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Abstract

In this thesis we consider a system of two heterogeneous servers with a shared queue,

and examine a scheduling policy for the optimal control of such a system. Previous results

by Lin and Kumar [1] and Koole [2] found that a threshold policy, i.e., refraining from

assigning a job to a slow server until a certain threshold has been exceed in the job queue,

is optimal when seeking only to minimize the mean sojourn time of a job in the system.

We build upon these results and generalise the analytical proof of the threshold policy’s

optimality to take into account power consumption as another performance metric, in the

setting where the faster server is more efficient. We also obtain preliminary results for a

setting where the slower server is more efficient, under the restriction of low arrival rates.

We use experimental data from simulations to provide an assessment of the real world

applicability of a threshold policy in this setting; a comparison between a threshold policy

with optimal thresholds and a first-come-first-serve policy shows that it achieves a cost

improvement of up to 29.19% over the naive policy.
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Chapter 1

Introduction

With the increasing ubiquity of mobile devices and web services in recent years, reducing

power usage in computer systems has become an increasingly critical design objective.

For mobile devices, battery capacity is often limited by constraints on the device’s weight

and physical dimensions, and reducing power consumption whenever possible is key to

improving run time performance. On the other side of the spectrum, the advent of web

services and cloud computing have necessitated large scale server farms with thousands

of computing nodes to adequately meet consumer needs. Server farms are highly energy

intensive, and the operating costs incurred by energy consumption and removal of the

resultant heat can rival the cost of the server hardware itself [3]; reducing the power usage

in computing nodes reduces operating costs, decreases the strain imposed on the electrical

grid, and reduces the emission of air pollutants and greenhouse gases [4].

In order to increase energy efficiency in hardware, various researchers (such as Cao et

al. [5]) have proposed the use of asymmetric multicore processors (AMP) which consists of

a fast, high power core and a slow, low power core in order to optimize both performance
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and energy usage based on the workload.

In this thesis we examine a strategy for the optimal control of an AMP having two cores,

one of which is more energy efficient than the other in terms of mean energy consumed per

job during service. The AMP is modelled as a heterogeneous queueing system as shown

in Figure ??, consisting of two exponential servers with different service rates µ1 and µ2.

Incoming jobs are modelled as a Poisson process with rate λ and stored in a common queue

while waiting to be serviced. After each system event, which can be the arrival of a new

job into the queue or the departure of a job which has completed service, an assignment

decision is made by the scheduling policy to decide if a job in the queue should be assigned

to a server for service.

Performance is characterized here by the mean response time of the system, defined as

the mean duration a job spends in the system from arrival until departure. Mean energy

consumption is determined by charging a cost per unit time (E1 and E2 for server 1 and

2 respectively) for each time unit a server spends servicing a job. In a real-world setting,

the fixed cost corresponds to the increase in power consumption of a server when it is

serving a job compared to when it is idle. The goal of this thesis is to present an optimal

control policy which minimizes a weighted sum of the mean response time and mean energy

consumption, where varying the weight provides solutions on the Pareto boundary of mean

response time and mean energy consumption.

1.1 Related Work

Lin and Kumar [1] studied the optimal control of the system shown in Figure ?? with the

goal of minimizing only the mean response time. They formulated a discrete-time problem

by sampling the state of the system when a transition event occurs, i.e., when a job arrives
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Figure 1.1: Queueing system model

at or departs from the system. The discrete-time problem is then modelled as a Markov

decision process, and using value iteration they demonstrate that the faster server should

be used whenever possible. Next, they use policy iteration to show that the optimal policy

is a stationary policy of the threshold type, which keeps the faster server busy whenever

possible and makes use of the slower server only if the number of jobs in the queue exceeds

a certain threshold. The intuition behind this result is that when the arrival rate is low

and not many jobs are in the queue, instead of sending a job to the slow server it may be

better to wait for the fast server to finish service and service it there instead, resulting in

a faster mean response time.

Building upon Lin and Kumar’s result that the fast server should be kept busy whenever

possible, Koole [2] simplifies the rest of the proof by using value iteration instead of policy

iteration. He shows that over the infinite horizon, the difference in expected cost of a policy

which does not send a job to the slow server compared to one that does is monotonically

increasing with the queue length; when the difference is negative, it is better not to send

jobs to the slow server, and as queue length increases, the difference eventually becomes
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positive, at which point it becomes better to send jobs to the slow server. This demonstrates

the optimality of threshold behaviour with the crossover point as the threshold value.

However, these proofs cannot be trivially extended to the setting where energy costs are

taken into account. Rykov [6] made use of value iteration to show that the optimality of the

threshold policy is preserved when additional queueing and service penalties are specified

by using the minimum total average service cost as the criterion for server efficiency, under

the restriction that more efficient servers also have higher service rates than less efficient

servers; the case where the more efficient server is slower remains an open problem [7],

and is one of the scenarios we consider in this thesis. We will make use of lower bounds

on the cost difference between adjacent states to demonstrate that the optimal policy has

characteristics of a threshold policy for the setting where the faster server is more efficient.

In the setting where the slower server is more efficient, we will provide partial analytical

results in conjunction with simulation results which demonstrate the cost benefit of the

threshold policy compared to a naive first-come-first-serve policy.
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Chapter 2

Discrete Time Problem Formulation

2.1 Discrete State Model

Adopting the strategy from [1], we begin by discretizing the continuous time system de-

scribed in Chapter 1 by sampling the system at the instants in time when an event occurs,

which can be a job arriving in the queue or leaving either server. In order to ensure the

probability of sampling is the same regardless of system state, we must assume that if a

server is idle then it is serving a “dummy” job, and therefore has the same probability of

being sampled as if it were serving a real job. We also normalize λ, µ1, and µ2 such that

λ+µ1 +µ2 = 1 while maintaining their proportion to each other, so that the probability of

an event taking place, or equivalently, the probability of the system being sampled during

the interval (t, t+ dt) is (λ+ µ1 + µ2)dt = dt.

The state of the discretized system at time-step k is xk = (x0k, x
1
k, x

2
k) ∈ N × {0, 1} ×

{0, 1}, where x0k is the number of jobs in the queue, and x1k and x2k are the number of jobs

being serviced on server 1 and 2 respectively. Servicing a job on server 1 and 2 also incurs
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a cost of E1 > 0 and E2 > 0 respectively.

Given the state of the system xk at all time instants, the mean response time can be

written as:

T̄ = lim
t→∞

1

λt

t∑
k=1

(
x0k + x1k + x2k

)
,

and the mean cost can be written as:

Ē = lim
t→∞

1

t

t∑
k=1

(
E1x

1
k + E2x

2
k

)
.

The objective of the controller is to select control decisions which minimize T̄ + ᾱĒ, where

ᾱ > 0 is a pre-specified weight factor.

In the rest of this paper, we will deal with the following equivalent objective function:

λT̄ + αĒ, where α = λᾱ. By Little’s Law [8], λT̄ is equal to the mean number of jobs

in the system. As in the work by Lin and Kumar [1], we work with the discounted cost

objective instead of the average cost objective:

E

[
∞∑
k=0

βkg(xk)

]
, (2.1)

where β ∈ [0, 1) is a discount factor and

g(xk) = x0k + x1k + x2k + αE1x
1
k + αE2x

2
k

is the stage cost at timestep k. Without loss of generality, we designate server 1 as the

more efficient server, i.e.,
1 + αE1

µ1

<
1 + αE2

µ2

. (2.2)

Three system events are possible: an arrival into the system, a departure from server

1, or a departure from server 2. The state of the system after a new job arrival is indicated
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by Axk and the state after a departure from server i is indicated by Dixk (i ∈ {1, 2}); we

define these states to be adjacent to xk, and vice-versa. The state mappings are as follows:

A(x0, x1, x2) = (x0 + 1, x1, x2),

D1(x
0, x1, x2) = (x0, 0, x2),

D2(x
0, x1, x2) = (x0, x1, 0).

Note that the departure of a “dummy” customer does not change the state of the system.

After each event, one of the following four possible control decisions is selected for the

transition to the next state: hold the job at the head of the queue (Ph), assign a job

to server 1 (P1), assign a job to server 2 (P2), or assign jobs to both servers (Pb). The

notation xk ∈ Dom(Pi) (i ∈ {0, 1}) is used to indicate that x0k > 0 and xik = 0, i.e., a job

is available in the queue for assignment and server i is available to service it. The notation

xk ∈ Dom(Pb) is used to indicate that x0k > 1, x1k = 0 and x2k = 0, i.e., there are at least

two jobs in the queue and both servers are free to begin service. The state of the system

after applying control Pu is indicated by Puxk, where u ∈ {h, 1, 2, b} and xk ∈ Dom(Pu).

The state mappings are as follows:

Ph(x
0, x1, x2) = (x0, x1, x2),

P1(x
0, x1, x2) = (x0 − 1, x1 + 1, x2) defined on Dom(P1),

P2(x
0, x1, x2) = (x0 − 1, x1, x2 + 1) defined on Dom(P2),

Pb(x
0, x1, x2) = (x0 − 2, x1 + 1, x2 + 1) defined on Dom(Pb).
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2.2 Cost Modelling and Fixed Point Iteration

Let Jβ(x) represent the minimum cost over all policies with initial state x. The stochastic

Bellman equation is

Jβ(x) = g(x) + βλmin
u0

Jβ(Pu0Ax) + βµ1 min
u1

Jβ(Pu1D1x) + βµ2 min
u2

Jβ(Pu2D2x).

Let F be the Banach space of all functions f : X → R where the norm ‖ · ‖ defined by

‖f‖ = sup
x∈X

∣∣∣∣ f(x)

max(g(x), 1)

∣∣∣∣,
is finite, and define the dynamic programming operator T : F → F as

Tf(x) = g(x) + βλmin
u0

f(Pu0Ax) + βµ1 min
u1

f(Pu1D1x) + βµ2 min
u2

f(Pu2D2x).

Observation 1. For some n, T (n) is a contraction mapping [9].

By the Banach fixed-point theorem, for any f ∈ F , T nf will converge to a unique fixed

point w such that Tw = w [10]. Since the optimal cost function Jβ ∈ F cannot contract

further, it stands to reason that TJβ = Jβ and therefore Jβ is the unique fixed point to

which limn→∞ T
nf converges. In the context of dynamic programming this technique is

known as value iteration.

In the following chapter we will use value iteration to show that there is a non-empty and

closed set of functions G ∈ F having properties of a threshold policy and is invariant under

T . In other words, for any f ∈ G, Tf is also ∈ G, therefore the fixed point limn→∞ T
nf = Jβ

is in G. By extension, since the fixed point is unique in F , any f ∈ F will also converge to

the same fixed point, and being in G we can conclude that it has properties of a threshold

policy.
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We note that when α = 0, i.e., in the setting of [1], the stage costs satisfy

g(Phxk) = g(P1xk) = g(P2xk)

for x ∈ Dom(Ph) ∩Dom(P1) ∩Dom(P2).

The fact that the stage costs do not depend on the control decision simplifies the proof,

since the the terms cancel out when comparing control actions. However when α > 0, the

proof becomes non-trivial as different control decisions incur different energy costs, and we

must show that the difference in future costs over the infinite time horizon balances out

the difference in immediate energy costs.
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Chapter 3

Optimality of Threshold Policy

When µ1 > µ2

In this chapter, we prove the optimality of threshold policies for the M/M/2 system de-

scribed in Chapter 2, in the setting where the more power efficient server is also faster

(i.e., µ1 > µ2 and 1+αE1

µ1
< 1+αE2

µ2
.). In Section 3.1 we provide expressions for lower bounds

on the difference in costs between adjacent states. In Section 3.2 we use the results from

Section 3.1 to show the optimal policy has the first characteristic of a threshold policy,

i.e., the more efficient server should be kept busy whenever possible. Finally in Section

3.3 we use the results obtained in the previous sections to show that the optimal policy

has the second characteristic of a threshold type policy, i.e., jobs should be sent to the less

efficient server once the queue length exceeds some threshold. These two characteristics

are sufficient to show that the optimal policy is of threshold type.
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3.1 Bounds on Cost Difference Between Adjacent

States

In this section, lower bounds are shown for the change in the optimal value function Jβ

immediately after a system event, which can be an arrival or a departure from either server.

Note that the results in this section do not depend on µ1 > µ2, and are equally applicable

to the setting where the slower server is more efficient.

