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Abstract 

 

Mapping the geology of Northern regions in Canada is an essential step in providing key 

knowledge for resource development and economic prosperity of northern communities.  

However, mapping this large remote region presents a major challenge both in terms of financial 

resources and the time required to cover such a large area. With convenient access to remotely 

sensed imagery, new automatic and remote approaches are emerging that support the surficial 

geological mapping of vast northern regions at scales appropriate for mineral exploration and 

related land-use management.  

 

An approach using LANDSAT 7 TM imagery, field-based data and a maximum 

likelihood classification algorithm is employed to produce remote predictive maps of the 

surficial materials in the Repulse Bay area, Nunavut (NTS 46M-SW, 46L-W and S and 46K-

SW).   Two approaches in the remote predictive mapping (RPM) process are used to determine 

the optimal class combination and resultant maps. The first approach employs general and field 

knowledge from Quaternary geologists to the map evaluation.  This approach allows training 

areas to be grouped and merged based on Quaternary geology principles. The second approach 

uses statistical techniques to produce classified maps based on training areas along with 

measures of classification accuracy. These qualitative (geological knowledge-based) and 

quantitative (statistical-based) methods are used and compared to determine optimal class 

combinations. Four classification maps that offer the highest overall classification accuracies - 

through analysis of a confusion matrix and associated variability maps - were produced (two for 

each approach). Exposed marine sediments, carbonate-rich tills, organics and boulder terrains are 

the most accurately (>75%) classified of the surficial materials classes; confusion occurs 

between remaining till, sand and gravel, and bedrock units. Variability maps were produced 

using these optimal class combinations and corresponding classifications, through which it is 

found that the geological knowledge-based approach is more suitable for remotely mapping 

surficial materials in this study area.  

 

A comparison to surficial materials maps derived from surficial geology maps was 

conducted with results of classification outputs using the most optimal class combinations with 

LANDSAT and SPOT 4/5 imagery. This visual and GIS analysis comparison allowed for 

evaluation of the classification products, while an overlay analysis compared a pixel-to-pixel 

correspondence between the maps.  Although it is found that both imageries are useful for 

mapping marine and alluvial sediments, it has limitations in mapping organic materials, till and 

bedrock.  It is apparent that LANDSAT imagery is more appropriate for general mapping while 

SPOT is better suited for mapping marine sediments.   
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Chapter 1: Introduction 

 

1.1 Geological Mapping in Northern Canada 

 

Mapping the geology of Northern regions in Canada is an essential step for providing 

important knowledge for both resource development and economic prosperity of northerners.  

The Western Churchill Geological Province is an active diamond, gold and base metal 

exploration area.  It sets the example for Northern Canada’s vast resource potential.  Though 

surficial geology maps are available for northern regions, many are at a coarse scale and hinder 

the potential for effective surface exploration programs by the mineral exploration industry using 

glacial sediments as a sampling medium.  As seen in Figure 1, many regions North of 60° 

latitude have not been mapped or are mapped at the 1:500,000 scale and coarser (“Some 

knowledge:” or “Insufficient knowledge”) - a resolution ineffective for surface exploration 

programs.  Finer scaled resolution would aid in uncovering resource potential in the north and 

providing a geological framework; and thus, help facilitate exploration and development 

programs.  Such higher resolution maps would contribute to northern prosperity by giving 

knowledge to industries and policy makers leading to more informed decisions regarding 

policies, and sustainable development, thereby enhancing socioeconomic status and general 

welfare of northern communities.   

As resource potential is to be explored and developed, governments and industry are 

challenged to produce geological maps in a time and cost-effective manner.  To meet this 

demand, remote sensing resources and tools can be used as they offer cost and time efficient 

methods to help mapping the surficial geology (Harris, 2007; Grunsky et al., 2009). 
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Figure 1.1: Surficial Geology Map Coverage, Canada, north of 60° Latitude (Kerr 

and Eagles, 2013, per. comm.).  

1.2 Remote Sensing and Satellite Imagery – Geological Uses  
 

Mapping remote locations such as Northern Canada is a time-intensive and costly process 

as these regions have little to no infrastructure, and short fieldwork seasons.  The otherwise 

expensive and time-intensive field programs have been accelerated through use of remotely 

sensed data, which has proven to be useful in fields of geomorphology, exploration geology, 

engineering, geochemical hazard assessment as well as geological mapping for delineation of 

rock unit boundaries and sub-units (Drury, 2001).   

Though limitations exist, satellite imagery expands map-able regions further than what is 

constrained by factors of accessibility.  It offers large scale views which facilitate new 

discoveries by filling in regions between broadly spaced point data. General coverage of 

100x100km or larger images allow small teams of geoscientists to map terrains of areas this size 

or larger (Clark, 1997).   

Since Sugden (1978) first used remotely sensed data to map the intensity of glacial 

erosion by the Laurentide Ice Sheet, a variety of uses have emerged in surface mapping (Clark, 

1997).  Remote sensing imagery used include several sensors such as LANDSAT MSS (80m), 

LANDSAT TM (30m), SPOT XZ (20m), SPOT Pan (10m), SEASAT and ERS SAR (25m) as 

well as RADARSAT, and have proved to have a range in ease of analysis as well as limitations. 

Some limitations have included poor resolution, high data volume, high solar elevation, limited 
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coverage and terrain distortion (Clark, 1997). Table 1.1 summarizes some available remote 

sensors.  

Table 1.1 Remote Sensor Summary 

Satellite Sensor Starting 

date of 

operation 

Resolution Main usage Country 

of 

origin 

LANDSAT MSS 1972 80 m Agriculture, geology, forestry, 

regional planning, mapping, 

emergency response and disaster 

relief, resource management, 

environmental monitoring, 

change detection 

USA 

LANDSAT TM 1982 30m 

SPOT XS 1986 

 

20m Urban mapping, topographic 

information 

France 

SPOT PAN Pan 10m 

SEASAT SAR 1978 25m Remote sensing of earth’s oceans USA 

 

ERSSAR SAR 1991 25m Ocean-atmosphere interaction, 

oceanic circulation and energy 

transfer, ice sheet mass balance 

estimates, monitoring: coastal 

processes and pollution; land-use 

change and management 

(Europe) 

RADARSAT-

1 

SAR 1995 Variable 

(12.5m-

1km) 

Surface texture 

(height)/roughness, 

environmental monitoring, sea 

ice distribution, disaster 

management, hydrology, 

geology, agriculture, forestry, 

Canada 

 

In geomorphological and surficial geology mapping, rigorous fieldwork and air 

photograph interpretation generally comprise mapping efforts.  Though resolution of satellite 

imagery (10-80m), is not as fine as that of aerial photographs (a few meters), it is readily 

available and usable at an array of scales and spatial resolutions.  This convenience gives rise to 

the identification of patterns at scales that may have otherwise gone unnoticed (Clark, 1997) and 

allows mapping of drumlins and major eskers and other glacial landforms, investigation of their 

texture, as well as analysis of their distribution and spatial densities. This type of analyses 

contributes to reconstructing glacial histories and to understand glacial geomorphic processes 

(Ex. Smith and Pain, 2009).  

Reconstructing glacial histories includes identifying glacial evolution, glacial maxima 

and glacial retreat (Clark, 1997). GIS and remote sensing facilitate greater coverage spatially, 

and promote inclusion of various data sources, scales and field areas (Clark, 1997).   This has 

been exemplified in mapping of regions overlain by the northernmost part of the Laurentide Ice 

Sheet.  Prest et al. (1968) regionally mapped the glacial landscape of Canada using air photos, 
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while LANDSAT has been used for large-scale paleo-glaciological mapping of the Canadian 

Arctic (e.g. Boulton and Clark 1990; De Angelis, 2007). It has been used extensively in 

geomorphological mapping of  paleo-ice stream beds (i.e. Stokes, 2002) in many different 

regions of the Canadian Arctic (e.g. Clark and Stokes 2001; Stokes and Clark 2003; De Angelis 

and Kleman 2005; Stokes et al. 2006, 2009; Dyke 2008; Ross et al. 2011).  Satellite imagery has 

also been used, sometimes with tools such as Google Earth, to identify and delineate carbonate 

dispersal patterns across Canadian Shield rocks in the Arctic (e.g. Stokes, 2002; De Angelis and 

Kleman, 2005; Dyke, 2008; Ross et al., 2011). Finally, remote sensing has been used to 

spectrally locate geochemical anomalies, which in turn guide mineral exploration (e.g. Taranik et 

al., 2009). 

1.3 Previous RPM studies in the Arctic 

 

As satellite imagery is useful in identifying and mapping landforms and 

geomorphological features and patterns, the idea to use the same imagery to map surficial 

sediments (including bedrock) has also been explored.  Remotely sensed imagery has been 

applied in regions of the arctic as vegetation, especially tree cover, is not a major limiting factor.  

More specifically, this type of mapping has been accomplished using methods commonly 

referred to as Remote Predictive Mapping (RPM) (Harris et al., 2008).  

 RPM is a mapping process by which a combination or selection of any available 

geoscience data including field observations, sample material, air photo interpretation, 

geophysical and geochemical information are collected and interpreted to help scientists develop 

a representation of what forms the ground surface. In this process field data and other 

information are used to train computer classification algorithms.  These algorithms use image 

data to calculate statistical relationships (located at field stations) and lithological/surficial units 

to identify and predict similar signatures in other regions.  This relationship is based on the 

image information including spectral reflectance, magnetic-field intensity, radar backscatter, and 

other available properties (Schetselaar et al., 2007).  This RPM classification method can be used 

to facilitate the speed of the geological mapping process, by streamlining and focusing the 

fieldwork component, thereby accelerating production of mapping and enhancing potential for 

northern prosperity.   

 A number of RPM classification studies have been conducted in regions of the Canadian 

Arctic, using a variety of data and applying it to the RPM method.  In an RPM case study near 

Snowbird Lake (NWT), the RPM approach was used for purposes of field planning in addition to 

understanding the regional geology.  Magnetic and field data as well as gamma-ray 

spectroscopy, a digital elevation model (DEM) and LANDSAT imagery, helped identify and 

map geological structures and units (Martel et al., 2005). Successes of this study included the 

production of field maps thereby enhancing field planning, and of producing maps of lithological 

domains and units as well as structural trends.  In addition it recognized regions of complex 

terrain and poor exposure, thus identifying areas to target future field mapping.  Confusion in the 
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predictive mapping included classification of bedrock and eskers. One conclusion of the study 

was that magnetic data was most useful for predictive mapping of bedrock in the study area 

(Martel et al., 2005). 

RPM surficial unit discrimination in the Arctic has been carried out on Baffin Island 

(Brown et al., 2007) and Schultz Lake (Grunsky et al., 2006, 2009), Nunavut. The Baffin Island 

study visually examined LANDSAT imagery, and due to lack of spectral variability, warranted 

further computer analysis (Brown et al., 2007). It was combined with a DEM for the region, 

which resulted in some confusion between units. After a supervised classification using 

LANDSAT imagery, an accuracy of 85% was achieved (Brown et al., 2007) when compared to 

original training areas determined for classification. A 50% accuracy was noted when comparing 

the classification results with field check sites. The goal of this study was to achieve 80% 

accuracy with field data (different to comparison with training areas), which was not 

accomplished, possibly as a result of coarse scale and resolution, overlap of units, or definition of 

training areas from fieldwork and/or air photographs (Brown et al., 2007). The study revealed 

that accuracy improved by 1% when the LANDSAT data was used in concert with a DEM 

(Brown et al., 2007). Suggestions from this research included post-classification filtering, which 

improved classification accuracies (when comparing training areas to filtered maps), and the 

incorporation of a DEM, to improve statistical separation of the LANDSAT image (Brown et al., 

2007).  

The RPM study in Schultz Lake by Grunsky et al. (2006, 2009) was similar to the Baffin 

Island study, in that it also used LANDSAT and a DEM, but also incorporated RADARSAT 

data. Here, 6 surficial material types were classified using a combination of LANDSAT TM-7 

data (spectral response measurements) and RADARSAT data (backscatter measures). Through 

the development of training areas from air photos, conducting classification, comparing statistics 

and field checking, it was established that certain classes were discriminated better than others. It 

also demonstrated that different confusion levels were present within individual LANDSAT and 

RADARSAT classifications. Using these data sets in combination helped delineate surficial 

materials better than if used individually (Grunsky et al., 2009). When comparing mapped pixels 

in classified maps with those pixels located in training area regions, a reasonable accuracy, 

greater than 80% was achieved. However, when comparing classification maps to surficial 

geology maps, the correspondence was less than 50% due to the effect of being generalized. This 

study demonstrated that LANDSAT and RADARSAT imagery are useful for discriminating 

certain surficial materials, namely thick till.  This is because thick till has distinct differences in 

surficial texture and spectral response, as a result of vegetation cover, that distinguishes it easily 

from other materials. Using a combination of datasets increases the robustness of a classification 

since spectral and topographic roughness are considered in the classification, and in the end 

provides useful first order maps for geologists (Grunsky et al., 2009).  

Building-up on the studies described above, Synthetic Aperture Radar (SAR) images 

have been used in mapping surficial materials in the Thelon Basin in Nunavut.  The SAR sensors 
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collect data in daytime or night and also measures surface roughness and moisture, whose 

properties are important in discriminating surficial materials (LaRocque et al., 2012). 

1.4 Study Area 

 

The thesis study area is located on mainland Nunavut between latitudes 66°N and 67.5°N 

and longitudes 88°W and 86°W (Figure 1.2). It is situated west of the community of Repulse 

Bay, on the west side of Rae Isthmus.  It encompasses coastal lowlands along the west coast of 

Committee Bay and Repulse Bay, which are part of NTS sheets 46K, 46L and 46M. Its 

discontinuous cover of generally streamlined glacial drift (Prest et al., 1968; Aylsworth and 

Shilts, 1989; De Angelis, 2007) is underlain by rocks of the western Churchill Geological 

Province of the Canadian Shield.  These rocks include Archean through Paleoproterozoic 

supracrustral and intrusive rocks of the 2.7-2.6 Ga Rae Domain (Paul et al., 2002).  It is also 

comprised of extensive regions of exposed gullied marine silts along the coast of Committee Bay 

in 46M-SW, and marine limit elevations increase from 140 m to 240 m northward within the 

area (Campbell and McMartin, 2010; McMartin et al., 2013). 

This study is part of the Wager Bay Surficial Geology Mapping Activity (Fig. 1.2. Inset 

map) conducted by the Geological Survey of Canada as part of Natural Resources Canada Geo-

mapping for Energy and Minerals (GEM) Program. This activity focuses on mapping surficial 

geology at the regional scale and till sampling (Campbell et al., 2013).  The Wager Bay study 

area has complex ice flow sequences, and poorly known glacial transport characteristics 

(McMartin and Henderson, 2004).  This study area is located within one of the most active 

diamond exploration regions of the Western Churchill Geological Province (Paul et al. 2002), 

and is located adjacent to the Repulse Bay diamond exploration camp. 
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 Figure 1.2: Location map of the thesis study area west of Repulse Bay, Nunavut. Inset map 

shows the project area around Wager Bay (from Campbell and McMartin, 2011). 

1.5 Thesis Purpose/Objectives 

 The objectives of this thesis are to 1) investigate the impact of using a unique set of 

multispectral data - LANDSAT 7 TM and SPOT 4/5 imagery; 2) determine the most accurate 

RPM product(s); 3) compare classifications of LANDSAT and SPOT imagery using the same 

training areas, and 4) evaluate and compare the resultant predictive maps for accuracy against 

regions of known materials (regions of interest) as well as with existing surficial geology maps - 

results of the traditional geological mapping.  As part of the latter objective (4), two interactive 
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processes to improving the accuracy of predictive maps are evaluated and compared: a 

geological, knowledge-based approach, and a statistical-based approach.  

1.6 Methodology: General Overview  

 

1.6.1 Data Acquisition, Image Preparation and Masking  

 

LANDSAT TM-7 imagery was obtained from GeoGratis (http://geogratis.cgdi.gc.ca), a 

Natural Resources Canada website.  Individual LANDSAT tiles were then mosaicked, through 

combined efforts by the Geological Survey of Canada and Blackbridge Geomatics (formally 

Iunctus Geomatics), to produce a seamless single image covering the study area.  SPOT 4/5 

imagery was obtained from and mosaicked by Blackbridge Geomatics. 

As water was not to be classified in this study, it was masked out using the masking tool 

in the ENVI® software platform. This ensured exclusion of running water, standing water and 

heavily saturated areas from the classification.  For both imageries this was completed using the 

near-infrared (NIR) channel (band 4) which easily discriminates water from land (Frazier and 

Page, 2000).  Clouds and cloud shadows were also masked out using manual digitizing 

techniques and appended to the water mask for each SPOT and LANDSAT imageries.  These 

final masks were applied to the individual LANDSAT and SPOT classification process. 

1.6.2 Field Data Collection and Selection of ROIs 

 

Surficial materials present in the study area were determined by fieldwork.  Point data 

information was collected at specific field sites including coordinates, general terrain 

descriptions, geomorphological conditions, surficial material type, surface texture, boulder cover 

(%, presence, size, and shape), vegetation cover (%), moisture content, geomorphology, 

topography, drainage and lithology. Photographs were also taken at each site.  These field 

observations ensured that classes used in the classification process were reflective of those 

materials existing in the predictive mapping study area.  

Specific areas with distinct internal characteristics were manually delineated as polygons 

on air photos from a combination of air photo interpretation and field work and digitally captured 

in ENVI software as Regions of Interest (ROIs). They were amended upon visual exploration of 

spectral response of LANDSAT imagery (bands 7, 4, 2) and classes refurbished by division of 

classes and addition of new classes as seen fit. ROI quality assurance involved manually 

reshaping or eliminating ROIs to produce the most homogeneous group of pixels per class, based 

on their visual appearance, as produced by band combination 7, 4, and 2. 

Finally, fieldwork, visual analysis/interpretation and statistical analysis helped to evaluate 

ROIs.  ROIs that visually appeared spectrally different than other ROIs of the same class were 

evaluated in the field.  ROI classes were also evaluated using a numerical method that calculates 

http://geogratis.cgdi.gc.ca/
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the statistical separability between classes, known as the transform divergence (TD) statistic 

(Richards and Jia, 1999).   

1.6.3 Classification Method - LANDSAT 

 

The Maximum Likelihood Classification (MLC) algorithm – a supervised classification 

(Tso and Mather, 2009) – was run on 6 available LANDSAT bands using 21 surficial materials 

classes.  The input LANDSAT imagery, associated water/cloud masks, and ROIs representing 21 

classes, were entered into the algorithm to produce a classification map.  Results were visually 

and statistically assessed, and modifications and subsequent classifications were run.  This 

iterative process lead to the 4 most optimal classified maps of known surficial materials in the 

study area, which resulted in 4 groups of classes that best reflect these materials. These 4 groups 

of classes were determined using two approaches: 1) geological knowledge-based and 2) 

statistically-based.   

1.6.4 Statistical and Geological Knowledge to produce a best-fit class combination 

 

Visual assessment, or the “geological knowledge-based” (GK) approach involved 

determining the most appropriately mapped class combination, which was based on geological 

mapping results of the region, derived from knowledge of the Quaternary geology, air photo 

interpretation and field observations.  Maps derived from this approach are generalized and 

formulated by definition of the process, which considers interpretations of depositional 

environments, geomorphology and relative age of the materials. Merging/deleting classes for 

subsequent trial iterations followed comparing classifications to the mapped surficial geology of 

the region. After which predictive maps of different class combinations were assessed.  Finally, 

two maps were selected that were most consistent with interpreted geology.   

Selecting two classification maps and class combinations was also made using a 

statistical approach.  This considered statistics of the confusion matrix from a classification using 

21 classes, and used User and Producers accuracies to provide an unbiased decision without 

interpretation.  The purpose here was to select the most accurate maps after a number of 

iterations and simultaneously increase accuracy within individually mapped classes.  Various 

modifications to class combinations were employed and applied to subsequent classifications 

solely based on statistics.  Best classification maps were selected based on statistics including: 1) 

a map with highest overall accuracy and 2) a map whose confusion matrix illustrates individual 

class accuracies as “moderate” (35-70% accurate) or “well” (+70% accurate) mapped. 

1.6.5 Classification applied on SPOT imagery  

 

The supervised MLC algorithm (Tso and Mather, 2009) was applied to SPOT imagery, in 

a similar way as with LANDSAT (cf. Sect. 1.6.3).  It used the best derived class combinations (2 

geological knowledge-based and 2 statistical-based) (cf. Sect. 1.6.4) and was applied to classify 

SPOT imagery (4 bands) at 20 m resolution.   
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1.6.6 Comparison of SPOT and LANDSAT classifications to existing Surficial Materials 

Map 

 

Qualitative and GIS comparisons were completed on a smaller region within the study 

area.  Within a ~180 km
2
 sub-region of the thesis study area, a surficial materials map was 

compared to SPOT and LANDSAT classifications.  The surficial materials map was derived 

from a surficial geology map produced using traditional geological mapping techniques 

including fieldwork, air photo interpretation and analysis of collected field information 

(Campbell and McMartin, 2014). Surficial units were regrouped to best reflect and accommodate 

classes used in the RPM classifications.  The map was converted to a raster and along with 

results of SPOT and LANDSAT classification maps, it was resampled to a 100 m pixel size.  

This was to produce a more direct comparison between the two maps.  Up-scaling the 

classification maps mimics the generalization applied in surficial mapping which leads to large 

homogeneous polygons, rather than heterogeneous pixelated products. Qualitative (visual) and 

quantitative (using GIS) comparisons were made between the surficial materials map and remote 

predictive map results.  The qualitative comparison visually assessed differences between the 

classifications within the sub study region and derived surficial materials map.  The quantitative 

comparison measured cross-tabulation on a pixel level to measure the agreement/disagreement 

between individual predictive maps with the surficial materials map which indicated a numerical 

and spatial correspondence across the sub-region.  

1.7 Thesis Structure 

 

 This thesis includes two chapters written in “paper format”, as well as an Introduction 

Chapter and a Conclusion Chapter, which are necessary to present the research problem, 

purpose, and contributions as a whole. More specifically, the Introduction Chapter presents a 

brief rationale for the study, the most relevant previous literature on the subject, as well the 

objectives of the study, and overview of methodology.   

The second Chapter is a government publication - an Open File Report and data release 

from the Geological Survey of Canada
*
.  The Open File Report presents the step-by-step method 

to produce RPM maps for this study area and digital datasets including raster image files, 

classification maps and corresponding variability maps as well as other raw data. It is co-

authored with Martin Ross (thesis supervisor), Isabelle McMartin (co-supervisor), as well as 

Janet Campbell (NRCan), Eric Grunsky (NRCan), and Jeff Harris (NRCan).  My responsibilities 

in this project included data collection, analysis, production and analysis of output products and 

preparation of the report.  Coauthors contributed to designing of the study presented in the Open 

File, and to revision and editing earlier drafts.  Additional roles included Janet Campbell for 

                                                 
*
 Wityk, U., Harris, J.R., McMartin, I., Campbell, J.E., Ross, M., and Grunsky, E., 2013. Remote 

Predictive Mapping of Surficial Materials West of Repulse Bay, Nunavut (NTS 46M-SW, 46L-

W and -S, 46K-SW); Geological Survey of Canada, Open File 7357. doi:10.4095/292578 
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helping in refurbishing training areas and breaking down surficial material classes, and Jeff 

Harris for working out software issues, leveling and mosaicking imagery and understanding 

RPM methodologies.  

The third Chapter compares the classification maps produced by LANDSAT and SPOT 

imagery as well as a comparison of both maps to a small region of the study area mapped using 

traditional methods.  I was responsible for the GIS methodology, visual comparison and 

comparison analysis. As first-author, I wrote the third Chapter as a manuscript for future 

consideration as peer-reviewed publication. Co-authors on this future publication will be the 

same as for Chapter 2 since they all contributed to the design of the study and review of earlier 

drafts. In addition, Janet Campbell and Isabelle McMartin compiled and modified the field-based 

map used in this study to better reflect units used in the classified maps.    

The fourth, concluding Chapter summarizes key findings, discusses the research projects 

contribution to science and suggests avenues of future research that will enhance the scientific 

understanding of the processes and methodologies presented in this thesis.  
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Chapter 2: Remote Predictive Mapping of Surficial Materials west of Repulse 

Bay, Nunavut (NTS 46M-SW, 46L-W and –S, 46K-SW) 

2.1 Introduction 

 Quaternary geological mapping in the Wager Bay-Repulse Bay region of mainland 

Nunavut was initiated in 2009 at the Geological Survey of Canada within the framework of the 

Geo-mapping for Energy and Minerals (GEM) Program. The purpose of this activity was to 

address and fill in knowledge gaps with respect to the distribution and nature of Quaternary 

sediments, regional drift composition, and glacial and post-glacial histories. As part of this work, 

a Master’s thesis research project was undertaken to assist the mapping of surficial earth 

materials by Remote Predictive Mapping (RPM) in an area covering parts of NTS sheets 46 K, L 

and M located near Repulse Bay, Nunavut (Fig. 1). The purpose of this Open File publication is 

to release a selection of RPM classification maps and accompanying datasets for the study area 

specific to the thesis project.   

 Remote Predictive Mapping is a semi-automated approach used to increase the efficiency 

of mapping bedrock and surficial geology over large regions of Canada’s Far North (Harris, 

2008a, 2008b). It is a useful tool, especially for producing maps of regions that will not be field 

mapped or have limited fieldwork in the foreseeable future due to logistical constraints, high 

costs and the size and remoteness of the map area. The purpose of this new mapping approach is 

not to replace traditional geological mapping i.e. field work and interpretation of air photos, but 

rather to enhance the mapping process by providing insight regarding surficial materials found in 

these regions. These constraints on fieldwork can, in part, be addressed through the use of 

remotely sensed imagery which offers a broad view of large inaccessible areas, providing a 

wealth of geologic information that can be enhanced and processed using image analysis and 

GIS technologies (Harris, 2008a, 2008b). RPM is a tool to aid fieldwork, streamline the mapping 

process, as well as enhance extrapolation and interpretation between field observation sites.   
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Figure 2.1: Location map of study area west of Repulse Bay, Nunavut. Inset map shows the 

project area around Wager Bay (from Campbell and McMartin, 2011). 

 

 This Open File report includes information regarding the regional setting of the study 

area, and a description of the methodology used to produce RPM maps for the Repulse Bay 

study area, including data acquisition and preparation, field data collection, region of interest 

(ROI) selection and evaluation, and classification methods. The report also discusses four of the 



 14 

classification maps that offer the highest classification accuracies determined through analysis of 

a confusion matrix and associated variability maps. The datasets related to the RPM 

classification maps include: LANDSAT data, raster image files of the four classification maps 

and corresponding variability maps, ROIs (in the form of vector shape files in ENVI) used to 

produce the maps, and the base layers of the study area.  

2.2 Regional Setting  
 

 The RPM study area is located on mainland Nunavut west of the northern community of 

Repulse Bay between latitudes 66°N and 67.5°N and longitudes 88°W and 86°W (Fig. 2.1).  It is 

comprised of parts of NTS map sheets 46K, 46L and 46M.  The region is located along the west 

coast of Hudson Bay, west of Committee Bay and Repulse Bay. It is underlain by Canadian 

Shield rocks of the western Churchill Geological Province including Archean through 

Paleoproterozoic intrusive and supracrustal rocks within the 2.7-2.6 Ga Rae Domain (Paul et al., 

2002), and covered by fairly continuous glacial drift which is streamlined in the general direction 

of the regional ice flow, predominantly northward (Prest et al., 1968; Aylsworth and Shilts, 

1989; McMartin et al., 2013). Marine limit elevations decrease from approximately 240 m asl to 

140 m asl southward within the study area. Extensive areas of marine sand, silts and clays are 

exposed along the Committee Bay coastal plain in 46M-SW (e.g. Campbell and McMartin, 

2010).    

2.3 Methodology 

The methodology used here is modified after the RPM approaches of Grunsky et al. 

(2006, 2009), Schetselaar et al. (2007) and Harris et al. (2008a; 2012) (Fig. 2.2). It uses data 

acquisition and image preparation, fieldwork and selection of training data, which are then 

applied to a maximum likelihood classification (MLC) algorithm to produce classification maps 

of surficial materials. Two approaches are used to determine the optimal class combination and 

resultant MLC maps: a geological knowledge-based approach and a statistical approach. The 

preferred optimal class combinations are then run through the robust classification method 

(RCM) to produce variability maps and evaluate the uncertainty of the classifications.  

2.3.1 Data acquisition, image preparation and masking 

LANDSAT TM-7 imagery used in this study (Table 2.1) was downloaded from 

GeoGratis (http://geogratis.cgdi.gc.ca), available from Natural Resources Canada, in GeoTIFF 

format. After collection, the individual scenes were “stitched” together by the Geological Survey 

of Canada and BlackBridge Geomatics (formally Iunctus Geomatics). The overlapping 

LANDSAT scenes were combined and leveled to produce a single visually, but unfortunately not 

spectrally seamless image of the study area (Fig. 2.3). LANDSAT images were projected to 

Universal Transverse Mercator (UTM), Zone 16, and referenced to the North American Datum 

(NAD83). The mosaic image was then clipped to the boundaries of the study area. Cutlines, and 
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borders at which individual imagery scenes were “stitched” together, are shown in white on 

Figure 2.4. 

 Water was not classified in this study. Running and standing water, along with heavily 

saturated areas, were masked out using the masking tool in ENVI, or more specifically spectral 

principles. This was accomplished by utilizing the LANDSAT near-infrared (NIR) channel (band 

4), which easily identifies water (Frazier and Page, 2000). The interactive stretching tool in the 

ENVI interface was used to discriminate pixels with digital numbers (DN) representing water. 

Clouds and cloud shadows were also masked by manually digitizing cloud polygons in the ENVI 

software package as ROIs. Then, using simple band math, water and cloud masks were merged 

together to create a final mask for the LANDSAT mosaic image (Fig. 2.5). The purpose of this 

masking process is to exclude water bodies (inclusive of lakes and saltwater and sea ice), and 

clouds from the classifications, which would artificially inflate overall accuracy measures.   

 

 

 Figure 2.2: Flow chart outlining steps to produce RPM of surficial materials using supervised 

classification and selection (Geological Knowledge and Statistical approaches) of most 

representative classifications to arrive at final maps. 
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 Table 2.1: Summary of data characteristics 

Data Source Bands Channels 
Resolution 

LANDSAT 

TM-7 

GeoGratis 

(http://geogratis.cgdi.g

c.ca) 

1, 2, 3, 4, 5, 

7 

Visible, NIR, 

SWIR 

30 meters 

 

2.3.2- Initial field data collection and selection of ROIs 

 Initial fieldwork, conducted in the summer of 2010, involved determining the surficial 

materials present in the study area, and acquiring field observations. This included making 

observations regarding surficial geological units as part of the mapping activity as well as 

collecting point data information for specific field sites. The observations collected included site 

location (latitude/longitude), general terrain descriptions and geomorphological conditions. 

Surficial material type, surface texture, boulder cover (%/presence/size/shape), vegetation cover 

(%), moisture content, geomorphology, topography, drainage and lithology were systematically 

noted. Photographs were taken and recorded at each site. Initial field data collection ensured that 

the classes used in the supervised classification process reflected the diversity of surficial 

materials present in the study area.   

