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Abstract

Distributed filesystems are often the primary bandwidth consumers of large-scale dat-
acenter networks. Unsurprisingly, the datacenter network is often the performance bottle-
neck for distributed filesystems. Yet even with this close relationship, current distributed
filesystems and networks are designed independently and communicate over narrow inter-
faces that expose only their basic functionalities. Even network-aware distributed filesys-
tems only make use of rudimentary network information, and are not reciprocally involved
in making network decisions that affect filesystem performance.

In this thesis, we introduce Mayflower, a new distributed filesystem co-designed with
the control plane of its underlying datacenter network. This design approach enables
Mayflower to combine both filesystem and network information to make replica selection
and dynamic flow scheduling decisions. By having more information and controlling both
the filesystem and the network, Mayflower can perform optimizations that are unavailable
to conventional distributed filesystems and network control planes. Our evaluation results
using a real implementation show that Mayflower reduces average read completion time by
more than 60% compared to HDFS with ECMP.
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Chapter 1

Introduction

1.1 Problem Overview

Many data-intensive distributed applications rely heavily on a shared distributed filesys-
tem to exchange data and state between nodes. As a result, distributed filesystems are
often the primary bandwidth consumers for datacenter networks, thus the file placement
and replica selection decisions can significantly affect the amount and location of network
congestion. Similarly, with the rapid adoption of high-performance SSDs in the datacen-
ter, it is becoming increasingly common for the datacenter network to be the performance
bottleneck for large-scale distributed filesystems.

However, despite their close performance relationship, current distributed filesystems
and network control planes are designed independently and communicate over narrow in-
terfaces that expose only their basic functionalities. Network-aware distributed filesystems
can therefore only use rudimentary network information in making their filesystem deci-
sions, and are not reciprocally involved in making network decisions that affect filesystem
performance. Consequently, they are only minimally effective at avoiding network bottle-
necks.

An example of a network-aware distributed filesystem is HDFS [34], which is one of
the most widely deployed distributed filesystems. It can make use of network topology
information to perform static replica selection based on network distance. However, in a
typical deployment where there are hundreds to thousands of storage servers across dozens
of racks and a replication factor of just three [16], it is highly likely that a random client
performing a read request will be equally distant from all of the replicas of its requested
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file. In this scenario, HDFS is just performing random replica selection. Moreover, even
when the network distances of the replicas are not equal, the closest replica may be a poor
choice due to (1) network congestion between the requester and the replica host, (2) high
load of the replica host. As a result, network distance-based static replica selection is only
partially effective at improving distributed filesystem performance.

Deploying a datacenter-wide dynamic network flow scheduler [2, 6] can reduce network
congestion and improve distributed filesystem performance. However, flow schedulers are
limited to finding the least congested path between the source and destination of each
flow. They are unable to take advantage of the redundancies in the distributed filesystems,
which makes them ineffective when all paths between the requester and the pre-selected
replica are congested.

Figure 1.1 illustrates how HDFS and a dynamic flow scheduler solve the replica selection
and path selection problem independently. A file is replicated to three different servers
(marked red). The distributed filesystem picks one replica (marked green) based on a
network distance scheme (e.g. the nearest replica host) or an end-host information scheme
(e.g. the least loaded replica host). The location of the client and the chosen replica host
is passed to the flow scheduler. The flow scheduler estimates the bandwidth of all paths
(marked yellow) between the request client and the data server, and chooses the least
congested path (marked green). However, a better replica selection choice may be a more
distant replica host, if the path to the host has more remaining bandwidth and the host is
less loaded.

Sinbad [8] is the first system to leverage replica placement flexibility in distributed
filesystems to avoid congested links for its write operations. It monitors the end-host
information such as bandwidth utilization of each server and uses this data together with
network topology information to estimate the bottleneck link for each replica write request.
Sinbad is a significant improvement over random or static replica placement strategies, but
by working independently of the network control plane, it has a number of limitations. For
example, in a cloud deployment, Sinbad is unable to monitor the bandwidth usage of other
tenants. Additionally, by not accounting for the bandwidth of individual flows and the
total number of flows on each link, Sinbad cannot accurately estimate path bandwidths,
which can lead to poor replica placement decisions. Bandwidth estimation errors would
be even more problematic if Sinbad was used for reads since, with a only a small number
of replicas to choose from, selecting the second best replica instead of the best replica can
significantly reduce read performance. This is not a flaw in Sinbad since it was not designed
for read operations. Instead, it illustrates the need for an approach that considers network
status when making replica select decisions for distributed filesystem.
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Figure 1.1: Replica Selection and Path Selection of DFS with a Flow Scheduler

Figure 1.2: Replica Selection and Path Selection of Mayflower
3



1.2 Mayflower

This thesis introduces Mayflower, a high-performance distributed filesystem designed from
the ground up to work together with a Software-Defined Networking (SDN) controller.
The focus of Mayflower is in improving read performance given the majority of datacenter
workloads are read-dominant. Mayflower consists of four main components: a NameServer
that manages all filesystem metadata information, a FlowServer that monitors global net-
work status and makes replica selection and path selection decisions, multiple DataServers
that perform data storage, handle access and mutation to data, and a client library linked
into user applications that provides a POSIX-like interface.

Mayflower models after the Google filesystem [16] (GFS) in its API and parts of its
storage architecture. Both filesystems support random reads, sequential reads, and ap-
pend operations. The main difference between Mayflower and GFS is its network control
interface. Mayflower can be coupled with a centralized network flow scheduler, namely
the FlowServer, via the network control interface. The FlowServer is an SDN controller
application that monitors network status, such as per-port bandwidth utilization of each
SDN switch and the bandwidth of current flows, and performs replica and network path
selection based on global network information and replica location information from the
NameServer. The FlowServer sets up the chosen path by sending out control messages to
the SDN switches on the path. The network control plane interface enables filesystem and
network decisions to be made based on information from both sides.

The FlowServer is an independent component in Mayflower. Users can replace or
modify the FlowServer to use different objective functions and optimization algorithms.
By default, the FlowServer minimizes average job completion time which accounts for both
the expected completion time of each request and the expected increase in completion time
of other in-flight requests. However, certain workloads may benefit from a scheduler that
optimizes for maximum network utilization or ensures that time-sensitive requests finish
within a specific deadline.

