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Abstract 

Fuel efficiency is a fundamental part of the automotive industry and its impact on the global 

environment. This is a direct result of the Corporate Average Fuel Efficiency (CAFE) standards 

imposing a 70% improvement of fuel efficiency on all light duty line-ups between 2014 and 2025. To 

achieve such an improvement, automotive manufacturers will need to electrify their powertrains. 

Lithium ion battery technology has emerged as a leading component in electrification with the 

development of hybrid, plug-in hybrid, and battery electric vehicles. Therefore, the design and sizing 

of these battery packs must be accurate. 

The correct design and sizing of a battery pack must account for the lifetime of the battery. In plug-

in hybrid and battery electric vehicles, the battery pack is directly responsible for the all-electric range 

of that vehicle. As the battery ages, this range decreases. Convention has been to size the battery to 

account for a 20% loss in electric range; however the degradation rate varies from vehicle to vehicle 

depending on the driver’s behavior. The convention can lead to severely oversized battery packs, 

which decreases operational efficiencies, and increases vehicle mass, and greenhouse gas emissions. 

Therefore, it is important to consider realistic driver behavior when sizing the battery pack. 

The A123 AMP20 pouch battery was selected for the degradation analysis. A semi-empirical single 

particle battery degradation model was developed in MATLAB Simulink for the AMP20. 2 mAh 

half-cell coin cells were built from the AMP20 materials and cycled at C/50 to obtain a close 

approximation of the electrode open circuit potentials at various states of lithiation. The open circuit 

potentials were used in the single particle model. Additionally, rate capability tests and degradation 

cycling are conducted on the AMP20 to fit the single particle model parameters. The LFP particle 

resistance was empirically fit and depended upon the state of lithiation and whether the battery was 

charging or discharging. 

A sensitivity analysis of the Tafel equation was performed to determine that the parasitic current 

density was a function of the negative electrode potential, the solid electrolyte interface (SEI) film 

resistance, and the negative electrode current density. The operational state-of-charge (SOC), the 

depth-of-discharge (DOD), the history of the battery, and the battery current are all vehicle 

parameters that impact the parasitic current density.  For low current operations, a change in the SOC 

will yield the largest change in parasitic current density. For high current operation of a fresh battery, 

a change in the SEI resistance yields the largest change in parasitic current density; while an aged 
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battery yields the largest change in parasitic current density from a change in battery current. It was 

determined that the SEI resistance did not prove to be a significant factor affecting battery 

degradation. It was also determined that a long charging time, a high operational SOC, a large DOD, 

and aggressive current demand are primary factors that increase battery degradation. 

Simulations on the single particle model were conducted to assess the degradation rates of common 

Environmental Protection Agency (EPA) drive cycles. The simulation results showed that the 

degradation rate significantly depends upon the duty cycle.  The UDDS cycle degraded the battery at 

a dramatically faster rate than the US06 and HWFET cycles for 80% initial SOC, 17.41, 3.08, and 

4.64 (µAh Li+)(Ah Processed)
-1

; at 50% initial SOC, 7.04, 1.79, and 2.14 (µAh Li+)(Ah Processed)
-1

; 

and at 20% initial SOC, 1.85, 0.46, and 0.54 (µAh Li+)(Ah Processed)
-1

. It was concluded that the 

operational SOC, the charging time, and the current demand are the primary factors that affect the 

degradation rate of a duty cycle. Further simulations were performed with 1C charging after the duty 

cycle to return the operational SOC to its initial value and to account for the duty cycle DOD. 

Accounting for the duty cycle DOD increased degradation by between 47% and 86%; providing 

evidence that the DOD is an important factor of degradation. 

An analysis of battery degradation on realistic driving behaviour was conducted using four sets of 

real-world driving data of Nissan Leaf drivers taken from CrossChasm Technologies Inc.’s real-world 

driving database. The charging time, mean operational SOC, mean DOD, and current demand were 

used to hypothesize that Driver 1, Driver 3, Driver 2, and Driver 4 would have the highest to lowest 

degradation over an eight year period. The simulation results on the driver’s duty cycles agreed with 

the hypothesis, producing 5.51%, 5.17%, 4.16%, and 0.75% capacity fade, respectively. Therefore the 

conclusions made from the sensitivity analysis and the EPA study are applicable for real-world data. 

The key finding from this work is that battery degradation depends on the duty cycle. Specifically, 

the charging time, the operational SOC, the DOD, and the current demand are all factors affecting 

battery degradation. Ultimately, the battery degradation rate is unique for each driver, depending on 

those factors. 
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Chapter 1 

Introduction 

Lithium ion batteries (LiBs) have led to significant advancements in electric vehicle development due 

to their high energy and power densities and long life. They have been used to develop hybrid electric 

vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV). 

Batteries offer vehicle manufactures a cost-effective option for reducing fuel consumption and 

emissions levels of their product lines to satisfy the new Corporate Average Fuel Economy (CAFE) 

standards introduced by the US government. CAFE standards require vehicle manufacturers to 

improve the overall fuel economy of their light duty vehicles sold in a given year from 32.2 MPG in 

2014 to 54.5 MPG by 2025 (Figure 1.1) [1]. Customers benefit from such an improvement by 

spending less on fuel, and society benefits through improved urban air quality and reduced energy 

exploration and consumption. However, before a CAFE standard of 54.5 MPG can be feasibly 

achieved there must be significant improvements in battery technology.  

 

Figure 1.1 CAFE standards for light-duty vehicles [1] 

Battery pack sizing is a facet of vehicle design currently understudied and thus has a high potential 

for improvement. The complexity of battery pack design is a result of considering mass, volume, and 

cost restrictions while attempting to maintain a sufficient electric range. A 2009 study by Shiau et al. 

revealed that as the all-electric range of a vehicle increased, the charge depletion and charge 

sustaining mode efficiencies decreased and the vehicle mass, operational cost, and operational 
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greenhouse gas (GHG) emissions increased (Figure 1.2) [2]. Therefore, it is important to correctly 

size the battery pack to avoid such negative effects on performance. 

 

Figure 1.2 Effects of increasing the all-electric range of a PHEV on vehicle mass, efficiencies, 

costs, and GHG emissions [2] 

Considering that the efficiencies, costs, and GHG emissions increase with battery pack size; it 

would make sense to select a smaller pack. However, as the vehicle usage increases and the battery 

pack begins to age, the all-electric range will begin to diminish. Shiau et al. do not consider 

degradation when analyzing the aforementioned results [2]. Degradation is often neglected or 

simplified during battery pack design. The United States Advanced Battery Consortium (USABC) 

declared that a battery has reached its end-of-life (EOL) if the battery capacity delivered to the 

powertrain is less than 80% of the rated capacity, or if the battery’s peak power is less than 80% of 

the rated power at 80% depth-of-discharge (DOD) [3, 4]. Thus it is typically assumed that a battery 

will degrade 20% over the life of the vehicle, but making this assumption leads to oversized battery 

packs in an attempt to account degradation (Figure 1.3). One issue with assuming 20% capacity fade 

over the life of a vehicle is that it does not consider each driver to be unique. The aggressiveness of 

the driver behaviour will result in differing operational histories on the battery pack, and thus 

different amounts of degradation. More precise battery pack design can be achieved through an 

understanding of how the battery degrades over the vehicle lifetime. Battery lifetime can be assessed 

through experimentation, simulation, or some combination of the two methodologies.  
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Figure 1.3 Battery pack oversizing due to unknown battery degradation for an 8 year lifetime 

One method of lifetime assessment measures real-time battery degradation of a battery pack 

installed on a vehicle during driving events. While this test shows real-world battery degradation, it 

requires a working prototype of the vehicle, and a long testing period requiring up to eight years of 

driving. Additionally, this test does not consider that many drivers have different driving behaviours 

that will degrade the battery pack at different rates. It is assumed that different driving behaviours do 

significantly affect battery degradation because of the clear effect on fuel economy (Figure 1.4) and 

thus power usage; which is directly related to battery usage [5]. FleetCarma, a division of 

CrossChasm Technologies Inc., uses an Eco-Score as a metric for assessing driving behaviour. A low 

Eco-Score represents aggressive driving, and a high Eco-Score represents eco-driving. The 

assumption that degradation will depend upon driving behaviours will be investigated further 

throughout this work. 
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Figure 1.4 Driver behaviour effects on fuel economy, where better driving patterns are 

represented by a higher Eco-Score [5] 

Another lifetime assessment method involves testing the battery pack or its constituents in the 

laboratory. Testing the individual batteries reduces costs since a pack does not need to be designed 

yet, a vehicle prototype does not have to be built, and the equipment used to test the battery is less 

expensive compared to equipment to test a high-voltage pack. Additionally, accelerated degradation 

test methods exist to reduce the test period. These methods include extreme temperatures, loads (e.g., 

charge rates), or deep charging and discharging. This method is typically limited to galvanostatic 

cycling, single temperature testing, or fixed depth-of-discharge; reducing the applicability of the 

results. To include more complexities in operating conditions would dramatically increase the test 

periods. 

The most fundamental assessment method, and the one used herein, is to develop a physics-based 

electrochemical model of the battery from experimental data. Limited battery testing is conducted to 

fit the model parameters to the data. After the model is validated, simulations on various load profiles 

can be run to predict battery performance and degradation. Integrating the battery degradation model 

into a vehicle model enables prediction of battery performance and degradation on any drive cycle. In 
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other words, battery performance and degradation over its lifetime can be determined for various 

drivers and their personal driving behaviours. However, such fundamental modeling entails a detailed 

understanding of all the reaction kinetics, including side reactions, and material degradation 

mechanisms. Such an understanding will take several years and extensive research efforts. The results 

of this work, and others like it, contribute to that understanding. 

To demonstrate such an analysis in this work, an A123 AMP20 pouch battery of LiFePO4 

chemistry will be tested, modeled, and simulated to predict lifetime performance and degradation 

according to various Environmental Protection Agency (EPA) drive cycles as well as real-world drive 

cycles located in CrossChasm’s real-world driving database. The primary factors affecting battery 

degradation will be discovered and analyzed to generate control strategies or preventative measures 

that reduce battery pack degradation on board vehicles. 
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Chapter 2 

Lithium Ion Batteries 

2.1 Battery Types 

A battery is an electrochemical device that provides electrical energy from stored chemical energy. 

Batteries can be categorized into primary batteries, secondary batteries, and flow batteries. Primary 

batteries are constructed with high energy densities, and once discharged, are incapable of being 

recharged. Thus, primary batteries can only be discharged once. Secondary batteries are can be 

constructed with high energy density, high power density, or some compromise between the two. 

Once discharged, secondary batteries are capable of recharging by connecting a power supply to the 

battery instead of a load. Finally, a flow battery stores chemical energy outside of the battery in the 

form of a fluid. The fluid is passed through the battery, reacting electrochemically to produce 

electrical energy. Flow batteries can act as primary batteries, where the fluid acts as a fuel that is 

spent in the production of electrical energy, or as secondary batteries, where the electrochemical 

process can be reversed to store energy in the fluid once again. It is necessary to understand how 

these batteries work to determine their applicability to the automotive industry. 

The automotive industry has been shifting towards battery technology, using secondary batteries as 

energy storage systems (ESSs) on-board their vehicles. Batteries are useful for vehicle applications 

because they are portable ESSs that can store and provide large quantities of energy and power to the 

powertrain. Since primary batteries are limited to single discharge applications, they are excluded 

from vehicle designs. Most flow batteries are better suited for large, stationary ESSs, such as wind or 

solar energy storage. One exception is the zinc-air battery that has begun to show promise for vehicle 

applications since the fluid (i.e., air) is readily available around the vehicle. However, zinc-air 

batteries are still a young technology and are ultimately excluded from current vehicle designs. 

Secondary batteries are the best choice for vehicle applications because of their rechargeable design, 

high energy and power densities, and the level of knowledge and experience surrounding their use.  

2.2 Secondary Battery Components 

Secondary batteries are constructed from four primary components that work together to satisfy their 

performance requirements (Figure 2.1). In the simplified version of a secondary battery, two charged 

electrodes and a membrane separator are submerged in an electrolyte. While the battery is discharged, 
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the negative electrode (i.e., anode) is oxidized in the presence of the electrolyte and provides 

electrons to an external circuit to power a load. The electrons leaving the load are accepted by the 

positive electrode (i.e., cathode) as it is reduced in the presence of the electrolyte. The 

electrochemical reactions on the electrode surfaces can be reversed by providing power to the battery 

instead of removing it. The electrolyte acts as the medium for charge transport via ions between the 

two electrodes; thus completing the circuit. To prevent electron transfer between the two electrodes 

through the electrolyte, and effectively short circuiting the battery, the electrolyte must be electrically 

resistant. Additionally, the separator is designed to offer a mechanical barrier between the electrodes 

while remaining permeable to the electrolyte and its ions. 

 

Figure 2.1 Simple representation of a secondary battery during a discharge event 

It is important to note that upon charging, the negative electrode becomes the cathode while the 

positive electrode becomes the anode. Therefore, the terms ‘anode’ and ‘cathode’ will no longer be 

used to describe the charge of the electrodes. 
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2.3 Lithium Ion Battery Operation 

There are several options of build materials available when designing a battery. For secondary 

batteries, the chemistry of the components can vary widely. However, lithium ion batteries represent 

the most viable option for power and energy requirements according to current vehicle technology 

(Figure 2.2). Therefore, only LiBs are considered. 

 

Figure 2.2 Ragone plot of various ESSs with time constants obtained through the division of 

energy density with power density [6] 

In general, lithium ion batteries depend on the transport of lithium ions between the electrodes for 

successful operation (Figure 2.3). In a balanced cell, without excess lithium present, the positive 

current collector is coated with a lithium metal oxide (        ) and the remaining lithium in the 

cell is situated between the layers of graphite (    ) coated onto the negative current collector.  
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Figure 2.3 Operational schematic of a lithium ion battery [7] 

During discharging, the lithium ions deintercalate from the negative electrode providing free 

electrons to power a load.  

                 (2.1) 

The lithium ions are transported through the electrolyte to meet the electrons at the positive 

electrode and intercalate into the metal oxide active material. 

                          (2.2) 

2.4 Secondary Battery Chemistries 

After narrowing the general battery chemistry to lithium ion technology, there are several variants 

of LiBs. The component materials are selected to optimize the performance of the LiB, so different 

manufactures focus on different materials.  

For the negative electrode, most manufacturers use a carbon-based active material bound to a 

copper current collector (Table 2.1). The current collector offers a structure to the active material 

layer and accumulates or disperses electrons evenly across the active material during use. Ideally, a 
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negative electrode active material is selected to maximize specific capacity while minimizing 

irreversible capacity [8]. Mesocarbon microbeads (MCMB) are a common selection. 

Table 2.1 Properties of various carbon-based active materials [8] 

Carbon Type 

Specific 

Capacity 

(mAh g-1) 

Irreversible 

Capacity 

(mAh g-1) 

Particle Size 

D50 (µm) 

BET Surface 

Area (m2 g-1) 

KS6 Synthetic Graphite 316 60 6 22 

KS15 Synthetic Graphite 350 190 15 14 

KS44 Synthetic Graphite 345 45 44 10 

MCMB 25-28 Graphite Sphere 305 19 26 0.86 

MCMB 10-28 Graphite Sphere 290 30 10 2.64 

Sterling 2700 
Graphitized 

Carbon Black 
200 152 0.075 30 

XP30 Petroleum Coke 220 55 45 N/A 

Repsol LQNC Needle Coke 234 104 45 6.7 

Grasker Carbon Fiber 363 35 23 11 

Sugar Carbon Hard Carbon 575 215 N/A 40 

 

The positive electrode is composed of a lithium metal oxide active material, bound to an aluminum 

current collector. The choice of metal(s) in the active material is typically synonymous with the 

battery chemistry. Chikkannanavar et al. recently reviewed these options and presented their 

performance capabilities (Table 2.2) [9]. From this list of materials, the LCO, NCA, LMO, NMC, and 

LFP are the most popular choices, but as is evident, there are many various blends capable of 

producing better performance results. 
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Table 2.2 Properties of various lithium metal oxide active materials [9] 

Active Material 
Capacity 
(mAh g-1) 

Average 

Voltage 

(V vs Li/Li+) 

Energy 

Density 

(Wh kg-1) 

Energy 

Density 

(Wh L-1) 

LiCoO2 (LCO) 151 4.00 602 3073 

LiNi0.8Co0.15Al0.05O2 (NCA) 195 3.80 742 3784 

LiMn2O4 (LMO Spinel) 119 4.05 480 2065 

LiNi1/3Mn1/3Co1/3O2 (NMC 333) 153 3.85 588 2912 

LiMnxCoyNizO2 (NMC non-stoichiometric) 220 4.0 720 3600 

LiFePO4 (LFP) 161 3.40 549 1976 

xLi2MnO3·(1-x)LiMO2 250-280 ~4.0 - - 

LiCoO2 – LiNi1/3Mn1/3Co1/3O2 (7:3) 180 ~3.9 - - 

xLi2MnO3·(1-x)LiMO2 – LiFePO4 220 ~3.6 >890 - 

Li[Li0.2Mn0.54Ni0.13Co0.13]O2 – LiV3O8 275 3.0-4.0 - - 

Li[Li0.2Mn0.54Ni0.13Co0.13]O2 – Li4Mn5O12 250 3.0-4.0 - - 

Li[Li0.17Mn0.58Ni0.25]O2 – LiFePO4 ~200 3.0-4.0 >700 - 

Sulfur (in Li-sulfur system) ~1000 2.0-2.4 1550 - 

 

With respect to the electrolyte, there are four forms in which it can be incorporated into the battery. 

The first form is as a liquid solution of lithium salt in an organic solvent. Liquid electrolytes are 

beneficial since they are absorbed by the separator and immerse the electrodes [8]. The second form 

is a high molecular weight polymer with the lithium salt dissolved into it. Polymer electrolytes are 

beneficial due to their safety from the lack of a volatile component [8]. The third form is a gel, where 

the liquid electrolyte is dissolved or mixed with a polymer. Gel electrolytes are beneficial since the 

higher viscosity lowers the change of a leakage compared to the liquid electrolyte [8]. The fourth 
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form is a ceramic electrolyte composed of inorganic, solid-state materials [8]. Ceramic electrolytes 

are not commonly used in vehicle applications. 

Important aspects of an electrolyte are its ionic conductivity and its compatibility with the other 

components in the battery [8]. The salts commonly used in the electrolytes are presented in Table 2.3, 

where the most common is LiPF6.  

Table 2.3 Lithium salts used in the electrolyte [8] 

Common Name Formula 

Molecular 

Weight 

(g mol-1) 
Typical 

Impurities Comments 

Lithium 

hexafluorophosphate 
LiPF6 151.9 

H2O (15 ppm) 

HF (100 ppm) 
Most commonly used 

Lithium 

tetrafluoroborate 
LiBF4 93.74 

H2O (15 ppm) 

HF (75 ppm) 
Less hygroscopic than LiPF6 

Lithium perchlorate LiClO4 106.39 
H2O (15 ppm) 

HF (75 ppm) 

When dry, less stable than 

alternatives 

Lithium 

hexafluoroarsenate 
LiAsF6 195.85 

H2O (75 ppm) 

HF (15 ppm) 
Contains arsenic 

Lithium triflate LiSO3CF3 156.01 H2O (100 ppm) 
Al corrosion above 2.8 V, 

stable to water 

Lithium 

bisperflurorethane-

sulfonimide 

LiN(SO2C2F5)2 287 N/A 
No Al corrosion below 4.4 V, 

stable to water 

 

Furthermore, the available solvents and their mixtures are selected to maximize ionic conductivity 

of the salts (Figure 2.4). The most common solvents are propylene carbonate (PC), ethylene carbonate 

(EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl 

acetate (MA), methyl propyl carbonate (MPC), and ethyl acetate (EA) [8]. 
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Figure 2.4 Solvent mixture conductivities of 1M LiPF6 [8] 

The separator integrated into the battery is often a microporous (0.03 µm to 0.1 µm) film of 

polyethylene or polypropylene, approximately 10 µm to 30µm thick, which offers electrical 

resistance to prevent short circuiting the battery [8]. 

