variation of CO2 shifting from a South-to-North 

increase of 3.5ppm in boreal spring to a South-to-North decrease of 1.5ppm in the fall, in 

excellent agreement with tropospheric aircraft measurements’; and ‘signatures of CO2 emissions 

transported to the upper troposphere’. 

2.3.2.3 TES 

The Tropospheric Emission Spectrometer(TES) is onboard NASA’s Aura satellite focused on the 

troposphere, the layer of atmosphere that stretches from the ground to the altitude at which 

airplanes fly (JPL, 2014). TES is an infrared, high-resolution, Fourier transform spectrometer 

covering the spectral range from 3.3µm to 15.4µm (Beer,2006).  

The satellite was launched in 2004 and the instrument TES is mainly targeted on O3. Studies on 

CO2 estimates with improved TES did not arise until recent years. A pilot study for the area 

between 40°S and 45°N found about one degree of freedom with peak sensitivity at 511 hPa. The 

estimated error is ~10ppm for a single target and 1.3-2.3 ppm for monthly averages on spatial 

scales of 20°×30°. The TES CO2 estimates were compared to different sources of data and the 

highest correlation was found with the Mauna Loa surface data  (Kulawik et al.,2010). If the 

biases in the data and model are well characterised, the uncertainty on annual estimates of CO2 

sources and sinks can be significantly reduced using the averaged data. A more recent study 

achieved better results by characterising the TES CO2 biases and errors through comparisons to 

ocean and land-based aircraft profiles and to the CarbonTracker assimilation system (Kulawik et 

al.,2012). The actual errors ranged from 0.8-1.8ppm depending on the campaign that the TES 

data were compared to and the pressure level. The best result was generated from the comparison 

with the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) 
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between 2005 and 2011 measured from surface to 5km. The overall bias was -0.3ppm to 0.1ppm 

and standard deviations of 0.8ppm to 1.0ppm at different pressure levels.  

2.3.2.4 AIRS  

The Atmospheric Infrared Sounder (AIRS) has been widely used for middle-upper tropospheric 

CO2 columns retrieval (Crevoisier et al.,2004, Chevallier et al.,2005, Chahine et al.,2008, Olsen 

et al.,2011, Pagano et al.,2012, Pagano and Olsen,2012). It began to serve in orbit on May 4th 

2002 (aboard the NASA’s Aqua spacecraft) and is still in operation. The purpose of AIRS is to 

promote researches on climate change and improve the ability of weather forecasting. This was 

one of the most developed atmospheric sounding system along with its partner microwave 

instrument AMSU-A. The 3D maps of air and surface temperature, water vapor, and cloud 

properties can be created by AIRS using a so-called cutting-edge infrared technology.  

AIRS is a sun-synchronous cross-track scanning instrument orbiting at 705km above polar with 

an inclination of 98.2+/-0.1 degrees. The full swath width is 1650km, i.e., ground coverage of +/-

49.5 degrees, more than 95% of global daily coverage. Other than the thermal infrared sensor, a 

visible/near-infrared sensor is also onboard AIRS instrument providing Level 1b products. Table 

2.4 describes the specifications of AIRS instrument suite and performance characteristics of 

AIRS. 
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Table 2.4 Specifications of AIRS 

Parameter AIRS Infrared radiances AIRS Visible/NIR Radiances 

Spatial resolution 13.5 km at nadir; 41 km x 21.4 km at 

the scan extremes 

2.3 x 1.8 km (across-track, along-

track) 

Spatial sampling 90 1.1˚ footprints per scan (2.67 

seconds) 

8 x 9 pixels per AIRS 13.5 km 

footprint 

Spectral range 2378 channels, 3.75-15.4 μm  

(650-2665 cm-1 ) 

4 channels from 0.4-1.0 μm:  

Channel 1: 0.40-0.44 μm 

Channel 2: 0.58-0.68 μm 

Channel 3: 0.71-0.92 μm 

Channel 4: 0.49-0.94 μm 

 

Spectral resolution ~1200 nominal (0.5-2cm-1) N/A 

Spectral accuracy 1ppm N/A 

Radiometric accuracy < 0.2 K 3 sigma at 256 K 10% 

Signal-to-noise N/A (ratio at albedo of 0.4) > 100 

Data volume 56 MB per granule, 13.4 GB/day 11 MB per granule, 2.6 GB/day 

Source: AIRS, JPL-NASA: http://airs.jpl.nasa.gov/instrument/specs/ 

As a hyperspectral instrument, AIRS has 2378 spectral channels. Its spectral resolution is more 

than 100 times greater than previous IR sounders. This guarantees accurate information on the 

vertical profiles of atmospheric temperature and moisture. By using the cloud-free TIR radiance 

spectra in the 15µm band, AIRS distributes CO2 retrievals continuously on a global daily basis 

with accuracy better than 2ppm (Chahine et al.,2008). The infrared radiation from Earth's surface 

and atmosphere are measured and split into constituent ‘colors’ (wavelengths) by the optical 

system. Every single color is sensitive to the temperature and water vapor over certain height 

range. Temperature and water vapor are then measured as functions of height. Through this 

technique, a temperature profile, or sounding of the atmosphere can be created using multiple 

infrared detectors that are sensitive to specific wavelengths. 

Remarkably, AIRS has provided the first space-based retrieval of mid-tropospheric CO2 under 

cloudy conditions without using the a priori modelled information (JPL, 2014). A number of 

significant findings have been achieved by using AIRS CO2 data (AIRS, 2014):   

‘Carbon dioxide is not homogeneous in the mid-troposphere; previously it was thought to 

be well-mixed; the distribution of carbon dioxide in the mid-troposphere is strongly 

influenced by large-scale circulations such as the mid-latitude jet streams and by 

synoptic weather systems, most notably in the summer hemisphere; there are significant 

http://airs.jpl.nasa.gov/instrument/specs/


37 

 

differences between simulated and observed CO2 abundance outside of the tropics, 

raising questions about the transport pathways between the lower and upper troposphere 

in current models; zonal transport in the southern hemisphere shows the complexity of its 

carbon cycle and needs further study’. 

2.3.2.5 SCIAMACHY  

The Scanning Imaging Absorption Spectrometer for Atmospheric Chartograpy (SCIAMACHY) 

onboard ENVISAT was launched on March 1st 2002. It is a multichannel diode array 

spectrometer which passively observes the backscattered, reflected, transmitted and/or emitted 

radiations from the Earth's surface and the atmosphere. The instrument has a spectral resolution 

of 0.2-1.5µm in the spectral range between 0.24µm and 2.38µm.  SCIAMACHY is the first 

satellite instrument using NIR spectra that are sensitive to CO2 concentration changes in the 

lowest atmospheric layers (Schneising et al.,2011). The purpose of SCIAMACHY is to retrieve 

various trace GHGs in the troposphere and stratosphere by measuring the solar irradiance and 

Earth radiance spectra. A polarization measurements device (PMD) is also installed on 

SCIAMACHY with a spectral coverage of 310-2405 nm. The optical performance of 

SCIAMACHY high resolution channels is described in Table 2.5.  

Table 2.5 SCIAMACHY Optical Performance 

 Channel spectral range(nm) Spectral resolution(nm) Spectral stability(nm) 

Channel 1 240-314 0.24 0.003 

Channel 2 309-405 0.26 0.003 

Channel 3 394-620 0.44 0.004 

Channel 4 604-805 0.48 0.005 

Channel 5 785-1050 0.54 0.005 

Channel 6 1000-1750 1.48 0.015 

Channel 7 1940-2040 0.22 0.003 

Channel 8 2265-2380 0.26 0.003 

Source: http://www.iup.uni-bremen.de/sciamachy/instrument/performance/index.html 

The spatial characteristics of SCIAMACHY vary with the viewing modes. The swath in nadir 

geometry is up to 960km across track with the finest resolution of 26km×15 km. The FOV is 

25km along track and 0.6km across track; for limb geometry when the instrument observe the 

edge of the atmosphere, a vertical resolution of 2.6km can be implemented when the instrument 

scans at different tangent altitudes; the occutation measurements are performed in a similar way 

with limb mode with the sun/moon in the FOV during the time of sunrise/moonrise. In particular 

http://www.iup.uni-bremen.de/sciamachy/instrument/performance/index.html
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the nadir measurements can be performed 7mins after the limb measurement. By applying these 2 

modes, 3D atmospheric information can be obtained. With the orbiting period of about 100 

minutes, the spacecraft is able to observe the whole Earth every 6 days in the standard alternating 

limb/nadir scan mechanism. With nadir or limb mode alone, the global coverage is achieved 

within 3 days (for 960 km swath). The vertical profiles of temperature and a series of long-lived 

trace constituents are measured at high spatial resolution. The limitation of SCIAMACHY is that 

it can hardly provide useful trace gases information over water due to lack of a targeted glint 

mode. 

SCIAMACHY CO2 retrievals have been widely studied and used for accurately monitoring the 

CO2 emissions in lower atmosphere (Buchwitz et al.,2005, Bösch et al.,2006, Buchwitz et 

al.,2006, Schneising et al.,2011, Wang et al.,2011, Tan et al.,2012, Zhang et al.,2014). A 

comparison study between AIRS and SCIAMACHY CO2 retrievals showed that there was a 

general consistency between the two instruments when considering the different vertical 

sensitivities of the instruments; and SCIAMACHY has the ability of presenting the seasonal cycle 

signal of CO2 (Barkley et al.,2006). Using the WFM-DOAS v2 retrieval algorithm, CO2 

concentrations were obtained and compared to global model simulations (CarbonTracker XCO2) 

focusing on large-scale features (i.e. seasonal variations over 2003-2009) (Schneising et al.,2011). 

The steady increase of CO2 concentration caused by fossil fuel combustion was well capture by 

SCIAMACHY retrieved XCO2 based on comparison with CarbonTracker [1.80±0.13 ppm yr
-1

 

compared to 1.81±0.09 ppm yr
-1

].  

The accuracy of SCIAMACHY CO2 retrievals are challenged by the uncertainty caused by 

aerosols. Over the continents, aerosols are highly likely to result in overestimated CO2 

abundances except for biomass burning plume and dark coniferous forests (Houweling et 

al.,2005). A study over the Sahara desert (Houweling et al.,2005) discovered a large variability in 

total CO2 column abundances of up to 10%. Aerosol optical depth was responsible for half of the 

variance and a sensitivity test showed that the vertical distribution of dust mostly accounted for 

the rest. More accurate CO2 retrievals were encouraged by means of developing advanced 

retrieval algorithms that account for the aerosol and thin cirrus cloud. For example, an improved 

cloud filtering method was applied to WFM-DOAS v2.2 and greatly improved the quality of 

WFM-DOAS dataset. The filter was based on a threshold technique using radiances from the 

saturated water vapour absorption band at 1.4μm that is mostly sensitive to thin clouds (Heymann 

et al.,2012b). Another approach was to simultaneously analyze the CO2 absorption band at 

1.58μm and O2 A-band at 0.76μm. The information on the scattering caused by aerosols and thin 
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cirrus cloud was obtained by the O2 A-band. A merged fit window approach allowed the 

information to transfer between the two bands. For cirrus clouds with optical thickness up to 1.0, 

this method was presented capable of constraining the systematic errors to below 4ppm which 

was better than peer approaches (Reuter et al.,2010).  

Space-based observations not only improve the estimation of CO2 atmospheric distributions but 

also enhance the understanding of the CO2 dynamics in the terrestrial ecosystem and their 

interactions. A recent study using SCIAMACHY CO2 retrievals over 2003-2009 discovered that 

the variation of CO2 spatial distribution was estimated to be 6-8% at global scale. This challenged 

the traditional view that the spatial heterogeneity of CO2 (perceived below the 4% level) was not 

significant enough to influence terrestrial ecosystem carbon cycles (Zhang et al.,2014). By 

analyzing the growth rate of CO2 concentration, it was further found that the increase of CO2 

concentration was dominated by temperature in the NH and by precipitation in the SH.  

2.3.2.6 TANSO-GOSAT  

The GOSAT Project is a joint effort of the Ministry of the Environment (MOE), the National 

Institute for Environmental Studies (NIES), and the Japan Aerospace Exploration Agency 

(JAXA). The spacecraft was launched successfully on January 23rd, 2009. GOSAT is the world's 

first spacecraft designed to specifically measure the concentrations of CO2 and CH4 from space. 

The global distribution of CO2 and CH4 can be obtained by analyzing the observational data from 

GOSAT, as well as the spatiotemporal variability of the sources and sinks (Baker et al.,2006b, 

Chevallier et al.,2007). By measuring both TIR and NIR radiances, GOSAT is able to observe 

both column amounts and vertical profiles of the trace gases. Therefore, the fundamental 

information is available for enhancing the prediction of climate change and weather forecasting 

and for policy making on climate change mitigation.  

The instrument TANSO is composed of two sensors FTS and CAI. The spacecraft is orbiting at 

an altitude of approximately 666 km. FTS takes 56 thousand measurements during the revolution 

period of 3 days with a global coverage. Only two to five percent of these data are applicable for 

CO2 retrieval due to persistent cloud cover. However, the huge volumes of data collected are still 

sufficient for filling out the blanks in the ground-based network especially in tropical areas. 

FTS measures the absorptions at O2–A band at 0.76μm, weak CO2 band and strong CO2 band at 

the wavelength of 1.61μm and 2.06μm respectively. Since the energy within the weak CO2 band 
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is almost taken by CO2, this band is regarded highly sensitive to CO2 abundances near the Earth's 

surface. Table 2.6 shows the specifications of FTS.  

Table 2.6 Specifications of TANSO-FTS 

 Band 1 Band 2 Band 3 Band 4 

Spectral Coverage(µm) 0.758-0.775 1.56-1.72 1.92-2.08 5.56-14.3 

Spectral Resolution(cm-1) 0.2 0.2 0.2 0.2 

Spatial Resolution 10km by 10km 

Polarized Light Observation Performed Performed Performed Not Performed 

Targeted Gases O2 CO2, CH4 CO2, H2O CO2, CH4 

Angle of Instantaneous FOV 15.8 mrad. (corresponds to 10.5Km spatial resolution when projected on the surface 

of earth) 

Time Necessary for a Single 

Scanning (sec) 

4.0, 2.0, or 1.1 (depending on the scanning mode being used) 

Source: GOSAT 2010, http://www.gosat.nies.go.jp/eng/gosat/page2.htm 

FTS measures the incoming brightness from both the Earth's surface and the atmosphere. The 

sunlight reflected from the Earth's surface is measured in band 1, 2 and 3 during daytime and the 

light emitted by both the atmosphere and the surface is obtained by band 4 all through the day. 

The brightness obtained by band 1, 2, and 3, before reaching the sensors, is split into two 

orthogonally-polarized beams (P and S components) with different optical paths. An interference 

is then created by recombining the two beams and its intensity is measured by changing the 

optical path difference. At last, Fourier transform is performed to obtain the spectral information. 

CAI is designed not only to determine whether the images are cloud/aerosol free but also to 

estimate and correct the effects of clouds and aerosols on the spectra obtained by FTS. This is 

achieved by calculating the cloud characteristics and aerosol amounts and identifying their optical 

depth and scattering effects. CAI is a great tool to map the state of the Earth's surface and the 

atmosphere during daytime. The sensor is also designed with 4 bands at the wavelength of 0.37-

0.39μm, 0.664-0.684μm, 0.86-0.88μm and 1.56-1.65μm respectively. The spatial resolution of 

CAI is up to 0.5km for the first 3 bands and 1.5km for band 4.  

2.3.2.7 OCO-2 

The Orbiting Carbon Observatory-2 (OCO-2) is based on the original OCO mission that was 

developed under the NASA Earth System Science Pathfinder (ESSP) Program Office and 

launched from Vandenberg Air Force Base on February 24, 2009. The launch of OCO failed and 
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the OCO-2 mission is intended to ‘duplicate the original OCO design using identical hardware, 

drawings, documents, procedures, and software wherever possible and practical” to minimize cost 

risk, schedule risk, and performance risk’ (NASA, 2014). The spacecraft was successfully 

launched in July 2014. 

OCO-2 is the first instrument targeted at CO2 concentration only. OCO-2 is a sun-synchronized 

orbiting spacecraft at an altitude of 705km and provides global coverage with a 16-day repeat 

cycle. The spectral range of O2 band covers 0.757-0.772μm (13210-12953 cm
-1

) using the 

detector of Si, and the weak CO2 band and strong CO2 band cover 1.59-1.621μm (6289-6169cm-1) 

and 2.041-2.081μm (4899-4805 cm-1) respectively. The spatial resolution of OCO-2 is 

considerably enhanced compared to previous instruments, i.e., FOV of 1.25km cross track and 

2.2km along track. This facilitates studies on CO2 sources and sinks at much smaller scale. More 

specifications of the OCO-2 instrument are described in (Sakuma et al.,2010). 

Similar to GOSAT, the OCO-2 mission also applies target mode for measurements in addition to 

nadir and glint modes. A target track pass can last up to 9 minutes and acquire 12960 samples at 

local zenith angles that vary between 0° and 85°. The target mode is planned to be played on the 

OCO-2 calibration sites where ground-based solar FTS are located. Comparison between space-

based and ground-based measurements will be conducted to identify and correct the systematic 

and random errors (NASA, 2014).  

2.3.3 GOSAT CO2 Retrievals 

The GOSAT L1B (radiance spectra) data are distributed among collaborating institutions and 

research groups who have developed different algorithms for retrieving column CO2 and XCO2. 

The various algorithms are likely to yield different retrieval results since these algorithms have 

different concerns and strategies for data processing, aerosol and cloud scattering and post-

processing filtering etc. (Oshchepkov et al.,2013). 

As of 2013, there are mainly 5 algorithms developed for GOSAT CO2 retrieval: NIES algorithm, 

ACOS algorithm, UoL-FP (University of Leicester Full Physics), RemoTeC [Remote sensing of 

greenhouse gases for carbon cycle modeling by the Netherlands Institute for Space Research 

(SRON)/the Karlsruhe Institute of Technology (KIT)] and NIES (PPDF-D). All these algorithms 

are based on optimal estimation or maximum a posteriori rule by minimizing a cost function in 

terms of the weighed least squares deviation between the observed and modeled radiance spectra 
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for the GOSAT SWIR bands under constraints on the state vector of desired parameters 

(Oshchepkov et al.,2013). Each algorithm has experienced continuous updates and improvements. 

In particular, the NIES and ACOS projects routinely provide to the public the standard data 

products using their own operational algorithms (Crisp et al.,2012, Yoshida et al.,2012). The rest 

are research project-based. The ACOS algorithm and UoL-FP algorithms are two parallel 

developments that are based on the original algorithm developed for the OCO mission. In this 

regard, these two algorithms follow a similar strategy while the UoL-FP utilizes the OCO 

algorithm and the ACOS is a re-development prepared for OCO-2 (Cogan et al.,2012).  

2.3.3.1 ACOS Retrieval Algorithm 

Among other retrieval algorithms, the ACOS retrievals (specifically since Build3.3) provide more 

complete information about the physical parameters (full physics) such as vertical profiles of CO2 

dry air mole fraction and associated uncertainties. The ACOS algorithm differs from the UoL-FP 

method in the definition of the state vector, a priori values, and a priori covariances, especially in 

the treatment of aerosols and cirrus clouds. ‘There are also differences in spectroscopy, sounding 

selection methods, and post-screening criteria. All of these aspects can lead to differences in 

algorithm performance and XCO2’ (Cogan et al.,2012).  

The ACOS team produces two versions of CO2 retrievals and provide data access to the general 

public: B2.9 with temporal coverage from April 2009 to September 2012, and B3.3 covering 

from April 2009 to May 2013. The original ACOS algorithm developed for the OCO-2 mission 

and the B2.9 algorithm have been discussed in full detail (Crisp et al.,2010, Boesch et al.,2011, 

Crisp et al.,2012, O'Dell et al.,2012).  

The original retrieval method designed for the OCO-2 mission consists of 5 main components: 

forward model, state vector, radiance Jacobians, inverse method and error analysis (Crisp et 

al.,2010). The forward model is composed of a solar model, radiative transfer model and an 

instrumental model. The optical properties of trace gases are considered and handled by the 

forward model such as calculating the gas absorption cross-section, calculating the gas absorption 

optical depth in each atmospheric layer and accounting for the scattering effects of cloud and 

aerosol. By constructing a sophisticated state structure
4
, the forward model is capable of 

                                                           
4  A state structure is to indicate the complete set of parameters required by the forward model to simulate a 

measurement to the necessary accuracy; a state vector is to indicate the set of parameters being retrieved. A state vector 

can be a simple subset of a state structure. 
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accommodating all the physics of the atmospheric and surface processes that contribute to the 

absorption and scattering of solar radiation as well as others that may affect the radiation received 

by the instrument (e.g. some aspects of the instrument throughput such as dispersion and 

instrument line shape). However the computational expense increases with the complexity of the 

state vector. In this algorithm, the state vector involves 8 factors with 112/115 elements for land 

and 107/110 elements for water area
5
. The a priori values for the state vector are obtained from 

specific sources of model simulations. In order to estimate the altitude-dependent number density 

of CO2 which is essential for calculating XCO2, the radiative transfer equation must by converted. 

Theoretically, the least squares fitting method can be used for solving this problem by treating the 

radiative transfer as a fitting function and taking the elements in the state vector as unknown 

coefficients. In addition to the radiative transfer equation, the first derivatives of the intensities 

respecting any specific component of the state vector are required for performing the least squares 

fitting technique, i.e. the radiance Jacobians that can be generated by the forward model. In this 

algorithm, the problem is solved by an inverse method based on a Rogers (2000)-type of optimal 

estimation approach (Bösch et al.,2006, Connor et al.,2008). This inversion uses the Jacobians to 

estimate the state changes needed to minimize the differences between the observed and 

simulated spectra (GES DISC, 2013). Since XCO2 is not one of the elements in the state vector, it 

is determined by the algorithm once the ‘state’ yielding the best match with the observed 

spectrum is found associated with errors in XCO2 from various sources (such as vertical 

smoothing) and the XCO2 column averaging kernel. There are 5 assumptions for the forward 

model: the measured radiances have been radiometrically calibrated; the thermal emission from 

the atmosphere is negligible compared to reflected sunlight, which is true for the O2 A-band and 

CO2 weak band and is reasonable for the CO2 strong band; soundings that contain optically deep 

clouds or aerosols can be eliminated; inelastic scattering processes (e.g. Raman) are negligible at 

the wavelengths of interest to OCO-2; and the effects of airglow and absorption by the Chappuis 

bands of ozone in the O2 A-band are also ignored (Crisp et al.,2010). 

Based on several improvements on early versions of retrieval algorithm, the B2.9 version was 

applied on GOSAT L1B data and produced higher-level products for distribution. As the L1B 

data distributed by JAXA were updated to version v150151 which fixed the glint flag anomaly, 

the ACOS team decided to use B2.9 to reprocess the L1B data to replace the products originally 

                                                           
5 The 8 factors are aerosols (80 elements, i.e. 4×20 levels), temperature (one element), water vapor (one element), 

surface pressure (one element), albedo-land (6 elements, 2×3 bands), Cox-Munk (one element), CO2 (20 

levels/elements) and spectral dispersion with ‘shift’ and/or ‘stretch’ (3 and/or 3 elements). 
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generated from L1B v130130 which introduced large biases in L2 products. Compare to ground-

based TCCON observations, the mean global bias in B2.9 retrievals was estimated to be 0.13ppm 

with a standard deviation of 1.97ppm (Osterman et al.,2011). Major revisions and improvements 

in B2.9 compared to the previous version include:  

Significantly affecting the retrieval results: ‘retrieved a constant zero-level offset correction 

in the A-band to reduce the signal level dependent bias in the O2 A-band that is caused by the 

Band-1 analog signal nonlinearity. Many systematic biases were eliminated’; ‘rescaled O2 A-

band cross sections with a constant factor of 1.025 to reduce the 10hPa surface pressure 

bias’; ‘added ILS
6

 interpolation: this change increased the retrieved XCO2 estimates 

by1.5ppm, bringing them closer to TCCON estimates, and reducing the scatter in the 

retrievals’; ‘glint noise treatment: the empirical noise has been applied to both the ocean and 

land scenes’; ‘cloud screening applied to glint and land data in preprocessing’. Within the 

code: ‘static input data moved to a single HDF file’; ‘upgraded LIDORT
7
 version to 3.5T’; 

‘reworked Jacobian calculations to use automatic derivatives’. Instrument capability: ‘added 

support for FTS Instrument in up-looking mode’; ‘added support for OCO-2 instrument 

mode’. Speed improvement: ‘use only two streams in the Low Streams Interpolator (LSI) part 

of the radiative transfer code when a low number of streams is required (was 4 previously)’. 

Spectroscopy: ‘Version 3.3 ABSCO
8
 tables were used’(Osterman et al.,2011).  

The B2.9 algorithm was further updated into B3.3 which provided more complete information 

about the state vector especially the vertical profiles of the atmospheric parameters. Figure 2.4 

shows the data processing scheme of ACOS B3.3. The L1B data (raw spectra) are distributed and 

produced by JAXA based on L1A data (raw interferometric files). L1B data are then calibrated 

and processed by the ACOS team into ACOS L1B (calibrated radiance spectra). The L2 data (raw 

XCO2) are generated based on ACOS L1B and B3.3 algorithm. Proper post-filtering and bias 

correction are carried out in order to provide scientifically usable XCO2 data. Validated against 

TCCON observations, an increase in mean biases and a reduction in scatter were observed 

compared to B2.9 (Wunch et al.,2011b). The technical revisions and improvements of B3.3 

algorithm compared to previous versions are as follows: 

                                                           
6 ILS: Instrument Line Shape. 

7 LIDORT: Linearized Discrete Ordinate Radiative Transfer. 

8 ABSCO: Absorption Coefficient. 
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Significantly affecting the retrieval results: ‘updated spectroscopy-ABSCO Coefficients 

V4.1.1’; ‘residual Fitting of first EOF (per band) replaces empirical noise’; ‘reduced aerosol 

optical depth a priori value to 0.05’; ‘significantly tightened surface pressure constraints, ±1 

hPa (roughly equal weight between data & prior)’; ‘fit explicitly for fluorescence over land 

from O2 A-band’; ‘utilize a consistent L1B data version (v150151)’; ‘updated radiometric 

calibration & degradation’. Within the code: ‘updates to radiative transfer scheme 

(dedicated 2-stream solver)’; ‘updated solar model’. Spectroscopy: ‘version 4.1.1 ABSCO 

tables used in retrieval software’.  

 

Figure 2.4 ACOS B3.3 Data Processing Flow 

Source: ‘ACOS Level 2 Standard Product Data User’s Guide, v3.3’, Goddard Earth Science Data Information and 

Services Center (GES DISC), NASA, 2013. 

The latest algorithm version (currently the 7
th
 version of OCO-2 retrieval algorithm) is the B3.4 

that was presented in AGU (American Geophysical Union) Fall Meeting 2013. There are a 

number of minor but important changes over previous versions in ILS model in SWIR band 1, 

spectroscopy, fitting of spectral residuals technique and explicit fitting for the Band 1 chlorophyll 

fluorescence signal over land (O'Dell et al.,2013). There are no detailed characterizations of the 
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errors and biases in B3.4 products published to date. The latest version of ACOS L2/L2B 

products are B3.3 that are available at the ACOS-GES DISC website
9
. 

2.3.3.2 Others 

The NIES algorithm consists of three main steps: cloud-detection methods are used to select 

cloud-free observations; column abundances are retrieved by optimal estimation; the quality of 

retrievals are examined by excluding low-quality and/or aerosol-contaminated measurements 

(Yoshida et al.,2011). By using this algorithm it was found that the random errors in the retrieval 

mostly came from instrumental noise and the interference from auxiliary parameters (e.g. 

temperature, water vapor, pressure) is very small (Yoshida et al.,2011). However, large negative 

biases and standard deviations (-8.85ppm and 4.75ppm) were discovered when compared to 

ground-based TCCON measurements (Yoshida et al.,2012). A revision of the original algorithm 

was development taking into account the error characteristics such as solar irradiance database 

and handling of aerosol scattering (Yoshida et al.,2013). The results were greatly improved 

regarding the biases and standard deviations (-1.48ppm and 2.09ppm) compared to ground-based 

observations. Furthermore, the number of post-screened measurements was increased especially 

at mid-high latitudes in the NH. 

The OCO algorithm estimates the column XCO2 that best fits the measured spectrum. It uses a 

maximum a posteriori inverse method with weak a priori constraints and establishes a state vector 

that contains atmospheric, surface and instrumental properties (Connor et al.,2008). At low-mid 

latitudes, the errors for single soundings due to noise, geographical variability and spectroscopic 

parameters were estimated to be ~0.7-0.8ppm for ‘high-sun’ conditions and ~1.5-2.5ppm for 

‘low-sun’ conditions (Connor et al.,2008). The findings on retrieval errors were further confirmed 

using an improved retrieval algorithm in a pre-launch study for the OCO-2 mission (Boesch et 

al.,2011). The improvement was achieved by employing a fast 2-orders-of-scattering (2OS) 

radiative transfer model instead of the linear scalar model. A linear scalar radiative transfer model 

fully linearizes the radiant (Spurr and Christi,2007) and is likely to lead to unacceptably large 

errors (Natraj et al.,2007). It was concluded that the accuracy of CO2 retrievals was highly 

sensitive to a number of key parameters such as solar zenith angle, surface pressure, surface type 

and aerosol optical depth, e.g. a decreased sensitivity to near-surface CO2 was captured over the 

                                                           
9 ACOS data access: ACOS-GES DISC website - http://disc.sci.gsfc.nasa.gov/acdisc/data-holdings/acos-data-holdings 

http://disc.sci.gsfc.nasa.gov/acdisc/data-holdings/acos-data-holdings
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area with large zenith angle, large aerosol optical depth and low surface albedo in the CO2 and/or 

O2 A-bands, which led to larger errors. The UoL-FP v3G algorithm was developed from the 

previous versions of OCO algorithm with a number of modifications and improvements with 

respect to the pressure levels, state vector, a priori information and spectroscopic parameter, etc. 

(Cogan et al.,2012). Based on the UoL-FP v3G algorithm and GOSAT L1B data, the average bias 

between XCO2 retrievals and TCCON ground-based observations over 2 years were estimated to 

be -0.2ppm with a standard deviation of 2.26ppm and a correlation coefficient of 0.75.  

Based on an optimal estimation model, the RemoTec algorithm seeks the best state vector by 

minimizing the least squires cost function. The algorithm for retrieving both CO2 and CH4 was 

discussed in detail (Butz et al.,2009, Butz et al.,2010, Butz et al.,2011). Comparing the first-year 

GOSAT retrievals over land with ground-based measurements from 6 TCCON sites on a station 

to station basis, the average bias was estimated as -0.05% with a standard deviation of 0.37%. 

The XCO2 retrieved using the RemoTec algorithm was capable of reproducing general sources 

and sinks pattern such as seasonal cycle of CO2 concentrations without any averaging (Butz et 

al.,2011).  

Another retrieval algorithm developed by NIES is based on a PPDF (photon path length 

probability density function) radiative transfer model that accounts for the atmospheric light 

scattering caused by aerosol and cirrus cloud (Bril et al.,2007, Oshchepkov et al.,2008). The 

original PPDF retrieval method was comprised of three components: cloud parameters estimation 

using O2 A-band at 0.76μm and H2O-saturated band at 2.0μm; correction of the target CO2 weak 

band at 1.58μm by utilizing the cloud parameters and estimated surface albedo; and CO2 amount 

retrieval at the 1.58μm band based on a maximum a posteriori inversion method (Oshchepkov et 

al.,2008). This strategy is similar to the improved algorithm for SCIAMACHY observations that 

was introduced in 2.3.2.5 (Reuter et al.,2010) while the latter used O2 A-band only to account for 

the effects of aerosol and cirrus cloud. This PPDF-based was capable of providing acceptably 

accurate CO2 retrievals under meteorological conditions with thin cirrus cloud. The efficiency of 

aerosol and thin cirrus cloud correction was also demonstrated by comparing with other 

algorithms that neglect light scattering effects and associated change of photon path length. This 

method was further improved and tested by synthetic photon trajectories (Oshchepkov et 

al.,2009). With the improvements, the PPDF-based method was capable of not only rapid CO2 

retrievals in terms of radiative transfer spectral calculation over a wide spectral range but also 

accounting for the a priori knowledge of atmospheric optical characteristics. A validation study 

on the PPDF-based algorithm used the method to examine and reveal the light scattering effects 
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due to aerosol and thin cirrus cloud under different atmospheric and surface conditions 

(Oshchepkov et al.,2012). Optical path lengthening was found over most TCCON stations in the 

NH especially from June to September while optical path shortening was found for glint 

observations in tropical regions which were in line with the seasonal trends of aerosol optical 

depth derived from 3D aerosol transport model (Yumimoto and Takemura,2013). Despite that the 

CO2 retrieval algorithms are being continuously updated and improved, the reliability of remote 

sensing CO2 data remains a primary concern for practical use. 

2.3.4 Reliability in Practice-GOSAT 

Our ability to forecast and mitigate the warming of climate caused by CO2 is critically dependent 

on understanding where, when and how CO2 is interacting with the land and atmosphere 

(Frankenberg et al.,2011). However, a bias of a few tenths of 1ppm in CO2 concentration can 

serious hamper the accuracy of results for CO2 sources and sinks. Therefore, from the perspective 

of CO2 data users in carbon cycle and climate change studies, stringent requirements on the 

accuracy of the CO2 data are necessary for making reliable conclusions and predictions.  

Remote sensing CO2 observations are expected to be capable of conquering the limitations of in 

situ measurements and ground-based FTS observations. However, further efforts are still needed 

to improve the accuracy of space-based CO2 observations in terms of calibration, retrieval 

algorithm and bias correction, etc.  

The TANSO-FTS L1B radiance spectra are distributed by JAXA in the form of engineering units 

(volts). JAXA also provides a series of calibration tables for converting these values to various 

units that are necessary for a specific retrieval algorithm. For example, GOSAT L1B spectra are 

converted from volts to photons/m
2
/sr/cm

-1
 which is used by ACOS level-2 algorithms. The 

calibration information is derived from prelaunch calibration tests and on-orbit observations of 

internal light sources, deep space, the sun, the moon, and observations of calibration targets on 

the Earth’s surface. These tabulated results are assumed to be accurate and constant for further 

data processing, or used to establish trends for time-dependent corrections. It was confirmed that 

the GOSAT and OCO instrument were calibrated to within their uncertainty requirements 

(Sakuma et al.,2010).  

It is also important to pay attention to the geolocation errors. As reported in the ACOS B3.3 

retrievals, the geolocation values are typically in error by 1 to 6km. These errors have negligible 
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impacts on airmass errors over flat surface however are highly likely to introduce airmass biases 

in regional with large topographic variability (ACOS- GES DISC, 2013).  

The retrieved CO2 values vary with algorithm. Though most retrieval algorithms follow a similar 

strategy for estimating the state vector and XCO2 (i.e. optimal estimation or maximum a 

posteriori method), key physical processes are treated differentially in the forward model (e.g. 

modification of optical path by different types of aerosols) which could lead to biases in the 

retrieved CO2 among different algorithms. Taking into account ACOS B2.9, NIES02.xx, 

NIESPPDF-D, RemoTec1.0 and UoL-FP:3G, Table 2.7 gives a summary of the specifications of 

different retrieval algorithms.  

Table 2.7 Basic Specifications of Different Algorithms. 

 ACOS B2.9 NIES02.xx NIESPPDF-D RemoTec1.0 UoL-FP:3G 

AOD <0.15 <0.1  <0.25 <0.5 

SNR  <70 >75 >50 >50 

ΔP [hPa] <10 <20   <20 

DFS >1.15 >1 >1 >1  

ΔXCO2 [ppm] <1.3    <1.6 

Number of Gas 

Layers 

20 15 22 12 20 

Number of 

Aerosol and 

Cloud Layers 

20 6 2-3 36 Gaussian 

Shaped 

20 

AC 4 2  1 3 

Solar Irradiance 

Spectrum 

G.C.Toon Model G.C.Toon Model G.C.Toon Model G.C.Toon Model G.C.Toon Model 

Noise Treatment Empirical Empirical True True True 

Source: (Oshchepkov et al.,2013) 

AOD: the total aerosol and cloud optical depth; SNR: signal-to-noise ratio; ΔP: the absolute difference 

between retrieved and prior surface pressure; DFS: degree of freedom for signal; ΔXCO2: the a posteriori 

error of XCO2; AC: the number of aerosol and cloud components.  

Remote sensing validation is indispensable for ensuring that the geophysical parameters obtained 

from in-orbit radiometric measurements meet the requirement for scientific and pragmatic 

applications (Lambert et al.,2011). Furthermore, data validation needs to be carried out regularly 

throughout the in-orbit phase rather than in a ‘once a mission lifetime’ manner. Precise 

measurements from ground, aircrafts, ship and balloons are qualified for validating the remote 

sensing data. TCCON is the most commonly used source of reference measurements for the 
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validation of GOSAT observations as well as other space-based observations such as AIRS and 

SCIAMACHY (Toon et al.,2009, Butz et al.,2011, Heymann et al.,2012a, Schneising et al.,2012a, 

Schneising et al.,2012b, Uchino et al.,2012). TCCON is a ground-based network of FTSs that 

precisely measure the column amount of various trace gases, e.g. CO2, CO, CH4, N2O and H2O. 

In contrast to space-based observations, the ground-based FTS measures the absorption of direct 

sunlight. The similarity is that it uses NIR spectral region as some space instruments. In addition, 

the external information about the atmosphere (e.g. temperature and pressure) and NIR 

spectroscopy are needed for deriving the total column information. As great efforts have been 

made on minimizing the errors in the external information, the total columns are precise, e.g. 

<0.25% in CO2 column (Wunch et al.,2011a). However, the absolute accuracy of the total 

columns is ~1% due to systematic biases in the spectroscopy. The errors can be compromised by 

calibrating the TCCON observations to the World Meteorological Organization (WMO) in situ 

trace gas measurement scales taking advantage of aircraft instrumentations (Wunch et al.,2010). 

It was discovered that ‘a single, global calibration factor for each gas accurately captures the 

TCCON total column data within error’.  

The validity of different retrieval algorithms against TCCON was examined and the comparison 

was conducted among 6 retrieval algorithms including the 5 algorithms in Table 2.7 (Oshchepkov 

et al.,2013). It was found that NIES02.xx and RemoTec had best agreements with TCCON 

measurements. Validations of each algorithm against TCCON measurements at different time 

scales are shown in Table 2.8. 

The effect of light scattering in each algorithm varies. After a cloud pre-filtering test, a PPDF 

method was applied on each algorithm and it was found that approximately 25% of GOSAT 

soundings processed by NIES 02.xx, ACOS B2.9, and UoL-FP: 3G and 35% processed by 

RemoTeC were contaminated by atmospheric light scattering. The aerosol amounts over bright 

surfaces tended to be overestimated by NIES 02.xx and ACOS B2.9 which led to underestimated 

XCO2 (Oshchepkov et al.,2013). 
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Table 2.8  GOSAT CO2 Retrieval Algorithm Validation against TCCON 

 ACOS B2.9 NIES02.xx NIESPPDF-D RemoTec1.0 UoL-FP:3G 

Single GOSAT and TCCON Scans 

Nc 3274 (1469) 3039 (1316) 1231 2237 (799) 3339 (1434) 

a 0.90 (0.92) 1.09 (1.09) 1.13 1.23 (1.19) 0.96 (0.99) 

Bias [ppm] -0.25 (-0.76) -1.13 (-1.41) 0.07 -0.21 (0.03) 0.12 (-0.42) 

Σ [ppm] 2.06 (1.62) 2.17 (1.76) 2.48 2.66 (2.29) 2.45 (1.94) 

R2 0.79 (0.87) 0.83 (0.89) 0.79 0.83 (0.86) 0.72 (0.84) 

r 0.78 (0.85) 0.81 (0.85) 0.73 0.73 (0.73) 0.70 (0.80) 

i-Bias [ppm] 0.65 (0.40) 0.63 (0.40) 0.61 0.52 (0.55) 0.39 (0.33) 

Observation 

Fraction [%] 
0.65 (0.40) 57.8 (25.0) 23.4 42.5 (15.2) 63.5 (27.3) 

Daily Mean GOSAT and TCCON Data 

Na (days) 672 (356) 631 (327) 347 525 (232) 672 (395) 

a 0.83 (0.88) 1.03 (1.03) 1.06 1.03 (1.02) 0.88 (0.99) 

Bias [ppm] -0.02 (1.74) -1.15 (-1.39) 0.10 0.20 (0.00) 0.10 (-0.25) 

σ [ppm] 2.11 (1.74) 1.85 (1.67) 2.23 2.15 (2.06) 2.34 (1.92) 

R2 0.74 (0.83) 0.86 (0.89) 0.81 0.83 (0.84) 0.72 (0.84) 

r 0.78 (0.85) 0.86 (0.88) 0.78 0.81 (0.79) 0.74 (0.81) 

i-Bias [ppm] 0.94 (0.53) 0.83 (0.53) 0.71 0.65 (0.52) 0.57 (0.39) 

Source: (Oshchepkov et al.,2013) 

GOSAT soundings were collected over land within a 5 radius circle over 11 TCCON sites. The TCCON 

XCO2 data were mean values measured within ±1h of the GOSAT overpass. The statistical characteristics are: 

the number of GOSAT individual scans coincident with TCCON soundings (Nc), number of average points 

(Na) meeting the coincidence criteria, the regression slope (a), bias (Bias), standard deviation (σ), 

determination coefficient (R2), Pearson’s correlation coefficient (r), and interstation bias (i-Bias) between 

GOSAT and TCCON XCO2. Values in parentheses are derived after additional scan selection by spectral 

variability in albedo). 

In summary, remote sensing has been demonstrated as a promising tool for providing accurate 

observations of atmospheric CO2 columns and concentrations at various spatiotemporal scales. It 

is capable of enhancing our understanding of the dynamics of carbon cycle by revealing valuable 

information that can hardly be discovered by existing in situ CO2 measurements network. The 
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remote sensing observations are not perfectly accurate for being used independently or in 

combination with in situ measurements for carbon cycle science. However, progresses can be 

seen in recent studies with respect to improving the retrieval algorithms, identifying and 

quantifying the causes for error, and error correction for distributed end products, etc. As the 

retrieval methods and data processing techniques are improved, it is expected that the accuracy 

and quality of space-based CO2 observations will be more adequate for independent or combined 

analyses.  

2.4 Influential Factors 

Although CO2 amount and concentration are currently measured to reasonably high accuracy, 

cautions are needed for using these data acquired from either ground or space-based instruments. 

The CO2 concentrations near the surface are significantly influenced by transport within the PBL 

and between the PBL and the troposphere. These atmospheric CO2 transport processes are not 

simulated very accurately (Toon et al.,2009). Therefore, it is highly likely that the observed CO2 

concentration does not reflect the real distribution of sources and sinks.  

Furthermore, as for estimating the CO2 abundance/concentration through remote sensed spectra, a 

series of external factors (atmospheric and surface) influence the retrieval process. Such factors 

are mostly incorporated in the state vector that is estimated simultaneously with the XCO2, e.g. 

temperature, surface pressure, water vapor, aerosols and land albedo. The influence of these 

factors on XCO2, and the interaction among themselves are complicated. Biases in the state 

vector estimation could result in large errors in the XCO2 retrievals. In this regard fundamental 

knowledge of how these factors influence atmospheric CO2 concentrations and the retrieved 

values, (it) is necessary for the interpretation and explanation of the research results in Chapter 4. 

2.4.1 CO2 Atmospheric Transport 

Exploring where and when the uptake of atmospheric CO2 is a high research priority for 

understanding the carbon cycle and for designing verification systems to monitor the 

effectiveness of emission controls or emission reduction policies (Ciais et al.,2011). The transport 

of CO2 in the atmosphere determines the concentration with a given distribution of sources and 

sinks (Rayner et al.,1999). Information about CO2 sources and sinks can be derived from 
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variations in observed CO2 concentrations via inverse modelling with atmospheric tracer 

transport models (Gurney et al.,2002).  

