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Abstract

The first code-based cryptosystem, McEliece, was invented in the very early develop-
ment of public-key cryptography, yet code-based cryptosystems received little attention
for decades due to their relatively large key-sizes. But recently they are re-discovered for
their potentials to provide efficient post-quantum cryptographic tools and homomorphic
encryption schemes, and the development of large storage and fast Internet have made
these schemes closer to practice than ever.

Through our review of the revolution of code-based cryptography, we will demonstrate
the usage of codes in cryptographic applicaitons. We will follow the path of the devel-
opment, from the design, analysis, and implementation of McEliece cryptosystem and
the quantum attack resistance to the latest fully homomorphic encryption scheme based
on Learning with Errors, a code-related problem, designed by Brakerski et al. We will
also cover algebraic manipulation detection codes, a newly proposed extension of error-
correcting codes and a lightweight alternative to MACs as an authentication component
embedded in security protocols.
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Chapter 1

Introduction

Code-based cryptosystem was born during the earliest discoveries of public-key cryptog-
raphy in the 1970s, marked by its representative McEliece cryptosystem [McE78]. Nieder-
reiter soon developed a variant [Nie86], which can be adapted into a digital signature
scheme. These cryptosystems garble the coding matrices, making it indistinguishable from
a random code. Their security is hence based on the difficulty of decoding random codes
(or “general decoding”), which is an NP-hard problem [BMVT78].

The property that McEliece and related cryptosystems can be based on NP-hard prob-
lems are favourable, as the exact hardness of other problems such as factoring and discrete
logarithm is not yet known. Unfortunately, their relatively large key sizes have become
the major disadvantage compared with other public-key cryptosystem candidates. While
people widely deploy RSA and discrete-logarithm-based cryptosystems, code-based ones
have gained little popularity. Therefore, a number of McEliece variants have been de-
signed to reduce the key size. The main technology is to replace the Goppa code under-
lying McEliece and Niederreiter by other codes. Most of such variants have been bro-
ken [FOPT10, UL10, CGGU+13], but Goppa-code-based ones have remained secure.

Recently, we started to see more research on code-based cryptography for three rea-
sons. Firstly, the disadvantage brought by large key size is no longer fatal thanks to more
advanced storage and transmission technology. Secondly, the study on quantum computa-
tion shows that the widely deployed public-key cryptosystems can all be efficiently broken
by quantum computers [Sho94], but code-based ones are immune to known quantum at-
tacks. They become a candidate of post-quantum cryptography since then. Last but not
least, codes naturally support some homomorphic operations. The emergence of the BGV
scheme [BGV12] has proven that codes are very promising in fully homomorphic encryption
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(FHE) schemes.

The main approach of using codes in the design of FHE schemes is through the Learn-
ing with Errors (LWE) problem. This problem can be seen as a variant of general decoding
over the ring of integers [Reg09]. LWE itself also has a few extensions such as Ring-LWE
(RLWE). LWE and its extensions have been shown to be at least as hard as hard lat-
tice problems, another source of post-quantum cryptosystem and FHE schemes, through
quantum and classical reductions [Reg09, Pei09, BLP+13]. Being simpler and faster in
applications [GSW13], LWE has seen its rise in popularity among designs in encryption
schemes with various properties. The LWE-based BGV scheme, already capable of evalu-
ating complex functions such as AES encryption [GHS12], has pushed FHE closer to its
practical application than ever.

In addition to directly applying the concept of error-correcting codes in cryptogra-
phy, researchers also attempted to adapt this concept to suit a situation with adversaries.
Proposed by Cramer et al., AMD code is an example of such new primitives [CDF+08].
Though its first appearance was in 2008, it already has many applications. For example, it
can be added to linear secret-sharing schemes as a means of authentication; it is also the
basis of some designs of secure storage device [WK11] and non-malleable codes [DPW10].

Contribution and organization In this thesis, we will summarize the latest devel-
opment as well as review the history of code-based cryptography. In particular, some
state-of-the-art research such as the BGV encryption scheme is demonstrated in a more
accessible way. We compare the performance of RSA, McEliece, and BGV schemes by
simulation data, giving an intuitive understanding of their differences. We also provide a
new bound and related constructions for a class of AMD codes.

This thesis is organized following the timeline of code-based cryptography. In Chap-
ter 2, we review McEliece cryptosystem, implement it with Goppa code, and compare
its performance against RSA using the current parameters. Chapter 3 explains quan-
tum Fourier transform (QFT), Shor’s algorithm, and the resistance of code-based schems
against quantum attacks. Fully homomorphic encryption (FHE) is discussed in Chapter 4,
with emphasis in BGV scheme based on Learning with Errors (LWE). Chapter 5 summa-
rizes known results and applications of a recently proposed cryptographic primitive, AMD
code, and gives our bound and constructions. Chapter 6 concludes the thesis and provides
some directions for future research along this line.
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Chapter 2

McEliece Cryptosystem: Design and
Implementation

2.1 Background

Code-based cryptosystems can be dated back to McEliece’s invention in 1978, roughly
the same time RSA were announced. Usually based on an error-correcting code with long
length n and large dimension k , McEliece cryptosystem has a huge public key size, due
to its public key being a generator matrix with dimension k × n. As a result, McEliece
cryptosystem was not popular in its early years.

But recently McEliece cryptosystem regains some attention for two reasons:

1. As storage space becomes cheaper, large public key size is no longer a serious re-
striction. Meanwhile, the advancement of attacks against RSA has forced people to
employ larger RSA keys to maintain the same security level. The simplicity of en-
coding and decoding will eventually make McEliece surpass RSA on the performance
at a higher security level.

2. The general decoding problem, which McEliece cryptosystem relies on, is an NP-hard
problem [BMVT78] without known quantum attacks.

In this chapter we will review the current development of McEliece cryptosystem, and
then demonstrate an implementation and its performance.
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2.2 The McEliece cryptosystem

In this section we describe the algorithms of McEliece cryptosystem [McE78]. We
assume that an underlying code is given along with its encoding and decoding algorithms.
Essentially any error-correcting code can be chosen to construct a McEliece cryptosystem,
but the choices are usually restricted to a small class due to security concerns. We will
cover the security issues in Section 2.3.

KeyGen KeyGen will generate a garbled generator matrix as the public key:

1. Choose a binary linear code C, specify the parameters (n, k, t) in particular, according
to the security parameter l. Obtain the generator matrix G.

2. Randomly choose a (dense) invertible matrix S ∈ Zk×k2 and a permutation matrix
P ∈ Zn×n2 . Compute G′ = SGP .

3. Set the public key pk = G′ and private key sk = (S,G, P ).

Enc Encryption is simply encoding with the public key (garbled generator matrix G′)
with t errors added:

1. Generate a random error vector e with wt(e) = t.

2. Encrypt by c = mG′ + e.

Dec In order to use the decoding algorithm, we need to recover the structure of the code.
Therefore the decryption steps are

1. Undo the permutation: c′ = cP−1.

2. Decode c′ to obtain m′.

3. m = m′S−1.

It is easy to verify the correctness. Notice that P−1 preserves the weight of the error
vector, c′ can therefore be decoded into m′ = mS. Then we obtain m by m′S.
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Example 2.2.1 (A toy example of McEliece algorithms). Below is a generator matrix of
an [8, 3]-Goppa code with n = 8, k = 3, and t = 2.

G =

[
0 0 1 1 0 1 1 1
1 1 1 0 1 1 0 0

]
.

• KeyGen: we generate random non-singular matrix

S =

[
0 1
1 1

]
and random permutation matrix

P =



0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0


.

Then the public key is

pk = G′ = SGP =

[
1 0 0 1 1 1 1 0
1 1 1 0 0 1 1 1

]
,

and the secret key is composed of the matrices S, G, and P .

• Enc: suppose the plaintext message is

m =
[
0 1

]
,

and we generate random error vector (with weight t = 2)

r =
[
0 1 0 1 0 0 0 0

]
,

then the ciphertext is given by

c = mG′ + e =
[
1 0 1 1 0 1 1 1

]
.
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• Dec: first the ciphertext goes through the inverse permutation:

c′ = cP−1 =
[
1 1 0 1 1 1 0 1

]
.

The decoding of c′ gives
m′ =

[
1 1

]
. After applying S−1, we successfully obtain

m =
[
0 1

]
.

2.3 Security analysis

There are two ways to break McEliece cryptosystem:

1. Without structural information, decoding a ciphertext as the codeword of a random
code. The goal of such attacks is to search for the plaintext.

2. Trying to recover the structure from the garbled underlying code. The secret key can
potentially be revealed in this case.

The most successful method in the first category is a class of information set decoding
algorithms. They apply to all McEliece instances. For McEliece cryptosystem based on
Goppa codes, these algorithms are still the best known attacks so far.

Attacks in the second category have been discovered for certain McEliece cryptosystem
designed to reduce the public key size. See [FOPT10] and [UL10] for attacks against
quasi-cyclic and dyadic McEliece cryptosystem, and [CGGU+13] for McEliece cryptosystem
based on generalized Reed-Solomon codes. These attacks are all able to recover the secret
key.

2.3.1 General decoding attacks

Information set decoding was introduced by Prange in 1962 [Pra62] and is currently
the most effective method to decode random codes. Informally speaking, an “information
set” is a set of coordinates that can uniquely determine a codeword of linear code C. The
components in a codeword can be divided into information bits (whose indices are in the
information set) and redundancy bits (whose indices are out of the information set).
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Generally, information set decoding algorithms solve the following low-weight codeword
problem (Definition 2.3.1). Some algorithms accepts generator matrices as input, others
work on parity-check matrices, but the ideas are similar. We will explain it below.

Definition 2.3.1 (Low-weight codeword problem). Given a binary linear code C by its
generator matrix G (or parity-check matrix H) and a weight w, the low-weight codeword
problem is to find a codeword c ∈ C with wt(c) ≤ w.

The plaintext-recovery attack against McEliece cryptosystems can be formalized as the
decoding of random codes (Definition 2.3.2).

Definition 2.3.2 (General decoding problem). Given a binary linear code C ⊂ Zn2 by its
generator matrix G (or parity-check matrix H) and a vector v ∈ Zn2 , the general decoding
problem is to find a codeword c ∈ C such that the distance between v and c is minimum,
i.e.,

c = arg min
c′∈C

wt(v − c′).

The low-weight codeword problem is slightly different from the general decoding prob-
lem, but the latter can be easily reduced to the former by adding the vector v as a codeword,
i.e., modifying the generator matrix G into

G′ =

 G

v

 .
Note that we can obtain G from H and vice versa, but the input must match the algorithm.

Information set decoding algorithms

We first demonstrate the idea behind information set decoding algorithms with a simple
example.

Consider a generator matrix of a binary linear code C in its systematic form

Gsys =
[
Ik | Ak×(n−k)

]
.

For any codeword c ∈ C, we have

c = mGsys =
[
m |mA

]
.

Therefore wt(c) = wt(m)+wt(mA), and mA is exactly the sum of A’s rows corresponding
to the positions of 1’s in m (see Figure 2.1 for an illustration). Since we want to bound
wt(c) by w, one strategy can be as follows:

7



1. Let w = x+ y

2. Search for combinations of at most x rows in A such that the sum of them has weight
no more than y

3. If the search successfully returns a set of rows, the desired codeword can be con-
structed accordingly.

This strategy is probabilistic, i.e., the search can be unsuccessful. However, once the
search returns a combination, it guarantees that wt(m) ≤ x and wt(mA) ≤ y, and we can
conclude that wt(c) ≤ x+ y = w.

m =
[

0 1 0 1 0
]

Gsys =


1

1
1 A

1
1


c =

[
0 1 0 1 0 mA

]
Figure 2.1: Correspondance of A’s rows to positions of 1’s in m

Based on the above idea, we give a framework of information set decoding algorithms
using generator matrix G in Algorithm 1. Line 5 to 6 (highlighted) are the flexible part
of this framework. Different algorithms adopt different strategy to select x and search for
candidate combinations to achieve an ideal trade-off between the searching complexity and
succeeding probability.

Similarly, with parity-check matrix as input, we can first reduce it into a “systematic
form” (it can be compared to the usual definition of systematic parity-check matrix in
coding theory, but here the positions of the two components are switched)

Hsys =
[
In−k | (Ak×(n−k))

>] .
By the definition of parity-check matrix and codeword,

cH>sys = c

 In−k

Ak×(n−k)

 =
[
c0 | c1

]  I

A

 = c0I + c1A = 0,

8



Algorithm 1: Information set decoding with generator matrix

Input: Generator matrix G, weight upper bound w
Output: A codeword c ∈ C such that wt(c) ≤ w, or an indication that the search

is unsuccessful
// Randomly permute columns of G

1 P ← random permutation matrix;
2 G′ ← GP ;
3 if Gaussian elimination transforms G′ into a systematic form then
4

[
I | A

]
= Gsys ← SG′, where S represents the row transformations;

5 Select x and let y ← w − x;

6 Search for combinations of x rows in A, and let candidate combinations form a

set T ;
7 foreach combination in T do
8 Construct codeword c;
9 if wt(c) ≤ w then

// recover the order of bits

10 return cP−1;

11 end

12 end
13 return “Search unsuccessful.”;

14 else
15 Go back to Line 1;
16 end

9



where c0 =
[
c0, c1, . . . , cn−k−1

]
and c1 =

[
cn−k, cn−k+1, . . . , cn−1

]
. Then we have the rela-

tionship wt(c1A) = wt(c0I) = wt(c0) and wt(c) = wt(c0) + wt(c1) ≤ w, and we can apply
the strategy of splitting w into x+ y and search for x rows in A whose sum have a weight
y. Now the same strategy applies.

