
Optimal Scheduling for Asymmetric
Multi-core Server Processors

by

Bharathwaj Raghunathan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Bharathwaj Raghunathan 2014

Author’s Declaration

This thesis consists of material all of which I authored or co-authored [1, 2]: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

In Chapter 1:

Contributor Contributions

Raghunathan, B. Manuscript writing
Garg, S. Manuscript editing and Figure 1.1

In Chapter 3:

Contributor Contributions

Raghunathan, B. Manuscript writing
Garg, S. Manuscript editing and Figure 3.2

iii

Abstract

The arrival rate of jobs at servers in a data-center can vary significantly over time. The
servers in data-centers are typically multi-core processors, which allow jobs to be processed
at different degrees of parallelism (DoPs), i.e., the number of threads spawned by a job. In
this thesis, we show analytically as well as empirically that the DoP which minimizes the
service time of jobs varies with the arrival rate of jobs. Also, recent trends have shown a
move towards asymmetric multi-core server processors. These processors are made up of
multiple clusters, each consisting of cores of different type and of which only one cluster can
be turned on at a given point in time while the others remain “dark”. We show that the
choice of the optimal cluster is dependent on the arrival rate. Based on these observations,
we propose a run-time scheduler that determines the optimal DoP and performs inter-
cluster migration to minimize the mean total service time. The main contributions of this
thesis are

• We propose a queueing theoretic model to determine the mean service time of jobs
as function of the DoP, number of parallel jobs and the cluster choice.

• Based on the queueing theoretic model, we show that both the optimal DoP and
cluster choice are dependent on the job arrival rate, and propose a run-time scheduler
that makes optimal optimal cluster migration and DoP selection decisions to minimize
mean service time.

iv

Acknowledgements

Firstly, I thank my supervisor Prof. Siddharth Garg for his help and guidance throughout
my stay at the UWaterloo. I have learnt so much from him on how to perform good
research.

I thank my thesis readers, Prof. Hiren D. Patel and Prof. Mahesh Tripunitara for their
helpful feedback on this thesis and for being wonderful instructors.

I am gratefully to the UWaterloo community for providing such a great environment
which has helped me grow as a person.

Finally, I thank MITACS for their financial support during my time at UWaterloo.

v

Dedication

I dedicate this thesis to my parents and my grandmother. They have always been there
for me.

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Outline . 4

2 Background and Related Work 5

2.1 Cloud Computing . 5

2.2 The Dark Silicon Era . 6

2.3 DoP optimization . 7

2.4 Motivation for Heterogeneous Multi-core
Processors . 8

3 Approach 10

3.1 Introduction to Queueing theory . 10

3.1.1 Important Terms . 11

3.2 Queueing Theoretic Modelling . 12

3.2.1 Performance modelling for multi-threaded applications 14

3.2.2 Analysis . 16

3.2.3 Impact of multiple jobs running in parallel 19

3.3 Job Arrival Rate Aware Scheduler . 20

vii

4 Experimental Setup 23

5 Results and Evaluation 26

5.1 Model Validation . 26

5.2 Job Arrival Rate Aware Scheduling Results 28

5.2.1 Comparison with Dim Silicon architecture 36

6 Conclusions 40

7 Future Work 41

References 42

viii

List of Tables

4.1 Core micro-architectural details. 23

4.2 Last level cache details. 24

4.3 Application Details . 24

5.1 V/F pairs used for the homogeneous dark silicon architecture. Values are
shown for 11 nm technology node using scaling factors indicated by [3] . . 37

5.2 Percentage change in maximum sustainable arrival rate of dim silicon archi-
tecture over clustered asymmetric architecture. 39

ix

List of Figures

1.1 A clustered asymmetric multi-core processor with three clusters. 2

2.1 Graph showing the variation in arrival rate over a 24 hour period. 6

2.2 Overview of the Exynos processor as seen in [4] 9

3.1 A diagram explaining the states in queueing theory 10

3.2 A multi-core processor with Nc = 16 cores. The scheduler schedules two
jobs (J = 2) on the processor, each with a DoP of three (D = 8). Also
shown on the right is an equivalent queueing theoretic model of the processor. 12