Lemma 1. There exists β∗ ∈ [0, 1) such that for all β ∈ [β∗, 1), the optimal value function

Jβ has the following properties for all x:

1. Jβ(x0 + 1, x1, x2)− Jβ(x0, x1, x2) ≥ δ1 where

δ1 = min

(
1

1− β
, δ2, δ3

)
. (3.1)

2. Jβ(x0, 1, x2)− Jβ(x0, 0, x2) ≥ δ2 where

δ2 =
1 + αE1

1− β(1− µ1)
. (3.2)

3. Jβ(x0, x1, 1)− Jβ(x0, x1, 0) ≥ δ3 where

δ3 =
1 + αE2

1− β(1− µ2)
. (3.3)

Proof. We first define G ∈ F as the set of functions f : X → R which have the above

properties. Note that G is non-empty; for example consider the function

f0(x
0, x1, x2) = (x0 + x1)

1 + αE1

µ1

+ x2
1 + αE2

µ2

. (3.4)
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We have

f0(x
0 + 1, x1, x2)− f0(x0, x1, x2) =

1 + αE1

µ1

≥ δ1,

f0(x
0, 1, x2)− f0(x0, 0, x2) =

1 + αE1

µ1

≥ δ2,

f0(x
0, x1, 1)− f0(x0, x1, 0) =

1 + αE2

µ2

≥ δ3,

which shows that f0 satisfies all of the properties in Lemma 1, and therefore f0 ∈ G.

Next consider a function f ∈ G. First we will show that minu f(Pux) ∈ G. Note that

minua f(Puaxa) − minub f(Pubxb) ≥ δ if, for any valid control decision Pi under xa, there

exists a valid decision Pj under xb such that f(Pixa) − f(Pjxb) ≥ δ, since f(Pjxb) ≥

minub f(Pubxb) and therefore f(Pixa)−minub f(Pubxb) ≥ δ as well.

1. Define xa = (x0+1, x1, x2), xb = (x0, x1, x2). We now explore every possible action on

xa and show that for each of them a valid action on xb exists such that the difference

≥ δ1.

For Pua = Ph, we have

f(Phxa)− f(Phxb) = f(x0 + 1, x1, x2)− f(x0, x1, x2) ≥ δ1.

For Pua = P1, we have

f(P1xa)− f(Phxb) = f(x0, 1, x2)− f(x0, 0, x2) ≥ δ2 ≥ δ1.

For Pua = P2, we have

f(P2xa)− f(Phxb) = f(x0, x1, 1)− f(x0, x1, 0) ≥ δ3 ≥ δ1.

For Pua = Pb, noting that xa ∈ Dom(Pb) implies xb ∈ Dom(P1) since x0 ≥ 1 and

x1 = 0, we have

f(Pbxa)− f(P1xb) = f(x0 − 1, 1, 1)− f(x0 − 1, 1, 0) ≥ δ3 ≥ δ1.
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2. Define xa = (x0, 1, x2) and xb = (x0, 0, x2). We explore all possible actions on xa

noting that P1 and Pb are not valid decisions under xa.

For Pua = Ph, we have

f(Phxa)− f(Phxb) = f(x0, 1, x2)− f(x0, 0, x2) ≥ δ2.

For Pua = P2, we have

f(P2xa)− f(P2xb) = f(x0 − 1, 1, 1)− f(x0 − 1, 0, 1) ≥ δ2.

3. Define xa = (x0, x1, 1) and xb = (x0, x1, 0). We explore all possible actions on xa

noting that P2 and Pb are not valid decisions under xa.

For all Pua = Ph, we have

f(Phxa)− f(Phxb) = f(x0, x1, 1)− f(x0, x1, 0) ≥ δ3.

For Pua = P1, we have

f(P1xa)− f(P1xb) = f(x0 − 1, 1, 1)− f(x0 − 1, 1, 0) ≥ δ3.

The above shows that minu f(Pux) ∈ G for any function f ∈ G. Next we proceed with

value iteration to show that Tf ∈ G.

1. We start by showing that Property 1 in the Lemma is invariant under T . After

13



transformation, f(xa) and f(xb) can be written as:

Tf(x0 + 1, x1, x2) = x0 + 1 + x1 + x2 + αE1x
1 + αE2x

2

+ βλmin
u0

f(Pu0A(x0 + 1, x1, x2))

+ βµ1 min
u1

f(Pu1D1(x
0 + 1, x1, x2))

+ βµ2 min
u2

f(Pu2D2(x
0 + 1, x1, x2))

= x0 + 1 + x1 + x2 + αE1x
1 + αE2x

2

+ βλmin
u0

f(Pu0(x
0 + 2, x1, x2))

+ βµ1 min
u1

f(Pu1(x
0 + 1, 0, x2))

+ βµ2 min
u2

f(Pu2(x
0 + 1, x1, 0)),

(3.5)

Tf(x0, x1, x2) = x0 + x1 + x2 + αE1x
1 + αE2x

2 + βλmin
u0

f(Pu0A(x0, x1, x2))

+ βµ1 min
u1

f(Pu1D1(x
0, x1, x2)) + βµ2 min

u2
f(Pu2D2(x

0, x1, x2))

= x0 + x1 + x2 + αE1x
1 + αE2x

2 + βλmin
u0

f(Pu0(x
0 + 1, x1, x2))

+ βµ1 min
u1

f(Pu1(x
0, 0, x2)) + βµ2 min

u2
f(Pu2(x

0, x1, 0)).

(3.6)
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Taking the difference between Equation (3.5) and Equation (3.6),

Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2)

= 1 + βλ(min
u0

f(Pu0(x
0 + 2, x1, x2))−min

u0
f(Pu0(x

0 + 1, x1, x2)))

+ βµ1(min
u1

f(Pu1(x
0 + 1, 0, x2))−min

u1
f(Pu1(x

0, 0, x2)))

+ βµ2(min
u2

f(Pu2(x
0 + 1, x1, 0))−min

u2
f(Pu2(x

0, x1, 0)))

≥ 1 + βλδ1 + βµ1δ1 + βµ2δ1

= 1 + βδ1.

Since δ1 can take the value of 1
1−β , δ2, or δ3, we consider each case and show that

1 + βδ1 ≥ δ1 for any possible value of δ1.

If δ1 = 1
1−β ,

Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2) ≥ 1 + β
1

1− β
= δ1.

If δ1 = δ2, we have

Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2) ≥ 1 + β
1 + αE1

1− β(1− µ1)

=
1 + β(µ1 + αE1)

1− β(1− µ1)
.

For β ≥ αE1

µ1+αE1
,

1 + β(µ1 + αE1)

1− β(1− µ1)
≥ 1 + αE1

1− β(1− µ1)
= δ2,

and therefore

Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2) ≥ δ2 = δ1.

Similarly for δ1 = δ3 and β ≥ αE2

µ2+αE2
,

Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2) ≥ δ3 = δ1.
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We have shown that Tf(x0 + 1, x1, x2)− Tf(x0, x1, x2) ≥ δ1 for all β ∈ [β∗, 1) where

β∗ = max( αE1

µ1+αE1
, αE2

µ2+αE2
), therefore the optimal value function limn→∞ T

nf = Jβ

has the same property.

2. Next we show that Property 2 in the Lemma is also invariant under T . After trans-

formation, Tf(xa) and Tf(xb) can be written as:

Tf(x0, 1, x2) = x0 + 1 + x2 + αE1 + αE2x
2 + βλmin

u0
f(Pu0A(x0, 1, x2))

+ βµ1 min
u1

f(Pu1D1(x
0, 1, x2)) + βµ2 min

u2
f(Pu2D2(x

0, 1, x2))

= x0 + 1 + x2 + αE1 + αE2x
2 + βλmin

u0
f(Pu0(x

0 + 1, 1, x2))

+ βµ1 min
u1

f(Pu1(x
0, 0, x2)) + βµ2 min

u2
f(Pu2(x

0, 1, 0)),

(3.7)

Tf(x0, 0, x2) = x0 + x2 + αE2x
2 + βλmin

u0
f(Pu0A(x0, 0, x2))

+ βµ1 min
u1

f(Pu1D1(x
0, 0, x2)) + βµ2 min

u2
f(Pu2D2(x

0, 0, x2))

= x0 + x2 + αE2x
2 + βλmin

u0
f(Pu0(x

0 + 1, 0, x2))

+ βµ1 min
u1

f(Pu1(x
0, 0, x2)) + βµ2 min

u2
f(Pu2(x

0, 0, 0)).

(3.8)

Taking the difference between Equation (3.7) and Equation (3.8),

Tf(x0, 1, x2)− Tf(x0, 0, x2)

= 1 + αE1 + βλ(min
u0

f(Pu0(x
0 + 1, 1, x2))−min

u0
f(Pu0(x

0 + 1, 0, x2)))

+ βµ1(min
u1

f(Pu1(x
0, 0, x2))−min

u1
f(Pu1(x

0, 0, x2)))

+ βµ2(min
u2

f(Pu2(x
0, 1, 0))−min

u2
f(Pu2(x

0, 0, 0)))

≥ 1 + αE1 + βλδ2 + βµ2δ2

= 1 + αE1 + β(1− µ1)δ2 = δ2.
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Hence we have proven that Tf(x0, 1, x2)−Tf(x0, 0, x2) ≥ δ2 for any β, and therefore

the optimal value function limn→∞ T
nf = Jβ has the same property.

3. Using the same technique used to prove Property 2, we can show that Tf(x0, x1, 1)−

Tf(x0, x1, 0) ≥ δ3 for any β, and therefore the optimal value function limn→∞ T
nf =

Jβ has the same property.1

We have shown that G is non-empty and Tf ∈ G for any function f ∈ G, therefore the

optimal value function limn→∞ T
nf = Jβ ∈ G.

3.2 Keep the Efficient Server Busy When Possible

In this section we show that it is optimal to make a scheduling decision which keeps the

more efficient server busy whenever possible, i.e., ensure that a job is assigned to server 1

whenever x ∈ Dom(P1) or x ∈ Dom(Pb), in the setting where the more efficient server is

also faster.

Proposition 1. When µ1 > µ2, there exists β∗ ∈ [0, 1) such that for all β ∈ [β∗, 1), Jβ

has the following properties:

1. Jβ(P1x) ≤ Jβ(P2x) when x = (1, 0, 0),

2. Jβ(P1x) ≤ Jβ(Phx) for x ∈ Dom(P1), and

3. Jβ(Pbx) ≤ Jβ(P2x) for x ∈ Dom(Pb).

1See A.1 for the complete proof.
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Proof. Consider an f ∈ G which has the above properties. Again such functions exist, for

example f0 in Equation (3.4)2.

First we show that Property 1 (i.e., it is better to send the job to the more efficient

server rather than the less efficient one when there is only one job in the queue) is invariant

under T . The state under consideration is x = (1, 0, 0); possible actions in this state are

Ph, P1, and P2. We can eliminate the Ph option from consideration since P1 would be a

better choice in comparison, due to Property 2. The possibilities that remain are P1 and

P2, and we will show that Tf(P1x) ≤ Tf(P2x) in this state. Taking the difference between

the terms corresponding to the left hand side of the inequality and the right, we get

Tf(0, 1, 0)− Tf(0, 0, 1)

= αE1 − αE2 + βλ(min
u0

f(Pu0(1, 1, 0))−min
u0

f(Pu0(1, 0, 1)))

+ βµ1(min
u1

f(Pu1(0, 0, 0))−min
u1

f(Pu1(0, 0, 1)))

+ βµ2(min
u2

f(Pu2(0, 1, 0))−min
u2

f(Pu2(0, 0, 0)))

≤ αE1 − αE2 + βλ(f(0, 1, 1)− f(0, 1, 1)) + βµ1(f(0, 0, 0)− f(0, 0, 1))

+ βµ2(f(0, 1, 0)− f(0, 0, 0))

= αE1 − αE2 + β(µ1 − µ2)f(0, 0, 0) + βµ2f(0, 1, 0)− βµ1f(0, 0, 1)

= αE1 − αE2 + β(µ1 − µ2)(f(0, 0, 0)− f(0, 1, 0))

≤ αE1 − αE2 + β(µ1 − µ2)(−δ2)

= αE1 − αE2 − β(µ1 − µ2)
1 + αE1

1− β(1− µ1)
.