We briefly mention the attack proposed by Bernstein et al. below. For other algorithms,
Chabaud made a very concise summary of those proposed before 1995 in [Cha95]; the most
up-to-date generic decoding algorithm for binary linear codes can be found in [BJMM12].

The attack of Bernstein et al. and parameter selection

Based on Stern’s algorithm [Ste89], Bernstein et al. propose the best known attack
against McEliece cryptosystem [BLP08].

Stern’s algorithm adopts a meet-in-the-middle approach. It randomly divides the
columns of A> (rows of A) into two subsets X and Y , and also chooses a set Z of l
rows:

Hsys =

 X Y
I

Z


search all p column combinations in both X and Y , and check if any pair of combination
each from X and Y has a sum of weight w − 2p. Collisions are found by examining l bits
in the Z set.

Example 2.3.1 (A toy example of Stern’s algorithm). H is a parity-check matrix of [7, 4]-
Hamming code:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .
We set the parameters w = 3, p = 1, and l = 1. Stern’s algorithm starts by obtaining a
systematic form of H with random permutation of columns and Gaussian elimination:

X Y

↑ ↑

Hsys =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


→ Z

10



List the sums of all p-column combinations in set X:

x0 =

1
1
0

 , x1 =

1
0
1

 .
Similarly for set Y

y0 =

0
1
1

 , y1 =

1
1
1

 .
For each pair (xi,yj), examine their third components (rows indexed by set Z). A collision
is found if they are identical. We can find two collisions (xi,yj) in this example and further
calculate the sum xi + yj:

s0 = x1 + y0 =

1
1
0

 , s1 = x1 + y1 =

0
1
0

 .
The weight of s1 is 1, which is exactly w − 2p. Therefore we have the following codeword
c of weight w = 3, formed by the sum s>1 as the first component and 1’s corresponding to
columns sum up to s1 in the rest of it.

c =
[

0 1 0 0 1 0 1
]

Hsys =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

→ s1 =

0
1
0


Bernstein et al. found a few improvements on the efficiency of Stern’s algorithm by

reducing redundant computations, most of which lie in the Gaussian elimination step (see
their paper [BLP08, Section 4] for a complete list). Based on their theoretical analysis and
numerical experiments, taking into consideration list decoding algorithm of Goppa codes,
they suggested codes of rate approximately 0.75 to best resist their attack and particularly
parameters in Table 2.1.

2.4 Implementation

2.4.1 McEliece cryptosystem

This implementation is based on binary Goppa codes, described in Section 2.4.2. In
this section we only describe the algorithms for McEliece cryptosystem supposing that

11



Security (bits) n k t No. of errors Notes

80
1632 1269 33 34
2048 1751 27 27 Without list decoding

128 2960 2288 56 57
256 6624 5129 115 117

84.88 1744 1359 35 36
Key size bounded
by powers of 2;
k was not given in
their paper

107.41 2480 1940 45 46
147.94 3408 2604 67 68
191.18 4624 3389 95 97
266.94 6960 5413 119 121

Table 2.1: Security parameters suggested by Bernstein et al. [BLP08]

encoding and decoding algorithms of a code are given.

Function RandomPermutationMatrix(n) [Knu97]

1 for i← 0, . . . , n− 1 do
2 ai ← i;
3 end
4 for i← 0, . . . , n− 2 do
5 j ←R { i, . . . , n− 1 };
6 Swap ai and aj;

7 end
8 P ← n× n zero matrix 0;
9 for i← 0, . . . , n− 1 do

10 Pi,ai ← 1;
11 end
12 return P ;

Lemma 2.4.1. The function RandomInvertiblematrix is expected to terminate within 4
rounds.

Proof. Note that in every round, a matrix is uniformly sampled from Fn×n2 . The probability
for a uniformly random n× n matrix over F2 to be invertible is

pn , Pr [ det(An×n) = 1 ] =
n∏
k=1

(1− 2−k) [Mor06]. (2.1)
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Function RandomInvertiblematrix(n)

1 repeat
2 for i← 0, . . . , n− 1 do
3 for j ← 0, . . . , n− 1 do
4 Ai,j ←R { 0, 1 };
5 end

6 end

7 until A is invertible;
8 return A;

The sequence { pi }ni=1 monotonically decreases as i increases and has a limit of approx-
imately 0.289. The number of runs is distributed according to a geometric distribution
with p ' 0.288, which has an expected value 1/p / 3.472.

Algorithm 2: KeyGen

Input: 1l, the unitary representation of the security parameter l
Output: Public key pk, private key sk
// See Section 16

1 (n, k, t)← choice of parameters according to the underlying code;
2 Generate the generator matrix G for the select code;
3 S ← RandomInvertiblematrix(k);
4 P ← RandomPermutationMatrix(n);
5 pk ← SGP ;
6 sk ← (S−1, P−1);

2.4.2 Goppa codes

Goppa codes were introduced by Goppa in his paper A New Class of Linear Correcting
Codes [Gop70]. However, the original publication was in Russian, therefore we will refer
to Berlekamp’s summary [Ber73] for the definition of Goppa codes.
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Definition

A Goppa code is defined in terms of a Goppa polynomial g(x) ∈ Fqm [x]. Let L be the
subset of Fqm consisting of the elements that are not roots of g(x). Suppose |L| = n and
we can number the elements of L as γ0, γ1, . . . , γn−1, then the codewords of this Goppa
code c =

[
c0, c1, . . . , cn−1

]
satisfies the equation

n−1∑
i=0

ci
x− γi

≡ 0 (mod g(x)). (2.2)

Lemma 2.4.2 establishes a lower bound for the minimum distance of Goppa codes.

Lemma 2.4.2. If a Goppa code is defined by g(x) with degree t, then the minimum distance
is at least t+ 1 [SKHN75].

Binary Goppa codes are simply Goppa codes defined over F2m , i.e., the special case
where q = 2. Binary Goppa codes have a favourable property that efficient decoding
algorithms are known to correct up to t errors (i.e., the minimum distance is at least
2t+ 1), where t = deg(g), as stated in Lemma 2.4.3.

Lemma 2.4.3. If g(x) ∈ F2m [x] with degree t and no repeated irreducible factors, then the
algebraic decoding algorithm (described in Section 2.4.2) can correct up to t errors for the
binary Goppa code defined by g(x) [Ber73].

For simplicity, g(x) is often chosen to be an irreducible polynomial over F2m so that all
the elements of F2m can be used to construct the Goppa code, and in this case the length
of the code is n = 2m.

Algebraic decoding of binary Goppa codes

According to (2.2) in the definition of Goppa codes, the syndrome polynomial S(x) is
affected only by errors:

S(x) =
n−1∑
i=0

ri
x− γi

(2.3)

=
n−1∑
i=0

ci + ei
x− γi

(2.4)

≡
n−1∑
i=0

ei
x− γi

(mod g) (2.5)
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Define error-locator polynomial σ(x) as the polynomial with roots corresponding to
error locations exactly,

σ(x) =
n−1∏
i=0

(x− γi)ei . (2.6)

It is easy to see that
σ′ ≡ Sσ (mod g). (2.7)

(2.7) is often referred to as the key equation of Goppa code. The error-locator polynomial
σ(x) can be obtained by solving the key equation.

If we write
σ(x) = α2(x) + xβ2(x), (2.8)

then
σ′(x) = β2(x), (2.9)

since the derivative of squares are eliminated in the polynomial ring over the binary field
F2m . Therefore we have

β2(x) ≡ (α2(x) + xβ2(x))S(x) (mod g(x)), (2.10)

β2(x)(S−1(x) + x) ≡ α2(x) (mod g(x)). (2.11)

Let T 2(x) ≡ S−1(x) + x (mod g(x)), then

βT ≡ α (mod g). (2.12)

If we can find a solution (α, β) to (2.12) satisfying deg(α) ≤ br/2c and deg(β) ≤ b(r − 1)/2c,
then the error-locator polynomial σ can be constructed using (2.8).

Algorithms

In this section we give pseudocode of Goppa code algorithms.

Since Goppa codes are defined by parity-check matrix H, we will generate H first, and
then obtain generator matrix G by transforms of H.

Given parity-check matrix H, we can transform it into its systematic form H ′ =[
A>|In−k

]
, and then the corresponding generator matrix G can be obtained by G =

[
Ik|A

]
(note that we are dealing with binary codes. For q-ary codes it should be G =

[
Ik| − A

]
).

We obtain the systematic parity-check matrix H ′ purely for the creation of generator ma-
trix G; specifically, any column swap during the transform of H to H ′ must be undone on
G, because the order of γi ∈ F2m is crucial in the algebraic decoding of Goppa codes.

Next we give the decoding algorithm, along with a few auxiliary functions.
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Algorithm 3: Generating the parity-check matrix H

Input: m, t
Output: Goppa polynomial g, parity-check matrix H

1 g ← random irreducible polynomial of degree t over F2m ;
2 n← 2m;
3 for i← 0, . . . , n− 1 do
4 γi ← i-th element of F2m ;
5 H′i ← coefficients of f(x), where f(x)(x− γi) ≡ 1 (mod g(x));

// H′i ∈ Ft2m
6 Hi ← components of H′i written as vectors over Fm2 ;

// Hi ∈ Fmt2

7 end

8 H ←
[
H>0 , . . . ,H

>
n−1

]
;

Lemma 2.4.4. Let g ∈ F2m [x] be an irreducible polynomial of degree t. Then for any
p ∈ F2m [x], p2mt−1 ≡ √p (mod g).

Proof. Irreducible polynomial g generates the field F2mt . The result follows by viewing
polynomial (p mod g) as an element of F2mt .

Lemma 2.4.5. Function FindAlphaBeta finds a solution to βT ≡ α (mod g) satisfying
both degree constraints

1. deg(α) ≤ bt/2c, and

2. deg(β) ≤ b(t− 1)/2c.

Proof. Given a, b and d, the function DegreeConstraintXGCD returns a pair (u, v) such
that au+ bv is a common divisor of a and b with degree no more than d.

Let g = Tq0 + r0, deg(r0) < deg(T ). Since

1 · T ≡ T (mod g),

q0 · T ≡ r0 (mod g),

clearly α = uT + vr0, β = u + vq0 is a solution to (2.12). It remains to show that the
algorithm eventually gives β = u+ vq0 with deg(β) ≤ b(t− 1)/2c.
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Algorithm 4: Generating the generator matrix G

Input: H
Output: Generator matrix G
// Based on Gaussian elimination

1 P ← In−k, the identity matrix;
2 for i← 0, . . . , n− k − 1 do
3 if Hi,i+k = 0 then
4 Find p such that Hp,i+k 6= 0;
5 Swap i-th and p-th columns of H;
6 Swap i-th and p-th rows of P ;

7 end
8 for j ← i+ 1, . . . , n− k − 1 do
9 if Hj,i+k = 1 then

10 Add i-th row to j-th row in H;
11 end

12 end
13 for j ← 0, . . . , i− 1 do
14 if Hj,i+k = 1 then
15 Add i-th row to j-th row in H;
16 end

17 end

18 end

// Now H becomes its systematic form
[
A>|In−k

]
19 G←

[
Ik|A

]
(P>)−1;

Function PolynomialSquareRoot(p, g)

// p ∈ F2m [x]/(g(x)) ∼= F2mt, i.e., p2mt−1 ≡ √p (mod g)
1 r ← p;
2 for i← 1, . . . ,mt− 1 do
3 r ← r2 mod g;
4 end
5 return r;
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Function DegreeConstraintXGCD(a, b, d, g)

1 if deg(a) < deg(b) then
2 (u′, v′)← DegreeConstraintXGCD(b, a, d, g);
3 u← v′, v ← u′;
4 return (u, v);

5 end
6 if deg(a) ≤ d then
7 return (1, 0);
8 else
9 Write a as bq + r, where deg(r) < deg(b);

10 (u′, v′)← DegreeConstraintXGCD(b, r, d, g);
11 u← v′ mod g;
12 v ← (u′ − v′q) mod g;
13 return (u, v);

14 end

Function FindAlphaBeta(g, T )

1 Write g as Tq + r, where deg(r) < deg(T );
2 (u, v)← DegreeConstraintXGCD(T, r, bdeg(g)/2c , g);
3 α← (uT + vr) mod g;
4 β ← (u+ vq) mod g;
5 return (α, β);
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Algorithm 5: Decoding of Goppa codes

Input: Parity-check matrix H, received codeword r, Goppa polynomial g
Output: Message m
// Construct syndrome polynomial S

1 s′ ← rH>;
2 for i← 0, . . . , t− 1 do
3 si ←

[
s′mi, s

′
mi+1, . . . , s

′
mi+t−1

]
, treated as an element of F2m ;

4 end

5 S ←
∑t−1

i=0 six
i;

// Solve the key equation to find error-locator polynomial σ
6 T ← PolynomialSquareRoot(S + x);
7 (α, β)← FindAlphaBeta(g, T );
8 σ ← α2 + xβ2;
9 e← 0;

10 for i← 0, . . . , 2m − 1 do
11 γi ← i-th element of F2m ;
12 if σ(γi) = 0 then
13 ei ← 1;
14 end

15 end
16 c = r + e;
17 Solve c = mG to get m;
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Let (αi, βi) be the corresponding solution (α, β) if the algorithm stops at i-th iteration.

Case 1: i = 0. In this case (α0, β0) = (T, 1), and deg(β0) = 0.

Case 2: i ≥ 1. We show that for all i ≥ 1, deg(αi−1) + deg(βi) = deg(g) always holds
by induction.