3.3 Normalized execution time vs degree of parallelism for the (a) Radix (b)
Blackscholes (c) LU.ncont (d) PCA benchmarks from cycle-accurate simu-
lations and best fit based on Equation 3.7. 15

3.4 Mean total service time as a function of arrival rate for different DoPs: (a)
perfectly parallelizable jobs; (b) jobs with 10% serial fraction. This is for a
system with 32 cores. 17

3.5 Increase in execution time with increase in number of jobs running in par-
allel. The values shown above are for FFT benchmark 20

3.6 Graph showing the percentage of cores occupied for the optimal DoP for a
range of arrival rates. Serial fraction the job(S) is 0.1 21

5.1 Mean total service time predictions from analytical model, DES + Sniper
and the Sniper multi-core simulator for the Radix benchmark - Medium Core. 27

5.2 Optimal DoP as a function of arrival rate for the (a) FFT (b) Raytrace
benchmarks. 29

x

5.3 Mean total service time versus arrival rate for three different clusters for (a)
Radix (b) Raytrace benchmarks. 30

5.4 The percentage improvement in the mean total service time over all bench-
marks with oracular knowledge of the arrival rate and using the naive pre-
diction of the arrival rate with baseline as the single best cluster using the
single best DoP . 31

5.5 Cumulative distribution function of total time spent in the system for the
Radix benchmark . 32

5.6 Cumulative distribution function of total time spent in the system for Barnes
benchmark . 33

5.7 Graph showing the variation in optimal DoP and cluster type for (a) Radix
(b) Raytrace benchmarks under varying arrival rate. 34

5.8 Graph comparing service time with number of migrations per minute against
a baseline, where no migrations happen. 35

5.9 An example heterogeneous Dim Silicon architecture 36

5.10 Normalized execution time vs degree of parallelism for the Radix benchmark
in both V/F levels . 37

5.11 The percentage improvement in the mean total service time over the chosen
benchmarks with oracular knowledge of the arrival rate and using the naive
prediction of the arrival rate with baseline as the Dim Silicon architecture
with oracular knowledge of the arrival rate 38

xi

Chapter 1

Introduction

In recent times, a new paradigm shift in computing has emerged. This paradigm shift
termed “Cloud Computing” is the availability of computing resources over large networks
such as the internet. A number of companies like Google, Microsoft, and Amazon deliver a
variety of services like search and e-commerce through the cloud. These services are hosted
in warehouse scale data-centers.

Data-centers are composed of a network of servers built using commodity or enterprise
class multi-core processors. The rate at which jobs arrive at the data-center for processing,
i.e. the job arrival rate , can change significantly in a matter of hours or even minutes. As
an example, analysis of Wikipedia data shows up to 4× variation in article update arrival
rates over the course of a day, averaged over one minute intervals [5]. These jobs are
assigned to individual servers by a data-center scheduling mechanism. Hence, variations
in job arrival rate at the data-center level translate to variations in the arrival rate at the
server level. Barroso et al. [6] have noted that server utilization in production data-centers
varies widely.

The availability of multiple cores on server processors enables the parallel execution
of data-center jobs. The degree of parallelism (DoP) of a job refers to the number of
parallel threads used to execute that job. As jobs submitted queue up for processing, a
run-time scheduler decides the number of jobs to execute in parallel (J), and the DoP of
each job (D). For example, given a search workload, the scheduler can execute the the
workload in sequence, while parallelizing each job to the greatest possible degree. In this
scenario, the DoP of each job would be D = Nc, where Nc is equal to the number of cores
on the processor, and J = 1 since jobs are executing in sequence. At the other extreme, the
scheduler can execute J = Nc search queries in parallel, with each search query running on

1

a single core (i.e., the DoP D = 1). In general, any combination of J and D that satisfies
J ×D = Nc can be chosen.

Figure 1.1: A clustered asymmetric multi-core processor with three clusters.