(3.9)

We make use of the fact that f(0, 1, 0) ≤ f(0, 0, 1) to upper bound the −βµ1f(0, 0, 1) term

with −βµ1f(0, 1, 0) in order to factor out β(µ1 − µ2) between steps 3 and 4.

2For proof see Appendix A.3.
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In order to show that Tf(0, 1, 0) ≤ Tf(0, 0, 1), it is sufficient to show the upper bound

αE1 − αE2 − β(µ1 − µ2)
1 + αE1

1− β(1− µ1)
≤ 0,

which after algebraic manipulation yields the condition

β(αE1 − αE2 + µ1 − µ2 + µ1αE2 − µ2αE1) ≥ αE1 − αE2.

For convenience, we rewrite this in the form of

β(A+B) ≥ A (3.10)

where A = αE1− αE2 and B = µ1− µ2 + µ1αE2− µ2αE1. Note that B is always positive

since we can derive

µ1 − µ2 + µ1αE2 − µ2αE1 > 0

from Equation (2.2). Several cases arise depending on the parameters of the system:

If E1 > E2, both sides of Equation (3.10) are positive, and we can rearrange it as

β ≥ A

A+B
.

Since A < A + B in this case, the right hand side is a value ∈ [0, 1) and Equation (3.10)

holds for all β ∈ [ A
A+B

, 1).

If E1 ≤ E2 and β(A+B) ≥ 0, Equation (3.10) holds for all β ∈ [0, 1). On the other

hand if β(A+B) < 0, rearranging Equation (3.10) yields the condition

β ≤ A

A+B
.

In this case A
A+B

> 1, so again the condition holds for all β ∈ [0, 1). Combining all cases,

we can define

β∗ =


αE1−αE2

αE1−αE2+µ1−µ2+µ1αE2−µ2αE1
, if E1 > E2

0, otherwise,
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which gives us Tf(0, 1, 0) ≤ Tf(0, 0, 1), and by extension Jβ(0, 1, 0) − Jβ(0, 0, 1) ≤ 0, for

all β ∈ [β∗, 1), as required. Next we show that Property 2, i.e., sending a job to the more

efficient server is better than holding it in the queue, is also invariant under T . The setting

under consideration is x ∈ Dom(P1), i.e., x = (x0, 0, x2), where x0 ≥ 1. After applying the

transformation to f(Phx) and f(P1x), we get

Tf(P1x) = x0 + x2 + αE1 + αE2x
2 + βλmin

u0
f(Pu0AP1x)

+ βµ1 min
u1

f(Pu1D1P1x) + βµ2 min
u2

f(Pu2D2P1x),

T f(Phx) = x0 + x2 + αE2x
2 + βλmin

u0
f(Pu0APhx)

+ βµ1 min
u1

f(Pu1D1Phx) + βµ2 min
u2

f(Pu2D2Phx).

Taking the difference between them, we get

Tf(P1x)− Tf(Phx) = αE1 + βλ(min
u0

f(Pu0AP1x)−min
u0

f(Pu0APhx)) (3.11)

+ βµ1(min
u1

f(Pu1D1P1x)−min
u1

f(Pu1D1Phx)) (3.12)

+ βµ2(min
u2

f(Pu2D2P1x)−min
u2

f(Pu2D2Phx)). (3.13)

For the λ term, we have

βλ(min
u0

f(Pu0AP1x)−min
u0

f(Pu0APhx))

= βλ(min
u0

f(Pu0(x
0, 1, x2))−min

u0
f(Pu0(x

0 + 1, 0, x2))). (3.14)

When x2 = 0, the right hand side of Equation (3.14) becomes

βλ(min
u0

f(Pu0(x
0, 1, 0))−min

u0
f(Pu0(x

0 + 1, 0, 0))).

While any P ∈ {Ph, P1, P2, Pb} would be a valid action for the subtrahend, the action

which incurs the minimum cost can only be either P1 or Pb; Ph and P2 are eliminated from
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consideration since f(P1x) ≤ f(Phx), and f(Pbx) ≤ f(P2x) by Property 3. In the former

case, the subtrahend evaluates to f(x0, 1, 0), and we have

min
u0

f(Pu0(x
0, 1, 0)) ≤ f(x0, 1, 0);

in the latter case the subtrahend evaluates to f(x0 − 1, 1, 1), and we have

min
u0

f(Pu0(x
0, 1, 0)) ≤ f(x0 − 1, 1, 1).

In either case, the minuend evaluates to a quantity no larger than the value of the subtra-

hend, and thus the right hand side of Equation (3.14) is non-positive.

When x2 = 1, Equation (3.14) can be written as

βλ(f(x0, 1, 1)−min
u0

f(Pu0(x
0 + 1, 0, 1))).

The state in the subtrahend, (x0 + 1, 0, 1), is in Dom(P1) and Dom(Ph); however we know

that f(P1x) ≤ f(Phx), thus the action which incurs the minimum cost in this state must

be P1. The subtrahend therefore evaluates to f(x0, 1, 1), resulting in a difference of 0 in

Equation (3.14).

In every case,

min
u0

f(Pu0(x
0, 1, x2)) ≤ min

u0
f(Pu0(x

0 + 1, 0, x2)),

and the entire λ term ≤ 0.

For the µ2 term, we have

βµ2(min
u2

f(Pu2D2P1x)−min
u2

f(Pu2D2Phx))

= βµ2(min
u2

f(Pu2(x
0 − 1, 1, 0))−min

u2
f(Pu2(x

0, 0, 0))). (3.15)
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When x0 = 1, this can be rewritten as

βµ2(f(0, 1, 0)−min
u2

f(Pu2(1, 0, 0))).

Since we have f(0, 1, 0) ≤ f(0, 0, 1) and f(P1x) ≤ f(Phx), the action which incurs the

minimum cost in the subtrahend must be P1; the subtrahend therefore evaluates to f(0, 1, 0)

as well, leaving a difference of 0.

When x0 ≥ 2, we can define x̄0 = x0 − 1 and rewrite the above as

βµ2(min
u2

f(Pu2(x̄
0, 1, 0))−min

u2
f(Pu2(x̄

0 + 1, 0, 0))),

to which the same arguments used for the λ term can be applied to show that the entire

µ2 term ≤ 0.

Lastly for the µ1 term, we have

βµ1(min
u1

f(Pu1D1P1x)−min
u1

f(Pu1D1Phx))

= βµ1(min
u1

f(Pu1(x
0 − 1, 0, x2))−min

u1
f(Pu1(x

0, 0, x2))),

and from the proof of Lemma 1 we have

min
u1

f(Pu1(x
0 + 1, x1, x2))−min

u1
f(Pu1(x

0, x1, x2)) ≥ δ1.

This produces an upper bound of βµ1(−δ1) for the µ1 term.

Combining the results of the λ, µ1, and µ2 terms, we can define the lower bound

Tf(Phx)− Tf(P1x) ≥ −αE1 + βµ1δ1

for Equation (3.11). Recall from Lemma 1 that δ1 = min( 1
1−β , δ2, δ3). To facilitate a proof

for the lower bound −αE1 + βµ1δ1 ≥ 0, we would like to choose β∗ such that δ1 = δ2, i.e.,

δ2 ≤ 1
1−β and δ2 ≤ δ3. After algebraic manipulation, the condition for δ2 ≤ 1

1−β is

β ≥ αE1

αE1 + µ1

,
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and the condition for δ2 ≤ δ3 is identical to Equation (3.10), thus the previous analyt-

ical results on the values of β which satisfy this inequality can be applied here as well.

Combining the bounds on β for both conditions, we can define

β∗ =

max
(

αE1

αE1+µ1
, αE1−αE2

αE1−αE2+µ1−µ2+µ1αE2−µ2αE1

)
, if E1 > E2

αE1

αE1+µ1
, otherwise,

which gives us δ1 = δ2 for β ∈ [β∗, 1). The lower bound on Tf(Phx)− Tf(P1x) becomes

Tf(P1x)− Tf(Phx) ≤ αE1 − β∗µ1δ2

= αE1 − β∗µ1
1 + αE1

1− β∗(1− µ1)

=
αE1(1− β∗ + β∗µ1)− β∗µ1(1 + αE1)

1− β∗(1− µ1)

=
αE1 − β∗(αE1 + µ1)

1− β∗(1− µ1)

≤
αE1 − αE1

αE1+µ1
(αE1 + µ1)

1− β∗(1− µ1)

≤ 0,

which implies Jβ(P1x)− Jβ(Phx) ≤ 0 for β ∈ [β∗, 1) as required.

Finally we will show that Property 3, i.e., it is better to assign jobs to both servers rather

than only the less efficient server when there are at least two jobs in the queue, is invariant

under T as well. For this property the setting is x ∈ Dom(Pb), i.e. x = (x0, 0, 0), x0 ≥ 2.

We begin by defining x∗ = (x0 − 1, 0, 1). The value functions under comparison are

f(x0 − 2, 1, 1) and f(x0 − 1, 0, 1); after applying the transformation, we can rewrite the

states using x∗ as

Tf(Pbx) = Tf(x0 − 2, 1, 1) = Tf(P1(x
0 − 1, 0, 1)) = Tf(P1x

∗)
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and

Tf(P2x) = Tf(x0 − 1, 0, 1) = Tf(Ph(x
0 − 1, 0, 1)) = Tf(Phx

∗).

We have shown above that Tf(P1x) ≤ Tf(Phx) for any x ∈ Dom(P1) and β ≥ β∗.

Noting that x ∈ Dom(Pb) =⇒ x∗ ∈ Dom(P1), we can write Tf(P1x
∗) ≤ Tf(Phx

∗) or

equivalently Tf(Pbx) ≤ Tf(P2x), which implies that Jβ(Pbx) ≤ Jβ(P2x) for β ∈ [β∗, 1) as

required.

We have shown that when there is only one job in the queue, it is always better

to assign it to the more efficient server when possible, as Jβ(0, 1, 0) ≤ Jβ(0, 0, 1) and

Jβ(P1(x)) ≤ Jβ(Ph(x)). In the general case when there is more than one job in the queue,

we have shown that Jβ(Pb(x)) ≤ Jβ(P2(x)) in addition to Jβ(P1(x)) ≤ Jβ(Ph(x)). A proof

for Jβ(P1(x)) ≤ Jβ(P2(x)) for the general case is not necessary, as the inequality is not

required for subsequent proofs, and P1 and Pb are the only viable actions both of which

keep the more efficient server active whenever possible.

3.3 Send Jobs to the Less Efficient Server When Queue

Length Exceeds Threshold

To prove that the optimal policy has the second characteristic of a threshold type policy,

i.e., jobs should be schedule for the less efficient server once the queue length exceeds

some threshold, it is sufficient to show [2] that when x ∈ Dom(P2), the cost benefit of

withholding a job from the less efficient server over sending it is monotonically decreasing

with queue length. In other words, when x0 = 0,

Jβ(0, 0, 1)− Jβ(0, 1, 0) ≥ Jβ(0, 1, 1)− Jβ(1, 1, 0), (3.16)

24



and when x0 ≥ 1,

Jβ(x0 − 1, 1, 1)− Jβ(x0, 1, 0) ≥ Jβ(x0, 1, 1)− Jβ(x0 + 1, 1, 0). (3.17)

When there is only one job in the queue prior to the control decision and server 1 is idle,

it is optimal to assign the job to server 1 by Proposition 1. When server 1 is occupied,

the cost benefit of keeping server 2 idle is Jβ(x0 − 1, 1, 1) − Jβ(x0, 1, 0); if this benefit is

positive, it is better not to assign jobs to server 2. With increasing x0 the cost benefit

monotonically decreases, and if at x0 = x0a there is no longer a positive cost benefit in

keeping server 2 idle, i.e., Jβ(x0a − 1, 1, 1) − Jβ(x0a, 1, 0) ≤ 0, then the threshold has been

exceeded and it becomes optimal to assign jobs to both servers for all x0 ≥ x0a. We now

show that Jβ has the properties put forth in Proposition 2, number 1 and 2 of which are

equivalent to Equations (3.17) and (3.16) respectively. The following proofs follow along

the same lines as Koole’s proof in [2], with necessary modifications to account for the costs

of using each server.

