
Deducing Requirements

From Agile Software Processes

by

Ponle Salu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Management Sciences

Waterloo, Ontario, Canada, 2014

© Ponle Salu 2014

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In classical engineering practice, the elicitation of requirements is an important early project phase.

Requirements help to define the project goals and scope, they serve as a basis for cost estimation, and

in validated projects they are the cornerstone of the traceability matrix. However, requirements

elicitation is difficult because of the abstract nature of the process and because there is uncertainty at

the start of a project about what can be done.

 In recent software development practice, waterfall methods have fallen into disfavor, and agile

methods are preferred. Agile methods avoid formal requirements specification, and instead use

techniques such as scrums and user stories to specify development phases that are performed

iteratively. In agile methods, requirements remain implicit and undocumented.

 While agile may avoid the difficulties of formal elicitation of requirements, it may in the process

bypass the activity of analysis of user needs, and the generation of a baseline against which the

implemented system can be validated.

 In this thesis we show that requirements can be deduced from the user stories and process maps

that result from agile methodologies. A modified failure mode effects analysis approach is used to

identify risks, failure modes, and countermeasures, and to evaluate risks and countermeasures by

computing severity and likelihood of the risks, and the benefits of the countermeasures.

 The deduction of requirements from agile artifacts encourages an agile team to think through its

preferences and proposed implementations, and objectively rate them. It captures the rationale for the

user stories and process maps, and provides traceability from business goals to the functional

requirements.

iv

Acknowledgements

First, I want to thank God Almighty, who in His infinite mercies has made this dream a reality.

 My deepest appreciation goes to my thesis supervisor, Dr. Darrell Raymond whose depth of

knowledge and subject matter expertise proved instrumental to the success of this research endeavor.

Without his continuous encouragement, enviable spirit of adventure, countless hours of

brainstorming, convincing arguments, exemplary work ethic and selflessness, this research work

would not have been possible. You will always be a mentor.

 I will be forever grateful to my co-supervisor, Professor Frank Safayeni, Chairman Department

of Management Science at University of Waterloo for ensuring I get all the administrative, technical

and scholarly support I needed to succeed in this undertaking.

 I would also like to acknowledge Dr. Mark Hancock and Dr. Stanko Dimitrov for reading this

thesis. I am gratefully indebted to both of you for your time and valuable comments.

 The case study used in this thesis was conducted as a collaborative industry-university research

project. I would like to thank everyone that played a role in ensuring the objectives of the project

were successfully realized. Special thanks to Steve Mai and Todd Ronald (industry partners) for the

opportunities and supports availed us throughout the project; to MITACS for funding the project

through the MITACS Accelerate research internship program; Jennifer Tedman-Jones of MITACS

for supporting the project in every way possible; Ada Hurst (lecturer, Industry Liaison) for raising the

possibility of a project in the first place; Geovania Pimenta (fellow intern) whose project management

skills gave the project the impetus to succeed; Rob Duimering (lecturer, project co-supervisor) for all

his efforts and the support he gave to see the project to success.

 Special gratitude is extended to Dr. David Fuller (Associate Chair, Graduate Studies) for

throwing his weight behind me in pursuing this research endeavor.

 I would like to extend my sincere thanks to the management, lecturers and staff of the

Management Sciences department of The University of Waterloo for the high level of support,

dedication and professionalism. Studying here has been highly rewarding, enlightening and

nourishing.

v

 Many thanks to Bright Iheanacho’s family for their support upon my arrival in Canada, the

Akinniyi family for their big heart, Marcia Halliday (landlady) for being hospitable, members of Our

God Hears Foursquare Christian fellowship, My Dad, Prophet Olatunji Gbadebo Salu for relentlessly

encouraging me to do this, the families of Deji Olusoga, Gbenga Salu ,Kemi Dairo, Adelola Adesida,

Akinboro, my larger family members, in-laws and friends.

 Last but not the least; I want to profoundly thank my wife, Abimbola Salu and my son,

Timi Salu. Your overwhelming show of real support and understanding is thorough and peerless. We

envisioned this together, painstakingly went through the stages together and now, we can see it come

about together. You are awesome!

vi

Dedication

I dedicate this thesis work to my mother, Victoria Iyabo Salu who passed on to glory while I was far

away from home doing this program. Your words of advice to serve God, serve my fellow human

beings and be the best I can be continues to ring in my ears.

vii

Table of Contents

AUTHOR'S DECLARATION .. II

ABSTRACT .. III

ACKNOWLEDGEMENTS .. IV

DEDICATION ... VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES .. X

LIST OF TABLES .. XII

CHAPTER 1 INTRODUCTION .. 1

1.1 THE IMPORTANCE OF REQUIREMENTS .. 1

1.2 PROBLEMS ELICITING REQUIREMENTS .. 2

1.3 AGILE METHODS .. 4

1.4 THE THESIS PREMISES ... 6

1.5 CONTRIBUTIONS OF THE THESIS .. 7

1.6 ORGANIZATION OF THE THESIS ... 8

CHAPTER 2 MACE CASE STUDY .. 9

2.1 INTRODUCTION ... 9

2.2 BACKGROUND OF CASE STUDY .. 9

2.3 METHODOLOGY .. 10

2.3.1 Project preparation stage ... 11

2.3.2 Model development – Iteration 1 ... 13

2.3.3 Model development – Iteration 2 ... 18

2.3.4 Model development – Iteration 3 ... 20

2.3.5 Model development – Iteration 4 ... 22

2.3.6 Project delivery ... 23

2.4 AGILE METHODOLOGY AS PRACTICED IN THE CASE STUDY ... 23

2.4.1 Iterative and incremental development .. 24

2.4.2 People-oriented and collaborative development .. 25

viii

2.4.3 Change is welcome at any time ... 25

2.4.4 Tools for fast cycle times .. 26

2.4.5 Document stable knowledge, not speculative ideas .. 26

2.4.6 Communication .. 27

2.4.7 Management involvement ... 28

2.4.8 Deliverables .. 28

2.4.9 Testing .. 29

2.4.10 Executable specification ... 29

2.4.11 Follow the user view... 30

2.4.12 Summary .. 30

2.5 HAS AGILE DONE THE JOB? ... 31

CHAPTER 3 THE FAILURE MODE BASED REQUIREMENT ELICITATION METHOD (FBREM) 33

3.1 THE FBREM APPROACH .. 33

3.2 CONCEPTUAL MODEL OF FBREM .. 35

3.3 AN APPLICATION OF FBREM .. 43

3.4 DEFINITION OF FBREM METHOD .. 57

CHAPTER 4 DISCUSSION .. 61

4.1 WHY EMPHASIZE RISK? .. 61

4.1.1 Case study observations ... 61

4.1.2 Historical perspective ... 64

4.1.3 Defining risk ... 65

4.1.4 Risk Assessment ... 66

4.1.5 Development methodology as risk reduction... 69

4.2 REQUIREMENTS PRIORITIZATION ... 71

4.2.1 Criteria used for prioritization .. 72

4.2.2 Requirements prioritization techniques ... 73

4.3 RATIONALE .. 76

4.3.1 Uses of rationale .. 76

4.3.2 Documenting rationale .. 78

4.3.3 Rationale documentation barrier and FBREM ... 83

4.4 TRACEABILITY .. 84

ix

4.4.1 Motivations for requirement traceability ... 88

4.4.2 Traceability techniques ... 88

4.4.3 FBREM as a traceability technique ... 89

4.5 COMPARISON OF FBREM WITH RELATED TECHNIQUES ... 93

4.5.1 KAOS ... 93

4.5.2 Misuse cases ... 94

4.5.3 NFR framework ... 95

4.5.4 GBRAM .. 95

4.5.5 CORAS ... 96

4.5.6 ATAM .. 97

4.6 COMPARISON OF THE TECHNIQUES .. 98

CHAPTER 5 CONCLUSIONS AND FUTURE WORK .. 100

5.1 CONTRIBUTIONS OF THE THESIS .. 100

5.2 FUTURE WORK ... 102

5.2.1 Complete the current case study .. 102

5.2.2 New case studies in FBREM .. 102

5.2.3 Validate CPN ... 102

5.2.4 Recursive process .. 103

5.2.5 Tool support .. 103

5.2.6 Epilogue .. 107

APPENDIX A WORKED EXAMPLE OF THE FBREM METHOD .. 108

APPENDIX B MODEL DEVELOPED IN ITERATION 1 ... 137

APPENDIX C MODEL DEVELOPED IN ITERATION 2 ... 139

APPENDIX D MODEL DEVELOPED IN ITERATION 3 ... 141

APPENDIX E BPM TOOL SCREENING .. 143

APPENDIX F BPM TOOL EVALUATION ... 144

BIBLIOGRAPHY .. 147

x

List of Figures

Figure 1: Raw process sketch 14

Figure 2: Computerized version of two interviewee sketches of the same process 15

Figure 3: Excerpt of the first iteration of the process model 18

Figure 4: Detail of the "Assign Resources" task 18

Figure 5: Excerpt of the second iteration of the process model 19

Figure 6: Excerpt showing the "Develop Quotation" task 21

Figure 7: FBREM input and output diagram 34

Figure 8: Process-Deliverable Diagram for the FBREM method 36

Figure 9: Levels and types of requirements 41

Figure 10: MACE's Sales and Quotation process 44

Figure 11: Process component 46

Figure 12: Potential failure modes 47

Figure 13: Potential effects of failure modes 48

Figure 14: Potential cause of failure 50

Figure 15: Countermeasures 51

Figure 16: Second Iteration 53

Figure 17: FBREM Workflow 59

Figure 18: Risk assessment process 67

Figure 19: IBIS – Structure (Adhikari & Reinhart, 2006) 79

Figure 20: Sample IBIS map 80

Figure 21: An example of DRL Decision Graph (Jintae Lee, 1989) 81

Figure 22: Rationale and traceability with FBREM sample 82

Figure 23: Extra- and inter-requirements traceability 86

Figure 24: Forward and backward traceability 87

Figure 25: FBREM traceability 90

Figure 26: Traceability case study example 92

Figure 27: KAOS technique 94

Figure 28: Misuse case technique 95

Figure 29: GBRAM technique 96

Figure 30: CORAS technique 96

xi

Figure 31: ATAM technique 97

Figure 32: Architecture of FBREM software tool 104

Figure 33: Tool share interface 105

Figure 34: Tool Graphical Interface 106

Figure 35: Tool Spreadsheet Interface 106

xii

List of Tables

Table 1: Severity ranking table 39

Table 2: Likelihood ranking table 39

Table 3: Risk reduction ranking table 40

Table 4: Requirements derived 54

Table 5: CPN Table 56

Table 6: Requirement Prioritization CPN Table for one Failure Mode 75

Table 7: Completeness of techniques 98

Table 8: Method comparison: Process 98

Table 9: Method comparison: Prioritization 99

Table 10: Method comparison: Rationale and Traceability 99

1

Chapter 1

Introduction

1.1 The importance of requirements

According to the Institute of Electrical and Electronics Engineers, a requirement is a condition or

capability needed by a user to solve a problem or achieve an objective. It is also stated to be a

condition or capability that must be met or possessed by a system or system component in order to

satisfy a contract, standard, specification, or other formally imposed document (IEEE, 1990). Simply

put, requirements are the necessary behaviors a system must exhibit to fulfill desired objectives.

It is a truism of software design that many software projects fail because their requirements are poorly

understood or poorly managed (Dorsey, 2000). A system’s requirements are considered important for

the following reasons:

 They are a key step in evaluating and defining the scope of the project and in prioritizing

user needs and desires (Karlsson & Ryan, 1997)

 They capture the needs of both the users of the system and the constraints of various other

stakeholders, such as the IT support group, and explain why those needs and constraints

should be in place (Nuseibeh & Easterbrook, 2000)

 They provide a description of what the software system should do without specifying how

it should do it. They can thus serve as a checklist against which various vendor software or

candidate designs can be compared (Westfall, 2006b)

 They provide a baseline for software validation, which tests the question “did you build the

right system?”
1
 (Magsarjav, 2004)

Failure to capture requirements adequately can lead to the following problems:

 If requirements are missing, then important needs may have not been addressed in the design,

and so the system fails in use because it does not meet those needs (K. E. Wiegers, 2009)

1
 As opposed to most kinds of software testing, which test “did you build the system right?”

2

 If requirements are missing or are not specified, then the prioritization of various system

features may not have been well done, and so effort will have been expended on features that

are of less importance than those which are missing from the system (Lehtola, Kauppinen, &

Kujala, 2004)

 If requirements are missing then the scope of the project is not fully understood, and so

planning will not be adequate. There may be a need for extensive rework when requirements

are discovered during design, development, testing, or rollout, and so the project exceeds its

timeline or budget. Conversely, if requirements are overstated, then the project will have a

timeline or budget that is excessive compared to what could have been done if requirements

were better understood (Heindl & Biffl, 2005)

 If requirements are not stated as “what” and instead as “how” (that is, if implementation is

provided instead of requirements) then the problem solution space is artificially restricted,

and the resulting system will not make the best use of the possible solutions (Firesmith, 2007)

 If requirements are not well stated, then it will be difficult to validate the system. If

requirements are lacking, then validation of the system will lead to false confidence that the

system was the right one to build (Firesmith, 2007)

Since these problems can cause substantial rework, it has always been considered important to do an

effective job in capturing requirements, to minimize the problems that occur in downstream phases of

a project. For this reason, the classical “waterfall
2
” method of software development puts the

requirements phase at the very beginning of the process. The waterfall method is still very common

in regulated industries, such as aerospace and medical device development, and the importance of

requirements is such that the process is not allowed to proceed until requirements have been signed

off by all stakeholders.

1.2 Problems eliciting requirements

Requirements elicitation and specification is the task of understanding needed behaviors and

determining the implementations needed to achieve them. However, the task of eliciting requirements

is usually not easy, the information needed to formulate solutions is rarely available in explicit form,

2
 The waterfall (Royce, 1987) method proposes a linear, sequential approach to software development

consisting of five phases – analysis, design, coding, testing, and maintenance

3

and information is often distributed across multiple sources, some of which could be conflicting.

Goldsmith states that the elicitation task is “exceedingly difficult” (Goldsmith, 2004). Maynard-

Zhang et al. state that requirements engineering and especially, early-phase designs, are inherently

uncertain (Maynard-Zhang, Kiper, & Feather, 2005).

 The term "elicitation" is preferred to "capture", to avoid the implication that requirements are out

there to be collected simply by asking the right questions—instead they must be elicited from the

users (Jirotka et al. 1994). The process of eliciting requirements spans both problem and solution

domains. Eliciting requirements in the problem domain involves learning, extracting and determining

as precisely as possible the problems that are or could be faced, the context within which that problem

exists, and any rules that will constrain the essential features of solutions to the problem. In the

solution domain, elicitation focuses on the formulation of methods to transform a potential or existing

problem into desirable outcomes. Feng and Eyster assert that the greatest impact of a system

development process occurs during the requirements elicitation and concept formation stages (Feng &

Eyster, 2013). According to Rechtin, this process requires a great amount of creativity, but since

creativity is one of the least understood of human activities, we are at some difficulty to explain the

requirements process (Rechtin, 1991).

 The need to build, change, correct or extend a system is usually as a result of some overarching

business objectives such as the need to comply with regulations, the need to develop a new product,

or the need to re-engineer a business process. These goals are usually broadly and vaguely expressed.

The goals are sometimes not detailed enough to be implemented by a developer, nor specific enough

to be verified by a tester. They may also not be sufficient for cost estimation (Herrmann & Paech,

2007).

The following problems are common in requirements elicitation (Christel & Kang, 1992),

(Sommerville, 2004); (Avison & Fitzgerald, 2006):

 Users are not familiar with the requirements process and have difficulty thinking of needs

in the abstract. Frequently users will want to specify an implementation (e.g. “we need a

folder for work-in-process that has permissions set for only the editors”) instead of

specifying only what the system needs to do (e.g. “work in process must be visible only to

editors”)

4

 Prioritization of needs is not often based on empirical data or well-defined costs, and

instead is an exercise in voting for “favorite” capabilities. Users may overestimate the

actual cost saving of features they personally like, or spend too much time thinking about

user interfaces compared to underlying functionality

 Users are not trained in what features are available in software, so they cannot judge what

features are easily provided or which ones will require significant customization or

configuration (with additional future support issues when software is upgraded)

 Participants in the requirements process may not know what they want until they actually

see an implementation

 The output of the requirements process is a document or entries in a requirements

management system, stated in the form “The system shall do X” and “The system should

do Y”, and hence is abstract rather than practical. Participants in the requirements process

can easily have difficulty visualizing whether the resulting system is really the one they

want

 The process of collecting requirements involves interviews, meetings, and formal

descriptions. Many participants find these activities to be tiresome, conflict-prone, and do

not build confidence in the final result

 Requirements are sometimes elicited by technicians who either have little training in the

subject, or who do not understand the full purpose of requirements for system maintenance

and future upgrades, and so the elicited requirements are not as comprehensive as they

should be

1.3 Agile methods

Partly because of the problems typical in elicitation of requirements, there has been growing interest

in software development methods that are generally known as agile. Agile encompasses a large

variety of techniques, but they share the same general notions (Hazzan & Dubinsky, 2009):

 Systems should be built in increments known as iterations, which are short (less than a

month), result in working software (even if it performs only a very few tasks) and which

build on one another

5

 Working software is more important than documentation

 Development should be test-driven; that is, tests should be built before the software itself is

developed

 Development teams should be comprised of a mix of developers, users, and other

stakeholders, who meet regularly to evaluate the current iteration and to decide on the content

of each new iteration

 The system is done when the team decides that it is done

 Change is permitted and even encouraged during each iteration

In agile methods, there is no “requirements” phase to the project, nor is there a “requirements

document”. The closest one comes to the notion of requirements is that of story; a story is an

explanation of how a specific type of process should work in the resulting system. When an iteration

fulfills its stories and passes its tests, then it has in effect met its “requirements”.

Agile attempts to avoid some of the problems that are known to occur in requirements elicitation

(Kajko-Mattsson, 2008), (Daniel Turk, Robert, & Rumpe, 2005):

 By avoiding a requirements process, agile sidesteps the unfamiliarity of users with that

process

 By having users respond directly to an iteration, agile makes it possible to obtain quick

feedback and to refine users’ desires, to discuss implementations and needs at the same

time, to avoid having to think about an abstract statement of needs, and to learn just-in-

time what software capabilities can be easily provided

 By avoiding the desire to predict the future and only evaluate what is in front of them,

users and developers have a simpler task

 By managing implementation as a series of iterations, agile inherently prioritizes needs

according to what is understood and what can be implemented at each stage, and reduces

the tendency of users to request very elaborate systems or user interfaces

 By working on iterations immediately, the team does not feel like it is delaying the project

with weeks of analysis and documentation

6

1.4 The thesis premises

It is clear that the points mentioned in the previous section are attractive aspects of the agile process,

and if the agile process leads to higher quality software than other methods, then there is a strong

argument to follow the process. But though we accept the proposition that agile methods do not

require that a development process should begin with a formal statement of requirements, then it does

not necessarily follow that a development process should not have as one of its results a formal

statement of requirements.

It is a premise of this thesis that requirements are important for more than just the design of a

software artifact: they are a formalism that has value in auditing, justifying, maintaining and

evolution of software. Scrums and user stories have value in team communications, but they do not

themselves fully capture the decision process in an auditable manner, nor do they require that the

team consider software architecture, maintenance, installation, update, operation, or conformance to

regulations
3
.

It is the premise of this thesis that requirements remain important, even if agile methods are used

to develop software, and that therefore we need to find a middle ground between up-front formal

statements of requirements, as practiced in the “waterfall” method, and the no-requirements informal

approach of agile methods. Other attempts have been made to find such a middle; in particular, the

regulated medical device industry has tried various ways to practice agile software development while

still meeting Food and Drug Administration (FDA) regulations for validated software development

(Dean Leffingwell, 2011).

In this thesis we propose a method called Failure Mode Based Requirement Elicitation Method

(FBREM), which can be used to deduce requirements from systems that have been developed through

an agile process.

 FBREM can be applied after or during the agile process, depending on when a team sees the

need for more formal analysis

3
 Nothing stops these issues from being considered in an agile process; the point is that nothing about the agile

process requires them to be considered, and the output of an agile process is not easily audited to ensure that

those considerations were taken into account.

7

 FBREM provides teams with an objective method for prioritization of requirements based on

business goals and estimates of risk, which is better than leaving the prioritization to team

guesses or development constraints

 FBREM structures requirements so that the rationale of any particular software feature can be

traced back through levels of requirements to the business goal

 FBREM provides traceability between various levels of requirements and software features,

which is useful when considering changes to the software or re-evaluating design decisions

In short, FBREM preserves the benefits of an agile development process, while still resulting in a

formal requirements specification that is well-structured and based on business goals.

1.5 Contributions of the thesis

The contributions of this thesis are as follows.

1. We show how formal statements of requirements can be deduced from artifacts such as user

stories and process maps that result from agile methodologies

2. We show that risk is a useful basis from which to deduce requirements. Empirically we

observe the sensitivity of an agile team to its perceived risks; we then extend this observation

to the idea that many, if not most, requirements are a response to some kind of risk

3. We show that requirements can be structured in levels, depending on the specificity of the

countermeasure

4. We show that an objective prioritization of requirements is possible, based on

countermeasure priority numbers

5. We show how FBREM structures requirements so that the rationale of any particular software

feature can be traced back through levels of requirements to the business goal

We show that FBREM provides traceability between various levels of requirements and

software features, which is essential in software validation, and important when considering

changes to the software or re-evaluating design decisions

8

1.6 Organization of the thesis

The thesis is organized as follows.

Chapter 2 presents a case study of the engineering automation company MACE, who automated

their engineering processes in 2013—2014. This case study includes a project (in which the author

worked) that employed a variant of the agile approach in the development of the system supporting

process automation. A requirements document was not produced, but the project did create a working

software system for managing the automated process.

Chapter 3 presents a method to elicit requirements from the working software developed through

an agile process as described in Chapter 2. The method is based on failure mode and effects analysis,

applied iteratively and intended to develop requirements. We call this method FBREM.

Chapter 4 discusses the FBREM method and its advantages in three areas: requirements

prioritization, rationale, and traceability. Chapter 4 also compares and contrasts FBREM with other

methods for obtaining prioritization, rationale, and traceability.

Chapter 5 contains our conclusions and suggestions for further work.

A full example of the FBREM method for one MACE process is found in Appendix A.

9

Chapter 2

MACE Case Study

2.1 Introduction

This chapter describes an agile development project which we conducted as part of this thesis. We

developed a business process map using a software tool; the process map detailed the business

activities of a medium-sized engineer-to-order firm. The agile development approach was used to

conduct the business process-mapping project. This case study raised interesting observations about

the benefits and defects of agile software development, and led us to the thesis contribution: the

deduction of requirements from agile software development artifacts.

The chapter is organized as follows:

Section 2.2 provides a background of the engineer-to-order firm and the process-mapping project

Section 2.3 outlines the methodology used in conducting the project and discuses the activities and

processes undertaken at various stages of the project

Section 2.4 presents a highlight of the methods used in conducting the process-mapping project and

how they relate to various agile principles

Section 2.5 assesses the goodness of the agile approach as applied in our case study, bringing out the

benefits of the agile approach as well as its drawbacks.

2.2 Background of case study

This case study was conducted at a company that supplies custom automated manufacturing and

testing equipment solutions for diverse manufacturing needs in a variety of industry sectors, including

health sciences, transportation, mining, telecommunications and energy. For reasons of

confidentiality, we will refer to this company as MACE. MACE’s services include the complete

development of equipment, mechantronics engineering, management information systems, and

product deployment and installation.

With a workforce of over 150 and with capabilities in applications development, project

management, mechanical engineering, controls (hardware and software), fabrication, paint and sand

blasting and production (tools, assembly and electrical), MACE offers a complete suite of custom

10

automation service including pre-automation services, project management and post-installation

support services such as training, spare parts management, process optimization, and long term

service agreements.

MACE’s tailored engineer-to-order process begins with a sales lead or request for quotation. An

engineering solution that meets the customer’s expectations is then proffered in a quotation; if the

customer issues a purchase order, the project will be planned and the equipment designed. The project

then proceeds through the manufacturing and assembly, integration and acceptance, tear-down and

ship phases until the equipment installation is finalized a customer’s plant and other project close-out

activities are conducted to conclude the order.

The case (unit of analysis) in our study is a business process mapping project. In order to

improve operational effectiveness and support business growth, MACE developed a process blueprint

that maps their major process steps and workflow involved in the engineer-to-order business

operation. The case study was a funded effort to build on the existing process map by describing

business processes in greater detail, and by identifying a flexible, user-friendly software tool to

implement the process model. As part of this case study we documented the personal knowledge of

work processes held by individual employees and managers, so that this knowledge could be

incorporated into the revised business process.

2.3 Methodology

The empirical data for this case study was collected in semi-structured, open-ended interviews that

were conducted by a team of two (2) researchers
4
 within a 3-month period at the research site.

Interviews were conducted with eight (8) members (including managers) from the Sales and

Applications department, and five (5) managers from other departments that play a role in the Sales

and Quotation phase. In total, 24 interviews were conducted, with several managers being

interviewed two to four times.

The interviews were audio-recorded and subsequently transcribed. Handwritten notes were also

taken during the interview. The interview data were supplemented with company documents such as

training manuals, quotation templates and sample quotation documents.

4
 The researchers were the thesis author and Geovania Pimenta.

11

We next outline in detail the processes and activities undertaken to obtain the business process

model.

2.3.1 Project preparation stage

The preparatory stage of the project involved meeting with the top management to understand the

business needs, goals and objectives of the process-mapping project. The company president gave an

overview of the company’s business and conducted a walk-through of a preliminary model of the

company’s business model. This gave us a baseline understanding of the business operations and

familiarized us with the structure of the company. We also met briefly with key heads of units and

visited the manufacturing facility to have a first-hand look at some of the manufacturing activities.

The output of the preparation stage was a deeper understanding of the case study scenario, and an

understanding of what the company does and how activities are performed at the macro level.

Interactions at the stage introduced us to some of the key individuals in the company. We also

obtained and studied existing documentation such as the company’s organizational chart that showed

us in a graphical format the company’s chain of authority and names and roles of staff members.

Other documents obtained include training manuals, quotation templates and sample quotation

documents. The following project deliverables were required at the end of the project:

1. The process map of selected processes

2. A matrix outlining pros and cons of potential software solutions

3. A software implementation of the process map, using one of the solutions identified in

the matrix

Since one of the major deliverables of the project was identifying potential process modelling

software that the company could adopt and eventually use to execute the company’s process, we

began testing, screening and evaluating Business Process Management (BPM) tools at this stage.

BPM tools are software applications that can be used to diagram and execute business process flows.

These tools usually come with modeling interfaces intended for non-programmers, so that they can be

involved in capturing relevant information about the processes. Some BPM tools support both the

design and digitization of business process, so that the component of the business can be easily

identified and adapted to the ever-changing business requirements. BPM tools support rapid

prototyping and experimentation and would be an essential part of an agile team’s approach to this

12

kind of software problem.

 The first step in the tool selection process was selecting a modeling notation standard for

representing the model, since the chosen notation would determine the set of tools that can be

considered. Among the available notations we identified were the following:

 XML Process Definition Language (XPDL)

 Business Process Execution Language (BPEL)

 Event-driven process chain (EPC)

 Unified Modeling Language Activity Diagrams

 Business Process Model and Notation (BPMN)

BPMN, which is maintained by the Object Management Group
5
 (OMG) was selected, largely because

of its niche in visual expressiveness and richness of language system set compared to the other

notations (BIS, 2010).

Due to the large number of BPMN modeling tools available in the market, and the limited time

available to conduct the tool evaluation, we introduced screening criteria such as cost of acquiring the

evaluation copy of the tool, support for the industry-standard Business Process Model and Notation

(BPMN) and easiness to set-up and configure, to reduce the number of tools to be considered. Eight

(8) tools were eventually evaluated against the following quality criteria:

 Compliance to the BPMN notation standards and notation rules enforcement

 Installability – the system requirements to run the tool in the company system environment

 Interoperability – ability of the tool to integrate with existing infrastructure and file formats

 Learnability – availability of learning materials and ease of mastery of the tool

 Maturity – inclusion and rating in major market reports, licensing cost and vendor support

The table showing the tool screening and table showing the tool evaluation is available in Appendix E

and Appendix F respectively.

5
OMG is an international, open membership, not-for-profit computer industry standards consortium

13

Bizagi Process Modeler was eventually selected as the tool for modelling and documenting the

MACE business process. Bizagi Process Modeler version 2.6 was used in this project.

2.3.2 Model development – Iteration 1

The Sales and Quotation phase of MACE’s business process was selected by management as the

process to be modeled first. The Sales and Quotation phase begins with either the identification of an

informal sales lead, or the receipt of a formal Request For Quotation (RFQ) from a potential

customer. The Sales and Quotation phase ends when the customer’s issued Purchase Order (PO) is

accepted by Sales, or when MACE decides not to bid the job.