1. Basis:

deg(α0) = deg(T )

deg(β1) = deg(q0) = deg(g)− deg(T )

= deg(g)− deg(α0)

2. For i ≥ 2. Let αi−2 = αi−1qi + ri, then (αi, βi) can be given by

αi = ri,

βi = βi−2 + βi−1qi.

Therefore

deg(αi) = deg(ri) < deg(αi−1) (2.13)

deg(βi) = max { deg(βi−2), deg(βi−1) + deg(qi) }
= max { deg(βi−2), deg(βi−1) + deg(αi−2)− deg(αi−1) } (2.14)

Assume that for k ≥ 1, deg(αk−1) + deg(βk) = deg(g), then

deg(βk+1) = max { deg(βk−1), deg(βk) + deg(αk−1)− deg(αk) }
= max { deg(βk−1), deg(g)− deg(αk) }
= max { deg(g)− deg(αk−1), deg(g)− deg(αk) }
= deg(g)− deg(αk), (2.15)

according to (2.13) and (2.14).

Since αi are monotonically decreasing, there must exist some k such that deg(αk−1) >
bt/2c and deg(αk) ≤ bdeg(g)/2c. The algorithm will stop at Iteration k with deg(βk) =
deg(g)− deg(αk−1) < t− bt/2c ≤ b(t− 1)/2c.

Through the proof we can see that the (α, β) finding procedure can be implemented in
an iterative way (IterativeFindAlphaBeta).
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Function IterativeFindAlphaBeta(g, T )

1 Write g as Tq + r;
2 α0 ← T ;
3 β0 ← 1;
4 α1 ← r;
5 β1 ← q;
6 while deg(α0) > bdeg(g)/2c) do
7 Write α0 as α1q + r;
8 α0 ← α1;
9 α1 ← r;

10 βtmp = β0 + β1q;
11 β0 = β1;
12 β1 = βtmp;

13 end
14 return (α0, β0);

2.4.3 Performance

We implemented the algorithms näıvely in C++ with Shoup’s NTL library. The im-
plementation was compared with RSA benchmark of OpenSSL 1.1.0. Running time is
measured on a machine with Intel i5-3210M quadcore CPU and 4 GB memory. Security
levels of RSA are found in [SP800-57]; security level of McEliece is determined by the
cryptanalysis by Bernstein et al. [BLP08]

Table 2.2 shows the comparison of key sizes. Table 2.3, 2.4 and 2.5 contain running
time of KeyGen, Enc and Dec respectively.

From Table 2.2, we can see that McEliece keys are much larger than that of RSA. Even
for just 80 bits of security, we need around one megabyte of space to store the keys.

As for running time of KeyGen, Table 2.3 shows that as key size increases, the time that
RSA takes to generate a key pair grows dramatically, while McEliece only takes mildly
more time. Note that the data in Table 2.3 are averages. In a single run, McEliece takes
roughly the same time as the average, but RSA tends to vary greatly, ranging from tens of
seconds to a few minutes. We also note that RSA keys need to be generated with carefully
designed pseudorandom number generators, otherwise they can be easily recovered through
a precomputed table.

Table 2.4 and 2.5 show the comparison of between RSA and McEliece in the running
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Security
RSA McEliece

k pk (bits) sk (bits) (n, k, t) pk (MB) sk (MB)
80 1024 ≈ 1024 ≈ 2048 (2048, 1751, 27) 0.4483 1.356
112 2048 ≈ 2048 ≈ 4096
128 3072 ≈ 3072 ≈ 6144 (2960, 2288, 56) 0.8466 2.597
192 7680 ≈ 7680 ≈ 15360
256 15360 ≈ 15360 ≈ 30720 (6624, 5129, 115) 4.247 13.020

Table 2.2: Comparison of key sizes. Value k is the size of the modulus of RSA. (n, k, t) is
the parameter of underlying code. For RSA, key sizes vary and values shown are estimated
under the assumption that e = 65537 is used.

Security
RSA McEliece

k Time (s) (n, k, t) Time (s)
80 1024 0.0323 (2048, 1751, 27) 0.968
112 2048 0.0837
128 3072 0.320 (2960, 2288, 56) 3.376
192 7680 10.926
256 15360 216.294 (6624, 5129, 115) 40.737

Table 2.3: Running time of KeyGen. RSA data are given by OpenSSL tests. All time
values are obtained by averaging over three runs and are in seconds.

Security
RSA McEliece

k Time (ms) (n, k, t) Time (ms) Normalized
80 1024 0.0107 (2048, 1751, 27) 0.0590 0.0345
112 2048 0.0353
128 3072 0.0741 (2960, 2288, 56) 0.101 0.136
192 7680 0.456
256 15360 1.782 (6624, 5129, 115) 0.386 1.156

Table 2.4: Running time of Enc. RSA data are given by OpenSSL tests averaging over
runs in 10 s. McEliece data are obtained by averaging over three runs. McEliece running
times are also normalized to reflect the difference in plaintext size. All time values are in
milliseconds.
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Security
RSA McEliece

k Time (ms) (n, k, t) Time (ms) Normalized
80 1024 0.162 (2048, 1751, 27) 23.728 13.863
112 2048 1.179
128 3072 3.526 (2960, 2288, 56) 210.525 282.571
192 7680 74.925
256 15360 411.200 (6624, 5129, 115) 848.982 2542.311

Table 2.5: Running time of Dec. RSA data are given by OpenSSL tests averaging over
runs in 10 s. McEliece data are obtained by averaging over three runs. McEliece running
times are also normalized to reflect the difference in plaintext size. All time values are in
milliseconds.

time of Enc and Dec. Although RSA outperforms McEliece in relatively low security levels,
McEliece catches up quickly. If we compare the time taken by RSA and McEliece in 128-bit
and 256-bit security, we can see that when we double the security parameter, RSA will
be ≈ 20 times slower in encryption and ≈ 100 times slower in decryption; for McEliece
the two numbers are only around 10. Moreover, McEliece is already faster than RSA in
encryption in 256-bit security level.

The running-time data show that the näıve implementation is only slower than RSA
in decryption, but it is also obvious that the complexity of McEliece is lower than that
of RSA. Considering that OpenSSL is a well-maintained toolkit, with proper optimization
McEliece could become faster than RSA in decryption at 256-bit security level.

23



Chapter 3

Quantum Computation and
Quantum Cryptanalysis

3.1 Background

The interest of building a quantum computer, which is essentially different from a classi-
cal one, largely arose from the demand to simulate a quantum system, as Feynman [Fey82]
asked for in 1982. Ten years later, Shor found that quantum computer can efficiently solve
the factoring and discrete log problems [Sho94] and thus break many widely used public-key
cryptosystems. Grover also found an algorithm searching random database with quadratic
speedup [Gro96].

Fortunately, some cryptosystem designs are based on problems without known efficient
quantum algorithms. Two representatives of such problems are coding problems and lattice
problems.

3.2 The Quantum Computation Model

The first attempt to model such a computer was the quantum Turing machines proposed
by Deutsch [Deu85] and refined by Bernstein et al. [BV93], as a natural extension of
classical Turing machine to the quantum setting. However, quantum circuits, developed
by Yao [Yao93] as an extension of boolean circuits and an equivalent to quantum Turing
machines, are more convenient and widely used to describe quantum algorithms.
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This section provides an overview of the model of quantum computation. Section 3.2.1
describes the framework that governs quantum computation. and also reviews the neces-
sary linear algebra background and introduces the standard bra-ket notation for vectors.
Section 3.2.2 introduces the components of a quantum circuit and defines the complexity
of a quantum algorithm.

More thorough documentation of quantum computing can be found in [NC10] and
[KLM07].

3.2.1 Physical restrictions of quantum computing

In the classical setting, we have been describing an algorithms by an input, an output,
and a series of operations to turn the input into the output. However, not every operation
is efficient or even possible due to the physical reality. In order to comply with this limit
of the real world, we have to restrict ourselves on a few very basic “atomic” operations.
That becomes the model of classical computation.

The description of a quantum algorithm is very similar to its classical counterpart, just
that the information is stored in a quantum system, manipulated by quantum operations,
and extracted by a measurement, which produces a probabilistic output. In each stage of
the computation, the data can be represented by a configuration known as the quantum
state.

Data as quantum states and their measurements

Classical computers store data in bits, each of which can only take a value of either 0
or 1. Quantum mechanics allows a particle to stay “somewhere in between”, in the sense
that the particle, when observed, can sometimes be 0 and sometimes be 1 with certain
probability.

Quantum states A quantum state is usually written in Dirac notation (or “Bra-ket”
notation), but it can also be interpreted as a vector.

Definition 3.2.1 (Dirac notation). |ψ〉 is called a ket and denotes a (column) vector
corresponding to ψ; 〈ψ| is called a bra and denotes the conjugate transpose of |ψ〉, i.e.,

〈ψ| = (|ψ〉∗)>.

The inner product of two vectors |ϕ〉 and |ψ〉 is written as 〈ϕ|ψ〉.
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Definition 3.2.2 (Hilbert space). A Hilbert space H is a vector space over complex num-
bers with an inner product 〈·|·〉.

Postulate 1 (State space). The state of an n-qubit system can be described by a unit vector
in a 2n-dimensional Hilbert space.

Example 3.2.1. The state of one qubit can be represented by a vector

|ψ〉 = α0|0〉+ α1|1〉,

in the two-dimensional Hilbert space H = C2, where α0 and α1 are arbitrary complex
numbers satisfying the normalization constraint |α0|2 + |α1|2 = 1 (in order to be a unit
vector). States |0〉 and |1〉 are frequently used in quantum computation and are called the
computational basis, which have vector representation

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
.

Composite states The state of n qubits can be represented by a vector in the 2n-
dimensional Hilbert space.

Definition 3.2.3 (Tensor product). The tensor product of an a-dimensional Hilbert space
HA and a b-dimensional Hilbert space HB, denoted as HA ⊗ HB, is a Hilbert space H
with dimension dim(H) = ab, where |ψA〉 =

[
α0, α1, . . . , α2a−1

]> ∈ HA and |ψB〉 =[
β0, β1, . . . , β2b−1

]> ∈ HB are combined as

|ψ〉 = |ψA〉 ⊗ |ψB〉 =



α0β0

α0β1

...
α0β2b−1

α1β0

...
α2a−1β2b−1


=


α0|ψB〉
α1|ψB〉

...
α2a−1|ψB〉



(Kronecker product). The tensor product of operators A on HA and B on HB is defined
by

(A⊗B)(|ψA〉 ⊗ |ψB〉) = (A|ψA〉)⊗ (B|ψB〉).

The tensor product of |ψA〉 and |ψB〉 is often written as |ψA〉|ψB〉 and |ψAψB〉 for short.
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Postulate 2 (Composite systems). A system composed by two subsystems associated with
state spaces HA and HB has a state space H = HA ⊗HB.

Example 3.2.2. If a quantum system consists of two qubits, with the state of each of them
being |ψ1〉 and |ψ2〉, respectively, then the state of the whole system |ψ〉 can be described
by

|ψ〉 = |ψ1〉 ⊗ |ψ2〉.

However, most of the possible states cannot be written as the tensor product decom-
position of single-qubit states. A well-known example is the Bell state

1√
2

(|0〉|0〉+ |1〉|1〉) .

In such cases, the states are called entangled.

Measurement In order to extract some information out of an quantum state |ψ〉, we
have to measure it in an orthonormal basis.

Postulate 3 (Measurement). Assume a 2n-dimensional Hilbert space H has orthonormal
basis { |ψi〉 }2n−1

i=0 , and a quantum state |ψ〉 ∈ H can be written as

|ψ〉 =
2n−1∑
i=0

αi|ψi〉,

then a measurement yields |ψi〉 with probability |αi|2, and leave the system in |ψi〉.

Note that after the measurement, the qubit will stay in the basis state we just observed
rather than the original state. This means that we can obtain no more information about
the computation. More precisely, there is Holevo’s theorem claiming that we cannot extract
more than n classical bits of information from an n-qubit state.

Measurement can also be done to a subsystem. For a state

|ψ〉 =
2n−1∑
i=0

αi|ψi〉 ⊗ |φi〉 ∈ HA ⊗HB

where { |ψi〉 }2n−1
i=0 are an orthonormal basis of HA, a measurement of the subsystem with

state space HA will yield |ψi〉 ⊗ |φi〉 with probability αi and leave the whole system in the
state |ψi〉 ⊗ |φi〉.
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Example 3.2.3. The outcome of measuring the single-qubit state 1√
2
(|0〉+ |1〉) in compu-

tational basis will be either |0〉 or |1〉, both with probability 1/2. We can also measure it
in the Hadamard basis

{ |+〉, |−〉 } =

{
1√
2

[
1
1

]
,

1√
2

[
1
−1

]}
,

and this time we will always obtain |+〉.

Since the probability of each measurement outcome is only determined by the magni-
tude of each component state, we cannot distinguish two states |ψ〉 and |ψ′〉 if they only
differ by a global phase factor eiϕ

|ψ〉 = eiϕ|ψ′〉, ϕ ∈ [0, 2π).

Therefore an arbitrary qubit

|ψ〉 = r0eiϕ0|0〉+ r1eiϕ1|1〉

can be rewritten as an equivalent |ψ′〉

|ψ′〉 = r0|0〉+ r1ei(ϕ1−ϕ0)|1〉

with non-negative real r0.

Operations on quantum states

Definition 3.2.4 (Linear operator). A linear operator A on a vector space H is a linear
transformation from H to itself. Linear operator A can be written as a square matrix.