Proposition 2. There exists β∗ ∈ [0, 1) such that for all β ∈ [β∗, 1), the optimal value

function Jβ has the following properties:

1. Jβ(x0, 1, 0) + Jβ(x0, 1, 1) ≤ Jβ(x0 + 1, 1, 0) + Jβ(x0 − 1, 1, 1) for x0 ≥ 1

2. Jβ(0, 1, 0) + Jβ(0, 1, 1) ≤ Jβ(1, 1, 0) + Jβ(0, 0, 1)

3. Jβ(x0, 1, 0) + Jβ(x0 − 1, 1, 1) ≤ Jβ(x0 − 1, 1, 0) + Jβ(x0, 1, 1) for x0 ≥ 1

4. Jβ(0, 1, 0) + Jβ(0, 0, 1) ≤ Jβ(0, 0, 0) + Jβ(0, 1, 1).

Proof. We take the set of functions G as defined in Section 3 and once more constrain it

to functions with the above properties, noting that G is non-empty3.

3For proof see Appendix A.4.
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Now, consider an f ∈ G. For convenience, we first derive three additional properties of

f . Summing properties 1 and 3 yields

5. 2f(x0, 1, 0) ≤ f(x0 + 1, 1, 0) + f(x0 − 1, 1, 0),

summing properties 1 and 3 with x0 replaced by x0 + 1 in 3 yields

6. 2f(x0, 1, 1) ≤ f(x0 + 1, 1, 1) + f(x0 − 1, 1, 1),

and summing properties 2 and 4 yields

7. 2f(0, 1, 0) ≤ f(1, 1, 0) + f(0, 0, 0).

We begin by showing that minu f(Pu(x)) ∈ G. As an aside, note that in the derivations in

this chapter we make use of the properties from Proposition 1 that f(0, 1, 0) ≤ f(0, 0, 1)

and f(x0, 1, x2) ≤ f(x0 + 1, 0, x2) to replace terms where the minimum cost action is taken

from a state where x ∈ Dom(P1), with the equivalent term where the minimum cost action

is taken after first assigning a job from the queue to server 1. In other words,

min
u
f(Pu(1, 0, 0)) = f(0, 1, 0),

and

min
u
f(Pu(x

0, 0, x2)) = min
u
f(Pu(x

0 − 1, 1, x2))

when x0 ≥ 1.

1. If minu f(Pu(x
0 + 1, 1, 0)) = f(x0 + 1, 1, 0), we have

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0, 1, 1))

≤ f(x0, 1, 0) + f(x0, 1, 1)

≤ f(x0 + 1, 1, 0) + f(x0 − 1, 1, 1)

= min
u
f(Pu(x

0 + 1, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1)).
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On the other hand if minu f(Pu(x
0 + 1, 1, 0)) = f(x0, 1, 1), we have

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0, 1, 1))

≤ f(x0 − 1, 1, 1) + f(x0, 1, 1)

= min
u
f(Pu(x

0 + 1, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1)).

In both cases,

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0, 1, 1))

≤ min
u
f(Pu(x

0 + 1, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1)).

2. If minu f(Pu(1, 1, 0)) = f(1, 1, 0), we have

min
u
f(Pu(0, 1, 0)) + min

u
f(Pu(0, 1, 1)) = f(0, 1, 0) + f(0, 1, 1)

≤ f(1, 1, 0) + f(0, 0, 1)

= min
u
f(Pu(1, 1, 0)) + min

u
f(Pu(0, 0, 1))

and if minu f(Pu(1, 1, 0)) = f(0, 1, 1), we have

min
u
f(Pu(0, 1, 0)) + min

u
f(Pu(0, 1, 1)) = f(0, 1, 0) + f(0, 1, 1)

≤ f(0, 1, 1) + f(0, 0, 1)

= min
u
f(Pu(1, 1, 0)) + min

u
f(Pu(0, 0, 1)),

making use of f(0, 1, 0) ≤ f(0, 0, 1) to upper bound the right hand side in step 1. In

both cases,

min
u
f(Pu(0, 1, 0)) + min

u
f(Pu(0, 1, 1)) ≤ min

u
f(Pu(1, 1, 0)) + min

u
f(Pu(0, 0, 1)).
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3. If minu f(Pu(x
0 − 1, 1, 0)) = f(x0 − 1, 1, 0), we have

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1))

≤ f(x0, 1, 0) + f(x0 − 1, 1, 1)

≤ f(x0 − 1, 1, 0) + f(x0, 1, 1)

= min
u
f(Pu(x

0 − 1, 1, 0)) + min
u
f(Pu(x

0, 1, 1))

and if minu f(Pu(x
0 − 1, 1, 0)) = f(x0 − 2, 1, 1), we have

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1))

≤ f(x0 − 1, 1, 1) + f(x0 − 1, 1, 1)

≤ f(x0 − 2, 1, 1) + f(x0, 1, 1)

= min
u
f(Pu(x

0 − 1, 1, 0)) + min
u
f(Pu(x

0, 1, 1)).

In both cases,

min
u
f(Pu(x

0, 1, 0)) + min
u
f(Pu(x

0 − 1, 1, 1))

≤ min
u
f(Pu(x

0 − 1, 1, 0)) + min
u
f(Pu(x

0, 1, 1)).

4. This property is straightforward to show, since no actions are possible for any of the

states under consideration:

min
u
f(Pu(0, 1, 0)) + min

u
f(Pu(0, 0, 1)) = f(0, 1, 0) + f(0, 0, 1)

≤ f(0, 0, 0) + f(0, 1, 1)

= min
u
f(Pu(0, 0, 0)) + min

u
f(Pu(0, 1, 1)).

Finally we proceed with value iteration and show that Tf ∈ G.
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1. We start by showing that the Property 1 in the Proposition is invariant under T .

Tf(x0, 1, 0) = x0 + 1 + αE1 + βλmin
u0

f(Pu0(x
0 + 1, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0, 0, 0)) + βµ2 min

u2
f(Pu2(x

0, 1, 0)),

T f(x0, 1, 1) = x0 + 2 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0 + 1, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0, 0, 1)) + βµ2 min

u2
f(Pu2(x

0, 1, 0)),

T f(x0 + 1, 1, 0) = x0 + 2 + αE1 + βλmin
u0

f(Pu0(x
0 + 2, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0 + 1, 0, 0)) + βµ2 min

u2
f(Pu2(x

0 + 1, 1, 0)),

T f(x0 − 1, 1, 1) = x0 + 1 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0 − 1, 0, 1)) + βµ2 min

u2
f(Pu2(x

0 − 1, 1, 0)).

Taking the difference between the terms corresponding to the left hand side of the

inequality and the right, we get

Tf(x0, 1, 0) + Tf(x0, 1, 1)− Tf(x0 + 1, 1, 0)− Tf(x0 − 1, 1, 1)

= βλ(min
u0

f(Pu0(x
0 + 1, 1, 0)) + min

u0
f(Pu0(x

0 + 1, 1, 1))

−min
u0

f(Pu0(x
0 + 2, 1, 0))−min

u0
f(Pu0(x

0, 1, 1)))

+ βµ1(min
u1

f(Pu1(x
0, 0, 0)) + min

u1
f(Pu1(x

0, 0, 1))

−min
u1

f(Pu1(x
0 + 1, 0, 0))−min

u1
f(Pu1(x

0 − 1, 0, 1)))

+ βµ2(min
u2

f(Pu2(x
0, 1, 0)) + min

u2
f(Pu2(x

0, 1, 0))

−min
u2

f(Pu2(x
0 + 1, 1, 0))−min

u2
f(Pu2(x

0 − 1, 1, 0))).
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The λ and µ2 terms can be shown to be ≤ 0 using Properties 1 and 5 respectively.

For the expression within the µ1 term, we have two cases depending on x0:

if x0 = 1, we have

min
u1

f(Pu1(1, 0, 0)) + min
u1

f(Pu1(1, 0, 1))

−min
u1

f(Pu1(2, 0, 0))−min
u1

f(Pu1(0, 0, 1))

= min
u1

f(Pu1(0, 1, 0)) + min
u1

f(Pu1(0, 1, 1))

−min
u1

f(Pu1(1, 1, 0))−min
u1

f(Pu1(0, 0, 1))

≤ 0 by Property 2.

If x0 ≥ 2, we have

min
u1

f(Pu1(x
0, 0, 0)) + min

u1
f(Pu1(x

0, 0, 1))

−min
u1

f(Pu1(x
0 + 1, 0, 0))−min

u1
f(Pu1(x

0 − 1, 0, 1))

= min
u1

f(Pu1(x
0 − 1, 1, 0)) + min

u1
f(Pu1(x

0 − 1, 1, 1))

−min
u1

f(Pu1(x
0, 1, 0))−min

u1
f(Pu1(x

0 − 2, 1, 1))

≤ 0 by Property 1.

In either case above, the right hand side ≤ 0 for all x0 ≥ 1 and β ∈ [β∗, 1)4, therefore

Tf(x0, 1, 0) + Tf(x0, 1, 1) ≤ Tf(x0 + 1, 1, 0) + Tf(x0 − 1, 1, 1)

as required.

4β∗ being the value of β above which properties from Lemma 1 and Proposition 1 hold.
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2. Next we show that the Property 2 in the Proposition is invariant under T .

Tf(0, 1, 0) = 1 + αE1 + βλmin
u0

f(Pu0(1, 1, 0))

+ βµ1 min
u1

f(Pu1(0, 0, 0)) + βµ2 min
u2

f(Pu2(0, 1, 0))

= 1 + αE1 + βλmin
u0

f(Pu0(1, 1, 0))

+ βµ1f(0, 0, 0) + βµ2f(0, 1, 0),

T f(0, 1, 1) = 2 + αE1 + αE2 + βλmin
u0

f(Pu0(1, 1, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 1, 0))

= 2 + αE1 + αE2 + βλmin
u0

f(Pu0(1, 1, 1))

+ βµ1f(0, 0, 1) + βµ2f(0, 1, 0),

T f(1, 1, 0) = 2 + αE1 + βλmin
u0

f(Pu0(2, 1, 0))

+ βµ1 min
u1

f(Pu1(1, 0, 0)) + βµ2 min
u2

f(Pu2(1, 1, 0))

= 2 + αE1 + βλmin
u0

f(Pu0(2, 1, 0))

+ βµ1f(0, 1, 0) + βµ2 min
u2

f(Pu2(1, 1, 0)),

T f(0, 0, 1) = 1 + αE2 + βλmin
u0

f(Pu0(1, 0, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 0, 0))

= 1 + αE2 + βλmin
u0

f(Pu0(0, 1, 1))

+ βµ1f(0, 0, 1) + βµ2f(0, 0, 0).
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Taking the difference between the terms corresponding to the left hand side of the

inequality and the right, we get

Tf(0, 1, 0) + Tf(0, 1, 1)− Tf(1, 1, 0)− Tf(0, 0, 1)

= αE1 + βλ(min
u0

f(Pu0(1, 1, 0)) + min
u0

f(Pu0(1, 1, 1))

−min
u0

f(Pu0(2, 1, 0))−min
u0

f(Pu0(0, 1, 1)))

+ βµ1(f(0, 0, 0) + f(0, 0, 1)− f(0, 1, 0)− f(0, 0, 1))

+ βµ2(f(0, 1, 0) + f(0, 1, 0)−min
u2

f(Pu2(1, 1, 0))− f(0, 0, 0))

≤ αE1 − βµ1δ2 + βµ2(2f(0, 1, 0)−min
u2

f(Pu2(1, 1, 0))− f(0, 0, 0)).

For the µ2 term, if minu2 f(Pu2(1, 1, 0)) = f(1, 1, 0), we have

2f(0, 1, 0)) ≤ f(1, 1, 0) + f(0, 0, 0)

= min
u2

f(Pu2(1, 1, 0)) + f(0, 0, 0)

and if minu2 f(Pu2(1, 1, 0)) = f(0, 1, 1), we have

2f(0, 1, 0)) ≤ f(0, 1, 0) + f(0, 0, 1)

≤ f(0, 0, 0) + f(0, 1, 1)

= min
u2

f(Pu2(1, 1, 0)) + f(0, 0, 0).

In either case,

2f(0, 1, 0)) ≤ min
u2

f(Pu2(1, 1, 0)) + f(0, 0, 0).

This leaves us with the upper bound

Tf(0, 1, 0) + Tf(0, 1, 1)− Tf(1, 1, 0)− Tf(0, 0, 1)

≤ αE1 − βµ1δ2

= αE1 − βµ1
1 + αE1

1− β(1− µ1)
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For β ≥ αE1

αE1+µ1
,

αE1 − βµ1
1 + αE1

1− β(1− µ1)
≤ 0.