 The first season of fieldwork and preliminary air photo interpretation (guided by the GSC 

field geologists) identified eleven classes of surficial materials, having distinctive physical 

(mainly textural) and geomorphological characteristics.   

This initial working class list included:  

1. Ap – Alluvial plain sediments 

2. Mg - Marine, gullied fine-grained sediments 

3. Ms – Marine sands 

4. O – Organic  

5. SG – Sand and gravel 

6. R - Bedrock 

7. Tb – Till blanket 

8. Tm – Modified till 

9. Tv – Till veneer 

10. B - Boulders 

11. Tr – Ribbed till 
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Figure 2.3: LANDSAT imagery presenting RGB bands 7, 4, 2. Study area outlined in yellow. 
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Figure 2.4: LANDSAT 7 (SWIR, band 5) imagery cut-lines over the Wager Bay North area. 

White lines indicate boundaries where LANDSAT scenes were merged together (Campbell et al., 

2013.). The red line outlines the study area.  

 

 

Figure 2.5:  Production of final mask to mask out water and cloudy regions. 
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In the fall of 2010, multiple regions of interest (ROIs) were carefully selected to represent 

each of the 11 surficial material classes identified after the first field season. The ROIs were 

manually delineated as polygons on air photos, using a combination of field data, air photo 

interpretation and visual analysis of LANDSAT imagery. The polygons were then transferred on 

printed maps of LANDSAT imagery (bands 7, 4, 2) and then digitally captured in ENVI 

software as ROIs. 

2.3.3 - Final ROI selection  

 Upon review of the satellite imagery in the winter 2010/spring 2011, two additional 

classes were added to the original 11 classes: ice-covered regions (ice/snow) as well as shallow 

water (Sw) thus resulting in 13 classes in total. After the second field season (July 2011) and a 

review of the original ROIs through visual exploration of the spectral response of LANDSAT 

imagery (bands 7, 4, 2), some classes were divided into sub-classes. A carbonate till unit (Ct) 

was also added based on the mapping of suspected carbonate till after a preliminary supervised 

classification in the spring of 2011 and confirmation in the field in 2011. Existing ROI polygons 

were assigned to sub-classes (i.e. Tb classes were divided into Tb1 and Tb2), and additional ROI 

polygons were defined to ensure each class had a sufficient number of ROIs to produce a robust 

classification. ROIs were added using air photo interpretation and visual analysis of spectral 

responses on LANDSAT (7, 4, 2) imagery which highlighted the spectral variation between 

surficial materials. It was apparent through visual analysis that the Ms, Tb, Tv, Tm, R, and SG 

classes could be further subdivided by differences in spectral response into subclasses (Ms1, 

Ms2, Tb1, Tb2, Tv1, Tv2, Tm1, Tm2, R1, R2, SG1, SG2 and SG3). Thus the final number of 

surficial material classes to be classified totalled twenty-one. As part of quality 

assurance/control, some original ROIs were manually clipped and/or reshaped while others 

eliminated in order to have the most homogeneous group of pixels per class based on their visual 

appearance (colour) using LANDSAT bands 7, 4, 2. The following table (Table 2.2) is a list of 

the division of classes. A further detailed description is available in Appendix A (Class 

descriptions). Figure 6 shows the location of the final regions of interest.  

2.3.4- Evaluation of ROIs 

 The ROIs were evaluated through fieldwork, visual analysis/interpretation and statistics. 

After their initial delineation following the first round of fieldwork, the ROIs were visually 

assessed; and those that were spectrally (in a visual sense) different to the other ROIs of that 

class were investigated during the second season. As a result, a significant number of the field-

verified ROIs were used for control and the basis for comparison included in the classification 

process. ROIs were also evaluated based on the Transform Divergence (TD) statistic which 

measures the statistical separability between pairs of classes.  The average separability for each 

class is presented in Fig. 2.7.  The TD statistic is a number between 0 and 2 in which values <1.0 

indicate very poor separation between classes, 1.0-1.9 indicates poor to moderate separation, and 

1.9-2.0 good separation (Richards and Jia, 1999). Figure 7 shows that the average class 

separability ranges from poor/moderate (1.0-1.9) to good (1.9-2), with the majority of classes 

falling under the moderate category. Those classes that are spectrally separable from others 
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include Ap, Sw, Mg, Ms1, Ice/Snow, O, SG3, and Ct. Till, bedrock, together with sand and 

gravel subclasses, are characterized by lower average TD values (moderate or poor separation), 

suggesting that the potential for confusion between these subclasses will occur. Confusion 

between classes occurs when surficial characteristics are alike. Having the same type/amount of 

vegetation cover, mineralogy, and similar moisture content on two different sediment classes can 

produce an overlapping spectral signature between classes, which may lead to class confusion.  

Part of this confusion is captured in the variability maps that are generated in the classification 

process. Once identified, these areas of uncertain classification can be excluded from the 

classification map if desired. 

Table 2.2: List of 21 surficial material classes, with code and colour as per 

classified maps, and short description. The complete description of the cla sses are 

provided in Appendix A (Class descriptions).  

 

 

  

Surficial 

Material Class Code 

Colour 

Classification General Description 

Exposed 

alluvial 

sediments Ap   

Alluvial sands and minor silts; 

exposed 

Marine gullied 

fine sediments Mg   

Marine silts and clays; exposed 

sediments; gullied 

Marine fine 

sediments Ms1   

Marine fine sands, silts and clays; 

some surface runoff features 

Marine sands 

and silts Ms2   

Marine sands and silts; nearshore 

deposits; coarser than Ms1 

Ice/snow Ice/Snow   Frozen water 

Organics O   Thin organic deposits 

Vegetated 

coarse sand and 

gravel SG1   

Glaciofluvial and marine sands and 

gravels 

Sand and gravel SG2   Marine fine-grained sands, silty-sands 

Exposed sand 

and gravel SG3   

Glaciofluvial and marine sands and 

gravels; exposed 



 21 

Table 2.2 (Continued) 

 

 

  

Bedrock (bare) R1   Bedrock; exposed 

Bedrock  R2   

Bedrock with some discontinuous 

material cover; lichen covered 

Boulder fields B   

Broken bedrock; continuous boulder 

cover 

Till blanket Tb1   

Thick drift cover with little boulder 

cover or exposed bedrock 

Bouldery till 

blanket Tb2   

Thick drift cover; more boulders and 

less vegetated than Tb1 

Modified till Tm1   

Modified till; eroded in places; may 

include sand and gravel; bouldery 

Modified till Tm2   Modified till; less bouldery than Tm1 

Till veneer Tv1   

Thin drift cover; mixed with bedrock 

and boulders or bedrock and sand; 

contains more boulder/bedrock terrain 

than Tv2 

Till veneer Tv2   

Thin drift cover; contains more 

moisture and vegetation than Tv2 

Carbonate till Ct   

Till with carbonate clasts and 

calcareous matrix 

Ribbed till Tr   

Till mixed with sand, gravel and 

boulders; eroded, disorganized, 

gravelly ridges, terraces and 

hummocks 

Shallow water Sw   Heavily sediment laden water  
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Figure 2.6: Location of ROIs used to produce classification maps. Inset map shows example of 

ROI polygons and their locations overlain on LANDSAT imagery (Band 1). 

 

 

Figure 2.7: Average Separability Statistic of 21 classes for the Repulse Bay Study area. 

Calculated on LANDSAT imagery for the region.  
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2.3.5- Classification method and selection of “best” RPM classification maps 

 A supervised classification using single pass maximum likelihood classification (MLC) 

algorithms were run on all 6 available LANDSAT bands (Table 2.3), using all 21 surficial 

materials classes (Table 2.2).   

Table 2.3: Summary of LANDSAT Bands and reflectance data used to produce MLC  

classification maps of surficial materials.  

Band Reflectance Data Recorded 

1 Blue (B) 

2 Green (G) 

3 Red (R) 

4 Near-Infrared (NIR) 

5 Short Wave Infrared (SWIR) 

7 Short Wave Infrared (SWIR) 

 

 To produce the four “best” MLC classification maps, a geological knowledge-based (GK) 

approach to earth material classification was evaluated against a statistically based approach 

involving computer-assisted numerical analyses. Each approach yielded a selection of two 

predictive surficial materials maps of the study area, totaling four “best” RPM maps. For 

purposes of this Open File, the term “best” refers to the most appropriately mapped training area 

combination (geological knowledge-based approach) and highest accuracies (statistical 

approach) of the run classification iterations.  

 The geological knowledge-based approach involved comparison of RPM maps with 

geological mapping results for this region, based on expert Quaternary knowledge, air photo 

interpretation and field observations. It included 1) a careful visual interpretation of the satellite 

imagery by the Quaternary geologists, specifically redefining ROIs spectrally and 

merging/deleting classes, 2) an assessment and comparison of a series of predictive maps 

produced from using different combinations of the 21 established classes, and the 3) selection of 

two of these maps most consistent with the interpreted geology (See Figure 2.8). (1) Visual 

interpretation of the imagery included noting comparisons of known surficial materials and their 

visual spectral characteristics on LANDSAT imagery (band combination 7, 4, 2). (2) An 

assessment of RPMs included visual comparison of classification outputs against one another, as 

well as considering expert Quaternary knowledge.  These outputs were based on various 

iterations (trial and error) of class combinations suggested using geological-knowledge input. (3) 

The selection of the maps most consistent with geology was based on how well the RPM maps 
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matched the  surficial geology of the region mapped by geologists.  Table 2.4 presents the overall 

accuracies and the individual class accuracies for these two maps.  

 Two other “best” MLC classification maps were chosen based on an unbiased statistical 

approach, which investigated the statistics of the confusion matrix of a classification using all 21 

classes. To produce the two most statistically accurate maps, both general (overall accuracy) and 

detailed (individual class accuracy – i.e. user’s and producer’s accuracy) data were considered. 

The producer’s accuracy measures the number of pixels within a particular class that have been 

classified appropriately. The user’s accuracy measures how many pixels of a class were 

classified properly over the total number of pixels assigned to that class (Grunsky et al., 2009). 

This approach produced an unbiased decision without expert interpretation. The goal was to 

select the most accurate maps through various iterations; and in the process, increase accuracy 

within each individually mapped surficial material class. This was accomplished by using all 

earth materials in the classification to produce a confusion matrix to assess which classes were 

mapped reasonably (70% accurate), “moderately” (35-70% accurate), and “poorly” (<35%). 

Classes that were mapped with an accuracy below 70% were investigated and decisions were 

made for further classification modifications to improve class accuracies and/or overall 

accuracies of the map: for example, removing or merging classes used in the original 

classification for a subsequent re-classification. Accuracy was obtained from the confusion 

matrices calculated using the ROI set employed in each classification (see Appendix B). 

Table 2.4: Calculated overall and individual class accuracies of the 4 “best” MLC 

classification maps GK1, GK2, Stat1, Stat2. Notation “m” indicates th ese classes 

have been merged with another class; "e" indicates class was eliminated and not 

used in the classification.  

GK1 

 

GK2 

 

Stat1 

 

Stat2 

 

Overall 

Accuracy 60.54   60.42   62.17   60.64 

Ap 77.06 Ap 77.06 Ap 76.14 Ap 76.14 

Mg 88.23 Mg 88.23 Mg 88.23 Mg 88.23 

Ms1 91.88 Ms1 91.88 Ms1 91.94 Ms1 92.2 

Ms2+SG2 59.18 Ms2+SG2 61.63 Ms2 62.99  Ms2 "m" 

O 78.54 O 81.78 O 76.92 O 77.33 
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Table 2.4 (Continued) 

SG1 25.52 SG1 31.09   SG1 "e"  

SG1+SG2+Ms

2 45.21 

 SG2 "m"  SG2 "m"   SG2 "e"   SG2 "m" 

SG3 61.88 SG3 61.88 SG3 63.39 SG3 62.03 

R1+R2 48.6 R1+R2 64.09 R1 70.75 R1 66.23 

 R2 "m"   R2 "m" R2+Tm1 45.62 R2 31.98 

B 89.19 B 92.16 B 86.22 B 81.62 

Tb1+Tb2 48.01 T 49.65 Tb1 56.35 Tb1 56.99 

 Tb2 "m" Tb2  "m" Tb2 48.8 Tb2 48.03 

Tm1+Tm2 61.66  Tm1 "m"  Tm1  "m" Tm1 64.77 

 Tm2 "m"  Tm2 "m" Tm2 53.51 Tm2 50.69 

Tv1+Tv2 49.12  Tv1 "m" 

Tv1+Tv

2 51.25 Tv1+Tv2 43.09 

 Tv2 "m"  Tv2 "m"  Tv2 "m"  Tv2 "m" 

Ct 90.59 Ct 91.15 Ct 86.07 Ct 87 

Sw 94.4 Sw 94.4 Sw "e" Sw "e" 

Ice 7.37 Ice 7.37 Ice "e" Ice "e" 

  

A scale for merging classes based on their separability was developed to assist in 

reducing the confusion between classes. The separability thresholds for this scale included: <1% 

for low, 1-10% for moderate and >10% for high.  If confusion of an individual class was 

statistically high, and was higher than the accuracy of the class itself, the class was removed and 

subsequent classifications were run without that class. If there was a moderate or high confusion 

with another class, but the value was still lower than the class accuracy, these two classes were 

merged together to form a new class. For example, in a manual analysis of a confusion matrix 

calculated from a classification result, the confusion matrix revealed an accuracy of 31.79% for 

class R2. Since its confusion with another class (Tm1) was at 25.63%, R2 was not deleted, but 

merged with Tm1, producing a new class: R2_Tm1.  
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 The various modifications to the class combinations were used in the initial 

classifications and applied to subsequent classifications, which included one modification to the 

total number of classes used (i.e. only one alteration, merging classes together, or deleting them), 

until adequate accuracies (>35%) were attained. The two “best” MLC classification maps 

selected based on statistics include: 1) a map with the highest overall accuracy (Statistical 1: 

STAT1), and 2) a map whose confusion matrix illustrates that individual class accuracies are all 

“moderately” (35-70% accurate) or “well” (+70% accurate) mapped, and none are “poorly” 

(<35%) mapped (Statistical 2: STAT2).  Both maps are presented in Figure 2.9.  

2.3.6- Variability and majority classification maps 

 Once the four “best” supervised classification maps were chosen, the resulting class 

combinations, based on different test runs involving the merging of the original 21 classes, were 

run through the robust classification method (RCM). The RCM algorithm produces a majority 

classification map, a variability map, and more summary statistics (Harris et al., 2012). The 

method uses a training dataset that is repeatedly and randomly split into two groups of ROIs: one 

for classification and the second for evaluation. These two groups comprise random collections 

of the ROIs for each repetition which are specified by the user. For example, in a specification of 

a 50% sampling percentage, each repetition will involve a different combination of 50% of the 

ROIs (Harris et al., 2012). Outputs of the RCM are based from inputs specified by the user, 

including: input files, ROIs, ROI sampling percentage, sampling type, classification method, 

threshold, number of repetitions, and a root name for output files (Harris et al., 2012). The user 

inputs specified in this study to produce variability and majority classification maps included a 

sampling percentage of 50, sampling type based on polygon and a repetition of 40, meaning that 

40 iterations using random combinations of 50% of the data for classification and the other 50% 

for validation. The RCM variability (uncertainty) map provides a summary of the number of 

different classes that have been classified on a pixel-to-pixel basis over the 40 iterations of the 

RCM algorithm (Harris et al., 2012). Variability maps were produced for each the surficial 

material majority classification maps to show their respective spatial variability in terms of the 

degree of uncertainty or reliability of pixel classification in the repetitive classification processes. 

Masked areas were not included in the classification and accuracy assessment. The variability 

maps are provided in Figure 2.10 and 2.11. The RCM majority classification maps were 

produced but are not discussed in this thesis as they were an additional product of the RCM 

method from which variability maps were produced.  For purposes of this research, the RCM 

method was used to produce variability maps and focus was placed solely on using MLC due to 

time constraints and various iterations of class combinations that were run. 

2.4 Results and Discussion 

2.4.1 Maximum Likelihood Classification Maps 

 The four “best” Maximum Likelihood Classification (MLC) maps show similarities and 

differences with respect to the classification of surficial materials (Figs. 2.8 and 2.9). General 

consistencies across the four maps include similar mapping of the classes Ap, and Mg/Ms-related 
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sediments. These materials were mainly classified in the northernmost coastal region of the study 

area. Various combinations of till classes are consistently mapped in the mid to southern part of 

the study area. Rock and boulder units are generally mapped in similar areas across the four 

maps; however their classification densities in these areas differ. For example, in the central and 

western south of the study area, these units are more pronounced in the GK2 and Stat1 maps than 

in the GK1 and Stat2 maps although they appear in the same areas.  This is the same scenario for 

the region in the North of the study area that occurs south of the dominated marine sediments 

(blue colours, as per the legend). Carbonate till is also mapped with some consistency across all 

four maps in the southeastern area, but with more variability within the central-eastern area. As 

discussed below, though repeated regional patterns are recognized, significant differences also 

prevail when comparing the four classified maps with one another. Table 2.5 below presents the 

class combinations used in the 4 "best" MLC maps that will be described in the following 

sections. Note that the ribbed till (Tr) class was entirely eliminated from all classifications as it 

disrupted classifications, as per visual analysis, and was clearly overrepresented for this region.   

2.4.1.1 Map GK1: Geological Knowledge 1 

 

 Map GK1 (Fig. 2.8a ), using 15 surficial classes (Table 2.5), classified the northern 

portion of the study area with dominant surficial materials comprising marine sediments and 

sand and gravel (Ms1, Ms2+SG2, Mg). Some of these sediments (Ms2+SG2) were also mapped 

along rivers and at low elevation in the south-central part of the study area along the coast, below 

the known limit of marine inundation. An extensive till cover (Tb1+Tb2 and Tm1+Tm2) was 

mapped (classified) in the central and southern region of the map, and carbonate tills were 

mapped in the southeast and central eastern regions.   

 The Ms2+SG2, Ms1 and Ct classes were mapped with reasonable accuracy based on the 

current surficial geology mapping activities undertaken at the GSC (Campbell and McMartin, 

2010, 2011, 2014; Campbell et al., 2011; McMartin et al., 2012, 2013). Bedrock (R1 and R2) and 

boulder (B) regions were more sparsely distributed than evident during field mapping.  
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Table 2.5: Class combinations used to map the "best" MLC maps in this study;  "m" 

indicates the class was merged with another class;  "e" indicates removal of the 

entire class. 

 GK1 GK2 Stat1 Stat2 

Ap Ap Ap Ap Ap 

Mg Mg Mg Mg Mg 

Ms1 Ms1 Ms1 Ms1 Ms1 

Ms2 Ms2+SG2 Ms2+SG2 Ms2 "m" 

Ice/Snow Ice/Snow Ice/Snow Ice/Snow Ice/Snow 

O O O O O 

SG1 SG1 SG1 "e" SG1+SG2+Ms2 

SG2 "m" "m" "e" "m" 

SG3 SG3 SG3 SG3 SG3 

R1 R1+R2 R1+R2 R1 R1 

R2 "m" "m" R2+Tm1 R2 

B B B B B 

Tb1 Tb1+Tb2 T Tb1 Tb1 

Tb2 "m" "m" Tb2 Tb2 

Tm1 Tm1+Tm2 "m" "m" Tm1 

Tm2 "m" "m" Tm2 Tm2 

Tv1 Tv1+Tv2 "m" Tv1+Tv2 Tv1+Tv2 

Tv2 "m" "m" "m" "m" 

Ct Ct Ct Ct Ct 

Tr "e" "e" "e" "e" 

Sw Sw Sw ”e” ”e” 
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2.4.1.2 Map GK2: Geological Knowledge 2  

 Similar to map GK1, map GK2 (Fig. 2.8b) classified the northern region with a 

dominance of marine sediments and sand and gravel (Ms1, Ms2+SG2, Mg). Marine sediments 

were also mapped similarly to map GK1 along the central coastal areas. A higher proportion of 

boulder fields and bedrock was mapped in the entire region, but are present in the same general 

areas as in map GK1. Though till was mainly classified in the central and southern parts of the 

map, its overall distribution is much less than that of Map GK1 because of the increased areas 

mapped as bedrock and boulders. Carbonate tills were mapped consistently between map GK1 

and GK2, located in the southeast and central east portions of the region.  

 Similar to map GK1, Ms2+SG2 as well as Ms1 appear to be mapped reasonably well 

based on geological knowledge of the region, while the mapping of the boulder (B) class in map 

GK2 is more representative in the central/southern portion of the map in comparison to GK1. 

Bedrock is more pervasive in map GK2 than in map GK1, especially in the southeast portion of 

the study area along Repulse Bay and just west of southern Committee Bay.  Although the three 

till units used in the previous classification were combined to form a single class in map GK2, 

the abundance of till classified here has significantly decreased.   

2.4.1.3 Map STAT1: Statistical 1  

 This classification resulted in widespread abundance of marine sediments in the north - 

Ms and Mg and some Ap (Fig. 2.9). Till classes are dominant across most of the central and 

southern parts of the map; however, the southern areas contain a fair amount of bedrock as well 

as modified till. Marine sediments also occur near the central-east coast, with carbonate till in the 

southeast. 

 Based on geological field knowledge, marine sediments appear to be classified 

appropriately.  The second marine sediment subset (Ms2) does not show much difference when 

combined with SG2. As per field observations, this map showed better predictions for the 

classification of boulder fields, which were mapped in eastern corridors of 46L, and the central 

portion of the study area. Carbonate till was not classified as abundantly in NTS 46M (northern 

study area), which is a more accurate representation when compared to field knowledge. 

 Although the statistical method (i.e. TD value) suggested that R2 and Tm1 are highly 

confused with one another and thus, could be combined, both units are not the same surficial 

material: R2 is bedrock while Tm1 is a bouldery till.  It is possible that spectral characteristics of 

classes such as Tm1 and R2 (or R1) will vary with changes in bedrock lithology, but more likely 

with changes in boulder cover (percentage cover and boulder lithology) and with moisture 

content. These variations affects spectral signature within like-classes.  The STAT1 map did not 

classify as much exposed bedrock (R1) as seen in the field, and assigned more areas as lichen-

covered bedrock (R2).  Although R1 is more pervasive in the central region and corresponds 

more closely to the surficial field mapping observations (Campbell and McMartin 2010, 2011, 

2014), it is under-mapped in the north. 
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Figure 2.8: Best predictive surficial materials map based on Geological Knowledge.  A) GK1 

using 15 surficial classes and; B) GK2 using 12 classes; see text for details. Classifications 

produced by Maximum Likelihood Classification algorithm on LANDSAT imagery.  
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Figure 2.8: (Continued)  
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Figure 2.9: Best predictive surficial materials map based on Statistics.  A) STATS1 and; B) 

STATS2; see text for details. Classifications produced by Maximum Likelihood Classification 

algorithm on LANDSAT imagery 
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Figure 2.9: (Continued) 
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2.4.1.4 Map STAT2: Statistical 2  

 Unlike the other three maps, this map classified a sizable portion of the north as the 

merged class SG1+SG2+Ms2 (Fig. 2.9). This classification indicates that sands and gravels are 

also dominant in the north, and along the central coastal areas; while the other maps suggested 

marine sediments were the dominant classes. This map shows more bedrock and boulder fields 

in the north when compared to STAT1 and comparable distribution to GK1; while it classified 

significantly less of these units in the north than GK2. Though less boulders and bedrock are 

mapped here, they do occur in generally the same regions on all maps; however their abundance 

is much less pronounced. The carbonate till is classified consistently in the southeastern portion 

of the map.  

 This classified map shows the least similarity to the present knowledge of the surficial 

geology of the region.  Carbonate till is classified in the north where in fact it does not occur; 

very little of the boulder class has been classified; there is no improvement with the mapping of 

R1 than in the previous map; and the statistically suggested class combination of SG1+SG2+Ms2 

is not a sound combination of surficial materials as it does not differentiate marine fine sands 

from glaciofluvial sand and gravel. The Ms1 class is mapped appropriately, and not much of 

SG3 class has been classified. The STAT1 class combination produces a map with more till in 

the main central and southern portions of the study area, when compared to the other 3 maps.   

 

2.4.1.2 Variability Maps  

 The four variability maps produced through the RCM algorithm have a maximum of 4 

classes that form contiguous areas of variability. A much smaller number of pixels have 

variability of 5 to 9 classes (Figs. 2.10 and 2.11). Although general trends and areas of relative 

variability are similar across all four maps, the degree of variability differs. Spatially, less 

variability occurs in the northern region of all four maps. This suggests the area has a higher 

classification accuracy or higher systematic error. The greatest variability in all four maps occurs 

in the central part of the study area, and extends into the south for the STAT1 and STAT2 maps 

(Fig 2.11).  

 Maps GK1 and GK2 show less variability overall when compared to STAT1 and STAT2 

maps (Figs. 2.10 and 2.11). These latter maps show more uncertainty in the southern third of the 

study area as well as in the western part. For example the STAT2 map shows the central area to 

have more variability than the STAT1, GK1 and GK2. The map showing the least variability in 

classification is GK2, followed by GK1, STAT1 and STAT2. The low variability of map GK2 

suggests this RPM map is the most robust or reproducible of the four classified maps. 

Interestingly, while the scene boundary is highlighted in maps GK1, GK2, and STAT2, it is 

much less pronounced in map STAT1. This may be due to the particular class combination used 

for this classification or from scene characteristics associated with these classes. 
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 In general, higher variability is present in till and bedrock-dominated areas (as per 

classification maps), while less variability is evident in areas mapped as marine sediments and/or 

sands and gravels, as well as carbonate tills. Regions dominantly classified as till and bedrock 

are mapped as being more variable and less certain in maps STAT1 and STAT2. It is important 

to note that the variability maps clearly indicate the effects of an unbalanced mosaic as linear 

discrepancies on these maps parallel that of the LANDSAT cutlines to create the mosaic (ref. 

Fig. 4). This will be further discussed in the following section.  
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Figure 2.10:  Variability maps for 2 predictive maps based on LANDSAT imagery and ‘best’ 

class combinations as derived from Geological Knowledge. A) GK1, using 15 classes and; B) 

GK2, using 13 classes; see text for details.  Presents more class variability and confusion 

(warmer red tones) and regions of less variability and more certainty (cooler, bluer hues). 
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Figure 2.10: (Continued) 
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2.5 Summary and recommendations 

 An initial 21 surficial materials classes were used in a supervised classification (single 

pass maximum likelihood classification - MLC) to classify LANDSAT imagery of the study area 

west of Repulse Bay, Nunavut. From this, classes were removed and/or combined based on two 

approaches: 1) geological knowledge, which compared MLC predictive maps to Quaternary 

knowledge of the area, and 2) statistical, which strictly analyzed statistics of confusion matrices. 

Two maps, representing the most optimal results from each approach were selected and 

variability maps were produced on those class combinations using the Robust Classification 

Method (RCM) to determine which class combination and resultant classification was less 

variable, and in turn more accurate.   

Based on the variability maps produced for each of the 4 “best” MLC classification maps, it 

appears that a geological knowledge-based approach to produce remote predictive maps is more 

suitable for mapping surficial materials in the Repulse Bay area. The variability maps based on a 

statistical approach (STAT1 and STAT2) show a generally greater degree of variability for the 

mapped region, in comparison to the variability maps based on a geological knowledge-based 

approach (GK1 and GK2). As demonstrated in the geological knowledge-based approach, the 

RPM process must include a direct input by Quaternary geologists. This proved to be most useful 

in merging, splitting, or removing classes from classifications, using geological criteria, and in 

turn, coming up with classifications more representative of the actual geology. The statistical 

method to create these maps suggested merges of classes that were not similar by geological 

standards, i.e. merging R2 and Tm1 – a bedrock unit with surrounding till combined with 

modified till containing sand and gravel.   
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Figure 2.11: Variability maps for 2 predictive maps based on LANDSAT imagery and ‘best’ 

class combinations as derived from statistical approach.  A) STATS 1 and; B) STATS 2; see text 

for details.  Presents more class variability and confusion (warmer red tones) and regions of less 

variability and more certainty (cooler, bluer hues) 
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Figure 2.11: (Continued) 

 It is important to note however that a direct comparison between predictive maps derived 

from remotely sensed data and geological maps produced through fieldwork and air photo 
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interpretation will not always be conclusive because the processes behind producing the RPM 

and geological maps are quite different. LANDSAT data capture information at much higher 

spatial detail and high spectral variability, on a pixel-to-pixel basis. Some of this variability is 

noise and some is signal that represents the underlying bedrock (when exposed) as well as cover 

(surficial materials and vegetation).   

 A recommendation for further work is to use a well-balanced LANDSAT mosaic. The 

effects of an unbalanced mosaic were not as apparent in the classification maps versus 

corresponding variability maps produced on the same LANDSAT imagery. The scene 

boundaries are the result of seasonality and/or atmospheric differences between neighbouring 

images, which were not acquired during consistent conditions, therefore causing ill-

correspondence for similar materials on either side of the boundaries. It is unlikely that 

differences in surficial materials are directly correlated to where scene boundaries occur.  This 

issue is being addressed by the Canadian Centre for Remote Sensing (CCRS) and the Geological 

Survey of Canada (GSC).   

 Another recommendation is to use other parameters such as terrain (digital elevation 

models), texture, or other remotely sensed data, since LANDSAT provides one element of the 

surficial environment (e.g, RADARSAT). These data would provide additional parameters to 

classify the surficial materials and not only rely on spectral information from LANDSAT 

imagery.  

 Finally, although the Robust Classification Method (RCM) was used to produce the 

variability maps based on the combination of classes defined for the 4 “best” MLC maps, 

majority classification maps derived from the RCM were not discussed in this report. RCM is a 

technique that helps to present a more robust estimate of overall classification accuracy and to 

level out statistical variance in the training areas (Harris et al., 2012).  The RCM should form an 

integral part of the supervised classification, and be used at the beginning of the classification 

process.  

In conclusion, RPM will not substitute field mapping by the Geological Survey of 

Canada. Rather, this new approach is intended to be a supportive tool to direct, optimize, and 

perhaps enhance conventional geological knowledge. The supervised classification maps 

presented in this Open File are based on a physical parameter of the surface (spectral 

reflectance), while geological maps synthesize many parameters including photo-geologic 

variables (i.e. tone, texture, shape, pattern, context and association), field observations (e.g., of 

earth materials and geomorphic processes) and expert knowledge. The use of remotely sensed 

data for surficial materials mapping thus compliments the geological mapping process. The maps 

presented in this Open File and the methodology used to produce them have aided the GSC’s 

mapping efforts of the greater Wager Bay region of Nunavut, which is one of the outputs for the 

Geo-mapping for Energy and Minerals (GEM) program.  
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Chapter 3: Mapping Surficial Materials from LANDSAT TM-7 and SPOT 4/5 

imagery using Classification methods: A case study from Repulse Bay, NU 

 

3.1 Introduction 

 

Remote sensing using satellite imagery is applicable to a wide variety of Earth 

observations problems and has been used extensively in the geosciences, especially in the fields 

of glacial geomorphology (Clark et al., 2000; DeAngelis, 2007;  Lytwyn, 2010; Walsh et al., 

1998), bedrock mapping and mineral exploration (e.g. Drury, 2001; Martel et al., 2005; Harris, 

2008), as well as to study surficial physical properties of other planets such as Mars (Jakosky, 

1986; Mellon et al., 2000). Remote sensing can be used as a tool to enhance, but not fully 

replace, the field mapping process. It accelerates traditional mapping efforts by streamlining 

fieldwork and providing further insight into surficial materials of the mapped regions. It can also 

provide first-order geologic information in areas that cannot be mapped in the field due to lack of 

infrastructural access or logistical support (Drury, 2001; Harris, 2008; Sabins, 2007; Vincent, 

1997). 