Interviews were conducted to learn about the Sales and Quotation business process, the

relationships between workers, the flow of activities and the documentation, as well as information

systems involved in the process. Initial interviews captured the major steps and overall workflow of

the Sale and Quotation phase, while later interviews focused more narrowly on specific steps and

activity details, in order to validate earlier results and to address any remaining gaps in the emerging

business process model.

During the first round of interviews, the managers and engineers from Sales and Applications

department were asked to sketch the processes they participated in, to describe each process in detail,

and to identify any database tools and documents used while performing each process. This made the

modelling process participative, and often the first iteration of a sketch they drew was used as a

thinking model upon which they reflected, discussed further, and then modified to something they

considered better suited. A hand-drawn sketch of the process by one of the interviewees is shown in

Figure 1, while Figure 2 is a computer reproduced version of sketches produced by two interviewees

of the same process.

14

Figure 1: Raw process sketch

15

Figure 2: Computerized version of two interviewee sketches of the same process

The user’s process sketches form a part of the stories that would drive the agile process.

 The process sketches and descriptions from different individuals were compared to examine the

degree of consistency in their perceptions of the Sales and Quotation process. It can be seen in Figure

2 that the process described by two interviewees bears some similarities and differences. Generally,

interviewees listed similar tasks and similar task order at the start of the process, but as the flow

continues, the tasks changed and their order also changed. Interviewee 1 included the task “decide

whether to quote and what type of quotation format to use” but Interviewee 2 did not mention this

16

task at all. Towards the end of the flow description, opinions about the tasks performed and the order

in which they are performed also appear to converge.

Task descriptions were detailed to varying degrees. For example, while one interviewee only

gave a cursory description of the task for developing the engineering concept of the automation

equipment:

Applications engineer addresses the job from an engineering point of

view by developing machine concept.

Another interviewee described the process in detail as:

Design the machine layout using AutoCAD for 2-dimensional designs and

SolidWorks for 3-dimensional designs, simulate the designs to

demonstrate and test its abilities. Determine the cycle time of the machine

based on the design using the cycle time sequence chart, determine the

features and benefits of proposed engineering concept. Review the

concepts with customer and team members and, then, the concept can be

finalized. Pricing is also computed based on the finalized concept and the

outcome of this process is reviewed with supervisors.

Similarly, different individuals perceived the process structure differently. This was particularly

noticeable when members of different departments describe the entire flow of the Sales and Quotation

process. For instance, while members of the Sales department perceived the process of gathering

information about the customer and the business opportunity as important and as one of the earliest

activities to be performed, members of the Application department either didn’t mention this task as

part of the process flow or did not have much to say about the task. Likewise, some other tasks

performed predominantly by Applications were viewed a bit differently by the other departments

involved in the process flow.

Apart from the interviews, we reviewed various existing organizational documents including

original training documents and the company organizational chart, among others, to understand other

details that could have been missed during the interviews. For instance, we requested to review the

quotation documents submitted for different projects. Some opportunities began with well-defined

customer specifications in the form of an RFQ, while others started without any formal specifications

17

from customers, and even vague unspecific requests by customers that did not include feature

preference for the equipment they requested. Other opportunities we reviewed were considered

complex and difficult to achieve from the engineering perspective. We found that there are three

different kinds of quotation; a quotation letter, a budgetary estimate and a firm quotation.

MACE has an in-house-developed enterprise resource planning (ERP) platform that it uses to

manage its engineer-to-order business. Some of the features of the platform include customer

relationship management, quotation management, work order management, job costing, scheduling

and sequencing, and capacity management. We were given a walk-through of this system to

understand how the business activities would make use of it, and so that we could extract process-

related information.

 To initially deduce the main tasks in the Sales and Quotation phase, we selected tasks that were

common in the sketches we obtained from our first set of interviewees. Since interviewees tend to tell

a compact story about the process, we used their stories to corroborate each other. In other words, if

the majority of interviewees mentioned and/or sketched a given process, it was included as a major

process in the model. Activities identified by relatively few interviewees were represented as sub-

processes within major processes, or included as part of the detail of the process. Using this method,

it was possible to distinguish between the overall workflow and the major processes and sub-

processes involved in the Sales and Quotation phase. The inputs and outputs for each process step

were also identified, including documents, database modules or information involved, and forms that

required completion. Detailed descriptions of the activities involved in each process were written, and

the organizational functions and roles performing each process were identified.
6

Having abstracted the information using the method described above, we created the business

process model by visually representing the fundamental structure, the details and the chain of activity

of the Sales and Quotation phase in accordance with the BPMN standards using Bizagi Process

Modeler. An excerpt of the first iteration of the model showing a portion of the layout (including

symbols representing events, sequence flows, message flows, tasks and gateways, pools and lanes) is

presented in Figure 3. The extract of the “Assign Resources” task, showing the performing role,

6
 Various other methods could have been used to identify and define the processes. Using the best method is

not as important as user agreement about the result of the method. Agile techniques rely on user acceptance to

justify their artifacts.

18

description and detail of the task, and the input /output for the task is presented in Figure 4. A

diagram of the model developed in iteration 1 is attached in Appendix B.

Figure 3: Excerpt of the first iteration of the process model

Figure 4: Detail of the "Assign Resources" task

2.3.3 Model development – Iteration 2

This iteration began with a review meeting with the project sponsor. The review meeting gave the

project sponsor a chance to see the extent of work done and provide feedback to the team. It also gave

19

the team a chance to demonstrate the features in the Bizagi Process Modeler, gauge the satisfaction

level of the project sponsor, and gather additional information towards the further development of the

model. Additionally, the meeting gave our team the opportunity to authenticate our interpretation of

the information we had gathered about the company’s activities. A key request we received from this

review was that the model should separate departments into individual lanes rather than grouping all

departments that performed the exactly the same task into a single lane. According to the reviewer,

“separating the departments was a compulsory requirement that must be met before we can proceed

with the job”. His reason was that the appearance of the new model was so different from the original

process map that it risked being rejected by the team that had produced the original process map. An

excerpt of the change that was implemented in iteration 2 is displayed in Figure 5 to show the

separation of the lanes, unlike in Figure 3 showing the departments in a grouped form. A diagram of

the model developed in the second iteration is attached in the Appendix C.

Figure 5: Excerpt of the second iteration of the process model

20

2.3.4 Model development – Iteration 3

The third iteration involved separate meetings with the managers of the Applications and Sales

departments to receive their feedback on the model generated in the second iteration. This led to a

few re-arrangements, both of the location of tasks within a lane (that is, the order in which the tasks

are performed) and the location of tasks between lanes (that is, which department is responsible for

the task). For example, the task “Assign resources” (a task involved with allocating human and

budgetary resources to develop the concept), that was originally within the Sales department lane,

was moved to the Applications department lane when it was agreed that the task is in fact performed

by the Application department wherein the best-fit applications engineer is assigned to develop the

concept, the assigned engineer reviews the RFQ, sets priority for the concept development task and

requests budgetary resources (travel expenses, material, and other) needed to fulfill the task of

developing the concept.

 Apart from reviewing the iteration 2 model, we requested the managers to take us through an

example of a real job that had been previously completed, starting from the point of developing the

opportunity to the point of accepting the purchase order from their customer. The narration was done

without referring to the model. The purpose of this exercise was to gather information about the

dynamics present within the company. This method exposed us to the alternative workflow paths that

exist within the system. We were then able to incorporate activities and sequence flows that might not

normally fall within the “happy trail”, thereby making the model not just a model of an ideal process,

but closer to a real model. Some of the ways we introduced dynamics into the model were to include

feedback loops between tasks, and to append various symbols to some tasks to signify tasks usually

performed repeatedly or tasks usually performed in parallel rather than sequentially. It was noted that

the “Develop Concept” task is quite elaborate, since several other tasks such as machine concept

design, quotation pricing, quotation document writing, RFQ to suppliers etc. were performed within

this task. Consequently, this task was made into a subprocess within the main process in order to

separately model the “Develop Concept” task and hide its complexity in the main model. An excerpt

of the model showing the "Develop Quotation" task is shown in Figure 6.

21

Figure 6: Excerpt showing the "Develop Quotation" task

Besides the qualitative data gathered through interviews, data from the company’s ERP system was

also accessed during this iteration to provide additional insight into the company’s processes.

Quantitative evidence is important because it can indicate relationships which may not be salient to

the researcher or the interviewees. It can also keep the researcher from being carried away by vivid,

but false, impressions in qualitative data, and it can bolster findings when it corroborates those

findings from qualitative evidence (Eisenhardt, 1989).

We did a trace through the database of one of the actual jobs that the managers narrated to us. The

data observed included the date the lead was registered in the database, the customer information

available at that point, the date the lead became an opportunity to be pursued, the name of the

applications engineer who handled the concept development, the parts and stations needed to build

the machine, the engineering design, pricing for each machine component, cost of labor, and so on.

We observed from the data that the version of the quotation document that was finally accepted by the

customer was the seventeenth (17th) version. This information brought to light the fact that the

sequence of flow from the point where the quotation is developed and submitted to the customer to

the point where customer receives and reviews the quotation is bi-directional rather than uni-

directional. This information prompted an update to the model.

 The feedback received at this stage was incorporated into the model as the changes were being

made. Consequently, the participants developed trust and a feeling that they had an impact on the

development of the system. Versions of the model for every major revision were preserved.

22

 Managers of other departments such as Accounting, Project Management, Controls, etc. were

also interviewed specifically about their participation in the Sale and Quotation phase.

2.3.5 Model development – Iteration 4

In the fourth and final iteration, we conducted a group validation meeting. The validation exercise

was conducted to confirm whether the model was a reasonable representation of the real-life process

flow. The meeting was held in a joint session, so that the attendees from different departments could

discuss and decide whether or not the information already captured in the model is what they believed

to be the true representation of their business operation.

 This facilitated validation session began with a run-through of the process map. Conflicting

opinions that were earlier recorded were brought forward during this meeting for discussion. Changes

were made to the model based on feedback from the validation meeting to present a unified view of

the model. The goal of the joint session meeting was to make sure the participants were satisfied with

the model and that consensus was being reached on conflicting ideas.

 While discussing organizational processes and work activities during the interviews, it was

common for interviewees to reflect on the pros and cons of the current process, and to identify

potential areas for process improvement. We brought forward some of the concerns raised about the

current process as recorded during the interviews. The purpose in highlighting concerns was to

stimulate discussions among the attendees, thereby enabling us to confirm the authenticity of the

concerns and also generate additional data for our documentation.

 A sample identified area for improvement was the process for qualifying a lead (or opportunity).

The qualification of a lead or business opportunity at MACE was frequently described by

interviewees as a somewhat subjective, informal process. An important aspect of the subjectivity

relates to the definition of “a qualified opportunity”. Since what is considered a qualified opportunity

differs from person to person, customer to customer, and opportunity to opportunity, there is a risk of

inconsistent treatment of opportunities. It was thought that since the task is one of the earliest

activities in the sales process which is performed to determine whether to pursue, nurture, or discard a

possible business opportunity, an improvement in the qualification process in making the task more

objective might improve the effectiveness of the task.

A diagram of the model produced in the final iteration is attached in Appendix D.

23

2.3.6 Project delivery

Prior to releasing a finalized version of the process map, a release candidate version of the map was

distributed to a restricted group of staff to review the model and report any error with the content of

the map. The review exercise provided an opportunity for members of the review group to familiarize

with the web interface of the Bizagi process map and notify our team of any malfunction. Feedback

obtained from this exercise, though minor, was considered and effected in the map.

 An end-of-project review and close-out meeting were conducted to present the final model to the

management of the company and to review the entire project experience. A report containing valuable

project knowledge, such as the BPM Tool evaluation report, a comparison between the Bizagi model

and the original process map, and potential areas for process improvements was presented and

submitted to the management.

 Recommendations for future work were also documented. For instance, we recommended that

the Bizagi model could now be further expanded to include other business and technical processes

performed at MACE. The interview and data collection methods developed for the Sales and

Quotation phase could be readily adapted to other phases of MACE operations. We recommended

continuity of the modeling work, starting with processes immediately downstream from the Sales and

Quotation phase. Given that downstream activities are affected by decisions made upstream, it is

possible that interviews with downstream roles could identify potential improvements and/or changes

to the Sales and Quotation process to improve overall efficiency and organizational effectiveness.

Thus, further refinement of the current Sales and Quotation model might result from efforts to model

downstream processes.

 Other administrative closeout activities needed to bring the project to an official close, such as

signing off with the project sponsor and completing exit surveys as required by the funding partners,

were also conducted.

2.4 Agile methodology as practiced in the case study

We next turn to a review of the agile methodology as practiced in the case study. Due to the need to

deliver a functional MACE software system within the limited time and budget available to execute

the project, we needed an approach that would rapidly produce a result. The agile approach enabled

the project to begin early, and supported progressive discovery of what needed to be done. The rapid

24

development of iterations helped to support the desired level of visibility of the project. Lastly,

MACE did not request a requirements document or phase, and indeed there was no expectation of a

specification or design document, a test plan, formal validation of the system, or other artifacts of a

formal software development process.

 In the following subsections, we present various agile approaches to development and then

highlight how those approaches pertain to the MACE case study.

2.4.1 Iterative and incremental development

An agile approach involves breaking the development process into small development cycles (Shore

& Warden, 2007). With each development cycle or iteration, additional features are designed,

developed, tested and added to the previous increment, until a fully functional and finalized product is

released to the customer. Iteration in this context refers to the cyclic nature of the development, while

increment refers to the quantifiable outcome of each iteration. Generally we refer to iterative

refinement when the process improves what already exists, and incremental development when the

process results in progress against project objectives (Henney, 2007).

As practiced at MACE: The development of the MACE business process model went through

several iterations. Each iteration was a learning process for us as researchers, since we needed to

understand the company’s processes and determine the level of variability in the business processes,

reflecting these insights in the model. The gradual, incremental process of obtaining information and

validating the model meant that interviewees and reviewers could focus on smaller and hence more

manageable issues during each cycle.

 At earlier stages of the MACE project, the information gathered from interviewees about the

business process varied; however, as we cycled through the iterations and began to show the mapped

process to the interviewees to review and approve, opinions about the process started converging,

leading to stability in the model and a reduction in refactoring activities. Regular review meetings

gave us an opportunity to demonstrate progress to the project stakeholders and build their confidence

in our team. The “fail early” approach meant the potential cost of project failure was drastically

reduced as experienced in one of the iterations, where the reviewer believed an important requirement

was not properly interpreted. It was relatively easy at that early stage to rework the output of that

iteration without a substantial impact on previous deliverables.

25

 Most of the information we intended to capture was tacit knowledge held by staff; thus, it was

unlikely that we could have obtained this information all at once or got everything right the first time.

Information obtained during the cycle of interviews and reviews led to the continuous refinement of

the MACE model.

2.4.2 People-oriented and collaborative development

Agile methods thrive on frequent face-to-face interactions between people, rather than focusing on

structured processes or written documents (Shore & Warden, 2007). The main goal of frequent and

ongoing communication is to ensure that information is quickly shared and the people involved can

expressively communicate in ways a documentation-driven process does not support.

As practiced at MACE: Our experience in the MACE project showed that frequent and open

communication with the project stakeholders provided additional clues that were not easily expressed

in written form. For example, during the interactive sessions held, interviewees were able to provide

us with sketches, system walk-throughs and explanation for the rationale behind some of the

documentation based on past projects, all to communicate salient points that would have been

difficult or lengthy to express in written form.

Since most of the stakeholders in the MACE project participated throughout the process of mapping

and validating the mapped process, it was easy to successfully finalize the project, as they were

already familiar with the outcome and were also accountable to ensure the resulting system met their

expectations.

2.4.3 Change is welcome at any time

Agile methods welcome change, and each new cycle provides an opportunity for incremental

refinement or iterative development (Shore & Warden, 2007). Changes can occur due to new

management priorities, increased understanding by the users or project team, or changes in the

technology being used. Highsmith describes the acceptance of change as an approach that

acknowledges the reality that requirements change and are usually uncertain at the beginning of the

project. Thus, development should not be managed with a fixed and rigid strategy, and instead plans

should evolve based on the feedback from stakeholders and emerging constraints (Highsmith, 2013).

“Complex problems in today's organizations require the interaction of many people, diverse

26

information, out-of-the-box thinking, quick reaction, and, yes, rigorous activity at times” (Orr et al.,

2001).

As practiced at MACE: Successfully executing the project required that we adapt quickly to the

environment and adjust the project plan as the project cycled through the different iterations.

Interviews were conducted to suit the busy schedules of the interviewees, and the mapped process

was constantly adapted to align with the expectation of the stakeholders that were themselves

changing during the project.

2.4.4 Tools for fast cycle times

Agile development depends crucially on tools that enable fast cycle times. “Ten minutes to green bar”

is the agile rule of thumb (Kovitz, 2003); (Dan Turk, France, & Rumpe, 2002) . It is a common

practice in agile development to use established standards and tools that can generate a significant

part of the system automatically in order to deliver a working system fast.

As practiced at MACE: BPMN, a standard for process modelling, was used as the modeling

standards in the project, and Bizagi Process Modeler was the tool that automatically generated a

working system in a transparent and modular configuration.

2.4.5 Document stable knowledge, not speculative ideas

One of the core values of agile is the emphasis it places on working software over comprehensive

documentation (Turk et al., 2002). Contrary to the traditional development methods which promote

expansive production of documents such as the project plan, requirements specification, design

documentation, test plan, user manual, and so on, the agile philosophy focuses on inter-personal

communication rather than documentation. The agile concept asserts that valuable information and

user needs are best obtained when users can see a working model of the system, even with limited

functionality, so long as it is at the beginning of the project when uncertainties are at the highest and

the knowledge about the project outcome is at its lowest. Highsmith & Cockburn put it this way;

“Working code tells the developers and sponsors what they really have in front of them—as opposed

to promises of what they will have in front of them. The working code can be shipped, modified, or

scrapped, but it is always real” (Highsmith & Cockburn, 2001). In a bid to demonstrate or achieve

process standardization, organizations usually develop comprehensive documentation or templates

which tend to grow over time, and are sometimes not used in in day-to-day operations. Instead, agile

27

affirms that documentation should be created only if necessary, and in a just-in-time manner when the

process to be documented is already in a stable state, instead of documenting speculative knowledge

that can often lead to rework or risk being obsolete due to changing business conditions (Ambler,

2007).

As practiced at MACE: In the case study, the main deliverable was an operational process map, so

the agile approach required that project resources should be directed towards producing that outcome

as soon as possible and with limited documentation. To keep communication effective and open in

the MACE project, a web-based project site was set up to promote information sharing and

information management within our team, while we maintained constant interaction with the staff of

MACE who actively participated in the process. A detailed project report was created at the end of

the project to preserve at least some aspects of the project experience. By not isolating needs and

design specifications to the start of the project, the project was able to accommodate unanticipated

events and trade-offs in options for actualizing the deliverables.

2.4.6 Communication

“Face-to-face conversations are the heart and soul of agile projects” (Layton, 2012). The agile method

promotes face-to-face interactions, just-in-time documentation and just-enough documentation over

the traditional method which suggests a plan driven, extensive up-front documentation. Paetsch et. al.

explains that for us to be able to document all the information that is required build a system before

actual development starts, as practiced in traditional method, we must be able to (1) anticipate future

questions and (2) answer them in a concise and understandable manner, and both of these are difficult

(Paetsch, Eberlein, & Maurer, 2003). There is also the risk of documenting more than is actually

required, and the problem of keeping the documents up-to-date as changes occur. The agile

community believes that face-to-face communication is better because it believes that more

information can be gained through informal, personal communications than through formal

documents. Turk et al. assert that the agile approach is based on certain assumptions and that for the

agile method to thrive, some or all of those assumptions must hold true otherwise, the agile approach

will not be able to deliver on its promises (Turk et al., 2002). A core assumption in agile is that

people involved in a project must be engaged in face-to-face interaction through most or all of the life

of the project. Customers are expected to provide input and feedback as need arises. This principle

28

can be observed only when the participants are readily available for face-to-face planning and

reviews. This suggests that the individuals involved are geographically collocated
7
.

As practiced at MACE: In the case study project, face-to-face communications were used for the

bulk of information transmission, both to the project team about the process and from the project team

to the stakeholders about the resulting system. The project team traveled to the MACE site for all of

these face-to-face communications.

2.4.7 Management involvement

The agile method advocates that for the process to be successful, all parties including subject experts

and top management must be willing to participate in constant on-going conversation to ensure that

the process and product knowledge is widely shared and that maintainers are familiar with the system

even during development (Ambler, 2008). Ben Kovitz adds that authority figures with decision-

making power and political will should be a part of this process to ensure success (Kovitz, 2003).

Sillitti et. al. state that participants’ availability is paramount to the success of the agile process, and

that participants should be knowledgable and should have sufficient decision power (Sillitti & Succi,

2005).

As practiced at MACE: The project manager for the MACE project, who is also a vice-president of

the company, was fully involved in driving participation and shielding the project from competing

resource demands. The project sponsor was the CEO of the corporation, and he was completely

committed to the success of the project.

2.4.8 Deliverables

The agile approach asserts the primacy of working software (Hazzan & Dubinsky, 2009): that is, the

best method for demonstrating progress to the customer is by showing the user interface and

demonstrating working features rather than relying on reports, specifications or work plans. The

assumption is that systems can be broken down into loosely-coupled bundles that can be developed in

short iterations
8
. Agile proponents suggest that it is more reliable to infer requirements and design

7
 This conflicts with the frequent practical reality that teams operate from geographically dispersed locations,

spread across multiple time zones and multiple schedules.

8
 This is not always the case, especially in complex systems with features that are tightly dependent on one

another.

29

specifications from software than to capture these specifications in documents, because requirements

and specification documents are not likely to be kept up to date when the software changes. Agile

methods believe the software should be the most accurate and reliable description of what a system

does and how it was designed
9
 (Ambler, 2010).

As practiced at MACE: The executable BPMN model, since it was the focus of the project, seemed

to be sufficient and to meet the agile assumption of “code that documents itself”. It was certainly the

case that the model was easy to maintain because of the Bizagi software tool. Participants were able

to assess the process map early to discover the possibilities and make valuable contributions to the

emerging process map.

2.4.9 Testing

Agile methods recommend the test-driven design approach to software development. Kent Beck

explains that the test-driven method requires that test cases are written first before the system is

developed. If the system runs successfully against the test case, the system is deemed successful; else,

the system has to be worked on further until it successfully passes the test (Beck, 1999). Using this

approach, the system being developed and the documented test cases grow together, and the risk of

the tests not matching the system, or of inadequate tests being developed, is greatly reduced. The

tests case serves as executable documentation of the intent of system (Kovitz, 2003).

As practiced at MACE: We did not develop test cases; instead, we detailed each component of the

model with its rationale so that as the model evolved, the rationale for each component represented in

the model could be checked for consistency and relevance.

2.4.10 Executable specification

The notion of an “executable specification” involves putting information in the most appropriate

place (Ambler, 2013). Instead of tucking relevant information in separate documents such as the

maintenance manual, release notes, agile approaches urge that information should be put where it will

be most useful and where people will most likely find it when they need it. Depending on the needs of

the organization, design knowledge can be stored in test cases or as comments within code. This

9
 Thus introducing the problem: how do we know that a specific software element is a bug or feature? The

assertion that the software itself describes what it is supposed to do (and that passes its tests) logically means

that we cannot infer any other design intent.

30

approach also helps to ensure that supporting information is maintained in a single location,

eliminating the need to update information in multiple sources which could lead to information

inconsistency. Kovitz proposes that the sequence of programming instructions should be built in such

a way that they in themselves are able to communicate the human intentions even without comments,

and that developers who have never seen code at this level of refinement may not know what agile

development demands (Kovitz, 2003).

As praticed in MACE: The MACE process model was built using a well-established mapping

notation and a highly rated and well-documented mapping tool. All of the information provided by

interviewees was either input into the BPMN model or else linked to the BPMN model. However,

the rationale for some of the processes was not captured in the model and remained in interview notes

and other project artifacts.

2.4.11 Follow the user view

Agile methods recommend that development should follow the users’ view rather than the

programmers’ view (Leffingwell, 2011). In agile, requirements are captured as user stories: each

story is a statement expressed in plain language of how we will use the system to achieve specific

goals, rather than in the functional descriptions (such as “the system shall/should…”) typically found

in requirements documents. The reason for this is to ensure that the interpretations of the system by

the developers are clear enough to the users so that they can easily identify and correct gaps and

contradictions. The goal is to ensure that ambiguities will be mitigated and both the developer and the

user have virtually the same picture of the requirements (Rubin & Rubin, 2010).

As practiced at MACE: The process sketches provided by users were the graphical “user story” as

they showed how a user would think of MACE projects proceeding through the various departments.

The use of the BPMN model to capture this story directly meant that we could never drift far from the

original Visio process map, and all project participants could see a model that looked nearly identical

to their original map.

2.4.12 Summary

In summary, then, the process used to develop the Bizagi-based application was an agile development

process for the following key reasons:

31

 The project proceeded by iterations, with review of progress by various members of the

project team

 Each iteration produced a higher level of functionality and content, and revised the

functionality and content of the previous iteration

 The various process sketches in effect constituted the ‘user stories’, and were incorporated in

the final system in an appearance and function very similar to what the users produced

 At no time in the MACE work did we develop a requirements document, and no one

requested that a requirements document or even listing of requirements be produced

 The project team spent most of its time working with artifacts that looked like the eventual

system, and not like formal software development artifacts

2.5 Has agile done the job?

We used an agile approach to develop and implement a working process model for MACE’s Sales

and Quotation process. This approach seemed to satisfy many needs:

 The process model was accepted by the sponsor and participants with enthusiasm

 The selected software was considered both quite affordable and quite usable

 The project was immediately given new funding to work on the other phases of MACE’s

business process

Overall, the system and the project were judged a success—all without ever having written a

requirements document. Has this experience, then, validated the claims of agile methods that

requirements are not needed? Is there any reason to be concerned? Consider the following issues:

 Although we heard many discussions of reasons for various process steps, we did not capture

all the alternatives that were proposed, or the rationales behind those alternatives.

Consequently, if a new project team were formed in the future to modify, maintain, or extend

the MACE process, it would not be able to take advantage of knowledge we gained about

alternatives

 Because we started with an existing process map, it was difficult to depart from it due to the

feeling that “people would think their time had been wasted”. Consequently, we were not

32

able to evaluate other possible process steps or flow that might have been more efficient or

more reliable. We were never able to seriously ask the question: why do you do it this way?

 There was no serious evaluation of alternatives, or indeed even of the existing process steps

as practiced by MACE. There was no metric by which we could measure the benefit of

having one more or one fewer process steps, or of including or excluding a department from a

process step

 There was no overt connection or justification of the steps in the process map to MACE’s

overall business goals, except in the generalized sense that “if we all follow the same process,

at least we’ll have consistency”

The agile method focuses on deliverable software, and thus it is not a surprise that once that software

has been delivered, the method is considered a success. But in most business situations, software is

only part of the overall system that is needed; delivered software is only one step in a series of

software versions; and change and improvement are possible even after the software is delivered.

 Agile focuses so intently on delivered software because of the assumed high risk of not

delivering software, as shown in many failed software projects. This risk is seen as so high that other

risks are taken in order to avoid it, as shown in our considerations above. However, we will show

that the other risks are important too; indeed, the proper identification and management of risk is at

the heart of the method we propose.

33

Chapter 3

The Failure Mode Based Requirement Elicitation Method

(FBREM)

3.1 The FBREM Approach

To introduce requirements elicitation into the agile process, we propose Failure Mode Based

Requirement Elicitation Method (FBREM). FBREM is a method that can be used to expand generic

objectives, user stories, and other agile artifacts into system-specific, realizable and verifiable

requirements.

FBREM identifies posssible failure modes, which are the set of undesirable phenomena imposed

by the malicious objective that will ultimately cause the system to reach a state that is inconsistent

with its goal (Lin, Ince, Moffett, Hall, & Mk, 2003). These failure modes are then quantitatively and

qualitatively analyzed to determine the possible effect of the failures in terms of what the experience

of the failure on end users, the impact of the failures on goals, the root causes of the failures, the

likelihood of the causes of the failure occurring and ultimately, what countermeasures can be put in

place to eliminate the root causes of the failures (or at least alleviate their effects).

As depicted in Figure 7, FBREM takes as input artifacts produced during agile work such as user

stories and process components, and produces from these a formal requirements specification that is

well-structured and based on business goals. In addition to producing and structuring requirements so

that the rationale of any particular software feature can be traced back through levels of requirements

to the business goal, FBREM also provides teams with an objective method for prioritization of

requirements and establishing traceability between various levels of requirements and software

features. FBREM can be applied after or during the agile process, depending on when a team feels the

need for more formal analysis.

