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Abstract

In software industry, organizations often need to develop a set of similar software-
intensive systems in order to satisfy different requirements of customers. In the literature,
it has been traditionally recommended that organizations adopt Product Line Engineer-
ing—an approach that uses a set of shared assets to derive the variants. However, in
reality, organizations usually develop multiple variants using the clone-and-own approach,
in which a new product is developed by cloning and modifying the assets of an existing
product. Although the clone-and-own approach has several advantages, it can easily lead
to inconsistencies and hardness to manage product portfolios.

In both the clone-and-own and the product line engineering context, the concept of
feature can be used to characterize different variants. A feature is a function unit of
a software product which provides a user-observable behavior and a unit of reuse. In
the clone-and-own approach, there are two key challenges when doing cloning: reuse and
consistency. For both of these activities, knowing the location of features is essential. In
this thesis, we propose a lightweight approach for recording and maintaining feature models
and mappings between features and software assets. We evaluated this approach in a case
study, by applying it retroactively to an existing set of cloned projects in a way which
simulated the actual development as if the approach had been used originally. Preliminary
results showed that the extra cost of creating and maintaining a feature model and feature
mapping information is negligible compared to the software development cost, and the
benefit of it can justify the investment provided certain amount of reuse and consistency
management is required.
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Chapter 1

Introduction

In the software industry, organizations often need to develop a set of similar software-
intensive systems in order to satisfy different requirements of customers within the same
domain. For example, automotive companies often need to tailor their software systems
of products according to conflicting requirements of different customers or different legal
frameworks in different geographical regions. In the literature, it has been traditionally rec-
ommended that organizations adopt Product Line Engineering[33] for developing multiple
variants. Product Line Engineering method provides a way of deriving multiple variants
from a set of core assets in a systematic and predictable way.

However, in reality, organizations usually develop multiple variants using the clone-and-
own approach[15], in which a new product is developed by cloning and modifying the assets
of an existing product. Although the clone-and-own approach has several advantages, such
as low adoption cost, it is not scalable since it can easily lead to inconsistencies and problem
of control as the number of clones grows. In the literature, usage of cloning is considered
a harmful approach[24], which is not recommended to be used in the long run. Yet the
approach is still widely used in industry[15].

Different variants of products can be characterized by features. A feature is a functional
unit of a software product which provides a user-observable behavior and a unit of reuse.
A certain variant is characterized by the set of features it implements, and stakeholders
compare different variants according to the different sets of features they implement. The
concept of feature can be used in the traditional product line engineering, the clone-and-
own approach and also developing a single product.

In the clone-and-own approach, there are two key challenges when doing cloning: reuse
and consistency. In order to reuse a feature (e.g., cloning a feature from one variant to
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another variant), a developer needs to know where the assets (code, documents etc.) of
the feature are. To maintain consistency among variants, a developer can compare entire
projects, assets, or individual features. In order to maintain consistencies among multiple
copies of a feature, the location of the assets implementing the feature is also needed. So,
for both of these challenges, knowing the location of features is required. Besides the two
challenges, the feature location information is also essential for performing other kinds of
tasks related to features, such as improving or re-factoring the assets of the feature. It also
helps future transition into the traditional Product Line Engineering approach. Feature
traceability information is useful throughout the development process. It can even be used
to provide traceability between the code and the requirements.

In this thesis, we propose a lightweight approach for recording and maintaining a feature
model[23] and feature traceability information (mappings to assets). The approach includes
a lightweight annotation system that can be used to store the feature model and the feature
traceability information within a source code repository, and guidelines for how to create
and maintain the feature model and annotations during the development process. We
evaluated this approach in a case study by applying it retroactively to an existing set
of cloned projects in a way that simulated the actual development as if the approach
had been used originally. After that we analyzed the cost and benefit of adopting the
approach analytically and empirically. The set of cloned projects is a family of web-
based tools for building and optimizing Clafer models. The results show that under the
assumption that there is no feature location cost if developers add feature annotations
while implementing a certain feature1, the cost of creating and maintaining a feature model
and feature location information with the proposed approach is negligible compared to the
development cost. Also, under the assumption that recovering feature location information
is much more costly2 than recording the feature location information while the feature is
being implemented, the benefit of the annotations can justify the investment if certain
amount of reuse and consistency management is required. In fact, 18% of the feature
recording and editing cost saved 90% of feature location cost needed for feature reuse
tasks. The benefit of the feature annotations is even higher since they are also useful in
the feature maintenance tasks, which constitute the majority of developers’ work.

The rest of the thesis is organized as follows: Chapter 3 introduces the feature an-
notation approach we propose, in which feature annotations are created and maintained
along the normal development process. Chapter 4 describes the design of our simulation
case study. Chapter 5 describes the evolution patterns of the feature models, annotations

1This is because the developer has the feature location in mind while implementing a feature.
2This is because the original developers may forget the location of features, or the original developers

may leave the organization.
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and software assets. Chapter 6 describes analytical and empirical results of evaluating the
feature annotation approach, which is based on analyzing the cost and benefit of adopting
the approach. Chapter 7 discusses the results and some other findings, followed by the dis-
cussion of threats to validity in Chapter 8. Chapter 9 discusses the related work. Chapter
10 shows concluding remarks and future work.

3



Chapter 2

Background

2.1 Software Product Line

A software product line[33] (SPL) is a set of similar software-intensive systems that sat-
isfies different requirements of customers within a certain domain, and is developed in a
prescribed way from a set of core software assets. The core assets are also developed in
a prescribed way, which is based on analyzing the commonalities and variabilities of the
requirements within a certain domain. A software product line targets certain domains
because systems within the same domain usually share many commonalities such as busi-
ness needs, software architecture and implementation techniques. The economic benefit
of adopting the software product line approach is from the large amount of reuse of core
assets in different products of the product line.

Software product line engineering (SPLE) refers to a whole set of engineering methods
and techniques used in developing software product lines. Activities in software product
line engineering include domain analysis, core assets development, application system de-
velopment (based on core assets), product line maintenance and management. The initial
investment of developing a software product line is usually very high. As the number of
products grows up, the benefit of adopting the software product line approach will gradu-
ally overweigh the initial investment.

In practice, the clone-and-own approach[15] is also used to develop a set of similar
software systems. In the clone-and-own approach, a new product is developed by cloning
and modifying the assets of an existing product. Advantages of this approach include that
it has low adoption cost, and a developer of a certain product can develop the product
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independently from developers of other products. However, it often yields substantial
maintenance problems, such as inconsistency, redundancies and scalability problem.

2.2 Feature-oriented Approaches

The feature concept is widely used in developing software product lines. A feature is a
unit of functionality that is relevant to some stakeholders, and also a unit of reuse in
software product lines. The feature concept is used in feature-oriented software devel-
opment [6], which is a programming paradigm for developing software product lines, and
feature-oriented domain analysis [23], which is a domain engineering method that uses fea-
ture modelling to model commonalities and variabilities of requirements within a certain
domain.

In the clone-and-own approach, the feature concept can also be used. Different variants
developed by the clone-and-own approach can also be characterized by features. A variant
is characterized by the set of features it implements. A feature provides a unit of reuse,
which can be cloned or moved among variants. It also provides a unit of consistency
management. Different copies of a feature in different variants are maintained consistent
w.r.t certain kind of changes, such as bug fix.

2.3 Virtual Platform

In our earlier work, we propose an incremental and minimal invasive SPLE adoption strat-
egy called virtual platform[5]. It covers a spectrum of strategies between the ad-hoc clone-
and-own approach and the traditional SPLE approach with an integrated platform. The
spectrum is divided into six governance levels. As the governance level increases, the cost
of preparing reuse (by clone management or SPLE approaches) increases, while the benefit
also increases given that the frequency of reuse increases.
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Chapter 3

Feature Annotation Approach

In this study, we propose an approach of adding and maintaining a feature model and
mapping between features and assets (annotations) along the normal development process.
In order to store the feature model and annotations, we designed a lightweight annotation
system. Besides that, we also propose some guidelines for developers to adopt the approach.

3.1 Proposed Feature Annotation System

In this study, we designed a lightweight annotation system, which is a set of conventions
to maintain a feature model and annotate software assets (folders, files, and code/text
fragments in files) with the features they belong to. This system is simple and lightweight.
No specific tools are required to adopt this system, and it does not impact the normal
development process (unlike the C pre-processor directives, which add an extra build step
of pre-processing). It is also language independent.

In the annotation system, we use the Clafer modelling language[1, 7] to record the
feature model in a separate file at the root folder of a project. The feature names in
the feature model are called feature declarations. Any feature that is implemented and
annotated in assets should have a corresponding feature declaration. Figure 3.1 shows an
example of a feature model written in Clafer (on the left side), and how the features are
referred to in feature annotations, which will be explained in the following paragraphs.

Besides the feature model, we use a set of conventions for annotating folders, files and
fragments of files with the features they implement. In feature annotations, we need a
way of uniquely referring to the features. Since the names of features are not required to
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ClaferMooVisualizer 
    Server 
        backends 
            ClaferMoo 
                timeout 
            ChocoSoo 
    Client 
        views 

            Input 
            BubbleFrontGraph 
            FeatureAndQualityMatrix 
    processManagement 
        polling 
        timeout 

• Refer using least-partially-
qualified names 
– Unique: 

“ClaferMoo”, “Server” 

– Not unique: 
“ClaferMoo::timeout” vs. 
“processManagement::timeout” 

Figure 3.1: Example of feature model and LPQ feature name.

be unique, we use least-partially-qualified name (LPQ name for short) to refer to features.
For a feature that has a unique name in the feature model, the LPQ name is the same as
the feature name. If a name is not unique, then it must be qualified by some of its ancestor
features to make the reference unique.