The abundance of transistors on a chip has motivated a move towards asymmetric
multi-core processor designs. This thesis focuses on asymmetric multi-core processors
that contain multiple clusters of cores. An example of the same is the recently introduced
Exynos processor [7] based on the ARM big.LITTLE architecture [4]. Figure 1.1 provides
an example of such a processor that consists of three clusters. Each cluster has many cores
of the same type, but heterogeneity exists across clusters. In the figure, three clusters have
small (S), medium (M), and large (L) cores; small cores provide lower performance than
medium and large cores but also consume less power.

Asymmetric multi-core processors are over-provisioned, i.e., all clusters can not be
switched on at the same time; doing so would violate the chip power budget. This is a
consequence of a trend towards so called dark silicon which is the part of the chip that
must be left unpowered due to power constraints. As a result, usually only one cluster is

2

active at any point in time, while the others remain dark. Jobs can be migrated between
clusters as and when required. This is referred to as cluster migration mode [7]. In this
work we assume that each cluster will have a sufficient number of cores to consume the
entire chip’s power budget when active. We note that the clustered processors available
today do not have this property. For example the Exynos processor has the same number
of little cores as big cores (hence the little cluster consumes less power)

In the context of asymmetric multi-core architectures, an important challenge is the
design of run-time schedulers that minimize mean service time within a given power budget.
In particular, the run-time scheduler must determine: (a) which cluster to execute jobs on
(and appropriately migrate jobs to the selected cluster), and (b) the optimal DoP (D) for
each job on that cluster so as to minimize the mean service time of jobs.

The goal of this thesis is to determine optimal run-time scheduling policies to minimize
the mean service time of jobs for asymmetric multi-core processors in the presence of
varying job arrival rates. To facilitate this, we propose a queueing theoretic model to help
determine the mean service time of jobs.

1.1 Thesis Contributions

The main contribution of this thesis are:

• We propose a queueing theoretic model to determine the mean service time of jobs
as a function of the DoP (D), number of parallel jobs (J) and the cluster choice. The
model is extensively validated against detailed simulations on a micro-architectural
simulator and shown to be accurate over a wide range of job arrival rates.

• Based on the queueing theoretic model, we show that both the optimal DoP and
cluster choice are dependent on the job arrival rate, and propose a run-time scheduler
that makes optimal cluster migration and DoP selection decisions to minimize mean
service time.

• Our empirical analysis using real job arrival rate curves from production data-centers
show significant improvements in mean service time using the proposed job arrival
rate aware scheduler over conventional schedulers that only statically optimize the
DoP and cluster choice.

Much of the existing work on heterogeneous or asymmetric processors is motivated
by heterogeneity in job/application characteristics. On the other hand, an interesting

3

observation in our work is that even if all the jobs are identical, for example, even if
the server is only executing jobs of the same type, variations in the job arrival rate still
motivate the design of asymmetric processors with different core types.

1.2 Outline

Chapter 2 talks about prior work on DoP optimization, asymmetric clustered architec-
tures, and various thread scheduling policies. Then we move on to discussing the proposed
approach and queueing theoretical model in Chapter 3. Chapter 4 describes the experi-
mental setup and Chapter 5 discusses the experimental results and the evaluations of the
proposed approach. Finally, Chapter 6 provides a conclusion to this thesis and Chapter 7
looks at possible extensions to the thesis.

4

Chapter 2

Background and Related Work

In this chapter, we talk in more detail about cloud computing and dark silicon. Also, we
discuss prior work in detail.

2.1 Cloud Computing

Cloud computing, a recent trend in computing, is the availability of computing resources
over large networks like the Internet. A number of companies like Google, Amazon, IBM,
and Microsoft provide a variety of services on the cloud. Some of these service include
Software-as-a-service (SaaS), Platform-as-a-service (PaaS), Infrastructure-as-a-service (IaaS)
to name a few. Our work deals with the SaaS model, where users submit jobs to a centrally
hosted server.