Figure 1.2 illustrates how Mayflower can combine replica selection with path selection.
In this example, a file is replicated to three different servers (marked red). The client
retrieves the file metadata from the NameServer which includes the location of the three
replica hosts. The client passes the metadata to the FlowServer. The FlowServer de-
termines all possible paths to all replica hosts and estimates the available bandwidth
on each path. It then returns the replica host with the most available bandwidth to the
client, and sets up the path between the client and the selected replica host (marked green).
Upon receiving the reply from FlowServer, the client can directly establish a connection to
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the chosen DataServer. The SDN switches guarantee that the data flow follows the path
that was determined by the FlowServer. This example illustrates how Mayflower is able
to perform a wider search in the solution space compared to the conventional approach
illustrated in Figure 1.1. By exploring a larger solution space, Mayflower can often find a
solution that has a significantly lower job completion time. Moreover, Mayflower can also
use flow bandwidth estimates to determine whether reading concurrently from multiple
replica hosts can improve performance, and what fraction of the file should be read from
each replica to maximize the performance gain. Furthermore, it can select the paths to
the replicas as a group instead of one by one. This allows Mayflower to choose paths that
individually have low bandwidth, but together provide higher aggregate bandwidth than
other path combinations.

By combining the network status information, such as the current bottleneck links and
locations of the network congestions, with the file popularity information, such as the
counter of reads to one file and the locations of the clients, Mayflower can perform chunk
migration to migrate chunks closer to the clients. This increases the probability of the
clients to do local reads, and decrease the amount of cross-rack traffic, which again helps
to improve Mayflower’s performance.

Overall, this thesis makes three contributions:

• The design of a new high-performance distributed filesystem that provides an SDN
control plane interface.

• A prototype C++ implementation of Mayflower.

• Experimental results that show Mayflower reduces average job completion time by
more than 20% compared to HDFS.

1.3 The Organization of the Thesis

Chapter 2 introduces the state-of-art in distributed filesystems and flow schedulers. Chap-
ter 3 presents the design of Mayflower filesystem. Chapter 4 evaluates the performance of
Mayflower. Chapter 5 concludes this thesis.
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Chapter 2

Background and Related Work

2.1 Datacenter Network Architecture

Current datacenter networks usually consist of hierarchical topologies, commonly two or
three tiers of switches connecting thousands of servers. The top tier, middle tier and
bottom tier of a topology are named the core tier, the aggregation tier and the edge tier
respectively. The topology usually contains multiple redundant core switches for fault
tolerance. A cluster with less than 8K servers requires only a two-tier topology (only the
core and the edge tier). Clusters with more than 8K servers generally require three-tier
architectures.

An edge switch usually connects to a rack of servers, and an aggregation switch normally
connects to multiple edge switches. Therefore switches in network core require significant
switching capacity to aggregate and transfer packets between edges. However the cost of
switches increases non-linearly with the switching capacity. Therefore it is too costly to
build a full bisection bandwidth network because it requires a number of high-end switches
with enormous switching capacity which come at immense expense. Further more, research
on network traffic characteristics also reveals that the network is often under utilized [8, 4].
In most datacenters, only a subset of core layer links are saturated, while other links remain
mostly empty. Therefore, due to cost and network traffic pattern reasons, current large
datacenters are often built with an oversubscribed network. The network core is commonly
oversubscribed with only a portion of the aggregate bandwidth available at the edge of the
network. The term oversubscription is defined as the ratio of the worst case achievable
aggregate bandwidth among the end hosts to the total bisection bandwidth of a particular
communication topology [1]. An oversubscription value of 1:5 means that only 20% of the
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host bandwidth is available for some communication patterns. The oversubscription of
current large datacenter network is usually at 1:10 or higher [8].

2.2 Network Traffic Characteristics

A datacenter runs a wide variety of applications, ranging from web services, file storage
services to large-scale data-intensive applications. This makes the network flow patterns
hard and complicated to predict. Recent studies show that datacenter network traffic is
often uneven and bursty, and the network traffic through switches modeled an ON/OFF
network traffic pattern with positive skew and heavy tails [4, 23, 5]. Dealing with congestion
in datacenter networks is difficult because, despite the bursty nature of network traffic and
the fact that links are underutilized most of the time, as the links become congested, they
have a tendency to remain continuously congested for extended periods of time. Core
tier links tend to have higher utilization rates than other links. However, despite network
oversubscription, only a subset of the core links (less than 25% of the total number of core
links) are fully utilized at any point in time.

Moreover, the skew in application communication patterns may cause substantial im-
balance in the usage of bottleneck links. This might hurt the performance of distributed
applications in the case of all-to-all communication pattern such as the shuffle phase of
MapReduce [9]. To reduce congestion in oversubscribed network, there has been signif-
icant past work on building full bisection bandwidth networks, such as Fat-Tree [1] and
VL2 [17]. Although these solutions are more cost-effective compared with the conventional
approaches, they still incur significant amount of cost and increase the wiring complexity
to a large extent. Furthermore, network-oblivious applications are often unable to take
advantage of multiple paths, therefore they can hardly utilize the additional bandwidth.

An alternative approach to alleviate the network bottleneck problem is to change the
user applications. For example, the user applications can allow most of the clients to access
data locally or at least within the same rack by improving the data placement algorithm.
Or the applications can be improved by multi-path routing algorithms to alleviate multi-
path to avoid hot spots or congested links. This approach normally requires dynamic
network information collection and global coordination.
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2.3 Distributed Filesystems

As distributed and big-memory computations become more commonplace, an urgent need
for systems to store very large datasets arises. Distributed filesystems allow for the easy
dissemination and access of files across nodes, enabling seamless integration with data-
intensive distributed applications. Distributed filesystems are designed to run on thousands
of commodity servers. At this scale, machine failures or network connectivity outages
happen frequently, thus shouldn’t be considered as exceptions. Therefore the distributed
filesytems need to deal with common component failures while providing high availability.
Multiple distributed filesystems have been designed to fulfill these needs, such as the Google
File System (GFS) [16] and the Hadoop Distributed Filesystem (HDFS) [34].