Currently, surficial geology maps are sparse in Canada north of 60 degrees latitude, and 

of those regions that have been mapped, only approximately 50% have been mapped at scales of 

1:500,000 or larger (Kerr and Eagles, 2012).  The 1:500 000 scale is not optimal for mineral 

exploration programs and land-use management decisions, as it provides only broad information 

on glacial history and the Quaternary environment, and not enough detailed and local 

information on the nature and distribution of surficial sediments.  Surficial geology maps provide 

insights into ice-flow and sedimentation history, which is necessary to trace mineral indicators 

and geochemical pathfinders found in glacial sediments back to the mineralized bedrock sources 

(i.e. Paulen and McMartin, 2009). Thus, surficial maps produce data that support mineral 

exploration programs, sustainable resource development and land-use management and are vital 

to drift prospecting, terrain management and mineral resource interpretation.  Information on the 

surficial environment can be augmented and improved by the use of remotely sensed imagery.  

The Repulse Bay area includes a variety of Quaternary glacial and post-glacial landforms 

and sediments (McMartin et al., 2013), and has high potential for mineral resources including 

diamonds, precious and base metals (i.e. Campbell and McMartin, 2011). However, surficial 

geology maps in this region are not suitable for effective mineral exploration programs using 

drift prospecting, and field-based observations are lacking (McMartin et al., 2013).  The 

Geological Survey of Canada has identified the Repulse Bay region as a priority mapping area 

and,  as a result, a framework mapping project was initiated in 2010 to fill in the knowledge gaps 

and produce surficial geological maps (e.g., Campbell and McMartin, 2010, 2011; Campbell et 

al., 2011; Wityk et al., 2011; McMartin et al., 2012; Wityk et al., 2012; Campbell et al., 2013; 

McMartin et al., 2013;Wityk et al., 2013; Campbell and McMartin, 2014;). 



 43 

Remotely sensed imagery and associated image processing techniques are useful for 

geological mapping. However, limitations related to spatial and spectral resolution, landscape 

complexity, type of data, and atmospheric conditions at time of data acquisition (Lu and Weng, 

2007) present operational challenges for the mapping of landforms and surficial materials from 

optical remotely sensed data. If these complexities, which affect spectral responses of surficial 

materials, could be better addressed, the applicability of remote predictive surficial materials 

mapping would further increase the rate at which the surficial geology of remote regions of 

Northern Canada could be mapped.  

 This paper presents a case study on the application of Remote Predictive Mapping (RPM) 

to the mapping of surficial materials in the Repulse Bay area. More specifically, the study aims 

at evaluating SPOT 4/5 imagery for mapping surficial materials in the study area and comparing 

SPOT-derived predictive maps with previously classified maps based on LANDSAT imagery as 

well as with a surficial geology map (Campbell and McMartin, 2014) for a smaller region of the 

study area. The comparison of classification maps to the surficial geology map is based on both 

qualitative (visual) and quantitative (GIS-based) methods. 

3.2 Background 

 

Since Sugden (1978) first used remote sensing to map the intensity of erosion by the 

Laurentide Ice Sheet, this technology has been further used for a variety of other geologic 

purposes by subsequent researchers from the 1980s to the present day (Clark, 1997, and 

references therein).  Since this time, multispectral imagery has been key to the study of glacial 

geology, mainly in regions that do not have adequate infrastructure (i.e. (Vincent, 1997; Drury, 

2001; Sabins; 2007; Harris, 2008; Shelat et al., 2012)).  

 LANDSAT data have been used to classify and map mega-scale glacial lineations (Stokes 

et al., 2006) and other linear features  such as drumlins and eskers based on their shape, location 

and distribution (i.e. Clark et al., 2009;; Smith and Pain, 2009; Spagnolo et al., 2010).  Other 

remotely sensed data, such as SPOT XZ (20m), SPOT Pan (10m), SEASAT and ERS SAR 

(25m), and RADARSAT, as well as Shuttle Radar Topography Mission (SRTM) data have also 

been used to map landforms (e.g., Clark, 1997; Lowell and Fischer, 2005; Mie et al., 

2005;Liverman et al., 2006; Batterson and Taylor, 2007; Hickin and Levson, 2008;  Ross et al. 

2009).  The application of satellite imagery to glacial geomorphology facilitated reconstruction 

of glacial histories (Clark, 1997; Smith and Pain, 2009) and aided the understanding and 

interpretation of regional ice flow dynamics (e.g. Tippet, 1985, De Angelis and Kleman, 2005; 

De Angelis, 2007).  The latter in turn advanced the understanding of previous ice-sheet 

behaviour (e.g. Boulton and Clark, 1990) and provided insights into surficial sediment mapping 

and also resource exploration and development programs in the Canadian North.  

Mapping bedrock lithology with the use of remotely sensed data has been undertaken in 

the Canadian North since 2005 and has had some success. In the past decade, bedrock lithology 
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mapping in Canada has been conducted in the Snowbird Lake area (NWT) (Martel et al., 2005), 

Borden Peninsula in Northern Baffin Island (Rencz et al., 2000), Baffin Island (Harris et al., 

2005; Harris, ed. 2008), Boothia mainland (Schetselaar and Ryan, 2009), and Victoria Island 

(Behnia et al., 2012), Nunavut.  They have included some fieldwork in the study regions, or have 

included legacy field information for production of RPM maps.  These are important case studies 

which new RPM studies can build upon. 

LANDSAT imagery has been used to recognize features such as carbonate glacial 

dispersal fans (Schau et al., 1993), but it has rarely been used to map other types of glacial 

sediment properties in the Canadian Arctic. Traditionally, mapping surficial geological methods 

have included the use of aerial photo interpretation, field traverses and surface sediment 

sampling.  These methods are time consuming and expensive due to remoteness and limited 

infrastructure (Shelat et al., 2012).  Recently, a method using satellite imagery in conjunction 

with image processing techniques (classification), rather than solely visual interpretation and/or 

fieldwork, has been developed to create maps of surficial materials (e.g. Brown et al., 2007, 

2008; Grunsky et al., 2006, 2009; LaRocque et al., 2012).  

A study on northern Baffin Island near Conn Lake  (Brown et al., 2007, 2008) has been 

undertaken to map surficial materials using a RPM approach. RPM involves compiling and 

interpreting geoscience data (such as remotely sensed and geophysical information), which is 

used to produce predictive maps regarding information on structure, lithology, geophysical and 

surficial information for purposes of supporting field mapping.  The Baffin Island study yielded 

results of 85% accuracies for LANDSAT classification using all training areas (also referred to 

as “regions of interest”: ROIs). The term “accuracy” in RPM studies often refers to classified 

pixels within ROIs, and specifically to the percentage of  pixels that were classified correctly 

within an ROI. In the Baffin case study, the accuracy indicates that 85% of the pixels within the 

ROIs were correctly classified.  With the incorporation of a DEM, accuracies improved by only 

1% (Brown et al., 2007). When comparing full classification maps with field observation and 

ground truthing of surficial materials, an accuracy of ~50% was achieved, much lower than when 

comparing with training areas only (Brown et al., 2007).  

Several studies under the Geo-mapping for Energy and Minerals (GEM) program at the 

Geological Survey of Canada have been conducted over the last few years. They include Schultz 

Lake (Grunsky et al., 2006, 2009), Wager Bay (Campbell et al., 2013) on mainland Nunavut,  

Hall Peninsula and Foxe Basin on Baffin Island, Nunavut (Harris et al., 2012) and Hearne Lake 

in the Northwest Territories (Stevens et al., 2013). At Schultz Lake, LANDSAT TM-7 and 

RADARSAT-1 imagery classified surficial materials types with accuracies of >80% within 

ROIs, with the highest accuracy attained when using both types of data and all of the ROIs.  

Nonetheless, some units were not easily differentiated and mapped due to considerable overlap 

in their spectral and textural signatures (Grunsky et al., 2009). To qualify these accuracies of 

over 80%, both studies included “water” as a class which greatly increased overall accuracies 
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due to the size (number of pixels) of the water class and the spectral separability when compared 

to remaining classes in the Schultz Lake study (Grunsky et al., 2009).   

The study by Harris et al., (2012) on Baffin Island predictively mapped surficial materials 

using spectral reflectance characterisitics of LANDSAT imagery and topographic variability 

using a digital elevation model (DEM) and its derivatives.  Mapping 9 classes produced an 

overall accuracy of the majority classification of 77.7%; with a producer accuracy average of 

64%.  It presented confusion in mapping organic materials and wet fine sediments, which were 

combined to form a single class during post-processing.  This map has not been verified by field 

checking.  It represents a prediction of materials based on knowledge of a field geologist.  

Similarly, a predictive surficial materials map was produced using radiometrically 

normalized LANDSAT 7 data at Hearne Lake (NWT) (Stevens et al., 2013), air photo 

interpretation, as well as legacy data, and field expert knowledge.  When comparing the 

classification to training data, the 7 mapped classes were 81.7% accurate.  Errors were due to  

similarities in moisture content and surface vegetation between classes.  For example regions 

where bedrock is vegetated and till has high occurrence of isolated bedrock outcrops have similar 

spectral signature.  Misclassifications primarily occurred between till veneer and till blanket 

classes.  This work provides information which can be used to assess surficial materials and 

terrain risks to infrastructure as well as for guidance of mineral exploration and future mapping 

(Stevens et al., 2013). 

In Wager Bay, LANDSAT was also used and 12 surficial material classes were produced 

using the Robust Classification Method (RCM) (Campbell et al., 2013).  The classifications were 

then later analysed statistically and then geologically evaluated.  Average accuracies of the 

iterations were 41.2%, with a maximum accuracy of 46%, lower than the aforementioned RCM 

studies.  

3.2.1 Classification  

 

 In the early 20th century (1912-1922), the idea of maximum likelihood was developed by 

R.A. Fisher as described in Aldrich's (1997), which eventually resulted in the well-known and 

used Maximum Likelihood classification algorithm.  The maximum likelihood methodology as 

described by Aldrich (1997) was used to classify remotely sensed imagery. This classification 

method has been applied to remote sensing since the 1970s for the production of thematic maps 

(Strahler, 1980).    The classification of multispectral imagery results in an image (map) where 

each pixel is assigned a class membership (e.g. land cover classes, Briggs, 1987). Maximum 

Likelihood is the most frequently used classification techniques (e.g., Benedictsson et al., 1990; 

Foody et al., 1992; Gonzales and Woods, 1992; Paola, 1994; Paola and Schowengerdt, 1995; 

Stuckens; Foody, 1996; Franklin et al., 2002; Harris et al., 2012; et al., 2000; Behnia et al., 

2012;).  
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 Image classification approaches comprise two general methods (pixel-to-pixel vs. object 

based classification). Pixel-to-pixel classifiers are divided into supervised and unsupervised 

approaches, the difference being the degree of user input to the classification process. 

Additionally, different algorithms can be used depending on the data distribution (parametric or 

non-parametric). Further details on image classification techniques are presented in Lu and 

Weng (2007), as well as in Tso and Mather (2009), and Landgrebe (2003).   

A supervised classification is a semi-automatic approach used to classify imagery on a 

pixel-to-pixel basis. It is semi-automatic as it incorporates knowledge provided by experts on the 

terrain to be classified (Harris, 2008).  This a priori knowledge is input by the geologists as 

training data in the form of polygons that represent a known surficial material. These training 

areas (polygons) are referred to as “regions of interest” (ROIs) and capture and represent the 

spectral signature of each surficial material to be classified (Harris, 2008; Harris, 2012).  Pixel 

based classifiers automatically allocate each pixel in the image to one of a specified number of 

classes (Briggs, 1987), based on which spectral signature (class) it best matches (Figure 3.1)  

 

 

  

 

Figure 3.1: Conceptual model of classification process.  The spectral response from digitized 

regions of interest (ROIs) on satellite imagery (input) are used to classify image pixels into 

surficial material classes (output) where pixels are labeled according to statistics of regions of 

interest.  

 

 Since the early 90s, improvements to the classification process have been made (Aplin et 

al., 1999a; Foody, 1996; Franklin et al., 2002; Gallego, 2004; Gong and Howarth, 1992; Kontoes 

et al., 1993; Pal and Mather, 2003; San Miguel-Ayanz and Biging, 1997; Stuckens et al., 2000).  

Some improvements have included developing more advanced algorithms, using different types 

INPUT:  
Regions Of Interest   

OUTPUT:  
Thematic 

Classification 

 

Processing 
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of remotely sensed imagery, and adding textural information which incorporates spatial patterns 

as well as geoscience data into the classification process (i.e. topography, soil, road, census data) 

(Lu and Weng, 2007).  Though progress has been made, a number of challenges remain that can 

impact the effectiveness of classification techniques.  Challenges include issues concerning 

balanced mosaics, representative regions of interest and input data for classification, variability 

in surficial materials to be classified, data availability and quality, to name a few. The 

classification approach requires selecting training data, processing imagery; selecting and 

applying appropriate classification algorithms, post-classification processing and assessing 

accuracy (Lu and Weng, 2007). 

3.3 Study Area 

 

 The study area is situated on mainland Nunavut, Canada, along the north-northwestern 

coast of Hudson Bay, and west of Committee and Repulse bays (Figure 3.2). It is between 

latitudes 66°N and 67.5°N and longitudes 88°W and 86°W and is made up of parts of NTS map 

sheets 46K, 46L and 46M (Wityk et al., 2013).  

 The physiography of this region has a low relief and gently rolling hills within which are 

groups of bedrock hills, lakes, shallow valleys and depressions; this is typical of the Canadian 

Shield in Keewatin (McMartin et al., 2013). Distinct landform assemblages feature drumlins, 

meltwater corridors, and, at lower elevations, gullied marine sediments which are exposed along 

the Committee Bay coast (Campbell and McMartin, 2014; McMartin et al., 2013;). 

 The bedrock of the region includes Archean through Paleoproterozoic supracrustral rocks 

of the 2.7-2.6 Ga Rae Domain of the Western Churchill Geological Province (Paul et al., 2002).  

Overlying the bedrock are glaciofluvial deposits and a dominant sandy diamicton (McMartin et 

al., 2013).  The glacial diamicton, or till, is a poorly sorted, massive, silty sand diamicton with 

shield and carbonate-rich end-members (McMartin et al, 2013) whose elongated landforms are 

oriented in the northward direction, generally following the direction of the regional ice flow 

(Aylsworth and Shilts, 1989; McMartin et al., 2013; Prest et al., 1968).  Marine sediments, which 

are dominant along the coastal plain west of Committee Bay consist of sands, silts and clays (e.g. 

Campbell and McMartin, 2010, 2014).  Continuous permafrost and a discontinuous tundra 

vegetation cover are also characteristic of the region (McMartin et al., 2013). 
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Figure 3.2: Location Map of RPM study area - within black boundaries. Near Repulse Bay, NU, 

Canada.  
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3.4 Methodology 

 The method used in this study is derived from a seven-step RPM approach developed to 

remotely map the geology of Canada’s North (Grunsky, 2006; Grunsky et al., 2009; Harris et al., 

2008, 2012; Scheltselaar et al., 2007). Modifications to the methodology include an additional 

field component prior to processing, analysis and interpretation of satellite imagery, and an 

improved procedure for creating, updating, and ground-truthing ROI’s (Wityk et al., 2013).  

Wityk et al. (2013) identified regions of interest from fieldwork, air photo interpretation and 

image analysis.  These regions were digitally transcribed to LANDSAT data within the ENVI™ 

image analysis system and then used to classify surficial materials.  Performing a number of 

iterations using a variety of class combinations, analysis of the resultant classifications and 

subsequent re-classifications provided the optimal class combinations for mapping the surficial 

materials of this region (For more information see Chapter 2). These resultant class combinations 

and ROI data (Chapter 2) were applied to classify SPOT 4/5 imagery.  The two class 

combinations resulting from this work differ from one another as one (class combination 1) sub-

divides till into three subclasses (till veneer, till blanket and modified till) while the other (class 

combination 2) does not differentiate these units (Table 3.2).    

 In addition to the RPM of surficial materials for the entire study area, a small subset of 

the study area was used to compare LANDSAT (Wityk et al., 2013) and SPOT classification 

maps with one another and also to compare the classification maps to an existing surficial 

geology map (Campbell and McMartin, 2014).  The surficial materials map used for comparing 

the classifications was derived from a surficial geology map produced from air photo 

interpretation and analysis of collected field data (Campbell and McMartin, 2014).   The legend 

for this surficial geology map was modified to reflect the RPM classes, which were largely 

derived from spectral signatures captured by the remotely sensed imagery.  This required 

merging some surficial geology units together, which represent different depositional 

environments (as mapped in the surficial geology map).  It is acknowledged that the RPM 

surficial classes reflect only differences in spectral response and do not incorporate geological 

process information; however, this was done to accommodate a direct comparison between the 

modified surficial geology map and predictive surficial materials maps. 

3.4.1 Data Acquisition, Image preparation and Masking 

 

SPOT 4/5 imagery were obtained from BlackBridge Geomatics (formerly Iunctus 

Geomatics), who also combined and levelled the data resulting in a visually seamless mosaic 

image of the study area.  The image was then projected to Universal Transverse Mercator 

(UTM), Zone 16, and referenced to North American Datum (NAD 83), and finally clipped to the 

study area.  A LANDSAT mosaic combining all images was also created by BlackBridge 

Geomatics, projected to the corresponding projection and clipped (Chapter 2; Wityk et al., 2013). 
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Table 3.1:  Summary of characteristics for remote sensing data used in this study - 

bands, channels, and resolution.  

Data Source Bands Channels Resolution 

LANDSAT 

TM-7 

GeoGratis, 

NRCAN 

1, 2, 3, 4, 5, 7 Visible, NIR, 

SWIR 

30 meters 

SPOT 4 IUNCTUS 1, 2, 3, 4 G, R, NIR, SWIR 20m 

SPOT 5 IUNCTUS 1, 2, 3, 4 G, R, NIR, SWIR 10m (B1-B3 

) 

20m (B4) 

 

 A water mask was created from the SPOT NIR data (band4) using the interactive 

stretching tool in ENVI™. Clouds and cloud shadow regions were also masked out by manually 

digitizing these features on a SPOT ternary image (NIR, red, green) and, through simple band 

math, these masks (water, clouds, cloud shadows) were combined together (Figure 3.3). This 

procedure is important to prevent water bodies and clouds from being classified as a surficial 

material during subsequent steps.   

 

 
Figure 3.3: Production of final SPOT mask to mask out water and cloudy regions, modified from 

Wityk et al. (2013).  

3.4.2 Classification of surficial materials 

 

A supervised maximum likelihood classification algorithm (Tso and Mather, 2009) was 

applied to the SPOT imagery using ENVI version 4.8 software.  It utilized the aforementioned 

two different class combinations (from results of Wityk et al., 2013), and the associated ROIs, 

which were applied to classify all 4 bands of the SPOT imagery (20m resolution) (Table 3.2 – for 

complete description of all class units see Chapter 2). According to Wityk et al. (2013), ROI 

separability tested on LANDSAT imagery using the Transform Divergence (TD) statistic 

indicates that the classes with better separation include Ap, Sw, Mg, Ms1, Ice/Snow, O, SG3 and 

Ct. Lower TD values indicating moderate or poor separation were seen for tills, bedrock and 

sand and gravel subclasses - which suggested potential confusion between these subclasses in 

subsequent classifications (Wityk et al., 2013 - Chapter 2). In comparing average TD values for 

each class between LANDSAT and SPOT imagery, it was found that a better separation between 

classes occurred on the LANDSAT data. 

 

These class combinations used for SPOT classification were those that produced the most 

optimal classification results for the study area using LANDSAT (Wityk et al, 2013). To arrive 

at these optimal combinations, classes were removed and/or combined based on 1) geological 
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knowledge – comparing classification outputs to the known geology determined by field 

observations and air photo interpretation of the region; and 2) statistics – analysis of confusion 

matrices based on classification results (Wityk et al., 2013). 

The ice and shallow water classes were not included in the SPOT classification. The ice 

ROIs were derived from LANDSAT imagery and were not found in the SPOT imagery due to 

temporal and seasonal differences between the two image types. Shallow water ROIs were 

located within the masked (water mask) region of the SPOT data and not included in the 

classification.  

Table 3.2: Class Combination for SPOT Classifications comprising the following 

materials: Alluvial plain (Ap), Marine gully sediments (Mg), Mar ine silty sands 

(Ms), Sand and Gravel (SG), Organics (O), Bedrock (R), Boulder fields (B), Till 

blanket (Tb), modified Till (Tm), Till veneer (Tv), Carbonate till (Ct), Shallow 

water (Sw). 

Class Combination 1 Class Combination 2 

Ap Ap 

Mg Mg 

Ms1 Ms1 

Ms2+SG2 Ms2+SG2 

O O 

SG1 SG1 

SG3 SG3 

R1+R2 R 

B B 

Tb1+2 

Tb1 

 

Tm1+2 

Tv+2 

Ct Ct 

Sw - 

Ice - 

 

Maps were labelled as such:  

 L1 – LANDSAT imagery, class combination #1 (“GK1”, from Wityk et al., 2013) 

 L2 – LANDSAT imagery, class combination #2 (“GK2”, from Wityk et al., 2013) 

 S1 – SPOT imagery, class combination #1 

 S2 – SPOT imagery, class combination #2 

 

 Confusion matrices for L1 and L2 (“GK”1 and “GK2” from Wityk et al., 2013) and for 

S1 and S2 were calculated from the four classifications to provide classification accuracies based 

on ROI’s used for the entire mapped study area (Wityk et al., 2013).  To provide a measure of 

the performance of the classification process, the matrix produces a table which tallies the 
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number of pixels classified correctly within ROIs of each class on the classification output.  

Further, qualitative and GIS comparisons were executed on a smaller region within the study 

area.  

3.4.3 Qualitative and quantitative comparisons to the Surficial Geology map  

 

Surficial geology maps and predictive (classification) materials maps are produced using 

different methods and thus offer different information. A predictive map is based strictly on the 

spectral response of surficial materials seen on a pixel-to-pixel basis and thus produces a 

heterogeneous map of the surface whereas a surficial geology map incorporates information and 

interpretation on depositional environment, geomorphology, glacial processes, provenance and 

relative age, producing a more homogeneous and often comprehensive map of the surface and its 

geology and geomorphology. Thus, as mentioned above, in order to make comparison between 

the surficial geology and predictive surface materials maps, a number of geological units were 

modified and regrouped to best reflect and accommodate classes used in the RPM method. The 

groupings were made based on the physical properties of the sediment material, independent of 

deposit type or origin/process.  This is why the same geological unit may also be ascribed to 

different RPM classes.  For example, though deltaic sediments (Md, as per surficial geology 

unit) are deposited in marine environments, they are made up of sands and gravels and therefore 

were regrouped into the sand and gravel (SG1_SG3) RPM class. This comparison of surficial 

geology and predicted surficial materials was conducted on a sub-region of the study area (Fig. 

3.4). Assignment of surficial geology units to RPM classes are shown in   
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Table 3.3.  Though RPM classes indicated SG1 and SG3 (SG1 as vegetated and SG3 as 

exposed), surficial geology mapping does not make this distinction, therefore SG1 and SG3 

RPM units were combined into one unit.  No boulders or carbonate till (RPM classes) were 

mapped in this sub-region (Campbell and McMartin, 2014) and were therefore excluded for this 

comparison. RPM units of modified till (Tm) and carbonate till (Ct) were combined with and 

labelled as Tb. These modifications to the RPM classes and surficial units created uniformity for 

the GIS comparison 

  



 54 

Table 3.3: Surficial Geology Units (as determined by Campbell and McMartin, 

2014) and their groupings/regroupings to reflect RPM classes.  

RPM Class 

 

Surficial 

Geology 

Unit Code Surficial Geology Unit 

Type of 

Deposit 

Ap Av Alluvial veneer alluvial  

 

Af Fan sediments alluvial 

Ap Floodplain sediments (alluvium) alluvial 

At terraced Sediments alluvial  

Mg Mgu marine undifferentiated (gullied) Marine 

 

GM-gu 

glaciomarine undifferentiated 

(gullied)  glaciomarine 

MS1 GMb glaciomarine blanket glaciomarine 

 

Mb marine blanket Marine 

 

M marine undifferentiated Marine 

 

GM sediments undifferentiated glaciomarine 

 

Mv marine veneer Marine 

Ms2 Mn nearshore sediments Marine 

 

Mv marine veneer Marine 

 

GMb glaciomarine blanket glaciomarine 

 

Mt terraced sediments Marine 

O O organic deposits organic 

R R undifferentiated bedrock bedrock 

SG1_SG3 GFp outwash sediments glaciofluvial  

 

GFt terraced outwash sediments glaciofluvial  

 

GFc ice contact sediments glaciofluvial  

 GMd deltaic sediments glaciomarine 

 Md deltaic sediments Marine 

 GMn Submarine moraine sediments glaciomarine 

 Mr littoral sediments Marine 

Tb Tb till blanket glacial  

 Th hummocky till glacial  

 Tm moraine complex gacial  

Tv Tv till veneer glacial  

 

Qualitative (visual based on spatial similarities) and quantitative (using GIS) comparisons 

were made between the predictive maps and the field-based modified surficial geology map 

within a ~180 km
2
 (as measured within the ArcGIS software package) subset of the entire study 

area. First, a simple visual comparison was undertaken to assess differences and similarities 

between SPOT and LANDSAT classifications and the modified surficial geological map. 

Second, a cross-tabulation which summarizes the agreement and disagreement between two 

maps was undertaken on the predictive and surficial geology maps. To facilitate the 

comparisons, the 20 m (SPOT classification) and 30 m (LANDSAT classifications) pixel 
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resolution of the classification maps were up-scaled (resampled) to a 100 m pixel size using the 

ArcGIS majority-based resampling tool. This was deemed necessary because the surficial map 

produced from fieldwork and air photo interpretation consists of large homogenous polygons 

rather than heterogeneous pixels. The geologist can recognize some of the natural heterogeneity 

of surficial materials through air photo visualization, but the final maps generally don’t retain 

much of this detail evident on the remotely sensed imagery. The up-scaling process is applied to 

mimic the “filtering” (generalization) process geologists apply during mapping thus facilitating a 

comparison between the two different maps.  

 

 

Figure 3.4: Location of the sub-region where classification results are compared against a 

surficial geology map (within green-shaded box). 
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3.5 Results 

 

3.5.1 Statistical Results   

 

 Confusion matrices using ROIs for ground truth were computed automatically using the 

classification results for L1, L2, S1 and S2.  This process plots ROIs along the x axis against 

classification results with respect to ROI pixels (that were used to create the map) along the Y-

axis (Lillesand and Kieffer, 2000).  ROI pixels are compared to the resultant classification pixels 

to determine the proportion of pixels (percentage) classified correctly for each input class. It is 

important to note that the confusion matrices were computed by checking the regions of the 

classification map which are located where ROI polygons were determined, with the ROIs which 

produced the classification maps.  Using the ROIs as both classification input data as well as for 

computing confusion matrices provides an overestimation of the accuracy.  

Because the ROIs were carefully chosen to be representative of the main terrain types and 

sediment characteristics of the study area, the confusion matrix exercise is considered to give 

insights into the accuracy of the entire map area.  It is not a measure of the accuracy of the 

classification with respect to sediments on the ground; it is a measure of how accurately pixels 

within the regions of interests are identified.  This measure is then extrapolated for the entire 

study area.  Detailed accuracies (user’s and producer’s accuracies) of individual classes were 

also considered.  Producer’s accuracy" is a measure of how well the pixels within a training 

dataset were classified whereas the "user’s accuracy" refers to how well the map is classified 

(probability that a classified pixel represents the proper class) (Smits et al., 1999). Table 3.4 

summarizes the results displaying individual class accuracies (producer’s accuracy) and overall 

class accuracies for the 4 classifications are indicated in   
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Table 3.7.  Confusion matrices have to be interpreted cautiously as they have been run on 

the entire study area, using only a small portion of the map for validation (ROIs).   

Table 3.4: Summary of producer’s accuracies of 4 classification maps according to 

confusion matrices computed using ROIs. High accuracy: 75 -100% (green), 

Moderate accuracy: 51-74% (blue), Low accuracy: <50% (red).  

 L1 S1 L2 S2  

 Class 

Combination 

# 1 ↓     

Class 

Combination 

# 2 ↓ 

Ap 77.06 77.22 77.06 77.22 Ap 

Sw 94.04 / 94.9 / Sw 

Ms1 91.88 91.49 91.88 91.49 Ms1 

Ms2Sg2 59.18 44.89 61.63 47.18 Ms2Sg2 

O 78.54 81.5 81.78 83.18 O 

Sg1 25.52 26.3 31.09 41.26 Sg1 

Sg3 61.88 67.45 61.88 67.45 Sg3 

B 89.19 87.07 92.16 89.82 B 

Ct 90.59 89.27 91.15 89.87 Ct 

Mg 88.23 89.96 88.23 90.01 Mg 

Ice/snow 7.23 / 7.37 / Ice/Snow 

R1&2 48.6 38.91 64.09 52.18 R 

Tb1&2 48.01 47.3 49.65 38.64 T 

Tm1&2 61.66 43.94       

Tv1&2 49.12 26.88       

 

Table 3.5: Overall accuracy of classifications per surficial material class based on 

Maximum Likelihood classification confusion matrices.  

High Moderate Low 

Ap  

Sw *L 

Ms1  

O  

B  

Ct  

Mg  

SG3 

Ms2+SG2  

SG2 - *L 

B - *C1 

 

SG1 

Ms2+SG2  - 

*S 

Tm 

Tb 

Tv 

T * C2 

B - *C2 

* L - LANDSAT only; * S - SPOT 

only; * C1 - class combination 1 only;  

*C2 - class combination 2 only 
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The User’s Accuracies for the 4 classifications are summarized in the tables below (Table 

3.6).  Complete confusion matrices are found in the Appendix C.   

Table 3.6: User accuracies for 4 classifications: LANDSAT 1, SPOT 1, LANDSAT 2 

and SPOT 2 

  
LANDSAT 

1 
 SPOT 1 

LANDSAT 

2 
SPOT 2   

Class    User User User User Class 

Ap 64.6 79.15 64.6 79.15 Ap 

Sw 99.1   99.1   Sw 

Ms_1 80.5 73.54 80.5 73.54 Ms_1 

Ms_2_SG2  49.93 34.43 47.16 29.22 Ms_2_SG2 

O 36.74 19.5 30.98 15.99 O 

SG_1  29.8 35.32 24.23 28.91 SG_1 

SG_3  67.16 64.96 67.05 64.96 SG_3 

B 25.01 20 17.56 16.93 B 

Ct 56.27 57.6 55.15 56.55 Ct 

Mg  92.27 89.37 92.27 88.91 Mg 

Ice/Snow  100   100   Ice/Snow 

R1and2 50.8 40.6 27.99 21.02 R1 

Tb_1and2  81.73 86.67 91.3 92.96 T 

Tm_1and2 56.22 47.57 

   Tv_1and2 52.5 29.09    

 

 

 Confusion matrices across all 4 classifications produced similar results, revealing that 

certain surficial sediments were consistently mapped with higher accuracy than others. 