Cloud computing services are hosted in warehouse scale data-centers. Companies such
as Google and Facebook have multiple data-centers; many data-centers use as much elec-
tricity as small town and produce enough heat to provide heating for other facilities. Data
centers contain thousands of servers made from enterprise or commodity class multi-core
processors. The rate at which jobs arrive at the data-center for processing, i.e. the job
arrival rate , can change significantly in a matter of hours or even minutes. Figure 2.1
shows a graph that traces the arrival rate variations in a 24 hour period obtained from a
Facebook map-reduce cluster.1

1https://github.com/SWIMProjectUCB/SWIM/wiki

5

Figure 2.1: Graph showing the variation in arrival rate over a 24 hour period.

Many companies provide separate cloud computing units and dedicated data-centers [8]
to create cloud computing solution for specific industries [9]. This would imply that ded-
icated servers would run similar tasks. In this thesis, we focus on a similar scenario in
which similar types of jobs are to be processed by a dedicated server.

2.2 The Dark Silicon Era

Computing has reaped exponential increases in performance in the past few decades due
to Moore’s law [10](the doubling of transistors on a chip every 18 months) combined with
Dennard scaling [11](power density remains constant as transistor size reduces) along with
advances in fields like micro-architecture and compilers. Around 2005 processor designers
moved away from concentrating on single-core performance to multi-core in an effort to
keep up with the increase in the number transistor and improve performance accordingly.

In the multi-core era, researchers have looked to build systems with hundreds of core.
But only a few applications are able to exploit this level of parallelism. This predicament
has gone on to pose problems in parallel programming and architecture design at a big scale.

6

In addition, the failure of Dennard scaling has brought about a barrier which Venkatesh
et al. [12] refer to as the utilization wall: with each successive process generation, the
percentage of a chip that can switch at full frequency drops exponentially due to power
constraints. The percentage of the chip that cannot be turned on is termed “dark silicon”.
It is widely expected that the area of the chip that is be “dark” will be more than half of
the total area of the chip in the near future [13].

As most of the chip will not be active in the near future, researchers have shifted on to
finding ways to better use the passive area available to them. The two most widely used
techniques to alleviate the problem of dark silicon.

• Dim Silicon. The idea here is to under-clock general purpose hardware to meet the
power constraints [14]. Hence, the term “dim” silicon.

• Specialized Cores. The idea here is to dedicate specialized hardware like accelera-
tors and co-processors for improved power efficiency of certain programs or parts of
programs [12].

• Heterogeneity. The idea here is to provision the passive area available on the chip
with different types of cores (all the cores cannot be turned on at the same time due
to power constraints) and decide which cores to turn on based on power budget and
need [15].

2.3 DoP optimization

Prior work has looked at optimizing the DoP in the context of minimizing the execu-
tion time of parallel database queries and streaming applications. In the case of parallel
database queries, Rahm [16] made the observation that the optimal degree of scan paral-
lelism depends on arrival rate. When considering streaming applications, Raman et al. [17]
propose DoPE, an Application Programming Interface (API) and run time system, that
allows the application developer to develop a functionally correct parallel program without
having to worry about optimizing the parallelism for different environments. They also
make the observation that the optimal degree of parallelism is dependent on load on the
system. These papers do not formalize these notions using queueing theory.

Li and Martinez [18] looked at the problem of optimizing power consumption of parallel
applications under certain constraints by changing the DoP and applying dynamic volt-
age/frequency scaling. Sasaki et al. [19] suggest a scalability based many-core partitioning

7

scheduler which assigns the optimal number of cores depending on the scalability of the
application. These papers do not model job arrivals and therefore ignore the queueing
delay component of service time. Furthermore, all the approaches highlighted above are in
the context of homogeneous multi-cores and do not apply to asymmetric multi-cores.

2.4 Motivation for Heterogeneous Multi-core

Processors

Kumar at el. [20] were one of the first to propose the idea of heterogeneous multi-core
processors and performed thread scheduling by matching the characteristics of threads
to cores. It is assumed that each core has the same instruction set architecture (ISA)
but different micro-architectural parameters. However, they do not optimize for DoP
and do not model job arrivals and queueing delays. Turakhia et al. [15] have addressed
the problem of optimally synthesizing heterogenous multi-core processors to maximize
performance within the given area and power budgets for a range of applications. Although
the authors do optimize the DoP of each application, job arrival rates are not modelled.