2.3.1 Google File System

Design Assumptions

While sharing some common goals with the previous distributed filesystems in terms of per-
formance, fault tolerance and scalability, the GFS design made several unique assumptions
to meet the workload requirement at Google:

1. Files stored in GFS are normally log files or web documents that can grow to multiple
GBs. Files are replicated several times (typically three) for reliability and fault
tolerance.

2. Appending is the most common file mutate operation. Random writes are almost
non-existent, and can be supported by re-creating a new version of the file at the
application level.

3. Sequential file reads are the most common operation.

4. Files are divided into fixed-size chunks, and stored on dedicate storage servers (chunkservers).
Each chunk is identified by a unique 64 bit chunk handle.

Architecture

GFS follows a single-master multi-chunkserver design. The master node manages all filesys-
tem metadata and controls filesystem wide activities. A single master node for storing
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metadata greatly simplifies the GFS. The master node which has global filesystem infor-
mation can make sophisticated decisions such as chunk placement. The involvement of the
master node in GFS data flow is very limited. This is because that the clients cache the
file metadata information, and can often connect with the chunkservers directly for data
access or mutation. The master node is replicated to provide fault tolerance. When the
current master dies, the shadow master node takes over the old master node, which ensures
that GFS is still available to clients.

Consistency Model

The data being appended to chunks may result in three states: consistent, defined and
inconsistent. Consistent means that data on different replica hosts remain byte-wise
identical after one or several append operations. The data is defined only if a client can
clearly identify its own mutation in the chunk. Multiple concurrent append operations
may lead the data to be consistent but not defined, since no client can identify its own
mutation. The resulting data consists of mingled fraction of data from multiple clients. If
any of the append operations failed, the state of the data is inconsistent. In this case,
the clients might see different data depending on which replica they are reading from.

2.3.2 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is the most widely used distributed filesystem in
industry. Similar to GFS, HDFS stores metadata on a dedicated server – the NameNode.
Application data are stored on other servers called DataNodes. The NameNode and the
DataNodes communicate over TCP.

In HDFS, data are also duplicated for (1) reliability, (2) to increase the chance of local-
ized data access, and (3) to improve system thought by multiply data transfer bandwidth
if no local data access available.

NameNode

Directories and files in HDFS are represented by inodes on the NameNode. Inode record
file metadata such as permissions, creation, modification and access times, namespace and
disk quotas. Metadata are kept in RAM on the NameNode. A background thread keep
storing the metadata as images on the local disk. The NameNode restores from the local
image after normal shutdown or exceptional failure.
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DataNode

DataNodes register to the NameNode before joining an HDFS cluster. Every DataNode
gets a DataNode ID assigned by the NameNode during registration. The DataNodes and
the NameNode communicates via HeartBeat messages. Operation commands issued by the
NameNode are not sent separately but contained in the HeartBeat messages. Like GFS,
files in HDFS are also split into blocks (like the chunks in GFS) on the DataNodes.

HDFS Client

Similar to most conventional filesystems, HDFS client supports read, write, create and
delete operations to files. Additionally, HDFS client supports create and delete of
directories. When reading a file, HDFS client first contacts the NameNode for the locations
of data blocks comprising the file and then reads block contents from the DataNode closest
to the client. If multiple DataNodes have same distance away from the client, an arbitrary
one is selected. When writing data, the client requests the NameNode to nominate a suite
of N DataNodes to host the block replicas where N is the replication factor. The client
writes data to HDFS in a pipeline manner: the client send data to the first DataNode,
then first DataNode relays data to the second DataNode. The process is repeated until
the data gets propagated to the last DataNode. Once a block has been filled up to the
configured block size, the client repeats the above process, contacting the NameNode for
another suite of N DataNodes. The order for the pipeline might be different for the new
set.

Consistency Model

Compared with GFS, HDFS takes a stronger consistency model – a single-writer, multiple-
reader model. Before writing to a file in HDFS, an HDFS client has to attain a lease for the
file from the NameNode. The writer client may extend the lease by periodically sending
HeartBeat messages to the NameNode. Data region will always remain in the defined

state since there exists a only one writer. However, HDFS does not guarantee the reader
clients fetch exactly same data during another ongoing append, because appending data is
still propagating in the pipeline manner. Once the append operation finishes or the writer
client releases the file lease, HDFS broadcasts flush requests to the set of DataNodes,
guaranteeing the data is populated on all. A writer client can also explicitly call hflush()
to forcefully flush data to all replica hosts.
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2.3.3 Other Related Work

Past work have proposed ways to improve the performance of HDFS, such as merging
small files into large one and combining HDFS with a prefetch mechanism [11], and se-
lecting replica hosts based on RTTs between the clients [28]. Other distributed storage
systems have been proposed since GFS and HDFS [24, 10, 35, 36]. Dynamo [10] is a
storage system in Amazon for storing and maintaining user shopping cart information. It
supports offline read and write operations by providing a set of conflict resolution tech-
niques. Cassandra [24] is decentralized structured storage system which focuses on scaling
while providing seamless accessibility to Facebook users. Ceph [35] and PPFS [36] builds on
object storage devices (OSD) to provide high-performance, scalable distributed filesystems.

2.4 End-Point Location Selection

Most distributed filesystems store multiple replicas on different servers to increase fault
tolerance. Traditional replica selection algorithms [34] select the closest replica in or-
der to reduce aggregation and core tier network traffic. Recent work [8] recognizes that
there is significant flexibility in selecting a replica location and investigates algorithms for
performing congestion-aware replica placement. The ability to choose from intelligently-
located replicas is important, as closer replicas do not always translate into shorter flow
completion times.

Although Google File System and Hadoop Distributed File System provide a reliable,
scalable and high performance storage service, they are completely network-oblivious. This
means that reads and writes in distributed applications may occur over saturated links
or under other adverse conditions that can negatively affect the completion time of the
computation. In contrast, Mayflower collects network stats at the FlowServer in order to
select a replica and the least congested network path that makes full use of the available
resources in the system, especially the limited available bandwidth in network core. By
making better use of network resources, Mayflower is able to reduce flow completion time
for requests and minimize the effect of new requests on existing flows.