Similarities in producer’s accuracies across confusion matrices of a number of classification 

iterations and class combinations indicate that Ap, Ms1, O, B, Ct, and Mg classes are accurately 

mapped in both class combinations and both LANDSAT and SPOT imageries (Table 3.4).  This 
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was expected as the transform divergence (TD) statistic for these classes indicated that they are 

easily separated and distinguishable from other classes based on their spectral signature (TD 

statistic values available in Appendix F and G).  Confusion and lower accuracies are evident for 

various till types, bedrock, and sand and gravel classes.  All till types were mapped with 

moderate (51-74%) or low (<50%) producer’s accuracy with the exception of carbonate till (> 

88% accuracy for all 4 classifications).  

Looking at the user’s accuracy (Table 3.6) it is evident that the mapped classes with the 

higher accuracies (user’s accuracies of 75% or higher) include: Mg, Tb1and2 (combination 1)/T 

(combination 2), Ms1 and Sw and Ice/Snow (for LANDSAT classifications) and Ap (for SPOT 

classifications).  Moderate user’s accuracies (51-74%) are evident in Ap (LANDSAT 

Classification), SG3, Ct, and Ms1 (SPOT classification).  Finally the poorest user’s accuracies 

(<50%) are in classes including MS2_SG2, O, SG1, B, R1and2 and Tm1_2 (SPOT) and 

Tv1_and2 (SPOT). 

Generally, LANDSAT overall accuracies are higher than SPOT for both class 

combinations (  
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Table 3.7) and according to the confusion matrices, more classes are mapped accurately 

with LANDSAT than SPOT (Table 3.4, Table 3.5).  LANDSAT more accurately classified Ms1, 

Ms2, Sg2, B, Mg, and all Till units (inclusive of Carbonate Till).  Conversely, O, SG and Mg 

were more accurately mapped by SPOT.  
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Table 3.7: Overall accuracies for 4 classification maps:  

Classification Overall Accuracy 

LANDSAT 1 60.54 

SPOT 1 54.25 

LANDSAT 2  60.42 

SPOT 2 53.18 

 

The confusion matrices were run using all the ROIs used for classification. Visual 

interpretation and GIS comparisons of the predictive maps to the modified surficial geology map 

have been completed to enhance this comparison in qualitative and quantitative analyses.  

3.5.2 Comparison of predictive surficial materials maps to surficial geology map 

 

The detailed surficial geology map (cf. Fig. 3.4 for location of the sub-region) is shown 

on Figure 3.5A. As indicated in the methodology, this map was rasterized and upscaled and is 

thereafter referred to as Surficial Materials Map 1 or SM1 (Fig. 3.5B). 

As can be seen on Figure 3.5B, SM1 shows a dominance of alluvial and marine 

sediments in the eastern portion of the sub-region (blue and yellow).  The alluvial sediments (Ap, 

yellow) comprise exposed sands and minor silts, while the marine sediments (Blues) are made up 

of exposed and gullied marine silts and clays (Mg), grass-covered fine sands, silts and clays 

(Ms1), and grass and lichen-covered sands and silts (Ms2_SG2) (Wityk et al., 2013). Sand and 

gravel (SG1) are predominant in the southwest and central west area (orange), tills are 

concentrated in the center (greens), and patches of bedrock (red) are scattered in the northern and 

southern portion of the map.   Sand and gravel are covered by grasses and dried lichen and form 

marine deltaic deposits or glaciofluvial ice-contact deposits (Wityk et al., 2013).  Tills consist of 

three groups 1) Tv (light green) - thin drift cover mixed with bedrock and boulders or bedrock 

and sand covered by sparse grasses and mosses; 2) Tb (medium green) - thick drift cover with 

little boulder cover or exposed bedrock covered by grassy-moss vegetation; 3) Tm (olive green) - 

modified till which has been eroded in places, and includes some sand and gravel, also covered 

by grass and moss.   

LANDSAT classification maps for the sub-region were clipped from the maps provided 

in Wityk et al. (2013) (Figure 3.6A, 6B)).  SPOT classifications maps were also produced using 

the same class combinations (Wityk et al., 2013) to produce S1 and S2 (Figure 6C, 6D).  Subsets 

of these results are compared to the surficial materials map SM1 derived from the surficial 

geology map.   
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Figure 3.5: Mapped Surficial Geology.  A) Sub-region of surficial geology map (Campbell and 

McMartin, 2014) extracted for comparison with classification maps. B) Surficial Materials Map 

(SM1) derived from surficial geology map (Campbell and McMartin, 2014). 
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Figure 3.6: Classification Results using LANDSAT and SPOT data and 2 class combinations. A) 

L1 :LANDSAT imagery + class combination #1, B) L2: LANDSAT imagery + class combination 

#2, C) S1: SPOT imagery + class combination #1, D) SPOT imagery + class combination #2. 

B 
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Figure 3.6: Classification Results using LANDSAT and SPOT data and 2 class combinations. A) 

L1 :LANDSAT imagery + class combination #1, B) L2: LANDSAT imagery + class combination 

#2, C) S1: SPOT imagery + class combination #1, D) SPOT imagery + class combination #2. 
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3.5.3 Visual Comparison Analysis  
 

The four predictive maps (Fig. 3.6) generally predict large zones of marine and alluvial 

(fine sand, silts and clays) sediments in the east, which is consistent with the surficial materials 

map SM1 derived from the surficial geology map.  The L1 classification predicts till in the 

central region, which is also consistent with the SM1 map. However, the SPOT and LANDSAT 

classifications are different from SM1 especially in the southwest and west portions of the sub-

region.  While SM1 displays a dominance of sand and gravel (orange) with some regions of till 

(green) in the west and southwestern portion of the map, L1 predicts large areas of thin till 

veneer (green) and L2 predicts large areas of both till and bedrock in these areas. The S1 and S2 

predictive maps show larger areas of sand and gravel in the southwestern and central regions.  

SPOT maps show minimal occurrences of bedrock (red) and very little till (green) when 

compared to SM1.  S2 shows little to no till (green) in the central and southwestern portion of the 

study area.  L2, which uses the same class combination as S2, predicts occurrences of till (green) 

in the southwestern portion of the map, however, it overpredicts till in the west, inconsistent with 

SM1.  It is also important to note that L1 and L2 maps predict a fair amount of carbonate tills 

(purple), which are not mapped on SM1. The prediction of carbonate till was field-checked and 

found that the till here was not calcareous.  This is an example of the confusion between these 

materials as indicated by the confusion matrices, where it was shown that carbonate till (Ct) is 

confused with till (T) and with the till blanket subclass (Tb1_2).  It is important to note, that the 

predicted Ct unit fell within areas of mapped till (both Tv and Tb) on the SM1 map.  This is 

acceptable as the Ct class is indeed a “till”-category unit.   

Multiple reasons could explain why SPOT and LANDSAT classifications are different 

from one another and also from the SM1.  First, this could be due to spectral and spatial 

resolution differences in the imagery used.  SPOT is of lower spectral resolution than 

LANDSAT, and does not collect reflectance data in the 2.2µm SWIR band (LANDSAT band 7) 

or the 0.4 µm blue band (LANDSAT band 1). However, more spatial variability may be seen in 

the SPOT imagery due to the higher spatial resolution (20 m compared to 30 m for LANDSAT). 

Lower spatial resolution imagery such as LANDSAT can filter out more of the spatial details 

captured by higher resolution sensors such as SPOT (Behnia et al., 2012).   Furthermore, 

boundaries between different surficial materials are often gradational (i.e., thin till and bedrock 

outcrop). This fuzzy transition would not be captured with the maximum likelihood classifier 

used in this study as it is a hard classifier in which boundaries are sharp. Another reason for these 

differences could be a result of the creation of ROIs, which was partly based on LANDSAT data.  

As SPOT was not included in this process, classifications on LANDSAT data may have been 

favoured 
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3.5.4 GIS Comparison - Pixel to Pixel analysis 

 

 The pixel to pixel comparison results of L1, L2, S1 and S2 predictive classification maps 

are presented in Table 3.8.  The agreement (% match) between the classification maps and the 

modified surficial geology map (SM1) is highest for the LANDSAT and SPOT classifications 

derived from training combination #1 (23% and 21%, respectively).  The agreement is lowest for 

training combination #2(6%). Figure 3.7 shows the agreement between the predictive maps L1 

and S1 and SM1. 

Table 3.8: Pixel-to-pixel comparison statistics for 4 classification maps to modified 

surficial geology map SM1.  

Imagery 

Classification 

Combination Match 

Total 

Pixels 

% 

match 

LANDSAT 1 4138 18000 22.99 

SPOT 1 3852 18000 21.40 

LANDSAT 2 1127 18000 6.26 

SPOT  2 1176 18000 6.53 
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Figure 3.7: Correspondence maps indicate regions where a pixel-to-pixel correspondence was 

evident between classification maps (L1 and S1) and surficial materials.  White space indicates a 

“non-match” with surficial geology and coloured regions presents a “match”. A) 

Correspondence between surficial materials and LANDSAT 1 (L1) classification results.  B) 

Correspondence between surficial materials and SPOT 1 (S2) classification results.  

A 

B 
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 The L1 agreement map (Fig. 3.7A) shows a stronger correspondence with SM1 (Fig. 

3.7B) across the region, while S1 displays better similarity in the northeast and east portions of 

the region.  These areas correspond to a dominance of marine sediment classes (Ms1 class and 

some Ms2_sg2). Thus, S1 bares more resemblance, in particular where marine sediments are 

present, to SM1, which may be related to the higher spatial resolution of the SPOT sensor.  Both 

classification maps display mostly white spaces (non-match) concentrated along the central and 

west areas, and southwest areas particularly for L1.  According to SM1, the southwestern portion 

of the map consists mainly of sand and gravel with small areas of till and bedrock (Fig. 3.5).  In 

contrast, the L1 and L2 maps predict mostly till and bedrock in this region, whereas S1 and S2 

maps predict more sand and gravel (SG1_SG3), and generally less till than SM1. Nonetheless, a 

poor spatial match remains with sand and gravel in that area between S1, S2, and SM1.  

 In addition to the LANDSAT 1 classification, which has an overall 23% match with the 

modified surficial geology map, individual class correspondences were also computed for this 

classification (Table 3.9).  Tm was not included in this correspondence exercise; while SG1 and 

SG3 were grouped together as they are the same material, just unexposed (SG1) and exposed 

(SG2).  This was done to simplify the comparison. From this computation it can be seen that 

there is relatively stronger agreement for the marine and alluvial sediments (Ap, Mg, Ms1, 

Ms2_Sg2) between the predictive and modified surficial geology map (between 30 and 35%, 

match). Less agreement is found for the organics, bedrock and thick tills (between 18 and 19%), 

with sand and gravel (SG1 and SG3) having the least agreement, at only 7%.  This is consistent 

with the visual comparison.  

Table 3.9: Individual class correspondence for LANDSAT 1 classification, most 

accurate in terms of comparison to surficial materials map SM1.   

Class/Material 

# Pixels in 

LS1 

Classification 

Correspondin

g # Pixels 

# Pixels in 

Surficial 

Materials Map 

Match % 

(corresponding/ 

surficial material) 

MS2_SG2 3710 1692 4792 35.31 

Tv 3068 266 786 33.84 

Ms1 2363 340 1011 33.63 

Tb_Ct 1821 781 2559 30.52 

Ap 466 227 761 29.83 

Mg 922 522 1777 29.38 

R 1705 404 2111 19.14 
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Table 3.9 (Continued) 

O 105 6 32 18.75 

SG1_SG3 2742 213 3047 6.99 

 

This pixel-to-pixel comparison reflects partially the data presented in the confusion 

matrix computed using the ROIs within the entire study area (Table 3.4).  For example, the 

alluvial (Ap) and Marine sediments (Mg, Ms1) had the highest accuracies of over 77% for L1.  

In contrast, the marine sub-class Ms2_Sg2 only yielded a moderate to low classification accuracy 

of ~59% while the GIS analysis indicates the highest match of all the classes (35%). Classes with 

higher correspondence between SM1 and the L1 classification included 2 of 3 till units (Tv and 

Tb_Ct) (33% and 31% correspondence – Table 3.8).  These results compare with those of the 

confusion matrix, which indicated that till units were mapped with poor accuracy (Tv - 49% and 

Tb_Ct equivalent Tb - 48%) – both cases demonstrate relatively poor accuracy.  Bedrock (R), 

and Organic (O) units had lower correspondence, yielding approximately 19% match with SM1.  

The confusion matrix indicates organics were mapped more accurately (78%) while Tb and R 

were poorly accurate (~48%). The lowest corresponding class was that of Sand and Gravel 

(SG1_SG3) which yielded less than 7% match with the SM1 map, similar to what is seen with 

the confusion matrix as these units were mapped with poor (SG1 – 35.32%) and moderate 

accuracy (SG3 – 64.96%). 

3.6 Discussion 

 

This study shows that overall, LANDSAT imagery more easily predicts (classifies) 

surficial materials than SPOT imagery.  Certain surface materials classes are classified with a 

relatively high degree of confidence with both types of imageries, while the classification 

process does not as easily distinguish others. 

In the study area, marine (Mg, Ms1 and Ms2_SG2) and alluvial (Ap) sediments (fine 

sands, silts and clays) are similarly mapped using both the LANDSAT and SPOT datasets and 

generally compare favorably with a sub-set of a modified surficial geology map. These materials 

show a unique spectral response and bear a general spatial resemblance to that of the modified 

surficial geology map. Although some misclassifications do occur within these units, it is 

important to note that these misclassifications are moderate.  For example, some 

misclassification of Ms2 is classified as Ms1, which is of the same sediment material family - 

being of mainly marine fine sediments but grass covered.  A softer comparison, taking into 

consideration exceptions such as this would increase the correspondence percentages. This may 

be accomplished through grouping classes together (post-classification), and conducting a 

comparison using broader sediment categories.  Other surficial materials especially till, vegetated 

sand and gravel, and bedrock are not accurately classified. Confusion occurred between these 
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materials on the four classification maps, and produced a poor association when compared to the 

modified surficial geology map.   

Despite the up-scaling step, the predictive classification maps remain much more 

heterogeneous than the surficial geological map. Some of the heterogeneity may be real, but 

some is due to other factors than surficial material types such as vegetation, soil water content, 

and other complicating factors. The comparison exercise is therefore more useful to identify 

areas where both the RPM process and the geologist’s “filtered” map are in agreement rather 

than to assess RPM maps accuracy. The comparison will help determine which type of materials 

are mapped the same way by the two approaches and which ones are more challenging to either 

the RPM approach, the geologist doing air photo interpretation, or both. This could provide 

useful insights into optimizing the use of RPM for geological mapping such as identifying 

problematic areas where field work is necessary to reduce uncertainty.  It is important to 

recognize that this comparison is not a measure of one map being better than the other; both 

maps offer valuable information and therefore contain slightly different information.   

The RPM process shows limitations distinguishing tills from sands and gravels, bedrock, 

at least using optical reflectance data. Perhaps the boulders on the till surface and the similar 

mineral composition of all these materials (e.g. the till may contain a large proportion of locally-

derived bedrock) yield a similar spectral signature.  The distribution and density of boulders (% 

boulder cover) on the till surface could thus have an important impact on the degree of confusion 

between till, boulder fields, and bedrock, perhaps even more so if the boulders are derived from 

local bedrock. It would be interesting to compare areas where boulders and material in the till are 

locally-derived against areas where material has a more distal provenance, yet similar textural 

matrix. Perhaps the use of radar data, as demonstrated by Grunsky et al. (2009), could help 

distinguish between some of these surficial materials which are confused optically by adding 

parameters of surface roughness and moisture to help separate various surficial materials. 

Interestingly, mapping these materials may also be more challenging to the geologist. The use of 

RPM could thus be used to identify priority areas, i.e. areas with high confusion and 

disagreement with surficial materials map, for more targeted field work.   

Other factors such as variations in water content, vegetation, boulder cover, or slope and 

aspect, could complicate mapping of till.  For example, a study that mapped surficial materials 

representing predefined moisture contents highlighted the relationship between various surficial 

units and water contents (Lesemann et al., 2013). A drumlinized till surface, for example, could 

contain well-drained till at the top of drumlins, while drumlin swales may be water-saturated.  

While the same till type covers both regions the spectral response would differ due to differences 

of moisture content. The spectral signature of a drumlinized till surface discontinuously covered 

with boulder fields may indeed overlap with that of other materials such as boulder fields, and 

areas characterized by a mix of thin discontinuous till and bedrock outcrops and bedrock with 

boulders. This raises the notion that there is high pixel-to-pixel variability (noise) in areas 

characterized by these types of terrains. For example, it is quite clear from field observations that 
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a 30x30m surface area may encompass terrain with boulders, till with low boulder coverage, and 

bedrock, which would be mapped and generalized as till veneer (Tv). In contrast, areas of fine 

grained marine (or sandy alluvial) sediments are generally more homogenous and laterally 

extensive leading to much less pixel-to-pixel variations inside these regions and, therefore, a 

more unique (non-overlapping) spectral signature. The latter areas also tend to form flatter 

surfaces and may also have more homogenous water content.  It is important to note that this 

RPM methodology considers one characteristic to distinguish surficial materials - spectral 

reflectance in 6 LANDSAT bands - when a number of other features have influenced the 

mapping of these materials. Again incorporation of images derived from a DEM and/or radar 

data could help distinguish surface materials that are confused optically. 

The remotely sensed data produces maps that are representative of a single physical 

surficial parameter - spectral reflectance (Behnia et al., 2012).  Differences between the 

classification maps may be a result of differences in spectral resolution (LANDSAT having 

visible blue band as well as short-wave-infrared band, not found in SPOT imagery).  This is also 

due to class combinations used (combination 1 or 2). This exercise of class combinations would 

alter the number of pixels assigned to each group and number of ROI’s allocated for each class 

which would also have an impact on the output.  

3.6.1 Comparison with the surficial geology map 

The agreement between the modified surficial geology map and the classified maps is 

low, but this is expected.  This expectation stems from the fact that the map production process 

of these outputs is different.  The relatively low agreement does not suggest either of the maps to 

be incorrect. For instance, there is more detail seen in the classification maps (Fig. 6) as they are 

based on 20 and 30 m spatial resolutions of remotely sensed data, while the traditionally mapped 

outputs (Fig. 3.5) incurred more generalization resulting from fieldwork and air photo 

interpretation. These maps are therefore not directly comparable. Nonetheless, the comparison 

exercise provides interesting insights. For the traditionally produced map, a number of features 

were considered and integrated including photogeologic characteristics (tone, texture, shape, 

pattern, context, association) and field observation (Behnia et al., 2012).  Using the RPM process 

in concert with that of traditional geologic mapping is complimentary as they offer different 

perspectives.  It is suitable to incorporate both processes to produce surficial maps (Behnia et al., 

2012). 

3.6.2 Comparison to Previous Studies 

Two other studies related to RPM of surficial materials in the Arctic were completed by 

others: 1) Wager Bay North Area (Campbell et al., 2013), and 2) Schultz Lake Area (Grunsky et 

al., 2009). Though methodologies and numbers of classes used vary from one study to the next, 

general trends are noticed in that materials that are better mapped and more poorly mapped are 

the same across the three studies. This is according to the classification accuracy based on a 

comparison with the original training areas used.  Similar to this Repulse Bay area study, the 

Wager Bay North study found that alluvial plains (Ap), marine sediments (Mg and M), organics 
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(O), boulders (B), and carbonate-rich till (Ct) were among the classes which were mapped with 

higher accuracies (Campbell et al., 2013).  This is also consistent with findings at Schultz Lake, 

indicating that boulders and organic deposits have high accuracies as well (90% and 75%, 

respectively) (Grunsky et al., 2009). Though the Wager Bay study indicates that there were 

limitations in distinguishing and mapping bedrock, resulting in poor accuracies, predictive 

mapping of bedrock at Schultz Lake was accomplished with more accurate results (78%).   

Similarities are also apparent across the three studies with respect to the poorest mapped 

materials.  In all cases, sands and gravels were mapped with poor accuracies, and till units also 

produced low accuracies.  However, at Schultz Lake, thick tills were distinguished well and 

yielded a high accuracy (82%), while thin till did not (49%).   

This comparison emphasizes that, in regions of the arctic, optical imagery in RPM efforts 

perform better at mapping alluvial plains, marine sediments, organic materials, boulders and 

carbonate-rich tills, while showing limitations in mapping bedrock, till, and sands and gravels.   

3.6.3 Pixel Size/Resolution 

Given that the resolution of the imagery is much finer than that of the modified surficial 

geology map, which partitions the map area into large homogenous polygons, the RPM maps 

likely capture more heterogeneity than the modified surficial geology map and indeed likely the 

original surficial geologic map. Some of this heterogeneity may be noise, due to variations in 

water content for example, but part of it may be true sediment heterogeneity.  For instance, in 

regions mapped as alluvial (yellow) and marine (blue) sediments, potentially more details are 

provided by the satellite imagery - which shows pixels of blue (marine sediments) within the 

yellow (alluvial sediments) and vice versa.  This may indicate sediment texture variations within 

a unit or, alternatively, small discontinuous patches of a unit within the larger, dominant, unit in 

an area. These details may not have been captured by the geologist during mapping or have been 

lumped due to the scale and level of details of the surficial map. This indicates that visual 

examination of the imagery is required and points to the need for ground-truth to validate the 

RPM map.  This is further supported by the fact that relatively high confusion exists to some 

extent with all units.  Further research may be conducted to address reasons for this confusion 

and provide additional insight on how to mitigate it.  

3.6.4 Problems and Limitations 

Limitations to this study include: (1) only one type of data (spectral reflectance) was used 

to produce the classification maps, (2) the ROIs were created using LANDSAT imagery (and not 

the SPOT data), and, (3) the ambiguity in the comparison of the RPM classifications with the 

modified surficial geology map, which are not directly comparable.  

 The ROIs produced for classification were created and digitized using a combination of 

fieldwork, air photo interpretation and LANDSAT imagery. This influenced the delineation of 

the ROIs as they were evaluated and selected based on their visual appearance on the LANDSAT 

data and around certain characteristics that are not otherwise transferrable to SPOT imagery due 
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to differences in bands, pixel size and slight difference in season of acquisition.  Therefore, this 

skewed classification results in favor of the LANDSAT imagery. 

 The dissimilarities in classes of the RPM and of the geology map led to some ambiguity 

in comparing the two types of maps. The RPM process is based on image characteristics while 

the surficial geology map is based on fieldwork, interpretation of various characteristics on air 

photos, and expert knowledge and experience.  Furthermore, the modification of the geology unit 

classes into RPM classes is approximate at best.  Since the maps and associated legends were 

created from two different methodologies, the outputs are not directly comparable. In addition, it 

is not possible to compare the outputs against a “true” map of the reality. In other words, both 

maps (RPM and geology) have their own uncertainties. The RPM classes were derived from 

initial fieldwork and air photo interpretation; however, they were mainly delineated and selected 

using LANDSAT signatures of the surficial materials.  The surficial geology classes included 

information regarding process and depositional environments otherwise not considered in the 

RPM process.  As discussed above, a second problem to this comparison is that resolution is 

dissimilar in the two maps being compared.  While the SPOT and LANDSAT classification 

maps are at a 20 or 30 m resolution, the derived modified surficial geology map is that of a 

1:100,000 scale resulting in generalization of the natural heterogeneity in surface materials that 

exists on the ground.  

Despite the important limitations, the comparison exercise was a necessary step towards 

understanding the fundamental differences between RPM maps and geological maps. This 

exercise indeed confirms that even an up-scaled RPM map is not directly comparable to a 

geological map and yields low spatial (pixel-to-pixel) agreement results. This suggests that 

important uncertainties persist with RPM and it may not be appropriate to use spectral 

reflectance alone to map certain surficial materials. A closer look at the results in their spatial 

context also reveals that some of the disagreement may be due to real heterogeneity captured by 

RPM within certain units; heterogeneity that may be simplified or missed by traditional 

geological mapping. These aspects of RPM versus surficial geology maps needs to be further 

investigated; they are particularly important if RPM maps are to be used to help plan and 

optimize geological field mapping.  

 

3.6.5 Solutions and Future Work: 

For future work, additional data such as RADARSAT imagery and derivative products 

from a DEM could be incorporated to provide information on textural and topographic properties 

of surface materials (i.e. Grunsky et al, 2009).  In producing ROIs in subsequent work, a 

suggested approach is to create ROIs using mediums independent of those to be used for 

classification. For instance, produce ROIs without influence of imagery, visual spectral 

signatures and pixel sizes (i.e. without digitizing over the imagery).  It is suggested to create 

ROIs using an independent medium and transfer them to appropriate format for further ENVI 

classification.  This would reduce bias towards the classification.   It would also be beneficial to 
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create ROIs with a more even distribution across the study area where possible; to ensure that the 

widest-possible spectral range is captured and applied in the classification algorithm to identify 

like-pixels, or materials. 

Object-based classification may also be implemented as an alternative to pixel-based 

classification.  This approach segments imagery into groups of pixels (objects) and considers 

information such as topological entities, shape and length (Baatz et al., 2004).  This would 

reduce spectral variation within classes and provide information on contextual properties (Guo et 

al., 2007).   

 Further improvements, over and above what we have done in the study, could be made to 

facilitate the comparison between predictive maps and traditional geology maps to account for 

some of the expected ambiguity. As accomplished in this paper, modifying the surficial geology 

map to accommodate a comparison to the RPM classes resulted in losing the details regarding 

depositional environments and processes. To mitigate this, it would be effective to consider 

depositional environments in the creation of ROIs by incorporating other data types to capture 

both spectral and spatial characteristics of surficial materials. This would create a fairer ground 

for comparison between the two maps thereby creating maps with different techniques yet 

maintaining legend consistency.  Producing classes that consider physical properties (i.e. 

vegetation type/cover, moisture content) would also be beneficial, as it would help discriminate 

spectral signature ranges.  It would be reflective of what the signatures are influenced by and the 

information that they capture.  For example, using units such as dry till, wet till, till with 

vegetation cover, boulder till could be more easily compared in this type of exercise. In addition, 

to account for the discrepancy of scale, the predictive map could also be generalized using a 

spatial filter to reduce some of the heterogeneity captured before comparison to the traditional 

surficial geology map. 

Finally, is beneficial to create a final map of surficial materials/geology using both the 

traditional mapping approach and the RPM methodologies.  The simultaneous use of both 

approaches would provide a map with key information; interpretation and statistics to produce a 

more robust and representative map of surficial sediments by ensuring both processes and 

spectral information are incorporated.  For example RPM has the capacity to include more detail 

down to a smaller pixel-level scale (i.e. 30 m) as well as including spectral information.  Recent 

surface geology maps completed or under progress for the project (Campbell and McMartin, 

2014; McMartin and Campbell, in press) have already benefited from the informal (visual) use of 

surficial materials classification maps produced by RPM (Wityk et al., 2013; Campbell et al., 

2013). Further work could develop a more robust methodology that uses RPM classification and 

traditional field mapping approaches alongside one another.  

By applying these recommendations, further insight will be gained on how to make the 

RPM process more effective and reliable and enhance the mapping procedure of surface 

materials and sediments in the Arctic.   
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3.7 Conclusion 

This study shows the potential benefit of using RPM as part of a surficial geological 

mapping exercise in the Canadian North and, possibly, other northern environments. The 

classification maps derived from multi-spectral responses helped identify areas where 

uncertainty is low (e.g. marine sediments), and areas of potential “real” heterogeneity that is 

difficult to capture while doing air photo interpretation (e.g. alluvial and marine sediments).  

Classification maps may also be used to help identify problematic areas (e.g. discontinuous till 

mixed with other materials) where more field work may be required. LANDSAT and SPOT 

imagery yielded different results with LANDSAT showing an overall “best fit” with a modified 

surficial geology map and SPOT showing better results for specific materials. Overall accuracies 

for the two LANDSAT classifications were slightly over 60%, while SPOT classifications 

yielded overall accuracies of 53% and 54%. Both imageries indeed prove to be better at mapping 

certain surficial sediments than others, when visually compared to the traditional but modified 

surficial geology map to RPM classes. Overall, in the arctic tundra environment near Repulse 

Bay, SPOT and LANDSAT imagery were useful for mapping marine and alluvial sediments, 

while showing limitations in mapping organic, till and bedrock.   

 The RPM approach offers cost and time efficient techniques and has significant potential 

for mapping the surficial materials of areas beyond the tree line.  Vegetation can complicate the 

use of geological RPM, however very little tree cover occurs in the arctic tundra providing a 

prime environment for the application of RPM. The high cost of logistics coupled with a short 

field season (mainly July and August), prolongs the production time of surficial maps produced 

from fieldwork. RPM allows the geologist to map regions that are inaccessible for field work, 

direct and focus field mapping, and aid in the interpretation of geological features all of which 

contribute to reducing the time and effort required to produce a traditional surficial geological 

map.  Remotely sensed data provides more information regarding moisture, vegetation, etc. that 

can be extracted and used to infer sediment properties, yet, to date has been underused in the 

mapping of surficial materials. 
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Chapter #4: Conclusion 

 

4.1 Developing the RPM classification method for the Arctic Tundra Landscape 
The RPM classification method is still a relatively new approach for the production of 

surficial materials maps in the Arctic tundra.  As RPM methods continue to evolve and be tested, 

this research provided further development and testing of the existing RPM classification method 

(Scheltselaar et al., 2007) and additionally the RCM classification method (Harris et al., 2012). 

One of the most important conclusions of this work is that targeted fieldwork prior to the 

creation of training areas remains a key component of the RPM mapping process. It is critical to 

thoroughly describe the material and the local landscape of potential training area using field 

observations. Another outcome is that when two or more approaches, are used and compared 

(e.g. field observations + remote sensing), it is possible to determine a class combination that 

best represents the true geology of the region. This study also suggests that LANDSAT imagery 

may produce better overall maps than SPOT, whereas SPOT may perform better for certain 

sediment types. In all cases, the geological expertise remains necessary to reduce and minimize 

geological inconsistencies from automatic classifications due to the complexity of the spectral 

signatures that are influenced also by factors other than geology.   

This thesis presents a unique comparison of output classification maps to a traditionally mapped 

surficial materials map, using a pixel-to-pixel comparison. This comparison has led to additional 

insights into the RPM approach and its differences to the traditional mapping approach, shedding 

light on which materials are more easily mapped than others, and which types of data are the 

more optimal choices and for what purpose.  It also emphasizes the importance of scale and the 

fact that there is no “true” map, which leads to think more critically about RPM, but also about 

traditional map products and information. Essentially, traditional surficial geological maps 

incorporate geomorphology, textural, age and depositional environment interpretations, while 

RPM materials maps use the spectral signature to determine the nature of the surficial materials. 

The latter may capture more natural heterogeneities than geological maps, but some of these 

heterogeneities are related to other factors (e.g. water content, lichen cover) than surficial 

materials characteristics. The next challenge would be to better understand these heterogeneities 

and develop techniques to filter (or upscale) the RPM map to create more homogenous zones 

that better capture the spatial continuity of sediment type distribution. Such RPM maps would 

approach the scale and style of a traditional geological map and may be more intuitive to use.    