There has also been recent work looking explicitly at the type of clustered asymmet-
ric multi-core processors that we focus on in this thesis, but these papers exploit phase
behaviour in application characteristics within an application. Ahn at el. [21] presented Mc-
SimA+, a high-level simulator for asymmetric clustered many-core architecture. As a case
study, the authors study a mechanism to predict which cluster will provide the best perfor-
mance depending on the execution phases and migrate accordingly [22]. Muthukaruppan
et al. [23] propose a power management framework for asymmetric multicore architectures
which aims to provide satisfactory user experience but at the same time maintain energy
consumption within the thermal design power (TDP) constraint.

An example of an asymmetric clustered processor which is currently available is the
Exynos processor, based on ARM’s big.LITTLE architecture. It is used in a variety of
handheld devices. The processor consists of two clusters, one which is made of four high
performance Cortex A-15 cores and the other is made of four power-efficient Cortex A-7
cores. In the simplest mode of operation only one cluster can be turned on at any point in
time. Here heterogeneity is used to provide power efficiency and high performance when
needed. Overview of the processor is shown in Figure 2.2.

8

Figure 2.2: Overview of the Exynos processor as seen in [4]

In general, the motivation for heterogeneous architectures in the prior work has been
diversity in application characteristics. This thesis builds a case for heterogeneity based
solely on the variations in job arrival rate, i.e., even if a processor always executes the same
type of jobs.

9

Chapter 3

Approach

In this chapter, we give a brief introduction to queueing theory, propose a queueing theo-
retic model for mean service time, and a job arrival rate aware runtime scheduler.

3.1 Introduction to Queueing theory

Figure 3.1: A diagram explaining the states in queueing theory

Queueing theory, the study of queues, provides us with a way of modelling different
scenarios. For instance, consider customers waiting for a service in a bank. Here customers

10

come in to the queue, wait their turn to get serviced and leave the queue once serviced.
The rate at which customers enter the queue is referred to as the arrival rate, denoted by
λ and the customers are served on a first come first serve basis. The rate at which the
bank teller, also called servers, is able to service the customers is referred to as the service
rate, denoted by µ. In this particular scenario there might be a few variations,

• There might be more the one servers who are able to service the customers

• There might be more than one queue the customer forms into

• There might be a combination of the above

• There might be a restriction on the number of people in the queue

The simplest model possible is an M/M/1 model. Here there is a single server and
the customer/jobs arrive according to a Poisson process. The service times of the jobs
are exponentially distributed. This model can be extended to an M/M/n where n queue
stands for the number of servers. For our purpose we use a M/M/n queue as there can be
multiple servers as we will see shortly. In our case we also assume that the queue length is
infinite.

Figure 3.1 shows the different states in a simple queueing system (also known as a state
space diagram). It shows a Markov chain, with each number representing the number of
customers/jobs in the line. This process is a special case of the Markov chain know as
birth-death process as only two types of transitions are possible.

3.1.1 Important Terms

The total service time. The total service time, denoted as W , is defined as the sum of
the time spent waiting in the queue, Wq, and service time, S, when the job gets assigned
to a server:

W = Wq + S. (3.1)

Server Utilization. The server utilization, ρ, for a given arrival rate, λ, is defined as

ρ =
λ

n ∗ µ
(3.2)

11

For the queue to be in a stable state ρ should be less than one.

Maximum sustainable arrival rate. To avoid the queue length from blowing up each
system has a maximum sustainable arrival rate λmax this is defined as the product of the
number of servers and the service rate

λmax = n ∗ µ. (3.3)

3.2 Queueing Theoretic Modelling

Figure 3.2: A multi-core processor with Nc = 16 cores. The scheduler schedules two jobs
(J = 2) on the processor, each with a DoP of three (D = 8). Also shown on the right is
an equivalent queueing theoretic model of the processor.