2.5 Dynamic Flow Scheduling

In order to take advantage of path diversity in a datacenter network, protocols such as
ECMP [19] use the hash of flow-related packet header information to determine which of
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the shortest paths to use for each flow. This approach works well for short flows, but
may lead to persistent congestion on some links for elephant flows. Recent flow scheduling
systems such as Hedera [2] and MicroTE [6] solve this problem by making centralized path
selection decisions using global network information. Mayflower uses a custom multi-path
scheduling algorithm, centrally controlled by the FlowServer, in order to direct flows to
replicas that will minimize flow completion time. Mayflower’s dynamic flow scheduling is
additionally constrained by the desire to have a minimal impact on existing flows in the
network.
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Chapter 3

Design Overview

3.1 Assumptions

Mayflower’s design assumptions are heavily influenced by the reported usage models of
Google filesystem (GFS) and Hadoop File System (HDFS). Given GFS and HDFS’s large
combined user base, their usage models are representative of current data-intensive dis-
tributed applications. Therefore, Mayflower filesystem assumes the following workload
properties:

• The system only stores a modest number of files (on the order of millions). File sizes
typically range from hundreds of megabytes to tens of gigabytes. The metadata for
the entire filesystem can be stored in memory on a single high-end server.

• Most reads are large and sequential, and clients often fetch entire files. This is
representative of applications that partition work at the file granularity. In these
applications, clients fetch and process one file at a time, and the file access pattern is
often determine by the file content (e.g., graph processing where edges are embedded
in the data). Large sequential reads are also common for applications that need to
prefetch or scan large immutable data objects, such as sorted string tables (SSTs),
or retrieve large media files in order to perform video processing or transcoding.

• File writes are primarily large sequential appends to files; random writes are in-
credibly rare. Applications primarily mutate data by either extending it through
appends, or by creating new versions of it in the application layer and appending the
new version to the file while retaining the previous versions.
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• Files are often used as producer-consumer queues, or as a broadcast medium for
multiple readers where each reader is applying a different transform to the same
data. Since transforms are often applied sequentially in stages and can take multiple
files generated by other stages as inputs, strong consistency may be necessary to
ensure correctness for some applications.

• The workloads are heavily read-dominant. Read requests come from both local and
remote clients.

• Replicas are placed with some constraints with respect to fault domains. For example,
replicas should not be on the same rack and at least one of the replicas should be
on a different pod, where we define a pod as the collection of servers that share the
same aggregation switch in a 3-tier tree topology.

• The network is the bottleneck resource due to a combination of high performance
SSDs, efficient in-memory caching, and oversubscription in datacenter networks.

3.2 Design Goals

Mayflower’s primary design goal is to provide high-performance reads to large files by cir-
cumventing network hotspots. Additional design goals include offering application-tunable
consistency in order to meet different application-specific correctness and performance re-
quirements, and providing similar scalability, reliability, fault tolerance and availability
properties to that of current widely-deployed distributed filesystems, namely, GFS and
HDFS. These design goals are based on the workload assumptions from Section 3.1, and
motivate Mayflower’s system architecture.

3.3 Interface

Mayflower provides a similar file system interface as HDFS [34]. Files are organized hier-
archically in directories and identified by full pathnames. Mayflower supports operations
to create, delete, read and append files.

Create takes one string parameter to specify the name of the create file.

int Create(const string &file name);

14



Figure 3.1: Mayflower Architecture

Read takes four parameters: a pointer to the read return value, a string to specify the
read filename, two unsigned integer values for the offset and length of the read operation.

int Read(char ∗result, const string &filename, const uint offset, const uint length);

Append takes four parameters: a pointer to the pending append data, a string to specify
the append filename, an unsigned integer value for the length of append data.

int Write(const char ∗data, const string &file name, const uint length);

Delete takes one parameter to specify the name of the delete file.

int Delete(const string &file name);

All Functions return 0 on success, -1 otherwise.

3.4 Architecture

A Mayflower cluster consists of (1) a centralized filesystem master node (NameServer),
(2) a centralized network flow scheduler (FlowServer), (3) multiple data storage nodes
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(DataServers), (4) a client library linked into user applications. Each of these components
is a separate user-level process. Figure 3.1 illustrates the different components and their
interactions with the client.

The NameServer maintains all of the filesystem’s metadata information. It sends heart-
beat messages to the DataServers periodically to collect stats or give instructions. A
DataServer registers with the NameServer at start up to join a Mayflower cluster. The
FlowServer is an SDN controller application. It monitors the current network status, mod-
els the network, and performs replica and network path selection based on global network
information and replica location information from the NameServer. When a client issues
a request, the FlowServer estimates the path bandwidth to each replica. Based on the
current network status, it may pick one or more replicas and the corresponding path(s)
to them. Then the FlowServer installs rules on the OpenFlow switches to assign specific
routes for the data flows. However, the FlowServer is an optional component for Mayflower.
A Mayflower filesystem cluster without the FlowServer behaves like HDFS in the way that
requests always go to the nearest replica and the path between a client and a replica host is
assigned by ECMP. The Mayflower client library provides a set of file system API to user
applications. The client library communicates with the NameServer to retrieve file meta-
data information and the FlowServer to make replica selection and path selection queries.
A client connects to a DataServer directly without the involvement of the NameServer or
the FlowServer for data exchange.

Files in Mayflower is divided into fixed-size chunks. The chunk size is a filesystem
level parameter, and is set to 64 MB by default. DataServers store data chunks as normal
files in the local Linux filesystem. Files are associated with an immutable and globally
unique 64 bit UUID generated by the NameServer at the time of create. A chunk can be
identified with the UUID of the file it belongs to with the index of the chunk. For reliability
and fault tolerance, each chunk (file) is replicated on multiple servers across different
racks. The replication factor is a system parameter. All files have the same number of
replicas. Mayflower’s default replication factor is three. Users may tune the parameters
to meet different kinds of application specific requirements. The locations of the replicas
are determined by the replica placement strategy. Mayflower’s default replica placement
strategy takes a rack-aware approach to improve data reliability, availability, and network
bandwidth utilization. This guarantees that data remains accessible to clients, even if one
rack becomes unavailable. More details regarding replica placement algorithm are discussed
in section 3.4.1. By monitoring the current network congestion via the FlowServer and the
popularity of chunks via the NameServer, Mayflower can also perform chunk migration to
migrate chunks closer to clients, to increase the probability of clients to do local reads and
decrease the amount of cross-rack traffic.
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In order to reduce reader/writer contention and strong consistency-related overhead,
Mayflower filesystem does not support random writes. Instead, files can only be modified
using atomic append operations. Random writes can be emulated in the application layer
by creating and modifying a new copy of the file and using delete and create operations
to overwrite the original file. Append-only semantics also simplify client-side caching of
file to chunk mappings by ensuring that existing map entries cannot change unless the file
is deleted. Clients can therefore safely cache these mappings to reduce the load on the
NameServer. File to DataServer mappings can also be safely cached with cache expiry
times that depend on the mean time between replica migration and node failure.

