
Statistical Analysis of EEG Phase

Shift Events

by

William Marshall

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2014

c© William Marshall 2014



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis develops statistical methods for the identification, and analysis of phase shift

events, i.e. sudden changes in the timing relationship between coupled oscillators. Phase

shifts events occur in many complex systems but here the primary interest is the analysis

of electroencephalogram (EEG) recordings where they have been identified as markers

of information transmission in the brain; as a secondary example we analyze systems of

weakly coupled Rössler attractors.

The main result, found in Chapter 2, is a novel method for estimating neural connec-

tivity from EEG recordings based on spatio-temporal patterns of phase shift events. Phase

shift events are modelled as a multivariate point process, and the ideas of Granger causality

are used to motivate a directed measure of connectivity. The method is demonstrated on

EEG recordings from 18 participants during three task conditions; resting, visual vigilance

and auditory vigilance. Likelihood ratios are used to test the hypothesis of no Granger

causal interaction between signals, and network patterns are analyzed using graph theory.

In Chapter 3 the problem of phase shift identification is formulated as a change point

in the instantaneous phase. Two estimators are considered, based on the cumulative sum-

mation and the instantaneous phase derivative. Block bootstrapping techniques are used

to capture the dependency structure in the signals and determine critical values for shift

identification. Estimators are evaluated both on their accuracy, and temporal resolution.

Finally, detailed simulation studies are performed using realistic head models to inves-

tigate the effect of volume conduction (linear spread of electrical activity at the scalp) on

phase shift analysis. Specifically, Chapter 4 investigates the effect of volume conduction

on the analysis, in order to understand the limitations of the phase shift Granger causality

method. Chapter 5 then investigates an approach for reducing the effect of volume con-

duction by using EEG source reconstruction techniques to estimate neural source activity

and then identifying phase shifts with-in the brain directly from the reconstructed sources.

The primary impact is the novel method for estimating neural connectivity. Each

chapter investigates a different aspect of EEG phase analysis, and together they form a

complete package for estimation and interpretation of neural connectivity. Two other areas

of impact are in statistical change point analysis, and behavioural psychology.

iii



Acknowledgements

I would like to thank my supervisor Dr. Paul Marriott for his advice and support

throughout this process.

I would also like to thank Dr. Sid Segalowitz, Chrissy Lackner and the rest of the

researchers at the Brock University Cognitive and Affect Neuroscience Laboratory, for

providing me with the EEG data for this thesis and all of their comments and discussions

on this work.

iv



Dedication

This is dedicated to my family.

v



Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Data Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Instantaneous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Rössler Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 History of EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Electricity in the Brain - Basis for EEG . . . . . . . . . . . . . . . . . . . . 15

1.4 EEG Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Early analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Digital Recording system . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Modern Analysis - Measuring Connectivity . . . . . . . . . . . . . . . . . . 23

1.5.1 Volume Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.2 Directed Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.3 Mutual Information Analysis . . . . . . . . . . . . . . . . . . . . . . 27

vi



1.5.4 Phase Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Modern Analysis - Source Reconstruction . . . . . . . . . . . . . . . . . . . 28

1.6.1 The Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.2 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Future EEG direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Phase Shift Granger Causality 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Phase Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Phase Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.3 Phase Shift Granger Causality . . . . . . . . . . . . . . . . . . . . . 44

2.3 Functional Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Application Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 Mean Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 57

3 Detection of Phase Shift Events 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 Change Point Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Phase Shift Identification . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Parametric Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Non-Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Simple Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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3.2 Phase shift estimator properties for Rössler attractor . . . . . . . . . . . . 77

5.1 Mean squared localization errors . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Accuracy and AUROC for CUSUM Method . . . . . . . . . . . . . . . . . 128

5.3 Accuracy and AUROC for PD Method . . . . . . . . . . . . . . . . . . . . 128

C.1 Results of VB Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.2 Results of VB Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xi



List of Figures

1.1 Sample of oscillator and estimated PSD . . . . . . . . . . . . . . . . . . . . 8

1.2 Estimated instantaneous amplitude and phase of sample data . . . . . . . 9

1.3 Sample trajectory of a Rössler attractor . . . . . . . . . . . . . . . . . . . 10

1.4 Phase difference plot for weakly coupled Rössler attractors . . . . . . . . . 11
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3.2 Estimated PSD and ACF for Rössler attractor . . . . . . . . . . . . . . . . 76

3.3 ROC curve for shift estimators on coupled Rössler attractors . . . . . . . . 77
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Chapter 1

Introduction

A prominent feature of brain dynamics is the transient synchronization of clusters of neu-

rons into neural assemblies [35, 138, 119, 261, 280]. Such behaviour suggests a temporal

coding for information transmission through the brain [286, 232]. Strongly synchronized

systems have relatively trivial dynamics [19, 235], and could not account for the range

of possible brain functions [277]; in fact, excessive synchrony has been associated with

pathological conditions such as schizophrenia [176] and epilepsy [175, 190]. Thus the pro-

cessing of information requires not only synchronization, but also the ability to sponta-

neously desynchronize clusters of neurons [94, 93]. These spontaneous desynchronizations,

or phase shifts, may contain valuable information about the functional nature of neural

synchronization [277, 273, 167].

One way to study phase dynamics is to use a high temporal resolution brain imaging

technique such as electroencephalogram (EEG) recording [200]. The use of EEG (sampling

rate ∼ 1kHz) recordings is well suited for phase shift analysis because it has the required

temporal resolution to identify the transient events, unlike other techniques such as fMRI

(function magnetic resonance imaging, sampling rate ∼ 1Hz). The unifying theme of this

thesis is the development of techniques for the statistical analysis of phase shift events from

EEG recordings.
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A recently introduced method of phase shift analysis from the EEG literature is phase

reset [277, 273]. In phase reset analysis, there is a spontaneous desynchronization (phase

shift) which follows a period of prolonged synchrony (phase lock); signals are partitioned

into periods of phase locking and phase shifting behaviour, after each phase shift the sig-

nal enters a new period of phase locking. In collaborative work with the Brock University

Cognitive and Affective Neuroscience Lab, we have performed a behavioural study, inves-

tigating the relationship between phase reset metrics with composite measures of anxiety

and aggression in an adolescent population. Results showed significant correlation between

both aggression and anxiety traits and the phase reset metric, even after controlling for the

results of a traditional coherence analysis. These results have been accepted for publication

in Brain and Cognition [167].

The primary contribution of this thesis is a novel measure for assessing connectivity

between EEG signals based on spatio-temporal patterns of phase shift events. Identified

phase shift events are modelled as a multivariate point process [59], and the framework

of Granger causality [116, 241, 15, 160] is used to estimate a directed measure of connec-

tivity between signals, which we have termed phase shift Granger causality (PSGC). The

proposed measure is quite different from standard methods in EEG connectivity analy-

sis [205, 190, 245, 201, 264]; instead of quantifying the average strength of connectivity,

our measure investigates patterns in discrete desynchronization events. There are a num-

ber of benefits to the PSGC measure over a traditional coherence metric [205]; it identifies

non-linear relationships which may not be picked up by traditional coherence metrics, it

works well in the presence of noise, it makes use of the full temporal resolution of the EEG

recording, it allows for statistical validation of connectivity networks from an individual

recording.

After initial exploratory work on developing the PSGC measure, feedback received

from experts in the field focused on two main aspects of the analysis; the identification

of phase shift events, and the effect of volume conduction (VC) on estimated connectivity

(see §1.5.1). For the former, concerns exist over the subjective selection of a threshold

parameter, and hence the repeatability of the study. With VC, there are questions as to

2



whether the results of PSGC analysis could be interpreted as true connectivity between

neural regions, or if it is confounded by electric field spread across the scalp.

Based on the above feedback, the next contribution of this thesis is an investigation

into methods of phase shift identification from observed time series. The methods cur-

rently used in the EEG literature [37, 277, 167] involve an unwanted subjective aspect,

so there is a need for a reproducible, objective method. We formalize the process of shift

identification as a change-point in the instantaneous phase variable, and compare the phase

derivative methods used in the EEG literature to a more traditional cumulative summation

(CUSUM) based method from the change-point literature [179]. In addition to the appli-

cation to EEG phase shift analysis, these results also have application in other fields which

consider complex systems of oscillators, which occur, for example, in biology [187, 20],

interferometry [85, 123] and geology [269, 109].

The thesis then considers the effect of VC on PSGC analysis. Essentially, the question

which must be answered is, if signals are coupled in the desired way, but then linearly

mixed using a biologically plausible lead field matrix, what is the result of connectivity

analysis applied to the mixed signals? A computationally intensive simulation study is

designed as a ‘proof-of-concept’ for the PSGC measure under conditions similar to those

in EEG recordings, including linear mixing and high levels of noise. Based on the results

of the study, it is determined that the existence of spatio-temporal ‘biological’ noise helps

to attenuate the spread of shift events due to VC, and so the PSGC measure is well suited

for application in low signal-to-noise ratio (SNR) situations, which are ubiquitous in EEG

recordings [58, 72]. The information from the simulation study has been packaged together

with the results from the original application of the PSGC measure.

One potential way to compensate for the effect of VC in EEG connectivity analysis is

to apply source reconstruction techniques, and then estimating connectivity directly from

the estimated neural sources. This process also increases the spatial resolution of the anal-

ysis (a weakness of EEG [200]). As an initial step in this process, the thesis investigates

the joint identification and localization of phase shift events in neural space using source

reconstruction techniques. There are many options for solving the underdetermined EEG

3



inverse problem [246, 193, 215, 70, 288, 191, 131, 136, 72, 18, 62, 282], in this work we

focus on identifying the reconstruction technique which is most suitable for application in

phase shift identification. This work is currently in preparation to be submitted to the

Journal of Computational Neuroscience, it has implication for both the analysis of EEG

recordings using PSGC, but also other EEG analyses based on phase shift events, such as

the phase reset analysis.

In Chapter 2, I introduce the novel technique for estimating connectivity from EEG

recordings, called Phase Shift Granger Causality. Identified phase shift events are mod-

elled as a multivariate point process, and the framework of Granger causality is applied

to produce a directed measure of connectivity between signals. The PSGC analysis pro-

vides additional insight into the nature of phase synchronization, and its role in information

transmission in the brain, by exploring spatial and temporal patterns in spontaneous phase

desynchronization. To demonstrate the proposed measure, PSGC analysis is applied to 18

recordings from an adolescent population during three conditions, resting, auditory vigi-

lance and visual vigilance.

Chapter 3 is dedicated to a statistical treatment of phase shift identification. Current

applications often employ a threshold technique for shift identification; however, since there

is no available information to validate the threshold, selection is often done subjectively.

I formalize this problem as a change-point problem for a time-dependent instantaneous

phase variable. Two potential estimators are discussed for shift identification, with special

emphasis on both the accuracy and temporal resolution of each estimator.

In Chapter 4 I focus on the instantaneous spread of electrical activity across the scalp,

a process known as volume conduction (VC). The effects of VC are studied for both phase

shift identification and the localization of neural connectivity. Simulation using realistic

head models is used to assess the spread of shift identification due to VC.

In Chapter 5, I compensate for the effects of VC by inverting the scalp measurements to
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recover the original sources within the brain, this process is known as source reconstruction

(see Section 1.6). The focus is on a Bayesian model for source reconstruction, and the abil-

ity for such a model to accurately localize phase shift events. Finally, in Chapter 6 I give

some concluding remarks on the use of phase shift events and outline some outstanding

questions and future work.

I begin the first chapter with history of EEG, early use of the technique and important

results which helped to shape the field. I then explore the effect of the digital era on

EEG recordings, including the benefits and new problems which arise from the use of

computers, the chapter concludes with a discussion of new applications at the forefront of

EEG research.

1.1 Data Primer

This thesis is primarily concerned with the phase shift events which separate periods of

synchronization in weakly coupled oscillators. In this first section, I introduce the notion of

instantaneous phase which is necessary to accurately estimate and localize such events, then

explore and visualize the instantaneous phase of several sources of data used throughout

the document.

1.1.1 Instantaneous Phase

Phase can be considered as the value which defines the initial state of an oscillator, and

many linear techniques, such as the Fourier transform, assume a constant phase value over

the window of estimation [28]. Nonlinear methods are used to estimate time-dependent

measures of instantaneous phase which capture moment-to-moment changes in the state of

an oscillator. Instantaneous phase can be defined using either the Hilbert [101] or Wavelet

transformations, both have been shown to produce similar results [227], here we use the

Hilbert definition.
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The Hilbert transform can be used to define the analytic extension of the signal, elimi-

nating power in the negative frequency bands. With all the power contained in the positive

frequencies, the direction of oscillation is known and the phase can be unambiguously es-

timated. For a continuous time real valued process xt, the analytic extension is defined

as [101]

χt = xt + ix̃t,

where x̃t is the Hilbert transform of the signal. The Hilbert transform of xt is defined to

be

x̃t =
1

π
PV

∫ ∞
−∞

xτ
t− τ

dτ,

where the integral is taken using the Cauchy principal value due to the potential singularity

at t = τ . The Hilbert transform is a convolution of the signal xt with the function 1
πt

. The

power spectral density (PSD, see §1.4.2) of x̃t is equal to the product of the PSD of xt and

the PSD of 1
πt

,

F
(

1

tπ

)
= −isgn(ω) =


eiπ/2 if ω < 0,

0 if ω = 0,

e−iπ/2 if ω > 0.

Thus the Hilbert transform is simply a π
2

shift in the phase of the original signal.

Working with the analytic extension of the signal does not change the PSD; however,

additional information can be recovered using the tools of complex analysis. The instan-

taneous amplitude and phase are defined as the magnitude and argument of the analytic

extension. For example if χt is the analytic extension of the real valued signal xt, then the

instantaneous amplitude At and phase φt are defined such that

χt = Ate
iφt . (1.1)

Conditions are given for a signal to have a physically meaningful interpretation of the

instantaneous phase and amplitude in [48]. Here we require that the signal be described

by a small spectral band centred on the main frequency component, and that it satisfies
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the narrowband approximation, that is, it is one whose relative rate of change in amplitude

is small compared to rate of change in phase.

In practice, the complex demodulation algorithm is used to estimate the instantaneous

phase of an observed signal [28, 113] (see Appendix G for additional details).

Definition 1.1. For a given δHz low-pass filter H[·], the instantaneous phase of an observed

signal xt in the frequency band (ω − δ, ω + δ) is,

φ̂t = tan−1

(
H[xt sin{ωt}]
H[xt cos{ωt}]

)
. (1.2)

The δHz low-pass filter isolates the frequency band of interest, this ensures that the cal-

culated instantaneous phase can be meaningfully interpreted as the phase of the (ω−δ, ω+δ)

component of the signal [48]. Also note that any discontinuities due to the inverse tangent

function are removed using phase straightening, by searching for discontinuities in the in-

stantaneous phase and, when one is found, adding or subtracting 2π based on the direction

of the discontinuity.

As a simple example of estimating instantaneous phase using the complex demodulation

algorithm, consider a noisy oscillator with a change point in amplitude and phase,

xt =


sin (2πf0t/T ) + εt, t < 3T,

2 sin (2πf0t/T ) + εt 3T ≤ t < 6T,

2 sin (2πf0t/T + π/3) + εt 6T ≤ t,

where T = 32 is the sampling rate, f0 = 4 the frequency of the oscillator, and εt are in-

dependent G(0, 0.5) random variables. The raw data and estimated PSD for this example

are shown in Figure 1.1. The change-point in amplitude can be clearly identified from the

raw data at t = 3T , but the effect of the phase shift is much more subtle. The PSD is

able to correctly identify that the primary component is at 4Hz, but there is no suggestion

of a phase shift event. In Figure 1.2, we can see that the change points in both phase

and amplitude are captured by the complex demodulation algorithm, though there is some
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Figure 1.1: Raw signal of the noisy oscillator xt (top), and estimated PSD using Welch’s

method [296] (bottom). From the plot, the change in amplitude is clearly observed at

t = 3T , but the change in phase at t = 6T is much more subtle. The existence of a 4Hz

component can be clearly identified from the PSD, but there is no information about the

phase.

residual oscillatory effect in the estimates (this effect is further explored in §3.1.1).

An important aspect of the instantaneous phase analysis is that the conditions be met

for an interpretation of instantaneous phase; an example of this potential problem is given

in Appendix G.

1.1.2 Rössler Attractor

The Rössler attractor is a simple to describe mathematical system which displays rel-

atively complex dynamics. Systems of weakly coupled Rössler attractors are primarily

phase locked, but are prone to spontaneous desynchronizations [235, 222]. Simulated data

from systems of weakly coupled attractors provide an additional application to validate
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Figure 1.2: Estimated instantaneous phase (top) and amplitude of the 4Hz component

estimated using the complex demodulation algorithm.

the methods in this thesis for which the truth shift events can be ascertained.

The Rössler system is a set of three ordinary differential equations [236], with parame-

ters a, b and c, which is linear except for a single bi-linear term. For certain values of the

parameters, the attractor primarily rotates around the origin in the x-y axis, while showing

spontaneous bursts in the z-direction. Sample trajectories generated with a=b=0.2 and

c=5.7 [236] and random initial conditions are shown in Figure 1.3; a burn-in period of 30

seconds is thrown away to remove transient activity.

Here we explore the two coupled Rössler attractors,

ẋi = ωi(−yi − zi) + C(xi − x|i−1|),

ẏi = ωi(xi + ayi),

żi = ωi(b+ zi(xi − c)),

for i = 0, 1, where ẋ represents the temporal derivative of x, ωi the attractor frequency

and C is the coupling strength.

9



Figure 1.3: Sample trajectory of a Rössler attractors with a = b = 0.2, c = 5.7.

Trajectories primarily oscillate in the x-y plane, so there is a natural definition for the

phase of this attractor using Poincare maps [235], which will be take as the true phase of

the system,

φt = tan−1

(
yt
xt

)
. (1.3)

Instantaneous phase variables can also be defined in the Hilbert transform sense, using

observables of the system. The complex demodulation algorithm is applied with a centre

frequency of ω = 9.25 Hz (see Figure 3.2) and a bandwidth of ∆ω = 0.15 Hz; resulting

phase differences between the two coupled oscillators are shown in Figure 1.4, for both the

true phase and the Hilbert phase with observables h(xt, yt, zt) = xt and h(xt, yt, zt) = yt.

1.1.3 EEG Data

In order to assess the proposed methods in this thesis, several EEG recordings have been

provided by Dr. Segalowitz and the Brock University Cognitive and Affective Neuroscience

Lab. Recordings were obtained from 18 participants (9 male, 9 female, aged 12-14 years)

during resting, auditory and visual tasks. In the first task, participants rested for four

minutes while fixating on a cross at the middle of a black computer monitor in a dimly
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Figure 1.4: Coupled Rössler attractors with a = 0.15, b = 0.2, c = 10, C = 0.12, w = 2π9,

dw = 0.0675. Phase difference plots for three definitions of phase; top: Poincare phase,

middle: Hilbert transform of xt, bottom: Hilbert phase of yt. In all three definitions, there

is a clear locking / shifting dynamic, with a phase shift at approximately s = 130 seconds.

lit room. The visual attention task was a traditional Erikson Flanker task [83]. The task

was to discriminate two stimuli by pressing the corresponding button for each. Stimuli

were presented for 200 ms followed by a variable intertrial interval (ITI) of 800 to 900 ms.

In a selective auditory attention task, two 200 ms digitized tones were presented to one

ear at a time in a random order: a 1000 Hz standard tone (88% probability) or a 2000

Hz deviant tone (12% probability). Sounds were presented with a variable ITI of 600 to

800 ms. Participants were instructed to attend to one ear only and to ignore all sounds

presented to the other ear and to respond by pressing a key when they heard the deviant

tone in the ear of attention, and not to respond otherwise. They visually fixated on a cross

at the centre of the computer screen during the task. The visual and auditory vigilance

tasks took approximately 15 minutes each to complete.

EEG recordings were obtained from 121 scalp sites at a sampling rate of 500 Hz. The

recordings were reduced to a set of 19 standard sites (see Figure 1.7) representing regions

of the left hemisphere (Fp1, F7, F3, C3, P3, T3, T5, O1), the right hemisphere (Fp2, F8,

F4, C4, P4, T4, T6, O2) and midline (Fz, Cz, Pz). Impedances were maintained below

30 kΩ throughout recording. Data were re-referenced offline to the average of all sites,

filtered offline (1-30 Hz) and corrected for eye movements using the Gratton and Coles
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procedure [118]. An automated artifact rejection procedure was used in addition to man-

ual examinations of the data.

Figure 1.5 shows 10 second sample waveforms from two electrodes in a single EEG

recording during the visual task. The corresponding PSDs (estimated from the entire du-

ration of the signal) are also shown, we see that there is substantial power across many fre-

quency bands, and also the effect of the 30Hz low-pass filter applied during pre-processing

stage.

Figure 1.5: A 10 second sample from two electrodes during the visual vigilance task, and

corresponding estimated PSDs.

In Figure 1.6 we see the estimated instantaneous phase of (8-10)Hz frequency com-

ponent from each signal, as well as the instantaneous phase difference. In these plots

we see the distinct phase locking and then phase shifting dynamic which the phase reset

measure attempts to capture. It can also be seen that some shifts are emphasized in the

instantaneous phase difference while others are attenuated.

12



Figure 1.6: Estimated instantaneous phase of xt (top) and yt (middle). Both signals show

prolonged periods of constant phase values (locking) and spontaneous jumps in the phase

(shifts). The bottom panel shows the instantaneous phase difference; in the phase difference

some of the shift events are exaggerated, while others are attenuated.

1.2 History of EEG

Electroencephalogram recording is a brain imaging technique which was first used on hu-

mans by Hans Berger in 1929 [25]. It is a non-invasive technique which measures electrical

activity in the brain with sensors (electrodes) placed against the scalp. The number and

placement of electrodes differ depending on the application, however in 1958 the 10-20

electrode placement system [147] was developed to help standardize reported results (see

Figure 1.7). Modern electrode nets record many more channels than the 19 suggested

by the 10-20 system (see Figure 1.8), though results are still often reported using 10-20

terminology.

In 1936 the Massachusetts General Hospital [117] was the first hospital to begin using

EEG recordings for clinical purposes. Recordings were used to diagnose localized brain

disorders, for example epilepsy [107] or brain tumors [27]. New imaging techniques such
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Figure 1.7: Visualization of the international 10-20 electrode placement system. The outer

electrodes are spaced in 10% and the inter-electrode distance is 20% of the nasion to inion

distance of the head (for a row with 5 electrodes, they are placed at 10%-30%-50%-70%-90%).

The first digit in the name identifies the region of the cortex (frontal, central, temporal, parietal,

occipital) and the second digit describes the hemisphere (odd on the right, even on the left, z on

the midline).

as fMRI or x-ray computed tomography have since replaced EEG for many localization

applications due to superior spatial resolution. However, using EEG recordings for scien-

tific, rather than clinical, purposes continues to be popular because it has greater temporal

resolution than other imaging techniques, as well as being non-invasive, cost effective and

portable.

In the following, I will review the most important physiological and technical details

which underlie EEG recording. I will give a historical review of the different methods have

EEG analysis which have been used, and how they have evolved with changing technology.

I will then introduce two modern problems in EEG analysis (source reconstruction and

measuring connectivity) which will be investigated in later chapters. Finally I will give a
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Figure 1.8: A modern EEG cap with 128 electrodes. Electrodes come as far down the head as

reasonable to try and pick up the activity originating from the bottom of the brain. There are

electrodes directly above and below each eye, which can be used to isolate activity due to eye

movements.

brief preview of what the future holds for EEG analysis.

1.3 Electricity in the Brain - Basis for EEG

Information is transferred through the nervous system by billions of cells called neurons or

nerve cells. A typical neuron has a main cell body surrounded by tiny branch-like fibers

called dendrites, which are used to receive information, and a longer axon, fiber which

branches out at the end to communicate information to other neurons. Figure 1.9 is a

diagram depicting a typical neuron. When a neuron is stimulated by pressure, heat or

light it may discharge a brief electrical current, which travels through its axon, called an

action potential or spike. Once the action potential reaches the ends of the axon branches it

travels across a small gap called a synapse, and is received by the dendrites of other neurons.
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Figure 1.9: A diagram of a typical neuron. The neuron consists of a main cell body, many bushy

dendrites (input) and a long axon channel with insulating sheath (output).

Electrical recordings from within the cortex show that the extra-cellular current which

occurs as the signal crosses the synapse has the largest magnitude of all electrical brain

activity (which can be up to 30 mV) [5]. Taking into account the distance to the electrode

and the conductivity of brain tissue, many signals likely do not have a measurable effect

at the scalp; however, signals such as the auditory potential, which originate deep in the

brain stem are able to produce measurable effects at the scalp by traveling through highly

conductive spinal fluid [150]. Evidence suggests that most electrical activity at the scalp

is due to clusters of pyramidal neurons, called cortical columns due to their columnar

structure and axons which project perpendicular to the surface of the cortex [81, 173].

Moreover, signals from these columns can be amplified by synchronous activation patterns

over periods of time [43]. These transient groups of functionally connected neurons are

now called neural assemblies [138].

1.4 EEG Analysis

The goal of EEG analysis is to learn about brain function. This is accomplished by us-

ing information from theoretical models, clinical observations and spatio-temporal EEG

16



patterns [57]. This document will focus on using statistical techniques to identify spatio-

temporal patterns in EEG recordings.

A sample plot of an EEG recording is shown in Figure 1.10, with signals recorded from

five locations (Fp1, F3, C3, P3, O1). The recording is taken from a person at rest, while

fixated on a star pattern screen saver. The signal from location Fp1 which is closest to the

eyes, shows distinct positive spiking waveforms (one at 0.5s, 2.5s and two at 5s) which are

characteristic of blinking and provide no information about brain activity. As the location

of electrodes moves away from the eyes towards the back of the head, the blink activity is

attenuated and blurred (the two blinks at 5s appear as one) and once the electrodes move

below the eyes (O1) the effect is negative. The sub panel of the figure shows a typical

second of EEG data, without any blinking artefacts. Muscular artefacts such as those

due to blinking are just one of many sources of noise in EEG recordings, a more detailed

description of noise in EEG recordings is given in Appendix B.

1.4.1 Early analysis

Early EEG recording systems used a string galvanometer [80] and later vacuum tubes [90]

to measure and amplify electrical potentials at the scalp, the resulting analogue signal was

attached to a pen motor which drew the recording onto paper. Systems which would draw

the EEG signal onto magnetic strips were eventually developed, allowing the recording to

be played back [44].

Due to the nature of EEG recordings at this time, analysis was done visually and fo-

cused on the qualitative features of the signal. Features of the EEG signal were classified

as either paroxysmal (transient, bursting) or on-going (background, spontaneous) activity.

A simple feature of EEG recordings which was used is the dominant frequency, measured

by counting the number of oscillations in one second. These measurements were not exact,

so EEG activity was described in terms of several predetermined frequency bands; delta

(0-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13+Hz). It was difficult to quantify

the amplitude of frequency component, since the peak-to-peak amplitude of the signals
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Figure 1.10: The main figure shows six seconds of EEG from a resting task, where the participant

fixated on a star pattern screen saver (data provided by Brock University Laboratory of Cognitive

and Affective Neuroscience). The recordings are from five locations arranged from the front to

the back of the head. In the Fp1 recording there are many sharp positive spikes, these waveforms

are characteristic of an eye blink. As the signal propagates across the skull, the effect of the eye

blink is attenuated, and at the back it has shifted to negative due to being physically below the

source.

changed over time due to noise or other components in the signal. One approximation

used was to create an envelope for the signal by joining together all the peaks/troughs and

taking an average of the resulting lines [291]. Another measure of interest was the fraction

of time that a recording would spend oscillating in a specific frequency band [110].

There are also many more complicated waveforms that commonly exist in EEG record-

ings, a few examples will be described here but a more detailed treatment can be found

in [47]. The alpha rhythm is a waveform with frequency in the alpha band, it was the

first EEG waveform reported by Hans Berger [25] and has also been called the Berger

waveform. The alpha rhythm is most prominent in the occipital region of the cortex and is
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strongest during eyes closed relaxation, the rhythm is attenuated during attention (espe-

cially visual) [47]. The K-complex is a transient waveform that occurs during sleep, either

spontaneously or in response to stimuli. The waveform has a sudden jump of around

100µV, then a slow return to baseline followed by several seconds of activity at approxi-

mately 14Hz [65, 237].

Topographic maps of the scalp potentials were used to visually identify spatial patterns

in EEG, however these maps were cumbersome to create from analogue recordings. One

method for making maps is to use bipolar recordings (the difference between two linked

electrodes) directly to measure the potential gradient in one direction on the scalp. If

many electrodes were arranged in a line, bipolar recordings could be used to localize the

maximum of the potential by identifying the point where the gradient shifted from positive

to negative [3].

1.4.2 Digital Recording system

Often visual inspection was not sufficient to discriminate between components [68]; fur-

thermore, more complex analyses were very cumbersome with analogue recordings. To

create digital EEG recordings, analogue-to-digital converters are used to sample potential

values at regular time intervals and then assign them to a discrete set of possible voltage

values. Digital EEG recordings were in development for some time, it was not until the

1970s that they overtook analogue as the recording of choice [106].

Digital methods opened new possibilities for analyzing the spectral content of EEG

waveforms. Based on the ideas of Fourier analysis, the fast Fourier transform (FFT) [56]

is an efficient algorithm which is used to estimate the power spectral density (PSD) of a

signal. The PSD quantifies both the power and phase for each frequency component of the

signal in an objective way.
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Definition 1.2. The power spectral density (PSD) of a stationary process Xt is

hX(ω) =
∞∑

s=−∞

δse
−isω, |ω| < π,

where δs is the auto-covariance function

δs = Cov(Xt, Xt−s), s ∈ N.

Creating scalp topographies was made more practical with digital technologies. Com-

puter methods used interpolation to create detailed contour plots of the scalp potential

which are useful for localizing specific waveforms. However, ambiguities can arise in the

topography when interpolating scalp potentials [29], due to projecting a 3D volume onto

a 2D surface. A similar spatio-temporal method was developed by [230] called chronoto-

pograms, where the contour plot was created with one spatial dimension and one temporal

dimension. This gave an idea of the topography of a single line of electrodes as it changed

over time.