For example, in Figure 3.1, the features ClaferMoo and Server have unique names in
the model, so their LPQ names are the same with their feature names. However, for the
feature name timeout, there are two features named timeout. So, we use the names of their
parent features to qualify them in order to make the reference unique. The LPQ names of
the two features are, thus, ClaferMoo::timeout and processManagement::timeout. The term
least-partially-qualified name means that we use the least possible number of ancestor fea-
tures to qualify a certain feature name, compared with fully-partially-qualified name, which
is the full path of a feature (e.g., ClaferMooVisualize::Server::backends::ClaferMoo::timeout
and ClaferMooVisualizer::processManagement::timeout). The fully-partially-qualified name
is much longer and brittle as compared to the least-partially-qualified name when the fea-
ture model evolves.
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In the annotation system, we use separate files to annotate folders and files. In order
to map a whole folder to a feature, a text file called .vp-folder is added in the folder. In
the .vp-folder file, there is only one line, which includes the LPQ names of the features this
folder maps to. For mapping files to features, a text file called .vp-files is added in a certain
folder, which contains the mapping information of all the files in that folder. The .vp-files
contains at least one mapping unit. Each mapping unit contains two lines, in which the
first line is a list of files and the second line is a list of features. Each file in the first line
maps to all the features in the second line.

 

 

 

ClaferMooVisualizer 

    Server 

    Backend 

    Client 

         .vp-folder 

         .vp-files 

         md_input.js 

 

Client polling 

md_input.js 

Input processManagement::timeout 

Figure 3.2: Examples of file and folder annotations.

Figure 3.2 shows examples of file and folder annotations. On the left side is a folder
structure. Under folder Client, there is a folder annotation file .vp-folder, which maps the
whole folder to two features (Client and polling). Also, there is a file annotation file .vp-files,
which maps the JavaScript file md input.js to features Input and timeout.

Besides annotating files and folders, the annotation system can also be used to annotate
any arbitrary fragment of a text file (source code file or other text file) to feature(s). The
annotation is embedded in the comments of the programming language (which is similar to
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JavaDoc[2]), so it will not affect the syntax of the source language and the build process.
Inside the comment, in order to mark the beginning of a fragment, developers should write
down the list of features and surround the list of features with &begin [ and ] delimiters.
To mark the end of a fragment, developers should surround the list of features with &end [

and ] delimiters.

To annotate a single line of a file, developers should use the appropriate in-line comment
syntax of the used programming language to mark the line. Inside the comment, developers
should surround the list of features with &line [ and ] delimiters. The exact syntax of the
marker symbols in the delimiters is customizable depending on the programming languages
used in the project in order to prevent syntax conflicts.

Annotating a code fragment : 

 

// &begin [processManagement::timeout] 

core.timeoutProcessClearInactivity(process); 

core.timeoutProcessSetInactivity(process); 

// &end [processManagement::timeout] 

 

 

 

Annotating a single line: 

 

core.timeoutProcessSetPing(process); // &line [processManagement::timeout ] 

 

 

Annotation 
markers 

Figure 3.3: Examples of text fragment annotations.

Figure 3.3 shows examples for code fragment annotations. In the first example, a
JavaScript code fragment is mapped to feature timeout by two annotation markers in the
comments. In the second example, the single code line is mapped to feature timeout by an
annotation marker in the inline comment.
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In the annotation system, the fragment annotations are in comments, which are em-
bedded inside source code files. This design makes the mappings between features and
assets hard to break compared to external traceability records. For example, when some
code is added inside a fragment, the annotations automatically shift with the code (see
Figure 5.3). However, for external traceability records, such as a record that includes the
start and end line numbers of a fragment, they are easy to break as the start and end line
numbers are easy to change when a fragment is modified.

In the following parts of the thesis, we use the terminology annotation marker to refer
to a certain fragment annotation in the comments (a single annotation “&begin [ Feature
List ]”, “&end [ Feature List ]” or “&line [ Feature List ]” is an annotation marker) or a
line in .vp-folder or .vp-files files. It is used as a unit of estimating the cost of adding and
maintaining annotations (see Section 6.2), which is similar with using a code line as a unit
of estimating software development cost. The terminology feature annotation will be used
interchangeably with annotation marker in the following text, since they refer to the same
thing in the context of adopting our feature annotation approach. (In other contexts,
feature annotation might have different meaning. For example, in C pre-preprocessor
directives, an #IFDEF directive is a feature annotation, which can be used to control the
inclusion of the annotated code.)

We also use the terminology asset to refer to a file, a folder or a fragment in source
code files or other text files. An asset is a unit of the software, and it can be annotated by
our annotation system.

The semantics of feature annotations is simply feature location. If a file, a folder or a
fragment is mapped to some feature(s), this simply means that it belongs to that feature(s).
More discussion about the semantics of feature annotations are in Section 7.1.

3.2 Developer Guidelines

In our proposed feature annotation approach, the developer should add and maintain
feature declarations (in the feature model) and annotations during the development of
software assets. This means that the feature model and annotations should always be
consistent with the assets. For example, if a new feature is implemented in the code, a
feature declaration of the feature should be immediately added to the feature model and
the code of the feature should be immediately annotated.

In practice, the rule of keeping consistency is not required to be strictly enforced. For
example, if a developer implements a feature separately in three consecutive commits (in

10



each of the commits only part of the feature is implemented), the developer is allowed to
add the feature declaration and annotations after the three commits, instead of updating
feature annotations in each commit. However, it should not be delayed for too long,
otherwise the developer might forget where the location of the feature is and as a result
extra feature location cost is needed to recover the feature location information. The
principle is that the developer should record the feature traceability information as soon
as possible, and at least before it is lost.

3.3 Traceability versus Variability

In our approach, the feature annotations are used to record feature traceability information.
All assets that implement a certain feature should be annotated. This is different from
the variability case, such as C-preprocessor directive annotation, in which only assets that
need be switched on/off are annotated to features. Feature traceability and variability
serve different purposes. Feature traceability is used to locate assets of features that are
needed for performing feature-related development tasks (such as modifying a feature or
reusing a feature), while variability aims at the automated derivation of individual variants,
by defining variation points (where variants differ).

Figure 3.4 shows an example of the differences between traceability and variability.
In the example, there is a feature called Feature3, and a C function f3() implements the
feature. Function f3() needs to invoke a utility function util1() to realize its functionality.
In the traceability case, all the two functions should be mapped to Feature3 via annotations,
because for some use cases the developer needs to trace all the assets of the feature (e.g.,
when modifying the behavior of the feature, the developer might need to modify both
the two functions). However, in the variability case, only f3() is switched on/off (by C-
preprocessor directives) in order to enable/disable Feature3. Function util1() is not switched
on/off because it is not required to do so, and the function might be needed by other parts
of the software.
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Feature Model 

Visualizer 
        Feature1 
        Feature2 
        Feature3 

File1.c 

// &begin [Feature3] 
void f3(){ 
util1(); 
…… 
} 
// &end [Feature3] 
……. 
// &begin [Feature3] 
void util1(){ 
…… 
} 
// &end [Feature3] 
 

Traceability 

File1.c 

#ifdef Feature3 
void f3(){ 
util1(); 
… 
} 
#endif 
…… 
void util1(){ 
…… 
} 
 

Variability 

Figure 3.4: Differences between traceability and variability.
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Chapter 4

Simulation Case Study

In this chapter, we describe the methodology used in this study, which is basically retroac-
tively simulating the proposed feature annotation approach in a case study. We also
describe some detailed information about the subject used in this study.

4.1 Research Questions and Assumptions

In order to investigate the cost and benefit of our proposed approach, we formulate four
research questions:

RQ1: What is the annotation recording and editing cost?The cost of adopting our feature
annotation approach arises from recording and evolving the feature model and annotations.
The annotation recording cost arises from adding assets, and the annotation editing cost
from evolving assets. We also investigate their ratio to understand the evolution cost in
our case study. To measure these costs, we rely on a simple metric: number of annotation
markers added/deleted/modified.

RQ2: What percentage of annotation recordings and editings required additional feature
location effort?We assume that the effort of feature location is zero when the annotations
are recorded immediately during developing the assets; however, sometimes the recording
is delayed due to 1) annotation mistakes, 2) lower eagerness, or 3) incomplete location
knowledge.

RQ3: What percentage of the invested annotation recording and editing cost saved fea-
ture location cost during reuse cases?We investigate the benefit-cost ratio of our feature
annotation approach during reuse cases.

13



RQ4: What percentage of feature location cost during reuse could be avoided?We investi-
gate, how many of the feature locations needed for reuse cases were covered by the recorded
feature annotations.

In our study, we make the following assumptions:

1. The developer has the feature location information in mind while implementing a
feature, so there is no feature location cost.

2. Adding a feature annotation is trivial and cheap.

3. The cost of recording and maintaining feature traceability information is amortized
over multiple uses of such information in reuse or maintenance use cases, whereas, in
the lazy strategy1, the information must be recovered every time it is needed.

We make these assumptions since they are, in our opinion, reasonable to make given the
design of our annotation approach. Confirming their validity in practice requires separate
studies.

4.2 Subject Description

The subject we used in this study is a series of tools called Clafer Web Tools[3], which are
based on the Clafer modelling language[1, 7]. Clafer Web Tools are three web-based tools:
ClaferMooVisualizer (short for “Clafer Multi-objective Optimizer Visualizer”), ClaferCon-
figurator (short for “Clafer Configurator”), and ClaferIDE (short for “Clafer Integrated
Development Environment”). ClaferMooVisualizer accepts a model in Clafer with opti-
mization objectives, runs a multi-objective optimization, and visualizes the resulting set of
optimal configurations. ClaferConfigurator also accepts a model in Clafer, runs the clafer
instance generator, and presents the resulting configurations. ClaferIDE offers basic edit-
ing, compilation and instantiation services for a Clafer model over a web-based interface.
All three tools are developed using the JavaScript language.