This implies

Tf(0, 1, 0) + Tf(0, 1, 1) ≤ Tf(1, 1, 0) + Tf(0, 0, 1)

for β ∈ [β∗, 1), where β∗ is the maximum of αE1

αE1+µ1
and the value above which Lemma

1 and Proposition 1 hold, as required.

3. Next we show that the Property 3 in the Proposition is invariant under T . We have

two cases depending on the value of x0. If x0 ≥ 2,

Tf(x0, 1, 0) = x0 + 1 + αE1 + βλmin
u0

f(Pu0(x
0 + 1, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0, 0, 0)) + βµ2 min

u2
f(Pu2(x

0, 1, 0))

= x0 + 1 + αE1 + βλmin
u0

f(Pu0(x
0 + 1, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0 − 1, 1, 0)) + βµ2 min

u2
f(Pu2(x

0, 1, 0)),

T f(x0 − 1, 1, 1) = x0 + 1 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0 − 1, 0, 1)) + βµ2 min

u2
f(Pu2(x

0 − 1, 1, 0))

= x0 + 1 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0 − 2, 1, 1)) + βµ2 min

u2
f(Pu2(x

0 − 1, 1, 0)),

T f(x0 − 1, 1, 0) = x0 + αE1 + βλmin
u0

f(Pu0(x
0, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0 − 1, 0, 0)) + βµ2 min

u2
f(Pu2(x

0 − 1, 1, 0))

= x0 + αE1 + βλmin
u0

f(Pu0(x
0, 1, 0))

+ βµ1 min
u1

f(Pu1(x
0 − 2, 1, 0)) + βµ2 min

u2
f(Pu2(x

0 − 1, 1, 0)),
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Tf(x0, 1, 1) = x0 + 2 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0 + 1, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0, 0, 1)) + βµ2 min

u2
f(Pu2(x

0, 1, 0))

= x0 + 2 + αE1 + αE2 + βλmin
u0

f(Pu0(x
0 + 1, 1, 1))

+ βµ1 min
u1

f(Pu1(x
0 − 1, 1, 1)) + βµ2 min

u2
f(Pu2(x

0, 1, 0)).

Taking the difference between the terms corresponding to the left hand side of the

inequality and the right, we get

Tf(x0, 1, 0) + Tf(x0 − 1, 1, 1)− Tf(x0 − 1, 1, 0)− Tf(x0, 1, 1)

= βλ(min
u0

f(Pu0(x
0 + 1, 1, 0)) + min

u0
f(Pu0(x

0, 1, 1))

−min
u0

f(Pu0(x
0, 1, 0))−min

u0
f(Pu0(x

0 + 1, 1, 1)))

+ βµ1(min
u1

f(Pu1(x
0 − 1, 1, 0)) + min

u1
f(Pu1(x

0 − 2, 1, 1))

−min
u1

f(Pu1(x
0 − 2, 1, 0))−min

u1
f(Pu1(x

0 − 1, 1, 1)))

+ βµ2(min
u2

f(Pu2(x
0, 1, 0)) + min

u2
f(Pu2(x

0 − 1, 1, 0))

−min
u2

f(Pu2(x
0 − 1, 1, 0))−min

u2
f(Pu2(x

0, 1, 0))).

The right hand side ≤ 0 since the expressions within each of the terms ≤ 0. How-

ever a special case emerges when x0 = 1 due to the (x0 − 2, 1, x2) states, and the

transformations must be re-evaluated as follows:

Tf(1, 1, 0) = 2 + αE1 + βλmin
u0

f(Pu0(2, 1, 0))

+ βµ1 min
u1

f(Pu1(1, 0, 0)) + βµ2 min
u2

f(Pu2(1, 1, 0))

= 2 + αE1 + βλmin
u0

f(Pu0(2, 1, 0))

+ βµ1 min
u1

f(Pu1(0, 1, 0)) + βµ2 min
u2

f(Pu2(1, 1, 0)),
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Tf(0, 1, 1) = 2 + αE1 + αE2 + βλmin
u0

f(Pu0(1, 1, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 1, 0)),

T f(0, 1, 0) = 1 + αE1 + βλmin
u0

f(Pu0(1, 1, 0))

+ βµ1 min
u1

f(Pu1(0, 0, 0)) + βµ2 min
u2

f(Pu2(0, 1, 0)),

T f(1, 1, 1) = 3 + αE1 + αE2 + βλmin
u0

f(Pu0(2, 1, 1))

+ βµ1 min
u1

f(Pu1(1, 0, 1)) + βµ2 min
u2

f(Pu2(1, 1, 0))

= 3 + αE1 + αE2 + βλmin
u0

f(Pu0(2, 1, 1))

+ βµ1 min
u1

f(Pu1(0, 1, 1)) + βµ2 min
u2

f(Pu2(1, 1, 0)).

Taking the difference between the terms corresponding to the left hand side of the

inequality and the right, we get

Tf(1, 1, 0) + Tf(0, 1, 1)− Tf(0, 1, 0)− Tf(1, 1, 1)

= βλ(min
u0

f(Pu0(2, 1, 0)) + min
u0

f(Pu0(1, 1, 1))

−min
u0

f(Pu0(1, 1, 0))−min
u0

f(Pu0(2, 1, 1)))

+ βµ1(min
u1

f(Pu1(0, 1, 0)) + min
u1

f(Pu1(0, 0, 1))

−min
u1

f(Pu1(0, 0, 0))−min
u1

f(Pu1(0, 1, 1)))

+ βµ2(min
u2

f(Pu2(1, 1, 0)) + min
u2

f(Pu2(0, 1, 0))

−min
u2

f(Pu2(0, 1, 0))−min
u2

f(Pu2(1, 1, 0)))
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≤ βλ(min
u0

f(Pu0(2, 1, 0)) + min
u0

f(Pu0(1, 1, 1))

−min
u0

f(Pu0(1, 1, 0))−min
u0

f(Pu0(2, 1, 1)))

+ βµ1(f(0, 1, 0) + f(0, 0, 1)− f(0, 0, 0)− f(0, 1, 1))

+ βµ2(min
u2

f(Pu2(1, 1, 0)) + min
u2

f(Pu2(0, 1, 0))

−min
u2

f(Pu2(0, 1, 0))−min
u2

f(Pu2(1, 1, 0))).

Again all the terms ≤ 0, therefore

Tf(x0, 1, 0) + Tf(x0 − 1, 1, 1) ≤ Tf(x0 − 1, 1, 0) + Tf(x0, 1, 1)

holds for any x0 ≥ 1 as required.

4. Finally we show that Property 4 in the Proposition is invariant under T .

Tf(0, 1, 0) = 1 + αE1 + βλmin
u0

f(Pu0(1, 1, 0))

+ βµ1 min
u1

f(Pu1(0, 0, 0)) + βµ2 min
u2

f(Pu2(0, 1, 0)),

T f(0, 0, 1) = 1 + αE2 + βλmin
u0

f(Pu0(1, 0, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 0, 0))

= 1 + αE2 + βλmin
u0

f(Pu0(0, 1, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 0, 0)),
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Tf(0, 0, 0) = βλmin
u0

f(Pu0(1, 0, 0))

+ βµ1 min
u1

f(Pu1(0, 0, 0)) + βµ2 min
u2

f(Pu2(0, 0, 0))

= βλmin
u0

f(Pu0(0, 1, 0))

+ βµ1 min
u1

f(Pu1(0, 0, 0)) + βµ2 min
u2

f(Pu2(0, 0, 0)),

T f(0, 1, 1) = 2 + αE1 + αE2 + βλmin
u0

f(Pu0(1, 1, 1))

+ βµ1 min
u1

f(Pu1(0, 0, 1)) + βµ2 min
u2

f(Pu2(0, 1, 0)).

Taking the difference between the terms corresponding to the left hand side of the

inequality and the right, we get

Tf(0, 1, 0) + Tf(0, 0, 1)− Tf(0, 0, 0)− Tf(0, 1, 1)

= βλ(min
u0

f(Pu0(1, 1, 0)) + min
u0

f(Pu0(0, 1, 1))

−min
u0

f(Pu0(0, 1, 0))−min
u0

f(Pu0(1, 1, 1))).

The expression inside the λ term ≤ 0 by Property 3, and so the right hand side of

the inequality ≤ 0 for β ∈ [β∗, 1)5. Therefore

Tf(0, 1, 0) + Tf(0, 0, 1) ≤ Tf(0, 0, 0) + Tf(0, 1, 1)

as required.

We have shown that G is non-empty and that Tf ∈ G for any function f ∈ G. This

implies that the optimal value function limn→∞ T
nf = Jβ ∈ G and therefore satisfies the

5See footnote 4.
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properties in Proposition 2, including Property 1 and 2 which are equivalent to Equation

(3.17) and (3.16) respectively. This shows that jobs should be sent to the less efficient

server once the queue length exceeds some threshold, and this result in conjunction with

the conclusion from Section 3.2 that the more efficient server should be kept busy whenever

possible, we can conclude that the optimal policy is of threshold type in the setting where

µ1 > µ2. This result generalizes the findings of Koole [2], i.e., the optimal policy is of

threshold type when the goal is to minimize only the response time of a job through the

system.
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Chapter 4

Extension to µ1 < µ2 with Small λ

In this chapter we extend our results from Chapter 3 to the setting where µ1 < µ2, i.e.,

the more efficient server is slower, with the additional restriction of small λ. In Section

4.1 we will show algebraically that Jβ(0, 1, 0) ≤ Jβ(0, 0, 1) in this setting. In Section 4.2

we discuss the work required to extend the results from Chapter 3 to this setting. We

were unable to obtain an analytical proof under large λ, or a value iteration proof of the

inequality.

4.1 Jβ(0, 1, 0) ≤ Jβ(0, 0, 1)

In this section we will show that when there is only one job in the queue, it is better to

send it to server 1 rather than 2.

Lemma 2. When µ1 < µ2, for sufficiently small λ and fixed β ∈ [0, 1), Jβ(P1x) ≤ Jβ(P2x)

when x = (1, 0, 0).
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Proof. Rather than using value iteration, we will algebraically show that Lemma 2 is a

property of the optimal cost function Jβ in this setting. We begin by noting that Jβ(x) is

increasing with λ for all x ∈ X 1. We take the difference between the Bellman equations

for each resultant state:

Jβ(0, 1, 0)− Jβ(0, 0, 1)

= αE1 − αE2 + βλ(min
u0

Jβ(Pu0(1, 1, 0))−min
u0

Jβ(Pu0(1, 0, 1)))

+ βµ1(J
β(0, 0, 0)− Jβ(0, 0, 1)) + βµ2(J

β(0, 1, 0)− Jβ(0, 0, 0))

= αE1 − αE2 + βλ(min
u0

Jβ(Pu0(1, 1, 0))−min
u0

Jβ(Pu0(1, 0, 1)))

+ β(µ1 − µ2)(J
β(0, 0, 0)− Jβ(0, 0, 1))

+ βµ2(J
β(0, 1, 0)− Jβ(0, 0, 1)).

Rearranging, we get

Jβ(0, 1, 0)− Jβ(0, 0, 1)

=
1

1− βµ2

(
αE1 − αE2 + βλ(min

u0
Jβ(Pu0(1, 1, 0))−min

u0
Jβ(Pu0(1, 0, 1)))

+ β(µ1 − µ2)(J
β(0, 0, 0)− Jβ(0, 0, 1))

)
. (4.1)

Note that the difference Jβ(0, 0, 0)− Jβ(0, 0, 1) in the β(µ1− µ2) term can also be written

as the difference between Bellman equations as follows:

Jβ(0, 0, 0)− Jβ(0, 0, 1) = −αE2 + βλ(min
u0

Jβ(Pu0(1, 0, 0))−min
u0

Jβ(Pu0(1, 0, 1)))

+ βµ1(J
β(0, 0, 0)− Jβ(0, 0, 1)).