As is similar to remote sensing CO2 retrieval, a forward transport model describes the dynamic 

evolution of the system, i.e. the spatial distribution of CO2 concentration at different 

spatiotemporal scales depending on the model resolution. The transport model is driven by 

external factors such as meteorological fields. An initial state of the target variable (CO2 flux) and 

associated errors are a component of the inverse problem and are required to match the spatial 

and temporal resolution of the atmospheric transport model. At last, an inverse method is applied 

to estimate the ‘real’ CO2 flux by minimizing the difference between the observed CO2 

concentrations and the simulations. The inversion of CO2 flux usually adopts a statistical method 

based on the Bayes theorem in order to seek for the optimum of a set of parameters that 

minimizes the cost function based on the numerical transport model (Tarantola,2005). The 

geostatistical approach was introduced to this field (Michalak et al.,2005) and was further 

advanced (Gourdji et al.,2008) to formulate the inversion problem differently. 

The transport of CO2 in the atmosphere shows large variations at different spatiotemporal scales, 

e.g. spatial scales of local plume spread, regional mesoscale transport and global scale, and 

temporal scales of hourly, diurnal, synoptic, seasonal and interannual cycles (Maksyutov et 

al.,2008). The flux-resolving ability of the inverse model relies significantly on the design of the 

atmospheric transport model. Transport models are expected to account for the physical and 

dynamical state of the atmosphere over a long period of time to relate fluxes and concentrations 

since CO2 is a long-lived species (Bruhwiler et al.,2005). Large-scale transport processes such as 

convection and horizontal diffusion are explicitly solved in those models. Sub-grid physical 

processes are usually parameterized for moist convection, penetrative mass flux, vertical 

diffusion, and boundary layer mixing by turbulence (Patra et al.,2003).  

A challenge for simulating atmospheric CO2 transport is how to model these transport processes 

accurately. Lagrangian and Eulerian models are used as advection schemes. Particularly, the 

application of Lagrangian modelling has experienced rapid growth over the past few years 

because it is a close simulation of the natural air flows (Lin et al.,2011). In contrast to Eulerian 

models in which the fixed grid cells are used, Lagrangian models track the movement of the air 

parcels along their moving trajectory with advantages on constraining numerical diffusion and 

adopting bigger model time steps. By using the polar coordinate system, Lagrangian models are 
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also able to avoid the problem associated with the regular-grid schemes used by Eulerian flux 

form, i.e. singularity near the poles as meridians converge and grid size becomes smaller.  

Another important feature of transport models is the PBL/ABL that determines the mixing rate of 

CO2. PBL is the lowest layer of the atmosphere and is directly related to the Earth’s surface. In 

contrary to the free troposphere where no turbulence or only intermittent turbulence takes place, 

PBL is the layer where turbulences take place with a much higher intensity, e.g. rapid fluctuations 

of wind velocity, temperature and humidity
10

. The estimation or observation of the depth of PBL 

is crucial to simulation of CO2 atmospheric transport since the turbulence dissipates with 

increased height from the surface layer through the PBL core to the PBL top or the entrainment 

layer
11

. Four main external factors determine the depth and vertical structure of PBL: the free 

atmosphere wind speed, the surface heat (more exactly buoyancy) balance, the free atmosphere 

density stratification, the free atmosphere vertical wind shear or baroclinicity.  

The spatiotemporal variability of PBL has been explored by a series of studies (Deardorff,1972, 

Moeng,1984, Moeng and Sullivan,1994, Noh et al.,2003, Zilitinkevich et al.,2007, Hu et al.,2010, 

Flaounas et al.,2011, Seidel et al.,2012, Leventidou et al.,2013). In theory, the PBL is thicker at 

lower-pressure zones, such as tropics, which leads to stronger vertical diffusion and hence lower 

diurnal variability measured by peak-to-peak amplitude. However, by comparing 25 TransCom 

(Transport Comparison Project) forward atmospheric transport models, the simulated PBL by 

some models was found thinner at tropics than at higher latitudes especially at nighttime (Law et 

al.,2008). In addition, the strength of vertical mixing does not necessarily increase with the PBL 

depth when a thick surface layer dominates the PBL. Furthermore, the daytime PBL can be 

simulated with less uncertainty while a huge uncertainty (up to a few hundred percent) can be 

encountered by nighttime PBL modelling. Evidences showed that models tend to underestimate 

nighttime concentrations (Geels et al.,2007), which means the PBL depth during nighttime is not 

resolved sufficiently, and the ability of transport models to resolve the PBL varies. This can lead 

to wide ranges in simulated diurnal variations and is thus a major source of uncertainty in 

transport models.  

                                                           
10 http://en.wikipedia.org/wiki/Planetary_boundary_layer 

11 The PBL core is between 0.1 and 0.7 of the PBL depth. The entrainment layer, also known as capping inversion layer, 

is between 0.7 and 1.0 of the PBL depth.  
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2.4.1.1 Seasonal/Interannual CO2 Cycles 

The large-temporal-scale variability of atmospheric CO2 concentration concerning emissions 

from fossil fuel combustion and exchange with the terrestrial biosphere can be modelled 

reasonably well using a variety of atmospheric transport models. Global transport models are 

applied to investigate the movement of long-lived trace gases in the atmosphere such as CO2. By 

validating with other trace gases of well-known patterns and model-to-model and model-to-

observation comparison, a wide range of global transport models have been proved adequate 

especially at lower-mid northern hemisphere where reference observations are sufficient. Global 

transport models are also capable of explaining the contribution of land biosphere and the ocean 

to the state of atmospheric CO2 concentrations (Tans et al.,1990, Fan et al.,1998, Kaminski et 

al.,1999, Baker et al.,2006a, Ciais et al.,2011, Feng et al.,2011, Schuh et al.,2013).  

The models use both online and offline methods, various sub-grid parameterization and advection 

schemes, different model resolutions and sources of meteorological data. In order to 

quantitatively understand the importance of atmospheric transport models, several initial studies 

were conducted (Keeling et al.,1989, Taylor,1989, Tans et al.,1990, Enting et al.,1995). However, 

there were considerable variations among such studies regarding the global CO2 budgets. The 

CO2 Transport Comparison Project was initiated in 1993. Under this project, 12 transport models 

were compared to examine the spatiotemporal structure of flux and concentrations, and to further 

explore the influences of fossil fuel burning and biospheric exchange (Law et al.,1996). The 

ability of the 12 models to resolve fossil fuel emissions varied slightly with model resolution, e.g. 

high-resolution models tend to introduce higher source strength. It was found that coarse-

resolution models were unable to resolve different emission sources in the same grid cell since 

sampling grid does not separate them accurately (Maksyutov et al.,2008). Exchange with 

terrestrial biosphere is a major cause of seasonal CO2 cycle especially in the northern extra-

tropics. This biospheric flux was obtained by combining local measurements of respiration and 

net primary productivity (NPP) with satellite measurements, validated by comparing the observed 

seasonality and GISS model (Fung et al.,1987). Due to a large latitudinal discrepancy of 

vegetation source and observed seasonality at mid-high latitudes in the NH, the analysis of fossil 

fuel combustion and biosphere was conducted for at least three years in order to illuminate the 

influence of initial condition.  

In the comparison study by Law et al. (1996), minor differences of overall interhemispheric 

transport were found among the 12 models based on zonal annual mean surface concentrations, 



56 

 

with  maximum concentrations around 50°N and small gradients in southern hemisphere. The 

concentration amplitudes derived by different models presented a large variability probably due 

to different vertical mixing strength modelling and disturbance of CO2 sources to the models. The 

experiment of biosphere was conducted by examining the amplitude of seasonal cycle and the 

surface annual mean response. High horizontal resolution facilitates capturing the large 

seasonality observed from the biosphere experiment while vertical model resolution and 

corresponding sub-grid process tend to contribute more to the large seasonality with respect to 

fossil fuel burning. The discrepancy of the 12 models in vertical transport was clearly observed in 

winter.  

Uncertainties on atmospheric transport modelling arise from erroneous spatiotemporal sampling, 

numerical truncation, biased initial input, wind fields and model formulation (Stohl,1998). A 

recent study examined the importance of transport model uncertainties for CO2 flux estimation 

using remote sensing measurements (Houweling et al.,2010). It was found that even though the 

simulated CO2 concentrations using different models agreed on average at the sub-ppm level, 

even modest differences can lead to significant discrepancies in inverted CO2 fluxes. CO2 flux 

estimation using remote sensing measurements not only requires high accuracy of the 

measurements, but also puts stringent requirements on the performance of atmospheric transport 

models.  

2.4.1.2 Diurnal and Synoptic CO2 Variability 

Inversions can recover CO2 fluxes at sub-regional scales with a relatively high density of CO2 

observations and adequate information on atmospheric transport in the region (Schuh et al.,2013). 

While a transport model serves well at large scales, it does not mean the model is necessarily 

qualified for shorter-timescale simulations. The ability to reliably estimate CO2 fluxes from in 

situ and space-based CO2 measurements is dependent on transport model performance at synoptic 

and shorter timescales (Patra et al.,2008). For daily to weekly timescales, the transport of CO2 

can result in a ‘contaminated’ area over 10,000 km
2
 to one million km 

2
 (Gloor et al.,2001, 

Karstens et al.,2006). In this regard, whether the estimation is a reliable and accurate 

representation of surface flux relies to a great extent on the performance of transport models at 

synoptic and shorter timescales (e.g. diurnal) (Law et al. 2006, Patra et al. 2008).  

A model intercomparison experiment was conducted by the TransCom group for exploring 

synoptic and diurnal variations of atmospheric CO2 by comparing model simulations at various 
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sites. Nine trace gases were included in the experiment with different requirements on resolution 

varying from ‘constant’ to monthly timescale. All the models are required to be driven by 

analysed meteorological data over the period of 2000-2003 (Law et al.,2006). Under the 

framework of TransCom intercomparison experiment, the simulation results based on 25 

transport models were analysed for diurnal variations and compared with CO2 observations (Law 

et al.,2008).  Four out of 25 are regional transport models including CHIMERE (Schmidt et 

al.,2001), COMET (Vermeulen et al.,2006), DEHM (Geels et al.,2002), and REMO 

(Langmann,2000)
12

. Most models tended to overestimate low-amplitude locations and 

underestimate high-amplitude locations as a result of biased vertical mixing and incorrectly 

resolved surface flux. It was not consistent across the models with respect to the diurnal 

amplitude in summer when intense photosynthesis was presented. By ruling out the impacts of 

vertical resolution, the simulation of surface transport was expected to have played a significant 

role in the discrepancies. Large summer diurnal cycles that were seen in the observations can be 

modelled accurately in high latitudes in contrast to tropics where observation sites are sparse. 

Different diurnal CO2 cycles across the models can be partly accounted for by the differences in 

sampling location and input data. CO2 diurnal variations result from a balance between 

photosynthesis and soil respiration (Pérez et al.,2012). However, daily CO2 amplitude also 

strongly depends on the seasonal vegetation activity (Haszpra et al.,2008). 

The synoptic scale has a horizontal length scale of the order of 1000km and can be defined as 1-

10 day CO2 variation (American Meteorological Society, 2007). A simple approach for analyzing 

synoptic CO2 variation is to examine the simulation-observation correlation which is more 

effective than model-model correlation. This is because synoptic CO2 variation is mostly 

transport dominated  and different models tend to simulate synoptic weather pattern in a similar 

manner (Patra et al.,2008). In addition, it is important to investigate the amplitude of variation 

based on daily average CO2 concentrations, as well as to calculate model mean by averaging the 

retrieved time series for enhancing the SNR (Williams et al.,2013).  

The 25 TransCom models (Law et al.,2008) were examined to investigate synoptic CO2 

variations based on simulated hourly atmospheric CO2 concentrations and diurnally varying land 

fluxes (Patra et al.,2008). This study emphasized the importance of correctly simulating synoptic 

                                                           
12 CHIMERE is an Eulerian mesoscale model with a resolution of 50km and boundary condition derived from LMDZ. 

COMET is a Lagrangian model with two simulating levels (the PBL and free atmosphere). DEHM has the resolution of 

150 km with 50km nested region and the initial input is provided by TM3_vfg. REMO is driven by forecasted 

meteorology and continuous tracer transport. 
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weather pattern with forward transport models for surface flux inversion especially at regional 

scale. Flux representation and model horizontal resolution had a sizable impact on the quality of 

modelled synoptic CO2 variations. The flux components had different influences on between-

model discrepancy at different time of the year. The amplitude and correlation of model-data 

variability was strongly model and season dependent. Moreover, the importance of enhancing the 

resolution of biosphere flux was highlighted. The terrestrial biosphere component contributed 

most to synoptic CO2 variation, followed by fossil fuel burning, with minor contribution by ocean 

exchange. The biosphere led to strong diurnal variability in summer hence a disagreement among 

models with respect to synoptic variation. In winter, when photosynthetic activities shift from the 

highest to flat, fossil fuel combustion becomes dominant in conjunction with biosphere 

respiration. Considering the difficulty of simulating synoptic variation due to intense biosphere 

photosynthesis, the simplicity in winter facilitates CO2 transport simulation at a synoptic 

timescale. In addition, the model-data correlation increases with the distinguishability among 

different types of flux. By examining the growth rate of model-data correlation between when 

observations lagged the model and when observations led, the shape of CO2 concentration peaks 

was identified, i.e. CO2 concentrations tended to rise rapidly and dropped off slowly on most 

occasions.  

2.4.1.3 Regional Scale 

Regional scale where the global and the local scales meet and interact is a big challenge for 

quantifying the carbon balance in both a political context and a scientific domain (Dolman et 

al.,2006). The resolution of global models is too coarse to resolve the physical processes of CO2 

at finer scales, which hinders our understanding of the regional CO2 cycles. In addition, some 

large-scale features are neglected by some models such as the concentration distribution over the 

south-western Europe (Geels et al.,2007).  

It is difficult to simulate CO2 transport at regional scale since local meteorology (e.g. the 

dominating synoptic weather system) and surface conditions (e.g. the heterogeneous surface land 

cover which is more discernible at finer scales) have a great impact on the atmospheric dynamic 

(Sarrat et al.,2007, Wang et al.,2007). In this regard, enhancing our understanding of the regional 

atmospheric transport system became a high research priority (Scott Denning et al.,2003, Chan et 

al.,2004, Geels et al.,2004, Nicholls et al.,2004, Lu et al.,2005, Pérez-Landa et al.,2007). These 

studies demonstrated the capacity of meso-scale models to correctly simulate surface flux, 
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atmospheric CO2 concentrations and the gradient and variability. Meso-scale modelling usually 

focuses on an area of 300km by 300km (Sarrat et al.,2007), taking advantage of high spatial 

resolution (e.g. 2km), better PBL and surface energy parameterizations, and more detailed local 

wind circulations. Favorable modelling results also depend on various atmospheric and surface 

factors, e.g. high insolation without clouds, high temperatures and light winds, accurate 

understanding of the boundary layer supported by sufficient measurements (radio-sounding, 

aircraft and surface measurements) (Sato et al.,2011). 

In general, meso-scale models were able to accurately simulate the surface flux, especially over 

certain land cover types such as crop sites (Corbin et al.,2010). Model-data comparisons showed 

a general agreement of simulations with the observations (Lac et al.,2013). By validating against 

aircraft measurements, the simulated interaction of CO2 spatial distribution and temporal 

evolution with complex surface fluxes was regarded highly realistic (Imasu et al.,2010). With 

higher vertical resolutions than global transport models, meso-scale models were more capable of 

resolving CO2 dispersion within the PBL (Geels et al.,2007). The CO2 concentrations increase 

with height in summer and decrease in winter due to the seasonality of vertical mixing 

mechanism and the PBL height. The uptake of CO2 and the PBL height in summer are 

approximately the annual maximum. The between-model and model-observation agreements are 

better in winter than in summer. The summer variability tends to be underestimated and the 

standard deviation of time series on an hourly or daily basis increases with model resolution. In 

addition, the variability of CO2 concentration at low-altitude sites can be well captured but the 

amplitude tends to be underestimated. In contrast, at high-altitude stations, between-model and 

model-data differences are less notable, but the diurnal cycle is likely to be too complicated to be 

well captured.  

Uncertainties on simulation at regional scales could arise from the errors in representation of a 

single location to specific grid cells or large regions (Dolman et al.,2006), the aggregation errors 

caused by the resolved fluxes that do not influence the overall concentration distribution 

(Kaminski et al.,2001), the rectification errors due to poor capacity for assessing the fluctuations 

in the height of the boundary layer (Denning et al.,1996), etc. Furthermore, the meteorological 

data are treated as prescribed input instead of a free variable (Wang et al.,2007). This degrades 

the sensitivity of models to the high-frequency disturbances and fluctuations of regional weather 

systems since regional models are intended to observe the fastest interaction involving both the 

surface and the atmosphere. A popular research topic is to examine the vertical mixing rate of 

CO2 within the PBL and its contribution to atmospheric transport simulation uncertainty. 
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Conventional diagnostics for the examination are compared to analyze vertical mixing rates, data 

assimilation system and atmospheric analyses. However, diagnostics based on boundary layer 

depth and vertical concentration gradients do not always indicate the vertical mixing strength. 

Vertical mixing rates are anti-correlated with boundary layer depth at some sites, diminishing in 

summer when the boundary layer is deepest. In this regard, the concept of boundary layer 

equilibrium was introduced to predict an inverse proportionality between CO2 vertical gradients 

and vertical mixing strength. It was found that frequently cited model-data discrepancies did not 

necessarily indicate systematic errors in atmospheric transport models (Williams et al.,2011).  

As is similar to larger-scale modelling, the boundary layer plays a crucial role in spatiotemporal 

variations in CO2 concentration. The lateral and upper boundary conditions vary with model. The 

variability of CO2 concentration increases more rapidly than global transport models when 

approaching the surface due to not only increased horizontal resolution but also better resolved 

mixing processes within PBL and higher vertical resolution (Geels et al.,2007). The discrepancy 

can be reduced to a large degree by constraining sampling time to the afternoon and sampling a 

couple of hundred meters above the surface where the signal of heterogeneous flux is diluted. The 

errors in mixing height can contribute to a large part of model-data mismatch. An optimization of 

the mixing height is capable of reducing the bias in CO2 transport to a large degree, e.g. 5-45% 

(day) and 60-90% (night) (Kretschmer et al.,2014).  

In general, CO2 concentration variability varies with spatial and temporal scales due to different 

physical processes that dominate the atmospheric transport of CO2. The transport of CO2 is more 

complex and difficult to simulate at regional scales since the heterogeneity of surface flux needs 

to be precisely captured and resolved by transport models with high spatial resolutions. The PBL 

(height/depth) is a dominant factor that influences the dispersion of CO2 within. The PBL depth 

could change dramatically between daytime and nighttime. Therefore, short-timescale modelling 

(e.g. synoptic to daily) is more challenging compared to large scales since the day-night 

discrepancy in PBL depth could lead to large biases in simulated CO2 transport. 

2.4.2 State Vector 

The state vector incorporates a series of surface and atmospheric parameters, as well as 

instrumental parameters and others in some cases. These parameters are crucial to remote sensing 

CO2 retrieval as they determine atmospheric CO2 concentrations and how CO2 concentrations can 

be accurately measured by the instruments and retrieval algorithms. The parameters of priori 
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interest in both remote sensing CO2 retrieval and atmospheric CO2 cycles are temperature, 

pressure, water vapor and aerosol. 

2.4.2.1 Temperature and Pressure 

The vertical structure of the atmosphere is characterized by the vertical profiles of temperature 

and pressure. The pressure is a cause of the weight of air within a column above the surface. The 

pressure is height dependent and can be expressed as a function of surface pressure and 

temperature according to the barometric law: 
0( ) ( ) m

Mgz

RT
P z P z e



 , where P is the pressure, z is 

the height, M is the molar mass of air (29g/mol), g is the gravitational acceleration (9.81m/g
2
), R 

is the universal gas constant (8.31 J/mol·K), Tm is the geometric mean temperature (Stubbe,1972). 

A consequence of the height dependence of pressure is that the air amount is divided in half every 

5.5 km since the number of air molecules is directly proportional to pressure. This means that half 

of the air is in the lowest 5.5km and the rest spreads above to the top of atmosphere. The height 

dependences of pressure and temperature are show in Figure 2.5.  

 

Figure 2.5 Height Dependences of Pressure (Blue) and Temperature (Red) 

Source: US Standard Atmosphere (NOAA and Force,1976) 

Temperature and pressure determine the density of CO2 which can be converted to volume 

mixing ratio. At standard temperature and pressure, the density of CO2 is around 1.98 kg/m
3
. 

Major change in temperature and pressure can also shift the state of CO2, e.g. at one atmosphere 

http://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
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(near mean sea level pressure), CO2 deposits directly to a solid at temperatures below −78.5 °C. 

Though the state shifting of CO2 rarely occurs in the atmosphere, temperature and pressure 

influence the dispersion rate of CO2 in addition to CO2 density. By exploring the relationship 

between temperature, pressure and volume, the early gas laws were developed more than three 

centuries ago and have been advanced over time. 

Boyle’s law: For a given mass of ideal gas
13

 at constant temperature, the product of pressure and 

volume stays constant (Bonnor,1956). Boyle’s Law is expressed as a mathematical equation of 

1 1 2 2PV PV  or /V k P , where P is pressure, V is volume and k is the constant.  

Charles’s law (the law of volume): For an ideal gas at constant pressure, the volume is directly 

proportional to temperature (Nurrenbern and Pickering,1987). 1 2

1 2

V V

T T
 , where T is temperature 

(K).  

Gay-Lussac’s law (the pressure law): It states that the pressure exerted on the sides of a container 

by an ideal gas of fixed volume is proportional to its temperature (Crosland,1961). 1 2

1 2

P P

T T
 . 

Avogadro’s law: The volume of an ideal gas is proportional to the number of moles present in the 

container (Dubowski and Essary,1996). 1 2

1 2

V V

n n
 , where n is the number of moles. 

Graham’s law: The gas diffusion rate is inversely proportional to the square root of density or the 

root of molecular weight (Friedman,1974).  

Combined and ideal gas law: The combined gas law or general gas equation that describes the 

relationships between temperature, pressure and volume can be expressed as 5PV k T  or 

1 1 2 2

1 2

PV PV

T T
 , and can be developed into the ideal gas law PV nRT  (or equivalent to 

PV kNT ) by incorporating the Avogadro’s law, where R is the universal gas constant, P is the 

absolute pressure, N is the number of molecules and k is the Boltzmann constant (Burdick et 

al.,2006). The ideal gas law is a good approximation for most gases under moderate temperature 

and pressure. When considering only temperature, pressure, volume and the number of molecules, 

                                                           
13 An ideal gas is a theoretical gas composed of a set of randomly moving, non-interacting point particles.  

http://en.wikipedia.org/wiki/Deposition_(physics)
http://en.wikipedia.org/wiki/Scientific_theory
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Point_particle
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this law implies that one of them is either directly or inversely proportional to another when the 

other two are kept constant. In addition, when temperature changes for a given number of gas 

molecules, either pressure or volume (or both) will change in direct proportion to temperature.  

Although the gas laws provide implications for the relationships between temperature, pressure, 

volume and others, the impacts of temperature and pressure on CO2 in the atmosphere are more 

complex. The dispersion of CO2 depends on turbulence and is conditioned by thermal 

stratification of the atmosphere (Elansky et al.,2007) especially in undisturbed synoptic 

conditions (Pernigotti et al.,2007). Daily evolution of temperature profiles corresponds to the 

evolution of the thermal stratification of the atmosphere (Pérez et al.,2012). Pressure gradients 

(that cause wind) and surface geographical characteristics contribute to the turbulence. All these 

factors together comprise the stability of the atmosphere especially the lower PBL. The more 

stable the surface layer is, the more frequently high CO2 concentrations tend to be observed 

(Pérez et al.,2009a).  

Atmospheric stability can be described by the Monin-Obukhov length which mathematically 

involves absolute temperature, potential temperature and pressure, etc. (Monin and 

Obukhov,1954). The structure of the atmospheric layer can be investigated by Brunt–Väisälä 

frequency (or buoyance frequency) (Durran and Klemp,1982). Based on the formula of these 

atmospheric indicators, wind speed and temperature profiles in the lower atmosphere were 

incorporated into these two indicators and were analyzed together with CO2 concentrations (Pérez 

et al.,2009a). Four classes of stability of the atmospheric layer were established: drainage, 

extremely stable, stable and unstable. A stratified structure was discovered for the PBL especially 

in spring and summer. The atmospheric stability and structure was differentiated between 

nighttime and daytime. A highly stable layer was observed near the ground during the night. The 

buoyance frequency increased with height during the day indicating a more stable atmospheric 

thermodynamic circumstance with lower temperature and pressure. During the night time, 

drainage was associated with very high frequencies at 40m and very low frequency from 100m, 

the lowest wind speed at 40m which decreased with height, the highest temperatures below 100m 

and very high CO2 concentrations mainly in spring. The high CO2 concentrations were associated 

with the very low dilution within a thin layer near the surface. Extremely stable situations were 

linked to moderate temperatures and the second highest CO2 concentrations in spring. The 

dilution layer was thicker than that associated with drainage. Stable situations were characterized 

by the lowest temperatures and the second lowest CO2 concentrations in summer. Unstable 
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situations were associated with the highest wind speed, superadiabatic temperature profiles below 

100m and the lowest CO2 concentrations.  

A close relationship between CO2 concentrations meteorological variables was proposed to 

establish atmospheric conditions linked to high CO2 values (Pérez et al.,2009b). Six variables 

were considered: wind speed, wind direction and temperature at one level and differences 

between them at two levels. The selection of study area ensured horizontal homogeneity where 

non-irrigated crops and grass made up the surrounding vegetation. In this study, CO2 

concentration showed a significant decrease of 25ppm in spring and 16ppm in summer when 

wind speed increased greatly during the night. The decreases of CO2 concentrations in autumn 

and winter were lower considering the same wind speed interval. A wind speed below 4ms
-1

 was 

linked to high CO2 concentrations. CO2 concentrations were sensitive to temperature in spring 

and summer during the night and in autumn and winter during the day. Higher CO2 

concentrations were associated with higher temperature in spring and summer, as well as lower 

wind speed and no prevailing direction, etc. High CO2 values during the night were observed 

when temperatures were higher than 10°C in spring and 20°C in summer. A clear inverse 

relationship between CO2 concentrations and temperatures were obtained during the day in 

autumn and winter. This is attributed to low soil-and-plant-induced convention development due 

to low temperatures. In addition, difference between temperatures at 100m and 40m was used to 

indicate the strength of vertical exchange, i.e. a positive difference corresponded to inversion 

which was associated with higher CO2 concentrations during the night.  

In terms of remote sensing CO2 retrieval, temperature and pressure cannot be ignored since the 

absorption of radiation at a given wavelength by a CO2 molecule is temperature and pressure 

dependent. The absorption by CO2 molecules generates absorption lines within the spectra of 

outgoing radiation from the Earth due to energy transition in CO2 molecules. The energy 

transition is described by the wavelength and takes the forms of rotations, vibrations and 

electronic transitions
14

. The depth of lines is described by CO2 concentration and the cross section. 

The pressure and temperature dependent cross section quantifies the efficiency of absorption at a 

given wavelength and characterizes the radiative transfer through the atmosphere.  

                                                           
14  These three types of transitions give rise to absorption of electromagnetic radiation. A CO2 molecule gains a 

quantum of rotational energy in rotational transitions and a quantum of vibrational energy in vibrational transitions, and 

is promoted to an excited electronic state in electronic transitions.  
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Errors in CO2 concentration retrieved using remote sensing observations is generally a 

combination of instrument noise, smoothing error, interference errors with non-CO2 state vector 

elements, and forward model errors (O'Dell et al.,2012). The ACOS B2.9 algorithm was tested in 

terms of its capability of correcting imperfect non-CO2 state vector elements such as temperature 

and water vapor. It was found that imperfect meteorology input did not cause additional bias to 

retrieved surface pressure and XCO2. Surface pressure was taken as an evaluation indicator as it 

is the baseline for characterizing the vertical structure of the atmosphere and a positive bias in 

surface pressure could result in negative bias in XCO2 (Oshchepkov et al.,2013). The RMS 

difference between the retrieved surface pressure and the imperfect a priori surface pressure was 

1.7hPa. The mean XCO2 difference was generally zero and the RMS difference was 0.38ppm, 

about 5% of the XCO2 random error. 70% of the variance of XCO2 was caused by the differences 

in the retrieved surface pressure. This test demonstrated the insensitivity of ACOS algorithm to 

biased input meteorology. However, errors are common in the retrieved state vector and are 

responsible for XCO2 retrieval errors for the ACOS algorithms and others.  

2.4.2.2 Water Vapor 

Water vapor is a primary non-anthropogenic GHG that accounts for the largest percentage of 

direct greenhouse effect, e.g. 36% to 66% in clear sky and 66% to 85% with clouds (Maurellis 

and Tennyson,2003). CO2 is able to cause warming and double the effect by water vapor which 

causes a ‘positive feedback’ and amplified the original warming. Human activities do not 

significantly affect atmospheric water vapor especially at local scales and the lifetime of water 

vapor is much shorter than other GHGs (typically 9 days in comparison with years). This is the 

major reason CO2 is taken as the foremost GHG. The atmospheric concentration of water vapor is 

largely dependent on temperature, e.g. from <0.01% by mass in extremely cold regions up to 3% 

in saturated air at about 32°C (Evans,2005). 

The strength of absorption by different states of H2O varies. Water vapor has the lowest 

attenuation coefficient
15

 compared to liquid water and ice for most of the spectral range from 0-

100μm. All the three forms of transition give rise to the absorption of electromagnetic radiation 

by water vapor. Rotational transition causes absorption in the FIR spectrum from 50μm towards 

the microwave region; vibrational transition results in absorption in the MID region; and the 

                                                           
15 Attenuation coefficient is a quantity that describes how easily a material or a medium can be penetrated by light, 

sound, particles, energy or other matters. 
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lowest electronic energy transition is in the vacuum ultraviolet region. In reality, the energy 

transition is more complicated and so is the absorption spectrum, e.g. vibrations are accompanied 

by rotational transitions resulting in a vibration-rotation spectrum and vibrational overtones and 

combination bands occur in the near-infrared region (Rothman et al.,1987, Gordon et al.,2007). 

Water vapor has stronger absorbing capacity and wider absorption band than other GHGs. The 

absorption by water vapor covers the visible region and the majority of the NIR region in 7 major 

bands as shown in Table 2.9.  

Table 2.9 Major Water Vapor and CO2 Absorption Bands in NIR 

Gas Center   (μm)(v(cm-1)) Band Interval (cm-1) 

Water Vapor 

2.7 (3703) 2500-4500 

1.87 (5348) 4800-6200 

1.38 (7246) 6400-7600 

1.1 (9090) 8200-9400 

0.94 (10638) 10100-11300 

0.82 (12195) 11700-12700 

0.72 (13888) 13400-14600 

CO2 

4.3 (2526) 2000-2400 

2.7 (3703) 3400-3850 

2.0 (5000) 4700-5200 

1.6 (6250) 6100-6450 

1.4 (7143) 6850-7000 

Source: http://irina.eas.gatech.edu/EAS8803_Fall2009/Lec6.pdf 

The water vapor absorption spectrum covers most CO2 absorption bands in NIR expect the 1.6μm 

which is the CO2 weak band. Therefore, as for CO2 retrieval using IR spectra (water vapor also 

absorbs MIR and FIR radiance as stated before) the interference of water vapor absorption needs 

to be considered for band selection. For instance, Saitoh et al. (2009) examined the impact of 

uncertainties in the estimates of surface temperature, surface emissivity, temperature profile and 

amounts of water vapor and ozone in the atmosphere on CO2 retrieval from the 15μm. The 

findings showed that the magnitudes of bias and random errors in retrieved CO2 concentrations 

are proportional to those of bias and random errors in the model parameters, e.g. +1 K 

temperature bias produced up to 17% positive bias in retrieved CO2 concentrations at around 200 

hPa and 10% water vapor bias produced up to 4% positive bias at around 800 hPa; ±1 K random 

errors in temperature profile led to ±4% random errors in retrieved CO2 concentrations at around 

http://en.wikipedia.org/wiki/Vacuum_ultraviolet
http://en.wikipedia.org/wiki/Rovibrational_coupling
http://en.wikipedia.org/wiki/Overtone
http://en.wikipedia.org/wiki/Near-infrared
http://irina.eas.gatech.edu/EAS8803_Fall2009/Lec6.pdf
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800 hPa and ±10% random errors in water vapor profile produced ±1.5% random errors at around 

800 hPa (Saitoh et al.,2009).  

The CO2 retrieval errors due to water vapor absorption can be constrained by analyzing the NIR 

spectra for estimating CO2 concentrations near the surface. Most water vapor exists in the PBL 

(typically less than 2km depending on the geolocation). In this regard, the 14μm water vapor 

absorption band can be used for obtaining CO2 information at altitudes above 2km as the GOSAT 

instrument (TANSO-FTS) was designed. The 1.6μm weak band and 2.0μm strong band are used 

for CO2 concentration estimation near the surface. The 1.6μm band rules out the interference by 

the water vapor and most other GHGs. The 1.4μm saturated water vapor absorption band can also 

be used for detecting high thin cirrus cloud (Heymann et al.,2012a, Heymann et al.,2012c). In 

clear sky, most radiation at this wavelength is absorbed by water vapor in the lower atmosphere 

and few signals can reach the space-based sensors; however in the presence of cirrus clouds 

above the water vapor, a significant amount of radiation is backscattered to space and received by 

the sensors.  

2.4.2.3 Aerosols and Clouds 

Aerosols are solid particles or liquid droplets suspended in the atmosphere. Typical aerosols are 

haze, dust, water droplets, soot and fumes in car exhaust, particulate air pollutants and smoke. 

The particle size is a key property to characterizing aerosols. The diameters of aerosols are mostly 

smaller than 1μm and larger particles range from 1μm to 15μm. Aerosol size distribution is used 

for characterizing the size of a mixture of aerosols in the atmosphere which categorizes aerosols 

as different classes according to predefined size intervals (Tegen and Lacis,1996). Furthermore, 

the size of aerosols depends on relative humidity since aerosol particles grow when absorbing 

water vapor. 

The interaction between electromagnetic radiation and spherical aerosol particles ( 22 r  ) is 

described by the Mie theory (Steinke and Shepherd,1988). These spheres are characterized by a 

real part and an imaginary part that describes the strength of radiation absorption and scattering. 

The wavelength dependence of aerosol extinction coefficient is less precipitous than Rayleigh 

scattering and is typically proportional to
a

, where a is the Angstrom exponent which is 
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typically 0-1.5. For strong absorbing aerosols the single scattering albedo
16

 is low while for non-

absorbing aerosols the single scattering albedo is 1.  

A high environmental priority is monitoring the concentrations of aerosols especially in urban 

areas (Retalis et al.,2010). Major in situ techniques for measuring aerosols include Aerosol Mass 

Spectrometer (AMS), Differential Mobility Analyzer (DMA), Aerodynamic Particle Sizer (APS), 

Wide Range Particle Spectrometer (WPS), Micro-Orifice Uniform Deposit Impactor(MOUDI), 

Condensation Particle Counter (CPC), Epiphaniometer and Electrical Low Pressure 

Impactor (ELPI). Remote sensing approaches for aerosol measurement typically use sun 

photometer and LIDAR.  

Considering various aerosol sizes and properties, radiation with a wide range of wavelength can 

be absorbed and scattered by different types of aerosols. A close relationship between aerosols 

and visibility has been identified in extensive studies (Dzubay et al.,1982, Appel et al.,1985, Tsai 

and Cheng,1999, Eidels-Dubovoi,2002, Hand et al.,2002, Bäumer et al.,2008, Retalis et al.,2010). 

By computing the dry light scattering coefficient, it was suggested that the sulfate aerosols were 

the dominant contributor to the degradation of visibility in the Big Bend National Park U.S. in 

1999 (Hand et al.,2002). In situ measurements of the visibility, aerosol size distributions, aerosol 

scattering coefficients and meteorological variables such as relative humidity were obtained over 

Southwest Germany obtained during 5 consecutive days. A distinct decrease in visibility was 

detected linked to a significant increase of PM10 and aerosol optical thickness (Bäumer et 

al.,2008).  

In addition to scattering effect in the visible spectra, aerosol was also found capable of causing 

scattering in the IR spectra. This could compromise the accuracy of remote sensing inversions 

that use IR radiance such as CO2 retrievals (Fraser and Kaufman,1985, Kaufman,1989, 

Ackerman,1997, Kaufman et al.,1997). The aerosol effect on remote sensing is expressed as a 

function of aerosol optical thickness (Fraser et al.,1977, Gordon et al.,1983) and the absorption is 

another important parameter it has been observed to vary several fold (Waggoner et al.,1981). As 

stated in previous sections, biased estimation of aerosol optical thickness or depth could result in 

significant errors in XCO2 retrieval as the optical path length becomes inaccurate, e.g. 

overestimated AOD causes negative bias in XCO2. The instrumentations and retrieval algorithms 

                                                           
16 The single scattering albedo is the ratio of scattering coefficient to extinction coefficient. 
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http://en.wikipedia.org/w/index.php?title=Wide_Range_Particle_Spectrometer&action=edit&redlink=1
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http://en.wikipedia.org/w/index.php?title=Electrical_Low_Pressure_Impactor&action=edit&redlink=1
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have been advanced in terms of accurately accounting for the scattering effects of aerosols as well 

as thin cirrus cloud.  

In meteorology, a cloud is a visible mass of liquid droplets or frozen crystals made of water or 

various chemicals suspended in the atmosphere above the surface of a planetary body 

(Roosevelt,2008). Cloud is a major factor that affects the climate. It reflects the solar energy back 

to space which results in surface cooling while it also prevents the thermal emissions from 

escaping the earth which results in warming. 

The impact of clouds on remote sensing XCO2 retrieval is complex. It depends on the macro and 

micro-physical properties of the clouds. Incident solar radiance is partially reflected by the clouds 

and the strength of reflectance depends on the albedo and altitude of the clouds. The rest travels 

through the clouds as being scattered along the path. The reflectance and transmittance also rely 

on the composition of the clouds. For instance, on the one hand, when the clouds are 

contaminated by aerosols such as soot over urban areas, the reflectance gets weaker; on the other 

hand, growing liquid droplets and smaller particles due to the contamination enhances the 

reflectance. Therefore, a cloud screening procedure is undertaken for most space-based 

observations prior to distribution. Further filtering strategies are applied by different research 

groups and institutions based on the characteristics of the retrieval algorithms.  

2.5 Summary 

This chapter introduced the background of this research, familiarized the readers with the space-

based instruments and algorithms for estimating CO2 in the atmosphere and summarized the key 

factors that influence atmospheric CO2 concentrations and CO2 retrievals. Firstly, Section 2.2 

discussed climate change and its effects on the environment. A close relationship between global 

warming and anthropogenic GHG emissions was presented. Mitigations against climate change in 

the energy sector were called for with concerted efforts at various levels. Ontario’s electricity 

system was introduced in terms of its development, changes in the fuel mix over time, GHG 

emissions reduction and effective clean energy policies. The phasing-out of coal-fired power 

generation across the province raised research opportunity to monitor the change in CO2 

emissions and their effects on atmospheric CO2 concentrations from space.  

Secondly, Section 2.3 provided an overview of spectral absorption by CO2 which is the 

fundamental physical basis for remote sensing atmospheric CO2 observations. Then various CO2-

http://en.wikipedia.org/wiki/Meteorology
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Liquid
http://en.wikipedia.org/wiki/Drop_(liquid)
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Chemical
http://en.wikipedia.org/wiki/Atmosphere
http://en.wikipedia.org/wiki/Planet
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relevant space-based instruments were introduced with respect to their spatiotemporal and 

spectral specifications, spectra usage and applications in practice. As the data source that supports 

this research, GOSAT (TANSO-FTS) CO2 data and associated algorithms were discussed in 

detail. There is no firm conclusion on which algorithm performs best since they have different 

technical focuses and practical concerns and they have been validated and advanced continuously. 

Considering the data access and the completeness of CO2 profiles and relevant parameters, the 

ACOS B3.3 dataset was selected as the data source for this research.  

Lastly, Section 2.4 summarized several key meteorological parameters that one should take into 

account for interpreting and analyzing the measured or retrieved CO2 concentrations. These 

parameters or derivatives (temperature, pressure, water vapor and aerosols) are incorporated in 

the state vector of most retrieval algorithms. The CO2 retrieval errors are inevitable due to 

random errors in these parameters. The impact of temperature and pressure rests on changing the 

strength of absorption (absorption cross section) of radiation at a given wavelength by CO2. 

Water vapor interferes in the estimation of CO2 absorption at specific wavelengths. The influence 

of aerosols and cloud is that they can change the optical path length by reflecting and/or 

scattering radiations and consequently the CO2 concentration estimations would be biased. The 

following Methods chapter describes the approach design for obtaining column and partial 

column CO2 information and the strategy used for data analysis. 
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Chapter 3: Methods 

3.1 Introduction 

This study is to estimate the capability of remote sensing CO2 data (CO2 concentrations and CO2 

abundances) to reflect surface CO2 emissions from Nanticoke coal-fired generating station. 

Column and partial column CO2 information are generated and used based on the CO2 full 

physics dataset. Monthly/seasonal variation in regional atmospheric CO2 in Hamilton is explored. 

Another focus of this study is to examine the impacts of external factors (surface and atmospheric 

parameters) on the use of CO2 data to estimate CO2 enhancement by fossil fuel combustion. 

The objective of this chapter is to (1) describe the overall research planning including proposed 

approaches, assumptions and reliability issues, (2) introduce the collection of the data, (3) 

examine the importance and limitations of the approaches, and (4) explain the approaches for data 

analysis on CO2 enhancement estimation and external influence evaluation.  

3.2 Research Planning 

It is widely accepted that the lower part of atmosphere is mostly related to CO2 emissions from 

the surface. As reviewed in Chapter 2, in CO2 sources and sinks studies, space-based and ground-

based CO2 information for the full atmospheric column are used independently and the in situ 

CO2 measurements on specific vertical levels are embedded in a CO2 sources and sinks inversion 

model. However, CO2 information about the lower part of atmosphere is rarely used 

independently for certain technical reasons, e.g. CO2 vertical profiles are not available or there 

are concerns about the accuracy of the CO2 data of lower atmosphere.  

This research examines the partial-column CO2 concentrations and CO2 abundances, then 

conducts a comparison with column CO2 information respecting their relationship with Nanticoke 

GS output, as well as their representations to the seasonal variations of CO2 in Hamilton. The 

retrieval of partial-column CO2 involves 6 procedures as shown in Figure 3.1: (1) extraction of 

target observations from ACOS Build3.3 dataset, (2) identification of background areas, (3) 

filtering of background observations, (4) extraction of relevant CO2 information and useful 
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parameters, (5) calculation of partial-column CO2 information based on the relevant parameters, 

and (6) calculation of CO2 enhancement based on target and background observations. The 

selection of the ACOS CO2 dataset among different data sources (Table 2.7 and Table 2.8) 

considers the data accessibility and the number of observations over the target and background 

areas. 

 

Figure 3.1 The Workflow for Partial-Column CO2 and XCO2 Retrieval 

The calculated CO2 enhancements are fitted with generating outputs that represent instant or early 

emission signals using different regression models (linear and non-linear). The observation-model 

differences are then related to the surface and atmospheric parameters. The uncertainty on surface 

CO2 information is also taken into account. The influences of the external factors are explored by 

examining the pattern of association between the model residuals and one specific influential 

factor. In addition, a multivariate analysis is carried out to investigate the external influence, 

which assumes that the relationship between model residuals and influential factors can be linear, 

pure quadratic, interactions or full-quadratic.   