The three tools have many commonalities, and they are in the same domain. They have
been developed using the clone-and-own approach[15], and later their common features are
re-factored and moved into a central repository. All the tools use Git for configuration
management.

1In the lazy strategy, feature traceability information is not recorded, but retroactively recovered when
needed, by applying semi-automated feature location techniques or manually reading the code.
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Figure 4.1: Clafer Web Tools development history.

Figure 4.1 shows the development history of Clafer Web Tools. Each horizontal line
represents the development history of one of the tools. The three tools have their corre-
sponding Git repositories, and the “Platform” is a separate Git repository which contains
features shared by the three tools. The “Platform” repository is used as a Git sub-module
by the repositories of all the other three tools, and can be regarded as a common library.

ClaferMooVisualizer was developed first. After ClaferMooVisualizer was developed for
some time, ClaferConfigurator was developed by cloning lots of features from ClaferMoo-
Visualizer. After the the development of ClaferConfigurator started, the two tools evolved
and many features implemented in one of them were subsequently cloned to the other
one. ClaferIDE was developed later in a similar way. Most of the features of ClaferIDE
came from ClaferMooVisualizer and ClaferConfigurator, and a few features developed in
ClaferIDE were also cloned back to Visualizer.

The Platform repository was created after the creation of ClaferIDE. After the Platform
repository started, the common features of the three tools are re-factored and moved into
the Platform repository, and the Platform repository was added as a sub-module to the
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repositories of the other three projects.

The reason we choose this subject is because it is a series of similar products developed
by the clone-and-own approach, and we can easily have access to all the resources of the
projects, including original developers.

4.3 Simulation Study

In this study, we performed a simulation of the proposed feature annotation approach as
if the approach had been used originally in the development of the subject projects. All
the development history of the three tools and the Platform repository, before the 0.3.5
release, has been simulated (see Figure 4.1), which includes 779 commits in total. The
development history happened before this study began.

4.3.1 Study Design

The simulation study was done in the following way:

1. Create a new Git branch (simulation branch) from the first commit of the subject
project.

2. Add an initial feature model, which includes the root feature whose name is the same
with the subject project.

3. Merge a few original commits of the subject project into the simulation branch.

4. After the merging, evolve the feature model and annotation, according to the commits
that are merged into the simulation branch (e.g., if a new feature was added in
the merged commits, then add a new feature declaration to the feature model and
annotate the code that belongs to the feature). Besides adding the feature model
and annotations, no other change to the original assets (code, documents) is made.

5. Go to Step 3. Repeat the merging and evolving process until all the commits (of
development history under study) have been merged into the simulation branch.

Figure 4.2 shows the simulation process. In the figure, black dots represent commits in
Git, and lines (both the horizontal lines and the curves) between commits represent their
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Figure 4.2: Simulation process.

parent-child relationship. For each pair of commits, if there is a direct line (no commits
between them) that connects them, then the left-hand-side commit is the parent commit,
while the right-hand-side commit is the child commit (e.g., “O3” is the parent commit of
“O4”; “O4” and “E1” are both parent commits of “M1”). Commits on the upper horizontal
line are original commits of the subject projects, while the commits on the lower horizontal
line are made by the researcher during the simulation.

In this example, the researcher created the simulation branch from the first commit
(“O1”), then added an initial feature model in commit “E1”. After that, the researcher
merged three original commits into the simulation branch through commit “M1”, evolved
the feature model and annotations according to changes made by commits “O2”,“O3” and
“O4”, and committed the evolution of the feature model and annotations in commit “E2”.
This procedure was repeated until all the development history under study had been merged
into the simulation branch. Commits made by the researcher in the simulation branch are
copies of the original commits, and the copies have a feature model and annotations in
it. (In the commit names, “O” stands for “Original,” “M” stands for “Merging” and “E”
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stands for “Evolving the feature model and annotations.”)

4.3.2 Period Selection

In the simulation study, not all commits are merged into the simulation branch via a
separate merging commit. For each time of merging, one or a few original commits are
merged into the simulation branch together. We use the term period to refer to the set of
commits that are merged into the simulation branch together in a certain merging, since
the set of commits represents a short period of development history (e.g., in Figure 4.2,
commits “O2”,“O3” and “O4” were merged into the simulation branch by one commit, so
they formed a period).

After a cycle of merging and evolving has finished (e.g., after “E1” in Figure 4.2) the
researcher manually looks through the original commits right after last merged commit
(e.g., “O2”,“O3”. . . ) and selects a commit to directly merge into the simulation branch
(e.g., “O4”). The commit which is directly merged into the simulation branch becomes
the end point of a period (e.g., “O4”), and the original commit right after the end point
becomes the start point of the next period (e.g., “O5”). The researcher selects the directly
merged commit (e.g., “O4”) in the following cases:

1. When it is necessary to evolve the feature model or annotations.
While the researcher is looking through the original commits, if the researcher finds
that the software assets in a certain original commit2 have evolved enough such that
the feature model or annotations should be updated in order to keep consistent with
the assets, then a merging is performed.

For example, in Figure 4.3, the researcher found that a new feature “feature1” was
added in in commit “O4”, which made it necessary to update the feature model and
annotations (adding the feature declaration and annotations of “feature1”). So, the
merge “M2” was performed, and the feature declaration and annotations of “fea-
ture1” was added in commit “E2”.

Sometimes, several commits may be merged into the simulation branch by one merg-
ing, although each of them has evolved enough such that the feature model or an-
notations should be updated. The reason is that these commits belong to the same
development task performed in the history, and thus should be put in one period.

For example, in figure 4.4, a single development task, which is implementing “fea-
ture1”, was done in three commits (“O2”, “O3” and “O4”). So, the researcher

2In Git, a commit is a snapshot of the contents in the repository.
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Figure 4.3: Merging after a single commit with feature evolution.

merged the three commits together in “M2”, and added the feature declaration and
annotations of “feature1” after that.

The researcher identifies the development tasks based on his own judgement, which
is based on the information from commit messages, the issue tracker and also original
developers. Later, those development tasks are classified into different types, which
are later identified as evolution patterns (see Chapter 5).

2. Synchronizing the simulation branch with the original branch.
Sometimes, a certain original commit is directly merged into the simulation branch
just for synchronizing the simulation branch with the original development branch.
Otherwise the simulation branch will not keep up with the original development
branch very closely. For each end point commit, it has a corresponding commit
(annotated mirror commit) in the simulation branch. The annotated mirror commit
has exactly the same content with the original commit, except that it has a feature
model and annotations in it.
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Figure 4.4: Merging after several commits involving feature evolution.

However, for those original commits that are not end point commits, none of them has
an annotated mirror commit. So, in order to frequently have commits with annotated
mirror commits (in other words, to limit the size of each period), the researcher
sometimes synchronizes the simulation branch with the original development branch
even if there is no need to evolve the feature model or annotations. The benefit of
frequently having commits with annotated mirror commits is that we can analyze
the evolution history of features in a more fine-grained way (periods are small).

For example, in Figure 4.5, commit “O5” was merged into the simulation branch
just for synchronizing the simulation branch at that point. After that merging,
commit “O5” has an annotated copy of it (annotated mirror commit, “M2”), while
the commits around it do not have such a copy.

The selection of such a synchronizing point follows the following criteria:

• When an interesting evolution of software assets happens.
The researcher synchronizes the simulation branch when some interesting evo-
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Figure 4.5: Merging for synchronizing.

lution of software assets happens. For example, when code inside an annotated
fragment is re-factored. These patterns do not require the feature model or
annotations to be manually updated, so they are not the focus of this study,
but may be explored in a future study.

• When an important milestone is reached.
Some important milestones are also synchronized, like release points.

• When the evolution of software assets is significant enough.
The researcher also synchronizes the simulation branch when the researcher
observes that the original branch has evolved significantly since the last merging.
The significance is judged by the researcher subjectively. Cases include when
some important changes are made (e.g., an important bug fixing).

In the simulation study we performed, there are 210 periods in total. The largest period
contains 18 original commits, while the smallest only contains 1 commit.
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4.3.3 Feature Identification

During the simulation process, the researcher needs to manually look at the code or other
assets that are added/deleted/modified in original commits, decompose them into features
and build the feature model and annotations accordingly. This is essentially a feature
identification task. In the simulation study, feature identification was performed based on
the information available in the subject projects, including:

1. Records in commit messages.
Commit messages describe what changes were made in certain commits. In the sub-
ject projects, changes made to features were usually described in commit messages.
So, they can be used to identify features. For example, if a commit has a message
like “implemented feature1”, then the researcher merges the commit into simulation
branch, adds a new feature “feature1” to the feature model, and annotates the code
added in the commit with “feature1.”

2. Source code.
Source code is the main asset of the projects, wherein features are implemented. The
researcher also looks at the source code that is added, deleted, modified during the
simulation process, and identifies features based on the researcher’s understanding
of the code. For example, when a new class/method is added in a commit, and the
researcher thinks that this is potentially a unit of reuse, then the researcher merges
the commit into the simulation branch, adds a new feature to the feature model, and
annotates the class/method.

3. Feature models in the project Wiki.
In the Wiki website[4] of the subject projects, there are feature models for all the
subject projects. Those feature models were written down by one of the original
developers at a certain time between the 0.3.4 and the 0.3.5 release, before this study
began. They represent the features that are implicit in the original developer’s mind.
The researcher reads through the feature models before the study begins. During
the simulation process, the researcher especially watches over the evolution process
to see when the features in those feature models are added/evolved, and evolves the
feature model and annotations in the simulation branch accordingly.