34

Figure 7: FBREM input and output diagram

Our contribution with FBREM is to present a risk-driven method for systematically eliciting

concretely specified requirements from agile artifacts in a way that the rationale behind every

functional requirement can be traced to some business objective.

The premise of this approach is that a system exists largely because of the inherent need to

eliminate one form of risk or another: whether it is the risk of not meeting regulatory requirements,

the risk of losing market share, the risk of not meeting customers’ expectations, the risk of exposing

staff to safety or health hazards, or the risk of not making new sales, many business needs can be

expressed as a response to risk.

Our method assumes that understanding risks will help in formulating the best possible

requirements. Our risk-driven approach also attempts to address some of the problems that impede

elicitation of requirements. Such problems include incomplete understanding of needs; incomplete

domain knowledge; ill-defined boundary between the internal workings of the system and its external

environment; difficult to substantiate intentions; unorganized bulky information sources and

overlooking of crucial tacit assumptions (Tsumaki & Tamai, 2005).

The main risk analysis tool used in FBREM is Failure Modes and Effects Analysis (FMEA).

FMEA is a well-established and widely-used reliability engineering tool. The purpose of FMEA is to

identify possible failure modes of the system, evaluate their effects on system behavior, and advance

35

appropriate counter-measures to eliminate or suppress these effects (IEC, 2008). FMEA will be

discussed in detail in later sections.

3.2 Conceptual model of FBREM

We present in this section the various elements of FBREM using the process-deliverable diagram

(PDD) shown in Figure 8. A PDD is a meta-modeling technique used in the creation of methods in

order to show the stepwise activities and actions as well as the deliverables produced from each of the

activities (Syed et al. 2008). The left side depicts the process steps of FBREM, and the deliverables

produced in each of the activities performed are on the right side.

36

Determine the effects

of each failure mode

Determine the causes

of each failure

Business goals

Determine

countermeasures

for each failure

Determine the

detection ranking

Calculate RPN

BUSINESS GOAL

PROCESSES

consist of

FAILURE MODES

EFFECT OF FAILURE

CAUSE OF FAILURE

Determine the potential

failure modes

Determine the severity

ranking

Determine the

occurrence ranking

Determine the process

components

threatens

RISK PRIORITY

NUMBER

SEVERITY RANKING

OCCURRENCE

RANKING

DETECTABILITY

RANKING

causes

results in

threatens

solves/mitigate

prioritizes

based on

COUNTERMEASURE

Goal-level requirement

Domain-level requirement

Product-level requirement

Figure 8: Process-Deliverable Diagram for the FBREM method

37

At a high level, FBREM proceeds as follows:

1. Determine business goals

2. Determine process components

3. Determine failure modes

4. Determine effects of failure

5. Determine causes of failure

6. Determine countermeasures

7. Determine detection ranking

8. Calculate CPN

Using the process deliverable diagram as depicted in Figure 8, we next describe each of the

components of FBREM.

 Business goals are the primary intentions of the business. They are the expected results and

outcomes the business desires to achieve and hence, to which it is willing to commit resources. The

business goals determine the nature of resources such as people, processes or tools that will be

required; therefore, the business goal is a form of high-level requirement. Examples of such business

goals could be “Reduce total greenhouse gas emissions by 20 per cent in six months”, “Increase sales

by 30%”, “Ship goods to customers at minimal cost” and “Efficiently conduct the sales initiation and

leads qualification process”. Business goals are usually stated in broad terms, as they represent

general intentions and may not be directly translatable into functional behaviors. Business goals are

typically the desired end result of user stories in an agile process.

 Process components are the constituent parts of the business that work together to produce a

result. Process components provide the set of related structured tasks and processes that is in place to

achieve some activity. For a business goal that involves shipping goods to customers at minimal cost,

some of the process components may include: scheduling manufacturing, finding a low-cost shipper,

finding a low-cost insurer and so on. Process components contain information about business

activities, business entities, workflow structure and other constraints related to realizing some

activity. Process components can be visually modelled in a format that shows the workflow between

the various components using a notation such as Business Process Modeling Notation (BPMN) used

in our case study discussed in Chapter 2. Process components are typically described as user stories

in an agile process.

38

 Failure modes are the ways (modes) in which process components are potentially unable to

meet business goals. Failure could mean failing to performing the task as intended, not performing the

task within the expected time limit, a malfunction occurring while performing the task, or not

performing the task at all (Carlson, 2012). Failure modes in process components or subsystems could

also arise due to failures in a lower-level subsystem or could cause a failure in a higher-level

component (Gan, Xu, & Han, 2011). A list of potential failure modes would be generated by

conducting the “determine potential failure mode” task for the particular component, subsystem, or

system that is being considered. Failure modes do not have a direct analog in agile methods, nor do

any of the remaining components of FBREM.

 In FBREM, failure modes are anti-requirements, that is, they correspond to “shall not”

behaviors of the system. Examples of failure modes for a sale might be “customer’s credit check not

conducted”, or “customer credit score wrongly computed”. Identifying failure modes and then stating

that these should not occur, is the FBREM approach to eliciting requirements.

 Effects of failure modes are the consequences of a failure mode on the business goal, processes,

systems or functions. Failure effects are described in terms of what a customer or end-user might

experience. For the failure mode “customer’s credit check not conducted” a potential effect could be

“granting credit to a customer who has a bad credit history”; this could eventually lead to the effect

“loss in revenue for the company”. The effects of a failure mode can have impact in varying degrees;

some effects are more severe than some others. Hence, there is a need to estimate the impact of the

effect using the severity rating scale.

 Severity is a numerical ranking of the impact an effect would have on the business goal,

processes, systems or functions if the failure mode occurs. In our study, a scale of 1 to 5 was used,

where 1 indicates an insignificant effect and 5 indicates an effect that critically impacts the intended

result
10

. This scale is a relative ranking within the scope of the specific business goal, and is

determined without regard to the likelihood of occurrence or detection (Carlson, 2012) . The severity

scale used in our case study is shown in Table 1. For example, the severity of a failure mode will be

ranked “5” or Critical if, when the failure mode occurs, the customer will not eventually issue a

purchase order.

10
 The choice of scale from 1 to 5 is common in Risk Priority Number (RPN) practice, which is why we used it

here. The FBREM method could use a different scale if that was determined to be more appropriate.

39

Ranking Effect Severity of Effect

1 Insignificant None

2 Minor RFQ rework, Clarification meetings

3 Moderate Multiple proposal revision

4 Major Inability to submit a complete proposal

5 Critical Customer does not issue PO

Table 1: Severity ranking table

 Potential causes of failure include causes both internal and external to the business goal,

processes, systems or functions. For each mode of failure, causes are identified. An example of such a

cause would be “software failure “which can result in delay (failure mode) in processing the credit

check.

 Likelihood is a numerical ranking indicating the likelihood that the potential cause of failure

will occur. The likelihood ranking is a relative value and it is determined without regard to the

severity of the effect of the failure or the likelihood of detecting a failure mode arising from a

particular cause. As with severity, we used a scale of 1 to 5 in our study to indicate range of

likelihood. A ranking of 1 indicates that the failure cause is very unlikely to occur (that is, the

likelihood of the cause of failure is 1/100) whereas, a ranking of 5 indicates a frequency of 1/5 and it

is described as very likely to occur. The Likelihood scale used in our case study is shown in Table 2.

For example, a potential cause of failure is ranked “1” or Very unlikely, if its average frequency of

occurrence is 1 in every 100 business opportunity considered. Likelihood is determined by the

members of the project team.

Ranking Likelihood Frequency (1 in _)

1 Very unlikely 100

2 Unlikely 50

3 Possible 30

4 Probable 20

5 Very likely 5

Table 2: Likelihood ranking table

40

 Countermeasures are mitigation, detection, or prevention mechanisms. By identifying

countermeasures, we identify mechanisms that will provide the functionality that avoids the anti-

requirements, or conversely, meets the requirements. Countermeasures may include actions,

processes, devices, solutions, functionalities, systems or features intended to prevent the failure mode

from compromising the business goal. Countermeasures as identified by FBREM are treated as

requirements that have been elicited and rationalized by identifying unwanted failure modes and

countering them with the countermeasures.

 Risk reduction is a numerical ranking that assesses the likelihood that the countermeasure

provided to prevent the cause of the failure mode from occurring will detect the failure mode (IMCA,

2002). Table 3 shows the scale used in our study, where 1 indicate that the countermeasure most

certainly detects the failure mode and 5 indicate that the countermeasure cannot detect the failure.

The risk reduction ranking is a relative ranking within the scope of the specific business goal and is

determined without regard to the likelihood or severity of the failure (Carlson, 2012). For example, a

countermeasure is ranked “1”, that is, almost certain, if its chances of mitigating the potential failure

mode is greater than 90%. Risk reduction is evaluated so we can compare countermeasures.

Ranking Risk reduction Chances

1 Almost certain > 90%

2 High > 60 to 90%

3 Moderate > 40 to 60%

4 Low >1 to 40%

5 Absolute uncertainty Cannot reduce

Table 3: Risk reduction ranking table

 The requirements elicited as countermeasures can be derived at different levels of detail, with

each level addressing different needs. Westfall categorized different levels of requirement as Business

level, User level and Project level (Westfall, 2006b). Adapting this categorization to FBREM, at the

top we have the business requirements, representing the high-level detail of what needs to be done to

mitigate the failure mode. The business requirement defines the scope from which the other levels

and types of requirements will be derived to provide the desired solution.

41

Business
Requirement

User requirements Business rules Quality attributes

Constraints
Functional

requirements
Non-functional
requirements

Data requirements
Requirements
specification

External Interfaces
Requirements

Business level

User level

Product level

Figure 9: Levels and types of requirements

The second level (the user level) addresses the user requirements. This level describes what the users

will need from the solution. It specifies how users will be able to interface with the solution in order

to achieve the business goals. The other types of requirements generated at this stage include business

rules which defines the structure that controls the operation of the intended solution, they include

policies and practices, and quality attributes (such as usability, efficiency, portability, and

maintainability) which are characteristics that define the qualities of the intended solution (Wiegers,

2000).

 The requirements derived at user level can be used to generate the third requirement level, which

is the product level. This level identifies specific behaviors that must be exhibited by the intended

solution in order to fulfill the user level requirements, business level requirements and ultimately, the

broadly stated intentions of the business goals (Wiegers, 2000). Types of requirements specified at

the product level include solution constraints which define any restrictions on the solution design, the

external interfaces requirements which define the requirements for sharing information with parties

or systems external to the intended solution, data requirements which specifies the content and

42

structure of the data for solution, and the functional requirements which specifies that functionality

and features that the solution should have in order to fulfill the user requirement.

 As depicted in the Process-Deliverable Diagram shown in Figure 8, iterating over the process

through the “determine potential failure modes”, “determine the effect of each failure mode”,

“determine the cause of each failure” and “derive the countermeasure for the failure” processes

produces different levels and types of requirements.

 For each failure mode identified, the causes and effects as well as the countermeasures that

address the causes of the failure are determined, and the countermeasures identified are the

requirements. Each of the requirements identified belongs to a requirements type and requirements

level category. The first iteration usually produces business level requirements. For each

countermeasure determined, possible ways in which it can fail are identified, along with the causes of

the potential failure and their effects, and corresponding countermeasures. Similar to the first

iteration, the countermeasures identified at this stage are also a type of requirement, but at a lower

level. The iteration process can be continued until the desired level of detail of requirement and type

of requirement is elicited. The final iteration should produce the product level requirements from

which a requirement specification document which contains the constraints, functional requirements,

non-functional requirements, data requirements, external Interfaces requirements and any other

requirement that contain enough and all necessary information that is required to attain the business

goal is documented.

 For each pair (failure mode, countermeasure), a countermeasure priority number (CPN) can be

calculated. Each failure mode gets a numeric score that quantifies

(a) the likelihood that the failure will occur

(b) the ability of the countermeasure to reduce the risk of the failure mode occurring

(c) the severity the effect of the failure will have on the business goal

The product of these three scores is the countermeasure priority number (CPN) for that failure mode

CPN is based on the notion of risk priority number or RPN, which is the product of risk severity, risk

likelihood, and risk detectability (IHI, 2013). RPN is a commonly employed metric in risk analysis

43

(Carbone & Tippett, 2004). CPN is similar in that it considers the severity and likelihood of the risk,

but it includes the risk reduction estimate of the countermeasure; thus, it gives us a measure of the

residual risk after the countermeasure is applied.

 Multiple countermeasures can typically be generated for each failure mode. Since we do not

always want to implement multiple countermeasures, there is a need to evaluate the countermeasures

to determine which ones to use. CPN is a valuable tool for quantifying options to realize the business

goals within the bounding condition, since for each particular risk, CPN tells us the relative goodness

of each countermeasure. Other parameters such as cost of implementation, implementation time,

nature of resources required and how urgently the countermeasures need to be implemented are some

of other estimates that could benefit from CPN. Another important use of CPN is to assess the

effectiveness of the countermeasures after they have been implemented. Calculating CPN before

implementing the countermeasure and after the countermeasure (when we might have more empirical

data about severity, likelihood, and risk reduction) could improve our ability to determine the

effectiveness of countermeasures.

3.3 An application of FBREM

In this section, we illustrate FBREM by applying it to the MACE case study. Our illustration will be

limited to the Sales and Quotation phase of the business process, just as in Chapter 2, although

FBREM could be applied to any phase of any business process. The portion of the process under

consideration is shown in Figure 10.

44

Figure 10: MACE's Sales and Quotation process

FBREM can be managed in spreadsheet tables, or by graphical structuring of the elements according

to the analytic hierarchy process described on page 58. A graphical technique will be used to

demonstrate selected elements of FBREM process in this section. The entire FBREM requirement

elicitation process, using a spreadsheet format, can be found in Appendix A.

45

Step 1: Determine the business goal

The business goal of the Sales and Quotation process is to initiate the sales process and screen out

undesirable leads.

Step 2: Determine the process component

Process components are the constituents parts of the business that will work together to produce the

result intended by the business goal. The BPMN diagram shown in Figure 10 consists of process

components including activities, events and gateways.

Activities are tasks that are performed within the process. The activities are:

1. Develop opportunity

2. Add customer information to the database

3. Create the quote information in the database

4. Qualify the opportunity

5. Perform credit check

6. Log decision whether or not the job is qualified into the database

7. Communicate decision not to quote job to customer is the job will not be quoted

8. Gather further information about the opportunity

9. Assign human and material resources to develop the equipment concept.

Events are occurrences that happen within the process. The events are:

1. Enter the custom manufacturing process

2. Enter the warranty process flow

3. Enter the concept development process

Gateways control the flow of the process. The gateways are:

1. What is the nature of the opportunity?

2. Is job qualification successful?

46

For demonstration purposes, we will apply FBREM only to the process components shown in Figure

11.

<< Business Goal >>

Sales initiation and
qualification

<< Process Component >>

Develop Opportunity
1.0

<< Process Component >>

Determine the nature
2.0

<< Process Component >>

Add customer info
3.0

<< Process Component >>

Create Quote #
4.0

<< Process Component >>

Qualify Opportunity
5.0

Figure 11: Process component

The “Develop opportunity” process component involves sourcing and identifying business

opportunities for the company. These opportunities can come as business leads or in form of Requests

for Quotation. “Determine the nature of the opportunity” is a quick assessment to determine if the

opportunity fits the MACE business profile, or if it should be referred to some other division of the

company. “Add customer information to the database” is the process of maintaining customers and

opportunity-related information in the Enterprise Resource Planning (ERP) system. “Create quote

number” involves initializing the quotation creation process in the ERP: a quote ID is created and

quotation templates are generated. “Qualify Opportunity” is an opportunity pre-qualification activity,

in which the opportunity is to be assessed for the likelihood of winning a purchase order (PO).

Step 3: Determine the potential failure modes

We next determine the failure modes for each of the process components. For this example, we limit

the failure modes determination to the “Develop Opportunity” and “Qualify Opportunity”

components, although they can be defined for any of the process components. Failure modes are

determined by considering questions such as: In what way can the process fail to perform its intended

function? In what way can the process perform an unintended function? What has gone wrong with

the process in the past? How could the process be abused? (Carlson, 2012). For “Develop

Opportunity”, the following failure modes were determined:

 Lengthy sales cycles (1.0.1)

 Over competition (1.0.2)

 Lack of required certification (1.0.3)

47

 Limited resources to undertake sales activities (1.0.4)

 False leads (1.0.5)

For “Qualify Opportunity” the following failure modes were determined:

 Invalid opportunity assessment (5.0.1)

 Evaluation result is not used (5.0.2)

 Opportunity is not qualified (5.0.3)

The graphical representation of the failure mode decomposition is shown in Figure 12.

<< Business Goal >>

Sales initiation and
qualification

<< Process Component >>

Develop Opportunity
1.0

<< Process Component >>

Determine the nature
2.0

<< Process Component >>

Add customer info
3.0

<< Process Component >>

Create Quote #
4.0

<< Process Component >>

Qualify Opportunity
5.0

<<Failure Mode>>

Lengthy sales
cycles

1.0.1

<<Failure Mode>>

Over competition
1.0.2

<<Failure Mode>>

Lack of required
certification

1.0.3 <<Failure Mode>>

Invalid opportunity
assessment

5.0.1

<<Failure Mode>>

Evaluation result is
not used

5.0.2

<<Failure Mode>>

Opportunity is not
qualified

5.0.3<<Failure Mode>>

Limited resources to
undertake sales activities

1.0.4

<<Failure Mode>>

False leads
1.0.5

Figure 12: Potential failure modes

Step 4: Determine the effects of each failure mode

The effects of a failure mode are the impacts of that failure occurring. We determine effects of failure

modes by asking questions such as “What adverse consequences could be experienced by the

company, opportunity or customer if the failure mode occurs?” and “Could the failure mode result in

the violation of a regulatory requirement?”

48

The effects of each of the failure modes for our example are graphically displayed in Figure 13. The

consequences of “Invalid opportunity assessment” failure mode on the “Qualify opportunity” process

are determined to be

 Potential loss of the business opportunity (5.0.1.1)

 Potentially committing resources to an invalid opportunity (5.0.1.2)

 Potentially failing to properly identify the nature of the opportunity (5.0.1.3)

The effects of the failure modes “Evaluation result is not used” and “Opportunity is not qualified” are

determined to be:

 Potentially accepting a “bad” opportunity (5.0.2.2, 5.0.3.2)

 Failing to properly identify the nature of the opportunity (5.0.2.1, 5.0.3.1)

<< Business Goal >>

Sales initiation and
qualification

<< Process Component >>

Qualify Opportunity
5.0

<<Failure Mode>>

Invalid opportunity
assessment

5.0.1

<<Failure Mode>>

Evaluation result
is not used

5.0.2

<<Failure Mode>>

Opportunity is not
qualified

5.0.3

<<Potential Effect>>

The business opportunity
is lost
5.0.1.1

<<Potential Effect>>

Resources are committed
to an invalid opportunity

5.0.1.2

<<Potential Effect>>

Fail to properly identify
opportunities

5.0.1.3, 5.0.2.1, 5.0.3.1

<<Potential Effect>>

"Bad" opportunity is
accepted

5.0.2.2, 5.0.3.2

 Figure 13: Potential effects of failure modes

Step 5: Determine the causes of each failure

The causes of a failure are the reasons why a failure mode occurs. The causes are determined by

asking questions such as: “What could cause the kind of failure effects experienced?” and “Are there

49

actions that can result in those effects if performed or if not performed?” and “Can a combination of

causes result in a new kind of failure effect?”

 The identified causes of the failure modes in our example are shown in Figure 14. It was

discovered that each of the potential effects of failure modes can be traced to one or more causes. The

causes were determined to be:

 Evaluation criteria not well defined

 Evaluation criteria not evaluated for opportunity

 Assessment is not done by trained individual

 Assessment is done by trained individual but they do not apply procedure correctly

 Evaluation result is not used

 Lack of sufficient data to do proper evaluation

 Lack of sufficient time to do proper evaluation

 Lack of standard operating procedure

 Disregard for standard operating procedure

 Lack of training on procedure

50

<< Business Goal >>

Sales initiation and
qualification

<< Process Component >>

Qualify Opportunity
5.0

<<Failure Mode>>

Invalid opportunity
assessment

5.0.1

<<Failure Mode>>

Evaluation result is
not used

5.0.2

<<Failure Mode>>

Opportunity is not
qualified

5.0.3

<<Potential Effect>>

The business
opportunity is lost

5.0.1.1

<<Potential Effect>>

Resources are
committed to an

invalid opportunity
5.0.1.2

<<Potential Effect>>

Fail to properly
identify

opportunities
5.0.1.3, 5.0.2.1, 5.0.3.1

<<Potential Effect>>

"Bad" opportunity is
accepted

5.0.2.2, 5.0.3.2

<<Potential Causes>>

Evaluation criteria
not well defined

5.0.0.0.8

<<Potential Causes>>

Evaluation criteria
not evaluated for

opportunity
5.0.0.0.1

<<Potential Causes>>

Assessment is not
done by trained

individual
5.0.0.0.2

<<Potential Causes>>

Assessment is done by trained
individual but they do not

apply procedure8 correctly
5.0.0.0.6

<<Potential Causes>>

Evaluation result is
not used

5.0.0.0.4

<<Potential Causes>>

Lack of sufficient data
to do proper evaluation

5.0.0.0.5

<<Potential Causes>>

Lack of sufficient time
to do proper evaluation

5.0.0.0.10

<<Potential Causes>>

Lack of standard
operating procedure

5.0.0.0.7

<<Potential Causes>>

Disregard for
standard operating

procedure
5.0.0.0.3

<<Potential Causes>>

Lack of training on
procedure

5.0.0.0.9

Figure 14: Potential cause of failure

Step 6: Determine the countermeasures for each failure mode

A countermeasure is a technique that will stop the cause of a failure mode, and thus reduce or

eliminate the likelihood of the failure mode occurring. Some questions recommended by Carlson that

could be considered in order to derive countermeasures include (Carlson, 2012):

 What can be done to reduce the impact of the failure to a safe level by modifying the process?

 If the process fails, how can the company be protected from breaching contracts or

regulations?

 How can the current process be made more robust?

51

 What tests or evaluation techniques need to be added or modified to improve chances of

detecting erros before they can occur?

 What warning signs mechasim can be built into the process?

 If the recommended actions are implemented, will they be sufficient to reduce the severity of

and likelihood of failures?

The countermeasures shown in Figure 15 were determined to mitigate the potential risks faced by the

business goal by carrying out the Qualify opportunity process component:

 Experienced staff should handle task (5.1)

 Senior management should review “Qualify Opportunity" decision (5.2)

 Opportunity qualification should be standardized by conducting “Leads Scoring” (5.3)

 Standard operating procedure should be created (5.4)

 Staff should be trained (5.5)

<<Countermeasure>>

Experienced staff
should handle task

5.1

<<Countermeasure>>

Senior Management
should review “Qualify
Opportunity" decision

5.2

<<Countermeasure>>

Opportunity qualification
shall be standardized by

conducting “Leads
scoring”

5.3

<<Countermeasure>>

Standard operating procedure
shall be used to guide the

qualification process
5.4

<<Countermeasure>>

Staff should be
trained

5.5

<<Potential Causes>>

Evaluation criteria
not well defined

5.0.0.0.8

<<Potential Causes>>

Evaluation criteria
not evaluated for

opportunity
5.0.0.0.1

<<Potential Causes>>

Assessment is not
done by trained

individual
5.0.0.0.2

<<Potential Causes>>

Assessment is done by trained
individual but they do not

apply procedure8 correctly
5.0.0.0.6

<<Potential Causes>>

Evaluation result is
not used

5.0.0.0.4

<<Potential Causes>>

Lack of sufficient data
to do proper evaluation

5.0.0.0.5

<<Potential Causes>>

Lack of sufficient time
to do proper evaluation

5.0.0.0.10

<<Potential Causes>>

Lack of standard
operating procedure

5.0.0.0.7

<<Potential Causes>>

Disregard for
standard operating

procedure
5.0.0.0.3

<<Potential Causes>>

Lack of training on
procedure

5.0.0.0.9

Figure 15: Countermeasures

52

Step 7: If countermeasure is not a product level requirement, go to Step 3 and iterate

In Figure 15, each of the elicited countermeasures describes user level requirements, including user

requirements (e.g., opportunity qualification shall be standardized by conducting “Leads scoring” and

standard operating procedure shall be used to guide the qualification process) and business rules

(e.g., experienced staff should handle task, senior management should review “Qualify opportunity

decision). User level requirements tells what should be done, however, we must derive the product

level requirement that will specify how the user level requirements will be achieved. This involves

determining the functional requirements, non-functional requirements, data requirements, external

interfaces requirement and other constraints.

 To derive the product level requirements, we will return to step 3 as stated in section 3.3 to

determine the failure modes, effects of failure, causes and the appropriate countermeasures, except

that this time we will apply that activity to each countermeasure, instead of each process component.

The process will be repeated on the countermeasure derived in each iteration until we elicit explicit

requirements that specify how the product needs to be put together to satisfy the business needs.

 The outcome of the second iteration is shown in Figure 16.

53

<<Countermeasure>>

Experienced staff
should handle task

5.1

<<Countermeasure>>

Senior Management
should review “Qualify
Opportunity" decision

5.2

<<Countermeasure>>

Opportunity qualification
shall be standardized by

conducting “Leads
scoring”

5.3

<<Countermeasure>>

Standard operating
procedure shall be

created
5.4

<<Countermeasure>>

Staff should be
trained

5.5

<<Failure Mode>>

Lead scoring module
is not being used

5.3.0.4

<<Failure Mode>>

Data is not entered
correctly into the leads

scoring module
5.3.0.1

<<Failure Mode>>

Wrong scoring
criteria/business

rule
5.3.0.2

<<Failure Mode>>

Data required to
complete the lead scoring

module is not available
5.3.0.3

<<Potential Effect>>

Wrong decision is
taken about the

opportunity
5.3.0.1.1, 5.3.0.2.1

<<Potential Effect>>

Qualification is
conducted

subjectively
5.3.0.3.1, 5.3.0.4.1

<<Potential Cause>>

Time pressure
5.3.0.0.1

<<Potential Cause>>

Too many form fields
5.3.0.0.2

<<Potential Cause>>

No guide on how to fill
form
5.3.0.0.5

<<Potential Cause>>

No data validation
5.3.0.0.6

<<Potential Cause>>

No staff training
5.3.0.0.3

<<Potential Cause>>

Essential information is
not captured

5.3.0.0.7

<<Potential Cause>>

Leads scoring rules are
not valid

5.3.0.0.4

<<Countermeasure>>

Minimal number of fields shall
be used on the form to reduce

the time spent filling form
5.3.1

<<Countermeasure>>

Existing customer information shall
be automatically pulled from the

DB to eliminate the need to
search/fill such information

5.3.2

<<Countermeasure>>

Fields shall be
validated before

submission
5.3.6

<<Countermeasure>>

Mandatory fields shall
be indicated to users

5.3.5

<<Countermeasure>>

Use select inputs
instead of free
inputs where

applicable
5.3.3

<<Countermeasure>>

The following information shall be captured
 a. Company name – add a company name and assign a score
 b. Size – Choose the company size from the drop down options and assign a score
 c. Revenue - Choose the revenue size from the drop down options and assign a score
 d. Industry - Choose the industry from the drop down and assign a score
 e. Location – Choose the location from the drop down and assign a score
 f. Job title - Add the job title in the box provided and assign a score.
 g. No of Visits – Specify the number in the box provided for no of visits and assign a score.

5.3.7

<<Countermeasure>>
The following criteria shall be used to score leads

Criteria Excellent Prospect Okay Prospect Bad Prospect
Contact Job Title Senior Mgt. (10) Middle Mgt. (5) Team member (1)
Location Canada (10) US (5) Others (1)
Company Size > 5,000 (10) 1,000-5,000 (5) < 1,000 (1)
Industry Automotive (10) Medical (5) Solar (1)
Budget > 50,000 (10) 10,000-50,000 (5) < 10,000 (1)

5.3.4

Figure 16: Second Iteration

54

A list of the requirements derived in the second iteration is shown in Table 4.