Event Related Potentials

Event related potentials (ERPs, previously known as evoked potentials) are short EEG

recordings which are time locked to an event, usually the onset of a stimulus. The tri-

als for an ERP are repeated many times and then averaged, maintaining the waveform

of interest while reducing the effect of unrelated background noise. The ERP was first

described by [67] using superimposed images to emphasize the signal, however with digital

recordings a simple average is used to generate the waveform.

The ERP for basic sensory stimuli have been identified (visual [128], auditory [150],

olfactory [163], somatosensory [292]) and are well studied. The visual evoked potential

(VEP) is a pattern evoked by changing visual stimuli, such as a checkerboard pattern

with alternating black and white squares. The primary component of a VEP is a large

positivity (up to 30µV) with a random latency which occurs on average 100ms after the
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stimulus and it is strongest at the Oz region of the scalp. Features of the VEP such as its

latency and amplitude have been shown to dependent on the intensity of the stimulus [127].

The are certain components of ERP waveforms which are pervasive across many differ-

ent stimuli. The N1 (or N100) is a negative deflection in the ERP that occurs approximately

100ms after the onset of an unexpected stimulus, which is localized in the Fz frontal re-

gions (see [197] for a review). The amplitude of the N1 depends on the expectation of the

stimulus, for regularly occurring stimuli the amplitude is reduced (called habituation) and

it is altogether absent when the participant is given control of stimulus onset [66].

In events where it is required for the participant to make a decision regarding the

observed (not necessarily visual) stimulus, the P3 (or P300) is a large positive deflection

in the ERP that occurs roughly 300-350ms after the stimulus [267], and it is maximal on

the mid line of the central/parietal regions (Cz, Pz). A popular visual task for evoking the

P300 is the Eriksen flanker task [83], where the participant must quickly identify the centre

letter in a group while it is flanked with similar or dissimilar letters (see Figure 1.11).

Figure 1.11: The visual stimuli for an Eriksen flanker task [83]. In the congruent task, the target

letter is the same as the ones flanking it, whereas the incongruent task has a different target letter.

In repeated trials, this incongruence causes an increased rate of errors, allowing researchers to

analyze the waveform associated with error detection.
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Coherence

The PSD and scalp topographies are used to learn about functional segregation, the idea

that distinct regions of the brain which are responsible for specific tasks. It is known that

functional segregation is a key aspect of brain function in mammals [86, 177, 301]; however,

it is not the only aspect of brain function [169]. Functional integration is another important

feature of brain function, it is the coordination of multiple functionally segregated brain

regions to achieve a unified response [88, 119, 261].

To measure functional integration, measures were introduced to quantify functional

connectivity, a statistical dependence between EEG signals from different areas of the scalp.

The first prominent measure of functional connectivity was coherence, a bivariate spectral

quantity which measures the ‘correlation’ between the signals at specific frequencies [258,

290].

Definition 1.3. The cross spectral density (CSD) of a bivariate stationary process (Xt,Yt)

is

hXY (ω) =
∞∑

s=−∞

δse
−isω, |ω| < π,

where δs is the cross-covariance function

δs = Cov(Xt, Yt−s), s ∈ N.

Definition 1.4. The coherence between variables in a bivariate stationary process (Xt,Yt)

is

γ2
XY (ω) =

|hXY (ω)|2

hX(ω)hY (ω)
, |ω| < π.

In practice Welchs’ periodogram is used to estimate coherence [296], which uses the

FFT to calculate P/CSD for many segments of data and then averages the P/CSDs (such

as in ERP studies). Using the average reduces the variance of the estimator, which is

important for noisy EEG recordings, however the drawback is a lower frequency band res-

olution in the solution. The papers [205, 204], are a comprehensive study of the properties

of coherence as well as how it is affected by the noise in EEGs; main results were the
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existence of spurious high coherence estimates between scalp recordings (low-moderate in-

terelectrode distance < 12cm) when compared to cortical recordings, due to the effect of

VC across the scalp.

There exists structural subcortical connections between distinct regions of the cor-

tex [34] called intracortical (or cortico-cortical) connections. In [274], Thatcher uses co-

herence to map functional development of these intracortical connections from birth to 16

years. The results showed a cyclic pattern between growth and reorganization in cortical

development.

Although coherence is a successful measure of functional integration, it has several

limitations.

• Stationarity: Existence of a PSD depends on the stationarity of a process. There is

evidence that EEG recordings longer than 12 seconds are non-stationary [55]

• Linearity: Coherence is based on linear correlation in the process, if information is

being transferred in a nonlinear manner, it may not be identified.

• Direction: EEG coherence does not identify which signal (if any) is driving the flow

of information.

1.5 Modern Analysis - Measuring Connectivity

A current scientific model for how functional integration is achieved in the brain is based

on the concept of neural assemblies. Neural assemblies are transient dynamic groups of

functionally connected neurons. Neurons within an assembly are able to interact more

strongly with each other via an amplified feedback mechanism called reentry [261, 120].

The process of reentry requires specific timing relations (frequency depends on transmission

times between specific neurons), which requires neurons within an assembly to synchro-

nize their firing rates. This has led to increased use of phase variables, specifically their
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synchronization, to measure connectivity in EEG recordings. The use of phase variables

to measure connectivity will be revisited in Chapters 3 and 4.

1.5.1 Volume Conduction

The goal of connectivity analysis is to estimate connectivity between neural regions from

EEG recordings, an implicit assumption is that the EEG recording at an electrode is due

to the neural regions directly below the electrode. In fact, the electric field due to neural

activity projects across the entire surface of the head, an effect known as volume conduc-

tion (VC).

At any point in time, the electric potential on the surface of a volume is a linear com-

bination of the potentials due to each generator within the volume. This field spread of

electrical activity is governed by Maxwells equations of electricity and magnetism (see Ap-

pendix A, solving for the potential due to a given source configuration is referred to as the

forward problem (see §1.6.1). From the solution to the forward problem (Equation A.2)

we see that the contribution to the electric field are instantaneous (due to the quasi-static

approximation [129]), and decrease quadratically with distance from the source.

Despite the above concerns, it may still be reasonable to interpret the EEG activity as

being primarily due to activity directly under the electrode (see §1.3). Cortical columns

are clusters of similarly oriented neurons at the cortex (shortest distance from the scalp),

and may fire synchronously if recruited into a neural assemblies. It is reasonable that

activity at the scalp is primarily due to this perpendicularly oriented synchronous activity,

although certain activity does spread further (for example, the auditory evoked potential

reaches the scalp via conductive cerebral spinal fluid pathways [150]).

The difference between estimated connectivity directly from neural sources and the cor-

responding estimates from scalp recordings is an effect of VC; this can be thought of study
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error, a systematic bias in connectivity estimates due to recording from the scalp instead

of from cortical activity directly. Signals recorded at the scalp show increased correlation

compared to the underlying sources [205]. Furthermore, the effects of VC are modulated by

noise [249], and so with-in subject differences may be a result of changing noise conditions

rather than changes in underlying connectivity.

Modern measures of connectivity look to overcome the inherent limitations of EEG

coherence, as well as reduce the effect of VC on estimated connectivity. There have many

proposed methods used for inferring spatio-temporal patterns in EEG signals (for a review

see [63, 226]), the most popular ones will be discussed here.

1.5.2 Directed Coherence

Granger causality is a statistical definition of causality originally described by Granger

in 1969 [116], which is used in time series analysis. Conceptually, Granger causality is

about predictability and more specifically whether knowledge of the past of one signal can

improve predictors for another signal. Based on the idea that the future cannot cause the

past, there is a natural direction of information flow when measuring Granger causality.

Definition 1.5. Let Xt and Yt be two jointly stationary stochastic processes, P (Xt) the

optimal predictor of Xt and Ut be all other information at time t. It is said that Yt Granger

causes Xt (Yt ⇒ Xt) if knowledge of Yt causes a reduction in the prediction error of Xt

after all other information has been taken into account,

V ar(P (Xt |Xt,Yt,Ut)−Xt) < V ar(P (Xt |Xt,Ut)−Xt).

where the font type Xt represents the history of the process,

Xt = {Xt−1, Xt−2, ..., X0}.

The above definition is a general framework and it does not provide specific details for

measuring or testing for Granger causality. The optimal predictor P () will depend on the
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model used to describe the processes, often it is taken to be the optimal linear predictor

of Xt. There is also Ut which is defined as all other information at time t, its purpose is to

eliminate possible confounding variables and so ideally Ut will contain as much information

as possible. What variables are included in Ut is determined by both the availability of in-

formation on potentially confounding variables and the ability of the model to compensate

for different kinds of information. A true causal relationship can only be inferred when all

possible confounders have been taken into account; however, even if not all confounders

are available, the Granger causality analysis can still be used both for prediction and to

identify directed measures of association. Two processes are said to have a feedback re-

lationship if both X → Y and Y → X. In the case of a feedback relationship, Granger

causality does not provide any information about the origin of information in the system.

In order to determine the direction of information flow between EEG signals, the ideas

of Granger causality can be used In Granger’s original paper, he introduced a statistical test

for causality between two processes based on a bivariate auto-regressive model [116], the

measure has a convenient representation as a decomposition of the traditional coherence

function and was later formalized as directed coherence (DC, see Appendix E). Analysis

of EEG recordings using DC was first applied over a decade after Granger’s original pa-

per [241].

There are also extensions of DC such as the directed transfer function [154] which

allows causality to be tested in a full multivariate system and partial directed coherence

(PDC) [245] which accounts for the effect of other signals. To address the issue of station-

arity, adaptive time varying version of both DC [140] and PDC [9] have been applied to

EEG signals.

Calculation of measures such as DC and PDC is based on fitting a multivariate auto-

regressive (MVAR) model to the EEG data. The MVAR model is linear, so it will po-

tentially miss out on the nonlinear relationships that are thought to be a part of EEG

signals [155].
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1.5.3 Mutual Information Analysis

In information theory, entropy is a fundamental quantity used to describe the uncertainty

associated with a random system [254].

Definition 1.6. For a discrete random variable X with possible states {xi}Ni=1 and associ-

ated probability mass function PX(xi) the entropy is defined as

H(X) = −
N∑
i=1

PX(xi) log(PX(xi)).

Entropy can be used to describe the statistical dependence between two signals using

mutual information (MI) [287]. If two signals have a statistical dependence, observing

one signal reveals information about the other due to their common structure. The MI

between two signals is the reduction in entropy caused by knowledge of the other. Mutual

information analysis has been used to assess functional connectivity between signals in

EEG recordings as early as 1985 [183, 300]. A benefit of using MI is that it can detect any

type of statistical dependence, where as coherence is a measure based on linear dependence.

The ideas of MI analysis have been extended to measure directed connectivity us-

ing a quantity called transfer entropy [250], which measures the uncertainty associated

with state space transitions. Analysis using transfer entropy has been successfully applied

to electrophysiological data [213, 289]; however, state space reconstruction requires large

amounts of data and is not always appropriate for EEG.

Information theoretic measures such mutual information and transfer entropy are able

to detect non-linear dependency in EEG signals, however it can be difficult to get an

accurate estimate of the probability distribution due to the non-stationarity of the signal.

1.5.4 Phase Synchrony

For as long as researchers have been doing quantitative spectral analysis, they have an-

alyzed phase variables as a measure of time delay [2, 182, 201], however until the 1990s
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amplitude measures such as coherence were the preferred measure of functional connectiv-

ity. Work done to understand the phase dynamics of coupled oscillators [223, 235] and new

scientific models of how functional integration is achieved in the brain, using the theory of

neural assemblies [43, 120, 119, 151, 178], have spurred increased interest in phase analysis

for neural signals. Measures of connectivity using phase variables are based on the idea of

phase synchrony, which is a consistent phase relationship between signals (see [286] for a

review).

In order to identify periods of phase synchrony in EEG recordings, a time dependent

instantaneous phase (see Section 1.1.1) is calculated using techniques based on the Hilbert

transform [101, 113]. Due to the nature of EEG recordings, deterministic phase synchrony

does not exist and an alternate definition of phase synchrony must be used. Several win-

dowing methods have been proposed to measure phase synchrony; phase locking values

(PLVs) are computed based on preferred values of the phase difference using entropy [270],

the average phase difference over time [190] or trials [166, 232]. Windowing methods do

not make full use of the time resolution of EEG signals; however, methods which use the

phase difference derivative to identify phase synchrony [37, 93] are able capture the dy-

namic balance between synchronization and desynchronization thought to be an essential

part of brain function [274].

There have been attempts to quantify the directionality of phase synchrony, models

of weakly coupled oscillators have been used with time series data [52, 234, 259] and

spike train data [159]. In [201] phase measurements based on the CSD are used to infer

directionality in EEG, however there has not been work in identifying directed connections

in the context of instantaneous phase shifting and locking events.

1.6 Modern Analysis - Source Reconstruction

Scalp topographies are able to localize the region of the scalp where an EEG signal is

strongest, however the goal of EEG is to learn about brain function and the scalp is merely
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a 2D projection of a 3D brain volume. Source reconstruction is the problem of identifying

the location, orientation and magnitude of the primary electrical currents in the brain.

With changing technology, this has become an active area of research.

To set up the source reconstruction problem, Ys×1 is a vector of observed scalp potentials

and J3g×1 is the 3 dimensional primary current vector at g locations in the head, both

measured in µV . A realistic range of values for s is 64-256 electrodes, while g should be in

the 1000-2500 range to have high enough spatial resolution for measuring brain dynamics.

This means s << g and makes the source reconstruction problem underdetermined. Here

I will review some of the literature on source reconstruction, and then these ideas will be

revisited in Chapter 2.

1.6.1 The Forward Problem

The forward problem can be defined as determining the electric field potential that is

generated by a given primary current density. Using Maxwell’s equations (see Appendix

A), the relationship between primary currents and scalp potential at a single time point is

described by a Poisson equation [212]

∇2Y =
∇J
σ
,

where σ is a conductivity parameter. For a discrete primary current density, the solution

at a single point in time can be represented as a linear transformation with the lead field

matrix (LFM) denoted K,

Y = KJ.

The LFM is a constant matrix which depends nonlinearly on the geometry of the problem

as well as the conductive properties of the volume, a set of assumptions about these prop-

erties define a head model.

A simple head model is a uniform sphere with homogeneous and isotropic conductiv-

ity (σ is a constant). Based on experiments in [199] the assumptions of homogeneous and
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isotropic conductivity are not realistic, however the single sphere model was originally used

because there exists an analytic solution for LFM [41]. According to [7, 302] the single

sphere head model is too simple and can give inaccurate results when calculating field

potentials.

The Poisson equation can also be solved for inhomogeneous volumes [104] and has been

used in multiple concentric spheres head model, where each sphere represents a part of

the head (such as brain tissue, skull and scalp) with different conductivity [239]. A useful

approximation was presented by Berg [23], showing that a model of M concentric spheres

can be reasonably approximated by the sum of M appropriately scaled single sphere models.

Non-spherical head models also exist, imaging techniques such as structural MRI are

used to create realistic boundary conditions which define homogeneous regions of the

brain [255]. For these head models there is no analytic solution for the LFM, and nu-

merical methods must be employed to calculate K [84].

In a spherical head, the potential can be described in terms of the contributions from

the radial and tangential components of the primary current density [7]. One solution

based on the structure of cortical columns, the primary currents are constrained to be

perpendicular by setting the tangential component to zero [192].

1.6.2 The Inverse Problem

The forward problem is determining the electric potentials which are generated on the

scalp due to specific generators within the brain. To perform source reconstruction, the

corresponding inverse problem must be solved; that is, given observed scalp potentials,

what are the underlying neural sources which generated those potentials.
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Parametric Solution

Simple dipoles (point sources of primary currents) are able to provide a good description

of EEG scalp data [36, 91]. The dipole method is a parametric solution to the EEG in-

verse problem which assumes that electrical activity in the brain is generated by a small

number of point sources, each with six parameters describing the location and strength of

the current in three dimensions.

The first implementations of the dipole solution were described in the early 1970’s [139,

248], using just a single dipole at a specific point in time. In multiple dipole models,

selecting the appropriate number of dipoles is an important aspect of an EEG source re-

construction. In is shown in [156] that a single dipole model correctly identifies the source

of electrical activity due to blinking in participants with only one eye, however if both

eyes are intact then the model incorrectly identifies the midpoint between the eyes as the

generator. Additionally, if too many dipoles are fitted, they will tend to the same (correct)

location, but with opposite current vectors which obscure the true magnitude of the source.

A number of extensions to the dipole method have been suggested (see [121] for a re-

view), temporal evolution [246], subspace methods such as the MUtiple SIgnal Classifica-

tion (MUSIC) and Recursively Applied and Projected (RAP-MUSIC) algorithms [193, 191],

beamforming techniques [288] and computational artificial neural network approaches [1].

Nonparametric Solutions

Nonparametric solutions, also called distributed current (DC) solutions are another class

of solution for the EEG inverse problem. The brain volume is discretized into many tiny

elements called voxels. In [18], it is suggested that spatial and temporal resolution should

be no worse than 5mm and 5ms respectively. In order to find a unique solution, regulariza-

tion techniques are used to solve problems with additional constraints on the mathematical

or physiological properties of the solution.
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The earliest DC solution is the minimum norm estimate (MNE) [130, 131]. The use

of a MNE corresponds to the minimum energy output required to generate the observed

data, because of this it has a bias towards shallow sources and underestimates the depth

of sources [216]. An extension of the MNE is standardized LOw Resolution TomogrAphy

(sLORETA) [215], which uses a MNE normalized by an estimate of the source variance,

allowing for better localization of deep brain sources. The estimate is based off a decompo-

sition of sensor variance into independent contributions from source variance and additive

noise. In noiseless simulations with a single dipole, sLORETA was shown to have zero

localization error [215].

Another important type of DC solution is the weighted MNE. Different weights have

been used for the EEG inverse problem, such as LOw REsolution TomogrAphy (LORETA,

different from sLORETA) [216] and Local AUto-Regressive Average (LAURA) [70]. The

LORETA solution seeks the ‘smoothest’ possible solution by minimizing the Laplacian

weighted norm, and is able to correctly identify depth sources[216]. Although it provides

more accurate source localization, the low resolution property of LORETA can sometimes

blur together distinct but proximate sources.

There are other DC solutions that exist which use spatial regularization [33], spatio-

temporal regularization [18], optimal resolution [69] and iterative multi-resolution solu-

tions [114] (see [121, 214] for more detailed reviews).

Statistical Learning

A statistical approach to solving the source reconstruction problem is to use machine

learning techniques [95]. The problems of find the function F which ‘best’ describes the

relationship between two variables. The best function is the one which minimizes the

expected loss for a given loss function. Here we are specifically interested in finding the

function which best related the observed scalp recordings to the generating sources, subject

to the constraint that the solutions satisfies the forward problems,

J = F (Y ), such that Y = KF (Y ).
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In situations where the number of potential predictors p is much larger than the number

of observations N (p >> N), the standard approach is to include a regularization term to

the loss function to encourage a sparse solution. Cost (loss, penalty) functions are used

which encourage sparse solutions, such as the lasso (l1 norm) and fused lasso [278, 279].

These regularization techniques usually involve a tuning parameter which must be set,

this adds a model selection aspect to these methods. Cross-validation is a standard model

selection technique which can be used to define the parameter [111].

Machine learning techniques are a growing field in neuroscience problems [172]. Ap-

plications of machine learning techniques to EEG source reconstruction, fused-lasso type

regularization which results in sparsity and smooth current density [134, 133, 136]. An un-

supervised learning algorithm which is applied to EEG is independent component analysis

(ICA) [153]. There are many different applications of the ICA algorithm, popular choices

are the FastICA [143] and Infomax [171] algorithms; there is also a popular Matlab toolbox

called EEGLAB which includes a built-in ICA procedure [71].

Bayesian Solution

There are many possible solutions to the EEG inverse problem, each one representing

different a priori assumptions about the mathematical or physiological properties of the

current distribution. There have been studies which compare the accuracy of different

solutions (for a review, see [121]), but there is no one solution which is uniformly better

than all others.

A Bayesian statistical solution is a natural way to approach the EEG inverse problem,

as many of the previously mentioned methods can be motivated using a Bayesian formula-

tion [54, 53, 144]. The Bayesian approach also has a natural framework for model selection

which allows for many different constraints to be compared, in a way that embodies the

principals of Occam’s Razor [283, 185].
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A primary concern when using a Bayesian solution is that the posterior distribution can

be intractable. Bayesian solutions have been used to incorporate complicated prior spatial

information [220, 240] as well as spatio-temporal priors [18, 62], but these studies used

maximum a priori (MAP) estimators due to intractable posterior distributions. Another

option is to use Markov chain Monte Carlo (MCMC) sampling methods [103] to generate

a random sample from the posterior distribution. These methods have been applied in

Bayesian source reconstruction [13, 152, 247], however there is a high computational cost

to generate large enough samples.

In [100], a Bayesian framework is developed for use in neural analysis, which uses hierar-

chical linear models to incorporate prior information and a variational Bayes (VB) approx-

imation to the posterior distribution [12]. The framework has been applied to EEG inverse

problems [158, 219, 243] and extended to include multiple prior distributions [97, 282].

1.7 Future EEG direction

The future of EEG connectivity analysis is in making inferences about functional integra-

tion at the cortex, as opposed to on the scalp. One option is to use source reconstruction

techniques to find the cortical signals and then use traditional connectivity measures to

identify regions of cortical connectivity. Source reconstruction techniques are able to lo-

calize EEG signals, however they can often distort the temporal properties of the signal

and cause spurious patterns between signals [249].

Another option for measuring cortical connectivity is to use joint EEG-fMRI recordings

in order to have combined high temporal and spatial resolution in recordings. The use of

fMRI scanning introduces large electrical artefacts into the EEG signal, and modern signal

processing techniques must be used in order to separate the brain activity from the noise

due to the fMRI in the electrical recordings [285].
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Another branch of EEG research which will benefit from changing technology is the

development of a brain computer interface (BCI). Machine learning techniques are used

to train BCI devices to respond to the electrical signals recorded from the scalp. Early

BCI devices have been developed which assist in motor control, communication and gam-

ing [188].

1.8 Summary

In this chapter, we have discussed some of the basic properties of EEG recordings. The

takeaway is that EEG signals are the result of a highly complex biological process and have

a low signal to noise ratio. Analysis of EEG recordings requires sophisticated methods to

uncover the underlying brain signal and has previously been limited by the available tech-

nology.

The main problem discussed is estimating functional integration between neural regions

from spatio-temporal patterns in EEG recording. Coherence has been the most popular

measure in recent history, but it has limitations. New scientific models of how functional

integration is achieved emphasize temporal coding in information transfer and encourage

the use of phase variables in analysis. In Chapter 2 I introduce a novel measure of connec-

tivity based on the existence of characteristic phase shift events which represent dissolution

of neural assemblies. Shift events are modelled as a multivariate point process, and directed

connectivity is assessed using the framework of Granger causality. One feature of the PSGC

method which is specifically missing from the EEG phase shift literature is an objective

way to identify phase shift events, in Chapter 3 I develop objective methods for phase shift

identification, focusing specifically on the temporal resolution of each method.

A major limitation in estimating neural connectivity from EEG recordings is field spread

due to VC, the instantaneous spread of electrical activity across the scalp. It is possible

that a single source interacting with itself can generate spurious connectivity at distant

locations, and even in the case of genuine connectivity, it is difficult to determine if the
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true source of EEG activity is actually below the electrode. In Chapter 4, I investigate the

effects of VC on the phase shift Granger causality (PSGC) analysis and the implications

for inferring neural connectivity. Source reconstruction is one technique which may be use

to overcome the limitations of VC, by identifying the primary currents within the brain

which generated the observed scalp potential. This is a highly underdetermined problem,

and different regularisations or constraints are used to find a unique solution. In Chapter

5, I explore the ability of several source reconstruction techniques to accurately localize

the source of a phase shift event.
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Chapter 2

Phase Shift Granger Causality

Electroencephalogram (EEG) signals across two sites are said to be functionally connected

with one another when their interaction has a physiological relevance [35], such as during

periods of synchronized phase relations [119, 286]. However, desynchronization of neu-

ral assemblies is a necessary aspect of information processing [277]. Traditional measures

of EEG functional connectivity do not consider the relationship between synchrony and

desynchrony, focusing rather on an overall measure of synchronization strength [205, 201].

In this chapter, I introduce a novel method of measuring directed connectivity from spatio-

temporal patterns of these phase shift events by applying the framework of Granger causal-

ity (see §1.5.2 or Appendix E).

The current Chapter is a preliminary demonstration of this new measure, applied to

EEG recordings from 18 adolescents during a rest, and both auditory and visual vigilance

tasks. The properties of this method are further studied in Chapter 3 and Chapter 4, before

a final validation is given at the end of Chapter 4. The new measure, Phase Shift Granger

Causality (PSGC), is able to clearly distinguish between the resting task and the active

tasks. The latter have higher rates of connectivity overall, and specifically more long range

connections. The resting task appears to activate more localized neural circuitry while

the active tasks appear to increase communication across several neural regions involved

in vigilance tasks, this is consistent with the idea that the increased complexity of the
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vigilance task requires additional resources to complete. The vigilance tasks also showed

significantly higher clustering coefficients than the resting task, one property associated

with small world network dynamics [295].

2.1 Introduction

The coordination of multiple functionally segregated brain regions to achieve a unified

response is defined as functional integration. For many types of cognitive processing the

integration of multiple regions is required [38, 45, 281]. For example, consider the act of

writing; this requires the visual system to see the writing surface, memory and language

to know what to write, and the motor system to tell the hand how to write. It is hypoth-

esized that basic tasks can be mediated by the formation of neural assemblies [35], which

are transient networks of functionally connected neurons.

Bidirectional connections in neural assemblies facilitate stronger interactions among

neurons within an assembly via a feedback mechanism [88, 119, 261, 280]. Due to the

common orientation of neurons within a cortical column, and the relative closeness of the

cortical surface to the scalp, such activation patterns are ideally suited to be measured

from EEG scalp recordings (see §1.3). Transfer of information within neural assemblies

that is accomplished by these amplified cycles of activation will manifest in EEG recording

as an oscillations within a specific frequency. This is idea is reinforced by the observation

of distinct oscillatory components in EEG recordings [25, 65, 237, 47].

Graphs are mathematical constructs which can be used to study connectivity, with

neural regions represented as nodes, and pairs of nodes have an edge between them if

they are functionally connected. Complex systems often have graphs with structured con-

nectivity patterns, such as the small-world [295] and scale-free [21] graphs. Both types

of networks have been observed in the brain; structural networks show small-world be-

haviour [263], while transient functional networks display both small-world and scale-free

behaviour [260]. Anomalous functional brain networks have been associated with patho-
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logical conditions such as schizophrenia [176] and epilepsy [175]. The estimated networks

depend the specific measure of functional connectivity which is used, the appropriate mea-

sure depends on the time-scale of the underlying process and the modality of brain imaging.

The literature further distinguishes between functional connectivity, a symmetric mea-

sure of statistical dependence between sources of neural activity, and effective connectivity

which describes the influence that one neural system has over another [99] which is poten-

tially asymmetric. Coherence has been used to measure functional connectivity at specific

frequencies [164, 205, 201] and estimate network structure [194, 271] in EEG recordings,

but this method is limited. Measures of coherence are based on an average of time seg-

ments which are one to two seconds in length and this level of temporal resolution might

not fully capture the moment to moment changes in connectivity that are hypothesized to

exist [262, 274, 277].

One limitation of coherence, the inability to measure direct connectivity, may be over-

come using statistical techniques based on the concept of Granger causality [116] (see

§1.5.2 or Appendix E). This idea of causality centres around predictability, and more

specifically whether knowledge of one signal can improve the prediction of another. Mea-

sures of Granger causality are asymmetric and can be used to infer directed connectivity

between neural signals. Granger’s original paper introduced a statistical test for causality

between two processes based on a bivariate auto-regressive (AR) model [116]. The test has

a convenient spectral representation called directed coherence (DC), which decomposes the

traditional coherence functions into two asymmetric components of directed connectivity.

Originally used to study economic time series, the method was applied in neuroscience

over a decade later [241]. An extension of Granger’s method is called partial directed co-

herence (PDC), which provides a test for causality that takes into account the effect of

other signals [15]; the method has been applied to many neuroscience problems in recent

years [11, 245, 268]. Granger’s original test for causality assumes a stationary AR process,

although there is evidence that this condition may not hold in EEG recordings longer than

12 seconds [55]. This has led to the development of time dependent measures of Granger

causality [9, 140, 189].
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2.1.1 Phase

In order to account for temporal coding in frequency analysis, the phase of a signal can be

analyzed. While there are a number of ways to define phase when dealing with noisy or

chaotic signals [31, 223], instantaneous phase is a term used to describe the time-dependent

phase of such signals [48, 227]. In this work, instantaneous phase is defined in the Hilbert

transform sense, a concept first introduced by Gabor in 1946 [101] (see Section 1.1.1).

One important method of describing functional connectivity based on phase variables

is through phase synchrony [286]. Two oscillators are said to display phase synchrony if

they have a constant difference in phase over time. The presence of noise in a signal can

lead to phase slips, small deviations from perfect synchrony [31, 270]. Thus in order to

identify phase synchrony in the presence of phase slips (i.e. noise), an alternative definition

is required. One option is an entropy-based method for quantifying the average strength

of phase synchrony over time in noisy systems [270]. An alternate method of identifying

phase synchrony proposed by Breakspear [37] uses the phase difference derivative (PDD)

to identify periods of phase locking with high temporal resolution.

An interesting property of brain dynamics is the ability for spatially distant neurons to

synchronize and form neural assemblies over both short and long distances [274, 272], lead-

ing to a two-compartment model for neural interaction [276]. Such synchronization could

be physiologically facilitated by the thalomocortical loop - a subcortical tract of neural

fibers which connects the thalamus to several regions of the cerebral cortex [151, 178, 265].