4. Issue tracker, original developers.
Besides the information sources mentioned above, the researcher also uses information
from the issue tracker of subject projects and original developers, which helps the
researcher to understand the changes in original commits.
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Chapter 5

Evolution Patterns

After the simulation process, we manually looked at the evolution history of the subject
projects and identified several feature evolution patterns. An evolution pattern is a type
of software development task (can also have sub-types). We manually investigated all the
software development tasks that appeared in the simulation study, and classified them into
evolution patterns. Each pattern either involves intentionally adding, deleting or modifying
the feature model or annotations, which brings extra cost caused by adopting the feature
annotation approach, or involves benefit of having explicit feature model and annotations,
or both. These patterns are identified based on the characteristic of their changes made to
the assets, the feature model and annotations, and their extra cost and/or benefit. Here
we will informally describe costs and benefits of adopting the feature annotation approach,
and later formalize and measure them.

The following are the evolution patterns we found in this study:

• P1: Adding new assets.
In this pattern, either a new feature and some new assets (not created based on
existing assets) of the feature are added to the project, or some new assets are
added, which belong to a feature that already exists in the feature model. The newly
added assets can be fragments, files or folders, and annotation markers, which map
the assets to the feature, should be added immediately or shortly after that.

This pattern includes the following sub-patterns:

– P1.1: Adding a new feature and new assets.
In this sub-pattern, a new feature declaration is added to the feature model,
and the assets of the feature are added to the project and annotated.
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– P1.2: Adding new assets to an existing feature.
In this sub-pattern, new assets are added and mapped to an existing feature by
annotations. An existing feature means a feature which already has a feature
declaration in the feature model.

Feature Model 

Visualizer 
        Feature1 
        Feature2 
        Feature3 
 

File1.js 

// &begin [Feature3] 
function f3(){ 
… 
} 
// &end [Feature3] 
 

Feature Model 

Visualizer 
        Feature1 
        Feature2 
         

File1.js 

Assets 

Assets 

Figure 5.1: Example of pattern “P1.1: Adding a new feature and new assets.”

Figure 5.1 shows an example of this pattern. In the example, a new feature decla-
ration Feature3 was added to the feature model, and the asset that implements the
feature (function f3()) was added and annotated.

For this pattern, there exists extra cost of adopting the feature annotation approach.
The extra cost is introduced by adding a new feature declaration and annotations.
This is an extra task for the developer, compared with not adopting the feature an-
notation approach. We assume that there is no feature location cost in this pattern.
Since the developer adds the annotation markers together with the assets implement-
ing the feature, the developer has the feature location in mind and, thus, no cost of
finding feature location is needed, compared with recovering feature location in a
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reverse-engineering context. Additionally, when using a version control system, the
locations of all changes are directly visible before a commit. Future tool support can
propose the positions of putting annotation markers based on the change-set.

Under the assumption that there is no feature location cost in this pattern, we argue
that the extra cost is relatively low, compared with the development cost. When
developing a new feature, the main cost is designing, implementing, and testing the
functionality of the feature. The cost of adding a few annotation markers during
development is relatively low.

• P2: Adding re-factored/returned assets.
In this pattern, either a new feature and some re-factored/returned assets of the
feature are added to the project, or some re-factored/returned assets are added and
mapped to an existing feature. Re-factored assets are assets that are re-factored out
from other assets, and returned assets are those that used to exist in the project,
but were removed at some point later. An example of this pattern is re-factoring a
scattered aspect into a class, in which the aspect (e.g., code that handles user logging)
is scattered over several classes, and is re-factored into a class called “logging.” A
feature called “logging” is added to the feature model and the class “logging” is
mapped to that feature.

This pattern includes the following two sub-patterns:

– P2.1: Adding a new feature and re-factored/returned assets.
In this sub-pattern, a new feature declaration is added to the feature model,
and the re-factored/returned assets of the feature are added and annotated
immediately.

– P2.2: Adding re-factored/returned assets to an existing feature.
In this sub-pattern, re-factored/returned assets are added to an existing feature,
including their annotations.

For this pattern, the extra cost is introduced by adding a new feature declaration and
annotations. We also assume that there is no feature location cost in this pattern,
which is similar to the pattern “P1: Adding new assets.” However, since the new fea-
ture is built on re-factored or returned assets, the development cost is probably lower
than developing something substantially new. So, in this pattern, the percentage of
extra cost might be higher than in the pattern “P1: Adding new assets.”

• P3: Removing/disabling a feature.
In this pattern, assets of an existing feature are removed or disabled (by commenting
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out). The feature annotation markers of the feature need to be removed together with
the assets. The feature declaration is either removed or not, depending on whether
the developer thinks the feature will possibly return in the future.

This pattern involves some extra cost, but not too much. Fragment and folder an-
notations can be removed with the assets together, thus, no extra cost is introduced.
The removal of file annotations and feature declarations brings extra cost, but could
be easily automated by a future tool.

In this pattern, the benefit of having feature annotations is much higher than the
cost. The feature annotations provide the location of the feature, which is essential
for a developer or a tool to remove the assets of the feature.

• P4: Structural change within one feature.
In this pattern, the structure of the feature assets is changed, and the annotations
need to be updated in order to keep the annotations correct and succinct. Here are
the sub-patterns of this pattern.

– P4.1: Asset splitting.
In this sub-pattern, an asset is split into two. For splitting a fragment, the
fragments after splitting are not adjacent to each other any more (otherwise
they should be annotated as one fragment). The annotation markers are changed
correspondingly to map the split assets to the original feature. The rationale
behind this pattern is that either part of a fragment is re-factored out into a new
fragment (e.g., a piece of code in a method is re-factored into a new method)
or some irrelevant code, which does not belong to the same feature, is inserted
into a fragment.

Figure 5.2 shows an example of this sub-pattern. In the example, a part of the
code in function f3() was re-factored into a new function f3Util(), and the new
function is not adjacent to function f3() (there is some code between f3() and
f3Util(), and the code does not belong to feature Feature3). So, new annotations
were added to map f3Util() to Feature3. The original fragment is split into two
fragments after the evolution.

– P4.2: Asset merging.
In this sub-pattern, several assets are merged into one, which is basically the
reverse of asset splitting. In this study, it happened when several fragments of
one feature become adjacent to each other after moving them into one place, and
they are merged into one fragment by deleting the annotation markers between
them.
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// &begin [Feature3] 
function f3(){ 
… 
f3Util(); 
… 
} 
// &end [Feature3] 
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// &begin [Feature3] 
function f3Util(){ 
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} 
// &end [Feature3] 
 

// &begin [Feature3] 
function f3(){ 
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// &end [Feature3] 
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Figure 5.2: Example of pattern “P4.1: Asset splitting.”

– P4.3: Feature modularization into file.
In this sub-pattern, a feature whose assets are all fragments is modularized into
a module file, and the annotations are changed from fragment annotations to a
file annotation. After the modularization, the feature is in a separate module
file. During the process, fragment annotation markers are removed, and a file
annotation is added, which maps the module file to that feature.

In this pattern, both cost and benefit are involved. The extra cost is introduced
by adding/removing/modifying annotation markers. The percentage of extra cost
might also be higher than the pattern “P1: Adding new assets.” However, the cost
of adjusting annotations is still comparably low since there is no feature location
cost.

In the sub-pattern “P4.3: Feature modularization into file,” feature annotations can
bring significant benefit. In order to perform the changes in the sub-pattern, the
developer needs to know the location of all the feature assets, which can be provided
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by the feature annotations.

• P5: Feature model and mapping re-factoring.
In this pattern, no change is made to the assets in the project. Changes only include
modifying the feature model and/or the feature annotations.

Here are the sub-patterns of this pattern:

– P5.1: Identifying a new feature.
In this sub-pattern, an existing part of the software system is identified as a
new feature. A new feature declaration is added to the feature model, and some
existing assets are annotated to the feature. In this case, the feature already
exists in the project, but is not explicitly declared and annotated.

In the simulation study, most of the cases of this sub-pattern are identifying dif-
ferent part(s) of an existing feature F as new sub-feature(s) of F. It is essentially
decomposing a feature into smaller sub-features, which could support reuse and
variability in a more fine-grained way. For example, if a feature F is further de-
composed into three sub-features F1, F2 and F3, then a developer can clone the
sub-feature F1 into another project without cloning F2 and F3. However, if the
three sub-features are not declared and annotated, the developer can only clone
the feature F as a whole. (The developer can still clone a smaller part of the
feature F, but in such case the developer can not benefit from the annotations
too much, since the smaller part is not annotated as a sub-feature of F.)

The simulation study is done by a researcher who is not one of the original
developers. In reality, if a developer adds and maintains the feature model and
annotations alone normal development, some of the cases of this sub-pattern
might be avoided because the developer could add the feature declaration and
annotations while the feature is being implemented. However, since the devel-
oper can not accurately predict the future requirement for reuse and variability,
this sub-pattern is still likely to happen. For example, when a developer finds
that a smaller part of feature F is need to be cloned separately or be made
optional, then the developer will identify the smaller part as a new sub-feature
(F1) of F. The developer did not declare and annotate the sub-feature F1 when
it was being implemented because he/she failed to predict that the sub-feature
F1 would be a unit of reuse or a variation point in the future.

– P5.2: Adjusting position of a feature.
In this sub-pattern, the position of a feature in the feature model is changed,
and constraints of the feature model are possibly changed at the same time.
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(In this study, we did not add constraints to the feature model because we
focused on the evolution of feature annotations.) If the least-partially-qualified
name (which is used to identify the feature) is changed, all the annotations of
the feature need to be updated accordingly. The update of feature annotations
could be easily automated by a future tool.

– P5.3: Feature renaming.
In this sub-pattern, a feature is renamed in the feature model, and feature
annotations are updated accordingly. The update of feature annotations could
also be easily automated by a future tool.