Requirement level ID Requirement

Business Goal Sales initiation and qualification

Business level

requirements

5.0 Qualify business opportunity

User level

requirements

5.3 Opportunity qualification shall be standardized by conducting “Leads scoring”

Product level

requirements

5.3.1 Minimal number of fields shall be used on the form to reduce the time spent

filling form

5.3.2 Existing customer information shall be automatically pulled from the DB to

eliminate the need to search/fill such information

5.3.3 Required fields shall be indicated to users

5.3.4 Fields shall be validated before submission

5.3.5 Use select inputs instead of free inputs where applicable

5.3.6 The following criteria shall be used to score leads

Criteria Excellent

Prospect

Okay Prospect Bad Prospect

Contact Job

Title

Senior Mgt. 10 Middle Mgt. 5 Team

member

1

Location Canada 10 US 5 Others 1

Company

Size

> 5,000 10 1,000-5,000 5 < 1,000 1

Industry Automotive 10 Medical 5 Solar 1

Budget > 50,000 10 10,000-

50,000

5 < 10,000 1

5.3.7 The following information shall be captured 

a. Company name – Add a company name and assign a score

b. Size – Choose the company size from the drop down and assign a score

c. Revenue - Choose the revenue size from the drop down and assign a score

d. Industry – Choose the industry from the drop down and assign a score

e. Location – Choose the location from the drop down and assign a score

f. Job title - Add the job title in the box provided and assign a score

g. No of Visits – Specify the no of visits and assign a score

Table 4: Requirements derived

55

Step 8: Determine the Severity, Likelihood, Risk reduction and CPN scores

Severity, Likelihood and Risk reduction rankings are made of the effects, causes and countermeasures

respectively. Countermeasure Priority Number, which is the product of the severity, likelihood and

risk reduction ratings, is calculated as shown on page 42. CPN shows the relative likelihood of a

failure mode with a particular countermeasure: the higher number, the higher the failure mode. From

CPN, a critical summary can be drawn up to highlight the areas where action is most needed

(Hekmatpanah, Shahin, & Ravichandran, 2011).

56

Potential

Failure Mode

Potential Effect(s) of

Failure

S
ev

erity

Potential Cause(s) or

Mechanism(s) of Failure

L
ik

elih
o
o

d

Countermeasure
R

isk
 red

u
ctio

n

C
P

N

Invalid

opportunity

assessment

The business opportunity

is lost
5

Evaluation criteria not well

defined
4

Create leads scoring

module

- Standardize the

qualification criteria

2 40

Resources are committed

to an invalid opportunity
3

Evaluation criteria not

evaluated for opportunity
5

Create standard

operating procedure
3 45

Fail to properly identify

opportunities
2

Assessment is not done by

trained individual
2 Staff training 1 4

Assessment is done by

trained individual but they

do not apply procedure

correctly

1
Create standard

operating procedure
2 4

Evaluation result is not

used
4

Create standard

operating procedure
2 16

Lack of sufficient data to

do proper evaluation
4

Create standard

operating procedure
4 32

Lack of sufficient time to

do proper evaluation
2

Create standard

operating procedure
4 16

Evaluation

result is not

used

Fail to properly identify

opportunities

 3 Lack of standard operating

procedure
5

Create standard

operating procedure
1 15

"Bad" opportunity is

accepted
5

Lack of adherence to the

standard operating

procedure

2 Staff training 2 20

Lack of training on

procedure
5 Staff training 1 25

Opportunity is

not qualified

Fail to properly identify

opportunities

 4 Lack of standard operating

procedure
5

Create standard

operating procedure
1 20

"Bad" opportunity is

accepted
5

Lack of adherence to the

standard operating

procedure

2 Staff training 2 20

Lack of training on

procedure
5 Staff training 1 25

Table 5: CPN Table

57

3.4 Definition of FBREM method

FBREM is a risk-driven method for eliciting and specifying unambiguous, consistent, traceable and

testable requirements from broad, high level business goals. The FBREM method aims at:

 Systematically eliciting requirements by having the project team identify risks and

countermeasures

 Progressively refining the business level requirements to derive all necessary information that

is required to implement the best design

 Presenting the requirements in a format that is understandable to both decision makers who

require information to help justify their decision, and to implementers who require specific

implementation details

 Providing a means of evaluating requirements in order to assess the impact that the

requirements, if implemented, might have on the business goals

The method consists of four main phases:

Business process modelling This phase involves abstracting the functioning of the business process

into a model. Weske (Weske, 2007) expounds that a

Business process model consists of a set of activity models and execution constraints between

them. A business process instance represents a concrete case in the operational business of a

company, consisting of activity instances. Each business process model acts as a blueprint for a

set of business process instances, and each activity model acts as a blueprint for a set of activity

instances. These activities jointly realize a business goal.

Modeling the real system is a basic step in the identification and understanding of the important

elements of the system. In this thesis, an additional goal of this stage is to identify the behaviors of the

elements making up the processes, and to elicit the requirements implicit in elements of the business

process.

 The main artifact of this stage is a business model, which is a graphical representation of the

inputs, outputs, tasks, events, decision, flow of logic and roles involved within the business process.

Failure modes and requirements generation This phase analyzes the process model in order to

determine the features and attributes that enable the components to achieve the desired business goal.

58

This phase is conducted by eliciting the various ways the components can fail to achieve their desired

goal, and then determining countermeasures to those failure modes. The countermeasures are the

requirements that can detect, prevent or mitigate the failure modes, thereby constraining the system or

process to produce the desired outcome. Failure mode and effect analysis (FMEA) is used to

determine the risk factors associated with the business goal and to ascertain possible countermeasures

to mitigate the risk.

 This phase begins by applying FMEA on the process components to determine appropriate

countermeasures. FMEA can then be recursively applied to the requirements (countermeasures)

generated in each iteration to further decompose the requirements to derive product level

requirements that are verifiable and testable.

 The main artifact of this stage is a set of requirements specifications. Analytic Hierarchy Process

(AHP), a decision-making method based on the division of problem spaces into hierarchies, is used to

visually represent the failure modes and the requirements generation process (Saaty, 1990). The tree-

like structure of the AHP representation provides a means of visually connecting each level of the

FMEA decomposition in a way that supports the rationalization of requirements and design. The

rationale behind every design decision can be traced through the various levels of requirements and

up to the business goals in a structured hierarchical way.

Requirement prioritization The aim of this phase is to prioritize the requirements generated in the

previous phase. FBREM leverages the systematic and semi-quantitative nature of FMEA to derive

quantitative estimates of the severity of failure modes, the likelihood of the failure, and the risk

reduction implicit in the countermeasure. The values are multiplied together to derive the

countermeasure priority number (CPN) for each countermeasure. Conventionally, CPN is an

indication of the priority that should be given to the failure mode, that is, more effort should be put

into mitigating failure modes with higher CPNs. We have however, adopted the CPN as a

prioritization metric for determining which of the possible countermeasures will have the most impact

on the business goal. Also, because multiple countermeasures can be elicited for a single failure

mode, the CPN value can be used as a guide to prioritize requirements based on the resource and time

available to implement them.

59

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

REQUIREMENTS

(LEVEL 1)

Prioritized
requirements

 REQUIREMENTS

(LEVEL 2)

Prioritized
requirements

REQUIREMENTS

(PRODUCT LEVEL)

Prioritized
requirements

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

. . . .

Process
components

BUSINESS GOAL

Potential

failure modes

Effects of

each failure

mode

Causes of

each failure

countermeasure

s

Severity (S)

ranking

Occurrence

(O) ranking

Detection (D)

ranking

Calculate

RPN

(S x O x D)

FMEA
Tr

ac
e

ab
ili

ty

Figure 17: FBREM Workflow

60

Severity, likelihood, risk reduction and CPNs determined are used to prioritize the requirements

derived in the previous stage. The main artifacts of this phase are a selected set of countermeasures

that have the lowest CPN value.

Traceability The aim of this phase is to establish relationships between requirements and design

artifacts for the purpose of demonstrating decision rationale, and to structure decomposed business

goals into product level requirements. Gotel et. al. state that traceability is the ability to follow the

life of a requirement in a forward and backward direction (Gotel & Finkelstein, 1994). While the

traceability component of FBREM provides a means of justifying the design decisions made based on

the requirements elicited, it also provides a means of establishing interdependencies between the

requirements and the business goal. Requirement traceability provide support for impact analysis,

change management, verification and validation processes. The main artifact of this phase is a

traceability schema that captures the relationship which establishes the alignment of design, decisions

and requirements with business goals. The traceability of FBREM is shown in Figure 17.

61

Chapter 4

Discussion

The case study led us to the FBREM method described in Chapter 3. From the small example studied

in Chapter 3, FBREM shows promise as a method for eliciting requirements from agile artifacts such

as process components. In this section, we review the motivation for using risk as a basis for eliciting

requirements. We also look in more detail at three aspects of requirements elicitation in which

FBREM provides important advantages: prioritization, rationale and traceability.

4.1 Why emphasize risk?

FBREM is a risk-based method for eliciting requirements. Why should risk be a good basis for this

task?

4.1.1 Case study observations

Our attention was first drawn to risk as a method for eliciting requirements by analysis of the MACE

case study. When we began this study, we did not have a particular interest in risk, and were only

planning to observe the emergence of requirements in what we knew would be an agile methodology.

However, requirements as such were never developed during the project, which proceeded with a

typical agile process in which iterations occurred and users and developers collaborated on the design.

We noticed with interest that at three points during the case study, MACE representatives became

concerned about the project and made definite statements about what “must” be done:

1. At the very start of the project, they insisted that the project must result in the selection of

some software tool

2. At the first iteration, they insisted that the process map must look the same as the one they

had drafted internally

3. At various stages of the project they insisted that the tool must link to their existing ISO

documentation

62

MACE representatives gave overriding importance to these three issues, and did so in a manner
11

 that

left no doubt in our minds that they were of the opinion that the project would be a failure if any of

the above had not been satisfied. In fact, each of these three issues was seen as a serious risk by the

MACE representatives.

 Failure to address requirement 1 meant to MACE that they would have no automation for the

process model, and therefore the process model would fail to be adopted by their company because it

would be too unwieldy to use manually. In FMEA terms, the failure mode they identified was lack of

adoption of the process model; the effect would be chaotic processes; and the cause would be lack of

software to enforce the process model. Thus, MACE insisted on automation as a countermeasure.

 Failure to address requirement 2 meant to MACE that the process map would look different

from what the company had developed over the previous year, and therefore participants would think

their effort had been a waste of time. This risk was considered so high by MACE that they did not

want to engage in any process improvement no matter how beneficial, since that would result in a

process map that looked substantially different, and therefore incur the risk of rejection. In FMEA

terms, the failure mode they identified was lack of adoption of the process model; the effect would be

chaotic processes; and the cause would be a new and unfamiliar process map. Thus, MACE insisted

on similarity as a countermeasure.

 Failure to address requirement 3 meant to MACE that the process map would either not direct

users to existing ISO documentation, or else that screenshots and excerpts from the ISO

documentation would have to be included in the software as duplicates. In the first case, the failure

mode would be that personnel would not use existing ISO documentation; the effect would be

possible loss of ISO certification (if auditors discovered that ISO documentation was not used); and

the cause would be lack of connection between the process map and the ISO documentation. In the

second case, the failure mode would occur when ISO documentation was updated and changes were

not made to the process map; the effect would be failure to follow current ISO documentation; and

the cause would be discrepancies between the ISO documentation in its “home” location and the

copies in the process map, resulting from lack of updates to all copies. Thus, MACE insisted on

linking as a countermeasure.

11
 They used emphatic language and expressions to emphasize the importance of these points.

63

MACE representatives did not formally outline these risks to us as part of our discussion, and they

certainly did not engage in explicit FMEA. They simply stated very firmly what kind of

implementation they wanted and suggested to us the effects they wanted to avoid and their beliefs

about how the implementation would counter those effects. The requirements were implicit in their

statement of necessary implementation, but un-elicited by us.

 From an agile perspective, once users have agreed to an implementation, and it passes its tests,

then development is successfully completed. But this approach can easily bypass the process of

evaluating other possible options
12

. For example, in the MACE study, requirement 1 could have also

been met by incorporating a process map in their current ERP system, without new software;

requirement 2 could have been met by reviewing a modified process map with the original

stakeholders and obtaining their agreement on the modified map; and requirement 3 could have been

met by having an overall index that would lead users to both the right phase of the process map and

the existing ISO documentation. These options received little consideration during the case study.

The option of including the process map in the ERP system was rejected because it was felt that the

process map needed to be modifiable by end users, while the ERP system was not (or in risk-based

terms, the use of ERP would introduce a risk of inflexibility, and the countermeasure was not to use

ERP). At the time of the case study the ERP system was undergoing a redesign, so it is at least

theoretically possible that a user-modifiable process map system could have been made part of the

ERP system. A requirements process would have kept this possibility open, whereas an agile process

closed it off because of early decisions about what could be implemented.

 Our point here is not that the implementation was non-optimal, or that the MACE

representatives should have specified requirements and not implementations. Our point is to observe

that the key requirements for this system were all strongly grounded in risk assessment. In fact, the

entire effort of the MACE process map (of which our case study was only a small part) was based on

MACE’s implicit risk assessment of their business expansion plans: although informal and word-of-

mouth use of their processes was sufficient when all work was conducted by long-term employees at

the home location, a large risk was perceived in the planned expansion of the business to new

employees at two new geographically widespread locations. These new locations and employees

12
 A standard agile philosophy is to deliver working software with the minimum amount of work; this stance

can easily lead to accepting the first option that is expected to work.

64

would be much less likely to use standard processes, and that was perceived to put the whole business

at risk. Hence, it was essential to create a process map as a countermeasure to this risk.

 Thus, our case study drew our attention to the perception of risk and the development of

countermeasures as an important facet of requirements elicitation.

4.1.2 Historical perspective

A notable instance of the long history of the relationship between setting objectives, assessing risk

and decision-making was portrayed in the Thucydides’s
13

 account of the eulogy given by Pericles
14

 to

honor Athenians killed in the Great Peloponnesian War (Spielvogel, 2014):

We Athenians, in our persons, take our decisions on policy and submit them to proper

discussion…the worst thing is to rush into action before consequences have been properly

debated. And this is another point where we differ from other people. We are capable at the

same time of taking risks and assessing them beforehand. Others are brave out of ignorance; and

when they stop to think, they begin to fear. But the man who can most truly be accounted brave

is he who best knows the meaning of what is sweet in life, and what is terrible, and he then goes

out undeterred to meet what is to come.

These words are a profound expression of value placed on risk assessment in the decision-making

process.

 The subject of risk and the knowledge gained from conducting risk-related analysis has been an

area of interest in both academic and professional circles. Peter Bernstein in his book Against the

Gods: The Remarkable Story of Risk, highlighted several remarkable stories of how an understanding

of risk, defining what may happen in the future, and choosing among alternatives has become one of

the drivers of modern society (Bernstein, 1997). He describes how in 1952, future Nobel Prize

winning economist Harry Markowitz, then a young graduate student studying operations research at

the University of Chicago, devised modern portfolio theory. Markowitz demonstrated mathematically

why putting all your eggs in one basket is an unacceptably risky strategy and why diversification is

the investor’s best option. His theory also demonstrated how no additional expected return can be

13
 Thucydides (460 – c. 395 BC) was an Athenian historian, political philosopher and general. He survived the

war that killed Pericles.

14
 Pericles (495 – 429 BC) was a prominent and influential Greek statesman, orator and general of Athens.

65

gained without increasing the risk of the portfolio. Another example is Daniel Bernoulli (Bernoulli,

1954) whose work Exposition of a New Theory on the Measurement of Risk was the foundation of the

theory of risk aversion, a systematic process by which most people make choices and reach decisions.

His theory explained why some gamblers prefer a sure outcome even though it has a lower expected

value, while others who are less risk-averse would make riskier choices in hope of a higher expected

value.

4.1.3 Defining risk

There is no one universally accepted definition of risk. Some of the definitions pertinent to this thesis

are listed here:

 Garvey defines risk as an event that, if it occurs, adversely affects the ability of an

engineering project to achieve its objectives (Garvey, 2008). This definition asserts two

important concepts associated with risk: its occurrence probability and its impact (or

consequence) to the system

 Modarres defines risk (or potential loss) as associated with the exposure of the recipient to a

threat, and can be expressed as a combination of the probability or frequency of the threat and

its consequences (Modarres, 2006). Modarres’s definitation supports Garvey’s, but with

emphasis on the recipient, which could be a system, project, objective or persons

 Rosa defines risk as a situation or event where something of human value (including humans

themselves) has been put at stake and where the outcome is uncertain (Rosa, 1998).

Consequently, for a situation to be termed risky something of value must be at stake and the

certainty of whatever is at stake must be of a probability value between 0 and 1

 Alwang et al. characterize risk by a known or unknown probability distribution of events

(Alwang, Siegel, & Jorgensen, 2001). These events have magnitude (including size and

spread), frequency and duration, and history. This definition included the time component;

Alwang et al. thereby note that the immediacy or the span of time of the effect of the hazard

is an important factor in the risk. Time transforms risk, and the nature of risk is shaped by the

time horizon: the future is the playing field (Bernstein, 1997). For example, the risk of not

finding survivors of a missing airplane increases with time

66

 An interesting quantitative definition is given by Kaplan & Garrick (Kaplan & Garrick,

1981). They defined risk as the answer to the following three questions:

(i) What can happen? (i.e., what can go wrong?)

(ii) How likely is it that it will happen? (i.e., what can go wrong?)

(iii) If it does happen, what are the consequences?

 ISO 31000 acknowledges that we operate in an uncertain world: risk is defined as the “effect

of uncertainty on objectives” which can result in a positive or negative deviation from the

expected. In order to achieve objectives, risk has to be reduced to the minimum (ISO 31000,

2009)

4.1.4 Risk Assessment

Risk assessment is the process of identifying and dealing with risks that could potentially prevent the

achievement of an objective. A useful chart to demonstrate the risk assessment process is shown in

Figure 18 (NORSOK, 2001).

67

Risk analysis
planning

Process

Hazard
identification

Frequency
analysis

Consequence
analysis

Risk picture

Decision

Further risk
reducing
measures

Risk reducing
measures

Risk acceptance
criteria

System
definition

Risk

Risk
Assessment

Risk
Analysis

Risk
Evaluation

 Figure 18: Risk assessment process

The general process of risk assessment has been well described by several authors (Berg, 2010),

(Modarres, 2006), (Aven, 2008). The following are the key steps:

 Establish the goal and context: understand the objective, constraints and environment of the

entity involved in the risk scenario. This stage also includes understanding the risk tolerance

level of the customer.

 Identify hazards: identify the undesirable events that may adversely alter the identified

objective. Process documentation, interviews, audit reports are some of the sources of hazard

information

68

 Analyze risk: estimate the likelihood and the consequence of each undesired risk event.

Existing measures put in place to control risk are also analyzed to determine their

effectiveness. Risk analysis can be conducted qualitatively using simple methods such as

brainstorming, or quantitative methods such as Fault Tree Analysis (FTA), or methods with a

blend of quantitative and qualitative aspects, such as the Failure Mode and Effects Analysis

(FMEA)

 Evaluate risk: compare risk information with the pre-defined risk tolerances to ascertain the

acceptability of the risk involved. Youssef et al. argued that beside traditional risk evaluation

factors, that is, probabilty and severity, there are other factors that should not be overlooked

in risk evaluation (Youssef & Hyman, 2010). Such factors include

o Detectability–The ability to detect the hazard before loss occurs. This is because the

better the controls in place are able to detect the chances of the risk occurring, the

less likely the potential loss will happen

o Correctability–The relative ease of eliminating or mitigating a certain risk. A highly

detectable risk with a low correctability can still result in a severe loss. In this regard,

technical practicability and economic feasibility will be factors to consider in

determining the correctabilty of a risk

o Product utility–This factor implies integrating benefit into risk. This involves

weighing the benefit derived from having a feature or undertaking an enterprise

against the possible loss that could be encountered. If the estimated benefit outweighs

the risk, then the risk may be acceptable rather than expending resources otherwise.

The process of estimating benefit can be challenging and overstating benefit is a

possible pitfall

 Reduce risk: Based on the results of the evaluation, measures are to be taken to reduce the

likelihood (or consequence) of the risk depending on the resources available and the risk

tolerance level

It can be seen that FBREM follows this standard pattern:

 Goal and context are established by the agile process artifacts

 Hazard identification is done through failure modes

69

 Risk analysis is done through severity and frequency analysis

 Risk evaluation and risk reduction is done through identification of countermeasures and

estimating their correctability

Risk analysis in FBREM follows the industry-standard Failure Modes and Effects Analysis (FMEA).

Based on a survey conducted by Carlson et. al., to determine the current important reliability practice

in the industry in which over 450 reliability practitioners participated, FMEA was chosen both as the

most important task in their reliability program, and the most important task practitioners think they

should be doing in cases where they haven’t started doing it (Carlson, Sarakakis, Groebel, & Mettas,

2010). FMEA enjoys wide application in a variety of industries and it forms an important aspect of

various standards such as the US Department of Defense MIL-STD-1629A standards (DoD, 1980),

International Electrotechnical Commission Standard, IEC 60812: ‘Analysis Techniques for System

Reliability—Procedure for Failure Mode and Effects Analysis (FMEA) (IEC, 2006)’, British

Standards Institution, BS 5760: ‘Reliability of Systems, Equipment and Components’ (BSI, 1991),

International Organization for Standardization Technical Specification ISO/TS 16949:2009:

‘Particular requirements for the application of ISO 9001:2008 for automotive production and relevant

service part organizations’(ISO, 2009) and American Society of Quality (ASQ) Six Sigma Black Belt

certification (ASQ, 2011).

 FBREM differs from FMEA and the risk assessment shown in Figure 18 in that it is applied

recursively. We adopted this approach from the Analytic Hierarchy Process (AHP) concept (Saaty,

1990). AHP hierarchically structures requirements at various levels of detail and specificity, thereby

aiding the users of the model to focus on the specific level of information in which they are interested.

Top-level goals can be decomposed into subcategories, and each subcategory can be further

decomposed and analyzed independently, depending on the level of detail required. According to

Saaty, each level may represent a different cut at the problem. Elements at each level can provide

complimentary, competing or conflicting solution to the problem. David & Saaty state that using

specific metrics, decision makers are able to measure the relative weight of requirements, their

benefits, costs, risks and resource demands (David & Saaty, 2007)

4.1.5 Development methodology as risk reduction

Assessing risks of a new product or service is a common engineering activity, and the FMEA process

is a technique with a long history. Assessing risks on specific projects (such as risks to schedule and

70

cost) is also a common engineering activity in larger projects. But we suggest that project

methodologies themselves are, to some extent, based on notions of risk assessment, and are designed

to reduce what they view as core project risks. Consider the agile methodology:

 Since many waterfall projects fail to deliver software on schedule, agile delivers (minimal)

software as soon as possible
15

 Since users are frequently dissatisfied with the results of systems they have commissioned,

agile requires that users work directly with software developers during the entire project and

so get their comments early and often

 Since waterfall-delivered software is sometimes incomplete and buggy, agile puts testing

ahead of software development

Similarly, waterfall methods can also be seen as tactics to avoid risk:

 Since errors in requirements can cause excessive rework downstream, waterfall methods

put requirements elicitation first to reduce the risk of poor or unstated requirements

 Since documented requirements and design are important for maintenance, auditing, and

updating of the software, waterfall methods reduce the risk of problems in those areas by

requiring good documents

 Since change is a common vector for introducing bugs and other problems, waterfall

methods involve formal change management to try to limit the introduction of bugs

Each methodology highlights specific ways that projects can fail—that is, failure modes—and the

methodology contains countermeasure to those failure modes. From this view, the “best”

methodology for software development is not one or the other; the answer can only be relative to the

actual failure modes that are experienced (or avoided) in practice. If you are running a development

team that is at risk for not delivering software, or frequently dissatisfies its users, or develops

software that is incomplete and buggy, then perhaps agile has identified the risks and

countermeasures for you. If your development team has a good delivery record, and users are

15
 Note that we are stating claims that agile proponents make about waterfall software development. We do not

need to agree with these claims to make the observation that the claims are implicitly based on risk assessment

and risk countermeasures.

71

satisfied with its systems, but you are concerned about reducing rework, change, and passing

regulatory audits, then perhaps waterfall has best identified the risks and countermeasures for you.

4.2 Requirements Prioritization

There are several reasons to prioritize requirements. First, the requirements elicitation process

usually produces more requirements than can or will be implemented. Second, requirements are

derived from many viewpoints, each person introducing requirements that may be in conflict with

others or able to serve as alternatives to one another. Third, solutions are implemented over a long

period of time, necessitating the need to batch requirements into phases or releases.

 Prioritizing requirements is the next logical task to be performed once requirements have been

elicited (Ramzan, Jaffar, & Shahid, 2011). Prioritization helps to identify the most valuable

requirements from the entire set by distinguishing the critical few from the trivial many (Berander &

Andrews, 2005). By arranging the requirements in a prioritized order, it is easier to develop the

system in a more realistic and structured form. Requirements can be prioritized to realize which

subset can be delayed so that more urgent requirements can be implemented first; considering which

requirements belong to earlier or later stages of the development cycle is frequently done in order to

optimize one form of constraint or another (Ramzan et al., 2011). Ruhe et al. state that “The challenge

is to select the ‘right’ requirements out of a given superset of candidate requirements so that all the

different key interests, technical constraints and preferences of the critical stakeholders are fulfilled

and the overall business value of the product is maximized” (Ruhe, Eberlein, & Pfahl, 2002).

Karlsson and Ryan emphasize that requirements prioritization helps in making acceptable trade-offs

among sometimes-conflicting goals such as quality, cost, and time-to-market. It can also benefit in

quantifying the cost and schedule required to implement the elicited requirements (Karlsson & Ryan,

1997). A more comprehensive list of benefits to requirements prioritization compiled by Berander &

Andrews (Berander & Andrews, 2005) and Gottesdiener (Gottesdiener, 2005) includes the following:

 To plan staged releases for incremental deliveries

 To decide on the core requirements for the system

 To balance the business benefit of each requirement against its cost

 To balance the implications of requirements on the software architecture and future

evolution of the product, taking into account those associated costs

72

 To select a subset of the requirements that still produces a system that will satisfy the

customer
16

 To control scope creep

 To minimize rework and schedule slippage

 To handle contradictory requirements, focus the negotiation process, and resolve

disagreements among stakeholders

 To establish the relative importance of each requirement and provide the greatest value at

the lowest cost

We can see from the foregoing discussion that requirements prioritization is an essential part of

requirements engineering.

4.2.1 Criteria used for prioritization

Various criteria can be considered in determining the priorities assigned to requirements. The

common ones include importance, cost, time and scope (Berander & Andrews, 2005). Depending on

the motivation for prioritization, one or more criteria can also be considered jointly in requirements

prioritization. Importance is the criticality of the requirement in achieving the business goal.

Requirements rated less critical can be accorded less resources or shifted to another development

phase. Cost is the expense expected to be incurred in implementing the requirement. Cost can be

expressed in terms of person-hours, capital expenditure, training needs, skill level or effort required to

carry out the requirement. Scope is the amount of features/functions and nature of work required to

be performed to deliver the stated requirements. Requirements with larger scopes can be implemented

later in the process or moved to another phase of the project. Other criteria used for prioritization

include the value placed on the requirement by the customer, the difficulty of implementation,

economic benefit gained by implementing the requirement, the need to comply with regulatory

demands, the ease of deployment, and provision of a competitive advantage (Gottesdiener, 2005).

 The risk associated with implementing (or not implementing) a requirement can also be used as

a criterion for prioritization. “Risk-based decision making is a process that organizes information

about the possibility for one or more unwanted outcome and the impact of such unwanted outcome

16
 This aspect of prioritization is a prime focus of agile methods.

73

into a broad, orderly structure that helps decision makers make more informed choices” (Macesker,

Myers, & Guthrie, 2002). A risk-based requirements prioritization approach involves identifying the

potential failures that could occur if the requirement is not implemented, and then for each failure we

identify the likelihood that the failure will occur, the impact or severity such a failure would have on

the goal, and how we might detect such a failure. These risk factors can be combined into a priority

for the requirement.

4.2.2 Requirements prioritization techniques

Several requirements prioritization methods have been described in the literature.

1. 100-Dollar Test (Dean Leffingwell & Widrig, 2003) is a type of voting system where 100

imaginary dollars are given to participants to be divided among the requirements. This is a

system that uses the metaphor of purchase as a way to make prioritization more concrete. For

example, if there are five requirements to be prioritized and a participant allocates 20 dollars to

each one, this indicates that all the requirements are equally important to that participant. This

voting system can be performed by many people, and the average value assigned to each

requirement can be used to prioritize the requirements.

2. Quality Function Deployment Matrix (Akao, 1994). This method involves organizing

requirements into areas on a “House of Quality” matrix. The attributes from the matrix are then

mapped to appropriate technical specifications and performance targets. Ultimately, specific

elements of the mapped technical specification can be quantified and prioritized.

3. Wieger’s Method (K. E. Wiegers, 2009). This method addresses prioritization from the

customer’s perspective. The value the customers place on each requirement is divided by the

sum of the cost, risk and other trade-offs associated with that particular requirement. The ratio

realized from this calculation is viewed as the rating of the requirement compared to the cost of

implementing the requirement. This ratio is used to prioritize the requirements.

4. Numerical Assignment (Grouping) (Bradner, 1997). This class of methods involves grouping

requirements into different priority groups. Sample grouping includes “mandatory”, “desirable”,

and “unessential”. Another usage of the grouping method involves using keywords such as

“shall have” to denote critical requirements, “should have” to denote recommended

requirements, and “may have” to denote optional requirements.

74

The methods described above offer means of prioritizing requirements, but they also have shortfalls.