When considering the cloud setting, one in which jobs are constantly arriving to be
serviced, an important metric is the total service time, i.e., the sum of the time spent
waiting in the queue for service and the execution time on the processor. We propose a

12

queueing theoretic analytical model (validated against detailed simulations in the chapter
on experimental results - chapter 5) for the mean total service time on a multi-core processor
as a function of job arrival rate and the DoP of each job.

We look at a single cluster in the asymmetric processor consisting of Nc homogeneous
cores processing jobs that arrive at the server for processing at an arrival rate λ, which
follows a Poison process. Each job is assigned a DoP of D and up to J = Nc

D
jobs can

be processed in parallel. For example, In a cluster containing 32 cores, one could have a
DoP (D) of 4 and 8 jobs (J) running in parallel or have a DoP of 16 and 2 jobs running
in parallel.

We define µ(D) to be the mean service rate (inverse of execution time) when a job is
processed with a DoP of D, and assume that the job size is exponentially distributed. This
can be modelled as an M/M/n queue (a queueing system with n servers) with number of
servers n = J as shown in Figure 3.2.

Under these assumptions, we can use standard results from queueing theory to write
the mean total service time, W , of jobs as follows [24]:

W =
p
(
J, λ

µ(D)

)
Jµ(D)− λ

+
1

µ(D)
(3.4)

where p
(
J, λ

µ(D)

)
is the probability that a job has to wait in the queue to be serviced. To

determine p
(
J, λ

µ(D)

)
, we first rewrite the utilization of the server, ρ, as:

ρ =
λ

J × µ(D)
. (3.5)

We can now write p
(
J, λ

µ(D)

)
as:

p

(
J,

λ

µ(D)

)
= (3.6)

(J×ρ)J
J !
× 1

1−ρ
J−1∑
K=0

(J×ρ)K
K!

+ (J×ρ)J
J !
× 1

1−ρ

.

13

3.2.1 Performance modelling for multi-threaded applications

We focus on multi-threaded applications. These applications consist of two phases of
execution — a sequential phase, which consists of a single thread of execution; and a
parallel phase in which multiple threads process data in parallel. The parallel threads of
execution in a parallel phase typically synchronize on a barrier, in other words, all threads
must finish execution before the application can proceed to the next phase. Therefore,
the latency of a parallel phase is dominated by the worst case execution latency across all
parallel threads. Based on this observation, we model the execution time of an application,
E, as

E =
Wseq

fseq
+

Wpar

D ×mini∈[1,D](fpar,i)
, (3.7)

where Wseq and Wpar represent the sequential and parallel components of the application,
respectively. D is the number of parallel threads in the application. Furthermore, fseq
and fpar,i refer to the frequency at which the sequential and the ith parallel thread are
executed, respectively. These values depend on the scheduling of threads to cores in the
multi-core processor, and the frequency assigned to each core. It should be noted that
Wseq and Wpar are computed based on each core type. It can be seen that this equation is
based on Amdahl’s law [25].

When considering a set of homogeneous cores, Equation 3.7 can be rewritten to repre-
sent µ(D) as

µ(D) =
µseq

S + 1−S
D

(3.8)

where µseq is the service rate if the job is executed sequentially, and S is the fraction of
execution that cannot be parallelized. S is also referred to as the serial fraction. Although
the model is simple, it is in fact very accurate for a variety of multi-threaded benchmarks
as illustrated in Figure 3.3

µseq and S in terms from 3.7 are

µseq =
f

Wseq +Wpar

(3.9)

S =
Wseq

Wseq +Wpar

. (3.10)

As we are considering homogenous cores, there is no need to distinguish between fseq
and fpar as in Equation 3.7. Hence Equation 3.9 has a single term f denoting frequency
of the cores.

14

(a) Radix (b) Blackscholes

(c) LU.ncont (d) PCA

Figure 3.3: Normalized execution time vs degree of parallelism for the (a) Radix (b)
Blackscholes (c) LU.ncont (d) PCA benchmarks from cycle-accurate simulations and best
fit based on Equation 3.7.

15

3.2.2 Analysis

Based on this queueing theoretic model, we will begin by analyzing the optimal DoP for
perfectly parallelizable jobs, i.e., when S = 0.