– P5.4: Adding feature declaration only.
In this sub-pattern, only a new feature declaration is added to the feature model.
The assets of the feature are going to be implemented and annotated later.

For this pattern, the extra cost is introduced by evolving the feature model or an-
notations. No development cost is involved here. While some sub-patterns in this
pattern are simple and can be easily automated (such as “P5.3: Feature renaming”),
some might involve higher cost. For example, the main cost of “P5.1: Identifying
a new feature” might not be from adding annotation markers, but from identifying
which piece of functionality should be a feature, and recovering the location of the
feature.

• P6: Fixing annotations.
In this pattern, an error in the feature model or annotations is found and fixed.
According to the cost of fixing the error, we identified two sub-patterns:

– P6.1: Simple fixes.
In this sub-pattern, a simple error is found in feature annotations and fixed by
the developer. It could be a syntax error, or some assets that do not belong to a
feature were mistakenly annotated with that feature. Some of these cases could
also be automated.

– P6.2: Fixing missing annotations.
In this pattern, the error is that some annotation markers are missing, since
they were neglected by the developer. It can be either a begin/end marker of
fragment annotations that does not have end/begin marker to pair with it, or
some assets of feature are completely not annotated. The cost of fixing missing
annotations is potentially higher than in the simple cases, since the developer
needs to find out where the missing annotations should be put in, which is
essentially a feature location task.
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In the simulation study, most of the cases of this sub-pattern happened because
the researcher neglected some parts of a feature due to limited familiarity with
the code (the researcher is not one of the original developers). In reality, this
sub-pattern might happen less often since the original developers are more fa-
miliar with the code. Most of the fixes were triggered by modifications to the
features. For example, if the researcher found an original commit with a mes-
sage like “modified feature1,” but none of the assets modified in the commit
was annotated with feature1, then the researcher realized that there were some
missing annotations of feature1. In such case, the researcher merged the original
commit into the simulation branch and added the missing annotations.

• P7: Adjusting file/folder mappings.
In this pattern, some file or folder annotation markers need to be updated due to
changes made to the corresponding files or folders. In our annotation system design,
the mapping between files and features is stored in a separate .vp files file in
each folder. So, when files are moved to another folder, renamed or removed, the
.vp files files need to be updated, which brings extra cost. For folder mapping
adjusting, there was only one case found in the study, in which a folder is moved into
a newly created folder that belonged to the same feature, and the folder annotation
file (.vp folder) was moved into the newly created folder. Adjusting file mapping
can be avoided if we embed the file annotation in each mapped file. The limitation
is that this can only be done for text files, and can not be used to map binary files
to features.

• P8: Creating an initial clone.
In this pattern, a new project is created by cloning assets from an existing project.
Usually, the basic infrastructure (framework, mandatory assets, incl. libraries and
documentation) is copied first. After that, individual or all features are propagated.
Later, some undesired sub-features of those propagated features are removed or com-
mented out.

The benefit here is that by looking at the feature models, a developer can get a
clear view of which features are implemented in each existing project. This can help
the developer decide which project should be used as the base for creating the new
one, and what features can be propagated from other projects (other than the base
project).

• P9: Feature propagation.
In this pattern, a feature (or part of a feature) in one project is propagated to an-
other project by cloning/moving the assets and manually integrating them. The two
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projects are expected to have some similarities (e.g., sharing the same implemen-
tation framework), which makes the integration of the propagated feature feasible.
Ideally, these two projects should belong to the same product line.

The benefit of feature annotations here is providing the location of the feature to be
propagated. With the feature annotations, a developer can easily find the location
of the assets of the feature, which is to be propagated into another project.

There is also extra cost of evolving the feature model and annotations. The fragment
and folder annotations are propagated together with the assets, and thus no extra
cost is introduced. However, the feature declaration and file annotations have to
be propagated separately, which brings extra cost. However, the cost is negligible
compared to the benefit.

• P10: Modifying a feature without changing annotations.
This is a pattern that happens most often. It involves many activities, such as fixing
a bug in the feature’s assets, extending an asset of a feature, or re-factoring an asset
of a feature. All these activities share one characteristic: the developer needs to know
the location of the feature in order to perform it. Feature annotations can facilitate
these activities by providing the location.

This pattern does not require the developer to intentionally change feature annota-
tions, so no extra cost is introduced. For example, if a developer adds some lines
of code inside a fragment, the annotation markers of that fragment automatically
shift with the code, which does not require the developer to pay attention to the
annotations. Thus, no extra cost is introduced.

Figure 5.3 shows an example of this pattern. In the example, a piece of code was
added inside a fragment of Feature3. After the code was added, the end annotation
marker automatically shifted with the code. The developer does not need to manually
change any annotation.
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Figure 5.3: Example of pattern “P10: Modifying a feature without changing annotations.”
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Chapter 6

Analytical and Empirical Evaluation

In this chapter, we present analytical and empirical evaluation of the feature annotation
approach, which is based on analyzing the cost and benefit of adopting the approach. We
answer the four research questions in this chapter.

6.1 Frequency of Evolution Patterns

In order to know the frequency of different evolution patterns, we collected the number of
occurrences of each pattern. An occurrence of a pattern is a period of the simulation that
involves the pattern (see Section 4.3.2 for the definition of periods). The frequency of a
pattern is the number of periods that involve the pattern.

For example, the evolution pattern “P4: Structural change within one feature” (see
Chapter 5) has several sub-patterns, including “P4.1: Asset splitting” and “P4.2: Asset
merging.” Imagine there is only one period, which involves evolution of both “P4.1: Asset
splitting” and “P4.2: Asset merging,” then it counts as one occurrence of “P4.1: Asset
splitting”, one occurrence of “P4.2: Asset merging”, and also one occurrence of “P4:
Structural change within one feature.” The frequency of pattern “P4: Structural change
within one feature” (also “P4.1: Asset splitting” and “P4.2: Asset merging”) is 1.

For a pattern with sub-patterns, the frequency is not definitely the sum of the fre-
quency of its sub-patterns. In the example mentioned above, there is only one period (p1)
that involves the pattern “P4: Structural change within one feature,” but the sum of the
frequency of its sub-patterns is 2.
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Table 6.1 shows the frequency of all evolution patterns. Figure 6.1 visualizes the fre-
quencies of patterns (not including sub-patterns) in Table 6.1. From the frequency data,
we can see that the pattern that happens most often is “P10: Modifying a feature without
changing annotations.” All the 210 periods in the simulation study involve that pattern.

Patterns
Sub-
patterns

Sub-
pattern
frequency

Pattern
frequency

P1: Adding new assets.
P1.1 41

55
P1.2 14

P2: Adding re-factored/returned
assets.

P2.1 4
8

P2.2 4
P3: Removing/disabling a feature. 7

P4: Structural change within one
feature.

P4.1 4
7P4.2 2

P4.3 2

P5: Feature model and mapping
re-factoring.

P5.1 6

16
P5.2 3
P5.3 3
P5.4 4

P6: Fixing annotations.
P6.1 3

11
P6.2 9

P7: Adjusting file/folder mappings. 9
P8: Creating an initial clone. 2
P9: Feature propagation. 14
P10: Modifying a feature without
changing annotations.

210

Table 6.1: Frequency of evolution patterns (based on number of periods).

6.2 Cost Model

In this study, we formulated a cost model based on the characteristics of extra costs caused
by adopting the feature annotation approach. In the model, cost is measured by the number
of annotation markers added/deleted/modified, which is essentially a software metric that
can not be directly related to the economic cost. So, this model is not intended to be
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Figure 6.1: Frequency of evolution patterns (based on number of periods).

used for measuring economic cost in reality. We developed this cost model in order to
describe our findings in this study (relations between different kinds of cost, and their
characteristics), and estimate the amount of extra cost of our feature annotation approach.

Ctotal = Cfeature model structure design +
∑
fi∈F

Cf (fi) (6.1)

Cf (fi) = Cfeature identification(fi) + Cevo(fi) (6.2)

Cevo(fi) = Cmdl(fi) + Cannot(fi) (6.3)

Cmdl(fi) =
∑

a∈A(fi)

Cmdl(a) (6.4)

Cannot(fi) =
∑

a∈A(fi)

Cannot(a) (6.5)
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Cmdl(a) =


1 a is Feature renaming

1 a is Feature moving

1 a is Adding/removing feature declaration

0 otherwise

(6.6)

Cannot(a) =



# of added/modified markers a is Adding annotations

together with developing assets

# of deleted/modified markers a is Asset merging

# of deleted/modified markers + 2 a is Feature modularization

# of fixed markers a is Simple bug fixing

# of added/modified markers a is Recovering mapping

# of adjusted/deleted markers a is File/folder anno adjusting

0 otherwise

(6.7)

The cost model consists of a set of formulas. In Formula 6.1, Ctotal means the total
cost of adding and maintaining the feature model and annotations during a certain period
of development history. It consists of two parts. The first part, Cfeature model structure design,
is the cost of designing the structure of the whole feature model. The second part,∑

fi∈F Cf (fi), is the sum of the cost of adding and maintaining each feature. The set
of features, F = {f1, f2, ..., fn}, includes all the features that appeared in the period of
development history (also includes features that used to exist and later removed at some
point).

The cost of adding and maintaining each feature is defined in Formula 6.2. It consists of
the feature identification cost and evolution cost (including initial adding and subsequent
maintaining). Cfeature identification(fi) is the cost of identifying feature fi. It includes the cost
of clearly deciding what the intention/function/meaning of the feature is, how the feature
is going to be implemented, and whether it is worth annotating (potential variation point
or unit of reuse).

Cevo(fi) is the cost involved with evolving feature fi (see Formula 6.3). It consists of
the cost related to evolving the feature model (Cmdl(fi)) and the cost related to evolving
feature annotations (Cannot(fi)).