1For proof see Appendix A.2.
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Rearranging, we get

Jβ(0, 0, 0)− Jβ(0, 0, 1)

=
−αE2 + βλ(minu0 J

β(Pu0(1, 0, 0))−minu0 J
β(Pu0(1, 0, 1)))

1− βµ1

. (4.2)

Substituting Equation (4.2) into (4.1) yields

Jβ(0, 1, 0)− Jβ(0, 0, 1)

=
1

(1− βµ1)(1− βµ2)

(
(1− βµ1)(αE1 − αE2)

+ (1− βµ1)βλ(min
u0

Jβ(Pu0(1, 1, 0))−min
u0

Jβ(Pu0(1, 0, 1)))

+ β(µ1 − µ2)

(
− αE2 + βλ(min

u0
Jβ(Pu0(1, 0, 0))−min

u0
Jβ(Pu0(1, 0, 1)))

))

=
1

(1− βµ1)(1− βµ2)

(
αE1(1− βµ1)− αE2(1− βµ2)

+ βλ

(
min
u0

Jβ(Pu0(1, 1, 0))−min
u0

Jβ(Pu0(1, 0, 1))

+ βµ1(min
u0

Jβ(Pu0(1, 0, 0))−min
u0

Jβ(Pu0(1, 1, 0)))

− βµ2(min
u0

Jβ(Pu0(1, 0, 0))−min
u0

Jβ(Pu0(1, 0, 1)))

))
.

Since we have αE1(1 − βµ1) − αE2(1 − βµ2) ≤ 0 ∀β ∈ [0, 1) and the βλ terms → 0 as

λ → 0 since Jβ(x) is increasing in λ, for sufficiently small λ and fixed β, Jβ(0, 1, 0) ≤

Jβ(0, 0, 1).
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4.2 Future Work to Show Optimality of Threshold

Policy When µ1 < µ2

In this section we discuss the additional result that would have to be shown in order to

prove optimality of a threshold policy for the setting where µ1 < µ2.

The value iteration proof for Property 1 of Proposition 1 requires µ1 > µ2, since we

cannot upper bound Tf(0, 1, 0) − Tf(0, 0, 1) with αE1 − αE2 + β(µ1 − µ2)(−δ2) as in

Equation 3.9 if β(µ1 − µ2) is a negative coefficient. In its place we have Lemma 2, which

shows the equivalent result when µ1 < µ2 and λ is small. The rest of the proofs for

Propositions 1 and 2 will hold under µ1 < µ2 if one can show via value iteration that

Jβ(0, 1, 0) ≤ Jβ(0, 0, 1); the current proof of this in Lemma 2 uses a direct algebraic

approach rather than value iteration.
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Chapter 5

Simulation Results

5.1 Simulation Setup

In order to validate our system model as well as to evaluate the practical applications of

a power-aware threshold policy, we created a discrete event simulator in C++1 to real-

ize our discrete state model from Chapter 2. The simulator consists of a system of two

heterogeneous servers as described in Chapter 1, with system parameters

µ1 = 10, µ2 = 100, E1 = 5, E2 = 100, ᾱ = 100,

chosen based on response time and power usage measurements taken from real computers

while satisfying the requirement that server 1 more energy efficient than server 2, and ᾱ is

chosen such that the inequality 1+αE1

µ1
≤ 1+αE2

µ2
, where α = λᾱ, holds for all λ ∈ [1, µ1+µ2).

We also chose a setting where µ1 < µ2 in order to validate our results from Chapter 4.

We implemented two scheduling policies for our system: the naive first-come-first-serve

1See Appendix B for full source code listing.
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policy, which assigns a job from the queue whenever a server is idle, beginning with server

1; and the threshold policy, which assigns a job to server 1 if possible, and server 2 only

if the queue length has exceeded the threshold parameter m. For each policy, we sweep

across a range of arrival rates from 1 up to but not including µ1 + µ2, and serve a total of

10 million jobs at each arrival rate. In order to allow the system to stabilize, we first wait

for 30% of the jobs to be completed before collecting any data.

Workload is simulated by scheduling exponentially distributed arrival events at rate λ;

whenever a job arrives, the scheduler puts it in a common queue, then makes a scheduling

decision depending on the policy in effect. Once a job starts being served, the server is set

to a busy state and the job’s departure is scheduled exponentially using the server’s service

rate µ. When a departure occurs, the server’s state is set to idle, data on the job’s service

and response times are recorded if the system is stable, and the scheduler again checks if

either server should begin service on a job.

The main performance metrics we collected during simulation include the mean re-

sponse time of a job through the system T̄ and mean power consumption in the system Ē.

These metrics are used in calculating the cost J of each policy using our cost function

J = λT̄ + λᾱĒ, (5.1)

where T̄ is the mean response time and ᾱĒ is the weighted power usage.

We ran simulation experiments using each scheduling policy from un-unified rates λ = 1

through µ1 + µ2− 1; for the threshold policy, we adjust the threshold parameter m from 0

to 10 at each rate, completing a full simulation run of 10 million jobs for each parameter

value. For each arrival rate and parameter value we record the mean response time and

power usage, and compute the cost J with those parameters using the cost function above.
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In the remainder of this chapter we will present the results of the simulations and

discuss our findings.

5.2 Threshold Policy Compared

In this section we will compare the performance of the threshold policy against that of the

naive policy. For the each arrival rate under the threshold policy, we calculate the cost J

using Equation (5.1) for each threshold parameter from 0 to 10, and choose the parameter

which incurs the lowest cost as the optimal threshold for that arrival rate. The costs of

the threshold policy with optimal thresholds and first-come-first-serve policy as well as the

percentage difference between them are shown in Figure 5.1.

From the results we can see that the threshold policy’s improvement over the naive

policy peaks at 29.19% when λ = 8, and drops off as λ increases. This matches our

expectations since as workload increases, keeping one server idle becomes less beneficial

as jobs start building up in the queue and incur longer waiting times. At very high λ,

both servers need to be kept busy to keep up with the high arrival rate and clear jobs

from the system, reducing the optimal threshold and essentially matching the naive policy

which also keeps both servers busy whenever possible. While we were only able to provide

preliminary analytical results limited to low λ for the optimality of the threshold policy in

the setting where µ1 < µ2, these empirical results show that the threshold policy is strictly

better than the naive policy for the two-server system modelled here.
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Chapter 6

Conclusion

In this thesis we presented a method of balancing highly variable workloads using a system

of heterogeneous servers, with the goal of exploiting its capability to reduce power con-

sumption during times of low workloads while maintaining responsive performance during

peak loads. Extending from previous work [1][2] on the optimality of the threshold policy,

we used analytical methods to show that it is also optimal in such a system when the

additional consideration of power is added in the setting where the more efficient server is

also faster, and obtained preliminary results for a restricted setting where the slower server

is more efficient and arrival rate is very low.

The simulated comparison between a threshold policy and a naive first-come-first-serve

policy shows that the threshold policy incurs an appreciable decrease in costs over the naive

policy when the arrival rate is low, while matching its performance when the arrival rate is

high, meeting our goal of increasing efficiency during low workloads. Opportunities remain

for future work to be done on this topic, including a value iteration proof of Jβ(P1(x)) ≤

Jβ(P2(x)) in the µ1 < µ2 setting and a method of calculating the optimal threshold given
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system parameters
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Appendix A

Detailed Proofs

A.1 Proof for Property 3 of Lemma 1

Tf(x0, x1, 1) = x0 + x1 + 1 + αE1x
1 + αE2 + βλmin

u0
f(Pu0A(x0, x1, 1))

+ βµ1 min
u1

f(Pu1D1(x
0, x1, 1)) + βµ2 min

u2
f(Pu2D2(x

0, x1, 1))

= x0 + x1 + 1 + αE1x
1 + αE2 + βλmin

u0
f(Pu0(x

0 + 1, x1, 1))

+ βµ1 min
u1

f(Pu1(x
0, 0, 1)) + βµ2 min

u2
f(Pu2(x

0, x1, 0)),

(A.1)

Tf(x0, x1, 0) = x0 + x1 + αE1x
1 + βλmin

u0
f(Pu0A(x0, x1, 0))

+ βµ1 min
u1

f(Pu1D1(x
0, x1, 0)) + βµ2 min

u2
f(Pu2D2(x

0, x1, 0))

= x0 + x1 + αE1x
1 + βλmin

u0
f(Pu0(x

0 + 1, x1, 0))

+ βµ1 min
u1

f(Pu1(x
0, 0, 0)) + βµ2 min

u2
f(Pu2(x

0, x1, 0)).

(A.2)
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Taking the difference between Equation A.1 and Equation A.2,

Tf(x0, x1, 1)− Tf(x0, x1, 0)

= 1 + αE2 + βλ(min
u0

f(Pu0(x
0 + 1, x1, 1))−min

u0
f(Pu0(x

0 + 1, x1, 0)))

+ βµ1(min
u1

f(Pu1(x
0, 0, 1))−min

u1
f(Pu1(x

0, 0, 0)))

+ βµ2(min
u2

f(Pu2(x
0, x1, 0))−min

u2
f(Pu2(x

0, x1, 0)))

≥ 1 + αE2 + βλδ3 + βµ1δ3

= 1 + αE2 + β(1− µ2)δ3 = δ3.

Hence Tf(x0, x1, 1)−Tf(x0, x1, 0) ≥ δ3 for any β, and therefore the optimal value function

limn→∞ T
nf = Jβ has the same property.

A.2 Jβ(x) is increasing with λ

Proof. Consider a system with service rates µ1 and µ2; we wish to compare two con-

figurations of this system, one under arrival rate λa, labelled configuration a, and the

other under arrival rate λb, labelled configuration b, where λa < λb. The service rates

(µ1i, µ2i), i ∈ {a, b} in each configuration are normalized such that λi + µ1i + µ2i = 1. Let

Jβi (x) be the optimal cost starting from state x in configuration i. Let π be the optimal

policy for configuration b. The Bellman equation for configuration b in state x is

Jβb (x) = c(x) + βλbJ
β
b (PAx) + βµ1bJ

β
b (PD1x) + βµ2bJ

β
b (PD2x)

where P represents the optimal control decision in states Ax, D1x, and D2x chosen by π.

Take Jβb (x) for all x ∈ X and stack them into an ∞-dimensional vector Jβb and stack all
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stage costs into another ∞-dimensional vector c. The Bellman equation for all states can

be written as

Jβb = c+ βP̄bJ
β
b (A.3)

where P̄b is a∞-dimensional matrix, each row having λb, µ1b, and µ2b entries corresponding

to the optimal destination states under π.

Now consider the same policy π in configuration a. The Bellman equation for the

system in state x is

Jβa,π(x) = c(x) + βλaJ
β
a,π(PAx) + βµ1aJ

β
a,π(PD1x) + βµ2aJ

β
a,π(PD2x)

where Jβa,π(x) denotes the cost of the policy π from state x, and P denotes the action

chosen by π from Ax, D1x, and D2x. This can be written as

Jβa,π = c+ βP̄a,πJ
β
a,π (A.4)

where P̄a,π is simply P̄b with λa, µ1a, and µ2a instead of λb, µ1b, and µ2b. Equation A.3 and

A.4 can be written as

(I − βP̄a,π)Jβa,π = c (A.5)

and

(I − βP̄b)Jβb = c. (A.6)

Next, define

∆ = Jβb − J
β
a,π.

Equating Equation A.5 and A.6, we get

(I − βP̄a,π)Jβa,π = (I − βP̄b)Jβb

= (I − βP̄b)Jβa,π + (I − βP̄b)∆

β(P̄b − P̄a,π)Jβa,π = (I − βP̄b)∆. (A.7)
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Note that each row of P̄b− P̄a,π contains the terms λb− λa, µ1b− µ1a, and µ2b− µ2a as the

non-zero elements, and the entire row sums to 0. Since λa < λb, λb − λa is positive and

the other two terms are negative, since the ratio of µ1i to µ2i are the same for i ∈ {a, b}

therefore both µ1a and µ2a must both increase to maintain λa+µ1a+µ2a = 1. For each state

xi, let the destination states after PAxi, PD1x
i, and PD2x

i be xiλ, x
i
1, and xi2 respectively.

Note that Jβa,π(xiλ) ≥ max(Jβa,π(xi1), J
β
a,π(xi2)) since the state after an arrival has at least

one more job in the system than the states after a departure.

Since the elements in each row of P̄b − P̄a,π sum to zero and the positive term λb − λa
is multiplied by Jβa,π(xiλ) which is a larger multiplier than the ones applied to the negative

terms, we have

β(P̄b − P̄a,π)Jβa,π ≥ 0 (elementwise)

=⇒ (I − βP̄b)∆ ≥ 0 (elementwise),

which implies there exists a vector d ≥ 0 such that

∆ = (I − βP̄b)−1d.