The 100-Dollar Test method is not suited for prioritizing a large number of requirements, because

there are not enough dollars and participants’ judgments become more questionable. For example, it

is impractical to assign to use this method when requirements to be prioritized are in the thousands

or even hundreds (Dean Leffingwell & Widrig, 2003). Similarly, the grouping method tends to

constraint stakeholders to fix requirements into the available groups. Stakeholders may tend to put

requirements that satisfy their interest in the “shall have” group, independent of their general value.

A characteristic common to the methods discussed so far is that prioritization is done on a scale that

promotes subjective rather than objective values. Because requirements are subjective, introducing a

new requirement into a prioritized set may mean that the process of prioritization will have to be

completely re-done (Herrmann & Paech, 2009).

 Risk has been proposed as a method for prioritizing requirements by several writers (Berander &

Andrews, 2005). Assessing the risk associated with requirements can help in estimating the benefit

of each requirement and hence, prioritizing the requirements (Gottesdiener, 2005). When doing

risk-based prioritization, we can avoid the two problems mentioned above: risk can be evaluated on

an objective scale, and risk can be evaluated across a large set of requirements. The reason for this

is that risk is evaluated independently for each requirement, while preference methods (such as the

100 dollar and/or grouping) tend to involve asking participants to look at the whole set of

requirements at the same time.

 FBREM provides a risk-based technique for prioritizing requirements based on an absolute risk

value associated with each requirement. In FBREM, each requirement is quantified on the basis of

the severity and likelihood of potential failures adversely impacting the goal if the requirement is not

implemented, and the ability of the implementation to detect the failure before it occurs. Severity,

likelihood and risk reduction are each rated on a scale of 1 to 5. Severity, likelihood and risk

reduction ratings are multiplied together to derive the countermeasure priority number (CPN) for

each failure mode associated with the requirement. CPN ranges from 1 to 125. CPN is a measure of

the suitability of a countermeasure on three dimensions: the severity of the effect of a failure, the

likelihood of the failure, and the likelihood that the countermeasure will prevent the failure, along a

single dimension so that requirement can be prioritized and compared (Bowles, 2004). Specifically,

CPN indicates how much the countermeasure, if not implemented, will adversely impact on the goal

for which the failure mode was identified. Feather et al. describe values such as CPN as the indicator

75

of “how much of a risk-reducing effect a requirement, should it be applied, has on reducing each risk

(either by decreasing the risk’s likelihood, or by reducing the severity of the risk’s impacts on

Requirements; the nature of the requirement dictates which kind of reduction takes place)” (Feather

et al, 2006). CPNs can be ranked and used to prioritize the time and other resources that should be

allocated to each of the countermeasures.

Potential

Failure

Mode

Potential

Effect(s) of

Failure

S
ev

erity

Potential

Cause(s) or

Mechanism(s)

of Failure

L
ik

elih
o
o

d

Countermeasure

R
ed

u
ctio

n

R
isk

C
P

N

Data is

not

entered

correctly

into the

leads

scoring

module

Unreliable

lead score
4

Time

pressure
3

Minimal number of fields shall be used on the

form to reduce the time spent filling form
2 20

Existing customer information shall be

automatically pulled from the DB to eliminate

the need to search/fill such information

4 48

Too many

form fields 2
Minimal number of fields shall be used on the

form to reduce the time spent filling form
2 16

Invalid data

type input
3

Fields shall be validated before submission 5 60

Select inputs shall be used instead of free

inputs where possible
3 36

Knowledge

gap
1

Staff training shall be conducted 4 16

 User manual shall be provided 2 8

 Hints shall be provided for each form field 5 20

Table 6: Requirement Prioritization CPN Table for one Failure Mode

An extract of the requirements determined in our case study using FBREM is shown in Table 6. The

table contains the countermeasures elicited with their respective CPN values. Using the CPN values

as the basis for prioritization, the requirement “Fields shall be validated before submission” with the

highest CPN value (60) is considered the countermeasure that will have the greatest impact in

mitigating the risk posed by failure mode “Data is not entered correctly into the leads scoring

module”. Put differently, this is the requirement that will have the most risk-reducing effect among

the set of requirements elicited. The countermeasure “User manual shall be provided” is the

requirement with the least risk-reducing effect because of its CPN value of 8.

76

In addition to using CPN to order the requirements according to their priority, CPN can be used to

determine how to proceed with further requirements work. We may decide to further decompose

requirements whose CPN value is greater than a given threshold into lower level requirements by

conducting FMEA recursively on these countermeasures (as depicted in Figure 17), or we may decide

not to implement any requirement with CPN lower than a certain minimum. For example, if the CPN

value 50 is chosen as the threshold for further analysis and 10 is the minimum for implementation,

then the requirement “Fields shall be validated before submission” will be further analyzed to

determine its failure modes and subsequently elicit requirements for the failure mode, whereas the

requirement “User manual shall be provided” will not be implemented at all.

4.3 Rationale

The rationale for a decision is the justification or reasoning behind that decision (Dutoit, McCall,

Mistrik, & Paech, 2007). Burge et al. describe rationale as the expression of how decisions are made,

what alternatives were considered before making the decision and what parameters were used in

evaluating the alternatives. Rationale is the reason underlying decisions made and actions taken (J. E.

Burge, Hall, & Brown, 2007). While requirements states the conditions or capabilities desired to

produce an intended result—that is, the “what”—rationale explains “why” those requirements exist in

the first place (Miller & Chavez, 2002). Leveson asserts that requirements are a set of instructions

useful for implementers to create an intended solution, and that this necessitates that the stated

requirements are correctly interpreted (Leveson, 2000). To ensure proper interpretation, requirements

should be accompanied by their rationale. Rationale provides a bridge between formal and informal

aspects of the requirements. Rationale provides the underlying ideas, assumptions, psychology and

environmental basis for requirements. Simply specifying requirements without describing the

rationale for those requirements does not provide much assistance to the implementers, because they

do not know why the system should satisfy those requirements and therefore cannot easily evaluate

whether their implementation embodies the rationale.

4.3.1 Uses of rationale

Several authors have suggested various uses of rationale.

 Burge et al. suggest that rationale provides a means of actively shaping the process of reasoning

about decisions and it serves as a record of the reasoning associated with those decisions (J. Burge,

77

Carroll, McCall, & Mistrik, 2008). The rationale behind decisions taken in previous phases or

projects can serves as valuable input in producing consistent, well thought-out requirements for

subsequent activities. Rationale documentation also serves as memory aid. The reasoning

underpinning design decisions can be easily forgotten in time, especially in large and complex

projects (Tang, Babar, Gorton, & Han, 2006b). Documented rationale provides a resource database

for querying the basis for decisions made in the past. The need to revisit previous decisions may arise

when changes are to be made to existing products, when new systems are being acquired to interface

with existing systems, or during quality processes such as validation.

 Dutoit et al. highlight other benefits for documenting rationale in a requirement engineering

process. Documented rationale provides support for communication during requirement elicitation

and negotiation. The process of deciding which of the elicited requirements to implement becomes

part of the requirement specification, since it involves communication between various stakeholders

(Dutoit et al., 2007). Providing and documenting the justification supporting each of the requirements

will aid the decision-making process and help to resolve conflicting requirements. It can also help in

cases where there is need to probe a decision or requirement in further detail. Requirements reuse can

also benefit from documented rationale. Requirements reuse is the ability to share a requirement

across projects without unnecessary duplication of artifacts (Akers, 2008). Rationale provides

additional information about requirements which helps to determine in what way a requirement is

reusable and in what situation is it reusable.

 Other benefits of rationale are described by (Leveson, 2000), (J. Burge et al., 2008), (Tang,

Babar, Gorton, & Han, 2006a), (Miller & Chavez, 2002), (Dutoit et al., 2007):

 To improve management of dependencies among requirements

 Support for elicitation of downstream requirements

 Support for communication with management to justify project schedule and/or cost

 Support for prioritization of requirements by providing supplementary information

 Support for risk assessment and contingency planning

 To aid in the understanding of requirements by external stakeholders who may have little

background knowledge about the requirement

78

 To aid in testing, audit and problem resolution activities

 To facilitate configuration management by making configuration options explicit

 To facilitate the operation, support and maintenance of the system

 To provide a record of decision alternatives and their evaluation to facilitate the redesign or

refactoring of the system

 To assist in traceability of requirements by identifying the origin of systems features

Burge and Brown summarized the use for rationale as follows (J. E. Burge & Brown, 1998):

Design verification—to verify that the requirement meets the intent

Design evaluation—to assess requirement alternatives

Design maintenance—to determine what will be affected and needs to be taken care of if changes

are to be made to the requirement

Design reuse—to determine the portion of the requirement that can be reused and how

Design education—to teach people who are unfamiliar with the system

Design communication—to facilitate communication and provide better insight into the decision-

making process

Design assistance—to improve the requirements by considering such things as

constraint/dependency checking

Design documentation—to present and preserve the knowledge acquired in the process of creating

the requirement

4.3.2 Documenting rationale

Rationale documentation can be informal, formal or semi-formal. Informal documentation is easily

created since it involves capturing requirement elicitation in raw form, using natural text, video or

audio recording. This form is however difficult to process due to its lack of structure. Formal

documentation is a structured form of documenting rationale; it involves the use of data types and

data relationships. Formal documentation of rationale is captured in formats that can be computer

processed and easily queried. Formal documentation involves substantially more effort than informal

79

documentation. Semi-formal documentation combines the benefit of the other two methods: rationale

is captured in a partially-structured format and is stored using natural language (Heindl & Biffl,

2006).

 We next described some systems for capturing rationale.

Issue-Based Information System (IBIS)

The first method is the Issue-Based Information System or IBIS described by Kirschner et al.

(Kirschner, Buckingham-Shum, & Carr, 2003). IBIS uses the following elements:

 Issues: the requirement item being considered, which is specified as a question

 Positions: answers to the issue

 Arguments: statements that supports or contradicts the position

 Resolutions: decisions made that document the rationale behind the requirements from

different perspectives

Once these elements are decided for each requirement, an “issue-map” is created, which documents

the relationships existing among the various elements of the representation. The elements are denoted

as nodes on the issue-map. The business goal, referred to as the root issue, can be expanded into child

issues, each with its own corresponding arguments and resolution. A web of relationships is then

created among the rationale elements forming the rationale documentation. This method is semi-

formal and graphical.

Figure 19: IBIS – Structure (Adhikari & Reinhart, 2006)

80

A sample root issue such as “How should the company’s intranet be implemented?” can lead to

“Build in-house” and “Outsource” alternative positions. These positions can then be expended further

to associate supporting arguments such as “company will have more control over the intranet

implementation” or negating arguments such as “project stands the risk of being de-prioritized” to the

“build in-house” position. The issue can be expended further as shown in Figure 20 to depict the

rationale for the decisions taken.

?How should the intranet
be implemented?

Build in-house

Outsource

?

What development
method?

Develop from scratch

Use existing content mgt.
system

+

--

Quick implementation

+ Better expertise

Possibility of not
meeting

expectation

+

Have more control over
the system

--

Risk of another project
taking priority

--
Expensive

?

How to address this?

+
Develop in-house

skills

Create a comprehensive
requirements document

--

Time consuming

Figure 20: Sample IBIS map

Decision Representation Language (DRL)

The second method is Decision Representation Language or DRL as described by Lee (J Lee, 1991).

 This method uses decision graphs to map the issues to be decided (decision problems), alternatives

(way of addressing the issues), goals (the results the alternatives are set to achieve) and claims made

about the outcomes of the goals, which can support or refute the goals. An additional element is

groups, which describe any relationship existing among the elements of the model. DRL is a semi-

formal rationale representation.

81

Figure 21: An example of DRL Decision Graph (Jintae Lee, 1989)

Unlike IBIS, which provides the arguments supporting and opposing an issue, DRL only provides

positive arguments to support goals. This difference is significant in that claims evaluation in DRL

may not be as effective, since we cannot consider arguments that actually inhibit the achievement of

the goal. However, claims made in DRL have attributes, such as plausibility, degree (extent to which

claim is true) and evaluation (function of plausibility and degree) (Stumpf, 1997). Using these

attributes, DRL produces additional data for evaluating decisions, rather than just a method for

exploring the design space and elaborating design rationales.

Device Modeling Environment (DME)

The third method is Device Modeling Environment or DME as described by Gruber (Gruber, 1990).

DME is a formal and graphical representation of requirements that can be queried for rationale. A

system to be developed is simulated in an environment similar to the production environment and is

manipulated to produce the possible outcomes of various inputs. The results of each observed

behavior and the reasons for such behaviors are stored as pre-enumerated set of rationale.

82

FBREM

FBREM, our method for eliciting requirements, is effectively a semi-formal method of representing

rationales. Rationale is presented in hierarchical format such that the overarching business goal is

presented at the top of the hierarchy, while the rationale supporting each decision made throughout

the elicitation process can be traced as a response to the various failure modes.

Figure 22 shows the documentation of rationale from our Chapter 3 case study. The example traces

the rationale of the requirements from the product level “Form shall be validated before submission”

up to the process component “Sales Initiation and qualification”.

Form shall be validated before submission

To mitigate

Requirement:

Incorrect data entry into the leads scoring module (5.3.0.1)

Caused by

- Time pressure
- Too many form fields
- No guide on how to fill form
- No data validation
- No staff training

Leading to Misleading lead score

Originated from

“Opportunity qualification” shall be standardized
by conducting “Leads scoring” (5.3)

Requirement:

To mitigate

Invalid assessment opportunity (5.0.1)Could have also been mitigated by

- Delegating “opportunity qualification” task only to

experienced staff (5.1)

- Require senior management “opportunity
qualification” review (5.2)

Why were they dropped?

Lower detectability weigh

Causes by

- Evaluation process not consistent

- Evaluation criteria not well defined

Originated from

Qualify Opportunity (5.0)Process component:

Part of

Sales Initiation and qualificationProcess component

Leading to

- Lost business opportunity (5.0.1.1)

- Resources are committed to an invalid opportunity (5.0.1.2)

Figure 22: Rationale and traceability with FBREM sample

83

FBREM provides a structured approach for presenting the justification for each requirement by

including extra information such as failure mode, effect, causes, and prioritization, thus describing the

reasoning surrounding each requirement and justifying the choices that were made. In addition, other

possibilities generated during the elicitation process that did not form part of the prioritized set of

requirements are also presented, along with the justification for their elimination.

 FBREM is useful both for prescriptive and descriptive reasoning purposes. For prescriptive

purposes as it can be referenced in reasoning out new possibilities or updating existing requirements.

It provides information about existing dependencies in the system and ways in which new

requirements can support or conflict with existing requirements. It can be used in reflecting on the

decisions taken and for determining alternative requirements. It can be useful for descriptive purposes

as the reasoning behind the decisions made, which provide information for support and maintenance

activities. Documented rationale can also be referenced when similar projects are carried out or when

similar situation is experienced (J. Burge et al., 2008).

4.3.3 Rationale documentation barrier and FBREM

In this section we discuss some of the challenges in documentating rationale, and describe how the

FBREM method addresses those challenges.

 Rationale is usually either documented in passing, or else captured as a separate process outside

the elicitation process. This causes contextual information related to the rationale to be lost, and may

lead to misinterpretation of requirements, interpreting requirements out of context, or loss of valuable

rationale information. Loss is particularly likely if the people who determined the requirements are

not available later when the rationale needs review and the captured data becomes the only source of

information (Dutoit et al., 2007). In cases where rationale is tacit knowledge (Kruchten, Capilla, &

Dueas, 2009), that is, knowledge that not stated in explicit form (Dale, Siesfeld, & Cefola, 1998),

rationale can be unintentionally omitted.

 FBREM attempts to solve the challenge of lost rationale by providing a structured process that

guides requirement elicitation, ensuring that processes are well-documented at the same time they are

considered. Though FBREM may not completely eliminate the possibility of omitting rationale from

the documentation, it structures the elicitation process so that the rationale is “automatically” obtained

as the requirement elicitation is being carried out.

84

A second problem with documenting rationale is the retrieval problem. Some data is generated during

requirements elicitation that does not end up as requirements, but serves as valuable input into

rationale documentation. In many elicitation processes, these data are either not tracked or are not

structured in any particular way, thereby making the rationale difficult to retrive. Dutoit et al.suggests

indexing as a solution to this problem (Dutoit et al., 2007). Though indexing rationale documentation

requires additional effort on the part of the designer, its benefit to implementers and reviewers can

outweigh the cost (Gruber & Russell, 1996).

 FBREM helps with retrieval since it is designed to ensure the logical sequencing of both the

requirements and their rationale. Data created throughout the entire requirement elicitation process is

indexed to facilitate fast and accurate retrieval of requirements and their rationale. FBREM also

provides an overall structure of the reasoning process for easier reference. Using the index to trace

through Figure 22, it can be seen that the requirement “Form shall be validated before submission

(5.3.0.1)” originated from requirement “Opportunity qualification shall be standardized by conducting

leads scoring (5.3)” which originated from process component “Qualify Opportunity (5.0)”. Rationale

can be traced in a similar way, by observing the labels on the arrows which specify the deductions.

4.4 Traceability

The concept of traceability is the aspect of requirement engineering concerned with showing the

relationship of requirements to future activities in the software development process and past

reasoning about the requirements. Traceability is a key component of a software validation process,

where traceability of tests to designs and of designs to requirements forms the basis of the validation

task. Requirements traceability is an important aspect of requirement engineering, as it is the way to

associate the reasoning underlying the creation of an artifact with the artifact itself, as well in

assessing the consequences and impact of change to requirements (Nuseibeh & Easterbrook, 2000).

There are many definitions of traceability in the literature, each highlighting a different aspect of its

importance:

 According to Wright, the term “ requirements traceability” was framed by the US Department

of Defense, and it is used to concisely communicate to vendors the need to “prove” that the

requirements are understood, the product delivered fully complies with requirements, and that

no unnecessary feature or functionality is added to the delivered product (Wright, 1991).

85

 One of the more commonly cited definition is that of Gotel and Finkelstein, who define

traceability as “the ability to describe and follow the life of a requirement, in both a forwards

and backwards direction (i.e., from its origins, through its development and specification, to

its subsequent deployment and use, and through all periods of on-going refinement and

iteration in any of these phases)” (Gotel & Finkelstein, 1994)

 IEEE 830-1998 defines requirements as traceable “if the origin of each of its requirements is

clear and if it facilitates the referencing of each requirement in future development or

enhancement documentation” (IEEE, 1998)

 Hull et al. suggest that traceability is “how” high-level requirements transform into low-level

requirements (Hull, Jackson, & Dick, 2005)

 Murray & Griffiths defines traceability as the “ability to identify requirements at different

levels of abstraction, and to show that they have been implemented and tested” (Murray &

Griffiths, 2002). This definition emphasizes traceability across the various levels of

requirements as a means demonstrating completion

 Ramesh et al’s. definition states that “Requirements traceability is a characteristic of a system

where requirements are linked to their sources and to the artifacts created during the system

development lifecycle based on those requirements ” (Ramesh, Stubbs, Powers, & Edwards,

1997)

 Spanoudakis describes traceability as “the ability to relate requirements specifications with

other artifacts created in the development life-cycle of a software system” (Spanoudakis,

2002)

 Greenspan and McGowan define traceability as “The property of a system description

technique that allows changes in one of the three system descriptions—requirements,

specifications, implementation—to be traced to the corresponding portion of the other

descriptions. The correspondence should be maintained through the lifetime of the systems”

(Greenspan & McGowan, 1978)

These definitions generally agree, although there are two areas in which there is substantial

difference: what is or should be traceable, and the orientation or direction of the traceability.

86

What is traceable: Spanoudakis and Ramesh both explicitly link traceability from requirements to

other development artifacts. Greenspan and McGowan hint that traceability exists between

requirements and artifacts, but they they limit the scope to include only requirements, specifications

and implementation. Traceability can also be made to other artifacts such as test cases, user manual,

defects records, etc. Traceability between requirements is known as inter-requirements traceability,

while traceability between requirements and other artifacts is known as extra-requirements

traceability (Pinheiro, 2004), as shown in Figure 23.

Figure 23: Extra- and inter-requirements traceability

The orientation of traceability: Some definitions consider traceability as being both “forward” and

“backward”, while others only consider one direction. Forward traceability refers to tracing from the

source of the requirement (business goal, management direction, regulatory requirements, need for

corrective and preventive actions) to requirements, the design elements which make up the

implementation, the actual implementation, and tests of the implementation. Backward traceability

on the other hand is used to trace tests, design, and other software development artifacts back to the

source requirements. According to Westfall, forward traceability ensures that the evolving product is

representative of the original intent (that we are building the right thing) and helps to ensure the

completeness of software development activities (Westfall, 2006a). Backward traceability ensures

that software development activities do not create additional elements that expand the scope of the

87

project beyond the original scope. For example, if a test cannot be traced back to a design element, or

a design element can not be traced back to a requirement (as shown in Figure 24), then we can

question if the test is needed or if some features has been added along the way that should not be part

of the system. Westfall describes backward traceability as helpful to ensure that we “built the product

right” (Westfall, 2006a).

 We can demonstrate forward and backward traceability in FBREM using our case study as an

example. In Figure 22, the requirement 5.3 (Opportunity qualification shall be standardized by

conducting lead scoring) was elicited from the higher level requirement “Form shall be validated

before submission”. If no subsequent requirement or design element would be traceable to

requirement 5.3, then we would know the software design was incomplete.

Source Requirement Design elements Implementation Test cases

Regulations

Organizational
data

CLASS X

CLASS Y

CLASS Z

BACK SYSTEM SETUP

SERVER SETUP

def main(){

 print ('')

 def class X (){

 }

}

Stakeholders
Requirement 1

Requirement 2

Requirement 3

Requested for by

Derived from

Derived from

Necessitated by

Satisfies

Satisfies

Satisfies

Satisfies

Implements

Implements

Necessitates

Necessitates

Confirms

Figure 24: Forward and backward traceability

We summarize our observations as follows:

1. Traceability is about establishing relationships between layers of information

2. Relationships can exist within a single abstraction layers or across layers of abstraction

3. The traceability relationship can be forward from a source or backward to the source

4. Stakeholders may be interested in different layers and directions of a traceability relationship

88

4.4.1 Motivations for requirement traceability

Determining the requirements for an intended system and using the requirements to guide the

development process is critical. It is important to track the changes that may arise as the elicitation

process evolves and to ensure that the activities performed, as well as artifacts produced along the

way, are identifiable and trackable. The literature is clear on the benefits of traceability (Galvao &

Goknil, 2007), (Hull et al., 2005), (Bashir & Qadir, 2006), (Jaber, Sharif, & Liu, 2013):

For certification purposes Demonstration of traceability of requirements used in process and

product development is a requirement for quality standards certification. “Maintain Bidirectional

Traceability of Requirements” is a goal in theRequirements Management process area of CMMI (SEI,

2000). Similarly, traceability is an important quality requirement in ISO quality standards

To aid collaboration Traceability provides context and visibility to shared artifacts, which enhances

stakeholder engagement and collaboration

To aid maintenance activities Traceability provides a means of documenting interrelated aspects of

the system in a way that can be leveraged on in support and maintenance tasks

To aid audit activities Traceability provides guidance to auditors in knowing what the rules are and

to what extent there is compliance. Traceability information helps auditors to trace the sources of

data, check if data is being updated, how often and with what methods it is updated

For impact and change analysis “The ability to perform correct impact analysis of changes is often

referred to as the most important motivation for establishing requirements traceability” (Turban,

2013). Impact analysis involves determining the consequence of change and how change can be

successfully carried out without perturbing a stable system

To preserve memory Traceability helps to identify and organize background information,

assumptions and justification for decisions taken for future reference

To verify completeness Traceability improves accountability in the development process since the

expected result can be matched against the actual result to verify completeness

4.4.2 Traceability techniques

There are a number of techniques for managing traceability. Four of the techniques are briefly

described here.

89

Constraint network This technique establishes traceability between requirements and artifacts by

explicitly capturing the constraining influences the requirements exert on each other and on other

artifacts. A constraint specifies the relationships that must be satisfied between the components of the

system for the requirements to be fulfilled. The network of such constraints is captured by the

method (Bowen, O’Grady, & Smith, 1990).

Hypertext is an architectural framework for generating a glossary of links from the requirements to

the artifacts, based on textual reference. The essential components of the technique are nodes and

links (Bigelow, 1988). The requirements are stored in nodes, which link to the appropriate resource in

a way that allows for the organization of data and explicit presentation of the dependencies between

requirements and artifacts (Kaindl, 1993)

Traceability matrices This technique documents traceable relationships between pairs of the

products of the development process. A typical example is the traceability matrix used in software

validation that presents the relationship between design elements and test cases or requirements and

design elements. A traceability matrix presents the basic relationship between elements without

showing the detail of dependencies among the elements, or any complex relationships. It is usually

presented in tabular or tree formats (ESA, 1994).

Cross references and indexing schemes Cross references and indexing schemes are “implemented

as references made across several artifacts, to indicate links between them; or as lists of indices

containing the related artifacts for each entry” (Pinheiro, 2004). Cross references can also be

transformed and viewed as a traceability matrix. Like the traceability matrix, cross referencing is only

used to represent the relationship between pairs. Hierarchical or extended dependencies cannot be

shown with the cross-reference technique (Lauber, 1982).

4.4.3 FBREM as a traceability technique

FBREM supports the delineation of the hierarchical relationship existing between the various levels

of a requirements elicitation process. As described earlier, business goals are taken through various

levels of refinement, starting from breaking the business goal into process components and then

progressively applying FMEA on each of the process components until product level requirements are

determined. As the process is being conducted, as shown in Figure 26, the path through which the

process occurs is automatically preserved within the FBREM framework. This becomes the

90

requirement traceability technique through which the life of the requirement can be followed in both

the forward and backward directions.

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

REQUIREMENTS

(LEVEL 1)

Prioritized
requirements

 REQUIREMENTS

(LEVEL 2)

Prioritized
requirements

REQUIREMENTS

(PRODUCT LEVEL)

Prioritized
requirements

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

. . . .

Process
components

BUSINESS GOAL

Potential

failure modes

Effects of

each failure

mode

Causes of

each failure

countermeasure

s

Severity (S)

ranking

Occurrence

(O) ranking

Detection (D)

ranking

Calculate

RPN

(S x O x D)

FMEA

Tr
ac

e
ab

ili
ty

Figure 25: FBREM traceability

Other software development artifacts such as test cases and implemented modules have been included

in the diagram to show that the trace produced using FBREM can be extended to other development

91

activities.

 Figure 26 is a stripped-down version of the rationale and traceability diagram depicted in Figure

22. Prioritization and rationale-related information described in sections 4.1 and 4.3 respectively are

also created along elicitation process and they add additional information on the traceability

relationship.

92

<< Business Goal >>
Sales initiation and

qualification

<< Process Component >>

Develop Opportunity
1.0

<< Process Component >>

Determine the nature
2.0

<< Process Component >>

Add customer info
3.0

<< Process Component >>

Create Quote #
4.0

<< Process Component >>
Qualify Opportunity

5.0

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

<<Countermeasure>>

Experienced staff
should handle task

5.1

<<Countermeasure>>

Senior Management
should review “Qualify
Opportunity" decision

5.2

<<Countermeasure>>
Opportunity qualification
shall be standardized by

conducting “Leads scoring”
5.3

<<Countermeasure>>

Standard operating
procedure shall be

created
5.4

<<Countermeasure>>

Staff should be
trained

5.5

Potential failure

modes

Effects of each

failure mode

Causes of each

failure

countermeasures

Severity (S)

ranking

Occurrence (O)

ranking

Detection (D)

ranking

Calculate RPN

(S x O x D)

FMEA

<<Countermeasure>>

Minimal number of fields shall
be used on the form to reduce

the time spent filling form
5.3.1

<<Countermeasure>>

Existing customer information shall
be automatically pulled from the

DB to eliminate the need to
search/fill such information

5.3.2

<<Countermeasure>>

Fields shall be
validated before

submission
5.3.6

<<Countermeasure>>
Required fields shall
be indicated to users

5.3.5

<<Countermeasure>>

Use select inputs
instead of free
inputs where

applicable
5.3.3

<<Countermeasure>>

The following information shall be captured
 a. Company name – add a company name and assign a score
 b. Size – Choose the company size from the drop down options and assign a score
 c. Revenue - Choose the revenue size from the drop down options and assign a score
 d. Industry - Choose any industry from the drop down and assign a score
 e. Location – Choose any location from the drop down and assign a score
 f. Job title - Add the job title in the box provided and assign a score.
 g. No of Visits – Specify the number in the box provided for no of visits and assign a score.