Replica placement decisions are made by the NameServer when a file is initially cre-
ated. The NameServer takes into account system-wide fault-tolerance constraints, such as
the replication factor and the number of fault domains, when determining replica loca-
tions. Currently, the NameServer makes replica placement decisions independently using
only static information. The NameServer provides an interface to plug-in a more advanced
replica placement algorithm, such as Sinbad [8] which takes network status quo into con-
sideration.

3.4.1 NameServer

A centralized master node, the NameServer, manages all filesystem wide metadata, includ-
ing the filesystem namespace, the mapping from file to chunk, the mapping from chunk to
DataServer address and et al. The NameServer also serves the metadata queries by clients.
To simplify chunk and replica management, replication is performed at the file level instead
of the chunk level. Each file is replicated to a fixed number of DataServers, and each of
these DataServers has an entire copy of the file consisting of one or more chunks.

The single master design largely simplifies Mayflower and enables the NameServer to
make sophisticated chunk placement, replication decisions and migration decisions using
global knowledge. To address single node performance bottleneck issue, data flows never go
through the NameServer. A client may query the NameServer for file metadata, then caches
the information for a limited duration before this piece of metadata times out. Clients
interact with the DataServers directly for data exchange. This design limits NameServer’s
involvement in read and write, minimizes the possibility that the NameServer becomes a
system performance bottleneck.

All metadata is stored in LevelDB [15], a persistent key-value database. The Name-
Server machine should have enough RAM to ensure that the LevelDB metadata and storage
data is entirely in cache. A persistent database expedites the restart of the NameServer
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after a graceful shutdown. In the case of an unexpected restart, instead of reading from
the possibly stale database, the NameServer rebuilds the database by scanning the file
metadata stored at the DataServers. The current implementation of Mayflower filesystem
contains only one NameServer. A usual way to provide a more reliable service like GFS
and HDFS, the NameServer can be backed up with several secondary NameServers. The
consistency between the NameServers can be guaranteed by state machine algorithms (e.g.
Paxos [25]).

Namespace Management

Unlike traditional filesystems that has a per-directory data structure (e.g. Linux inode)
which contains all directory related metadata such as list of file, file size and directory ACL,
Mayflower filesystem stores its namespace as a lookup table, mapping file full pathname
to its metadata. The metadata has three levels: file, chunk and block.

Every file corresponds to one file level metadata. A file level metadata structure con-
tains the following fields: filename, UUID, a list of chunk level metadata and size which
counts the length of the list. Filename stores the full pathname of the file. Full pathname
begins with /, representing the root directory. Mayflower filesystem distinguishes no dif-
ference between a directory or a normal file. For example, while /foo can be a normal log
file, foo represents a directory in /foo/doo . Mayflower only guarantees that full pathname
is not duplicated in file namespace, thus /foo and /foo/doo can both exist in Mayflower
filesystem. UUID is generated when a client creates the file in Mayflower. As a centralized
service, it is easy for the NameServer to guarantee that every UUID is globally unique.
The NameServer records existing UUIDs and reuses one UUID if a file is deleted from
Mayflower filesystem. Size is the number of the chunks this file consists of. This size field
works as a rough estimation of the file size, e.g. given a file doo has five chunks and the
chunk size is configured to 64 MB. The doo’s size can be estimated between 256 MB and
320 MB. This design reduces the involvement of the NameServer in the append process.
The client doesn’t need to notify the NameServer about how much data it has appended to
a file. The DataServer doesn’t need to notify about how much data it has received either.
Instead, the DataServer only notifies NameServer when the current last chunk reaches the
configured chunk size, and a new empty chunk is added for file. The details of append
process is discussed in section 3.4.2.

A chunk level metadata has the following fields: split flag, chunk location and a list of
block level metadata. Split flag is a boolean value indicating whether or not this chunk
is erasure coded (EC). If EC is turned off in Mayflower filesystem, or a chunk is not yet
ECed, the split flag stays False and the chunk location field is valid, storing the location
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(IP address and port) of the DataServer where this chunk lives in. In the other case, the
chunk is ECed, then the split flag is flipped to True and a list of block level metadata is
added. The chunk location field is invalid in this case.

A block level metadata has only one field: location. Location stores the IP address
and port number of the DataServer where the block lives in.

Replica Placement

The locations of the replicas are determined in the create process. When the NameServer
receives a client’s request to create a new file, it chooses N DataServers to store the replicas
of the file (given replication factor is N). One of the N DataServers works as the primary
replica host, and the rest of them work as backup replica hosts. The primary replica host
coordinates the append request between all replica hosts 3.4.2. Mayflower provides an
interface for users to plug-in other replication placement algorithms such as Sinbad [8].
Mayflower’s built-in replica placement takes a similar strategy like HDFS [34]. Below is
a comparison of HDFS’s and Mayflower filesystem’s replica placement scheme when the
replication factor is three.

In HDFS, the replica placement strategy depends on whether it has the topology infor-
mation of the cluster. If HDFS has the topology information and the client runs within the
HDFS cluster, the first replica will be stored on the same physical machine that the client
is running on. The second and third replicas are stored on two machines in a different
rack. If HDFS is unaware of the topology or the client resides outside the HDFS cluster,
HDFS arbitrarily chooses three servers for replicas. Mayflower’s replica placement strategy
is similar to HDFS. In Mayflower filesystem, the second replica is placed in a different pod
as with the first (primary) replica where a pod is a collection of racks of servers that share
an aggregation switch in a three-tier tree topology. The third replica resides within the
same pod of the second replica, but in a different rack.