In models of coupled oscillators, synchronization can be accomplished with a brief low

energy pulse (desynchronization or phase shift), which resets and then synchronizes the

oscillators [221]. The occurrence of a phase shift followed by a period of phase locking has

been called a phase reset (PR), and this dynamic balance between synchronization and

desynchronization is thought to be an essential aspect of normal brain function [277].
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Researchers have attempted to quantify the direction of information flow in phase syn-

chrony. Models of weakly coupled oscillators have been used with time series data [52, 234,

233, 259] and with spike train data [159]; however, these methods are not optimized for use

on EEG recordings. Phase slope index (PSI) is a method of inferring the direction of phase

relationships [202], which has been successfully applied to EEG recordings. In contrast to

this work, estimates of PSI are based on the mean phase (in the Fourier sense) over 1-2

seconds of data and quantify the consistency of the phase difference over that period.

In this chapter, a measure is outlined for estimating directed network connectivity in

EEG recordings, based on patterns of phase shifts events. To establish the direction of

functional connections, a measure is developed based on the ideas of Granger causality.

Specifically, a Phase Shift Granger Causality (PSGC) measure is introduced based on the

theory of point processes [59], an approach which has recently been successfully applied in

the study of spike trains [160].

2.2 Methods

A sample EEG recording from regions F3, C3, P3 and O1 can be seen in Figure 2.1. These

data will be used to illustrate the methods of analysis used in this paper. The estimated

instantaneous phase in the 8-10 Hz band of the signals from the sample data are shown in

Figure 2.2. The plot shows periods where the phase is approximately constant as well as

sudden jumps in the instantaneous phase.

2.2.1 Phase Synchrony

In the study of periodic oscillators, two oscillators with the same frequency are said to

display phase synchrony if there is a constant relationship between phases [31]

Φt =
∣∣∣φ(x)
t − φ

(y)
t

∣∣∣ = k, ∀t.
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Figure 2.1: Left: A visualization of the international 10-20 system for electrode placement,

originally published in [147]. The present study only uses regions selected from the left

hemisphere (Fp1, F7, F3, C3, P3, T3, T5, O1) and the right hemisphere (Fp2, F8, F4, C4,

P4, T4, T6, O2), and excludes all midline sites. Right: A sample of 4 seconds of resting

EEG, recorded from channels F3, C3, P3 and O1.

To identify periods of synchrony in the presence of noise, such as in PR analysis, Breaks-

pear’s method [37] defines two signals as phase locked when their phase difference derivative

is below a threshold value c ∣∣∣∣dΦt

dt

∣∣∣∣ < c, ∀t.

Phase locking has been used as a synonym for phase synchrony; here it is used to describe

this specific measure of phase synchrony.

A prolonged period of phase locking followed by a brief desynchronization, or phase shift

is described as a phase reset. The phase shift is hypothesized to represent the dissolution of

a neural assembly and the accumulation of resources for the next task. Phase reset analysis

involves the average locking and shifting durations; these variables have been shown to

be correlated with brain development [277]. In a collaboration with the Cognitive and

Affective EEG lab at Brock University, we have been able to replicate these results in the
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Figure 2.2: Instantaneous phase estimates of the 4 channels from Figure 2.1. There are

two important features in these plots, a slight negative trend and sudden jumps in the

phase. The slight negative trend of the phase suggests that there is power in the signal

due to unrelated sources or noise, which occurs below the centre of the frequency band.

The sudden jumps are phase shift events. Many of the shift events are obvious, but there

are some places where it is difficult to tell if there is a phase slip or just noise in the signal

(for example, at the O1 signal just before 9 seconds). This ambiguity is dealt with using

a thresholding technique (see Section 2.2.2).

context of anxiety and aggression in adolescents [167].

2.2.2 Phase Shifts

When the estimated phase difference derivative first exceeds the threshold value c in phase

reset analysis, there is said to be a phase shift [277]; this process necessarily involves

a shift in the phase of one or both of the corresponding oscillators. Here we propose to

analyze these characteristic phase shift events outside the context of phase synchrony across

channels. Rather than identifying shifts in the phase difference between two channels, phase

shifts can be identified for each individual channel. If φt represents the instantaneous phase
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of a time series, there is said to be a phase shift at time t if∣∣∣∣dφt−1

dt

∣∣∣∣ < c, and

∣∣∣∣dφtdt
∣∣∣∣ > c. (2.1)

In previous studies, a simple visual inspection has been used to determine an appropri-

ate value of c [37, 277], this includes an unwanted subjective aspect to the analysis. Note

also that the appropriate range of values for c depend on properties of the signal such

as the sampling rate, the filters applied and the frequency band of interest and therefore

may differ from study to study. Initially, for illustration, we select the threshold value in

a subjective manner; however, the development of an objective alternative is the subject

of Chapter 3.

In this context, patterns in phase shift events can be analyzed in a multivariate model

of EEG signals, taking into account events from across the scalp. Figure 2.3 shows the

instantaneous phase derivative of the example data, a phase shift event is defined to occur

at the local maximum of the phase difference derivative.

2.2.3 Phase Shift Granger Causality

A point process is a model which describes the occurrence of random events localized in

either time, space or both. There are a number of equivalent ways to describe a point

process; for a review of these and some other properties see [59]. This document will only

be concerned with temporal point processes, corresponding to events on the positive real

line.

A continuous time point process is a random measure on a completely separable metric

space which is restricted to Z+ [59]. More informally, a point process can be described by

an integer-valued random step function N(t), defined to be the number of events which

occur in the interval (0,t]. A set of observed data from a point process over a fixed interval

[0,T], called a sample path, is an increasing sequence of numbers 0 < t1 < t2 < ... < tK < T ,
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which defines the time of each event, and where K is a discrete random variable with sup-

port over the non-negative integers.

In the current context, a sample path for the point process Ni(t) (i=1..S) describes the

time of each phase shift event identified from the ith signal of the EEG recording. A sample

point process representation of phase shift events is shown in Figure 2.4. If the number of

events in successive intervals are independent, the probability structure of a point process

model can be completely described in terms of an inhomogeneous Poisson process with

intensity function

λ(t) = lim
h→0

P (N(t+ h)−N(t) = 1)

h
.

When the number of events in successive intervals are not independent or depend on other

variables, a conditional intensity function (CIF) can be used to describe the distribution

of the process, which is a stochastic process of the form,

λ̃(t) = lim
h→0

P (N(t+ h)−N(t) = 1 |Ht)

h
.

Here the term Ht is the complete history of the process up to but not including time t. The

history can also include information from other processes or various exogenous variables.

The CIF is interpreted as

λ̃(t)dt ≈ E(N(t+ dt)−N(t) |Ht).

Exactly what information is in Ht and how it is incorporated into the CIF depends on the

context of the problem.

For a recording with S channels, let Ni(t) (i=1..S) define the phase shift point process

of the ith signal. Following Kim [160], the history Ht will be the number of events R(t)

in M consecutive non-overlapping windows of length W that occur just prior to t. The

history will also contain similar information for each signal in the recording,

Ht = {Ri,m|i = 1..S, m = 1..M},

where

Ri,m(t) = Ni(t− (m− 1)W )−Ni(t−mW ).
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Figure 2.3: Plots of the phase derivative of the four instantaneous phase signals in Figure

2.2, including a dashed line indicating a threshold value of c = 0.02. Notice that the

deviations of the phase derivative of channel O1 just before 9 seconds were not large

enough to be classified as a phase shift.

The values Ri,m(t) are then be used to define a log-linear parametrization of the CIF for

process Nj,

log λj(t) = γj,0 +

S,M∑
i,m

γi,mRi,m(t).

The parameters γi,· represent the effect that Ni has on the intensity of Nj.

Given a sample path {t1, t2, ..., tNj(T )} for channel Nj, the likelihood function for this

model is given by

Lj(~γ) = e−
∫ T
0 λj(u)du

Nj(T )∏
i=1

λj(ti).

If the time interval is discretized into small bins of length ∆, and ∆ is chosen such that
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Figure 2.4: A visualization of the point process of phase shift events identified in Figure

2.3. Spatial and temporal patterns in these events are further analyzed using Granger

causality in Section 2.2.3

the probability of two or more events in a single bin is negligible,

P (Nj(t+ ∆)−Nj(t) ≥ 2) ≈ 0,

then based on the Poisson assumption, the likelihood function can be approximated as a

product of the probability functions for independent non-identical Bernoulli trials [59]. We

define dN(tk) as the number of events in the kth bin, that is

dNj(tk) = Nj(tk)−Nj(tk −∆), k = 1..K,

then,

Lj(~γ) =
K∏
k=1

(λj(tk)∆)dNj(tk)(1− λj(tk)∆)1−dNj(tk). (2.2)

This approximation is particularly useful because it leads to a convex likelihood function,

allowing easy access to the maximum likelihood estimates of the parameters. A standard

Newton’s method was used to find the maximum likelihood estimates for the parameters;

for computational reasons a lower bound on parameters of -10 was included in the esti-

mation, otherwise the numerical optimization algorithm may diverge to negative infinity.
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Parameter steps are reduced by a factor of 5 to prevent overshooting critical points, the

update equation for the algorithm is given by

λ(i+1) = λ(i) +
1

5
I(λ(i))−1S(λ(i)),

where I and S are the information and score functions corresponding to the approximate

likelihood function.

An important aspect of Granger causality measures is a test of the hypothesis H0:

‘Ni does not Granger cause Nj’. By comparing the full likelihood for Nj with a reduced

likelihood with the history of Ni removed (Ri,·(t)), we can test whether the information

in Ni causes a reduction in the variance of the prediction error. To determine the effect

of the signal Ni on the optimal predictor for Nj, a reduced likelihood function is defined

excluding the parameters γi,· from the CIF

log λ∗i,j(t) = γ0 +
∑
m

∑
q 6=i

γq,mRq,m(t),

L∗i,j(~γ) =
K∏
k=1

(λ∗i,j(tk)∆)dNj(tk)(1− λ∗i,j(tk)∆)1−dNj(tk).

The likelihood ratio of the full and reduced models is used to defined PSGC Φi,j, an

asymmetric measure of connectivity from Ni to NJ ,

Φi,j = −2 log
L∗i,j
Lj

. (2.3)

To assess the significance of the PSGC measure, a natural hypothesis test exists in the

form of a likelihood ratio test (LRT). Under the null hypothesis, for large values of T, Φ

follow an approximate chi-squared distribution with M degrees of freedom,

Φi,j ∼ χ2
M . (2.4)

In a simulation study to be described in Chapter 4, a time of T = 5 minutes was sufficient

for accurate results from the LRT.
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This provides a test for Granger causality from Ni to Nj within the framework of a

multivariate model of the signals, meaning that the test is able to account for common

information contained in multiple signals. If Ni is estimated to Granger-cause Nj, then

knowledge of past shift events in Ni improves prediction of future shift events in Nj. In

other words, if there is a shift at Ni, then it will either increase or decrease the probability

that Nj will shift in the imminent future. It can occur that a Granger causal relationship

is estimated in both directions; in such situations it is not possible to determine if one of

the signals is actually ‘leading’ the other, either due to insufficient temporal resolution, or

bidirectional coupling.

As an additional method of statistical validation for the PSGC measure, we test the

hypothesis that the mean net Granger causality is zero, using the method of time-reversed

surrogate data [135]. By time-reversing the data (x∗i = xN−i) a surrogate dataset is created

which maintains most properties of the signal, while reversing the temporal structure and

hence the Granger causality. A statistic is calculated to by looking at the difference between

net causality scores in the forward (Φ) and time-reversed (Φ∗) data,

d = (Φi,j − Φj,i)− (Φ∗i,j − Φ∗j,i). (2.5)

If there is asymmetric coupling, then terms (Φi,j −Φj,i) and (Φ∗i,j −Φ∗j,i) will have opposite

signs, resulting in a large value of d, while for a bi-directional coupling both terms should

be equal, resulting in a value of d close to zero. The null hypothesis of zero net connectivity

(µd = 0) can be tested using a standard t-test or non-parametric alternative. The test for

net GC is not sensitive to so-called weak asymmetries [135] such as those introduced by

volume conduction (VC). Since the degrees of freedom (M) may change for each dataset

(participant), PSGC scores we standardized before applying the analysis by converting

to p-values, and then an inverse transformation was used to generate values from a χ2
4

distribution. We will subsequently refer to this second statistical test as a net Granger

Causality (netGC) analysis.
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2.3 Functional Application

Using the PSGC method, we can estimate directional phase relationships in the 8-10 Hz

band of the electrocortical signal relations across scalp sites. The data in this study derive

from 18 recordings and three conditions: a resting condition, an auditory vigilance task

and a visual vigilance task (see §1.1.3).

Predictions: The relatively complex attention demands of the vigilance tasks require

functional connection of networks associated with both the frontal and temporal/parietal

attention systems [24, 42, 238, 256]. In contrast, the resting condition should engage in

more localized connections given that there are no complex demands on the task. We pre-

dict that these differences will results in higher levels of network connectivity, as measured

by the total number of connections, as well as increased average clustering coefficients.

Additionally, we separate the edges into short and long connections (adjacent scalp sites

versus those separated by more than one location) and expect to see an increase in long

range connections for the vigilance tasks.

2.3.1 Application Details

Based on the results of previous analysis of the EEG tasks using phase reset measures and

their association with individual difference variables [167], the frequency band of interest

for these analyses was 8-10 Hz. The instantaneous phase of each channel was calculated

by shifting the centre of the band of interest to 0 Hz and then putting the result through

a 1 Hz low pass Butterworth filter (implemented using Matlab butterworth() and filtfilt()

functions).

For the point process model, the length of the history windows W must be chosen so

that the time scale is appropriate in the context of behavioural analysis. For this study, a

value of W = 100 ms was used. This value of W is approximately the length of a complete

cycle at the frequency band of interest. For each recording (real and simulated data) and
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each channel, model selection was performed to select the optimal order M for the log-linear

parametrization. The optimal value was determined by calculating the Akaike information

criterion [4] for a range of values of M (1 to 6) and selecting the one which minimized the

criteria. This process creates a balance between goodness of fit and overparametrization of

the model. The optimal values of the order parameter M ranged from 3 to 5, corresponding

to a total history length of 300-500 ms which is enough time to capture a decision-making

process.

Results for both statistical analyses were corrected for multiple comparisons using the

Holm-Bonferroni procedure [141] to give a familywise error rate of α = 0.05 per hemisphere.

For individual networks estimated using the LRT, corrections are applied based on (8 x 7)

= 56 comparisons per hemisphere and (8 x 7)/2 = 28 multiple comparisons for the netGC

analysis.

2.3.2 Results

In order to simplify the demonstration, the analysis was restricted to within-hemisphere

connections. For each participant and each ordered pair (i,j) (i 6= j), the PSGC Φi,j was

calculated and the LRT is used to test the hypothesis that there is no Granger causal-

ity from Ni to Nj. Figure 2.5 shows the connectivity patterns for each of the six task

(3) by hemisphere (2) combinations. In these figures, each cell of the matrix represents

the Granger causality from one neural region to another. The i,j element of the matrix

represents PSGC from Ni to Nj. The shade of the cells represent the number of partici-

pants who had significant connectivity in the specified pathway. The i,j element is white

if causality exists in every participant, black if there is causality in zero participants and

shades of grey represent intermediate results. The diagonal entries are crossed out to em-

phasize that there is no analysis on these locations. From the matrices, it can be seen

that there were higher levels of connectivity during the active tasks (auditory, visual) than

during the resting condition. Different groups of connections were active during the resting

task compared to the two active tasks, for example between regions F8, T4 and T6 (right

hemisphere), and regions F7, T3 and T5 (left hemisphere). There is no attempt made to
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interpret similarities or differences between hemispheres.

Figure 2.5: Results of the PSGC analysis between electrode sites in 18 EEG recordings.

The i,j cell of the matrix represents the PSGC from region i to region j. The grey scale (see

colourbar) represents the number of participants where there is significant connectivity. A

black cell means no participants had significant connectivity, while a white square signifies

information transmission in all 18 participants. Results among left hemisphere locations

are on the left, right hemisphere locations on the right. The three rows correspond to

resting (top), auditory (middle), and visual (bottom).
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Sample connectivity maps from two participants can be seen in Figure 2.6 (connectiv-

ity maps for all participants can be found in Appendix F). In the resting condition, the

LRT finds many short range (neighbouring site) connections, while both the auditory and

visual tasks show more long range connections. The connections in the vigilance tasks

are predominantly anterior-posterior, connecting the prefrontal sites to the parietal sites,

instead of lateral-medial. Based on previous literature, it was our hypothesis that there

would be behaviourally relevant differences in this 8-10 Hz frequency band, although there

were no hypotheses on the nature of these differences. A post-hoc explanation for these

differences is that they may reflect engagement of the frontal and posterior attention sys-

tems in the two vigilance tasks [293]. The connectivity matrices do not show any consistent

asymmetries (consistent with the netGC analysis below); however, looking at individual

networks suggests that asymmetries may exist but are not consistent across participants

due to individual differences.

2.3.3 Mean Effects

In addition estimating network connectivity for each recordings, we also analyzed network

patterns for differences between tasks which are consistent across many participants. To

identify asymmetric connections which were active across many participants, the netGC

analysis was used; only two significant asymmetries were identified, a short range pre-

frontal scalp connection in the resting task (F7→ F3) and a connection leaving the scalp

regions above the visual cortex (O2→ C4) in the visual condition. The lack of asymmetric

connectivity at the group level, when compared to the individual networks, suggests that

either the results for individual networks are largely the result of a bidirectional coupling,

or that there are individual differences in the size and direction of asymmetric connectivity.

Individual networks were additionally quantified using the network average of local clus-

tering coefficients, a graph theoretical measure which has been used in describing ‘small-

world’ networks in functional connectivity [263, 295]. The local clustering coefficient mea-

sures the degree to which neighbors of a node are interconnected. The average clustering
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coefficients were used as the dependent variable in a 2 (hemispheres) x 3 (conditions) re-

peated measures ANOVA, with p-value corrections for sphericity using Greenhouse-Geisser

method [122]. The resting task (µ̂ = 0.095, σ̂ = 0.027) had significantly lower clustering co-

efficients than the auditory (µ̂ = 0.216, σ̂ = 0.034) and visual tasks (µ̂ = 0.198, σ̂ = 0.038),

F (2, 34) = 4.858, p = 0.017.

Figure 2.6: Maps of the estimated network connectivity during the A: resting, B: auditory,

and C: visual tasks, for the χ2 analysis of two individual participants. In the resting task

we see many short range connections but relatively few long range connections. In contrast,

the active tasks show many connections over longer distances, primarily anterior-posterior,

connecting prefrontal sites to parietal sites. Asymmetries are observed in these individual

networks; however, the direction is not consistent between individuals. This pattern was

consistent across all participants and is further quantified in Figure 2.7.

We performed a further test of the PSGC effects by examining the directed connection

54



patterns as a function of the three conditions across participants. To follow up on the

descriptive findings outlined above, we focused on short versus long connections. The

number of significant directed connections per person was the dependent variable in a 2

(hemispheres) x 3 (conditions) x 2 (connection lengths) within-subject analysis of variance,

with p-value corrections for sphericity [122]. The right hemisphere sites (µ̂ = 7.1, σ̂ = .358)

demonstrated significantly more overall connections than the left (µ̂ = 6.0, σ̂ = .349),

F (1, 17) = 7.95, p = .012. Similarly, the vigilance tasks elicited more connections (µ̂ = 7.6,

σ̂ = .550 and µ̂ = 7.0, σ̂ = .433 for the auditory and visual tasks, respectively) than did the

resting condition (µ̂ = 5.2, σ̂ = .373), F (2, 34) = 9.03, p = .001. There were significantly

more short (µ̂ = 8.1, σ̂ = .368) than long (µ̂ = 5.1, σ̂ = .313) connections, F (1, 17) = 89.6,

p < .001. Of particular interest was the Task x Connection Length interaction, which was

highly reliable, F (2, 34) = 145.5, p < .0001, with the mean values illustrated in Figure

2.7. To examine the reliability of this pattern further, we constructed for each participant

a metric reflecting the extent to which the resting condition was associated with more

short connections than the active tasks and the active tasks more long connections than

the resting condition. This yielded totals for the left hemisphere and right hemisphere for

each participant. Each hemisphere of every participant followed this general classification

(range = 1 to 20, with any value above zero indicating this general pattern), indicating

extremely high reliability of the pattern illustrated in Figure 2.7.

2.4 Discussion

This chapter introduces a novel method for analyzing neural connectivity from EEG record-

ings. The PSGC measure is a phase-based method which identifies spontaneous desynchro-

nizations called phase shifts, and assuming such events are identified, they are modeled as

a multivariate point process. By applying the ideas of Granger causality, an asymmetric

measure is produced which takes into account the effect of all other signals and can be used

to infer effective connectivity between neural regions. As a phase-based measure, PSGC is

able to capture nonlinear relationships which are not detectable by traditional coherence

analysis. By using instantaneous phase to identify phase shift events, it takes advantage

of the full temporal resolution of EEG recordings because there is no need to average over
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Figure 2.7: The significant Task x Connection Length interaction, demonstrating an in-

crease in longer connections and a reduction in shorter connections during the auditory

and visual vigilance tasks compared to the resting condition.

segments.

I have presented two different statistical techniques for analyzing the results of PSGC,

a LRT for Granger causality in individual recordings (see Equation 2.3) and a test for

zero mean net Granger causality (see Equation 2.5) which uses time-reversed surrogate

data [135]. The netGC analysis is the preferred test for identifying asymmetric connectivity

at the group level; it is designed to maximize the statistical power to identify asymmetries.

The LRT identifies both asymmetric and bidirectional connections, allowing the compete

networks to be estimated and then summarized by graph theory metrics. A benefit of the

LRT is that it provides statistical validation at the individual level, whereas the netGC

analysis is restricted to group results which assume commonality of a specific directed con-

nection across individuals. Given the multiple processes involved in all experimental tasks

and the mixture of signals at the scalp, we do not expect group commonality as reliably

as we see individual effects.

The primary result of interest supports the prediction concerning connectivity dur-

ing complex attention versus a resting state: the number of significant short connections
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during the resting state exceeds those during the vigilance tasks, but of more impor-

tance, the longer distance connections dramatically increase during the vigilance tasks.

This is consistent with the expected connectivity given the neurophysiology of atten-

tion [24, 42, 238, 256]. There were in addition some main effects that also confirmed

expectations. The active tasks had significantly higher clustering coefficients than the

resting task, a feature associated with small-world networks [260]. The right hemisphere

showed more significant instances of connectivity than the left, consistent with findings

of more white matter in the right than in the left hemisphere [124]. Similarly, there was

an increase (albeit minor) in overall connectivity during the active tasks. The finding of

more significant instances of connectivity for the short (across adjacent sites) compared to

the long (across more distant sites) may be due to passive transmission being greater over

short distances, and is only of interest when interacting with task requirements, as was

found in our study, with this pattern present for every participant. Converging evidence

from these measures of network connectivity strongly suggest differing patterns of neural

connectivity between resting and active tasks.

2.4.1 Limitations and Future Work

Based on reviewer feedback received on the PSGC method, there were several areas which

have been targeted to be addressed in the remaining chapters.

A limitation of PSGC is the subjective choice of the threshold value c. Sensitivity

analysis of the time between phase shift events (phase locking intervals) has shown that

both the average interval length [167] and the shape of the interval distribution [37] are

not sensitive to the specific value of c. In Chapter 3 I investigate objective methods for

estimating the value of c such that it effectively identifies the phase shift events.

The primary result of interest involves the differences in the estimated connectivity

networks between tasks. A concern is that VC (see 1.6.1) may confound the estimation

of connectivity from scalp recordings [249], and whether these differences are actually a
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result of changes in neural connectivity or if it is some other feature of the recordings that

has changed. In Chapter 4 I present a simulation study which elucidates the effects of VC

on the PSGC method, and allows for more informed conclusions about the results of the

PSGC analysis.

A natural extension of the PSGC method is to evolve it to work on the results of

source reconstruction techniques, to further reduce any effects of VC and increase spatial

resolution for localizing of neural regions. Proceeding in this manner should be done with

caution, as at this time it is not clear whether such inverse solutions are able to properly

maintain phase relations. In Chapter 5 I evaluate several methods of source reconstruction

on their ability to accurately localize phase shift events.

Another potential area of improvement is the point process model for phase shift events.

This was originally planned to be one aspect of the thesis, but the other topics were

investigated instead based on reviewer feedback. Some ideas for this include a refractory

period after shift events, or a different distribution which is generates the heavy-tailed

inter-shift-interval distributions observed in the data (see Chapter 3). This could also

include updates to what is included in the history Ht, such as stimuli onset or response

time events.
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Chapter 3

Detection of Phase Shift Events

This chapter develops statistical methodology which is suitable for tackling the problem of

(instantaneous) phase shift identification from observable time series, such as in the phase

reset (PR) and phase shift Granger causality (PSGC) analyses discussed in the previous

chapter. Such change points, or phase shifts, can be markers of information transfer in

complex systems; their analysis occurring in geology, biology and physics, but most no-

tably in neuroscience. Since these phase variables are computed from complex systems

which often include significant amounts of noise, we focus on developing methods which

are robust to such noise, but also have the temporal resolution necessary for many applica-

tion areas. Two non-parametric approaches are developed for this problem: the cumulative

summation (CUSUM) and phase derivative (PD) estimators. A system of weakly coupled

Rössler attractors provides an application in which there are high levels of systematic and

time-dependent noise. Shift identification is also performed on beta-band activity from

electroencephalogram (EEG) recordings of a visual attention task, an unsupervised appli-

cation which requires high temporal resolution.
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3.1 Introduction

The analysis of phase change points has applications in many fields. In neuroscience, phase

shift behaviour is present on small-scale (cellular) analysis of spike bursting data [146].

It has also been applied to other complex biological oscillators, such as the Circadian

rhythm [187] and in cardiac/respiratory systems [20]. In geology, directional (circular)

data is used to identify faults, pinchouts and other geological features [269]; angular data

of the Earths rotation was used to characterize the Chandler Wobble [109], while in physics,

phase shift identification has applications to interferometry [85, 123] and in characterizing

nano-scale surfaces [184]. In this Chapter, though, we focus, for concreteness and because

of their intrinsic importance, on applications in EEG analysis and dynamical systems.

When neural activity is viewed on a large scale, such as in EEG recordings, desyn-

chronization may manifest as a phase shift in the instantaneous phase of the signal (see

§1.1). Among brain imaging techniques, the strength of EEG recording is that it has the

high temporal resolution required resolve functional brain dynamics. For this reason, EEG

recordings are often used in brain-computer interface (BCI) applications, where the goal is

to provide an augmentative communication system which can interpret spontaneous brain

activity [17, 298]. In such applications not only is it important to accurately identify events

but it also must be done in real-time to facilitate timely feedback to the user. Analysis

of phase behaviour in the alpha band (8-13 Hz) of EEG signals showed typical locking

durations in the 150-450 ms range, while phase shift events occurred on a smaller time

scale, lasting 45-67 ms [277].

Windowed methods of EEG analysis have been used to identify periods of phase syn-

chronization using both Fourier transform [270] and Hilbert transform [190] definitions of

phase (see §1.5), but these methods are unable to localize spontaneous phase shift events.

Instead, the instantaneous phase difference derivative (see §2.2.2) may be used to chart

the phase stability using the full temporal resolution of EEG recordings [93, 37, 277]. This

approach has merit for the identification of phase shift events; however, a weakness of

this approach is that identification has been done using a subjectively chosen threshold
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value based on visual inspection of the data. A similar method using circular variance is

used to identify global periods of phase synchronization, but this method also requires the

subjective selection of a threshold parameter [60, 145].

Measures of phase synchronization are also used to quantify interactions within complex

(chaotic) dynamic systems of oscillators [31]. One such system is the coupled Rössler at-

tractor, where synchronization has been observed that is independent of the corresponding

amplitude [209, 235, 222]. The experiments by Rosenblum [235] show that strong coupling

results in complete synchronization; however, during weak coupling the system displayed

dynamic transitions between phase locking and phase shifting behaviour. The existence

of weak or intermediate coupling strengths is also a feature of systems which display self

organized criticality (SOC), a class of dynamics which result in apparent power-law dis-

tributions [19]. These power-law distributions affect many physical aspects of the system,

including the waiting time between events or inter-shift intervals (ISIs) [242]. Several stud-

ies have shown that functional brain networks display scale-free connectivity (i.e. power-law

distributions in the degree of connectivity) [51, 260]. In addition, links between phase shift

behaviour in EEG recordings and SOC were explored in [277], where power-law behaviour

was observed in estimated power spectral densities of the PD function.

The goal of this chapter is to develop robust methods for phase shift identification from

observables where we formulate the problem as a change-point problem. In Section 3.2 we

describe instantaneous phase estimation, as well as the change-point methods which will be

used. Section 3.3 contains simulations of simple oscillators, both with and without phase

shift behaviour, which are used to assess the proposed methods in a controlled environment.

In Section 3.4, methods are applied to data generated from a system of coupled Rössler

attractors which have chaotic dynamics and spontaneous phase shift behaviour. In Section

3.5, the analysis is applied to EEG recordings where we identify phase shifts in the beta

band of participants during a visual task.
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3.1.1 Theory

Consider the instantaneous phase estimator in the case of an oscillator with additive

i.i.d. noise and using a simple first-order filter. The exponentially weighted moving av-

erage (EWMA) is a tractable digital low-pass filter which is used to investigate properties

of the estimator,

H[xt] = (1− α)
t∑
i=0

αixt−i, α ∈ (0, 1). (3.1)

If the parameter is set to α = e2πfc/T , then fc is the -3 dB cutoff point for the filter (i.e.

frequency components above fc has been reduced by a factor of at least 10−3).