ACOS B3.3 CO2 dataset 

Extract Dates of Target Soundings Extract XCO2, CO2 Profile, Dry Air 

Profile, Pressure Weighting Function 

and Pressure Profile 

Identify Background Area on a Date, 

One Day before and after 

Calculate the Number of Background 

Soundings 

<3 >=3 

End: Sounding on this Date is 

Discarded 

Calculate XCO2 and CO2 for Different 

Number of Layers (3,4,5,6,7,8,9,10 and 

11 layers from surface up). Calculate 

CO2 for the Full Column 

Calculate the Difference of the Values 

above between Target Soundings and 

Mean of Background Soundings 
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Figure 3.2 shows the location of the observations (in Nanticoke and Hamilton) and the potential 

background area (the green shadowed area). 

 

Figure 3.2 Location of Target and Background Areas 
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3.2.1 Method  

3.2.1.1 Extraction of Target Soundings 

A target sounding is one whose FOV (10km by 10km) covers Nanticoke GS. Minor difference in 

sounding geolocation is permitted due to errors in raw data calibration. 

The ACOS data are in HDF5 format and basic data reading examples are given at the ACOS 

website. The dates with target soundings available are then captured and recorded.  

3.2.1.2 Identification of Background Area 

Combustion of fossil fuel is regarded as a major contributor to the increasing atmospheric CO2 

concentration; whereas the influence of biosphere cannot be ignored (ocean-atmosphere exchange 

is not considered in this study).  

In order to reduce, if not to completely eliminate, the biosphere influence, the ‘background area’ 

is introduced and defined as an area ( within a certain distance from the target area) where the 

fossil fuel flux is zero (or approximately zero) and the biosphere flux equals (or approximately 

equals) to that of the target area. It is necessary to note that in reality an ideal background area 

(with zero fossil fuel flux and identical biosphere flux) are likely unavailable under certain 

circumstances, e.g. a region with a complicated distribution of land use types and fossil fuel 

sources that cannot be resolved by the flux data used.  

In this regard, criteria are indispensable to the identification of background area with 

approximately zero fossil fuel flux and approximately equal biosphere flux to that of target area: 

 Fbackground<= Ftarget/100; and 

 |Btarget-Bbackground|<=| Btarget |/100. 

where Fbackground and Ftarget are fossil fuel fluxes for the background area and the target area; Btarget 

and Bbackground are biosphere fluxes for the target area and the background area. Since biosphere 

flux could be either positive or negative, an absolution calculation is conducted for biosphere flux 

criterion.  
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The area where the identification of a background area is implemented is a grid (11 degree by 11 

degree) centered to the cell where Nanticoke GS is located. The temporal range is from one day 

before to one day after a target date since all potential background soundings within 11 degree 

span of longitude may not be made in a single day. Minor changes in location and shape of the 

background areas are accepted since the extraction of fossil fuel flux and biosphere flux are 

associated with the time of soundings and it is most likely that the fluxes vary with time. In order 

to determine the minimum number of observations to qualify a potential background area, two 

grids (3 degree by 3 degree) are compared and analyzed as introduced in Section 4.3. 

3.2.1.3 Filtering of Background Soundings 

On one hand, a low number of soundings are likely to misrepresent the CO2 information in the 

background area since the regional CO2 sources and sinks could be highly complex; on the other 

hand, the number of satellite scans is likely insufficient at high latitudes. In this respect, an 

appropriate threshold on the number of background soundings is essential to ensure both reliable 

data preparation for subsequent calculations and the number of observations to process. 

The threshold is determined by comparing two areas at mid latitudes in North America. These 

two areas are selected based on two principles: (1) the sums of fossil fuel flux and biosphere flux 

for each cell are well distributed in each area and (2) the overall sums of fossil fuel flux and 

biosphere flux are comparable between the two areas. 

Furthermore, the differences of CO2 mixing ratios and/or CO2 abundances on 111 days are 

calculated. Basic statistical analysis on the relationship between the differences and the numbers 

of soundings is carried out to assist in determining the threshold on the number of background 

soundings. The results of area comparison are described in the next chapter. 

3.2.1.4 Extraction of Relevant Information 

Upon the capture of target sounding and the selection of background soundings, a number of 

items are retrieved from each HDF5 file to calculate partial-column CO2 information and proceed 

with data analysis. These items include: 

 Column XCO2 and uncertainties; 

 CO2 profiles (XCO2 on each level) and uncertainties; 
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 Pressure profiles (pressure on each level); 

 Dry air profiles (Dry air thickness for each layer); and 

 Pressure weighting function 

3.2.1.5 Partial-Column CO2 Information Retrieval 

It is critical to determine the height of the boundary of a partial column that is most capable of 

capturing signals from surface CO2 emissions. Additionally, the variance in local physical and 

meteorological conditions among the target sounding and background soundings should be 

watched closely, specifically the difference in surface altitudes and discrepancy in surface 

pressures and vertical pressure intervals; thus an identical environment respecting particular 

factors needs to be ensured for comparing the target and backgrounds. Moreover, XCO2 is the dry 

air mole fraction of CO2 in the atmosphere; however, it is the CO2 abundance that directly relates 

to the surface CO2 emissions. Taking this into consideration, a comparison between XCO2 and 

CO2 needs to be done. 

The ACOS B3.3 algorithm partitions the atmosphere into 19 layers (20 levels) from the surface to 

near the top of atmosphere (TOA). The pressure intervals between every two adjacent levels are 

approximately equal. According to Standard Atmosphere of International Civil Aviation 

Organization (ICAO) 1964 for the altitudes to 32km, the relationship of pressure and temperature 

with altitude is described in Table 3.1. 
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Table 3.1 Change of Pressure and Temperature with Altitude (ICAO, 1964) 

Altitude (gpm) Temperature (℃) Pressure (mb) Altitude (gpm) Temperature (℃) Pressure (mb) 

-400 17.6 1062.2 7400 -33.1 388.0 

-200 16.3 1037.5 7600 -34.4 377.1 

0 15.0 1013.3 7800 -35.7 366.4 

200 13.7 989.5 8000 -37.0 356.0 

400 12.4 966.1 8200 -38.3 345.8 

600 11.1 943.2 8400 -39.6 335.9 

800 9.8 920.8 8600 -40.9 326.2 

1000 8.5 898.7 8800 -42.2 316.7 

1200 7.2 877.2 9000 -43.5 307.4 

1400 5.9 856.0 9200 -44.8 298.4 

1600 4.6 835.2 9400 -46.1 289.6 

1800 3.3 814.9 9600 -47.4 281.0 

2000 2.0 795.0 9800 -48.7 272.6 

2200 0.7 775.4 10000 -50.0 264.4 

2400 -0.6 756.3 10200 -51.3 256.4 

2600 -1.9 737.5 10400 -52.6 248.6 

2800 -3.2 719.1 10600 -53.9 241.0 

3000 -4.5 701.1 10800 -55.2 233.6 

3200 -5.8 683.4 11000 -56.5 226.3 

3400 -7.1 666.2 11500 -56.5 209.2 

3600 -8.4 649.2 12000 -56.5 193.3 

3800 -9.7 632.6 12500 -56.5 178.7 

4000 -11.0 616.4 13000 -56.5 165.1 

4200 -12.3 600.5 13500 -56.5 152.6 

4400 -13.6 584.9 14000 -56.5 141.0 

4600 -14.9 569.7 14500 -56.5 130.3 

4800 -16.2 554.8 15000 -56.5 120.5 

5000 -17.5 540.2 15500 -56.5 111.3 

5200 -18.8 525.9 16000 -56.5 102.9 

5400 -20.1 511.9 17000 -56.5 87.9 

5600 -21.4 498.3 18000 -56.5 75.0 

5800 -22.7 484.9 19000 -56.5 64.1 

6000 -24.0 471.8 20000 -56.5 54.7 

6200 -25.3 459.0 22000 -54.5 40.0 

6400 -26.6 446.5 24000 -52.5 29.3 

6600 -27.9 434.3 26000 -50.5 21.5 

6800 -29.2 422.3 28000 -48.5 15.9 

7000 -30.5 410.6 30000 -46.5 11.7 

7200 -31.8 399.2 32000 -44.5 8.7 

 

Generally, the pressure intervals for target and background soundings range from 4500pa (45mb) 

to 5000pa (50mb). As shown in Table 3.1, the average ratio of altitude change to pressure change 

under 5km altitude is 10.57 m/mb (absolute value), which means the average thickness of layer 

under 5km is approximately 500m. And one should note that the thickness of layer increases with 

height. 
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In terms of using remote sensing CO2 data to monitor or estimate surface CO2 emissions, there is 

not a solid conclusion on how many layers a partial column of atmosphere should take the form 

of; in another word, how high the boundary of the partial atmosphere is. Therefore, in this study, 

partial columns with different numbers of layers are calculated simultaneously and analyzed. The 

number of layers ranges from 3 to 11, corresponding to the height of column from 1200m to 

5500m approximately.  

In order to retrieve CO2 information for a partial column with a given number of layers, one 

should be acquainted with the ACOS B3.3 retrieval algorithm that was discussed in the previous 

chapter. Figure 3.3 shows the pressure system defined by ACOS B2.9 algorithm, in which the 

entire column of atmosphere is partitioned into 20 layers from 1050hpa to 0hPa.  

 

Figure 3.3 ACOS B2.9 Pressure System 

Source: C. W. O’Dell et. al.: ACOS CO2 retrieval algorithm 

Here pi and ui denote the pre-defined pressure and CO2 volume mixing ratio at level i, i=1,2…N.  

The calculation of column XCO2 is given by equation Eq. 3.1  (O'Dell et al.,2012):  

1

1
2 1

1

( )

CO

N

i i

i

N

i i

i

cu p

X

c p


















         (Eq. 3.1) 

where u is the dry air mole fraction of CO2, and the subscript i indicate layer bounded by pressure 

level pi and pi+1, and the last layer is bounded by level pN-1 and surface level pS. ip  is the 
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pressure difference of two adjacent levels, c is the density of dry air per unit pressure given by 

equation Eq. 3.2 (O'Dell et al.,2012): 

1

dry

q
c

gM


         (Eq. 3.2) 

where q is humidity, g is gravity acceleration and Mdry is molar mass of dry air. It is assumed that 

c varies slightly and linearly within a layer, thus XCO2 is reformed as: 
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and denotes the pressure weight of dry air for layer i. The pressure weighting function on each 

level is then given as a function of h’: 
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   (Eq. 3.5) 

where fi relates the XCO2 at the center of a layer to that of two bounding levels, by which the 

XCO2 of a layer is described as: 

1(1 )i i i i iu f u f u          (Eq. 3.6)  

As for the surface layer, the XCO2 is in the form of: 

 1(1 )S S N S Nu f u f u        (Eq. 3.7) 

It is critical to note that the ACOS CO2 retrieval algorithm assumes that CO2 concentration varies 

linearly with pressure, such that 
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Note: The 8 equations above are cited from (O'Dell et al.,2012) corresponding to A1 to A8 

respectively. 

The ACOS B3.3 algorithm has been modified from B2.9 regarding the pressure levels, i.e. the 

atmospheric column starts from near-zero hpa instead of TOA; the surface level overlaps with 

level N which means the column ends with the surface level; and the column is always parted in 

19 layers bounded by 20 levels with constant pressure interval through the whole atmospheric 

column. Therefore, Eq. 3.5 is simplified as: 
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   (Eq. 3.9) 

Considering the pressure weighting function h  has been extracted from the HDF5 files, the 

pressure weights for each layer can be calculated by inversing Eq. 3.9: 
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    (Eq. 3.10) 

As stated, the B3.3 algorithm assumes that the CO2 concentration varies linearly with pressure 

and c in Eq.3.2 varies slowly and linearly with pressure within a layer. Taking this into account, 

the XCO2 in Eq.3.3 thus can be expressed as a function of pressure weighting function and dry air 

mole fraction of CO2 on levels: 
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So far, we are able to calculate partial-column CO2 dry air mole fraction with any given number 

of layers; however, before doing so one must recalculate ih  for the partial column and the new 

pressure weighting function newh  should be normalized prior to use. In addition, CO2 abundances 

are also available by multiplying the partial column XCO2 and dry air abundances. 

Importantly, attentions are needed for the physical and meteorological difference between the 

target site and background areas. It is highly likely that the pressure spans and dry air abundances 

etc. are different for partial columns with the same number of layers among different soundings. 
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In addition to calculating the partial column CO2 information with a given number of layers, the 

background partial columns are adjusted to the target column in two possible ways as shown in 

Figure 3.4. 

 

Figure 3.4 Different Pressure Systems of Target Sounding and Two Background Soundings 

Assuming that pi, p
B1

i and p
B2

i are different which normally is true, the objective is to compare 

target and background soundings in the same pressure span where the pressure span of the target 

sounding is taken as the standard. Here we take partial columns with 3 layers for example to 

illustrate how background soundings are adjusted to the target sounding. 

Assuming that the pressure weighting function for the whole column has been converted to 

pressure weights of each layer 1' Bh  and 2' Bh  for background sounding 1 and 2 respectively, the 

adjustment is implemented differentially in two situations: (1) 1

3 3

B

N Np p   for background 

sounding 1, and (2) 2

3 3

B

N Np p  for background sounding 2. 

As for background sounding 1, the pressure weights on the five levels ( 1Bh ) and XCO2 on level 

pN-3 (
1B

Xu ) need recalculating. The pressure weights for the four low layers are taken from 1' Bh  

to generate 1'' Bh . 

Formulated by Eq. 3.5, 1Bh is expressed as Eq. 3.12. 
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According to Eq. 3.6 and Eq. 3.7, the XCO2 on a pressure level can be acquired from the 

pressures and XCO2 on two bounding levels by means of linear interpolation, thus 1B

Xu  can be 

calculated by Eq.3.13. 

The partial column XCO2 for background sounding 1 (from pN-3 to p
B1

S) is now available using 

Eq.3.11. 

As for the calculation of partial column CO2 abundances, the density of dry air per unit varies 

slowly and linearly over any given layer. However, the gradient is not provided in the HDF5 files. 

In order to obtain the dry air abundances from pN-3 to p
B1

S, in this study we assume that the 

gradient is close to 0 so that the dry air abundances for a part of layer is calculable by linear 

interpolation. 
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   (Eq. 3.12) 

where dp denotes the pressure interval of background sounding 1 and dofp equals to absolute 

difference between pN-3 and p
B1

N-3. 
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X N N
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
      (Eq. 3.13) 

The calculation of partial column CO2 information for background sounding 2 is conducted in a 

similar manner. The pressure weights for the three low layers are taken from 2' Bh  to generate

2'' Bh . Thus 
2B

ih and 2B

Xu are expressed as: 
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   (Eq. 3.14) 

and  2 2 2

2 3

B B B

X N N

dofp dp dofp
u u u

dp dp
 


     (Eq. 3.15) 

where dofp denotes the absolute difference between pN-3 and p
B2

N-3.  

The strategy for retrieving CO2 information of a partial column with a higher number of layers 

(N>3) is the same. See Eq. 3.16 and Eq. 3.17. One should note that all recalculated pressure 

weighting functions for partial columns should be normalized before used for calculating partial 

column CO2 dry air mole fraction. 
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  (Eq. 3.16) 

For a background sounding whose partial column pressure span with N layers is lower than that 

of the target sounding, where dofp is the absolute pressure difference between target and 

background soundings, '' Bh  consists of the last N+1 elements of the recalculated pressure 

weights for layers.  
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   (Eq. 3.17) 

For a background sounding whose partial column pressure span with N layers is higher than that 

of the target sounding and '' Bh  consists of the last N elements of the recalculated pressure 

weights for layers. 

It is critical to mention that the absolute pressure difference between the target and background 

soundings is examined prior to calculation. Eq. 3.16 and Eq. 3.17 are formulated for the situations 

when the absolute pressure difference is smaller than the pressure interval of background 

soundings. For the cases when the absolute pressure difference is higher than one pressure 

interval, N=N+1 when background pressure span is lower than that of the target sounding and 

N=N-1 when background pressure span is higher. N=N+2 or N=N-2 when the absolute pressure 

difference is higher than twice the pressure interval of background soundings and so forth. 

Considering that the maximum number of layers for a partial column is 11 in this study, the 

absolute pressure difference does not exceed twice the pressure interval of background soundings. 

Furthermore, the calculation of dry air quantity and CO2 abundances changes correspondingly. 

3.2.2 Assumptions and Reliability Issues 

This approach described in 3.2.1 follows and extends the assumptions from the ACOS B3.3 

algorithm. In terms of retrieving pressure weighting function and calculating partial column CO2 

information, two assumptions are adopted by B3.3 algorithm: (1) CO2 concentration varies 

linearly with pressure; and (2) the density of dry air per unit pressure varies slowly and linearly 

over any given layer.  

Assumption (1) is transformed from the assumption in another retrieval algorithm for the OCO 

mission (Connor et al. 2008), i.e. the CO2 concentration varies linearly in log pressure. According 

to Chris O’Neil who is the key developer of ACOS B3.3 algorithm, different interpolation 
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schemes were performed as a validation test, and the simple linear interpolation always 

performed plenty well for the ACOS research purposes. The differences with other interpolations 

are as tiny as 0.01 ppm to their collection.  

Considering that the dry air quantity for a portion of a layer is indispensable to the calculation of 

partial column CO2 information with a standardized pressure span and that the gradient and initial 

state of the density of dry air per unit pressure are not available from the retrieved results, the 

proposed approach in this study further assumes that the density of dry air per unit pressure stays 

constant over any given layer. This assumption based on assumption (2) is taken as appropriate 

and approved by the ACOS team.  

The reliability of this approach is considered on four aspects. The first is the accuracy of the 

ACOS CO2 data. As we know, the lower atmosphere is where the transportation of CO2 occurs 

most intensively such as dispersion and convention and it is less ‘transparent’ than upper 

atmosphere due to clouds and aerosols etc. With this respect, the accuracy of CO2 information for 

the lower layers or levels is questionable to some extent and needs examination when being used.  

The second regards the designed strategy for selecting background soundings. By designing a 

‘background area’ scenario, the objective is to ‘extract’ the CO2 enhancement caused by fossil 

fuel combustion and to rule out the CO2 either increased or decreased by the biosphere. However 

in practice, errors are very much likely to exist on the fossil fuel and biosphere fluxes between an 

ideal background area and a real one. It is expected that the impact of these errors are ignorable 

compared to CO2 enhancement (concentration and/or abundance). 

Even though fossil fuel combustion and biosphere-atmosphere exchange along with air-ocean 

transport are playing the most significant role in determining the CO2 concentrations at various 

scales, there are a number of other factors that should be taken into account when one studies the 

local CO2 concentration especially that near the surface. Therefore, the last reliability issue is 

about the influence of weather or meteorological factors such as wind speed, temperature, 

pressure, visibility, humidity and synoptic events.  

The last is about the magnitude of biosphere flux and surface CO2 emissions and the scale for 

analysis. The biosphere flux values (obtained from CarbonTracker 1° flux data) range from -6.4e-

05 to 6.8e-05 mol/m
2
·s for the area (35°N to 50°N, -90°W to -70°W) in 2010, corresponding to -

2.30e07 to 2.45e07 mol/(100km
2
)·h. As for the CO2 emissions from the power plant, the typical 

range of emission rate for pulverized coal power plant without CO2 capture is 722 to 941 kg 
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CO2/MWh (Rubin et al.,2004). The generating output on the dates of study from Nanticoke GS is 

0-3600MW. Taking 795kg CO2/MWh (the representative value defined in Rubin et al. 2004) as 

the emission rate for Nanticoke GS, the generating output can be transformed to a flux value of 0-

6.5e07 mol/(100km
2
)·h, assuming the size of CO2 source equals to the size of GOSAT FOV 

(100km
2
). The biosphere flux and the power plant CO2 emissions have the same order of 

magnitude, which also indicates that the scale of GOSAT FOV is proper for the comparison 

between biosphere and fossil fuel fluxes. 

3.3 Data Collection 

This study uses five types of data including power generating output, fossil fuel and biosphere 

fluxes, meteorology information and CO2 retrievals. See Table 3.2 for data sources and 

descriptions.   
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Table 3.2  Data Sources and Data Description 

Data Type Data Access Data Description 

Power 

Generating 

Output 

IESO IESO archives the hourly outputs and capacities of its associated power plants. 

Historical data are available upon request. 

Fossil Fuel and 

Biosphere 

Fluxes 

CarbonTracker, 

NOAA 

CarbonTracker provides fossil fuel, biosphere, wildfire and ocean fluxes and 

estimates CO2 mole fractions owing to each these fluxes. The spatial resolution 

is 1 degree on a global scale. Three-hourly and monthly fluxes are both 

distributed. In particular for fossil fuel flux, 4 inversions using the "Miller" 

emissions, and 4 using the ODIAC emissions are performed separately and the 

fluxes CarbonTracker distributes are the mean of these two emissions products. 

The fluxes open to the public are updated to the end of 2010. Additional data 

are available through communication. 

Meteorology Environment 

Canada 

Information about temperature, humidity, wind speed, wind direction, visibility, 

pressure and general weather description observed from weather stations on an 

hourly basis are available from Environment Canada 

Meteorology-

PBL Depth 

NARR, ESRL The PBL depth data are retrieval from NCEP North American Regional 

Reanalysis, Earth System Research Laboratory. 

CO2 Retrievals ACOS Task, 

NASA 

ACOS CO2 dataset starts with Build 2.10 and is up to Build 3.4 presently. 

ACOS L2S products for B2.9 and B3.3 that contain full physical retrievals are 

publicly available through the ACOS website. Files are in the format of HDF5. 

Applicable data processing tools include IDL, Python and MATLAB.  

The ACOS Task involves a number of institutions: JPL NASA, California 

Institute of Technology, and Colorado State University. The ACOS Task is 

terminated in September 2012 for resetting the OCO-2 Team and preparing for 

the OCO-2 mission. The B3.3 data package was released in June 2013 by the 

OCO-2 Team.  

 

It is worth mentioning that three-hourly flux data are used in this study. The time of spacecraft’s 

overpass is approximately 18:30 EST. Considering that the local CO2 concentration at a specific 

point in time is most likely to be related to the fluxes for a period of time backwards, the sixth 

three-hour fluxes are used instead of the seventh. 
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3.4 Importance and Limitations 

This study carries out partial column CO2 retrievals and compares them with column CO2 

information with respect to the relationship with surface point emissions. In the meanwhile, the 

ability of remote sensing CO2 information of reflecting monthly or seasonal variations of regional 

CO2 is investigated. As a case study of Nanticoke GS and Hamilton, findings are expected to 

provide useful information about the usage of partial column CO2 data at a point or regional scale, 

and provide insight for future studies on CO2 sources and sinks using remote sensing CO2 data. 

However, one should be aware of the limitations of this study and that further efforts for 

improvement are needed. The coverage of spacecraft scans at high latitudes is not as sufficient as 

at low latitudes and the target observation mode is not applied for the study area. Consequently, 

in this study we use one single sounding to represent a point CO2 emitter on the ground. More 

importantly, the point CO2 source represented by one sounding is compared with a background 

area represented by a number of soundings. Therefore, the confidence in some of the outcomes 

and corresponding conclusions is highly likely to rely on the quality of the target sounding. 

As for the concept of partial column in this study, it refers to a number of consecutive layers 

starting from the surface. However, a partial column with a few layers starting from any given 

pressure level is not considered. Future studies are encouraged to evaluate the performance of 

partial column CO2 information in a more comprehensive manner. 

Another limitation lies in the identification of background area and the flux data used for the 

identification. The spatial resolution of the flux data used in this study is 1 degree by 1 degree 

which is not qualified for resolving the background area on a smaller scale. However, an ideal 

background area or the background soundings are expected to be selected on a comparable scale 

with the target soundings. With a coarse flux resolution, there is a possibility that potential 

background soundings are ignored due to unmatched fossil fuel and biosphere fluxes of cells that 

they are located within. It is also possible that some selected soundings are not adequate since 

they may be vulnerable to surrounding CO2 sources or sinks while the cell fluxes fulfill the 

identification criteria. High resolution fossil fuel flux data (1km) are available but not applied in 

this study due to limited access and computation concerns. A question one may ask is what the 

appropriate resolution is. There is no clear answer to this since it is very difficult to determine the 

characteristic scale on which the surface sources and sinks with different sizes and capacities are 

influencing the atmospheric CO2 concentration of the column or partial column. Moreover, the 
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high-resolution flux data are also likely to ‘over resolve’ the target and background areas; 

therefore a selected background sounding may not be qualified as a representation of background 

CO2 concentrations. 

3.5 Hypotheses and Proposed Analysis 

In this research, 4 main hypotheses are put forward and this section introduces a series of 

subsequent investigations that verify the hypotheses: 

1. Overall, the CO2 concentration and/or CO2 abundance of the target sounding are higher than 

the average values of background soundings; 

2. The difference of CO2 concentration and/or CO2 abundance between target and background 

soundings has an observable relation with the power plant generating output either linearly 

or nonlinearly.  

3. Partial column XCO2/CO2 performs better than column XCO2/CO2 in resolving CO2 

emissions from a strong localized point source. One may be interested in seeking out the 

number of layers a partial column should adopt.  

4. A monthly or seasonal variation of XCO2/CO2 for Hamilton urban area is observable using 

the ACOS CO2 data. As a validation of the background area identification strategy, using the 

difference of XCO2/CO2 can generate desirable outcomes that are comparable to using target 

soundings alone. 

In order to test these hypotheses, a data analysis framework is established that involves both 

quantitative and qualitative methods in the following steps: 

1. Calculate the correlation of the column XCO2 and CO2 abundances of target soundings with 

the generating output during the study period, by year and by season.  

2. Identify the minimum number of background soundings required to certify the selection of 

background area. 

3. Visualize the shape of CO2 profile for target soundings and identify the first inflection point 

manually which is expect to indicate the optimal number of layers that a partial column 

should take. 
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4. Determine the possible forms of regression through scatter plot of the difference of XCO2 

and CO2 against generating output. 

5. Perform linear and nonlinear regressions between the difference of XCO2 and CO2 and 

generating output. Partial columns with different numbers of layers and average outputs for 

the past two hours and three hours are all examined.  

6. Calculate statistical indicators such as mean, maximum, minimum and standard deviation of 

CO2 dry air mole fraction of each level for all selected target soundings. 

7. Examine the uncertainty on retrieved CO2 dry air mole fraction of each layer for all selected 

target soundings to explore possible reasons for discrepancy in the performance of partial 

columns with different numbers of layers.  

8. Compare the weather factors gained from Hamilton Station and London Station and evaluate 

the reliability of using them to indicate the weather conditions at the target site. 

9. Classify the target soundings by regression residual. Grade each meteorological parameter 

and explore possible clustering patterns that the accuracy of calculation may be partially 

dependent on one or more parameters.  

10. Plot column XCO2/CO2 and partial column XCO2/CO2 with the ‘optimal’ number of layers 

in time series for the target sounding in Hamilton urban area. Compare them based on the 

goodness of fit to the Fourier curve that is expected to be representative of CO2 natural 

seasonality. 

3.5.1 Nonlinear Regression 

In addition to linear correlation between the difference of XCO2/CO2 and generating output, 

nonlinear functions are also examined. The form of nonlinear functions that should be taken in 

this study is determined by interpreting the scatter plot of XCO2/CO2 difference against 

generating output. 

Typical forms of nonlinear regression are summarized in Table 3.3. The transformations from 

nonlinear equations to linear equations are also described in Table 3.3. 
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Table 3.3 Forms of Nonlinear Regression 

Curvilinear Equations Transformation 
Transformed 

Equations 
Curvilinear Figures 

1 b
a

y x
   

1

1

X
x

Y
y





 Y a bX   

 

by ax  

ln

ln

X x

Y y




 lnY a bX   

 

lny a b x   
lnX x

Y y




 Y a bX   

 

bxy ae  
ln

X x

Y y




 lnY a bX   

 

b

xy ae  

1

ln

X
x

Y y





 lnY a bX   
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3.5.2 Meteorological Condition 

For the purpose of estimating the influence of meteorological system on local CO2 concentration 

thus the target-background difference, possible influential meteorological parameters are 

examined in association with the surface XCO2 uncertainty and the regression residual. The 

involved meteorological parameters include wind speed, wind direction deviation, temperature, 

pressure, humidity, and weather event/description.  

In order to better explore the potential influence, for the meteorological parameters that are 

expressed quantitatively, the magnitude of each parameter for all target dates is partitioned into 

10 scales so that the meteorological parameters can be rated on a scale from 1 to 10 in ascending 

order of factor values. As for the weather event/description, it is scaled from 1 to 6 corresponding 

to ‘clear’, ‘mainly clear’, ‘mostly cloudy’, ‘cloudy’, ‘fog’/’haze’, and ‘rain 

shower’/’thunderstorm’/’snow shower’ etc. 

A linear or nonlinear function is then taken as a reference and the residuals of dXCO2 or dCO2 are 

calculated. The influence of one specific meteorological parameter is estimated based on the 

residuals and factor scales on all target days. The target soundings are also grouped as strong fit 

and weak fit. The meteorological parameters are examined within each group. 

Considering the temporal pattern of GOSAT sounding, e.g. winter observations may be 

insufficient, most meteorological parameters can be not normally distributed; for particular 

parameters, the distribution of original data can be very non-uniform such as temperature. In 

order to examine the significance of any conclusion to be drawn on the impacts of external factors, 

the influential parameters are modified by excluding extraordinary values to obtain a more 

uniform distribution. This is achieved using a resampling approach: the original data are sorted in 

ascending order; a certain proportion (7% to 20%) of data are removed on the one or both ends 

and the ratio between the low end and the high end is randomly determined, i.e. the ‘proportion’ 

starts with 7% and the percentage of data to remove can be 0% on the low-value end and 7% on 

the high-value end, and so forth; a linear hypothesis test
17

 is then carried out on the remaining 

(adjusted) data and the ‘proportion’ will increase if the adjusted data cannot pass the test; the 

goodness of fit of all possible sets of adjusted data to a straight line is also calculated and used for 

                                                           
17 Matlab & Simulink – MathWorks: http://www.mathworks.com/help/stats/linhyptest.html 
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determining the proper adjusted data set if the linear test is not passed despite 20% of original 

data being removed. 

The influence of meteorological parameters on model performance is also examined using 

multivariate analysis that involves all the relevant parameters. The multivariate analysis is 

conducted with different assumptions on the relationship of the meteorological parameters with 

the model residuals: linear, pure quadratic, interactions and full quadratic. 

3.6 Summary 

This chapter proposes a system approach to evaluate the capability of remote sensing CO2 data to 

estimate surface CO2 emissions at point and regional scales. In this chapter, the research planning, 

data collection, the importance and limitation of proposed approaches, and the hypotheses and 

data analysis are described. 

In particular, one is able to replicate the retrieval outcomes by using the method in 3.2.1. Partial 

column CO2 information with different numbers of layers is retrievable as well as that for a given 

pressure span. The methods are based on two assumptions from the original ACOS B3.3 retrieval 

algorithm and one assumption extended from them. These assumptions are analyzed and verified 

by mathematical means by the previous ACOS Team. The method is applicable to soundings by 

ACOS B3.3 algorithm or similar which retrieves and provides information about CO2 profiles, 

dry air profiles, pressure weighting function and so forth. However, due to possibly inaccurate 

raw CO2 retrieval data, one should note that the uncertainty on the CO2 information for specific 

layers may need examinations and the reliability needs evaluation prior to use.  

A key procedure in the proposed approach is the identification of background area. Two 

thresholds are determined to constrain the fossil fuel and biosphere fluxes for background 

soundings, though theoretically a background area is defined as one with zero fossil fuel flux and 

identical biosphere flux to that of the target site. One could also use other methods for identifying 

potential background area with necessary data available such as high resolution flux data, 

nightlight image or population map that indicates the intensity of human residency/activities and 

thus CO2 emissions. 

To validate the hypotheses, quantitative and qualitative data analysis methods are adopted. The 

results are presented in Chapter 4. 
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Chapter 4: Results 

4.1 Introduction 

This chapter presents the results and findings using the methods introduced in Chapter 3. Built on 

the procedures of the data analysis strategy, the results and findings are organized in nine sections: 

(1) a description of target soundings, and corresponding column XCO2 and CO2 abundance 

statistics, (2) a pre-analysis of background area, (3) a prediction of best number of layers for 

partial column CO2 retrieval, (4) possible forms of regression between difference of XCO2 / CO2 

and generating output, (5) results of regression, (6) partial column XCO2 and CO2 statistics, (7) a 

comparison of meteorological parameters obtained from Hamilton Station and London Station, (8) 

evaluation on the influence of meteorological parameters, and (9) monthly and seasonal XCO2 

variation of Hamilton urban area. 

By presenting and analyzing the results quantitatively and qualitatively, the research hypotheses 

(see Section 3.5) are tested and the research questions can be answered. This chapter is limited to 

the results of data processing and basic explanations. Interpretations and evaluations on these 

results and findings will be discussed in detail in the next chapter. 

4.2 Target Column XCO2 and CO2 Abundance 

This section introduces the results of basic statistics on column XCO2 and CO2 information for 

target soundings.  

A target sounding is defined as one whose FOV Nanticoke Generating Station locates within or is 

very close to. Throughout September 2009 to May 2013, 71 target soundings are captured. The 

number of soundings that met all selection criteria is presented by year in Table 4.1. 

The generating outputs of Nanticoke Station are retrieved for corresponding dates. Generally, the 

time of sounding is very close to 18:30 EST and the outputs from the station in the current and 

previous hours are retrieved. Considering that the CO2 emissions from the power plant are very 

likely to have a delayed effect on the local CO2 concentration, especially for upper atmosphere, 
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the average output for two hours backwards and three hours backwards are calculated as well.  

The XCO2 and uncertainty, CO2 abundance and output on target dates are shown in Table A.1. 

Table 4.1 Number of Soundings by Year 

 2009 2010 2011 2012 2013 Total 

Number of Soundings 3 24 20 21 3 71 

 

The dual y-axes plot for XCO2 (target and background) and generating output (one-hour output 

for example) is shown in Figure 4.1. The natural CO2 seasonality
18

 can be observed from this 

graph which is an approximation of the Fourier function. The CO2 seasonality before 2012 is 

associated with strong fluctuations while it is smoother with a shallower cycle over the 2012-

2013 period.  

 

Figure 4.1 Target and Background Column XCO2 and One-Hour Output 

The daily variations of generating outputs (the daily output is represented by hourly averaged 

value) over the whole period (from the first sounding date to the last) are shown in Figure 4.2 

along with the smoothing spline of CO2 observations. The graph shows that the generating 

outputs before 2012 are higher and more variable than during the later 2012-13 period. High 

power generation occurred mainly during 2009-2010 winter, 2010 summer and 2011 summer. 

                                                           
18 The natural CO2 seasonality refers to the monthly CO2 cycle that is obtained from the Keeling Curve. The Keeling 

Curve is a graph which plots the ongoing change in concentration of CO2 in Earth's atmosphere since 1958 in Mauna 

Loa. 
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The policy decision to reduce coal consumption and close the coal-fired generators clearly 

affected electricity output from the Nanticoke station. In addition, the atmospheric CO2 

concentrations do not necessarily follow the trend of generating outputs. 

 

Figure 4.2 Smoothing Spline of XCO2 and Daily Generating Outputs 

The scatter plot of XCO2 against output (one-hour) is shown in Figure 4.3. High generating 

outputs are expected to yield high atmospheric CO2 concentrations. However, as shown in the 

graph, CO2 concentrations vary by 15-20ppm whether coal-fired electricity output is less than 500 

MW or around 2500-3000 MW. 

 

Figure 4.3 Target XCO2 against One-Hour Output 

Prior to calculating the correlation between XCO2 and output, the type of correlation needs to be 

determined and the data normality tested. Figure 4.4 is the histogram of XCO2 that indicates the 

data normality. 
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Figure 4.4 Histogram of XCO2 Data 

The Lilliefors test
19

 shows that the hypothesis ‘the data are normally distributed’ cannot be 

rejected at the 0.05 (and 0.001) level. Therefore, a Pearson’s correlation is carried out on XCO2 

and output. The correlation results are summarized in Table 4.2. Similarly, the correlation results 

for CO2 abundance (indicated as CO2) and generating output are also calculated and presented in 

Table 4.2 

Table 4.2 Pearson’s Correlation between XCO2 and Output 

  One-Hour Output Two-Hour Average Output Three-Hour Average Output 

XCO2 

RHO -0.4617 -0.4549 -0.4603 

PVAL 5.0715e-05 6.7460e-05 5.3612e-05 

CO2 

RHO -0.4420 -0.4465 -0.4530 

PVAL 1.1398e-04 9.4913e-05 7.2889e-05 

                                                           
19 Lilliefors goodness-of-fit test of composite normality examines whether the data come from an unspecified     normal 

distribution. ‘Lilliefors test is suitable for situations where a fully-specified null distribution is not known, and its 

parameters must be estimated’. [H,P,KSTAT,CRITVAL] = lillietest(X, ALPHA) is the MATLAB syntax for 

performing Lilliefors test. H=0 indicates that the null hypothesis ‘the data are normally distributed’ cannot be rejected 

at the significance level of ALPHA. H=1 indicates that the null hypothesis can be rejected at the significance level of 

ALPHA. Small values of P imply that the validity of the null hypothesis can be doubted. When the test statistic KSTAT 

is higher than the critical value CRITVAL, the null hypothesis can be rejected at a significance level of ALPHA. 

(MATLAB MathWorks 2012) 



98 

 

where RHO denotes the correlation coefficient and PVAL
20

 is the result of significance test. 

Hereafter, for better understanding and comparison, RHO rounds off to 4 decimal places. 

As Table 4.2 shows, the column XCO2 and the CO2 are negatively correlated to output. The 

PVALs indicate that the correlations are significant. The relationship between CO2 concentrations 

and generating outputs (one hour) is also examined by year: the correlation coefficient is -0.3136 

for 2010, -0.3404 for 2011 and -0.3073 for 2012.  

The CO2 natural seasonality and CO2 emission seasonality are analyzed to seek out possible 

reasons for the negative correlation between CO2 concentrations and generating outputs. The CO2 

seasonality is represented by the CO2 measurements acquired from the Chibougamau Station, 

Ontario (49.68°N, 74.34°W, 393m) on a monthly basis for 2010 (the hourly measurements are 

integrated), as shown in Figure 4.5.  

 

Figure 4.5 CO2 Concentration Seasonality and CO2 Emission Seasonality 

As per Ontario’s policy decision to reduce electricity generation from coal-fired stations, 

Nanticoke GS became a marginal plant that was only used when the system faced peak demand 

(Figure 4.5). Output exceeded 1000 MW only periodically: winter (Jan., Feb.) 2010, summer 

2010 and summer 2011. The 2010 output curve is the inverse of the natural CO2 concentration 

curve as output decreased while CO2 concentration increased from January to March, then output 

rose while CO2 concentration decreased from April to July. In all three years, output was low 

                                                           
20 PVAL is the outcome from a significance test for testing the hypothesis of no correlation against the alternative of 

non-zero correlation. A small PVAL (usually less than 0.05) indicates that the correlation is significantly different from 

0. 
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from September to December. The ‘2010 pattern’ was less pronounced in 2011 as large outputs 

were restricted to July and August. The operational decisions at Nanticoke GS result in output 

levels that explain at least part of the negative correlation measured between output and CO2 

concentrations (Table 4.2). 

The detectability of ground emission signal from the observed concentration is further examined 

by analyzing an individual month (July) and an individual season (July-September) over 2010 to 

2012. By doing so, the influence of the natural seasonality of CO2 concentration is expected to be 

constrained. The results are shown in Figure 4.6a (July) and 4.6b (July, August and September).  

 

Figure 4.6 Generating Output and CO2 Concentrations of Individual Month and Individual Season 

Negative correlations are obtained for July and the ‘summer-fall’ season. Associated with 

previous findings in this section, it implies that the ability of absolute CO2 concentrations to 

reflect ground emissions is poor due to the dominant CO2 natural seasonality despite strong CO2 

emissions in July and the ‘season’. Therefore, the proposed method (in Chapter 3) is carried out 

and the results are presented in the following sections. 

4.3 Background Area Pre-analysis 

This section presents the results of determining the minimum number of soundings for certifying 

a background area. Two areas at mid latitudes in North America are compared, i.e. two grids of 3 

degree by 3 degree centered to A (44.5º N, 79.5 º W) and B (40.5 º N, 83.5 º W) respectively. 

Basic statistics regarding these two areas are as follows: the distribution of cellular flux (the sum 
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of fossil fuel flux and biosphere flux) of each area, comparison of the sum of cellular flux 

between two areas, and the difference of column and partial column XCO2 between two areas.  

4.3.1. Flux Heterogeneity  

The flux heterogeneity refers to the characteristics of inner distribution of flux within each area. 

A low heterogeneity is expected to imply comparable soundings respecting XCO2 within each 

area without considering the influence of external factors. In other words, the deviation of XCO2 

of each area is expected to be small. 

In total, 111 days are captured throughout the year 2010, 2011 and 2012 when soundings are 

available in both areas. The mean and standard deviation of cellular fluxes are calculated for each 

area on each day. The standard deviation is taken as the indicator for flux heterogeneity.  

The average mean and average standard deviation are 3.23e-06 mol/m
2
·s and 1.13e-06 mol/m

2
·s 

respectively for area A, 3.56e-06 mol/m
2
·s and 9.25 e-07 mol/m

2
·s respectively for area B. 

As for the difference of gross regional fluxes, the average is -2.96e-06 mol/m
2
·s and the standard 

deviation is 1.50e-05 mol/m
2
·s. 

4.3.2 Column and Partial Column XCO2 

For the 111 days, the difference of column and partial column XCO2 (with a given number of 

layers) is calculated. In the meantime, the mean, maximum, minimum, amplitude and standard 

deviation of XCO2 difference are shown in Table 4.3. The partial column XCO2 within a given 

pressure span is not considered here. 
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Table 4.3 Statistics of XCO2 Difference between Two Areas 

 Mean (ppm) Max (ppm) Min (ppm) Amplitude (ppm) STD (ppm) 

Column -1.13 12.74 -13.26 26.00 4.08 

3-Layer Partial Column 1.16 47.60 -42.03 89.63 15.99 

4-Layer Partial Column 0.48 42.92 -38.68 81.60 14.13 

5-Layer Partial Column -0.11 38.46 -35.51 73.98 12.47 

6-Layer Partial Column -0.60 34.44 -32.61 67.05 11.06 

7-Layer Partial Column -0.97 30.92 -29.95 60.86 9.86 

8-Layer Partial Column -1.22 27.90 -27.53 55.43 8.87 

9-Layer Partial Column -1.39 25.33 -25.38 50.71 8.04 

10-Layer Partial Column -1.49 23.15 -23.49 46.64 7.35 

11-Layer Partial Column -1.55 21.30 -21.83 43.13 6.78 

Then three is set as the minimum number of soundings for identifying a background area. 13 days 

are eliminated from the 111 days because the number of soundings in either of the two areas is 

less than three. The recalculated statistics are shown in Table 4.4. 

Table 4.4 Statistics of XCO2 Difference with Number of Soundings Larger than Three 

 Mean (ppm) Max (ppm) Min (ppm) Amplitude (ppm) STD (ppm) 

Column -0.74 12.74 -9.49 22.23 3.44 

3-Layer Partial Column 3.37 47.60 -35.29 82.89 13.01 

4-Layer Partial Column 2.40 42.92 -30.08 73.01 11.47 

5-Layer Partial Column 1.55 38.46 -25.50 63.96 10.12 

6-Layer Partial Column 0.84 34.44 -21.62 56.05 8.98 

7-Layer Partial Column 0.29 30.92 -18.37 49.28 8.02 

8-Layer Partial Column -0.12 27.90 -16.84 44.74 7.24 

9-Layer Partial Column -0.42 25.33 -15.88 41.21 6.59 

10-Layer Partial Column -0.63 23.15 -14.95 38.10 6.05 

11-Layer Partial Column -0.79 21.30 -14.10 35.39 5.60 
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By setting three as the minimum number of soundings, significant ‘outliers’ in terms of CO2 

concentration are removed. The mean of XCO2 difference for both column and partial columns 

become closer to zero and the standard deviations get smaller.  