5.3.7

<<Countermeasure>>
The following criteria shall be used to score leads

Criteria Excellent Prospect Okay Prospect Bad Prospect
Contact Job Title Senior Mgt. (10) Middle Mgt. (5) Team member (1)
Location Canada (10) US (5) Others (1)
Company Size > 5,000 (10) 1,000-5,000 (5) < 1,000 (1)
Industry Automotive (10) Medical (5) Solar (1)
Budget > 50,000 (10) 10,000-50,000 (5) < 10,000 (1)

5.3.4

FMEA

FMEA

Figure 26: Traceability case study example

93

In addition to showing how high-level requirements, objectives, goals, needs, and so on are

transformed into low-level requirements, the diagram also illustrates how requirements are traceable

horizontally and vertically. Horizontal traceability (Jaber et al., 2013) refers to traces between

requirements on the same level of abstraction, while Vertical traceability refers to traces between

requirements across levels of abstraction (Jaber et al., 2013). A sample horizontal traceability

portrayed on Figure 26 is the link between “Experienced staff should handle task”, “Senior

Management should review qualify Opportunity decision” and “Opportunity qualification shall be

standardized by conducting leads scoring” while the trace between “Opportunity qualification shall be

standardized by conducting leads scoring” and “Required fields shall be indicated to users” portrays

vertical traceability. Horizontally traceable requirements could be dependent, independent,

complementary or conflicting, while vertically traceable requirements represent a dependent

relationship.

 A major advantage FBREM offers is that the traceability recording process is integrated into the

requirement elicitation process. Therefore, associating requirements to each other does not have to be

a separate activity, as it is with some of the techniques discussed in Section 4.4.2. FBREM is thus less

likely to suffer consistency and completeness errors. Also, FBREM allows us to extract traceability

information at different levels of abstraction. For example, an engineer’s interest may focus on how a

data requirement implements the external interface requirement, while an auditor may only be

interested in how the business rules are fulfilled by a functional requirement, and management is

interested in knowing which requirement could serve as an alternative to a particular requirement.

Such independent traceability information can be extracted from an FBREM result.

4.5 Comparison of FBREM with related techniques

In this section, we compare FBREM with other requirement elicitation and analysis methods reported

in the literature.

4.5.1 KAOS

Kaos is a goal-oriented requirements approach to eliciting requirements (Dardenne, Lamsweerde, &

Fickas, 1993) (Respect‐IT, 2007). KAOS starts by specifying high-level abstract goals that describe

the system that is being envisioned, and then continuously refines the goals into sub-goals and the

agents responsible for the goal until low level executable requirements are determined. “The main

94

emphasis of KAOS is on the formal proof that the requirements defined for the envisioned system

match the goals” (Rubin & Rubin, 2010).

Figure 27: KAOS technique

4.5.2 Misuse cases

Misuse cases are a concept derived from the traditional “use case” that describes functions that the

system should be able to perform. Misuse case is the inverse of use case: misuse cases represent

behavior not wanted in the system, or threats to the system’s goals (Sindre & Opdahl, 2001) (Sindre

& Opdahl, 2004). The misuse case method involves identifying assets of the system to be developed,

determining the misuse cases for those assets and then determining requirements to mitigate the

misuse cases.

95

Figure 28: Misuse case technique

4.5.3 NFR framework

The non-functional approach starts with soft goals which describe the global quality of the system

(Mylopoulos, Chung, & Nixon, 1992). Examples of soft goals include security, reliability, usability,

and performance.. The soft goals are decomposed into subgoals, and analyzed to resolve conflict and

dependencies among the subgoals. The NFR framework provides a structure for recording the

decomposition and reasoning process in tree structure known as soft goal interdependency graph. The

operation of the framework can be viewed as an incremental and interactive construction, elaboration,

analysis and revision process. An evaluation procedure is used to determine when a soft goal has been

satisfied by its sub goals.

4.5.4 GBRAM

GBRAM is a another method that uses goals as a means of systematically eliciting and analyzing

requirements (Anton, 1996) (Fabian, Gürses, Heisel, Santen, & Schmidt, 2009). The method consists

of two phases; goal analysis and goal refinement. Goal analysis is concerned with identifying and

exploring available information sources for goals and classifying the goals; goal refinement involves

identifying obstacles to the goals and operationalizing the goals into requirements.

96

Figure 29: GBRAM technique

4.5.5 CORAS

CORAS is a stepwise and systematic risk analysis method with the overall objective of understanding

the limitations of existing systems in order to design new features that will fill identified gaps

(Braber, Hogganvik, Lund, Stølen, & Vraalsen, 2007) (Stølen, 2011). CORAS is conducted in eight

steps which include: setting the scope and focus of the analysis; presentation of the goal of the

analysis and setting of targets; refining the targets using asset diagrams in order to have a more

refined understanding of the targets; approval and agreement on the targets; scope and other details of

the project; identify all the possible potential threats, vulnerabilities and threat scenarios; conduct risk

estimation to determine the likelihoods and consequences of the identified risks; evaluate the risk to

determine which of the identified risks must be considered for possible treatment; conduct risk

treatment in order to reduce the impact and likelihood of unacceptable identified risks.

Figure 30: CORAS technique

97

4.5.6 ATAM

ATAM (Kazman et al., 1998) is a structured risk-mitigation technique for determining the suitable

architecture for a system. Quality attributes are extracted from goals and then used to create scenarios.

These scenarios are used in conjunction with architectural approaches to create an analysis of trade-

offs, sensitivity points, and risks (or non-risks). ATAM aids in analyzing requirements along multiple

dimensions to understand the effect of each of the requirements under different scenarios. Some of

the benefits of ATAM include: improved requirements, more complete architectural documentation

and earlier identification of risk factors.

Business

drivers

Architectural

plan

Quality

attributes

Architectural

approaches

Scenerios

Architectural

decisions

Tradeoffs

Sensitivity

points

Non-risk

RisksRisks

Distilled into

Impacts

Analysis

Figure 31: ATAM technique

98

4.6 Comparison of the techniques

FBREM and the other techniques share several characteristics, but as shown in Table 7 below,

FBREM seems the most complete technique.

 FBREM KAOS MISUSE NFR GBRAM CORAS ATAM

Focus on risk/threat

Connection to goals

Prioritizing

Traceable

Retention of rationale

Levels of requirements

Recursively applied

Table 7: Completeness of techniques

Table 8 through 10 contain a more detailed comparison between FBREM and the other methods.

 FBREM KAOS
Misuse

Cases
NFR GBRAM CORAS ATAM

P
ro

ce
ss

Derive

requirements

methodically

using the notion

of failure mode

and

countermeasure

Uses various

models to

refine goals

into

requirement

Employs

the

concepts of

use cases

and UML

Derives

requirement

from goals,

using the

softgoal

dependency

graph

Analyze goals

considering

obstacles and

scenarios to

uncover

requirements

Stepwise risk

analysis of

system

limitations

eliciting

appropriate

requirements

Map quality

attributes with

scenario and

architecture to

determine

minimal risk

requirements

D
ri

v
er

Risk

Goal

Risk

Goal

Goal

Risk

Risk

L
ev

el
s

o
r

ty
p

es

o
f

r
eq

u
ir

em
en

ts
 Requirements are

hierarchically

organized as

business, user and

product level

Separates

functional

from non-

functional

requirements

None None Separates user

from system

goals

None None

Table 8: Method comparison: Process

99

C
ri

te
ri

a
 Severity (SEV),

likelihood (OCC),

risk reduction

(DET)

Heuristics Mitigation

cost

(Implied)

None Stakeholders

negotiation
Risk

assessment

values

Vote by

stakeholders

F
a

ct
o

r

C
o

m
b

in
a
ti

o

n
 CPN = SEV x

OCC x DET
Yes No No Yes Yes Yes

O
b

je
ct

iv
it

y

Relatively

objective
Subjective Objective Subjective

Relatively

objective
Subjective

Table 9: Method comparison: Prioritization

T
ra

ce
a
b

il
it

y
,

ra
ti

o
n

a
le

Builds a

hierarchical

model that

contains the

justifications for

decisions taken

and establishes

traceability

among

requirements

and other

artifacts

Traceability

by the

KAOS

relationships

between

model

components

Misuse

cases

facilities

traceability

between

various

component

s of the use

case

Arguments

in support

of goals are

represented

with

“claims” &

“make”

links

Method

traces from

goals to

requirements

Stepwise

process builds

risk models

which becomes

the basis for

traceability

Method

generates

scenarios

which are

mapped info

the

architecture to

preserve

rationale

details

Table 10: Method comparison: Rationale and Traceability

 FBREM KAOS
Misuse

Cases
NFR GBRAM CORAS ATAM

 FBREM KAOS
Misuse

Cases
NFR GBRAM CORAS ATAM

100

Chapter 5

Conclusions and Future Work

Requirements are an important component of the development process. Requirements provide a

description of what a system should do; they identify the boundaries of the system, as well as its

features, attributes and qualities. Requirements are central to the concept of validating systems, and

essential for establishing traceability between the various elements of the system. Requirements

provide a baseline for quantification of system effort and for resource planning, and they contribute to

system maintenance and update. Failure to capture requirements adequately can lead to missing

functionality, improper allocation of resources, project rework leading to budget overrun, scope creep

and delays, and difficulty in conducting validation and quantification activities.

 The unsatisfactory experience typical in formal requirements elicitation is one of the main

reasons why the agile approach is gaining in popularity. However, while agile may avoid the

difficulties of formal elicitation of requirements, it also bypasses the analysis of user needs and the

generation of a baseline against which the implemented system can be validated.

 The research presented in this thesis is an effort towards showing that requirements can be

deduced from the user stories and process maps that result from agile methodologies. We developed

the Failure Mode Based Requirement Elicitation Method (FBREM) to systematically refine agile

artifacts into system-specific, realizable and verifiable requirements. The requirements deduced using

FBREM are presented in a format that will preserve the justification for decisions taken, and show

traceability between the various levels of requirements and their rationale. The practicality of

FBREM was examined in a case study.

5.1 Contributions of the thesis

The contributions of this thesis are as follows.

1. We showed how formal statements of requirements can be deduced from artifacts such as

process maps that result from agile methodologies. We gave examples from our case study,

and we showed how the method can be extended to more general use.

2. We showed that risk is a useful basis from which to deduce requirements. Empirically we

observed the sensitivity of an agile team to its perceived risks; we extended this observation

101

to the idea that many, if not most, requirements are a response to some kind of risk. FBREM

quantitatively and qualitatively analyzes the components of the agile artifacts to determine

possible failure modes for the components as well as their causes and effects. The risk the

failure modes pose are evaluated on the basis of their severity and likelihood.

Countermeasures are then elicited to reduce the root causes of the failures (or at least alleviate

their effects).

3. We showed that requirements can be structured in levels, depending on the specificity of the

countermeasure. FBREM provides a means of eliciting various levels of requirement. The

method derives requirements by progressively cycling through failure modes in such a way

that the countermeasures of one level become the input for failure mode consideration in the

next level. Eliciting requirements at different stages of abstraction help in managing

implementation, demonstrating completion and conducting level-specific tests.

4. We showed that an objective prioritization of requirements is possible, based on

countermeasure priority numbers. FBREM guides agile teams through an evaluation of

requirements, not based on subjective preferences, but based on the severity and frequency of

risks, and the risk reduction of proposed countermeasures. Prioritizing requirements

objectively based on estimates of risk is better than leaving the prioritization to team guesses

or development constraints.

5. The literature states that maintaining rationale is important in a requirements process. We

showed that FBREM structures requirements so that the rationale of any particular software

feature can be traced back through levels of requirements to the business goal.

6. The literature states that traceability is important in a requirements process. We showed that

FBREM provides traceability between various levels of requirements and software features,

which is essential in software validation, and important when considering changes to the

software or re-evaluating design decisions.

102

5.2 Future Work

There are several areas in which future work could be conducted.

5.2.1 Complete the current case study

Our case study with MACE led us to the FBREM approach, which we have applied to part of

MACE’s business process. We have yet to review the elicited requirements with MACE executives,

although they have expressed an interest in this analysis of their business process. It is likely that

this review could lead MACE to suggest other failure modes, modify our assessments of severity and

likelihood, and develop other possible countermeasures. We would expect certain aspects of FBREM

to be validated through this exercise, while other aspects would be challenged and probably modified.

We could also apply FBREM to all the other phases of the MACE business process.

5.2.2 New case studies in FBREM

Our empirical experience is valuable but is limited to our single case study. It would be important to

evaluate and verify FBREM in several more case studies that may differ in the following parameters:

 Project size and length

 Geographical distribution of the project team

 Team familiarity with agile processes

 Projects with more strenuous risk requirements (such as those in regulated industries)

Although we have described FBREM as a method for deducing requirements from agile artifacts, it is

also possible to use FBREM in a waterfall process, simply by starting with the business goals and

using FBREM to elicit failure modes, causes, effects, and countermeasures from the requirements

team.

5.2.3 Validate CPN

Our Countermeasure Priority Number (CPN) is a simple linear product of severity, likelihood, and

effectiveness, following the existing notion of Risk Priority Number (RPN). However, we have not

demonstrated that this linear product results in an accurate result, where by “accurate” we mean

“corresponds to the actual reduction in risk that the countermeasure provides in practice”. It would be

useful to confirm that this linear product is accurate, or else develop some other mathematical

function of these parameters (possibly non-linear) that gives a more accurate result. CPN is also

103

subject to the same concerns that exist regarding accuracy of the estimates of severity and likelihood

that exist with virtually all other risk models, such as RPN.

5.2.4 Recursive process

FBREM is a recursive process, in which one recursively develops countermeasures and then searches

for the failure modes within the countermeasures. A natural question is: when should one stop the

recursion? As described in this thesis, we rely on development teams to use their judgment in

deciding when to stop the recursion, but it would be better if teams could perform some quantitative

assessment to make this decision. Developing such a quantitative assessment is an area for further

work. For example, a team may set up a certain level of “risk cost” that they are willing to absorb,

and then apply recursion until the residual risk across a goal has been reduced below the risk cost

threshold.

5.2.5 Tool support

A software tool that could be used to automate some aspects of FBREM is an area for future work.

The main purposes of such a tool are:

1. To provide the capability for rapidly conducting the FBREM analysis

2. To automatically calculate CPN from severity, likelihood, and risk reduction parameters

3. To calculate and manage total risk across all goals

4. To rank the goals and components that remain at high risk (and therefore lead the team

towards the work left to do in the FBREM approach)

5. To incorporate multiple models of CPN (as suggested in Section 5.2.3) and thus provide a

tool for exploring risk using different models

Important features of the tool might include:

 A catalog of pre-defined components that can easily be adapted for specific needs using an

intuitive property window to set preferences

 Templates and building blocks that represent best approaches for specific types of scenarios,

disciplines or development styles

104

 Context-specific intelligence such as help, hints, recommendation, warnings, validation etc.

that can provide support and guide the analyst in correctly applying the FBREM principle and

using the tool

 Both a graphical and spreadsheet interface

One architectural design for such an FBREM tool can be found in Figure 32.

Application engine

User data storage

Share interface

Knowledge support
database

Tool user

Modelling interface
Properties window

Outline window

Modelling component window

Asset library window

Modelling window

Menu

Figure 32: Architecture of FBREM software tool

The architecture consists of five main components.

Application engine runs all programs.

User data storage stores all information about users, projects, and specific FBREM input and output.

Knowledge support database stores the knowledge of the FBREM model, including help, process

validation rules, and all other information needed to ensure that as users interact with the tool they are

always producing a valid FBREM model.

105

Share interface provides functionality to import and export data to the tool. A mockup of the share

interface is shown in Figure 33.

Figure 33: Tool share interface

Modelling interface This is where tool users interact with the application. This component supports

both the graphical mode and the spreadsheet mode for FBREM. Both presentation modes can also be

convertible to each other. A mockup of the graphical mode presentation interface is shown in Figure

34 while the spreadsheet format is shown in Figure 35.

106

Figure 34: Tool Graphical Interface

Figure 35: Tool Spreadsheet Interface

107

5.2.6 Epilogue

This research presents an intriguing perspective to some of the challenges experienced in the various

attempts at getting the best out the requirement engineering process. The research benefited from both

theoretical and practical viewpoints in developing the Failure Mode Based Requirement Elicitation

Method (FBREM) as a viable tool for achieving agility in the development process while not

sacrificing the formal requirements analysis objectives.

Though we acknowledge that FBREM is only one of the efforts towards providing improving the

requirements elicitation and analysis, to the best of our knowledge, it is the only method that is

created from attempting to jointly avoid the risk both the agile and the traditional developments

methods attempt to avoid individually.

It is our hope that this challenging but interesting research work will provoke new ways of thinking

about development approaches and provide useful insights for industry requirement engineering

professional as well as academic researchers.

108

Appendix A

Worked example of the FBREM method

The following tables show a fully worked example of the FBREM method for the ten top level tasks of the MACE Sales & Quotation phase.

Each row of the table shows failure modes, effects of failure, severity of failure, potential causes, likelihood, various countermeasures and their

risk reducing impact, the CPN for each countermeasure, and the number of the countermeasure. Countermeasures shaded in green are the most

effective for that particular failure mode. The set of requirements (that is, the most effective countermeasures) elicited for these tasks in the Sales

& Quotation phase are then summarized in a table at the end of this appendix.

LEVEL 1

1 - Develop Opportunity

Develop business opportunities from RFQs or sales leads

Potential Failure

Mode

Potential Effect(s) of

Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Lengthy sales

cycles

Excessive cost of sale

(human & budgetary

resources are being used

up)

3

Contact does not have decision power 2
Train staff on customer profiling and

relationship management
4 24 1.1

Customer unsure of what they want 4
Train staff on information elicitation 2 24 1.2

Create parts and products catalog 3 36 1.3

Customer is not buying yet 3
Train staff on customer profiling and

relationship management
3 27 1.4

Lengthy customer internal process 3
Train staff on customer profiling and

relationship management
3 27 1.5

Customer budget not allocated or dependent

on other contract
3

Train staff on customer profiling and

relationship management
4 36 1.6

Excessive

competition

Excessive cost of sale

leading to reduction in
3 Saturated market 2

Profile potential customers in order to create

a niche offering
1 6 1.7

109

profit margin Seek new markets 3 18 1.8

Customer already has a preferred vendor 4 Profile customer and create a niche offering 2 24 1.9

Not enough reasons to choose Eclipse over

competitors
3 Profile customer and create a niche offering 2 18 1.10

Lack of required

certification

The business opportunity

is lost
5

The company has not executed a similar

project hence requiring certification to

convince customer

2

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

2 20 1.11

New legislation/regulation/customer 2

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

3 30 1.12

Foreign market 3

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

3 45 1.13

Delay in pursuing

opportunity
4

The company has not executed a similar

project hence requiring certification to

convince customer

2

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

2 16 1.14

New legislation/regulation/customer 2

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

3 24 1.15

Foreign market 3

Create a sales forecast module in ERP to

proactively segment markets/customers and

predict future market/customer requirements

3 36 1.16

Limited resources

to undertake sales

activities

Opportunities are

inadequately pursued
4

Resource constraints / too many opportunities

at the same time
4

Outsource sales 2 32 1.17

Contract part time staff 1 16 1.18

Employ full time staff 3 48 1.19

Prioritize the opportunities to be pursued 2 32 1.20

Opportunities not well managed, resource

poorly used
3 Train staff on sales management 4 48 1.21

Sales cycles are

prolonged
3

Resource constraints / too many opportunities

at the same time
4

Outsource sales 2 24 1.22

Contract part time staff 1 12 1.23

Employ full time staff 3 36 1.24

Prioritize the opportunities to be pursued 2 24 1.25

Opportunities not well managed, resource

poorly used
3 Train staff on sales management 4 36 1.26

Reduced sales 4 Resource constraints 4

Outsource sales 2 32 1.27

Contract part time staff 1 16 1.28

Employ full time staff 3 48 1.29

110

Screen opportunities to be considered 1 16 1.30

Opportunities not well managed, resource

poorly used
3 Train staff on sales management 2 24 1.31

False leads No sale 5

Inaccurate information 2
Validate information by peer review 2 20 1.32

Train staff on information elicitation 2 20 1.33

Incomplete information 4
Validate information by peer review 2 40 1.34

Train staff on information elicitation 2 40 1.35

Evaluation criteria not well defined 5
Validate evaluation criteria and adjust

accordingly
1 25 1.36

Opportunity assessment is not being

performed
3 Train staff on evaluating opportunities 2 30 1.37

No new leads No new sale 5

No process to identify new

opportunities/markets
4

Outsource leads generation 3 60 1.38

Train staff on leads generation 2 40 1.39

Make commission based deals with lead

source partners (e.g. suppliers, customers of

customer)
2 40 1.40

Offer a compelling reward to returning

customers
3 60 1.41

Not enough marketing effort 5

Offer a compelling referral reward to current

customers
3 75 1.42

Recruit sales staff from competitor 3 75 1.43

Explore new or expand reach by participating

in trade shows, Fairs & Exhibitions, new

media etc.

2 50 1.44

111

2 - Determine the nature of the opportunity

Preliminarily determine the details of the opportunity

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Nature of the

opportunity is

wrongly determined

or

Task not performed

Wrong or below standards

decisions are taken about the

opportunity (Resources are

wrongly assigned, Time is wasted

in pursuing the opportunity

wrongly, Fail to properly identify

opportunities)

5

Nature of opportunity is not clear 2

Create screening checklist to filter

opportunities
3 30

2.1

Train staff on information elicitation

techniques
4 40

2.2

Escalate to manager 2 20 2.3

Staff is not experienced enough to

determine the nature of the opportunity
2

Train staff on how to determine the nature

of the opportunity
1 10

2.4

Discuss opportunity screening result with

colleagues
2 20

2.5

Not enough information to determine the

nature of opportunity
3

Escalate to manager 2 30 2.6

Train staff on information elicitation

techniques
4 60

2.7

Create required information checklist to

guide elicitation
5 75

2.8

Lack of standard operating procedure

(SOP)
2

Create SOP for performing task 2 20 2.9

Train staff on the use of the SOP 3 30 2.10

Lack of adherence to the standard

operating procedure
2

Train staff on the use of the SOP 3 30 2.11

Institute consequence management

program for non-compliance
2 20

2.12

Opportunity is lost due to the

wrong assessment
5 Wrong assessment of opportunity 4

Train staff on determining nature

opportunity procedure
2 40

2.13

Screen opportunities to be considered 1 20 2.14

Discuss opportunity screening result

colleagues
2 40

2.15

Nature of

opportunity is

indeterminate

Time is wasted in determining the

nature of the opportunity
3

Nature of opportunity is not clear 2

Create screening checklist to filter

opportunities
3 18

2.16

Train staff on information elicitation

techniques
4 24

2.17

Escalate to manager 2 12 2.18

Staff is not experienced enough to 2 Train staff on information elicitation 2 12 2.19

112

determine the nature of the opportunity techniques

Create screening checklist to guide

opportunity screening exercise
2 12

2.20

Not enough information to determine the

nature of opportunity
3

Escalate to manager 2 18 2.21

Train staff on information elicitation

techniques
3 27

2.22

Create screening checklist to guide

elicitation
2 18

2.23

3 - Add customer info to ERP

Add information for new or unsecured customers to the DB

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure
L

ik
elih

o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Available information

is

incorrect/incomplete

Opportunity cannot be properly

tracked in the ERP
3

Correct/complete information

unavailable
3

Review opportunity with colleagues 3 27 3.1

Escalate to manager 2 18 3.2

Correct/complete information not

requested
2

Validate information by peer review 3 18 3.3

Train staff on information elicitation 3 18 3.4

Wrong/incomplete customer

information stated in quotation
3

Correct/complete information

unavailable
3

Validate information by peer review 2 18 3.5

Validate data to detect

incorrect/incomplete data
2 18

3.6

Correct/complete information not

requested
2 Validate information by peer review 2 12

3.7

Inaccurate/Incomplet

e information is added

Opportunity cannot be tracked in

the ERP
2

Correct/complete information

unavailable
3 Validate information by peer review 2 12

3.8

Data entry error 3

Validate data to detect

incorrect/incomplete data
2 12

3.9

Provide standard operating procedure 3 18 3.10

Train staff on data entry 4 24 3.11

Wrong/incomplete customer

information stated in quotation
3

Correct/complete information

unavailable
3 Validate information by peer review 2 18

3.12

113

Data entry error 3

Validate data to detect

incorrect/incomplete data
2 18

3.13

Provide standard operating procedure 3 27 3.14

Train staff on data entry 4 36 3.15

4 - Create Quote #

Register the quotation information in the DB

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Task not performed

or delayed

Information about the quotation is

not being entered into the ERP
2

Lack of standard operating procedure 4 Provide standard operating procedure 3 24 4.1

Lack of training on procedure 4

Train staff on performing task 2 16 4.2

Institute consequence management

program to address non-compliance
3 24

4.3

5 - Qualify Opportunity

Pre-qualify the business opportunity

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Invalid opportunity

assessment

The business opportunity is lost 5 Evaluation criteria not well defined 4
Create leads scoring module to

standardize the qualification criteria
2 40 5.1

Resources are committed to an

invalid opportunity
3

Evaluation criteria not evaluated for

opportunity
5

Create standard operating procedure

on conducting opportunity assessment

and using assessment result

3 45 5.2

Institute consequence management

program to address negligence
5 75 5.3

Fail to properly identify

opportunities
2

Assessment is not done by trained

individual
2

Train staff conducting opportunity

assessment
1 4 5.4

114

Assessment is done by trained individual

but they do not apply procedure correctly
1

Create standard operating procedure

on conducting opportunity assessment

and using assessment result

2 4 5.5

Evaluation result is not used 4 Create standard operating procedure 2 16 5.6

Lack of sufficient data to do proper

evaluation
4

Create standard operating procedure 4 32 5.7

Escalate to manager 3 24 5.8

Lack of sufficient time to do proper

evaluation
2

Create standard operating procedure 4 16 5.9

Escalate to manager 2 8 5.10

Evaluation result is

not used

Fail to properly identify

opportunities
3 Lack of standard operating procedure 5

Create standard operating procedure

on conducting opportunity assessment

and using assessment result

1 15 5.11

"Bad" opportunity is accepted 5

Lack of adherence to the standard

operating procedure
2

Train staff on using on standard

operating procedure
2 20 5.12

Institute consequence management

program to address negligence
4 40 5.13

Lack of training on procedure 5
Train staff on how to use evaluation

result
1 25 5.14

Opportunity is not

qualified

Fail to properly identify

opportunities
4 Lack of standard operating procedure 5

Create standard operating procedure

on conducting opportunity assessment

and using assessment result

1 20 5.15

"Bad" opportunity is accepted 5

Lack of adherence to the standard

operating procedure
2

Train staff on following standard

operating procedure
2 20 5.16

Institute consequence management

program to address negligence
4 40 5.17

Lack of training on procedure 5 Train staff qualifying opportunity 1 25 5.18

6 - Perform Credit Check

Assess the financial capability of the customer

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Limited credit

information

Fail to properly qualify

opportunities
4 Limited customer credit information 2 Escalate to manager 4 32

6.1

Credit report Fail to properly identify 4 Error from credit agency 2 Multi credit agency checks 1 8 6.2

115

dispute opportunities Escalate to manager 4 32 6.3

Inaccurate information transmitted to

credit agency
2

Train staff on task 3 24 6.4

Institute consequence management program

to address negligence
4 32

6.5

Validate information by peer review 2 16 6.6

Relationship with customer is

strained
4

Error from credit agency 2
Multi credit agency checks 1 8 6.7

Escalate to manager 4 32 6.8

Inaccurate information transmitted to

credit agency
2

Train staff on task 3 24 6.9

Institute consequence management program

to address negligence
4 32

6.10

Validate information by peer review 2 16 6.11

The business opportunity is lost 5

Error from credit agency 2
Multi credit agency checks 1 10 6.12

Escalate to manager 4 40 6.13

Inaccurate information transmitted to

credit agency
2

Train staff on task 3 30 6.14

Validate information by peer review 2 20 6.15

Institute consequence management program

to address negligence
4 40

6.16

Response delay from

credit agency

Relationship with customer is

disrupted
4

Delays in making request to credit

agency
3

Train staff on task 3 36 6.17

Institute consequence management program

to address negligence
4 48

6.18

Add calendar and task management module

to ERP
2 24

6.19

Delays in receiving response from credit

agency

3

Add calendar and task management module

to ERP
2 24

6.20

Escalate to manager 4 48 6.21

Quotation process is stalled 3

Delays in making request to credit

agency
3

Train staff on task 3 27 6.22

Institute consequence management program

to address negligence
4 36

6.23

Add calendar and task management module

to ERP
2 18

6.24

Delays in receiving response from credit

agency
3

Add calendar and task management module

to ERP
2 18

6.25

Escalate to manager 4 36 6.26

Credit agency data is

not reliable

Fail to properly identify

opportunities
4

Error from credit agency 2
Multi credit agency checks 1 8 6.27

Escalate to manager 4 32 6.28

Inaccurate information transmitted to

credit agency
2

Train staff on task 3 24 6.29

Institute consequence management program

to address negligence
4 32

6.30

116

Validate information by peer review 2 16 6.31

Bid on job for customer with bad

credit
5

Error from credit agency 2
Multi credit agency checks 1 10 6.32

Escalate to manager 4 40 6.33

Inaccurate information transmitted to

credit agency
2

Train staff on task 2 20 6.34

Institute consequence management program

to address negligence
4 40

6.35

Validate information by peer review 2 20 6.36

Credit check is not

done

Fail to properly identify

opportunities or structure payments
4

Lack of standard operating procedure 4
Create standard operating procedure for

performing task
3 48

6.37

Lack of training on procedure 4 Train staff on credit check task 2 32 6.38

Bid on job for customer with bad

credit
5

Lack of standard operating procedure 4
Create standard operating procedure for

performing task
3 60

6.39

Lack of training on procedure 4 Train staff on credit check task 2 40 6.40

7 - Log decision into the ERP

Log decision not to proceed with the quotation in the DB

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Task not performed
Decision and related information is

lost
2

Lack of standard operating procedure 4
Create standard operating procedure for

performing task
3 24

7.1

Lack of training on procedure 4
Train staff how to log decision into the

database
2 16

7.2

117

8 - Communicate decision to Customer if not quoting

Communicate decision not to quote to the customer

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Customer didn't

receive information

or task not

performed

Company’s reputation is negatively

perceived
3

Message not sent through the appropriate

channel/format
3

Create standard operating procedure for

performing task
3 27

8.1

Train staff on task 2 18 8.2

Message sent to the wrong address 3

Create standard operating procedure for

performing task
3 27

8.3

Train staff on task 2 18 8.4

No quote message is

not properly

communicated

Company’s reputation is negatively

perceived
3

Lack of standard operating procedure 4
Create standard operating procedure for

performing task
3 36

8.5

Lack of training on procedure 4
Train staff on task 2 24 8.6

Validate message by peer review 2 24 8.7

Task not performed
Company’s reputation is negatively

perceived
3

Lack of standard operating procedure 4
Create standard operating procedure for

performing task
3 36

8.8

Lack of training on procedure 4 Train staff on task 2 24 8.9

9 - Gather Information

Gather information needed to successfully quote the opportunity

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Limited in-house

experience on the

technology required

to execute job

The business opportunity is lost

(unable to produce a viable

quotation)