In addition to all of these components, various additives are often found in commercial batteries to 

improve performance. 

2.5 Battery Construction 

Once the battery components are selected, they must be packaged into a useful form. There are four 

types of packing used for lithium ion batteries (Figure 3.2). The cylindrical and prismatic batteries are 

built from wound electrodes and separators, immersed in electrolyte, containing several 

electrochemical cells within. The coin battery is a small flat construction containing a single 

electrochemical cell within it. The pouch battery is also a flat construction but contains several 

electrochemical cells within it. The cylindrical, prismatic, and pouch packaging are often used in 

automotive applications due to the large surface areas of the electrodes. The intended operating 

conditions for the battery determine which packaging is selected by the automotive manufacturer. For 
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example, the Chevrolet Volt and Nissan Leaf use pouch batteries while the Tesla Model S uses 

cylindrical batteries. 

 

Figure 2.5 (a) Cylindrical, (b) prismatic, (c) coin, and (d) pouch packaging for lithium ion 

batteries [10] 

2.6 Vehicle-Grade Batteries 

Vehicle-grade batteries are built to the highest standards in an attempt to provide an optimal 

mixture of power and energy, and to last between 10-15 years [11]. As with many vehicle 

components, the battery is not immune to degradation. The battery will age as time and usage 

progresses. The mechanisms and types of aging can be generalized; however the physics behind those 

generalizations are specific to the chemistries of the batteries. Since the drivable range of a vehicle is 

important, how the range changes as a battery degrades is also important. Typically if a battery has 

lost 20% of its original range, the battery is considered to have reached its EOL. Therefore when 

designing batteries for vehicle applications, one must consider the performance requirements and 

their impact on battery degradation. Usually, the battery is oversized to account for unexpected rates 

of degradation. This identifies the necessity of this work since accurately predicting the battery 

degradation from performance demands reduces the unexpected rates of degradation. As the 
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unexpected degradation rates decrease, so too will the size of the battery. Such a reduction in battery 

size holds significant financial benefits to original equipment manufacturers (OEMs) due to the high 

cost of the battery with respect to the other components in electric or hybrid powertrains. 
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Chapter 3 

Battery Testing 

3.1 Introduction 

Batteries must be tested to determine their performance capabilities and lifetime for a given 

application. Given a fresh cell, characterization tests provide a picture of how well the battery 

operates in a specified application. Degradation tests stress the battery to generate aging within its 

components. Typically degradation tests stress the battery more so than the battery might expect in its 

actual application; however this shortens the testing period. Throughout the battery’s lifetime, the 

characterization tests provide aging information to help monitor its state of health (SOH) until the 

battery degrades to its EOL. Post-mortem tests are sometimes conducted on a battery after it reaches 

its EOL to measure physical parameters in an attempt to elucidate the degradation mechanisms 

behind its aging. This section excludes post-mortem testing procedures as they fall outside the scope 

of this investigation. While the relevant test procedures are presented below, more detailed 

procedures are available in the Battery Test Manual for Plug-in Hybrid Electric Vehicles [4]. 

3.2 State of Charge Estimations 

One important metric used to monitor the remaining energy stored within the battery is the battery 

state of charge (SOC). This metric draws much attention because there is no direct way to measure 

the SOC; so it must be estimated using other measurements. The most common and simplest SOC 

estimation method is based on the notion that one can count the coulombs entering and leaving the 

battery. Since current,  , can be expressed in coulombs per second, the integration of that current with 

respect to time,  ,  provides the total number of coulombs,   , transported into or out of the battery. 

 
   ∫    

 

  

 (3.1) 

The total number of coulombs can be expressed as a capacity,  , following a simple unit 

conversion. 

 
  ∫

 

    
  

 

  

 (3.2) 
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 Thus SOC can be estimated by considering the initial SOC,     , as well as the capacity 

processed during usage as a percentage of the maximum battery capacity,     . 

 
         

 

    
      (3.3) 

However, the limitation of this method is that it requires the initial SOC of the time period; which 

may be unavailable. Fortunately, current levels of vehicle technology, memory, and processing power 

make this form of SOC estimation an appropriate choice. 

Some modifications can be applied to this SOC estimation method to account for a changing 

maximum battery capacity or limitations restricting the SOC from operating between 0% and 100% 

[12]. The maximum battery capacity could change according to battery temperature or battery 

degradation via capacity fade. Power fade could prevent a battery from fully charging or discharging, 

altering the SOC operating window. Battery SOC estimation is a useful way to normalize the 

characterization results to effectively compare battery performances for various conditions and 

lifetimes. 

In vehicle applications, many automotive manufacturers will prevent the user from accessing the 

full battery energy. For example, the 2011 Volt contains a 16 kWh battery but only makes 10.4 kWh 

available to the user and still reports SOC between 0% and 100%. In this case, the Volt is reporting 

the useable SOC instead of the actual SOC. Herein, only actual SOC will be reported. 

3.3 C-Rate 

It is common to present the battery current as a normalized value with respect to the battery capacity. 

For example, a 1C discharge of a 20 Ah battery represents 20 A and will discharge the battery in an 

hour. 

 
       

 

    
 (3.4) 

3.4 Maximum Capacity 

The maximum capacity is often determined similarly across all battery testing procedures, and is 

presented below (Figure 3.1). 
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 The battery is charged according to the recommended charging procedure from the battery 

manufacturer or according to its application. 

o Typically, the charging procedure consists of a constant-current (CC) charge, until 

the upper voltage limit is reached, at which point the voltage is held constant until the 

lower current limit is reached. Such a procedure is called constant-current constant-

voltage (CCCV) charging. 

 A resting period allows the battery to reach a state of equilibrium before the test continues. A 

common resting period is defined either by time (e.g., 1 hour) or by a lack of change in the 

measured open circuit potential (OCP). 

 The battery is discharged under CC conditions at a current specified by the manufacturer or 

by the application. The CC discharge occurs until a cut-off potential is reached. 

 A resting period similar to the previous one is used to allow the battery to reach equilibrium 

before further testing is conducted. 

 

Figure 3.1 (a) CC charge, (b) CV charge, (c) rest, (d) CC discharge, and (e) CV discharge 

profiles for the maximum capacity test 
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The maximum capacity for charge or discharge conditions can be calculated from the current flow 

out of the cell over the duration of the CCCV charge or discharge. 

 
     ∫

   

    

 

  

 (3.5) 

This process can be repeated until a maximum capacity can be confidently determined; however it 

is best to reduce the number of tests to limit degradation. 

It is important to understand that the maximum capacity depends on the C-rate as well as the 

battery temperature during testing (Figure 3.2). However, batteries in this work are tested at room 

temperature. 

(a)

 

(b)

 

Figure 3.2 Effect of (a) C-rate at 23°C, and (b) battery temperature at 1C discharge, on 

maximum capacity 

3.5 Coulombic Efficiency 

The coulombic efficiency testing investigates the battery’s capability to receive and produce an 

equivalent amount of capacity for a given current. Unfortunately, the transport of lithium ions 

throughout the cell is not completely reversible. There are irreversible side reactions that occur 

primarily at the graphite-electrolyte interface that reduce the cycleable lithium ions in the cell. 

Therefore, charging a cell will result in the consumption of a small amount of lithium ions and 

prevents them from cycling back to the cathode during a discharge. The loss in lithium ions is 
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represented by the coulombic efficiency,   , according to the difference between the discharged 

capacity,     , and charged capacity,     , in the relationship below.  

 
   

    

    
      (3.6) 

 

The test procedure for determining the coulombic efficiency is presented below (Figure 3.3). 

 The battery is charged according to the standard procedure determined best for the battery. 

 The battery is discharged under CC conditions at the standard C-rate until the upper potential 

limit is reached. 

 A resting period brings the battery to a state of equilibrium before testing begins. 

 The battery undergoes a CC discharge to the lower potential limit. 

 A resting period brings the battery to a state of equilibrium before testing continues. 

 A CC charge is applied to the battery until an upper potential limit is reached. 

 A resting period brings the battery to a state of equilibrium before testing continues. 
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Figure 3.3 Coulombic efficiency test procedure for a 0-100% SOC operating window and 2 

hour rest 

The coulombic efficiency is typically dependent upon the battery temperature. Therefore the test 

procedure can be conducted at various temperatures that the battery is expected to perform in, 

according to its application. 

3.6 Open Circuit Potential (OCP) 

The battery OCP is often determined by measuring the voltage of a battery while at its equilibrium 

state for various SOC operating points. To do so, the following test procedure should be conducted. 

 The battery is charged according to the standard charging procedure. 

 The battery rests for a specified time period or until the rate of change of potential is 

acceptably low; at which point the OCP is recorded. 

 The battery is discharged according to the standard discharging procedure until the new SOC 

operating point is reached. 
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 The rest, measurement, and discharge steps are repeated until all of the SOC operating points 

have been tested. 

Although this is the most accurate way of measuring the OCP of a battery, it may not be the most 

detailed since it depends on the resolution of the SOC operating points selected. Therefore more SOC 

points are required to get a detailed OCP profile, which requires more resting periods; extending the 

test procedure duration. To combat this, it is proposed that the OCP profile is a mean between the 

voltage responses for a C/25 charge and discharge rate (Figure 3.4) [13]. By making the assumption 

that C/25 approximates the open-circuit condition, it allows for a high resolution OCP profile to be 

developed for a 0-100% SOC operating window. 

 

Figure 3.4 Estimated OCP profile using a C/25 charge and discharge rate 
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3.7 Battery Resistance 

The resistance of a battery will affect the performance during its operation. The industry standard for 

determining the resistance is the hybrid power pulse characterization (HPPC) test, described below 

(Figure 3.5) [4]. The HPPC test can also be used to measure OCP concurrently with resistance. 

 The battery is charged according to the standard charging procedure. 

 The battery rests to reach a state of equilibrium to measure the OCP at 100% SOC. 

 A 10 s discharge pulse at a specified current is applied to the battery, before a 40 s resting 

period, followed by a 10 s charge pulse at a slightly lower current. 

 The battery is discharged according to the standard discharging procedure until the desired 

SOC is reached; according to the desired resolution. 

 The process is repeated for all of the desired SOC operating points to develop the OCP and 

resistance profiles along the operational SOC window. 

 

Figure 3.5 HPPC test procedure at each SOC point [4] 

While the OCP profile is measured directly from the HPPC tests, the resistance must be calculated 

from the change in voltage response according to the applied current. The following equation 

represents the calculation of internal resistance,     , as a function of the voltage and current at the 

beginning of the test,    and    respectively, and at the ending of the test,     and     respectively [4]. 
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     |

      

      
| (3.7) 

Although this is the industry standard, some situations may prevent the use of the HPPC test 

procedure. For instance, the test equipment may not be able to support the required current to satisfy 

the HPPC test for a given cell. Alternatively, there may not be batteries to test and one must rely on 

the data presented by the battery manufacturer. In that case, equation (3.8) can be used to determine 

the battery resistance for a given current,     , assuming the OCP profile,  , and a CC charge or 

discharge voltage response,     , are known (Figure 3.6) [13]. 

 
     

      

    
 (3.8) 

 

Figure 3.6 Required information for determining the resistance response for a 1C discharge 

3.8 Battery Aging 

Throughout the life of the battery there will be a slow decrease in cycleable lithium as well as an 

increase in internal resistance. However, the rate of degradation with respect to capacity and power 

fade is dependent upon how the battery is used. For the most part, automotive grade batteries are 

considered to be at their EOL when the capacity fade has reached a specified value; such as 20% 
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capacity loss. The EOL can also be defined as a 20% reducing in electric range, but it will be 

considered to be the same condition for the rest of this work. Thus, most of the battery aging tests are 

designed towards the measurement of capacity fade. The simplest battery aging test is presented 

below. 

 The battery is charged according to the standard charging procedure. 

 A resting period allows the battery to reach a state of equilibrium before testing begins. 

 The battery is cycled at specified charge and discharge currents, such as 1C charge and 2C 

discharge, over the operational SOC window, such as 20-80%. 

 The discharged capacity is measured at regular intervals over the aging test until the EOL 

capacity fade has been reached. 

Although this test is simple to perform, the capacity fade is dependent upon the usage or 

operational history of the battery. Note that calendar aging is also an important mechanism that will 

affect the health of a battery. Essentially, the capacity fade will change for different charge and 

discharge currents or operating temperatures. The battery aging test can be tailored to represent 

application-specific operating conditions. Such a test is presented below. 

 The battery is charged according to the standard charging procedure. 

 A resting period allows the battery to reach a state of equilibrium before testing begins. 

 The battery is cycled according to its application, such as a vehicle duty cycle within a SOC 

window. 

 Reference performance tests (RPTs) are conducted at regular intervals over the aging test 

until the EOL capacity fade has been satisfied. 

o The battery is cycled according to the standard discharging and charging procedures, 

where the discharged capacity is recorded and used to monitor capacity fade. 

The measured discharge capacities from the aging tests can be presented in a plot against time, 

cycles, or processed capacity (Figure 3.7). Each of the three plots is useful for different applications. 

Capacity fade over time is useful for determining how long a battery will last according to the cycling 

procedure. Capacity fade as the cycles increase determine how many times the battery can be 

operated before it has reached its EOL. Finally, capacity fade presented against the processed 
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capacity allows for a more standardized presentation of the degradation rate. This plot claims that the 

rate does not need to depend on time nor the number of cycles, but on the amount of battery usage. 

(a)

 

(b)

 

(c)

 

Figure 3.7 Capacity fade presented as a function of (a) time, (b) number of cycles, and (c) 

processed capacity 

There are additional testing procedures available to accelerate the degradation and thus reduce the 

time required to perform the aging tests. High temperatures, high C-rates, or a combination of the 

two, are most frequently used in accelerated aging tests. One must be careful to account for the effects 

of these operating conditions to ensure they do not skew the degradation results. 
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Chapter 4 

Battery Degradation Mechanisms 

Although battery systems are already present onboard vehicles, LiBs are currently penetrating the 

automotive sector more aggressively due to the increasing CAFE standards. The CAFE standards aim 

to improve fuel economy of future vehicles. One way to satisfy those standards is to electrify part of 

the vehicle line-up. However, hybrid vehicles are complicated to design because they must satisfy 

existing performance requirements and last long enough for consumer acceptability. According to 

several sources, HEVs and PHEVs, and BEVs are expected to sustain performance capabilities for 15 

years and 10 years, or 30000 cycles and 20000 cycles, respectively [14, 15]. A direct result of such 

expectations is the oversizing of LiB packs when designing ESSs onboard vehicles to account for the 

estimated degradation [16]. Oversizing the ESS can lead to increased vehicle weight, decreased 

vehicle storage space, and increased costs.  Therefore, it is desirable to understand the mechanisms 

behind battery degradation and how they affect battery lifetime. 

Battery lifetime represents the length of time the battery will satisfy performance requirements for 

a given application. Capacity fade, power fade are two common metrics used to evaluate the degree 

of battery degradation [16]. Capacity fade appears as a slow decrease in battery capacity available for 

discharge over the lifetime of a battery. The automotive lifetime for a battery is typically defined as a 

20% fade in capacity, at which point the battery has reached its EOL [17]. Capacity fade is important 

because it represents the fade in available electric range of a hybrid or electric vehicle. Power fade is 

the slow increase of cell impedance over the lifetime of a battery that reduces its power capability 

[18, 19]. Although power fade is not typically used for defining EOL, it is important to vehicle 

applications because it defines how much power the battery can supply without limiting vehicle speed 

or activating an engine range/power extender. Capacity and power fade can be presented three 

different ways, depending on their usage. Calendar life is used to present capacity and power fade 

results for infrequent or low intensity usage such as calendar aging tests of batteries in storage [17]. 

Cycle life is used to present capacity and power fade results for frequent cycling at regular intervals 

such as rate capability tests [17]. An alternative to cycle life is to present the degradation against the 

processed capacity instead of the number of cycles. Processed capacity is often used for frequent but 

inconsistent usage as a way to compare between different usage profiles; such as drive cycles [17]. 

Capacity and power fade are metrics that represent the degree of battery degradation. 
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Batteries degrade according to different mechanisms and processes depending on the components 

and chemistry within them [18, 14]. Side reactions, structural modifications and changing chemical 

compositions all contribute to general degradation [14]. The main source of degradation comes from 

side reactions at the electrode/electrolyte interfaces that irreversibly consume cyclable lithium and 

create resistive layers of lithium oxides in the cell [18, 14, 19]. Loss of active material from film 

formation, structural disorder, metal dissolution, particle isolation, and electrode delamination is also 

a significant source of degradation [18, 14]. Another source of degradation is the increase of 

resistance from passive film formation of the lithium oxides and electrical disconnects between the 

electrode subcomponents [18, 14]. Further degradation can occur via binder and electrolyte 

decomposition as well as current collector and separator corrosion [20, 19]. With respect to calendar 

and cycling ageing, one would expect to see more aggressive aging from cycling. Side reactions occur 

within the battery due to thermodynamically unstable materials causing calendar aging [19]. Cycling 

the battery introduces kinetic effects that accelerate degradation compared to calendar aging rates 

[19]. As many of the degradation mechanisms are thermodynamically or kinetically dependent, it 

follows that degradation would depend on environmental and internal conditions. 

Environmental and internal conditions of the battery will affect the intensity of the degradation 

mechanisms and change the rates of capacity and power fade [14]. Capacity fade depends on 

environmental conditions like temperature and pressure, as well as internal conditions like the 

processed capacity, power demand, DOD, average operating SOC, and the frequency of a full charge 

[17]. Factors that affect calendar aging in particular include high temperature, voltage, and SOC 

storage conditions [17, 14]. Although the factors effecting calendar aging also effect cycling aging, 

high charge and discharge rates can also accelerate the degradation rate [17, 14]. Details surrounding 

the degradation mechanisms and their dependence on storage and cycling conditions help elucidate 

methods for degradation prevention or limitation. 

A comprehensive review of all the possible degradation mechanisms is available in Appendix A. 

4.1 Negative Electrode Degradation 

The negative electrode is considered to be the main component in LiB degradation and has many 

degradation mechanisms (Figure 4.1). The primary source of degradation at the negative electrode is 

the parasitic reaction at the electrode/electrolyte interface that develops a passivation film on the 

graphite active material surfaces [18, 16, 14, 15]. The passivation film offers a solid electrolyte 
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interface (SEI) between the liquid electrolyte and graphite. Formation of the SEI film irreversibly 

consumes lithium ions while growing in thickness leading to loss of cyclable lithium and increased 

impedance, respectively [18, 17, 20]. However it also produces a more stable interface between the 

electrode and electrolyte that limits further degradation by slowing intercalation kinetics [17, 16, 14, 

19]. Calendar aging is primarily a result of SEI film formation. Cycling aging adds several 

degradation mechanisms by introducing new dynamics to the battery. Structural changes in the 

carbonaceous active material from intercalation/deintercalation of lithium ions introduce mechanical 

stress and can lead to physical damage [15]. Loss of contact between sub-components of the negative 

electrode can occur from non-active material degradation via side reactions or physical damage from 

mechanical stressors; both resulting in an increased impedance [15]. Finally, lithium plating on the 

surface of the graphite active material aggressively consumes lithium leading to capacity loss and can 

cause physical damage to surrounding sub-components leading to increased impedance [15]. It is 

important to highlight that many of the degradation mechanisms are related and all of them depend on 

operating conditions. 

 

Figure 4.1 Degradation mechanisms for the negative electrode [15] 
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4.1.1 Degradation from SEI Growth 

The majority of the SEI forms during the battery’s first cycle followed by slow continuous growth for 

the remainder of the battery’s lifetime [14]. During the first cycle, or formation period, reduction 

reactions of the electrolyte additives occur on the surface of the active material [15]. The reduction 

reaction for ethylene carbonate (EC) is presented below [21]. 