Theorem 3.1. Suppose xt is a noisy oscillator sampled at T Hz with frequency f0 Hz

(ω = 2πf0/T ) and constant phase φ i.e., xt = sin (ωt+ φ) + εt, with E(εt) = 0 and

V (εt) = σ2. Let yt = H[xt sin{−ωt}] and ỹt = H[xt cos{−ωt}] be the two components in

the complex demodulation estimate of φ̂t (Eqn 1.2) with a EWMA(α) filter H[·] given by

(3.1). The expected values of yt and ỹt are

E(yt) =
cos (φ)

2
+ b(yt), E(ỹt) =

sin (φ)

2
+ b(ỹt),

where b(yt) and b(ỹt) are the biases of yt and ỹt, respectively. We have that

b(yt) =
(1− α)

(
cos (2ωt+ φ) + α cos (2ω(t+ 1) + φ)

)
2(1− 2α cos (2ω) + α2)

−

αt+1

2

(
cos (φ)− (1− α)(cos (φ− 2ω)− α cos (φ))

(1− 2α cos (2ω) + α2)

)
,

b(ỹt) =
(1− α)

(
sin (2ωt+ φ)− α sin (2ω(t+ 1) + φ)

)
2(1− 2α cos (2ω) + α2)

−

αt+1

2

(
sin (φ) +

(1− α)(sin (φ− 2ω)− α sin (φ))

(1− 2α cos (2ω) + α2)

)
.

(b) The variance of Yt is

V (Yt) =
σ2

2

(
(1− α)

(1 + α)
− (1− α)2

(
cos (2ωt)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)
−

α2t+2

(
(1− α)

(1 + α)
− (1− α)2(cos (2ω)− α2

1− 2α2 cos (2ω) + α4

))
,
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and for Ỹt

V (Ỹt) =
σ2

2

(
(1− α)

(1 + α)
+ (1− α)2

(
cos (2ωt)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)
−

α2t+2

(
(1− α)

(1 + α)
+

(1− α)2(cos (2ω)− α2

1− 2α2 cos (2ω) + α4

))
.

(c) The covariance between Yt and Ỹt is given by

Cov(Yt, Ỹt) =
σ2(1− α)2

2

(
sin (2ωt)− α2 sin (2ω(t+ 1)) + α2t+2 sin (2ω)

1− 2α2 cos (2ω) + α4

)
.

Proof. By direct calculation (see Appendix D).

The results of Theorem 3.1 allow us to understand the how the design of the filter

(3.1), in particular the choice of the weight α and the distance from the boundary t, affects

the estimate of the instantaneous phase. From these expressions we can see two distinct

components in the bias; one purely oscillatory component and a ‘boundary effect’ which

goes to zero for large t, since αt+1 → 0. An example of this behaviour with a 4th order

Butterworth filter can be seen in Figure 1.2. The complex demodulation algorithm intro-

duces a 2f0 Hz component into the signal and the oscillatory component represents the

remains of this component after filtering. By increasing α in (3.1), the effectiveness of the

filter is improved and the amplitude of the oscillatory component decreases, but this will

lengthen the duration of the boundary effect.

The reliable identification of phase shift events relies on the magnitude of the shift

being greater than the bias; thus the selection of a filter is a trade-off between the power to

identify low magnitude shifts and the power to resolve shifts with small inter-shift-intervals

(ISIs). For fixed α, and large values of t, the magnitude of the bias is bounded.

Corollary 3.1. For a fixed α and large values of t, the bias of the instantaneous phase

estimate is bounded by

b(φ̂t) ≤ tan−1

(
(1 + α)√

2(1− α)− (1 + α)

)
+O(φ2

t ), α >

√
2− 1√
2 + 1

.
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Proof. For large values of t, the boundary term goes to zero,

lim
t→∞

αt = 0.

To estimate the asymptotic bias in the estimator φ̂t, we use a first order Taylor series

expansion

E(f(yt, ỹt)) ≈ f(E(yt), E(ỹt)).

This gives,

E

(
tan−1

(
ỹt
yt

))
≈ φ+ tan−1

(
cos (φ)b(ỹt) + sin (φ)b(yt)

1 + cos (φ)y(Yt) + sin (φ)y(Ỹt)

)
.

We can bound then bound the magnitude of the bias,

b(φ̂t) ≈ tan−1

(
cos (φ)b(ỹt) + sin (φ)b(yt)

1 + cos (φ)b(yt) + sin (φ)b(ỹt)

)
+O(φ2

t )

≤ tan−1

(
(1 + α)√

2(1− α)− (1 + α)

)
+O(φ2

t ), α >

√
2− 1√
2 + 1

.

Although the theoretical results from this section are for a simple filter, they provide

insight and intuition about the behaviour of more complicated filters, specifically the trade-

off between size of persistent oscillatory bias and transient boundary effect (i.e. the portion

of the bias which goes to zero for large t). The existence of a non-zero bias term means

that there will be a lower bound on the magnitude of shifts (∆min) which can be reliably

identified, and by reducing the noise levels we increase the range of identifiable events.

Conversely, the boundary effect which occurs at the start of the recording will also be

present at any phase shift event, and this will result in a minimum interval (ISImin) such

that two change point events can be accurately resolved. Decreasing the bandwidth in the

complex demodulation algorithm (2δ) will decrease overall levels of noise, but lengthen the

duration of transient boundary effects in the instantaneous phase estimate; the bandwidth

represents a trade-off between statistical power and temporal resolution.
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3.1.2 Change Point Analysis

Change-point analysis (CPA) is the identification of both the number and extent of time-

dependent changes in model parameters. There are two primary approaches in CPA, para-

metric methods which require a specific model for the form of parameter changes (see [49]

for a review), and nonparametric methods which do not make specific assumptions about

the underlying distributions (see [39] for a review).

Early CPA methods use a cumulative summation (CUSUM) type statistic to test the

hypothesis of no change point [211], a method which is often used in statistical pro-

cess control [210]. Tractable exact or asymptotic distributions of CPA statistics can be

determined for some simple parametric models [211, 252, 217] or nonparametric meth-

ods [26, 186, 217]. In other cases it is necessary to use computational techniques such as

MCMC algorithms [50, 252] or bootstrapping techniques (see §3.2.2, [78, 6, 161, 162]) to

determine the critical value for the test.

Methods have been developed specifically for change-point analysis (CPA) (or segmen-

tation) in EEG recordings, using both parametric [225, 30] and nonparametric [40, 257]

approaches; however, these amplitude based methods are not designed to capture changes

in phase dynamics.

In CPA, a valid model for the anticipated changes (if such is known) will often provide

the most powerful analysis. Here we are specifically interested in CPA on the mean of the

instantaneous phase of the signal (see Section 1.1.1) which is a circular random variable [89].

There exist several methods of CPA for independent circular data; however, they give many

false positive results in the absence of change points, due to the time-dependent bias and

autocorrelations in our context. A parametric example is the test for a change in the mean

of a Von Mises random variable [105, 115], a nonparametric approach is based on the rank

CUSUM test [179].
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3.2 Methods

3.2.1 Phase Shift Identification

The identification of phase shift events can be considered from two different perspectives,

using the complete trajectory with fixed sample size, or real-time analysis which considers

only information available prior to the current time. The latter occurs when it is necessary

to have an immediate response to a shift event, such as in statistical process control or

BCI; in this situation it is very important to identify events with computational efficiency

and high temporal resolution. The current work focuses on the case of using a complete

trajectory, while keeping in mind the potential for online identification.

To identify phase shift events, the estimated instantaneous phase is modelled as,

φ̂t = φt + bt + εt,

where φt is the true phase of the oscillator, bt is a systematic time dependent bias and εt

is random noise with E(εt) = 0. We further assume that bt is a periodic signal with an

average value of zero,

lim
T←∞

1

T

T∑
t=1

bt = 0

and that there exists a value τ ∈ Z+ such that

Cov(εt, εt+τ ) = 0, and Cov(εt, εt+k) > 0 fork < τ

We test the hypothesis of no phase shift events (H0 : φt = φ0) against the alternative

of a single phase shift event at an unknown time t0 and with magnitude ∆ (Ha : φt =

φ0 + ∆H(t− t0), where H() is the Heaviside function). Two statistics are considered,

S1 = max
2≤t≤N−1

s1(t), (3.2)

S2 = max
2≤t≤N−1

s2(t), (3.3)
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where

s1(t) =

(
N

t(N − t)

)1/2 t∑
i=1

(
φ̂i − ¯̂

φ
)
,

s2(t) =
|φ̂t+1 − φ̂t−1|

2
,

and where φ̂t is the estimate of the instantaneous phase at time t and
¯̂
φ the temporal

average. The former is a cumulative summation (CUSUM) type statistic which is favoured

in change-point analysis (CPA), while the latter corresponds to a phase derivative (PD)

method which is currently applied to EEG recordings.

The critical value of the hypothesis test (Φα), will be calculated using bootstrapping

and approximation techniques (see §3.2.2 and §3.2.3). If the null hypothesis is rejected, a

change point time t̂0 is estimated such that

si(t̂0) = max
t
si(t), i = 1, 2.

Once t̂0 has been identified, the estimator can be iteratively applied to both halves of the

sample to search for additional phase shift events. For the CUSUM estimator, the estima-

tor is applied independently to the two halves of the sample, while for the PD estimator

a pooled estimate of variance is used which includes all of the data. This process contin-

ues until either no more shifts are found, or there are less than the minimum amount of

observations in the signal (Nmin, estimated below) required to estimate the critical values

using the bootstrap procedure. Note that the existence of a phase shift event at time t∗

causes an additional boundary effect at the discontinuity of the instantaneous phase (i.e.

an additional bias term which goes to 0 as |t− t∗| goes to infinity). Such a boundary effect

obscures the phase dynamics around the shift event. To ensure additional spurious phase

shift events are not detected due to this boundary effect, an interval (tL, tU) about the

estimated change-point must be excluded from further analyses.

For the CUSUM estimator, we use bootstrapped datasets to estimate the parameters

Nmin, tL and tU . Bootstrapped signals under the null hypothesis (no phase shift event) are
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used to find the minimum value Nmin which achieves the desired false positive rate,

P (S1(x1:Nmin) > Φα) ≤ α.

Additionally, bootstrapped signals under the alternative hypothesis (single phase shift

event) are used to estimate a value ISImin(α), such that if

tL = t̂0 − ISImin(α), tU = t̂0 + ISImin(α),

then the lower and upper subsamples x1:tL and xtU :N have the desired sampling distribution,

that is,

P (S1(x1:tL) > Φα) ≤ α, P (S1(xtU :N) > Φα) ≤ α.

The value ISImin determines the temporal resolution for each method, i.e. the time scale

for which multiple change point events can be accurately identified. The points tL and tU

define the times when the amplitude of the boundary effect is reduced to the level of the

persistent oscillatory errors in the signal. Once this has occurred the boundary effect can

be properly accounted for by the bootstrap and approximation techniques and will not

cause the method to identify additional false positive change points.

For the PD estimator, since this is an instantaneous estimator, we need not be so

conservative in the exclusion of data around the change-point. In fact, it is only required

to remove any points around t̂ which are greater than the critical value,

tL = max
t<t̂0

{t|s2(t) < Φα}, tU = min
t>t̂0

{t|s2(t) < Φα}.

3.2.2 Parametric Bootstrapping

To learn about the sampling distribution of estimators for a more complicated filter than

considered in §3.1.1, a parametric bootstrapping procedure is used, [78]. Bootstrapping

techniques are well developed for CPA in independent observations [6, 162]. To over-

come the problem of dependencies, block bootstrapping techniques have been developed

which preserve the temporal correlations in the bootstrapped datasets [165, 224, 126, 168].

These method have been successfully applied to CPA in problems with stationary depen-

dencies [161].
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Here we consider a simple 9 Hz (f0 = 9) oscillator, sampled at T=250 Hz with constant

unit amplitude and a fixed sequence of phase values φt. To account for the boundary effects

in phase estimation, the first Nburn samples are removed from the analysis,

xt = sin

(
2πf0t

T
+ φt

)
, t = Nburn . . . N.

In this parametric bootstrap, data are generated with i.i.d. additive noise (εt ∼ N(0, 1)).

Both the oscillator and noise term are normalized to unit power, and the signal-to-noise

ratio (SNR) of the simulated observable is set by a weight parameter r,

x
(b)
t =

rxt
||xt||

+
(1− r)ε(b)t
||ε(b)t ||

, b = 1..B.

The relationship between r and the SNR is given by SNR = 10 log10
r2

(1−r)2 decibels.

For large values of N, the sampling distribution of the maximum value in a sequence

of random variables converges to the generalized extreme value (GEV) family of distribu-

tions; this result has been proven for a broad class of dependent random variables, and

does not require a stationarity assumption [102]. These results to not exactly cover the

current context because there is also a time dependent bias; however, simulation exercises

in Appendix D verify the convergence to a GEV distribution.

Additionally, Appendix D contains a simulation study which explores the behaviour

of S1 and S2 in a simple parametric application. The results confirm the intuitive differ-

ence between a cumulative and instantaneous estimator. The S1 (cumulative) estimator

has greater power to identify phase shift events, especially with high noise or low effect

size. Conversely, the S2 (point-wise) estimator has better temporal resolution for resolving

multiple shift events, i.e. it is able to identify multiple shifts with a smaller ISI.

3.2.3 Non-Parametric Methods

The above parametric procedures, where the noise is assumed i.i.d., provides a clear intu-

ition about the range of shift magnitudes and SNRs where a shift can be reliably identified;
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however, such methods are not appropriate for all situations. Neither the Rössler attractor

nor EEG recordings can be accurately described by an ideal oscillator with i.i.d. noise.

More often, signals from complex systems have oscillations which occur around, but not

exactly on a fixed frequency. Other factors which can affect the detection of shift events

are time dependent noise, or the existence of unrelated systematic features of the system

such as oscillators at different frequencies.

To obtain an estimate of the sampling distributions without assuming some parametric

form of the data, it is necessary to have some measure of the temporal dependence in

estimated instantaneous phase. Here we use the first zero crossing of the autocorrelation

function of φ̂t to estimate the length of the dependence (τ), although other methods may

be used such as taking the local minimum of the time-lagged mutual information [92]. To

estimate τ under the null hypothesis, the autocorrelation is estimated before unwrapping

the instantaneous phase, preventing artificial inflation of τ̂ due to potential phase shift

events in the signal. Additionally, due to the non-stationary nature of the signal, estimates

of τ are combined from several different times in the signal. Here we take the arithmetic

average of these estimates, though the median would also work.

Block Bootstrapping

To estimate the sampling distribution of the CUSUM estimator (S1) under the null hy-

pothesis, we employ the nonparametric block-permutation bootstrap technique. There are

several different blocking techniques, notably the moving block [165] and circular boot-

strap [224]. Here we use a non-overlapping block method [161], which is well studied in the

change-point paradigm, the observed time series is partitioned into K intervals of length

L,

x(k) = x1+L(k−1) : xLk, k = 1..K.

For a randomly generated permutation π of (1..K), the surrogate dataset is

x(b) = [x(π(1)), x(π(2)), ..., x(π(K))].
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Since the order of observations within each block remain unchanged, the surrogate datasets

mimic the correlation structure of the underlying process. The value of L is chosen such

that each window fully captures the autocorrelation structure of the signal, here we take

a value of L = 2τ .

Threshold Method

The method of block bootstrapping, is not applicable for the S2 estimator. Creating a

block permutation of the original data does not provide an accurate estimate of the criti-

cal value if the alternative hypothesis is true. This is because the nature of the estimator

is instantaneous rather than cumulative, and all within block values of s2 remain unchanged

We suggest an approximation to the distribution of S2 which takes into account the

variance and autocorrelation of the instantaneous phase. The phase differences are first

centred and normalized to create a standardized sequence of N variables. To account for

the dependence in the signal, the distribution of S2 is approximated as the maximum of

K∗ = 2 bN/τc independent Gaussian random variables (where τ is defined as above, to

be the first zero in the autocorrelation function). Critical values are based on the maxi-

mum of independent Gaussian random variables, although for large values of K∗ it does

not matter what specific distribution is used because the results will converge to a GEV

distribution [102].

In the case of multiple phase shift events, rather than simply applying the method

recursively, we suggest a pooled estimate of the variance which includes all parts of the

signal which have not be identified as a phase shift event.

σ̂2
pool =

∑k
j=1(Nj − 1)σ̂2

j∑k
j=1 (Nj − 1)

, (3.4)

σ̂2
j =

1

Nj − 1

tU (j)∑
i=tL(j)

(s1(j)− s̄1(tL : tU))2 , (3.5)

Ni = tU(i)− tL(i) + 1. (3.6)
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Thus the algorithm is:

1. Estimate the standard deviation of the phase locked values (σ̂2
pool)

2. Set the threshold to Φα = σ̂poolz(αK∗i )
3. Update the set of boundaries (tL, tU)

4. Test for phase shift events

• If any new shift events are identified, update the set of phase shift events (tL,

t∗, tU) and then go to step 1

• Otherwise stop

As phase shift events are removed from the estimate, σpool will decrease, causing the

critical value Φα to be monotonically decreasing. For this reason, the boundaries (tL and

tU) must be updated at each iteration to account for the lowered threshold. Occasionally,

lowering the threshold will cause two shift events to occur consecutively, in this situation

it is not clear if there actually two events, so they should be merged into a single event

rather than risk falsely declaring a spurious shift.

In addition to the increased temporal resolution, another benefit of the PD estimator

is computational efficiency compared to the bootstrapping techniques presented for the

CUSUM estimator. The current algorithm is described as a fixed sample size analysis;

however, it could be adapted into an online (sequential) implementation by updating the

values of σ̂pool and K∗ with each new observation and monitoring for values of s2 which

exceed the critical value.

3.3 Simple Oscillators

In this section the accuracy of the suggested methods is evaluated against the parametric

alternative in the case of simple oscillators with i.i.d. noise. For each application, a fourth
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order low-pass Butterworth filter is used to estimate the instantaneous phase because it

has a maximally flat frequency response, i.e. it reduces the amplitude periodic variations

(ripple) in the pass-band. To assess the methods, we use simulated oscillators which have

a SNR of 0 dB and include M = 20 phase shift events. The shift magnitudes and ISIs are

randomly drawn to obtain a robust comparison, and based on the results in Appendix D

values of ∆min = π/10rad and ISImin = 1s are used,

φt =
M∑
i=0

(
i∑

j=0

∆j

)
H(t− ti),

∆j ∼ Unif ((−π,−∆min] ∪ [∆min, π]) ,

ti = ti−1 + ISImin + Exp(ISImin).

Each estimator is evaluated based on the rate of true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). The ability of each method to correctly detect

change-point events are displayed for a range of significance level using receiver operating

characteristic (ROC) curves, which plot TP against FP. The accuracy (ACC = (TP+TN)

/ (TP+FP+TN+FN) ) provides a measure of goodness at specific significance levels, while

the area under an ROC curve (AUROC) provides an overall measure of quality. The accu-

racy measure gives equal weight to TP and TN events, this is not necessarily optimal for

every situation, other weightings may be considered depending on the application.

The resulting ROC curves from the change point analysis of twenty simulated oscil-

lators (for a total of 400 shift events) are shown in Figure 3.1. Both the CUSUM and

PD estimators have high power to identify phase shift events, while controlling the false

positive rates. There is a cross-over of the ROC curves for the nonparametric estimators,

which implies neither method is uniformly better than the other; the PD method pro-

vides the maximum accuracy, but the CUSUM method can provide increased power at

the cost of a slightly higher FP rate. The parametric CUSUM method works best overall,

and significantly better than the nonparametric CUSUM, while both the parametric and

nonparametric PD methods give similar results. Table 3.1 shows the maximum ACC and

AUROC values for each method, both nonparametric methods perform well, though the

PD estimator is marginally better.
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Figure 3.1: The ROC curves for both the parametric and nonparametric versions of the

CUSUM and PD estimators. The parametric CUSUM estimator (yellow) performs the

best, dominating each other curve. The parametric (green) and nonparametric (red) PD

estimators perform similarly, they are both better than the nonparametric CUSUM (blue)

for the low FP rates but then there is a cross-over and the nonparametric CUSUM performs

better for high FP ranges. This is further addressed in the discussion, Section 3.5

Method mACC AUROC

CUSUM Parametric S1 0.9863 (α = 0.1) 0.9772

PD Parametric S2 0.9400 (α = 0.01) 0.9555

CUSUM Nonparametric S1 0.9137 (α = 0.1) 0.9438

PD Nonparametric S2 0.9438 (α = 0.03) 0.9610

Table 3.1: A table of the maximum accuracy (mACC) and area under the curve (AUROC)

for the simple oscillators. Both nonparametric measures provide comparable results, al-

though the instantaneous estimator (S2) has both the highest mACC and AUROC.
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3.4 Rössler Attractor

In this section, we apply the proposed methods to a system of coupled Rössler attractors.

This application represents an intermediate level of difficulty between the i.i.d. oscillators

and EEG application. The Rössler attractors chaotic dynamics are not strictly periodic

and significant power leaks into nearby frequency bands, and they are more sophisticated

than the simple oscillator and similar to the spectral properties of EEG signals; however,

unlike an EEG application the truth of shift events in the Rössler attractor are still avail-

able to calibrate methods.

Coupled Rössler attractors (see §1.1.2) are simulated with parameter values a = 0.15,

b = 0.2, c = 10. The frequency parameters were ω1 = 2πf0 + δω and ω2 = 2πf0 − δω,

where the attractors have average frequency of f0 = 9Hz and a frequency mismatch of

δω = 0.675. For this set of frequency parameters, the phase shift dynamics observed

in [235] are recreated by setting the coupling parameter to C = 0.12. Trajectories were

generated at a rate of 10 kHz and then down-sampled to 250 Hz. Estimated power spectral

densities are shown in Figure 3.2, the attractor shows a distinct peak at approximately 9.25

Hz.

To estimate the autocorrelation which remains in the instantaneous phase, we increase

the coupling value to C=0.5 to generate signals with strong synchronization and no shift

events. The ACF of the instantaneous phase difference for the strongly coupled oscillators

is shown in Figure 3.2. This first zero crossing of the ACF function occurs at τ = 1183, or

approximately 4.5 seconds.

3.4.1 Rössler Results

To assess the ability of each method to identify phase shift events in the weakly coupled

Rössler attractors, we generated fifty datasets with random initial conditions and a length

of 10 minutes. Phase shift events were manually marked using the Poincare definition of
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Figure 3.2: Left: Estimated log PSD of x1 for the coupled attractors (densities based

on x2, y1/2 were nearly identical). There is a distinct peak at approximately 9.25 Hz.

The signal is not strictly periodic and the spectral components ‘leak’ into other bands.

Notably, there is a periodic beat frequency due to the frequency mismatch (dω) of the

oscillators. Right: Estimated ACF function of the instantaneous phase of xt during a

period of phase synchronization (no shift events). The first zero crossing of the ACF can

be used to determine the appropriate value of L for the block bootstrapping algorithm.

Here the crossing occurs at a lag of 1183, or approximately 4.5 seconds.

phase. There were 139 total phase shift events for an average of 2.78 per dataset.

Using the observable h = xt, shift events are estimated using both nonparametric

methods. An ROC curve of the results (see Figure 3.3) shows that the CUSUM estimator

outperforms the PD estimator. There are several potential reasons why the CUSUM

estimator outperforms the PD in this situation, in contrast to independent oscillators; (1)

longer average ISI’s, (2) uni-directed phase shifts, and (3) temporally correlated signal

features. The PD estimator eventually crossed the CUSUM estimator in the ROC curve,

this is due to the few shift events which occur with an ISI that is too small to be resolved

by the CUSUM estimator. The maximum accuracy (mACC) and area under the curve

(AUROC) for these methods are shown in Table 3.2, here we see that both estimators

perform well but the CUSUM estimator performs best.

To investigate potential power law behaviour in the distribution of ISIs, we generate one

thousand twenty-minute datasets with random initial conditions. Applying the CUSUM
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Figure 3.3: Plot of the ROC curve of the nonparametric CUSUM (blue) and PD (red)

phase shift estimators, applied to simulated data from coupled Rössler attractors. For

this application, the CUSUM estimator outperforms the PD estimator in both mACC and

AUROC. The intervals between shift events from the attractors are long enough that the

CUSUM method identifies over 90% of them. The PD is able to identify all shift events,

but does so with high false positive rate, due to the temporally properties of the attractor

dynamics.

Method mACC AUROC

Nonparametric CUSUM S1 0.8225 (α = 0.05) 0.9238

Nonparametric PD S2 0.6187 (α = 0.1) 0.8504

Table 3.2: A table of the maximum accuracy (mACC) and area under the curve (AUROC)

measures of the ROC plot for coupled Rössler attractors. For this application the CUSUM

estimator outperforms the PD estimator.

estimator with α = 0.05 found a total of 5661 phase shift events, with an average ISI of

µ = 2.72 minutes (σ = 1.66). Histograms of the observed ISIs are shown in Figure 3.4, on

standard and log-log scales; the log-log histogram clearly shows an asymptotic power-law

behaviour with an estimated slope of q = −3.92.
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Figure 3.4: Left: Histogram of the observed ISIs in the weakly coupled Rössler attractors,

as estimated by the CUSUM estimator. Right: corresponding log-log scale histogram,

there is a linear relationship in the tail of the distribution, with a scaling exponent of 3.92.

3.5 EEG Phase Shift

This section applies the methodology to EEG recordings. These signals are comprised of

many different components, and as in the case of the Rössler attractors, there is power in

multiple spectral bands. In this real world problem there is no information on the truth of

phase shift events to calibrate the algorithms, thus the utility of the methods is assessed by

their ability generate neurologically plausible results. Relationships between shift events

and external visual stimuli are explored, with emphasis on the scalp regions which are as-

sociated with such a visual task. Additionally, the distribution of ISI’s is explored, looking

for evidence of the asymptotic power-law distribution which are hypothesised to exist [260].

For this application we focus specifically on recordings during the visual vigilance task

from the EEG dataset (see §1.1.3). The beta band (13-30Hz) of EEG recordings is often

associated with sensorimotor activity [218], such as in the flanker task in our data. A recent

attempt at a unifying hypothesis of the functional role of beta band oscillations suggests

that it is responsible for maintenance of sensorimotor or cognitive state [82]. Spectral

power analyses of the beta-band has been previously employed for classification in BCI
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applications [17]. Here we focus specifically on the values ω = 16.5 and ∆ω = 3.5, corre-

sponding to the (13-20Hz) lower beta band.

To estimate the length of the autocorrelations in the EEG application, we first divide

the recordings into 4 second segments. For each segment and each pair of channels, we

estimate first zero-crossing (τ) in the ACF of the wrapped instantaneous phase. The value

of K is calculated based on the average of all the estimated values of τ , this results in a

value of K = 85.

For each pair of signals, we apply the PD identification algorithm to the instantaneous

phase difference of the pairs, to identify spontaneous desynchronizations. In total there

were 4 690 214 phase shift events across all 18 participants and 16 × 15 = 120 pairs of

electrodes, with an average ISI of 262 ms (standard deviation 226 ms) or 3.8 shifts per

second. We also investigate power-law behaviour in the distribution of ISI of beta band

phase shift events. Standard and log-log scale histograms of the distribution of ISIs are

shown in Figure 3.5. There appears to be asymptotic power-law behaviour in the tail of

the distribution with a scaling exponent of q = 6.26

We further consider the relationship between the occurrence of phase shift events and

the task stimuli. For each pair of signals (i,j), and each shift event (k), we record the

amount of time since the most recent stimulus event. If there is no relationship between

the shift and stimuli, then we expect that the times will be uniformly distributed. To

test this hypothesis, we group the variable into 10 equal sized bins, between 0-500 ms and

apply a χ2 test for uniformity. Results from this analysis are summarized in Figure 3.6;

there are three pairs of sites (Fp1-F7, T3-O1, T6-O1) which are significant at the α = 0.05

level, including a Bonferroni correction (p < α/120) and an additional six pairs (Fp1-T3,

Fp1-O1, Fp2-O1, T3-T4, T5-O1, F8-P3) which are significant with a less conservative

correction (p < 0.05/30). As expected for our visual attention task, many of these pairs

involve the occipital (O1,O2) sites over the visual cortex and prefrontal sites (Fp1, Fp2),

which are associated with attention.
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Figure 3.5: Left: Histogram of the observed ISIs in the beta band activity of EEG record-

ings during a visual vigilance task, as estimated by the PD estimator. Right: The corre-

sponding log-log scale histogram, there is a linear relationship in the tail of the distribution,

with a scaling exponent of 6.26.

Figure 3.6: The standard 10-20 system introduced in [147]. Results of the tests for unifor-

mity of phase shift events between visual stimuli. Red lines represent significance with a

full Bonferroni corrected p-value (p < 0.05/120) while blue lines represent significance at

a less conservative level (p < 0.05/30). The region most commonly related to the stimuli

is the left occipital region O1, directly above the visual cortex. Additionally, the frontal

sites Fp1 and Fp2, commonly associated with attention, are also related to the stimuli.
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Discussion

In some EEG applications such as brain computer interfacing (BCI), it is desirable to not

only identify events with high temporal resolution, but also in real-time so that feedback

can be provided immediately. This allows the participant to work towards controlling

some external device, such as a computer or prosthetic. The instantaneous nature of the

PD estimator, as well as its computational efficiency, make it easily modified to perform in

real-time. Conversely, there is no obvious analog for the CUSUM estimator, which requires

access to the entire signal, as well as time consuming bootstrap procedures, and as such is

better suited to post-hoc analysis.

Regarding the stability of the stability of the proposed methods, in the case of multiple

shift events it is possible that small changes in parameters may have a large effect on results

of the CUSUM estimator. If the first change-point is not identified, then all other potential

shifts are not identified. This is not the case in with the PD estimator, the instantaneous

nature of s2 means that when a change point is found it does not affect the value of s2

at other time points, resulting in a more stable algorithm. This idea can be seen in the

results shown in Figure 3.1, where increasing the false positive rate (α) has a larger affect

on the CUSUM nonparametric CUSUM estimator and the ROC curve for that estimator

crosses over the more stable ROC curves for the PD estimators.

There are often many sources of noise in measuring observable time series from com-

plex systems; systematic effects, additional oscillating components, temporally correlated

noise, spatially correlated noise (i.e. source mixing in EEG due to volume conduction),

frequency misspecification or narrow-band signals (non-fixed frequency). An investigation

into the effect of such features in controlled environment may provide insight as to how to

formulate a more robust solution to the shift identification problem.