In order to explain how we estimated the evolution cost in the cost model, we introduce
the concept of annotation change. An annotation change is a change made to either the
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feature model or feature annotations by the developer at a certain time, and it must
introduce extra cost of adopting the feature annotation approach. For example, adding
new annotation markers for newly implemented code fragment is an annotation change,
because it introduces extra cost of adopting the feature annotation approach. On the other
hand, changes such as that annotation markers shift when code is edited do not require
the developer to consciously change the annotation, and thus have no extra cost and do
not count as annotation changes.

In Formula 6.4, Cmdl(fi) is the sum of the feature-model-related cost of all annotation
changes made to feature fi. In Formula 6.5, Cannot(fi) is the sum of the annotation-related
cost of all annotation changes made to feature fi. (A(fi) is the set of annotation changes
made to feature fi.)

Annotation changes happen in the evolution patterns that have extra cost related to
the feature model and annotations. An occurrence of a pattern may involve one or several
annotation changes. In Formulas 6.6 and 6.7, the cost of an annotation change is measured
according to their types. (Table 6.2 presents the annotation change types involved in each
evolution pattern. It also presents the benefit of each pattern, which will be explained in
Section 6.3.) The following is a list of the types and their cost:

1. Feature renaming.
This type happens in the evolution pattern “P5.3: Feature renaming.” It only re-
quires the developer to change one line in the feature model. Update of the references
in annotations can be automated. So the cost is 1 in Cmdl(a).

2. Feature moving.
This type happens in the evolution pattern “P5.2: Adjusting position of a feature.”
which means moving the feature declaration within the feature model. It only requires
changing one line in the feature model, so the cost is 1 in Cmdl(a). Potentially required
update of references in feature annotations (LPQ name might change, see Section 3.1)
can also be automated.

3. Adding/removing feature declaration.
This type happens in all the patterns that involve adding or removing a feature
declaration in the feature model. It only requires adding or removing one line in the
feature model, so the cost is 1 in Cmdl(a).

4. Adding annotations together with developing assets.
This type happens in all the patterns where new annotations are added together with
the development of the asset content, such as “P1: Adding new assets.” Under our
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assumptions, no extra feature location cost is needed here. Here, we use the number
of added/modified annotation markers to measure the cost of evolving annotations
in Cannot(a).

5. Asset merging.
This type happens in the evolution pattern “P4.2: Asset merging,” in which some
markers are removed or modified due to asset merging. Here we use the number of
deleted/modified markers to measure the cost of evolving annotation in Cannot(a).

6. Feature modularization.
This type happens in the evolution pattern “P4.3: Feature modularization into file,”
in which a feature consisting of fragment assets is modularized into a single file. Here
the cost measure includes the number of deleted/modified markers, and two lines of
file annotation markers which corresponds to the cost of adding a file mapping for
the newly created module file.

7. Simple bug fixing.
This type happens in the pattern “P6.1: Simple fixes.” All bug fixing of annotations
which does not have feature location cost belongs to this type. Since it does not
have extra feature location cost, we use the number of fixed annotation markers to
measure the cost.

8. Recovering mapping.
This type happens in evolution patterns “P5.1: Identifying a new feature” and “P6.2:
Fixing missing annotations,” in which the developer needs to recover the location of
a feature and annotate it accordingly. Here, extra feature location cost is required
for recovering the positions to put annotation markers.

9. File/folder annotation adjusting.
This type happens in the evolution pattern “P7: Adjusting file/folder mappings” and
“P3: Removing/disabling a feature,” in which file/folder annotations are moved to
another folder, renamed (file name) or deleted. The cost measure is the number of
adjusted/deleted annotation markers.

In Formula 6.1, the total cost of evolving the feature model and annotations is ag-
gregated per feature. Alternatively, we can also aggregate the total evolution cost per
evolution pattern, which means that the total evolution cost of each evolution pattern is
calculated at first, then they are summed up to calculate the total cost. The advantage of
this method is that we can compare the cost of different patterns, and, thus, understand
which pattern(s) drives costs.
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In Formula 6.8, the total cost consists of the feature model structure design cost, total
feature identification cost (which is still aggregated per feature in 6.9), and the sum of
the evolution cost in different evolution patterns. In Formula 6.10, the cost of a certain
pattern is the sum of the cost (including feature model evolving cost Cmdl(a) and annotation
evolution cost Cannot(a)) of all annotation changes involved in the pattern. An annotation
change is involved in a pattern if and only if the annotation change was performed by the
researcher (in reality, by the developer) in an occurrence of that pattern (see Section 6.1).

Ctotal = Cfeature model structure design + Ctotal feature identification +
∑
pi∈P

Cpattern(pi) (6.8)

Ctotal feature identification =
∑
fi∈F

Cfeature identification(fi) (6.9)

Cpattern(pi) =
∑

a∈A(pi)

(
Cmdl(a) + Cannot(a)

)
(6.10)

Table 6.3 shows the cost of all evolution patterns. Figure 6.2 visualizes the cost of
patterns in Table 6.3. Based on the cost data, we answer the first two research questions:

RQ1: What is the annotation recording and editing cost?
We can simply calculate the annotation recording and editing cost by aggregating the
costs of the patterns in which they occur: Crecord =

∑
pi∈{P1,P2}Cpattern(pi) = 317 and

Cedit =
∑

pi∈{P3,P4,P5,P6,P7,P9}Cpattern(pi) = 339. The total cost is 6561, which means
throughout the development history, 656 lines of feature declarations or annotation markers
were added/deleted/modified. From the cost data, we can also see that the pattern that
has the highest cost is “P1: Adding new assets,” which is also the pattern with the highest
frequency among patterns that involve cost.

Opposed to the 656 lines of annotations, throughout the simulated development his-
tory, there are 1,798,772 lines of text (including all kinds of text, such as source code or
documents) added and 1,251,742 lines of text removed in total. The 0.3.5 release of the
four subject repositories has 547030 lines of text in total, and 14794 lines of them are
JavaScript source code (excluding libraries). This shows that the cost of adopting our
annotation approach is negligible compared with the development cost.

1We ignore the cost of “feature model structure design” and “feature identification” in our research
questions, since they require separate studies.
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The ratio of recording to editing cost Crecord/Cedit = 107% is interesting, indicating
that at least as much—but not much more—effort arises from maintaining annotations as
a result of asset evolution. It shows that the annotation maintenance cost does not grow
linearly with the amount of evolution in the annotated assets. Compared to storing the
traceability information externally, adding or removing a single line in a file will shift the
locations of all feature fragments in that file that follow the line and thus require update
of the corresponding traceability links.

RQ2: What percentage of annotation recordings and editings required additional feature
location effort?
We define the number of annotation omissions Cao as the number of annotations that
were initially omitted when the simulator forgot to annotate or did not anticipate the
need to reuse the feature but which were added later on. Adding each omitted annotation
requires some additional feature location effort. In our case study, it arose in patterns
“P5.1: Identifying a new feature” (25 omitted annotations) and “P6.2: Fixing missing
annotations” (36 omitted annotations); in total Cao = 61. Thus, in summary, 9.3% of
all annotation-related activities incur feature location costs, in addition to recording and
editing annotations.

6.3 Benefit Analysis

In this section, we summarize the benefits of adopting the feature annotation approach,
and shows quantitative data about the benefit in reuse cases found in the simulation study.

Here is a list of the benefits we found in this case study:

1. Feature location.
Feature annotations can provide the location of the assets that implement a certain
feature. The feature location information can be used in many use cases, including
removing/disabling a feature, modifying a feature and feature propagation. In all
the use cases, the developer needs to know the location of the feature in order to
perform the development task.

2. Feature model.
Another important benefit of the feature annotation approach is from the feature
models. The feature model of a certain project can provide the information about
what features are implemented in the project. By comparing the feature models of
different projects, developers and other stakeholders can easily know what function-
alities are available in each project.
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Figure 6.2: Cost of evolution patterns, based on number of markers.

In our feature annotation approach, the benefit also has several limitations. Here is a
list of the limitations:

• For feature location, only the whole feature implementation can be directly located
by feature annotations. If the developer needs to locate a piece of code that is not a
feature, then the benefit of feature location is limited. For example, if the developer
wants to propagate a small piece of code (e.g., a small utility function), which is
not annotated as a feature, then the developer can not use the feature annotation
to directly locate the piece of code. The developer still needs to manually search for
the piece of code in the code base. If the developer knows which feature the piece
of code belongs to, then the feature annotations can help narrow down the search
space, but still can not help the developer to directly locate the piece of code.

• The benefit is also limited by the quality of feature annotations (e.g., accuracy).
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Since the feature annotations are basically added and maintained manually without
automatic verification or validation, the possibility of having low-quality annotations
might be high. The quality of feature annotations can affect the benefit. For example,
when a developer is propagating a feature to another project, if the quality of the
feature annotations is low (e.g., some assets of the feature are not annotated), then the
developer has to manually find those assets that are not annotated, which limits the
benefit the developer can get. Inaccuracy of annotations might also make developers
not trust the annotations, and, thus, unwilling to use them.

In our study, we investigated feature propagation in detail in order to understand
the benefit in reuse cases. We investigated all the cases that a feature was cloned or
moved to another project, and analyzed the cost and benefit associated with those cases.
We collected the feature propagation cases by manually looking through the development
history. During the process, when a feature was added at a certain snapshot C (a commit in
Git) in a certain project, the researcher manually looked at the snapshots (at the same time
point in history) of other projects to see if the feature existed in them. If the feature existed
in other projects at the same time point, then the feature was identified as a propagated
feature, and the whole activity was identified as a case of feature propagation. Some cases
of feature propagation were identified based on records in commit messages and software
documents.