Remark 1. For S = 0, the optimal DoP, D∗ = Nc, and J∗ = 1 for any job arrival rate.

Proof. When S = 0, µ(D) = Dµseq, i.e., the service rate increases linearly with D. A
standard result from queueing theory [24] shows that n servers with service rate µ have
larger mean service time than a single large server with service rate nµ, for any choice of
n. Thus as D increases, the mean waiting time decreases. Since the maximum value of D
is the number of cores Nc, D

∗ = Nc.

Remark 1 effectively says that if the jobs can be perfectly parallelized, the optimal
choice is always to execute jobs in sequence, and to execute each job with the maximum
amount of parallelism, independent of arrival rate. Figure 3.4a empirically validates this
result.

We will now consider what happens in practical scenarios where the serial fraction is
non-zero, i.e., S > 0. We analyze the low arrival rate and the high arrival rate regimes
separately.

Remark 2. For S > 0 and λ→ 0, the optimal DoP, D∗ = Nc and J∗ = 1.

Proof. As λ→ 0, W → 1
µ(D)

; thus the service time is minimized when µ(D) is maximum,
i.e., when D∗ = Nc.

Remark 3. For S > 0, the optimal DoP that sustains the highest arrival rate is D∗ = 1,
and J∗ = Nc.

Proof. The maximum sustainable arrival rate for any choice of D is:

λmax = Jµ(D) =
Nc

D
µ(D) =

Ncµseq
DS + (1− S)

and therefore, λmax reduces as D increases for S > 0. Thus the optimal DoP for high
arrival rates is D∗ = 1.

16

(a) S = 0

(b) S = 0.1

Figure 3.4: Mean total service time as a function of arrival rate for different DoPs: (a)
perfectly parallelizable jobs; (b) jobs with 10% serial fraction. This is for a system with 32
cores.

17

Figure 3.4b shows the mean total service time versus arrival rate for different DoPs
with S = 0.1. It can be observed that, in fact, the optimal DoP reduces with increasing
job arrival rates.

Cluster Migrations with Varying Arrival Rate. So far, we have discussed the optimal
DoP as a function of arrival rate given Nc homogeneous cores. More generally, assume that
there exist T types of cores on the chip, and correspondingly T clusters.

Assume that the peak power consumption of a core t ∈ T is given by P t
c , and that

the chip wide power budget (excluding uncore components) is given by Pbudget. Thus, the
number of cores of type t that can be allocated in a cluster and turned on simultaneously
is:

N t
c = bPbudget

P t
c

c

Finally, assume that the mean sequential execution time of a job on a core of type t is µtseq.

As before, we start by examining the scenario when λ → 0. We have already shown
that the optimal DoP for this case is the maximum DoP. We can therefore write the service
rate as:

µ
(
D = N t

c

)
= Pbudget

µtseq
SPbudget + (1− S)P t

c

In this equation, since Pbudget is a constant, the optimal choice of core is the core that
maximizes:

µtsec
SPbudget + (1− S)P t

c

Observe the choice for optimal core depends on the serial fraction S and is not, in
general, the most power efficient core. As S increases, the optimal core choice is biased
towards larger, faster cores. This is because the larger, faster cores tend to have higher
execution when executed sequential, i.e. the term µtseq and the term (1 − S)P t

c becomes
less significant.

Conversely, for high arrival rates, we have seen that the optimal DoP choice is D = 1.
The maximum arrival rate that a core t ∈ T can support is given by:

λtmax = Pbudget
µtseq
P t
c

It is clear from the above equation that the optimal choice for high arrival rates is the

most power efficient core, i.e., the one that maximizes
µtseq
P t
c

.

18

These observations motivate the need for cluster migrations as the job arrival rate
changes; as we will see, as the arrival rate increases, jobs are migrated from clusters with
fewer higher performance, higher power cores to clusters with a larger number of low
performance, low power cores.

3.2.3 Impact of multiple jobs running in parallel

When the DoP is quite low, more jobs are able to run in parallel. As more jobs run in
parallel the average execution time per job increases, this is due to increased contention for
shared resources. This is shown in Figure 3.5. Note that the increase in average execution
time is steeper for lower DoPs than for higher DoPs.