                    
   (4.1) 

or 

           (4.2) 

                       
          

  (4.3) 

         
          

                              (4.4) 

 

The reduction reaction for propylene carbonate (PC) is similar to that of EC and also produces a 

lithium alkyl carbonate [21]. 

                     
   (4.5)  

or 

           (4.6) 

                        
         

   (4.7) 

         
         

       

                          
(4.8) 

  

The reduction reaction for dimethyl carbonate (DMC) differs slightly from EC and PC [21]. 

                         
  (4.9) 

or 

                           (4.10) 
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Similarly, the reduction reaction for diethyl carbonate (DEC) is presented below [21]. 

                                
  (4.11) 

or 

                                   (4.12) 

 

Furthermore, the lithium alkyl carbonate produced from the reduction reactions of the additives 

reacts in the presence of water according to the following equation [21]. 

                              (4.13) 

 

The aforementioned parasitic reactions continue past the formation period, but at a much slower 

rate. Additionally, reduction reactions for other compounds within the electrolytes occur throughout 

the battery lifetime. Electrolytic salts such as LiPF6, common to LiBs, can undergo a reduction 

reaction to form electronically insulating, unstable products according to the following mechanism 

[21, 20]. 

                (4.14) 

                  (4.15) 

                              (4.16) 

                                (4.17) 

 

Finally, if any contaminants are present in the electrolyte, they can undergo reduction reactions 

with lithium to form lithium oxides or carbonates and gaseous products. The following reduction 

reaction occurs in the presence of oxygen [21]. 

  

 
                 (4.18) 
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The reduction reaction in the presence of water differs from the secondary reaction observed in 

(4.13) [21]. 

 
           

 

 
   (4.19) 

              (4.20) 

 
                 

 

 
   (4.21) 

 

In the presence of carbon dioxide, the following reduction reaction occurs [21]. 

                         (4.22) 

or   

               
     (4.23) 

    
                  (4.24) 

                           (4.25) 

 

The aforementioned mechanisms for SEI formation have one commonality. Each mechanism 

involves the consumption of lithium ions to produce a lithium-based solid that contributes to the SEI 

layer. The resulting SEI layer is permeable to lithium ions and other similarly sized species; 

preventing larger species from interacting with the anode [14, 15]. However, the SEI layer can 

impede intercalation kinetics at the electrode/electrolyte interface by limiting lithium ion transport 

and resisting volume changes within the graphitic layers of the negative electrode [20]. Such a 

volume change can crack the SEI layer, exposing the graphite active material to further reduction 

reactions [17, 20, 19]. Also, the inhibited transport of lithium ions will increase charge transfer 

resistance within the cell [20]. Furthermore, the consumption of electrolytic compounds decrease 

charge transfer capabilities and increase cell impedance. While SEI formation continues throughout 

the battery lifetime, its growth can be accelerated by various operating conditions. 

The electrode/electrolyte interface is inherently unstable [17]. Thus any deviation from ideal 

operating conditions will affect the reduction reactions at the interface. The SEI formation can be 
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accelerated by high operating temperatures that drive the kinetics of the exothermic parasitic reaction 

[17]. Additionally, higher temperatures can transform the SEI into lithium salts less permeable to 

lithium ions [14]. Oppositely, low-temperature operation can limit SEI formation by reducing the 

excess lithium ions present at the interface from slower ion transport. Operating the battery at extreme 

SOCs (i.e., >80% or <20%) will also accelerate SEI formation due to the increased potential gradient 

between the active material and the electrolyte [17, 14]. Similarly, high and low operating potentials 

can increase the rate of reaction [16]. Finally, high currents can accelerate SEI growth due to the 

excess electrons and lithium ions present at the interface used in the aforementioned reduction 

reactions. 

Aside from operating conditions, there are physical properties that can affect SEI growth rates. 

Dissolution of the positive electrode active material (e.g., Fe
2+

 from LiFePO4 cathode) will accelerate 

SEI growth by catalyzing the parasitic reaction further [18]. That metallic ion can also deposit itself 

onto the surface of the graphite [20]. Increasing the negative electrode active surface area or lowering 

the particle density can increase SEI growth rates because there are more active sites available for the 

side reactions [20]. 

4.1.2 Degradation from Lithium Plating 

Lithium plating is a degradation mechanism that deposits lithium metal onto the active material of the 

negative electrode. Lithium plating is possible according to two conditions. The first condition 

requires a high lithium ion concentration at the active material surface. The second condition requires 

a negative electrode potential low enough to enable lithium deposition [15]. Low temperature 

operation decreases lithium diffusion through the SEI layer causing an increased lithium ion 

concentration at the electrode/electrolyte interface [17, 14, 20, 19, 15]. High current charge rates also 

lead to lithium plating due to the high lithium ion concentration being intercalated into the negative 

electrode [17, 20, 19]. Overcharging the battery can cause lithium plating since lithium ions will be 

unable to intercalate into the filled graphene layers and will therefore deposit onto the surface of the 

electrode [20]. Additionally, lithium plating is possible when the two electrodes do not have a 

balanced capacity, or the positive electrode is physically larger than the negative electrode [20]. The 

former polarizes the negative electrode to low potentials promoting lithium plating [20]. The latter 

case causes lithium deposits to accumulate on the edges of the negative electrode. To avoid plating 

the edges, many negative electrodes are designed to have larger dimensions than the positive 
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electrodes [20]. Finally, the orientation of the graphite particles in the crystal lattice can lead to 

dendrite formations during the third and fourth intercalation stages [20]. Lithium plating and 

specifically dendrite formations are dangerous because they can incur physical damage to the cell. 

Dendrite growth can puncture the separator and connect with the positive electrode causing a short 

circuit and potential thermal runaway [20]. Fortunately, lithium plating is reversible since lithium 

oxidizes at a lower potential than the deintercalation process [20]. However, this oxidation causes 

overpotential within the cell during discharge [20]. Ultimately, lithium plating consumes a substantial 

amount of lithium ions to dramatically reduce the battery capacity [19]. 

4.1.3 Degradation from Physical Changes 

There are two significant degradation mechanisms associated with physical changes within the 

negative electrode. The first mechanism describes the loss of contact between its sub-components. 

The second mechanism describes the structural changes of the graphite leading to physical damage. In 

both cases, the physical changes of the negative electrode lead to capacity and power fade. 

Loss of contact between the separator, electrolyte, graphite, binder, and current collector will 

increase cell impedance and result in lithium loss [15]. Lithium dendrites formed at the interface can 

extend to the separator and isolate it from the electrolyte. Volumetric changes from 

intercalation/deintercalation processes can cause stress fracturing of the graphene layers and can 

isolate the graphite particles from the current collector [17, 20, 15]. The physical damage can be 

enhanced by gas formation and solvent co-intercalation within the graphene layers [17, 15]. At high 

operating temperatures and extreme SOCs, the binder can decompose and limit charge transfer 

between the graphite and current collector [17]. Eventually, binder decomposition can completely 

isolate graphite particles from the current collector causing loss of active material. Binders containing 

fluorine react with lithium ions to produce a solid that can also isolate the graphite from the current 

collector [15]. A reduction reaction of the electrolyte at the current collector can cause corrosion of 

the current collector and loss of contact between it and the active material [15]. The loss of contact 

will decrease electrical conductivity, consume lithium, and reduce the anode capacity for lithium ions. 

As previously mentioned, electrode volume changes can lead to structural changes of the active 

material. Gas evolution, extensive lithium intercalation, solvent co-intercalation, and steep lithium ion 

gradients within the active material can lead to cracks or breaks in the graphene layers. Changes to 

the graphite lattice result in less oriented graphite particles within the negative electrode [20]. Less 
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particle orientation inhibits intercalation kinetics causing a steeper lithium ion gradient [20]. As such, 

the degradation mechanism can continue throughout the battery lifetime. Again, the physical damage 

to the graphite will reduce its capacity for lithium ions, offer new active material for SEI growth, and 

isolate the active material from the current collector. Thus, an increased impedance and decreased 

capacity will be observed after physical damage to the negative electrode occurs. 

4.2 Positive Electrode Degradation – LiFePO4 

While a significant portion of negative electrode degradation is associated with SEI formation at the 

electrode/electrolyte interface, positive electrode degradation is often attributed to physical 

degradation of its components. However, several mechanisms are similar between the two electrodes 

(Figure 4.2). The ageing mechanisms surrounding the cathode differ depending on its chemistry since 

the physical nature of the cathode will differ according to its composition and structure [16, 15]. For 

this reason, degradation associated with LiFePO4 active material is discussed in detail; though similar 

mechanisms can be applied to other oxides. Aside from physical degradation of the negative 

electrode, part of the overall degradation is associated with the formation of a thin SEI film at the 

electrode surface. 

 

 

Figure 4.2 Degradation mechanisms for the positive electrode [15] 
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4.2.1 Degradation from SEI Growth 

Similarly to the negative electrode, the electrolyte decomposes at the positive electrode/electrolyte 

interface [17, 15]. The compounds found in the electrolyte oxidize on the surface to produce a thin 

film depending on the operating conditions. Contaminants within the electrolyte can catalyze 

polymerizations or produce gaseous products that develop or damage the SEI film, respectively [19]. 

Gases can also cause damage to the active material. This SEI formation is difficult to detect because 

the positive electrode potential is much higher than that of the negative electrode [14]. The SEI 

formation depends on temperature, SOC, and voltage as with the negative electrode [20, 19]. For 

storage potentials greater than 3.6 V, the decomposition of the electrolyte is accelerated [20]. 

Furthermore, high temperature or high voltage storage can promote carbon dioxide evolution leading 

to mechanical stress on the positive electrode [19, 15]. Although the SEI formation consumes lithium 

ions and increases impedance, its overall effect on battery degradation is minimal. 

4.2.2 Degradation from Physical Changes 

A majority of the positive electrode degradation comes from the loss of active material [16, 15]. 

Physical degradation of the active material includes the structural disordering of the oxide, dissolution 

of the metallic ions, and surface modifications such as fracturing [16]. High temperatures and 

voltages promote dissolution of the oxide particles into the electrolyte; increasing impedance [18, 17]. 

The dissolved species can either precipitate into new phases on the positive electrode or migrate 

through the electrolyte to interact with the negative electrode SEI [16, 15]. Either way, the loss in 

active material reduces the positive electrode capacity, which can limit the cell capacity [19]. That 

phase change can put significant stress and strain on the crystal lattice of the oxide particles causing 

structural disordering [17, 15]. In addition with the volumetric changes from the insertion and 

extraction of lithium ions, the stress and strain on the active material can lead to micro-cracking [19, 

15]. If the surface modifications of the active material are large enough, loss of contact between the 

oxide particles and the binder or between the active material in general and the current collector can 

occur [17, 19]. Loss of contact can also occur due to the degradation of the non-active material within 

the positive electrode. Binder decomposition, corrosion of the current collector, and degradation of 

the carbon-based conductive additives are capable of isolating positive electrode sub-components and 

increasing impedance of the cell [16, 15]. The extent to which such degradation occurs is dependent 

upon the operating conditions of the battery.   
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Chapter 5 

Battery Modeling with Degradation 

Battery degradation modeling is an attempt to predict the battery performance throughout its lifetime. 

The models aim to predict specific properties of the battery as it ages, such as its resistance, capacity, 

or power. However, there are several models that predict battery performance and lifetime according 

to various conditions and restrictions. In general, there are three significant approaches to ageing 

estimation: physics-based, mathematical, and fatigue modeling [22].  

5.1 Physics-Based Modeling Approach 

Physics-based degradation models typically use some form of performance or characteristic data in its 

development. Thus empirical models, empirical equivalent circuit models, and electrochemical 

models are all categorized within the physics-based modeling approach [22]. Since physical 

information is required to generate a model, the model’s application is limited to the measurement 

conditions. Therefore, the model cannot be used to predict degradation under conditions that differ 

from those used to build the model. 

5.1.1 Empirical Models 

Empirical models are the fastest and simplest of the physics-based models to implement; however, 

they are also the least flexible [22]. Typically, empirical data is used to determine the battery 

degradation over a testing period for specific operating conditions. Assuming the operating conditions 

do not change over the life of the battery, the empirical model can be extrapolated to predict battery 

lifetime. However, if the operating conditions change, the battery must be tested again to develop a 

new empirical model to extrapolate. This is a fatal flaw for empirical models attempting to predict 

battery degradation on-board HEVs, PHEVs, and BEVs, because operating conditions are constantly 

in flux. Another disadvantage of the empirical models is that they cannot be associated with specific 

ageing phenomena like the other models can. In other words, there is no physical explanation of the 

degradation mechanisms occurring within the battery; just that degradation is taking place. Finally, 

accuracy can be insufficient for life prediction since the extrapolation process requires highly accurate 

test data and assumes that there is little variance in battery performance and degradation between 

multiple batteries [22]. Therefore, empirical models are not favorable for predicting battery 

degradation in vehicle applications. 
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Omar et al. conducted battery testing at various temperatures, DODs, and currents to predict the 

combined effect on battery life using simple empirical relationships in MATLAB Simulink to within 

5.4% error [23]. 

5.1.2 Empirical Equivalent Circuit Models 

Another type of physics-based degradation modeling is an empirical equivalent circuit model. An 

equivalent circuit is an electrical circuit where its components represent various phenomena within 

the battery during operation (Figure 5.1a). For instance, the R1 represents the internal resistance of the 

cell while the resistor-capacitor (RC) components represent the impedance from each electrode. 

Equivalent circuit models can be made highly complex by including more electrical components with 

different circuit architectures [22]. The values of the equivalent circuit components are determined 

using electrochemical impedance spectroscopy (EIS) measurements. EIS is a test procedure that 

pulses the battery with sinusoidal voltage (galvinostatic) or current (potentiostatic) for a specified 

frequency range to measure the real and imaginary impedances and present the results in a Nyquist 

plot (Figure 5.1b). The equivalent circuit component values will change with operating conditions 

(e.g., temperature, SOC, current) and as the battery ages [22]. Thus, EIS tests are required during 

performance and ageing tests to determine how they change under different operation and to 

determine their degradation trends. By doing so, it is possible to understand and predict which battery 

components (e.g., electrolyte, anode, cathode) are degrading; and at what rate. Unfortunately, since 

these models are empirically-based, they share the same limitations presented for the empirical 

models [22]. The degradation trends derived from ageing tests are extrapolated into the future to 

predict battery lifetime. Ultimately, the models are only applicable for applications similar to the tests 

used to construct the model. Although the empirical equivalent circuit model is an improvement to 

the empirical model, and sufficiently predicts fresh cell performance, it is insufficient for battery 

lifetime prediction of vehicle battery packs. 
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(a) 

 

(b) 

 

Figure 5.1 (a) Equivalent circuit model of a battery [22] and a (b) Nyquist plot resulting from 

EIS testing 

Empirical models are less common now that computation power has allowed the application of 

more complicated models. However, one example of an empirical degradation model is that of Takei 

et al., where linear models were fit to performance data and acceleration stress factors were 

determined from aging data; though error was as high as 40% [24]. 

5.1.3 Electrochemical Models 

The most common type of physics-based modeling is electrochemical models [22]. These models use 

a combination of electrical and physical properties to express the physico-chemical processes 

occurring within the battery [22]. Electrochemical models often consist of several equations that 

relate the electrical and physical properties together; for which there can be many. The most common 

equations used in electrochemical models are those from Fick’s (1) and Ohm’s laws (2), and the 

Butler-Volmer (3) and Tafel (4) equations; however several more are frequently combined with those 

listed [22]. The number and complexity of equations can be adjusted according to the desired 

accuracy. Unfortunately, with more complex systems there are more physical parameters to measure 

(e.g., diffusion coefficient, particle size, electrode thickness), and the computational time can increase 

dramatically [22]. Furthermore, the physical parameters being measured will change according to 

battery usage and as the battery ages; making it difficult to produce an accurate model [22]. This 

becomes an issue when attempting to apply an electrochemical degradation model to vehicle 

applications. To combat this, many researchers assume a single source of degradation, limit the 

dimensions of the equations, or otherwise simplify the systems to appropriate complexities to 
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diminish the experimental and computational costs [22]. Although there are limitations, 

electrochemical models are flexible and can be applied to several different systems because they are 

based on electrochemical and physical measurements instead of ageing tests [22]. Additionally, a 

single model can be used between different batteries as long as they have similar chemistries and 

ageing mechanisms. Therefore, a simplified electrochemical model of lithium ion batteries is 

recommended for lifetime prediction of a battery pack on-board a vehicle. 

One type of electrochemical model common to battery modeling is the single particle (SP) model. 

The SP model considers the battery as two separate particles representing a typical particle on the 

anode and cathode. It is often preferred to the more complex pseudo-two-dimensional (P2D) models 

because of the lower computational times [25]. The particles do not interact with each other and the 

dynamics associated with the electrolyte are neglected. Zhang and White used a SP model to simulate 

battery degradation and discovered three likely stages of capacity fade for low cycling rates [26]. 

Safari et al. took advantage of the SP model to generate a degradation model and assess whether SEI 

growth was predominantly kinetic or diffusion limited [11]. Safari also used a SP model to determine 

the viability of the fatigue modeling approach; presented later in this section [27]. Prasad and Rahn 

used an SP model as a basis for constructing an equivalent circuit where its parameters are updated 

throughout the battery’s lifetime [28, 29]. 

The 1D model is similar to the SP model but it accounts for the presence of the electrolyte in the 

cell. Ning et al. used a 1D model to assess the effect of various parameters on battery lifetime [30]. 

Prada et al. used a 1D degradation model that includes the electrolyte and assumes that the sole 

source of aging is SEI growth [31]. 

The P2D models offer more detailed simulation results but require more understanding of the 

battery. Farkhondeh and Delacourt use the P2D model to account for several particle sizes in the 

positive electrode active material and to introduce the idea of a variable solid-state diffusivity (VSSD) 

of lithium ions into the active material [32]. 

5.1.4 Semi-Empirical Electrochemical Models 

In more recent works, electrochemical models use experimental data to empirically fit one or more of 

their parameters. Ramadass et al. empirically fits the decrease in SOC, increase in impedance, and the 

diffusion coefficient to satisfy experimental degradation data [33].  
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5.2 Mathematical Modeling Approach  

Mathematical degradation models work to determine the relationships between input and output data 

such as operating conditions and SOH [22]. Artificial neural network (ANN) models are the primary 

type of models within the mathematical modeling approach [22]. ANN models learn from input and 

output data by altering internal relationships between them. The more input and output data available 

to teach the ANN, the better the predictability of the ANN [22]. In general, there are five distinct 

phases to developing an ANN. The first phase, as previously mentioned, is to collect as much input 

and output data as possible according to the information required to construct a model [22]. For 

example, input data could include temperature, SOC, and current, while the output data could include 

capacity, resistance, or SOH. The second phase is to process the data for input into the ANN [22]. 

The third phase uses the input and output data to develop the ANN by statistically minimizing the 

error [22]. The fourth phase is to validate the ANN predictability by comparing the ANN output 

results with the measured data [22]. The final phase is to implement the ANN into its application [22]. 

Unfortunately, it has been found that an excessive amount of data is required to build an accurate 

ANN model. Mellit [60] showed that 4 years of data collection provided an ANN capable of 

predicting performance one year into the future. Additionally, assuming an ANN was developed with 

the necessary amount of data, the degradation mechanisms would be unknown since the network is 

statistically arranged to reduce error. Thus, the ANN models do not hold physical meaning. Other 

mathematical approaches currently in use include fuzzy logic models, fuzzy neural networks, neuro-

fuzzy based modeling, and adaptive algorithms; however all of the alternatives share in the ANN 

model’s limitations [22]. Therefore, mathematical modeling is an illogical choice for developing a 

battery pack degradation model for vehicle applications. 