In summary, this Chapter investigate the identification of phase shift events from ob-

served time series, a problem which occurs in complex systems across many fields. With

respect to the identification of phase shift events from EEG recordings, this Chapter pro-
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vides an objective method for shift identification which may be applied to PSGC or PR

analysis, providing greater confidence in the results of such analyses, as well as repro-

ducibility across labs.

In Chapter 4, I perform a simulation study to assess the proposed estimators in the

context of PSGC analysis. Concurrently, I will assess the effect of volume conduction

on the PSGC measure to determine. The PSGC application presented in Chapter 2 is

also repeated with the updated identification procedure, and taken with the results of the

simulation study, conclusions are drawn on the connectivity patterns of different tasks.
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Chapter 4

Volume Conduction

In Chapter 2 we introduced a novel measure of connectivity analysis for use with EEG

recordings, based on spatio-temporal patterns of phase shift events. In this chapter a sim-

ulation study is undertaken to verify that the proposed Phase Shift Granger Causality

(PSGC) method is able to identify connectivity patterns in situations similar to electroen-

cephalogram (EEG) recordings. In particular that it can deal with issues such as high

levels of noise and linear source mixing.

It is shown that, in fact, the PSGC method is able to correctly identify both the exis-

tence and direction of information transfer, and that the existence of spatio-temporal noise

serves to reduce the spread of shift identification due to volume conduction (VC). When

dealing with a linear combination of oscillators, the instantaneous phase of a sum is an

amplitude weighted function of the phase from the individual components; as the amount

of noise increases, the source of the phase shift is less likely to be the dominant component

of the signal as the distance from the source increases. An example of this effect is shown

in Figure 4.1, where the spread of phase shift events is compared for two different levels of

the biological signal-to-noise ratio (bSNR, a spatio-temporal noise rather than independent

measurement error). The spread of shift events is larger in the high bSNR case than in the

low bSNR, showing the higher levels of spatio-temporal noise attenuate the spread of shift

event. Full details on how that spread of activity was calculate can be found in §4.3 and
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the specific details of this example in Appendix D.

Additionally, the simulation study is used to assess methods of phase shift identification

introduced in Chapter 3. The subjective method used in Chapter 2 is compared with other

objective methods of determine a threshold (critical) value when using the phase deriva-

tive (PD) estimator. Based on the results of the simulation study, the PSGC analysis is

reapplied to the EEG data (see §1.1.3) with an objective threshold technique. From these

results we have increased confidence in our conclusions that the PSGC is able to clearly

distinguish between the resting task and the active tasks; the latter have higher rates of

connectivity overall, and specifically more long range connections.

In this chapter, my contributions to the field is a quantification of the effect of VC and

reference electrode on the identification of phase shift events, and also the estimation of

connectivity using the PSGC measure introduced in Chapter 2.

4.1 Introduction

At any point in time, EEG signals can be modelled as a linear combination of the activity

from each contributing electrical source. The conductive properties of the head instantly

create attenuated versions of source activity at every scalp electrode, a process known as

volume conduction (see §1.5.1, §1.6.1, Appendix A). In studies of EEG coherence, VC

creates artificially inflated coherence estimates between distant electrodes [205]. When

considering the effect of VC on connectivity estimation, there are two different situations;

the existence of spurious connectivity due to a single neural source projecting to multiple

scalp sites, and mislocalizing the source of legitimate neural connectivity.

There are three approaches which are used to account for the effects of VC in EEG

analysis; experiment designs (contrasts) [277], connectivity measures which are designed

to minimize the effect of VC [201], or by employing source reconstruction techniques [249].

In this Chapter I focus on the effect of VC on estimates of connectivity at the scalp, while
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Figure 4.1: Effect of volume conduction (VC - Top) and volume conduction + average

reference (VC + AR - Bottom) on phase shift identification. Topographies show the

average number of shift events due to a generator at F4 and spatio-temporal noise with

bSNR levels of -12.79 dB (rb = 0.05 - Left) and -4.79 dB (rb = 0.25 - Right). In the -12.79

dB condition the effect of VC and average reference is highly attenuated by the biological

noise; the spread is only to the nearest neighbours of the high density 128 electrode net.

In the -4.78 dB condition there is increased spread due to volume conduction but still less

than the inter-electrode distance in the 10-20 montage. There is also a mild increase in

connectivity due to the average reference at this level of bSNR. Topographies created using

EEGLAB [71].
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the use of source reconstruction techniques is explored in Chapter 5.

There are two properties that are exploited to reduced the effect of VC by experiment

design, that the effect of VC is determined by the conductive properties of the particular

head being measured, and that the effect decreases quadratically with distance (see Eqn

A.2). One approach is to only look at differences in connectivity across tasks, keeping

the effect of VC static. A common misconception is that differences between tasks must

be the result of change in the underlying connectivity. Rather, the effect of VC on EEG

connectivity is modulated by noise levels in the recording [249], so that what appears to be

differences in connectivity between tasks may be varying noise profiles instead of changes

in connectivity. Another experimental design only estimates connectivity from groups of

electrodes which are aligned in a row [277]. In this scenario, if VC is affecting connectivity

between distant electrodes than it must also affect intermediate pairs, and the absence of

connectivity in the intermediate pairs implies that the longer effect is not due to VC.

Measures of connectivity are explored [201, 202, 264] which are (theoretically) immune

to, or at least are less affected by VC. Note, for example that the spread of activity due to

VC is essentially instantaneous (see Appendix A), so Granger causality analysis should not

be affected; however, connectivity estimates may still be distorted due to ‘weak’ asymme-

tries such as a difference in the signal-to-noise ratio [135]. Imaginary coherence is a method

which omits the real part of coherence, which theoretically contains all effects of VC [201];

however, it is unknown how much true information is lost by this process. Related methods

which works on a similar assumption is phase slope index [202] and phase lag index [264],

in which in-phase components do not contribute to connectivity.

In this chapter, I present a proof-of-concept simulation study to determine the effec-

tiveness of PSGC to estimate connectivity from high-noise, non-averaged EEG recordings.

This will include an investigation into the spread of phase shift events at the scalp due to

VC and an average reference, as well as to assess the overall effect of VC on the PSGC

analysis. The identification of phase shift events will be performed with several different

methods of shift identification, to consider the effect of different threshold selection pro-
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cedures. Finally, based on the conclusions of the simulation study, I re-analyze the EEG

study from Chapter 2 and draw conclusions on connectivity results.

4.2 Methods

In this chapter, I apply the PSGC method as described in Chapter 2. For the identification

of phase shift events, based on the results of Chapter 3, the PD method of shift identification

is used for its superior temporal resolution.

4.2.1 Phase Shift Identification

Three different methods of shift identification are considered; the PD estimator from Chap-

ter 3 and two threshold methods from Chapter 2, one threshold chosen subjectively and

the other using an objective estimate modified from the PD estimator,

c = σ̂z(1−α). (4.1)

The threshold is estimated as the (1−α) quantile of a Gaussian distribution, this is essen-

tially the critical value estimated in Chapter 3 using K∗ = 1
2

(τ = N
2

) instead of estimating

it from the data. Using this estimate will result in a less conservative approach (lower

threshold) than the PD estimator, by not taking into account the length of the signal

when determining the critical value.

Since this estimator does not take into account the length of the signal, a common

threshold value can be used for the entire signal. Phase shift events in the signal will

artificially increase the estimated variance of the instantaneous phase derivative, so as

phase shift events are identified those points should be removed from the variance estimate.

If the maximum value of |φ′t| exceeds the threshold value, each point above the threshold is

removed from the set of phase locked values, and then the sample variance (and threshold)

are recalculated using only phase locked values. The process is then recursively applied

until the threshold value has converged to a fixed value. Occasionally the threshold may
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oscillate between a small number potential threshold values, to avoid this situation, if ever

the threshold will increase the algorithm terminates instead. Starting under the assumption

that the entire signal is phase locked, the algorithm for calculating the threshold is:

(1) Estimate the standard deviation of the phase locked values (σ̂2)

(2) Set the threshold to c = σ̂zα

(3) Update the set of phase locked values, A = {t, |φ′t| < c}

(4) Update the estimated standard deviation (σ̂2
A) and threshold value (c∗ = σ̂Azα)

(5) If c∗ < c then set c = c∗ and go to (3), otherwise stop

Once the threshold has converged, a phase shift event is identified at the value of t which

maximizes |φ′t| for each interval of time where it is above the threshold.

4.3 Proof of Concept

To verify that the PSGC method is appropriate for EEG analysis, we performed simulations

of simple oscillators with coupled phase shift behaviour. The data were then transformed

with a realistic lead field matrix to emulate the linear mixing characteristics of EEG. Sim-

ulations were performed for several levels of coupling strength, biological and measurement

noise, to identify the range of behaviours for which the PSGC method reliably identifies

connectivity.

4.3.1 Simulated Data

Simulated data were generated from two oscillators located under the F4 and O2 scalp

regions at a depth of 15% below the scalp (corresponding to the surface of the brain [239]),

each with a 9 Hz component of interest. The phase of each oscillator was generated as

φi,t = φi,t−1 + εi,tηi,t, i = {F4,O2}. (4.2)
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where εi,t are binary variables which determine whether or not a phase shift occurs and ηi,t

are independent random variables drawn from a N(3π/5, π/5) distribution, which represent

the phase shift magnitude. Each generator had a fixed probability of a shift event occurring

(γi), unless the generator was in a brief refractory period which occurred after each shift.

The refractory period was a fixed 500 ms (approximately 5 cycles of 9 Hz) during which

there was no potential for a phase shift event. To include information flow into the model,

coupling parameters were used to increase the rate of phase shift events in the receiving

generator for a period after each shift at a driving generator. Defining ε̄i,t as the number

of shifts at generator i which have occurred in the previous 500 ms, the probability of a

phase shift is given by

P (εi,t = 1) =


γi if ε̄i,t = 0, ε̄\i,t = 0,

γi + Ci if ε̄i,t = 0, ε̄\i,t = 1,

0 otherwise,

(4.3)

where \i represents the driving generator. For these simulations the base probability of

shifting was set to γi = 0.0024, resulting in approximately one shift every 0.83 seconds

(approximately the rate of shift events observed in the EEG data). Here we were primarily

interested in the ability to identify an asymmetric coupling from the generator under F4

to the generator under O2 (CF4 = 0, CO2 > 0).

Once instantaneous phase values were randomly generated, they were then converted

to oscillators with unit amplitude, frequency f = 9 and sampling rate T = 500 Hz,

xi,t = sin (2πft/T + φi,t) .

The signals (Xt = [xF4,t, xO2,t]) from the generators were then linearly mixed to ‘scalp

electrodes’ using a realistic lead field matrix (Ax, see Appendix A) with the generators

oriented to be perpendicular to the scalp [192]. Sample scalp topographies for the simulated

data are shown in Figure 4.2,

St = AxXt.

Following closely with [135], different types of noise were included in the simulations; how-

ever, here we defined separate parameters to control levels of biological signal-to-noise ratio
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(bSNR: rb ∈ [0, 1]) and measurement signal-to-noise ratio (SNR: rm ∈ [0, 1]). Independent

measurement noise (Et) was simulated from a N(0,1) distribution for each sensor. Addition-

ally, several spatiotemporal sources of biological noise (ni,t) were generated which represent

other biological signals such as unrelated brain activity. The biological noise sources were

generated from stationary AR(10) processes, with coefficients independently drawn from a

N(0, 0.01) distribution. Spatial locations for the biological noise (Nbiol,t = [n1,t, n2,t, ...n10,t])

were uniformly drawn from each hemisphere (five on the right, five on the left) and placed

below the scalp with depths selected uniformly from (15, 40)% of the head radius. The

biological noise was then linearly mixed to the same scalp locations using a matrix An

which was calculated using to the same method as Ax,

Nt = AnNbiol,t.

The signal and biological noise were scaled to have the specified contributions to the overall

biological signal,

Bt =
rbSt

||vec(St)||
+

(1− rb)Nt

||vec(Nt)||
. (4.4)

The overall biological signal Bt and measurement noise Et were both normalized and the

SNR was set in the observed data Yt using a weighted combination of the two,

Yt =
rmBt

||vec(Bt)||
+

(1− rm)Et
||vec(Et)||

. (4.5)

All sources were mixed to 128 scalp sites referenced to Cz and then rereferenced to the

average, to be consistent with the preprocessing applied in the application to real EEG

data. Data were then reduced to eight channels at right hemisphere locations (Fp2, F4,

C4, P4, O2, F8, T4, T6) for the PSGC analysis.

4.3.2 Application Details

In this section we apply the PSGC method in a proof-of-concept simulation study (Section

4.3) as well as to real EEG recordings of resting and vigilance tasks (Section 4.4). Here we

describe the specific details of the implementation of the PSGC method for both the real
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Figure 4.2: Scalp topographies of the two generators (Left: F4, Centre: O2) and then

both generators with the inclusion of spatial/temporal and measurement noise. Although

the simulation study is performed solely on the right hemisphere sites, a full montage of

electrodes with measurement noise is used to generate these topographies. All topographies

were taken at time t = 1, a SNR of 0 dB (rm = 0.5), a bSNR of -4.8 dB (rb = 0.25) and

were generated using EEGLAB [71].

and simulated applications.

Mirroring the analysis in the EEG application the frequency band of interest for these

analyses was 8-10 Hz. The instantaneous phase of each channel was calculated by shifting

the centre of the band of interest to 0 Hz and then putting the result through a 1 Hz low

pass Butterworth filter. Calculation of the threshold value was performed using each of

the methods in §4.2.1; the subjective threshold is set at c = 0.02, and for other methods a

value of α = 0.05 is used. A value of W = 100 ms was used for the length of the history

windows, this value of W is approximately the length of a complete cycle at the frequency

band of interest. For each simulated dataset and each channel, model selection was per-

formed to select the optimal order M for the log-linear parametrization. The optimal value

was determined by calculating the Akaike information criterion [4] for a range of values of

M (1 to 6) and selecting the one which minimized the criteria.
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Results from statistical analyses were corrected for multiple comparisons using the

Holm-Bonferroni procedure [141] to give a family-wise error rate of α = 0.05 per hemi-

sphere. For individual networks estimated using the likelihood ratio test (LRT, see Eqn

2.3) corrections are applied based on (8 x 7) = 56 comparisons per hemisphere and (8 x 7)/2

= 28 multiple comparisons for the net Granger causality (netGC, see Eqn 2.5) analysis.

4.3.3 Simulation Results

Simulations were performed with three kinds of coupling (none, directed, feedback) over a

range of bSNR values (see §4.5 for a discussion of the plausible range of bSNR values for

EEG data). Preliminary results suggested that independent measurement noise does not

contribute strongly to PSGC results so the SNR was set to a fixed 0 dB (rm = 0.5) for

all simulations. For each set of parameters, 18 datasets were generated (to match the 18

participants in the application to real data). Simulated datasets were 5 minutes in length

for the no-coupling and directed-coupling scenarios. Simulations of the feedback scenario

were 10 minutes in length, as it was necessary to increase the power of the PSGC measure

to identify this more complex dynamic.

The results of the PSGC analysis for all possible pairs of connections is summarized

graphically as connectivity matrices for several sets of parameters. Each cell of the matrix

represents the Granger causality from one signal to another. The i,j element of the matrix

represents PSGC from Ni to Nj. The shade of the cells represent the number of simulations

with significant connectivity in the specified pathway. The i,j element is white if causality

exists in every participant, black if there is causality in zero participants and shades of grey

represent intermediate results. The diagonal entries are crossed out to emphasize that there

is no analysis on these locations. We further explore the relationship between bSNR and

PSGC by looking at the connectivity rates for two specific connections of interest (F4→ O2

and O2 → F4). Plots of the connectivity rates as a function of bSNR are explored for

simulations with no coupling (CF4 = CO2 = 0), directed coupling (CF4 = 0, CO2 = 0.015)

and feedback (CF4 = CO2 = 0.015).
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Subjective Threshold

Panels A and B of Figure 4.3 show the results of the subjective threshold with directed

coupling (CF4 = 0, CO2 = 0.015), and bSNRs of -12.8 db (rb = 0.05 ) and -4.8 dB

(rb = 0.25). The true connection (F4 → O2) is the only connection identified in multi-

ple simulations, and the power to identify this connection increases with bSNR. At both

bSNR levels there are minimal false positive connections (never in more than 1 of the 18

simulations for a given pathway). Panels C and D show the results of simulations with

no coupling (CF4 = CO2 = 0), there are minimal connections identified; for bSNR levels

of -4.8 dB and lower, the number of spurious connections which are identified across the

four conditions (10, or 13%) is slightly larger than the number of false positives we expect

across many simulations (3.6 or 5%).

In the left panel of Figure 4.4 we see that the PSGC measure has high power to identify

the true directed connection for a range of bSNR values, power of up to 50% to identify

the feedback connection, and in the uncoupled case we see no false positives for bSNR

values up to -4.8 dB (rb = 0.25). In the right panel, we see the same power to identify

feedback connectivity, but only a single spurious connection in both the no-coupling and

directed-coupling cases for bSNR levels of -4.8 dB (rb = 0.25) or lower. The reduced power

to identify feedback connectivity is due to the inseparability of the signals in this paradigm,

two signals become entangled and it becomes difficult to isolate the causal effects. This is

an acknowledged limitation in Granger causal analysis [116], other measures of causality

may be necessary for this situation [266].

Objective Threshold

Panels A and B of Figure 4.5 show the results of the objective threshold with directed

coupling (CF4 = 0, CO2 = 0.015), and bSNRs of -12.8 db (rb = 0.05) and -4.8 dB

(and rb = 0.25). Similar to the results of the subjective threshold, the true connection

(F4 → O2) is the only connection identified in multiple simulations, with the power to

93



Figure 4.3: Each cell (i,j) of the matrix represents the Granger causality from from Ni

to Nj. The shade of the cells (see colourbar) represent the number of simulations which

found significant connectivity in the specified pathway. Panels A and B show the results

of simulations with asymmetric coupling (CF4 = 0, CO2 = 0.015); at bSNRs -4.8 dB (and

rb = 0.25) the true connectivity is identified in 16 of 18 simulations (F4 → O2) and

there is only sparse connectivity otherwise (never in more than 1 of the 18 simulations

for a given pathway). Panels C and D show the results of simulations with no coupling

(CF4 = CO2 = 0), where there are few spurious connections, indicating minimal effect of

VC.

identify increasing concurrently with bSNR. Panels C and D show the results of simula-

tions with no coupling (CF4 = CO2 = 0), there are minimal connections identified; overall,

the number of spurious connections (8, 11%) is lower than in the subjective threshold case

(10, 13%).
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Figure 4.4: Plots of the connectivity rates as a function of bSNR for simulations with no

coupling, directed coupling and feedback coupling. In the left panel we see that the PSGC

measure has a power to identify a true directed connection (F4 → O2) which increases

with bSNR. The feedback connectivity is identified in roughly 50% of simulations, this

decrease in power compared to the directed coupling is a result of using GC analysis. In

the case of feedback connectivity, the signals become entangled and the effects cannot be

completely removed from the model for the likelihood ratio test. In the both panels, we

see very low rates of spurious connectivity in both the no-coupling and directed-coupling

cases for bSNR levels of -2.7 dB (rb = 0.35) or lower.

In Figure 4.6 on the left panel, we see slightly less power to identify connections than the

subjective threshold in the ‘difficult’ scenarios (feedback coupling, low bSNR) but increased

power to identify directed coupling for the stronger signals. The subjective threshold is

lower (less conservative) than the objective threshold, and so it identifies more shifts from

noise; this inclusion of additional noise appears to increase the power to identify in marginal

cases.

PD Estimator

The top panels, A and B, of Figure 4.7 show the results of the PD estimator with di-

rected coupling (CF4 = 0, CO2 = 0.015), and bSNRs of -12.8 db (rb = 0.05 ) and -4.8 dB
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Figure 4.5: Each cell (i,j) of the matrix represents the Granger causality from from Ni

to Nj. The shade of the cells (see colourbar) represent the number of simulations which

found significant connectivity in the specified pathway. Panels A and B show the results

of simulations with asymmetric coupling (CF4 = 0, CO2 = 0.015); at bSNRs -4.8 dB (and

rb = 0.25) the true connectivity in every dataset (F4 → O2) and there is only sparse

connectivity otherwise. Panels C and D show the results of simulations with no coupling

(CF4 = CO2 = 0), where there are minimal spurious connections due to VC.

(and rb = 0.25). The true connection (F4 → O2) does not stand out from the occasional

false positives in the other pairs. At both bSNR levels and both coupling values there are

minimal false positive connections; however, given the reduced power to identify the true

connection use of this more conservative approach does not appear to reduce the rate of

false positives (15, 20%).
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Figure 4.6: Plots of the connectivity rates as a function of bSNR for simulations with no

coupling, directed coupling and feedback coupling. In the left panel we see that the PSGC

measure has high power to identify a true directed connection (F4 → O2) increasing to

100% as bSNR increases. The feedback connectivity is also increasing power as bSNR

increases, although with lower overall levels due to the difficulty of resolving feedback

connectivity with Granger causality. In the both panels, we see very low rates of spurious

connectivity in both the no-coupling and directed-coupling cases for bSNR levels of -2.7

dB (rb = 0.35) or lower.

The left panel of Figure 4.8 shows the PSGC measure has power of under 20% to iden-

tify the directed connection or feedback for a range of bSNR values. In the right panel, we

see the same power to identify feedback connectivity, but only a single spurious connection

in both the no-coupling and directed-coupling cases for bSNR levels of -4.8 dB (rb = 0.25)

or lower.

4.3.4 Simulation Conclusions

The PD estimator is a conservative in identifying phase shift events, and it was unable to

reliably identify connectivity in the simulations. Since the phase shift events undergo ad-

ditional statistical analyses, a higher rate of false positives may be acceptable if it does not

cause errors in the connectivity analysis. For both the objective and subjective threshold

selections, there exists a range of bSNR values such that the methods had high power to
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Figure 4.7: Each cell (i,j) of the matrix represents the Granger causality from from Ni

to Nj. The shade of the cells (see colourbar) represent the number of simulations which

found significant connectivity in the specified pathway. Panels A and B show the results

of simulations with asymmetric coupling (CF4 = 0, CO2 = 0.015); at bSNRs -4.8 dB (and

rb = 0.25) the true connectivity is identified in only 3 of 18 simulations (F4 → O2) and

there is only sparse connectivity otherwise (never in more than 1 of the 18 simulations

for a given pathway). Panels C and D show the results of simulations with no coupling

(CF4 = CO2 = 0), where there are minimal spurious connections.

identify directed connectivity and were unaffected by VC. A subjective method is undesir-

able for a number of reasons, and so the objective threshold method is preferred.

For bSNR values greater than -2.7 dB (rb = 0.35), an unrealistically high level for

continuous EEG recordings (see Section 4.5), the results show larger amounts of spurious

connectivity across many electrodes. This increase in spurious connectivity is likely due to
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Figure 4.8: Plots of the connectivity rates as a function of bSNR for simulations with no

coupling, directed coupling and feedback coupling. In the left panel we see that the PSGC

measure with the PD estimator has greatly reduced power, identifying the true connection

(F4 → O2) 20% of the time connection and the feedback connectivity is identified 10%

of simulations. This decrease in power compared to the threshold methods is due to the

conservative approach of the PD estimator controlling false positives; both true and false

positive shift events are identified, both true shifts and false positives.

a combination of VC and average reference effects. The relationship between bSNR and

the spread of phase shift events due to VC and average reference is further quantified in

Appendix D. As the amount of true signal in the overall activity increases, it starts to

dominate the average and shift events in the true signal will be spread across the scalp

through the average reference. This result suggests that the PSGC measure is appropriate

for estimating connectivity in situations with low bSNR, as is the case with continuous

EEG.

In applying the netGC analysis, we found that it successfully identified the true directed

connection for each bSNR value rb ∈ (0.05, 0.65). There were no significant asymmetries

found by the netGC analysis in either the no-coupling or feedback scenarios. In every

simulation, the netGC analysis did not show any spurious connectivity due to VC.

If network patterns are to be analyzed, then the LRT (see Equation 2.3) should be used

as it can provide statistical validation at the individual level and also identifies both sym-
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metric and asymmetric connectivity. For this analysis, we method was able to capture the

connectivity and mostly unaffected by VC for bSNR values rb ∈ (0.05, 0.35). Importantly,

the existence of spatiotemporal noise within the brain (consistent with levels in continuous

EEG recordings) helps to attenuate the effect of VC on PSGC in the analysis of individual

networks.

4.4 Functional Application

Based on the results of the simulation study, I repeat the application of PSGC to the EEG

recordings described in Chapter 2.3 with the objective threshold selection method. For

each participant and each ordered pair (i,j), the null hypothesis of no Granger causality

from Ni to Nj is tested against the one-sided alternative that there is a Granger causal

relationship from Ni to Nj, using a LRT (see §2.2.3 ). Significance levels were adjusted

using the Holm-Bonferroni method [141] to give a family-wise error rate of α = 0.05 per

hemisphere. Figure 4.9 shows the connectivity patterns for each of the six task (3) by hemi-

sphere (2) combinations. In these figures, each cell of the matrix represents the Granger

causality from one neural region to another. The i,j element of the matrix represents PSGC

from Ni to Nj. The shade of the cells represent the number of participants who had signif-

icant connectivity in the specified pathway. The i,j element is white if causality exists in

every participant, black if there is causality in zero participants and shades of grey repre-

sent intermediate results. The diagonal entries are crossed out to emphasize that there is

no analysis on these locations. There were higher levels of connectivity during the active

tasks (auditory, visual) than during the resting condition, this is emphasized in Figure 4.10

where plots of the raw p-values are shown for each task.

Sample connectivity maps from two participants can be seen in Figure 4.11 (connectiv-

ity maps for all participants can be found in Appendix F). In the resting condition, there

are many short range (neighbouring site) connections, while both the auditory and visual

tasks have more long range connections. The connections in the vigilance tasks are pre-
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Figure 4.9: Results of the PSGC analysis between electrode sites in 18 EEG recordings.

The i,j cell of the matrix represents the PSGC from region i to region j. The grey scale (see

colourbar) represents the number of participants where there is significant connectivity. A

black cell means no participants had significant connectivity, while a white square signifies

information transmission in all 18 participants. Results among left hemisphere locations

are on the left, right hemisphere locations on the right. The three rows correspond to

resting (top), auditory (middle), and visual (bottom).

dominantly anterior-posterior (front to back), connecting the prefrontal sites (F3/4, F7/8

Fp1/2) to the parietal sites (O1/2, P3/4, T7/8), instead of lateral-medial (side-to-side)
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Figure 4.10: Plots of the sorted log p-values for each task condition across all 18 par-

ticipants. The red line corresponds to a Bonferroni corrected threshold for an α = 0.05

significance level. The flat portion at the beginning of the plot are p-values which were

essentially zero. From these plots, it can be determined that there are more significant

connections than in the activity tasks (auditory, visual) than in the resting task.

connections. This may reflect engagement of the frontal and posterior attention systems

in the two vigilance tasks [293].

Taken with the results of the simulation study, the short range connections in the rest-

ing task may be a result of localized networks or VC; however, the long range connections in

the active tasks would not be observed without some underlying frontal-posterior coupling.

The connectivity matrices do not show any obvious group level asymmetries (consistent

with the netGC analysis); however, looking at individual networks suggests that asymme-

tries may exist but are not consistent across participants due to individual differences.
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4.4.1 Mean Effects

In addition to the individually estimated networks, we also analyzed task differences in

network patterns. The netGC analysis (see §2.2.3) identified only one significant mean

asymmetry, a connection leaving occipital sites (O2→ C4) in the visual condition.

Individual networks were additionally quantified using the network average of local

clustering coefficients, a graph theoretical measure which has been used in describing

‘small-world’ networks in functional connectivity [263, 295]. The local clustering coeffi-

cient measures the degree to which neighbours of a node are interconnected. The average

clustering coefficients were used as the dependent variable in a 2 (hemispheres) x 3 (con-

ditions) repeated measures ANOVA, with p-value corrections for sphericity [122]. The

resting task (µ̂ = 0.114, σ̂ = 0.028) had significantly lower clustering coefficients than the

auditory (µ̂ = 0.243, σ̂ = 0.047) and visual tasks (µ̂ = 0.196, σ̂ = 0.031), F (2, 34) = 5.213,

p = 0.022.

A further test of the PSGC effects by examining the directed connection patterns as

a function of the three conditions across participants. The number of significant directed

connections per person was the dependent variable in a 2 (hemispheres) x 3 (conditions)

x 2 (connection lengths) within-subject analysis of variance, with p-value corrections for

sphericity using Greenhouse-Geisser. The right hemisphere sites (µ̂ = 8.417, σ̂ = .381)

demonstrated significantly more overall connections than the left (µ̂ = 7.176, σ̂ = .384),

F (1, 17) = 12.374, p = .003. Similarly, the vigilance tasks elicited more connections (µ̂ =

8.958, σ̂ = .684 and M = 8.347, σ̂ = .381 for the auditory and visual tasks, respectively)

than did the resting condition (µ̂ = 6.083, σ̂ = .349), F (2, 34) = 14.308, p < .001. There

were significantly more short (µ̂ = 9.139, σ̂ = .431) than long (µ̂ = 6.4537, σ̂ = .394)

connections, F (1, 17) = 55.63, p < .001. There was a Hemisphere x Connection Length

interaction, F (1, 17) = 8.011, p = 0.012; both hemispheres showed similar amounts of

long connections, but the right hemisphere had more short range connections (µ̂ = 8.037,

σ̂ = .403) than the left hemisphere (µ̂ = 10.241, σ̂ = .551). Of particular interest was

the Task x Connection Length interaction, which was highly reliable, F (2, 34) = 145.5,
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Figure 4.11: Maps of the estimated network connectivity during the A: resting, B: auditory,

and C: visual tasks, for the LRTs of two individual participants. In the resting task we

see many short range connections but relatively few long range connections. In contrast,

the active tasks show many connections over longer distances, primarily anterior-posterior,

connecting prefrontal sites to parietal sites. Asymmetries are observed in these individual

networks; however, the direction is not consistent between individuals. This pattern was

consistent across all participants and is further quantified in Figure 4.12.

p < .0001, with the mean values illustrated in Figure 4.12. To examine the reliability of

this pattern further, we constructed for each participant a metric reflecting the extent to

which the resting condition was associated with more short connections than the active

tasks and the active tasks more long connections than the resting condition. This yielded

totals for the left hemisphere and right hemisphere for each participant. Each hemisphere

of every participant followed this general pattern (µ̂ = 9.5, range = 0.5 to 19.5, with any

value above zero indicating this general pattern), indicating extremely high reliability of
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the effect illustrated in Figure 4.12.