Definition 3.2.5 (Unitary operator). A unitary operator U on a vector space H is a
linear operator satisfying U †U = I, where U † is the conjugate transpose of U in matrix
representation and I is the identity matrix.

Postulate 4 (Evolution). The evolution of the state of a closed system from time t0 to t1
can be described by a unitary operator U , i.e.,

|ψ(t1)〉 = U |ψ(t0)〉.

This postulate states that every operation in quantum computation must be unitary.
It also implies that the computation process must be invertible.
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Example 3.2.4. To obtain a Hadamard state |+〉, we can first prepare the state |0〉 and
then apply the Hadamard operator H (represented by a 2× 2 Hadamard matrix) on it:

|+〉 = H|0〉,
or in matrix representation,

1√
2

[
1
1

]
=

1√
2

[
1 1
1 −1

] [
1
0

]
.

The postulate also leads to some unintuitive restrictions on quantum computing, for
example the no-cloning theorem.

Theorem 3.2.1 (No-cloning theorem). There exists no unitary operator U such that for
arbitrary state |ψ〉

U(|ψ〉 ⊗ |a〉) = |ψ〉 ⊗ |ψ〉,
where |a〉 is some fixed ancilla state.

3.2.2 Quantum circuits

Quantum circuits consists of gates that are quantum operations (unitary operators)
and wires, each of which carries a single qubit.

Table 3.1 shows some basic quantum gates. Similar to boolean circuits, we can pick
some gates to form a universal set that can approximate arbitrary unitary operations effi-
ciently, e.g.,

{
H,Rπ/4,CNOT

}
.

Example 3.2.5. From the perspective of matrix representation, the combination of two
gates have the following effect:

X Z ⇔ ZX

H

H
H ⊗H⇔

Example 3.2.6. Figure 3.1 shows a “copying” circuit. It does not violate no-cloning
theorem. Instead, it often creates entangled states, for example

|+〉 =
1√
2

(|0〉+ |1〉) → 1√
2

(|00〉+ |11〉) .

However, this circuit is useful in subroutine calls, where we need to store the output before
the uncomputing step (for the necessity of uncomputing, see [BBBV97]).
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Gate name Label Matrix Gate name Label Matrix

Hadamard H 1√
2

[
1 1
1 −1

]
Pauli-X (NOT) X

[
0 1
1 0

]

Pauli-Y Y

[
0 −i
i 0

]
Pauli-Z Z

[
1 0
0 −1

]

Phase-shift Rθ

[
1 0
0 eiθ

]

CNOT •


1

1
1

1

 Swap ×
×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Table 3.1: Basic quantum gates that frequently appear. H,X, Y, Z and Rθ are 1-qubit
gates; CNOT (controlled NOT) and Swap are 2-qubit gates.

|x0〉 • |x0〉
|x1〉 • |x1〉
...

...
...

|xn−1〉 • |xn−1〉
|0〉 |xn〉

|0〉 |xn+1〉
...

...
...

|0〉 |x2n−1〉

Figure 3.1: Quantum “copying” circuit
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Quantum complexity

When deciding the complexity of an algorithm described by a circuit model, we have to
be careful because circuit models are unlike Turing machines, which we are more familiar
with.

1. A single Turing machine works for every input, while circuits must be enlarged for
a longer input, yielding a family of circuits. As a result, we also need to ensure
that the family of circuits can be efficiently generated by a Turing machine (see
Definition 3.2.7).

2. The time complexity of a Turing machine is measured by computation steps taken
before halting, while the complexity of a circuit is measured by its size (the total
number of gates) and depth (the number of gates along the longest path).

Example 3.2.7. The “copying” process in Figure 3.1 has complexity O(n).

The complexity of circuits is more precisely characterized in Definition 3.2.7.

Here we define the class of polynomial-time randomized algorithms BPP and its quan-
tum counterpart, BQP.

Definition 3.2.6 (BPP). A language L is in BPP if and only if there exists a polynomial-
time deterministic Turing machine M that takes two inputs, x and y with |y| ≤ p(|x|) for
some polynomial p, such that

1. For all x ∈ L,
|{ y∈{ 0,1 }p(|x|) |M(x,y)=1}|

2p(|x|) ≥ 2/3;

2. For all x 6∈ L,
|{ y∈{ 0,1 }p(|x|) |M(x,y)=1}|

2p(|x|) < 1/3.

Definition 3.2.7 (Polynomial-time uniform family). A family of circuits {Cn : n ∈ N } is
polynomial-time uniform if and only if there exists a polynomial-time deterministic Turing
machine M , wuch that

M(1n) = Enc(Cn),

where Enc(Cn) is the encoding of Cn.

Definition 3.2.8 (BQP). A language L is in BQP if and only if there exists a polynomial-
time uniform family of quantum circuits {Qn : n ∈ N } with n-qubit input and 1-qubit
output, such that

1. For all x ∈ L, Pr
[
Q|x|(x) = 1

]
≥ 2/3;

2. For all x 6∈ L, Pr
[
Q|x|(x) = 1

]
< 1/3.
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PSPACE

PP

BQP

BPP NP

P

⊂

⊂

⊂

⊂

⊂

⊂

Figure 3.2: The inclusion diagram of a few complexity classes. This diagram is also part
of [Kup].

3.3 The Hidden Subgroup Problem (HSP) Family and

Quantum Fourier Transform

Since the invention of the famous Shor’s algorithm [Sho94], quantum computers have
been shown to efficiently solve many number theory problems underlying popular public-
key cryptosystems, including RSA and ElGamal. Such problems have also been attracting
interest from theoretical computer scientists because they can be an hint to the answer
of a number of classical open questions (e.g., P vs. PSPACE) in addition to providing
new quantum complexity classes. Surprisingly, almost all these problems can be captured
within a unified framework, namely the hidden subgroup problem (HSP). The algorithms
solving them hence share a lot of similarities, in particular a core technique for most of
them known as quantum order-finding.

Definition 3.3.1 (HSP). Given a set of generators of a group G, a finite image set X and
a function f : G→ X such that f hides a subgroup H < G in the sense that f(x) = f(y)
if and only if x and y are in the same coset of H, the HSP problem is to find a set of
generators of H.

Not all HSP instances are known to have efficient quantum algorithm. This section will
review Simon’s problem, boolean hidden shift problem, and factoring problem, which are
efficiently solvable HSP instances on a quantum computer. We will come to difficult HSP
instances in Section 3.3.3.
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3.3.1 Simon’s problem and boolean functions

Simon’s problem

Simon’s problem is deliberately designed to allow quantum computers to outperform
classical computers. It shows that BPPO $ BQPO for an oracle O.

Definition 3.3.2 (Simon’s problem). Given oracle Of of a function f : Zn2 → Zn2 such
that f(x) = f(y) if and only if x⊕ y = 0 or s, where ⊕ is bitwise exclusive-or and s is an
unknonwn fixed nonzero vector, Simon’s problem is to find the hidden s, with queries to
the oracle Of .

It’s clear that Simon’s problem is a special case of HSP where G = Zn2 , H = s⊥.

The quantum algorithm that efficiently solves Simon’s problem is shown in Figure 3.3.
The purpose of the first group of Hadamard gates is to prepare a state with every possible
x with equal magnitudes

|ψ1〉 =
1

2n/2

∑
x∈Zn

2

|x〉|0〉.

After the Of computation, the state will be

|ψ2〉 =
1

2n/2

∑
x∈Zn

2

|x〉|f(x)〉.

Since f(x) = f(y) if and only if x⊕ y = 0 or s, there are two cases.

• Case 1: s = 0. In this case f is a permutation, and the first register of ψ2 still
contains every x with equal magnitudes. After going through the second group of
Hadamard gates, the first register will contain |0〉.

• Case 2: s 6= 0. In this case we have

|ψ2〉 =
1

2n/2

∑
x∈s⊥

(|x〉+ |x⊕ s〉)|f(x)〉.
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After going through the second group of Hadamard gates, the state will be

|ψ3〉 =
1

2n

∑
y∈Zn

2

∑
x∈s⊥

(
(−1)x·y + (−1)(x⊕s)·y) |y〉|f(x)〉

=
1

2n

∑
y∈Zn

2

∑
x∈s⊥

(−1)s·y|y〉|f(x)〉

=
1

2n

∑
y∈Zn

2

(−1)s·y|y〉
∑
x∈s⊥
|f(x)〉.

Now if we measure the first register, in Case 1, the measurement always yields 0; in Case 2,
the measurement will output some a such that s · a = 0. Therefore we can execute the
algorithm multiple (' n) times. If we keep obtaining 0’s from the measurement, we claim
that s = 0, otherwise it is highly likely that the algorithm returns n linearly independent
equations of s and s can be solved for.

state preparation

|0〉 H

Of

H |a0〉

...
...

...
...

...

|0〉 H H |an−1〉

|0〉

...

|0〉

Figure 3.3: Simon’s algorithm

Boolean hidden shift problem (BHSP)

Definition 3.3.3 (BHSP). Given oracle Of of a boolean function f : Zn2 → Z2 and oracle
Og of function g that is f shifted by a fixed s

g(x) = f(x + s), ∀x ∈ Zn2 ,

the BHSP problem is to find the hidden s, with queries to the oracles Of and Og.
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Note that f must be given through oracle access. In fact, if the construction of f is
known, after recovering s, the construction of g is also known. This version of BHSP is
equivalent to the exact membership learning problem, for which the numbers of samples re-
quired for quantum and classical learning algorithms have a polynomial relationship [SG01].

It turns out that BHSP is easy for bent functions on a quantum computer [Röt10].

Definition 3.3.4 (Bent function). A boolean function f : Zn2 → Z2 is bent if and only if
for all w, the Walsh spectrum

f̂(w) =
1

2n

∑
x∈Zn

2

(−1)w·x+f(x) = ± 1

2n/2
. (3.1)

Formula (3.1) is called Walsh-Hadamard transform. Its matrix representation is H⊗n,
which means it can be efficiently implmemented in a quantum circuit with n parallel
Hadamard gates. Bent functions have perfectly flat Walsh spectra.

Given an instance of BHSP, we can define F (x), G(x) and Hf (b,x) as

Hf (b,x) =

{
F (x) =

∑
y∈Zn

2
(−1)f(x+y)|y〉, b = 0,

G(x) =
∑

y∈Zn
2
(−1)g(x+y)|y〉, b = 1.

If f is a bent function, then it is easy to verify that F (x), G(x) and Hf (b,x) have the
following properties

1. F (x) = G(x + s) and G(x) = F (x + s) for all x ∈ Zn2 .

2. F and G are “injective” in the sense that given two different x’s, different quantum
states are output.

3. (Corollary of the above) Hf (b0,x0) = Hf (b1,x1) if and only if [ b1 − b0 |x1 − x0 ] ∈
{ [ 0 |0 ], [ 1 | s ] } .

4. Hf can be implemented with oracles Of and Og and other basic quantum gates, as
shown in Figure 3.5.

Property 3 shows that a BHSP instance with f being a bent function can be reduced to
Simon’s problem.

Therefore we have 35 3.3.1 [Röt10].

Theorem 3.3.1. Given oracles Of of a bent function f : Zn2 → Z2 and Og of function g
that is f shifted by a fixed s, then there exists a polynomial-time quantum algorithm that
makes O(n) queries to Of and Og and computes s with high probability.
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|0〉 H

Hf

H |a0〉

...
...

...
...

...

|0〉 H H |an〉

|0〉

...
...

...

|0〉

Figure 3.4: Quantum algorithm solving the BHSP problem

|b〉 • · · · •
input
register

• •
|x〉 . . .

. . .




• •
F (x)

|0〉 H

Of

×
output
register

...
...

. . .
. . .

. . . |Hf (b,x)〉

|0〉


H ×


|0〉 H

Og

×

ancilla ...
...

. . .
. . .

. . .

|0〉


H ×

G(x) controlled swap gates

Figure 3.5: Implementation of Hf . The idea is to compute both F (x) and G(x) with
queries to the oracles, and swap the value stored in the ancilla register to the output
register if b = 1. In order to compute F (x) and G(x), we need to add |x〉 to both the
output and ancilla registers.
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The separation of quantum and classical computation powers Certain BHSP
instances are hard for classical computers, for example BHSP with f being a Maiorana-
McFarland bent function [Röt10].

Definition 3.3.5 (Maiorana-McFarland bent function). Let n = 2k. The Maiorana-
McFarland construction of bent functions has the form

f(x, y) = x · π(y) + σ(y),

where π is a permutation over Zk2 and σ is an arbitrary boolean function from Zk2 to Z2.

Theorem 3.3.2. Given oracles Of of a Maiorana-McFarland bent function f and Og of
function g that is f shifted by a fixed s, then a classical computer requires Θ(2n/2) queries
to compute s.

Though the BHSP problem with a bent function can be reduced to Simon’s problem
and hence HSP. However, a general reduction from BHSP to HSP is unknown, so it may
lead to interesting new results. Another observation is that this algorithm works for other
highly nonlinear boolean functions whose Walsh spectra are all nonzeros. Based on this
adaptation, the authors were able to show a general exponential separation between BPPO

and BQPO [GRR11].

3.3.2 Shor’s algorithm

Based on Miller’s recognition of the periodic nature underlying the factoring prob-
lem [Mil76], Shor realized that a similar technique to Simon’s algorithm can be used to
factorize integers on a quantum computer.

In this section we will review Shor’s algorithm. Section 3.3.2 shows the reduction of
the factoring problem to an order-finding problem. Section 3.3.2 introduces the quantum
Fourier transform algorithm that serves as a foundation of the order-finding process. De-
tails about the extraction of information from the output of QFT will be discussed in
Section 3.3.2.