5.3 Fatigue Modeling Approach 

5.3.1 Wohler Models 

Fatigue modeling considers the battery as a mechanical system that undergoes stress and strain 

throughout its lifetime. Certain events occur during battery usage that impact its lifetime in an 

incremental manner. Originally, the fatigue model was developed for metal fatigue of rail tracks by a 

man named August Wohler [22]. He discovered that the metal would fail after experiencing cyclic 

stress that accumulated over its lifetime and produced a useful plot showing the number of cyclic 

loads the metal could withstand depending on the applied stress [22]. With respect to battery 
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degradation, many use a similar curve to show the number of charge/discharge cycles a battery can 

withstand depending on the DOD, charging voltage, or temperature of that cycle [22]. Unfortunately, 

the Wohler fatigue model can only be used for cycles with a constant DOD. The Palmgren-Miner 

(PM) rule was developed to account for variation in the DOD throughout the battery lifetime and 

states that the damage from one cycle at a given DOD is cumulative with the damage from another 

cycle at a different DOD [22]. The cycles with similar DODs are grouped together as a type of event 

and impact the battery lifetime according to their frequency [22]. An issue with the Wohler method is 

that it assumes there is no interaction between the ageing events; only that they are cumulative with 

each other. Furthermore, it assumes constant impact from the events no matter how old the battery is. 

Finally, it does not account for the highly variable operating conditions a battery experiences on-

board a vehicle. Therefore, the Wohler model is not applicable to battery degradation in automotive 

applications. 

5.3.2 Weighted Ah Model 

The weighted Ah model was developed as an improvement upon the Wohler method for use in 

vehicles. Unlike the Wohler method, the weight Ah model determines lifetime reduction based on the 

Ah throughput of the battery instead of the number of cycles it has experienced [22]. Since the 

severity of fatigue from the temperature, SOC, or current events will differ, weighting factors are 

applied to the events to accurately accumulate the effective Ah throughput. A battery is said to fail 

once the effective Ah throughput surpasses the total Ah throughput of the battery [22]. Another 

benefit of the weighted Ah model is that it can be developed without destructive testing; unlike the 

other models previously presented [22]. Ultimately, these differences add a level of complexity above 

the Wohler method that allows for its use in the automotive sector for battery lifetime prediction; 

however limitations still exist. One limitation is the constant weighting factors associated with the 

events throughout the lifetime of the battery. The electrochemical and empirical equivalent circuit 

model parameters are updated as the battery ages, but the weighted Ah throughput parameters are not. 

Another limitation is that the weighted Ah throughput model does not attribute fatigue when there is 

no current flow [22]. In other words, the model does not account for calendar ageing. Thus, a 

combination of multiple lifetime prediction models would be required for an automotive battery pack. 

Ultimately the weighted Ah model shows promise for automotive applications, but has not progressed 

far enough with respect to accurate lifetime prediction. Therefore it is not recommended as a battery 

degradation model for vehicles. 
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5.3.3 Significant Conclusion from Fatigue Modeling 

The mechanical fatigue model proposed by Safari et al. is based on Wohler’s fatigue model, which 

presents the number of cycles or time before a mechanical failure occurs according to the amplitude 

of an oscillatory tensile stress; known as a Wohler curve [27]. However, the Wohler curve is only 

applicable for oscillatory stress with constant amplitude [27]. Since drive cycles will impose variable 

amplitude oscillatory stresses on the battery, the Wohler fatigue model does not apply. The PM rule is 

used to account for variable amplitude oscillatory stresses. 

For a given profile consisting of   events of type  , the PM rule states that the damage accumulated 

from one event of duration     will cumulate with previous damage of the same type until the damage 

reaches an EOL at   
 
 [27]. The EOL is defined according to the application and in the automotive 

industry the EOL is defined as a 20% loss in discharge capacity. 
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Cycle counting methods such as level crossing and rain flow cycle counting determine the number 

of events for each type of stress within a variable load profile [27].  

Although the PM rule is a common rule among mechanical fatigue modeling, it requires that the 

time until EOL is known and ultimately only offers the ability to predict the progression of fatigue 

over the battery lifetime; not the ability to predict future fatigue.  

The concept of damage accumulation proposed by the PM rule is used to develop a predictive 

model for damage accumulation over time; where   is the total accumulated damage over   events at 

    ,    is the accumulated damage at      for an event,  , with a constant magnitude of stress    and 

a duration of    to      [27]. 
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The damage accumulation equation is approximated below for aging times much longer than the 

period of the profile; where    is the number of events in a periodic motif, and     is the duration of 

the periodic motif [27]. 
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Safari et al. conclude that the PM rule more accurately predicts the aging simulation results 

compared to the damage accumulation method; however both predict adequately [27]. Therefore, the 

damage accumulation method will be used to discretize a duty cycle into pulses and sum the 

degradation for each pulse over the entire duty cycle. The result will provide a significantly accurate 

estimate of the real degradation for that cycle. 
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Chapter 6 

Automotive Industry 

6.1 Current Vehicle Technologies 

There are several vehicle technologies available to consumers including conventional vehicles, BEVs, 

HEVs, and PHEVs. The most prevalent type of vehicle available is the conventional vehicle, which 

uses a gasoline engine to provide mechanical power to the wheels through the transmission (Figure 

6.1). The conventional powertrain will dominate the market less as the annual increase in CAFE 

standards push for better fuel economies. Automotive manufacturers will shift from conventional 

powertrains to HEV, PHEV, and BEV powertrains to satisfy the CAFE standards; making these 

powertrains more accessible to consumers. 

 

Figure 6.1 Conventional vehicle powertrain 

A conventional vehicle’s fuel efficiency can be substantially improved through electrification. 

Electrification is the evolution of a conventional vehicle into a purely electric vehicle. A HEV is one 

example that uses hybridization by combining two power sources to reduce fuel consumption and 

electrification by using a high voltage battery pack and electric motor as the second power source. 

However, there are several different hybridization technologies that are not electric such as flywheels 

and there are several different electrification technologies such as ultracapacitors or fuel cells. Herein, 

hybridization will inherently mean electrification through battery technology. 

As the number of power sources increases, so too does the complexity associated with designing 

such a powertrain. For HEVs, there are three primary powertrain architectures: series, parallel, and 

power-split (Figure 6.2).  
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(a) 

 

(b) 

 

(c) 

 

 

Figure 6.2 (a) Series, (b) parallel, and (c) power-split hybrid vehicle powertrain architectures 

The series hybrid architecture removes the direct mechanical connection between the engine and 

transmission. By isolating the engine from the transmission, it follows that the engine can operate in 

its maximum efficiency range while the battery balances any power transients in the system [34, 35]. 

Also, the transmission does not require a gearbox since the motor connected to the driveshaft has an 

ideal torque-speed profile [35]. Thus, the series architecture simplifies the transmission greatly. A 

disadvantage of this architecture is the increased efficiency losses by converting mechanical power 

from the engine into electrical power and back to mechanical power to propel the vehicle [34, 35]. 

However, these inefficiencies are typically small and the benefits of this architecture outweigh the 

limitations. 

The parallel hybrid architecture contains a direct mechanical connection between the engine and 

transmission and an electrical-mechanical connection between the battery and transmission. The 

direct mechanical connection eliminates the need to convert engine power between forms before it 

reaches the wheels, which increases efficiency [35]. While the direct mechanical connection will 
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result in engine speed transients, the battery-motor connection will balance any torque transients [34]. 

Ultimately, the parallel architecture lowers vehicle mass by replacing the motor/generator with a 

gearbox, but increases the complexity of powertrain control [35]. 

The power-split hybrid architecture is essentially the combination of the series and parallel 

architectures. There is an opportunity for the engine to directly turn the wheels or for it to interact 

with the electrical system within the powertrain. While efficiency and performance of the powertrain 

are improved from its predecessors, the added components required for this architecture significantly 

increase the vehicle mass and the complexity involved in its power management [34]. 

The series, parallel, and power-split HEV architectures also apply to PHEVs. Since both HEVs and 

PHEVs involve the combination of the gasoline engine with a high voltage battery pack, the 

aforementioned architectures are also used to build PHEVs. While the components remain the same 

between the two vehicle types, the control strategies differ greatly. Fundamentally, HEVs supplement 

the engine power with battery power to satisfy the vehicle power demands. By doing so, the engine 

can be slightly downsized depending on the battery size. However, PHEVs rely on the battery pack as 

the primary power source until its SOC is depleted to a lower operating limit; at which point the 

engine turns on and the vehicle operates as an HEV (Figure 6.3). At the end of a trip, the driver can 

connect the vehicle to the electrical grid to charge the battery; hence the name of this vehicle type.  

 

Figure 6.3 The differing power management control strategies between HEVs and PHEVs 
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Powertrains increase in complexity as the number of power sources, components, or the level of 

control increases. The conventional and BEV powertrains are simplest to model since they have a 

single power source and limited control requirements. The HEV and PHEV powertrains are more 

complex because they have multiple power sources, and require more components and controls to 

combine those power sources in an efficient manner. In a BEV the ICE is replaced by a battery pack 

and electric motor and the gearbox is removed leaving only the final drive gear. The BEV captures 

otherwise lost energy from regenerative breaking. The efficiency of the BEV, ca. 70%, is also much 

higher than that for conventional vehicles, ca. 18% [36]. The primary limitation of BEVs that is not a 

concern for conventional or hybrid vehicles is the available driving range of the vehicle. Since the 

BEV relies on stored energy in the battery pack, it follows that the battery will eventually deplete its 

energy; thus limiting range. For this reason alone, many argue that the range of BEVs is not yet large 

enough for most consumers and that hybrid vehicles offer an ideal balance between range and fuel 

efficiency. 

6.2 Vehicle Modeling 

6.2.1 Model Based Design 

The principles of model-based design (MBD) are essential for vehicle modeling. MBD includes the 

development of plant and control models incorporated into a vehicle model that can be simulated 

offline before deployment. Plant models represent the physical systems onboard a vehicle such as the 

engine, wheels, or chassis. Control models represent the controllers and control system onboard a 

vehicle like the high-level powertrain controller or the low-level engine controller. Combined, the 

plant and control models represent a working vehicle that can be simulated offline instead of having 

to build and physically test that vehicle. In general, any component can be changed via the plant or 

control models to generate a vehicle prototype. Ultimately, MBD offers offline simulation of multiple 

vehicle prototypes in 3% of the time per simulation, with immense financial savings. 

6.2.2 Software 

The MBD procedure has been simplified by Autonomie; vital software produced by Argonne 

National Laboratory and funded by the U.S. Department of Energy. Autonomie offers a step-by-step 

graphical user interface (GUI) into the MBD process, allowing for fast and simple vehicle design and 

simulation. Included in the software is a comprehensive database of existing plant, control, 
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powertrain, and vehicle models that accelerate the first few steps of the MBD process. Simulation 

results are saved and presented to the user to provide insight into component and vehicle 

performances. 

It is important to recognize that Autonomie is based upon and relies on MATLAB Simulink to 

function. MATLAB Simulink is visual computational software used by Autonomie’s GUI to generate 

vehicle models by virtually connecting the plant and control models. In other words, Autonomie 

offers the interface for the user to interact with the vehicle models generated by MATLAB Simulink. 

The vehicle models in MATLAB Simulink are considered to be causal models because a desired 

vehicle speed is fed into the model and controllers demand the necessary power to meet that desired 

vehicle speed. An example of a non-causal model would be if the desired vehicle speed was specified 

as the actual vehicle speed and the necessary power was back-calculated. 

6.2.3 Level 1 Vehicle Model Development 

The 2011 Chevrolet Equinox LS has been selected for MBD to satisfy the interests of this 

investigation into battery degradation modeling as well as those of WatCAR who purchased a retro-

fitted BEV prototype. This section summarizes the modeling efforts for investigating the benefits of 

powertrain electrification using battery technology. 

The conventional model represents the base 2011 Chevrolet Equinox LS that utilizes an internal 

combustion engine as its sole power source. The conventional powertrain that Autonomie generates 

(Figure 6.4) will require refinement to correctly represent the 2011 Equinox. Such a refinement can 

be conducted using the component specifications of the 2011 Equinox (Table 6.1). Although Table 

6.1 presents a summary of the specifications, a full specification sheet is provided in Appendix B 

[37]. 
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Figure 6.4 Autonomie generated conventional powertrain model components 
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Table 6.1 Chevrolet Equinox specifications used to generate a conventional vehicle model 

Component Specification Value Units 

Engine Displacement 2384 cm
3
 

 Maximum Power 136 kW 

 Speed at Maximum Power 702 rad s
-1 

 Maximum Torque 233 Nm 

 Speed at Maximum Torque 513 rad s
-1 

Transmission First Gear Ratio 4.58  

 Second Gear Ratio 2.96  

 Third Gear Ratio 1.91  

 Fourth Gear Ratio 1.44  

 Fifth Gear Ratio 1.00  

 Sixth Gear Ratio 0.74  

 Final Drive Ratio 3.23  

Tires Tread Width 0.225 m 

 Aspect Ratio 65 % 

 Diameter 0.432 m 

Chassis Overall Width 1.842 m 

 Overall Height 1.684 m 

 Minimum Ground Clearance 0.199 m 

 Vehicle Mass with 80 kg Driver 2150 kg 

 Weight Distribution (Front/Rear) 58/42 %/% 
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In addition to the vehicle component specifications, the engine plant model in particular needs to be 

further refined to ensure that the correct amount of fuel is consumed during operation. This process 

requires a maximum torque curve and a fuel consumption rate look-up-table (LUT) (Figure 6.5) [38].  

 

Figure 6.5 2011 Equinox engine fuel consumption rate LUT and maximum torque curve 

The maximum torque curve has been visually converted into a digital format from specification 

sheets provided in Appendix C. Additionally, the fuel consumption rate LUT has been manually 

altered to consume the correct amount of fuel according to the U.S. EPA 5-cycle testing procedure 

(Figure 6.6) [39]. Three bags are used to collect emissions during the federal test procedure. 

Additionally, the city and highway sections of the US06 drive cycle are split. While only four cycles 

are presented below, the federal test procedure is tested again with air conditioning on.  
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Figure 6.6 EPA 5-cycle test procedure drive schedules 
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After integrating the powertrain component specifications and altering the engine fuel rate 

consumption LUT, the vehicle model is simulated on the five EPA test cycles to validate that the 

model accurately predicts dynamometer driving conditions. The 5-cycle test procedure is used to 

calculate the city and highway fuel economies according to the Code of Federal Regulations 40 CFR 

600.114-08 [40]. The 5-cycle test procedure includes hot and cold engine testing, but the simulations 

do not consider engine temperature. This introduces error to the model, but for the purpose of this 

work, having a vehicle model that depends on temperature is not necessary. 

Simulations of the vehicle model produced city, highway, and combined fuel economies of 22 

MPG, 32 MPG, and 26 MPG respectively. These fuel economies are equivalent to those published for 

the 2011 Chevrolet Equinox LS [37]. The combined fuel economy,      , is not determined from a 

duty cycle like the city,      , and highway,     , fuel economies; but is calculated based on their 

results [41]. 

 
      

 

    
     

 
    
    

 
(6.1) 

 

Thus, the completed conventional vehicle model of a 2011 Chevrolet Equinox LS acts as a basis 

for evaluating the benefits of electrification. 

6.2.4 Level 2 Vehicle Model Development 

The first step in MBD of the 2011 Chevrolet Equinox Retrofit EV is to develop a component-based 

BEV powertrain (Figure 6.7) without accounting for real world driving effects. Ultimately the 

simulation results from such a model would roughly represent dynamometer results for the 

conventional model. However, the results will be presented in mile per gallon equivalent (MPGe) 

since a BEV only consumes electrical energy during operation.  
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Figure 6.7 Autonomie generated BEV powertrain model components 

Similar to the conventional model, the generic Autonomie BEV model needs to be refined using 

component specifications (Table 6.2) to accurately represent and predict the performance of the 

purchased Equinox Retrofit EV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 56 

Table 6.2 2011 Chevrolet Equinox Retrofit EV specifications used to generate a BEV model 

Component Specification Value Units 

Battery Cell Capacity 100 Ah 

 Nominal Voltage 3.2 V 

 Configuration 1P108S  

Motor/Generator Maximum Peak Torque 223 Nm 

 Maximum Continuous Torque 128 Nm 

 Maximum Speed 1257 rad s
-1 

 Maximum Peak Power 61 kW 

 Maximum Continuous Power 41 kW 

Transmission Final Drive Ratio 8  

Wheels Effective Radius 0.351 m 

Chassis Overall Width 1.842 m 

 Overall Height 1.684 m 

 Ground Clearance 0.648 m 

 Vehicle Mass with Driver and Passenger 2043 kg 

 Weight Distribution (Front/Rear) 58/42 %/% 

 

The aforementioned specifications used to refine the generic BEV model were supplemented with 

battery and motor performance data. The battery model relies on OCP (Figure 6.8) and resistance 

LUTs (Figure 6.9) to predict performance, while the motor requires an efficiency LUT (Figure 6.10). 
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Figure 6.8 2011 Equinox Retrofit EV battery pack OCP LUT 

(a) 

 

(b) 

 

Figure 6.9 2011 Equinox Retrofit EV battery pack (a) discharge and (b) charge resistance LUTs 
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Figure 6.10 2011 Equinox Retrofit EV motor efficiency, maximum torque and continuous 

torque LUTs  

The simulation results of the 2011 Chevrolet Equinox Retrofit EV model must be converted from 

electrical energy consumption to fuel consumption to determine the MPGe; where   is the trip 

distance,   is the energy consumed during the trip,   is a conversion factor between electrical energy 

and fuel volume (33.70 kWh gal
-1

) [42],   is the correction for the change in SOC during the trip, 

     is the change in SOC,      is the nominal voltage,         is the number of cells in series, and  

          is the number of cells in parallel. 

      
  

   
 (6.2) 

   |    |                         (6.3) 

For an EV, the consumed electrical energy must be replaced. Thus, the MPGe calculation should 

account for the energy used to recharge the battery to its starting SOC. A performance-based 
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comparison between the conventional vehicle and the retrofitted vehicle is presented below in Table 

6.3, along with the MPGe calculation without the SOC correction. This introduces one pitfall 

associated with fuel economy ratings for EVs is that the published ratings do not account for this 

change in SOC; making EVs seem more fuel efficient than in reality. Nonetheless, the retrofitted EV 

displaces a significant amount of fuel. 

Table 6.3 Fuel economy results for the conventional and retrofitted 2011 Equinox models 

Vehicle Model FTP 

FTP 

    HWFET 

HWFET 

    Combined 

Combined 

    

Conventional 22 MPG  32 MPG  26 MPG  

Retrofitted EV 62 MPGe 127 MPGe 47 MPGe 96 MPGe 54 MGPe 111 MPGe 

6.2.5 Level 3 Vehicle Model Development 

Level 3 vehicle models improve the Level 2 vehicle model by adjusting the LUTs according to real-

world drive cycle data. The component signals on the controller area network (CAN) bus are logged 

using a C5 data logger from CrossChasm Technologies through the on-board diagnostic (OBD) II 

port. The modified LUTs then represent real-world vehicle performance as opposed to ideal 

simulation results. While Level 3 model development was attempted for this vehicle, the small data 

set and missing signals on the vehicle-side were insufficient to produce a model. 
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Chapter 7 

Experimental 

7.1 Equipment 

7.1.1 Battery 

The A123 AMP20 (Appendix D), 20 Ah pouch battery was selected for testing and modeling for 

three reasons. First of all, the AMP20 is a commercial battery. Secondly, the AMP20 is readily 

available in the laboratory. Finally, the AMP20 is used on-board the University of Waterloo 

Alternative Fuels Team (UWAFT) vehicle entered in the EcoCar 2 Challenge. Additionally, 

electrochemical models for the AMP20’s LiFePO4 chemistry have already been proposed and 

analyzed [43]. Thus, incorporating a degradation model into the existing models will reduce 

complexity and time requirements. 

7.1.2 Maccor 4200 Series 

The Maccor 4200 Series (Appendix E) was selected to conduct the characterization and reference 

performance testing of the AMP20 pouch batteries. The Maccor 4200 Series was selected due to its 

availability in the laboratory and its precision.  