Figure 4.12: The significant Task x Connection Length interaction, demonstrating an

increase in longer connections and a reduction in shorter connections during the auditory

and visual vigilance tasks compared to the resting condition.

4.5 Discussion

This chapter demonstrates a novel method for analyzing neural connectivity in a simula-

tion study mimicking the properties of EEG recordings. From the results of the simulation

study, the netGC analysis is the preferred test for mean asymmetric connectivity; it is

designed to increase the statistical power to identify asymmetries and the results of the

simulation study suggest that it is not affected by VC for a large range of bSNR values.

Calculating the bSNR from EEG recordings requires the use of an inverse method to

identify the different biological components, making estimates of the bSNR highly depen-

dent on the specific inverse method used. To get an idea of the bSNR that can be expected

in non-averaged EEG data, we can use results from independent component analysis (ICA).

In [72], twenty different ICA algorithms are each applied to EEG recordings from a visual

attention task; they found an average of 22.4 dipole-like biological components (range 9.1

- 37.4). The strengths of the individual components are not reported, but we can infer an

average component strength of 4.5% (range 2.6-11%). This is well below the 35/2 = 17.5%
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per component level where VC and reference electrode became a concern in the simulations.

A bSNR of greater than -2.7 dB is not realistic for non-averaged EEG recordings which

are notorious for having large amounts of noise, so we conclude that observed connectivity

difference between resting and vigilance tasks are not due to VC or reference electrode.

In the simulation study, it was confirmed that the PSGC measure is able to correctly

identify the direction of information transfer in conditions similar to those of EEG record-

ings. The simulated data contain multiple sources of noise, both independent additive

noise and spatiotemporal sources of biological noise. Results of the simulation showed that

the existence of spatiotemporal noise helped to attenuate the spread of phase shift events

due to VC or average reference. The LRT on individual networks did not show spurious

connectivity when the bSNR levels were below -2.7 dB but larger bSNRs showed spread

of connectivity across several electrodes. The ability to identify connectivity in scenarios

with very low bSNR is a strength of the PSGC measure; the high levels of noise that are

typical in continuous EEG recordings actually help reduce the extent to which VC produces

spurious connectivity measurements. Intuitively, this is because in a mixture of signals,

the phase of the mixture is a weighted sum of the phase of individual components. This

means that only the strongest components of the mixture will be able to induce a shift

event. Since the affect of volume conduction decreases with distance, the more biological

noise that exists in a system the less likely a generator is to be the strongest component

of the EEG signal in locations away from the source.

The existence of high levels of noise is one of the main challenges in EEG analysis. The

most popular method of dealing with this noise is to average time-locked waveforms from

many trials [200], under the assumption that unrelated background activity will decrease

as the number of trials goes up; however, evidence suggests that phase information con-

tained in the background activity is important to understanding brain activity [181]. This

emphasizes the need for measures like PSGC which can be used in low bSNR conditions

to analyze non-averaged EEG recordings.

When analyzing a mixture of signals, the overall phase is an amplitude weighted func-
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tion of the phase of the individual components. This means that the phase of the dominant

component is most represented in the signal. When identifying phase shift events, contri-

butions from weaker components of the signal may not have a large enough effect on the

overall phase to reach the threshold value. The use of a well chosen threshold value can

effectively eliminate phase shifts from weak contributions, such as those due to VC over

large distances (strength of VC decreases quadratically with distance). This result is con-

firmed by the simulation study, where low bSNRs (≤ −2.7 dB) showed only sparse effects

of VC, while the high bSNR (> −2.7 dB) showed high rates of observed connectivity due

to VC. Further evidence for this result is shown in Appendix D, investigating the effects

of noise, VC and reference electrode on the identification of phase shift events.

Another consideration for use in EEG recordings is the effect of reference choice on

the phase of a signal. Using an average reference can cause inflated connectivity in mea-

sures such as coherence [205, 229], and can cause phase variables to lose physiological

importance [275]. The latter is not the case when measuring PSGC, because it analyzes

qualitative features of the signal (phase shifts modelled as a point process) rather than in-

terpreting the magnitude of the phase variables directly. Additionally, because each signal

contributes only a small amount to the average (1/121 in the real recordings), with realistic

amounts of biological activity the phase shifts in the reference will be strongly attenuated

and therefore will be eliminated by the threshold technique.

4.5.1 Conclusions and Future Directions

The PSGC measure is a novel method for quantifying the connectivity between electrode

sites, a method which is strengthened by its ability to detect directed (or asymmetric)

connectivity, its high temporal resolution, and its ability to detect non-linear relationships

between electrodes. A simulation study was used to assess the effect of VC on the PSGC

measure, and the results suggest that the identified connectivity patterns in the EEG ap-

plication cannot be attributed to VC or the use of an average reference.
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The results of this simulation study have been packaged together with the material

from Chapter 2 to provide a proof-of-concept demonstration that the PSGC measure is

appropriate to use in conditions similar to those of EEG recordings.

The simulation study suggests that the PSGC measure is resilient to VC in appropriate

circumstances; however, there are situations where VC may have an effect. It was assumed

for simulation that neural sources are perpendicularly oriented, and while this is a reason-

able assumption (see §1.3), tangentially oriented sources do occur [299] and may confound

PSGC results. It is also not possible to precisely localize the source of neural connectiv-

ity from the scalp recordings. A natural extension of the current PSGC method which

may overcome these limitations is to modify it for data derived from independent compo-

nent analysis (or source modelling techniques). An investigation into such an extension is

explored in Chapter 5.
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Chapter 5

Reconstruction of Phase Shift Events

In Chapter 4, a simulation study was used to show that the interpretation of phase shift

Granger causality (PSGC) analysis as neural connectivity, relies critically on the existence

of substantial spatio-temporal ‘biological’ noise which obstructs the spread of phase shift

events. Although evidence is shown that electroencephalogram (EEG) recordings typically

have the required noise, it is not possible to ascertain if it is true for any specific recording.

In this Chapter, I investigate the possibility of applying PSGC directly to reconstructed

neural sources rather than scalp recordings. If this can be accomplished successfully, it

would greatly increase the spatial resolution of the PSGC method, and provide additional

certainty that observed connectivity was not a result of volume conduction (VC). The first

step towards such an analysis is to determine which reconstruction techniques (if any) are

best suited for localizing the neural source of EEG phase shift events.

In this chapter, my contribution to this field of research is a detailed simulation study

used to determine the extent to which different source reconstruction (SR) techniques

are able to provide a spatio-temporal estimate of phase shift events. In addition, the

simulation study is used to assess the ability of SR techniques to localize neural sources,

results typically depend on the particular situation, and so there is no established consensus

in the literature on the optimal technique.
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5.1 Introduction

The effect of VC on connectivity metrics can be reduced by estimating the connectivity

between neural sources rather than scalp recordings, though it can never be completely

removed [249]. There are two aspects to estimating neural connectivity from scalp record-

ings; localizing the sources of neural activity and then estimating the connectivity between

sources.

Traditionally, localization is performed using SR techniques (see §1.6) and then con-

nectivity measures (see §1.5) are applied to time series of reconstructed source activity.

The most popular choice is to use the minimum norm estimate (MNE) for source recon-

struction [8, 11, 14, 63, 132, 149], while there has been more variation in the choice of

connectivity measure, including coherence [132, 149], Granger causality measures such as

the directed transfer function (DTF) and partial directed coherence (PDC) [8, 11, 14], or

phase synchronization [46, 149]. The optimal combination depends on the relationship be-

tween sources and whether the coupling is linear/non-linear, narrow-band/broadband, and

the more general the metric the more data is required for good estimates and more tuning

parameters to be selected [63]. A specific comparison between DTF and PDC measures of

Granger causality finds that the PDC measure has less bias but greater variance than the

DTF measure when estimating source connectivity [10].

When estimating source connectivity using distributed SR techniques (i.e. MNE) with

many voxels, a crucial aspect is the selection of regions of interest (ROI) for connectivity

analysis. The selection of ROIs is non-trivial, and many authors elect to use subjective

a priori ROIs based on the physiology of the problem [8, 11, 14, 132]. One technique

is to perform preliminary coherence analysis with a peripheral biological signal (such as

heart/muscle activity) [149], but an appropriate signal is not always available and this

method may be misleading if an arbitrary signal is used [249]. Time coherent expansion

is an algorithm which uses iterative expansion and contraction of neural regions to define

ROIs with temporally coherent signals [64], this method still requires an initial seeding of

expected regions and does not completely solve the ROI problem. A promising approach
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is to use combined EEG/fMRI (functional magnetic resonance imaging) brain imaging to

make use of the superior spatial resolution of fMRI signals and define ROIs [14], although

this is not always feasible due to the increased technical requirements for fMRI or joint

EEG/fMRI recordings.

Modern statistical methods such as independent component analysis (ICA) allow source

activity to be estimated before (or concurrently with) source localization. It is somewhat

counter-intuitive to estimate source connectivity using ICA, as the ICA algorithm is at-

tempting to identify maximally independent sources, despite this, there have still been

positive results from this approach [180, 181, 207, 73]. A modification of this approach

is to perform joint multivariate auto-regressive (MVAR) estimation and ICA demixing to

separate systematic coupling between sources and independent residual terms [77, 112].

These algorithms are improved in [137] by including an appropriate least absolute shrink-

age and selection operator (LASSO) sparsity penalty on a subset of the parameters.

Dynamic Causal Modelling (DCM) is a Bayesian modelling framework for estimat-

ing effective connectivity between neural regions, originally introduced in the fMRI lit-

erature [98]. Extensions of this idea are employed in EEG analysis [157], which use a

hierarchical Bayesian model of the electrical activity produced in the brain. Like the ICA

algorithms, the DCM method provides joint estimation of source reconstruction and source

connectivity parameters in a single step.

In both standard Bayesian SR and Bayesian DCM, a variational Bayes (VB) approx-

imation to the posterior distribution is often used to estimate parameters [61, 97, 158,

157, 185, 203, 219, 243, 282]. This approximation greatly speeds up the calculation of a

posterior distribution, especially when compared to Markov Chain Monte Carlo (MCMC)

sampling solutions. The VB approximation is able to provide accurate point estimates of

the parameters; however, in Appendix C we show it to greatly underestimate variability

in situations with high covariance between parameters in the true posterior. Despite this

limitation, the VB method is still actively used in Bayesian source reconstruction.
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In this chapter I perform a simulation based studies to compare the ability of source

connectivity techniques to accurately localize phase shift events. Phase shift events were

generated from coupled Rössler attractors, and then linearly mixed to EEG sensors using

realistic lead field matrix. Several methods of source connectivity analysis were imple-

mented to determine which is most accurate at phase shift localization.

5.2 Methods

Several SR techniques are used to localize phase shift events. Due to the underdetermined

nature of inverse problem, regularization techniques are used to determine a unique solu-

tion. I consider three different penalty functions for regularization of distributed solutions

to the inverse problem, as well as ICA and Bayesian statistical approaches.

5.2.1 Distributed Solutions

The distributed approach for solving the EEG inverse problem is to consider the generation

of S scalp potentials from a set of sources on a pre-specified lattice of G volume elements

(or voxels). Distributed methods typically include much greater number of voxels than

sensors (G >> S) which make-up the solution space, resulting in an a highly underdeter-

mined inverse problem. For this application, a solution space is created which constrains

the voxels to the surface of the brain; not all electrical brain activity originates at the

surface, but due to its proximity to the scalp, the perpendicular orientation of pyramidal

neurons, and the synchronization of clusters of neurons, it is reasonable to expect that

surface activity dominates the EEG recording in many applications (see §1.3).

To create the solution space, first a regular 3D lattice (with inter-voxel distance of 0.01)

is made to fill the entire head, and then a spherical shell is created by keeping only voxels

with z > z0 (to remove the ‘bottom’ of the brain) and a distance between r = 0.869 and

r = 0.872 units from the origin (representing the surface of the brain, see §5.3.1). This

results in G=292 voxels, shown in Figure 5.1 along with the locations of the generators

112



used in the simulation study.

Figure 5.1: Solution space for distributed source reconstruction techniques. Each blue

point indicates of voxel of the solution space, the nose is indicated by the black triangle.

From the top-down view (X-Y), the coupled oscillators are on opposite corners, and the

uncoupled source is in the centre of the head.

The lead field matrix (K) is calculated using the a 3-shell approximation [23] (see

Section 1.6.1). When solving the source reconstruction problem, it is crucial to consider

the reference electrode which has been used. Here we have used the average reference, so

we update the lead field matrix to account for this average reference (KAR),

KAR = (IS − 1S1′S/S)K,

where IS is the S by S identity matrix, and 1S is a S by 1 vector of ones.

Minimum Norm Estimate

The MNE is one of the earliest methods of source reconstruction [144, 131], partially due

to its computationally feasibility and the existence of a tractable solution. For observed

scalp potentials Y, the MNE solution seeks the source configuration J which minimizes

both the least squares penalty and the `2 norm of the source estimate,

Ĵ = min
J
||Y −KARJ ||2 + αMNE||J ||2.
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where αMNE is a tuning parameter determine the smoothness of the estimated current.

The solution to this problem [214] is

ĴMNE = K ′AR(KARK
′
AR + αMNEH)+Y,

where X+ denotes the Moore-Penrose pseudo-inverse of X.

sLORETA

The MNE has been shown to be biased towards superficial sources [214]. A correction

to overcome the depth bias of the MNE, the standardized LOw Resolution TomogrAphy

(sLORETA) algorithm ‘standardizes’ the sources by an estimate of spatial variance. The

MNE estimate can be shown to be equivalent to a Bayesian formation of the inverse problem

Y = KARJ + E,

where J are the current density parameters, E is independent Gaussian noise with constant

variance

ΣE = αMNEI3G

and the prior distribution on J is also Gaussian with mean zero and variance

ΣJ = I3G.

Under this model, the variance of the source estimator is given by [215]

SĴ = K ′AR(K ′ARKAR + αMNEH)KAR

The solution at voxel g is then [215]

Ĵg,sLORETA = Ĵg,MNE ([SĴ ]gg)
−1 Ĵ ′g,MNE

where Ĵg is the 3 × 1 current density vector at voxel g, and [SĴ ]gg is the gth 3 × 3 block

diagonal matrix of the estimated spatial variance SĴ .

114



LASSO

A sparse estimate of the current density can be achieved by replacing the `2 penalty in the

MNE with the `1 (or LASSO) penalty [278],

ˆJLASSO = ||Y −KJ ||2 + αLASSO||J ||1,

where αLASSO is a tuning parameter determining the sparsity of the estimated currents. A

sparse solution will emphasizes focal sources of neural activity, as opposed to the smoother

solutions given by the MNE. The Least Angel Regressor Selection (LARS) algorithm is

used to solve for ĴLASSO [79].

5.2.2 Bayesian Hierarchical Model

With the Bayesian approach to source reconstruction, a 2-level hierarchical regression

model is used similar to ones used in [282]. The response variable YS×1 is a vector of

electric potentials recorded from S sensors. The top level of the model relates Y to the

parameters of interest J3G×1, a matrix of primary current densities from G generators,

Y |J = KARJ + εY .

The S by 3G matrix KAR is the known LFM which is calculated by solving the EEG for-

ward problem, the term εY represents independent measurement errors at the sensors.

In the second level of the model describes the current density vector J,

J = εJ .

The currents are modelled as having zero mean and the term εJ represent the source

innovations. The errors εj are also independent from εY .

Prior Distribution

The error terms in the hierarchical model are assumed to follow a multivariate Gaussian

distribution with mean zero. For the top level of the model, the errors are independent
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across sensors, a vector σS×1 determines the precision for each sensor

εY ∼ G
(
0, diag(σ)−1

)
.

The errors in the second level are independent across generator, the vector λ3G×1 allows

the precision to be different at each generator and in each direction,

εJ ∼ G
(
0, diag(λ)−1

)
.

The prior distribution for the precision hyper parameters will use independent gamma

distribution, each with their own hyper parameters,

p(σ) =
S∏
i=1

Ga(aσ,i, bσ,i),

p(σ) =
3G∏
i=1

Ga(aλ,i, bλ,i).

This choice of prior results in conjugate normal-gamma prior distributions for mean-

precision parameters. The use of gamma priors for the precision variables is also called

automatic relevance detection (ARD) priors [198], ARD priors allow the data to deter-

mine which generators and sensors (corresponding to λ, σ) are most relevant to the model.

Following [282], the values of the hyper parameters in the ARD priors were taken to be

a = 1
1000

and b = 1000. This results in an uninformative prior distribution which has

expected value of 1 and a variance of 1000, allowing the data to dominate the estimates of

precision parameters.

Variational Bayes Approximation

Variational Bayes is a parametric method for approximating the posterior distribution

in Bayesian analysis. The method is typically applied in situations where the complex

nature of the problem makes analytic solutions difficult or impossible and sampling meth-

ods such as MCMC are too slow. The idea of VB is to restrict attention to candidate

distributions which can be factored into groups of parameters and from these candidates
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selecting the approximate posterior which maximizes the variational free energy. With

an appropriate factorization of parameters, this often leads to an analytically tractable

and efficiently computed solution. Optimization is done using an process similar to the

expectation-maximization algorithm, described in Appendix C.

For the current model, the posterior for σ is a Gamma distribution and the update

equations for the VB approximation are

aσ,i = a+ 0.5,

bσ,i =

(
1

b
+

1

2
(Yi −K·,iJ)2

)−1

,

σi = aσ,ibσ,i.

Similarly, the precision parameters for the generators, λ, also has a Gamma posterior, and

update equations

aλ,i = a+ 0.5,

bλ,i =

(
1

b
+

1

2
J2
i

)−1

,

λi = aλ,ibλ,i.

The current density parameters have a Gaussian posterior, and the update parameters are

Σ−1
J = diag(λ) +K ′diag(σ)K,

µJ = (Y ′diag(σ)K)ΣJ .

5.2.3 Independent Component Analysis

An ICA algorithm attempts to find the linear transformation which results in a set of

maximally independent signals. There are many different ways to define a cost function

117



which quantifies the independence of a set of signals, and thus there are many different

implementations of the ICA method. In [72], twenty different ICA algorithms are com-

pared in their ability to localize neural sources, and the most successful algorithms were

based on the infomax principal [171]. The infomax principal suggests to find the linear

combination which maximizes the entropy of J (see §1.5.3). For the current application,

the runICA algorithm in EEGLAB [71] is used which is based on the Infomax principal.

Once components have been identified, scalp projections of components are compared to

potential dipoles in the solution space, and components which account for sufficient vari-

ance are fit as dipoles while others are rejected as noise components. This is process is

performed using the dipFIT plug-in in EEGLAB [208].

5.3 Experiment

The simulated data for this experiment come from systems of coupled Rössler attractors,

as described in §3.4. There are a total of 5 attractors, two pairs of weakly coupled os-

cillators displaying phase shift events and a fifth uncoupled oscillator. The first pair of

weakly coupled oscillators are generated with ω1/2 = 2πf0 ± δω, f0 = 9, δω = 0.0675 and

C = 0.12. The second pair of oscillators is generated with similar values except that f0 = 5

and C = 0.06, and the uncoupled oscillator is generated with f0 = 2 and C = 0.

Generators are located on the surface of the brain (shown in Figure 5.1); the first pair

of coupled oscillators are located under scalp regions F4 and O1, the second pair under F3

and O2, and the uncoupled oscillator under Cz. Each generator is oriented perpendicular

to the surface of the brain, and the amplitude is taken to be the xt time series of the

corresponding Rössler attractor, a 20.83 minute signal sampled at a rate of 8Hz, for 10000

data points. Figure 5.2 shows the time series of amplitudes for each generator, along with

the corresponding estimate of their PSD. Both the F4 and O1 generators show a distinct

frequency peak at 1.3 Hz, while the F3 and O2 generators show a peak at 2.8 Hz. The

estimated phase difference for each pair of coupled oscillators in the (1-1.5) Hz and (2.5-

3) Hz frequency bands is shown in Figure 5.3. From the plots, it is seen that there are

118



four phase shift events between the F4 and O1 oscillators are at {2.77, 6.06, 11.77, 15.98}
minutes and six phase shift events between the F3 and O2 oscillators at {1.81, 5.04, 7.96,

9.63, 11.71, 15.04} minutes.

Figure 5.2: Sample time series and estimated power spectral densities for each of the

simulated generators. The are no visible changes in the amplitudes of the oscillators. The

top two plots (F4 and O1) show a distinct frequency peak at 1.3 Hz, the third and fourth

plots (F3 and O2) have a peak at 2.8 Hz and the bottom plot of the uncoupled oscillator

has a peak at 2Hz.

5.3.1 Head Model

To emulate the field spread due to VC associated with EEG recordings, the generated

sources (J3G×1) are linearly mixed to S = 19 scalp electrodes (YS×1) in the 10-20 system
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Figure 5.3: True phase difference of coupled Rössler attractors at F4-O1 (top) and F3-

O2 (bottom). Both systems show distinct periods of synchronized phase activity and

spontaneous desynchronizations. The phase shift events are more obvious in the top panel

than the bottom, but can be clearly identified in both situations. There are four phase

shift events in the F4-O1 system and six phase shift events in the F3-O2 system.

using a mixing matrix (Ks×3G),

Y = KJ.

The LFM, K is computed from the geometric and conductive properties of the head model.

In this work, the three concentric sphere head model is used, with the surface of each sphere

representing the brain, skull and scalp. Following [239], the radii of the brain, skull and

scalp are 0.87, 92, and 1.00 respectively with corresponding conductivities of 0.33, 0.0041,

0.33. To calculate the LFM, the 3-shell model is approximated as the sum of three appro-

priately scaled 1-shell models [23] (see Appendix A).

The signal-to-noise ratio (SNR)s is set by taking a weighted average of the noise-free

data (Y) and independent measurement noise (ε) representing measurement error at the
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sensor,

Y ∗ =
rY

||Y ||
+

(1− r)ε
||ε||

.

The relationship between r and the SNR is given by SNR = 10 log10
r2

(1−r)2 decibels.

The generated sources are mixed to 19 scalp locations of the 10-20 system of electrode

placement (see Figure 1.7). Scalp data were initially referenced to site Cz, but then each

channel was post-processed, after noise was added, to be re-referenced against the scalp

average,

Y ∗AR = Y ∗ − Y ∗.

For the electrodes which are directly above the generators, Figure 5.4 shows the final

signals after post-processing (Y ∗AR), along with their estimated power spectral densities

(PSDs). Both pairs of scalp signals corresponding to coupled generators have a frequency

peak in the correct location. There are several minor secondary peaks corresponding to

the frequency of distant generators, this is an example of the effect of volume conduction.

The scalp signal above Cz does not have a frequency peak in the expected location (2Hz),

but rather only two small peaks corresponding to the pairs of coupled oscillators. This

suggests that the spatial and temporal properties of the generators are having a canceling

effect on the activity from Cz; this is in agreement with result in Figure 4.1, that additional

spatio-temporal noise attenuates the spread of activity. Scalp topographies corresponding

to the three main frequency components in the simulated data; the topographies of the

1.3Hz and 2.8Hz components show the signals as being strongest in the correct locations,

while it is not possible to correctly identify the location of the 2Hz generator from the

topography.
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Figure 5.4: Top: Simulated scalp signals along with corresponding PSD estimates. Both

pairs of scalp signals corresponding to coupled generators have a frequency peak in the

correct location, and there are several minor secondary peaks corresponding to the fre-

quency of distant generators (an effect of VC). The signal at Cz does not have a frequency

peak in the expected location (2Hz), but rather only two small peaks corresponding to the

pairs of coupled oscillators. Bottom: Scalp topographies corresponding to the three main

frequency components in the simulated data; it is possible to localize the couple genera-

tors from the topographies of the 1.3Hz and 2.8Hz components, while it is not possible to

correctly identify the location of the 2Hz generator at Cz.
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5.3.2 Application Details

For this application, ROI selection is performed using an a priori selection of the number

of sources as well as a preliminary seeding of source locations. The source space is par-

titioned into regions, with each voxels going into the region corresponding to the closest

source seed. For each region, a source is estimated at the voxel with the largest magnitude.

Solutions to the source reconstruction problem are calculated for a range of tuning

parameter values, and the parameter value is selected which minimizes the mean squared

localization error from all 5 estimated sources. This process results in parameters values

of αMNE = αsLORETA = 103.5 and αLASSO = 10−3 (note that the LASSO problem uses the

dual formation of the optimization, so the interpretation of these two different values is

actually similar).

The parameter τ which defines the auto-correlation in the estimated phase difference

signals, must be estimated before the shift identification algorithms can be applied. For

each pair of signals subject to the analysis, the phase difference is calculated without

applying the unwrapping algorithm; this reduces any bias in the auto-correlation function

(ACF) due to phase shift events. The value of τ is taken to be the first zero crossing of

the ACF for the corresponding signals. Typical values of τ for this analysis ranged from

16-30 time points.

5.3.3 Localization Results

Each of the distributed methods is able to correctly localize the two pairs of coupled os-

cillators, but all have trouble localizing the uncoupled oscillator at Cz. Figure 5.5 shows

the solution space with different symbols where the source location is estimated for each

method. The ICA algorithm provides the best estimate of the source at Cz, while the

sLORETA algorithm performs the best among the distributed solutions. This is empha-

sized in the mean localization errors shown in Table 3.1. The VB and LASSO methods
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give the worst estimates of the Cz generator.

Figure 5.5: A top-down (X-Y, left) and head on (X-Z view, right) view for the results of

source localization. Source reconstruction techniques are differentiated by various symbols,

specific generators are denoted using colours. The black triangle is at the front of the head

model, and represents a ‘nose’. Once properly tuned, each of the source reconstruction

techniques is able to correctly localize the two pairs of coupled oscillators (F4-O1 and F3-

O2); however, there was difficulty localizing the 5th uncoupled generator at Cz. The ICA

and sLORETA methods did the best job at identifying the Cz generator, while the other

methods are not close. Overall estimates of localization error for each method is given in

Table 5.1.

For the ICA solution, localization was performed by fitting components as dipoles within

the solution space using the dipFIT plug-in [208] to EEGLAB [71] shown in Figure 5.6. In

addition to the localization parameters, each dipole also has three orientation parameters.

The four coupled oscillators are oriented correctly, while the generator at Cz is oriented

forward instead of upwards. This reinforces the fact that aspects of the third generator are

lost during mixing due to volume conduction and the spatial properties of the model.
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Method MNE sLORETA LASSO VB ICA

MSE 0.2200 0.1517 0.3279 0.3138 0.1205

Table 5.1: Mean squared localization errors for the estimated sources by each method.

The best localization results are from the ICA algorithm, followed closely by sLORETA

and then MNE. All methods appear to do an acceptable job localizing the four coupled

generators, but have difficulty with the uncoupled generator. The ICA method comes

closest to identifying the generator at Cz, followed by sLORETA and MNE; both the

VB and LASSO solutions completely fail to identify the 5th source, and have the highest

localization errors.

Figure 5.6: Top down view (left) and side view (right) of fitted dipoles of ICA components

calculated and plot using the dipFit plug-in [208] to the EEGLAB toolbox [71] for Mat-

lab. Each generator is correctly localized, with both pairs of couple oscillators oriented

in approximately the correct directions and the uncoupled oscillator at Cz oriented in the

wrong orientation.

5.3.4 Phase Shift Results

To assess each methods ability to correctly localize phase shift events, the cumulative

summation (CUSUM) and phase derivative (PD) algorithms are applied to selected pairs

of reconstructed sources. The above simulation experiment is replicated 12 times for a

total of 111 shift events for this analysis. Based on a visual inspection of signal PSDs,
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each method is able to clearly identify the two pairs of coupled oscillators to be subjected

to phase shift analysis. The results of the shift identification for each pair of generators

are combined and used to generate receiver-operator-characteristic (ROC) curves for each

source reconstruction technique and each measure, and the resulting curves are shown in

Figure 5.7. The CUSUM estimator outperforms the PD estimator for each source recon-

struction technique, this result is expected based on the results of applying the estimators

directly to Rössler data in Chapter 3. The maximum accuracy (mACC) and area under

ROC (AUROC) values are given in Table 5.2 for the CUSUM estimator and Table 5.3

for the PD estimator. Among the CUSUM estimators, the MNE and sLORETA source

reconstruction techniques performed best, with ICA and VB not far behind. For the PD

estimator, only the MNE and sLORETA solution performed better than chance (AUROC

¿ 0.5), while the VB, LASSO and ICA all had maximum accuracy values of 0.5. Overall,

the MNE solution with CUSUM estimator performed best, with maximum accuracy of

0.83 and AUROC values of 0.841.

5.4 Conclusions

I have presented a simulation study to assess several common source connectivity methods

in their ability to accurately estimate phase shift events both temporally and spatially.

The MNE algorithm had the best results, although they were comparable to accuracy of

the sLORETA, ICA and VB solutions. Among the distributed sources, the sLORETA

algorithm has the best localization. The key difference between previous studies and what

I have presented here is the precise localization of temporal events, as opposed to a overall

estimate of connectivity over time. The former makes use of the superior temporal res-

olution of EEG as compared to fMRI, and facilitates an analysis of the balance between

synchronization and desynchronization dynamics.

The CUSUM identification method clearly outperforms the PD solution in this situa-

tion. This is consistent with the results from Chapter 3, where the CUSUM method worked
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Figure 5.7: ROC curves for the PD method (top) and CUSUM method (bottom) of shift

identification. The CUSUM method outperforms the PD method across the board, having

greater accuracy and AUROC for every method. This is consistent with the results of

applying these methods directly to Rössler data in Chapter 3. The PD method is able to

identify the shift events; however, it is unable to avoid also false positives, due to the spatial

and temporal nature of system noise. The CUSUM method performs much stronger, and is

able to identify all of the shift events while keeping false positives to a minimum. The MNE

and sLO solutions have the highest possible accuracy, with ICA and VB slightly behind.