Consequently, five days are removed from the target soundings since the numbers of background 

soundings are not sufficient on these days. 

4.4 Estimate of Number of Layers 

Before proceeding with the calculation of target and background soundings, the number of layers 

for a partial column in terms of best correlation with output is predicted by analysing the shape of 

CO2 profiles of target soundings, as shown in Figure 4.7. 

 

Figure 4.7  Shape of Target CO2 Profiles 

The shape of CO2 profiles of background soundings (150 samples randomly selected) is drawn in 

Figure 4.8. 

 

Figure 4.8 Shape of Background CO2 Profiles-150 Samples Randomly Selected 
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As for target observations, a few lowest CO2 concentrations and the highest concentration occur 

in summer. The variations of CO2 concentrations on different days and among different vertical 

levels in summer are very large. The concentrations are generally lower than spring and autumn. 

Spring and autumn account for high and moderate CO2 concentrations with relatively small 

vertical variations. CO2 concentrations in winter are among the highest with the smallest vertical 

variations despite limited number of observations. Compared to the background lines, the target 

lines are more located and stretching to the right which indicates higher CO2 concentrations 

overall. In addition, both the target and background lines tend to converge and turn at 11 on the y-

axis (the first inflection point
21

 ) which is the edging level of the 9
th
 and 10

th
 layer from surface up.  

The implication is a partial column with 9 or 10 layers is likely to be the optimal for reflecting the 

surface flux. 

4.5 Data Fitting 

In addition to linear correlation, non-linear curve fitting is also examined between the difference 

of XCO2 / CO2 and generating output. Typical forms of non-linear function have been introduced 

in 3.5.1. Potential non-linear functions for the data are determined by interpreting the scatter plot 

of XCO2 / CO2 difference against generating output. 

The differences of column and partial column XCO2 between target and background soundings 

are summarized in Table A.2. The scatter plots of column dXCO2 and 10-layer partial column 

dXCO2 against one-hour generating output are drawn in Figure 4.9 and Figure 4.10. 

                                                           
21 For differential calculus, an inflection point for a curve is a point where the curvature changes from positive to 

negative, or vice versa. The identified inflection point for the target soundings is expected to recognize the under-

performance of higher layers in reflecting ground CO2 emissions. 
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Figure 4.9 Column dXCO2 against Generating Output 

 

Figure 4.10 10-Layer Partial Column dXCO2 against Generating Output 

Figure 4.11 shows the smoothing spline of column dXCO2 against one-hour generating output. 

 

Figure 4.11 Column dXCO2 Smoothing Spline 
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A number of nonlinear functions for regression are pre-tested before the results are presented, 

including exponential, logarithmic, Fourier, Gaussian, polynomial, power, rational, and sum of 

sine. These functions are capable of generating monotonic curves that are expected to express the 

relationship between generating output and CO2 enhancement. Importantly, any regression with a 

complicated curve shape is not considered even though the goodness of fit may be relatively high, 

e.g. more than 1 wave peaks/troughs. Besides, a regression with identical or too similar result 

with another is not considered for result presentation either, e.g. Fourier and 2-degree polynomial 

regressions generate the same key regression statistics. The functions that are determined to 

present in the next section are summarized in Table 4.5. 

Table 4.5 Potential Functions for Linear and Nonlinear Regression 

Forms Equations 

2

 

                 Linear                                  

Power Function                  

Polynomial Function        
Nonlinear

Rational Func ( ) / ( )

Sum o

tion            

f S

b

y ax b

y ax c

y ax bx c

ax b x cy

 

 

  

 

 ine                     sin( )y a bx c
















 

Particularly, 2-degree polynomial function, 3-degree polynomial function, 1-degree rational 

function and 2-degree rational function are all options for nonlinear function selection. Based on 

the criteria for presenting nonlinear regression results, 2-degree polynomial and 1-degree (1 

numerator degree and 1 denominator degree) rational functions are analyzed.  

4.6 Regression Results 

This section presents the results of linear and nonlinear correlations. One-hour output, two-hour 

average generating output and three-hour average generating output are considered for the 

correlations. 

For linear correlations, the correlation coefficients and significance levels are calculated for 

column dXCO2 and dCO2 and partial column dXCO2 and dCO2. Different numbers of layers 

(from 3 to 11) are taken for a partial column. And the partial column dXCO2 and dCO2 are 

calculated for a given number of layers and a standardized pressure span. 
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For estimating the goodness of fit of nonlinear regression, the R-square
22

 statistic (R
2
) and 

RMSE
23

 are calculated for each nonlinear regression. For linear regression, only R
2 
is calculated. 

For better comparison between regressions, the R
2 

rounds off to 4 decimal places. The dXCO2 

and dCO2 are measured in ppm and mole/layer respectively. 

All regression functions are expressed using original coefficients instead of those after 

normalized by the mean and standard deviation.   

Since the generating output on May 02, 2013 is 0 and this is contradictory to the definition 

domain for performing some nonlinear regressions, a positive bias of 0.0001MW is added which 

is consistent to the precision of R
2
. 

4.6.1 Linear Correlation 

Linear correlation is carried out for column and each partial column (Pearson’s correlation is 

carried out for normally distributed data and Spearman correlation for non-normally distributed 

data). The correlation coefficients, the regressed slope and intercept round off to 4 decimal places. 

In Table 4.6, the best correlations for column data and partial column data with different numbers 

of layers are selected and summarized in descending order of correlations coefficient. 

  

                                                           
22 R-squared (R2) is a statistical measure of how close the data are to the fitted regression line. Normally, R2 is between 

0 and 1. 0 indicates that the model explains none of the variability of the response data around its mean. 1 indicates that 

the model explains all the variability of the response data around its mean. A negative R2 is possible if the model does 

not contain a constant term and the fit is poor (worse than just fitting the mean) 

23 The root mean squared error. A value closer to 0 indicates a better fit. 
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Table 4.6 Summary of Linear Correlation 

 
Correlation 

Coefficient 
R2 

Intercept 

on Y-

Axis 

N-Layer / 

N-

Pressure 

dXCO2 

/ dCO2 

Generating 

Output 

Averaging 

Regression 

11-Layer  0.7108 0.5107 2.6340 N-Layer dXCO2 One Hour 
0.0049 2.6340y x   

(Eq. 4.1) 

9-Layer  0.7066 0.5065 2.8223 N-Layer dXCO2 One Hour 
0.0059 2.8223y x   

(Eq. 4.2) 

Column 0.7062 0.4988 1.7890 N-Layer dXCO2 One Hour 
0.0029 1.7890y x   

(Eq. 4.3) 

10-Layer  0.7039 0.5110 2.7289 N-Layer dXCO2 One Hour 
0.0054 2.7289y x   

(Eq. 4.4) 

8-Layer  0.6919 0.4767 3.0870 N-Layer dXCO2 One Hour 
0.0066 3.0870y x   

(Eq. 4.5) 

7-Layer  0.6877 0.4627 2.9947 N-Layer dXCO2 Two Hour 
0.0073 2.9947y x   

(Eq. 4.6) 

6-Layer  0.6735 0.4548 2.7780 N-Layer dXCO2 Two Hour 
0.0080 2.7780y x   

(Eq. 4.7) 

5-Layer  0.6585 0.4337 2.2590 N-Layer dXCO2 Three Hour 
0.0090 2.5290y x   

(Eq. 4.8) 

4-Layer  0.6263 0.3922 2.4400 N-Layer dXCO2 Three Hour 
0.0100 2.4400y x   

(Eq. 4.9) 

3-Layer  0.5957 0.3549 2.0980 N-Layer dXCO2 Three Hour 
0.0112 2.0980y x   

(Eq. 4.10) 

4.6.2 Power Regression 

Power regression is carried out for full column and each partial column. The R
2
 is used for 

evaluating the goodness of fit. The best power regressions in terms of the R
2
 statistic for column 

dXCO2 and dCO2 and partial column dXCO2 and dCO2 are summarized in Table 4.7, in 

descending order of R
2
. 
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Table 4.7 Summary of Power Regression 

 R2 RMSE 

Intercept 

on Y-

Axis 

N-Layer 

/ N-

Pressure 

dXCO2 

/ dCO2 

Generating 

Output 

Averaging 

Regression 

10-Layer  0.5446 5.07 0.3148 N-Layer dXCO2 One Hour 
0.56140.1915 0.3148y x 

(Eq. 4.11) 

11-Layer  0.5428 4.67 0.4739 N-Layer dXCO2 One Hour 

0.56810.1664 0.4739y x   

(Eq. 4.12) 

9-Layer  0.5408 5.59 0.1308 N-Layer dXCO2 One Hour 

0.55650.2180 0.1308y x   

(Eq. 4.13) 

Column 0.5402 2.80 0.2985 N-Layer dXCO2 One Hour 

0.53060.1349 0.2985y x   

(Eq. 4.14) 

8-Layer  0.5151 6.62 -0.1111 N-Layer dXCO2 One Hour 

0.54370.2723 0.1111y x   

(Eq. 4.15) 

7-Layer 0.4967 7.58 -0.3632 N-Layer dXCO2 One Hour 

 0.54400.2996 0.3632y x   

(Eq. 4.16) 

6-Layer 0.4806 8.49 -0.0201 N-Layer dXCO2 Three Hour 

0.62980.1621 0.0201y x   

(Eq. 4.17) 

5-Layer 0.4555 10.05 -0.6912 N-Layer dXCO2 Three Hour 

0.62280.1932 0.6912 y x   

(Eq. 4.18) 

4-Layer 0.4104 12.21 -0.8772 N-Layer dXCO2 Three Hour 

0.64140.1840 0.8702y x   

(Eq. 4.19) 

3-Layer 0.3707 14.79 -1.4600 N-Layer dXCO2 Three Hour 

0.65050.1907 1.4600y x   

(Eq. 4.20) 

 

4.6.3 Polynomial Regression 

2-degree polynomial regression is carried out for column dXCO2 and dCO2 and partial column 

dXCO2 and dCO2 with different numbers of layers. The best polynomial regressions in terms of 

the R
2
 for column dXCO2 and dCO2 and partial column dXCO2 and dCO2 are summarized in 

Table 4.8, in descending order of R
2
. 
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Table 4.8 Summary of Polynomial Regression 

 R2 RMSE 

Intercept 

on Y-

Axis 

N-Layer 

/ N-

Pressure 

dXCO2 

/ dCO2 

Generating 

Output 

Averaging 

Regression 

10-Layer  0.5354 5.12 1.5330 N-Layer dXCO2 Two Hour 

2-(1.28e-6)x  0.0091x + 1.5330y    

(Eq. 4.21) 

9-Layer  0.5354 5.63 1.4470 N-Layer dXCO2 One Hour 

2-(1.47e-6)x  0.0101x + 1.4470y    

(Eq. 4.22) 

11-Layer  0.5336 4.72 1.6650 N-Layer dXCO2 One Hour 

2-(1.19e-6)x  0.0083x + 1.6650y    

(Eq. 4.23) 

Column 0.5301 2.83 1.1120 N-Layer dXCO2 One Hour 

2-(8.29e-7)x  0.0053x+1.112y    

(Eq. 4.24) 

8-Layer 0.5139 6.63 1.3870 N-Layer dXCO2 One Hour 

2-(2.08e-6)x  0.0125x + 1.3870y    

(Eq. 4.25) 

7-Layer 0.5013 7.54 1.0620 N-Layer dXCO2 
Three 

Hour 

2-(2.34e-6)x  0.0140x + 1.0620y    

(Eq. 4.26) 

6-Layer  

0.4837 8.46 

0.9957 N-Layer dXCO2 
Three 

Hour 

2-(2.14e-6)x  0.0141x + 0.9957y    

(Eq. 4.27) 

5-Layer  0.4600 10.01 0.4369 N-Layer dXCO2 
Three 

Hour 

2-(2.54e-6)x  0.0162x + 0.4369y    

(Eq. 4.28) 

4-Layer  0.4168 12.14 0.0824 N-Layer dXCO2 
Three 

Hour 

2-(2.86e-6)x  0.0182x + 0.0824y    

(Eq. 4.29) 

3-Layer  0.3782 14.71 -0.6011 N-Layer dXCO2 
Three 

Hour 

2-(3.28e-6)x  0.0205x - 0.6011y    

(Eq. 4.30) 

 

4.6.4 Rational Regression 

This subsection presents the results of rational regression (one numerator degree and one 

denominator degree) for column dXCO2 and dCO2 and partial column dXCO2 and dCO2 with 

different numbers of layers.  For rational regression, the unit of dCO2 have been changed from 

mole/FOV to 10
8
mole/FOV.The best regressions for column dXCO2 / dCO2 and partial column 

dXCO2 / dCO2 are summarized in Table 4.9, in descending order of R
2
. 
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Table 4.9 Summary of Rational Regression 

 R2 RMSE 
Intercept 

on Y-Axis 

N-Layer 

/ N-

Pressure 

dXCO2 

/ dCO2 

Generating 

Output 

Averaging 

Regression 

10-Layer  0.5447 5.07 0.9403 N-Layer dXCO2 One Hour 

 26.02 1637 

1741

x
y

x





 

(Eq. 4.31) 

11-Layer 0.5429 4.67 1.0230 N-Layer dXCO2 One Hour 

 24.28 1827

1786

x
y

x





 

(Eq. 4.32) 

9-Layer  0.5421 5.58 0.5966 N-Layer dXCO2 Two Hour 

 30.03 902.6 

+1513 

x
y

x


  

(Eq. 4.33) 

Column 0.5400 2.81 0.6296 N-Layer dXCO2 One Hour 

13.29  871.4 

1384 

x
y

x





 

(Eq. 4.34) 

8-Layer  0.5217 6.57 0.5966 N-Layer dXCO2 One Hour 

 30.03 902.6 

+1513 

x
y

x


  

(Eq. 4.35) 

7-Layer 0.5038 7.53 0.4953 N-Layer dXCO2 Three Hour 

 35.17 883.7 

+1784 

x
y

x


  

(Eq. 4.36) 

6-Layer 

0.4858 8.45 

0.4908 N-Layer dXCO2 Three Hour 

 41.83 1098 

+2237

x
y

x


  

(Eq. 4.37) 

5-Layer 0.4613 9.99 -0.1070 N-Layer dXCO2 Three Hour 

45.66 230.3 

+2152

x
y

x


  

(Eq. 4.38) 

4-Layer 0.4168 12.14 -0.3858 N-Layer dXCO2 Three Hour 

51.60 873.9 

+2265

x
y

x


  

(Eq. 4.39) 

3-Layer 0.3773 14.72 -1.0138 N-Layer dXCO2 Three Hour 

57.62 2349 

+2317

x
y

x


  

(Eq. 4.40) 
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4.6.5 Sum of Sine  

This subsection presents the results of sum of sine regression for column dXCO2 and dCO2 and 

partial column dXCO2 and dCO2 with different numbers of layers. The best regressions for 

column dXCO2 / dCO2 and partial column dXCO2 / dCO2 are summarized in Table 4.10, in 

descending order of R
2
. 

Table 4.10 Summary of Sum of Sine Regression 

 R2 RMSE 

Intercept 

on Y-

Axis 

N-Layer 

/ N-

Pressure 

dXCO2 

/ dCO2 

Generating 

Output 

Averaging 

Regression 

10-

Layer  
0.5309 5.15 1.7865 N-Layer dXCO2 Two Hour 

17.46sin((0.4477 3) 0.1025)y e x       

(Eq. 4.41) 

9-Layer  0.5309 5.65 1.7300 N-Layer dXCO2 Two Hour 
18.80sin((0.4613 3) 0.0922)y e x       

(Eq. 4.42) 

11-

Layer 
0.5284 4.75 1.9114 N-Layer dXCO2 One Hour 

16.25sin((0.4396 3) 0.1179)y e x      

(Eq. 4.43) 

Column 0.5234 2.85 1.2773 N-Layer dXCO2 One Hour 
9.5820sin((0.4695 3) 0.1337)y e x      

(Eq. 4.44) 

8-Layer  0.5087 6.56 1.7439 N-Layer dXCO2 One Hour 
20.30sin((0.5196 3) 0.0860)y e x      

(Eq. 4.45) 

7-Layer  0.4984 7.57 1.3963 N-Layer dXCO2 Three Hour 
21.98sin((0.5390 3) 0.0636)y e x      

(Eq. 4.46) 

6-Layer 
0.4815 8.48 

1.3219 N-Layer dXCO2 Three Hour 
24.02sin((0.5024 3) 0.0551)y e x      

(Eq. 4.47) 

5-Layer 0.4580 10.02 0.8145 N-Layer dXCO2 Three Hour 
  26.23sin((0.5255 3) 0.0311)y e x    

(Eq. 4.48) 

4-Layer  
0.4156 

12.15 0.4769 N-Layer dXCO2 Three Hour 
28.68sin((0.5374 3) 0.0166)y e x     

(Eq. 4.49) 

3-Layer 0.3777 14.71 -0.1750 N-Layer dXCO2 Three Hour 
 31.27sin((0.5544e-3) 0.0056)y x   

(Eq. 4.50) 
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4.6.6 Summary 

Table 4.11 summarizes the R
2
 of the best fittings for each type of regression.  

Table 4.11 Summary of R2 for Linear and Nonlinear Regressions 

 Linear Power Polynomial Rational 
Sum of 

Sine 

Column 0.4988 0.5402 0.5301 0.5400 0.5234 

11-Layer Partial Column 0.5107 0.5428 0.5336 0.5429 0.5284 

10-Layer Partial Column 0.5110 0.5446 0.5354 0.5447 0.5309 

9-Layer Partial Column 0.5065 0.5408 0.5354 0.5421 0.5309 

8-Layer Partial Column 0.4767 0.5151 0.5139 0.5217 0.5087 

7-Layer Partial Column 0.4627 0.4967 0.5013 0.5038 0.4984 

6-Layer Partial Column 0.4548 0.4806 0.4837 0.4858 0.4815 

5-Layer Partial Column 0.4337 0.4555 0.4600 0.4613 0.4580 

4-Layer Partial Column 0.3922 0.4104 0.4168 0.4168 0.4156 

3-Layer Partial Column 0.3549 0.3707 0.3782 0.3773 0.3777 

All four types of nonlinear regressions yield better fitting results than linear correlation based on 

R
2
. For all types of regression, partial columns with 9, 10 and 11 layers are able to better fit the 

data than full columns. The goodness of fit increases with the number of layers that comprise a 

partial column; however, minor decreases are observed for 11-layer partial columns compared to 

10-layer partial columns for all regressions.  

Table 4.12 summarizes the intercept on Y-axis of the best fittings for each type of regression. The 

intercept is an indicator of systematic difference of XCO2 between the target and background 

soundings when the GS is not generating power. The values are expected to be positive since the 

selection of background areas is based on fossil fuel flux which involves emissions from 

transportation and it is expected that transportation in the background areas is less than Nanticoke 

area. The ‘positive intercept’ is based on the assumption that the influence of biosphere is 
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negligible compared to fossil fuel flux. This is highly likely true considering the time of satellite 

overpass. 

Table 4.12 Summary of Intercept on Y-Axis for Linear and Nonlinear Regressions 

 Linear Power Polynomial Rational 
Sum of 

Sine 

Column 1.7890 0.2985 1.1120 0.6296 1.2773 

11-Layer Partial Column 2.6340 0.4739 1.6650 1.0230 1.9114 

10-Layer Partial Column 2.7289 0.3148 1.5330 0.9403 1.7865 

9-Layer Partial Column 2.8223 0.1308 1.4470 0.5966 1.7300 

8-Layer Partial Column 3.0870 -0.1111 1.3870 0.5966 1.7439 

7-Layer Partial Column 2.9947 -0.3632 1.0620 0.4953 1.3963 

6-Layer Partial Column 2.7780 -0.0201 0.9957 0.4908 1.3219 

5-Layer Partial Column 2.2590 -0.6912 0.4369 -0.1070 0.8145 

4-Layer Partial Column 2.4400 -0.8772 0.0824 -0.3858 0.4769 

3-Layer Partial Column 2.0980 -1.4600 -0.6011 -1.0138 -0.1750 

Table 4.13 summarizes output averaging information of the best fittings for each type of 

regression. The ‘output averaging’ indicator reveals the weakening rate of surface emission 

signals with increasing altitude. The differences among 1-hour, 2-hour and 3-hour generating 

outputs are insignificant as can be seen from Table A.1. However, partial columns with different 

thicknesses are able to differentiate the strengths of surface emission signals over time. As shown 

in the table below, thinner partial columns tend to be more sensitive to surface emissions over a 

period, i.e. over the past 2 or 3 hours; whereas thicker partial columns are more sensitive to 

instant surface emissions, i.e. the 1-hour output.  
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Table 4.13 Summary of Output Averaging for Linear and Nonlinear Regressions 

 Linear Power Polynomial Rational 
Sum of 

Sine 

Column One One One One One 

11-Layer Partial Column One One One One One 

10-Layer Partial Column One One One One One 

9-Layer Partial Column One One One One One 

8-Layer Partial Column One One One One One 

7-Layer Partial Column Two One Three Three Three 

6-Layer Partial Column Two Three  Three Three Three 

5-Layer Partial Column Three Three  Three Three Three 

4-Layer Partial Column Three Three  Three Three Three 

3-Layer Partial Column Three Three  Three Three Three 

4.7 Partial Column XCO2 Statistics 

In order to better understand the discrepancy among a full column and partial columns in relating 

with generating outputs, this section presents some fundamental statistics on XCO2 on each level. 

The XCO2 on the first 10 levels for target soundings is shown in Table A.53. Table 4.14 presents 

the mean, maximum, minimum and standard deviation of XCO2 on each level for all target 

soundings. The statistics of background soundings are on a comparable and similar level but not 

presented. The 20
th
 level corresponds to the surface level. 
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Table 4.14 Statistics of XCO2 on Each Level of Target Soundings 

 Mean (ppm) Max (ppm) Min (ppm) Amplitude (ppm) STD (ppm) 

Column 391.77 400.33 370.15 30.18 6.02 

1 382.17 385.62 378.94 6.68 1.79 

2 386.75 390.63 383.41 7.22 1.80 

3 388.68 392.73 385.20 7.54 1.90 

4 390.18 394.68 386.36 8.32 2.05 

5 390.79 395.99 383.22 12.78 2.95 

6 390.96 398.79 379.27 19.52 3.79 

7 390.96 399.88 378.11 21.78 4.05 

8 390.93 400.83 377.49 23.34 4.30 

9 390.85 401.99 376.54 25.45 4.69 

10 390.75 402.96 376.16 26.80 5.09 

11 390.56 404.99 374.37 30.62 5.93 

12 390.45 406.56 373.73 32.83 6.69 

13 390.55 408.38 370.08 38.30 7.67 

14 390.8 409.34 364.69 44.65 8.64 

15 391.67 409.51 357.46 52.04 9.98 

16 392.97 413.66 350.51 63.15 11.74 

17 395.37 419.42 342.80 76.62 14.45 

18 397.88 433.46 336.50 96.96 17.67 

19 402.01 467.71 332.44 135.26 22.84 

20 404.55 488.85 332.83 156.02 26.30 

 

The XCO2 uncertainties on the first 10 levels for all target soundings are presented in Table A.54. 

The statistics of XCO2 uncertainties on all levels are shown in Table 4.15. The 10
th
 level 

corresponds to the surface level.  
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Table 4.15 Statistics of XCO2 Uncertainty on Each Level of Target Soundings 

 Mean (ppm) Max (ppm) Min (ppm) Amplitude (ppm) STD (ppm) 

Column 1.0693 3.0036 0.4634 2.5402 0.5408 

1 1.4374 1.4374 1.4372 0.0002 0 

2 2.5114 2.5147 2.5039 0.0108 0.0021 

3 3.2206 3.2331 3.1999 0.0332 0.0069 

4 3.9479 3.9816 3.8923 0.0893 0.0182 

5 4.5219 5.4032 4.1964 1.2068 0.2187 

6 3.2849 6.1203 2.3687 3.7517 0.6412 

7 3.5338 6.8829 2.4884 4.3945 0.7374 

8 3.7649 7.5515 2.6515 4.9000 0.8034 

9 4.0302 8.4172 2.8063 5.6110 0.9006 

10 4.2990 9.1974 3.0404 6.1570 0.9631 

11 4.8980 11.0888 3.4761 7.6127 1.1505 

12 5.4286 12.8173 3.9628 8.8545 1.2921 

13 6.0640 15.4326 4.6575 10.7751 1.4954 

14 6.5136 17.8536 5.2770 12.5766 1.6884 

15 7.3169 21.3761 6.4175 14.9586 1.9652 

16 7.8909 24.7128 7.1528 17.5600 2.3094 

17 9.6835 29.2442 8.6590 20.5852 2.7070 

18 11.8179 33.6705 9.8057 23.8648 3.1846 

19 16.9900 39.1763 12.7572 26.4191 3.8253 

20 25.4657 44.7533 20.8217 23.9316 3.7154 

As seen from the two tables above, the CO2 variations in the lower atmosphere are much more 

significant than in upper atmosphere. Over the study period, the amplitude in XCO2 is 156.02 

ppm for the surface layer (referring to the 20
th
 layer) and the uncertainty on XCO2 of this layer 

can reach as high as approximately 45ppm. The stability of XCO2 increases and the XCO2 

uncertainty decreases with altitude.  
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4.8 Weather Indicators and Station Comparison 

This section enumerates a number of weather indicators at Hamilton station and London station 

on Target dates and examines the consistency between two weather stations. The weather 

indicators includes: wind speed and direction, temperature, pressure, visibility, humidity and local 

synoptic events. 

4.8.1 Wind Speed and Direction 

The wind speed and direction information obtained from two weather stations is shown in Table 

A.55. Note that wind direction is analyzed though the sounding geo-location is very close to 

Nanticoke GS (3 - 4 km approximately since sounding geo-location varies with time slightly) and 

the FOV covers the point source. It is still possible that a deviated wind direction from the 

direction between the source and the center of FOV may result in a biased observation of CO2 

concentration in correlation with the coal-fired power plant. The wind direction is retrieved in the 

unit of 10s deg. The direction from the source to the center of FOV is approximately 190° (19 

10sdeg). The difference in source-to-center direction due to sounding geo-location variation is 

negligible. The influence of wind direction deviation (the absolute difference between wind 

direction and source-to-center direction) on model residual will be analyzed. 

The linear correlation coefficient in one-hour wind speed between two stations is 0.6460 and is 

0.7853 for three-hour wind speed. The statistics on the difference of wind speed are shown in 

Table 4.16. 

Table 4.16 Statistics on Wind Speed Difference 

 Mean (km/h) Max (km/h) Min (km/h) Amplitude (km/h) STD (km/h) 

One-Hour Difference 0.60 11 -18 29 5.20 

Three-Hour Difference 1.30 11.67 -10.33 22 4.31 

Two weather stations are reasonably consistent with each other in wind speed based on ‘Mean’ 

and ‘STD’. Large maximum and minimum differences and amplitude imply significant 

discrepancies on a few particular days. Overall, the wind at the Hamilton airport is stronger than 

that at the London airport, probably due to its closer proximity to Lake Ontario (approximately 

15km) versus the distance from London to Lake Erie (approximately 40 km).  
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4.8.2 Temperature 

Similarly, temperature information obtained from both weather stations is shown in Table A.56. 

The linear correlation coefficient in one-hour temperature between two stations is 0.9827 and is 

0.9876 for three-hour temperature. The statistics on the difference of temperature are shown in 

Table 4.17. 

Table 4.17 Statistics on Temperature Difference 

 Mean (°C) Max (°C) Min (°C) Amplitude (°C) STD (°C) 

One-Hour Difference -0.68 4.60 -6.30 10.9 1.96 

Three-Hour Difference -0.46 2.97 -5.17 8.14 1.66 

No significant difference in temperature is observed between two stations. The temperature in 

Hamilton area is lower than that in London area.  

4.8.3 Humidity 

The linear correlation coefficient in one-hour humidity between two stations is 0.7635 and is 

0.8155 for three-hour humidity. The statistics on the difference of humidity are shown in Table 

4.18. 

Table 4.18 Statistics on Humidity Difference 

 Mean (%) Max (%) Min (%) Amplitude (%) STD (%) 

One-Hour Difference 1.29 22.00 -34.00 56.00 10.33 

Three-Hour Difference 1.83 21.67 -20.00 41.67 8.71 

The relative humidity can differ between the two areas. Generally Hamilton is slightly moister 

than London. Large discrepancies in humidity are detected on specific days. This is also probably 

due to the difference in the proximity of the weather stations to the lakes. Given that Nanticoke is 

located on the shore of Lake Erie, the humidity obtained from Hamilton Station is expected to be 

more representative of Nanticoke values.  
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4.8.4 Pressure 

The linear correlation in one-hour pressure between two stations is 0.9826 and is 0.9786 for 

three-hour pressure. The statistics on the difference of pressure measurements are shown in Table 

4.19. 

Table 4.19 Statistics on Pressure Difference 

 Mean (kPa) Max (kPa) Min (kPa) Amplitude (kPa) STD (kPa) 

One-Hour Difference 0.46 1.11 0.26 0.85 0.11 

Three-Hour Difference 0.46 1.25 0.24 1.01 0.12 

The surface pressure of Hamilton is higher than that of London. Based on the small standard 

deviation of measured pressure difference, the measured surface pressures from the two weather 

stations are expected to be highly representative of the pressure information of the target area.  

4.8.5 Weather Description 

The hourly weather descriptions for Hamilton station and London station are presented in Table 

A.59. Main terms for describing the weather are clear, mainly clear, mostly cloudy and cloudy. 

Others include snow, fog, haze and thunderstorm, etc. but the occurrence is much less frequent 

than the four main weather terms.  

In addition, there is little variability in visibility. The observed maximum visibility for both 

stations is 24.1 km. However, for a certain period before the archive was updated the observed 

maximum visibility is 10km. The hourly visibility is hardly biased from the maximum value 

unless under special weather conditions such as fog, snow, thunderstorm etc. 

4.9 Influence of Weather Conditions 

This section presents the results of scaling of the weather factors: wind speed and direction, 

temperature, pressure, humidity and weather event/description by using the method in 3.5.2. 

In order to estimate the influence of these factors on dXCO2 or dCO2, the 10-layer rational 

regression is taken as an example to illustrate how the meteorological parameters are possibly 

related to the XCO2 uncertainty and regression residuals.  
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4.9.1 Meteorological Parameters Scaling 

As described in the Methods Chapter, the fitting residuals, all meteorological parameters (wind 

speed, wind direction deviation, temperature, humidity, surface pressure and weather 

description/event) and XCO2 uncertainty are scaled from 1 to 10 (except for weather description, 

i.e. 1 to 6) based on different criteria. See Table A.60 to A.64 for the scales of the meteorological 

parameters (Hamilton one-hour data). The histograms are presented as follows. Only relative 

humidity data are normally distributed. By scaling the meteorological parameters, the impacts of 

systematic errors on influence evaluation due to using approximated meteorological parameters 

(since no information is available for Nanticoke area) can be constrained. 

 

Figure 4.12 Histograms of Wind Speed (a), Wind Direction Deviation (b), Temperature (c), Humidity (d), 

Pressure (e) and Weather Event (f) 

4.9.2 Influence Evaluation: 10-Layer Partial Column 

The 10-layer rational function 
 26.02 1637 

1741

x
y

x





 is taken as the reference function for 

calculating residuals of dXCO2. The residual plot is shown in Figure 4.13. The absolute values of 

residuals in dXCO2 are normally distributed as shown in Figure 4.14 and are scaled from 1 to 10 

as shown in Table A.65. The absolute residuals and the scales are non-normally distributed.  



121 

 

 

Figure 4.13 Residual Plot of 10-Layer Rational Regression 

 

Figure 4.14 Histogram of Original Residuals 

The Spearman correlation is carried out on the scale of absolute residual and the scale of 

meteorological parameters. The coefficients are shown in Table 4.20. 

Table 4.20 Correlations between Regression Residual Scale and Meteorological Parameter Scale 

Weather Factors 

Hamilton London 

One-Hour Three-Hour One-Hour Three-Hour 

Wind Speed -0.0647 -0.1103 0.0186 -0.0869 

Wind Direction Deviation 0.1571    

Temperature 0.0631 0.0484 0.0649 0.0600 

Humidity 0.3518 0.3495 0.1529 0.1618 

Pressure -0.0144 -0.0183 -0.0010 -0.0348 

Weather Event/Description 0.0326 NA -0.0797 NA 
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No single parameter is strictly correlated with the regression residual. In order to explore more on 

the relationship between residual and meteorology, it is necessary to categorize each variable and 

examine the clustering pattern if there is any. The residuals are divided into two groups: strong fit 

(scale<=5) and weak fit (scale>=6). The two groups and relevant scaling information are 

summarized in Table A.66. The percentages of high-scale influential factors in target groups are 

calculated to evaluate the strength of influence as shown in Table 4.21.  

Table 4.21 The Statistics of Potential Influential Factors on Residuals 

 Residual Output 

Surface 

XCO2 

Uncertainty 

Wind 

Speed 

Wind 

Direction 

Deviation 

Temperature Humidity Pressure 
Weather 

Event 

Percentage of 

High Scale (%) 
21.21 18.18 22.73 28.79 34.38 74.24 46.97 43.08 30.77 

Percentage of 

High in Strong 

(%) 

 15.38 23.08 30.77 34.00 76.92 42.31 40.38 30.77 

Percentage of 

High in Weak 

(%) 

 28.57 21.43 21.43 35.71 62.29 64.29 53.85 30.77 

Percentage of 

High in 

Positive/ 

Negative (%) 

 
18.75/ 

17.65 

21.88/ 

23.52 

25.00/ 

32.35 

34.38/ 

34.38 

75.00/ 

73.53 

59.38/ 

35.29 

51.61/ 

35.29 

32.26/ 

29.41 

Percentage of 

High in 

Positive/Negati

ve Strong (%) 

 
12.50/ 

17.86 

20.83/ 

25.00 

25.00/ 

35.71 

37.50/ 

30.77 

75.00/ 

78.57 

54.17/ 

32.14 

54.17/ 

28.57 

33.33/ 

28.57 

Percentage of 

High in 

Positive/Negati

ve Weak (%) 

 
37.50/ 

16.67 

25.00/ 

16.67 

25.00/ 

16.67 

25.00/ 

50.00 

75.00/ 

50.00 

75.00/ 

50.00 

42.85/ 

66.67 

28.57/ 

33.33 

Average Scale 

in Strong 
 2.88 2.62 3.33 4.34 6.94 5.12 5.12 2.12 

Average Scale 

in Weak 
 4.21 1.79 2.85 4.71 7.00 6.14 5.62 2.23 
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Considering the statistical distribution of each item above, the high scale denotes scale 6 to 10 for 

residual, output, wind direction deviation, temperature, humidity and pressure, 4 to 10 for XCO2 

uncertainty and wind speed, 3 to 6 for weather event. The ‘Strong’ and ‘Weak’ refer to strong fit 

and weak fit groups respectively. The table above facilitates examining the impacts of each 

parameter on the target variable (regression residual). For instance, the percentage of ‘high output’ 

in strong class is 15.38% while is 28.57% in the weak class, which indicates that higher outputs 

are likely to cause larger residuals. Another significant influential factor is humidity.  

The results with alternative definition of high scale are shown in Table 4.22, i.e. the high scale 

denotes scale 3 to 10 for output and XCO2 uncertainty, 4 to 10 for wind speed, 8 to 10 for 

temperature, 6 to 10 for wind direction deviation, humidity and pressure, and 3 to 6 for weather 

event. By modifying the criteria, it is guaranteed that the strong fit or weak fit and high scale or 

low scale take a share of total that is closest to 50%. The three modified items are output, surface 

XCO2 uncertainty and temperature. 

Table 4.22 The Statistics of Potential Influential Factors on Residuals: Alternative Criteria 

 Output  Surface XCO2 Uncertainty Temperature  

Percentage of High Scale (%) 43.94 34.85 46.97 

Percentage High in Strong (%) 38.46 38.46 44.23 

Percentage High in Weak (%) 64.29 21.43 57.14 

Percentage of High in Positive/ Negative (%) 46.88/41.18 37.50/32.35 50.00/44.12 

Percentage of High in Positive/Negative Strong (%) 41.67/35.71 41.67/35.71 41.67/46.43 

Percentage of High in Positive/Negative Weak (%) 62.50/66.67 25.00/16.67 75.00/33.33 

It is noteworthy that the impact of surface XCO2 uncertainty on the absolute values of residual is 

not significant as seen in both tables above. However, large surface XCO2 uncertainties tend to 

overestimated rather than underestimate the residuals especially for the weak residual class.  
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Likewise, the influence of meteorological parameters on the surface-level XCO2 uncertainty can 

also be explored. Table 4.23 shows the statistics of these influential factors on XCO2 uncertainty. 

The definition of high scale is the same with that used for Table 4.21. 

Table 4.23 The Statistics of Potential Influential Factors on Surface XCO2 Uncertainty 

 
Surface XCO2 

Uncertainty 
Output Wind Temperature Humidity Pressure 

Weather 

Event 

Percentage of 

High Scale 

(%) 

22.73 18.18 28.79 74.24 46.97 43.08 30.77 

Percentage of 

High in Low 

(%) 

 21.57 27.45 88.24 39.22 40.00 28.00 

Percentage of 

High in High 

(%) 

 6.67 33.33 26.67 73.33 53.33 40.00 

Average Scale 

in Low 
 3.26 3.18 7.80 4.94 5.00 2.10 

Average Scale 

in High 
 3.00 3.40 4.07 6.67 5.93 2.27 

Table 4.23 shows that low temperature, high humidity and high surface pressure are the major 

causes of large surface XCO2 uncertainties since they are more dominant in the high surface 

uncertainty class.  

The influences of various factors on regression residuals and surface layer XCO2 uncertainties 

can be examined using this method. However, these variables especially the meteorological 

parameters are expected to have an interactive and conjunct impact on the regression residuals 

and XCO2 uncertainties. The following tables show the frequency of association between every 

two variables with high and low scales.  
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Table 4.24 Frequency of Association between High/High Scale Variables (%) 

 High Wind  Speed High Temperature High Humidity High Pressure High Weather 

High Wind  Speed  24.24 12.12 9.09 6.06 

High Temperature 24.24  30.30 22.73 21.21 

High Humidity 12.12 30.30  19.70 19.70 

High Pressure 9.09 22.73 19.70  10.61 

High Weather 6.06 21.21 19.70 10.61  

Table 4.25 Frequency of Association between High/Low Scale Variables (%) 

 Low Wind  Speed Low Temperature Low Humidity Low Pressure Low Weather 

High Wind  Speed  4.55 16.67 19.70 22.73 

High Temperature 50.00  43.94 51.52 53.03 

High Humidity 34.85 16.67  27.27 27.27 

High Pressure 34.85 21.21 24.24  33.33 

High Weather 24.24 9.09 10.61 19.70  

 

Table 4.26 Frequency of Association between Low/Low Scale Variables (%) 

 Low Wind  Speed Low Temperature Low Humidity Low Pressure Low Weather 

Low Wind  Speed  21.21 36.36 36.36 46.97 

Low Temperature 21.21  9.09 4.55 16.67 

Low Humidity 36.36 9.09  28.79 42.42 

Low Pressure 36.36 4.55 28.79  36.36 

Low Weather 46.97 16.67 42.42 36.36  

 

Table 4.27 A Summary of Frequency of Association between Variables (%) 

 High and High High to High High to Low Low to High Low to Low 

Wind to Temperature 28.79/74.24 24.24 4.55 50.00 21.21 

Wind to Humidity 28.79/46.97 12.12 16.67 34.85 36.36 

Wind to Pressure 28.79/43.08 9.09 19.70 34.85 36.36 

Wind to Weather 28.79/30.77 6.06 22.73 24.24 46.97 

Temperature to Humidity 74.24/46.97 30.30 43.94 16.67 9.09 

Temperature to Pressure 74.24/43.08 22.73 51.52 21.21 4.55 

Temperature to Weather 74.24/30.77 21.21 53.03 9.09 16.67 

Humidity to Pressure 46.97/43.08 19.70 27.27 24.24 28.79 

Humidity to Weather 46.97/30.77 19.70 27.27 10.61 42.42 

Pressure to Weather 43.08/30.77 10.61 33.33 19.70 36.36 

Note: The sum of each row may be not perfectly 100% due to rounding.The column 'high and high' denotes the overall 

percentage of each parameter.  
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Based on Table 4.27, the relationship between every two meteorological parameters can be 

explored. For instance, as for wind and temperature, weak wind and high temperature are most 

frequently observed over the study period. The pairing between high temperature and calm 

weather (as opposed to extreme weather events) dominates the relationship between the two 

variables. Not a dominant relationship can be observed for every two particular variables, e.g. the 

relationship between humidity and pressure is fairly uniformly distributed among high-high, high-

low, low-high and low-low. The pairing between wind speed and wind direction deviation is 

analyzed separately. The combination of low-scale wind speed and low-scale wind direction 

deviation takes a share of 46.88% of total, low-scale wind speed and high-scale wind direction 

deviation 18.75%, high-scale wind speed and low-scale wind direction deviation 23.43%, high-

scale wind speed and high-scale wind direction deviation 10.94%. Strong winds are more likely 

to be associated with small wind direction deviations and large wind direction deviations tend to 

be associated with weak winds.   

However, the pattern of variable association is expected to vary with season. In this regard, 

summer is analyzed individually and the result is shown in Table 4.28, similar to Table 4.27. 

Table 4.28 A Summary of Frequency of Association between Variables in Summer (%) 

 High and High High to High High to Low Low to High Low to Low 

Wind to Temperature 24/100 24 0 76 0 

Wind to Humidity 24/40 8 16 32 44 

Wind to Pressure 24/28 8 16 20 56 

Wind to Weather 24/0 0 24 0 76 

Temperature to Humidity 100/40 40 60 0 0 

Temperature to Pressure 100/28 28 72 0 0 

Temperature to Weather 100/0 0 100 0 0 

Humidity to Pressure 40/28 24 68 4 4 

Humidity to Weather 40/0 0 40 0 60 

Pressure to Weather 28/0 0 28 0 72 

Summer is characterized by low wind speed, high temperature, medium humidity, low pressure 

and good weather condition. Prominent pairing patterns are observed: ‘low to high’ for wind and 

temperature, ‘low to low’ for wind and pressure, ‘low to low’ for wind and weather, ‘high to low’ 

for temperature and humidity, ‘high to low’ for temperature and pressure, ‘high to low’ for 

temperature and weather, ‘high to low’ for humidity and pressure, ‘low to low’ for humidity and 

weather, ‘low to low’ for pressure and weather.  
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4.9.3 Influence Evaluation: 3-Layer Partial Column 

It is expected that the meteorological parameters have a more apparent effect on the lower 

atmosphere. Therefore, an evaluation on the influence of weather on 3-layer partial column is also 

carried out.  

The 3-layer polynomial function 
2-(3.28e-6)x  0.0205x - 0.6011y    is taken for calculating 

regression residuals (3-layer dXCO2 and three-hour average generating output). The residual plot 

is shown in Figure 4.15.  