The factoring problem

For simplicity, the factoring problem is usually defined as in Definition 3.3.6, which
poses restriction on the choice of N . However, solving this class of factoring problem is
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equivalent to solving the general factoring problem, because the other cases are either
trivial (e.g., N is even or prime power) or can be tackled using the same technique (e.g., N
has more than two distinct prime factors). It is worth notice that Definition 3.3.6 entirely
covers the factorization of RSA moduli.

Definition 3.3.6 (Factoring). Given a positive integer N which is the product of two
distinct odd primes p and q, the factoring problem is to find either p or q.

Similar to many other factoring algorithms (e.g., number field sieve [LLJMP93]), Shor’s
algorithm factorizes integers by finding a nontrivial square root modulo N . Shor made the
following observation: since N = pq, for any a ∈ Z∗N , we have ord(a) | φ(N) = (p−1)(q−1),
which means that certain a’s can have an even order. If we have ord(a) = 2k and ak 6≡ −1
(mod N), ak will be a nontrivial square root of 1 modulo N , and we can factor N by
computing gcd(a ± 1, N). Therefore the factoring problem is reduced to an order-finding
problem [Sho94].

Definition 3.3.7 (Factoring as an order-finding problem). Given a function

f : Zφ(N) → Z∗N
x 7→ ax

for some a ∈ Z∗N (i.e., a coprime with N), the order-finding problem is to find the smallest
t such that f(x+ t) = f(x).

The factoring problem can be also viewed as a special case of HSP, where G = Zφ(N) =
Z(p−1)(q−1) (additive group of the exponents), and H = 〈t〉.

Figure 3.6 shows the quantum circuit that implements Shor’s algorithm. The imple-
mentation of f is shown in Figure 3.7. The first half of Shor’s algorithm is almost identical
to Simon’s algorithm, staring with a state preparation stage that creates a state that is the
superposition of every possible |x〉 with equal magnitudes. The second register, however,
is |1〉 because of the construction of f . After the computation of f , the state will be

|ψ1〉 =
1

2n/2

2n−1∑
x=0

|x〉|ax mod N〉

=
1

2n/2

t−1∑
r=0

d(2n−r)/te−1∑
q=0

|tq + r〉|ar mod N〉.
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state preparation

|0〉 H

f

QFTn

|yn−1〉

...
...

...

|0〉 H |y0〉

|1〉 ...


Figure 3.6: Shor’s algorithm

|xn−1〉 •
... . .

.

|x0〉 •

Ua

· · ·

Ua2n−1|s〉 |axs〉

 · · ·


Figure 3.7: The implementation of exponential function f : x 7→ ax. Each Ua2i maps the

input |t〉 to
∣∣∣a2it

〉
.
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With the early measurement in the second register, we will settle the first register on some
r:

|ψ2〉 =
1√⌈
2n−r
t

⌉ d(2
n−r)/te−1∑
q=0

|tq + r〉|ar mod N〉.

The superposed values in the first register roughly have a period of t, and we can use
Fourier transform to find out this period. However, we must be careful because the period
is not exact unless t | 2n. We will discuss it in Section 3.3.2.

Quantum Fourier transform (QFT)

Before we come to the quantum order-finding algorithm, we will review quantum Fourier
transform because it is the core of order-finding.

Fast Fourier transform Let N = 2n, the discrete Fourier transform (DFT) of a se-
quence {at}N−1

t=0 with period N is defined by

Ak =
1√
N

N−1∑
t=0

atω
tk
N , for k = 0, . . . , N − 1, (3.2)

where ωN is a N -th primitive root of unity (usually we let ωN = e2πi/N) and Ak are
sometimes called the frequency spectrum of the sequence. It can also be written in the
form of matrix multiplication, as in Equation (3.3).

A0

A1

...
AN−1

 =
1√
N
FN


a0

a1

...
aN−1

 , (3.3)

where the DFT matrix FN is the Vandermonde matrix
1 1 · · · 1
1 ωN · · · ωN−1

N
...

...
. . .

...

1 ωN−1
N · · · ω

(N−1)2

N

 (3.4)

40



If we rearrange the columns in FN by separating even and odd columns, and let ωN/2 =
ω2
N , we can obtain a recursive relationship between matrices to speed up the computation.

FN =



1 1 · · · 1 1 1 · · · 1

1 ωN/2 · · · ω
N/2−1
N/2 ωN ω3

N · · · ωN−1
N

...
...

. . .
...

...
...

. . .
...

1 ω
N/2−1
N/2 · · · ω

(N/2−1)2

N/2 ω
N/2−1
N ω

3(N/2−1)
N · · · ω

(N−1)(N/2−1)
N

1 1 · · · 1 −1 −1 · · · −1

1 ωN/2 · · · ω
N/2−1
N/2 −ωN −ω3

N · · · −ωN−1
N

...
...

. . .
...

...
...

. . .
...

1 ω
N/2−1
N/2 · · · ω

(N/2−1)2

N/2 −ωN/2−1
N −ω3(N/2−1)

N · · · −ω(N−1)(N/2−1)
N


=

[
FN/2 GN/2

FN/2 −GN/2.

]
Here FN/2 is the DFT matrix of size 2n−1 × 2n−1, and GN/2 = PN/2FN/2, where

PN/2 =


1

ωN
ω2
N

. . .

ω
N/2−1
N

 .

Quantum Fourier transform The idea behind the quantum Fourier transform (QFT)
is very similar to that of the fast fourier transform (FFT) algorithm. The QFT algorithm
exploits the same recursive relationship as that of FFT, but with the benefit of quantum
superposition, it’s exponentially faster than FFT.

Recall that we separate the even and odd columns of FN in FFT. In quantum circuits,
the input to Fourier transform can be a single superposition state

N−1∑
t=0

at|t〉,

or if we write down the binary expansion of each t = 2n−1tn−1 + 2n−2tn−2 + · · ·+ 2t1 + t0,

N−1∑
t=0

at|tn−1〉|tn−2〉 · · · |t1〉|t0〉.
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The separation of even and odd terms can be done by just looking at the last qubit |t0〉,
and FN/2 will be applied on |tn−1〉|tn−2〉 · · · |t1〉. Next we will rewrite the FFT matrix so
that we can express it by basic gates of quantum circuits:

FN =

[
FN/2 GN/2

FN/2 −GN/2

]
=

[
FN/2 PN/2FN/2
FN/2 −PN/2FN/2

]
=

[
IN/2 IN/2
IN/2 −IN/2

] [
IN/2

PN/2

] [
FN/2

FN/2

]
= (H ⊗ IN/2)

[
IN/2

PN/2

]
(I2 ⊗ FN/2),

and also notice that if ωN = e2πi/N , then PN/2 can be written as the tensor product of
phase-shift matrices

PN/2 =

[
1

ωN

]
⊗
[
1

ω2
N

]
⊗ · · · ⊗

[
1

ω
N/4
N

]
= R2π/N ⊗R4π/N ⊗ · · · ⊗Rπ/2,

therefore we can obtain the QFT circuit for FN (N > 2) in Figure 3.8. Notice that phase-
shift gates will only be applied to odd terms, i.e., controlled phase-shift gates are used
in the actual circuit. For N = 2 the QFT circuit is simply a Hadamard gate H. Note

|x0〉 • • · · · • H |yn−1〉

|x1〉

FN/2

Rπ/2 |yn−2〉

... . .
. ...

|xn−2〉 R4π/N |y1〉

|xn−1〉 R2π/N |y0〉

FN

Figure 3.8: The QFT circuit

that the order of bits |yi〉 output by the QFT circuit is reversed. This is the result of the
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column rearrangement we applied to the Fourier transform matrix FN . The separation of
even and odd columns corresponds to moving the least significant bit of input |x0〉 to the
most significant bit, as can be seen in the example below. The overall effect on |x〉 is that
the input bits are reversed.

Example 3.3.1. Table 3.2 shows how the order of input bits is reversed through the
decomposition of FN into FN/2 and other basic quantum gates.

Stage F8 F4 F2

Separation

000 000 000
001 010 100
010 100 010
011 110 110
100 001 001
101 011 101
110 101 011
111 111 111

Bit order x2x1x0 x0x2x1 x0x1x2

Table 3.2: 3-qubit example of the bit order reversal in QFT

Remark. The complexity of QFT in terms of N is O(log2N), exponentially smaller than
the O(N logN) complexity of FFT. But QFT also has its limitation, the most serious
problem probably being that we cannot obtain the spectrum directly through its output.
Given input |a〉 =

∑N−1
t=0 at|t〉, the QFT circuit produces the state

N−1∑
k=0

Ak|k〉,

which, when measured, gives |k〉 with probability |Ak|2. Unless we compute Ak with classi-
cal Fourier transform or estimate Ak by the frequency of |k〉 through repeated experiments
(in this case we may need number of runs proportional to N to obtain reliable results), we
are unable to determine the spectrum. Therefore, the use of QFT is largely restricted to
order-finding in problems that are known to have some periodic property.

Quantum order-finding

Now we come back to the order-finding problem. The QFT algorithm gives a precise
answer only when the input has a period dividing 2n, but we need to deal with the case
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where the period r has other factors. It turns out that if n is moderately large, the error
will be small enough for us to deal with.

Recall that in Shor’s algorithm (Figure 3.6), after the measurement of the second reg-
ister, the first register is left in the state

|φ1〉 =
1√
m

m−1∑
q=0

|qt+ r〉,

where m = d(2n − r)/te. The QFT procedure returns

|φ2〉 =
1√
2nm

2n−1∑
y=0

m−1∑
q=0

ω(qt+r)y|y〉

=
1√
2nm

2n−1∑
y=0

(
ωry

m−1∑
q=0

(ωty)q

)
|y〉.

It is obvious that the magnitude of |y〉 is determined by the sum
∑m−1

q=0 (ωty)q. Since

ω = e2πi/2n , we have ωty = e2πi(ty/2n). The closer ty/2n is to an integer (i.e., y/2n close
to k/t for some integer k), the larger the magnitude is for |y〉. Therefore a measurement
is likely to yield y ≈ 2nk/t. Using continued fraction we can approximate t or at least a
factor of t with a high probability.

3.3.3 Hard HSP instances and post-quantum cryptosystem

The study of HSP has extended Shor’s algorithm to all HSP instances with abelian
groups [Kit95] and even some semi-direct products of abelian groups [BCvD05]. However,
for HSP over general non-abelian groups, this approach is not sufficient. Some of such HSP
instances form the basis of most post-quantum cryptosystems.

Among these instances, dihedral group HSP is associated with the unique shortest vector
problem (uSVP) in lattices [Reg04b], which relates to the security of some lattice-based
cryptosystems such as Regev’s design in [Reg04a]; the security of certain McEliece and
McEliece-like cryptosystems can be reduced to non-abelian group HSP as well [DMR11].

The reduction of the lattice problem to the dihedral HSP is done by constructing
a “discrete Gaussian state”, which is a superposition of lattice points with magnitude
of each point proportional to the value assigned to the point by a continuous Gaussian
distribution. More precisely, a measurement of such a state yields x ∈ L with probability
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e−π‖x/r‖
2

. Suppose we can construct such states for arbitrary point x ∈ Rn and radius r of
the discrete Gaussian ball, then by controlling r, we can obtain a lattice point close to any
given x. Thus it solves the closest vector problem (CVP). Regev also shows that a solution
to the learning with errors (LWE, see Section 4.3) problem implies that such a quantum
state can be constructed [Reg09].

Finally, it is worth mentioning that even if these problems prove to be intractable
for quantum computers, a general quadratic speedup for brute-force attacks is available
through Grover’s algorithm [Gro96]. If practical quantum computers can be made, we
still need to increase parameters of these cryptosystems to provide an appropriate level of
security.

45



Chapter 4

Fully Homomorphic Encryption and
Learning with Errors

4.1 Background

As early as 1978, Rivest et al. foresaw the potential application of cloud computing and
described a “privacy homomorphism” to support computation over ciphertexts [RAD78].
Since then, the search for a fully homomorphic encryption (FHE) scheme has been around
for more than three decades, but only until 2009 did Gentry announce the first plausible
design [Gen09].

The first construction is very complicated. Fortunately, as new FHE designs emerge,
FHE schemes become much simpler and more efficient and require less security assump-
tions at the same time. The most notable new design is probably those based on the LWE
problem, an equivalent to hard coding problems. The theoretical improvement of perfor-
mance is also verified by the HElib implementation [GHS12] that is capable to evaluate
AES encryption, which involves a lot of operations.

4.2 The Framework of FHE

We will review Gentry’s design in Section 4.2.1. Here we briefly discuss the definition
of FHE and give an overview of the currently existing designs.
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Definition 4.2.1 (FHE scheme). A public-key encryption scheme (Enc, Dec) is a fully ho-
momorphic encryption (FHE) scheme if for some universal set of operations U , there exists
an evaluating function Eval such that if we let f be a function consisting of operations from
the set U , m =

[
m0,m1, . . . ,mk

]
, and c =

[
Enc(pk,m0), Enc(pk,m1), . . . , Enc(pk,mk)

]
,

then

1. (Correctness) Evaluation over ciphertext is equivalent to evaluation over plaintext,
i.e.,

Dec(sk, Eval(pk, f, c)) = f(m).

2. (Performance) There exists a polynomial p(x) such that for any security parameter
λ,

|Eval(pk, f, c)| ≤ p(λ).