Namespace locking

Google File System[16] provides a very complex namespace locking scheme: Before a
client modifies /d1/d2/d3/.../dn/leaf, it has to acquire the read lock for /d1, /d1/d2,

/d1/d2/d3, ... to /d1/d2/.../dn and the write lock for /d1/d2/d3/.../dn/leaf.
This leaf can either be a directory or a file depending on the operation. However, in
Mayflower, file read or append operations do not require any locking on the NameServer
side. The DataServers manages concurrent append requests and guarantees that every read
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request it receives can be served. On the NameServer side, locking is only necessary when
clients mutate the namespace in create and delete. The design that clients cache the file
metadata information for read and append minimizes the number of client requests that
require communication with the NameServer. However, even when a client has to query
the NameServer for file metadata information or mutate the namespace, the LevelDB can
respond in micro-seconds, which introduces only marginal overhead given most requests
in Mayflower are elephant flows that lasts for seconds. Table 3.1 lists the read & write
benchmarks for LevelDB.

Random Sequential
Read 5.215 micros/op 0.476 micros/op
Write 2.460 micros/op 1.765 micros/op

Table 3.1: LevelDB Benchmark [15]

3.4.2 DataServer

The DataServer handles requests to access or mutate data chunks. It serves one append
request at a time for each file. Append requests are serviced in FIFO order. Each chunk
is replicated across N DataServers with one DataServer serving as the primary replica.
The primary DataServer coordinates between all replica hosts, making sure those append
requests are performed in a same order on all hosts. For each append request, the primary
replica DataServer relays the appending data to the other replica hosts while concatenating
the data to the end of the local copy. When a DataServer detects that a chunk is full, it
stops appending data to that chunk, instead creates a new chunk file and append remaining
data in the new one. The primary replica host informs the NameServer about the adding of
a new chunk to a file. When serving read requests, a DataServer pulls the file metadata from
the client, opens the requested chunk locally, and sends the data over socket connection to
the client.

Lock Table & Atomic Appends

The DataServer implements a lock table to (1) parallelize requests for different files and
(2) guarantee the order of requests to the same file. The lock table stores the mapping
from a file UUID to a condition variable. An append request has to acquire the file lock
before mutation. If more requests to the same file arrived before the first request finishes,
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they wait on the corresponding conditional variable of that file. All waiting requests get
notified when the first request completes, and an arbitrary one may grab the lock. The
order of the appends is not deterministic, but is guaranteed to be same on all replica hosts.
Requests to different files acquire different locks, and they are not affected. A unique
lock is designed for the lock table itself to guarantee that lock table access and mutation
is thread-safe. The read requests are served in a lock free scheme, given data chunks in
Mayflower filesystem is immutable once written.

3.4.3 FlowServer

The FlowServer monitors the per-port bandwidth utilization of each SDN switch, models
the cluster network, and performs replica selection and network flow assignment. Band-
width monitoring involves periodically fetching from the switches the byte counters for
Mayflower-related flows and the bytes counters of each switch port. This allows the
FlowServer to compute the bandwidth utilization of the flows, and determine the unused
bandwidth of each link.

Using the measured bandwidth information as an instantaneous snapshot, the FlowServer
knows the bandwidth of each Mayflower-related flow at that time point. In between mea-
surements, the FlowServer tracks flow add and drop requests, and recomputes an estimation
of the path bandwidth of each flow after each request. This ensures that completion time
estimations are accurate, and also reduces frequency to pull stats from the switches.

The FlowServer performs replica selection and path assignment for every read request.
The default algorithm of FlowServer is to greedily select the least congested path to one
of the replicas while minimizing the impact of this request over the existing flows, then
return this replica as the chosen replica to the client.

3.4.4 Client

Mayflower provides a client library that is complied into the user application. The client
library provides an interface for four basic operations: create, append, read and delete.
Details of each operation are described in the following sections.

Create

To create a file in Mayflower filesystem, the client issues a create request to the NameServer.
The filename is passed along with the create request. The NameServer (1) generates an
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Figure 3.2: Create Operation Timeline

1. Client sends create request along with the filename to the NameServer

2. The NameServer chooses replica location and generates a UUID for the file

3. The client receives metadata from the NameServer, then save the metadata in cache

UUID for the file, (2) selects N DataServers to store the replicas, (3) returns the metadata,
the UUID and replica locations, to the client. The client caches the metadata information
to speed up future requests. Figure 3.2 illustrates the process of create request. The create
process does not create any data chunks on the DataServers. The chunks are created when
the DataServers receive the first append request to the file.

Append

A file may have N replicas living on N different DataServers. The DataServers’ location
information is stored as a list in the file metadata (discussed in section 3.4.1). The order
of the list is determined by the replica placement algorithm. The first DataServer in the
list is considered as the primary DataServer for this particular file.

Assuming the client already has the file metadata in its cache, the client establishes
a socket connection to the primary DataServer, sending a append request along with the
UUID of the file. After the append request arrives at the primary DataServer, it tries to
acquire the lock for the specified UUID, and waits for an available worker to execute. Once
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Figure 3.3: Data relay in append operation

a thread worker is assigned for the request, the primary DataServer (1) appends data to the
current last chunk of the file on local disk, (2) relays data to the other replica DataServers
via socket. The data relay process is shown in Figure 3.3.

To guarantee incoming data is appended at the end of the target file, namely at the
end of the current last chunk of the file, a DataServer maintains a redirection table. The
redirection table maps UUID to the index of the current last chunk of the file. After a
DataServer receives an append request and extracts the UUID, it checks the redirection
table with the key UUID, gets the index of the current last chunk, then appends data to
that chunk files. The DataServer updates redirection table by increasing the index count by
one when it detects that the size of the current last chunk has reached chunk size. Chunk
size is a filesystem level configurable value, e.g. default chunk size is 256 MB in Microsoft
Azure [7]. In Mayflower, the default value is 64 MB. After the DataServer updates the
redirection table, it creates an empty chunk file to store the remaining data of the append
request. Future incoming data is appended to the new chunk, until it is full again, then
the same process to update redirection table and create new chunk file is repeated. If this
DataServer is the primary DataServer for a file, it notifies the NameServer that a new
chunk is created. Upon receiving the notification, the NameServer makes corresponding
changes in the file’s metadata.