7.1.3 Hybrid Test Bench 

Since the Maccor is a precise instrument, it is in high demand and unavailable for long-term 

degradation testing of the AMP20 batteries. Therefore, another test station was required to age the 

AMP20s. Fortunately, a Hybrid Test Bench (HTB) was developed in 2005 to experiment on battery 

and fuel cell technology for hybrid vehicle applications. While the bench is old and the resistance in 

the wiring has increased, it was determined that the HTB would satisfy the requirements of the 

degradation tests. Originally, the LabVIEW code controlling the HTB was designed to age the 

batteries on constant current charging and discharging profiles. Thus, the LabVIEW code was 

modified to test the batteries on drive cycles. The communication and sample times in LabVIEW 

were reduced to 150 ms in an attempt to match the drive cycle sample time of 100 ms. The 

communication time between LabVIEW and the devices are limited to about 130 ms, though error is 

more probable until the interval is increased to 150 ms; hence its selection. A full review of the 

LabVIEW code is available in Appendix F. 
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7.2 Characterization Test Procedure 

The AMP20 is characterized on the Maccor 4200 Series battery cycler at its beginning of life (BOL) 

and EOL states according to the following test procedure: 

1. Four channels are connected in parallel to increase current capability to 60 A while maintaining 

a voltage capability of 5 V. 

2. The AMP20 experiences a CC 1C charge until a voltage of 3.6 V, at which point the AMP20 

experiences a CV charge until a current of 2 A. 

3. The AMP20 then rests for an hour to reach a state of equilibrium before the testing continues. 

4. The AMP20 experiences a CCCV discharge at C/20 until a voltage of 2.0 V and current of 2 A 

is satisfied. 

5. The AMP20 then rests for an hour to reach a state of equilibrium before the testing continues. 

6. The AMP20 experiences a CCCV charge at C/20 until a voltage of 3.6 V and current of 2A is 

satisfied. 

7. The AMP20 then rests for an hour to reach a state of equilibrium before the testing continues. 

8. Steps 4 through 7 are repeated for charge and discharge rates of C/10, C/5, C/2, 1C, 2C, and 

3C. 

The OCP curve, maximum capacities, coulombic efficiencies and resistances are determined 

according to the calculations presented in Chapter 3. 

During the degradation testing on the HBT, the battery is transferred to the Maccor after 50 cycles 

for reference performance testing according to the aforementioned procedure with the exception that 

the only current rates tested are C/5, C/2, 1C, and 2C. 

7.3 Degradation Test Procedure 

The degradation test is designed to determine the rate of degradation from driving the UDDS drive 

cycle (Figure 7.1a). However, the UDDS drive cycle is presented in vehicle speed and not in current. 

The UDDS duty cycle is determined by simulating the UWAFT EcoCar 2 vehicle on the UDDS with 

a battery pack of AMP20 pouch batteries (Figure 7.1b). The UWAFT EcoCar 2 vehicle previously 

modeled by Lo has been updated to reduce current requirements by increasing the number of cells in 
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parallel and reducing the percent regeneration capability [44]. Current requirements were reduced to 

satisfy the HTB current limitations. 

(a) 

 

(b) 

 

Figure 7.1 UDDS (a) drive cycle and (b) duty cycle 

The AMP20 is degraded on the HTB according to the following test procedure: 

1. The AMP20 is connected after testing from the Maccor. 

2. The AMP20 is tested on the UDDS duty cycle until a voltage of 2.1 V. 

a. 2.1 V was selected as the lower limit since there is typically a 600 ms delay before 

the cycle switches to the next step, and therefore the voltage may drop below 2.1 V 

temporarily. It would be damaging if the battery voltage dropped below 2.0 V. 

3. The AMP20 rests for 30 minutes to reach a state of equilibrium before the testing continues. 

4. The AMP20 experiences a CC charge at 1C until a voltage of 3.6 V. 

5. The AMP20 rests for 30 minutes to reach a state of equilibrium before the testing continues. 

6. Steps 2 through 5 are repeated 49 times. 

After the 50 cycles are completed, the AMP20 is disconnected from the HTB and connected to the 

Maccor for reference performance testing. The entire procedure is repeated until the battery reaches 

its EOL state or until the investigation ends. 
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7.4 Degradation Simulation Procedures 

The semi-empirical SP degradation model is simulated on the duty cycles logged by the four Nissan 

Leafs according to the following test procedure: 

1. The battery model undergoes a CC discharge at 1C from its initial, charged, state until the 

simulated battery voltage reaches a lower limit of 2 V.  

2. The battery model undergoes a CC charge at 1C until the simulated battery voltage reaches 

an upper limit of 3.6 V. 

3. The battery model undergoes a CC discharge at 1C until a simulated battery voltage of 2 V 

to determine the rated discharge capacity at 1C. 

4. The battery model SOC is then charged to the SOC logged by the vehicle using a CC rate 

of 1C. 

5. The battery model is simulated on one of the four selected duty cycles. 

6. The battery model undergoes a CC charge at 1C until a simulated battery voltage of 3.6 V. 

7. The battery model undergoes a CC discharge at 1C until a simulated battery voltage of 2 V. 

8. The degradation results are normalized and extrapolated to predict annual degradation. 

9. Steps 2 and 3 are repeated to measure the simulated battery capacity fade. 

10. Steps 4 through 9 are repeated seven times to predict degradation over eight years. 

Since the Nissan Leaf uses a battery pack rated at 66.2 Ah, the logged current signal is converted to 

a C-rate signal, then converted back to a current signal for the AMP20 rated capacity of 20 Ah. 

Therefore, the degradation results are assuming a pack of AMP20 pouch batteries were onboard the 

Nissan Leaf. These results do not represent degradation of the Nissan Leaf battery pack.  
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Chapter 8 

Battery Degradation Model Development 

8.1 Single Particle Degradation Model 

8.1.1 Introduction 

The SP model is one of the simplest representations of an electrochemical cell (Figure 8.1). The SP 

model’s geometry is determined from the assumption that the electrodes are an accumulation of 

perfectly spherical particles.  

 

Figure 8.1 SP model of a graphite/LiFePO4 battery; reactions from left to right for battery 

discharge 

The particles in the SP model do not interact directly, as they would in the other more sophisticated 

models such as the P2D model. In models like the P2D model, the entire system must be solved 

simultaneously; however the individual electrodes can be modeled separately in the SP model.  

At first, it may not seem beneficial to be able to separate the electrode models since they need to be 

solved simultaneously to predict battery voltage in the following equation; where       is the cell 

potential,      is the LFP electrode potential, and    is the graphite electrode potential. 

               (8.1) 

Nonetheless, it might be beneficial to separate the electrode models from the SP model for predicting 

degradation in vehicle battery packs. First of all, the most significant degradation is attributed to SEI 

growth at the interface between the negative electrode material and electrolyte. Secondly, electric 

powertrains use a high voltage battery pack composed of a graphite negative electrode and an 
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unknown positive electrode material. Ultimately, the SP model of the graphite negative electrode and 

the degradation equations for that electrode should be able to predict battery aging without knowing 

the positive electrode material. Therefore, the SP degradation model of an automotive-grade graphite 

electrode should be applicable to all battery packs onboard vehicles today. It must be noted, however, 

that the less sophisticated SP model will not elucidate the inner processes of the battery as a more 

complex P2D model would. 

8.1.2 Governing Equations 

As it was previously state, the SP model does not model the interactions between electrode active 

material particles. In other words, the SP model does not consider ion transport limitations in the 

electrolyte or ohmic drop across the solid-phase material in the electrodes [45]. In addition to these 

exclusions, the two-phase nature of LFP is neglected and assumed to follow conventional solid-state 

diffusion equations [45]. The governing equations for the SP model used in this investigation were 

developed by Safari et al. in separate papers, but have been compiled into an SP degradation model 

[27, 45, 46].  

The current density in the active material particles is related to the rate of lithium intercalation 

through the Butler-Volmer equation; where     is either the negative or positive electrode,     
    is the 

intercalation current density with respect to the total surface area of the particles,   is Faraday’s 

constant (96487 C mol
-1

),     
  is the electrochemical reaction rate constant of the intercalation 

process,    is the electrolyte concentration,     
    is the maximum concentration of lithium in the 

particles,    (   for positive electrode) is the dimensionless solid-state lithium surface concentration 

of the negative electrode particles,   is the charge-transfer coefficient,   is the gas constant (8.314 J 

mol
-1

 K
-1

),   is the absolute temperature, and      is the surface overpotential. 
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    )     ( 

  

  
    )  ] (8.2) 

The surface overpotential for the negative electrode is present below, where    is the solid-phase 

potential,    is the open circuit potential,      is the SEI film resistance, and   
  is the total current 

density of the negative electrode. 

                
  (8.3) 
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The surface overpotential for the positive electrode is slightly different, where    is the reactive 

resistance of the positive electrode particles. 

              
    (8.4) 

As is evident in equations (8.2) through (8.4), the intercalation current density for the positive 

electrode represents the entirety of current flowing through the electrode while the intercalation 

current density of the negative electrode is different. The difference is described by a parasitic 

reaction consuming some of the overall current; where    is the parasitic current density over the total 

surface area of the negative electrode particles. 

   
    

       (8.5) 

The parasitic reaction kinetics are described by the Tafel equation for the negative electrode, where 

  is the number of electrons in the parasitic reaction,    
   

 is the apparent rate constant of the side 

reaction, and    is the charge-transfer coefficient of the side reaction. 

 
         

   
    (

     

  
          

  ) (8.6) 

The SEI thickness and resistance are updated according to the following two equations; where      

is the SEI film thickness,      is the molar volume of the SEI film,     
  is the initial resistance of the 

SEI film, and      is the ionic conductivity of the SEI film. 

      

  
 

      
  

   (8.7) 

 
         

  
    

    
 (8.8) 

 Battery current is oppositely related to the electrodes, where      is the electrode thickness, and 

     is the specific interfacial area per unit volume of electrode. 

         
  (8.9) 

          
    (8.10) 
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The Butler-Volmer equation describing the intercalation kinetics within the electrodes also depends 

on the lithium concentration within the particles. A three-parameter, fourth-order polynomial 

approximation of Fick’s law for the lithium diffusion into a spherical particle was proposed by 

Subramanian et al. [47]. The first equation describes the mean lithium concentration in the particle; 

where  ̅ (or  ̅ for the positive electrode) is the dimensionless mean solid-state lithium concentration 

inside the particles,   is time, and      is the particle radius. 

   ̅

  
 

     
   

         
      (8.11) 

The second equation describes the flux of lithium within the particle; where  ̅    is the dimensionless 

volume-averaged flux of lithium concentration in the particle, and      is the solid-state lithium 

diffusion coefficient in the particle. 
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      (8.12) 

While this equation holds for the negative electrode, the diffusion coefficient is concentration-

dependent in the positive electrode according to the following relationship; where   
  is the solid-state 

diffusion coefficient at a completely delithiated state, and   and   are empirically fit constants. 

 
   

  
 

     ̅  
 (8.13) 

The final approximation relates the first two equations with the particle surface concentration.  

        ̅    ̅    
    

         
      (8.14) 

A summary of the governing equations is presented below in Table 8.1. 

 

 

 

 

 



 

 68 

Table 8.1 SP degradation model governing equations for graphite and LFP electrodes 

Graphite Electrode LFP Electrode 
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Degradation Equations of the Graphite Electrode 
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8.1.3 Simulink SP Degradation Model 

Although Safari et al. used MATLAB’s fsolve function to solve the set of equations in Table 8.1, the 

simulation time was too long. Therefore the set of equations were designed into a Simulink model 

that runs significantly faster. 

A high level review of the model (Figure 8.2) contains the input block referencing the time and 

current variables in the MATLAB workspace. The time and current are then fed into the negative 

electrode and positive electrode blocks. Furthermore, the time and current input is used to determine 

the discharge capacity. The potential outputs from the electrode blocks are used to calculate the 

battery voltage. If the battery voltage exceeds 3.6 V or drops below 2 V, the simulation is stopped. 

 

Figure 8.2 High level view of the SP degradation model in MATLAB Simulink 

Within the negative electrode block (Figure 8.3), the equations defined in Table 8.1 are virtually 

arranged and connected in an algebraic loop that MATLAB Simulink will solve for each time step. 
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Figure 8.3 Negative electrode calculation block 

The positive electrode block is nearly the same with a few discrepancies surrounding the LFP 

particle resistances (Figure 8.4). 

 

Figure 8.4 Positive electrode calculation block 

8.2 SP Degradation Model Parameter Fitting 

8.2.1 Open Circuit Potential 

The OCP curves used in the SP degradation model are fit to C/50 galvanostatic charge and discharge 

test data from graphite/Li and LFP/Li half-cell coin cells constructed from A123 AMP20 pouch 
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batteries. It is assumed that a current rate of C/50 is too small to impart a significant disturbance from 

the OCP of the battery. The charge and discharge data is kept separate due to the hysteresis the A123 

cells experience between charging and discharging (Figure 8.5). 

 

Figure 8.5 A123 AMP20 hysteresis for a current rate of C/50 

Instead of fitting the OCP data to the models defined by Safari and Delacourt, the data was 

formatted into a Simulink LUT to increase accuracy and reduce simulation time (Figure 8.6) [45]. 

The OCP models were originally fit to the data; however the model failed to fit the final 

deintercalation stage of the graphite electrode. 
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Figure 8.6 Charge and discharge electrode OCP data 

The OCP operating ranges of the electrodes must be determined to fit the OCP data of the AMP20 

pouch battery. The operating range for each electrode is determined using dV/dQ plots. Essentially, 

any changes in the voltage profile during charge or discharge will yield a peak in the dV/dQ plot. The 

LFP/Li half-cell and graphite/Li half-cell dV/dQ curves are plotted against the pouch battery dV/dQ 

curve to determine the operating ranges for a CC discharge (Figure 8.7). 
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Figure 8.7 dV/dQ plot for a discharging battery 

It is evident that the deintercalation peaks of the pouch battery are attributed to the graphite/Li half-

cell; or the negative electrode. The graphite/Li dV/dQ curve can thus be shifted and stretched to 

satisfy those peaks. Although it is more difficult to see, the LFP/Li half-cell is attributed to the initial 

slope of the pouch battery dV/dQ curve. The LFP/Li dV/dQ curve is also shifted and stretched until 

the calculated dV/dQ curve matches that of the pouch battery (Figure 8.8). 
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Figure 8.8 A fitted dV/dQ plot for a discharging battery 

This fitting method is easy to implement and provides accurate results when comparing the voltage 

responses for a given charge or discharge (Figure 8.9). 
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Figure 8.9 Voltage responses for a discharging battery 

The difference between the measured cell voltage response and the calculated voltage response can 

be attributed to the fact that the calculated voltage is determined from 2mAh half-cell coin cell data 

while the cell voltage is measured from a 20Ah pouch battery. These results indicate that the low-

current results of the coin cells can be adequately scaled to estimate pouch battery performance. 

The process presented for discharging a cell is also applied to charging a cell with similar results 

(Figure 8.10, Figure 8.11). Once the OCP curves are fitted, the model parameters can be determined 

to simulate battery performance under various loads. 
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Figure 8.10 A fitted dV/dQ plot for a charging battery 

 

Figure 8.11 Voltage responses for a charging battery 
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8.2.2 Single-Particle Model Parameters 

The single-particle model presented previously, developed for LiFePO4 chemistry based on work by 

Safari and Delacourt [45], was used to represent the A123 AMP20 pouch batteries. The model 

parameters have been altered to more accurately predict the AMP20’s performance according to the 

current being applied to the battery. The fitted model parameters are presented below (Table 8.2) 

along with the simulated results compared to the experimental data (Figure 8.12, Figure 8.13). It is 

evident that a good fit has been achieved. 

Table 8.2 Fitted single-particle model parameters for each electrode 

 Graphite Electrode LFP Electrode 

Parameter Symbol Value Symbol Value 

Thickness [m] Ln 34x10-6 a Lp 70x10-6 a 

Area [m2] An 1.4602 m Ap 1.3996 m 

Volume fraction εn 0.56 a εp 0.435 a 

Particle radius [m] rn 3.5x10-6 a rp 36.5x10-9 a 

Maximum solid-phase lithium 
concentration [mol m-3] 

Cmax,n 31900 f Cmax,p 19998 f 

Charge transfer coefficient βn 0.5 a βp 0.5 a 

Solid-state lithium diffusion coefficient Dn
0 2x10-14 a Dp 1.18x10-18 a 

Intercalation rate constant [m2.5 mol-0.5 

s-1] 
Kn

0 8.19x10-12 a Kp
0 5x10-12 a 

Salt concentration in the liquid phase    
[mol m-3] 

Ce 1000 a Ce 1000 a 

SEI film resistance [Ω m2] Rsei 0.0047 f   

 Empirical Parameters 

 m p Rp,c Rp,d 

Values 1 a 1.6 a See Figure 8.14 f 

*a = according to [45], m = measured, f = fitted 
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Figure 8.12 Fitted SP model of AMP20 compared to experimental discharge data 

 

Figure 8.13 Fitted SP model of AMP20 compared to experimental charge data 
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The SP model in this work differs from the one presented by Safari and Delacourt [45]. Safari and 

Delacourt account for multiple LFP particle groups on the positive electrode by determining the 

particle size distribution and the resistances associated with each particle group. The model presented 

in this work assumes one LFP particle group when considering the governing equations. To account 

for the changing resistance of the particles since several particle groups do exist in reality, the LFP 

particle resistance is assumed to change with its level of lithiation. Such a resistance change was 

empirically fit and it was determined that the resistance was different for charging and discharging 

currents but did not depend on the magnitude of the current (Figure 8.14). 

 

Figure 8.14 Empirically fit LFP particle resistance according to the level of lithiation 

Using an empirically fit LFP particle resistance LUT in the model improves the accuracy of the SP 

model for the AMP20 pouch battery in particular; however such an empirical fit reduces the 

robustness of the model. Therefore, this model can likely be used on other AMP20 pouch batteries 

with limited parameter alterations; however this model should not be used on other LiFePO4 without 

caution or refitting of the parameters. 
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8.2.3 Degradation Model Parameters 

It was determined during the degradation parameter fitting process that the fitted model of 

galvinostatic data did not fit the duty cycle data as well. To adjust accordingly, the discharge LFP 

particle resistance values (Figure 8.14) were increased by 3 Ω m
2
. It was also discovered that the 

hysteresis was insignificant during the degradation cycling and to adjust to fit the data, the LFP 

charging OCP data was empirically lowered by 50 mV. Finally, the resulting LFP OCP curve was 

also empirically lowered by 50 mV. These changes provided a model that fit the variable current 

conditions well. Therefore, the model previously presented is used for galvanostatic cycling while 

these adjustments are used in the degradation cycling. 

The battery degradation model parameters were fit to the experimental data Table 8.3). 

Degradation data from cycling the AMP20 on the UDDS duty cycle is used since the US06 duty cycle 

data is insufficiently dense enough to generate a fit. The resulting degradation prediction is presented 

in Figure 8.15 for capacity fade and impedance rise.  

Table 8.3 Fitted battery degradation parameters at the graphite electrode 

Parameters Symbol Values 

SEI molar volume [m3 mol-1] Vsei 5x10-5 a 

SEI ionic conductivity [S m-1] κsei 5.2x10-7 f 

SEI charge transfer coefficient βs 0.5 a 

Parasitic rate constant [mol m-2 s-1] Kfs
0 4.3x10-10 f 

*a = according to [45], m = measured, f = fitted 
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(a) 

 

(b) 

 

 

Figure 8.15 Simulated (a) capacity fade and (b) impedance rise compared to experimental data 
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The experimental capacity loss data does not appear linear, yet there is a linear fit from the SP 

degradation model. It is possible that the first 50 cycles is a formation period, followed by a 50 cycle 

plateau before degrading further. It is unlikely that this is the case due to the 5-cycle preconditioning 

and having run 90 duty cycles while tuning of the HTB. Thus, the formation period is likely to have 

been completed and the variability in experimental data is random. These assumptions could be 

confirmed with more test data in future work. Now that the semi-empirical SP degradation model has 

been successfully fit to the experimental data, it can be used to analyze how battery degradation 

changes with drive cycle and driver behaviour. It can also be integrated into a vehicle model to 

predict real-time degradation in future work. 
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Chapter 9 

Analysis and Discussion 

9.1 Sensitivity Analysis 

The parasitic reaction of the SEI film formation is represented by the Tafel equation, presented again 

below. 