4.2 Thesis Contributions 
This thesis advanced and developed ways to enhance the RPM process for mapping 

surficial materials in the Arctic Tundra.  The following are the most significant contributions 

made in this research. 
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4.2.1 Incorporation of the Geological Knowledge into the Iterative RPM process 

Part of the iterative RPM process in this project included looking at classification outputs 

and determining if classes of surficial materials were mapped appropriately.  This was done 

using the geological expertise of the surficial geologists within the study area and also using 

calculated accuracies related to confusion matrices run on output classifications.  Decisions 

regarding which classes (surficial materials) were to be removed or merged with others were 

taken to produce new class combinations for subsequent classifications in hopes of producing 

more realistic outputs.   After conducting this iterative process, it was determined that more 

optimal class combinations and associated RPM outputs were produced when incorporating 

input from geologists.  The geological knowledge-based approach was more suitable for 

producing more realistic classifications of surficial materials in the Repulse Bay study area.  This 

approach suggests that using geological criteria and oversight of Quaternary geologists in the 

RPM method results in the production of more comprehensive predictive maps of surficial 

materials in this type of terrain.     

4.2.2 Open File – Data Release 

As a result of this thesis, a government publication was released by Natural Resources 

Canada – “Remote Predictive Mapping of Surficial Materials West of Repulse Bay, Nunavut 

(NTS 46M-SW, 46L-W and –S, 46K-SW)”- Wityk et al., 2013.  This Open File publication 

(GSC OF 7357) includes a data release of the created predictive maps of the study area, and a 

methodology description of how they were created.  The data released in this publication are 

raster image files of the classified predictive maps using LANDSAT data as well as associated 

variability maps and training area polygon data which were used in the classification process. It 

discusses the 4 best-representative classification maps, which were the results of an iterative 

process to arrive at them and the variability of classifications across the maps.  Finally the 

publication provides a discussion regarding two approaches, statistical and geological 

knowledge-based, which were used in an attempt to generate more optimal classification outputs. 

Finally, it highlights the importance of incorporating geological knowledge into the RPM 

approach. 

4.2.3 Predictive Maps (First Order) 

As a result of this thesis, a set of first order surficial materials maps of the study area 

were created for NTS Map Sheets 46M-SW, 46L-W and –S, 46K-SW, which cover an area that 

had not been previously mapped for surficial geology at the beginning of the project.  This work 

contributed to the knowledge of the RPM process in the Arctic Tundra and furthered the 

understanding of Remote Predictive Mapping techniques. These techniques can be applied to 

future projects with similar themes and applications, and produce classifications at 30 m and 20 

m resolutions. 
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4.2.4 On Regions of Interests (ROIs) and Related Classes 

On the theme of ROIs and Classes, findings from this thesis led to the suggestion to split 

heterogeneous material (classes) prior to classifying and also that it is more optimal to run 

preliminary classifications, in early iterations, with a greater number of classes than fewer.  This 

facilitates the ability and option to lump classes later on in the RPM process (assuming that user 

input and inclusion of geological knowledge is also being incorporated to do so and perform 

subsequent manual iterations).  For example, it was found that the best results were produced 

when similar classes (those that were either statistically or visually confused with one another) 

were combined together. For example, merging of marine silty sands subclass-2 (Ms2) with sand 

and gravel subclass-2 (SG2 – mainly made up of marine silty sands) eliminated much confusion 

and a better map output. Though Ms2 is unsaturated and SG2 is moist, both are marine silty 

sands that are covered by grassy vegetation. 

 It was also determined that the number of classes used in a classification has an impact on 

the outcome and can therefore play an important role in map accuracy.  Introducing a higher 

number of classes introduces a smaller margin for error.  For instance, classification maps with a 

single till unit had a reduced accuracy than those with 3 till units.  Classifications are based on 

classes and determining which classes to use is critical for the output classification maps and 

their accuracy. 

4.2.5 LANDSAT is better than SPOT data for overall map accuracy 

In comparing two types of imagery to classify surficial materials in this project, it was 

found that LANDSAT presented higher overall accuracies than SPOT imagery when evaluating 

confusion matrices.  These results, based on classification outputs produced with LANDSAT and 

SPOT and the training data used to create these classifications (ROI’s), showed that LANDSAT 

imagery produced maps with ~60% ROI accuracy, while SPOT presented ~54% ROI accuracy.  

The LANDSAT data also provided results that are more reflective of the expected surficial 

materials of the region.  The latter expectations considered field knowledge and field mapping 

expertise of geologists involved in the project. The reason for differences between LANDSAT 

and SPOT classifications is attributed to difference in spectral resolution, or number of bands the 

imagery contains.  LANDSAT imagery contains bands in the shortwave infrared (SWIR) bands, 

which contains light not visible to the human eye. Therefore, this provides more information 

within the imagery and results in differences in spectral responses from the same materials. 

4.2.6 Comparison to Available Surficial Materials Map 

This RPM study was conducted alongside a surficial geology mapping project.  The 

surficial mapping project included expertise in surficial geology mapping, interpretation of past 

glacial histories and environments as well as extensive fieldwork and planning. This facilitated a 

direct comparison to be made and encouraged collaboration with geologists.      

 Further, the study facilitated a more quantitative comparison between geological mapping 

and RPM outputs by form of a digital, pixel-to-pixel comparison in a small area.  In this 
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comparison, it was found that LANDSAT classifications produced a higher overall 

correspondence to the surficial materials map than classifications using SPOT imagery. This 

again suggested that LANDSAT produces more accurate classification results. When considering 

spatial distribution of correspondence across the smaller area used for comparison, it was noted 

that the distribution of corresponding pixels using LANDSAT imagery appeared to be more 

evenly distributed spatially across the study region when compared to SPOT imagery.  It is 

important to note, however, that in the SPOT correspondence map, pixels were more 

concentrated in certain areas, or generally within certain materials of geologically mapped 

classes. This concentration of correspondence, typically occurring in regions of like-materials, 

suggested that SPOT is more sensitive to mapping particular classes due to its different spectral 

response than LANDSAT - marine sediments and alluvial plains in particular – and may 

therefore be useful imagery to map these types of materials.   

4.2.7 RPM: Limitations and Issues 

Mapping surficial materials using the RPM method has inherent limitations and issues, 

some of which can be mitigated and some which cannot be avoided.  Limitations lie in the data 

used (imagery) and also within the materials they are set out to classify.  Imagery may be the 

cause of misclassification as it can be radiometrically unbalanced.  This happens when two or 

more scenes of imagery are captured at different seasons or times are stitched together to form a 

single image.  Differences in season also influences moisture content and vegetation cover, 

therefore affecting the spectral representation of the surficial materials.  Imagery used may also 

capture clouds, which does not represent surficial sediments therefore causes misclassified pixels 

and/or regions.  Surficial materials that are similar to one another in terms of composition or 

vegetation cover may influence classifications of their pixels and confusion between their 

classifications.   Materials in this area tend to have gradual transitions and not hard boundaries, 

which is difficult to capture with spectral information. 

4.3 Implications of Work 

4.3.1 Aggregate Resources and Mineral Exploration Applications 

As discussed, using the RPM approach alongside the traditional mapping method is an 

asset in streamlining mapping of surficial materials in the arctic tundra.  It is useful in identifying 

locations to focus fieldwork and resources required for fieldwork such as time and funding to 

make field expenditures more effective.  The Canadian Arctic is host to base metals, diamonds, 

uranium, gold and nickel-copper-platinum group elements.  If more efficient bedrock and 

surficial materials mapping of the arctic tundra is completed, exploration of such resources in the 

north will be improved.  Further exploration and discovery of available mineral resources will 

therefore positively influence northern communities and the national Canadian economy.  

This RPM approach and associated research can be useful to industry as it encourages the 

collaboration of the remote sensing and geology communities to work together thereby 

enhancing the scientific progress.  This collaboration can facilitate the achievement of 
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accelerated mapping results and increase potential in the development of additional and more 

efficient resource exploration programs in a more cost-effective manner.  

  

4.3.2 Where to go next? 

The RPM approach, thought to enhance geological mapping of the arctic and make 

mapping programs more effective, raises further questions and presents further research 

opportunities as it continues to evolve.    It would be useful to explore spectral signatures and 

related statistics of individual surficial material classes as to identify how spectrally different on 

a statistical level groups of sediments or classes of sediments are on a numerical level.  

Incorporating additional data alongside these imageries would also be useful – such as 

RADARSAT for provision of textural information, and digital elevation models (DEMs) for 

topographical data.  Topographical data is available at varied scales, and can provide further 

insight into drainage and moisture content.   As the creation of ROIs is critical to this process, it 

would be imperative to further develop and streamline their production and determine whether 

their creation is most effective by using a single method or source for their derivation (i.e. 

fieldwork, visual imagery interpretation, air photo interpretation), or a combination of these 

means.  The RPM method is a relatively new approach and requires further investigation to 

optimize its process to satisfy the needs of the geological mapping and in turn the resource 

exploration industry.    
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Appendix A:  Description of 21 classes  

 Code Description Visual Spectral 

Characteristics 

 (LANDSAT 

Bands 7, 4, 2) 

Vegetation Moisture 

EXPOSED 

ALLUVIAL 

SEDIMENTS 

Ap Alluvial sands and 

minor silts; exposed 
 

White 
Grey, greyish-

blue 

None Water saturated 

MARINE 

GULLIED 

SEDIMENTS 

Mg Marine silts and 

clays;  

exposed sediments; 

gullied 

White with some 

purple/lilac 
None Dry 

MARINE 

SILTY SANDS 
 

MS1 Marine fine sands, 

silts and clays;  

some surface runoff 

features 

Bright 

green/yellowish-

green 

Grass-covered Unsaturated 

MS2 Marine sands and 

silts; nearshore 

deposits; 

 coarser than MS1 

Mottled/brownis

h-green 
Grass- and 

lichen-covered 
Unsaturated 

ORGANICS O Thin organic 

deposits  
Emerald Green – 

spectrally 

variable – 

mottled greens 

and browns 

Grasses, moss, 

peat and 

sedges  

Heavily 

saturated; may 

include  
small ponds 

SAND AND 

GRAVEL 
 

SG1 Glaciofluvial and 

marine sands and 

gravels;  

occur as 

beaches,littoral 

deposits, deltas, 

eskers, outwash 

terraces 

Red/Brown 
 

Grasses and 

dried lichen 
Dry 

SG2 Marine fine-grained 

sands, silty-sands; 

occur on coastal 

plains in NTS 46L 

and M 

Green - brighter Grasses Moist/moderatel

y dry 

SG3 Glaciofluvial and 

marine 
sands and gravels; 

exposed;  occur as 

beaches, deltas, 

eskers, outwash 

terraces 

Light - 

White/Yellow/ 

Rose 

None Dry 

BEDROCK R1 Exposed bedrock Bright Red 

(pink) 

None Dry 
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 R2 Bedrock with some 

discontinuous till 

cover 

Greenish –pink Some lichen 

cover 

Dry 

BOULDER 

FIELDS 

B Broken Bedrock; 

continuous boulder 

cover 

Bright red (linear 

patterns) 

Can be some 

lichen-covered 

Dry 

TILL 

BLANKET 
 

Tb1 Thick drift cover 

with little boulder 

cover or exposed 

bedrock 

Brownish-Green Grassy with 

moss 

Moist 

 Tb2 Thick drift cover; 

more boulders and 

less vegetated than 

Tb1 

Reddish-Green Grass and 

moss 

Moist 

MODIFIED 

TILL 
 

Tm1 Modified till; 

eroded in places; 

may include sand 

and gravel; 

bouldery 

Greenish-Red Moss and grass Moist 

 Tm2 Modified till; less 

bouldery than Tm1 

Reddish-Green  Moss and grass Moist 

TILL 

VENEER 
 

Tv1 Thin drift cover, 

mixed with bedrock 

and boulders or 

bedrock and sand;  

contains more 

boulder/bedrock 

terrain than Tv2 

Reddish Green - 

Greenish Red 
 

Sparse grasses; 

moss 

Moist 

 Tv2 Thin drift cover; 

contains more 

moisture and 

vegetation than Tv1 

Brownish-Green Grasses; moss Moist 

CARBONATE 

TILL 

Ct Till with carbonate 

clasts and 

calcareous matrix 

Bright Green 

(Yellowy, Neon 

Green), smooth 

and little 

variability 

between pixels 

Sparse short 

grasses, some 

moss; 

unvegetated 

“stripes” 

Moist 

RIBBED TILL Tr Till mixed with 

sand, gravel and 

boulders; eroded, 

disorganized 

gravelly ridges, 

terraces and 

hummocks 

Mottled pattern 

on imagery 

Mossy, little 

grass, lichen 

Moist 

SHALLOW 

WATER 

Sw Heavily sediment 

laden water (where 

bottom sediments 

can be seen) 

Aqua - greenish 

blue 

None Shallow water 

(running or 

standing) 
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ICE/SNOW Ice/S

now 

Frozen water Bright Blue None Frozen 
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Appendix B: Confusion Matrices for 4 Classifications: GK1, GK2, Stat1, 

Stat2 
These tables were created using the class combination and associated ROIs with the classification.  These, and 

output classification (using the corresponding classes) were inputted into the post-classification algorithm to 

produce a confusion matrix.  This matrix measures how accurately the ROIs were in predicting surficial units on 

the LANDSAT, producing an overall percentage accuracy as well as accuracy per individual class.  
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produce a confusion matrix.  This matrix measures how accurately the ROIs were in predicting surficial units on 

the LANDSAT, producing an overall percentage accuracy as well as accuracy per individual class.  
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Appendix C : Confusion Matrices for 4 Classifications : LS1, LS2, S1, S2 
 

These tables were created using the class combination and associated ROIs with the 

classification.  These, and output classification (using the corresponding classes) were inputted 

into the post-classification algorithm to produce a confusion matrix.  This matrix measures how 

accurately the ROIs were in predicting surficial units on the LANDSAT, producing an overall 

percentage accuracy as well as accuracy per individual class. 
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Appendix D: User Accuracies for LS1, LS2, S1 and S2 classifications 

 

LANDSAT 1 

   Class    Prod. Acc.     User Acc. 

 
(Percent) (Percent) 

Ap 77.06 64.6 

Sw 94.4 99.1 

Ms_1 91.88 80.5 

Ms_2_SG2  59.18 49.93 

O 78.54 36.74 

SG_1  25.52 29.8 

SG_3  61.88 67.16 

B 89.19 25.01 

Ct 90.59 56.27 

Mg  88.23 92.27 

Ice/Snow  7.37 100 

R1and2 48.6 50.8 

Tb_1and2  48.01 81.73 

Tm_1and2 61.66 56.22 

Tv_1and2 49.12 52.5 

    

LANDSAT 2 

 

Class    Prod. Acc. User Acc. 

 
(Percent) (Percent) 

Ap  77.06 64.6 

Sw 94.4 99.1 

Mg 88.23 92.27 

Ms_1 91.88 80.5 

Ms_2_SG2 61.63 47.16 

Ice/Snow 7.37 100 

O 81.78 30.98 

SG_1 31.09 24.23 

R1 64.09 27.99 

T 49.65 91.3 

SG_3 61.88 67.05 

B 92.16 17.56 

Ct 91.15 55.15 
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SPOT 1 

 

   Class    Prod. Acc. User Acc. 

 
(Percent) (Percent) 

Ap 77.22 79.15 

Mg 89.96 89.37 

Ms_1 91.49 73.54 

Ms_2_SG2 44.89 34.43 

O 81.5 19.5 

SG_1 26.3 35.32 

SG_3 67.45 64.96 

B 87.07 20 

Ct 89.27 57.6 

R1and2 38.91 40.6 

Tb_1and2 47.3 86.67 

Tm_1and2 42.94 47.57 

Tv_1and2  26.88 29.09 

     

 

SPOT 2 

 

Class    Prod. Acc. User Acc. 

 
(Percent) (Percent) 

Ap 77.22 79.15 

Mg 90.01 88.91 

Ms_1 91.49 73.54 

Ms_2_SG2 47.18 29.22 

O 83.18 15.99 

SG_1 41.26 28.91 

R1 52.18 21.02 

T 38.64 92.96 

SG_3 67.45 64.96 

B 89.82 16.93 

Ct 89.87 56.55 
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Appendix E: Correspondence Results: pixel-to-pixel correspondence of 4 

classifications (LS1, LS2, S1, S2) to modified surficial materials map 

      

Class Classification Intersect Geology 

Match%  

(Intersect/Geology) 

AP 466 227 761 29.83 

Mg 922 522 1777 29.38 

Ms1 2363 340 1011 33.63 

MS2_SG2 3710 1692 4792 35.31 

O 105 6 32 18.75 

SG1_SG3* 2742 213 3047 6.99 

R 1705 404 2111 19.14 

Tb 1281 498 2559 19.46 

Tv 3068 266 786 33.84 

Tb_CT 1821 781 2559 30.52 

      *SG1_SG3 combined bc no "SG3" on surficial sediments map 

**Tb_Ct combined bc no "Ct" on surficial sediments map 
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Appendix F: Transform Divergence Statistic: LANDSAT, 21 classes 
 

Input File: land_in_mos_sub_utm.dat   

    ROI Name: (Jeffries-Matusita, Transformed Divergence)   
   

Ap [Purple] 994 points:   

    Sw [Aquamarine] 2668 points: (1.99157907 2.00000000)   
    Mg [Blue3] 2150 points: (1.39697431 1.81804679)   

    Ms_1 [Red] 1859 points: (1.99995916 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.99865887 1.99999991)   
    Ice/Snow [Blue] 4804 points: (1.99977493 2.00000000)   

    O [Green] 545 points: (1.99869615 2.00000000)   

    SG_1 [Blue] 1799 points: (1.99181495 1.99999644)   
    SG_2 [Red] 949 points: (1.99944200 2.00000000)   

    R1 [White] 530 points: (1.98331714 2.00000000)   

    R2 [Black] 1037 points: (1.98537145 1.99999998)   
    Tb_1 [Green] 6890 points: (1.99874860 2.00000000)   

    Tb_2 [Cyan] 4667 points: (1.99657999 2.00000000)   

    Tm_1 [Green] 3336 points: (1.99548974 2.00000000)   
    Tm_2 [Red] 2452 points: (1.99725334 2.00000000)   

    Tv_1 [Aquamarine] 1437 points: (1.99262147 2.00000000)   

    Tv_2 [Sienna] 1002 points: (1.99526716 2.00000000)   
    SG_3 [Sea Green] 854 points: (0.77480216 0.91477605)   

    B [White] 745 points: (1.99533675 2.00000000)   

    Ct [White] 3007 points: (1.99894550 2.00000000)   
    Tr [Maroon] 3425 points: (1.99589289 2.00000000)   

   

Sw [Aquamarine] 2668 points:   
    Ap [Purple] 994 points: (1.99157907 2.00000000)   

    Mg [Blue3] 2150 points: (1.98976057 2.00000000)   

    Ms_1 [Red] 1859 points: (2.00000000 2.00000000)   
    Ms_2 [Blue3] 1578 points: (1.99999999 2.00000000)   

    Ice/Snow [Blue] 4804 points: (1.99998914 2.00000000)   
    O [Green] 545 points: (2.00000000 2.00000000)   

    SG_1 [Blue] 1799 points: (1.99999997 2.00000000)   

    SG_2 [Red] 949 points: (2.00000000 2.00000000)   

    R1 [White] 530 points: (2.00000000 2.00000000)   

    R2 [Black] 1037 points: (2.00000000 2.00000000)   

    Tb_1 [Green] 6890 points: (1.99999999 2.00000000)   
    Tb_2 [Cyan] 4667 points: (2.00000000 2.00000000)   

    Tm_1 [Green] 3336 points: (2.00000000 2.00000000)   

    Tm_2 [Red] 2452 points: (2.00000000 2.00000000)   
    Tv_1 [Aquamarine] 1437 points: (2.00000000 2.00000000)   

    Tv_2 [Sienna] 1002 points: (2.00000000 2.00000000)   

    SG_3 [Sea Green] 854 points: (1.99561690 2.00000000)   
    B [White] 745 points: (2.00000000 2.00000000)   

    Ct [White] 3007 points: (2.00000000 2.00000000)   

    Tr [Maroon] 3425 points: (2.00000000 2.00000000)   
   

Mg [Blue3] 2150 points:   

    Ap [Purple] 994 points: (1.39697431 1.81804679)   
    Sw [Aquamarine] 2668 points: (1.98976057 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99994244 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.99706392 1.99999983)   

    Ice/Snow [Blue] 4804 points: (1.99973402 2.00000000)   

    O [Green] 545 points: (1.99883879 2.00000000)   

    SG_1 [Blue] 1799 points: (1.99792036 1.99999979)   
    SG_2 [Red] 949 points: (1.99882114 2.00000000)   

    R1 [White] 530 points: (1.99996256 2.00000000)   

    R2 [Black] 1037 points: (1.99987195 2.00000000)   
    Tb_1 [Green] 6890 points: (1.99962241 2.00000000)   

    Tb_2 [Cyan] 4667 points: (1.99999373 2.00000000)   

    Tm_1 [Green] 3336 points: (1.99999702 2.00000000)   
    Tm_2 [Red] 2452 points: (1.99997998 2.00000000)   

    Tv_1 [Aquamarine] 1437 points: (1.99993004 2.00000000)   

    Tv_2 [Sienna] 1002 points: (1.99973571 2.00000000)   
    SG_3 [Sea Green] 854 points: (1.76791681 1.88781183)   

    B [White] 745 points: (1.99999961 2.00000000)   

    Ct [White] 3007 points: (1.99991952 2.00000000)   

    Tr [Maroon] 3425 points: (1.99993485 2.00000000)   
   

Ms_1 [Red] 1859 points:   

    Ap [Purple] 994 points: (1.99995916 2.00000000)   
    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99994244 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.39357624 1.50697672)   
    Ice/Snow [Blue] 4804 points: (2.00000000 2.00000000)   

    O [Green] 545 points: (1.99541352 1.99985519)   

    SG_1 [Blue] 1799 points: (1.81080257 1.89259973)   
    SG_2 [Red] 949 points: (1.55429915 1.60293191)   

    R1 [White] 530 points: (1.99999184 2.00000000)   

    R2 [Black] 1037 points: (1.99901319 1.99990247)   
    Tb_1 [Green] 6890 points: (1.88350589 1.93510313)   

    Tb_2 [Cyan] 4667 points: (1.99665824 1.99998941)   

    Tm_1 [Green] 3336 points: (1.99991642 2.00000000)   
    Tm_2 [Red] 2452 points: (1.99641261 1.99998914)   

    Tv_1 [Aquamarine] 1437 points: (1.99740956 1.99998645)   

    Tv_2 [Sienna] 1002 points: (1.99296160 1.99797269)   
    SG_3 [Sea Green] 854 points: (1.98199568 2.00000000)   

    B [White] 745 points: (1.99999842 2.00000000)   

    Ct [White] 3007 points: (1.92848884 1.99897306)   
    Tr [Maroon] 3425 points: (1.99540160 1.99998353)   

   

Ms_2 [Blue3] 1578 points:   
    Ap [Purple] 994 points: (1.99865887 1.99999991)   

    Sw [Aquamarine] 2668 points: (1.99999999 2.00000000)   

    Mg [Blue3] 2150 points: (1.99706392 1.99999983)   
    Ms_1 [Red] 1859 points: (1.39357624 1.50697672)   

    Ice/Snow [Blue] 4804 points: (1.99999777 2.00000000)   
    O [Green] 545 points: (1.88029199 1.97099966)   

    SG_1 [Blue] 1799 points: (0.95147084 1.26426934)   

    SG_2 [Red] 949 points: (0.55130744 0.70144454)   

    R1 [White] 530 points: (1.99800694 1.99999114)   

    R2 [Black] 1037 points: (1.96332238 1.98637527)   

    Tb_1 [Green] 6890 points: (1.01508221 1.18519071)   
    Tb_2 [Cyan] 4667 points: (1.88774694 1.98807635)   

    Tm_1 [Green] 3336 points: (1.99788403 1.99988502)   

    Tm_2 [Red] 2452 points: (1.92180090 1.98685951)   
    Tv_1 [Aquamarine] 1437 points: (1.93891542 1.98565343)   

    Tv_2 [Sienna] 1002 points: (1.80590131 1.88049362)   

    SG_3 [Sea Green] 854 points: (1.94389246 1.99999965)   
    B [White] 745 points: (1.99990056 1.99999108)   

    Ct [White] 3007 points: (1.27360842 1.67259211)   

    Tr [Maroon] 3425 points: (1.86200251 1.96924419)   
   

Ice/Snow [Blue] 4804 points:   

    Ap [Purple] 994 points: (1.99977493 2.00000000)   
    Sw [Aquamarine] 2668 points: (1.99998914 2.00000000)   

    Mg [Blue3] 2150 points: (1.99973402 2.00000000)   

    Ms_1 [Red] 1859 points: (2.00000000 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.99999777 2.00000000)   

    O [Green] 545 points: (1.99999745 2.00000000)   

    SG_1 [Blue] 1799 points: (1.99999254 2.00000000)   
    SG_2 [Red] 949 points: (1.99999917 2.00000000)   

    R1 [White] 530 points: (1.99999936 2.00000000)   

    R2 [Black] 1037 points: (1.99999878 2.00000000)   
    Tb_1 [Green] 6890 points: (1.99999993 2.00000000)   

    Tb_2 [Cyan] 4667 points: (1.99999955 2.00000000)   

    Tm_1 [Green] 3336 points: (1.99999928 2.00000000)   
    Tm_2 [Red] 2452 points: (1.99999888 2.00000000)   

    Tv_1 [Aquamarine] 1437 points: (1.99999809 2.00000000)   

    Tv_2 [Sienna] 1002 points: (1.99999864 2.00000000)   
    SG_3 [Sea Green] 854 points: (1.99998234 2.00000000)   
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    B [White] 745 points: (1.99999936 2.00000000)   

    Ct [White] 3007 points: (2.00000000 2.00000000)   
    Tr [Maroon] 3425 points: (1.99999912 2.00000000)   

   

O [Green] 545 points:   
    Ap [Purple] 994 points: (1.99869615 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99883879 2.00000000)   
    Ms_1 [Red] 1859 points: (1.99541352 1.99985519)   

    Ms_2 [Blue3] 1578 points: (1.88029199 1.97099966)   

    Ice/Snow [Blue] 4804 points: (1.99999745 2.00000000)   
    SG_1 [Blue] 1799 points: (1.75321911 1.94141062)   

    SG_2 [Red] 949 points: (1.87913002 1.96340765)   

    R1 [White] 530 points: (1.99803896 1.99989943)   
    R2 [Black] 1037 points: (1.96122182 1.99690203)   

    Tb_1 [Green] 6890 points: (1.71826471 1.99670496)   

    Tb_2 [Cyan] 4667 points: (1.83519650 1.99999464)   
    Tm_1 [Green] 3336 points: (1.99034424 1.99997816)   

    Tm_2 [Red] 2452 points: (1.79770606 1.99528609)   

    Tv_1 [Aquamarine] 1437 points: (1.96291065 1.99892389)   
    Tv_2 [Sienna] 1002 points: (1.95029668 1.98997025)   

    SG_3 [Sea Green] 854 points: (1.96641674 2.00000000)   

    B [White] 745 points: (1.99975270 1.99999999)   
    Ct [White] 3007 points: (1.98049556 1.99997660)   

    Tr [Maroon] 3425 points: (1.78095526 1.95007765)   

   
SG_1 [Blue] 1799 points:   

    Ap [Purple] 994 points: (1.99181495 1.99999644)   
    Sw [Aquamarine] 2668 points: (1.99999997 2.00000000)   

    Mg [Blue3] 2150 points: (1.99792036 1.99999979)   

    Ms_1 [Red] 1859 points: (1.81080257 1.89259973)   
    Ms_2 [Blue3] 1578 points: (0.95147084 1.26426934)   

    Ice/Snow [Blue] 4804 points: (1.99999254 2.00000000)   

    O [Green] 545 points: (1.75321911 1.94141062)   
    SG_2 [Red] 949 points: (0.80008964 1.05231912)   

    R1 [White] 530 points: (1.63804201 1.92066733)   

    R2 [Black] 1037 points: (1.10782464 1.28333723)   
    Tb_1 [Green] 6890 points: (0.73493769 0.90636207)   

    Tb_2 [Cyan] 4667 points: (1.27486648 1.74759777)   

    Tm_1 [Green] 3336 points: (1.59047599 1.92740191)   
    Tm_2 [Red] 2452 points: (1.17579251 1.69123675)   

    Tv_1 [Aquamarine] 1437 points: (0.98119453 1.31600258)   

    Tv_2 [Sienna] 1002 points: (0.67608360 0.81312881)   
    SG_3 [Sea Green] 854 points: (1.91296380 1.99999358)   

    B [White] 745 points: (1.85329251 1.97749505)   

    Ct [White] 3007 points: (1.33267012 1.78278028)   
    Tr [Maroon] 3425 points: (0.91973996 1.45503426)   

   

SG_2 [Red] 949 points:   
    Ap [Purple] 994 points: (1.99944200 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99882114 2.00000000)   
    Ms_1 [Red] 1859 points: (1.55429915 1.60293191)   

    Ms_2 [Blue3] 1578 points: (0.55130744 0.70144454)   

    Ice/Snow [Blue] 4804 points: (1.99999917 2.00000000)   
    O [Green] 545 points: (1.87913002 1.96340765)   

    SG_1 [Blue] 1799 points: (0.80008964 1.05231912)   

    R1 [White] 530 points: (1.99663825 1.99997161)   
    R2 [Black] 1037 points: (1.94650922 1.98059931)   

    Tb_1 [Green] 6890 points: (1.00678582 1.17183893)   

    Tb_2 [Cyan] 4667 points: (1.91705046 1.99523775)   
    Tm_1 [Green] 3336 points: (1.99326639 1.99992046)   

    Tm_2 [Red] 2452 points: (1.89986821 1.99077938)   

    Tv_1 [Aquamarine] 1437 points: (1.89680702 1.98467615)   
    Tv_2 [Sienna] 1002 points: (1.73429204 1.79642567)   

    SG_3 [Sea Green] 854 points: (1.94583892 2.00000000)   

    B [White] 745 points: (1.99974150 1.99999128)   
    Ct [White] 3007 points: (1.29106431 1.69131240)   

    Tr [Maroon] 3425 points: (1.81450733 1.97557935)   

   

R1 [White] 530 points:   

    Ap [Purple] 994 points: (1.98331714 2.00000000)   
    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99996256 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99999184 2.00000000)   
    Ms_2 [Blue3] 1578 points: (1.99800694 1.99999114)   

    Ice/Snow [Blue] 4804 points: (1.99999936 2.00000000)   

    O [Green] 545 points: (1.99803896 1.99989943)   
    SG_1 [Blue] 1799 points: (1.63804201 1.92066733)   

    SG_2 [Red] 949 points: (1.99663825 1.99997161)   

    R2 [Black] 1037 points: (0.93743011 1.11204065)   
    Tb_1 [Green] 6890 points: (1.98299266 1.99867690)   

    Tb_2 [Cyan] 4667 points: (1.60197468 1.96761555)   

    Tm_1 [Green] 3336 points: (1.21001041 1.74288524)   
    Tm_2 [Red] 2452 points: (1.66399364 1.93501509)   

    Tv_1 [Aquamarine] 1437 points: (1.24179993 1.50443651)   

    Tv_2 [Sienna] 1002 points: (1.62503736 1.79258093)   
    SG_3 [Sea Green] 854 points: (1.98123252 2.00000000)   