5 Required technology is new or emerging 5

Train staff 2 50 9.1

Outsource activity 3 75 9.2

Invest in R&D 2 50 9.3

Employ personnel with requisite skill & 1 25 9.4

118

experience

Staffs are yet to be trained 4 Train staff on the technology 1 20 9.5

Suitable supplier or resource is yet to be

identified
3 Outsource activity 3 45 9.6

Increase in the number of proposal

revisions due to rework
3 Required technology is new or emerging 5

Train staff 2 30 9.7

Outsource job 3 45 9.8

Invest in R&D 2 30 9.9

Employ personnel with requisite skill &

experience
1 15 9.10

Incomplete/no

information

gathered

The business opportunity is lost

(unable to produce a proposal

which

addresses customer needs)

5

Customer may not know or reluctant to

release information
3

Establish non-disclosure agreements to

make customer comfortable
2 30 9.11

Create information elicitation checklist 2 30 9.12

Hold frequent meetings with customer 3 45 9.13

We neglect to request information during

period when it can be requested
3

Create information elicitation checklist 3 45 9.14

Add calendar and task management module

to ERP
2 30 9.15

Institute consequence management program

for non-compliance
4 60 9.16

We do not know what questions to ask

because we are not familiar with

customer needs

3 Create information elicitation checklist 2 30 9.17

Increase in the number of quotation

revisions due to rework (implying

that more cost is incurred)

3

Customer may not know or reluctant to

release information
3

Establish non-disclosure agreements to

make customer comfortable
2 18 9.18

Create information elicitation checklist 2 18 9.19

We neglect to request information during

period when it can be requested
3

Create information elicitation checklist 3 27 9.20

Add calendar and task management module

to ERP
2 18 9.21

Institute consequence management program

for non-compliance
4 36 9.22

We do not know what questions to ask

because we are not familiar with

customer needs

3
Create information elicitation checklist 3 27 9.23

Train staff on information elicitation 2 18 9.24

Inaccurate

information

The business opportunity is lost

(unable to produce a proposal

which addresses customer needs) or

excessive rework leading to higher

5

Customer is misleading us in order to

make the job cheaper
4

Train staff 2 40 9.25

Create information elicitation checklist 2 40 9.26

Customer representative is not

knowledgeable
3

Create information elicitation checklist to

guide customer on expectation
3 45 9.27

119

cost Escalate to manager 2 30 9.28

Transcription errors 3
Validate entry 2 30 9.29

Validate information by peer review 2 30 9.30

Information is rapidly changing and we

are not informed of changes
4

Freeze requirements and obtain sign-offs 2 40 9.31

Hold frequent meetings with customer 1 20 9.32

Ambiguous information is obtained from

customer
4

Train staff 2 40 9.33

Create information elicitation checklist 2 40 9.34

Validate information by peer review 3 60 9.35

Strained relationship between

manufacturing and sales/app

engineering

2

Customer is misleading us in order to

make the job cheaper
4

Train staff 2 16 9.36

Create information elicitation checklist 2 16 9.37

Customer representative is not

knowledgeable
3

Create information elicitation checklist to

guide customer on expectation
3 18 9.38

Escalate to manager 2 12 9.39

Transcription errors 2
Validate data entry 2 8 9.40

Validate information by peer review 2 8 9.41

Information is rapidly changing and we

are not informed of changes
4 Freeze requirements and obtain sign-offs 2 16 9.42

Ambiguous information is obtained from

customer

4

Hold frequent meetings with customer 1 8 9.43

Train staff on information elicitation 2 16 9.44

Data required to

quote the job is not

available

Unable to properly quote job 4 Unavailability of information required to

quote job
4 Escalate to manager 2 32 9.45

120

10 - Assign Resources

Allocate human and budgetary resources to develop the concept

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Unavailable/limited

human/budgetary

resources to purse

the quotation

process

Poor quality quotation is developed 4
Too many other opportunities at the same

time or Limited resources
4

Outsource task 2 32 10.1

Contract part time staff 1 16 10.2

Employ full time staff 3 48 10.3

Prioritize projects 2 32 10.4

The business opportunity is lost

(unable to produce timely and

appropriate quotation which

addresses customer needs)

5
Too many other opportunities at the same

time or Limited resources
4

Outsource task 2 40 10.5

Contract part time staff 1 20 10.6

Employ full time staff 3 60 10.7

Prioritize projects 2 40 10.8

Extra amount of other resources are

committed to make up for the

unavailable resource

3
Too many other opportunities at the same

time or Limited resources
4

Outsource task 2 24 10.9

Setup a staff compensation scheme 3 36 10.10

Prioritize projects 2 24 10.11

Resources are not

requested /

Resources are not

assigned

Other business/customers are

disrupted as we try to handle

unscheduled work

3

Resources are not properly scheduled 4 Add ticket management module to ERP 1 12 10.12

Resource constraints 4

Contract part time staff 1 12 10.13

Employ full time staff 3 36 10.14

Prioritize projects 2 24 10.15

Have to pay overtime or hire

additional resources because of

poor scheduling

3

Resources are not properly scheduled 4 Add ticket management module to ERP 1 12 10.16

Resource constraints 4

Contract part time staff 1 12 10.17

Employ full time staff 3 36 10.18

Prioritize projects 2 24 10.19

Strained relationship between

manufacturing and sales/app

engineering

2

Resources are not properly scheduled 4 Add ticket management module to ERP 1 8 10.20

Resource constraints 4

Contract part time staff 1 8 10.21

Employ full time staff 3 24 10.22

Prioritize projects 2 16 10.23

121

LEVEL - 2

1.7 - Profile potential customers in order create a niche offering

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Ineffective profiling

result

Inability to grow sales. Loss due to

wasted efforts
4

Limited customer information 4

Outsource profiling activity 3 48 1.7.1

Add customer profiling module to ERP in

order to maintain customer data
2 32 1.7.2

Create a customer feedback channel 2 32 1.7.3

Limited resources to carry out profiling

activity
3

Train staff on customer profiling 1 12 1.7.4

Allocate budget for customer profiling 2 24 1.7.5

Outsource profiling activity 3 36 1.7.6

Recruit staff 2 24 1.7.7

Inability to create

niche offering
Inability to grow sales 4 Limited know-how 4

Improve knowledge base by hiring skilled

staff
1 8 1.7.8

Train existing staff 2 16 1.7.9

 1.11, 1.14 - Create a sales forecast module in ERP to proactively segment markets/customers and predict future market/customer requirements

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or

Mechanism(s) of Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Module is not

being used

The business opportunity is lost due

to market uncertainty
5

Lack of adherence to the standard

operating procedure or lack of

training

3

Train staff on how to use module 2 30
1.11.1,

1.14.1

Institute consequence management program for

non-compliance
4 60

1.11.2,

1.14.2

122

Lack of standard operating

procedure
3

Provide standard operating procedure on entering

data into the leads scoring module
3 45

1.11.3,

1.14.3

Result from

module is not

effective

The business opportunity is lost due

to market uncertainty
5

Module is not being properly used 3 Train staff on how to use module 2 30
1.11.4,

1.14.4

Sales forecast parameters is not

appropriate
4

Properly set features and functions of the forecast

module

Target Achieved

Pipeline

Potential

$

%

1 20
1.11.5,

1.14.5

.

1.30, 2.14, 10,11 - Prioritize opportunities to be pursued

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Prioritization not

done or not done

correctly or result

not effective

Fail to allocate resources

appropriately to opportunities
5

Not enough information to prioritize

opportunity
4

Escalate to manager 3 60 1.30.1

Train staff on information elicitation

techniques
2 30 1.30.2

No standard process for prioritizing

opportunities
4

Use the scoring quadrant

Low reward

High risk

(Avoid)

High reward

High risk

(Evaluate)

Low reward

Low risk

(Evaluate)

High reward

Low risk

(Pursue)

2 20 1.30.3

Create standard operating procedure 3 60 1.30.4

123

Lack of know-how 2
Train staff on conducting opportunity

prioritization
2 20 1.30.5

Political interest 3
Escalate to manager 3 45 1.30.6

Create standard operating procedure 2 20 1.30.7

1.40 - Make commission based deals with lead source partners (e.g. suppliers, customers of customer)

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or

Mechanism(s) of Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Program is not

successful or loss is

incurred or lack of

commitment on the

part of partners

Loss in revenue 5
Lack of support and coordination or

clarity of purpose
3

Define the terms, condition and features of

the commission based sales scheme
2 30 1.40.1

Train partners on the workings of the

commission based sales scheme
2 30 1.40.2

Set up a project management office (PMO) 1 15 1.40.3

Partners use

privilege

information for

other purposes

Unhealthy internal competition 4

Conflict of interest 3

Establish non-disclosure agreements with

partners
3 36 1.40.4

Create standard operating procedure 3 36 1.40.6

Train partners on the workings of the

commission based sales scheme
2 24 1.40.7

Unethical behavior 2

Institute consequence management program

for non-compliance
4 32 1.40.8

Train partners on the workings of the

commission based sales scheme
2 16 1.40.9

Dispute from sales

monitoring
Strained relationship with partners 3

Lack of support and coordination,

lack of clarity, conflict of interest or

unethical behavior

2
Establish a dispute management channel 3 18 1.40.10

Create standard operating procedure 4 24 1.40.11

Misrepresentation

of facts by third

party

Strained relationship with

customers
4

Lack of support and coordination,

lack of clarity, conflict of interest or

unethical behavior

2

Create standard operating procedure 4 32 1.40.12

Train partners on the workings of the

commission based sales scheme
2 16 1.40.13

Create sales confirmation/follow-up

procedure system 2 16 1.40.14

124

2.20 - Create screening checklist to guide opportunity screening exercise

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Module is not being

used

Fail to screen out "Bad"

opportunity early
4

Lack of adherence to the standard

operating procedure or lack of training
3

Train staff on how to use module 2 24 2.20.1

Institute consequence management

program for non-compliance
3 36 2.20.2

Lack of standard operating procedure 3
Provide standard operating procedure on

operating the leads scoring module
3 36 2.20.3

Result from module

is not effective

Fail to screen out "Bad"

opportunity early
4

No standard process for screening

opportunities
4

Checklist to screen opportunities early is

as follows:

1. Is it real?

(Funding, market, experiences)

2. Can we win?

(Competition, resource, timing)

3. Is it worth it?

(Cost, risk, returns, strategy)

1 16 2.20.4

Lack of know-how 3
Train staff on conducting opportunity

prioritization
2 24 2.20.5

Political interest 2 Escalate to manager 3 24 2.20.6

125

3.9 - Validate data to detect incorrect/incomplete data

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Validation rule is

deficient

Dirty data (inaccurate, incomplete

or erroneous data) is stored in the

ERP resulting in difficulty in

querying ERP

3 Data not being validated 5

Validate user information upon submit.

The validation rule is as follows:

 Has the user left required fields

empty?

 Has the user entered a valid e-mail

address?

 Has the user entered a valid date?

 Has the user entered text in a numeric

field?

1 15 3.9.1

5.1 - Create leads scoring module to standardize the qualification criteria

Potential

Failure Mode

Potential Effect(s) of

Failure

S
ev

erity

Potential Cause(s) or

Mechanism(s) of Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Lead scoring

module is not

being used

Fail to properly qualify

opportunities
4

Lack of adherence to the

standard operating

procedure or lack of

training

3

Train staff on how to use leads scoring module 3 36 5.1.1

Institute consequence management program for non-compliance 4 48
5.1.2

Data is not

entered

correctly into

the lead scoring

module

Misleading lead score

leading to poor decision

concerning the

opportunity

5

Time pressure sue to too

many form fields
3

Use selected inputs instead of free inputs where possible.

Minimal number of fields shall be used on the form to reduce the time

spent filling form
2 30 5.1.3

Lack of standard 3 Provide standard operating procedure on entering data into the leads 2 30 5.1.4

126

operating procedure scoring module

Lack of adherence to the

standard operating

procedure

3

Train staff on using on standard operating procedure 3 45 5.1.5

Institute consequence management program to address negligence 4 60 5.1.6

Lack of training on

procedure
4 Train staff on entering data into and using the scoring module 3 60 5.1.7

No data validation 3

Required fields shall be indicated to users 2 30 5.1.8

Validate user information upon submit. The validation rule is as follows:

 Has the user left required fields empty?

 Has the user entered a valid e-mail address?

 Has the user entered a valid date?

 Has the user entered text in a numeric field?

2 30 5.1.9

Wrong scoring

criteria/busines

s rule

Misleading lead score

leading to poor decision

concerning the

opportunity

5

Essential information is

not captured

Business rule is not valid

3

The following information shall be captured

a. Company name – add a company name and assign a score

b. Size – Choose the company size from the drop down options and

assign a score

c. Revenue - Choose the revenue size from the drop down options and

assign a score

d. Industry - Choose any industry from the drop down and assign a score

e. Location – Choose any location from the drop down and assign a score

f. Job title - Add the job title in the box provided and assign a score

g. No of Visits – Specify the number in the box provided for no of visits

and assign a score

1 15 5.1.10

127

The following criteria shall be used to score leads

Criteria Excellent

Prospect

Reasonable

Prospect

Bad Prospect

Contact Job

Title

Senior

Mgt.

10 Middle

Mgt.

5 Team

member

1

Location Canada 10 US 5 Others 1

Company

Size

> 5,000 10 1,000-5,000 5 < 1,000 1

Industry Automoti

ve

10 Medical 5 Solar 1

Budget > 50,000 10 10,000-

50,000

5 < 10,000 1

1 15 5.1.11

Data required

to complete the

lead scoring

form is not

available or has

not being

obtained

Fail to properly qualify

opportunities
4

Limited customer

information
4 Escalate to manager 2 32 5.1.12

Lack of standard

operating procedure
3

Create standard operating procedure on obtaining for and entering data

into the leads scoring module
3 36 5.1.13

Lack of adherence to the

standard operating

procedure 3

Train staff on using on standard operating procedure 3 36 5.1.14

Institute consequence management program to address negligence

4 48 5.1.15
Lack of training on

procedure

Train staff on obtaining for and entering data into the leads scoring

module

5.2, 5.5, 5.11, 5.15 - Create standard operating procedure (SOP) on conducting opportunity assessment and using assessment result

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Standard operating

procedure does not

Company’s processes are not

standardized affecting repeatability
4

Lack of know-how on how to create

SOP
2

Train staff on how to create and

implement SOP
2 16

5.2.,

5.5.,

128

address necessary

issues

in service delivery 5.11.,

5.15.

SOP does not address the issues

appropriately
4

The SOP should contain the following

elements:

• Rationale for SOP

• Detailed description of procedure

based on best practice/standards

• Monitoring actions

• Accountability

• Corrective Actions

• Date of last review or revision date

1 16

5.2.1,

5.5.1,

5.11.1,

5.15.1

Standard operating

procedure is not

being followed

Company’s processes are not

standardized affecting repeatability

in service delivery

4

Lack of training on how to use the SOP 2 Train staff on how to apply the SOP 2 16

5.2.2,

5.5.2,

5.11.2,

5.15.2

SOP format is not user friendly 2
Create the SOP using an interactive

format
3 24

5.2.3,

5.5.3,

5.11.3,

5.15.3

Lack to adherence to the SOP 2

Train staff on using on standard

operating procedure
2 16

5.2.4,

5.5.4,

5.11.4,

5.15.4

Institute consequence management

program to address negligence
4 32

5.2.5,

5.5.5,

5.11.5,

5.15.5

SOP is outdated 4
Set up SOP review committee to review

SOP annually and as need arises
1 16

5.2.6,

5.5.6,

5.11.6,

5.15.6

129

6.2, 6.7, 6.12, 6.27, 6.32 - Multi credit agency checks

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure
R

isk
 red

u
ctio

n

C
P

N

Conflicting or

erroneous report

from credit agency

Delay in submitting quotation 4 Error from credit agency 2 Escalate to manager 3 24

6.2.1, 6.7.1,

6.12.1,

6.27.1,

6.32.1

6.19, 6.20, 6.24, 6.25 - Add calendar and task management module to ERP

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or Mechanism(s) of

Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Calendar and task

management

module is not being

used

Failure in remembering to carry out

tasks leading delay or inability to

submit quotation

4

Lack of training on how to use the SOP 2
Train staff on how and when to use the

Calendar and task management module
2 16

6.19.1,

6.20.1,

6.24.1,

6.25.1

SOP format is not user friendly 2

Create standard operating procedure on

using the Calendar and task management

module

3 24

6.19.2,

6.20.2,

6.24.2,

6.25.2

Lack to adherence to the SOP 2
Institute consequence management

program to address negligence
2 16

6.19.3,

6.20.3,

6.24.3,

6.25.3

130

Failure in

remembering to

carry out tasks

Delay or inability to submit

quotation
4

Features of the calendar and task

management module is not effective
4

Add calendar and task management

module to ERP with the following

features:

 User-definable data fields

 Quick, easy data entry with automatic

field defaults, AutoCorrect and speed

entry templates

 Progress monitoring and indicators

 Ability to set recurring tasks, jobs and

projects

 Automatic task scheduling

 Automatic data backup

 Optional task synchronization with

Microsoft Outlook

1 16

6.19.4,

6.20.4,

6.24.4,

6.25.4

Train staff on how on how & when to

carry out tasks
2 32

6.19.5,

6.20.5,

6.24.5,

6.25.5

Negligence 3

Create standard operating procedure on

how & when to carry out tasks
3 36

6.19.6,

6.20.6,

6.24.6,

6.25.6

Institute consequence management

program to address negligence
4 48

6.19.7,

6.20.7,

6.24.7,

6.25.7

131

10.12, 10.16, 10.20 - Add ticket management module to ERP

Potential Failure

Mode
Potential Effect(s) of Failure

S
ev

erity

Potential Cause(s) or

Mechanism(s) of Failure

L
ik

elih
o
o

d

Countermeasure

R
isk

 red
u

ctio
n

C
P

N

Resources are not

properly scheduled

Delay or inability to submit

quotation
4

Features of the ticket

management module is not

effective

3

Add ticket management module to ERP with

the following features:

 Maintain accurate resource profiles with

groupings, roles etc.

 Define attributes for different resource

types. E.g. Skills

 Define primary & secondary task resource

 Integrate application with outlook

 Send notifications

 Provide utilization & availability report

 Forecast resource shortage and surplus

1 12

10.12.1,

10.16.1,

10.20.1

132

Summary of Risk-Based Requirements

1 - Develop Opportunity

Level 1 Level 2

1.1
Train staff on customer profiling and relationship

management

1.2 Train staff on information elicitation

1.7
Profile potential customers in order create a niche

offering

1.7.4 Train staff on customer profiling

1.7.8 Improve knowledge base by hiring skilled staff

1.11, 1.14

 Create a sales forecast module in ERP to

proactively segment markets/customers and predict

future market/customer requirements

1.11.1, 1.14.1 Train staff on how to use module

1.11.5, 1.14.5

 Properly set features and functions of the forecast module

Target Achieved

Pipeline

Potential

$

%

1.18, 1.23, 1.28 Contract part time staff

1.30 Screen opportunities to be considered

1.30.3

Use the scoring quadrant

Low reward

High risk

(Avoid)

High reward

High risk

(Evaluate)

Low reward

Low risk

(Evaluate)

High reward

Low risk

(Pursue)

1.30.5 Train staff on conducting opportunity prioritization

1.30.7 Create standard operating procedure

1.32 Validate information by peer review

1.33 Train staff on information elicitation

1.39 Train staff on leads generation

1.40 Make commission based deals with lead source 1.40.3 Set up a project management office (PMO)

133

partners (e.g. suppliers, customers of customer) 1.40.9 Train partners on the workings of the commission based sales scheme

1.40.10 Establish a dispute management channel

1.40.13 Train partners on the workings of the commission based sales scheme

1.40.14 Create sales confirmation/follow-up procedure system

2 - Determine the nature of the opportunity

Level 1 Level 2

2.4
Train staff on customer profiling and relationship

management

2.14 Screen opportunities to be considered

2.18 Escalate to manager

2.19 Train staff on information elicitation techniques

2.20
Create screening checklist to guide opportunity screening

exercise

2.20.1 Train staff on how to use module

2.20.4

Checklist to screen opportunities early is as follows:

 Is it real? (Funding, market, experiences)

 Can we win? (Competition, resource, timing)

 Is it worth it? (Cost, risk, returns, strategy)

3 - Add customer info to ERP

Level 1 Level 2

3.2 Escalate to manager

3.3, 3.7, 3.8, 3.12, 3.13 Validate information by peer review

3.4 Train staff on information elicitation

3.9
Validate data to detect incorrect/incomplete

data
3.9.1

Validate user information upon submit. The validation rule is as follows:

 Has the user left required fields empty?

 Has the user entered a valid e-mail address?

 Has the user entered a valid date?

 Has the user entered text in a numeric field?

4 - Create Quote #

Level 1 Level 2

4.2 Train staff on performing task

5 - Qualify Opportunity

Level 1 Level 2

5.1
Create leads scoring module to standardize the

qualification criteria

5.1.1

Train staff on how to use leads scoring module

5.1.3
Use selected inputs instead of free inputs where possible.

Minimal number of fields shall be used on the form to reduce the time

134

spent filling form

5.1.4
Provide standard operating procedure on entering data into the leads

scoring module

5.1.8 Required fields shall be indicated to users

5.1.9

Validate user information upon submit. The validation rule is as follows:

 Has the user left required fields empty?

 Has the user entered a valid e-mail address?

 Has the user entered a valid date?

Has the user entered text in a numeric field?

5.1.10

The following information shall be captured

a. Company name – add a company name and assign a score

b. Size – Choose the company size from the drop down options and assign

a score

c. Revenue - Choose the revenue size from the drop down options and

assign a score

d. Industry - Choose any industry from the drop down and assign a score

e. Location – Choose any location from the drop down and assign a score

f. Job title - Add the job title in the box provided and assign a score

g. No of Visits – Specify the number in the box provided for no of visits

and assign a score

5.1.11

The following criteria shall be used to score leads

Criteria Excellent

Prospect

Reasonable

Prospect

Bad Prospect

Contact Job

Title

Senior

Mgt.

10 Middle

Mgt.

5 Team

member

1

Location Canada 10 US 5 Others 1

Company

Size

> 5,000 10 1,000-5,000 5 < 1,000 1

Industry Automotive 10 Medical 5 Solar 1

Budget > 50,000 10 10,000-

50,000

5 < 10,000 1

 5.1.12 Escalate to manager

5.4 Train staff on conducting opportunity assessment

135

5.12, 5.16 Train staff on using on standard operating procedure

5.2, 5.5, 5.11,

5.15

Create standard operating procedure on conducting

opportunity assessment and using assessment result

5.2., 5.5., 5.11.,

5.15
Train staff on how to create and implement SOP

5.2.1,

5.5.1, 5.11.1,

5.15.1

The SOP should contain the following elements:

• Rationale for SOP

• Detailed description of procedure – based on best

practice/standards

• Monitoring actions

• Accountability

• Corrective Actions

• Date of last review or revision date

5.2.2, 5.5.2,

5.11.2, 5.15.2
Train staff on how to apply the SOP

5.2.4, 5.5.4,

5.11.4, 5.15.4
Train staff on using the standard operating procedure

5.2.6, 5.5.6,

5.11.6, 5.15.6
Set up SOP committee to review SOP annually and as need arises

6 - Perform Credit Check

Level 1 Level 2

6.1 Escalate to manager

6.2, 6.7, 6.12,

6.27, 6.32
Multi credit agency checks

6.2.1, 6.7.1,

6.12.1, 6.27.1,

6.32.1

Escalate to manager

6.19, 6.20,

6.24, 6.25
Add calendar and task management module to ERP

6.19.1, 6.20.1,

6.24.1, 6.25.1

Train staff on how and when to use the Calendar and task

management module

6.19.3, 6.20.3,

6.24.3, 6.25.3
Institute consequence management program to address negligence

6.19.4, 6.20.4,

6.24.4, 6.25.4

Add calendar and task management module to ERP with the

following features:

• User-definable data fields

• Quick, easy data entry with automatic field defaults,

AutoCorrect and speed entry templates

• Progress monitoring and indicators

• Ability to set recurring tasks, jobs and projects

• Automatic task scheduling

• Automatic data backup

• Optional task synchronization with Microsoft Outlook

136

6.38, 6.40 Train staff on credit check task

7 - Log decision into the ERP

Level 1 Level 2

7.2 Train staff how to log decision into the database

8 - Communicate decision to Customer if not quoting

Level 1 Level 2

8.2, 8.4,

8.6, 8.9
 Train staff on task

8.7 Validate message by peer review

9 - Gather Information

Level 1 Level 2

9.5 Train staff on the technology

9.10 Employ personnel with requisite skill & experience

9.11, 9.18
Establish non-disclosure agreements to make

customer comfortable

9.12, 9.17, 9.19
Create information elicitation checklist

 5.1.10

9.15, 9.21 Add calendar and task management module to ERP 6.19, 6.20, 6.24, 6.25

9.40 Validate data entry 3.9

9.41 Validate information by peer review

9.45 Escalate to manager

10 - Assign Resources

Level 1 Level 2

10.2, 10.6, 10.13,

10.17, 10.21
Contract part time staff

10.9 Outsource task

10.11 Prioritize projects

10.12, 10.16,

10.20
Add ticket management module to ERP

10.12.1, 10.16.1,

10.20.1

Add ticket management module to ERP with the following features:

 Maintain accurate resource profiles with groupings, roles etc.

 Define attributes for different resource types. E.g. Skills

 Define primary & secondary task resource

 Integrate application with outlook

 Send notifications

 Provide utilization & availability report

 Forecast resource shortage and surplus

137

Appendix B

Model developed in iteration 1

138

139

Appendix C

Model developed in iteration 2

140

141

Appendix D

Model developed in iteration 3

142

143

Appendix E

BPM Tool screening

Creator Tool name Meets cost criterion? Meets ease criterion? Meets BPMN criterion?