The purpose of the performance requirement in Definition 4.2.1 is to rule out trivial
schemes which simply concatenate the function definition f and parameters c. In other
words, it forces the schemes to actually evaluate the function under the mask of encryption.

4.2.1 Gentry’s roadmap

Figure 4.1 shows the process Gentry proposed to construct an FHE scheme. Gentry
adopted circuits as the computation model, and chose addition and multiplication as the
universal set.

The first step is to pick a somewhat homomorphic encryption (SWHE) scheme that
supports both addition and multiplication. The SWHE scheme usually achieves security
by adding a small noise during encryption and eliminating it through decryption. Such
approach causes two problems:

1. The magnitude of noise will grow with the evaluation of functions over ciphertexts,
and eventually the noise will be large enough to result in an decryption error. The
growth of noise poses a limit on the number of operations in a function that we can
homomorphically evaluate.

2. The amount of noise increased by each operation differs. It often means that we can
evaluate one operation many times more than we can evaluate another.
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To understand what functions can be evaluated by the SWHE scheme and to evaluate
functions we are interested in, we need to estimate the noise level and choose suitable
parameters. In the language of circuits, by doing so we can evaluate all functions with
circuits up to a certain depth, hence we have a leveled fully homomorphic encryption
(leveled FHE) scheme.

To turn a leveled FHE scheme into an FHE scheme, Gentry proposed a “bootstrapping”
method that we can construct a leveled FHE scheme capable of homomorphically evaluating
its own decryption function. Since the noise is eliminated after decryption, the resulted
ciphertext may contain less noise and allow us to continue performing operations on it.
However, to achieve this goal, we need to address two problems:

1. Decryption complexity usually grows with the increase of homomorphic evaluation
capability. In Gentry’s design, the complexity decryption function is decreased by
adding “hint” about the secret key to alleviate the decryption computation. Later
designs based on LWE have extremely simple decryption function (inner product and
modular arithmetic) and do not need this extra step any more.

2. To evaluate the decryption function, an encryption of the secret key must be provided.
Hence the security of a FHE scheme following this framework will not only depend
on the hardness of the underlying problem, but also depend on assumption on key-
dependent message (KDM) security.

SWHE scheme

Noise management

Leveled FHE scheme

Bootstrapping (evaluation of its own decryption function)

FHE scheme

Figure 4.1: A flowchart of Gentry’s roadmap

Basically all the existing FHE scheme designs follow this framework, though they are
based on different problems. In particular, they stick to the universal set of operations
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that Gentry selected for his first FHE scheme (addition and multiplication) and operate
on a ring. An interesting deviation from this framework is the attempt by Goldwasser et
al. to use Turing machines instead of circuits as the computation model [GKP+13], yet
there has not been much more investigation into this direction.

4.2.2 Recent development

The first FHE scheme, which Gentry proposed, is based on ideal lattices (lattices defined
by Z[x]/(f) for some irreducible polynomial f ∈ Z[x]) [Gen09]. Messages are encrypted
Since the lattice is itself a ring, it natually supports addition and multiplication. But
making it fully homomorphic is very difficult, because the original decryption function
of this scheme is too complicated to be evaluated by itself. Gentry introduced into the
public key some information about the secret key to alleviate the decryption complexity
(“squashing” the decryption circuit), but this approach requires additional assumptions on
the intractability of the sparse subset sum problem.

After the publication of the first construction, various new designs were proposed. Some
base the security on different hardness assumptions such as approximate GCD [vDGHV10,
KLYC13], others are improvements on the first construction such as the elimination of the
demand for a squashing step [GH11a].

Recently Brakerski et al. introduced learning with errors (LWE) into the construction
of new FHE schemes and showed that it has several advantages over existing schemes
including

1. Low evaluation complexity (faster evaluation),

2. Low decryption complexity (squashing no longer needed), and

3. Hardness of LWE equivalent to worst-case lattice problems.

We are going to see LWE and LWE-based schemes in the following sections.

4.3 Learning with Errors (LWE)

In this section, we introduce the learning with errors (LWE) problems, giving definitions
and summarizing some hardness results. FHE constructions based on LWE will present in
Section 4.4.2.
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Definition 4.3.1 ((Search) LWE). Given integers n = n(λ) and q = q(λ) ≥ 2, and
distribution χ = χ(λ) over Z. Fix secret s←U Znq , obtain N samples [ ai | bi ], 0 ≤ i ≤ N−1
by letting ai ←U Znq , ei ←χ Zq, and computing bi = ais

> + ei. The samples form an
N × (n+ 1) matrix. The (search) LWE problem is to find the secret s.

An algorithm A is said to (N, t, ε)-solve the (search) LWE problem if it runs for at most
time t, takes N samples and outputs the correct s with probability ε.

Note that the running time is at least O(N) (input size), which means an upper bound
of running time implies an upper bound of the number of samples. Specifically, an al-
gorithm that efficiently solves LWE problem, which runs in polynomial time, must take
only polynomially many samples. Thus the number of samples is often omitted in some
descriptions of LWE. Here we use both interchangeably.

The belief that LWE is intractable can be established by two observations. First of all,
the search LWE problem is equivalent to the general decoding problem (Definition 2.3.2).
Suppose there are N samples [ a0 | b0 ], . . . , [ aN−1 | bN−1 ], we have the relationship b0

...
bN−1

 =

 a0

...
aN−1

 s> +

 e0

...
eN−1

 = As> + e>.

If we view A as the generator matrix, s as the message, and e as the error vector, then
clearly an algorithm that decodes a random linear code could obtain s and hence solve
(search) LWE.

The second observation is the reduction of LWE to worst-case lattice problems, e.g.,
GapSVP and SIVP. The first such reduction was contributed by Regev but it involves
quantum algorithm (the reduction works by constructing a suitable initial state described
in Section 3.3.3) [Reg09]; Peikert came up with a classical one that only works for large q
(exponential of n) [Pei09]; an average-case classical reduction was finally done by Brakerski
et al. in 2013 [BLP+13].

Definition 4.3.2 (Decisional LWE). Given integers n = n(λ) and q = q(λ) ≥ 2, and
distribution χ = χ(λ) over Z, the decisional LWE problem is to distinguish the following
two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U Zn+1
q
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2. Fix secret s←U Znq , compute [ ai | bi ] by

ai ←U Znq ,
ei ←χ Zq,
bi = ais

> + ei

It has been shown that the search and decisional versions of LWE are equivalent for
q = pe, where p is a prime, in the sense that search LWE can be reduced to decisional LWE
with only polynomial overhead [ACPS09]. We will not distinguish between them in later
sections.

4.3.1 Extensions of the LWE problem

The LWE problem has two extensions. For completeness, they are defined below. The
GLWE problem is a generalization of LWE and RLWE problems, i.e., GLWE problems with
parameter d = 1, n > 1 are LWE problems; GLWE problems with parameter d > 1, n = 1
are RLWE problems, yet little research has been done for other cases.

Definition 4.3.3 (RLWE). Given d = d(λ) that is some power of 2, integer q = q(λ) ≥ 2,
ring R = Z[x]/(xd+1), and distribution χ = χ(λ) over R. Let Rq = R/qR = Zq[x]/(xd+1),
the RLWE problem is to distinguish the following two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U R
2
q ;

2. Fix secret s←U Rq, compute [ ai | bi ] by
ai ←U Rq

ei ←χ Rq

bi = ai · s+ ei

.

Definition 4.3.4 (GLWE). Given integer dimension n = n(λ), polynomial f(x) = xd + 1
where d = d(λ) is a power of 2, prime q = q(λ) and distribution χ = χ(λ) over R =
Z[x]/f(x). Let Rq = R/qR = Zq[x]/f(x), the GLWE problem is to distinguish the following
two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U R
n+1
q ;

2. Fix secret s←U R
n
q , compute [ ai | bi ] by

ai ←U Rn
q ,

ei ←χ Rq,
bi = ais

> + ei

.
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Definition 4.3.5 (LPN). Given integer dimension n = n(λ), χ = χ(λ) being a Beroulli
distribution. The LPN problem is to distinguish the following two distributions of [ ai | bi ]:

1. Uniform distribution: [ ai | bi ]←U Zn+1
2 ;

2. Fix secret s←U Zn2 , compute [ ai | bi ] by
ai ←U Zn

2 ,
ei ←χ Z2,
bi = ais

> + ei

.

The LPN problem is a special case of the LWE problem with p = 2 (actually, LWE
was originallyu obtained by extending LPN to arbitrary modulus). Therefore, properties
of LWE, such as the equivalence between decisional and search versions, also apply to
LPN [KS06]. Some researchers suspect that LPN is easier than LWE. However, it remains
an open question.

4.4 Design of FHE Schemes

4.4.1 Overview

Security

Table 4.1 shows a summary of known security levels of SWHE schemes. Obviously,
homomorphic encryption schemes cannot be IND-CCA2 secure. Actually, if the adversary
is allowed to choose ciphertext after receiving the challenge as in the CCA2 model, he/she
can almost arbitrarily decrypt or fabricate messages due to the homomorphism.

Given the impossibility of CCA2 secure FHE schemes, the highest security level they
can reach is IND-CCA1. It seems difficult to construct IND-CCA1 secure FHE schemes. In
fact, all schemes in the IND-CPA column of Table 4.1 are vulnerable to CCA1 key-recovery
attacks [LMSV10, ZPS12].

Implementations and performance

The first working implementation of fully homomorphic encryption is presented in
[GH11b]. Its success is based on a lot of optimizations on Gentry’s scheme. However,
theoretical analysis of LWE-based schemes proves them to be more efficient than other
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XXXXXXXXXXXXProblem
Security

Insecure IND-CPA IND-CCA1

Lattice
Gentry ccSHE
[Gen09] [LMSV12]

AGCD
vDGHV

[vDGHV10]

LWE
BV [BV14]

BGV [BGV12]

LPN
BL [BL11]

[Bra13]

Table 4.1: Security of some SWHE schemes

existing schemes (Õ(λ3.5) versus Õ(λ2) [BGV12]). Soon after the proposal of the con-
struction, Gentry et al. implemented the BGV scheme and successfully completed a ho-
momorphic evaluation of AES encryption [GHS12]. Their code is published online at
https://github.com/shaih/HElib.

4.4.2 BGV — the FHE scheme from LWE

In this section we summarize the BGV scheme [BGV12], which is based on GLWE. For
simplicity, we describe the scheme with LWE, but our proofs also apply to the other two.

From the perspective of the evaluation circuit, the BGV scheme can be viewed as
basic schemes, with decreasing moduli and corresponding keys, interconnected by the “key
switching” and “modulus switching” procedures. Unlike previous schemes, whose noise
grows with evaluations to a certain limit, the modulus switching procedure keeps the noise
level almost constant among levels but slowly decrease the modulus. Figure 4.2 is an
illustration of this process.

Below we will introduce the basic scheme and the homomorphic operations. We de-
scribe the algorithms with ciphertext space Zn+1

q (LWE) for simplicity. They can be easily
generalized to operate over Rn+1

q (GLWE), where Rq denotes the quotient ring Zq[x]/(f(x)).
Note that the plaintext space is always Z2, regardless of the ciphertext space.

We will use the same notation — security parameter λ, dimension n, modulus q, and
error distribution χ — from the decisional LWE problem (Definition 4.3.2). We also use N
to denote the number of samples.
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Figure 4.2: An illustration of the execution of BGV scheme. Integers qi are moduli and
si are corresponding keys. Light gray and dark gray bars are key switching and modulus
switching procedures, respectively.

The basic scheme

The basic scheme is a normal public-key encryption scheme (KeyGen, Enc, Dec), with
algorithms specified below.

• KeyGen(1λ)

Randomly generate a matrix A′ ←U ZN×nq and a vector s′ ←U Znq . Obtain e by
sampling ei ←χ Zq, 0 ≤ i ≤ N − 1. Let b = A′s′> + 2e and A = [ b> | − A′ ].
Public key: pk = A.

Private key: sk = s = [ 1 | s′ ].

• Enc(pk,m)

Expand plaintext m ∈ Z2 to an (n + 1)-dimensional vector by adding zeros: m′ =
[m |0 ]. Randomly select r ∈ ZNq , then c = Enc(pk,m) = rA+ m′.

• Dec(sk, c)

Decryption is done by m = Dec(sk, c) = (cs> mod q) mod 2, where x mod q falls
into the interval (−q/2, q/2].

It is straightforward to verify the correctness of this basic scheme. Below we give a
security proof.
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Definition 4.4.1 (Decisional LWE (DLWE) assumption). The decisional LWE (DLWE)
assumption is that there exists no algorithm A that (N, t, ε)-solves decisional LWE problem
with t = O(poly(n)) and non-negligible ε.

Lemma 4.4.1. Under the LWE assumption, the public key A of the basic BGV scheme is
indistinguishable from B ←U ZN×(n+1)

q .

Lemma 4.4.2. If A ∈ ZN×(n+1)
q is indistinguishable from B ∈ ZN×(n+1)

q , then rA is
indistinguishable from rB for r←U ZNq .

Lemma 4.4.3. If c0, c1 ∈ Zn+1
q are both indistinguishable from r ∈ Zn+1

q , then c0 is
indistinguishable from c1.

Theorem 4.4.4. Under the LWE assumption, the basic BGV scheme is IND-CPA secure.

Proof. For encryptions of message m = 0: by Lemma 4.4.1, the public key A is indistin-
guishable from random matrix B ←U ZN×(n+1)

q . By Lemma 4.4.2, rA (the encryption of
0) is indistinguishable from a random vector r′ ←U ZNq .