    B [White] 745 points: (1.43726902 1.84056486)   

    Ct [White] 3007 points: (1.99923004 1.99997654)   
    Tr [Maroon] 3425 points: (1.58782765 1.77959866)   

   

R2 [Black] 1037 points:   
    Ap [Purple] 994 points: (1.98537145 1.99999998)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99987195 2.00000000)   
    Ms_1 [Red] 1859 points: (1.99901319 1.99990247)   

    Ms_2 [Blue3] 1578 points: (1.96332238 1.98637527)   
    Ice/Snow [Blue] 4804 points: (1.99999878 2.00000000)   

    O [Green] 545 points: (1.96122182 1.99690203)   

    SG_1 [Blue] 1799 points: (1.10782464 1.28333723)   
    SG_2 [Red] 949 points: (1.94650922 1.98059931)   

    R1 [White] 530 points: (0.93743011 1.11204065)   

    Tb_1 [Green] 6890 points: (1.78332638 1.84544054)   
    Tb_2 [Cyan] 4667 points: (1.08722984 1.45643144)   

    Tm_1 [Green] 3336 points: (0.80228592 1.17568598)   

    Tm_2 [Red] 2452 points: (1.06353171 1.38501004)   
    Tv_1 [Aquamarine] 1437 points: (0.34310960 0.38192127)   

    Tv_2 [Sienna] 1002 points: (0.71835299 0.75527867)   

    SG_3 [Sea Green] 854 points: (1.96036021 1.99999995)   
    B [White] 745 points: (1.34424480 1.53681187)   

    Ct [White] 3007 points: (1.93951445 1.98674430)   

    Tr [Maroon] 3425 points: (1.02527311 1.18384500)   
   

Tb_1 [Green] 6890 points:   

    Ap [Purple] 994 points: (1.99874860 2.00000000)   
    Sw [Aquamarine] 2668 points: (1.99999999 2.00000000)   

    Mg [Blue3] 2150 points: (1.99962241 2.00000000)   

    Ms_1 [Red] 1859 points: (1.88350589 1.93510313)   
    Ms_2 [Blue3] 1578 points: (1.01508221 1.18519071)   

    Ice/Snow [Blue] 4804 points: (1.99999993 2.00000000)   

    O [Green] 545 points: (1.71826471 1.99670496)   
    SG_1 [Blue] 1799 points: (0.73493769 0.90636207)   

    SG_2 [Red] 949 points: (1.00678582 1.17183893)   

    R1 [White] 530 points: (1.98299266 1.99867690)   
    R2 [Black] 1037 points: (1.78332638 1.84544054)   

    Tb_2 [Cyan] 4667 points: (1.49803302 1.71744876)   

    Tm_1 [Green] 3336 points: (1.92547431 1.97095643)   
    Tm_2 [Red] 2452 points: (1.32927221 1.59907772)   

    Tv_1 [Aquamarine] 1437 points: (1.69788934 1.75394316)   

    Tv_2 [Sienna] 1002 points: (1.34716607 1.40827273)   
    SG_3 [Sea Green] 854 points: (1.94696181 2.00000000)   

    B [White] 745 points: (1.99246614 1.99469959)   

    Ct [White] 3007 points: (0.93069426 1.31014616)   
    Tr [Maroon] 3425 points: (1.37989949 1.56376622)   

   

Tb_2 [Cyan] 4667 points:   
    Ap [Purple] 994 points: (1.99657999 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99999373 2.00000000)   
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    Ms_1 [Red] 1859 points: (1.99665824 1.99998941)   

    Ms_2 [Blue3] 1578 points: (1.88774694 1.98807635)   
    Ice/Snow [Blue] 4804 points: (1.99999955 2.00000000)   

    O [Green] 545 points: (1.83519650 1.99999464)   

    SG_1 [Blue] 1799 points: (1.27486648 1.74759777)   
    SG_2 [Red] 949 points: (1.91705046 1.99523775)   

    R1 [White] 530 points: (1.60197468 1.96761555)   

    R2 [Black] 1037 points: (1.08722984 1.45643144)   
    Tb_1 [Green] 6890 points: (1.49803302 1.71744876)   

    Tm_1 [Green] 3336 points: (0.80486226 1.06955321)   

    Tm_2 [Red] 2452 points: (0.41268991 0.47674847)   
    Tv_1 [Aquamarine] 1437 points: (0.78371185 0.96015653)   

    Tv_2 [Sienna] 1002 points: (1.28951178 1.52554060)   

    SG_3 [Sea Green] 854 points: (1.98204362 2.00000000)   
    B [White] 745 points: (1.45844680 1.89652658)   

    Ct [White] 3007 points: (1.98399014 1.99368329)   

    Tr [Maroon] 3425 points: (0.59573140 0.68955780)   
   

Tm_1 [Green] 3336 points:   

    Ap [Purple] 994 points: (1.99548974 2.00000000)   
    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99999702 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99991642 2.00000000)   
    Ms_2 [Blue3] 1578 points: (1.99788403 1.99988502)   

    Ice/Snow [Blue] 4804 points: (1.99999928 2.00000000)   

    O [Green] 545 points: (1.99034424 1.99997816)   
    SG_1 [Blue] 1799 points: (1.59047599 1.92740191)   

    SG_2 [Red] 949 points: (1.99326639 1.99992046)   
    R1 [White] 530 points: (1.21001041 1.74288524)   

    R2 [Black] 1037 points: (0.80228592 1.17568598)   

    Tb_1 [Green] 6890 points: (1.92547431 1.97095643)   
    Tb_2 [Cyan] 4667 points: (0.80486226 1.06955321)   

    Tm_2 [Red] 2452 points: (0.89305578 0.95475340)   

    Tv_1 [Aquamarine] 1437 points: (0.67845608 0.84408539)   
    Tv_2 [Sienna] 1002 points: (1.40832081 1.59888748)   

    SG_3 [Sea Green] 854 points: (1.98964731 2.00000000)   

    B [White] 745 points: (0.84978735 0.93708650)   
    Ct [White] 3007 points: (1.99920808 1.99952893)   

    Tr [Maroon] 3425 points: (1.16648376 1.20605826)   

   
Tm_2 [Red] 2452 points:   

    Ap [Purple] 994 points: (1.99725334 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   
    Mg [Blue3] 2150 points: (1.99997998 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99641261 1.99998914)   

    Ms_2 [Blue3] 1578 points: (1.92180090 1.98685951)   
    Ice/Snow [Blue] 4804 points: (1.99999888 2.00000000)   

    O [Green] 545 points: (1.79770606 1.99528609)   

    SG_1 [Blue] 1799 points: (1.17579251 1.69123675)   
    SG_2 [Red] 949 points: (1.89986821 1.99077938)   

    R1 [White] 530 points: (1.66399364 1.93501509)   

    R2 [Black] 1037 points: (1.06353171 1.38501004)   
    Tb_1 [Green] 6890 points: (1.32927221 1.59907772)   

    Tb_2 [Cyan] 4667 points: (0.41268991 0.47674847)   

    Tm_1 [Green] 3336 points: (0.89305578 0.95475340)   
    Tv_1 [Aquamarine] 1437 points: (0.77053682 0.89743624)   

    Tv_2 [Sienna] 1002 points: (1.08231966 1.28640432)   

    SG_3 [Sea Green] 854 points: (1.97527472 2.00000000)   
    B [White] 745 points: (1.64584766 1.78247060)   

    Ct [White] 3007 points: (1.97216023 1.98267668)   

    Tr [Maroon] 3425 points: (0.39958184 0.43004242)   
   

Tv_1 [Aquamarine] 1437 points:   

    Ap [Purple] 994 points: (1.99262147 2.00000000)   
    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99993004 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99740956 1.99998645)   
    Ms_2 [Blue3] 1578 points: (1.93891542 1.98565343)   

    Ice/Snow [Blue] 4804 points: (1.99999809 2.00000000)   

    O [Green] 545 points: (1.96291065 1.99892389)   

    SG_1 [Blue] 1799 points: (0.98119453 1.31600258)   

    SG_2 [Red] 949 points: (1.89680702 1.98467615)   
    R1 [White] 530 points: (1.24179993 1.50443651)   

    R2 [Black] 1037 points: (0.34310960 0.38192127)   

    Tb_1 [Green] 6890 points: (1.69788934 1.75394316)   
    Tb_2 [Cyan] 4667 points: (0.78371185 0.96015653)   

    Tm_1 [Green] 3336 points: (0.67845608 0.84408539)   

    Tm_2 [Red] 2452 points: (0.77053682 0.89743624)   
    Tv_2 [Sienna] 1002 points: (0.52567561 0.57823596)   

    SG_3 [Sea Green] 854 points: (1.97226400 2.00000000)   

    B [White] 745 points: (1.38706076 1.51623848)   
    Ct [White] 3007 points: (1.94307807 1.97879904)   

    Tr [Maroon] 3425 points: (0.66063403 0.69501911)   

   
Tv_2 [Sienna] 1002 points:   

    Ap [Purple] 994 points: (1.99526716 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   
    Mg [Blue3] 2150 points: (1.99973571 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99296160 1.99797269)   

    Ms_2 [Blue3] 1578 points: (1.80590131 1.88049362)   
    Ice/Snow [Blue] 4804 points: (1.99999864 2.00000000)   

    O [Green] 545 points: (1.95029668 1.98997025)   

    SG_1 [Blue] 1799 points: (0.67608360 0.81312881)   
    SG_2 [Red] 949 points: (1.73429204 1.79642567)   

    R1 [White] 530 points: (1.62503736 1.79258093)   

    R2 [Black] 1037 points: (0.71835299 0.75527867)   
    Tb_1 [Green] 6890 points: (1.34716607 1.40827273)   

    Tb_2 [Cyan] 4667 points: (1.28951178 1.52554060)   
    Tm_1 [Green] 3336 points: (1.40832081 1.59888748)   

    Tm_2 [Red] 2452 points: (1.08231966 1.28640432)   

    Tv_1 [Aquamarine] 1437 points: (0.52567561 0.57823596)   
    SG_3 [Sea Green] 854 points: (1.96057790 2.00000000)   

    B [White] 745 points: (1.82722463 1.86964376)   

    Ct [White] 3007 points: (1.65877976 1.78970939)   
    Tr [Maroon] 3425 points: (0.95327861 1.08979023)   

   

SG_3 [Sea Green] 854 points:   
    Ap [Purple] 994 points: (0.77480216 0.91477605)   

    Sw [Aquamarine] 2668 points: (1.99561690 2.00000000)   

    Mg [Blue3] 2150 points: (1.76791681 1.88781183)   
    Ms_1 [Red] 1859 points: (1.98199568 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.94389246 1.99999965)   

    Ice/Snow [Blue] 4804 points: (1.99998234 2.00000000)   
    O [Green] 545 points: (1.96641674 2.00000000)   

    SG_1 [Blue] 1799 points: (1.91296380 1.99999358)   

    SG_2 [Red] 949 points: (1.94583892 2.00000000)   
    R1 [White] 530 points: (1.98123252 2.00000000)   

    R2 [Black] 1037 points: (1.96036021 1.99999995)   

    Tb_1 [Green] 6890 points: (1.94696181 2.00000000)   
    Tb_2 [Cyan] 4667 points: (1.98204362 2.00000000)   

    Tm_1 [Green] 3336 points: (1.98964731 2.00000000)   

    Tm_2 [Red] 2452 points: (1.97527472 2.00000000)   
    Tv_1 [Aquamarine] 1437 points: (1.97226400 2.00000000)   

    Tv_2 [Sienna] 1002 points: (1.96057790 2.00000000)   

    B [White] 745 points: (1.99564881 2.00000000)   
    Ct [White] 3007 points: (1.97045353 2.00000000)   

    Tr [Maroon] 3425 points: (1.97035690 2.00000000)   

   
B [White] 745 points:   

    Ap [Purple] 994 points: (1.99533675 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   
    Mg [Blue3] 2150 points: (1.99999961 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99999842 2.00000000)   

    Ms_2 [Blue3] 1578 points: (1.99990056 1.99999108)   
    Ice/Snow [Blue] 4804 points: (1.99999936 2.00000000)   

    O [Green] 545 points: (1.99975270 1.99999999)   

    SG_1 [Blue] 1799 points: (1.85329251 1.97749505)   
    SG_2 [Red] 949 points: (1.99974150 1.99999128)   

    R1 [White] 530 points: (1.43726902 1.84056486)   

    R2 [Black] 1037 points: (1.34424480 1.53681187)   
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    Tb_1 [Green] 6890 points: (1.99246614 1.99469959)   

    Tb_2 [Cyan] 4667 points: (1.45844680 1.89652658)   
    Tm_1 [Green] 3336 points: (0.84978735 0.93708650)   

    Tm_2 [Red] 2452 points: (1.64584766 1.78247060)   

    Tv_1 [Aquamarine] 1437 points: (1.38706076 1.51623848)   
    Tv_2 [Sienna] 1002 points: (1.82722463 1.86964376)   

    SG_3 [Sea Green] 854 points: (1.99564881 2.00000000)   

    Ct [White] 3007 points: (1.99982753 1.99997642)   
    Tr [Maroon] 3425 points: (1.78004432 1.88610822)   

   

Ct [White] 3007 points:   
    Ap [Purple] 994 points: (1.99894550 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   

    Mg [Blue3] 2150 points: (1.99991952 2.00000000)   
    Ms_1 [Red] 1859 points: (1.92848884 1.99897306)   

    Ms_2 [Blue3] 1578 points: (1.27360842 1.67259211)   

    Ice/Snow [Blue] 4804 points: (2.00000000 2.00000000)   
    O [Green] 545 points: (1.98049556 1.99997660)   

    SG_1 [Blue] 1799 points: (1.33267012 1.78278028)   

    SG_2 [Red] 949 points: (1.29106431 1.69131240)   
    R1 [White] 530 points: (1.99923004 1.99997654)   

    R2 [Black] 1037 points: (1.93951445 1.98674430)   

    Tb_1 [Green] 6890 points: (0.93069426 1.31014616)   
    Tb_2 [Cyan] 4667 points: (1.98399014 1.99368329)   

    Tm_1 [Green] 3336 points: (1.99920808 1.99952893)   

    Tm_2 [Red] 2452 points: (1.97216023 1.98267668)   
    Tv_1 [Aquamarine] 1437 points: (1.94307807 1.97879904)   

    Tv_2 [Sienna] 1002 points: (1.65877976 1.78970939)   

    SG_3 [Sea Green] 854 points: (1.97045353 2.00000000)   
    B [White] 745 points: (1.99982753 1.99997642)   

    Tr [Maroon] 3425 points: (1.95623796 1.97248269)   

   
Tr [Maroon] 3425 points:   

    Ap [Purple] 994 points: (1.99589289 2.00000000)   

    Sw [Aquamarine] 2668 points: (2.00000000 2.00000000)   
    Mg [Blue3] 2150 points: (1.99993485 2.00000000)   

    Ms_1 [Red] 1859 points: (1.99540160 1.99998353)   

    Ms_2 [Blue3] 1578 points: (1.86200251 1.96924419)   
    Ice/Snow [Blue] 4804 points: (1.99999912 2.00000000)   

    O [Green] 545 points: (1.78095526 1.95007765)   

    SG_1 [Blue] 1799 points: (0.91973996 1.45503426)   
    SG_2 [Red] 949 points: (1.81450733 1.97557935)   

    R1 [White] 530 points: (1.58782765 1.77959866)   

    R2 [Black] 1037 points: (1.02527311 1.18384500)   
    Tb_1 [Green] 6890 points: (1.37989949 1.56376622)   

    Tb_2 [Cyan] 4667 points: (0.59573140 0.68955780)   

    Tm_1 [Green] 3336 points: (1.16648376 1.20605826)   
    Tm_2 [Red] 2452 points: (0.39958184 0.43004242)   

    Tv_1 [Aquamarine] 1437 points: (0.66063403 0.69501911)   

    Tv_2 [Sienna] 1002 points: (0.95327861 1.08979023)   
    SG_3 [Sea Green] 854 points: (1.97035690 2.00000000)   

    B [White] 745 points: (1.78004432 1.88610822)   

    Ct [White] 3007 points: (1.95623796 1.97248269)   

   
Pair Separation (least to most);   

   

R2 [Black] 1037 points and Tv_1 [Aquamarine] 1437 points - 0.34310960   
Tm_2 [Red] 2452 points and Tr [Maroon] 3425 points - 0.39958184   

Tb_2 [Cyan] 4667 points and Tm_2 [Red] 2452 points - 0.41268991   

Tv_1 [Aquamarine] 1437 points and Tv_2 [Sienna] 1002 points - 0.52567561   
Ms_2 [Blue3] 1578 points and SG_2 [Red] 949 points - 0.55130744   

Tb_2 [Cyan] 4667 points and Tr [Maroon] 3425 points - 0.59573140   

Tv_1 [Aquamarine] 1437 points and Tr [Maroon] 3425 points - 0.66063403   
SG_1 [Blue] 1799 points and Tv_2 [Sienna] 1002 points - 0.67608360   

Tm_1 [Green] 3336 points and Tv_1 [Aquamarine] 1437 points - 0.67845608   

R2 [Black] 1037 points and Tv_2 [Sienna] 1002 points - 0.71835299   
SG_1 [Blue] 1799 points and Tb_1 [Green] 6890 points - 0.73493769   

Tm_2 [Red] 2452 points and Tv_1 [Aquamarine] 1437 points - 0.77053682   

Ap [Purple] 994 points and SG_3 [Sea Green] 854 points - 0.77480216   
Tb_2 [Cyan] 4667 points and Tv_1 [Aquamarine] 1437 points - 0.78371185   

SG_1 [Blue] 1799 points and SG_2 [Red] 949 points - 0.80008964   

R2 [Black] 1037 points and Tm_1 [Green] 3336 points - 0.80228592   
Tb_2 [Cyan] 4667 points and Tm_1 [Green] 3336 points - 0.80486226   

Tm_1 [Green] 3336 points and B [White] 745 points - 0.84978735   

Tm_1 [Green] 3336 points and Tm_2 [Red] 2452 points - 0.89305578   
SG_1 [Blue] 1799 points and Tr [Maroon] 3425 points - 0.91973996   

Tb_1 [Green] 6890 points and Ct [White] 3007 points - 0.93069426   

R1 [White] 530 points and R2 [Black] 1037 points - 0.93743011   
Ms_2 [Blue3] 1578 points and SG_1 [Blue] 1799 points - 0.95147084   

Tv_2 [Sienna] 1002 points and Tr [Maroon] 3425 points - 0.95327861   

SG_1 [Blue] 1799 points and Tv_1 [Aquamarine] 1437 points - 0.98119453   
SG_2 [Red] 949 points and Tb_1 [Green] 6890 points - 1.00678582   

Ms_2 [Blue3] 1578 points and Tb_1 [Green] 6890 points - 1.01508221   

R2 [Black] 1037 points and Tr [Maroon] 3425 points - 1.02527311   
R2 [Black] 1037 points and Tm_2 [Red] 2452 points - 1.06353171   

Tm_2 [Red] 2452 points and Tv_2 [Sienna] 1002 points - 1.08231966   

R2 [Black] 1037 points and Tb_2 [Cyan] 4667 points - 1.08722984   
SG_1 [Blue] 1799 points and R2 [Black] 1037 points - 1.10782464   

Tm_1 [Green] 3336 points and Tr [Maroon] 3425 points - 1.16648376   

SG_1 [Blue] 1799 points and Tm_2 [Red] 2452 points - 1.17579251   
R1 [White] 530 points and Tm_1 [Green] 3336 points - 1.21001041   

R1 [White] 530 points and Tv_1 [Aquamarine] 1437 points - 1.24179993   

Ms_2 [Blue3] 1578 points and Ct [White] 3007 points - 1.27360842   
SG_1 [Blue] 1799 points and Tb_2 [Cyan] 4667 points - 1.27486648   

Tb_2 [Cyan] 4667 points and Tv_2 [Sienna] 1002 points - 1.28951178   

SG_2 [Red] 949 points and Ct [White] 3007 points - 1.29106431   
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Tb_1 [Green] 6890 points and Tm_2 [Red] 2452 points - 1.32927221   

SG_1 [Blue] 1799 points and Ct [White] 3007 points - 1.33267012   
R2 [Black] 1037 points and B [White] 745 points - 1.34424480   

Tb_1 [Green] 6890 points and Tv_2 [Sienna] 1002 points - 1.34716607   

Tb_1 [Green] 6890 points and Tr [Maroon] 3425 points - 1.37989949   
Tv_1 [Aquamarine] 1437 points and B [White] 745 points - 1.38706076   

Ms_1 [Red] 1859 points and Ms_2 [Blue3] 1578 points - 1.39357624   

Ap [Purple] 994 points and Mg [Blue3] 2150 points - 1.39697431   
Tm_1 [Green] 3336 points and Tv_2 [Sienna] 1002 points - 1.40832081   

R1 [White] 530 points and B [White] 745 points - 1.43726902   

Tb_2 [Cyan] 4667 points and B [White] 745 points - 1.45844680   
Tb_1 [Green] 6890 points and Tb_2 [Cyan] 4667 points - 1.49803302   

Ms_1 [Red] 1859 points and SG_2 [Red] 949 points - 1.55429915   

R1 [White] 530 points and Tr [Maroon] 3425 points - 1.58782765   
SG_1 [Blue] 1799 points and Tm_1 [Green] 3336 points - 1.59047599   

R1 [White] 530 points and Tb_2 [Cyan] 4667 points - 1.60197468   

R1 [White] 530 points and Tv_2 [Sienna] 1002 points - 1.62503736   
SG_1 [Blue] 1799 points and R1 [White] 530 points - 1.63804201   

Tm_2 [Red] 2452 points and B [White] 745 points - 1.64584766   

Tv_2 [Sienna] 1002 points and Ct [White] 3007 points - 1.65877976   
R1 [White] 530 points and Tm_2 [Red] 2452 points - 1.66399364   

Tb_1 [Green] 6890 points and Tv_1 [Aquamarine] 1437 points - 1.69788934   

O [Green] 545 points and Tb_1 [Green] 6890 points - 1.71826471   
SG_2 [Red] 949 points and Tv_2 [Sienna] 1002 points - 1.73429204   

O [Green] 545 points and SG_1 [Blue] 1799 points - 1.75321911   

Mg [Blue3] 2150 points and SG_3 [Sea Green] 854 points - 1.76791681   
B [White] 745 points and Tr [Maroon] 3425 points - 1.78004432   

O [Green] 545 points and Tr [Maroon] 3425 points - 1.78095526   
R2 [Black] 1037 points and Tb_1 [Green] 6890 points - 1.78332638   

O [Green] 545 points and Tm_2 [Red] 2452 points - 1.79770606   

Ms_2 [Blue3] 1578 points and Tv_2 [Sienna] 1002 points - 1.80590131   
Ms_1 [Red] 1859 points and SG_1 [Blue] 1799 points - 1.81080257   

SG_2 [Red] 949 points and Tr [Maroon] 3425 points - 1.81450733   

Tv_2 [Sienna] 1002 points and B [White] 745 points - 1.82722463   
O [Green] 545 points and Tb_2 [Cyan] 4667 points - 1.83519650   

SG_1 [Blue] 1799 points and B [White] 745 points - 1.85329251   

Ms_2 [Blue3] 1578 points and Tr [Maroon] 3425 points - 1.86200251   
O [Green] 545 points and SG_2 [Red] 949 points - 1.87913002   

Ms_2 [Blue3] 1578 points and O [Green] 545 points - 1.88029199   

Ms_1 [Red] 1859 points and Tb_1 [Green] 6890 points - 1.88350589   
Ms_2 [Blue3] 1578 points and Tb_2 [Cyan] 4667 points - 1.88774694   

SG_2 [Red] 949 points and Tv_1 [Aquamarine] 1437 points - 1.89680702   

SG_2 [Red] 949 points and Tm_2 [Red] 2452 points - 1.89986821   
SG_1 [Blue] 1799 points and SG_3 [Sea Green] 854 points - 1.91296380   

SG_2 [Red] 949 points and Tb_2 [Cyan] 4667 points - 1.91705046   

Ms_2 [Blue3] 1578 points and Tm_2 [Red] 2452 points - 1.92180090   
Tb_1 [Green] 6890 points and Tm_1 [Green] 3336 points - 1.92547431   

Ms_1 [Red] 1859 points and Ct [White] 3007 points - 1.92848884   

Ms_2 [Blue3] 1578 points and Tv_1 [Aquamarine] 1437 points - 1.93891542   
R2 [Black] 1037 points and Ct [White] 3007 points - 1.93951445   

Tv_1 [Aquamarine] 1437 points and Ct [White] 3007 points - 1.94307807   

Ms_2 [Blue3] 1578 points and SG_3 [Sea Green] 854 points - 1.94389246   
SG_2 [Red] 949 points and SG_3 [Sea Green] 854 points - 1.94583892   

SG_2 [Red] 949 points and R2 [Black] 1037 points - 1.94650922   

Tb_1 [Green] 6890 points and SG_3 [Sea Green] 854 points - 1.94696181   
O [Green] 545 points and Tv_2 [Sienna] 1002 points - 1.95029668   

Ct [White] 3007 points and Tr [Maroon] 3425 points - 1.95623796   

R2 [Black] 1037 points and SG_3 [Sea Green] 854 points - 1.96036021   
Tv_2 [Sienna] 1002 points and SG_3 [Sea Green] 854 points - 1.96057790   

O [Green] 545 points and R2 [Black] 1037 points - 1.96122182   

O [Green] 545 points and Tv_1 [Aquamarine] 1437 points - 1.96291065   
Ms_2 [Blue3] 1578 points and R2 [Black] 1037 points - 1.96332238   

O [Green] 545 points and SG_3 [Sea Green] 854 points - 1.96641674   

SG_3 [Sea Green] 854 points and Tr [Maroon] 3425 points - 1.97035690   
SG_3 [Sea Green] 854 points and Ct [White] 3007 points - 1.97045353   

Tm_2 [Red] 2452 points and Ct [White] 3007 points - 1.97216023   

Tv_1 [Aquamarine] 1437 points and SG_3 [Sea Green] 854 points - 1.97226400   
Tm_2 [Red] 2452 points and SG_3 [Sea Green] 854 points - 1.97527472   

O [Green] 545 points and Ct [White] 3007 points - 1.98049556   

R1 [White] 530 points and SG_3 [Sea Green] 854 points - 1.98123252   
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Ms_1 [Red] 1859 points and SG_3 [Sea Green] 854 points - 1.98199568   

Tb_2 [Cyan] 4667 points and SG_3 [Sea Green] 854 points - 1.98204362   
R1 [White] 530 points and Tb_1 [Green] 6890 points - 1.98299266   

Ap [Purple] 994 points and R1 [White] 530 points - 1.98331714   

Tb_2 [Cyan] 4667 points and Ct [White] 3007 points - 1.98399014   
Ap [Purple] 994 points and R2 [Black] 1037 points - 1.98537145   

Tm_1 [Green] 3336 points and SG_3 [Sea Green] 854 points - 1.98964731   

Sw [Aquamarine] 2668 points and Mg [Blue3] 2150 points - 1.98976057   
O [Green] 545 points and Tm_1 [Green] 3336 points - 1.99034424   

Ap [Purple] 994 points and Sw [Aquamarine] 2668 points - 1.99157907   

Ap [Purple] 994 points and SG_1 [Blue] 1799 points - 1.99181495   
Tb_1 [Green] 6890 points and B [White] 745 points - 1.99246614   

Ap [Purple] 994 points and Tv_1 [Aquamarine] 1437 points - 1.99262147   

Ms_1 [Red] 1859 points and Tv_2 [Sienna] 1002 points - 1.99296160   
SG_2 [Red] 949 points and Tm_1 [Green] 3336 points - 1.99326639   

Ap [Purple] 994 points and Tv_2 [Sienna] 1002 points - 1.99526716   

Ap [Purple] 994 points and B [White] 745 points - 1.99533675   
Ms_1 [Red] 1859 points and Tr [Maroon] 3425 points - 1.99540160   

Ms_1 [Red] 1859 points and O [Green] 545 points - 1.99541352   

Ap [Purple] 994 points and Tm_1 [Green] 3336 points - 1.99548974   
Sw [Aquamarine] 2668 points and SG_3 [Sea Green] 854 points - 1.99561690   

SG_3 [Sea Green] 854 points and B [White] 745 points - 1.99564881   

Ap [Purple] 994 points and Tr [Maroon] 3425 points - 1.99589289   
Ms_1 [Red] 1859 points and Tm_2 [Red] 2452 points - 1.99641261   

Ap [Purple] 994 points and Tb_2 [Cyan] 4667 points - 1.99657999   

SG_2 [Red] 949 points and R1 [White] 530 points - 1.99663825   
Ms_1 [Red] 1859 points and Tb_2 [Cyan] 4667 points - 1.99665824   

Mg [Blue3] 2150 points and Ms_2 [Blue3] 1578 points - 1.99706392   
Ap [Purple] 994 points and Tm_2 [Red] 2452 points - 1.99725334   

Ms_1 [Red] 1859 points and Tv_1 [Aquamarine] 1437 points - 1.99740956   

Ms_2 [Blue3] 1578 points and Tm_1 [Green] 3336 points - 1.99788403   
Mg [Blue3] 2150 points and SG_1 [Blue] 1799 points - 1.99792036   

Ms_2 [Blue3] 1578 points and R1 [White] 530 points - 1.99800694   

O [Green] 545 points and R1 [White] 530 points - 1.99803896   
Ap [Purple] 994 points and Ms_2 [Blue3] 1578 points - 1.99865887   

Ap [Purple] 994 points and O [Green] 545 points - 1.99869615   

Ap [Purple] 994 points and Tb_1 [Green] 6890 points - 1.99874860   
Mg [Blue3] 2150 points and SG_2 [Red] 949 points - 1.99882114   

Mg [Blue3] 2150 points and O [Green] 545 points - 1.99883879   

Ap [Purple] 994 points and Ct [White] 3007 points - 1.99894550   
Ms_1 [Red] 1859 points and R2 [Black] 1037 points - 1.99901319   

Tm_1 [Green] 3336 points and Ct [White] 3007 points - 1.99920808   

R1 [White] 530 points and Ct [White] 3007 points - 1.99923004   
Ap [Purple] 994 points and SG_2 [Red] 949 points - 1.99944200   

Mg [Blue3] 2150 points and Tb_1 [Green] 6890 points - 1.99962241   

Mg [Blue3] 2150 points and Ice/Snow [Blue] 4804 points - 1.99973402   
Mg [Blue3] 2150 points and Tv_2 [Sienna] 1002 points - 1.99973571   

SG_2 [Red] 949 points and B [White] 745 points - 1.99974150   

O [Green] 545 points and B [White] 745 points - 1.99975270   
Ap [Purple] 994 points and Ice/Snow [Blue] 4804 points - 1.99977493   

B [White] 745 points and Ct [White] 3007 points - 1.99982753   

Mg [Blue3] 2150 points and R2 [Black] 1037 points - 1.99987195   
Ms_2 [Blue3] 1578 points and B [White] 745 points - 1.99990056   

Ms_1 [Red] 1859 points and Tm_1 [Green] 3336 points - 1.99991642   

Mg [Blue3] 2150 points and Ct [White] 3007 points - 1.99991952   
Mg [Blue3] 2150 points and Tv_1 [Aquamarine] 1437 points - 1.99993004   