 
         

   
    (

     

  
          

  ) (8.6) 

The parasitic current density,   , is a function of the negative electrode potential,   , the SEI film 

resistance,     , and the total negative electrode current density,   
 . With respect to a duty cycle, the 

negative electrode potential depends on the SOC, the SEI film resistance represents the battery history 

or age, and the negative electrode current density is the battery current of the duty cycle. These 

variables can be assessed further by determining their partial derivatives while holding the other 

variables constant. 
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The interpretation of these equations is to say that a positive change in negative electrode potential 

yields a positive change in the parasitic current density, a positive change in the SEI film resistance 

yields a negative change in the parasitic current density, and a positive change in the negative 

electrode current density yields a negative change in the parasitic current density. These changes also 

depend on the present state of the system, which can impact their effects on the parasitic current 

density. The partial derivatives can be compared to each other to determine which variables cause the 

most significant changes in parasitic current density. 
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The following conditions are possible for the system. 
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The first condition states that if the magnitude of the negative electrode current density is greater 

than 1 A m
-3

 (c.a. 24 A), then a change in negative electrode potential has less impact than a change 

in SEI resistance. The second condition states that if the magnitude of the SEI resistance is greater 

than 1 Ω m
2
 , then a change in negative electrode potential has less impact than a change in negative 

electrode current density. The third condition states that if the magnitude of the negative electrode 

current density is greater than the magnitude of the SEI resistance, then a change in SEI resistance has 

more impact than a change in the negative electrode current density. These conclusions can be 

categorized into a set of operating conditions. 

For low current operation at the BOL, a change in potential or SOC will impact the degradation 

rate the most, seconded by a change in age, followed by a change in current. 
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 (9.5) 

For high current operation at the BOL, a change in SEI resistance will impact the degradation rate 

the most, seconded by a change in SOC, followed by a change in current. 
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For low current operation at the EOL, a change in SOC will impact the degradation rate the most, 

seconded by a change in current, followed by a change in age. 
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 (9.7) 

Finally, for high current operation at the EOL, a change in current will impact the degradation rate 

the most, seconded by a change in the age, followed by a change in the SOC. 
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The effects of current, initial SOC, DOD, and SEI resistance are presented below (Figure 9.1) by 

applying a negative current to the battery followed by an equivalent positive current to ensure the 

overall change in SOC is zero. The results are plotted against the processed capacity, which is the 

total number of coulombs into and out of the battery. Thus, 2 Ah processed capacity means 1 Ah of 

charging followed by 1 Ah of discharging for a 5% DOD on a 20 Ah battery.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 9.1 Sensitivity analysis of degradation from (a)-(b) various currents at 20% initial SOC, 

5% DOD, and 4.7x10
-3

 Ω m
2
; (c) various initial SOCs at 20 A, 5% DOD, and 4.7x10

-3
 Ω m

2
; and 

(d) various DODs at 20% initial SOC, and 4.7x10
-3

 Ω m
2
 

The lithium loss in Figure 9.1(a) appears higher for lower currents. However, from the Tafel 

equation, it is known that a higher negative electrode current density will generate higher parasitic 

current density. Figure 9.1(b) confirms this earlier assessment that a higher current rate will result in a 

more aggressive side reaction. The reason lithium loss is higher for lower currents in Figure 9.1(a), is 

because lithium loss is defined as the integral of the parasitic current density over time and it takes a 

longer time for the lower currents to reach the same processed capacity compared to the higher 
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currents. Essentially, lower currents degrade the battery more because they degrade the battery for a 

longer period of time. Thus, the charging time is another factor to consider when analyzing 

degradation. 

The other results observed from the sensitivity analysis provide a clear dependence on the 

operational SOC and DOD (Figure 9.1(c)-(d)). As expected, the lithium loss decreases with the initial 

SOC. The parasitic current density decreases with a positive change in negative electrode potential, or 

a negative change in operation SOC. The lithium loss increases with DOD because the battery usage 

increases as well, exposing the battery to more degradation. The sensitivity analysis did not identify 

any relationship between the parasitic current density and the SEI resistance.  

9.2 Battery Degradation and Duty Cycles 

The most significant assumption made throughout this work is that the degradation rate of a LiB 

depends upon its duty cycle. To confirm this assumption, the fitted battery degradation model was 

simulated on the UDDS, US06, and HWFET duty cycles with initial SOCs of 80%, 50% and 20% 

(Figure 9.2). Cycleable lithium loss is used to assess real-time degradation rates of the duty cycles. 
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Figure 9.2 Simulated degradation rates of a fresh AMP20 pouch battery for the UDDS, US06, 

and HWFET duty cycles for (a) 80% initial SOC, (b) 50% initial SOC, (c) 20% initial SOC 

The simulation results confirm the assumption that the degradation rate depends on the duty cycle, 

regardless of the initial SOC. The UDDS duty cycle consumes the most amount of lithium at the 

highest rate compared to the US06 and HWFET duty cycles. The HWFET duty cycle degrades the 

battery at a slightly higher rate than the US06 duty cycle. 

Considering the typical associations with the three drive cycles, the UDDS drive cycle represents 

typical city driving, the US06 drive cycle represents aggressive city driving, and the HWFET drive 

cycle represents highway driving. These associations would typically suggest that the degradation rate 

would be highest for the US06 drive cycle, followed by the UDDS drive cycle and the HWFET drive 
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cycle. However, the simulation results disagree with convention since the UDDS drive cycle degrades 

the battery capacity at a significantly higher rate compared to the other drive cycles. This can be 

explained by considering the side reaction kinetics involved. 

Since the UDDS, US06, and HWFET duty cycles were simulated at the same initial SOC and state 

of health (SEI resistance), the primary difference between the duty cycles is their current demands, 

charging times, and DODs. Based on the sensitivity analysis, duty cycles with longer charging times, 

at higher currents, and larger DODs, should yield higher degradation rates. Reviewing the duty cycle 

statistics provides insight into why the UDDS duty cycle degraded the battery more than the other 

two cycles (Table 9.1). 

Table 9.1 Comparison of aggressiveness between duty cycles 

Parameter UDDS US06 HWFET 

Maximum Discharge Current [A] 53.47 136.51 42.60 

Maximum Charge Current [A] 24.20 39.93 32.11 

Mean Discharge Current [A] 6.02 21.21 12.91 

Mean Charge Current [A] 1.34 2.56 0.77 

Charging Time [s] 361.55 133.92 89.39 

DOD [%] 11.45 17.68 13.70 

 

The duty cycle statistics reveal insights into the reasoning behind the UDDS duty cycle’s higher 

degradation rate. The UDDS duty cycle has the highest degradation rate due to the amount of time 

spent charging the battery compared to the US06 and HWFET duty cycles. This appears to be the 

most significant factor when assessing duty cycle impact on degradation since the UDDS duty cycle 

does not have the most severe current statistics and does not have the largest DOD. The US06 duty 

cycle has the most severe current statistics and the largest DOD but does not degrade the battery 

significantly more than the HWFET duty cycle. The large DOD of the US06 duty cycle is also 

representative of the operational SOC of the duty cycle, and a large DOD means a lower operational 

SOC throughout the cycle. Therefore, the interaction between the severe current statistics and longer 

charging time with the lower operational SOC of the US06 duty cycle is limiting lithium loss to a 
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similar rate as the HWFET duty cycle. Regardless, the larger DOD should cause higher degradation 

rates for the US06 duty cycle, but does not because the effect of the duty cycle DOD is not accounted 

for in these simulations. 

To account for the impact of DOD on the degradation rate, the simulations were conducted again; 

this time with a 1C charging period following the duty cycle. The notion is that a larger DOD will 

require more charging to return the battery SOC to its initial value. Thus, a larger DOD will increase 

the amount of time spent charging the battery and increase the lithium loss associated with that duty 

cycle. The simulation results represent the round-trip degradation associated with each duty cycle at 

various initial SOCs (Figure 9.3).  

 

Figure 9.3 Simulated round-trip degradation rates of a fresh AMP20 battery for the UDDS, 

US06, and HWFET duty cycles for (a) 80%, (b) 50%, and (c) 20% initial SOCs 
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The newest set of simulation results provides confirmation that the DOD is an important factor 

when considering the duty cycle effects on battery degradation. Without considering the DODs of the 

duty cycles, the UDDS cycle consumed at least 2.5 times more lithium ions than the US06 and 

HWFET cycles. After accounting for the various DODs, the round-trip degradation rates of the three 

duty cycles were comparable. The US06, HWFET, and UDDS duty cycles received the highest to 

lowest increase in lithium loss as a direct result of including duty cycle DOD. These results validate 

the conclusions from the sensitivity analysis that increasing the DOD will increase degradation rates 

because more charging is required to return the battery SOC to its initial value. 

Overall, the degradation analysis on the EPA drive cycles has revealed that the degradation rate of 

a vehicle-grade battery pack depends strongly upon the duty cycle. Longer charging times at higher 

currents, higher operational SOCs, and larger DODs, lead to higher degradation rates. One limitation 

of the simulation results thus far is that the experiments have been limited to the EPA drive cycles. 

These cycles are often considered to be weak representations of real-world driving behaviour. 

Therefore, logged vehicle data from FleetCarma’s database is used to simulate battery degradation on 

real-world driving data to validate the results obtained from the EPA drive cycles. 

9.3 Real-World Degradation Analysis 

Four sets of Nissan Leaf data were selected from the FleetCarma database to verify the conclusions 

made from the simulations on the EPA drive cycles. The four data sets have distinct driving patterns 

to ensure the conclusions made from this study are robust (Figure 9.4). The objective of this study is 

to confirm that the charging time, the operational SOC, the DOD, and the current demands are 

significant factors that affect battery degradation on real-world usage profiles.  

 

 

 

 

 

 



 

 92 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 9.4 Daily distance histograms for the four Nissan Leaf data sets, (a) Driver 1, (b) Driver 

2, (c) Driver 3, and (d) Driver 4 

The statistics on the four sets of Nissan Leaf data can identify differences before the degradation 

simulations are conducted (Table 9.2). The previous findings of the sensitivity analysis and EPA duty 

cycle simulations have shown strong evidence that the degradation rate will directly depend on the 

duty cycle statistics. More specifically, the charging time, the operational SOC, the DOD, and the 

current demands will determine which driver degrades the battery more aggressively. 
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Table 9.2 Summary of duty cycle statistics for the selected driver types 

 

Based on the duty cycle statistics, Driver 1, Driver 3, Driver 2, and Driver 4 are expected to have 

the highest to lowest degradation rates. Driver 1 is expected to have the highest degradation rate 

because it contains the longest charging time with aggressive current demands and the second highest 

mean DOD. Driver 3 is expected to follow Driver 1 because it contains the second longest charging 

time. While Driver 3 has a lower mean operational SOC, its current demands and DOD are less 

aggressive than Driver 1’s. Driver 4 has more aggressive current demands, and a larger DOD, when 

compared to Driver 2, but Driver 2 is expected to degrade the battery more than Driver 4. This is 

primarily because the charging time for Driver 4 is significantly less than Driver 2. Additionally, 

Driver 4 has a high operational SOC that will reduce its degradation rate. 

The four drivers’ duty cycles were simulated to predict capacity fade over a span of eight years 

(Figure 9.5). To reduce simulation time, and because the time between trips is unavailable, the 

simulations do not include calendar aging. The degradation rates observed are solely a result of the 

duty cycle and the 1C charging procedure used to transition the SOCs between trips. 

Parameter Driver 1 Driver 2 Driver 3 Driver 4 

Maximum Current [A] 89.12 75.98 77.04 81.76 

Minimum Current [A] 85.80 33.94 35.33 34.59 

Mean Discharge Current [A] 7.22 4.06 4.57 7.43 

Mean Charge Current [A] 2.30 3.84 2.82 4.00 

Charging Time [hours] 122.91 59.20 84.33 13.75 

Mean Operational SOC [%] 73.28 60.22 69.24 81.26 

Mean DOD [%] 4.34 4.03 3.74 6.50 
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Figure 9.5 Capacity fade over eight years of driving 

The simulation results are in agreement with the hypothesized order of degradation based on the 

information accumulated from the sensitivity analysis and EPA duty cycle study. Driver 1, Driver 3, 

Driver 2, and Driver 4 experienced 5.51%, 5.17%, 4.16%, and 0.75% capacity fade, respectively. The 

factor with the largest impact is the charging time experienced by the battery for a given duty cycle. 

The extremity of the current demands, the DOD, and the operational SOC are secondary factors that 

would distinguish two duty cycles with similar charging times. 

The key result of this study is the confirmation that the degradation rate of real-world data is 

heavily dependent upon the duty cycle.  

9.4 Degradation Reduction Methods 

Based on these results, battery degradation could be reduced by limiting the amount of regenerative 

braking, or maintaining a low battery SOC for the duration of the battery’s lifetime. The purpose of 

regenerative braking is to capture the energy that would otherwise be lost with mechanical braking 
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and to use that energy to propel the vehicle at a later time. It does not make logical sense to limit such 

an efficient system to reduce battery degradation; especially since the aforementioned degradation 

rates are so slow. However, it is more reasonable to maintain a lower battery SOC. BEVs such as the 

Nissan Leaf cannot be controlled to maintain a low SOC, and thus the driver should only charge the 

battery to an SOC required to satisfy the next day’s required range. PHEVs and HEVs can be 

controlled to operate the battery at a relatively low SOC to reduce the degradation rate; which is 

already a common practice in the automotive industry. 

9.5 Pack Design Considerations 

Considering battery pack design and sizing, the maximum capacity loss simulated over eight years 

was 5.51%; however, the lowest degradation was 0.75%. The current definition of EOL, mentioned 

previously, is when the battery capacity degrades to 80% of its rated capacity or the battery power 

degrades to 80% of the power rating at 80% DOD. Thus, battery packs are sized to last through 20% 

degradation. The simulation results suggest that such pack design leads to gross oversizing; reducing 

efficiencies and increasing costs and GHG emissions. It should be noted that the simulated results do 

not account for calendar aging and temperature effects that would increase the degradation 

predictions. 

Oversizing can be prevented in two ways: using data to specify pack size or generating multiple 

pack sizes. In the first scenario, the combination of real-world battery data and physics-based models 

can be used to determine the optimal battery size to satisfy range requirements over the lifetime of the 

vehicle instead of assuming 20% degradation. The second scenario is to understand that there may be 

several classes of drivers and that some drivers will degrade the batteries faster than others. Real-

world driving data can be used by those drivers to identify which battery pack, from a selection of 

sizes, is right for them. For example, the Tesla Model S comes in two battery pack sizes. The driver 

can use their personal degradation prediction to identify which pack will meet their range 

requirements at the vehicle’s EOL. 

The system requirements to use the second scenario are already possible through CrossChasm’s 

FleetCarma system. The system consists of vehicle monitoring data as well as vehicle models, which 

can be used to determine driver behaviour, monitor driving statistics, predict fuel consumption and 

costs, and more. Unfortunately the system does not include a metric for battery degradation. Thus, the 
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integration of the battery degradation model into a vehicle model would make the second scenario a 

reality. 

9.6 Model Limitations & Future Work 

It was previously noted that the empirically-fit variables of the SP degradation model restrict it’s 

applications from being applied to other batteries. Therefore, the simulation results are applicable to 

the AMP20 battery that was tested. While these results could potentially be applied to other AMP20 

batteries, variations in manufacturing the batteries may alter their performance and degradation 

properties. Therefore future work should aim to improve the fit of the SP degradation model by 

removing the empirically-fit LFP particle resistance. Also, several AMP20 batteries should be 

characterized to understand the distribution of their physical properties such as capacity or particle 

sizes. Such an analysis would provide useful statistical information on the accuracy of future 

predictions. 

Another limitation of the current work is the assumption that battery temperature and calendar 

aging do not impact battery degradation. These assumptions were used to minimize the complexity of 

the model and simulation work. The objective was to determine how duty cycles affect degradation, 

so the temperature and storage conditions were removed from consideration. However, these two 

factors are known to have an impact on battery degradation. Therefore, future work should include 

the research and experimentation of these effects on degradation so a robust degradation model can be 

generated. 

The battery degradation testing and simulation procedures used a 1C charging rate, but the 

charging rate experienced by a pack like the Nissan Leaf is less than C/4. The simulation results also 

indicated that the charging procedure was causing degradation on a similar scale as the duty cycle. 

This impacted the ability to isolate the effect of the duty cycle when performing the 8 year lifetime 

prediction. Future work should involve testing and simulating the battery in a similar way to this 

study, but with lower charging rates.  

Finally, the SP degradation model is an independent system; external from a vehicle model. The 

drive cycle a vehicle experiences must either be logged or modeled to generate a duty cycle to pass 

into the degradation model. That degradation model can then be run to predict the growth of an SEI 

film on the negative electrode surface. The capacity loss is measured by cycling the battery model at 

1C to determine its discharge capacity and compare it to the rated capacity. Although such a 



 

 97 

procedure is useful in predicting battery degradation for CrossChasm consulting, it is not useful and 

cannot be integrated into the FleetCarma product line. Integrating the battery degradation equations 

into a vehicle model would provide FleetCarma with the capability of assessing per-trip degradation 

results as well as degradation predictions into the future. Therefore, it is recommended that future 

work include the integration of the degradation model into a vehicle model. 
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Chapter 10 

Conclusions & Recommendations 

10.1 Conclusions 

Lithium ion battery degradation depends on the duty cycle being performed. For an automotive 

battery such as the A123 AMP20 battery selected for this study, the degradation depends on the drive 

cycle. Degradation simulations on the UDDS, US06, and HWFET U.S. Environmental Protection 

Agency (EPA) drive cycles yielded respective degradation rates of 17.41, 3.08, and 4.64 (µAh 

Li
+
)(Ah Processed)

-1
 at 80% initial state-of-charge (SOC), 7.04, 1.79, and 2.14 (µAh Li

+
)(Ah 

Processed)
-1

 at 50% initial SOC, and 1.85, 0.46, and 0.54 (µAh Li
+
)(Ah Processed)

-1
 at 20% initial 

SOC. 

A sensitivity analysis on the degradation model identified a dependence on the negative electrode 

potential, the solid electrolyte interface (SEI) impedance, and the negative electrode current density. 

Thus, battery degradation depends upon the operational battery SOC and the depth-of-discharge 

(DOD), the history of the battery usage, and the instantaneous usage of the battery. Thus, a higher 

SOC, a larger DOD, a more aggressive usage history, and aggressive current demands would 

theoretically lead to higher degradation rates. However, there was no discernible effect from the SEI 

resistance on the degradation rates. 

DOD is important to consider when discussing degradation for automotive applications. The 

battery will need to be charged at the end of a trip depending on how much it was discharged during 

the trip. Therefore, trips with larger DODs will lead to additional degradation from the recharging 

process. The UDDS, US06, and HWFET duty cycles were simulated with charging at 80%, 50%, and 

20% initial SOC. It was observed that the recharging process accounted for between 47% and 86% of 

the total lithium loss. 

Four Nissan Leaf data sets were extracted from the FleetCarma database to determine if the 

simulation results from the sensitivity analysis and the EPA duty cycle study were applicable to real-

world driving data. It was predicted that Driver 1, Driver 3, Driver 2, and Driver 4 would yield the 

highest to lowest capacity fade over an eight year simulation based on the charging time, the current 

demand, the mean operational SOC, and the mean DOD of the duty cycles. The hypothesis was 

correct with 5.51%, 5.17%, 4.16%, and 0.75% capacity fade for Driver 1, Driver 3, Driver 2, and 
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Driver 4. This confirms that battery degradation is a function of the duty cycle. More specifically, the 

charging time, the current demand, the operational SOC, and the DOD of a duty cycle are all vital 

factors that impact how the battery ages. 