 

Figure 4.15 Residual Plot of 3_Layer Polynomial Regression 

According to the distribution of 3-layer regression residuals, the high scale is composed of scale 5 

to 10. The definition of high scale for other factors is consistent with that used for Table 4.21.  
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Table 4.29 Statistics of Potential Influential Factors on Residuals 

 Residual Output 

Surface 

XCO2 

Uncertainty 

Wind 

Speed 

Wind 

Direction 

Deviation 

Temperature Humidity Pressure 
Weather 

Event 

Percentage of High 

Scale (%) 
22.73 18.18 22.73 28.79 34.38 74.24 46.97 43.08 30.77 

Percentage of High 

in Strong (%) 
 11.76 27.45 33.33 33.96 70.59 47.06 52.00 32.00 

Percentage of High 

in Weak (%) 
 40.00 6.67 13.33 36.36 86.67 46.67 13.33 26.67 

Percentage of High 

in Positive/ 

Negative (%) 

 
21.21/ 

15.15 

18.18/ 

27.27 

27.27/ 

30.30 

27.27/ 

41.93 

75.76/ 

72.73 

45.45/ 

48.48 

43.75/ 

42.42 

28.13/ 

33.33 

Percentage of High 

in 

Positive/Negative 

Strong (%) 

 
12.50/ 

11.11 

25.00/ 

29.63 

37.50/ 

29.63 

25.93/ 

42.31 

66.67/ 

74.07 

50.00/ 

44.44 

56.52/ 

48.15 

26.09/ 

37.04 

Percentage of High 

in 

Positive/Negative 

Weak (%) 

 
44.44/ 

33.33 

0.00/ 

16.67 

0.00/ 

33.33 

33.33/ 

40.00 

100.00/ 

66.67 

33.33/ 

66.67 

11.11/ 

16.67 

33.33/ 

16.67 

Average Scale in 

Strong 
 2.69 2.61 3.33 4.40 6.55 5.29 5.48 2.18 

Average Scale in 

Weak 
 4.8 1.87 2.87 4.55 8.33 5.47 4.33 2.00 

Similarly, compared to Table 4.21, higher outputs tend to cause large residuals. Large residuals 

are more frequently associated with high temperature and low surface pressure. However, the 

large surface XCO2 uncertainty does not fully contribute to the large model residuals, which may 

imply a larger contribution from background observations. In addition, high wind speeds do not 

necessarily cause large model residuals. Wind direction deviation tends to cause negative 
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observation-model biases, but the influence of wind direction deviation on the model goodness of 

fit (percentage of high in strong VS percentage of high in weak) is not prominent. 

4.9.4 Simplified Regression and Modified Parameter Scaling 

As seen from Figure 4.12, only relative humidity is normally distributed and none of the 

meteorological parameters are uniformly distributed. In this respect, it is likely that the results in 

Table 4.21 and 4.23 are at least partially dependent on the scaling of relevant parameters. This 

section presents the results (as Table 4.21 and 4.23) with alternatively scaled parameters by 

resampling for each parameter (as described in Section 3.5.2) and simplifying the regression 

model (using both thick partial column and thin partial column). The meteorological parameters 

are then adjusted and the regression model is reconstructed for each parameter as well (taking 

rational regression for 10-layer model and polynomial regression for 3-layer model, which is in 

agreement with previous sections). The re-analyzed parameters include: wind speed, wind 

direction deviation, temperature, humidity and surface pressure. 

 

Figure 4.16 Histograms of Scaled Meteorological Parameters (Adjusted) 

The revised scales of meteorological parameters have more uniformly distributed counts than 

those in Figure 4.12. The regression models are re-evaluated for each parameter using different 

sets of generating output and dXCO2 (the removed observations vary among parameters) and the 

model residuals are re-calculated. Table 4.30 shows the results for influence of each parameter on 

10-layer model residual. 
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Table 4.30 Influence of Adjusted Meteorological Parameters on 10-Layer Model Residuals 

 
Wind 

Speed 

Wind Direction 

Deviation  
Temperature Humidity Pressure 

Percentage of Weak Fit 

Residual: 6-10 (%) 
20.70 19.05 17.31 25.86 25.45 

Percentage of High 

Scale Parameter: 

 6-10  (%) 

37.93 35.71 55.77 46.55 52.73 

Percentage of High in 

Strong (%) 
41.30 38.24 48.84 39.53 51.22 

Percentage of High in 

Weak (%) 
25.00 25.00 88.89 66.67 57.14 

Percentage of High in 

Positive/ Negative (%) 

44.44/ 

32.26 

33.33/ 

38.10 

64.00/ 

48.15 

60.71/ 

33.33 

64.29/ 

40.74 

Percentage of High in 

Positive/Negative 

Strong (%) 

47.62/ 

36.00 

 

35.29/ 

41.18 

52.63/ 

45.83 

55.00/ 

26.09 

65.00/ 

38.10 

Percentage of High in 

Positive/Negative Weak 

(%) 

33.33/ 

16.67 

25.00/ 

25.00 

100.00/ 

66.67 

75.00/ 

57.14 

62.50/ 

50.00 

Average Scale in Strong 5.28 4.76 5.44 5.05 5.39 

Average Scale in Weak 3.91 4.50 8 6.6 5.64 

 

Compared to Table 4.21, no significant changes are observed except the influence of temperature. 

In Table 4.21, high temperatures are shown as slightly contributing to strong fit; however, in 
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Table 4.30 it is observed that high temperatures are highly associated with large observation-

model biases. This is because winter observations are mostly removed and the temperature data 

are more uniformly distributed. Under this context, high temperatures (mostly in summer) are 

contributing to complex dispersion of CO2 in the atmosphere hence to the large observation-

model difference.  

The regression equations and associated goodness of fit are shown in Table 4.31, along with the 

goodness of fit using 2-hour and 3-hour averaged output. These results are consistent with the 

results reported in previous sections: CO2 concentrations in a thicker partial column have a higher 

correlation with 1-hour output. 

Table 4.31 Regression Equations and Goodness of Fit: 10-Layer dXCO2, Adjusted Meteorology 

 Wind Speed Wind Dir. Dev. Temperature Humidity Pressure 

Regression 

Equation  

26.64 1890

1627

x
y

x






1-hour output 

34.88 4327

3003

x
y

x






1-hour output 

22.37 1224

1216

x
y

x






1-hour output 

26.55 1477

1679

x
y

x






1-hour output 

30 2996

2417

x
y

x






2-hour output 

Goodness of Fit 

(1-h output) 

0.5728 0.6098 0.5860 0.5696 0.5885 

Goodness of Fit 

(2-h output) 

0.5670 0.5919 0.5765 0.5649 0.5898 

Goodness of Fit 

(3-h output) 

0.5514 0.5873 0.5666 0.5508 0.5847 

The results for influence analysis using 3-layer partial column is shown in Table 4.32 and the 

associated regression models and goodness of fit are shown in Table 4.33.  
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Table 4.32 Influence of Adjusted Meteorological Parameters on 3-Layer Model Residuals 

 
Wind 

Speed  

Wind Direction 

Deviation  
Temperature Humidity Pressure 

Percentage of Weak Fit 

Residual: 6-10 (%) 
13.79 16.67 19.23 15.51 18.18 

Percentage of High 

Scale Parameter: 

  6-10 (%) 

37.93 35.71 55.77 46.55 52.73 

Percentage of High in 

Strong (%) 
42.00 40.00 47.62 48.98 57.78 

Percentage of High in 

Weak (%) 
12.5 14.29 90.00 33.33 30.00 

Percentage of High in 

Positive/ Negative (%) 

35.71/ 

40.00 

35.00/ 

36.36 

75.00/ 

39.29 

46.15/ 

46.88 

48.15/ 

57.14 

Percentage of High in 

Positive/Negative 

Strong (%) 

40.00/ 

44.00 

37.50/ 

42.11 

66.67/ 

33.33 

52.38/ 

46.43 

50.00/ 

65.22 

Percentage of High in 

Positive/Negative Weak 

(%) 

0.00/ 

20.00 

25.00/ 

0 

100.00/ 

75.00 

20.00/ 

50.00 

40.00/ 

20.00 

Average Scale in Strong 5.18 4.94 5.31 5.59 5.67 

Average Scale in Weak 3.88 3.57 8.3 4.67 4.5 

 

Overall, the results are very similar with those reported in Table 4.29. The influence of wind 

direction deviation is weakened (average scale in strong is larger than that in weak) since 

observations with large direction deviations are removed and the remaining direction data have 
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negligible impacts on the estimation of local CO2 concentration. In addition, the influence of high 

temperature on 3-layer CO2 estimation becomes more obvious than in Table 4.29 and 4.30. 

Table 4.33 Regression Equations and Goodness of Fit: 3-Layer dXCO2, Adjusted Meteorology 

 Wind Speed Wind Dir. Dev. Temperature Humidity Pressure 

Regression 

Equation  

y=-3.2e-

6x2+0.02029x+1.

255 

y=-1.964e-

6x2+0.01576x+2.7

04 

y=-4.595e-

6x2+0.02341x+0.70

42 

y=-3.271e-

6x2+0.02148

x-0.3753 

y=-3.417e-

6x2+0.02063x+0.31

34 

Goodness 

of Fit (1-h 

output) 

0.3491 0.3175 0.3713 0.4151 0.3478 

Goodness 

of Fit (2-h 

output) 

0.3634 0.3246 0.3824 0.4323 0.3639 

Goodness 

of Fit (3-h 

output) 

0.3746 0.3298 0.3938 0.4463 0.3773 

 

It is shown that 3-layer partial columns are more correlated with 3-h output, which is in 

agreement with the early findings (Table 4.13). The influence of these meteorological parameters 

on the surface XCO2 uncertainty is further examined and the results are shown in Table 4.34. 
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Table 4.34 The Influence of Adjusted Meteorology on Surface XCO2 Uncertainty 

 Wind Speed Wind Dir Dev Temperature Humidity Pressure 

Percentage of High Scale XCO2 Uncertainty: 

 4-10 (%) 
43.13 19.05 9.62 24.13 41.82 

Percentage of High Scale Meteorology (%) 37.93 35.71 55.77 46.55 52.73 

Percentage of High in Low (%) 42.42 29.41 59.57 38.64 46.88 

Percentage of High in High (%) 32.00 62.5 20.00 71.43 60.87 

Average Scale in Low 5.27 4.47 6.12 4.86 5.31 

Average Scale in High 4.64 5.75 3.6 7.29 5.65 

 

The conclusions on the impacts of relevant parameters on surface XCO2 uncertainty remain the 

same with the adjusted meteorology: low temperature and high humidity tend to contribute more 

to high XCO2 uncertainty than other parameters. 

4.9.5 Influence of Categorical Meteorological Parameters 

This section examines the impacts of original categorical meteorological data on model residuals 

through multivariate regression analysis. By doing so, it is expected that the impacts of 

meteorological parameters can be evaluated in a more quantitative way. However, due to limited 

information about the identical quantitative relationship between model residuals and 

meteorological parameters, it is assumed that the influence of each independent variable on the 

dependent variable is linear, interaction or quadratic (pure quadratic and full quadratic). 

The parameters considered include model residual, generating output, wind speed, wind direction 

deviation, temperature, relative humidity and surface pressure.  
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Firstly, the quantitative relationship takes the linear form and assumes that there is no interaction 

between independent variables: 

0 o o ws ws wdd wdd t t h h p py x x x x x x               Eq. 4.1 

where y is the dependent variable model residual or surface XCO2 uncertainty, ox  and o denote 

the values of output and the coefficient for output, wsx and ws denote the values of wind speed 

and coefficient for wind speed, wddx and wdd denote the values of wind direction deviation and 

coefficient for wind direction deviation, tx and t denote the values of temperature and 

coefficient for temperature, hx and h denote the values of humidity and coefficient for humidity, 

px and p denote the values of pressure and coefficient for pressure. 

The regressed linear function of output and meteorology on 10-layer model residuals is: 

229.89 0.0002 0.0212 0.0426 0.0707 0.0177 2.3010o ws wdd t h py x x x x x x         Eq. 4.2 

As indicated by Eq. 4.2, the 10-layer model residuals increase with all the influential factors 

except wind direction deviation, which can agree with the findings in previous sections. However, 

Eq. 4.2 is not significant at the 0.05 level and the R
2
 (~0.05) is too low to conclude a linear 

relationship between 10-layer model residuals and surface and meteorological parameters with 

confidence. The linear regression for 3-layer model residuals is more significant and has better 

goodness of fit, which implies that the meteorology may have stronger impacts on the thinner 

partial columns than on the thicker partial columns. But it is still rejected at the 0.05 level. In 

contrast, the linear regression for the surface XCO2 uncertainty is more significant and accepted 

at the 0.05 level. The R
2
 is 0.3682 and the linear function is expressed in Eq. 4.3. 

43.10 0.0003 0.1785 0.0528 0.1688 0.0513 0.1255o ws wdd t h py x x x x x x        Eq. 4.3 

Eq. 4.3 is in high agreement with the findings from Table 4.23, i.e. the surface XCO2 uncertainty 

decreases with temperature but increases with humidity and surface pressure. Theoretically, the 

generating output and wind do not affect the uncertainty of CO2 retrieval. 

It is highly likely that the influence of meteorology on the model residual is non-linear. In this 

regard, interaction and quadratic regressions are carried out on each independent parameter and 
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the partial correlations are examined. Three forms of regressions are analyzed: pure quadratic, 

interactions and full quadratic. Taking the 10-layer model results for example, the RMSE is 

4.8359 for pure quadratic, 4.4464 for interactions and 4.3109 for full quadratic. Figure 4.17 and 

4.18 show the results for interactions and full quadratic regressions respectively. 

 

Figure 4.17 Interactions Regression for 10-Layer Model Residuals 

 

Figure 4.18 Full Quadratic Regression for 10-Layer Model Residuals 

These two graphs above show the partial correlation for each independent parameter. The impact 

of output on 10-layer model residual is negligible in ‘full quadratic’ while in ‘interactions’ high 

outputs (typically larger than 890MW as indicated) tend to lead to large model residuals with 

overestimated observation-model differences. Strong winds (speed > 12.6km/h) can cause large 
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model residuals with overestimated observation-model differences in the weak fit, which agrees 

with the findings in previous sections. High wind direction deviation (>70°) can lead to 

underestimated observation-model differences, which is in agreement with the previous sections 

and physical knowledge. High temperatures (>14.6°) can cause overestimation of observation-

model differences while low temperatures are more associated with an underestimation. The 

conclusions on the impacts of humidity and pressure are also very similar to what has been 

observed from Table 4.21 and 4.30. 

As a further step, the impacts of meteorological parameters on 3-layer model residuals are also 

examined. The RMSE is 14.2265 for pure quadratic, 13.2434 for interactions and 13.1107 for full 

quadratic. Figure 4.19 and 4.20 show the results of interactions and full quadratic regressions 

respectively. 

 

Figure 4.19 Interactions Regression for 3-Layer Model Residuals 

  



138 

 

 

Figure 4.20 Full Quadratic Regression for 3-Layer Model Residuals 

Though the 3-layer model residuals are not very well fitted by the ‘interactions’ or the ‘full 

quadratic’ that take into account six influential parameters, we can still gain some information 

about the impacts of these parameters and their similarity to the findings in previous sections. For 

example, similar to Table 4.29 and 4.32, high temperatures tend to overestimate the 3-layer 

observation-model differences; high humidity is more likely to cause underestimation of the 

observation-model differences; and high pressures are more associated with overestimation of the 

differences. 

In terms of the contradictory results about the impact of temperature, a further analysis is carried 

out to verify that the impact of temperature is mainly related to the depth of PBL, i.e. generally 

high temperatures are connected to deep PBL; however, the relationship between these two 

variables is not strictly proportional or monotonically increasing. In this regard, PBL depth data 

are retrieved from NARR ESRL (NCEP North American Regional Reanalysis). All the 

observations are divided as shallow group (PBL depth <=1000m) and deep group (PBL 

depth>1000m). These two groups are fitted with 2-degree power generation separately and 

compared to each other based on R
2
 and RMSE. 10-layer and 3-layer partial column, 1-hour 

output and 3-h output are analyzed. Table 4.35 shows the result.  
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Table 4.35 Power Regression Results for Shallow and Deep Groups 

  Shallow Deep 

10-layer  1-hour output 

R2 0.583 0.5458 

RMSE 4.937 5.161 

 3-hour output 

R2 0.583 0.5221 

RMSE 5.064 5.16 

3-layer  1-hour output 

R2 0.4356 0.351 

RMSE 14.63 15.06 

 3-hour output 

R2 0.4882 0.3512 

RMSE 13.9 15.05 

The R
2
 and RMSE of the shallow group are better than the deep group. When the PBL is shallow, 

there is no much difference between 1-hour and 3-hour using 10-layer dXCO2; when the PBL 

gets deeper, it is easier for the early emission to get out of the FOV and 10-layer partial column is 

able to observe this difference, therefore 1-hour R
2
 is somewhat higher than 3-hour R

2
. 

As for the 3-layer dXCO2, when the PBL is shallow, a thin partial column is able to capture the 

emission signal but not qualified for accounting for the effect of natural CO2 cycle and the XCO2 

uncertainty of the surface layer is larger than a thick layer; therefore, the R
2
 is worse than 10-

layer and there is a gap between 1-hour and 3-hour R
2
. When the PBL is deep (e.g. deeper than 

the 3-layer partial column), early emissions escape faster and the partial column misses a certain 

part of the instant emissions as well, so the R
2
 is quite similar between 1-h and 3-h. (Generally, 1-

hour output and 3-hour output have a <1% difference).  

Additionally, when the shallow and deep group are redefined as PBL depth <= 900m and PBL 

depth >=1300m, the difference of R
2
 between shallow and deep groups gets larger. In order to 

assess the statistical significance, a resampling test (permutation with 1000 samplings) is carried 

out and the difference of R
2
 is taken as the test statistic. It is found that PBL depth has a sizable 

impact on model residuals. The influence on 10-layer model residuals is less significant than that 

on 3-layer model residuals, which means the thicker partial column CO2 data are less vulnerable 

to external factors. It is also noteworthy that the influence of PBL depth on model residuals is not 

prominently significant. This is similar to the case of other meteorological parameters, indicating 

that no single external factors are dominantly influencing the model performance. In contrast to 

temperature, the change of distribution of PBL depth data enhances the conclusion on PBL’s 
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depth rather than cause a conflict. This is because the depth of PBL is determined by a gradient of 

temperature with height. It is relevant to, but not determined by the surface temperatures. 

However, high temperatures facilitate accurate CO2 retrieval with low uncertainty. The 

complicated role of temperature in CO2 retrieval and CO2 atmospheric dispersion is the main 

reason for the difference of temperature’s impact on model residuals as observed in Table 4.21 

and Table 4.29/4.30/4.32. 

In summary, Section 4.9 examines the influence of surface and atmospheric parameters on model 

residuals and XCO2 uncertainty. This is achieved in three ways. Firstly, all the influential 

parameters are scaled into 1 to 10 (1 to 6 for weather description). The influence of parameters is 

explored by examining the pattern of association between one of the independent variables 

(surface or atmospheric parameters) and the dependent variable (model residual or XCO2 

uncertainty). Secondly, considering that any conclusion may partially depend on the distribution 

of the parameters involved, the influential parameters are adjusted and re-examined. A 

discrepancy is observed in terms of the conclusion on the impact of ‘high temperature’ since the 

number of winter observations during the study period is very limited while they have a great 

impact on the distribution of temperature data overall. Finally, a multivariate analysis is carried 

out on the categorical meteorological parameters and the partial correlation is investigated on 

each parameter. By doing so, we are able to examine the numeric relationship between a 

meteorological parameter and the model residual. The results are highly consistent with those 

achieved by scaling modified parameters. However, the multivariate analysis is based on and 

limited to the assumption that the relationship between the dependent and independent variables 

are linear, interactions or quadratic (pure quadratic or full quadratic). 

4.10 Monthly and Seasonal Variations in CO2 in Hamilton 

This section presents the results for visualizing and analyzing the monthly/seasonal variations in 

CO2 concentrations in Hamilton area. One sounding is available in Hamilton urban area and 55 

observations are captured for 2010, 2011 and 2012. 2009 and 2013 are not considered due to 

incomplete temporal coverage.  

The trend of column and partial column CO2 concentrations are drawn to examine their capability 

of reflecting monthly/seasonal CO2 variations.  
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4.10.1 Target Soundings in Hamilton 

Satellite observations over the target site in Hamilton on 55days are retrieved from ACOS B3.3 

dataset associated with the XCO2 uncertainty of the column and the first 10 levels from surface up. 

The column and partial column XCO2 are calculated. 

Column XCO2 on target days is shown in Figure 4.21. The XCO2 is averaged in monthly bins for 

each year. As can be seen, the CO2 seasonality is not highly observable put into the same scale of 

XCO2 as partial columns. The variations over specific periods can be insignificant, e.g. Mar 2011 

to Oct 2011 and Feb 2012 to Jun 2012. 

 

Figure 4.21 Monthly Average Column XCO2 for Year 2010, 2011 and 2012 

4.10.2 Partial Column XCO2 

In order to examine the performance of partial columns on presenting the seasonal variations of 

CO2 concentration, the partial column XCO2 with 4, 6, 8 and 10 layers are drawn in Figure 4.22 

to 4.25. 
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Figure 4.22 Monthly Average 4-Layer Partial Column XCO2 for Year 2010, 2011 and 2012 
 

 
Figure 4.23 Monthly Average 6-Layer Partial Column XCO2 for Year 2010, 2011 and 2012 

 

Figure 4.24 Monthly Average 8-Layer Partial Column XCO2 for Year 2010, 2011 and 2012 
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Figure 4.25 Monthly Average 10-Layer Partial Column XCO2 for Year 2010, 2011 and 2012 

Column and partial column XCO2 for the year 2010, 2011 and 2012 are shown in Figure 4.26, 

Figure 4.27 and Figure 4.28.  

 

Figure 4.26 Column and Partial Column XCO2 for 2010 
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Figure 4.27 Column and Partial Column XCO2 for 2011 

 

Figure 4.28 Column and Partial Column XCO2 for 2012 

Table 4.36 Goodness of Fit: CO2 Seasonality by Full Column and Partial Columns 

 2010 2011 2012 

Column 0.5743 0.8366 0.6947 

3-Layer 0.5829 0.5429 0.7122 

4-Layer 0.5917 0.6133 0.7303 

5-Layer 0.5978 0.6762 0.7447 

6-Layer 0.6018 0.7286 0.7550 

7-Layer 0.6041 0.7704 0.7614 

8-Layer 0.6053 0.8016 0.7640 

9-Layer 0.6057 0.8236 0.7634 

10-Layer 0.6054 0.8378 0.7600 

11-Layer 0.6043 0.8464 0.7542 
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The column and partial column XCO2 for the three years are fitted to a Fourier curve that is 

expected to be able to present CO2 natural seasonality. The goodness of fit is shown in Table 4.36. 

the 9-layer partial column yields the best goodness of fit for 2010 and all partial columns perform 

better than the full column; 11-layer partial column yield the best goodness of fit for 2011 and the 

performance of full column stand in the midst of 9-layer and 10-layer partial columns; 8-layer 

partial column yields the best goodness of fit for 2012 and all partial columns perform better than 

the full column. 

4.11 Summary 

In this chapter, the results that are obtained by applying the methods in Chapter 3 are presented in 

9 sections.  

Section 4.2 introduced the basic statistics on column XCO2 and CO2 and their correlation with 

generating output.  

Section 4.3 examined the inner heterogeneity of two comparable ‘background area’ and identified 

3 as the number of background soundings for approving a background area, which means a target 

day with <3 background soundings would not be processed.  

In Section 4.4, the optimal number of layers for a partial column was predicted based on the 

shape of CO2 vertical profiles. 

Section 4.5 explored possible function forms of column/partial column dXCO2/dCO2 dependent 

on generating output according to the scatter plot. In addition to linear correlation, power function, 

2-degree polynomial function, 2-degree power function, 1-degree rational function and 1-term 

sum of sine were decided to be analyzed for nonlinear correlation. 

Section 4.6 showed the correlation results with each correlation form presented in a separate sub-

section. At the end of each sub-section, results from column and partial column with a given 

number of layers were compared with respect to R
2
, RMSE (coefficient for linear correlation), 

intercept on y-axis, generating output averaging, N-layer or N-pressure, dXCO2 or dCO2. At last, 

5 correlation forms were compared in the ‘Summary’. 

In order to prepare for analyzing the results in Section 4.6, Section 4.7 introduced basic statistics 

on the XCO2 and associated uncertainties on the first levels from surface up. 
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In Section 4.8, a number of meteorological parameters that are likely to influence the regression 

results (in terms of observation-model bias) were investigated for all target days. The weather 

information was obtained from Hamilton Station and London Station. These two stations are 

located approximately 40km to the northeast and 100km to the west of Nanticoke Generating 

Station respectively. The weather factors involved temperature, station pressure, relative humidity, 

wind speed and direction, and weather event/description. Each factor was scaled from 1 to 10 

indicating low to high values except that the weather event/description was scaled from 1 to 6. In 

the end of this section, the weather factors’ scales were compared between two weather stations.  

Section 4.9 examined the influence of the abovementioned parameters on the regression residuals. 

The residuals were scaled from 1 to 10 as well and grouped as ‘strong fit’ and ‘weak fit’, 

‘positive’ and ‘negative’. The scales of meteorological parameters were divided as ‘low’ and 

‘high’. Subsequently, the percentages of low and high weather scales in corresponding residual 

groups are calculated. In the meanwhile, the uncertainty on the surface-level XCO2 was taken as 

an example to explore how weather factors could possibly affect XCO2 uncertainty especially in 

lower atmosphere. The meteorological parameters are then resampled based on the uniformity of 

data distribution and the influential parameters are examined using the same approach. The 

categorical meteorological data are also used for a multivariate analysis to numerically explore 

the impacts of these parameters on the model performance. 

Section 4.10 is mainly about comparing the capabilities of column XCO2 and partial column 

XCO2 of reflecting CO2 monthly or seasonal variation in Hamilton area. 55 soundings were 

captured across the year of 2010, 2011 and 2012. The trend of XCO2 is visualized for each year.  

Explanations and discussions on these results are in the next chapter.  
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Chapter 5: Discussion 

The column CO2 concentrations were not capable of presenting a clear quantitative relationship 

with the generating outputs. In order to estimate the enhancement of CO2 concentration due to 

surface emissions, the concept of ‘background’ was introduced as reference. This was 

demonstrated as an effective measure for constraining the influence of another significant surface 

flux (biosphere). A clear quantitative relationship between Nanticoke generating outputs and CO2 

enhancements (abundances and concentrations) was observed. In addition, CO2 concentrations 

and partial columns performed better in reflecting surface emissions than CO2 abundances and 

full column respectively. The linear/nonlinear regressions showed that reduced CO2 emissions 

from the strong localized source led to decreased enhancement of local CO2 concentrations. 

Furthermore, a number of factors especially the meteorological parameters were investigated and 

demonstrated as influential on the model residuals. Finally, partial column XCO2 was found more 

capable of presenting natural CO2 seasonality than column XCO2. 

5.1 CO2 Concentrations and Surface Emissions 

The seasonal CO2 variations can be observed from the column XCO2 sequences in Figure 4.1. 

However, the surface emissions from Nanticoke GS cause very strong fluctuations to CO2 

concentrations especially before 2012 when the generating outputs are high. The disturbance 

becomes weaker in 2012 which leads to smaller CO2 variations while a clearer seasonal trend is 

observed. 

Despite the apparent disturbance of surface emissions on local CO2 concentrations, the absolute 

concentrations are not strictly determined by the strength of emissions. This is further confirmed 

by Figure 4.2 that takes into account the daily generating outputs over the study period and the 

smoothing spline of column XCO2. The power generation increases significantly in 2010 summer 

and 2011 summer. However, the concentrations drop in these two periods. This is because the 

local concentrations are not merely determined by surface emissions (fossil fuel flux) but also the 

biosphere flux and other factors (such as atmospheric transport). As the power generation falls in 

2012, the biosphere flux becomes dominant in Nanticoke area. Therefore the ‘natural CO2 
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seasonality’ becomes clearer which is expected to be an approximation of Fourier curve 

(Jones,2013, Newman et al.,2013).  

The scatter plot and correlation result show that the column XCO2 and generating outputs are 

negatively correlated, which means that statistically the CO2 concentration tends to fall as the 

generating outputs increases. The negative correlation coefficient is mainly caused by the adverse 

trends of ground CO2 emissions (coal-fired electricity generation) and CO2 natural seasonality. 

Therefore, it is impractical to estimate the strength of surface emissions with absolute XCO2 or to 

quantify the local XCO2 based on one single type of flux (fossil fuel flux in this study). In this 

regard, the concept of background area (Kort et al.,2012) is introduced to eliminate or 

significantly reduce the influence of biosphere flux (CO2 natural seasonality) among others.  

5.2 Background Selection and CO2 Profiles 

The purpose of introducing the background area can be achieved since the selection of 

background must fulfill the requirement of ‘identical or similar biosphere flux’ that is described 

in the Methods chapter. In addition, setting 3 as the threshold for number of background 

observations better serves the purpose. Comparing Table 4.3 and Table 4.4, it is apparent that the 

quality of background is improved by eliminating the unqualified background with 1 or 2 

observations.  

The selection of background area for the target observations is reasonably good. Based on Figure 

4.7 and Figure 4.8, the overall CO2 concentrations in background areas are lower than those 

retrieved from the target observations. The power generation at the target site mostly accounts for 

this bias. The difference between target and background soundings is characterized by the vertical 

variations below level 11 which is the edging level for the 9
th
 and 10

th
 layer from surface up.  

Below level 11, the target vertical CO2 profiles (concentrations on each pressure level) tend to 

increase as approaching to the surface except for a few observations mainly in summer; whereas a 

proportion of background profiles decrease towards the surface and the rest increase 

insignificantly whose concentrations are still lower than the target observations with similar 

vertical shapes.  As for the atmosphere above level 11, both target and background CO2 profiles 

stay relatively stable from level 11 upwards until level 5 and then drop sharply towards the top of 

atmosphere. This implies: (1) the lower atmosphere below level 11 (lower troposphere) is most 

sensitive to surface fluxes, which is in agreement with global CO2 modelling studies (Scott 

Denning et al.,2003, Belikov et al.,2011, Lac et al.,2013); (2) level 5 is very likely to be the top 
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of troposphere and the vertical variations of CO2 in this part of atmosphere is very small hence 

this part of atmosphere (upper troposphere) is insensitive to surface fluxes, which is in line with 

the current knowledge in the vertical distribution of air in the atmosphere (Iraci et al.,2013) as 

well as the modelling studies; and (3) the abundance of CO2 decreases greatly from level 5 

(highly likely the lower edge of stratosphere) towards the top of atmosphere since the air mass in 

the stratosphere is very low and the CO2 concentrations decrease with height above level 5 as 

shown in the graph. Moreover, the quality of background areas fulfills the purpose of this study 

since the influence of fossil fuel flux is negligibly small as shown in Figure 4.8 (according to the 

background selection criteria the background fossil fuel flux is mostly not perfectly zero). Very 

few background observations present significant increased surface CO2 concentrations due to 

surface emissions. Therefore, the CO2 variations in the lower troposphere are largely due to 

biosphere flux. 

The lower graph in Figure 4.7 shows that the target observations in different seasons which are 

differentiated by color. Largest variations of CO2 as well as vertical variations are observed in 

summer. This is because the role land biosphere plays in determining local CO2 concentration 

greatly grows in this season and the interaction between biosphere flux and fossil fuel flux 

becomes intense. The fossil fuel flux plays as a significant disturbance to local CO2 instead of the 

dominant determinant as it is in other seasons. The conclusion agrees with seasonal CO2 flux 

studies (Jarvis et al.,1997, Takahashi et al.,2002, Euskirchen et al.,2012, Basu et al.,2014b). In 

addition, compared to other seasons the PBL is thicker in summer which means the dispersion is 

relatively faster and more complicated. This further contributes to the observed large CO2 

variations in summer. Moderate horizontal CO2 variations and smallest vertical variations are 

observed in autumn as the sun goes south which leads to weakened influence of biosphere flux 

and the power generation falls in the meanwhile (see Figure 4.1 and Figure 4.2). This implies no 

dominance between the two fluxes in autumn. The horizontal CO2 variations and vertical 

variations in spring stand in the midst of summer and autumn. Observations in winter do not 

present large variations, but the CO2 concentrations are overall higher than spring and autumn 

though the number of winter observations is limited. This is attributable to thinner PBL (thinner 

PBL tends to lead to slow dispersion hence high concentrations near the surface), moderate power 

generation (very high in 2009-2010 winter) and constrained biosphere flux.  
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5.3 Data Fitting 

By differencing the target and background observations (XCO2 and CO2), a ‘pattern’ is presented 

in the scatter plot against generating outputs as shown in Figure 4.9, 4.10 and 4.11. The column 

dXCO2 and 10-layer partial column dXCO2 increase with generating output.  

Linear correlation and 4 forms of nonlinear regressions are carried out on column and partial 

column dCO2 and dXCO2. Indicated by R
2 

(Table 4.11), linear regression yields the worst 

goodness of fit which implied that the linear function is the most untenable description of the 

relationship between the CO2 enhancement and generating output. The best curve fitting is 

achieved by rational function. The performances of the other nonlinear functions vary with the 

thickness of partial columns. For instance, polynomial function performs best among the three for 

thinner partial columns while power function beats the other two for thicker partial columns. The 

goodness of fit increases with the thickness of partial column and reach the climax at 10 layers 

for all 5 types of regressions. Then R
2
 begins to decrease at 11 layers and is expected to continue 

to decrease towards the full column. This verifies the hypothesis mentioned in 5.2 that a partial 

column with 9 or 10 layers is most sensitive to the surface emissions (or more specifically, the 

CO2 enhancement by surface emissions). The advantages of 9-layer, 10-layer and 11-layer partial 

columns over the full column are not prominently significant since the horizontal CO2 variations 

and vertical variations are small and predictable above level 11 as discussed for Figure 4.7 and 

Figure 4.8. The full column yields better R
2
 than thin partial columns with number of layer from 

3 to 8. This is because the dispersion of CO2 in the PBL dominates the lower troposphere in the 

distribution of CO2 and the surface emission signal is strongly disturbed. A consequence of this is 

that the 3-layer dXCO2 does not satisfactorily fit to a curve.  

The intercept on y-axis denotes the dXCO2 when the generating output is zero. It is calculated as 

an indicator of the systematic difference in CO2 concentration between target and background 

areas taking into account biosphere flux and transportations since the selection of background 

area is based on the biosphere and fossil fuel fluxes. In addition to fossil fuel combustion for 

power generation, the fossil fuel flux also involves transportation. It is difficult to quantify the 

systematic difference since the local CO2 concentrations are determined by various factors other 

than surface fluxes, e.g. the meteorology. However, it is assumed that the theoretical value of the 

intercept is positive as the transportation is expected to be denser in Nanticoke than in the 

background area (mostly 2 or 3 cells to the north). The influence of biosphere is expected to be 
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negligibly small considering the proximity of biosphere flux between target and background areas 

and the time of satellite overpass i.e. both around 6:30pm. For the nonlinear regressions as shown 

in Table 4.12, thinner partial columns tend to yield negative intercept especially for power and 

polynomial functions. This is because the lower atmosphere is too unstable to reflect surface flux, 

which can also be concluded from Table 4.15. The average XCO2 uncertainty of the surface level 

(the 20
th
 level) is about 25 ppm and the maximum is as high as about 45 ppm. The column XCO2 

uncertainty is very small compared to individual levels since the column XCO2 is achieved by 

averaging the XCO2 on different levels using pressure weights.  

The sensitivity of full column and partial columns to surface emissions can be characterized by 

the generating output averaging as described in Table 4.13. Thicker partial columns tend to be 

more sensitive to instant surface emissions and thus the best regression is achieved by using 1-

hour output. Thinner partial columns are more capable of capturing the emissions over a certain 

period, i.e. 2 or 3 hours in this study. These phenomena can be explained by the structure of the 

atmosphere and the balance between PBL dispersion and horizontal transport. The PBL is 

dominated by strong vertical mixing especially in the daytime. The CO2 molecules that can 

spread out of the PBL into the upper troposphere (in the same atmospheric column) are very few 

since vertical mixing is weaker outside the PBL than within and horizontal transport plays more 

significant roles in distributing CO2. Consequently, the upper part of a thicker partial column is 

very insensitive to the early emission signals due to dilution by strong horizontal transport, but it 

is sensitive to the instant emissions that quickly disperse into the upper partial column; hence the 

thicker partial column becomes dominated by instant signals, i.e. the 1-hour output. In contrast, 

the early emission signals can be captured by thinner partial columns to some extent since the 

emissions can persist in the source area despite the existence of winds under certain 

circumstances (Chow et al.,2009) and the width of FOV (10km) is almost twice the height of the 

thickest partial columns we have studied. CO2 emissions in the past 2 or 3 hours are still 

contributing to the local CO2 concentrations near the surface. In addition, the 3-hour averaged 

signal is ~1% stronger than the 1-hour signal (the 3
rd

-hour signal backward is ~1.5% stronger than 

the instant signal), which means it is likely for the thinner partial column to capture the early 

signals. Therefore, the best regressions for thinner partial column are achieved by using 3-hour 

generating output.  

It is also noteworthy that all types of regressions demonstrate the advantage of N-layer and 

dXCO2 over N-pressure and dCO2 respectively because all the best regressions (columns and 

partial columns) are achieved by N-layer and dXCO2. N-layer denotes a background partial 
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column with the same number of layers as the target sounding while N-pressure stipulates that the 

background and target soundings are compared within identical pressure spans taking the target 

as reference (see Chapter Methods). This implies that ‘the same proportion of the atmospheric 

column’ is a better criterion than ‘the same or similar air mass’ under which the target and 

background observations should be compared. A possible reason for this is the difference in the 

vertical structure of the atmosphere in the target and background areas. The dispersion and 

transport of CO2 are more dependent on the atmospheric vertical structure than on vertical 

pressure levels. In addition, by means of calculating the difference of CO2 concentrations, the 

surface emissions can be better captured than by calculating the difference of absolute CO2 

abundances. This implies that even though the number of CO2 molecules is in theory most related 

to the surface emissions, the nature of the space or the ‘medium’ where CO2 is emitted to must be 

considered.  

5.4 Surface and Atmospheric Parameters 

The influences of generating output, surface XCO2 uncertainty and meteorological parameters on 

the model residuals (observation-model biases) are analyzed separately. In order to explore the 

causes of large residuals, Table 4.21 and Table 4.23 should be analyzed jointly since these 

parameters are oriented to the target site while the model residuals also involve background 

soundings.  

High outputs tend to be associated with large model residuals since a larger proportion of high 

outputs are linked to the ‘weak class’ of residual than to the ‘strong class’ and are more likely to 

underestimate the model values in the ‘weak class’. The large observation-model biases on high-

output days are mostly attributed to the background observations since high outputs are very 

unlikely to be linked to large surface XCO2 uncertainty (Table 4.23). This is because most 

extremely high outputs are observed in summer time (and winter 2009-2010) when the biosphere 

flux in the background areas is expected to be strong during the daytime. Therefore, the early 

biosphere signal can still be captured by the satellite observation which consequently leads to low 

local CO2 concentrations near the surface. This is also why the ‘percentage of high in positive 

weak’ is higher than the ‘percentage of high in negative weak’ in Table 4.21. 

The influence of wind speed on the observation-model biases and the association with surface 

XCO2 uncertainties are not as prominent as the output. Very few days with strong wind are 

observed during the study period. High-scale wind speeds are more likely to be associated with 
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high surface XCO2 uncertainties. As a result, the surface emission signals are diluted in the 

satellite observations and more likely to lead to negative observations-model biases. However, 

this influence is not significant (Table 4.21). This is because it is more likely that high-scale wind 

speeds are associated with low-scale wind direction deviations and high-scale wind direction 

deviations are associated with low-scale wind speeds. Moreover, the sounding FOV covers the 

strong localized source, which means the surface emissions can be well captured despite strong 

winds or large wind direction deviation. In addition, the electricity generating activities during the 

observation hours on all target days are continuous which implies unremitting surface signals. In 

this respect, the influence of wind on detecting surface emissions can be constrained. 

High temperatures make a major share (74.2%, against 25.8% of low temperatures) during the 

study period and contribute to low XCO2 uncertainties (Table 4.23). On cold days, XCO2 

uncertainties become large, i.e. in Table 4.23 the percentage of low-scale temperature is 25.8% 

overall while is 73.3% (100% minus 26.7%) in the high uncertainty class. This can lead to 

observation-model biases as a result. Temperature has a moderate impact on the observation-

model biases as observed from Table 4.21, i.e. low temperatures tend to lead to large model 

residuals to some extent. However, this conclusion reverses when the meteorological data are 

modified by removing the extraordinary values (mostly winter and early spring measurements 

and observations on extreme warm days). This is because of the complicated role of temperature 

in the CO2 retrieval accuracy and CO2 dispersion in the atmosphere (dispersion rate and the depth 

of mixing layer). By means of multivariate analysis, it is confirmed that high temperatures are 

more likely to cause large observation-model differences. 

The significant impacts of relative humidity on model residuals and surface XCO2 uncertainties 

can be observed clearly from Table 4.21 and Table 4.23 respectively. High humidity leads to 

large surface XCO2 uncertainties. The percentage of high humidity is 47.0% overall while it 

increases to 73.3% in the class of high surface XCO2 uncertainties which is a deviation of around 

26%; similarly, the percentage of high humidity in the weak class of model residuals is as high as 

62.3% (~15% deviation) which means large observation-model biases are largely due to target 

observations on wet days. However, the influence of high humidity is insignificant on 

observation-model biases using thin partial column since the percentage of high-scale humidity in 

the strong fit is very similar to that in the weak fit. It is also noteworthy that high humidity tends 

to overestimate the dXCO2 in both strong class and weak class of model residuals, which is 

largely attributed to the overestimated target XCO2. A possible reason for the overestimation is 

the underestimated water vapor. Another possible reason is the connection between high volume 
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of water vapor and aerosols/clouds. The connection between these parameters is beyond the scope 

of this research but it could be simply inferred from Table 4.27. The occurrence of high-scale 

humidity and high-scale weather on the same day (~20%, theoretical maximum is 30.8%) is 

relatively frequent considering the overall percentages of these two parameters (47.0% and 30.8% 

respectively). If aerosols and thin cirrus clouds present in the FOV and are not precisely 

accounted for by the retrieval algorithms, the optical path length can be shortened leading to 

positive bias in XCO2.  

Accurate estimation of the surface pressure is crucial to CO2 retrievals. A biased surface pressure 

can lead to inaccurate estimated XCO2. It is obvious that large model residuals and surface XCO2 

uncertainties are associated with high surface pressure. As for the model residuals, high pressure 

is more likely to cause overestimation of XCO2 which probably implies that the optical path 

length is underestimated for target observations on high-pressure days. However, the observation-

model biases tend to be negative in the weak class of residual. This is mainly due to biased 

background observations since the deviation of the percentage of high-scale pressure in weak 

class is ~24% from the overall high-pressure percentage and this number is more than twice the 

influence of high pressure on the surface XCO2 uncertainty (a deviation of ~10% from the 

percentage of high pressure in high-scale uncertainty from the overall percentage).  

Meteorological conditions can have a moderate impact on the surface XCO2 uncertainty. But the 

influence on the observation-model bias is not significant since most observations are made under 

clear-sky conditions. Extreme weathers are rarely observed over the study period. The high-scale 

weathers are mostly accounted for by ‘mostly cloud’ which can be quantified by the retrieval 

algorithm within reasonable accuracy.  

These analyses estimate the influence of individual factors on the XCO2 uncertainties and model 

residuals. In addition, high surface XCO2 uncertainty does not necessarily lead to large model 

residuals (Table 4.21). By comparing the ‘deviations’ of high humidity based on Table 4.21 and 

Table 4.23, the model residual is not completely due to the surface XCO2 uncertainty; for other 

factors such as low temperature, the surface XCO2 uncertainty does not fully contribute to the 

model residual. The ‘deviations’ are very close to each other for surface pressure which means 

the model residuals due to surface pressure are highly due to inaccurate target observations. With 

respect to a specific parameter, a larger deviation in model residuals than in the XCO2 uncertainty 

may imply major contribution by biased background observations though the background 

soundings are averaged with a specific threshold of sounding number. A systematic reason for the 
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observed biased ‘deviations’ is the different data distributions of XCO2 uncertainty and model 

residual hence the scaling criteria are different. Other possible reasons include, but are not limited 

to that XCO2 uncertainty is different from retrieval error and that no single factor could fully 

account for the XCO2 uncertainty and model residual.  