Since ||βP̄b|| < 1, we have

(I − βP̄b)−1 = I + βP̄b + β2P̄b
2

+ · · · ≥ 0

=⇒ ∆ = Jβb − J
β
a,π ≥ 0 (elementwise)

and therefore

Jβb ≥ Jβa,π ≥ Jβa

where Jβa denotes the vector of costs Jβa (x) in configuration a under the optimal policy for

all states x ∈ X , therefore Jβa (x) < Jβb (x) for any x. This shows that the optimal cost

Jβ(x) is increasing with λ for all x ∈ X , as required.
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A.3 The set of functions with properties listed in Propo-

sition 1 is non-empty

Proof. Using f0 as defined in Equation 3.4, when x = (1, 0, 0):

f0(P1x)− f0(P2x) =
1 + αE1

µ1

− 1 + αE2

µ2

< 0.

When x ∈ Dom(P1):

f0(P1x)− f0(Phx) = −1 + αE1

µ1

+
1 + αE1

µ1

= 0.

When x ∈ Dom(Pb),

f0(Pbx)− f0(P2x) = (
1 + αE1

µ1

+
1 + αE2

µ2

)− (
1 + αE1

µ1

+
1 + αE2

µ2

) = 0.

A.4 The set of functions with properties listed in Propo-

sition 2 is non-empty

Proof. Using f0 as defined in Equation 3.4:

f0(x
0, 1, 0) + f0(x

0, 1, 1)− f0(x0 + 1, 1, 0)− f0(x0 − 1, 1, 1)

= (x0 + 1)
1 + αE1

µ1

+ (x0 + 1)
1 + αE1

µ1

+
1 + αE2

µ2

− (x0 + 2)
1 + αE1

µ1

− x01 + αE1

µ1

− 1 + αE2

µ2

= 0,
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f0(0, 1, 0) + f0(0, 1, 1)− f0(1, 1, 0)− f0(0, 0, 1)

=
1 + αE1

µ1

+
1 + αE1

µ1

+
1 + αE2

µ2

− 2
1 + αE1

µ1

− 1 + αE2

µ2

= 0,

f0(x
0, 1, 0) + f0(x

0 − 1, 1, 1)− f0(x0 − 1, 1, 0)− f0(x0, 1, 1)

= (x0 + 1)
1 + αE1

µ1

+ x0
1 + αE1

µ1

+
1 + αE2

µ2

− x01 + αE1

µ1

− (x0 + 1)
1 + αE1

µ1

+
1 + αE2

µ2

= 0,

f0(0, 1, 0) + f0(0, 0, 1)− f0(0, 0, 0)− f0(0, 1, 1)

=
1 + αE1

µ1

+
1 + αE2

µ2

− 1 + αE1

µ1

− 1 + αE2

µ2

= 0.
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Appendix B

Simulator Source Code

options.h

1 #pragma once

3 // Defau l t number o f r eque s t s to make per run

#de f i n e TOTAL REQUESTS 10000000

5 #de f i n e TOTAL RUN TIME 100000

#de f i n e WARMUPFACTOR 0.3

7

// Slow Server

9 #de f i n e S1 SERVICE RATE 10

// Fast Server

11 #de f i n e S2 SERVICE RATE 100

13 // Power parameters

#de f i n e S1 IDLE POWER 0

15 #de f i n e S1 MAX POWER 5

#de f i n e S2 IDLE POWER 0
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17 #de f i n e S2 MAX POWER 100

19 // Timeout parameters

#de f i n e S1 TIMEOUT 0

21 #de f i n e S2 TIMEOUT 0

functions.h

1 #pragma once

#inc lude <c s t d l i b>

3 #inc lude <cmath>

#inc lude <vector>

5 us ing namespace std ;

7 double ca l c exp ( double ra t e ) ;

double calc mean ( vector<double> v ) ;

functions.cpp

#inc lude ” f unc t i on s . h”

2 us ing namespace std ;

4 // Ca lcu la te exponen t i a l l y d i s t r i b u t e d next event time based on ra t e

double ca l c exp ( double ra t e ) {

6 // Generate a random double between 0 and 1 , not i n c l ud ing 0

double u ;

8 do { u = ( double ) rand ( ) / RANDMAX; }

whi le (u == 0) ;

10 re turn −l og (u) / ra t e ;

}

12

// Ca lcu la te mean f o r array
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14 double calc mean ( vector<double> v ) {

double sum = 0 ;

16 f o r ( i n t i = 0 ; i < v . s i z e ( ) ; i++) {

sum = sum + v [ i ] ;

18 }

re turn sum / ( double ) v . s i z e ( ) ;

20 }

main.h

#pragma once

2 #inc lude ” opt ions . h”

#i f n d e f GNUC

4 #inc lude ” getopt . h”

#e l s e

6 #inc lude <getopt . h>

#end i f

8 #inc lude <algor ithm>

#inc lude <queue>

10 #inc lude <vector>

#inc lude <s t d i o . h>

12 #inc lude <c s t d l i b>

#inc lude <time . h>

14 #inc lude <s t r i ng>

#inc lude < l i s t >

16 #inc lude <iostream>

#inc lude <fstream>

18 #inc lude <map>

#inc lude <cmath>

20 #inc lude <sstream> // f o r std : : i s t r i n g s t r e am

#inc lude < i t e r a t o r> // f o r std : : i s t r e am i t e r a t o r
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22 #inc lude <vector> // f o r std : : vec to r

24 us ing namespace std ;

26 enum EVENT TYPE {

ARRIVAL,

28 START SERVICE,

DEPARTURE

30 } ;

32 enum STATUS {

IDLE = 0 ,

34 BUSY = 1

} ;

36

c l a s s s im job {

38 pub l i c :

double a r r i v a l t ;

40 s im job ( double t ) : a r r i v a l t ( t ) {}

42 } ;

44 c l a s s s e r v e r {

pub l i c :

46 i n t n ;

STATUS s ta tu s ;

48 queue<s im job> job queue ;

i n t completed ;

50 double s e r v r a t e ;

vector<double> r e sp t ime s ;
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52 double i d l e t ;

double s e r v t ;

54 double l a s t s e r v i c e s t a r t ;

double l a s t s e r v i c e s t o p ;

56

s e r v e r ( i n t n , double s ) : n (n) , s e r v r a t e ( s ) {

58 s t a tu s = IDLE ;

completed = 0 ;

60 i d l e t = 0 ;

s e r v t = 0 ;

62 l a s t s e r v i c e s t a r t = 0 ;

l a s t s e r v i c e s t o p = 0 ;

64 }

66 ˜ s e r v e r ( ) {

r e sp t ime s . c l e a r ( ) ;

68 whi le ( ! job queue . empty ( ) ) {

job queue . pop ( ) ;

70 }

}

72 } ;

74 c l a s s s im event {

pub l i c :

76 double event t ime ;

double wa i t t ;

78 double s e r v t ;

EVENT TYPE event type ;

80 s e r v e r ∗ s ;
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82 bool operator < ( s im event other ) const {

re turn event t ime < other . event t ime ;

84 }

86 // Constructors

s im event ( ) {}

88 s im event (EVENT TYPE p , double t ) : event type (p) , event t ime ( t ) {}

} ;

90

c l a s s Compare {

92 pub l i c :

bool operator ( ) ( const s im event lhs , const s im event rhs ) {

94 re turn l h s . event t ime > rhs . event t ime ;

}

96 } ;

98 void i n i t ( ) ;

void i n i t s im ( ) ;

100 void a r r i v a l r o u t i n e ( ) ;

void s t a r t s e r v i c e ( ) ;

102 void s t a r t s e r v i c e r o u t i n e ( s e r v e r ∗ s ) ;

void depa r tu r e r ou t i n e ( s im event ∗ e ) ;

104

/∗ System parameters ∗/

106 // Total r eque s t s to make per run

i n t t o t a l r e q u e s t s ;

108 // Request ra t e range

double low rate , h igh rate , r a t e s t e p ;

110 // Schedul ing po l i c y

s t r i n g s chedu l e r ;
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112 // Parameter f o r some p o l i c i e s

double param ;

114 // Threshold

double thresh low , th r e sh h i gh ;

116 double timeout ;

// Output f i l e

118 char ∗ o u t f i l e p a t h ;

o fstream o u t f i l e ;

120 s t r i n g param fname ;

/∗ −−−−−−−−−−−−−−−−−−−−−∗/

122

/∗ S t a t i s t i c a l counter s ∗/

124 i n t t o t a l c omp l e t e ;

vector<double> a l l r e s p ;

126 /∗ −−−−−−−−−−−−−−−−−−−−−∗/

128 // Serve r s

s e r v e r ∗ s1 ;

130 s e r v e r ∗ s2 ;

// Global queues

132 pr i o r i t y queue<s im event , vector<s im event >, Compare> ev en t s e t ;

queue<s im job> common job queue ;

134 // Main sim c l ock

double s im c lo ck ;

136 // Current s t a tu s

// Keep track o f the s e r v e r the prev ious job was scheduled f o r

138 s e r v e r ∗ l a s t s e r v e r ;

double c u r r r a t e ;

140 bool warmup ;

double warmup time ;
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main.cpp

1 #inc lude ”main . h”

#inc lude ” f unc t i on s . h”

3 us ing namespace std ;

5 /∗

Usage : sim <opt ions>

7 Options :

− l l owest r eque s t ra t e

9 −h h ighe s t r eques t ra t e

−t r eques t ra t e s tep

11 −r number o f r eque s t s to make per run , d e f au l t TOTAL REQUESTS

−s s chedu l ing po l i cy , v a l i d opt ions are

13 ”FCFS” f i r s t come f i r s t s e rve

”TH” thre sho ld method

15 ”S1” only use s e r v e r 1

”S2” only use s e r v e r 2

17 ”QL” a s s i gn jobs depending on each s e r v e r ’ s queue l ength

”RR” round rob in

19 −p parameter f o r s chedu l ing p o l i c i e s

QL queue l ength d i f f e r e n c e between s e r v e r 1 and 2

21 TH queue l ength must be l onge r than param to s t a r t s e rv ing

jobs to s e r v e r 2

−o timeout value , number o f seconds a job w i l l wait in the

queue

23 be f o r e being d i s ca rded with a response time o f 0

−f output f i l e

25 ∗/

i n t main ( i n t argc , char ∗argv [ ] ) {

27 // I n i t i a l i z a t i o n
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i n i t ( ) ;

29

// Parse opt ions

31 extern char ∗ optarg ;

extern i n t optind , optopt ;

33 i n t opt i on char ;

35 // Invokes member func t i on ‘ i n t operator ( ) ( void ) ; ’

whi l e ( ( opt i on char = getopt ( argc , argv , ” l : h : t : r : s : p : o : f : x : y : ” ) ) !=

−1) {

37 switch ( opt i on char ) {

case ’ l ’ : l ow ra t e = ato f ( optarg ) ; break ;

39 case ’h ’ : h i gh r a t e = ato f ( optarg ) ; break ;

case ’ t ’ : r a t e s t e p = ato f ( optarg ) ; break ;

41 case ’ r ’ : t o t a l r e q u e s t s = a t o i ( optarg ) ; break ;

case ’ s ’ : s chedu l e r = optarg ; break ;

43 case ’p ’ : param = ato f ( optarg ) ; break ;

case ’ o ’ : t imeout = ato f ( optarg ) ; break ;

45 case ’ f ’ : o u t f i l e p a t h = optarg ; break ;

case ’ x ’ : th re sh low = ato f ( optarg ) ; break ;

47 case ’ y ’ : th r e sh h i gh = ato f ( optarg ) ; break ;

case ’ ? ’ : f p r i n t f ( s tde r r , ” usage : %s <opt ions>\n” , argv [ 0 ] ) ;

49 }

}

51

// Pr int header

53 os t r ing s t r eam os ;

os << ” ra t e \ tavg re sp1 \ tavg re sp2 \ t avg r e sp \ t u t i l s 1 \ t u t i l s 2 \

tavg power s1 \ tavg power s2 \ tavg power \ t th r e sh ” << endl ;

55 cout << os . s t r ( ) ;
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i f ( o u t f i l e p a t h != ”” ) {