For encryptions of message m = 1: similar to the case where m = 0, with the only
difference being that the first component of c is incremented by 1, which does not affect
the indistinguishability because it is a bijective mapping on Zq. Therefore rA+[ 1 |0 ] (the
encryption of 1) is indistinguishable from a random vector r′ ←U ZNq .

Finally, by Lemma 4.4.3, encryptions of 0 are indistinguishable from encryptions of 1,
i.e., the basic scheme is IND-CPA secure.

We should note that the BGV scheme still suffers from a CCA1 key-recovery at-
tack [LMSV10].

Homomorphic operations

Evaluation The two operations that BGV scheme can homomorphically evaluated are
still addition and multiplication. Since its decryption function is a modular inner product,
it can be viewed as a linear polynomial of the secret key s with coefficients from the
ciphertext c. Hence we have plaintext corresponding to the point-value representation
and ciphertext corresponding to the coefficient representation of the same polynomial, and
additions and multiplications on the plaintext are equivalent to polynomial additions and
multiplications. With coefficient representation, addition is trivial, but multiplication will
result in a polynomial of the tensor product s⊗ s of the secret key.
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Key Switching Key switching eliminates the growth of key size and ciphertext size by
transform the ciphertext c1 under s1 ⊗ s1 to c2 under s2, preserving the inner product.
During the transform, we have two sets of parameters. We will denote them by subscripts
corresponding to s1 and s2.

Here we demonstrate the idea of key switching with a more straightforward construction
first. Note that for a secret key s, we can sample as many times as we want in the generation
of public key. If we set N2 = n2

1 and let A2 = [ b>2 | − A′2 ] be the generated public key,
then apparently

B = [ b>2 + (s1 ⊗ s1)> | − A′2 ]

satisfies (c1Bs>2 mod q) mod 2 = (c1(s1 ⊗ s1)> mod q) mod 2. Therefore we can let c2 be
c1B.

In the above construction, the dimension of the matrix B is N2×(n2+1) = n2
1×(n2+1).

However, Brakerski et al. introduced two different representations of c1 and s1⊗s1 into the
key-switching process, namely the outputs of BitDecomp and Powersof2 transforms. Their
construction has the dimension of B being n2

1 dlog q1e × (n2 + 1).

Modulus switching Modulus switching is the core of noise management in the BGV
scheme. Based on Lemma 4.4.5 [BGV12, Wei13] quoted below, we can reduce the magni-
tude of noise by switching from a larger modulus to a smaller one.

Here d is the degree of the polynomial f(x) defining R = Z[x]/(f(x)) in RLWE and
GLWE; ‖a‖ is the Euclidean norm of polynomial coefficients of a ∈ R; γR is a parame-

ter defined by γR = max
{
‖ab‖
‖a‖‖b‖ : a, b ∈ R

}
; ‖s‖(R)

1 is the l1 norm defined as
∑n−1

i=0 ‖si‖;
Scale(c, q, p, r) returns the vector c′ ∈ Rn closest to (p/q) · c such that c ≡ c′ (mod r).

Lemma 4.4.5. Let q > p > r be positive integers such that q ≡ p ≡ 1 (mod r) and
c′ = Scale(c, q, p, r). Then for any s ∈ Rn such that

∥∥cs> mod q
∥∥ < q/2− (q/p) ·γR · (r/2) ·√

d · ‖s‖(R)
1 , we have

(c′s> mod p) ≡ (cs> mod q) (mod r)

and ∥∥c′s> mod p
∥∥ ≤ (p/q) ·

∥∥cs> mod q
∥∥+ γR · (r/2) ·

√
d · ‖s‖(R)

1 .

In particular, in LWE cases where r = 2,∥∥c′s> mod p
∥∥ ≤ (p/q) ·

∥∥cs> mod q
∥∥+ ‖s‖(R)

1 .
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Parameter selection

We must take into consideration two aspects during parameter selection:

1. Security: since the security is based on the basic scheme and hence GLWE problems,
it suffices to choose appropriate n, q, d and χ for the basic scheme. See [GHS12,
Appendix C] for an example of analysis.

2. Correctness and performance as a FHE scheme (homomorphic evaluation capabil-
ity): correctness is directly related to the modulus switching procedure, which is
responsible for reducing the magnitude of noise. Therefore, parameter selection for
correctness is mostly about the relationship between adjacent moduli. This issue is
addressed by Theorem 4.4.6 [BGV12].

Theorem 4.4.6. There exists some some µ = Θ(log λ+logL), for a BGV scheme that has
security parameter λ and L moduli, with each modulus qi being a (µ(j+ 1))-bit integer, the
BGV scheme correctly evaluates circuits of depth up to L with addition and multiplication
over R2.

Performance

We compare the efficiency of the basic BGV scheme based on LWE and McEliece by
public key size in Table 4.2 and ciphertext size in Table 4.3.

Security
McEliece BGV

(n, k, t) pk (MB) sk (MB) (n, log q,N) pk (MB) sk (KB)
80 (2048, 1751, 27) 0.4483 1.356 (354, 16, 11329) 7.671 0.6934
128 (2960, 2288, 56) 0.8466 2.597 (460, 16, 14721) 12.962 0.9004
256 (6624, 5129, 115) 4.247 13.020 (791, 17, 26895) 43.113 1.641

Table 4.2: Comparison of key sizes. The parameter n and log q of basic BGV scheme
is the minimal pairs taken from [Wei13], where LWE is considered and χ is fixed to be
a normal distribution with standard deviation σ = 1, N is the minimal value satisfying
N > 2n log q [BGV12]. Note that BGV private key size is displayed in KB.

We can see that on the same security level, the basic BGV scheme has a much larger
public key but a smaller private key. This observation aligns with the simple decryption
function of BGV scheme. We also note that in order to support homomorphic operations,
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Security
McEliece BGV

|m| (bits) |c| (bits) Expansion |m| (bits) |c| (bits) Expansion
80 1751 2048 1.170 1 5680 5680
128 2288 2960 1.294 1 7376 7376
256 5129 6624 1.291 1 13464 13464

Table 4.3: Ciphertext size compared with plaintext size. Both McEliece and basic BGV
schemes use parameters from Table 4.2.

key-switching matrices must be added to the public key, which will significantly increase
the public key size (we omit the comparison here). Generally, these increases are a trade-off
to gain the fully homomorphic property of BGV.

McEliece and BGV schemes have similar encryption functions, which consist of a
matrix-vector multiplication and a vector addition. Therefore we can expect the run-
ning time of Enc to be proportional to the public key size. In contrast, the running time of
Dec of basic BGV scheme will be much less that that of McEliece, due to its simplicity. The
exact time depends on the particular implementation. For example, the HElib implementa-
tion [HS14] uses a variant of BGV scheme to enable SIMD operations and it also optimizes
the performance in a few operations such as key switching by a new algorithm [GHS12].

As a demonstration, in Table 4.4 we give a few timing data of HElib under the same
testing environment (Intel i5-3210M quadcore with 4 GB memory). HElib operates on the
ring Zq[x]/Φu(x), where Φu(x) is the u-th cyclotomic polynomial whose degree is φ(u).
Values in the table are select by HElib using the following parameters:

• Security parameter l = 80, 128, 192, and 256;

• The number of levels of the circuit it can evaluate L = 1 (i.e., only the basic scheme);

• Hamming weight of secret key w = 64;

• Ciphertext space Z2;

• Other parameters such as the number of columns in key-switching matrices and the
minimum number of plaintext slots (for SIMD operations) are set to 0.

Note that HElib is based on RLWE and more efficient than the LWE-based version of
BGV.
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Security (l) u Time of KeyGen (s) Time of Enc (ms) Time of Dec (ms)
80 3133 0.18 3.18 3.58
128 4051 0.26 3.67 3.46
192 4859 0.24 5.34 7.78
256 5461 0.16 5.64 16.19

Table 4.4: Timing of HElib

The time of KeyGen relies on the speed of arithmetic operations over Zq[x]/(Φu(x)). It
varies since for certain u’s the polynomials may be easier to evaluate.

Another observation in this table is that decryption takes more time than encryption.
This is due to the encoding for SIMD support. If we exclude the encoding and decoding
processes, Dec will take less time than Enc, which agrees with the fact that decryption
has fewer operations than encryption in the scheme. However, the exact cause needs to be
further investigated.
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Chapter 5

AMD Codes

5.1 Background

First introduced in [CDF+08], algebraic manipulation detection (AMD) codes are a
cryptographic primitive very similar to error detecting codes and message authentication
codes (MACs). Error detecting codes are designed for random errors (bit flips) in storage
and transmission and thus may not prevent an adversary flipping more bits than the error-
detection capability, while MACs usually needs a pre-shared key. In this case, AMD codes,
aiming to the detection of malicious manipulations without keys, will be more helpful.

In the model of AMD codes, there is a storage device that is leakage-proof but temper-
prone, i.e., an adversary can manipulate the data stored in it, though not knowing any
information about the data. Precisely speaking, the storage device is capable of storing
a single element α of some finite abelian group G. Any manipulation of the data can be
written additively as α + δ, for some 0 6= δ ∈ G, called an algebraic manipulation. AMD
codes guarantee that for any δ, such manipulation will be detected with high probabilities.

This model seems to be ridiculous at the first sight. However, a mask of encryption (even
a linear encryption) is sufficient to create such a leakage-proof but temper-prone device.
Therefore, AMD codes are often used in conjunction with other cryptographic primitives.
Their applications include robust secret-sharing, fuzzy extractors, non-malleable codes and
secure memories.

In this chapter, we first review the definitions, known bounds, and applications of AMD
codes in Section 5.2; then we obtain our new bounds for weak systematic AMD codes by
investigating the nonlinearity of functions in Section 5.3, and show that they are better
than known bounds with constructions.
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5.2 Known Results

5.2.1 Definitions

Definition 5.2.1 ((Strong) (m,n, ε)-AMD codes). Let S be a set of size m > 1 and G be
an abelian group of order n. Consider a pair (Enc, Dec) formed by a probabilistic encoding
map Enc : S → G and a deterministic decoding map Dec : G → S ∩ {⊥} such that
Dec(Enc(s)) = s with probability 1 for every s ∈ S. The pair (Enc, Dec) is a (strong)
(m,n, ε)-AMD code if for every s ∈ S and for every δ ∈ G, the probability

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | s, δ ] (5.1)

is at most ε.

There is also a weak version of AMD codes defined below, where the probability (5.1)
for certain values of s may exceed ε:

Definition 5.2.2 (Weak (m,n, ε)-AMD codes). Let S, G, Enc and Dec be defined as in
Definition 5.2.1. The pair (Enc, Dec) is an (m,n, ε)-AMD code if for s uniformly sampled
over S and for every δ ∈ G, the probability

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | δ ] (5.2)

is at most ε.

Let ps denote the probability that s is chosen when sampling. Since s is uniformly
sampled, the probability (5.2) can be computed as

(5.2) =
∑
s∈S

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | s, δ ] · ps

=
1

|S|
∑
s∈S

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | s, δ ] .

Definition 5.2.3 (Systematic AMD codes). An AMD code is systematic if the source set
S is a group and the encoding is of the form

Enc : S → G = S × G1 × G2

s 7→ (s, x, f(x, s)),
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for some function f : G1 × S → G2, where G1 and G2 are groups and x is taken uniformly
at random from G1. The decoding function of a systematic AMD code is naturally given
by

Dec(s, x, e) =

{
s, if e = f(x, s),

⊥, otherwise.

5.2.2 Known bounds

Cramer et al. gave a few bounds for both strong and weak versions of (m,n, ε)-AMD
codes [CFP13]. We summarize them here.

Theorem 5.2.1 (Lower bound of n in (strong) AMD codes). Every (strong) (m,n, ε)-AMD
code satisfies that

n ≥ m− 1

ε2
+ 1.

Theorem 5.2.2 (Lower bound of n in weak AMD codes). Every weak (m,n, ε)-AMD code
satisfies that

n ≥ m− 1

ε
+ 1.

Theorem 5.2.3 (Lower bound of ε in (strong) systematic AMD codes). Every (strong)
systematic (m,mn1n2, ε)-AMD code with ε < 1 satisfies that

ε ≥ logm

n1 log n2

.

All three bounds can be attained, as shown by detailed constructions in their paper.

We notice that Cramer et al. mentioned the equivalence between weak systematic AMD
codes and robust codes given by Karpovsky et al. [KT04], but the latter was mostly con-
cerned about specific construction, and a general bound was not established.

5.2.3 Applications

AMD codes can be used to construct or enhance a variety of security schemes. Here
we list two of them: robust secret-sharing schemes and non-malleable codes.
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Robust secret-sharing scheme A secret-sharing scheme is a pair of functions (Share,
Recover), such that the Share function distributes information about the secret among a
set of entities, and the Recover function takes in a subset of the distributed information
and reconstruct the secret. Some secret-sharing schemes, such as Shamir’s scheme based
on polynomial interpolation [Sha79], are linear in the sense that the Recover(S + ∆) =
Recover(S) + Recover(∆). Such schemes ensure that only a qualified subset of the enti-
ties, by gathering their pieces of information, are able to correctly reconstruct the secret.
However, the adversary can alter the reconstructed secret by controlling as few as one
entities in that set. In this case, the secret can be seen as being stored in a leakage-
proof but temper-prone device, and we can embed AMD codes into the secret-sharing
scheme to make it robust, i.e., difficult for an adversary controlling only an unqualified
set of entities to alter the reconstructed secret. The embedding is easily done by letting
Share∗(s) = Share(Enc(s)), Recover∗(S) = Dec(Recover(S)), and the improved scheme
be (Share∗, Recover∗).