The maximum accuracy and AUROC values for each source reconstruction technique are

shown in Table 5.2 for PD estimator and 5.3 for CUSUM estimator.
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Method MNE sLORETA LASSO VB ICA

AUROC 0.841 0.825 0.425 0.692 0.656

Max Accuracy (α) 0.83 (0.0001) 0.81 (0.0001) 0.53 (0.2154) 0.73 (0.0002) 0.69 (0.0022)

Table 5.2: The maximum accuracy and AUROC values for the CUSUM method. The four

methods which perform well (MNE, sLORETA, VB and ICA) all have maximum accuracy

values of at least 0.69 at significance levels around α = 0.0001, while the LASSO method

reaches a maximum accuracy of 5.3 at α = 0.2154. The MNE solution has the maximum

AUROC value at 0.841 and maximum accuracy of 0.83.

Method MNE sLORETA LASSO VB ICA

AUROC 0.572 0.504 0.231 0.227 0.299

Max Accuracy (α) 0.60 (0.0464) 0.54 (0.0215) 0.5 (0) 0.5 (0) 0.5 (0)

Table 5.3: The maximum accuracy and AUROC values for the PD method. None of the

methods perform especially well using the PD estimator, and only the MNE and sLO

solution performs better than chance (AUROC = 0.572, 0.504 > 0.5), the other four

methods have AUROC values below 0.5 which is undesirable. The MNE solution has the

maximum accuracy value at 0.6. Both the LASSO, VB and ICA solutions have maximum

accuracy of 0.5, meaning there is no value of α where they perform better than chance.

when applied directly to the Rössler attractors. The problem with the PD solution was an

inability to avoid false positives; the use of SR techniques introduced noise into the sig-

nal which affects the estimation of the phase derivative, resulting in many spurious peaks

in the PD. The temporal resolution of the PD method is not important for the Rössler

application, but may still be necessary for other (EEG) applications. Furthermore, if the

goal is to post-process these phase shift events by modeling them with the PSGC measure,

then these additional false positives may not be a problem. We have seen in Chapter 4

that a less conservative threshold criteria increased the power of PSGC, and did not result

in additional false positives in connectivity. When the false positives from the PD do not

have any temporal structure, it may be more important to find all true shifts rather than

minimizing false positives.
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The LASSO solutions has the worst results of the different solutions; however, this may

be due to the particular implementation of sparsity. As an example, sparsity on all param-

eters encourages sources in a specific orientation (X, Y or Z) by penalizing each parameter

needed to describe the orientation. An alternative would be to have a sparsity penalty on

the number of sources, but then fit the orientation and time course without sparsity penalty.

With the exception of ICA, each of the source reconstruction techniques presented as-

sumes independence between time points. One way to boost the results could be to use

more complex models with temporal structure, although this would come with increased

computational requirements for the solutions. The VB solutions is the slowest of the cur-

rent algorithms, but the Bayesian hierarchical model has a modular design which will allow

different spatial and temporal constraints to be efficiently implemented and compared. An-

other options is a modification of the VB algorithm to simultaneously estimate shift and

location, in the spirit of DCM source connectivity techniques.

5.4.1 Future Work and Limitations

One aspect of this work that needs to be addressed before these methods could be prac-

tically applied to EEG recordings is an automated method of ROI selection. Another

investigation which could be undertaken is to give a specific description of geometry of

sources which can be properly recovered and localized. This could include an investigation

into the effect of additional interference (systematic, or spatial noise), or tangentially ori-

ented sources on the results of localization.

In the final chapter, I give summary of the main results and impact of the thesis and

provide concluding thoughts and future directions ideas for phase shift based measures of

connectivity in EEG.
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Chapter 6

Conclusions and Future Work

In this thesis, three different aspects of EEG phase analysis were considered; estimation of

phase shift events, estimation of neural connectivity from phase shift events, and source

reconstruction of phase shift events. These problems are considered within the context of

EEG recordings, and there are several considerations which must be made for these analy-

ses. Methods must be robust in the presence of high levels of noise. Recordings are subject

to volume conduction, a linear mixing of generating signals. Methods should make use of

the high temporal resolution of EEG recordings, one of the strengths of EEG recordings

over more high spatial resolution techniques such as fMRI.

The primary impact of this thesis is in neuroscience, from the introduction of a novel

method for estimating neural connectivity from the phase dynamics of EEG recordings.

Each Chapter considers a different aspect of estimating neural connectivity from EEG

phase dynamics, and overall they form a complete package for the estimation and inter-

pretation of connectivity from EEG phase shift events. There are two other primary areas

of impact; in change-point analysis of complex systems, and in analyzing EEG recordings

in behavioural psychology [167]).

The synchronization and spontaneous desynchronization of neural populations is con-

sidered to be functionally relevant to neural processing, and an understanding of these
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dynamics may provide valuable insight into brain dynamics. As we explore the data from

many modes brain imaging techniques, we develop better theories of how these dynamics

are generated. There are several theories which attempt to explain the existence of heavy-

tailed power-law distributions; examples of this are self-organized criticality (SOC) [19],

generalized q-entropy [284] or the free energy principal [96]. The existence of power-law

behaviour occur often in neuroscience, has been shown to be functionally/behaviourally

relevant, and so it is beneficial to understand how they are generated.

Previous studies involving phase shift identification in the EEG literature use a subjec-

tive threshold procedure [37, 277]. This reduces the reliability of the results as well as the

reproducibility of EEG studies performing such analyses. The CUSUM and PD estimators

provide an objective means of identifying phase shift events. A more general application

exists in complex dynamical systems, where these results provide the tools for phase shift

identification from noisy observed data.

It has already been seen that phase shift dynamics are related to developmental changes [277]

and behavioural measures of anxiety or aggression [167]; the result of the simulation stud-

ies provide additional insight into the interpretation of EEG phase shift analyses, for our

PSGC measure, but also in phase reset analysis [277]. As sophistication of analysis method

(source reconstruction, connectivity analysis) and recording techniques (joint EEG-fMRI)

continues to increase, this will result in a increased understanding about the role of syn-

chronization in behaviour.

6.1 Future Work

Chapter 2 introduces a novel measure of estimating neural connectivity, phase shift Granger

causality (PSGC). Future work on this measure will involve creating a better model for

phase shift events, perhaps including a refractory period, or allowing for correlations be-

tween shift events.
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In Chapter 3, two methods are explored for the identification of phase shift events, the

cumulative summation (CUSUM) and phase derivative (PD) estimators. A future goal

of this work is to modify the proposed methods to work in real-time, allowing immediate

feedback to be provided to the user. The PD methods seems most natural for such an

application, with high temporal resolution and computationally efficient, but perhaps a

modification of the CUSUM estimator could be found to help it adapt to real-time com-

putation. Another potential extension of this work is to use bootstrapping techniques to

estimate the variability in phase shift localization, and use this information to construct a

confidence interval on the true location of the shift event [142].

Finally, I explore the effect of volume conduction on phase shift identification, and

the potential to use source reconstruction events to nullify this effect, while concurrently

increasing the spatial resolution of the EEG analysis. In Chapter 4 it is determined that

the PSGC measure is provides an appropriate measure of neural connectivity under certain

assumptions on the underlying sources; they should be oriented perpendicular to the surface

of the brain, and there must be enough spatial noise to attenuate the spread of activity

due to volume conduction. In Chapter 5 several methods of EEG source reconstruction

are applied to determine which method is best maintains the phase shifting dynamic in

the original signal, and determined that the minimum norm estimate (MNE) works best.

Future work on this topic will be to extend the PSGC measure to work on reconstructed

sources, rather than on scalp recordings directly.
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Appendix A

Forward Problem

The forward problem can be defined as determining the electric field potential that is

generated by a given primary current density. Specifically, interest lies in solving for the

potential at the scalp due to primary currents within the brain. The equations which

describe the behaviour of electricity and magnetism are called Maxwell’s equations,

∇ · E =
ρ

ε0
∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t
,

where E is the electric field, B is the magnetic field, ρ the total electric charge density,

ε0 the permittivity of free space and µ0 the permeability of free space. In the context of

EEG recording the contribution of the time derivatives is negligible [129]; the quasi-static

approximation to Maxwell’s equations is used, setting the time derivative terms ∂B
∂t

and
∂E
∂t

to zero. A consequence of this approximation is ∇ × E = 0 which implies that there

exists a scalar field potential (Y ) such that E = −∇Y .

Using Maxwell’s equations, the relationship between the electric potential Y and the

primary current density Jp [104, 129]
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∇2Y =
∇Jp

σ
. (A.1)

To see this, first separate the electric current density into the contributions from the

primary current source Jp and the secondary currents due to the electric field, Js

J = Jp + Js.

The secondary current density of a biological system is linearly related to the electric field

for low voltage primary currents (below a threshold of about 2 milliAmp/cm-squared) such

as those generated in the brain/heart [251],

Js = σE,

where σ is a conductivity parameter. This makes the total current density

J = Jp + σE.

Substituting E = −∇Y
J = Jp − σ∇Y,

and then taking divergence

∇J = ∇Jp − σ∇2Y = 0.

By conservation of energy principal, the divergence of the total electrical current is zero,

∇ · J = 0, so

∇2Y =
∇Jp

σ

In the case of a homogeneous volume, the following solution to Equation A.1 is [22, 129],

Y (r) =
1

4πσ

∫
Jp · d
‖d‖3 dv +

1

4π

∫
∂V

Y · n̂ d

||d||3
ds. (A.2)

This equation can then be solved either analytically (for simple volumes) or numerically

to determine the electric potential Y.
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Appendix B

Filtering

B.1 Noise

The nature of EEG recordings is such that there is the potential for high levels of noise,

there are some standard considerations before attempting to meaningfully analyze a record-

ing.

In EEG recordings an artefact is any contribution to the field potential that is not due

to brain activation. Artefact detection and removal is necessary for many types of EEG

analysis [58]. Some artefacts enter the signal in a systematic way, allowing the original sig-

nal to be recovered through using signal processing techniques. An example is the artefact

generated by the electrical equipment that is near the recording area, this manifests as a

strong 60Hz component in the signal (in North America). The electric potential is also

affected during muscle activity, an eye blink has a very distinct electrical signature (see

Figure 1.10). Depending on the nature of the experiment, the effect of blink artefacts may

be removed using regression techniques [174, 297]. Other muscle activity such as such as

jaw clenching or frowning is less well behaved and most data which contain such activity

must be omitted from analyses.
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One type of preprocessing used in EEG analysis is segmentation , taking a continuous

EEG recording is dividing it into many smaller epochs. The main reason for segmenting

a dataset is to create sets of data which are approximately stationary. This is important

for statistical analyses, as EEG in general is non-stationary beyond a few seconds [55, 75].

When using segmentation, epochs with extreme noise can be easily omitted from analyses

without affecting the rest of the data. In the study of event related potentials (see Section

1.4.2), segments are often time locked to a specific event. By having each segment start

just prior to the onset of the event, the properties of each waveform are more likely to

capture the relevant brain activity.

Another stage of preprocessing is to select a reference for the data. A property of field

potentials is that they can only be measured up to a constant, meaning that one must

look at the difference between electric potentials in order to generate a physically mean-

ingful quantity [58]. In EEG recordings differences are obtained by comparing the electric

potential at each electrode to a common source called the reference electrode. The ideal

reference point is one where there is no electrical activity present however there is no place

on the scalp which fits this criteria. Reference electrodes are often placed on the mastoid

bones just behind the ears, because they are thought to be the area with the lowest amount

of electrical activity. Another option is to use the difference between adjacent electrodes to

create a bipolar reference. The advantage of a bipolar reference is that it is able to capture

localized activity, however global activity that is common to both electrodes is lost during

this process. Once a recording has been referenced to a common electrode, one option is

to rereference against the average voltage of all the electrodes, this method is independent

of the initial reference point. Each of these options has strengths and weaknesses and it

is up to an experienced researcher to determine which is best for any application [125, 229].
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B.2 Filtering

One technique for artifact removal is to use a filter, an operator designed to remove un-

wanted spectral components of a signal. If the frequency of the artifact component can be

identified, a notch filter can be used to remove contributions from the exact frequency. In

other situations a bandpass filter can be used, these filters remove all contributions from

frequencies outside the designated frequency band. This method is most useful when the

artefacts occur outside the frequency band of interest. When using filtering in broader

analyses, there is always the possibility of removing important signal content.

One type of noise which is often dealt with using filters is the contribution due to

electrical equipment in the recording room, in North America this manifests as a 60Hz os-

cillation. A one second waveform from location C3 is plotted along with its corresponding

PSD in Figure B.1, notice the spike at 60Hz. One option to remove this artifact is to use a

notch filter, to removing only the information at 60Hz. Often analyses are only concerned

with signals in a specific frequency band, so instead the data may be run through a 30Hz

low pass filter to remove all contributions above 30Hz including the 60Hz noise.

B.3 Filters and Phase

An important aspect of the complex demodulation calculations is the restriction that there

only be a single frequency component in the signal. To achieve this, the signals are put

through filters which remove the unwanted components of the signal. The ideal filter which

selects specific frequency components does not exist, so we must chose some approximation

of this. There are many different filter designs which can be used, here we investigate the

effect of using different filters on phase shift identification and latency estimation.

The two most common classes of digital filters are the finite impulse response (FIR)

and the infinite impulse response (IIR). Using FIR filters requires more data and more

138



Figure B.1: Location C3, segment 3. Top: Raw data and power spectrum. Middle: After

60Hz notch filter. Bottom: After 50Hz low pass filter.

computation time than IIR filters, however they are always stable. In contrast, IIR filters

are much faster and are able to use lower order filter to achieve similar accuracy, however

they maybe become unstable.

There are four classical IIR filter designs, the Butterworth, Chebychev1, Chebychev2

and Elliptic filters. Aside from the order of the filter, there are two possible parameters

of interest in filter design, pass-band ripple and stop-band ripple. The Butterworth de-

sign does not constrain either parameter, while the Elliptic constrains both of them. The

Chebychev1 design constrains only the pass-band ripple, while the Chebychev2 design con-

strains the stop-band ripple.

The two filters which constrain the stop-band ripple (Chebychev2 and Elliptic) are sen-

sitive to the order of the filter, and for they may be unstable. Depending on the order,

sometimes they introduce high frequency spiking into the instantaneous phase which pre-
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vents the identification of multiple shifts. A sample of this instability is shown in Figure

B.2, where the instantaneous phase of a signal is shown as estimated by a stable 4th or-

der Butterworth filter and an unstable chebychev2 filter of the same order. The signal has

two phase shift events each with a magnitude of 3π/4 and which occur at 1000 and 1700 ms.

Figure B.2: Left: 4th order Butterworth filter. Right: 4th order chebychev2 filter with

20db of stop-band ripple. The Butterworth filter can easily identify the two shifting events,

while the Chebychev2 filter introduces a high frequency ripple into the phase of the signal

which makes identification using the threshold method impossible.

The next step will be to evaluate the two stable filters on their ability to accurately

identify phase shifts. To do this I will look at the minimum ISI in the noise-free paradigm

and the mean and standard deviation of the latency error in the (SNR = 1,∆φ = 3π/4)

paradigm. Figure B.3 shows the minimum ISI δ such that both shifts can be identified as

a function of filter order; the filters used are the Butterworth filter and three Chebychev1

filters with maximum pass-band rippleR = [0.1, 0.5, 1]. The results show that the minimum

ISI is a consistent 300-350 ms for the Butterworth filter, while the Chebychev1 filters

(R=0.1 or 0.5) have results between 100-200 ms for low filter orders and between 200-300

ms for higher orders. The results of the latency errors shows that the mean latency error

is consistently around 3-4 ms for all filters and orders. The standard deviations plateau
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Figure B.3: Plots of the behaviour of four different filters for different orders; there is a

Butterworth filter and three Chebychev1 filters with pass-band ripple R=[0.1, 0.5, 1]. Left:

with increasing filter order, ending up in the 20-25ms range.
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Appendix C

Variational Bayes

The notation for the Bayesian analysis will be that f(y, θ) is the joint distribution between

the vector of observed data and the vector of parameters, p(θ) the prior distribution,

p(θ|y) the posterior distribution, m(y) the marginal distribution and f(y|θ) the likelihood

function.

p(θ|y) =
f(y, θ)

m(y)
=
f(y|θ)p(θ)
m(y)

C.1 Variational Bayes

Variational Bayes (VB) is a parametric method for approximating the posterior distribu-

tion in Bayesian analysis. The method is typically applied in situations where the complex

nature of the problem makes analytic solutions difficult or impossible. In VB, the attention

is to restrict attention to a set of candidate distributions which factor into groups of pa-

rameters, and from these candidates selecting the approximate posterior which maximizes

the variational free energy (VFE). With an appropriate factorization of parameters, this

often leads to an analytically tractable and efficiently computed solution. The method was

first applied [87] for evaluating line integrals, it later appears in the statistical literature in

the context of Bayesian inference for complex models [12, 231].
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Model Evidence

The KL divergence (see E) from the true posterior to the approximation is one way to

assess the accuracy of the approximation, however since the true posterior is unknown

this quantity cannot be used directly. The VFE provides an alternative way to assess the

quality of an approximation.

Definition C.1. In Bayesian inference, the variational free energy F(q) of an approximate

distribution q(θ) is defined as

F (q) =

∫
q(θ) log

f(y, θ)

q(θ)
dθ,

where f(Y, θ) is the joint distribution of the data and the parameters.

To see the connection between VFE and the KL divergence, consider the following

decomposition of the log model evidence,

logm(y) =

∫
q(θ) logm(y)dθ

=

∫
q(θ) log

f(y, θ)

q(θ)
dθ +

∫
q(θ) log

p(θ | y)

q(θ)
dθ

= F (q) +KL(p|q)

The significance of this result is that since log (m(y)) does not depend on the approxi-

mate posterior, maximizing the VFE is equivalent to minimizing the KL divergence. The

VFE can be decomposed into two parts, the first is the expected log likelihood of the

data under the approximate posterior and the second is the KL divergence of the prior

distribution from the approximate posterior.

F (q) =

∫
q(θ) log

f(y, θ)

q(θ)
dθ

=

∫
q(θ) log f(y | θ)dθ −

∫
q(θ) log

q(θ)

p(θ)
dθ

= Eq(logL(θ))−KL(q | p)
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Mean Field Approximation

For a partition Θ of the parameters, a mean field approximation of the distribution p(θ)

is a distribution q(θ) such that elements of Θ are independent.

Definition C.2. If Θ = {θ1, θ2, ..., θk} is a partition of θ, then a mean field approximation

of a distribution p(θ) over Θ is any probability distribution with the form

q(θ) =
k∏
i=1

qi(θi).

A mean field approximation removes the posterior covariance between elements of the

Θ. Although the stochastic dependence between variables is removed, there can still be

systematic dependence based on the average effect of other variables.

In VB, the form of the distributions qi(θi) which maximize the VFE of a made field

approximation can be found using the following results [231],

Theorem C.1. If Θ = {θ1, θ2, ..., θk} is a partition of θ and q =
∏
qi(θi) is an approxi-

mation of p(θ) then the form of qi which maximizes the VFE of q(θ) is

qi(θi) =
eI(θi)

Ci

where

I(θi) =

∫
q(θ−i) log (L(Y | θ)p(θ))dθ−i, θ−i = {θj ∈ Θ|j 6= i}. (C.1)

This theorem can be used to identify which exponential family the approximate pos-

terior q(θi) belongs to. The natural parameters for the distribution are calculated using

the function I(θi), which is the expected log-posterior distribution with expectation of all

other variables taken with respect to the approximate posterior. This results in a set of

natural parameters for q(θi) which are a function of the expectations of other variables

Eq(θ−i).
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Estimation

The Expectation-Maximization (EM) algorithm is an iterative method often used for esti-

mating parameters in the presence of missing data or hidden variables [74]. An adaptation

of the EM algorithm can be used to find the approximate posterior which maximizes the

VFE [244]. The maximization step uses current values of the parameters to find the form

of the approximate posterior which maximizes the VFE, then the expectation step updates

the parameter values using the expectation of the approximate posterior. Starting with an

initial value for each parameter, the estimates for each group of parameters are iteratively

updated until they have converged to a (potentially local) maximum of the VFE.

• Start with an initial values for each parameter θ(0)

• Calculate the VFE, F (q(0))

1. For each θi, calculate new values θ
(t)
i based on previous values θ

(t−1)
−i

2. Calculate F (q(t)) for new values of parameters

3. If
|F (q(t))−F (q(t−1))|

F (q(t−1))
< ε then stop, otherwise go to 1.

Example 1

As a simple example, consider a dataset {yi} of n independent observations from Y ∼
N(µ, λ), where λ = 1

σ2 is a precision variable. The prior distribution is µ ∼ N(0, 1)

independent of λ ∼ Ga(1
2
, 5). This leads to a posterior distribution of the form

p(µ, λ|y) =
1

m(y)
λn+1e

−µ2−4λ−λ
∑
i(yi−µ)

2

2 .

This particular posterior distribution is not complicated and can be solved analytically,

this will allow us to investigate the accuracy of the VB approximation. The grouping of

parameters is trivial in this example, there are only two parameters. To find the optimal
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form of q(µ), use Equation C.1

I(µ) =

∫
q(λ) log(L(µ, λ)p(µ, λ))dλ

∝
∫
q(λ)

(
−µ2 − λµ2 + 2λnȳµ

2

)
dλ

= −µ
2

2
(1 + nEq(λ)) + µ(nȳEq(λ))

Comparing this to a normal density leads to the optimal form of q(µ),

q(µ) ∼ N

(
nȳEq(λ)

1 + nEq(λ)
,

1

1 + nEq(λ)

)
.

By a similar calculation, the optimal form of q(λ) is given by,

q(λ) ∼ Ga

(
1

2
+ n,

[
1

5
+

∑
i y

2
i − 2nȳEq(µ) + nEq(µ

2)

2

]−1
)
.

Data for this experiment was simulated from a N(-0.3, 1.5) distribution. The initial

values that were used are (µ0, λ0) = (0, 1) and the convergence criterion ε = 10−5. The

experiment was repeated for several values of n, and the results recorded in Table C.1.

The result of the simulation is that the VB approximation appears to be converging to the

true posterior distribution, this is to be expected as the parameters are independent in the

prior.

n iterations Eq(µ) EΠ(µ) Eq(λ) EΠ(λ)

10 5 0.0949 0.0943 1.8915 1.8920

25 4 -0.5506 -0.5498 1.2436 1.2436

50 5 -0.2656 -0.2655 2.7026 2.7026

100 4 -0.2811 -0.2810 5.9862 5.9859

Table C.1: Results of VB Example 1. The mean of the approximate posterior are converging to

the mean of the true posterior. This is to be expected since the parameters priors are independent.
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Example 2

Next consider an example where the prior distributions of µ and λ are not independent.

In this situation the posterior distribution does not factor by groups of parameters, it will

be interesting to see how this affects the accuracy of the VB method. To introduce a

dependency in the prior distribution the distribution of λ will be conditional on the value

of µ. For this prior µ is assumed to be distributed as N(0,1) and then λ |µ is Ga(5, 1
µ2

).

The use of a non-conjugate prior means that there is not necessarily a tractable solution

to the problem, however the updates can still be easily computed numerically. The results

of the second example can be seen in Table C.2. The mean of the approximate posterior

is close to the mean of the true posterior, however the estimates are not as good the in-

dependent case. The variance of the approximation is an order of magnitude smaller than

the true variance of the distribution; the VB algorithm does not provide a good estimate

of variance in the case of posterior dependence between parameters.

n Eq(µ) EΠ(µ) Eq(λ) EΠ(λ) Vq(µ) VΠ(µ) Vq(λ) VΠ(λ) ρΠ

20 2.7857 2.2330 0.1859 0.1488 0.1550 1.3697 0.0013 0.0066 0.8592

50 3.6007 1.7652 0.1491 0.0731 0.1047 3.2900 0.0004 0.0057 0.9755

Table C.2: Results of VB example 2. The parameters used to generate the model are µ0 = 1

and λ0 = 2. The mean of the approximate posterior is close to the mean of the true posterior,

however the estimates are not as good the independent case. The variance of the approximation

is an order of magnitude smaller than the true variance of the distribution. The VB algorithm

does not provide a good estimate of variance in the case of dependence.

C.2 EEG Hierarchical Regression Model

An example of using the VB method to solve the source reconstruction problem using the

3-tier Hierarchical regression model used in [282], which is described graphically in Figure
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C.1. The response variable Ys×t is a matrix of electric potentials recorded from s sensors at

t time points. The top level of the model relates Y to Jg×t, the matrix of primary current

densities from g generators at t time points.

Y |J = KJ + εY

The known matrix Ks×g is the lead field matrix (LFM) which solves the EEG forward

problem (see Section 1.6.1), the term εY represent the measurement errors at each sensor.

These errors are independent of each other and the errors at other level, the errors for each

sensor have a different precision determined by the vector σs×1.

In the second level of the model, a temporal regression is used to describe the time

evolution of the primary current density in terms of a matrix of regression coefficients

Bk×g for k regressors at g generators

JT |B = XB + εJ .

The design matrix Xt×k contains the value of k predetermined temporal regressors eval-

uated at t time points (see Section C.3). The term εJ represents the lack of fit for the

temporal model, these errors are independent of all other errors and generator has a pre-

cision defined by the vector λg×1.

The final level of the model describes the spatial structure of the coefficient matrix B,

B = εB

The coefficients are modelled as having zero mean and the term εB represents the lack of

fit of the spatial model. Spatial information in this level of the model can be included

in the prior covariance structure of εB. The errors εB are independent from errors on at

other levels of the model and between regressors, but the spatial information in the model

is contained in the covariance matrix between generators Dg×g.

148



Figure C.1: A graphical representation of the hierarchical linear model used for the EEG inverse

problem. Circular terms represent additive error terms at each level of the model. The red boxes

represent the unknown parameters in the model, while the other boxes are known.

C.2.1 Prior Distribution

When dealing with matrix random variables, the Kronecker product is used to describe

the covariance of the distribution. The first argument defines the covariance in a column

of the matrix, while the second argument is the covariance in a row of the matrix. This is

a slight abuse of notation, as the Kronecker product actually defines the covariance of the

vectorized matrix.

The error terms in the hierarchical model are assumed to follow a multivariate Gaussian

distribution with mean zero. For the top level of the model, the errors are independent

across time and sensor, the vector σ is a set of parameters which allows the precision of

each sensor to be different

εY ∼ G
(
0, [σIs ⊗ It]−1

)
.

The errors in the second level are independent across time and generator, the vector λ

allows the precision to be different at each generator

εJ ∼ G
(
0, [λIg ⊗ It]−1

)
.
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At the third level, the errors are independent across temporal regressors with the precision

of each regressors defined by the vector α. The matrix D defines the covariance between

the generators, the form of D is chosen to represent prior information about the spatial

characteristics of the solution (see Section C.3.1),

εB ∼ G
(
0, [D ⊗ αIk]−1

)
.

The prior distribution for the precision hyper parameters will use independent gamma

distribution, each with their own hyper parameters,

p(α) =
k∏
i=1

Ga(aα,i, bα,i).

This results in conjugate normal-gamma prior distributions for mean-precision parameters.

The use of gamma priors for the precision variables is also called automatic relevance

detection (ARD) priors [198], ARD priors allow the data to determine which regressors,

generators and sensors (corresponding to α, λ, σ) are most relevant in the model.

C.3 Experiment

In this experiment there are g = 39 generators located in R3. The generators are arranged

as the surface of a 5 by 3 by 3 box centred at (0,0,0), except there are no generators at the

bottom of the box. The scalp is the surface of a sphere centred at (0,0,0) with radius 5.

There are S = 4 sensors on the scalp, with one in each quadrant of the upper hemisphere.

A visualization of the head model can be seen in Figure C.2.

The LFM used in the model will be that of a spherical head model with homogeneous

isotropic conductivity, and in addition the primary current density is constrained to be

oriented perpendicular to the surface. If ri is the location of the ith generator, sj the

location of the jth sensor and σ = 1, the formula for the elements of K is [192]

ki,j =
1

4π

(
2(ri · sj)− ‖sj‖ ‖ri‖

‖ri − sj‖3 +
1

‖ri‖ ‖ri − sj‖
− 1

‖ri‖ ‖sj‖

)
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The temporal design matrix X contains the values of k = 4 temporal regressors eval-

uated at each time point. The four temporal regressors are sin 2t, sin 3t, 2−t/2 sin 5t and

t. The matrix D represents prior knowledge about the spatial dependence of B, for this

simple example it is just the identity matrix D = Ig.

Figure C.2: A visualization of the geometry for the head model used in the simulation. Red dots

represent the source generators arranged as a bottomless box in the centre of the head. Yellow

dots represent the scalp of the head, while blue dots represent EEG electrodes which record the

signal.

Following [282], the values of the hyper parameters in the ARD priors were taken to

be a = 1
1000

and b = 1000. This results in an uninformative prior distribution which has

expected value of 1 and a variance of 1000, allowing the data to dominate the estimates of

precision parameters. The effect of different values of the hyper parameters is explored in

[203].

C.3.1 Simulated Data

To simulate the observed data for this experiment, a set of regression coefficients is selected

to represent the source activity. The source is centred at (2,0,1) where the coefficient is
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set to 4, generators which are one space away from the source have coefficients set to 2,

generators two spaces away have coefficients of 1 and all other generators have coefficient 0.

To generate the primary current density from the regression coefficients, the coefficients

are applied to two temporal regressors, sin(2t) and sin(3t). The primary current density

is then randomly generated from a multivariate normal distribution with a variance of 0.01.

To generate the observed data Y, a small amount of jitter is added to the LFM,

k∗i,j = ki,j +N(0, 0.001).

The data is then generated using the solution to the forward problem,

y = K∗J.