57 o u t f i l e . open ( ou t f i l e p a t h , i o s : : trunc ) ;

i f ( o u t f i l e . i s open ( ) ) {

59 o u t f i l e << os . s t r ( ) ;

o u t f i l e . c l o s e ( ) ;

61 }

}

63

f o r ( c u r r r a t e = low ra t e ; c u r r r a t e <= ( h i gh r a t e + 0 . 05 ) ; c u r r r a t e +=

ra t e s t e p ) {

65 double i ;

f o r ( i = thre sh low ; i <= thre sh h igh + 0 . 0 5 ; i++) {

67 i f ( th re sh low != thre sh h igh ) { param = i ; }

i n i t s im ( ) ;

69 // Schedule f i r s t a r r i v a l

e v en t s e t . push ( s im event (ARRIVAL, s im c lock + ca l c exp ( c u r r r a t e

) ) ) ;

71 // Main loop

whi l e ( t o t a l c omp l e t e < t o t a l r e q u e s t s ) {

73 // Remove the next scheduled event from the event s e t

s im event e = even t s e t . top ( ) ;

75 ev en t s e t . pop ( ) ;

s im c lo ck = e . event t ime ;

77

// Execute the event rou t in e depending on type

79 switch ( e . event type ) {

case ARRIVAL:

81 a r r i v a l r o u t i n e ( ) ;

break ;

83 case START SERVICE:
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s t a r t s e r v i c e r o u t i n e ( e . s ) ;

85 break ;

case DEPARTURE:

87 depa r tu r e r ou t i n e (&e ) ;

break ;

89 de f au l t :

break ;

91 }

}

93 // Ca lcu la te s t a t s

double s 1 avg r e sp = calc mean ( s1−>r e sp t ime s ) ;

95 double s 2 avg r e sp = calc mean ( s2−>r e sp t ime s ) ;

double avg resp = calc mean ( a l l r e s p ) ;

97

double s 1 u t i l = s1−>s e r v t / ( s im c lo ck − warmup time ) ;

99 double s 2 u t i l = s2−>s e r v t / ( s im c lo ck − warmup time ) ;

double s 1 i d l e = ( s im c lock − warmup time ) − s1−>s e r v t ;

101 double s 2 i d l e = ( s im c lock − warmup time ) − s2−>s e r v t ;

103 i f ( s chedu l e r == ”S1” ) { s 2 i d l e = 0 ; }

i f ( s chedu l e r == ”S2” ) { s 1 i d l e = 0 ; }

105

double s 1 i d l e powe r = s 1 i d l e ∗ S1 IDLE POWER / ( s im c lock −

warmup time ) ;

107 double s1 se rv power = s 1 u t i l ∗ S1 MAX POWER;

double s 2 i d l e powe r = s 2 i d l e ∗ S2 IDLE POWER / ( s im c lock −

warmup time ) ;

109 double s2 se rv power = s 2 u t i l ∗ S2 MAX POWER;

double s1 power = s1 i d l e powe r + s1 se rv power ;

111 double s2 power = s2 i d l e powe r + s2 se rv power ;
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113 // Pr int data

os t r ing s t r eam os ;

115 os << c u r r r a t e << ”\ t ” << s 1 avg r e sp << ”\ t ” << s 2 avg r e sp <<

”\ t ” << avg resp << ”\ t ” << s 1 u t i l << ”\ t ” << s 2 u t i l << ”\ t ” <<

s1 power << ”\ t ” << s2 power << ”\ t ” << s1 power + s2 power << ”\ t ” << (

i n t )param << endl ;

cout << os . s t r ( ) ;

117 i f ( o u t f i l e p a t h != ”” ) {

o u t f i l e . open ( ou t f i l e p a t h , i o s : : app ) ;

119 i f ( o u t f i l e . i s open ( ) ) {

o u t f i l e << os . s t r ( ) ;

121 o u t f i l e . c l o s e ( ) ;

}

123 }

}

125 }

re turn 0 ;

127 }

129 void i n i t ( ) {

// Seed random number generator

131 srand ( time (NULL) ) ;

// Set parameters

133 t o t a l r e q u e s t s = TOTAL REQUESTS;

135 // Defau l t opt ions

l ow ra t e = h i gh r a t e = r a t e s t e p = 1 ;

137 thre sh low = thre sh h igh = 0 ;

s chedu l e r = ”FCFS” ;
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139 param = −1;

t imeout = 0 ;

141 o u t f i l e p a t h = ”” ;

}

143

// I n i t i a l i z e a s imu la t i on run

145 void i n i t s im ( ) {

s im c lo ck = 0 ;

147 warmup = f a l s e ;

149 // Recreate s e r v e r s

d e l e t e s1 ;

151 de l e t e s2 ;

s1 = new s e rv e r (1 , S1 SERVICE RATE) ;

153 s2 = new s e rv e r (2 , S2 SERVICE RATE) ;

155 // Empty the event s e t

whi l e ( ! e v en t s e t . empty ( ) ) {

157 ev en t s e t . pop ( ) ;

}

159 a l l r e s p . c l e a r ( ) ;

t o t a l c omp l e t e = 0 ;

161 // Set the l a s t job to s e r v e r 2 by de f au l t

l a s t s e r v e r = s2 ;

163

whi le ( ! common job queue . empty ( ) ) {

165 common job queue . pop ( ) ;

}

167 }
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169 // Routine f o r p ro c e s s i ng a r r i v a l events

void a r r i v a l r o u t i n e ( ) {

171 #i f d e f DEBUG

p r i n t f ( ” Ar r i va l event \tTime %f \n” , s im c lo ck ) ;

173 #end i f

// Schedule the next a r r i v a l event

175 ev en t s e t . push ( s im event (ARRIVAL, s im c lock + ca l c exp ( c u r r r a t e ) ) ) ;

// Add new job to queue

177 s e r v e r ∗ s rv ;

i f ( s chedu l e r == ”FCFS” | | s chedu l e r == ”TH” ) { s rv = NULL; }

179 e l s e i f ( s chedu l e r == ”QL” ) {

// Queue job f o r s e r v e r 2 i f s e r v e r 1 ’ s queue l ength i s l onge r by p

181 i f ( s1−>job queue . s i z e ( ) > s2−>job queue . s i z e ( ) + ( i n t )param ) { s rv = s2

; }

e l s e { s rv = s1 ; }

183 }

// Round rob in

185 e l s e i f ( s chedu l e r == ”RR” ) {

i f ( l a s t s e r v e r == s2 ) { l a s t s e r v e r = s1 ; }

187 e l s e { l a s t s e r v e r = s2 ; }

s rv = l a s t s e r v e r ;

189 }

e l s e i f ( s chedu l e r == ”S1” ) { s rv = s1 ; }

191 e l s e i f ( s chedu l e r == ”S2” ) { s rv = s2 ; }

// Scheduler not de f ined ??

193 e l s e { e x i t (2 ) ; }

i f ( s rv == NULL) {

195 common job queue . push ( s im job ( s im c lock ) ) ;

s t a r t s e r v i c e ( ) ;

197 }
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e l s e {

199 srv−>job queue . push ( s im job ( s im c lock ) ) ;

s t a r t s e r v i c e r o u t i n e ( s rv ) ;

201 }

}

203

// Check f o r queued jobs and s t a r t them

205 void s t a r t s e r v i c e ( ) {

// I f th r e sho ld i s negat ive , check s2 f i r s t

207 i f ( ( s chedu l e r == ”TH” | | s chedu l e r == ”QL” ) && param < 0 ) {

// I f system i s i d l e , s t a r t s e r v i c e

209 i f ( s2−>s t a tu s == IDLE) {

s t a r t s e r v i c e r o u t i n e ( s2 ) ;

211 }

i f ( s1−>s t a tu s == IDLE) {

213 s t a r t s e r v i c e r o u t i n e ( s1 ) ;

}

215 }

e l s e {

217 // I f system i s i d l e , s t a r t s e r v i c e

i f ( s1−>s t a tu s == IDLE) {

219 s t a r t s e r v i c e r o u t i n e ( s1 ) ;

}

221 i f ( s2−>s t a tu s == IDLE) {

s t a r t s e r v i c e r o u t i n e ( s2 ) ;

223 }

}

225 }

227 // Routine f o r s t a r t i n g s e r v i c e on a job
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void s t a r t s e r v i c e r o u t i n e ( s e r v e r ∗ s ) {

229 #i f d e f DEBUG

p r i n t f ( ” Se rv i c e event \ tSe rve r %d\tTime %f \n” , s−>n , s im c lo ck ) ;

231 #end i f

queue<s im job> ∗ q ;

233 i f ( s chedu l e r == ”FCFS” | | s chedu l e r == ”TH” ) {

q = &common job queue ;

235 }

e l s e {

237 q = &s−>job queue ;

}

239 i f (q−>empty ( ) | | s−>s t a tu s == BUSY) { re turn ; }

s e r v e r ∗ s t o ch e ck ;

241 i f ( s chedu l e r == ”TH” && param < 0) {

s t o ch e ck = s1 ;

243 } e l s e {

s t o ch e ck = s2 ;

245 }

// For th r e sho ld method , p roce s s the job at the nonpre f e r r ed s e r v e r only

i f queue l ength exceeds m

247 i f ( s == s to che ck && schedu l e r == ”TH” && ( in t )q−>s i z e ( ) <= abs ( ( i n t )

param) ) {

// Check again in l e s s−pr e f e r ed s e r v e r ’ s s e r v i c e time

249 s im event dummyEvent = s im event (START SERVICE, s im c lock + ca l c exp

( s−>s e r v r a t e ) ) ;

dummyEvent . s = s ;

251 ev en t s e t . push (dummyEvent) ;

r e turn ;

253 }
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255 // Remove the job from the f r on t o f the queue

s im job j = q−>f r on t ( ) ;

257 q−>pop ( ) ;

259 double wai t t ime = s im c lock − j . a r r i v a l t ;

#i f d e f DEBUG

261 p r i n t f ( ”Wait Time %f \n” , wai t t ime ) ;

#end i f

263 // I f a timeout i s s p e c i f i e d , drop the job once the connect ion t imes out

i f ( t imeout > 0 && wait t ime > t imeout ) {

265 t o t a l c omp l e t e++;

s t a r t s e r v i c e ( ) ;

267 re turn ;

}

269

// Set the s e r v e r to busy and c a l c u l a t e the s e r v i c e time

271 s−>s t a tu s = BUSY;

s−> l a s t s e r v i c e s t a r t = s im c lock ;

273 s−> i d l e t += s im c lock − s−> l a s t s e r v i c e s t o p ;

double s e r v t = ca l c exp ( s−>s e r v r a t e ) ;

275 #i f d e f DEBUG

p r i n t f ( ” Se rv i c e Time %f \n” , s e r v t ) ;

277 #end i f

// Schedule departure event and s t o r e the wait and s e r v i c e time f o r t h i s

job

279 s im event d = sim event (DEPARTURE, s im c lock + s e r v t ) ;

d . s = s ;

281 d . wa i t t = wait t ime ;

d . s e r v t = s e r v t ;

283 ev en t s e t . push (d) ;
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}

285

// Routine f o r p ro c e s s i ng departure events

287 void depa r tu r e r ou t i n e ( s im event ∗ e ) {

#i f d e f DEBUG

289 p r i n t f ( ”Departure event \ tSe rve r %d\tTime %f \n” , e−>s , s im c lo ck ) ;

#end i f

291 i f ( ! warmup && to ta l c omp l e t e > t o t a l r e q u e s t s ∗ WARMUPFACTOR ) {

warmup = true ;

293 warmup time = s im c lock ;

}

295 // Record s t a t s i f system i s s t ab l e

i f (warmup) {

297 // Increment the completed count f o r the job c l a s s

// Add the wait time and s e r v i c e time to the t o t a l s f o r the job

c l a s s

299 double r e sp t ime = e−>wa i t t + e−>s e r v t ;

e−>s−>completed++;

301 e−>s−>r e sp t ime s . push back ( r e sp t ime ) ;

e−>s−>s e r v t += e−>s e r v t ;

303 a l l r e s p . push back ( r e sp t ime ) ;

}

305 e−>s−>s t a tu s = IDLE ;

e−>s−> l a s t s e r v i c e s t o p = s im c lock ;

307 t o t a l c omp l e t e++;

s t a r t s e r v i c e ( ) ;

309 }
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