Based on Table 4.27, exploring the pairing between different factors can provide a better 

understanding of their influence. The evaluation on the frequency of one specific type of 

combination (e.g. high-to-high) needs to consider the overall percentages of high scale factors 

that are involved. For example, the overall high-scale percentage of wind speed is 28.8% and is 

74.2% for high-scale temperature. Therefore, the theoretical maximum frequency (in %) of high-

to-high is the lower one of 28.8% and 74.2%. In this regard, the most frequent combinations of 

wind speed and temperature are high-to-high and low-to-high. Similarly, the most frequent 

combinations between temperature and surface pressure are high-to-low and low-to-high, which 

is in line with current physical knowledge.  

5.5 Seasonal CO2 Variation in Hamilton 

The ability of remote sensing CO2 observations to reflect seasonal variations is examined in 

Section 4.10. An investigation into the difference between a full column and partial columns is 

carried out. The location of GOSAT observation is within Hamilton urban area where no strong 

point CO2 sources are observed and the biosphere flux is expected to be relatively uniformly 

distributed.  

Both the full column and partial columns can well present the natural CO2 seasonality. However, 

the seasonal variations are larger by using partial columns and decrease with the thickness of the 

partial columns, which implies that a partial column is more sensitive to surface fluxes than a full 

column. The original observations without averaging (two outliers are removed) are fitted to the 

Fourier curve individually for 2010, 2011 and 2012. The findings are similar to those in the early 

part of this study that examines the difference between column CO2 information and partial 

column CO2 information in estimating the surface emissions (fossil fuel flux alone). The 

similarity is that partial columns generally have stronger capability of reflecting surface fluxes 

than full column and a partial column with a particular thickness yields the best goodness of fit. 

There are a number of differences. For 2010, all partial columns perform better than the full 

column and the ‘optimal’ number of layers is nine. For 2011, the performance of partial columns 

increases with the thickness till 11-layer and it is not examined when the R
2
 would stop rising. 
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The R
2
 of full column stands in the midst of 9-layer and 10-layer partial columns. For 2012, the 

R
2
 increases with thickness and starts to decline from 8-layer; all partial columns generate better 

fittings than the full column. The difference across these 3 years can be partially explained by the 

CO2 variations and data representation. For instance, on the one hand, the variations in 2011 are 

much smaller than the other two years so the full column and thick partial columns yield 

comparable results; on the other hand, the misrepresentation of the monthly average CO2 

concentration in particular months (e.g. January and February) by thin partial columns leads to 

large observation-model differences since the surface layer does not well represent the surface 

fluxes in these months. This is also why the thick partial columns perform better than thin partial 

column in estimating CO2 enhancement by fossil fuel combustion even though some thin partial 

columns are able to capture the CO2 emissions in the mixing layer.  

5.6 Comparisons with Other Studies 

The main body of this research is the application of GOSAT CO2 data in LPS study. It is 

important to place and understand the results of this research in the context of other contributions 

to the field of study. This section focuses on the comparisons with other studies.  

Despite a wide range of work having contributed to better understanding the sources and sinks of 

CO2 and CO2 distribution in the atmosphere, there are limited recent studies on LPS using 

remotely sensed CO2 data independently that this research can be directly compared to. However, 

there are some particular aspects this research and other studies have in common. 

The concept of ‘background area’ or ‘control zone’ was introduced in an early study of isotope 

14
C in terrestrial environment (Isogai et al.,2002), though to some extent it differs from the 

‘background’ that was used in LPS studies afterwards. The background referred to an area that is 

supposedly not influenced by gaseous discharges (NI, typically upwind of source and/or 5km 

from it) while the influenced area is regarded as in the main wind direction and within a few 

kilometers from the source (IZ) (Roussel-Debet et al.,2006). Based on these criteria, Roussel-

Debet et al. took approximately 230 samples and analysed the 
14

C content in the areas 

surrounding 15 nuclear power plants in French over the period between 1994 and 2003. The 

samples were from plant species (lettuces, vegetables, grass, etc.), dairy products, meats and other 

products (honey, grape juice, etc.). Though the atmospheric CO2 concentration was not directly 

investigated, the 
14

C content in terrestrial environment was analyzed to indicate the gaseous 

discharges from nuclear power plants and its relationship with CO2 emissions from fossil fuel 
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combustion. In their study, a small but significant difference between IZ and NI was identified 

and the decline of 
14

C estimated on the basis of specific activity measured in samples were 

consistent with the a global reduction in 
14

C in correlation with the increase in atmospheric CO2 

(Roussel-Debet et al.,2006).  

Satellite observation is an indispensable integral part of an observation system designed to 

monitor megacity CO2, associated with surface and airborne measurements (Duren and 

Miller,2012). The ‘background’ (background CO2 concentrations) has been used for the 

estimation of megacity CO2 using GOSAT observations of XCO2. Kort et al. conducted such a 

study over Los Angeles and Mumbai. By differencing observations over the megacity with those 

in nearby background, robust and statistically significant XCO2 enhancements of 3.2±1.5 ppm for 

Los Angeles and 2.4±1.2 ppm for Mumbai were identified. These enhancements can be exploited 

to track anthropogenic emission trends over time. Moreover, XCO2 changes were estimated as 

small as 0.7 ppm in Los Angeles, corresponding to a 22% change in emissions at the 95% 

confidence level (Kort et al.,2012). The identification of background area differs from our 

research. Nightlight images were used to indicate the intensity of human activity and hence CO2 

emissions. ‘Basin’ (source area) and ‘desert’ (background area) were determined and the CO2 

concentration enhancements were calculated. We applied a different strategy for background 

identification because of the different characteristics of the CO2 source and different research 

emphases (i.e., point VS area, estimation of CO2 enhancement by coal-fired power generation VS 

the footprint of CO2 emissions from the urban area). Another big difference is that in the study by 

Kort et al., target mode is applied for the overpass of Los Angeles and Mumbai, which facilitates 

continuous (not spatially adjacent) observations over the basin and desert areas. In this regard, the 

desert is likely to be contaminated by the basin, which possibly leads to underestimated CO2 

enhancements. In contrast, the target area and background area in our research can be regarded as 

‘isolated’ since the background area is identified based on fossil fuel and biosphere fluxes. 

Consequently, CO2 enhancements of over 10ppm can be observed on particular days when the 

power generation at Nanticoke GS is intensive. This is partially due to the different CO2 source 

strengths as well. In addition, the study by Kort et al. is based on CO2 column concentrations, the 

vertical distribution of CO2 emitted from the urban area to the atmosphere was not considered. 

Similarly, Schneising et al. used SCIAMACHY CO2 data (column XCO2) to estimate the CO2 

enhancement in three metropolitan regions for the period from 2003 to 2009 (Schneising et 

al.,2013). The background areas were selected on the same latitude as the source areas to 

eliminate the solar zenith angle dependencies which can be a potential source of error. The 
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selection of background area was based on the map of annual mean CO2 concentrations made 

with SCIAMACHY observations and the areas with lower concentrations were defined as 

background. The discrepancy in local CO2 seasonality (mainly due to biosphere flux) was not 

considered, which may cause biased enhancement estimation. Despite the different strategy from 

our research and other studies for selecting the background and estimating the enhancement, 

significant CO2 enhancements for several anthropogenic source regions were still detected. While 

exactly identical patterns of retrieved XCO2 and anthropogenic emissions cannot be expected due 

to CO2 transport and dispersion, the study demonstrated the detectability of anthropogenic CO2 

emissions and that other satellite missions with high spatial resolution and wide swath imaging 

capacity would facilitate constraining anthropogenic emissions down to point-source scale 

(Schneising et al.,2013). 

In this research, GOSAT data (from ACOS dataset) are used to estimate the CO2 enhancements 

caused by a strong localized point source and the vertical structure of the CO2 retrievals are 

investigated. A desirable next step is to examine the use of space-based observations for CO2 

emission detection and quantification. This requires high spatial resolution and continuous 

observations (spatially adjacent) for mapping the source area. However, this cannot be fully 

achieved by GOSAT or OCO-2 data since a large part of surface and atmosphere information 

may be missed between samples and the generation of gridded map by averaging the observations 

would lead to a coarse resolution. In 2010, the satellite mission Carbon Monitoring Satellite 

(CarbonSat) was proposed and selected by European Space Agency (ESA) to be one of two 

candidate missions for the 8th Earth Explorer (EE-8, to be launched in 2019) opportunity mission 

in order to continue the satellite CO2 and CH4 global series after SCIAMACHY, GOSAT and 

OCO-2. CarbonSat is designed to additionally monitor anthropogenic point source emissions 

explicitly by making use of high spatial resolution (goal: 2×2 km
2
 in raster form) and good spatial 

coverage (goal: 500 km swath width). CarbonSat is being optimized and studies are ongoing to 

quantify the observation precision and accuracy under all possible measurement conditions. A 

CarbonSat verification study by Bovensmann et al. (2010) used coal-fired power plant as an 

example and discussed the potential of CarbonSat data as an independent verification of reported 

anthropogenic CO2 emissions. The study found that the errors for the retrieved CO2 emissions are 

linearly dependent on wind speed and neglecting enhanced aerosols can lead to retrieval errors in 

the range of 0.2–2.5MtCO2/yr (Bovensmann et al.,2010). A further study that focused on error 

estimation identified a systematic error of less than ∼4.9% and a random error of less than ∼6.7% 

for 50% of all the large power plants in the US (≥5Mt CO2/yr). The systematic error was less than 
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∼12.4% and the random error was less than ∼13% for 90% of all the power plants. In addition, 

using 5 satellites as a constellation can improve the random errors by approximately a factor of 

two but did not result in large reduction of systematic errors. The satellite configuration that 

achieved daily coverage was recommended (Velazco et al.,2011). These two pre-launch studies 

emphasize the importance of LPS study (strong localized fossil fuel power plants) while the 

difference from our research is that the prospective data products (CarbonSat) will provide 

spatially continuous measurements of CO2 concentrations and facilitates the estimation of annual 

CO2 emissions for the purpose of verifying annually reported emissions.  

5.7 Summary 

This chapter discusses the results as described in the last chapter on five main aspects, including: 

(1) the relationship between column CO2 and surface emissions, (2) the characteristics of the 

background observations, (3) the regression results generated by using partial column dXCO2 and 

dCO2, (4) a number of influential factors (meteorology and surface emission strength) on the 

observation-model bias and surface XCO2 uncertainty, and (5) the difference between partial 

column and column XCO2 in presenting CO2 seasonality. A series of key findings are explained 

associated with their implications and causations.  

The natural seasonality of local CO2 concentration in Nanticoke and surface emission strength 

(represented by power generating output) interfere with each other. While an approximated 

Fourier curve can be observed over the study period, the curve smoothness is undermined by 

surface emissions. In addition, the absolute CO2 concentration does not necessarily increase with 

surface emissions since biosphere flux is also a major determinant which can vary significantly 

over time. 

In this regard, the concept of ‘background’ is introduced to reduce the influence of biosphere flux 

so that the impact of fossil fuel flux can be investigated. The effectiveness of background 

selection criteria is verified and the selected background observations are reasonably satisfactory. 

The overall background CO2 concentrations are lower than the target area. Additionally, the 

vertical CO2 profiles especially near the surface imply no strong interference of surface emissions 

in the selected areas.  

The comparison between partial column and column dXCO2/CO2 is carried out and the results 

match with the expectations. By quantitatively relating them with the generating outputs, the 
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superiority of partial column is demonstrated. Partial columns with particular thickness (i.e. 9, 10 

and 11 layers) yield better goodness of fit for all 5 types of regressions. The thinner partial 

columns do not better serve the purpose of estimating surface emissions. This agrees with the 

current knowledge of the vertical structure of the atmosphere. The primary causal factor is the 

PBL dispersion which can overweigh the wind (horizontal transport near surface) especially 

considering the occurrence of strong wind is very few on the target days. The balance between 

PBL dispersion and horizontal transport is also revealed to some degree by examining the 

‘generating output averaging’. The thinner partial columns appear more sensitive to early 

emission signals indicating relatively strong vertical dispersion within the PBL while thicker 

partial columns are dominated by the current emission signals indicating relatively strong 

horizontal transport above the PBL hence the upper part of the partial column could not capture 

the early emission signals. Compared with thin partial columns and the full column, a thick 

partial column (9 or 10 layers) is capable of not only accounting for the strong signal from the 

surface but also mostly ruling out the influence of the free atmosphere CO2 which can be from 

other regions.  

A number of key influential factors on CO2 retrievals and the observation-model biases are 

discussed. The scaling approach aims to form ‘high scale’ and ‘low scale’ that are closest to each 

other regarding the percentage of total. The influence of these factors are estimated quantitatively 

by calculating the percentage of high/low scale in a target group which can be ‘higher model 

residuals’, ‘positive/negative residuals’ and ‘high surface XCO2 uncertainty’, etc. A bias in the 

strength of influence of a specific factor on XCO2 uncertainties and model residuals implies the 

contribution of background observations to the observation-model biases. This bias can also be 

accounted for by the variations and distributions of the two parameters that are compared. 

At last, the seasonal variations of CO2 in Hamilton are studied by comparing absolute CO2 

concentrations in a full column and partial columns. The superiority of partial columns over full 

column in representing the surface fluxes (not limited to fossil flux) is demonstrated by fitting 

CO2 concentrations to a Fourier curve. In particular years (2010 and 2012) all partial columns 

with different thicknesses yield better results than the full column; for others (2011), there is a 

boundary for the partial column thickness that leads to higher capability than the full column to 

reflect regional CO2 seasonality.  
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Chapter 6: Conclusion 

6.1 Introduction  

This study set out to explore the capability of remote sensing CO2 observations to estimate 

surface fluxes in two study areas independent of in situ measurements.  In particular, this study 

has sought to investigate innovative ways to use remote sensing data to estimate the surface fossil 

fuel flux in Nanticoke area. Moreover, as a pilot study this study aims to demonstrate the 

usefulness of remote sensing technique for evaluating the performance of energy/climate change 

policies (e.g. Ontario’s coal phase-out) and stimulating further actions. The general empirical and 

theoretical literature on these subjects is inconclusive but it provides useful information for this 

study to answer the following research questions: 

1. How is the performance of remote sensing CO2 observations on estimating surface fluxes? 

2. How can remote sensing CO2 observations be used innovatively? 

3. How can partial column CO2 information be retrieved from existing observation datasets? 

4. What is the relationship of full/partial column CO2 information with the surface emissions by 

Nanticoke GS? 

5. How is Ontario’s ‘phasing out coal for power generation’ influencing the local CO2 

concentration in Nanticoke area? 

6.2 Research design 

In order to answer these questions, a systematic approach is developed in terms of technical 

methods and statistical analysis: 

1. All the target soundings are retrieved from the ACOS B3.3 dataset over the late 2009 to early 

2013 period. The ground location of these observations is within 5km of the Nanticoke GS 

which is half the size of GOSAT TANSO-FTS FOV. The power plant generating output 

information is obtained from IESO. The output data on the target hour(s) of the target days are 

prepared. The absolute values of column CO2 concentrations are then compared with the 

generating outputs to examine their relationship. 
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2. The background soundings are also retrieved on the target dates. The background area is 

characterized by negligible fossil fuel flux and similar biosphere flux with the target area. By 

deducting the background CO2 concentrations and abundances from the target observations, 

the influence of biosphere flux is expected to be significantly reduced if not completely 

eliminated.  

3. The CO2 concentrations and abundances of partial columns with different thicknesses 

(represented by the number of layers) are calculated based on the vertical profiles of CO2 

concentration and pressure weighting function, etc. These data are then fitted with generating 

outputs over different lengths of time counting backwards from the satellite overpass hour (i.e. 

the 19
th
 hour of the day). The fitting function takes both linear and nonlinear forms. 

4. The influence of a number of factors on the surface XCO2 uncertainty and the observation-

model differences is examined quantitatively. All these parameters are scaled linearly and 

divided into two classes-‘high scale’ and ‘low scales’. The influence of a specific factor on a 

target parameter (surface XCO2 uncertainty or observation-model differences) is evaluated by 

calculating and comparing the difference in the percentage of a particular class of influential 

factor in a particular class of target parameter.  

5. The Hamilton urban area is also studied for comparing column and partial column CO2 

information with respect to their capabilities of presenting CO2 seasonal variations over the 

period of 2010-2013. The evaluation on CO2 variations is based on monthly averaged CO2 

concentrations. The original data without averaging are fitted on real time scale to a Fourier 

curve which is taken as an approximation of the ‘natural CO2 seasonality’. The goodness of fit 

R
2
 is adopted as the single indicator for estimating the performance of column and partial 

column CO2 data.  

6.3 Key Findings 

Based on the proposed approach, a series of findings are obtained:  

1. The absolute column CO2 concentrations could not clearly differentiate the surface emissions 

(fossil fuel flux) from the surface fluxes indicating the necessity of introducing background 

observations and calculating CO2 enhancement.  
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2. Based on qualitative interpretation, the selection of background observation is reasonable 

satisfactory since the overall concentration is lower than the target area and vertical CO2 

profiles near the surface indicate no strong surface emissions.  

3. The enhancement of CO2 concentration due to coal-fired power generation at Nanticoke GS 

increases with the strength of surface emissions monotonically overall and the modelled trend 

is more nonlinear than linear. However, the growth rate (curve slope) decreases gradually as 

the generating outputs increase.  

4. Partial column CO2 information with specific numbers of layers (9, 10 and 11) yields better 

goodness of fit than the full column for all types of fitting functions. The sensitivity to recent 

surface emissions (2-3 hours) and current emissions (1 hour) varies with the partial column of 

different thicknesses.  

5. The influential factors are investigated individually. These factors can lead to surface XCO2 

uncertainty and observation-model bias to various degrees. They can be associated with either 

a positive or negative observation-model bias.  

6. The CO2 seasonality in Hamilton is better measured by partial column CO2 concentrations 

compared to column CO2 concentrations. This ‘better fit’ is regardless of the partial column 

thickness in 2010 and 2012 while in 2011 only the partial columns with selected thicknesses 

yield better goodness of fit to the Fourier curve. 

6.4 Contributions and Implications 

These findings answer the research questions with associated theoretical, technical and policy 

implications. Despite this study being conducted in specific areas in Ontario, the implications 

obtained from this research agree with the current knowledge in associated research fields and put 

forward a few significant thoughts and conclusions that can be used for reference in other studies 

and practices.  

The major contributions of this research to the current state of knowledge are: 

1. Local scale CO2 measurement technique: although CO2 transport and sources and sinks 

estimation at large scales, e.g. regional scales, are a high research priority, the study of local 

CO2 can also reveal important information about the surface emissions and CO2 dynamics as 
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the measurement techniques are being advanced. In this research, the remote sensing CO2 

observation technique (by acquiring the snapshot of CO2 vertical profiles within a specific 

area, i.e. 3-D CO2 information) showed its potential in this domain. A strong localized CO2 

source (Nanticoke GS) is quantitatively estimated by using the remote sensing CO2 data as 

the size of FOV is compatible with the dominant scale at which the CO2 transport and 

dispersion occurs. 

2. Innovations in CO2 enhancement measurement: CO2 enhancements are calculated to account 

for the contribution of one single type of land flux (fossil fuel flux) to the atmospheric CO2 

concentration. While the identification of background/reference area can be achieved in 

various ways, the method in this research is designed in a more quantitative manner by 

taking advantage of the fossil fuel flux and biosphere flux data. The results testify the 

hypothesis that a quantitative relationship between the CO2 enhancements and generating 

outputs can be observed. 

3. Tailored remote sensing data product: in this research, partial column CO2 information is 

generated based on the full physics provided by the ACOS dataset and compared with full 

column CO2 information. The comparison result is consistent with the hypothesis, which 

demonstrates the superiority of partial column CO2 information in particular circumstances, 

e.g. to estimate the strength of fossil fuel flux and account for the influence of biosphere at 

the same time.  

It is a complicated task to use remote sensing XCO2 alone to detect surface fluxes since the 

surface fluxes can be very complex and have independent influences on the local CO2 

concentrations. The characteristics of the lower atmosphere especially the PBL and the upper 

atmosphere are distinctly differentiated from each other and the air movements are dominated by 

different physical processes. However, the potential of remote sensing CO2 data can be 

underestimated if a study is restricted to the conventional ways of using remote sensing data. An 

innovative approach can fulfill various special research purposes depending on the data structure 

and data accessibility, e.g. some CO2 retrieval algorithms do not provide CO2 profiles though the 

profiles are essential to retrieving the final product of column XCO2.  

As noted in extensive literature, the surface atmosphere is perceived as the part of atmosphere 

that is most sensitive to surface emissions. This statement makes sense from a holistic perspective 

since the surface layer is closest to the surface CO2 sources and sinks and it is mostly where the 

dispersion and transport of CO2 occurs. However, the accuracy of this statement is highly scale-
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dependent and the practical technical limitations must be considered when drawing any 

conclusions on this subject. In the Hamilton CO2 seasonality case, thin partial columns lead to 

better goodness of fit to the ‘Natural CO2 seasonality’ than full columns because no strong CO2 

sources and sinks (especially the former) are likely to exist and the surface fluxes can be taken as 

uniformly distributed overall. Therefore, it can be inferred that the surface layer CO2 

concentrations obtained from satellite observations well represent the actual surface fluxes. In 

contrast, in the Nanticoke case study, the target is a strong localized point source which is 

interacting with the biosphere flux within a region. Moreover, the target site is not located right in 

the centre of the satellite instrument FOV while the instrument measures the CO2 concentration 

within the whole FOV for the whole column. In other words, a misrepresentation of the target 

point source or a biased sampling by the satellite is likely to happen. As a consequence, along 

with other reasons mentioned before, not all partial columns can better represent the strength of 

surface emissions than the full column.  

One particular energy program in Ontario with extended theoretical underpinnings and regular 

interim evaluations is the Ontario’s Long-Term Energy Plan. The ‘coal phase-out’ that is highly 

emphasized in this plan is the single largest climate change initiative in North America. The 

absolute CO2 emissions by coal-fired power generation can thus be significantly reduced. As 

mentioned before, present studies on climate change modelling claim that the atmospheric global 

CO2 concentration would not decrease immediately after all anthropogenic CO2 emissions stop. 

However, on the local scale, this study demonstrates the effectiveness of aggressive energy/CO2 

policy since the enhancement of local CO2 concentrations due to coal combustion is reduced by 

constraining power generation at Nanticoke GS. More active climate change and energy policies 

and effective measures are highly encouraged at different scales even though the contribution of 

shutting down one fossil fuel power plant to global or regional CO2 concentrations can be 

difficult to quantify.  

6.5 Limitations and Future Research 

This study provides an exploratory and evaluative perspective on the application of remote 

sensing CO2 data, and is conducted in the context of Ontario’ energy plan that aims to phase out 

coal for power generation.  As a direct consequence of the proposed methods, this study 

encounters a number of limitations, which need to be considered: 
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1. As Nanticoke GS is a site of particular research interest and due to lack of reference CO2 

data, it is difficult to validate the CO2 retrievals. 

2. Due to limited access to other types of data for identifying background areas, validations on 

the identified background areas are not carried out. Therefore, the quality of the background 

selection is evaluated based on fundamental statistics in the ‘pre-analysis’ and figures that 

show CO2 profile shapes.  

3. The influence of reduced CO2 emissions on local (point) atmospheric CO2 concentrations is 

evaluated, but the impacts on regional CO2 concentrations are not quantified.  

4. The meteorological information obtained from Hamilton weather station is used as an 

approximation of the meteorology of the target area considering the data accessibility. The 

discrepancy is not evaluated. 

Despite the limitations, the proposed approaches and results in this research provide insights into 

great potential of using remote sensing CO2 data in innovative ways. The column CO2 data by 

space-based and ground-based instruments and surface sampling CO2 data are the primary data 

source for CO2 flux and CO2 cycle studies. In this study, a derived type of data (i.e. partial 

column CO2 data) is demonstrated as more capable of representing surface flux(es) than column 

CO2 information.  

This research serves as a pilot study and more examinations on the performance of partial column 

CO2 are encouraged in other regions where reference in situ observations are available. It is 

expected that this ‘new’ type of data can be widely used in future studies on identifying surface 

CO2 fluxes. In this regard, it is expected the mainstream retrieval algorithms can provide more 

detailed data that can be used for different purposes innovatively.  

In order to promote the role of remote sensing in policy evaluation and policy making and to 

generate achievable policy strategies and development targets with regards to climate change 

mitigation, environmental management and protection, etc., there is a need for more case studies 

at the local level to allow further assessment of local dimensions of this subject. LPS is of high 

concern for CO2 monitoring and management; therefore, on this subject remote sensing will be an 

effective tool for providing continuous, real-time and accurate information about the state of 

LPSs.  



167 

 

Moreover, it is of high interest to examine the influence of a particular energy or climate change 

policy on the regional CO2 concentrations and at larger scales by incorporating more space-based 

observations. The CO2 monitoring spacecraft such as OCO-2 and CarbonSat can be a promising 

asset to current data sources. The larger number of observations than GOSAT and high accuracy 

should be effective to fill the gaps in current data sources. As new instruments are to serve in 

orbit and more advanced algorithms are developed, it is encouraging to see the potential of 

remote sensing technology to be exploited for CO2 studies from both scientific and policy 

evaluation perspectives.  
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Appendix A: Tables 

Table A.1 CO2 Dry Air Mole Fractions and Nanticoke Generating Outputs 

XCO2 (ppm) Uncertainty 

(ppm) 

CO2 Abundance 

(1010mol/FOV) 

One-Hour 

Output (MW) 

Two-Hour Average 

Output (MW) 

Three-Hour Average 

Output (MW) 

387.18 1.19 1.33 203 242 307.00 

397.98 0.57 1.40 670 676.5 672.67 

391.03 1.66 1.36 267 234 210.67 

389.40 1.74 1.37 3120 3084.5 3007.67 

374.31 3.00 1.30 1569 1217.5 1140.67 

392.82 2.04 1.38 114 113.5 111.67 

396.17 0.73 1.38 938 889 823.67 

394.10 0.90 1.40 415 396.5 444.00 

390.63 0.71 1.35 574 618.5 670.00 

395.15 0.83 1.41 1789 1836.5 1959.00 

398.83 0.46 1.38 2502 2534 2562.67 

386.74 0.54 1.35 2319 2323 2314.00 

393.31 0.64 1.37 2984 2983.5 2981.67 

381.12 0.72 1.33 1679 1723.5 1764.33 

389.82 0.68 1.36 3528 3518.5 3484.67 

386.81 0.95 1.34 2938 2937.5 2944.67 

385.94 0.90 1.34 2474 2483 2505.67 

375.06 0.75 1.31 2998 2994.5 2987.33 

370.15 0.78 1.29 2347 2378 2380.67 

388.58 0.86 1.36 1066 1133.5 1168.33 

389.24 0.86 1.36 1482 1391 1350.00 

392.69 1.23 1.36 1506 1571 1575.00 

392.60 1.24 1.38 2 2 2.00 

387.93 1.44 1.35 2 2 2.00 

391.38 1.62 1.36 463 437.5 362.67 

399.09 2.08 1.42 625 624.5 583.33 

395.78 1.90 1.38 1499 1415.5 1290.33 

387.59 0.94 1.33 1314 1345 1232.67 

389.70 1.97 1.38 173 143.5 138.67 

396.68 1.60 1.39 137 174.5 173.67 

387.32 0.86 1.36 102 101 102.33 

395.42 0.65 1.38 701 667 698.67 

392.79 0.54 1.37 4 4 4.00 

389.86 0.64 1.36 152 181 197.67 

389.86 0.78 1.36 350 499 698.67 

390.42 0.64 1.36 503 653.5 736.33 

386.51 0.69 1.34 1287 1306.5 1313.33 

389.77 0.66 1.35 2576 2574 2572.67 

390.86 0.82 1.34 1600 1701.5 1839.33 

386.10 0.80 1.32 2061 2049.5 2039.33 

385.09 0.83 1.35 1934 1953 1962.33 

387.58 0.90 1.37 2518 2530 2546.00 



169 

 

386.98 0.88 1.35 919 1079 1140.00 

389.24 1.03 1.36 445 444.5 443.67 

386.08 0.96 1.35 5 65 126.67 

392.52 1.34 1.38 5 5 5.00 

399.95 1.87 1.41 789 731 611.67 

395.65 0.97 1.37 254 716 250.67 

398.89 1.06 1.40 5 5 5.00 

397.92 0.95 1.40 98 98 97.67 

398.55 0.95 1.41 156 129.5 120.00 

398.26 0.75 1.40 6 6 6.00 

397.88 0.76 1.40 102 104.5 106.33 

395.31 0.88 1.38 259 250.5 282.00 

397.24 0.77 1.38 237 277 293.67 

396.31 0.84 1.39 4 4 4.00 

396.15 0.73 1.38 1330 1280 1302.00 

393.05 0.73 1.36 5 5 5.00 

389.38 0.59 1.36 912 911.5 911.67 

395.99 0.93 1.33 720 849 1020.00 

389.21 0.68 1.36 966 1126 1173.33 

391.03 0.81 1.37 792 801 803.33 

390.42 0.95 1.37 4 4 4.00 

391.32 1.19 1.36 4 4 4.00 

397.20 1.16 1.39 275 191.5 162.33 

394.70 1.67 1.38 369 366.5 366.33 

397.38 2.04 1.41 820 820 820.00 

395.14 0.83 1.39 920 920 920.00 

399.57 2.93 1.4 195 200.5 209.67 

400.33 0.71 1.42 96 95.5 95.67 

398.32 0.71 1.41 0 0 0 

The unit of CO2 abundance is converted from molecule quantity per square meter (as in original 

file) to mole per FOV for the whole column. 
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Table A.2 Difference of Column and Partial Column XCO2 and CO2 

Column dXCO2 (ppm) 10-Layer dXCO2 (ppm) 10-Pressure dXCO2  (ppm) Generating 

Output (MW) 

8.74 13.93 14.72 670 

2.92 2.12 3.15 267 

12.33 23.83 23.86 3120 

7.82 12.93 12.11 1569 

-0.46 -1.34 -0.75 114 

3.11 5.43 5.55 415 

-1.19 -0.74 -0.19 574 

4.97 10.50 10.18 1314 

9.56 12.57 13.00 2502 

11.91 22.23 20.46 2319 

4.73 8.68 8.64 2984 

9.84 16.62 14.34 1679 

13.88 25.28 23.56 3528 

7.99 11.00 10.11 2938 

10.06 20.39 19.34 2474 

7.05 11.05 8.58 2998 

12.04 21.09 21.03 2347 

6.34 11.20 10.79 1066 

4.38 7.71 7.67 1506 

2.38 2.59 3.07 2 

1.11 -0.43 0.25 2 

2.52 2.80 3.32 463 

7.56 11.20 12.06 625 

5.22 6.72 7.63 1499 

2.86 1.59 1.19 173 

3.70 7.30 7.88 137 

-2.72 -4.40 -4.73 102 

10.58 16.98 16.39 701 

-4.90 -2.65 -2.65 4 

3.59 11.03 10.59 152 

-1.43 1.36 1.28 350 

6.84 14.67 14.73 503 

5.83 -0.20 -0.75 1287 

7.73 14.46 14.24 2576 

5.16 13.44 13.30 1600 

8.38 18.79 17.70 2061 

4.94 12.98 12.42 2518 



171 

 

6.10 10.30 9.25 919 

6.63 9.49 8.70 445 

-1.14 -3.89 -4.24 5 

2.94 2.98 3.33 5 

12.52 19.9 19.68 789 

3.06 6.40 6.42 254 

3.08 2.18 2.98 5 

1.06 -0.22 0.61 98 

1.72 0.89 1.52 156 

1.20 2.33 3.18 6 

1.57 2.26 3.29 102 

-0.44 -0.06 0.00 259 

1.51 3.39 4.26 237 

1.46 3.87 3.85 4 

5.69 9.48 8.97 1330 

0.37 0.94 0.84 5 

3.37 9.04 8.27 912 

4.49 10.79 10.71 720 

5.86 11.10 10.18 966 

9.81 16.87 15.59 792 

2.74 3.52 4.59 4 

2.11 5.43 5.43 4 

5.97 9.89 9.83 275 

1.95 1.87 2.28 369 

0.85 1.19 1.98 820 

0.48 -2.71 -1.68 920 

3.06 3.73 3.83 195 

-0.08 0.27 1.14 96 

-0.44 -1.80 -0.98 0 

 

XCO2 difference for the whole column and the partial column with 10 layers are taken as 

examples. Note that dXCO2 indicates the difference of CO2 dry air mole fraction, and 10-pressure 

dXCO2 denotes the difference of partial column XCO2 with a given pressure span (taking the 10-

layer pressure span of a targeted sounding as the standard). 
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Table A.3 Linear Correlation for Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

Column dXCO2 RHO 0.7062 0.6998 0.6897 

Column dXCO2 PVAL 3.49e-11 6.24e-11 1.50e-10 

Column dXCO2 R
2 0.4988 0.4897 0.4758 

Column dCO2 RHO 0.2069 0.1969 0.1952 

Column dCO2 PVAL 0.1000 0.1100 0.1161 

Column dCO2 R
2 0.0428 0.0388 0.0381 

 

Table A.4 Linear Correlation for 3-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

3-Layer dXCO2 RHO 0.5765 0.5876 0.5957 

3-Layer dXCO2 PVAL 2.04e-07 1.07e-07 6.59e-08 

3-Layer dXCO2 R
2 0.3323 0.3453 0.3549 

3-Layer dCO2 RHO 0.4995 0.5100 0.5221 

3-Layer dCO2 PVAL 9.79e-06 6.10e-06 3.46e-06 

3-Layer dCO2 R
2 0.2495 0.2601 0.2726 

3-Pressure dXCO2 RHO 0.5604 0.5720 0.5800 

3-Pressure dXCO2 PVAL 4.95e-07 2.62e-07 1.66e-07 

3-Pressure dXCO2 R
2 0.3141 0.3272 0.3364 

3-Pressure dCO2 RHO 0.5467 0.5589 0.5665 

3-Pressure dCO2 PVAL 1.02e-06 5.37e-07 3.57e-07 

3-Pressure dCO2 R
2 0.2989 0.3124 0.3209 

 

Table A.5 Linear Correlation for 4-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

4-Layer dXCO2 RHO 0.6099 0.6197 0.6263 

4-Layer dXCO2 PVAL 2.72e-08 1.44e-08 9.31e-09 

4-Layer dXCO2 R
2 0.3720 0.3840 0.3922 

4-Layer dCO2 RHO 0.5194 0.5281 0.5395 

4-Layer dCO2 PVAL 3.93e-06 2.59e-06 1.48e-06 

4-Layer dCO2 R
2 0.2698 0.2789 0.2910 

4-Pressure dXCO2 RHO 0.5905 0.6007 0.6070 

4-Pressure dXCO2 PVAL 9.03e-08 4.86e-08 3.29e-08 

4-Pressure dXCO2 R
2 0.3486 0.3608 0.3684 

4-Pressure dCO2 RHO 0.5763 0.5872 0.5931 

4-Pressure dCO2 PVAL 2.06e-07 1.09e-07 7.71e-08 

4-Pressure dCO2 R
2 0.3518 0.3448 0.3518 
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Table A.6 Linear Correlation for 5-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

5-Layer dXCO2 RHO 0.6456 0.6538 0.6585 

5-Layer dXCO2 PVAL 2.42e-09 1.33e-09 9.29e-10 

5-Layer dXCO2 R
2 0.4168 0.4274 0.4337 

5-Layer dCO2 RHO 0.5473 0.5536 0.5630 

5-Layer dCO2 PVAL 9.92e-07 7.14e-07 4.32e-07 

5-Layer dCO2 R
2 0.2995 0.3065 0.3169 

5-Pressure dXCO2 RHO 0.6253 0.6339 0.6382 

5-Pressure dXCO2 PVAL 9.92e-09 5.54e-09 4.11e-09 

5-Pressure dXCO2 R
2 0.3911 0.4018 0.4072 

5-Pressure dCO2 RHO 0.6129 0.6222 0.6261 

5-Pressure dCO2 PVAL 2.25e-08 1.23e-08 9.46e-09 

5-Pressure dCO2 R
2 0.3756 0.3871 0.3920 

 

Table A.7 Linear Correlation for 6-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

6-Layer dXCO2 RHO 0.6706 0.6735 0.6700 

6-Layer dXCO2 PVAL 3.64e-10 2.90e-10 3.80e-10 

6-Layer dXCO2 R
2 0.4463 0.4548 0.4588 

6-Layer dCO2 RHO 0.5381 0.5421 0.5512 

6-Layer dCO2 PVAL 1.58e-06 1.30e-06 8.10e-07 

6-Layer dCO2 R
2 0.2895 0.2938 0.3038 

6-Pressure dXCO2 RHO 0.6571 0.6585 0.6557 

6-Pressure dXCO2 PVAL 1.03e-09 9.33e-10 1.15e-09 

6-Pressure dXCO2 R
2 0.4182 0.4265 0.4294 

6-Pressure dCO2 RHO 0.6354 0.6426 0.6445 

6-Pressure dCO2 PVAL 4.99e-09 3.00-09 2.61e-09 

6-Pressure dCO2 R
2 0.4037 0.4129 0.4154 

 

Table A.8 Linear Correlation for 7-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

7-Layer dXCO2 RHO 0.6875 0.6877 0.6842 

7-Layer dXCO2 PVAL 9.11e-11 8.91e-11 1.20e-10 

7-Layer dXCO2 R
2 0.4596 0.4627 0.4651 0.2841 

7-Layer dCO2 RHO 0.5263 0.5245 0.5330 

7-Layer dCO2 PVAL 2.84e-06 3.08e-06 2.04e-06 

7-Layer dCO2 R
2 0.2769 0.2751 0.2841 

7-Pressure dXCO2 RHO 0.6598 0.6621 0.6629 

7-Pressure dXCO2 PVAL 8.42e-10 7.05e-10 6.65e-10 

7-Pressure dXCO2 R
2 0.4354 0.4384 0.4394 

7-Pressure dCO2 RHO 0.6535 0.6565 0.6570 

7-Pressure dCO2 PVAL 1.35e-09 1.08e-09 1.04e-09 

7-Pressure dCO2 R
2 0.4271 0.4310 0.4316 
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Table A.9 Linear Correlation for 8-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

8-Layer dXCO2 RHO 0.6919 0.6917 0.6862 

8-Layer dXCO2 PVAL 6.26e-11 6.34e-11 1.03e-10 

8-Layer dXCO2 R
2 0.4767 0.4773 0.4773 

8-Layer dCO2 RHO 0.5074 0.5031 0.5104 

8-Layer dCO2 PVAL 6.87e-06 8.36e-06 6.00e-06 

8-Layer dCO2 R
2 0.2574 0.2531 0.2605 

8-Pressure dXCO2 RHO 0.6855 0.6837 0.6778 

8-Pressure dXCO2 PVAL 1.08e-10 1.25e-10 2.04e-10 

8-Pressure dXCO2 R
2 0.4523 0.4527 0.4512 

8-Pressure dCO2 RHO 0.6844 0.6831 0.6763 

8-Pressure dCO2 PVAL 1.18e-10 1.31e-10 2.31e-10 

8-Pressure dCO2 R
2 0.4469 0.4480 0.4460 

 

Table A.10 Linear Correlation for 9-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

9-Layer dXCO2 RHO 0.7066 0.7066 0.6957 

9-Layer dXCO2 PVAL 1.68e-11 1.70e-11 4.50e-11 

9-Layer dXCO2 R
2 0.5065 0.5106 0.5043 

9-Layer dCO2 RHO 0.4944 0.4941 0.4955 

9-Layer dCO2 PVAL 1.22e-05 1.24e-05 1.17e-05 

9-Layer dCO2 R
2 0.2445 0.2441 0.2455 

9-Pressure dXCO2 RHO 0.6878 0.6858 0.6731 

9-Pressure dXCO2 PVAL 8.89e-11 1.05e-10 2.98e-10 

9-Pressure dXCO2 R
2 0.4778 0.4811 0.4735 

9-Pressure dCO2 RHO 0.6869 0.6859 0.6733 

9-Pressure dCO2 PVAL 9.58e-11 1.04e-10 2.92e-10 

9-Pressure dCO2 R
2 0.4722 0.4751 0.4679 

 

Table A.11 Linear Correlation for 10-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

10-Layer dXCO2 RHO 0.7039 0.7005 0.6877 

10-Layer dXCO2 PVAL 2.16e-11 2.92e-11 8.91e-11 

10-Layer dXCO2 R
2 0.5110 0.5125 0.5047 

10-Layer dCO2 RHO 0.4620 0.4596 0.4605 

10-Layer dCO2 PVAL 4.71e-05 5.17e-05 5.00e-05 

10-Layer dCO2 R
2 0.2135 0.2113 0.2120 

10-Pressure dXCO2 RHO 0.6898 0.6865 0.6730 

10-Pressure dXCO2 PVAL 7.47e-11 9.89e-11 3.01e-10 

10-Pressure dXCO2 R
2 0.4833 0.4840 0.4750 

10-Pressure dCO2 RHO 0.6904 0.6877 0.6729 

10-Pressure dCO2 PVAL 7.09e-11 8.96e-11 3.02e-10 

10-Pressure dCO2 R
2 0.4806 0.4808 0.4720 

 

  



175 

 

Table A.12 Linear Correlation for 11-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

11-Layer dXCO2 RHO 0.7108 0.7063 0.6913 

11-Layer dXCO2 PVAL 1.15e-11 1.74e-11 6.60e-11 

11-Layer dXCO2 R
2 0.5107 0.5098 0.5009 

11-Layer dCO2 RHO 0.4273 0.4233 0.4237 

11-Layer dCO2 PVAL 0.0002 0.0002 0.0002 

11-Layer dCO2 R
2 0.1826 0.1791 0.1795 

11-Pressure dXCO2 RHO 0.6773 0.6764 0.6686 

11-Pressure dXCO2 PVAL 2.13e-10 2.29e-10 4.26e-10 

11-Pressure dXCO2 R
2 0.4587 0.4575 0.4471 

11-Pressure dCO2 RHO 0.6774 0.6761 0.6684 

11-Pressure dCO2 PVAL 2.11e-10 2.35e-10 4.34e-10 

11-Pressure dCO2 R
2 0.4588 0.4571 0.4467 

 

Table A.13 Power Regression R2 Statistics for Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

Column dXCO2  R
2 0.5402 0.5226 0.5047 

Column dXCO2  RMSE 2.80 2.85 2.91 

Column dCO2  R
2 0.0631 0.0552 0.0549 

Column dCO2  RMSE 1.93e8 1.94e8 1.94e8 

 

Table A.14 Power Regression R2 Statistics for 3-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

3-Layer dXCO2   R
2 0.3504 0.3617 0.3707 

3-Layer dXCO2   RMSE 15.03 14.90 14.79 

3-Layer dCO2   R
2 0.2710 0.2782 0.2905 

3-Layer dCO2   RMSE 7.96e7 7.92e7 7.85e7 

3-Pressure dXCO2  R
2 0.3326 0.3439 0.3523 

3-Pressure dXCO2  RMSE 14.49 14.37 14.28 

3-Pressure dCO2  R
2 0.3182 0.3300 0.3374 

3-Pressure dCO2  RMSE 7.96e7 7.89e7 7.85e7 

 

Table A.15 Power Regression R2 Statistics for 4-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

4-Layer dXCO2   R
2 0.3934 0.4031 0.4103 

4-Layer dXCO2   RMSE 12.38 12.28 12.21 

4-Layer dCO2   R
2 0.2951 0.2998 0.3115 

4-Layer dCO2   RMSE 8.85e7 8.82e7 8.75e7 

4-Pressure dXCO2  R
2 0.3708 0.3803 0.3867 

4-Pressure dXCO2  RMSE 11.86 11.77 11.71 

4-Pressure dCO2  R
2 0.3551 0.3653 0.3707 

4-Pressure dCO2  RMSE 8.70e7 8.63e7 8.59e7 
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Table A.16 Power Regression R2 Statistics for 5-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