If multiple clients are appending to the same file simultaneously, the DataServer lock
table guarantees that the same order of append requests are processed on all replica hosts.
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Figure 3.4: Append Operation Timeline

1. Client retrieves file metadata from the NameServer

2. Client sends data to the primary DataServer

3. The primary DataServer relays data to other backup DataServers

Only the request which acquired the lock on the primary DataServer is able to populate
append requests to the backup replica DataServers, while others are blocked. Therefore
replicas are guaranteed to be identical with an arbitrary append request arrival order. The
append process is shown in Figure 3.4.

Read

Depending on the offset and length, a file read request might be split into several chunk read
requests. For each chunk read request, the client queries the FlowServer to determine the
replica it should read from. The FlowServer determines all the possible paths to all replica
hosts and estimates the available bandwidth on each path. It then returns the replica host
with the most available bandwidth to the client, and sets up the path between the client
and the selected replica host. Upon receiving the reply from FlowServer, the client can
directly establish a connection to the chosen DataServer. In some cases, the FlowServer
may determine that the client can benefit from reading multiple replicas simultaneously,
and the existing flows increase only little latency for this. The FlowServer selects multiple
replicas for this request, and sets up path for each selected replica. After reading the
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Figure 3.5: Read Operation Timeline

1. Client retrieves the metadata from the NameServer

2. Client sends requests and the metadata to FlowServer to install path in network

3. Client fetches data from DataServer(s)

data from the selected DataServer, the client informs the FlowServer when the request
completes, so that the FlowServer can update its path bandwidth estimations. Figure 3.5
demonstrates the read process timeline.

Figure 3.6 demonstrates how a file read request is divided into two chunk read requests,
and one of the chunk read request is further split into two concurrent chunk read requests.
Assuming a file is replicated three times on DataServer A, B and C, and a client tries
to read the file from offset 10 MB with length 64 MB. The chunk size is 64 MB in this
example. The file read request covers the first and the second chunk of this file (index zero
and one). Therefore the client creates two chunk read requests: one to read chunk zero
from offset 10 MB to 64 MB, the other to read chunk one from offset 0 MB to 10 MB. The
client queries the FlowServer for these two chunk read requests. The FlowServer selects
DataServer A & B for chunk zero read request and DataServer C for chunk one read
request. The client sets up socket connections with these three DataServers, reads chunk
zero from 10 MB to 37 MB from DataServer A (27 MB), chunk zero from 37 MB to 64
MB from DataServer B (27 MB), and chunk one from 0 MB to 10 MB from DataServer C
(10 MB), The client combines the three pieces of data, then returns to the user application
(64 MB in total).
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Figure 3.6: Concurrent Read from three DataServers

Delete

Since the clients cache file metadata information, a file chunk cannot be removed while
there is still a valid cache entry to it. In Mayflower, the client sends a file delete request to
the NameServer. The NameServer deletes the file’s metadata immediately, ensuring that
no other clients can retrieve the metadata of the deleted file past this point. Given the TTL

of the file metadata cache on the client side, The NameServer then waits the TTL until the
file metadata information has expired on all of the clients, before sending out an actual
delete request to the DataServers to remove the file chunks. The TTL is user configurable
parameter in Mayflower. Figure 3.7 illustrates the delete process timeline.

3.5 Consistency Model

Mayflower provides a user tunable consistency model between sequential consistency and
strong consistency. In sequential consistency model, all clients see the same interleaving of
operations. This requires that all append requests are sent and ordered by a file’s primary
replica host. Upon receiving an append request, the primary replica host relays the request
to the other replica hosts while performing the append locally. Clients can however send
read requests to any replica host and coordination between hosts is not required to service
the read request.
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Figure 3.7: Delete Operation Timeline

1. Client sends delete request to the NameServer

2. The NameServer waits until all the metadata cache of the deleted file expired on client side

3. The NameServer sends the actual delete request to DataServers to remove data chunks

Alternatively, Mayflower can be configured to provide strong consistency (linearizabil-
ity) with respect to read and write requests. The classic approach to ensuring strong
consistency is to require all read requests to also be sent and ordered by the file’s primary
replica. However, Mayflower leverages append-only semantics to only require sending read
requests to the last chunk to the primary replica host. All other chunk requests can be sent
to the any of the replica hosts since these chunks are essentially immutable. Therefore,
for large multi-gigabyte files, the vast majority of chunks can be serviced by any replica
host while still maintaining strong consistency. The only limitation to this approach is
that it cannot provide strong consistency when interleaved with delete requests; deleted
files can briefly appear to be readable. However, we believe this is a reasonable consistency
concession for improving read performance.
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Chapter 4

Evaluation

4.1 Micro-benchmarks

In this section, we evaluate Mayflower’s read and append performance using two micro-
benchmarks.

4.1.1 Experiment Setup

We deployed Mayflower on a small cluster consisting of a single switch and nine machines.
Four DataServers and four clients run separately on eight of the machines. The remaining
machine runs the NameServer. All nine machines are connected to an HP ProCurve switch
with 1 Gbps link. Because these micro-benchmarks are only used to exercise the filesystem,
a FlowServer is not necessary for this experiment.

4.1.2 Read

We measured the performance of N clients reading simultaneously from Mayflower to de-
termine the performance of Mayflower’s read operation. Before the experiment, 100 files
were preloaded into the filesystem. Each client reads a random 64 MB portion of an arbi-
trary file. This was repeated 10 times such that each client reads a total of 640 MB of data
from multiple random files. We perform an initial warmup run before each experiment
to ensure that all requests will be served from memory. Figure 4.1.2 shows the aggregate
read throughput of the clients. The aggregate read throughput grows linearly with the
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Figure 4.1: Mayflower Read Micro-benchmark

number of client and approaches the total line rate of the network cards. However, with
additional clients, the per client read throughput falls relative to the total line rate due to
client contention.