Sometimes, when a feature F is propagated to another project, all the sub-features of
F are also propagated as a side-effect of propagating F. In such a case, the developer does
not need to care about the sub-features, so it only counts as one case, in which feature F
is propagated.

The total number of cases we collected is 55. In each case, one feature was cloned or
moved to another project by the original developer. Several features might be propagated
together in one original commit, which counts as multiple cases. A certain feature might be
propagated to different projects at different moments, which also counts as multiple cases.
The cases we collected cover all the feature cloning and feature moving that happened
before 0.3.5 release of the subjects, which are shown in Figure 4.1. For each case, we
collected the following data:

• The evolution history of the feature declaration and annotations of the propagated
feature (before the time when the feature was propagated). This includes all the an-
notation changes made to the feature declaration and annotations of the propagated
feature before it was propagated.
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• The total evolution cost of the feature before it was propagated (Cevo(fi), which is
in Formula 6.3).

• The benefit of having the feature annotations when the feature was propagated.
We counted the number of annotation markers that were used to provide feature
location in the feature propagation cases. Annotations inside propagated assets were
not counted.

After we collected all the data, we computed several statistics. Table 6.4 shows the
statistics of 55 feature propagation cases.

Based on the data of feature propagation cases, we answer the last two research ques-
tions:

RQ3: What percentage of the invested annotation recording and editing cost saved feature
location cost during reuse cases?
We sum up the benefit of all the 55 propagation cases. Overall, 121 annotations markers (99
if not counting multiple uses of some feature annotations) were involved in propagations.
Thus, 18% of the overall annotation recording (Crecord) and editing (Cedit) costs in the end
saved the lazy feature location costs that would be needed to perform the propagations.

RQ4: What percentage of feature location cost during reuse could be avoided?
In our simulation, annotations were surprisingly beneficial for the propagations. For only
two features annotations were missing and had to be added—10 and 4 annotations, re-
spectively. We did not observe any inaccurate annotation in the feature propagation cases.
Given that 135 annotation markers were involved (including the fixed ones), in total 90%
of feature location costs were saved, while such cost was still required for 10% of the
propagated markers.

The granularity of the propagated features is also interesting. In 43 of the 55 cases,
the propagated feature only has file and/or folder annotations, which means that in those
cases the propagated features consist of only files and/or folders, and no code fragments.
This indicates that the granularity of features used in feature propagation cases are mainly
on file and folder level. Most of the fragment annotations recorded in the simulation study
did not provide any benefit for reuse cases.
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Patterns
Annotation change types in-
volved

Benefits in-
volved

P1: Adding new assets.

Adding/removing feature dec-
laration.
Adding annotations together
with developing assets.

P2: Adding re-factored/
returned assets.

Adding/removing feature dec-
laration.
Adding annotations together
with developing assets.

P3: Removing/disabling a fea-
ture.

Adding/removing feature dec-
laration.
File/folder annotation adjust-
ing.

Feature location.

P4: Structural change within
one feature.

Adding annotations together
with developing assets.
Asset merging.
Feature modularization.

Feature location
(for feature
modularization).

P5: Feature model and map-
ping re-factoring.

Adding/removing feature dec-
laration.
Feature renaming.
Feature moving.
Recovering mapping.

P6: Fixing annotations.
Simple bug fixing.
Recovering mapping.

P7: Adjusting file/folder map-
pings.

File/folder annotation adjust-
ing.

P8: Creating an initial clone. Feature model.

P9: Feature propagation.

Adding/removing feature dec-
laration.
Adding annotations together
with developing assets.

Feature location.

P10: Modifying a feature with-
out changing annotations.

Feature location.

Table 6.2: Summary of the annotation change types and benefits of evolution patterns.
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Patterns Cpattern(pi)
P1: Adding new assets. 290
P2: Adding re-factored/returned assets. 27
P3: Removing/disabling a feature. 45
P4: Structural change within one feature. 25
P5: Feature model and mapping re-factoring. 63
P6: Fixing annotations. 46
P7: Adjusting file/folder mappings. 45
P8: Creating an initial clone. 0
P9: Feature propagation. 115
P10: Modifying a feature without changing annotations. 0
(TOTAL) 656

Table 6.3: Cost of evolution patterns, based on number of markers.

Cost (Cevo(fi)) Benefit
Maximum 22 8
Minimum 0 0
Average 6.145 2.2
Mode 3 2
Median 5 2

Table 6.4: Statistics of feature propagation cases.
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Chapter 7

Discussion

In this chapter, we present some discussions about the findings in the study.

7.1 Configuration Semantics of Shared Code

In the annotation system, an asset can be mapped to more than one feature. In such
case, the asset is shared by the features it maps to. If the annotations are only used
for traceability, then we do not need to care about the configuration semantics of shared
assets. However, if the annotations are used for variability, then we need to specify the
configuration semantics of the shared assets.

For an asset (A) shared by two features (F1 and F2), there are two kinds of semantics:
AND and OR. The semantics AND means that A is present at a variant if and only if both
features F1 and F2 are present at the variant. The semantics OR means that A is present
at a variant if and only if at least one of the features (F1, F2) is present at the variant.
An example of the AND semantics is a piece of code that handles the interaction of two
features, so the code piece is present only if both features are present. An example of the
OR semantics is a utility method required by both the two features, so as long as one of
the features is present, the utility method must be present.

In evolution patterns “P3: Removing/disabling a feature” and “P9: Feature propaga-
tion,” it might be useful to distinguish the two kinds of semantics of shared code. For
example, assume features F1 and F2 share an asset (A), and the developer wants to re-
move/disable F1 or propagate F1 to another project. In the case of removing/disabling
F1, if the semantics of A is AND, then A should be removed/disabled because F1 and F2
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will not be both present together. Otherwise, if the semantics is OR, then A should stay
because it is still required by F2. In the case of propagating F1 (only F1 is propagated) to
another project, if the semantics is OR, then A is propagated because it is required by A,
otherwise it is not propagated.

7.2 Potential Benefit

Besides the benefits of feature annotations mentioned in Section 6.3, we also identified
several potential benefits:

1. Providing statistics of features.
Given the locations of features provided by the feature annotations, several kinds of
statistics can be automatically computed, such as number of lines of feature code
and scattering degree of a feature. In addition to the statistics of a snapshot of
a feature, statistics of the feature evolution history can also be computed, such as
which features change more often and which features have more bugs.

2. Providing meta-data for future tools to analyze features and automate
development tasks.
With the information provided by feature annotations, future tools can perform anal-
ysis of features and potentially automate some development tasks. For example, in
future tools a function called “feature diff” could be implemented, which compares
two different versions of a feature and produces a diff. Different versions of a fea-
ture could be in two different commits of one project, or in two different projects
(caused by feature cloning). Besides analyzing features, future tools can also auto-
mate some development tasks. For example, feature propagation could be potentially
automated.

3. Program comprehension.
The feature model and annotations could potentially facilitate program comprehen-
sion for both original developers and novices. The feature model can provide informa-
tion about the structure of the functionalities implemented in a certain project, and
feature annotations can help the developer navigate while looking at source codes.
They provide meta-information about the source code, which is similar with code
comments.
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There are several existing studies on the benefit of using the feature concept. In [31],
the authors investigate an approach of using feature modeling to facilitate program com-
prehension and software architecture recovery. In [34], the author presents an approach of
using feature modeling to link requirements to solutions.

48



Chapter 8

Threats to Validity

8.1 Internal Validity

Threats to internal validity refers to uncontrolled factors that may influence the analytical
and empirical results found in the simulation case study.

• The researcher.
In the simulation study, the researcher who performed the simulation process is not
one of the original developers of the subject projects, so the researcher’s understand-
ing of the original development (including meanings of the source code, activities
happened during the development and rationale behind those activities) is limited.
The information resources used by the developer includes commit messages, websites
and the issue tracker of the subject projects, in which the information may be po-
tentially inaccurate. One of the original developers was sometimes consulted during
the simulation study, but that is also limited due to the large amount of work in this
study, and the original developer is not highly involved in this study.

The limited understanding of the researcher might cause mistakes in the simulation
study (e.g., some code mapped to a certain feature by the researcher actually does
not belong to the feature). In that case, the amount of cost and benefit measured in
the study might be influenced by the potential mistakes.

• The simulation study.
In the simulation study, we simulated the approach of adding and maintaining feature
model and annotations during developing. The way of simulating is by re-applying
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the commits in the development history, and evolving the feature model and anno-
tations during the re-applying process. This is not an exact simulation, since it does
not simulate what the original developer actually did in the development history.
Ideally, the simulation should be a re-enactment of the original development, but
actually it is not.

8.2 External Validity

Threats to external validity refers to factors that may affect the generalizability of the
study results outside the study.

• The subject projects.
In this study, the subject projects we chose were developed in the same lab with the
researchers. The reason we chose them is that these projects are developed by the
clone-and-own approach, and we can have access to all the resources of it and also
the original developers. These projects are developed in an academia environment,
and the size of the subjects are small compared to large industry projects, which
limits the generalizability to industry environments.

• The original developers.
Both the researcher who performed the simulation study and the original developers
are in the same lab, in which the main research topic is about Software Product Line
and Feature Model. The researcher and original developers have a certain level of
understanding of the feature model concept and other relevant knowledge. This may
harm the generalizability in environments in which developers are not familiar with
the feature concept and other relevant knowledge.