5-Layer dXCO2   R
2 0.4434 0.4507 0.4555 

5-Layer dXCO2   RMSE 10.16 10.09 10.05 

5-Layer dCO2   R
2 0.3359 0.3361 0.3457 

5-Layer dCO2   RMSE 9.28e7 9.27e7 9.21e7 

5-Pressure dXCO2  R
2 0.4193 0.4262 0.4299 

5-Pressure dXCO2  RMSE 9.72 9.66 9.63 

5-Pressure dCO2  R
2 0.4051 0.4128 0.4155 

5-Pressure dCO2  RMSE 8.90e7 8.84e7 8.82e7 

 

Table A.17 Power Regression R2 Statistics for 6-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

6-Layer dXCO2   R
2 0.4736 0.4781 0.4806 

6-Layer dXCO2   RMSE 8.55 8.51 8.49 

6-Layer dCO2   R
2 0.3208 0.3184 0.3277 

6-Layer dCO2   RMSE 9.74e7 9.76e7 9.69e7 

6-Pressure dXCO2  R
2 0.4469 0.4507 0.4516 

6-Pressure dXCO2  RMSE 8.17 8.15 8.14 

6-Pressure dCO2  R
2 0.4338 0.4386 0.4386 

6-Pressure dCO2  RMSE 8.97e7 8.93e7 8.93e7 

 

Table A.18 Power Regression R2 Statistics for 7-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

7-Layer dXCO2   R
2 0.4967 0.4947 0.4950 

7-Layer dXCO2   RMSE 7.58 7.59 7.59 

7-Layer dCO2   R
2 0.3208 0.3108 0.319 

7-Layer dCO2   RMSE 1.06e8 1.07e8 1.06e8 

7-Pressure dXCO2  R
2 0.4741 0.4714 0.4699 

7-Pressure dXCO2  RMSE 7.21 7.23 7.24 

7-Pressure dCO2  R
2 0.4676 0.4657 0.4633 

7-Pressure dCO2  RMSE 9.12e7 9.13e7 9.16e7 

 

Table A.19 Power Regression R2 Statistics for 8-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

8-Layer dXCO2   R
2 0.5151 0.5100 0.5077 

8-Layer dXCO2   RMSE 6.62 6.65 6.67 

8-Layer dCO2   R
2 0.3007 0.2877 0.2944 

8-Layer dCO2   RMSE 1.12e8 1.13e8 1.12e8 

8-Pressure dXCO2  R
2 0.4926 0.4866 0.4823 

8-Pressure dXCO2  RMSE 6.31 6.35 6.38 

8-Pressure dCO2  R
2 0.4890 0.4837 0.4783 

8-Pressure dCO2  RMSE 9.08e7 9.13e7 9.18e7 
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Table A.20 Power Regression R2 Statistics for 9-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

9-Layer dXCO2   R
2 0.5408 0.5396 0.5299 

9-Layer dXCO2   RMSE 5.59 5.60 5.66 

9-Layer dCO2   R
2 0.2893 0.2807 0.2800 

9-Layer dCO2   RMSE 1.14e8 1.15e8 1.15e8 

9-Pressure dXCO2  R
2 0.5132 0.5105 0.4991 

9-Pressure dXCO2  RMSE 5.40 5.42 5.48 

9-Pressure dCO2  R
2 0.5096 0.5062 0.4949 

9-Pressure dCO2  RMSE 8.78e7 8.81e7 8.91e7 

 

Table A.21 Power Regression R2 Statistics for 10-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

10-Layer dXCO2   R
2 0.5446 0.5404 0.5292 

10-Layer dXCO2   RMSE 5.07 5.10 5.16 

10-Layer dCO2   R
2 0.2561 0.2459 0.2449 

10-Layer dCO2   RMSE 1.23e8 1.24e8 1.24e8 

10-Pressure dXCO2  R
2 0.5173 0.5117 0.4991 

10-Pressure dXCO2  RMSE 4.91 4.94 5.00 

10-Pressure dCO2  R
2 0.5172 0.5108 0.4980 

10-Pressure dCO2  RMSE 8.82e7 8.88e7 8.99e7 

 

Table A.22 Power Regression R2 Statistics for 11-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output Two-Hour Average Output Three-Hour Average Output 

11-Layer dXCO2   R
2 0.5428 0.5360 0.5239 

11-Layer dXCO2   RMSE 4.67 4.71 4.77 

11-Layer dCO2   R
2 0.2221 0.2110 0.2101 

11-Layer dCO2   RMSE 1.33e8 1.33e8 1.34e8 

11-Pressure dXCO2  R
2 0.4882 0.4800 0.4661 

11-Pressure dXCO2  RMSE 4.50 4.54 4.60 

11-Pressure dCO2  R
2 0.4915 0.4823 0.4680 

11-Pressure dCO2  RMSE 8.83e7 8.91e7 9.03e7 

 

Table A.23 2-Degree Polynomial Regression R2 Statistics for Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

Column dXCO2  R
2 0.5301 0.5152 0.4965 

Column dXCO2  RMSE 2.83 2.88 2.93 

Column dCO2  R
2 0.0440 0.0389 0.0383 

Column dCO2  RMSE 1.95e8 1.96e8 1.96e8 
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Table A.24 2-Degree Polynomial Regression R2 Statistics for 3-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

3-Layer dXCO2   R
2 0.3506 0.3665 0.3782 

3-Layer dXCO2   RMSE 15.03 14.84 14.71 

3-Layer dCO2   R
2 0.2666 0.2786 0.2939 

3-Layer dCO2   RMSE 7.98e7 7.92e7 7.83e7 

3-Pressure dXCO2  R
2 0.3329 0.3491 0.3604 

3-Pressure dXCO2  RMSE 14.49 14.31 14.19 

3-Pressure dCO2  R
2 0.3188 0.3361 0.3463 

3-Pressure dCO2  RMSE 7.96e7 7.89e7 7.80e7 

 

Table A.25 2-Degree Polynomial Regression R2 Statistics for 4-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

4-Layer dXCO2   R
2 0.3925 0.4069 0.4168 

4-Layer dXCO2   RMSE 12.39 12.24 12.14 

4-Layer dCO2   R
2 0.2883 0.2979 0.3124 

4-Layer dCO2   RMSE 8.89e7 8.83e7 8.74e7 

4-Pressure dXCO2  R
2 0.3697 0.3844 0.3935 

4-Pressure dXCO2  RMSE 11.88 11.74 11.65 

4-Pressure dCO2  R
2 0.3545 0.3704 0.3785 

4-Pressure dCO2  RMSE 8.70e7 8.59e7 8.54e7 

 

Table A.26 2-Degree Polynomial Regression R2 Statistics for 5-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

5-Layer dXCO2   R
2 0.4404 0.4528 0.4600 

5-Layer dXCO2   RMSE 10.18 10.07 10.01 

5-Layer dCO2   R
2 0.3230 0.3289 0.3410 

5-Layer dCO2   RMSE 9.36e7 9.32e7 9.24e7 

5-Pressure dXCO2  R
2 0.4156 0.4282 0.4345 

5-Pressure dXCO2  RMSE 9.75 9.64 9.59 

5-Pressure dCO2  R
2 0.4020 0.4160 0.4212 

5-Pressure dCO2  RMSE 8.92e7 8.81e7 8.77e7 

 

Table A.27 2-Degree Polynomial Regression R2 Statistics for 6-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

6-Layer dXCO2   R
2 0.4701 0.4793 0.4837 

6-Layer dXCO2   RMSE 8.57 8.50 8.46 

6-Layer dCO2   R
2 0.3089 0.3111 0.3226 

6-Layer dCO2   RMSE 9.82e7 9.81e7 9.73e7 

6-Pressure dXCO2  R
2 0.4426 0.4518 0.4548 

6-Pressure dXCO2  RMSE 8.21 8.14 8.12 

6-Pressure dCO2  R
2 0.4303 0.4410 0.4430 

6-Pressure dCO2  RMSE 8.99e7 8.91e7 8.89e7 
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Table A.28 2-Degree Polynomial Regression R2 Statistics for 7-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

7-Layer dXCO2   R
2 0.4967 0.4990 0.5013 

7-Layer dXCO2   RMSE 7.58 7.56 7.54 

7-Layer dCO2   R
2 0.3135 0.3064 0.3172 

7-Layer dCO2   RMSE 1.06e8 1.07e8 1.06e8 

7-Pressure dXCO2  R
2 0.4730 0.4753 0.4759 

7-Pressure dXCO2  RMSE 7.22 7.20 7.20 

7-Pressure dCO2  R
2 0.4675 0.4713 0.4707 

7-Pressure dCO2  RMSE 9.12e7 9.09e7 9.09e7 

 

Table A.29 2-Degree Polynomial Regression R2 Statistics for 8-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

8-Layer dXCO2   R
2 0.5139 0.5127 0.5120 

8-Layer dXCO2   RMSE 6.63 6.64 6.64 

8-Layer dCO2   R
2 0.2914 0.2805 0.2892 

8-Layer dCO2   RMSE 1.13e8 1.13e8 1.13e8 

8-Pressure dXCO2  R
2 0.4901 0.4886 0.4860 

8-Pressure dXCO2  RMSE 6.33 6.34 6.35 

8-Pressure dCO2  R
2 0.4874 0.4872 0.4831 

8-Pressure dCO2  RMSE 9.10e7 9.10e7 9.14e7 

 

Table A.30 2-Degree Polynomial Regression R2 Statistics for 9-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

9-Layer dXCO2   R
2 0.5318 0.5354 0.5264 

9-Layer dXCO2   RMSE 5.65 5.63 5.68 

9-Layer dCO2   R
2 0.2640 0.2602 0.2601 

9-Layer dCO2   RMSE 1.16e8 1.16e8 1.16e8 

9-Pressure dXCO2  R
2 0.5032 0.5058 0.4952 

9-Pressure dXCO2  RMSE 5.46 5.44 5.50 

9-Pressure dCO2  R
2 0.5001 0.5023 0.4917 

9-Pressure dCO2  RMSE 8.86e7 8.84e7 8.93e7 

 

Table A.31 2-Degree Polynomial Regression R2 Statistics for 10-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

10-Layer dXCO2   R
2 0.5353 0.5354 0.5248 

10-Layer dXCO2   RMSE 5.12 5.12 5.18 

10-Layer dCO2   R
2 0.2304 0.2243 0.2237 

10-Layer dCO2   RMSE 1.25e8 1.25e8 1.26e8 

10-Pressure dXCO2  R
2 0.5072 0.5063 0.4943 

10-Pressure dXCO2  RMSE 4.96 4.97 5.03 

10-Pressure dCO2  R
2 0.5072 0.5058 0.4936 

10-Pressure dCO2  RMSE 8.91e7 8.92e7 9.03e7 
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Table A.32 2-Degree Polynomial Regression R2 Statistics for 11-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

11-Layer dXCO2   R
2 0.5336 0.5306 0.5189 

11-Layer dXCO2   RMSE 4.72 4.74 4.79 

11-Layer dCO2   R
2 0.1969 0.1893 0.1885 

11-Layer dCO2   RMSE 1.35e8 1.35e8 1.35e8 

11-Pressure dXCO2  R
2 0.4763 0.4729 0.4599 

11-Pressure dXCO2  RMSE 4.55 4.57 4.62 

11-Pressure dCO2  R
2 0.4791 0.4750 0.4616 

11-Pressure dCO2  RMSE 8.94e7 8.97e7 9.09e7 

 

Table A.33 1-Degree Rational R2 Statistics for Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

Column dXCO2  R
2 0.5400 0.5247 0.5044 

Column dXCO2  RMSE 2.81 2.87 2.93 

Column dCO2  R
2 0.0746 0.0647 0.0648 

Column dCO2  RMSE 1.93 1.94 1.94 

 

Table A.34 1-Degree Rational R2 Statistics for 3-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

3-Layer dXCO2   R
2 0.3523 0.3670 0.3773 

3-Layer dXCO2   RMSE 15.01 14.84 14.72 

3-Layer dCO2   R
2 0.2737 0.3243 0.3400 

3-Layer dCO2   RMSE 0.81 0.78 0.77 

3-Pressure dXCO2  R
2 0.3349 0.3496 0.3594 

3-Pressure dXCO2  RMSE 14.47 14.31 14.20 

3-Pressure dCO2  R
2 0.3203 0.3361 0.3447 

3-Pressure dCO2  RMSE 0.80 0.79 0.78 

 

Table A.35 1-Degree Rational R2 Statistics for 4-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

4-Layer dXCO2   R
2 0.3954 0.4083 0.4168 

4-Layer dXCO2   RMSE 12.36 12.23 12.14 

4-Layer dCO2   R
2 0.2975 0.3045 0.3184 

4-Layer dCO2   RMSE 0.88 0.88 0.87 

4-Pressure dXCO2  R
2 0.3730 0.3860 0.3936 

4-Pressure dXCO2  RMSE 11.84 11.72 11.65 

4-Pressure dCO2  R
2 0.3573 0.3716 0.3780 

4-Pressure dCO2  RMSE 0.87 0.86 0.85 
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Table A.36 1-Degree Rational R2 Statistics for 5-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

5-Layer dXCO2   R
2 0.4451 0.4555 0.4613 

5-Layer dXCO2   RMSE 10.14 10.05 9.99 

5-Layer dCO2   R
2 0.3386 0.3424 0.3530 

5-Layer dCO2   RMSE 0.93 0.93 0.92 

5-Pressure dXCO2  R
2 0.4211 0.4316 0.4362 

5-Pressure dXCO2  RMSE 9.70 9.61 9.57 

5-Pressure dCO2  R
2 0.4069 0.4188 0.4222 

5-Pressure dCO2  RMSE 0.90 0.88 0.88 

 

Table A.37 1-Degree Rational R2 Statistics for 6-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

6-Layer dXCO2   R
2 0.4754 0.4827 0.4858 

6-Layer dXCO2   RMSE 8.53 8.47 8.45 

6-Layer dCO2   R
2 0.3245 0.3249 0.3337 

6-Layer dCO2   RMSE 0.97 0.98 0.96 

6-Pressure dXCO2  R
2 0.4487 0.4557 0.4572 

6-Pressure dXCO2  RMSE 8.16 8.11 8.10 

6-Pressure dCO2  R
2 0.4357 0.4443 0.4447 

6-Pressure dCO2  RMSE 0.90 0.89 0.89 

 

Table A.38 1-Degree Rational R2 Statistics for 7-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

7-Layer dXCO2   R
2 0.5033 0.5033 0.5038 

7-Layer dXCO2   RMSE 7.53 7.53 7.52 

7-Layer dCO2   R
2 0.3329 0.3219 0.3322 

7-Layer dCO2   RMSE 1.05 1.06 1.05 

7-Pressure dXCO2  R
2 0.4806 0.4803 0.4789 

7-Pressure dXCO2  RMSE 7.17 7.17 7.18 

7-Pressure dCO2  R
2 0.4739 0.4753 0.4727 

7-Pressure dCO2  RMSE 0.91 0.91 0.91 

 

Table A.39 1-Degree Rational R2 Statistics for 8-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

8-Layer dXCO2   R
2 0.5217 0.5179 0.5156 

8-Layer dXCO2   RMSE 6.57 6.60 6.62 

8-Layer dCO2   R
2 0.3134 0.2983 0.3068 

8-Layer dCO2   RMSE 1.11 1.13 1.11 

8-Pressure dXCO2  R
2 0.4989 0.4947 0.4902 

8-Pressure dXCO2  RMSE 6.27 6.30 6.33 

8-Pressure dCO2  R
2 0.4952 0.4924 0.4865 

8-Pressure dCO2  RMSE 0.91 0.91 0.91 
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Table A.40 1-Degree Rational R2 Statistics for 9-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

9-Layer dXCO2   R
2 0.5410 0.5421 0.5313 

9-Layer dXCO2   RMSE 5.59 5.58 5.65 

9-Layer dCO2   R
2 0.2960 0.2857 0.2601 

9-Layer dCO2   RMSE 1.13 1.14 1.14 

9-Pressure dXCO2  R
2 0.5132 0.5131 0.5005 

9-Pressure dXCO2  RMSE 5.40 5.40 5.47 

9-Pressure dCO2  R
2 0.5096 0.5093 0.4967 

9-Pressure dCO2  RMSE 0.88 0.88 0.89 

 

Table A.41 1-Degree Rational R2 Statistics for 10-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

10-Layer dXCO2   R
2 0.5447 0.5422 0.5299 

10-Layer dXCO2   RMSE 5.07 5.09 5.15 

10-Layer dCO2   R
2 0.2637 0.2509 0.2504 

10-Layer dCO2   RMSE 1.22 1.23 1.23 

10-Pressure dXCO2  R
2 0.5171 0.5134 0.4996 

10-Pressure dXCO2  RMSE 4.91 4.93 5.00 

10-Pressure dCO2  R
2 0.5205 0.5129 0.4988 

10-Pressure dCO2  RMSE 0.89 0.89 0.90 

 

Table A.42 1-Degree Rational R2 Statistics for 11-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

11-Layer dXCO2   R
2 0.5429 0.5372 0.5239 

11-Layer dXCO2   RMSE 4.67 4.70 4.77 

11-Layer dCO2   R
2 0.2304 0.2162 0.2158 

11-Layer dCO2   RMSE 1.32 1.33 1.33 

11-Pressure dXCO2  R
2 0.4866 0.4798 0.4649 

11-Pressure dXCO2  RMSE 4.51 4.54 4.60 

11-Pressure dCO2  R
2 0.4897 0.4824 0.4669 

11-Pressure dCO2  RMSE 0.88 0.89 0.90 

 

Table A.43 Sum of Sine R2 Statistics for Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

Column dXCO2  R
2 0.5234 0.5099 0.4922 

Column dXCO2  RMSE 2.85 2.89 2.94 

Column dCO2  R
2 0.0434 0.0388 0.0381 

Column dCO2  RMSE 1.95e8 1.96e8 1.96e8 
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Table A.44 Sum of Sine R2 Statistics for 3-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

3-Layer dXCO2   R
2 0.3487 0.3652 0.3777 

3-Layer dXCO2   RMSE 15.05 14.86 14.71 

3-Layer dCO2   R
2 0.2642 0.2766 0.2920 

3-Layer dCO2   RMSE 0.80e8 0.79e8 0.78e8 

3-Pressure dXCO2  R
2 0.3311 0.3478 0.3599 

3-Pressure dXCO2  RMSE 14.51 14.33 14.19 

3-Pressure dCO2  R
2 0.3170 0.3350 0.3461 

3-Pressure dCO2  RMSE 0.80e8 0.79e8 0.78e8 

 

Table A.45 Sum of Sine R2 Statistics for 4-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

4-Layer dXCO2   R
2 0.3899 0.4050 0.4156 

4-Layer dXCO2   RMSE 12.42 12.26 12.15 

4-Layer dCO2   R
2 0.2843 0.2953 0.303 

4-Layer dCO2   RMSE 0.89e8 0.89e8 0.878e8 

4-Pressure dXCO2  R
2 0.3672 0.3825 0.3925 

4-Pressure dXCO2  RMSE 11.90 11.75 11.66 

4-Pressure dCO2  R
2 0.3518 0.3686 0.3777 

4-Pressure dCO2  RMSE 0.87e8 0.86e8 0.85e8 

 

Table A.46 Sum of Sine R2 Statistics for 5-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

5-Layer dXCO2   R
2 0.4370 0.4500 0.4580 

5-Layer dXCO2   RMSE 10.22 10.10 10.02 

5-Layer dCO2   R
2 0.3187 0.3242 0.3373 

5-Layer dCO2   RMSE 0.94e8 0.94e8 0.93e8 

5-Pressure dXCO2  R
2 0.4122 0.4255 0.4326 

5-Pressure dXCO2  RMSE 9.77 9.66 9.60 

5-Pressure dCO2  R
2 0.4195 0.4133 0.4195 

5-Pressure dCO2  RMSE 0.88e8 0.88e8 0.88e8 

 

Table A.47 Sum of Sine R2 Statistics for 6-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

6-Layer dXCO2   R
2 0.4663 0.4762 0.4815 

6-Layer dXCO2   RMSE 8.60 8.52 8.48 

6-Layer dCO2   R
2 0.3051 0.3078 0.3191 

6-Layer dCO2   RMSE 0.99e8 0.98e8 0.98e8 

6-Pressure dXCO2  R
2 0.4389 0.4488 0.4526 

6-Pressure dXCO2  RMSE 8.23 8.16 8.13 

6-Pressure dCO2  R
2 0.4270 0.4379 0.4407 

6-Pressure dCO2  RMSE 0.90e8 0.89e8 0.89e8 
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Table A.48 Sum of Sine R2 Statistics for 7-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

7-Layer dXCO2   R
2 0.4918 0.4950 0.4984 

7-Layer dXCO2   RMSE 7.62 7.59 7.57 

7-Layer dCO2   R
2 0.3081 0.3022 0.3128 

7-Layer dCO2   RMSE 1.07e8 1.07e8 1.06e8 

7-Pressure dXCO2  R
2 0.4683 0.4714 0.4731 

7-Pressure dXCO2  RMSE 7.25 7.23 7.22 

7-Pressure dCO2  R
2 0.4633 0.4678 0.4683 

7-Pressure dCO2  RMSE 0.92e8 0.92e8 0.91e8 

 

Table A.49 Sum of Sine R2 Statistics for 8-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

8-Layer dXCO2   R
2 0.5087 0.5084 0.5086 

8-Layer dXCO2   RMSE 6.56 6.66 6.66 

8-Layer dCO2   R
2 0.2845 0.2761 0.2835 

8-Layer dCO2   RMSE 1.13e8 1.14e8 1.13e8 

8-Pressure dXCO2  R
2 0.4850 0.4844 0.4828 

8-Pressure dXCO2  RMSE 6.36 6.36 6.37 

8-Pressure dCO2  R
2 0.4664 0.4832 0.4802 

8-Pressure dCO2  RMSE 0.93e8 0.91e8 0.92e8 

 

Table A.50 Sum of Sine R2 Statistics for 9-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

9-Layer dXCO2   R
2 0.5266 0.5309 0.5229 

9-Layer dXCO2   RMSE 5.68 5.65 5.70 

9-Layer dCO2   R
2 0.2595 0.2442 0.2504 

9-Layer dCO2   RMSE 1.16e8 1.18e8 1.17e8 

9-Pressure dXCO2  R
2 0.4982 0.5015 0.4920 

9-Pressure dXCO2  RMSE 5.49 5.47 5.52 

9-Pressure dCO2  R
2 0.4953 0.4971 0.4886 

9-Pressure dCO2  RMSE 0.89e8 0.89e8 0.90e8 

 

Table A.51 Sum of Sine R2 Statistics for 10-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

10-Layer dXCO2   R
2 0.5300 0.5309 0.5213 

10-Layer dXCO2   RMSE 5.15 5.15 5.20 

10-Layer dCO2   R
2 0.2258 0.2208 0.2203 

10-Layer dCO2   RMSE 1.25e8 1.26e8 1.26e8 

10-Pressure dXCO2  R
2 0.5023 0.5021 0.4911 

10-Pressure dXCO2  RMSE 4.99 4.99 5.04 

10-Pressure dCO2  R
2 0.5024 0.5001 0.4903 

10-Pressure dCO2  RMSE 0.90e8 0.90e8 0.91e8 
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Table A.52 Sum of Sine R2 Statistics for 11-Layer Partial Column dXCO2 and dCO2 

 One-Hour Output  Two-Hour Average Output Three-Hour Average Output 

11-Layer dXCO2   R
2 0.5284 0.5263 0.5155 

11-Layer dXCO2   RMSE 4.75 4.76 0.1857 

11-Layer dCO2   R
2 0.1926 0.1864 0.2158 

11-Layer dCO2   RMSE 1.35e8 1.36e8 1.36e8 

11-Pressure dXCO2  R
2 0.4715 0.4690 0.4570 

11-Pressure dXCO2  RMSE 4.57 4.58 4.64 

11-Pressure dCO2  R
2 0.4740 0.4711 0.4553 

11-Pressure dCO2  RMSE 0.90e8 0.90e8 0.91e8 
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Table A.53 XCO2 on the 10 Levels of Targeted Soundings (ppm) 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 
Level 

10 

381.15 381.41 382.73 384.80 389.13 395.04 404.29 414.31 428.20 437.83 

389.22 389.97 391.18 392.36 393.85 395.96 398.05 400.07 400.53 401.17 

396.85 399.00 402.16 405.27 409.51 413.66 419.41 424.69 428.99 431.10 

381.08 379.46 376.26 372.97 367.62 362.54 356.16 350.52 345.12 344.33 

391.40 392.04 392.95 394.03 395.66 397.92 401.11 404.38 408.51 411.23 

392.66 393.28 394.24 395.40 397.38 399.65 402.76 405.71 409.40 410.81 

386.73 386.69 386.97 387.83 390.04 393.04 398.11 403.32 411.80 416.27 

377.52 377.05 377.67 379.81 385.36 392.61 405.47 418.87 440.91 454.35 

404.99 406.56 408.38 409.34 409.40 407.80 403.48 397.75 386.91 377.16 

385.68 385.05 384.44 384.11 384.25 384.61 386.16 387.63 391.95 393.89 

392.41 392.65 393.22 393.85 394.99 396.10 398.00 399.44 402.72 402.66 

388.31 387.08 384.89 382.23 378.04 373.26 366.92 360.35 353.46 348.66 

388.21 387.91 387.92 387.91 388.65 389.50 391.87 394.13 399.15 401.52 

393.01 392.43 391.36 389.60 386.75 383.21 378.46 373.49 367.76 363.45 

392.70 393.2 393.96 394.70 395.72 396.67 397.76 398.67 399.30 399.20 

381.29 378.77 375.04 370.74 364.97 359.32 353.16 348.09 344.98 345.20 

378.51 375.16 370.08 364.69 357.46 350.51 342.80 336.50 332.44 332.83 

386.13 385.26 384.75 384.10 384.38 385.48 388.81 393.24 400.93 406.74 

392.70 393.2 393.96 394.70 395.72 396.67 397.76 398.67 399.30 399.20 

391.62 391.78 392.42 393.05 394.09 395.52 397.22 399.13 399.70 400.40 

385.89 385.16 384.79 384.79 385.54 387.13 389.79 393.03 396.80 400.48 

389.19 389.64 390.51 391.37 392.66 394.55 396.81 399.28 400.95 402.74 

395.15 396.64 399.21 401.81 405.63 409.81 414.52 418.72 420.47 421.09 

393.24 394.34 396.13 397.89 400.17 403.04 406.09 409.12 410.54 411.06 

396.80 396.99 396.46 395.36 392.62 389.57 384.10 378.42 369.33 364.00 

391.94 392.67 394.04 395.90 399.24 403.58 410.15 416.97 426.85 432.63 

391.22 390.77 389.67 388.54 386.66 384.91 382.28 379.70 376.69 374.89 

395.31 395.85 396.76 397.72 399.23 400.54 402.29 403.28 404.15 402.71 

374.37 373.73 374.69 377.59 385.08 395.18 413.60 433.46 467.71 488.85 

383.80 383.18 383.10 383.78 386.25 389.51 396.09 402.70 414.65 421.59 

383.48 382.75 382.55 383.37 386.18 389.69 396.75 403.78 418.35 425.20 

383.79 383.1 382.94 383.51 386.00 389.61 397.12 405.15 420.62 429.68 

388.86 387.92 386.64 385.22 383.54 381.77 380.39 379.03 379.73 379.76 

391.44 390.92 390.43 389.46 388.52 387.26 386.43 385.49 385.24 385.01 

378.50 377.04 376.23 376.45 378.81 382.75 392.14 403.10 425.85 440.71 

381.86 380.98 380.93 381.49 384.63 389.28 399.03 409.63 427.83 439.85 

381.11 379.63 378.50 378.22 379.24 380.60 385.78 392.06 406.45 417.18 
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388.90 387.59 386.06 384.22 382.43 380.95 380.38 380.62 382.85 385.44 

392.24 391.36 390.34 388.72 386.78 384.86 383.04 381.81 380.73 380.95 

391.89 390.55 388.67 386.30 382.92 379.53 375.10 371.24 365.53 363.31 

389.40 389.03 389.21 389.68 391.06 393.30 397.01 401.34 406.56 410.68 

397.95 399.64 402.06 404.29 406.89 410.02 412.80 415.15 415.01 414.31 

391.79 392.27 393.08 394.29 396.41 399.63 404.89 410.69 419.27 425.02 

400.93 401.88 402.90 403.67 404.17 404.81 404.72 404.32 402.14 400.06 

398.89 399.67 400.57 401.39 402.27 403.45 404.42 405.14 405.01 404.38 

398.73 399.54 400.59 401.64 403.02 404.65 406.38 407.83 408.65 408.47 

391.91 392.42 393.68 395.61 399.50 404.47 412.34 420.51 432.75 439.94 

391.09 391.44 392.51 394.32 398.17 403.13 411.14 419.50 432.30 439.75 

395.91 396.2 396.52 396.93 397.61 398.45 399.43 400.18 401.00 400.54 

390.23 390.55 391.67 393.61 397.77 402.97 411.35 415.88 422.87 425.19 

394.71 395.02 395.68 396.63 398.37 400.26 403.18 405.67 409.34 409.99 

397.55 397.93 398.40 398.87 399.41 399.69 399.77 399.10 397.80 394.85 

393.92 393.7 393.60 393.43 393.52 393.29 393.58 393.41 394.35 393.95 

384.18 383.05 382.26 381.94 383.22 385.50 391.52 398.47 412.78 422.12 

389.79 389.64 390.38 391.98 396.01 401.23 407.85 413.39 425.44 431.81 

387.41 386.16 384.97 383.92 383.97 384.73 387.87 391.49 399.14 404.91 

391.15 390.04 389.01 387.84 387.25 387.21 388.71 390.98 395.30 399.20 

390.90 389.82 388.78 387.73 386.90 386.65 387.16 388.40 390.02 392.43 

391.30 389.58 387.49 385.93 386.76 388.76 393.09 398.54 407.01 413.87 

394.60 394.90 395.88 396.90 398.65 400.93 404.10 407.53 410.27 412.45 

393.93 394.18 394.69 395.13 395.72 396.78 397.71 398.87 398.75 399.01 

393.89 394.80 396.27 397.86 400.09 403.17 406.76 410.39 413.53 415.73 

397.13 398.02 398.92 399.43 399.17 399.25 397.68 395.67 389.84 386.63 

397.26 398.53 400.24 401.96 404.16 406.75 410.33 413.74 416.73 418.90 

396.63 397.21 398.36 400.02 403.19 406.89 412.30 417.39 424.35 427.44 

396.66 396.94 397.48 398.31 399.96 401.90 404.82 407.54 411.67 412.97 

The order of level is consistent with the pressure partition method, i.e. the 10th level corresponds 

to the surface level.  
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Table A.54 XCO2 Uncertainty of the 10 Levels of Targeted Soundings (ppm) 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 

7.5085 8.3824 9.5066 10.3957 11.7432 13.0647 15.7831 19.1731 25.7894 33.8694 

5.6531 6.1757 6.7029 6.9660 7.4270 7.7970 9.7588 12.5772 19.2336 28.1546 

6.1277 6.6853 7.2360 7.4947 7.9110 8.2912 10.3774 13.5045 20.7459 29.8187 

6.3532 6.9640 7.6138 7.9851 8.5723 9.1358 11.3293 14.4973 21.6319 30.5217 

6.0697 6.6336 7.1992 7.4649 7.8538 8.1172 9.9296 12.7457 19.6086 28.6583 

4.4591 4.9553 5.5624 6.0023 6.8107 7.3268 8.9173 10.6908 15.3090 23.7255 

4.1171 4.6061 5.2358 5.7303 6.6507 7.2456 8.8119 10.3760 14.4788 22.7757 

7.2736 8.0729 9.0495 9.7656 10.8352 11.8649 14.3151 17.5587 24.3008 32.6939 

3.4761 3.9628 4.6575 5.2770 6.4175 7.1528 8.6590 9.8057 12.7572 20.8217 

3.6525 4.1392 4.8177 5.4057 6.4919 7.1893 8.7202 9.9993 13.3391 21.4827 

3.9347 4.4153 5.0491 5.5757 6.5671 7.2168 8.7589 10.1954 14.0225 22.2772 

4.1223 4.6084 5.2344 5.7300 6.6584 7.2574 8.8378 10.4440 14.6381 22.9385 

4.0202 4.5052 5.1412 5.6547 6.6102 7.2278 8.7922 10.2996 14.2421 22.5027 

4.7120 5.2075 5.7838 6.1706 6.8826 7.3440 8.9926 10.9852 16.1057 24.6474 

4.7885 5.2682 5.8048 6.1470 6.8245 7.3285 9.2138 11.5732 17.2720 25.8745 

4.3867 4.8661 5.4490 5.8772 6.7020 7.2659 8.9780 10.8912 15.7023 24.1149 

4.3884 4.8698 5.4569 5.8881 6.7151 7.2776 8.9817 10.8923 15.6975 24.1022 

4.6209 5.1060 5.6725 6.0608 6.7958 7.2972 9.0114 11.0307 16.0791 24.5806 

11.0888 12.8173 15.4326 17.8536 21.3761 24.7128 29.2442 33.6705 39.1763 44.7533 

5.1706 5.6743 6.2159 6.5301 7.0992 7.4972 9.2834 11.6679 17.5222 26.2472 

5.3658 5.8837 6.4320 6.7365 7.2663 7.6310 9.4118 11.8831 17.9668 26.7534 

5.5762 6.0950 6.6244 6.8974 7.3799 7.7594 9.7047 12.4719 19.0289 27.9089 

6.0509 6.6039 7.1518 7.4077 7.8152 8.1561 10.1599 13.1846 20.2885 29.3458 

5.9513 6.4945 7.0312 7.2793 7.6761 7.9895 9.9367 12.8603 19.7849 28.8239 

5.4600 5.9853 6.5499 6.8863 7.5179 8.0806 10.2134 13.0687 19.5511 28.2740 

5.6184 6.1362 6.6582 6.9167 7.3752 7.7445 9.7346 12.6038 19.3663 28.3018 

4.4871 4.9752 5.5647 5.9873 6.7841 7.3183 9.0022 10.9205 15.7640 24.1951 

4.0089 4.4959 5.1347 5.6468 6.6011 7.2194 8.7932 10.3202 14.2990 22.5501 

3.7283 4.2148 4.8840 5.4528 6.5097 7.1889 8.7280 10.0622 13.5516 21.7048 

3.9967 4.4829 5.1234 5.6401 6.6029 7.2228 8.7911 10.3063 14.2744 22.5285 

4.3648 4.8469 5.4370 5.8753 6.7031 7.2629 8.9188 10.7013 15.1935 23.5832 

4.0260 4.5124 5.1484 5.6566 6.6075 7.2234 8.8002 10.3416 14.3695 22.6301 

4.0260 4.5122 5.1494 5.6602 6.6171 7.2415 8.8366 10.3968 14.4439 22.6984 

4.0527 4.5360 5.1637 5.6652 6.6095 7.2286 8.8216 10.3932 14.4816 22.7583 

4.7371 5.2163 5.7571 6.1078 6.7961 7.2943 9.1259 11.3899 16.9575 25.5568 

4.4948 4.9802 5.5621 5.9759 6.7585 7.2815 8.9640 10.8979 15.8109 24.2645 

4.7253 5.2095 5.7628 6.1290 6.8300 7.3216 9.0945 11.2543 16.5505 25.0980 
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4.6533 5.1380 5.7007 6.0810 6.8077 7.3125 9.0681 11.1730 16.4000 24.9145 

4.7831 5.2796 5.8508 6.2267 6.9205 7.3819 9.0797 11.1805 16.4988 25.0616 

4.8877 5.3758 5.9181 6.2558 6.9004 7.3581 9.1679 11.4664 17.1026 25.7341 

5.4078 5.9151 6.4370 6.7090 7.2021 7.5699 9.4707 12.1378 18.5465 27.4056 

5.8697 6.4135 6.9604 7.2257 7.6481 7.9603 9.8359 12.6377 19.3632 28.3448 

4.7353 5.2292 5.8004 6.1833 6.8882 7.3517 9.0085 10.9991 16.0741 24.6159 

4.8706 5.3713 5.9407 6.3069 6.9719 7.4039 9.0734 11.1729 16.5168 25.1149 

4.6027 5.0985 5.6888 6.1013 6.8585 7.3465 8.9670 10.8582 15.7383 24.2152 

4.4510 4.9489 5.5616 6.0151 6.8364 7.3455 8.8782 10.5700 15.0617 23.4745 

4.1857 4.6759 5.3017 5.7864 6.6853 7.2608 8.8286 10.4320 14.6212 22.9332 

4.1554 4.6455 5.2750 5.7670 6.6771 7.2610 8.8187 10.3764 14.4645 22.7661 

4.4098 4.9037 5.5119 5.9587 6.7839 7.3141 8.9073 10.6598 15.2393 23.6433 

4.3063 4.7948 5.4039 5.8609 6.7120 7.2634 8.8670 10.5845 15.0240 23.3842 

4.4708 4.9615 5.5559 5.9829 6.7798 7.3000 8.9383 10.7943 15.5690 24.0030 

4.1184 4.6055 5.2337 5.7292 6.6558 7.2558 8.8376 10.4315 14.6078 22.9078 

4.2558 4.7419 5.3527 5.8168 6.6872 7.2555 8.8743 10.5916 15.0294 23.3773 

3.8257 4.3128 4.9720 5.5222 6.5454 7.2014 8.7455 10.1412 13.8079 21.9973 

4.4978 4.9923 5.5920 6.0252 6.8223 7.3362 8.9362 10.7301 15.3597 23.7775 

4.1307 4.6167 5.2405 5.7284 6.6414 7.2331 8.823 10.4387 14.6460 22.9474 

4.4880 4.9752 5.5612 5.9789 6.7644 7.2850 8.9499 10.8536 15.7111 24.1573 

4.7688 5.2558 5.8092 6.1719 6.8662 7.3530 9.1300 11.3173 16.7255 25.2902 

5.2774 5.7774 6.2988 6.5810 7.0978 7.4685 9.3165 11.8647 18.0614 26.8722 

5.0644 5.5670 6.1176 6.4491 7.0484 7.4482 9.1729 11.4414 17.1204 25.8056 

5.7162 6.2404 6.7635 7.0151 7.4505 7.7998 9.7757 12.6552 19.4481 28.4139 

5.8912 6.4372 6.9903 7.2677 7.7291 8.1173 10.1254 13.0600 19.9223 28.8779 

4.2712 4.7564 5.3638 5.8315 6.7043 7.2778 8.8757 10.5389 14.7501 23.0352 

6.4310 7.0365 7.6656 8.0062 8.5443 9.0739 11.3011 14.5711 21.9106 30.9093 

4.0774 4.5667 5.2029 5.7089 6.6474 7.2462 8.8030 10.3411 14.3756 22.6496 

4.0695 4.5596 5.1985 5.7061 6.6451 7.2459 8.8021 10.3255 14.3086 22.5730 
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Table A.55 Wind Speed and Direction (One-hour) at Hamilton Station and London Station 

Hamilton Wind Speed (km/h) 

/Wind Direction (10s deg) 

London Wind Speed (km/h) Difference of Wind Speed (km/h) 

One-Hour Three-Hour One-Hour Three-Hour One-Hour Three-Hour 

17/4 21.67 17 14.33 0 7.33 

22/23 24.67 11 13 11 11.67 

11/26 11.67 11 9.67 0 2 

17/26 18 17 17.67 0 0.33 

13/24 19 7 11.67 6 7.33 

7/10 8.67 6 7.33 1 1.33 

13/24 20 24 30.33 -11 -10.33 

7/22 14.33 15 21.67 -8 -7.33 

15/20 18.33 17 17.67 -2 0.67 

15/16 11.33 13 14.33 2 -3 

7/19 6.33 4 4.67 3 1.67 

19/28 21.67 13 15.33 6 6.33 

11/21 16 13 16 -2 0 

11/23 8.67 9 8 2 0.67 

9/28 9.33 6 8.67 3 0.67 

0/Na 6 6 11.33 -6 -5.33 

15/22 19 9 14.33 6 4.67 

11/22 14.33 7 12.33 4 2 

33/24 34 26 30 7 4 

6/6 6.33 7 7 -1 -0.67 

20/32 24.67 13 19 7 5.67 

44/21 43 35 41.67 9 1.33 

9/7 9.67 4 3.33 5 6.33 

6/2 4 9 6.67 -3 -2.67 

13/30 21 7 13.33 6 7.67 

7/32 10.33 11 13.67 -4 -3.33 

11/4 12.33 13 9.67 -2 2.67 

13/22 19 15 24.33 -2 -5.33 

9/20 7.33 17 15.67 -8 -8.33 

7/15 10.33 9 11.67 -2 -1.33 

11/2 8 9 12 2 -4 

11/31 13 7 9.67 4 3.33 

22/32 17.33 19 17.67 3 -0.33 

6/20 9.33 6 8.67 0 0.67 

9/18 11 6 8.67 3 2.33 

11/24 14.67 11 11.67 0 3 

9/27 11 6 5.67 3 5.33 
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9/20 16 17 19 -8 -3 

13/21 18.67 15 14.33 -2 4.33 

6/4 10.67 11 10.33 -5 0.33 

9/30 9 7 9.67 2 -0.67 

15/4 15 9 7.67 6 7.33 

10/34 12 11 11.67 -1 0.33 

11/18 12.33 9 11.67 2 0.67 

16/5 14.67 8 11.67 8 3 

0/Na 23.33 18 20.67 -18 2.67 

13/29 15.67 6 10.67 7 5 

10/26 9.33 11 15 -1 -5.67 

13/24 12 9 12.33 4 -0.33 

17/20 20.33 12 16 5 4.33 

12/18 15.67 12 13.67 0 2 

14/33 22 18 18 -4 4 

17/24 22.67 8 13 9 9.67 

6/23 6.5 9 13 -3 -6.5 

15/7 14 12 12 3 2 

9/20 13.67 16 17.33 -7 -3.67 

4/26 5.33 NA NA NA NA 

12/22 17.67 14 14.67 -2 3 

8/26 14.67 11 11.67 -3 3 

17/22 22 17 17.67 0 4.33 

9/17 9.33 12 10 -3 -0.67 

6/1 8.333333 8 6.33 -2 2 

8/21 10 4 5.67 4 4.33 

10/24 11.66667 9 10.33 1 1.33 

10/18 15.66667 11 16.33 -1 -0.67 

20/18 23 14 17.67 6 5.33 
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Table A.56 Temperature at Hamilton Station and London Station 

Hamilton Temperature (°C) London Temperature (°C) Difference of Temperature (°C) 