The following milestones were completed to reach the aforementioned conclusions: 

 Rate capability characterization tests were conducted on an A123 AMP20 battery. 

 An existing hybrid test bench was repurposed to cycle the AMP20 battery on duty cycles for 

battery degradation experiments. 

 An electrochemical battery model was combined with a kinetic-limited degradation model 

into a single-particle battery degradation model in Simulink. 

 2 mAh galvanostatic cycling data was used to fit the model parameters while the rate 

capability data was used to fit a positive electrode particle resistance look-up-table. 

 Hybrid test bench degradation results were used to fit the degradation parameters in the 

battery model. 

The simulation results and observations presented in this work are limited to the particular A123 

AMP20 battery selected for testing and modeling. The model generated for the battery requires an 

empirically-fit positive electrode resistance look-up-table that is specific to that battery. The results 

are also limited to room temperature conditions and to the assumption that there is no calendar aging. 

Regardless of the limitations, the results and observations provided evidence to support further 

investigation into duty cycle dependent battery degradation. 

Ultimately, the main conclusion of this work is that battery degradation is a function of the duty 

cycle. Therefore, each driver will degrade the battery differently over the lifetime of the vehicle. Duty 

cycle factors that increase the degradation rate are long charging times, aggressive current demands, 

high operational SOC, and large DOD.  

10.2 Recommendations 

1. It is recommended that an investigation be conducted to determine the best lifetime prediction 

model for LiFePO4 batteries used in vehicle applications. This investigation should include a 

dimensional analysis to improve the knowledge gained from the sensitivity analysis in this 

work. A proposed model improvement is to use the variable solid-state diffusivity model 
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presented in Appendix J for its superior accuracy in galvanostatic conditions. Other models 

should be considered. 

2. To improve the robustness of the model, it is recommended that more experiments be 

conducted to collect more data. Perform the experiments detailed in this work, but test for a 

longer period of time; reduce the charging rate to less than C/4 to isolate duty cycle 

degradation; test the US06, HWFET, and any other duty cycle to fit the degradation model to 

multiple data sets; and perform the tests a multiple ambient temperatures. 

3. Conduct calendar aging experiments at various storage conditions to determine how vehicle 

storage impacts its lifetime. 

4. The benefit to using the model proposed in this work is the ability to integrate it into a vehicle 

model since it is already built in Simulink. Thus, it is recommended to integrate the 

degradation model into a vehicle model to predict real-time degradation. Real-time 

degradation prediction would help in designing control strategies to mitigate harmful 

operating conditions. It would also work well in the FleetCarma system, providing the 

capability to monitor and predict battery degradation based on an individual’s driving 

behaviours.  
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Appendix A 

Comprehensive Review of Battery Degradation Mechanisms 
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Appendix B 

2011 Chevrolet Equinox Specifications 

The 2011 Chevrolet Equinox specifications are presented below, taken directly from the General 

Motors product information webpage [37]. 

Overview  

Models: 2011 Chevrolet Equinox LS, LT and LTZ; FWD and AWD 

Body style / driveline: five-passenger, four-door SUV, front-engine, front- or all-

wheel drive 

Construction: welded galvanized steel (except for hood and roof) 

monocoque 

EPA vehicle class:  compact sport utility vehicle 

Manufacturing location:  Ingersoll, Ontario, Canada (and Oshawa, Ontario, Canada 

interim 2011 MY) 

Key competitors:  Ford Escape, Kia Sorento, Honda CR-V, Hyundai Santa Fe 

and Toyota RAV4  

Engine   

Type:  2.4L DOHC I-4 DI 3.0L DOHC V-6 DI 

Application: std on LS, LT, LTZ opt on LT, LTZ 

Displacement (cu in / cc):  145 / 2384 183 / 2997 

Bore & stroke (in / mm): 3.46 x 3.85 / 88 x 98 3.50 x 3.15 / 89 x 80.3 

Block material: cast aluminum sand-cast aluminum with 

cast-in bore liners 

Cylinder head material: cast aluminum cast aluminum 

Valvetrain:  DOHC, four valves per 

cylinder; variable valve 

DOHC, four valves per 

cylinder; variable valve 
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timing timing  

Fuel delivery:  direct sequential fuel 

injection with electronic 

throttle control 

direct sequential fuel 

injection with electronic 

throttle control 

Compression ratio:  11.2:1 11.7:1 

Horsepower (hp / kW @ 

rpm):  

182 / 136 @ 6700* 264 / 197 @ 6950* 

Torque (lb-ft / Nm @ 

rpm):  

172 / 233 @ 4900* 222 / 301 @ 5100* 

Recommended fuel:  regular unleaded regular unleaded or E85 

ethanol 

Emissions controls:  close-coupled catalytic 

converters; Quick-Sync 

24x ignition system; 

returnless fuel rail; fast-

response O2 sensor 

close-coupled catalytic 

converters; Quick-Sync 24x 

ignition system; returnless 

fuel rail; fast-response O2 

sensor 

EPA-estimated fuel 

economy (city / hwy): 

22 / 32 (FWD)  

20 / 29 (AWD)  

17 / 24 (FWD) 

16 / 23 (AWD)  

Transmission   

Type: Hydra-Matic 6T45 six-

speed automatic 

electronically controlled 

with electronic range 

select 

Hydra-Matic 6T70 six-speed 

automatic electronically 

controlled with electronic 

range select 

Application: std opt w/ V-6 

Gear ratios: (:1):   
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First: 4.58 4.48 

Second: 2.96 2.87 

Third: 1.91 1.84 

Fourth: 1.44 1.41 

Fifth: 1.00 1.00 

Sixth: 0.74 0.74 

Reverse: 2.94 2.88 

Final drive ratio: 3.23 (FWD) 

3.53 (AWD) 

2.77 

Transmission / Suspension  

Front: independent strut-type with tuned coil springs; direct-

acting stabilizer bar; hydraulic ride bushings 

Rear:  independent four-link with coil springs and trailing arm; 

stabilizer bar; hydraulic link bushings 

Steering type:  rack-mounted electric power steering with 2.4L; 

hydraulic 

power rack-and-pinion with 3.0L 

Steering ratio:  18.1:1 (2.4L) 

17.4:1 (3.0L) 

Steering wheel turns, lock-to-

lock:  

3.46 (2.4L) 

2.90 (3.0L with 18-in wheels) 

2.80 (3.0L with 19-in wheels) 

Turning circle, curb-to-curb 

(ft / m):  

40.0 / 12.2 (with 17- and 18-in wheels)  

42.6 / 13 (with 19-in wheels 
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Brakes  

Type:  power front and rear vented discs, standard anti-lock 

brakes  

Rotor diameter x thickness (in / 

mm): 

front: 12.6 x 1.18 / 321 x 30 

rear: 11.9 x 0.78 / 303 x 20 

Total swept area (cu in / mm):  front: 20.7 / 526 

rear: 15.3 / 390 

Wheels / Tires  

Wheel size and type: 

 

17-in painted aluminum (std. on all models) 

18-in machine-face aluminum (avail. on LT and LTZ) 

19-in chrome-clad aluminum (avail. on LTZ) 

Tires: P225/65R17 all-season steel-belted radial blackwall tires 

P235/55R18 all-season steel-belted radial blackwall tires 

P235/55R19 all-season steel-belted radial blackwall tires 

Exterior Dimensions  

Wheelbase (in / mm):  112.5 / 2857 

Overall length (in / mm):  187.8 / 4771 

Overall width (in / mm):  72.5 / 1842 

Overall height (in / mm):  66.3 / 1684 

Track (in / mm):  front: 62.5 / 1587 

rear: 61.8 / 1570 

Approach angle (deg): 14.8 

Departure angle (deg): 23.2 
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Breakover ramp angle (deg): 16.5 

Minimum ground clearance (in / 

mm):  

7.8 / 198.5 

Ground to rear load floor (in / 

mm): 

28.8 / 731.2  

Curb weight, base (lb / kg):  3770 / 1710 

Weight distribution (front / rear): 58 / 42 

Interior Dimensions  

Seating capacity:  5 

Headroom (in / mm):  front: 40.9 / 1040 

rear: 39.2 / 995 

Legroom (in / mm):  front: 41.2 / 1046 

rear:  39.9 / 1015 

Shoulder room (in / mm):  front: 55.8 / 1418 

rear: 55.3 / 1405 

Hip room (in / mm): front: 51.1 / 1294 

rear: 51.3 / 1304 

Capacities  

EPA interior volume (cu ft / L):  130.5 / 3695 

Passenger volume (cu ft / L): 99.7 / 2822 

Cargo volume (cu ft / L): 

Maximum behind rear seat: 

Maximum behind front seat: 

 

31.4 / 889 

63.7 / 1803 

GVWR, standard (lb / kg): FWD 2.4L: 3761 / 1710 
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 AWD 2.4L: 3929 / 1786 

 FWD 3.0L: 3944 / 1793 

 AWD 3.0L: 4101 / 1864 

Payload, base (lb / kg): 1190 / 540 

Trailer towing maximum (lb / 

kg):  

1500 / 680 (2.4L) 

3500 / 1588 (3.0L) 

Fuel tank (gal / L):  18.8 / 71.1 (2.4L) 

20.9 / 79.1 (3.0L) 

Engine oil (qt / L):  5 / 4.7 (2.4L) 

6 / 5.7 (3.0L) 

Cooling system (qt / L):  8.9 / 8.5 (2.4L) 

10 / 9.5 (3.0L) 
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Appendix C 

Ecotec 2.4L Engine Torque Curve 

The Ecotec 2.4L engine torque curve is presented below, taken directly from the General Motors 

powertrain product portfolio webpage [38]. 
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Appendix D 

A123 AMP20 Specifications 

The A123 AMP20 specifications are presented below, taken directly from the A123 Systems product 

webpage [48]. 
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Appendix E 

Maccor Series 4200 Specifications 

The Maccor Series 4200 specifications are presented below, taken directly from the Maccor product 

webpage [49]. 
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Appendix F 

Hybrid Test Bench Review 

The HTB (Figure F.1) was originally designed and built to test various hybrid technologies and assess 

their usefulness in vehicle design. However, the HTB has been modified to test batteries on different 

duty cycles and to measure battery performance and degradation.  

 

Figure F.1 Labeled image of the HTB 

The HTB schematic (Figure F.2) provides an overview of the hardware and connections installed 

on the bench. The computer provides the basic controls using LabVIEW VI to the controller and load 

box via RS-232 cables, and the power supply with an Ethernet cable. The computer also offers a GUI 

for the user to monitor the progress of the experiment. The controller uses analog I/O signal wiring to 

communicate with the relays and measure the battery voltage. The controller transmits the measured 
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battery voltage back to the computer. The computer sets the current or voltage values on the load box 

and power supply depending on the experiment. The current measured internally of the load box and 

power supply is transmitted back to the computer. Depending on the computer requests, the power 

supply or load box will provide power to or draw power from the battery, respectively. The 

component specification sheets are provided in Appendix G. 

 

Figure F.2 Labeled schematic of the HTB 

LabVIEW VI is software that uses dataflow programming to communicate with and control 

hardware in a system. For this investigation, LabVIEW was programmed specifically for conducting 

battery aging experiments. The GUI front panel (Figure F.3) connects the user with controls over the 

hardware and live monitoring capabilities of the battery performance. From the front panel, the user 
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can define operational limits of the load box and power supply, and the initial step of the experiment 

(e.g., rest, charge, discharge). Additionally, the user can confirm the Mototron controller, Dynaload 

load box, and Lambda power supply are functioning properly before beginning the experiment. 

Furthermore, the user can monitor the battery current and voltage throughout the experiment; as well 

as other additional information. 

 

Figure F.3 LabVIEW front panel GUI used to control hardware and monitor the experiment 

Additionally, the load profile panel of the LabVIEW GUI offers user control and monitoring of the 

aging procedure (Figure F.4). The user can define the number of degradation cycles to perform, and 

any SOC limit above which the battery would not perform a charging event. Also, the load profile 

panel displays the discharge capacity for each degradation cycle. 
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Figure F.4 Load profile panel of GUI to define and monitor the aging procedure 

The LabVIEW programming is split into 8 frames consisting of several time sequence structures; 

which execute in order only when the previous structure has completed. 

The first frame initializes the system (Figure F.5). The status of the batteries and hardware are set 

to ‘false’ so they can be appropriately changed to ‘true’ in the case their operational conditions are 

satisfied. Additionally, the log file name and directory is requested from the user to determine where 

the experimental data will be stored. 
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Figure F.5 LabVIEW system initialization procedures 

After system initialization, the LabVIEW program progresses to the second frame to initialize the 

Mototron controller. The Mototron communication ports are configured according to the Mototron 

specifications (Figure F.6a). The baud rate is defined by the user in the front panel while the flow 

control, parity, data bits, stop bits, and terminal character are defined directly in the LabVIEW 

programming. The Mototron settings are requested by LabVIEW to determine the number of batteries 

connected to the system and to identify any potential errors in the hardware (Figure F.6b). If there are 

no errors in the hardware, the light indicating a working controller will activate on the front panel. 

(a) 

 

(b) 
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Figure F.6 Mototron controller initialization procedure 

The third frame initializes the Lambda power supply is initialized through port configuration, and 

given an address through which LabVIEW can communicate with the power supply (Figure F.7a). In 

addition, the operating limits of the Lambda are defined by the user in the front panel and transmitted 

to the device. Finally, the Lambda settings are requested to confirm that the transmission was 

successful and to determine if any errors existed (Figure F.7b). If no errors exist, the light indicating a 

working power supply on the front panel turns on. 

(a) 

 

(b) 
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Figure F.7 Lambda power supply initialization procedure 

The fourth frame initializes the Dynaload load box. As before, the Dynaload ports are configured 

and the operating limitations are transmitted to the device (Figure F.8a). Additionally, the physical 

device input is locked to prevent any setting changes during operation. The operating limits are then 

confirmed and the light indicating a working load box is turned on (Figure F.8b).  

(a) 

 

(b) 
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Figure F.8 Dynaload load box initialization procedure 

Finally, in the fifth frame, the final check to ensure the system is power-capable occurs (Figure 

F.9). The Mototron status is requested by LabVIEW and the light confirming system power turns on 

if there are no errors in the Mototron’s response. 

 

Figure F.9 Final system power confirmation from the Mototron controller 

The sixth frame simply readies the power supply and load box for the upcoming experiment, and 

reads the experimental start time (Figure F.10). The internal relays of the devices close, connecting 

them to the system. 
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Figure F.10 Recording start time and closing internal relays of Dynaload and Lambda 

The seventh, and largest frame, contains the programming required to successfully cycle and age 

the battery. This frame consists of six sections of programming (Figure F.11). 
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Figure F.11 Operational frame split into six sections of programming 

The first section is an operational timer (Figure F.12). The start time from frame six is used as a 

reference time to measure the elapsed time during operation. The total run time is presented on the 

front panel GUI, along with the elapsed time for a given test. For example, the total run time for a full 

charge/discharge cycle would be double the elapsed time for a charge event. These times are used in 

the following section. 
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Figure F.12 Elapsed time module keeping track of total and test run times 

The second section contains the test procedures that will be imposed onto the battery (Figure F.13). 

A case structure is used to identify whether the ‘Profile’ or ‘Auto’ operations are selected on the front 

panel (i.e., ‘false’, ’true’, respectively). The original HTB was designed to operate in ‘Auto’, however 

this work uses ‘Profile’; thus only that case will be discussed. Within the ‘Profile’ case there is 

another case structure containing six cases; each of which are a battery test procedure. Only Cycle 1, 

Cycle 3, and Cycle 6 are used in this experiment; however more are available. Figure F.13 shows the 

default case, Cycle 1, which performs a CC charge at 20 A until a battery voltage limit of 3.6 V is 

reached. The front panel light indicating a charging period is also turned on. While there are other 

structures within this case, they have little importance. 
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Figure F.13 The charging profile is selected within the ‘Profile’ operation mode 

Cycle 3 contains the programming necessary to test the battery on a variable current duty profile 

(Figure F.14). In this experiment, Cycle 3 contains the UDDS duty cycle derived from the A123 

battery pack in the EcoCar 2 vehicle model. The ‘Drive Cycle A’ light on the front panel is turned on 

during Cycle 3’s operation. The UDDS duty cycle is imported into LabVIEW from a text file, and 

interpolated at 0.1 s intervals according to the elapsed time passed from the previous section of 

programming. The duty cycles repeats itself until the battery voltage reaches a lower limit of 2 V. To 

prevent the duty cycle from requesting currents outside the operational limits of the devices, the 

current is saturated at -40 A and 150 A. The SOC is calculated during operation and displayed on the 

front panel. If the SOC is above the SOC limit set on the load profile GUI panel, the charging current 

is set to zero. However this feature is not used in this work. When the battery voltage reaches its 

lower limit, the total discharged capacity is plotted on the load profile GUI panel. 
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Figure F.14 UDDS duty cycle selected within the ‘Profile’ operation mode 

Cycle 6 consists of a 30 minute resting period, where the ‘Rest’ light on the front panel is turned 

on. There is no complicated programming involved in this case. 

The next section imposes the duty cycle defined in the previous section onto the battery (Figure 

F.15). If the requested current from the previous section is negative, the power supply is instructed 

supply that current to the battery. If the requested current is positive, the load box is instructed to 

consume that current from the battery. The internal load box and power supply currents are measured 

and transmitted to LabVIEW. Additionally, the battery voltage signal is transmitted to LabVIEW 

from the Mototron controller. These signals are plotted on the front panel GUI, and are subsequently 

passed to the next section. 
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Figure F.15 Programming required to operate the devices on the selected duty cycle and to measure current and voltage signals 
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Another section within the sixth frame is the battery status check (Figure F.16) where the front 

panel GUI light indicating proper battery function turns on if the battery temperature and voltage 

conditions are within their operational limits. 

 

Figure F.16 Battery status check 

The second most important section of this frame contains the programming necessary for data 

logging (Figure F.17). The date, time, battery voltage, temperature, power supply current, load box 

current, step number, and cycle number signals are logged every 150 ms. 

 

Figure F.17 Data logging programming 
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The final section of this frame opens the internal relays of the Lambda power supply, Dynaload 

load box, and Mototron controller to disconnect the devices from the system before ending the scripts 

(Figure F.18). 

 

Figure F.18 Opening internal relays of the Dynaload, Lambda, and Mototron controller 

The eighth and final frame is similar to the first part of the first frame, when it turns off the 

operational lights on the front panel GUI (Figure F.5). 
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Appendix G 

HTB Device Specifications 

The Lambda Power Supply ZUP 20-40-800 specifications are taken directly from the TDK Lambda 

Corporation products webpage [50]. 
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The TDI Dynaload XBL 50-150-800 load box specifications were downloaded directly from the 

TDI Power website [51].  
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Appendix H 

Glossary of Terms 

Important terms and ideas are presented below to effectively convey the concepts involved with 

battery characterization and performance testing. These terms and ideas offer a basic understanding of 

the concepts that are to be covered in detail in the following sections. 

Battery Cell – The simplest form of a battery consisting of two electrodes, a separator, and 

electrolyte encased in sealed packaging. 

Battery Pack – The grouping of several battery cells in parallel or series configurations to increase 

the capacity or voltage output compared to a single cell. 

Rated Battery Capacity – The amperes available during a one-hour discharge of the battery for a 

given current; provided by the battery manufacturer. 

Maximum Battery Capacity – Similar to the rated battery capacity, except it is determined from 

experimentation. 

State of Charge (SOC) – An estimation of the remaining battery capacity available for discharge as a 

percentage of the maximum battery capacity. 

Depth of Discharge (DOD) – An estimation of the extent to which the battery capacity has been 

consumed as a percentage of the maximum battery capacity. In other words, the depth of discharge is 

the complement of the state of charge. 