Bizagi Bizagi Yes Yes Yes

IBM Rational No N/A N/A

Microsoft Visio Yes Yes No

Software AG Aris Express Yes Yes Yes

BonitaSoft Bonita BPM Yes Yes Yes

Intellivate IYORO Yes Yes Yes

Lucid Software Lucid Yes Yes Yes

Visible Systems Visible Analyst No N/A N/A

The BOC Group ADONIS Yes No N/A

GeneXus Modeler GeneXus Yes No N/A

igrafx igrafx Flowchater Yes Yes Yes

Altova Umodel Yes Yes Yes

Oracle Business Process Management (BPM) Suite No N/A N/A

OpenText Process Suite No N/A N/A

PTC PTC Windchill No N/A N/A

144

Appendix F

BPM Tool evaluation

Quality Criteria Parameter Bizagi Visio ArisExpress

 Creator: Bizagi
Version evaluated: 2.6..0.4

Creator: Microsoft
Version evaluated: Visio 2010

Creator: Software AG
Version evaluated: 2.4

1 Suitability BPMN modelling

 BPMN version supported BPMN 2.0 BPMN 2.0 BPMN 2.0

 Modularity: Ability to break model
into independent modules

 Reusesable
subprocess
can be
created

 Reusuable
fragment of
modules be
created

 Version Management: Ability to
maintain a revision control of
model

2 Interoperability Export capability Image,
Sharepoint, MS
Word, Visio,
html, PDF

 Image, XML,
Sharepoint, MS
Word, AutoCAD,
html, PDF

 Image, PDF

 Import capability xpdl, xml, visio AutoCAD, Image xml drawing,
Image

Limited Visio
import

 Hyperlink to external resources

3 Compliance BPMN rules enforcement Available but
optional

 Commercial
plugin are
available for
BPMN
validation

 Macros can
however be built
for syntax checking

145

4 Maturity Inclusion in major market reports • Forrester,
2013 - Listed as
strong
performer
• Gartner, 2010
- Listed in the
visionaries
quadrant

 • Gartner,
2010 - Listed in
the leaders
quadrant

 • Forrester, 2013 -
Listed as strong
performer
• Gartner, 2010 -
Listed in the
leaders quadrant

5 Learnability Adequate documentation of tool
usage

 Link

 Online forums Link
 Link

 Training courses Link
 Link

6 Usability Context-sensitive: interface
provides context-sensitive help
and meaningful feedback when
errors occur

 Familiarity & Navigability: offers
recognizable elements and
interactions easily understood by
the user; users can move around
in the application in an efficient
way

 Flexibility: whether the user
interface of the software product
can be tailored to suit users’
personal preferences

 Allow usage
of extended
attributes

 Allow basic
attributes

 Readability: ease with which visual
content (such as text dialogs) can
be understood

7 Resource
behavior

Licensing cost Freeware Commercial Link Freeware

http://wiki.bizagi.com/en/index.php?title=Main_Page
http://feedback.bizagi.com/suite/en/
http://www.ariscommunity.com/
http://www.bizagi.com/index.php/en/services/training-certifications
http://www.ariscommunity.com/tutorials
http://www.microsoftstore.com/store?Action=DisplayPage&Locale=en_CA&SiteID=msca&id=ThreePgCheckoutShoppingCartPage&WT.intid1=ODC_ENCA_FX103791368_XT104000918

146

8 Vendor
support

Availability of offline support

 Availability of online support Paid http://www.arisco
mmunity.com/foru
ms/aris-
community-
support

9 Installability Specific issues/requirements

 Operating system requirement Windows Windows Windows

 Hardware requirement • Processor: 1
gigahertz (GHz).
32-bit (x86) or
64-bit (x64)
• Memory: 1
gigabyte (GB)
RAM (32-bit) or
2 GB RAM (64-
bit)
• Hard drive: 50
MB available
hard disk space
• Display: 800 x
600 or higher
resolution

 • Processor: 1
gigahertz (GHz) or
faster 32-bit (x86)
or 64-bit (x64)
processor
• Memory: 1
gigabyte (GB) of
RAM for 32-bit (x86)
processors or 2 GB
of RAM for 64-bit
(x64) processors

 • Min. screen
resolution:
1024x600
pixels
• Min. free disc
space: 275 MB
• Min. free
memory
(RAM): 256 MB
•
Recommended
free memory
(RAM): 512 MB

http://www.ariscommunity.com/forums/aris-community-support
http://www.ariscommunity.com/forums/aris-community-support
http://www.ariscommunity.com/forums/aris-community-support
http://www.ariscommunity.com/forums/aris-community-support
http://www.ariscommunity.com/forums/aris-community-support

147

Bibliography

Adhikari, P., & Reinhart, B. (2006). Design Rationale Modeling Representations, 1–9.

Akao, Y. (1994). Development History of Quality Function Deployment. The Customer Driven

Approach to Quality Planning and Deployment. Minato, Tokyo 107 Japan: Asian Productivity

Organization, 339.

Akers, D. (2008). Real Reuse for Software Requirements Sharing Between Projects. Retrieved June

09, 2014, from http://www.methodsandtools.com/archive/archive.php?id=68

Alwang, J., Siegel, P., & Jorgensen, S. (2001). Vulnerability: a view from different disciplines,

(2001), 1–12. Retrieved from

http://siteresources.worldbank.org/SOCIALPROTECTION/Resources/SP-Discussion-

papers/Social-Risk-Management-DP/0115.pdf

Ambler, S. (2007). Agile Documentation Strategies. Retrieved from

http://www.drdobbs.com/architecture-and-design/agile-documentation-strategies/197003363

Ambler, S. (2008). Active Stakeholder Participation: An Agile Best Practice. Retrieved September

03, 2014, from http://agilemodeling.com/essays/activeStakeholderParticipation.htm

Ambler, S. (2010). Agile/Lean Documentation: Strategies for Agile Software Development.

Retrieved September 03, 2014, from http://agilemodeling.com/essays/agileDocumentation.htm

Ambler, S. W. (2013). Best Practices for Agile Lean Documentation.

Anton, A. (1996). Goal-based requirements analysis. Requirements Engineering, 1996., Proceedings

of …. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491438

ASQ. (2011). Six Sigma Certification - Become Black Belt (CSSBB) Certified | ASQ. Retrieved May

14, 2014, from http://asq.org/cert/six-sigma

Aven, T. (2008). Risk analysis: assessing uncertainties beyond expected values and probabilities.

Vasa. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

Avison, D., & Fitzgerald, G. (2006). Information Systems Development: Methodologies, Techniques

& Tools (4th ed.). New York: McGraw-Hill College.

Bashir, M. F., & Qadir, M. A. (2006). Traceability Techniques: A Critical Study. 2006 IEEE

International Multitopic Conference, 265–268. doi:10.1109/INMIC.2006.358175

Beck, K. (1999). Extreme Programming Explained.

148

Berander, P., & Andrews, A. (2005). Requirements prioritization. Engineering and Managing

Software Requirements. Springer Berlin Heidelberg, 69–94. Retrieved from

http://link.springer.com/chapter/10.1007/3-540-28244-0_4

Berg, H. (2010). Risk management: Procedures, methods and experiences. RISK MANAGEMENT,

1(17), 79–95. Retrieved from http://gnedenko-forum.org/Journal/2010/022010/RTA_2_2010-

09.pdf

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica: Journal

of the Econometric Society, 22(1), 23–36.

Bernstein, P. L. (1997, July). Against the Gods: The Remarkable Story of Risk. Journal of Marketing.

doi:10.2307/1251793

Bigelow, J. (1988). Hypertext and CASE. Software, IEEE, 5(2), 23–27. doi:10.1109/52.2007

BIS. (2010). Business Information Systems: 13th International Conference, BIS 2010, Berlin,

Germany, May 3-5, 2010, Proceedings (p. 305). Springer. Retrieved from

http://books.google.com/books?id=TGQA3__sLsIC&pgis=1

Bowen, J., O’Grady, P., & Smith, L. (1990). A constraint programming language for Life-Cycle

Engineering. Artificial Intelligence in Engineering, 5(4), 206–220. doi:10.1016/0954-

1810(90)90022-V

Bowles, J. (2004). An assessment of RPN prioritization in a failure modes effects and criticality

analysis. Journal of the IEST, 380–386. Retrieved from

http://iest.metapress.com/index/Y576M26127157313.pdf

Braber, F. den, Hogganvik, I., Lund, M. S., Stølen, K., & Vraalsen, F. (2007). Model-based security

analysis in seven steps — a guided tour to the CORAS method. BT Technology Journal, 25,

101–117. Retrieved from http://dx.doi.org/10.1007/s10550-007-0013-9

Bradner, S. (1997). RFC 2119. Retrieved from http://www.ietf.org/rfc/rfc2119.txt

BSI. (1991). BS 5760-5:1991 - Reliability of systems, equipment and components. Guide to failure

modes, effects and criticality analysis (FMEA and FMECA) – BSI British Standards. Retrieved

May 14, 2014, from http://shop.bsigroup.com/ProductDetail/?pid=000000000000256425

Burge, J., Carroll, J., McCall, R., & Mistrik, I. (2008). Rationale-based software engineering.

Springer.

Burge, J. E., & Brown, Jd. C. (1998). Design Rationale Types and Tools. Retrieved June 10, 2014,

from http://web.cs.wpi.edu/Research/aidg/DR-Rpt98.html

Burge, J. E., Hall, K., & Brown, D. C. (2007). Supporting Requirements Traceability with Rationale.

149

Carbone, T., & Tippett, D. (2004). Project Risk Management Using the Project Risk FMEA.

Engineering Management Journal, 16(4). Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawl

er&jrnl=10429247&AN=16605660&h=0ykRyIfVbOUhXZV8NMhRfd8KKGrsNqEt35rz2w9S

QNm1qM/rO700V/5uwwU2PoOl9VWeyOo57nKidYMpgB/0RA==&crl=c

Carlson, C. (2012). Effective FMEAs: Achieving Safe, Reliable, and Economical Products and

Processes Using Failure Mode and Effects Analysis. John Wiley & Sons, Inc.

Carlson, C., Sarakakis, G., Groebel, D. J., & Mettas, A. (2010). Best practices for effective reliability

program plans. Reliability and …. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5448073

Christel, M., & Kang, K. (1992). Issues in requirements elicitation, (September). Retrieved from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA258932

Dale, N., Siesfeld, G. A., & Cefola, J. (1998). The economic impact of knowledge. Routledge.

Dardenne, A., Lamsweerde, A. Van, & Fickas, S. (1993). Goal-directed requirements acquisition.

Science of Computer …. Retrieved from

http://www.sciencedirect.com/science/article/pii/016764239390021G

David, J., & Saaty, D. (2007). Use analytic hierarchy process for project selection. ASQ Six Sigma

Forum Magazine. Retrieved from

http://dschoenherr.fatcow.com/sitebuildercontent/sitebuilderfiles/analytic_hierarchy_process.pdf

DoD. (1980). U.S. Department of Defense, MIL-STD-1629A: Procedures for Performing a Failure

Mode Effects and Criticality Analysis, Cancelled in November, 1984.

Dorsey, P. (2000). Top 10 reasons why systems projects fail. Retrieved February, 1–9. Retrieved

from http://www.rrsg.ee.uct.ac.za/courses/EEE4084F/Reading/Lect21-

Dorsey_Top10ReasonsSystemsProjectsFail.pdf

Dutoit, A., McCall, R., Mistrik, I., & Paech, B. (2007). Rationale management in software

engineering. Retrieved from

http://books.google.com/books?hl=en&lr=&id=Ud9pZtSyHKUC&oi=fnd&pg=PR5&dq=Ration

ale+Management+in+Software+Engineering&ots=sV2h2n8wkc&sig=Gz7qPQwSELuq9__NBk

T3hfd9x5o

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of

Management Review, 14(4), 532. doi:10.2307/258557

ESA. (1994). ESA Software Engineering Standards. ESA Publications Division, ESA PSS-05(2).

Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ESA+software+engineering+

standards#1

150

Fabian, B., Gürses, S., Heisel, M., Santen, T., & Schmidt, H. (2009). A comparison of security

requirements engineering methods. Requirements Engineering, 15(1), 7–40.

doi:10.1007/s00766-009-0092-x

Feather, M., Cornford, S., Kiper, J., & Menzies, T. (2006). Experiences using Visualization

Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation. 2006

First International Workshop on Requirements Engineering Visualization (REV’06 - RE'06

Workshop), 10–10. doi:10.1109/REV.2006.2

Feng, D., & Eyster, C. (2013). Risk-based requirements management framework with applications to

assurance cases. 2013 IEEE Aerospace Conference, 1–11. doi:10.1109/AERO.2013.6496958

Firesmith, D. (2007). Common Requirements Problems, Their Negative Consequences, and the

Industry Best Practices to Help Solve Them. Journal of Object Technology, 6(1), 17–33.

Retrieved from http://www.jot.fm/issues/issue_2007_01/column2/

Galvao, I., & Goknil, A. (2007). Survey of Traceability Approaches in Model-Driven Engineering.

11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007),

313–313. doi:10.1109/EDOC.2007.42

Gan, L., Xu, J., & Han, B. T. (2011). A computer-integrated FMEA for dynamic supply chains in a

flexible-based environment. The International Journal of Advanced Manufacturing Technology,

59(5-8), 697–717. doi:10.1007/s00170-011-3526-9

Garvey, P. R. (2008). Analytical Methods for Risk Management: A Systems Engineering Perspective

(p. 288). CRC Press. Retrieved from

http://books.google.ca/books/about/Analytical_Methods_for_Risk_Management.html?id=dCLX

q78GDVgC&pgis=1

Goldsmith, R. F. (2004). Discovering Real Business Requirements for Software Project Success (p.

215). Artech House.

Gotel, O., & Finkelstein, A. (1994). An analysis of the requirements traceability problem.

Requirements Engineering, …. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=292398

Gottesdiener, E. (2005). The Software Requirements: Memory Jogger: a Pocket Guide to Help

Software and Business Teams Develop and Manage Requirements. Goal/QPC.

Greenspan, S. J., & McGowan, C. . (1978). Structuring Software Development for Reliability.

Microelectronics and Reliability.

Gruber, T. R. (1990). Model-based Explanation of Design Rationale. Proceedings of the AAAI-90

Explanation Workshop, Boston.

151

Gruber, T. R., & Russell, D. M. (1996). Generative design rationale: beyond the record and replay

paradigm. In T. P. Moran & J. M. Carroll (Eds.), (pp. 323–349). Hillsdale, NJ, USA: L. Erlbaum

Associates Inc.

Hazzan, O., & Dubinsky, Y. (2009). Agile software engineering. doi:10.1007/978-1-84800-199-2

Heindl, M., & Biffl, S. (2005). A case study on value-based requirements tracing. Proceedings of the

10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering - ESEC/FSE-13, 60.

doi:10.1145/1081706.1081717

Heindl, M., & Biffl, S. (2006). Risk management with enhanced tracing of requirements rationale in

highly distributed projects. Proceedings of the 2006 International Workshop on Global Software

Development for the Practitioner - GSD ’06, 20. doi:10.1145/1138506.1138512

Hekmatpanah, M., Shahin, A., & Ravichandran, N. (2011). The application of FMEA in the oil

industry in Iran : The case of four litre oil canning process of Sepahan Oil Company, 5(8),

3019–3027. doi:10.5897/AJBM10.1248

Henney, K. (2007). Iterative and incremental development explained. TechTarget. Retrieved from

http://searchsoftwarequality.techtarget.com/news/1284193/Iterative-and-incremental-

development-explained

Herrmann, A., & Paech, B. (2007). MOQARE: misuse-oriented quality requirements engineering.

Requirements Engineering, 13(1), 73–86. doi:10.1007/s00766-007-0058-9

Herrmann, A., & Paech, B. (2009). Practical challenges of requirements prioritization based on risk

estimation. Empirical Software Engineering, 14(6), 644–684. doi:10.1007/s10664-009-9105-0

Highsmith, J. (2013). Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems (p. 392). NY, USA: Dorset House Publishing Co., Inc.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of innovation.

Computer. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=947100

Hull, E., Jackson, K., & Dick, J. (2005). Requirements Traceability. In Requirements Engineering

(pp. 1–19). London: Springer London. doi:10.1163/9789004265820_002

IEC. (2006). IEC 60812 - Analysis techniques for system reliability - Procedure for failure mode and

effects analysis (FMEA) | IEC Webstore | Publication Abstract, Preview, Scope. Retrieved May

14, 2014, from http://webstore.iec.ch/webstore/webstore.nsf/standards+ed/IEC 60812 Ed.

2.0?OpenDocument

IEC. (2008). Analysis Techniques for System Reliability: Procedure for Failure Mode and Effects

Analysis (FMEA)., (26).

152

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-

1990). Los Alamitos. CA: IEEE Computer Society. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:IEEE+Standard+Glossary+of

+Software+Engineering+Terminology+(IEEE+Std+610.12-1990)#0

IEEE. (1998). IEEE Recommended Practice for Software Requirements Specifications. IEEE Std

830-1998, 1–40. doi:10.1109/IEEESTD.1998.88286

IHI. (2013). Institute for Healthcare Improvement: Risk Priority Number (from Failure Modes and

Effects Analysis). Retrieved May 17, 2014, from

http://www.ihi.org/resources/Pages/Measures/RiskPriorityNumberfromFailureModesandEffects

Analysis.aspx

IMCA. (2002). Guidance on Failure Modes & Effects Analyses (FMEAs), (April).

ISO. (2009). ISO/TS 16949:2009 - Quality management systems -- Particular requirements for the

application of ISO 9001:2008 for automotive production and relevant service part organizations.

Retrieved May 14, 2014, from http://www.iso.org/iso/catalogue_detail?csnumber=52844

ISO 31000. (2009). ISO 31000 Risk Management Definitions in Plain English. Retrieved March 24,

2014, from http://www.praxiom.com/iso-31000-terms.htm

Jaber, K., Sharif, B., & Liu, C. (2013). A Study on the Effect of Traceability Links in Software

Maintenance, 1.

Kaindl, H. (1993). The Missing Link in Requirements Engineering. SIGSOFT Softw. Eng. Notes,

18(2), 30–39. doi:10.1145/159420.155836

Kajko-Mattsson, M. (2008). Problems in agile trenches. Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement - ESEM ’08,

111. doi:10.1145/1414004.1414025

Kaplan, S., & Garrick, B. J. (1981). On The Quantitative Definition of Risk. Risk Analysis, 1(1), 11–

27. doi:10.1111/j.1539-6924.1981.tb01350.x

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritizing requirements. Software, IEEE,

14(5), 67–74.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The

architecture tradeoff analysis method. … , 1998. ICECCS’98. …, 98(c). Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=706657

Kirschner, P. A., Buckingham-Shum, S. J., & Carr, C. S. (2003). Visualizing Argumentation:

Software Tools for Collaborative and Educational Sense-Making. London: Springer-Verlag.

153

Kovitz, B. (2003). Hidden skills that support phased and agile requirements engineering.

Requirements Engineering, 8(2), 135–141. doi:10.1007/s00766-002-0162-9

Kruchten, P., Capilla, R., & Dueas, J. C. (2009). The Decision View’s Role in Software Architecture

Practice. Software, IEEE, 26(2), 36–42. doi:10.1109/MS.2009.52

Lauber, R. J. (1982). Development Support Systems. Computer, 15(5), 36–46.

doi:10.1109/MC.1982.1654023

Layton, M. C. (2012). Agile Project Management for Dummies. Retrieved April 29, 2014, from

http://www.dummies.com/how-to/content/agile-management-communication-methods.html

Lee, J. (1989). Decision representation language (DRL) and its support environment, (325). Retrieved

from http://dspace.mit.edu/handle/1721.1/41499

Lee, J. (1991). Extending the Potts and Bruns model for recording design rationale. Proceedings of

the 13th International Conference on Software Engineering (ICSE ’13), IEEE Computer Society

Press, Los Alamitos, CA, 114 – 125.

Leffingwell, D. (2011). Agile Software Development with Verification and Validation in High

Assurance and Regulated Environments. Rally Software Development Corp.

Leffingwell, D. (2011). Agile software requirements. … Requirements Practices for Teams, ….

Retrieved from http://www.scalingsoftwareagilityblog.com/wp-

content/uploads/2010/08/0321635841_leffingwell_comp.pdf

Leffingwell, D., & Widrig, D. (2003). Managing software requirements: a use case approach.

Addison-Wesley Professional.

Lehtola, L., Kauppinen, M., & Kujala, S. (2004). Requirements Prioritization Challenges in Practice,

497–508.

Leveson, N. G. (2000). Intent specifications: an approach to building human-centered specifications.

IEEE Transactions on Software Engineering, 26(1), 15–35. doi:10.1109/32.825764

Lin, L., Ince, D., Moffett, J., Hall, W., & Mk, M. K. (2003). Introducing Abuse Frames for Analysing

Security Requirements.

Macesker, B., Myers, J., & Guthrie, V. (2002). Quick-reference Guide to Risk-based Decision

Making (RBDM): A Step-by-step Example of the RBDM Process in the Field. … Http://www.

Au. Af. Mil/au …. Retrieved from http://www.au.af.mil/AU/AWC/AWCGATE/uscg/risk-

qrg.pdf

154

Magsarjav, U. (2004). Requirements Documents Evolution and Synchronization with Activities in the

Refined Requirements Generation Model. Retrieved from

http://scholar.lib.vt.edu/theses/available/etd-09112004-210405/

Marina Jirotka, Joseph A. Goguen, Andrew F. Monk, B. R. G. (1994). Requirements Engineering:

Social and Technical Issues (Computers and People). Retrieved May 19, 2014, from

http://www.amazon.com/Requirements-Engineering-Social-Technical-

Computers/dp/0123853354

Maynard-Zhang, P., Kiper, J., & Feather, M. (2005). Modeling uncertainty in requirements

engineering decision support. … Engineering Decision Support of …. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3695&rep=rep1&type=pdf

Miller, M. T., & Chavez, F. (2002). FGS requirement rationale [Flight Guidance System]. In Digital

Avionics Systems Conference, 2002. Proceedings. The 21st (Vol. 2, pp. 13D1–1–13D1–7 vol.2).

doi:10.1109/DASC.2002.1053012

Modarres, M. (2006). Risk analysis in engineering: techniques, tools, and trends. Retrieved from

http://books.google.com/books?hl=en&lr=&id=ErjFzRWSne8C&oi=fnd&pg=PA1&dq=Risk+a

nalysis+in+engineering+:+techniques,+tools,+and+trends&ots=oqLd_-

PnYS&sig=5VEIrdabKUrDXxajdcYvUyhiN7k

Murray, L., & Griffiths, A. (2002). Requirements traceability for embedded software—An industry

experience report. Int. Conf. on Software …. Retrieved from

http://www.actapress.com/PaperInfo.aspx?PaperID=24411

Mylopoulos, J., Chung, L., & Nixon, B. (1992). Representing and using nonfunctional requirements:

A process-oriented approach. Software Engineering, IEEE …. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=142871

NORSOK. (2001). NORSOK STANDARD Risk and emergency preparedness analysis.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: a roadmap. Proceeding ICSE ’00

Proceedings of the Conference on The Future of Software Engineering, 35 – 46.

Orr, K., Summit, C. C., Development, A. S., Bayer, S., Street, W., Development, R. S., … Explained,

E. P. (2001). Chapter 23 . Adaptive Software Development, 173–179.

Paetsch, F., Eberlein, a., & Maurer, F. (2003). Requirements engineering and agile software

development. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2003., 308–313.

doi:10.1109/ENABL.2003.1231428

Pinheiro, F. A. C. (2004). Requirements Traceability. In J. C. S. do P. Leite & J. H. Doorn (Eds.),

Perspectives on Software Requirements (pp. 91–113). US: Springer. doi:10.1007/978-1-4615-

0465- 8_5

155

Ramesh, B., Stubbs, C., Powers, T., & Edwards, M. (1997). Requirements traceability: Theory and

practice. Annals of Software Engineering, 3(1), 397 – 415.

Ramzan, M., Jaffar, M., & Shahid, A. (2011). Value based Intelligent requirement prioritization

(VIRP): expert driven fuzzy logic based prioritization technique. International Journal of

Innovative …, 7(3), 1017–1038. Retrieved from http://www.ijicic.org/ijicic-09-0765.pdf

Rechtin, E. (1991). Systems Architecting: Creating & Building Complex Systems. Retrieved May 09,

2014, from http://www.amazon.com/Systems-Architecting-Creating-Building-

Complex/dp/0138803455

Respect‐IT. (2007). A KAOS Tutorial, 1–46.

Rosa, E. a. (1998, January). Metatheoretical foundations for post-normal risk. Journal of Risk

Research. doi:10.1080/136698798377303

Royce, W. W. (1987). Managing the Development of Large Software Systems: Concepts and

Techniques. In Proceedings of the 9th International Conference on Software Engineering (pp.

328–338). Los Alamitos, CA, USA: IEEE Computer Society Press. Retrieved from

http://dl.acm.org/citation.cfm?id=41765.41801

Rubin, E., & Rubin, H. (2010). Supporting agile software development through active documentation.

Requirements Engineering, 16(2), 117–132. doi:10.1007/s00766-010-0113-9

Ruhe, G., Eberlein, A., & Pfahl, D. (2002). Quantitative WinWin: a new method for decision support

in requirements negotiation. … of the 14th International Conference on …, 159–166. Retrieved

from http://dl.acm.org/citation.cfm?id=568789

Saaty, T. (1990). How to make a decision: the analytic hierarchy process. European Journal of

Operational Research. Retrieved from

http://www.sciencedirect.com/science/article/pii/037722179090057I

SEI. (2000). CMMI for Systems Engineering/Software Engineering, Version 1.02, Staged

Representation (CMMI-SE/SW, V1.02, Staged) (Vol. 02). Software Engineering Institute.

Retrieved from http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5263

Shore, J., & Warden, S. (2007). The Art of Agile Development. O’Reilly Media, Inc. Retrieved from

http://books.google.com/books?hl=en&lr=&id=g_ji7cRb--

UC&oi=fnd&pg=PR9&dq=The+Art+of+Agile+Development&ots=vnHBDnTA9x&sig=P8juL

4TmRrCfqDA1UxyI-1hSxqE

Sillitti, A., & Succi, G. (2005). Requirements engineering for agile methods. Engineering and

Managing Software Requirements. Retrieved from http://link.springer.com/chapter/10.1007/3-

540-28244-0_14

156

Sindre, G., & Opdahl, A. (2001). Capturing security requirements through misuse cases. NIK 2001,

Norsk Informatikkonferanse 2001, Http:// …. Retrieved from http://www.nik.no/2001/21-

sindre.pdf

Sindre, G., & Opdahl, A. (2004). Eliciting security requirements with misuse cases. Requirements

Engineering, 10(1), 34–44. doi:10.1007/s00766-004-0194-4

Sommerville, I. (2004). Software Engineering (7th ed.). Pearson Addison Wesley.

Spanoudakis, G. (2002). Plausible and Adaptive Requirement Traceability Structures. In the

Proceedings of SEKE ’02.

Spielvogel, J. J. (2014). Western Civilization: A Brief History. The History Teacher (8th ed., Vol. 13,

p. 442). Boston : Wadsworth/Cengage Learning. doi:10.2307/491694

Stølen, K. (2011). The CORAS Method.

Stumpf, S. (1997). Argumentation-based design rationale-the sharpest tools in the box. Computer

Science Department, University College London. Retrieved from

http://openaccess.city.ac.uk/223/

Syed, M. R., & Syed, S. N. (2008). Handbook of research on modern systems analysis and design

technologies and applications. Information Science Reference - Imprint of: IGI Publishing.

Retrieved from http://www.cs.uu.nl/docs/vakken/me/downloads/2008 - Handbook - Meta-

modeling for situational analysis and design methods.pdf

Tang, A., Babar, M. A., Gorton, I., & Han, J. (2006a). A survey of architecture design rationale.

Journal of Systems and Software, 79(12), 1792–1804. doi:10.1016/j.jss.2006.04.029

Tang, A., Babar, M., Gorton, I., & Han, J. (2006b). A survey of architecture design rationale. Journal

of Systems and Software, 79(12), 1792–1804. doi:10.1016/j.jss.2006.04.029

Tsumaki, T., & Tamai, T. (2005). A Framework for Matching Requirements Engineering Techniques

to Project Characteristics and Situation Changes, 44–58.

Turban, B. (2013). Rationale Management and Traceability in Detailed Discussion (pp. 159–258).

Wiesbaden: Springer Fachmedien Wiesbaden. doi:10.1007/978-3-8348-2474-5

Turk, D., France, R., & Rumpe, B. (2002). Limitations of agile software processes. … and Agile

Processes in Software …. Retrieved from

http://www4.in.tum.de/publ/papers/XP02.Limitations.pdf

Turk, D., Robert, F., & Rumpe, B. (2005). Assumptions underlying agile software-development

processes. Journal of Database Management (JDM …. Retrieved from http://www.igi-

global.com/article/journal-database-management-jdm/3342

157

Weske, M. (2007). Business Process Management: Concepts, Languages, Architectures (Vol. 2007,

p. 368). Springer.

Westfall, L. (2006a). Bidirectional Requirements Traceability. White Paper, The Westfall Team,

Dallas. Retrieved from http://www.westfallteam.com/Papers/Bi-Directional Requirements

Traceability updated 2009 03 18.pdf

Westfall, L. (2006b). Software Requirements Engineering: What, Why, Who, When, and How. The

Westfall Team, (2004).

Wiegers, K. (2000). Describes 10 Requirements Traps to Avoid. Retrieved May 16, 2014, from

http://www.processimpact.com/articles/reqtraps.html

Wiegers, K. E. (2009). Software requirements. O’Reilly Media, Inc.

Wright, S. (1991). Requirements Traceability - What? Why? and How. In Proc. of the Colloquium on

Tools and Techniques for.

Youssef, N. F., & Hyman, W. A. (2010). Risk Analysis: Beyond Probability and Severity. Retrieved

March 28, 2014, from http://www.mddionline.com/article/risk-analysis-beyond-probability-and-

severity