One-Hour Three-Hour One-Hour Three-Hour One-Hour Three-Hour 

7.7 7.97 5.7 6.4 2 1.57 

12.3 13.1 10.8 12.1 1.5 1 

-8.2 -7.57 -5 -5.27 -3.2 -2.3 

-6 -4.5 -5 -4.9 -1 0.4 

2.9 4.23 2.5 4.23 0.4 0 

8.7 10.93 11.7 12.73 -3 -1.8 

16.2 21.87 22.5 24.07 -6.3 -2.2 

13.4 14.5 14.6 15.87 -1.2 -1.37 

25.5 26.67 24.8 26.17 0.7 0.5 

20.8 21.7 22.1 22.87 -1.3 -1.17 

21.6 22.43 23 23.2 -1.4 -0.77 

15.9 16.6 17.4 17.87 -1.5 -1.27 

28.8 30.4 30.9 31.83 -2.1 -1.43 

22.9 22.63 20.3 20.7 2.6 1.93 

24.7 26.07 25.2 25.73 -0.5 0.33 

26.5 27.77 25.6 27.03 0.9 0.73 

21.1 23.33 24.1 25.1 -3 -1.77 

19.2 22.33 21 23.03 -1.8 -0.7 

24.6 25.07 24.5 25.33 0.1 -0.27 

8.9 11.33 14 16.37 -5.1 -5.03 

10.3 11.47 10.1 11.33 0.2 0.13 

15.9 16.37 15.5 16 0.4 0.37 

1.3 2.37 1.5 3.4 -0.2 -1.03 

4.6 6.33 5.6 7.67 -1 -1.33 

-9 -7.97 -8.7 -7.97 -0.3 0 

-4.6 -3.7 -5.4 -4.57 0.8 0.87 

3.8 6.13 6.8 9.47 -3 -3.33 

26.7 28.1 28.6 29.5 -1.9 -1.4 

22.9 24.7 22.8 23.97 0.1 0.73 

23.2 24.03 25.8 26.67 -2.6 -2.63 

20.9 22.23 22 22.53 -1.1 -0.3 

22.9 24.47 22.9 24.17 0 0.3 

26 27.17 25.4 26.07 0.6 1.1 

28.5 29.5 29.2 29.73 -0.7 -0.23 

22.7 24.03 21.9 22.87 0.8 1.17 

26.2 27.9 27.3 27.87 -1.1 0.03 

22.3 23.23 26.2 27.07 -3.9 -3.83 

22 24.07 23.1 23.9 -1.1 0.17 
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20.1 21.7 20.5 21.93 -0.4 -0.23 

17.3 19.03 19.3 22.57 -2 -3.53 

13.9 16.37 12.1 14.63 1.8 1.73 

0.9 1.37 0.4 1.57 0.5 -0.2 

-4.6 -1.07 -3.4 -2.5 -1.2 1.43 

11.8 13.8 13 14.57 -1.2 -0.77 

13.6 16.43 18.5 21.1 -4.9 -4.67 

-0.7 1.2 0.1 1.77 -0.8 -0.57 

11.8 13.73 10.2 12.37 1.6 1.37 

11.9 13.83 10.1 12.1 1.8 1.73 

17.5 18.87 12.9 15.9 4.6 2.97 

9.2 10.53 10 10.9 -0.8 -0.37 

23.5 25.7 24.4 25.87 -0.9 -0.17 

25.8 27.53 24.8 26.5 1 1.03 

26.8 28.9 28 29.37 -1.2 -0.47 

28.9 29.3 27.2 28.7 1.7 0.6 

25.6 26.27 25.6 27.37 0 -1.1 

24.9 26.57 25.4 26.57 -0.5 0 

24.7 27.03 22 24.63 2.7 2.4 

16.4 19.03 18.3 20.23 -1.9 -1.2 

11.6 12.53 11.1 11.97 0.5 0.57 

16.5 18.13 17.5 19.13 -1 -1 

13 13.77 13.3 14.47 -0.3 -0.7 

1.5 2.07 2 2.93 -0.5 -0.87 

4.5 5.97 3.7 5.83 0.8 0.13 

-11.3 -9.7 -8.2 -8.77 -3.1 -0.93 

8.6 9.6 7.9 9.37 0.7 0.23 

14 16 18.6 21.17 -4.6 -5.17 
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Table A.57 Humidity at Hamilton Station and London Station 

Hamilton Humidity (%) London Humidity (%) Difference of Humidity (%) 

One-Hour Three-Hour One-Hour Three-Hour One-Hour Three-Hour 

100 97.33 79 75.67 21 21.67 

69 63.33 80 72.67 -11 -9.33 

75 74.67 86 85 -11 -10.33 

79 73 74 76.33 5 -3.33 

62 54 67 60.33 -5 -6.33 

48 41.33 41 32.33 7 9 

59 51.67 48 45.33 11 6.33 

70 61.33 68 61.33 2 0 

46 43.67 43 47 3 -3.33 

69 66 60 57.67 9 8.33 

55 51.33 50 49.67 5 1.67 

52 47.67 45 43.67 7 4 

66 60.33 46 44.67 20 15.67 

90 89 78 81 12 8 

61 55 50 47 11 8 

71 63.67 73 67 -2 -3.33 

67 59.33 45 42 22 17.33 

67 63.33 62 57 5 6.33 

57 60.33 57 54.67 0 5.67 

61 55.33 61 53 0 2.33 

58 52.33 74 63 -16 -10.67 

43 43.67 48 47.33 -5 -3.67 

81 76.67 72 64 9 12.67 

69 62.67 79 64.67 -10 -2 

57 51.67 62 60.67 -5 -9 

55 53.67 56 54.33 -1 -0.67 

84 78.67 76 57 8 21.67 

74 66 55 53.67 19 12.33 

49 46.33 49 46 0 0.33 

66 63 50 45.33 16 17.67 

79 73.67 64 60.33 15 13.33 

49 43 36 33.33 13 9.67 

58 54.33 50 51.33 8 3 

59 57.67 57 54.33 2 3.33 

62 57.33 62 57.33 0 0 

51 45 48 48 3 -3 

42 43 66 63 -24 -20 

67 57.67 65 61.33 2 -3.67 
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64 56.67 70 61.33 -6 -4.67 

72 67.67 85 63.67 -13 4 

72 62.33 75 65 -3 -2.67 

83 80 73 69 10 11 

75 69.67 69 64.67 6 5 

41 36.67 46 40 -5 -3.33 

87 77.33 73 63.33 14 14 

38 33 47 40.67 -9 -7.67 

27 23 35 29 -8 -6 

40 36.67 46 41.33 -6 -4.67 

59 52.67 93 71.67 -34 -19 

51 45 41 39 10 6 

36 33.33 30 28.67 6 4.67 

54 53.67 48 44 6 9.67 

54 47 47 42.67 7 4.33 

40 35.5 47 41.33 -7 -5.83 

53 51.67 60 56.33 -7 -4.67 

51 48.33 54 51 -3 -2.67 

51 42.33 61 50.33 -10 -8 

74 65 66 57 8 8 

64 57.67 68 63 -4 -5.33 

72 68.67 70 62.67 2 6 

74 73 79 74.33 -5 -1.33 

78 74 81 71.67 -3 2.33 

92 86.67 87 81.67 5 5 

80 78.33 84 85.33 -4 -7 

37 37 46 39.67 -9 -2.67 

46 43 44 36.33 2 6.67 
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Table A.58 Pressure at Hamilton Station and London Station 

Hamilton Pressure (kPa) London Humidity (kPa) Difference of Humidity (kPa) 

One-Hour Three-Hour One-Hour Three-Hour One-Hour Three-Hour 

99.09 99.15 97.98 97.9 1.11 1.25 

98.37 98.27 97.93 97.83 0.44 0.44 

99.58 99.55 99.18 99.15 0.4 0.4 

98.35 98.29 98 97.97 0.35 0.33 

98.88 98.86 98.46 98.46 0.42 0.4 

100.15 100.12 99.6 99.62 0.55 0.51 

97.79 97.78 97.21 97.24 0.58 0.54 

98.72 98.73 98.17 98.19 0.55 0.54 

98.46 98.47 98.04 98.05 0.42 0.42 

99.03 99.03 98.52 98.52 0.51 0.51 

99.06 99.05 98.6 98.61 0.46 0.44 

99.03 99 98.62 98.61 0.41 0.39 

98.75 98.72 98.28 98.26 0.47 0.46 

98.14 98.16 97.75 97.74 0.39 0.43 

99.04 99.04 98.63 98.67 0.41 0.37 

98.52 98.53 98.16 98.17 0.36 0.36 

98.55 98.52 98.11 98.09 0.44 0.43 

99.31 99.31 98.85 98.86 0.46 0.45 

97.79 97.78 97.48 97.42 0.31 0.36 

99.02 99.02 98.5 98.47 0.52 0.55 

98.44 98.35 98.18 98.1 0.26 0.25 

97.66 97.62 97.14 97.11 0.52 0.51 

99.99 99.98 99.45 99.48 0.54 0.5 

98.79 98.74 98.3 98.27 0.49 0.47 

100.35 100.25 99.88 99.81 0.47 0.44 

99.14 99.14 98.73 98.74 0.41 0.41 

99.24 99.2 98.72 98.7 0.52 0.5 

98.94 98.98 98.5 98.51 0.44 0.47 

98.66 98.67 98.21 98.19 0.45 0.48 

98.36 98.37 97.88 97.89 0.48 0.48 

98.44 98.46 97.88 97.91 0.56 0.54 

98.81 98.79 98.44 98.44 0.37 0.35 

98.41 98.39 98.08 98.05 0.33 0.34 

98.34 98.37 97.93 97.95 0.41 0.42 

98.74 98.74 98.26 98.27 0.48 0.47 

98.87 98.85 98.51 98.48 0.36 0.36 

98.53 98.51 98.25 98.26 0.28 0.24 

98.89 98.91 98.41 98.43 0.48 0.47 
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98.6 98.63 98.09 98.12 0.51 0.51 

98.88 98.85 98.41 98.36 0.47 0.5 

99.36 99.33 99.01 98.99 0.35 0.34 

99.84 99.84 99.34 99.31 0.5 0.53 

99.74 99.69 99.29 99.26 0.45 0.44 

99.11 99.11 98.58 98.59 0.53 0.53 

99.4 99.37 98.88 98.84 0.52 0.53 

99.83 99.77 99.43 99.39 0.4 0.38 

99.2 99.23 98.86 98.9 0.34 0.33 

99.31 99.33 98.85 98.89 0.46 0.44 

98.54 98.5 98.08 98.08 0.46 0.43 

98.23 98.2 97.69 97.71 0.54 0.49 

99.19 99.19 98.75 98.76 0.44 0.44 

98.72 98.65 98.37 98.29 0.35 0.36 

98 97.94 97.6 97.53 0.4 0.41 

99.14 99.13 98.71 98.69 0.43 0.44 

98.58 98.55 98.1 98.06 0.48 0.49 

98.66 98.67 98.2 98.21 0.46 0.45 

NA NA 98.71 98.71 NA NA 

98.88 98.86 98.44 98.42 0.44 0.43 

98.38 98.28 98 97.93 0.38 0.35 

98.92 98.91 98.47 98.46 0.45 0.45 

98.96 98.98 98.42 98.46 0.54 0.52 

99.87 99.86 99.39 99.38 0.48 0.48 

99.42 99.4 98.94 98.92 0.48 0.47 

99.26 99.24 98.77 98.75 0.49 0.49 

100.08 100.1 99.56 99.59 0.52 0.51 

99.61 99.65 99.01 99.05 0.6 0.6 
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Table A.59 Weather Event/Description at Hamilton Station and London Station 

Hamilton Weather London Weather 

19th Hour 18th Hour 17th Hour 19th Hour 18th Hour 17th Hour 

Fog Fog Mainly Clear Mostly Cloudy Mostly Cloudy Mostly Cloudy 

Clear Clear Clear Clear Clear Clear 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Cloudy Cloudy Snow Showers 

Clear Clear Mainly Clear Mostly Cloudy Mostly Cloudy Snow Showers 

Mainly Clear Mainly Clear Clear Clear Mainly Clear Mainly Clear 

Cloudy Mostly 

Cloudy 

Mostly 

Cloudy 

Cloudy Cloudy Cloudy 

Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mainly Clear Mostly Cloudy 

Clear Clear Mainly Clear Clear Clear Mainly Clear 

Mainly Clear Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mostly Cloudy Mostly Cloudy 

Clear Clear Clear Clear Clear Clear 

Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mainly Clear Clear Clear Mainly Clear 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mostly Cloudy Thunderstorms,Rain Showers 

Clear Mainly Clear Mainly Clear Mainly Clear Mostly Cloudy Mostly Cloudy 

Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mostly 

Cloudy 

Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Clear Mainly Clear Clear Mainly Clear 

Mainly Clear Mainly Clear Mainly Clear Mostly Cloudy Mostly Cloudy Mainly Clear 

Clear Clear Clear Clear Mainly Clear Clear 
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Mainly Clear Mostly 

Cloudy 

Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mostly 

Cloudy 

Mostly 

Cloudy 

Clear Mainly Clear Mostly Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Clear Clear Mainly Clear 

Clear Clear Clear Clear Clear Mainly Clear 

Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mostly 

Cloudy 

Clear Clear Mainly Clear 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Cloudy Mostly Cloudy Mostly Cloudy 

Mainly Clear Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mainly Clear Clear Mainly Clear Mainly Clear 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mostly 

Cloudy 

Mainly Clear Mainly Clear Mostly Cloudy 

Mainly Clear Mainly Clear Mainly Clear Clear Mainly Clear Mainly Clear 

Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mainly Clear Mostly Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly Cloudy Mostly Cloudy Mostly Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Cloudy Cloudy Cloudy 

Clear Mainly Clear Mainly Clear Clear Clear Clear 

Mainly Clear Mostly 

Cloudy 

Mostly 

Cloudy 

Mainly Clear Mostly Cloudy Mostly Cloudy 

Mostly 

Cloudy 

Mainly Clear Mostly 

Cloudy 

Mainly Clear Rain Showers Mostly Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly 

Cloudy 

Mostly Cloudy Mostly Cloudy Mostly Cloudy 
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Mainly Clear Mainly Clear Mainly Clear Mainly Clear Clear Clear 

Clear Clear Clear Clear Clear Clear 

Mainly Clear Mostly 

Cloudy 

Mostly 

Cloudy 

Clear Clear Clear 

Clear NA NA Mainly Clear Mainly Clear Mostly Cloudy 

Mainly Clear NA NA Mainly Clear Mainly Clear Mainly Clear 

Mainly Clear NA NA Mainly Clear NA NA 

Clear NA NA Mainly Clear NA NA 

Mainly Clear NA NA Mainly Clear NA NA 

Mainly Clear NA NA Mostly Cloudy NA NA 

Mostly 

Cloudy 

NA NA Fog Rain Showers NA 

Mostly 

Cloudy 

NA NA Mostly Cloudy NA NA 

Mainly Clear NA NA Mainly Clear NA NA 

Mainly Clear NA NA Mainly Clear NA NA 

Mainly Clear NA NA Mostly Cloudy NA NA 

Mainly Clear NA  Mainly Clear NA  

Mostly 

Cloudy 

NA NA Mainly Clear NA NA 

Mainly Clear NA NA Mainly Clear NA NA 

NA NA NA NA NA NA 

Mostly 

Cloudy 

NA NA Mostly Cloudy NA NA 

Mostly 

Cloudy 

NA NA Mostly Cloudy NA NA 

http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
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Clear NA NA Clear NA NA 

Cloudy NA NA Cloudy NA NA 

Mostly 

Cloudy 

NA NA Mostly Cloudy NA NA 

Mainly Clear NA NA Haze Haze Haze 

Clear NA NA Snow Showers Snow Showers Snow Showers 

Mainly Clear NA NA Mainly Clear NA NA 

Mostly 

Cloudy 

NA NA Mainly Clear NA NA 

 

  

http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
http://climate.weather.gc.ca/climateData/hourlydata_e.html?timeframe=1&Prov=ONT&StationID=49908&hlyRange=2011-12-14|2014-03-13&Year=2012&Month=2&Day=7#legendNA
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Table A.60 Scale of Wind Speed and Wind Direction Deviation 

Scale Hamilton Scale London 

One-Hour/Wind 

Direction Deviation 

Three-Hour One-Hour Three-Hour 

4/9 5 5 3 

5/3 6 3 3 

3/4 2 3 2 

4/4 4 5 4 

3/3 4 1 3 

2/5 2 1 2 

3/3 5 7 8 

2/2 3 4 5 

4/1 4 5 4 

4/2 2 3 3 

2/1 1 1 1 

5/5 5 3 4 

3/2 4 3 4 

3/3 2 2 2 

3/7 2 1 2 

1/Na 1 1 3 

4/2 4 2 3 

3/2 3 1 3 

8/3 8 8 7 

2/8 1 1 1 

5/8 6 3 5 

10/2 10 10 10 

3/7 2 1 1 

2/10 1 2 1 

3/7 5 1 3 

2/8 2 3 3 

3/9 3 3 2 

3/2 4 4 6 

3/1 1 5 4 

2/3 2 2 3 

3/10 2 2 3 

3/7 3 1 2 

5/8 4 5 4 

2/7 2 1 2 

3/1 2 1 2 

3/3 3 3 3 

3/5 2 1 1 
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3/1 4 5 5 

3/2 4 4 3 

2/9 2 3 2 

3/7 2 1 2 

4/9 3 2 2 

3/9 3 3 3 

3/3 3 2 3 

4/8 3 2 3 

1/Na 5 5 5 

3/6 3 1 2 

3/4 2 3 4 

3/3 3 2 3 

4/1 5 3 4 

3/1 3 3 3 

4/8 5 5 4 

4/3 5 2 3 

2/3 1 2 3 

4/7 3 3 3 

3/1 3 4 4 

1/4 1 NA NA 

3/2 4 4 3 

2/4 3 3 3 

4/2 5 5 4 

3/2 2 3 2 

2/10 2 2 1 

2/2 2 1 1 

3/3 2 2 2 

3/1 3 3 4 

5/1 5 4 4 
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Table A.61 Scale of Temperature 

Scale Hamilton Scale London 

One-Hour Three-Hour One-Hour Three-Hour 

5 5 4 4 

6 6 5 6 

1 1 1 1 

2 2 1 1 

4 4 3 4 

5 6 6 6 

7 8 8 9 

7 7 6 7 

10 10 9 9 

8 8 8 8 

9 9 9 8 

7 7 7 7 

10 10 10 10 

9 9 8 8 

9 9 9 9 

10 10 9 9 

9 9 9 9 

8 8 8 8 

9 9 9 9 

6 6 6 7 

6 6 5 5 

7 7 7 7 

4 4 3 3 

4 4 4 5 

1 1 1 1 

2 2 1 2 

4 4 4 5 

10 10 10 10 

9 9 8 9 

9 9 9 9 

9 8 8 8 

9 9 8 9 

10 10 9 9 

10 10 10 10 

9 9 8 8 

10 10 10 10 

9 9 9 9 

9 9 9 9 
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8 8 8 8 

8 8 8 8 

7 7 6 6 

4 3 3 3 

2 3 2 2 

6 6 6 6 

7 7 7 8 

3 3 3 3 

6 6 5 6 

6 6 5 6 

8 8 6 7 

6 6 5 5 

9 9 9 9 

10 10 9 9 

10 10 10 10 

10 10 10 10 

10 9 9 9 

10 10 9 9 

9 10 8 9 

7 8 7 8 

6 6 5 6 

7 7 7 7 

7 6 6 6 

4 3 3 3 

4 4 4 4 

1 1 1 1 

5 5 5 5 

7 7 7 8 
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Table A.62 Scale of Humidity 

Scale Hamilton Scale London 

One-Hour Three-Hour One-Hour Three-Hour 

10 10 8 9 

6 6 8 8 

7 7 9 10 

8 7 7 9 

5 5 6 6 

3 3 2 1 

5 4 3 3 

6 6 7 6 

3 3 3 4 

6 6 5 6 

4 4 4 4 

4 4 3 3 

6 6 3 3 

9 9 8 10 

5 5 4 4 

7 6 7 7 

6 5 3 3 

6 6 6 5 

5 6 5 5 

5 5 5 5 

5 4 7 7 

3 3 3 4 

8 8 7 7 

6 6 8 7 

5 4 6 6 

4 5 5 5 

8 8 8 5 

7 6 4 5 

4 4 4 4 

6 6 4 3 

8 7 6 6 

4 3 1 1 

5 5 4 4 

5 5 5 5 

5 5 6 6 

4 3 3 4 

3 3 6 7 

6 5 6 6 
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6 5 7 6 

7 7 9 7 

7 6 8 7 

8 8 7 8 

7 7 7 7 

2 2 3 2 

9 8 7 7 

2 2 3 3 

1 1 1 1 

2 2 3 3 

5 4 10 8 

4 3 2 2 

2 2 1 1 

4 5 3 3 

4 4 3 3 

2 2 3 3 

4 4 5 5 

4 4 4 4 

4 3 5 4 

7 6 6 5 

6 5 7 7 

7 7 7 7 

7 7 8 9 

7 7 9 8 

9 9 10 10 

8 8 9 10 

2 2 3 2 

3 3 3 2 
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Table A.63 Scale of Surface Pressure 

Scale Hamilton Scale London 

One-Hour Three-Hour One-Hour Three-Hour 

6 6 4 3 

3 3 3 3 

8 8 8 8 

3 3 4 4 

5 5 5 5 

10 10 9 10 

1 1 1 1 

4 5 4 4 

3 4 4 4 

6 6 6 6 

6 6 6 6 

6 6 6 6 

5 5 5 5 

2 3 3 3 

6 6 6 6 

4 4 4 4 

4 4 4 4 

7 7 7 7 

1 1 2 2 

6 6 5 6 

3 3 4 4 

1 1 1 1 

9 9 9 9 

5 5 5 5 

10 10 10 10 

6 6 6 7 

6 7 6 6 

5 6 5 6 

4 4 4 4 

3 3 3 3 

3 4 3 3 

5 5 5 5 

3 3 4 4 

3 3 3 4 

5 5 5 5 

5 5 6 6 

4 4 5 5 

5 5 5 5 



209 

 

4 4 4 4 

5 5 5 5 

7 7 7 7 

9 9 9 9 

8 8 8 8 

6 6 6 6 

7 7 7 7 

9 9 9 9 

6 7 7 7 

7 7 7 7 

4 4 4 4 

3 3 3 3 

6 6 6 7 

4 4 5 5 

2 2 2 2 

6 6 6 6 

4 4 4 4 

4 4 4 5 

NA NA 6 6 

5 5 5 5 

3 3 4 4 

5 5 5 5 

5 6 5 5 

9 9 9 9 

7 7 7 7 

6 7 6 7 

9 10 9 10 

8 8 7 8 
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Table A.64 Scale of Weather Event/Description 

Scale Hamilton Scale London 

5 3 

1 1 

3 4 

1 3 

2 1 

4 4 

2 2 

3 2 

1 1 

2 2 

1 1 

1 2 

2 1 

3 2 

1 2 

2 2 

2 2 

2 2 

2 3 

1 1 

2 2 

2 1 

3 1 

1 1 

1 2 

2 1 

3 4 

2 2 

2 1 

3 2 

2 2 

2 1 

2 2 

3 3 

3 4 

1 1 

2 2 

3 2 
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3 3 

2 2 

1 1 

2 1 

1 2 

2 2 

2 2 

1 2 

2 2 

2 3 

3 5 

3 3 

2 2 

2 2 

2 3 

2 2 

3 2 

2 2 

NA NA 

3 3 

3 3 

1 1 

4 4 

3 3 

2 5 

1 6 

2 2 

3 2 
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Table A.65 The Scale of 10-Layer Absolute Residuals in dXCO2 

dXCO2 Residual (ppm) Scale of Absolute Residual Scale of Output 

6.02 5 2 

-2.16 2 1 

6.79 6 9 

0.11 1 5 

-3.83 4 1 

-0.33 1 2 

-7.90 7 2 

-1.23 1 4 

-3.16 3 8 

6.97 6 7 

-8.10 7 9 

3.37 3 5 

7.55 7 10 

-5.69 5 9 

4.73 4 8 

-5.76 5 9 

5.75 5 7 

0.74 1 4 

-4.87 4 5 

1.62 2 1 

-1.40 2 1 

-3.40 3 2 

3.64 3 2 

-5.82 5 5 

-1.62 2 1 

4.53 4 1 

-6.73 6 1 

8.84 8 2 

-3.65 3 1 

8.07 7 1 

-3.78 4 1 

8.11 7 2 

-11.80 10 4 

-1.45 2 8 

0.49 1 5 

4.25 4 6 

-2.79 3 8 

0.70 1 3 
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3.44 3 2 

-4.90 4 1 

1.97 2 1 

11.14 10 3 

2.27 2 1 

1.17 1 1 

-2.50 2 1 

-2.12 2 1 

1.31 2 1 

-0.07 1 1 

-4.25 4 1 

-0.56 1 1 

2.87 3 1 

-2.32 2 4 

-0.07 1 1 

-0.52 1 3 

2.51 2 3 

1.21 1 3 

8.09 7 3 

2.52 3 1 

4.43 4 1 

5.53 5 1 

-3.46 3 2 

-7.78 7 3 

-12.32 10 3 

0.26 1 1 

-1.98 2 1 

-2.75 3 1 
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Table A.66 Two Residual Groups and Relevant Statistics 

 
Residual 

Scale 

Plus (1) 

/ Minus 

(-1) 

Output 

Scale 

XCO2 

Uncert. 

Scale 

Wind 

Speed 

Scale 

Wind 

Direction 

Deviation 

Scale 

Temperature 

Scale 

Humidity 

Scale 

Pressure 

Scale 

Weather 

Event 

Scale 

S
tr

o
n

g
 F

it
 

1 1 5 5 4 4 2 8 3 1 

1 1 1 5 3 5 1 8 6 1 

1 1 5 2 3 2 9 5 5 3 

1 1 3 2 3 2 9 6 5 3 

1 1 4 2 3 1 8 6 7 2 

1 1 1 2 3 1 6 2 6 2 

1 1 3 1 3 3 10 4 4 2 

1 -1 1 1 3 4 6 2 7 2 

1 -1 1 2 4 1 10 4 2 2 

1 -1 2 2 2 3 5 3 10 4 

1 -1 3 1 2 3 10 2 6 2 

1 -1 1 2 4 1 6 4 3 3 

1 -1 4 5 2 3 7 6 4 3 

2 1 1 1 3 3 6 1 6 2 

2 1 1 3 2 8 6 5 6 1 

2 1 1 3 3 8 7 7 7 1 

2 1 1 2 3 7 2 7 8 1 

2 1 3 2 4 7 10 4 4 3 

2 -1 1 3 5 7 6 5 3 2 

2 -1 8 1 2 9 10 5 3 3 

2 -1 1 4 3 8 1 5 10 1 

2 -1 1 1 3 0 5 2 9 2 

2 -1 1 2 1 6 3 2 9 1 

2 -1 1 4 5 8 6 6 3 1 

2 -1 4 1 4 7 10 4 4 2 

2 -1 1 2 4 1 7 9 7 2 

3 1 1 2 3 1 7 7 5 3 

3 1 1 2 3 5 9 2 6 2 

3 1 5 1 5 2 7 4 6 1 

3 1 2 2 3 7 8 6 4 3 

3 1 2 4 3 1 4 8 9 3 

3 -1 8 1 4 5 10 3 3 1 

3 -1 2 3 10 2 7 3 1 2 

3 -1 2 4 3 1 7 7 5 4 

3 -1 1 1 3 2 9 4 4 2 

3 -1 1 1 5 2 7 3 8 3 

3 -1 8 2 3 1 9 3 4 2 

4 1 6 2 3 3 10 4 5 1 

4 1 1 3 2 7 6 6 3 3 

4 1 1 4 2 3 2 4 6 2 
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4 1 8 3 3 8 9 5 6 1 

4 -1 1 2 3 10 9 8 3 2 

4 -1 1 4 3 3 4 5 5 2 

4 -1 1 2 3 9 8 5 4 3 

4 -1 5 10 8 3 9 5 1 2 

4 -1 1 3 2 4 8 7 5 2 

5 1 1 3 4 9 7 7 5 1 

5 1 7 2 4 3 9 6 4 2 

5 1 2 6 4 0 5 10 6 5 

5 -1 5 4 2 2 4 6 5 1 

5 -1 9 2 3 10 9 9 2 3 

5 -1 9 2 1 2 10 7 4 2 

W
ea

k
 F

it
 

6 1 9 4 3 4 1 7 8 3 

6 1 7 1 4 2 8 6 6 2 

6 -1 1 2 3 9 4 8 6 3 

7 1 10 1 3 3 10 6 5 2 

7 1 1 1 2 1 9 6 3 3 

7 1 3 2 1 2 9 4 NA NA 

7 1 2 1 3 3 9 4 5 2 

7 -1 3 4 2 7 4 7 9 3 

7 -1 2 1 3 4 7 5 1 2 

7 -1 9 1 2 10 9 4 6 1 

8 1 2 1 3 2 10 7 5 2 

10 1 3 4 4 8 4 8 9 2 

10 -1 4 1 5 9 10 5 3 2 

10 -1 3 1 2 2 4 9 7 2 
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Table A.67 Targeted Soundings in Hamilton 

Column 

XCO2 
3Layers 4Layers 5Layers 6Layers 7Layers 8Layers 9Layers 10Layers 11Layers 

364.68 288.27 300.60 311.42 320.68 328.50 335.03 340.45 344.94 348.70 

389.18 400.49 398.66 397.09 395.81 394.77 393.91 393.18 392.56 392.01 

388.43 415.05 409.78 405.38 401.85 399.03 396.82 395.09 393.73 392.63 

353.64 300.31 304.27 308.82 313.63 318.41 322.99 327.27 331.19 334.72 

395.41 419.78 416.22 413.03 410.29 407.97 406.02 404.37 402.98 401.79 

394.88 425.04 420.28 415.98 412.29 409.19 406.65 404.58 402.89 401.49 

392.42 394.97 395.34 395.47 395.46 395.39 395.29 395.17 395.03 394.88 

392.53 415.55 411.64 408.15 405.18 402.71 400.70 399.09 397.82 396.79 

390.16 371.66 375.66 379.01 381.73 383.91 385.61 386.95 387.98 388.78 

391.95 395.81 395.52 395.16 394.82 394.50 394.21 393.97 393.76 393.59 

384.74 376.85 377.34 378.06 378.90 379.74 380.54 381.27 381.95 382.55 

365.43 319.68 323.98 328.54 333.11 337.47 341.53 345.23 348.55 351.50 

380.96 361.66 363.36 365.26 367.21 369.11 370.88 372.48 373.92 375.20 

386.85 397.57 394.26 391.70 389.84 388.54 387.67 387.10 386.77 386.60 

366.90 331.24 333.46 336.23 339.31 342.46 345.53 348.43 351.14 353.62 

388.11 417.67 411.22 405.81 401.47 398.05 395.42 393.43 391.95 390.86 

390.39 400.32 398.66 397.14 395.82 394.75 393.94 393.37 392.99 392.80 

393.59 413.74 410.72 407.95 405.52 403.45 401.70 400.22 398.98 397.95 

389.84 403.44 400.97 398.87 397.19 395.83 394.74 393.85 393.12 392.49 

354.12 291.00 296.83 303.00 309.16 315.06 320.51 325.48 329.94 333.88 

399.51 422.63 419.99 417.50 415.23 413.20 411.40 409.79 408.36 407.08 

396.76 425.52 420.94 416.90 413.49 410.64 408.29 406.34 404.73 403.38 

398.30 418.55 416.07 413.74 411.66 409.84 408.27 406.89 405.69 404.63 

399.16 412.45 411.42 410.34 409.29 408.32 407.40 406.54 405.73 404.98 

379.44 346.96 351.44 355.67 359.55 363.02 366.03 368.62 370.81 372.65 

396.30 415.53 412.93 410.52 408.39 406.56 405.02 403.72 402.63 401.69 

396.96 396.90 398.19 399.07 399.60 399.88 399.97 399.95 399.84 399.69 

393.79 417.82 413.55 409.83 406.71 404.13 402.06 400.41 399.11 398.08 

389.13 392.86 391.69 390.77 390.10 389.63 389.33 389.16 389.10 389.09 

390.35 404.47 401.33 398.79 396.81 395.27 394.11 393.25 392.63 392.16 

390.85 391.03 390.64 390.38 390.27 390.26 390.32 390.40 390.50 390.62 

386.28 376.95 377.36 378.03 378.88 379.81 380.75 381.66 382.51 383.29 

385.50 366.59 368.89 371.13 373.24 375.19 376.93 378.45 379.79 380.96 

389.83 417.05 410.73 405.53 401.45 398.33 396.00 394.30 393.09 392.22 

389.37 395.35 393.66 392.27 391.20 390.43 389.90 389.56 389.37 389.29 

394.24 406.85 405.23 403.66 402.24 401.01 399.93 398.99 398.16 397.45 

360.32 315.88 319.01 322.70 326.65 330.60 334.38 337.91 341.14 344.04 
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393.70 419.32 414.40 410.26 406.93 404.27 402.16 400.49 399.17 398.09 

397.26 415.92 413.05 410.50 408.34 406.55 405.07 403.84 402.82 401.95 

395.53 419.38 415.03 411.30 408.24 405.77 403.81 402.24 401.01 400.00 

397.10 409.91 408.29 406.79 405.46 404.33 403.37 402.54 401.84 401.22 

397.32 431.80 425.91 420.72 416.34 412.72 409.80 407.45 405.57 404.04 

396.93 424.05 419.34 415.22 411.77 408.93 406.65 404.82 403.37 402.18 

392.47 400.31 398.94 397.77 396.81 396.04 395.46 395.02 394.69 394.43 

397.39 420.10 416.35 413.04 410.25 407.92 406.02 404.48 403.24 402.22 

396.16 381.87 385.70 388.80 391.21 393.06 394.43 395.44 396.17 396.69 

391.00 400.68 398.32 396.39 394.90 393.76 392.94 392.35 391.97 391.72 

380.66 353.63 356.33 359.17 361.98 364.65 367.09 369.28 371.24 372.97 

384.77 369.59 370.52 371.73 373.13 374.59 376.02 377.38 378.63 379.77 

387.91 373.68 375.23 376.77 378.26 379.68 380.99 382.19 383.26 384.24 

393.51 390.96 391.21 391.49 391.79 392.12 392.44 392.74 393.03 393.30 

388.76 395.48 392.95 391.01 389.64 388.82 388.51 388.54 388.74 388.92 

395.08 402.52 401.46 400.43 399.52 398.74 398.09 397.56 397.13 396.80 

396.05 416.21 412.89 409.89 407.31 405.14 403.36 401.89 400.70 399.74 

393.84 422.18 416.80 412.18 408.40 405.34 402.89 400.92 399.34 398.06 
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Table A.68 XCO2 Uncertainty of the Column and 10 levels 

Column Lv1 Lv2 Lv3 Lv4 Lv5 Lv6 Lv7 Lv8 Lv9 Lv10 

0.99 4.57 5.06 5.63 6.03 6.80 7.35 9.08 11.07 15.89 24.33 

1.42 5.73 6.24 6.73 6.93 7.30 7.61 9.63 12.61 19.59 28.65 

1.36 5.65 6.15 6.63 6.84 7.23 7.58 9.67 12.70 19.73 28.76 

2.26 6.03 6.60 7.21 7.52 8.00 8.36 10.23 13.02 19.73 28.67 

1.69 5.65 6.17 6.70 6.97 7.44 7.82 9.83 12.72 19.47 28.40 

0.78 4.14 4.63 5.27 5.77 6.69 7.27 8.82 10.37 14.45 22.74 

0.69 4.07 4.56 5.20 5.70 6.64 7.24 8.81 10.36 14.44 22.73 

0.67 4.14 4.63 5.25 5.73 6.64 7.23 8.84 10.48 14.77 23.08 

0.72 4.38 4.87 5.45 5.88 6.71 7.26 8.94 10.82 15.61 24.03 

0.75 4.43 4.91 5.48 5.90 6.71 7.26 8.95 10.86 15.74 24.19 

0.69 4.35 4.83 5.42 5.85 6.68 7.24 8.92 10.80 15.57 23.98 

0.73 4.44 4.91 5.49 5.90 6.70 7.26 9.04 11.08 16.10 24.53 

0.83 4.60 5.08 5.63 6.01 6.76 7.30 9.13 11.30 16.62 25.13 

0.82 4.71 5.19 5.73 6.09 6.78 7.29 9.11 11.33 16.76 25.33 

1.37 5.50 6.00 6.51 6.77 7.24 7.62 9.63 12.48 19.15 28.07 

0.99 4.85 5.34 5.89 6.24 6.90 7.36 9.11 11.30 16.69 25.28 

1.08 5.05 5.54 6.07 6.39 6.98 7.41 9.21 11.58 17.37 26.05 

1.14 5.04 5.54 6.09 6.42 7.02 7.43 9.17 11.41 16.93 25.59 

1.46 5.71 6.22 6.71 6.92 7.30 7.64 9.69 12.71 19.75 28.80 

1.08 4.61 5.09 5.67 6.07 6.85 7.42 9.25 11.40 16.58 25.02 

2.02 5.83 6.36 6.90 7.17 7.65 8.11 10.26 13.34 20.36 29.31 

1.79 5.83 6.37 6.91 7.16 7.58 7.89 9.81 12.69 19.56 28.57 

1.85 5.8 6.32 6.81 7.04 7.49 7.96 10.28 13.58 20.90 29.92 

1.32 5.32 5.83 6.37 6.66 7.18 7.54 9.33 11.82 17.96 26.77 

1.08 5.03 5.52 6.06 6.38 6.98 7.40 9.22 11.61 17.48 26.18 

0.83 4.36 4.85 5.46 5.91 6.75 7.29 8.88 10.60 15.09 23.47 

0.69 4.13 4.62 5.24 5.73 6.65 7.24 8.85 10.48 14.74 23.05 

0.64 4.03 4.52 5.15 5.66 6.60 7.22 8.81 10.37 14.44 22.70 

0.66 3.95 4.44 5.09 5.62 6.60 7.23 8.79 10.27 14.14 22.37 

0.63 3.99 4.48 5.12 5.64 6.60 7.22 8.79 10.30 14.28 22.53 

0.65 3.98 4.47 5.10 5.62 6.59 7.22 8.80 10.31 14.28 22.53 

0.85 4.54 5.03 5.60 6.01 6.78 7.30 9.00 10.98 15.96 24.43 

0.77 4.43 4.91 5.50 5.93 6.73 7.27 8.93 10.80 15.59 24.01 

0.87 4.71 5.19 5.75 6.12 6.83 7.31 9.06 11.19 16.50 25.05 

1.09 5.09 5.59 6.12 6.43 7.01 7.42 9.24 11.67 17.61 26.34 

1.14 5.02 5.52 6.07 6.41 7.02 7.43 9.16 11.38 16.87 25.52 

1.46 5.13 5.64 6.20 6.55 7.19 7.65 9.48 11.88 17.68 26.32 

1.52 5.71 6.22 6.70 6.91 7.32 7.69 9.84 12.95 20.08 29.12 
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0.91 4.50 4.99 5.59 6.03 6.82 7.33 8.93 10.75 15.45 23.88 

0.81 4.39 4.88 5.48 5.92 6.74 7.28 8.90 10.70 15.30 23.70 

0.87 4.36 4.85 5.47 5.93 6.78 7.31 8.87 10.55 14.98 23.36 

0.69 4.01 4.50 5.14 5.66 6.62 7.24 8.79 10.30 14.24 22.48 

0.71 4.05 4.54 5.18 5.69 6.63 7.24 8.80 10.31 14.28 22.54 

0.79 4.32 4.81 5.41 5.87 6.71 7.27 8.89 10.63 15.09 23.44 

0.67 4.11 4.59 5.22 5.71 6.63 7.23 8.83 10.45 14.64 22.93 

0.70 4.15 4.64 5.27 5.76 6.67 7.25 8.83 10.44 14.72 23.05 

0.67 4.08 4.56 5.19 5.69 6.62 7.23 8.82 10.41 14.54 22.81 

0.68 4.13 4.61 5.23 5.72 6.64 7.24 8.86 10.53 14.83 23.14 

0.89 4.62 5.10 5.67 6.06 6.80 7.32 9.09 11.20 16.45 24.96 

0.80 4.65 5.13 5.67 6.03 6.75 7.28 9.14 11.37 16.77 25.29 

0.88 4.68 5.16 5.73 6.11 6.82 7.31 9.02 11.09 16.29 24.83 

1.00 4.91 5.40 5.94 6.28 6.91 7.37 9.17 11.47 17.13 25.76 

0.94 4.67 5.16 5.73 6.12 6.85 7.34 9.02 11.03 16.11 24.62 

1.07 5.02 5.52 6.05 6.38 6.98 7.40 9.20 11.53 17.27 25.95 

1.54 5.57 6.09 6.61 6.88 7.34 7.69 9.58 12.28 18.73 27.62 
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Table A.69 Scales of Weather Factors (Hamilton) 

Temperature Humidity Wind Pressure Weather Event/Description 

2 9 4 5 4 

2 7 3 8 3 

2 8 4 4 1 

4 8 3 5 2 

4 6 3 5 2 

6 4 2 10 4 

7 5 3 2 2 

10 3 4 4 1 

9 7 4 6 2 

9 5 2 6 1 

7 4 5 6 1 

9 6 1 5 2 

10 7 1 4 2 

8 6 3 7 2 

8 8 4 1 2 

6 5 2 6 1 

7 3 10 1 2 

5 7 2 5 1 

2 8 3 9 6 

2 5 3 6 3 

5 3 10 2 1 

1 5 3 10 1 

3 10 8 10 4 

3 8 3 9 2 

2 5 2 6 2 

4 9 3 7 3 

10 7 3 6 2 

9 4 3 5 2 

9 6 2 4 3 

9 4 3 5 2 

10 5 2 4 3 

9 6 3 6 3 

8 6 3 5 3 

8 7 2 5 2 

7 7 3 7 1 

4 9 4 9 2 

1 6 6 7 2 

3 8 7 5 2 

6 3 3 6 2 

7 9 4 7 2 

3 2 5 9 1 

6 1 3 7 2 

6 2 3 7 2 

6 4 4 3 3 

9 2 3 7 2 

10 4 4 5 2 

10 4 4 2 2 

9 3 6 4 2 

8 6 3 4 2 

8 3 2 7 2 

8 7 3 5 3 

6 6 2 4 3 

8 7 4 6 1 

7 7 3 6 4 

5 10 5 6 6 
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Appendix B: Figures 

 

Figure B.1 Linear Regression for Column dXCO2 

 

Figure B.2 Linear Regression for 3-Layer Partial Column dXCO2 

 

Figure B.3 Linear Regression for 8-Layer Partial Column dXCO2 
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Figure B.4 Linear Regression for 9-Layer Partial Column dXCO2 

 

Figure B.5 Linear Regression for 10-Layer Partial Column dXCO2 

 

Figure B.6 Linear Regression for 11-Layer Partial Column dXCO2 
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Figure B.7 Power Regression for Column dXCO2 

 

Figure B.8 Power Regression for 3-Layer Partial Column dXCO2 

 

Figure B.9 Power Regression for 8-Layer Partial Column dXCO2 
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Figure B.10 Power Regression for 9-Layer Partial Column dXCO2 

 

Figure B.11 Power Regression for 10-Layer Partial Column dXCO2 

 

Figure B.12 Power Regression for 11-Layer Partial Column dXCO2 
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Figure B.13 2-Degree Polynomial Regression for Column dXCO2 

 

Figure B.14 2-Degree Polynomial Regression for 3-Layer Partial Column dXCO2 

 

Figure B.15 2-Degree Polynomial Regression for 8-Layer Partial Column dXCO2 
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Figure B.16 2-Degree Polynomial Regression for 9-Layer Partial Column dXCO2 

 

Figure B.17 2-Degree Polynomial Regression for 10-Layer Partial Column dXCO2 

 

Figure B.18 2-Degree Polynomial Regression for 11-Layer Partial Column dXCO2 
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Figure B.19 Rational Regression for Column dXCO2 

 

Figure B.20 Rational Regression for 3-Layer Partial Column dXCO2 

 

Figure B.21 Rational Regression for 8-Layer Partial Column dXCO2 
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Figure B.22 Rational Regression for 9-Layer Partial Column dXCO2 

 

Figure B.23 Rational Regression for 10-Layer Partial Column dXCO2 

 

Figure B.24 Rational Regression for 11-Layer Partial Column dXCO2 
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Figure B.25 Sum of Sine Regression for Column dXCO2 

 

Figure B.26 Sum of Sine Regression for 3-Layer Partial Column dXCO2 

 

Figure B.27 Sum of Sine Regression for 8-Layer Partial Column dXCO2 
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Figure B.28 Sum of Sine Regression for 9-Layer Partial Column dXCO2 

 

Figure B.29 Sum of Sine Regression for 10-Layer Partial Column dXCO2 

 

Figure B.30 Sum of Sine Regression for 11-Layer Partial Column dXCO2 
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