Mg [Blue3] 2150 points and Tr [Maroon] 3425 points - 1.99993485   

Mg [Blue3] 2150 points and Ms_1 [Red] 1859 points - 1.99994244   
Ap [Purple] 994 points and Ms_1 [Red] 1859 points - 1.99995916   

Mg [Blue3] 2150 points and R1 [White] 530 points - 1.99996256   

Mg [Blue3] 2150 points and Tm_2 [Red] 2452 points - 1.99997998   
Ice/Snow [Blue] 4804 points and SG_3 [Sea Green] 854 points - 1.99998234   

Sw [Aquamarine] 2668 points and Ice/Snow [Blue] 4804 points - 1.99998914   

Ms_1 [Red] 1859 points and R1 [White] 530 points - 1.99999184   
Ice/Snow [Blue] 4804 points and SG_1 [Blue] 1799 points - 1.99999254   

Mg [Blue3] 2150 points and Tb_2 [Cyan] 4667 points - 1.99999373   

Mg [Blue3] 2150 points and Tm_1 [Green] 3336 points - 1.99999702   
Ice/Snow [Blue] 4804 points and O [Green] 545 points - 1.99999745   

Ms_2 [Blue3] 1578 points and Ice/Snow [Blue] 4804 points - 1.99999777   

Ice/Snow [Blue] 4804 points and Tv_1 [Aquamarine] 1437 points - 1.99999809   
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Ms_1 [Red] 1859 points and B [White] 745 points - 1.99999842   

Ice/Snow [Blue] 4804 points and Tv_2 [Sienna] 1002 points - 1.99999864   
Ice/Snow [Blue] 4804 points and R2 [Black] 1037 points - 1.99999878   

Ice/Snow [Blue] 4804 points and Tm_2 [Red] 2452 points - 1.99999888   

Ice/Snow [Blue] 4804 points and Tr [Maroon] 3425 points - 1.99999912   
Ice/Snow [Blue] 4804 points and SG_2 [Red] 949 points - 1.99999917   

Ice/Snow [Blue] 4804 points and Tm_1 [Green] 3336 points - 1.99999928   

Ice/Snow [Blue] 4804 points and R1 [White] 530 points - 1.99999936   
Ice/Snow [Blue] 4804 points and B [White] 745 points - 1.99999936   

Ice/Snow [Blue] 4804 points and Tb_2 [Cyan] 4667 points - 1.99999955   

Mg [Blue3] 2150 points and B [White] 745 points - 1.99999961   
Ice/Snow [Blue] 4804 points and Tb_1 [Green] 6890 points - 1.99999993   

Sw [Aquamarine] 2668 points and SG_1 [Blue] 1799 points - 1.99999997   

Sw [Aquamarine] 2668 points and Tb_1 [Green] 6890 points - 1.99999999   
Sw [Aquamarine] 2668 points and Ms_2 [Blue3] 1578 points - 1.99999999   

Sw [Aquamarine] 2668 points and SG_2 [Red] 949 points - 2.00000000   

Ice/Snow [Blue] 4804 points and Ct [White] 3007 points - 2.00000000   
Ms_1 [Red] 1859 points and Ice/Snow [Blue] 4804 points - 2.00000000   

Sw [Aquamarine] 2668 points and Tv_1 [Aquamarine] 1437 points - 2.00000000   

Sw [Aquamarine] 2668 points and Tr [Maroon] 3425 points - 2.00000000   
Sw [Aquamarine] 2668 points and O [Green] 545 points - 2.00000000   

Sw [Aquamarine] 2668 points and Ct [White] 3007 points - 2.00000000   

Sw [Aquamarine] 2668 points and R1 [White] 530 points - 2.00000000   
Sw [Aquamarine] 2668 points and R2 [Black] 1037 points - 2.00000000   

Sw [Aquamarine] 2668 points and Tv_2 [Sienna] 1002 points - 2.00000000   

Sw [Aquamarine] 2668 points and Ms_1 [Red] 1859 points - 2.00000000   
Sw [Aquamarine] 2668 points and Tb_2 [Cyan] 4667 points - 2.00000000   

Sw [Aquamarine] 2668 points and B [White] 745 points - 2.00000000   
Sw [Aquamarine] 2668 points and Tm_1 [Green] 3336 points - 2.00000000   

Sw [Aquamarine] 2668 points and Tm_2 [Red] 2452 points - 2.00000000   
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Appendix G: Transform Divergence Statistic: SPOT, 21 classes 
 

Input File: spot_ms.dat   

    ROI Name: (Jeffries-Matusita, Transformed Divergence)   
   

Ap [Purple] 2209 points:   

    Sw [Aquamarine] 5935 points: (1.99969489 2.00000000)   
    Mg [Blue3] 4794 points: (1.15940690 1.59911040)   

    Ms_1 [Red] 4135 points: (1.99969004 2.00000000)   

    Ms_2 [Blue3] 3490 points: (1.98839490 1.99860862)   
    Ice/Snow [Blue] 10750 points: (1.97150221 1.99966928)   

    O [Green] 1214 points: (1.99590839 1.99986261)   

    SG_1 [Blue] 3991 points: (1.98231179 1.99745987)   
    SG_2 [Red] 2066 points: (1.99576035 2.00000000)   

    R1 [White] 1169 points: (1.97783111 1.99998505)   

    R2 [Black] 2306 points: (1.99141103 1.99992336)   
    Tb_1 [Green] 15499 points: (1.99337200 1.99996906)   

    Tb_2 [Cyan] 10409 points: (1.98921418 1.99998203)   
    Tm_1 [Green] 7485 points: (1.99259512 1.99999756)   

    Tm_2 [Red] 5461 points: (1.99265641 1.99998894)   

    Tv_1 [Aquamarine] 3227 points: (1.98999800 1.99998814)   
    Tv_2 [Sienna] 2231 points: (1.99104248 1.99999769)   

    SG_3 [Sea Green] 1500 points: (0.85453263 1.03501394)   

    B [White] 1601 points: (1.99752336 1.99999970)   
    Ct [White] 6662 points: (1.99522795 2.00000000)   

    Tr [Maroon] 7685 points: (1.97754662 1.99908765)   

   
Sw [Aquamarine] 5935 points:   

    Ap [Purple] 2209 points: (1.99969489 2.00000000)   

    Mg [Blue3] 4794 points: (1.94608945 2.00000000)   
    Ms_1 [Red] 4135 points: (2.00000000 2.00000000)   

    Ms_2 [Blue3] 3490 points: (1.99993919 2.00000000)   

    Ice/Snow [Blue] 10750 points: (1.61654697 1.99979132)   
    O [Green] 1214 points: (1.99703790 1.99999161)   

    SG_1 [Blue] 3991 points: (1.99989771 2.00000000)   

    SG_2 [Red] 2066 points: (1.99963388 2.00000000)   
    R1 [White] 1169 points: (1.99999994 2.00000000)   

    R2 [Black] 2306 points: (1.99996435 2.00000000)   

    Tb_1 [Green] 15499 points: (1.99999860 2.00000000)   
    Tb_2 [Cyan] 10409 points: (2.00000000 2.00000000)   

    Tm_1 [Green] 7485 points: (2.00000000 2.00000000)   

    Tm_2 [Red] 5461 points: (2.00000000 2.00000000)   
    Tv_1 [Aquamarine] 3227 points: (1.99999998 2.00000000)   

    Tv_2 [Sienna] 2231 points: (1.99992916 2.00000000)   

    SG_3 [Sea Green] 1500 points: (1.99860870 2.00000000)   
    B [White] 1601 points: (2.00000000 2.00000000)   

    Ct [White] 6662 points: (1.99999998 2.00000000)   

    Tr [Maroon] 7685 points: (1.99999997 2.00000000)   
   

Mg [Blue3] 4794 points:   

    Ap [Purple] 2209 points: (1.15940690 1.59911040)   
    Sw [Aquamarine] 5935 points: (1.94608945 2.00000000)   

    Ms_1 [Red] 4135 points: (1.99550703 2.00000000)   

    Ms_2 [Blue3] 3490 points: (1.90560995 1.99347666)   
    Ice/Snow [Blue] 10750 points: (1.75406491 1.98875064)   

    O [Green] 1214 points: (1.82595458 1.99857369)   

    SG_1 [Blue] 3991 points: (1.85910376 1.99151490)   
    SG_2 [Red] 2066 points: (1.95963236 1.99999999)   

    R1 [White] 1169 points: (1.97632948 1.99979746)   

    R2 [Black] 2306 points: (1.87697671 1.99866747)   
    Tb_1 [Green] 15499 points: (1.91708066 1.99981192)   

    Tb_2 [Cyan] 10409 points: (1.91227569 1.99982746)   

    Tm_1 [Green] 7485 points: (1.93248244 1.99988797)   
    Tm_2 [Red] 5461 points: (1.90111657 1.99988793)   

    Tv_1 [Aquamarine] 3227 points: (1.92484945 1.99990838)   

    Tv_2 [Sienna] 2231 points: (1.86713869 1.99997126)   
    SG_3 [Sea Green] 1500 points: (1.44542292 1.73244970)   

    B [White] 1601 points: (1.98395581 1.99999495)   
    Ct [White] 6662 points: (1.96738384 2.00000000)   

    Tr [Maroon] 7685 points: (1.87627945 1.99759750)   

   

Ms_1 [Red] 4135 points:   
    Ap [Purple] 2209 points: (1.99969004 2.00000000)   

    Sw [Aquamarine] 5935 points: (2.00000000 2.00000000)   

    Mg [Blue3] 4794 points: (1.99550703 2.00000000)   
    Ms_2 [Blue3] 3490 points: (1.31177143 1.53090504)   

    Ice/Snow [Blue] 10750 points: (1.99996914 2.00000000)   

    O [Green] 1214 points: (1.97098088 1.99997889)   
    SG_1 [Blue] 3991 points: (1.66916227 1.80549026)   

    SG_2 [Red] 2066 points: (1.39392955 1.48835978)   

    R1 [White] 1169 points: (1.99833973 1.99999274)   
    R2 [Black] 2306 points: (1.96437259 1.97676100)   

    Tb_1 [Green] 15499 points: (1.78445251 1.90235262)   

    Tb_2 [Cyan] 10409 points: (1.90377404 1.98487914)   
    Tm_1 [Green] 7485 points: (1.98485098 1.99711058)   

    Tm_2 [Red] 5461 points: (1.86909330 1.93024221)   

    Tv_1 [Aquamarine] 3227 points: (1.94464325 1.95729213)   
    Tv_2 [Sienna] 2231 points: (1.89601677 1.93257355)   

    SG_3 [Sea Green] 1500 points: (1.97244456 2.00000000)   
    B [White] 1601 points: (1.99916783 1.99998915)   

    Ct [White] 6662 points: (1.93375059 1.99998242)   

    Tr [Maroon] 7685 points: (1.87014883 1.95338975)   
   

Ms_2 [Blue3] 3490 points:   

    Ap [Purple] 2209 points: (1.98839490 1.99860862)   
    Sw [Aquamarine] 5935 points: (1.99993919 2.00000000)   

    Mg [Blue3] 4794 points: (1.90560995 1.99347666)   

    Ms_1 [Red] 4135 points: (1.31177143 1.53090504)   
    Ice/Snow [Blue] 10750 points: (1.99407275 1.99999181)   

    O [Green] 1214 points: (1.48647927 1.55293607)   

    SG_1 [Blue] 3991 points: (0.67128998 0.73196443)   
    SG_2 [Red] 2066 points: (0.73940811 0.97997007)   

    R1 [White] 1169 points: (1.91529206 1.98928763)   

    R2 [Black] 2306 points: (1.51132366 1.57570970)   
    Tb_1 [Green] 15499 points: (0.47988370 0.55595781)   

    Tb_2 [Cyan] 10409 points: (0.99894179 1.19886945)   

    Tm_1 [Green] 7485 points: (1.72315101 1.85031857)   
    Tm_2 [Red] 5461 points: (1.01406635 1.10696156)   

    Tv_1 [Aquamarine] 3227 points: (1.48070083 1.56045135)   

    Tv_2 [Sienna] 2231 points: (1.22988577 1.31299786)   
    SG_3 [Sea Green] 1500 points: (1.80724355 1.99876507)   

    B [White] 1601 points: (1.94073624 1.99400378)   

    Ct [White] 6662 points: (1.30333014 1.96831839)   
    Tr [Maroon] 7685 points: (0.94205006 0.99654189)   

   

Ice/Snow [Blue] 10750 points:   
    Ap [Purple] 2209 points: (1.97150221 1.99966928)   

    Sw [Aquamarine] 5935 points: (1.61654697 1.99979132)   

    Mg [Blue3] 4794 points: (1.75406491 1.98875064)   
    Ms_1 [Red] 4135 points: (1.99996914 2.00000000)   

    Ms_2 [Blue3] 3490 points: (1.99407275 1.99999181)   

    O [Green] 1214 points: (1.91114994 1.99982222)   
    SG_1 [Blue] 3991 points: (1.99411398 1.99997092)   

    SG_2 [Red] 2066 points: (1.99562647 2.00000000)   

    R1 [White] 1169 points: (1.99932966 1.99999889)   
    R2 [Black] 2306 points: (1.99497644 1.99999983)   

    Tb_1 [Green] 15499 points: (1.99614964 1.99999989)   

    Tb_2 [Cyan] 10409 points: (1.99766088 2.00000000)   
    Tm_1 [Green] 7485 points: (1.99961110 2.00000000)   

    Tm_2 [Red] 5461 points: (1.99790574 2.00000000)   

    Tv_1 [Aquamarine] 3227 points: (1.99919906 2.00000000)   
    Tv_2 [Sienna] 2231 points: (1.99521799 2.00000000)   

    SG_3 [Sea Green] 1500 points: (1.97753429 1.99482494)   

    B [White] 1601 points: (1.99993624 2.00000000)   
    Ct [White] 6662 points: (1.99783718 2.00000000)   

    Tr [Maroon] 7685 points: (1.99644466 1.99999639)   
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O [Green] 1214 points:   

    Ap [Purple] 2209 points: (1.99590839 1.99986261)   
    Sw [Aquamarine] 5935 points: (1.99703790 1.99999161)   

    Mg [Blue3] 4794 points: (1.82595458 1.99857369)   

    Ms_1 [Red] 4135 points: (1.97098088 1.99997889)   
    Ms_2 [Blue3] 3490 points: (1.48647927 1.55293607)   

    Ice/Snow [Blue] 10750 points: (1.91114994 1.99982222)   

    SG_1 [Blue] 3991 points: (1.69702734 1.76376273)   
    SG_2 [Red] 2066 points: (1.87252361 1.99659252)   

    R1 [White] 1169 points: (1.99234057 1.99983158)   

    R2 [Black] 2306 points: (1.86256869 1.92652321)   
    Tb_1 [Green] 15499 points: (1.26660536 1.40840879)   

    Tb_2 [Cyan] 10409 points: (1.38000875 1.68721434)   

    Tm_1 [Green] 7485 points: (1.96261670 1.99034773)   
    Tm_2 [Red] 5461 points: (1.68111743 1.75928413)   

    Tv_1 [Aquamarine] 3227 points: (1.94702105 1.97848541)   

    Tv_2 [Sienna] 2231 points: (1.81508089 1.88097468)   
    SG_3 [Sea Green] 1500 points: (1.90066434 1.99995436)   

    B [White] 1601 points: (1.99685348 1.99997527)   

    Ct [White] 6662 points: (1.79183790 1.99886600)   
    Tr [Maroon] 7685 points: (1.65259756 1.70220428)   

   

SG_1 [Blue] 3991 points:   
    Ap [Purple] 2209 points: (1.98231179 1.99745987)   

    Sw [Aquamarine] 5935 points: (1.99989771 2.00000000)   

    Mg [Blue3] 4794 points: (1.85910376 1.99151490)   
    Ms_1 [Red] 4135 points: (1.66916227 1.80549026)   

    Ms_2 [Blue3] 3490 points: (0.67128998 0.73196443)   
    Ice/Snow [Blue] 10750 points: (1.99411398 1.99997092)   

    O [Green] 1214 points: (1.69702734 1.76376273)   

    SG_2 [Red] 2066 points: (0.74849758 0.94950671)   
    R1 [White] 1169 points: (1.27812709 1.67739171)   

    R2 [Black] 2306 points: (0.57309470 0.64745264)   

    Tb_1 [Green] 15499 points: (0.88600814 0.98966620)   
    Tb_2 [Cyan] 10409 points: (0.92067465 1.28386752)   

    Tm_1 [Green] 7485 points: (1.14342755 1.50162908)   

    Tm_2 [Red] 5461 points: (0.62773373 0.85872383)   
    Tv_1 [Aquamarine] 3227 points: (0.55420663 0.62672845)   

    Tv_2 [Sienna] 2231 points: (0.41766646 0.47682918)   

    SG_3 [Sea Green] 1500 points: (1.71944914 1.99743161)   
    B [White] 1601 points: (1.56187922 1.85670788)   

    Ct [White] 6662 points: (1.37308881 1.92947331)   

    Tr [Maroon] 7685 points: (0.47883136 0.60148080)   
   

SG_2 [Red] 2066 points:   

    Ap [Purple] 2209 points: (1.99576035 2.00000000)   
    Sw [Aquamarine] 5935 points: (1.99963388 2.00000000)   

    Mg [Blue3] 4794 points: (1.95963236 1.99999999)   

    Ms_1 [Red] 4135 points: (1.39392955 1.48835978)   
    Ms_2 [Blue3] 3490 points: (0.73940811 0.97997007)   

    Ice/Snow [Blue] 10750 points: (1.99562647 2.00000000)   

    O [Green] 1214 points: (1.87252361 1.99659252)   
    SG_1 [Blue] 3991 points: (0.74849758 0.94950671)   

    R1 [White] 1169 points: (1.90175516 1.97707779)   

    R2 [Black] 2306 points: (1.46682254 1.52533156)   
    Tb_1 [Green] 15499 points: (1.07927046 1.40395004)   

    Tb_2 [Cyan] 10409 points: (1.37800573 1.82875110)   

    Tm_1 [Green] 7485 points: (1.68722732 1.85262112)   
    Tm_2 [Red] 5461 points: (1.19000204 1.48095891)   

    Tv_1 [Aquamarine] 3227 points: (1.31680243 1.37015244)   

    Tv_2 [Sienna] 2231 points: (1.09687432 1.15377751)   
    SG_3 [Sea Green] 1500 points: (1.87144384 2.00000000)   

    B [White] 1601 points: (1.92534438 1.98076680)   

    Ct [White] 6662 points: (1.37562594 1.88280369)   
    Tr [Maroon] 7685 points: (1.15339715 1.48794228)   

   

R1 [White] 1169 points:   
    Ap [Purple] 2209 points: (1.97783111 1.99998505)   

    Sw [Aquamarine] 5935 points: (1.99999994 2.00000000)   

    Mg [Blue3] 4794 points: (1.97632948 1.99979746)   

    Ms_1 [Red] 4135 points: (1.99833973 1.99999274)   

    Ms_2 [Blue3] 3490 points: (1.91529206 1.98928763)   
    Ice/Snow [Blue] 10750 points: (1.99932966 1.99999889)   

    O [Green] 1214 points: (1.99234057 1.99983158)   

    SG_1 [Blue] 3991 points: (1.27812709 1.67739171)   
    SG_2 [Red] 2066 points: (1.90175516 1.97707779)   

    R2 [Black] 2306 points: (0.78070844 0.97680240)   

    Tb_1 [Green] 15499 points: (1.93740685 1.98212219)   
    Tb_2 [Cyan] 10409 points: (1.43377652 1.91662445)   

    Tm_1 [Green] 7485 points: (0.96618964 1.27091670)   

    Tm_2 [Red] 5461 points: (1.48526076 1.73246116)   
    Tv_1 [Aquamarine] 3227 points: (0.88849406 1.11449195)   

    Tv_2 [Sienna] 2231 points: (1.40411473 1.59727385)   

    SG_3 [Sea Green] 1500 points: (1.87905047 1.99998947)   
    B [White] 1601 points: (0.74908922 0.97181667)   

    Ct [White] 6662 points: (1.97851499 1.99830418)   

    Tr [Maroon] 7685 points: (1.39265253 1.65509533)   
   

R2 [Black] 2306 points:   

    Ap [Purple] 2209 points: (1.99141103 1.99992336)   
    Sw [Aquamarine] 5935 points: (1.99996435 2.00000000)   

    Mg [Blue3] 4794 points: (1.87697671 1.99866747)   

    Ms_1 [Red] 4135 points: (1.96437259 1.97676100)   
    Ms_2 [Blue3] 3490 points: (1.51132366 1.57570970)   

    Ice/Snow [Blue] 10750 points: (1.99497644 1.99999983)   

    O [Green] 1214 points: (1.86256869 1.92652321)   
    SG_1 [Blue] 3991 points: (0.57309470 0.64745264)   

    SG_2 [Red] 2066 points: (1.46682254 1.52533156)   
    R1 [White] 1169 points: (0.78070844 0.97680240)   

    Tb_1 [Green] 15499 points: (1.46310222 1.50701645)   

    Tb_2 [Cyan] 10409 points: (1.09127455 1.38232752)   
    Tm_1 [Green] 7485 points: (0.72621063 1.03544337)   

    Tm_2 [Red] 5461 points: (0.74851424 0.87276370)   

    Tv_1 [Aquamarine] 3227 points: (0.23422158 0.24579024)   
    Tv_2 [Sienna] 2231 points: (0.36953467 0.38057006)   

    SG_3 [Sea Green] 1500 points: (1.85246963 1.99993931)   

    B [White] 1601 points: (1.18874297 1.34646029)   
    Ct [White] 6662 points: (1.68446157 1.96948261)   

    Tr [Maroon] 7685 points: (0.72059606 0.77780080)   

   
Tb_1 [Green] 15499 points:   

    Ap [Purple] 2209 points: (1.99337200 1.99996906)   

    Sw [Aquamarine] 5935 points: (1.99999860 2.00000000)   
    Mg [Blue3] 4794 points: (1.91708066 1.99981192)   

    Ms_1 [Red] 4135 points: (1.78445251 1.90235262)   

    Ms_2 [Blue3] 3490 points: (0.47988370 0.55595781)   
    Ice/Snow [Blue] 10750 points: (1.99614964 1.99999989)   

    O [Green] 1214 points: (1.26660536 1.40840879)   

    SG_1 [Blue] 3991 points: (0.88600814 0.98966620)   
    SG_2 [Red] 2066 points: (1.07927046 1.40395004)   

    R1 [White] 1169 points: (1.93740685 1.98212219)   

    R2 [Black] 2306 points: (1.46310222 1.50701645)   
    Tb_2 [Cyan] 10409 points: (0.56077588 0.69247953)   

    Tm_1 [Green] 7485 points: (1.68381470 1.81779467)   

    Tm_2 [Red] 5461 points: (0.77864403 0.87088532)   
    Tv_1 [Aquamarine] 3227 points: (1.42058253 1.52946021)   

    Tv_2 [Sienna] 2231 points: (1.07264121 1.12809716)   

    SG_3 [Sea Green] 1500 points: (1.86583032 1.99999119)   
    B [White] 1601 points: (1.95612600 1.99260218)   

    Ct [White] 6662 points: (1.31682034 1.82975166)   

    Tr [Maroon] 7685 points: (0.76931884 0.81331143)   
   

Tb_2 [Cyan] 10409 points:   

    Ap [Purple] 2209 points: (1.98921418 1.99998203)   
    Sw [Aquamarine] 5935 points: (2.00000000 2.00000000)   

    Mg [Blue3] 4794 points: (1.91227569 1.99982746)   

    Ms_1 [Red] 4135 points: (1.90377404 1.98487914)   
    Ms_2 [Blue3] 3490 points: (0.99894179 1.19886945)   

    Ice/Snow [Blue] 10750 points: (1.99766088 2.00000000)   

    O [Green] 1214 points: (1.38000875 1.68721434)   
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    SG_1 [Blue] 3991 points: (0.92067465 1.28386752)   

    SG_2 [Red] 2066 points: (1.37800573 1.82875110)   
    R1 [White] 1169 points: (1.43377652 1.91662445)   

    R2 [Black] 2306 points: (1.09127455 1.38232752)   

    Tb_1 [Green] 15499 points: (0.56077588 0.69247953)   
    Tm_1 [Green] 7485 points: (0.86555033 1.27567465)   

    Tm_2 [Red] 5461 points: (0.34538232 0.39414718)   

    Tv_1 [Aquamarine] 3227 points: (0.93584474 1.35288794)   
    Tv_2 [Sienna] 2231 points: (0.88769324 1.25811964)   

    SG_3 [Sea Green] 1500 points: (1.85359951 1.99999128)   

    B [White] 1601 points: (1.46701742 1.93138473)   
    Ct [White] 6662 points: (1.33690549 1.86460795)   

    Tr [Maroon] 7685 points: (0.40057162 0.45904141)   

   
Tm_1 [Green] 7485 points:   

    Ap [Purple] 2209 points: (1.99259512 1.99999756)   

    Sw [Aquamarine] 5935 points: (2.00000000 2.00000000)   
    Mg [Blue3] 4794 points: (1.93248244 1.99988797)   

    Ms_1 [Red] 4135 points: (1.98485098 1.99711058)   

    Ms_2 [Blue3] 3490 points: (1.72315101 1.85031857)   
    Ice/Snow [Blue] 10750 points: (1.99961110 2.00000000)   

    O [Green] 1214 points: (1.96261670 1.99034773)   

    SG_1 [Blue] 3991 points: (1.14342755 1.50162908)   
    SG_2 [Red] 2066 points: (1.68722732 1.85262112)   

    R1 [White] 1169 points: (0.96618964 1.27091670)   

    R2 [Black] 2306 points: (0.72621063 1.03544337)   
    Tb_1 [Green] 15499 points: (1.68381470 1.81779467)   

    Tb_2 [Cyan] 10409 points: (0.86555033 1.27567465)   
    Tm_2 [Red] 5461 points: (0.71007257 0.76154813)   

    Tv_1 [Aquamarine] 3227 points: (0.60101015 0.74000058)   

    Tv_2 [Sienna] 2231 points: (0.94991237 1.17225484)   
    SG_3 [Sea Green] 1500 points: (1.90176100 1.99999900)   

    B [White] 1601 points: (0.64284046 0.70325779)   

    Ct [White] 6662 points: (1.84381924 1.93620889)   
    Tr [Maroon] 7685 points: (0.80085542 0.89052981)   

   

Tm_2 [Red] 5461 points:   
    Ap [Purple] 2209 points: (1.99265641 1.99998894)   

    Sw [Aquamarine] 5935 points: (2.00000000 2.00000000)   

    Mg [Blue3] 4794 points: (1.90111657 1.99988793)   
    Ms_1 [Red] 4135 points: (1.86909330 1.93024221)   

    Ms_2 [Blue3] 3490 points: (1.01406635 1.10696156)   

    Ice/Snow [Blue] 10750 points: (1.99790574 2.00000000)   
    O [Green] 1214 points: (1.68111743 1.75928413)   

    SG_1 [Blue] 3991 points: (0.62773373 0.85872383)   

    SG_2 [Red] 2066 points: (1.19000204 1.48095891)   
    R1 [White] 1169 points: (1.48526076 1.73246116)   

    R2 [Black] 2306 points: (0.74851424 0.87276370)   

    Tb_1 [Green] 15499 points: (0.77864403 0.87088532)   
    Tb_2 [Cyan] 10409 points: (0.34538232 0.39414718)   

    Tm_1 [Green] 7485 points: (0.71007257 0.76154813)   

    Tv_1 [Aquamarine] 3227 points: (0.61610099 0.73813032)   
    Tv_2 [Sienna] 2231 points: (0.53322797 0.66482672)   

    SG_3 [Sea Green] 1500 points: (1.85223334 1.99999096)   

    B [White] 1601 points: (1.49470606 1.73348588)   
    Ct [White] 6662 points: (1.30536941 1.64073196)   

    Tr [Maroon] 7685 points: (0.12961442 0.14041880)   

   
Tv_1 [Aquamarine] 3227 points:   

    Ap [Purple] 2209 points: (1.98999800 1.99998814)   

    Sw [Aquamarine] 5935 points: (1.99999998 2.00000000)   
    Mg [Blue3] 4794 points: (1.92484945 1.99990838)   

    Ms_1 [Red] 4135 points: (1.94464325 1.95729213)   

    Ms_2 [Blue3] 3490 points: (1.48070083 1.56045135)   
    Ice/Snow [Blue] 10750 points: (1.99919906 2.00000000)   

    O [Green] 1214 points: (1.94702105 1.97848541)   

    SG_1 [Blue] 3991 points: (0.55420663 0.62672845)   
    SG_2 [Red] 2066 points: (1.31680243 1.37015244)   

    R1 [White] 1169 points: (0.88849406 1.11449195)   

    R2 [Black] 2306 points: (0.23422158 0.24579024)   

    Tb_1 [Green] 15499 points: (1.42058253 1.52946021)   

    Tb_2 [Cyan] 10409 points: (0.93584474 1.35288794)   
    Tm_1 [Green] 7485 points: (0.60101015 0.74000058)   

    Tm_2 [Red] 5461 points: (0.61610099 0.73813032)   

    Tv_2 [Sienna] 2231 points: (0.35061180 0.36146949)   
    SG_3 [Sea Green] 1500 points: (1.84340406 1.99999584)   

    B [White] 1601 points: (1.09530360 1.25119373)   

    Ct [White] 6662 points: (1.62266163 1.93345540)   
    Tr [Maroon] 7685 points: (0.53947641 0.63433295)   

   

Tv_2 [Sienna] 2231 points:   
    Ap [Purple] 2209 points: (1.99104248 1.99999769)   

    Sw [Aquamarine] 5935 points: (1.99992916 2.00000000)   

    Mg [Blue3] 4794 points: (1.86713869 1.99997126)   
    Ms_1 [Red] 4135 points: (1.89601677 1.93257355)   

    Ms_2 [Blue3] 3490 points: (1.22988577 1.31299786)   

    Ice/Snow [Blue] 10750 points: (1.99521799 2.00000000)   
    O [Green] 1214 points: (1.81508089 1.88097468)   

    SG_1 [Blue] 3991 points: (0.41766646 0.47682918)   

    SG_2 [Red] 2066 points: (1.09687432 1.15377751)   
    R1 [White] 1169 points: (1.40411473 1.59727385)   

    R2 [Black] 2306 points: (0.36953467 0.38057006)   

    Tb_1 [Green] 15499 points: (1.07264121 1.12809716)   
    Tb_2 [Cyan] 10409 points: (0.88769324 1.25811964)   

    Tm_1 [Green] 7485 points: (0.94991237 1.17225484)   

    Tm_2 [Red] 5461 points: (0.53322797 0.66482672)   
    Tv_1 [Aquamarine] 3227 points: (0.35061180 0.36146949)   

    SG_3 [Sea Green] 1500 points: (1.82969739 1.99999965)   
    B [White] 1601 points: (1.59878908 1.72790335)   

    Ct [White] 6662 points: (1.56646037 1.89261266)   

    Tr [Maroon] 7685 points: (0.54171934 0.63144640)   
   

SG_3 [Sea Green] 1500 points:   

    Ap [Purple] 2209 points: (0.85453263 1.03501394)   
    Sw [Aquamarine] 5935 points: (1.99860870 2.00000000)   