C-rate – A referential expression for current that depends on the battery capacity. For example, a 20 

Ah battery would be subjected to C/2, 1C, and 2C rates according to 10 A, 20 A, or 40 A, 

respectively. 

Resistance – The resistance of a battery to the flow of current, measured in Ohms, developed within 

the battery cell and through any connections between battery cells in battery packs. 

Open Circuit Potential (OCP) – The equilibrium potential difference between the positive and 

negative electrodes of a battery, measured while the battery is not under load. 
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Coulombic Efficiency – A representation of the lithium ions lost to side-reactions during the 

charging process of a battery. Therefore, the coulombic efficiency is a percentage of the available 

battery capacity of discharge compared to the battery capacity previously charged to the battery. 

Battery Characterization – A series of test procedures to characterize the battery open circuit 

voltage and resistance as a function of the state of charge, as well as the coulombic efficiency. The 

tests can be conducted at different C-rates and temperatures to account for their effects on the battery 

characteristics. 

Capacity Fade – The loss of cycleable lithium in the battery that reduces the overall capacity over 

the life of a battery. 

Power Fade – The increase in battery resistance over the life of the battery that decreases the power 

capability for a given current. 

Calendar Aging – Irreversible capacity fade of the battery during storage according to the storage 

conditions, such as voltage and temperature. 

Battery Performance Testing – A series of test procedures that determine how the battery performs 

in a given application with respect to energy and power capabilities, and capacity and power fade. 

Beginning of Life (BOL) – A point in time that signifies the beginning of the battery performance 

testing period, at which point the battery characteristics will have already been defined. 

End of Life (EOL) – A point in time that signifies the ending of the battery performance testing 

period, usually defined according to the extent of capacity fade. 

Battery Cycle Life – The amount of time, cycles, or capacity throughput that a battery can endure in 

a given application, determined from the battery performance testing between the beginning of life 

and end of life conditions. 

Battery Scaling – The extrapolation of battery characteristics and performance results of a tested 

battery to that of a differently sized and untested battery. 
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Appendix I 

Scaling Analysis 

Introduction 

Cell performance testing provides information on how the battery will perform in its application. The 

testing results can be used to develop a battery model to predict its performance. However, the model 

depends on the cell that was tested and if that cell were changed then the model is no longer 

statistically valid. Inevitably, the new cell would need to be tested as well. While designing a battery 

pack for a vehicle, one may take several sizes into consideration. Unfortunately, testing all of those 

cells can be labourious and time consuming. Therefore, it is desirable to develop a technique to scale 

the results from cell performance testing of a single cell to differently sized cell. Furthermore, the 

scaling analysis should extend from the performance of a single cell to the performance of a battery 

pack. The objective of the scaling analysis is to develop the capability to predict the performance of a 

battery pack for a given cell size and configuration. 

Cell to Cell Scaling 

The concept behind cell-cell scaling is to generate a predictive model for a small, simple battery that 

can be modified to predict performance for a larger, more sophisticated battery. To do so, the model 

must consider the materials within the cells and the physical dimensions of the cells. Kwon et al. 

proposed such a system for a lithium-polymer battery that will be presented below [52]. 

To represent the scaling basis, a single battery cell is considered with two electrodes separated by a 

polymer electrolyte (Figure I.1).  
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Figure I.1 Schematic of cell used for scaling basis [52] 

As the cell is discharged current enters the negative electrode through the tab and disperses across 

the electrode surface. Imbalance in the linear current densities on the electrode surface cause a current 

density to flow through the separator and collect on the surface of the positive electrode. The current 

accumulates towards the positive electrode tab and exits the cell. This process can be presented 

mathematically as follows. 

Conservation of current on the surface of the electrodes dictates that the distribution of linear 

current densities is equivalent to the current density leaving the electrode, 

    ⃑⃑  ⃑      (I.1) 

    ⃑⃑  ⃑      (I.2) 

where   ⃑⃑  ⃑ and   ⃑⃑  ⃑ are the linear current density vectors on the positive and negative electrode, 

respectively, and   is the current density between the electrodes.  

Unfortunately, the distribution of linear current density vectors on the electrode surface is difficult 

to measure. Thus, the linear current density vectors are expressed in terms of potentials using Ohms 

law, 
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  ⃑⃑  ⃑   

   
  

 (I.3) 

 
  ⃑⃑  ⃑   

   
  

 (I.4) 

where    and    are potentials, and    and    are resistances on the positive and negative electrode 

surfaces, respectively. 

The resistances of the electrodes are determined by the inverse of the combined active material and 

current collector electrical conductivity, 

 
     

 

         
 (I.0.1) 

where the    and    are the thicknesses, and    and    are the electrical conductivities of the active 

material and current collector, respectively.  

Equations (I.1) and (I.2) can be modified using equations (I.3) and (I.4) to relate the current density 

within the cell to the electrode potentials. 

            (I.6) 

            (I.7) 

The boundary conditions for the positive electrode are presented below, where   is the normal to 

the boundary,    is the current through the tab, and   is the length of the tab. 

    

  
   (I.8) 

    
  

  
    
 

 (I.9) 

The first boundary condition (I.8) applies to all boundaries except for the boundary at the tab. It 

implies that there is no current flow through those boundaries. Additionally, the second boundary 

condition (I.9) applies only to the boundary at the tab and suggests that the current flow across the 

boundary is proportional to the battery current provided to the load during a discharge. 

The boundary conditions for the negative electrode are presented below, where the first boundary 

condition indicates a lack of current flow through all boundaries except for the boundary at the tab 
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(I.10), while the second boundary condition fixes the negative electrode tab potential at zero (I.11). 

Fixing the tab potential to zero effectively sets a reference potential for the cell. 

    
  

   (I.10) 

      (I.11) 

 

To solve the system of equations presented thus far, a relationship must be derived between the 

electrode potentials and the current density across the separator. Tiedemann and Newman [53, 54] 

proposed that the relationship depends on the polarization characteristics of the electrodes, presented 

below. 

              (I.12) 

However, Y and U are fitted functions dependent on the DOD of the active material defined by Gu 

[55], 

                                (I.13) 

                       (I.14) 

where the  ’s are parameters to be determined through experimentation. Furthermore, the DOD can 

be calculated from the current density across the separator according to the following equation, where 

  is the area of the electrode. 

 

    
 ∫    

 

  

  
 (I.15) 

The finite element method is used to solve the set of equations presented above to obtain the 

potential distribution over the surface of the electrodes. Therefore, given a battery current represented 

by the current flowing through the tabs,   , the cell potential response can be predicted. Assuming the 

parameters from equations (I.13) and (I.14) are fitted accurately; Kwon et al. showed that the 

simulated battery potential response for CC discharging accurately predicted the experimental results 

[52]. 

It was later determined that by using the fitted parameters for a smaller cell, a larger cell’s 

performance could be predicted by accounting for the change in electrode size [56]. However, this 
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conclusion was restricted to the assumptions that the larger and smaller cells were manufactured with 

the same materials and processes; making them identical except for their physical dimensions. In 

many cases, battery manufacturing processes can vary dramatically between batches of cells of the 

same size, let alone cells of different sizes. Therefore, caution is recommended when applying this 

cell-cell scaling method. 

Cell to Pack Scaling 

It is convenient to perform characterization and performance testing on single cells because the 

equipment required only needs to satisfy the voltage and current capabilities of the cell being tested. 

Testing a battery pack increases voltage and current requirements; increasing the cost of the 

equipment. For these two reasons, it is proposed that battery cell test results can be scaled to predict 

battery pack performance. Commonly, a packing factor is used to scale the mass and/or volume of a 

single cell to that of a pack by including wiring, insulation, thermal management materials, and pack 

casing. The packing factor will be greater than unity, since unity would suggest that only battery cells 

were present in a pack. Additionally, a battery size factor is used to scale the power, energy, and life 

capabilities of a cell to satisfy pack requirements [4]. Essentially, the battery size factor represents the 

number of cells required in the pack to satisfy performance demands [4]. However, the battery size 

factor does not account for any change in performance by connecting multiple cells together. Much 

like how the packing factor accounts for the extra mass or volume of a pack, there needs to be battery 

performance factors that account for deviations in performance unaccounted for using the battery size 

factor.  

The desired purpose of the battery performance factors are to aid in the accurate prediction of 

battery pack performance from battery cell test results. Dubarry et al. claim that the variation between 

cell capacities causes significant performance differences between the scaled battery pack simulations 

and the experimental results [13]. Furthermore, Dubarry et al. propose that a resistance look-up-table 

(LUT) can be generated as a function of SOC and C-rate [13]. Such a resistance LUT could be 

normalized to a cell’s capacity by measuring the capacity of each cell in the pack. A battery resistance 

factor is used for each cell in the pack to modify its resistance LUT. It was found that for a small pack 

size, the battery resistance factor was effective at lowering the deviation in potential responses 

between simulated results and experimental data (Figure I.2) [13]. The total capacity discharged by 
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the simulated pack decreased from 6.5% error to 1.6% error compared to the experimental results 

[13]. 

(a) 

 

(b) 

 

Figure I.2 The simulated battery pack potential response compared to experimental results (a) 

without the battery resistance factor, and (b) with the battery resistance factor 

Although the battery resistance factor appears to be effective for small battery packs, it may not be 

capable of predicting performance issues for larger packs. Additionally, testing each cell in a battery 

pack for its maximum capacity can be tedious and costly. Therefore, the following technique is 

proposed to obtain the battery resistance factors without having to cycle the batteries individually: 

 Charge the battery pack according to the standard charging procedure for a cell after applying 

the battery size factor. 

 Let the pack rest for 2 h or until the voltage change is insignificant over a 30 min time period. 

 Demand a C/25 discharge rate, and measure the initial voltages of each cell. 

 Let the pack rest for 2 h or until the voltage change is insignificant over a 30 min time period. 

 Demand a 1C discharge rate, and measure the initial voltages of each cell. 

 Take the slope between those two voltage readings according to the discharge rate demanded 

to find the normalized polarization resistance. 

 Determine the battery resistance factors,   , by comparing the cells’ normalized polarization 

resistances,      , with the reference cell’s normalize polarization resistance,      . 
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 (I.16) 

 Discharge the battery pack according to the standard discharge procedure for a cell after 

applying the battery size factor and stop when the cut-off potential is reached. 

 Let the pack rest for 2 h or until the voltage change is insignificant over a 30 min time period. 

 Measure each battery cell’s OCP and determine the cell’s SOC from the OCP curve measured 

in the cell characterization tests. 

 Determine each cell’s maximum capacity,     , using the cell’s SOC, and the capacity 

processed,   , during the discharge. 

 
     

     

   
 (I.17) 

Such a test plan would require one cycle, whereas the tests proposed by Dubarry et al. would 

require as many cycles as there are cells in the pack. Therefore, the proposed method would save time 

and costs. 
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Appendix J 

Electrochemical VSSD Model 

Electrochemical Model Development 

A fundamental electrochemical model has been developed in an attempt to predict battery 

performance and aging throughout its lifetime. The model has three levels that define the physical 

systems within the battery (Figure J.1). The macro level contains a positive electrode, negative 

electrode, and separator; the micro level contains four particle groups for each electrode; and the nano 

level contains the SEI layer. The electrodes are macroscopically defined according to Newman’s 

porous-electrode theory [57], and microscopically using variable solid-state diffusivity [32]. 

 

 

Figure J.1 Visual representation of the electrochemical model and its various dimensions 

Porous-Electrode Theory 
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The complexity associated with modeling the porous materials is simplified using a one-dimensional 

model, ignoring the pore geometry. Within the cell the pores of the electrodes are filled by the 

electrolyte, resulting in the solid and solution phases. Therefore, the electrodes and electrolyte are 

considered as two materials in superposition at any point in space and time.  

Considering a unit volume within the electrode, there is conservation of charge. Thus, any charge 

flowing into the solid phase is negated by the charge flowing out of the solution phase according to 

electroneutrality; where    is the transfer current density in the solid phase and    is the transfer 

current density in the solution phase. 

             (J.1) 

In the electrode, the average transfer current density from the solid phase to the solution phase (  ) 

describes the relationship between an increase in ionic current equivalent to a decrease in the 

electronic current; where   is the specific interfacial area. 

           (J.2) 

          (J.3) 

Charge migration in the solid phase is governed by Ohm’s law; where      is the effective 

conductivity of the solid phase, and    is the solid phase electric potential. 

             (J.4) 

Electronic conductivity of the electrode material ( ) is corrected for its porosity and tortuosity 

using the Bruggeman expression; where   is the electrode porosity and   is the Bruggeman correction 

factor. 

              (J.5) 

Charge-transfer reaction kinetics at the solid/solution interface are described by the Butler-Vomer 

equation; where    and    are the anodic and cathodic transfer coefficients respectively,   is the 

university gas constant,   is the absolute temperature,    is the surface overpotential, and    is the 

exchange current density. 
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The exchange current density is an agglomeration of several terms defined later when describing 

the variable solid-state diffusivity model. 

The surface overpotential consists of the solid phase electric potential, solution phase electric 

potential (  ), and the open circuit potential of the cell ( ). 

            (J.7) 

Within the solution phase, dilute solution theory is not applicable for most lithium ion batteries 

because the electrolyte concentration exceeds the theory’s limitations. Additionally, multicomponent 

diffusion is used to describe an electrolyte consisting of three or more species. For simplification, the 

electrolyte is assumed to consist of two dissociative species within a solvent for a total of three 

species. Therefore, concentrated solution theory and multicomponent diffusion are used to govern the 

solution phase; where    is the concentration of species  ,    is the electrochemical potential of 

species  ,     is the friction coefficient for the interaction between species   and  , and    is the 

velocity of species   with respect to a reference velocity. 

       ∑   (     )

   

 (J.8) 

The friction coefficient represents an agglomeration of terms related to the concentration of species 

(   and   ), total concentration (  ) and the diffusion coefficient describing species interaction (   ). 

 
    

      

     
 (J.9) 

The total concentration is a sum of all the species concentrations, including that of the solvent. 

    ∑  
 

 (J.10) 

Additionally, Newton’s third law dictates that the diffusion (friction) coefficients describing 

species interaction are equal regardless of which species is acting on the other. 

         (J.11) 

For a binary electrolyte such as LiPF6, common in lithium ion batteries, equation 8 produces two 

independent flux densities; where ‘ ’ is the cation, ‘ ‘ is the anion, and ‘0’ is the solvent,    and    

are the number of moles of cations and anions dissociated into a solvent from a molecule of 
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electrolyte with their sum represented by  ,   is the electrolyte diffusion coefficient based on a 

thermodynamic driving force,   is the electrolyte concentration,    is the chemical potential of the 

electrolyte,    and    are the cation and anion charge numbers, and   
  and   

  are the cation and 

anion transference numbers. 
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      (J.13) 

The first term describes the diffusive flux density of the electrolyte. The second term describes the 

species migration within the solution phase. The final term describes the species convection 

according to the solvent velocity; however the solvent velocity is often negligible. Ultimately, the 

convection term is typically excluded from further consideration. 

The diffusion coefficient based on a thermodynamic driving force is defined as a combination of 

the diffusion coefficients describing species interaction. 

 
  

             

           
 (J.14) 

The transference numbers are defined with respect to the solvent velocity. 

 
  
      

  
     

           
 (J.15) 

The gradient of chemical potential of the electrolyte can be expressed using the concentration 

gradient of the electrolyte; where   is the mean molar activity coefficient of the electrolyte. 
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Herein,   is defined as the electrolyte activity correction factor. 
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) (J.17) 

The material balance for a species contains a homogenous production term ( ) that describes the 

electrochemical reaction at the solid/solution interface. In a real system, the reaction would be defined 
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as a boundary condition; however, porous electrode theory defines the solid and solution phases 

according to superposition and thus the reaction is defined in the production term. 

    
  

         (J.18) 

Since the production term describes the electrochemical reaction at the solid/solution interface, it is 

directly proportional to the average transfer current density from the solid phase into the solution 

phase. 

 
   

   
 

 (J.19) 

To derive the material balance of the electrolyte, equations (J.12), (J.13), and (J.19) must be 

substituted into equation (J.18) to yield two expressions; one for each species. The two resulting 

equations can be rearranged to solve for the electrolyte concentration; where      is the effective 

electrolyte diffusion coefficient. Also, the material balance of the electrolyte must also be adjusted to 

account for the electrode porosity. 

 
 
  

  
  (       )  

     
 

 
 

        
  

 
 (J.20) 

The effective diffusion coefficient for the electrolyte attempts to correct the diffusion coefficient 

based on a thermodynamic driving force using the Bruggeman expression to account for the porous 

electrode; where   is the electrolyte activity correction factor. 

 
      

     
  

     (J.21) 

A mass balance of the electrolyte around the separator is similar to equation (J.20), except there is 

no surface reaction taking place; thus the production term does not exist. Also, the porosity of the 

separator (  ) is different from that at the electrodes. 
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 (J.22) 

Considering the reference electrode reaction offers a starting point for determining the transfer 

current in the solution phase; where    is the stoichiometric value of the cation,    is a symbol 

representing the chemical formula of the cation, and   is the number of electrons. 
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            (J.23) 

The thermodynamic principles surrounding the reference electrode reaction relate electrochemical 

potentials to the potential gradient in the solution phase.  

                          (J.24) 

The electrochemical potential gradient of the solvent is set to zero according to the Gibbs-Duhem 

equation. Furthermore, the equation can be rearranged into a form easier to work with. 
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    (J.25) 

The electrochemical potential gradient of the anion can be substituted for after deriving an 

expression from the combination of equations (J.8), (J.12), and (J.13); where   is the ionic 

conductivity of the solution. 

 
 

 

  
    

 

 
   

  
 

    
    (J.26) 

The ionic conductivity depends on the interactions of the species the solution contains. 
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Equations (J.25) and (J.26) yield an expression that relates the transfer current density in the 

solution phase with the potential gradient in the solution phase. Also, the expression must be 

corrected for the porosity of the electrode using the Bruggeman expression. 
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      ) (J.28) 

Finally, the transfer current through the separator is also defined by equation (J.28); however the 

ionic conductivity    of the separator is different from that at the electrodes. 
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      ) (J.29) 

Variable Solid-State Diffusivity Model 
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The porous electrode theory describes the macroscopic phenomena of the cell, with exception to the 

average transfer current density from the solid phase to the solution phase. The particle-scale 

phenomena are described by the VSSD. The VSSD model assumes that the particles contain a 

mixture of empty sites (S) and lithiated sites (LiS) within its lattice. 

                (J.30) 

The objective of the VSSD model is to describe the concentration of LiS in the electrode while 

accounting for several particle groups within the electrode. Concentrated solution theory postulates 

that the flux density of LiS is dependent upon its chemical potential gradient; where      is the 

maximum concentration of LiS of the electrode, and        is the normalized concentration of LiS in 

the k
th
 particle group. 

 
            

          

  
        (J.31) 

Rearranging, the flux equation takes on a simpler form as the Fickian diffusion coefficient (  ) is 

used. 

                       (J.32) 

The Fickian diffusion coefficient is then expressed according to the normalized activity correction 

factor. 

 
       

       

       
        (J.33) 

Additionally, the normalized activity correction factor can also be derived by applying the Gibbs-

Duhem equation for a binary system to the equilibrium potential of the electrode (  ). The 

equilibrium potential can be determined experimentally. 
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The material balance for LiS within the particles is assumed to be constant in the axial direction, 

but not radially. 
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The aforementioned average transfer current density from the solid phase to the solution phase was 

defined according to the Butler-Volmer equation. The current density represents the charge-transfer 

associated with the insertion process. Considering the particle-scale kinetics, the exchange current 

density depends upon the mole fraction of LiS at the surface of the particle (    ); where   
  is the 

reaction rate constant. 
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  (J.36) 

Furthermore, the equations pertaining to the porous electrode theory must be updated to account for 

the particle size distribution introduced for the VSSD model. 
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