Non-malleable codes As an extension of error-detecting and correcting codes, non-
malleable codes relaxes the requirement of identifying errors. Instead, they only guarantee
that a tempered codeword either can be decoded to the original message, or has a distribu-
tion independent of the original message (i.e., no leakage of any information about it). This
feature makes it useful in the resistance of leakage attacks, including various side-channel
attacks. In their paper [DPW10], Dziembowski et al. constructed a class of non-malleable
codes against bit-wise independent temperings using linear error-correcting secret-sharing
(LECSS) schemes (see their paper for details) and AMD codes, combined in a very similar
way to that of the robust secret-sharing scheme construction.

5.3 New Bounds and Constructions

In this section, we present a new lower bound on the value of ε (Theorem 5.3.2) and
|S| (Proposition 5.3.4), and then give constructions attaining these bounds.

In the following discussions, we will let S,G1,G2 be finite abelian groups, G = S×G1×G2,
and f be a mapping from S × G1 to G2. Without loss of generality, we may write the
operations in S,G1,G2 additively. We denote |S| by m, |G1| by n1, |G2| by n2, and |G| by
n = mn1n2, where |X| denotes the size of a finite set X.

The Enc and Dec mappings are defined by f as follows:

Enc(s) = (s, x, f(x, s)), (5.3)
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where x is taken uniformly at random from G1;

Dec(s, x, e) =

{
s, if e = f(x, s),

⊥, otherwise.
(5.4)

For each α = (∆s,∆k,∆y) ∈ G, we define

δα = |{ (s, k) ∈ S × G1 | f(s+ ∆s, k + ∆k)− f(s, k) = ∆y }| , (5.5)

then the nonlinearity of f can be characterized by differential uniformity as in Defini-
tion 5.3.1.

Definition 5.3.1 (Differential uniformity). Let

δ = max
α∈(G\{ 0 })×{ 0 }×G2

δα,

then the differential uniformity of f is δ, or f is a differentially δ-uniform function.

To obtain our bound on ε, we first prove the following lemma.

Lemma 5.3.1. Let Enc and Dec be the functions in (5.3) and (5.4). Then (Enc, Dec) is a
weak systematic (m,n, ε)-AMD code defined in Definition 5.2.3 if and only if∑

∆k∈G1\{ 0 }
∆y∈G2

δ(0,∆k,∆y) ≥ (mn1)2 −mn1 − ε(m− 1)mn2
1n2, and

δ(∆s,∆k,∆y) ≤ εmn1, if ∆s 6= 0,
(5.6)

where δ(∆s,∆k,∆y) is defined in (5.5).

Proof. Denote the subgroup S × G1 × { 0 } of G by G ′. For every α ∈ G, let dα denote the
number of pairs (x1, x2) ∈ G ′ × G ′ such that x1 − x2 = α, then it is easy to verify that
dα = δα.

Below we determine the value or bound of δα for α = (∆s,∆k,∆y) in three cases.

1. ∆s = ∆k = ∆y = 0. In this case it is clear to see that δα = |S| |G1| = mn1;

2. ∆s = ∆k = 0 and ∆y 6= 0. Since f is a function of (s, k), δα = 0;
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3. ∆s 6= 0. By the definition of weak (m,n, ε)-AMD code, we have that for every
α = (∆s,∆k,∆y) ∈ G with ∆s 6= 0 and s sampled uniformly from S,

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | α ]

=
∑
s∈S

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | s, α ] · ps

=
1

|S|
∑
s∈S

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | s, α ]

=
1

|S|
∑
s∈S

|{ k ∈ G1 | f(k + ∆k, s+ ∆s)− f(k, s) = ∆y }|
|G1|

=
|{ (s, k) ∈ S × G1 | f(k + ∆k, s+ ∆s)− f(k, s) = ∆y }|

|S| |G1|

=
δα

|S| |G1|
≤ ε,

which gives δα ≤ εmn1.

Since the sum of δα’s is exactly |G ′ × G ′|, and |G ′| = mn1,

(mn1)2 =
∑
α∈G

δα.

Substituting the values of δα into the above equation, we obtain the following inequality:

(mn1)2 ≤ n1(m− 1)n2 · εn1m+mn1 +
∑

∆k∈G1\{ 0 }
∆y∈G2

δ(0,∆k,∆y)

Rearranging its terms gives us the inequality (5.6).

Conversely, let f be a function satisfying the property in (5.6), we need to show that
(Enc, Dec) is an (m,n, ε)-AMD code. In particular, we need to show that for every α =
(∆s,∆k,∆y) ∈ G and s sampled uniformly from S,

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | α ] ≤ ε.

We discuss two cases of α:
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1. ∆s 6= 0: Similar to Case 3 above, we have

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | α ]

=
1

sizeS
∑
s∈S

Pr [ Dec(Enc(s) + α) | s, α ]

=
1

|S|
∑
s∈S

|{ (s, k) ∈ S × G1 | f(k + ∆k, s+ ∆s)− f(k, s) = ∆y }|
|S| |G1|

=
δα

|S| |G1|
≤ εmn1

mn1

= ε;

2. ∆s = 0: According to the definition of Dec, Dec(Enc(s) + α) always yields s or ⊥ in
this case. Therefore the probability

Pr [ Dec(Enc(s) + α) 6∈ { s,⊥} | α ] = 0.

We complete the proof.

Lemma 5.3.1 provides a method to prove that (Enc, Dec) is a weak systematic (m,n, ε)-
AMD code.

Theorem 5.3.2. Let f be a function from S × G1 to G2, and (Enc, Dec) be the systematic
AMD code derived from f . Then

ε ≥ max


(mn1)2 −mn1 −

∑
∆k∈G∗1 ,∆y∈G2

δ(0,∆k,∆y)

(m− 1)mn2
1n2

, max
(∆s,∆k,∆y)

∆s 6=0

δ(∆s,∆k,∆y)

mn1

 .

Particularly, assume the differential uniformity of f is d. Then

ε ≥ (mn1)2 −mn1 − d(n1 − 1)n2

(m− 1)mn2
1n2

,

Proof. By Lemma 5.3.1, we have both∑
∆k∈G1\{ 0 }

∆y∈G2

δ(0,∆k,∆y) ≥ (mn1)2 −mn1 − ε(m− 1)mn2
1n2 (5.7)
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and
δ(∆s,∆k,∆y) ≤ εmn1, for ∆s 6= 0. (5.8)

From (5.7), we have

ε ≥
∑

∆k∈G∗1 ,∆y∈G2
δ(0,∆k,∆y) − (mn1)2 +mn1

(m− 1)mn2
1n2

.

From (5.8) we have

ε ≥ max
(∆s,∆k,∆y)

∆s 6=0

δ(∆s,∆k,∆y)

mn1

.

If the differential uniformity of f is d, then δα ≤ d for every α = (∆s,∆k,∆y) where
either ∆s 6= 0 or ∆k 6= 0, therefore

ε ≥
(mn1)2 −mn1 −

∑
∆k∈G∗1 ,∆y∈G2

d

(m− 1)mn2
1n2

=
(mn1)2 −mn1 − d(n1 − 1)n2

(m− 1)mn2
1n2

.

Corollary 5.3.3. Let S,G1 and G2 be abelian groups with |S| = m, |G1| = n1 and |G2| = n2.
Let f be a function f : G1×S → G2. If f generates a weak systematic (m,n, ε)-AMD code
as in Definition 5.2.3 and Definition 5.2.2, then a lower bound for the maximum differential
uniformity of fs(k) , f(k, s) is

mn2
1 − n1 − ε(m− 1)n2

1n2

(n1 − 1)n2

.

Proof. Let ds be the differential uniformity of fs(k), then∑
s∈S

∆k∈G1\{ 0 }
∆y∈G2

ds ≥
∑

∆k∈G1\{ 0 }
∆y∈G2

δ(0,∆k,∆y)

≥ (mn1)2 −mn1 − εm(m− 1)n2
1n2,

according to Lemma 5.3.1. Therefore

max
s∈S
{ ds } ≥

(mn1)2 −mn1 − εm(m− 1)n2
1n2

m(n1 − 1)n2

=
mn2

1 − n1 − ε(m− 1)n2
1n2

(n1 − 1)n2

.
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In Proposition 5.3.4, we make a slight improvement to Cramer et al.’s bound on general
weak AMD codes (Theorem 5.2.2) by taking into consideration n1 = |G1|.
Proposition 5.3.4. Let S,G1 and G2 be abelian groups with |S| = m, |G1| = n1 and
|G2| = n2. Let (Enc, Dec) be a weak systematic (m,n, ε)-AMD code where n = mn1n2,
and encoding map Enc is from S to S × G1 × G2 , G and decoding map Dec is from G to
S ∪ {⊥}, respectively. Then (Enc, Dec) satisfies

n ≥ (m− 1)n1

ε
+ 1.

Proof. Let pδ denote the probability that δ is chosen by the adversary. Since probability
(5.2) is at most ε for every δ, the probability

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} ] (5.9)

=
∑
δ∈G

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | δ ] · pδ

≤
∑
δ∈G

ε · pδ = ε. (5.10)

Now suppose δ is uniformly sampled from G. Let Dec−1(s) denote the set { g ∈ G | Dec(g) = s }.
Since s and δ are independently chosen, for any s fixed,

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | s ]

=

∣∣∣⋃s′∈S\{ s } Dec
−1(s′)

∣∣∣
|G| − 1

=

∑
s′∈S\{ s } |Dec−1(s′)|
|G| − 1

,

therefore probability (5.9) can be computed in a second way as

(5.9) =
1

|S|
∑
s∈S

Pr [ Dec(Enc(s) + δ) 6∈ { s,⊥} | s ]

=
1

sizeS
·

(|S| − 1)
∑

s∈S |Dec−1(s)|
|G| − 1

=
|S| − 1

|G| − 1
·
∑

s∈S |G1|
|S|

=
|S| − 1

|G| − 1
· |G1| =

m− 1

n− 1
· n1. (5.11)
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Combining (5.10) and (5.11) gives us

ε ≥ (m− 1)n1

n− 1
,

and hence

n ≥ (m− 1)n1

ε
+ 1.

Below we give two constructions to show that our bound is tight (i.e., can be achieved).
Also note that our bound can be a guidance in designing optimal and near-optimal AMD
codes — AMD codes derived from highly nonlinear functions often attain or get very close
to our bound. Combined with the abundance of highly nonlinear functions, it also means
that there can be a large number of good AMD code constructions.

Example 5.3.1. Let S = Fqk ,G1 = G2 = Fq. Let f be the function

f : Fqk × Fq → Fq
(s, k) 7→ kTr(s).

Then f generates a weak systematic (qk, qk+2, 1/q)-AMD code. (To see it is indeed a weak
AMD code, consider the case s = 0.) Also note that f has a differential uniformity of qk. It
can be easily verified that this AMD code attains the lower bound given by Theorem 5.3.2.
In contrast, the improved bound (Proposition 5.3.4)

ε ≥ q(qk − 1)

qk+2 − 1

can only be asymptotically attained.

Example 5.3.2. Let S = F2k , G1 = F2, and G2 = F2k+1 . Let f be the function

f : F2k+1 → F2k+1

x 7→ x3.

If we view x ∈ F2k+1 as (s, k) ∈ F2k × F2 (taking binary fields F2k+1 and F2k as vector
space over F2), then f generates a weak systematic (2k, 22k+2, 1/2k+1)-AMD code. This
code asymptotically attains our bound. Note that f is an almost perfect nonlinear (APN)
function on F2k+1 .
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Chapter 6

Conclusion and Future Work

Through the development of code-based cryptography, we can see the huge potential of
applying codes to the design of encryption schemes and other security protocols. Dispite
the disadvantage of large key sizes, code-based encryption schemes enjoy good security and
simple implementations. Though with the current parameters, McEliece cannot compete
with RSA in performance until we reach 256 bits of security, RSA is asymptotically slower
than McEliece, while McEliece still has plenty of space for optimiazation. Moreover, all tra-
ditional public-key cryptosystems based on factoring, discrete logarithm, and elliptic curve
discrete logarithm all suffer from quantum attacks. In contrast, code-based cryptosystems
are resistant to currently known quantum attacks.

Apart from the known benefits of quantum attack resistance, recent studies on LWE
problems and FHE designs based on them further reveal the versatility of codes and their
connection with the more thoroughly studied lattice problems. AMD codes also show the
possibility to extend error-correcting codes to obtain other useful cryptographic primitives.

However, error-correcting codes are initially designed to correct random errors. Early
coding theory research focused on efficiency and were largely restricted on small codes.
On the contrary, for security reasons, code-based security solutions require the use of large
codes, which has not yet been fully explored. The selection of codes is another important
problem in the design of code-based cryptosystems. The possible impact of quantum
computers also needs further examination. For example:

1. For McEliece cryptosystem, it remains a question whether there are choices other
than Goppa codes for a secure design; even for those based on Goppa code, we
cannot guarantee that a more efficient attack that recovers structure from the garbled
generator matrix does not exist;
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2. For FHE schemes, random codes are used in the LWE-based BGV scheme, but we still
need to carefully tune the many parameters to achieve good security, homomorphic
evaluation capability, and performance;

3. For quantum computers, we may investigate whether the algorithms of encryption
schemes can be sped up in order to resist more efficient attacks.

Another demand of code-based cryptography lies in implementation. Unlike traditional
public-key cryptosystems such as RSA, code-based cryptosystems have a lot of variants
but relatively few available libraries. As for FHE, currently HElib is the only implemen-
tation available to the public. With the ongoing research on FHE schemes, a practical
implementation may eventually appear.
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