    Mg [Blue3] 4794 points: (1.44542292 1.73244970)   

    Ms_1 [Red] 4135 points: (1.97244456 2.00000000)   
    Ms_2 [Blue3] 3490 points: (1.80724355 1.99876507)   

    Ice/Snow [Blue] 10750 points: (1.97753429 1.99482494)   

    O [Green] 1214 points: (1.90066434 1.99995436)   
    SG_1 [Blue] 3991 points: (1.71944914 1.99743161)   

    SG_2 [Red] 2066 points: (1.87144384 2.00000000)   

    R1 [White] 1169 points: (1.87905047 1.99998947)   
    R2 [Black] 2306 points: (1.85246963 1.99993931)   

    Tb_1 [Green] 15499 points: (1.86583032 1.99999119)   

    Tb_2 [Cyan] 10409 points: (1.85359951 1.99999128)   
    Tm_1 [Green] 7485 points: (1.90176100 1.99999900)   

    Tm_2 [Red] 5461 points: (1.85223334 1.99999096)   

    Tv_1 [Aquamarine] 3227 points: (1.84340406 1.99999584)   
    Tv_2 [Sienna] 2231 points: (1.82969739 1.99999965)   

    B [White] 1601 points: (1.95361828 1.99999998)   

    Ct [White] 6662 points: (1.93202644 2.00000000)   
    Tr [Maroon] 7685 points: (1.77089660 1.99804191)   

   

B [White] 1601 points:   
    Ap [Purple] 2209 points: (1.99752336 1.99999970)   

    Sw [Aquamarine] 5935 points: (2.00000000 2.00000000)   

    Mg [Blue3] 4794 points: (1.98395581 1.99999495)   
    Ms_1 [Red] 4135 points: (1.99916783 1.99998915)   

    Ms_2 [Blue3] 3490 points: (1.94073624 1.99400378)   

    Ice/Snow [Blue] 10750 points: (1.99993624 2.00000000)   
    O [Green] 1214 points: (1.99685348 1.99997527)   

    SG_1 [Blue] 3991 points: (1.56187922 1.85670788)   

    SG_2 [Red] 2066 points: (1.92534438 1.98076680)   
    R1 [White] 1169 points: (0.74908922 0.97181667)   

    R2 [Black] 2306 points: (1.18874297 1.34646029)   

    Tb_1 [Green] 15499 points: (1.95612600 1.99260218)   
    Tb_2 [Cyan] 10409 points: (1.46701742 1.93138473)   

    Tm_1 [Green] 7485 points: (0.64284046 0.70325779)   

    Tm_2 [Red] 5461 points: (1.49470606 1.73348588)   
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    Tv_1 [Aquamarine] 3227 points: (1.09530360 1.25119373)   

    Tv_2 [Sienna] 2231 points: (1.59878908 1.72790335)   
    SG_3 [Sea Green] 1500 points: (1.95361828 1.99999998)   

    Ct [White] 6662 points: (1.99326168 1.99901156)   

    Tr [Maroon] 7685 points: (1.51721080 1.73834988)   
   

Ct [White] 6662 points:   

    Ap [Purple] 2209 points: (1.99522795 2.00000000)   
    Sw [Aquamarine] 5935 points: (1.99999998 2.00000000)   

    Mg [Blue3] 4794 points: (1.96738384 2.00000000)   

    Ms_1 [Red] 4135 points: (1.93375059 1.99998242)   
    Ms_2 [Blue3] 3490 points: (1.30333014 1.96831839)   

    Ice/Snow [Blue] 10750 points: (1.99783718 2.00000000)   

    O [Green] 1214 points: (1.79183790 1.99886600)   
    SG_1 [Blue] 3991 points: (1.37308881 1.92947331)   

    SG_2 [Red] 2066 points: (1.37562594 1.88280369)   

    R1 [White] 1169 points: (1.97851499 1.99830418)   
    R2 [Black] 2306 points: (1.68446157 1.96948261)   

    Tb_1 [Green] 15499 points: (1.31682034 1.82975166)   

    Tb_2 [Cyan] 10409 points: (1.33690549 1.86460795)   
    Tm_1 [Green] 7485 points: (1.84381924 1.93620889)   

    Tm_2 [Red] 5461 points: (1.30536941 1.64073196)   

    Tv_1 [Aquamarine] 3227 points: (1.62266163 1.93345540)   
    Tv_2 [Sienna] 2231 points: (1.56646037 1.89261266)   

    SG_3 [Sea Green] 1500 points: (1.93202644 2.00000000)   

    B [White] 1601 points: (1.99326168 1.99901156)   

    Tr [Maroon] 7685 points: (1.26902730 1.69578611)   
   

Tr [Maroon] 7685 points:   

    Ap [Purple] 2209 points: (1.97754662 1.99908765)   
    Sw [Aquamarine] 5935 points: (1.99999997 2.00000000)   

    Mg [Blue3] 4794 points: (1.87627945 1.99759750)   

    Ms_1 [Red] 4135 points: (1.87014883 1.95338975)   
    Ms_2 [Blue3] 3490 points: (0.94205006 0.99654189)   

    Ice/Snow [Blue] 10750 points: (1.99644466 1.99999639)   

    O [Green] 1214 points: (1.65259756 1.70220428)   
    SG_1 [Blue] 3991 points: (0.47883136 0.60148080)   

    SG_2 [Red] 2066 points: (1.15339715 1.48794228)   

    R1 [White] 1169 points: (1.39265253 1.65509533)   
    R2 [Black] 2306 points: (0.72059606 0.77780080)   

    Tb_1 [Green] 15499 points: (0.76931884 0.81331143)   

    Tb_2 [Cyan] 10409 points: (0.40057162 0.45904141)   
    Tm_1 [Green] 7485 points: (0.80085542 0.89052981)   

    Tm_2 [Red] 5461 points: (0.12961442 0.14041880)   

    Tv_1 [Aquamarine] 3227 points: (0.53947641 0.63433295)   
    Tv_2 [Sienna] 2231 points: (0.54171934 0.63144640)   

    SG_3 [Sea Green] 1500 points: (1.77089660 1.99804191)   

    B [White] 1601 points: (1.51721080 1.73834988)   
    Ct [White] 6662 points: (1.26902730 1.69578611)   

   

 
Pair Separation (least to most);   

   
Tm_2 [Red] 5461 points and Tr [Maroon] 7685 points - 0.12961442   

R2 [Black] 2306 points and Tv_1 [Aquamarine] 3227 points - 0.23422158   

Tb_2 [Cyan] 10409 points and Tm_2 [Red] 5461 points - 0.34538232   
Tv_1 [Aquamarine] 3227 points and Tv_2 [Sienna] 2231 points - 0.35061180   

R2 [Black] 2306 points and Tv_2 [Sienna] 2231 points - 0.36953467   

Tb_2 [Cyan] 10409 points and Tr [Maroon] 7685 points - 0.40057162   
SG_1 [Blue] 3991 points and Tv_2 [Sienna] 2231 points - 0.41766646   

SG_1 [Blue] 3991 points and Tr [Maroon] 7685 points - 0.47883136   

Ms_2 [Blue3] 3490 points and Tb_1 [Green] 15499 points - 0.47988370   
Tm_2 [Red] 5461 points and Tv_2 [Sienna] 2231 points - 0.53322797   

Tv_1 [Aquamarine] 3227 points and Tr [Maroon] 7685 points - 0.53947641   

Tv_2 [Sienna] 2231 points and Tr [Maroon] 7685 points - 0.54171934   
SG_1 [Blue] 3991 points and Tv_1 [Aquamarine] 3227 points - 0.55420663   

Tb_1 [Green] 15499 points and Tb_2 [Cyan] 10409 points - 0.56077588   

SG_1 [Blue] 3991 points and R2 [Black] 2306 points - 0.57309470   
Tm_1 [Green] 7485 points and Tv_1 [Aquamarine] 3227 points - 0.60101015   

Tm_2 [Red] 5461 points and Tv_1 [Aquamarine] 3227 points - 0.61610099   

SG_1 [Blue] 3991 points and Tm_2 [Red] 5461 points - 0.62773373   
Tm_1 [Green] 7485 points and B [White] 1601 points - 0.64284046   

Ms_2 [Blue3] 3490 points and SG_1 [Blue] 3991 points - 0.67128998   

Tm_1 [Green] 7485 points and Tm_2 [Red] 5461 points - 0.71007257   
R2 [Black] 2306 points and Tr [Maroon] 7685 points - 0.72059606   

R2 [Black] 2306 points and Tm_1 [Green] 7485 points - 0.72621063   

Ms_2 [Blue3] 3490 points and SG_2 [Red] 2066 points - 0.73940811   
SG_1 [Blue] 3991 points and SG_2 [Red] 2066 points - 0.74849758   

R2 [Black] 2306 points and Tm_2 [Red] 5461 points - 0.74851424   

R1 [White] 1169 points and B [White] 1601 points - 0.74908922   
Tb_1 [Green] 15499 points and Tr [Maroon] 7685 points - 0.76931884   

Tb_1 [Green] 15499 points and Tm_2 [Red] 5461 points - 0.77864403   

R1 [White] 1169 points and R2 [Black] 2306 points - 0.78070844   
Tm_1 [Green] 7485 points and Tr [Maroon] 7685 points - 0.80085542   

Ap [Purple] 2209 points and SG_3 [Sea Green] 1500 points - 0.85453263   

Tb_2 [Cyan] 10409 points and Tm_1 [Green] 7485 points - 0.86555033   
SG_1 [Blue] 3991 points and Tb_1 [Green] 15499 points - 0.88600814   

Tb_2 [Cyan] 10409 points and Tv_2 [Sienna] 2231 points - 0.88769324   

R1 [White] 1169 points and Tv_1 [Aquamarine] 3227 points - 0.88849406   
SG_1 [Blue] 3991 points and Tb_2 [Cyan] 10409 points - 0.92067465   

Tb_2 [Cyan] 10409 points and Tv_1 [Aquamarine] 3227 points - 0.93584474   

Ms_2 [Blue3] 3490 points and Tr [Maroon] 7685 points - 0.94205006   
Tm_1 [Green] 7485 points and Tv_2 [Sienna] 2231 points - 0.94991237   

R1 [White] 1169 points and Tm_1 [Green] 7485 points - 0.96618964   

Ms_2 [Blue3] 3490 points and Tb_2 [Cyan] 10409 points - 0.99894179   
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Ms_2 [Blue3] 3490 points and Tm_2 [Red] 5461 points - 1.01406635   

Tb_1 [Green] 15499 points and Tv_2 [Sienna] 2231 points - 1.07264121   
SG_2 [Red] 2066 points and Tb_1 [Green] 15499 points - 1.07927046   

R2 [Black] 2306 points and Tb_2 [Cyan] 10409 points - 1.09127455   

Tv_1 [Aquamarine] 3227 points and B [White] 1601 points - 1.09530360   
SG_2 [Red] 2066 points and Tv_2 [Sienna] 2231 points - 1.09687432   

SG_1 [Blue] 3991 points and Tm_1 [Green] 7485 points - 1.14342755   

SG_2 [Red] 2066 points and Tr [Maroon] 7685 points - 1.15339715   
Ap [Purple] 2209 points and Mg [Blue3] 4794 points - 1.15940690   

R2 [Black] 2306 points and B [White] 1601 points - 1.18874297   

SG_2 [Red] 2066 points and Tm_2 [Red] 5461 points - 1.19000204   
Ms_2 [Blue3] 3490 points and Tv_2 [Sienna] 2231 points - 1.22988577   

O [Green] 1214 points and Tb_1 [Green] 15499 points - 1.26660536   

Ct [White] 6662 points and Tr [Maroon] 7685 points - 1.26902730   
SG_1 [Blue] 3991 points and R1 [White] 1169 points - 1.27812709   

Ms_2 [Blue3] 3490 points and Ct [White] 6662 points - 1.30333014   

Tm_2 [Red] 5461 points and Ct [White] 6662 points - 1.30536941   
Ms_1 [Red] 4135 points and Ms_2 [Blue3] 3490 points - 1.31177143   

SG_2 [Red] 2066 points and Tv_1 [Aquamarine] 3227 points - 1.31680243   

Tb_1 [Green] 15499 points and Ct [White] 6662 points - 1.31682034   
Tb_2 [Cyan] 10409 points and Ct [White] 6662 points - 1.33690549   

SG_1 [Blue] 3991 points and Ct [White] 6662 points - 1.37308881   

SG_2 [Red] 2066 points and Ct [White] 6662 points - 1.37562594   
SG_2 [Red] 2066 points and Tb_2 [Cyan] 10409 points - 1.37800573   

O [Green] 1214 points and Tb_2 [Cyan] 10409 points - 1.38000875   

R1 [White] 1169 points and Tr [Maroon] 7685 points - 1.39265253   
Ms_1 [Red] 4135 points and SG_2 [Red] 2066 points - 1.39392955   

R1 [White] 1169 points and Tv_2 [Sienna] 2231 points - 1.40411473   
Tb_1 [Green] 15499 points and Tv_1 [Aquamarine] 3227 points - 1.42058253   

R1 [White] 1169 points and Tb_2 [Cyan] 10409 points - 1.43377652   

Mg [Blue3] 4794 points and SG_3 [Sea Green] 1500 points - 1.44542292   
R2 [Black] 2306 points and Tb_1 [Green] 15499 points - 1.46310222   

SG_2 [Red] 2066 points and R2 [Black] 2306 points - 1.46682254   

Tb_2 [Cyan] 10409 points and B [White] 1601 points - 1.46701742   
Ms_2 [Blue3] 3490 points and Tv_1 [Aquamarine] 3227 points - 1.48070083   

R1 [White] 1169 points and Tm_2 [Red] 5461 points - 1.48526076   

Ms_2 [Blue3] 3490 points and O [Green] 1214 points - 1.48647927   
Tm_2 [Red] 5461 points and B [White] 1601 points - 1.49470606   

Ms_2 [Blue3] 3490 points and R2 [Black] 2306 points - 1.51132366   

B [White] 1601 points and Tr [Maroon] 7685 points - 1.51721080   
SG_1 [Blue] 3991 points and B [White] 1601 points - 1.56187922   

Tv_2 [Sienna] 2231 points and Ct [White] 6662 points - 1.56646037   

Tv_2 [Sienna] 2231 points and B [White] 1601 points - 1.59878908   
Sw [Aquamarine] 5935 points and Ice/Snow [Blue] 10750 points - 1.61654697   

Tv_1 [Aquamarine] 3227 points and Ct [White] 6662 points - 1.62266163   

O [Green] 1214 points and Tr [Maroon] 7685 points - 1.65259756   
Ms_1 [Red] 4135 points and SG_1 [Blue] 3991 points - 1.66916227   

O [Green] 1214 points and Tm_2 [Red] 5461 points - 1.68111743   

Tb_1 [Green] 15499 points and Tm_1 [Green] 7485 points - 1.68381470   
R2 [Black] 2306 points and Ct [White] 6662 points - 1.68446157   

SG_2 [Red] 2066 points and Tm_1 [Green] 7485 points - 1.68722732   

O [Green] 1214 points and SG_1 [Blue] 3991 points - 1.69702734   
SG_1 [Blue] 3991 points and SG_3 [Sea Green] 1500 points - 1.71944914   

Ms_2 [Blue3] 3490 points and Tm_1 [Green] 7485 points - 1.72315101   

Mg [Blue3] 4794 points and Ice/Snow [Blue] 10750 points - 1.75406491   
SG_3 [Sea Green] 1500 points and Tr [Maroon] 7685 points - 1.77089660   

Ms_1 [Red] 4135 points and Tb_1 [Green] 15499 points - 1.78445251   

O [Green] 1214 points and Ct [White] 6662 points - 1.79183790   
Ms_2 [Blue3] 3490 points and SG_3 [Sea Green] 1500 points - 1.80724355   

O [Green] 1214 points and Tv_2 [Sienna] 2231 points - 1.81508089   

Mg [Blue3] 4794 points and O [Green] 1214 points - 1.82595458   
Tv_2 [Sienna] 2231 points and SG_3 [Sea Green] 1500 points - 1.82969739   

Tv_1 [Aquamarine] 3227 points and SG_3 [Sea Green] 1500 points - 1.84340406   

Tm_1 [Green] 7485 points and Ct [White] 6662 points - 1.84381924   
Tm_2 [Red] 5461 points and SG_3 [Sea Green] 1500 points - 1.85223334   

R2 [Black] 2306 points and SG_3 [Sea Green] 1500 points - 1.85246963   

Tb_2 [Cyan] 10409 points and SG_3 [Sea Green] 1500 points - 1.85359951   
Mg [Blue3] 4794 points and SG_1 [Blue] 3991 points - 1.85910376   

O [Green] 1214 points and R2 [Black] 2306 points - 1.86256869   

Tb_1 [Green] 15499 points and SG_3 [Sea Green] 1500 points - 1.86583032   
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Mg [Blue3] 4794 points and Tv_2 [Sienna] 2231 points - 1.86713869   

Ms_1 [Red] 4135 points and Tm_2 [Red] 5461 points - 1.86909330   
Ms_1 [Red] 4135 points and Tr [Maroon] 7685 points - 1.87014883   

SG_2 [Red] 2066 points and SG_3 [Sea Green] 1500 points - 1.87144384   

O [Green] 1214 points and SG_2 [Red] 2066 points - 1.87252361   
Mg [Blue3] 4794 points and Tr [Maroon] 7685 points - 1.87627945   

Mg [Blue3] 4794 points and R2 [Black] 2306 points - 1.87697671   

R1 [White] 1169 points and SG_3 [Sea Green] 1500 points - 1.87905047   
Ms_1 [Red] 4135 points and Tv_2 [Sienna] 2231 points - 1.89601677   

O [Green] 1214 points and SG_3 [Sea Green] 1500 points - 1.90066434   

Mg [Blue3] 4794 points and Tm_2 [Red] 5461 points - 1.90111657   
SG_2 [Red] 2066 points and R1 [White] 1169 points - 1.90175516   

Tm_1 [Green] 7485 points and SG_3 [Sea Green] 1500 points - 1.90176100   

Ms_1 [Red] 4135 points and Tb_2 [Cyan] 10409 points - 1.90377404   
Mg [Blue3] 4794 points and Ms_2 [Blue3] 3490 points - 1.90560995   

Ice/Snow [Blue] 10750 points and O [Green] 1214 points - 1.91114994   

Mg [Blue3] 4794 points and Tb_2 [Cyan] 10409 points - 1.91227569   
Ms_2 [Blue3] 3490 points and R1 [White] 1169 points - 1.91529206   

Mg [Blue3] 4794 points and Tb_1 [Green] 15499 points - 1.91708066   

Mg [Blue3] 4794 points and Tv_1 [Aquamarine] 3227 points - 1.92484945   
SG_2 [Red] 2066 points and B [White] 1601 points - 1.92534438   

SG_3 [Sea Green] 1500 points and Ct [White] 6662 points - 1.93202644   

Mg [Blue3] 4794 points and Tm_1 [Green] 7485 points - 1.93248244   
Ms_1 [Red] 4135 points and Ct [White] 6662 points - 1.93375059   

R1 [White] 1169 points and Tb_1 [Green] 15499 points - 1.93740685   

Ms_2 [Blue3] 3490 points and B [White] 1601 points - 1.94073624   
Ms_1 [Red] 4135 points and Tv_1 [Aquamarine] 3227 points - 1.94464325   

Sw [Aquamarine] 5935 points and Mg [Blue3] 4794 points - 1.94608945   
O [Green] 1214 points and Tv_1 [Aquamarine] 3227 points - 1.94702105   

SG_3 [Sea Green] 1500 points and B [White] 1601 points - 1.95361828   

Tb_1 [Green] 15499 points and B [White] 1601 points - 1.95612600   
Mg [Blue3] 4794 points and SG_2 [Red] 2066 points - 1.95963236   

O [Green] 1214 points and Tm_1 [Green] 7485 points - 1.96261670   

Ms_1 [Red] 4135 points and R2 [Black] 2306 points - 1.96437259   
Mg [Blue3] 4794 points and Ct [White] 6662 points - 1.96738384   

Ms_1 [Red] 4135 points and O [Green] 1214 points - 1.97098088   

Ap [Purple] 2209 points and Ice/Snow [Blue] 10750 points - 1.97150221   
Ms_1 [Red] 4135 points and SG_3 [Sea Green] 1500 points - 1.97244456   

Mg [Blue3] 4794 points and R1 [White] 1169 points - 1.97632948   

Ice/Snow [Blue] 10750 points and SG_3 [Sea Green] 1500 points - 1.97753429   
Ap [Purple] 2209 points and Tr [Maroon] 7685 points - 1.97754662   

Ap [Purple] 2209 points and R1 [White] 1169 points - 1.97783111   

R1 [White] 1169 points and Ct [White] 6662 points - 1.97851499   
Ap [Purple] 2209 points and SG_1 [Blue] 3991 points - 1.98231179   

Mg [Blue3] 4794 points and B [White] 1601 points - 1.98395581   

Ms_1 [Red] 4135 points and Tm_1 [Green] 7485 points - 1.98485098   
Ap [Purple] 2209 points and Ms_2 [Blue3] 3490 points - 1.98839490   

Ap [Purple] 2209 points and Tb_2 [Cyan] 10409 points - 1.98921418   

Ap [Purple] 2209 points and Tv_1 [Aquamarine] 3227 points - 1.98999800   
Ap [Purple] 2209 points and Tv_2 [Sienna] 2231 points - 1.99104248   

Ap [Purple] 2209 points and R2 [Black] 2306 points - 1.99141103   

O [Green] 1214 points and R1 [White] 1169 points - 1.99234057   
Ap [Purple] 2209 points and Tm_1 [Green] 7485 points - 1.99259512   

Ap [Purple] 2209 points and Tm_2 [Red] 5461 points - 1.99265641   

B [White] 1601 points and Ct [White] 6662 points - 1.99326168   
Ap [Purple] 2209 points and Tb_1 [Green] 15499 points - 1.99337200   

Ms_2 [Blue3] 3490 points and Ice/Snow [Blue] 10750 points - 1.99407275   

Ice/Snow [Blue] 10750 points and SG_1 [Blue] 3991 points - 1.99411398   
Ice/Snow [Blue] 10750 points and R2 [Black] 2306 points - 1.99497644   

Ice/Snow [Blue] 10750 points and Tv_2 [Sienna] 2231 points - 1.99521799   

Ap [Purple] 2209 points and Ct [White] 6662 points - 1.99522795   
Mg [Blue3] 4794 points and Ms_1 [Red] 4135 points - 1.99550703   

Ice/Snow [Blue] 10750 points and SG_2 [Red] 2066 points - 1.99562647   

Ap [Purple] 2209 points and SG_2 [Red] 2066 points - 1.99576035   
Ap [Purple] 2209 points and O [Green] 1214 points - 1.99590839   

Ice/Snow [Blue] 10750 points and Tb_1 [Green] 15499 points - 1.99614964   

Ice/Snow [Blue] 10750 points and Tr [Maroon] 7685 points - 1.99644466   
O [Green] 1214 points and B [White] 1601 points - 1.99685348   

Sw [Aquamarine] 5935 points and O [Green] 1214 points - 1.99703790   

Ap [Purple] 2209 points and B [White] 1601 points - 1.99752336   
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Ice/Snow [Blue] 10750 points and Tb_2 [Cyan] 10409 points - 1.99766088   

Ice/Snow [Blue] 10750 points and Ct [White] 6662 points - 1.99783718   
Ice/Snow [Blue] 10750 points and Tm_2 [Red] 5461 points - 1.99790574   

Ms_1 [Red] 4135 points and R1 [White] 1169 points - 1.99833973   

Sw [Aquamarine] 5935 points and SG_3 [Sea Green] 1500 points - 1.99860870   
Ms_1 [Red] 4135 points and B [White] 1601 points - 1.99916783   

Ice/Snow [Blue] 10750 points and Tv_1 [Aquamarine] 3227 points - 1.99919906   

Ice/Snow [Blue] 10750 points and R1 [White] 1169 points - 1.99932966   
Ice/Snow [Blue] 10750 points and Tm_1 [Green] 7485 points - 1.99961110   

Sw [Aquamarine] 5935 points and SG_2 [Red] 2066 points - 1.99963388   

Ap [Purple] 2209 points and Ms_1 [Red] 4135 points - 1.99969004   
Ap [Purple] 2209 points and Sw [Aquamarine] 5935 points - 1.99969489   

Sw [Aquamarine] 5935 points and SG_1 [Blue] 3991 points - 1.99989771   

Sw [Aquamarine] 5935 points and Tv_2 [Sienna] 2231 points - 1.99992916   
Ice/Snow [Blue] 10750 points and B [White] 1601 points - 1.99993624   

Sw [Aquamarine] 5935 points and Ms_2 [Blue3] 3490 points - 1.99993919   

Sw [Aquamarine] 5935 points and R2 [Black] 2306 points - 1.99996435   
Ms_1 [Red] 4135 points and Ice/Snow [Blue] 10750 points - 1.99996914   

Sw [Aquamarine] 5935 points and Tb_1 [Green] 15499 points - 1.99999860   

Sw [Aquamarine] 5935 points and R1 [White] 1169 points - 1.99999994   
Sw [Aquamarine] 5935 points and Tr [Maroon] 7685 points - 1.99999997   

Sw [Aquamarine] 5935 points and Tv_1 [Aquamarine] 3227 points - 1.99999998   

Sw [Aquamarine] 5935 points and Ct [White] 6662 points - 1.99999998   
Sw [Aquamarine] 5935 points and Tb_2 [Cyan] 10409 points - 2.00000000   

Sw [Aquamarine] 5935 points and Tm_2 [Red] 5461 points - 2.00000000   

Sw [Aquamarine] 5935 points and Ms_1 [Red] 4135 points - 2.00000000   
Sw [Aquamarine] 5935 points and Tm_1 [Green] 7485 points - 2.00000000   

Sw [Aquamarine] 5935 points and B [White] 1601 points - 2.00000000   
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Appendix H: Transform Divergence Statistic Summary 

Combination 1 , LANDSAT 

 

This table presents a summary of the average spectral separability on LANDSAT imagery using 

transform divergence analysis between each of the classes in combination #1.  Values of 1.9 and 

greater indicate good separation, values between 1.5 and 1.9, moderate separation and values 

<1.5 with poor separation.   

 
 

  

  B Ct 

Ice/ 

Snow Mg Ms1 Ms2+SG2 O R SG1 SG3 Sw 

Tb 

1&2 

Tm 

1&2 

Tv 

1&2 

Ap 2.00 2.00 2.00 1.86   2.00 2.00 2.00 2.00 0.91 2.00 2.00 2.00 2.00 

B   2.00 2.00 2.00 2.00 2.00 2.00 1.65 1.98 2.00 2.00 1.94 1.33 1.63 

Ct     2.00 2.00 2.00 1.67 2.00 2.00 1.78 2.00 2.00 1.79 2.00 1.92 

Ice/ 

Snow       2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Mg         2.00 2.00 2.00 2.00 2.00 1.92 2.00 2.00 2.00 2.00 

Ms1           1.48 2.00 2.00 1.89 2.00 2.00 1.96 2.00 2.00 

Ms2             1.96 1.99 1.06 2.00 2.00 1.43 2.00 1.90 

O               2.00 1.94 2.00 2.00 2.00 2.00 1.99 

R                 1.31 2.00 2.00 1.65 1.40 0.73 

SG1                   2.00 2.00 0.67 1.75 0.85 

SG3                     2.00 2.00 2.00 2.00 

Sw                       2.00 2.00 2.00 

Tb 

1&2                         1.21 0.93 

Tm 

1&2                           0.93 
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Appendix I: Transform Divergence Statistic Summary 

Combination 2 , LANDSAT 
 

This table presents a summary of the average spectral separability on LANDSAT imagery using 

transform divergence analysis between each of the classes in combination #2.  Values of 1.9 and 

greater indicate good separation, values between 1.5 and 1.9, moderate separation and values 

<1.5 with poor separation.   

  B Ct Ice/Snow Mg Ms1 Ms2+SG2 O R SG1 SG3 Sw T 

             

Ap 2.00 2.00 2.00 1.86 2.00 2.00 2.00 2.00 2.00 0.91 2.00 2.00 

B   2.00 2.00 2.00 2.00 2.00 2.00 1.65 1.98 2.00 2.00 1.81 

Ct     2.00 2.00 2.00 1.67 2.00 2.00 1.78 2.00 2.00 1.89 

Ice/Snow       2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Mg         2.00 2.00 2.00 2.00 2.00 1.92 2.00 2.00 

Ms1           1.48 2.00 2.00 1.89 2.00 2.00 1.99 

Ms2             1.96 1.99 1.06 2.00 2.00 1.70 

O               2.00 1.94 2.00 2.00 2.00 

R                 1.31 2.00 2.00 1.35 

SG1                   2.00 2.00 0.67 

SG3                     2.00 2.00 

Sw                       2.00 
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Appendix J: Transform Divergence Statistic Summary 

Combination 1 , SPOT 

This table presents a summary of the average spectral separability on SPOT imagery using 

transform divergence analysis between each of the classes in combination #2.  Values of 1.9 and 

greater indicate good separation, values between 1.5 and 1.9, moderate separation and values 

<1.5 with poor separation.   

  B Ct Mg Ms1 Ms2+SG2 O R SG1 SG3 Tb1&2 Tm1&2 Tv1&2 

Ap 2.00 2.00 1.60 2.00 2.00 2.00 2.00 2.00 1.04 2.00 2.00 2.00 

B   2.00 2.00 2.00 1.99 2.00 1.14 1.86 2.00 1.97 1.24 1.46 

Ct     2.00 2.00 1.93 2.00 1.98 1.93 2.00 1.83 1.83 1.91 

Mg       2.00 2.00 2.00 1.99 1.99 1.73 2.00 2.00 2.00 

Ms1         1.47 2.00 1.99 1.81 2.00 1.94 1.96 1.93 

Ms2_SG2           1.66 1.59 0.56 2.00 0.78 1.41 1.22 

O             1.93 1.76 2.00 1.44 1.91 1.93 

R               0.77 2.00 1.30 0.82 0.37 

SG1                 2.00 0.87 1.10 0.44 

SG3                   2.00 2.00 2.00 

Tb1&2                     0.90 1.06 

Tm1&2                       0.61 

Appendix K: Transform Divergence Statistic Summary  

Combination 2 , SPOT 

This table presents a summary of the average spectral separability on SPOT imagery using 

transform divergence analysis between each of the classes in combination #2.  Values of 1.9 and 

greater indicate good separation, values between 1.5 and 1.9, moderate separation and values 

<1.5 with poor separation.   

  B Ct Mg Ms1 Ms2+SG2 O R SG1 SG3 T 

Ap 2.00 2.00 1.60 2.00 2.00 2.00 2.00 2.00 1.04 2.00 

B   2.00 2.00 2.00 1.99 2.00 1.14 1.86 2.00 1.88 

Ct     2.00 2.00 1.93 2.00 1.98 1.93 2.00 1.82 

Mg       2.00 2.00 2.00 1.99 1.99 1.73 2.00 

Ms1         1.47 2.00 1.99 1.81 2.00 1.92 

Ms2           1.66 1.59 0.56 2.00 0.80 

O             1.93 1.76 2.00 1.55 

R               0.77 2.00 0.86 

SG1                 2.00 0.62 

SG3                   2.00 
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