C.3.2 Variational Bayes Solution

For the VB solution the approximate posterior is assumed to factor over the obvious groups

of parameters, and the regression coefficients at each generator are also independent,

q(σ, λ, α, J,B) = q(σ)q(λ)q(α)q(J)
G∏
g=1

q(Bg,·).

The decision to have coefficients at different generators be independent may seem counter-

intuitive since the goal of these parameters is to add spatial information into the model;

however, this information (the matrix D) is still a factor in the solution, through the mean

of the posterior distribution for B.

It is not assumed explicitly in the VB solution, however in the model the columns of J

are independent with equal covariance structure. Here are the update formulas for q(J·,t),

J·,t ∼ MVN(µJt ,ΣJ)

ΣJ = (K ′diag(σ)K + diag(λ))
−1

µJ = ΣJ (K ′diag(σ)Y·,t + diag(λ)BX·,t) .

152



The update formulas for q(Bg,·),

Bg,· ∼ MVN(µBg ,ΣBg)

ΣBg = (λ(g)XX ′ + diag(~α)D(g, g))
−1

µBg = ΣBg (λ(g)XJg,· − diag(~α)~rg)

~rg =
∑
i 6=g

Dg,iB
′
i,·

It is not assumed explicitly, however the columns of J are independent with equal

covariance structure. Here are the update formulas for q(J·,t),

J·,t ∼ MVN(µJt ,ΣJ)

ΣJ =
(
K ′diag(~σ)K + diag(~λ)

)−1

µJ = ΣJ

(
K ′diag(~σ)Y·,t + diag(~λ)BX·,t

)
Update formulas for ~α, ~λ and ~σ, the approximate posteriors are independent gamma

functions each with their own hyper-parameters

aα,i = a+
G

2

bα,i =

(
1

b
+

1

2
B′·,iDB·,i +

1

2

G∑
g=1

Dg,g[ΣBg ]i,i

)−1

αi = aα,ibα,i

aλ,g = a+
T

2

bλ,g =

(
1

b
+
T

2
[ΣJ ]g,g +

1

2

T∑
t=1

(Jg,t −Bg,·X·,t)
2 +X ′·,tΣBgX·,t

)−1

λg = aλ,gbλ,g

aσ,s = a+
T

2

bσ,s =

(
1

b
+
T

2
Ks,·ΣJK

′
s,· +

1

2

T∑
t=1

(Ys,t −Ks,·J·,t)
2

)−1

σs = aσ,sbσ,s
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For the VB solution, the initial conditions for the mean parameters µJ and µB are

set to 1, the initial covariance matrices ΣJ and ΣBg are the identity matrix, the precision

hyper-parameters b· and a· are set to 1. The algorithm is run until the relative change

in VFE is less than 10−6, for this experiment it took 402 iterations and about 20 seconds

to compute the solution. the trajectory of the VB solution of the parameters can be seen

in Figure C.3. The ARD prior lets the data determine the relevance of each regressor,

generator and sensor. Panels a) and c) show that there is one specific regressor/sensor

which is most important in the solution, while panel b) shows a cluster of generators which

are important. In panel f) it can be seen that the VFE is converging to a (potentially local)

maximum.

C.3.3 MCMC Solution

Due to the linear hierarchical structure and the selection of conjugate prior distributions the

full conditional distributions are available for this model. The full conditional distributions

for each of the groups of parameters,

J·,t | · ∼ MVN
(

ΣJ

(
K′diag(~σ)Y·,t + diag(~λ)BX·,t

)
,ΣJ

)
Bg,· | · ∼ MVN(ΣBg

(
λgXJ

′
g,· + diag(~α)Rg

)
,ΣBg )

αp | · ∼ Ga

(
a+

G

2
,

(
1

b
+

1

2
B′·,pDB·,p

)−1
)

σs | · ∼ Ga

a+
T

2
,

(
1

b
+

1

2

T∑
t=1

(Ys,t −Ks,·J·,t)2
)−1


λg | · ∼ Ga

a+
T

2
,

(
1

b
+

1

2

T∑
t=1

(Jg,t −Bg,·X·,t)2
)−1



ΣJ =
(
K ′diag(~σ)K + diag(~λ)

)−1

ΣBg = (λgXX
′ + diag(~α)Dg,g)

−1

Rg =
∑
r 6=g

B′r,·Dr,g
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Comparing the full conditional distributions to the optimal approximate posterior from

the VB solution, it can be seen that the two solutions have very similar forms. The main

difference between the two solutions is that where VB has parameter means in the approx-

imate posterior, the MCMC solution has the previous sample point in its full conditional

distributions. The initial conditions for the MCMC solution are similar to the conditions

for the VB solution, the mean parameters µJ and µB are set to 1, and the precision pa-

rameters σ, λ and α are set to 1. The burn-in period was set to one million samples,

to allow the chain to converge to the equilibrium distribution. After the burn-in period,

one million more samples were generated to be used to estimate the parameters, a subset

of these samples as well as the corresponding prior and likelihood values can be seen in

Figure C.4. The Markov chain appears to have converged to the target distribution, with

the chain exploring the entire sample space.

C.3.4 Results

Point estimates of the primary current density for a single time step can be seen in Figure

C.5, in this plot weak sources (magnitude less than 25% of maximum) have been set to

zero to emphasize the actual sources. The main difference between the two solutions is

that the MCMC explores the full distribution, while the VB method hones in on a specific

peak. As a result, the VB methods identifies a single source while the MCMC shows two

possible sources. More specifically, the MCMC distribution suggests that there could be

the activity could be due to the same positive source identified by VB, or it could also be

a strong negative source from the opposite side of the brain.

The major difference between the VB and MCMC solution is in the estimates of pa-

rameter variance. When compared to the MCMC solution, the VB solution appears to

greatly underestimate the variance of parameters in situations where there is an actual

correlation between variables (see the example in Section C.1). It appears that this is

also the case here, the difference between the variance of the VB and MCMC solutions for

the important parameters is visualized in Figure C.6. There are very few negative values,

meaning that the variance of the MCMC solution is typically larger than the VB solution
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and these differences get as large as 160.
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Figure C.3: Trajectory of the VB solution of the parameters a) σ, b) λ, c) α, d) B, e) J and

f) F(q). The ARD prior lets the data determine the relevance of each regressor, generator and

sensor. Figures a) and c) show that there is one specific regressor/sensor which is most important,

while b) show a cluster of generators which are important. The plot plot f) shows that the VFE

is converging to a maximum.
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Figure C.4: Random samples from the posterior distribution generated using the MCMC solu-

tion, a) σ2, b) λ3, c) J5,6 and d) B6,2. Parts e) and f) show the sample likelihood and prior values

respectively. The Markov chain appears to have converged to the target distribution, the chain

is exploring the entire sample space.
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Figure C.5: Primary current density for the VB solution (left) and MCMC solution (right),

currents with magnitude less than 25% of the maximum current density set to zero. The VB

solution shows a single strong positive source at the location of the actual source density. The

MCMC solution shows two possible current, one positive source at the location of the actual

source and a negative source on the opposite side of the brain.

Figure C.6: A histogram of the difference between current density variance of the MCMC and

VB solutions. There are very few negative values, which means that the variance of the MCMC

solution is typically larger than the VB solution and the differences get as large as 160, meaning

sometimes the VB solution greatly underestimates the variance of the posterior distribution.
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Appendix D

Phase Shift Simulations

D.1 Proof of Theorem

A restatement of Theorem 3.1 and a proof of the results.

Theorem (3.1). Suppose xt is a noisy oscillator sampled at T Hz with frequency f0 Hz

(ω = 2πf0/T ) and constant phase φ i.e., xt = sin (ωt+ φ) + εt, with E(εt) = 0 and

V (εt) = σ2. Let yt = H[xt sin{−ωt}] and ỹt = H[xt cos{−ωt}] be the two components in

the complex demodulation estimate of φ̂t (Eqn 1.2) with a EWMA(α) filter H[·] given by

(3.1). (a) The expected values of yt and ỹt are

E(yt) =
cos (φ)

2
+ b(yt), E(ỹt) =

sin (φ)

2
+ b(ỹt)

where b(yt) and b(ỹt) are the biases of yt and ỹt, respectively. We have that

b(yt) =
(1− α)

(
cos (2ωt+ φ) + α cos (2ω(t+ 1) + φ)

)
2(1− 2α cos (2ω) + α2)

−

αt+1

2

(
cos (φ)− (1− α)(cos (φ− 2ω)− α cos (φ))

(1− 2α cos (2ω) + α2)

)
b(ỹt) =

(1− α)
(

sin (2ωt+ φ)− α sin (2ω(t+ 1) + φ)
)

2(1− 2α cos (2ω) + α2)
−

αt+1

2

(
sin (φ) +

(1− α)(sin (φ− 2ω)− α sin (φ))

(1− 2α cos (2ω) + α2)

)
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(b) The variance of Yt is

V (Yt) =
σ2

2

(
(1− α)

(1 + α)
− (1− α)2

)(
cos (2ωt)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)
−

α2t+2

(
(1− α)

(1 + α)
− (1− α)2(cos (2ω)− α2)

1− 2α2 cos (2ω) + α4

)
and for Ỹt

V (Ỹt) =
σ2

2

(
(1− α)

(1 + α)
+ (1− α)2

(
cos (2ωt)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)
−

α2t+2

(
(1− α)

(1 + α)
+

(1− α)2(cos (2ω)− α2)

1− 2α2 cos (2ω) + α4

))

(c) The covariance between Yt and Ỹt is given by

Cov(Yt, Ỹt) =
σ2(1− α)2

2

(
sin (2ωt)− α2 sin (2ω(t+ 1)) + α2t+2 sin (2ω)

1− 2α2 cos (2ω) + α4

)
Proof. First expanding yt,

yt = H[xt sin (ωt)]

= (1− α)
t∑

k=0

αk sin (ω(t− k) + φ) sin (ω(t− k)) + εt−k sin (ω(t− k)).
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The expected value of yt,

E(yt) = E

(
(1− α)

t∑
k=0

αk sin (ω(t− k) + φ) sin (ω(t− k)) + εt−k sin (ω(t− k))

)

= (1− α)
t∑

k=0

αk sin (ω(t− k) + φ) sin (ω(t− k))

= (1− α)
t∑

k=0

αk
(

cos (φ)− cos (2ω + φ)

2

)

=
(1− α)

2

(
t∑

k=0

αk cos (φ)−
t∑

k=0

αk cos (2ω + φ)

)

=
cos (φ)(1− αt+1)

2
− (1− α)

2

(cos (2ωt+ φ)− α cos (2ω(t+ 1) + φ)

1− 2α cos (2ω) + α2

)
+
αt+1

2

(
(1− α)

cos (φ− 2ω)− α cos (φ)

1− 2α cos (2ω) + α2

)
=

cos (φ)

2
− (1− α)

2

(cos (2ωt+ φ)− α cos (2ω(t+ 1) + φ)

1− 2α cos (2ω) + α2

)
−α

t+1

2

(
cos (φ)− (1− α)

cos (φ− 2ω)− α cos (φ)

1− 2α cos (2ω) + α2

)
=

cosφ

2
+ b(yt)
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And for the variance of yt,

V ar(yt) = V ar

(
(1− α)

t∑
k=0

αk sin (ω(t− k) + φ) sin (ω(t− k)) + εt−k sin (ω(t− k))

)

= (1− α)2

t∑
k=0

α2k sin2 (ω(t− k))V ar(εt−k)

= σ2(1− α)2

t∑
k=0

α2k sin2 (ω(t− k))

= σ2(1− α)2

t∑
k=0

α2k 1− cos (2ω(t− k))

2

=
σ2(1− α)2

2

( t∑
k=0

α2k −
t∑

k=0

cos (2ω(t− k))
)

=
σ2

2

(
(1− α)(1− α2t+2)

(1 + α)
− (1− α)2 (cos (2ω)− α2 cos (2ω(t+ 1))− α2t+2 cos (2ω) + α2t+4)

(1− 2α2 cos (2ω) + α4)

)
=

σ

2

(
1− α
1 + α

− (1− α)2

(
cos (2ω)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)

−α2t+2

(
1− α
1 + α

− (1− α)2 cos (−2ω)− α2

1− 2α2 cos (2ω) + α4

))

Next expanding ỹt,

ỹt = H[xt cos (ωt)]

= (1− α)
t∑

k=0

αk sin (ω(t− k) + φ) cos (ω(t− k)) + εt−k cos (ω(t− k)).
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The expected value of ỹt,

E(ỹt) = E

(
(1− α)

t∑
k=0

αk sin (ω(t− k) + φ) cos (ω(t− k)) + εt−k cos (ω(t− k))

)

= (1− α)
t∑

k=0

αk sin (ω(t− k) + φ) cos (ω(t− k))

= (1− α)
t∑

k=0

αk
(

sin (φ) + sin (2ω + φ)

2

)

=
(1− α)

2

(
t∑

k=0

αk sin (φ)−
t∑

k=0

αk sin (2ω + φ)

)

=
sin (φ)(1− αt+1)

2
− (1− α)

2

(sin (2ωt+ φ)− α sin (2ω(t+ 1) + φ)

1− 2α sin (2ω) + α2

)
+
αt+1

2

(
(1− α)

sin (φ− 2ω)− α sin (φ)

1− 2α sin (2ω) + α2

)
=

sin (φ)

2
+

(1− α)

2

(sin (2ωt+ φ)− α sin (2ω(t+ 1) + φ)

1− 2α cos (2ω) + α2

)
−α

t+1

2

(
sin (φ) + (1− α)

sin (φ− 2ω)− α sin (φ)

1− 2α cos (2ω) + α2

)
=

sinφ

2
+ b(ỹt)
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And for the variance of ỹt,

V ar(ỹt) = V ar

(
(1− α)

t∑
k=0

αk sin (ω(t− k) + φ) cos (ω(t− k)) + εt−k cos (ω(t− k))

)

= (1− α)2

t∑
k=0

α2k cos2 (ω(t− k))V ar(εt−k)

= σ2(1− α)2

t∑
k=0

α2k cos2 (ω(t− k))

= σ2(1− α)2

t∑
k=0

α2k 1 + cos (2ω(t− k))

2

=
σ2(1− α)2

2

( t∑
k=0

α2k +
t∑

k=0

cos (2ω(t− k))
)

=
σ2

2

(
(1− α)(1− α2t+2)

(1 + α)
+ (1− α)2 (cos (2ω)− α2 cos (2ω(t+ 1))− α2t+2 cos (2ω) + α2t+4)

(1− 2α2 cos (2ω) + α4)

)
=

σ

2

(
1− α
1 + α

+ (1− α)2

(
cos (2ω)− α2 cos (2ω(t+ 1))

1− 2α2 cos (2ω) + α4

)

−α2t+2

(
1− α
1 + α

+ (1− α)2 cos (−2ω)− α2

1− 2α2 cos (2ω) + α4

))
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Finally the covariance between yt and ỹt,

Cov(yt, ỹt) = Cov

(
(1− α)

t∑
k=0

αkxt−k sin (ω(t− k)), (1− α)
t∑

k=0

αkxt−k cos (ω(t− k))

)

= Cov

(
(1− α)

t∑
k=0

αket−k sin (ω(t− k)), (1− α)
t∑

k=0

αkεt−k cos (ω(t− k))

)

= (1− α)2

t∑
k=0

α2k sin (ω(t− k)) cos (ω(t− k))V ar(εt−k)

= σ2(1− α)2

t∑
k=0

α2k sin (ω(t− k)) cos (ω(t− k))

= σ2(1− α)2

(
sin (2ωt)− α2 sin (2ω(t+ 1)) + α2t+2 sin (2ω)

1− 2α2 cos (2ω) + α4

)

D.2 Estimator Properties

To illustrate the properties of the CUSUM and PD method using a 4th order Butterworth

filter, bootstrapped datasets were generated with a SNR of 0 dB (r=0.5), a length of 5 sec-

onds (N = 5T +Nburn) and initial phase of zero (φ0 = 0); histograms of sample statistics,

as well as qq-plots comparing the samples to fitted GEV distributions are shown in Figure

D.1, the GEV distribution fits well on both statistics. Importantly, the GEV distributions

are found to be independent of the specific value of φ0.

Starting with an conservatively large value of Nburn, the sampling distribution can be

established and the critical value Φα calculated. The value of Nburn can then be calibrated

to be the minimum value such that

P (S1/2 > Φα) ≤ α.
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Figure D.1: Histograms (left) and qq-plots (right) for S1 (top) and S2 (bottom). Both

histograms are positively skewed, though at quite different scales. The qq-plots suggest

that the statistics are well describe by the GEV distributions.

D.3 Power Analysis

The parametric bootstrapping techniques can also be used to learn about the minimum

shift magnitude ∆min such that the shift events can be identified over the noise in the signal.

To do this, bootstrapped datasets are simulated as above, but rather than a constant phase

we include a single phase shift event at time t1 with magnitude ∆,

φt = φ0 + ∆H(t− t1).

The power of each test to identify a phase shift event is estimated for a range of SNR

and ∆ parameters, the results of this analysis are shown in Figure D.2. For low levels of

noise, both methods are able to accurately identify phase shift events with a magnitude as

small as ∆min = 0.15 radians. As the SNR decreases, the value of ∆min increases, faster

in S2 than in S1.

To quantify the temporal resolution of the PD estimator, we use bootstrapped datasets
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Figure D.2: Power to identify shift events of magnitude ∆φ as a function of SNR. Both

methods are able to identify shift events with magnitude as low as 0.15 radians. As the

SNR increases, the range of identifiable shifts decreases in both statistics, but faster in S2.

with two phase shift events,

φt = φ0 + ∆1H(t− t0) + ∆2H(t− t0 − ISI).

We consider the power of each estimator to successfully identify both phase shift events as

a function of the SNR and common shift magnitude ∆1 = ∆2 = ∆ parameters.

For each estimator, the minimum ISI values are visualized in Figure D.3 for a range of

SNR (r) and shift magnitude (∆) parameters. Like the power analysis from the single shift

simulations, the CUSUM estimator is able to reliably identify two phase shift events for a

larger range of parameters than the PD estimator. For parameter values where shifts can

be reliably identified for both estimators, the median ISImin value of for the PD estimator

is 884ms, and for the CUSUM estimator it is 1024ms. The PD estimator has the greater

temporal resolution of the two methods, it is able to identify shifts 140ms closer together

than the CUSUM estimator.
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Figure D.3: Minimum ISI value for each estimator as function of SNR and shift magni-

tude. The CUSUM estimator is able to correctly identify two shifts for a larger range of

parameters, but the PD estimator has the higher temporal resolution. For the range of

parameters where both estimators can successfully identify two shifts, the median ISImin

value is 140ms shorter in the PD estimator.
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Appendix E

Connectivity Measures

E.1 Granger Causality

In Granger’s original paper, he introduced a statistical test for causality between two pro-

cesses based on a bi-variate auto-regressive model [116]. The method has a convenient

spectral representation which was later formalized as directed coherence (DC). Analysis

using DC was not applied to neuroscience until over a decade later later [241].

An extension of Granger’s method is the directed transfer function (DTF) which allows

causality to be tested in a full multivariate system [154]. Another extension is partial di-

rected coherence (PDC), which tests for causality while taking into account the effect of

other possible variables [15]. The method of PDC has been applied to many neuroscience

problems in recent years [268, 245, 11].

Granger’s formation of causality assumes a stationary stochastic process, however there

is evidence that this is not the case in EEG recordings [55, 76, 294]. This has led

to the development of time dependent measures of Granger causality for use in neuro-

science [9, 189, 140].
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Directed Coherence

Definition E.1. The Spectral density matrix of a stationary M variable time series is an

M by M matrix S, where the Si,j entry is the CSD between x(i) and x(j)

Sij(f) =
X(i)(f)X̃(j)(f)

N

The DC is based on a factorization of S(f) [16],

S(f) = H(f)ΣH(f)H

where HH is the Hermitian transpose of H. In practice, calculation of H(f) (and hence DC)

makes use of a multivariate auto-regressive (MVAR) time series model.

Definition E.2. If ~xt follows a MVAR(p) model with diagonal covariance matrix Σ and

coefficient matrices Ai, then the directed coherence from x
(i)
t to x

(j)
t is

γij(f) =
Hij(f)√
Sii(f)

where

H(f) = (I − A(f))−1

and

A(f) =

p∑
j=1

Aje
−i2πjf

The PDC between two signals is based on a similar decomposition of the partial coher-

ence function, where the influence of the other signals is accounted for [15].

Definition E.3. If ~xt follows a MVAR(p) model with diagonal Σ, then the partial directed

coherence from x
(i)
t to x

(j)
t is

πij(f) =
Āij(f)√

āHj (f)Σ−1āj(f)

where āj(f) are the columns of

Ā(f) = I −
p∑
j=1

Aje
−i2πjf
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Consider the following example of a MVAR(2) model for N=3 signals,

x
(1)
t = 0.5x

(1)
t−1 − 0.2x

(1)
t−2 + 0.6x

(3)
t−1 (E.1)

x
(2)
t = 0.8x

(1)
t−1 + 0.3x

(2)
t−1 (E.2)

x
(3)
t = −0.3x

(3)
t−1 + 0.4x

(1)
t−1 + 0.05x

(1)
t−2 (E.3)

The DC and PDC for this MVAR model are shown in Figure E.1, the (i, j)th plot

represents γij(f) (or πij(f)). Both methods identify that x
(2)
t does not contribute to any

other signal, the DC and PDC is zero in the (1,2) and (3,2) plots. The difference between

the two methods is most apparent when considering plot (2,3) the effect of x3 on x2, DC

shows an effect while PDC identifies that x3 only effects x2 through x1 and thus there is

no effect.

E.2 Mutual Information

Entropy is a fundamental quantity used to describe the uncertainty associated with a

random system. The fields of information theory [254], [253], [206] and thermodynam-

ics [32], [108] both use the same form of entropy measure, often called the Shannon-

Boltzmann-Gibbs (SBG) entropy.

Definition E.4. For a stationary discrete random variable X with possible states {xi}Ni=1

and associated probability mass function PX(xi) the SBG entropy is defined as

H(X) = −
N∑
i=1

PX(xi) log2(PX(xi)).

Definition E.5. For a stationary continuous random variable X with support S and prob-

ability density function f(x), the SBG entropy is defined as

H(X) = −
∫
S

f(x) log2(f(x))dx.
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Figure E.1: Analysis of the above model using DTF (top) and PDC (bottom) forms of

Granger causality.
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The units of a measured entropy is determined by the base of the logarithm, when the

base is two then the units are bits.

When there is more than one signal, the idea of entropy naturally generalizes to the

multivariate case.

Definition E.6. The joint entropy of two discrete stationary processes Xt and Yt is

H(X, Y ) = −
N,M∑
i,j=1

PX,Y (xi, yj) log2(PX,Y (xi, yj)).

Entropy can be used to describe the statistical dependence between two signals using

mutual information (MI). When two signals have a statistical dependence, observing one

signal reveals information about the other due to their common structure. The MI between

two signals is the reduction in entropy caused by knowledge of the other.

Definition E.7. The MI is between two signals X and Y with possible states {xi}N1 and

{yj}M1 is defined as,

MI(X, Y ) =

N,M∑
i,j=1

PX,Y (xi, yj) log
PX,Y (xi, yj)

PX(xi)PY (yj)
(E.4)

= H(X) +H(Y )−H(X, Y ) (E.5)

The MI between two processes can also be thought of in terms of Kullback-Leibler (KL)

divergence.

Definition E.8. If p and q are two probability distributions and q = 0 implies that p = 0,

then the KL divergence from p to q is defined as

KL(p||q) =

∫
x

p(x) log
p(x)

q(x)
dx.

The KL divergence is a non-negative quantity, and KL(p||q) = 0 iff p ≡ q. The MI

between random variables X and Y can be though of as the KL divergence of the product

of marginal distribution from the joint probability distribution,

MI(X, Y ) = KL(f(x, y)||fx(x)fy(y))
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Thus the MI is equal to zero if and only if the random variables are independent.

Mutual information analysis has been used recently to assess connectivity between sig-

nals in EEG recordings. MI has the ability to detect any type of statistical dependence,

where as coherence is a measure based on linear dependence. This method was first applied

to EEG recordings by Xu in 1997 [300]. Since then it has been applied to EEG studies of

Alzheimer’s [148], schizophrenia [196], sleep deprivation [195], aging [228] and Parkin-

son’s [170], [293].

Information transmission across the brain is not instantaneous, so EEG analysis focuses

on lagged MI quantities of the form

MI(Xt, Yt+τ ), 0 ≤ τ,

where τ is some non-negative integer. For values of τ ≥ 1 MI provides an asymmetric

measure of information flow.
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Appendix F

PSGC Results

F.1 Individual Connectivity Maps

The primary physiological result of the PSGC method on the real EEG data were task

differences in long range connectivity and clustering coefficient measures on individual

networks. Here we include plots of the connectivity maps for each of the 18 participants

in the EEG study. The maps are not exactly to scale, the eight circles on each hemisphere

represent the eight electrodes used in the study (e.g., for the left hemisphere Fp1, F7,

T3, T5, O1 laterally; F3, C3, P3 medially). The nose is pointed to the top of the circles.

Resting networks are shown in Figure F.1, auditory vigilance in Figure F.2 and visual

vigilance in Figure F.3.
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Figure F.1: Estimated individual connectivity networks for each participant in the rest-

ing task. The connections in the resting task are predominantly short range, connecting

neighbouring locations.
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Figure F.2: Estimated individual connectivity networks for each participant in the auditory

vigilance task. In both the auditory and visual vigilance tasks we see higher rates of long

range connectivity, specifically connecting the prefrontal and parietal locations.
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Figure F.3: Estimated individual connectivity networks for each participant in the visual

vigilance task. In both the auditory and visual vigilance tasks we see higher rates of long

range connectivity, specifically connecting the prefrontal and parietal locations.
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Appendix G

Complex Demodulation

The complex demodulation algorithm estimates the instantaneous phase of a time series

(xt) at a specific frequency f0 [28, 113]. First two new time series are defined which

represent the original and Hilbert transformed signals (the cosine is a π/2 phase shift of

sine), with frequency components shifted to 0Hz,

yt = xt sin

(
2πf0t

T

)
ỹt = xt cos

(
2πf0t

T

)
.

Note that only one of the two components of the oscillator (+f0, −f0) is shifted towards

zero, the other is shifted to 2f0. Additionally, only the component at zero is a true π/2

phase shift; the 2f0 component must be removed so that ỹ represents the Hilbert trans-

form. Conditions for a signal to have a physically meaningful representation in terms of

instantaneous phase and amplitude are that it be mono-component, (locally described by

a frequency components contained in a small band) and narrowband, (relative changes in

amplitude are small compared to changes in phase) [48],∣∣∣∣dφtdt
∣∣∣∣ >> ∣∣∣∣ 1

At

dAt
dt

∣∣∣∣
To ensure these conditions are satisfied, the signal is put through a δHz low-pass filter;

this removes the component at 2f0, as well as any other unwanted components (possibly
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due to noise). What remains is power in a small band (f0−δ, f0+δ) from the original signal.

The instantaneous phase and instantaneous magnitude are then calculated as,

At =
√

(yt)2 + (ỹt)2

φt = tan−1

(
yt
ỹt

)
An example of the complex demodulation algorithm, consider the following signal with

4Hz and 12Hz components, and a change-point at t = 500,

xt =

4 sin
(

2π12t
T

+ 1
)

+ 2 sin
(

2π4(t−14)
T

)
if t ≤ 500

8 sin
(

2π12t
T

+ 2
)

+ 2 sin
(

2π4(t−14)
T

)
otherwise.

In this example the component of interest is the 12Hz oscillator; the signal is put through

a δ = 2Hz low-pass filter to remove components outside the (10Hz-14Hz) band. In Figure

G.1 are plots of the actual and estimated instantaneous phase and amplitude of the 12Hz

component, in this idealized scenario the method produces accurate estimate with only

slight boundary effects due to filtering, at the beginning and around the change point in

the signal. If the signal is not run through the filter then it will not satisfy the conditions

necessary for an interpretable result. Figure G.1 also shows the results of calculating the

instantaneous phase from the original signal without first filtering out the contributions

from other frequency bands. The results no longer correspond to the instantaneous phase

and amplitude of the 12Hz component.
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Figure G.1: Top: Estimated instantaneous amplitude of the original signal (blue) and

actual amplitude (red). Bottom: Estimated instantaneous phase of the original signal

(blue) and actual phase (red). In the unfiltered situation, the 4Hz component shows up

explicitly in the estimated instantaneous amplitude and phase.
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Nomenclature

(f)MRI (functional) magnetic resonance imaging

ACF auto-correlation function

AR auto regressive

ARD automatic relevance detection

AUROC area under the ROC

BCI brain-computer interface

bSNR biological signal-to-noise ratio

CIF conditional intensity function

CPA change point analysis

CSD cross-spectral density

CUSUM cumulative summation

DC directed coherence

DC distributed current

DCM dynamic causal modelling

DTF directed transfer function
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EEG electroencephalogram

EM expectation maximization

ERP event related potential

EWMA exponentially weighted moving average

FFT fast Fourier transform

FIR finite impulse response

FN false negative

FP false positive

GC Granger causality

GEV generalized extreme value

ICA independent component anlaysis

IIR infinite impulse response

ISI inter-shift interval

ITI inter-trial interval

KL kullbeck-leibler

LARS least angel regressor selection

LASSO local auto shrinkage and selection operator

LFM lead field matrix

LRT likelihood ratio test

mACC maximum accuracy
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MAP maximum a posteriori

MCMC markov chain monte carlo

MI mutual information

MNE minimum norm estimate

MVAR multivariate auto-regressive

PD phase derivative

PDC partial directed coherence

PDD phase difference derivative

PLV phase locking value

PR phase reset

PSD power spectral density

PSGC phase shift Granger causality

PSI phase slope index

ROC receiver operator curve

ROI region of interest

sLORETA standardized low resolution tomography

SNR signal-to-noise ratio

SOC self organized criticality

SR source reconstruction

TN true negative
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TP true positive

VB variational Bayes

VC volume conduction

VEP visual evoked potential

VFE variational free energy
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