8.3 Construct Validity

Construct validity is the degree to which the metrics we used to measure cost and benefit
reflects the actual cost and benefit. In the study, the metrics we used to measure cost
is basically number of annotation markers added/deleted/modified. This is similar with
using number of lines of code to estimate development cost. The metric can be used to
empirically estimate the amount of cost, but it is not an exact measure.
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Chapter 9

Related Work

9.1 Evolution Patterns

The evolution of configurable systems has been investigated before. For instance, in [32],
the authors analyze the co-evolution of variability model, asset mapping, and code in the
Linux kernel over time. They identify a catalog of re-occurring patterns, describing the
nine most-frequent ones in-depth. While their targets are systems that already have an
integrated platform, some patterns in fact overlap with ours. For example, the pattern
“Add visible optional modular feature” in [32] corresponds to our evolution pattern “P1.1:
Adding a new feature and new assets.” The patterns in [32] are identified according to the
characteristics of the co-evolution of variability models and artifacts, while our patterns
are mainly focused on different kinds of the cost and/or benefit of feature annotations.

In [30], the authors present several safe evolution templates that developer can use for
evolving software product line. Some of the patterns in that work are also found in our
study, such as splitting a software asset.

9.2 Concern Mapping

A concern is any kind of conceptual unit that stakeholders of a software projects may be
concerned with. Examples of concerns include features, functionality, and non-functional
requirements. The mapping between concerns and software assets are essential for per-
forming tasks related to concerns, such as modifying a concern. The feature annotation
approach proposed in this thesis is also a kind of concern mapping approach.
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There exist several studies on mapping concerns to software assets. In [35], the authors
propose an approach in which the implementation of concerns is documented in software
assets using a technique called concern graph, which is a kind of abstract model that
describe which parts of software assets are relevant with different concerns. The concern
graph is continuously maintained during the software development process, which is similar
to our feature annotation approach. They also developed a tool called FEAT (feature
exploration and analysis tool) to help developers build concern graphs, and performed
several case studies to evaluate the approach they propose. The results of those case
studies show that the concern graph is robust and cost-effective to create and use.

Besides the tool called FEAT in [35], there are several other tools or techniques that can
be used to map features to software assets, including CIDE[26, 27, 25], FeatureMapper[20]
and Spotlight[14]. CIDE is an Eclipse plug-in which can be used to annotate code with the
features it implements, to generate variants and perform variability-aware type checking.
In CIDE, language structures (such as classes, methods) can be mapped to features via
different colors, and the mapping information is stored in separate .color files. It also
supports views of features in source code. FeatureMapper is a tool that can map features
to solution artefacts expressed in EMF/Ecore-based languages[38]. Spotlight is an editor
for software plans [13], and can also be used for mapping concerns to assets. Empirical
studies were also conducted to evaluate those tools or approaches. In [37], the authors
compared the pre-processor approach vs. physical separation of features (feature modules)
in a controlled experiment.

Most of the existing approaches we found share a common characteristic: the feature
traceability records are maintained external, not embedded in assets. Most also impose
specific tools, such as an IDE. In this thesis, the annotation system we designed embeds
fragment annotations inside assets, which makes them harder to break compared to external
traceability records.

9.3 Feature Location

There are many existing techniques that target the feature location problem. In [36], the
authors performed a survey of existing feature location techniques. The result shows that
basically all of the existing feature location techniques have very low precision and recall.
This means that automated approach of acquiring feature location information is nearly
impossible.

Manual feature location is studied by Wang et al. [40]. The study consists of three
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experiments in which developers were given unfamiliar software systems and asked to com-
plete six feature location tasks. Based on the results of the study, they propose a conceptual
framework for understanding manual feature location process, which consists of a collection
of phases, patterns and actions. The study also shows that manual feature location is a
human-intensive and knowledge-intensive task which involves significant difficulty.

Finally, we found no work on recording feature traceability manually and continuously,
besides an introduction into traceability [17], which classifies traceability maintenance into
“continuous” and “on-demand”.

9.4 Cost-benefit Analysis

To the best of our knowledge, there is no sound theory of how to model the cost or
benefit of software development approaches. Existing approaches usually estimate the cost
or benefit by regression method, such as COCOMO[12]. Other methods of estimating
software development cost also include Function Point method[39].

In [29], the authors present a pragmatic economic model to perform cost-benefit analysis
of the adoption of software reference architectures. The model is based on value-based
metrics and other economics-driven models. Commonly, costs are identified, but constants
often remain as parameters and they have to be tailored to a specific project or domain
context. We express our costs similarly.

We are not aware of a comprehensive cost/benefit model of traceability, although various
works propose such. In [22], the authors present an overview of traceability cost and benefit.
In [21], the authors introduce a model of traceability cost and benefit, and show that it
is useful to estimate the return on investment of tracing approaches. In [16], the authors
propose a value-based approach that can be used to understand the cost-benefit trade-off
in traceability generation.

9.5 Annotative Variability

Annotative variability is a technique which uses annotations in source code to implement
variability, such as using C preprocessor directives to implement compile-time variability.
There exist several empirical studies about how annotative variability is adopted in prac-
tice. For example, in [28], the authors analyze forty open-source software projects that are
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written in C and use C preprocessor directives to implement variability. They explore sev-
eral characteristics of the annotative variability in those projects, such as the complexity
and granularity of variability annotations. They also introduce several metrics to measure
different aspects of the variability, such as scattering degree.

9.6 Attention Investment

In our proposed cost model (see Section 6.2), we use the concept annotation change to
describe activities that a developer needs to pay attention to. Performing an annotation
change to the feature model or annotations is essentially a kind of attention investment,
which means that the developer invests the attention cost related to evolving the feature
model or annotations in the hope that the feature model and annotations will bring some
benefits in the future. There exist several studies that apply the attention investment con-
cept. In [10], the authors propose an approach of using the attention investment concept
to analyze the cognitive dimensions of notations[18, 19], which are design principles for
notations or programming languages. In [9, 8, 11], the authors use the attention invest-
ment concept to investigate the aspects of both professional programming and end-user1

programming, and also propose attention investment models.

1End users refer to people who are not professional software developers.
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Chapter 10

Conclusion

10.1 Summary of Findings

In this thesis, we presented a case study that aimed at analyzing the cost and benefit of
adopting the approach of maintaining a feature model and feature traceability information
along normal development process. The study is performed by simulating the approach
on a series of subject projects developed by clone-and-own. We classified different kinds of
software evolution happened in the simulation process into evolution patterns, and analysed
the cost and benefit associated with those patterns. According to the characteristics of the
cost and benefit observed in the evolution patterns, we presented a cost model and used it
to estimate the cost of adopting the approach. We also used some metric to estimate the
benefit.

The cost and benefit data shows that 18% of the feature recording and editing cost
saved 90% of feature location cost needed for feature reuse tasks. Feature maintenance
tasks (P10: Modifying a feature without changing annotations) constitute the majority of
developers’ work, which potentially also benefit a lot from the feature annotations. Based
on the data, we conclude that, under our assumptions, the cost of creating and maintaining
a feature model and annotations with the proposed approach is negligible compared to the
development cost. Also, the benefit of the annotations can justify the investment if certain
amount of reuse and consistency management is required.
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10.2 Future Work

For future work, we need to do an action research, in which the proposed feature annotation
approach is adopted in real world. By doing action research, we can get more insights
about the actual causes of cost and benefit, challenges of the approach and tool support
opportunities.

In this thesis, a cost model is proposed for measuring the extra cost of adopting the
feature annotation approach, but it is not validated. For future work, we can do a controlled
experiment. In the experiment, two groups can develop the same software project, and one
adopts the feature annotation approach while the other does not. By comparing the cost
of the two groups, we can measure and analyze the extra cost of the feature annotation
approach, and also investigate whether the feature annotation approach will influence the
development behavior (e.g., whether the enforcement of recoding feature annotations will
make the developer tend to develop features that are less scattered).

In future work, we also need to investigate the tool support opportunities for the feature
annotation approach, such as automatically proposing where to put annotation markers,
and also implement the tools.
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[6] Sven Apel and Christian Kästner. An overview of feature-oriented software develop-
ment. Object Technology, 8(5):49–84, 2009.

[7] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models
in clafer: Mixed, specialized, and coupled. In SLE, 2010.

[8] Alan Blackwell and Margaret Burnett. Applying attention investment to end-user
programming. In Human Centric Computing Languages and Environments, 2002.
Proceedings. IEEE 2002 Symposia on, pages 28–30. IEEE, 2002.

[9] Alan F Blackwell. First steps in programming: A rationale for attention investment
models. In Human Centric Computing Languages and Environments, 2002. Proceed-
ings. IEEE 2002 Symposia on, pages 2–10. IEEE, 2002.

[10] Alan F Blackwell and Thomas RG Green. Investment of attention as an analytic
approach to cognitive dimensions. In Collected Papers of the 11th Annual Workshop
of the Psychology of Programming Interest Group (PPIG-11), pages 24–35, 1999.

57

http://www.clafer.org/
http://en.wikipedia.org/wiki/Javadoc
http://gsd.uwaterloo.ca/claferwebtools
http://t3-necsis.cs.uwaterloo.ca:8091/ClaferToolsPLE/Intro


[11] Alan F Blackwell, Jennifer A Rode, and Eleanor F Toye. How do we program the
home? gender, attention investment, and the psychology of programming at home.
International Journal of Human-Computer Studies, 67(4):324–341, 2009.

[12] Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and Bert
Steece. Software Cost Estimation with Cocomo II with Cdrom. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 2000.

[13] David Coppit and Benjamin Cox. Software plans for separation of concerns. In
Proceedings of the Third AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software, Lancaster, UK, volume 22, 2004.

[14] David Coppit, Robert R. Painter, and Meghan Revelle. Spotlight: A prototype tool
for software plans. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 754–757, Washington, DC, USA, 2007. IEEE Computer
Society.

[15] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. An exploratory study of cloning in industrial software prod-
uct lines. In CSMR, 2013.

[16] Alexander Egyed, Stefan Biffl, Matthias Heindl, and Paul Grünbacher. A value-based
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