4.1.3 Append

To test Mayflower’s append operation performance, we measure Mayflower’s performance
when N clients are appending simultaneously. Each client appends 64 MB of data to
10 different files sequentially in this experiment. Since each file is replicated to three
servers, each client is writing a total of 1920 MB data. Figure 4.1.3 shows that the append
throughput also grows linearily with the number of clients. Unlike read performance, which
is bottlenecked by line rate of the network card, write performance is bottlenecked by the
disk write throughput. With only one client, the append throughput is only approximately
45 MB/s. Additional clients do not provide a proportional increase in aggregate throughput
because each append operation is replicated to three DataServers. Therefore, with only
four DataServers, the replica set of two concurrent clients will always overlap with each
other. This will therefore reduce the increase in aggregate write performance from each
additional client. The aggregate write throughput of four clients is 137 MB/s or 34 MB/s
per client, compared to 45 MB/s for a single client.
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Figure 4.2: Mayflower Append Micro-benchmark

4.1.4 Micro-benchmark Conclusion

Due to the limitation of the number of machines available in lab, we only did the benchmark
experiment using four clients at most. However, because every read request typically
involves only one DataServer, we would assume the read requests can expand to very large
scale as long as the number of DataServers grows linearly with the number of clients. In the
append micro-benchmark, when there is four clients appending simultaneously, there exist
12 actual append flows in Mayflower, because the replication factor is three. That is every
DataServer needs to handle three append requests. The Mayflower append operations
remain close to the disk limits, even the DataServers are heavily loaded. Therefore, we
believe it is reasonable to conclude that Mayflower I/O throughput can expand to large
scale.

4.2 Simulated Network Result

To analyze the effectiveness of combining replica selection with path selection, we perform
a comparison study between Mayflower and HDFS. Both filesystems were deployed on a
simulated three-tier network using a synthetic workload.
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Figure 4.3: Mininet Simulated Network Topology

4.2.1 Testbed

The experiment was performed on a Mininet [26] simulated network. Mininet is an open
source project that simulates large networks by creating Linux container that each has an
isolated network namespace. Processes running in containers can communicate with each
other via a virtual Ethernet pair (veth pair). A veth pair can be attached to a virtual switch
such as OVS. Our simulated three-tier multi-root tree topology has two core switches and
two pod, where a pod consists of two aggregation switches that are connected to four
edge switches. The edge switches serve as top-of-rack switches to a rack of servers. The
oversubscription of this simulated network is 1:8. Figure 4.2.1 illustrates this topology with
16 hosts (2 hosts per rack).

4.2.2 Workload

The experimental workload is generated based on the following rules:

File Placement

5000 files are preloaded in both Mayflower and HDFS with the replication factor of three.
Both filesystems use their default replica placement strategy.

Job Arrival Rate

The job arrival rate of a client follows a Poisson distribution. For example, if the experiment
duration is T , and the job arrival rate of a client is λ, the total number of jobs for this
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client during the whole experiment should be T ∗ λ. And if there exists N clients working
simultaneously in the experiment with the same job arrival rate λ, and the job arrival rate
is independent from each other, the overall job arrival rate of the whole system should be
N ∗ λ. The total number of jobs through out the whole experiment is N ∗ T ∗ λ.

Client Placement

Past work has shown that file popularity in a distributed filesystem follows a Zipf dis-
tribution [12]. Therefore, the target file for each job request is selected based on a Zipf
popularity distribution. The client’s location is determined by the staggered probability
introduced in Hedera [2]. The stagger probability specifies that, relative to the primary
replica, a reader client has a probability of EdgeP to be in the same rack, a probability of
PodP to be in a different rack of the same pod , and a probability of 1 − EdgeP − PodP
to be in a different pod.

4.2.3 Result

We perform our experiment on an Amazon EC2 instance with 32 vCPUs, 60 GB RAM
and two 320 GB SSDs. In this experiment, we compare the average job completion time
(JCT) of three systems using the same workload: (1) Mayflower filesystem with its default
FlowServer, (2) Mayflower filesystem with nearest replica selection and ECMP path se-
lection, and (3) HDFS. HDFS runs nearest replica selection and ECMP path selection by
default. The experiment results are from 3 runs with a duration of 900 seconds for each
run. The average JCT is calculated from the results when the system is in steady state.
The stagger probability is set to (0.5, 0.3) in this experiment.

Figure 4.4 and Figure 4.5 show the impact of the job arrival rate λ on the mean JCT and
the 95th percentile JCT respectively. The Mayflower bar and the Nearest ECMP bar show
that the default FlowServer, which aims to minimize the JCT of the current request and
minimize the impact of this request over the current flows, provides significant improve-
ment over the nearest replica selection scheme coupled with ECMP path selection. The
improvement of the Nearest ECMP bar over the HDFS bar demonstrates the better I/O
throughput of Mayflower over HDFS, because they both perform nearest replica selection
and ECMP path selection. The result also show that the trend that the improvement of
Mayflower over HDFS increases as the job arrival rate increases. When the job arrive rate
is 0.04, Mayflower with FlowServer reduces the mean JCT by 40% compared with HDFS;
this value grows to 54% when the job arrival rate is 0.06. Moreover, the 95th percentile
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Figure 4.4: Mayflower vs HDFS Mean Job Completion Time

Figure 4.5: Mayflower vs HDFS 95th Job Completion Time
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JCT results demonstrate that Mayflower is better at handling the straggler problem in
distributed computations. In the worst case where the job arrival rate is 0.06, Mayflower
reduces the 95th percentile JCT by 66% compared with HDFS. Our results show that
(1) Mayflower which implemented in C++ provides a higher I/O throughput compared to
HDFS, and (2) the FlowServer, which combines replica selection and path selection can
significantly reduce the JCT compared with nearest replica selection and ECMP path
selection.
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Chapter 5

Conclusion

The prevalence of highly oversubscribed datacenter networks has led to the network be-
ing the primary bottleneck for high performance distributed filesystems. Past work has
tried to tackle this problem by adding network-awareness to the filesystem. However,
the filesystem does not have dynamic network information, and may therefore send read
requests to replicas with highly congested network links, which in turn limits the perfor-
mance of the filesystem. Mayflower addresses this problem by co-designing the filesystem
with a software-defined network controller. This enables Mayflower to actively monitor the
network status, and to perform replica and path selection based on the current network
information.

In this thesis, we introduce the filesystem component of Mayflower. We describe its
design assumptions based on requirements from large-scale distributed computation frame-
works. Our design takes advantage of append-only filesystem semantics to both improve
I/O performance and offer low-cost strong consistency. We also describe in detail its inter-
face to a centralized replica and path selection service in order to support efficient network
operations. We evaluate Mayflower using a fully functional prototype and found that it
is highly efficient and performs significantly better than HDFS. We believe that, as data-
center networks continue to grow in scale, there will be even a greater need for filesystems
that work together with software-defined network controllers in order to effectively utilize
the network.
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