In the specific case for the FFT benchmark shown in Figure 3.5, going from D=4 to
D=1 with only one job running on a pod with 32 cores results in 41% increased service
time. However, when all 32 cores are occupied, i.e., 32 parallel jobs in the D = 1 case
and 8 parallel jobs in the D = 4 case, the service time increases by 68%. Thus although
theoretically, D = 1 is optimal for high arrival rates, in practice we observe that slightly
higher DoPs are preferred in many cases.

Typically, lower DoPs are optimal for higher arrival rates due to fact that they allow
more jobs to run in parallel. On the other hand higher DoPs are optimal for lower arrival
rates when there is not a need to run more jobs in parallel. In either case the number of
cores occupied is high. Thus, when we consider average service time for a particular DoP it
is the average service time when all cores are occupied. For example, in a 32 core machine
for a DoP of 32 all cores are occupied when only one job is running. For a DoP of 4, all
cores are occupied when 8 jobs are running in parallel.

To further illustrate this point, we perform an analytical experiment where we track the
percentage of cores occupied over a range of arrival rates. For this experiment we choose
a job with a serial fraction (S) of 0.1 and this runs on a system with 32 cores. Figure 3.6
shows the results. We define occupancy as the average percentage of cores occupied when
at least one job is running. The figure also shows the change in optimal DoP as the arrival
rate changes. We observe that across arrival rates, the occupancy is always greater than
50%.

19

Figure 3.5: Increase in execution time with increase in number of jobs running in parallel.
The values shown above are for FFT benchmark

3.3 Job Arrival Rate Aware Scheduler

We now describe the proposed job arrival rate aware run-time scheduler. The run-time
scheduler monitors the job arrival rate and based on the observed arrival rate, makes two
decisions: (i) which cluster to migrate to, and (ii) the optimal DoP (D) and number of
parallel jobs (J) for that cluster.

We assume that the run-time scheduler has pre-characterized information about the
service rate for each cluster type and DoP combination; i.e., µt(D,B) is known. The

scheduler then uses the Equation 3.4 with n = Nt
c

D
to determine the average service time

(waiting time plus execution time) and picks the cluster and DoP combination with the
lowest mean service time for the given job arrival rate. The time complexity of evaluating
this expression is linear in the number of cluster types and the maximum number of cores
in any cluster.

There are two practical challenges in implementing the run-time scheduler that still
need to be addressed. First, the job arrival rate for any given scheduling interval is not

20

Figure 3.6: Graph showing the percentage of cores occupied for the optimal DoP for a
range of arrival rates. Serial fraction the job(S) is 0.1

known in advance, so we need a mechanism to predict the arrival rate. Second, if a cluster
migration decision is made, the overheads of migration need to be accounted for.

Arrival Rate Prediction. We use a naive predictor, i.e., the arrival rate in the current
scheduling interval is predicted to be the same as the arrival rate in the previous control
interval. More sophisticated prediction mechanisms can be designed, but that is demar-
cated as future work. In addition, as we note in our experimental results, even the simple
prediction mechanism provides competitive results compared to a scheduler with oracular
knowledge of arrival rates.

Cluster Migration Mechanism. When the scheduler decides to migrate jobs to a new
cluster, we first wait till all jobs currently executing on the current cluster finish executing.
When there are no jobs remaining on the current cluster, the parent kernel thread is
migrated to the new cluster.1 Finally, the jobs in the scheduler queue are executed with
the optimal DoP for the new cluster.

Cluster migration incurs an additional performance overhead because (i) jobs are held
up in the queue as currently executing jobs finish execution; (ii) the overhead of migrating

1Asymmetric multi-core processors such as the ARM big.LITTLE are architected with a special hard-
ware block called the Generic Interrupt Controller (GIC) to migrate the parent thread between clusters [4].

21

the parent thread state (estimated to be 50µs by [4]); and (iii) the overhead of starting with
cold caches in the new cluster. To ensure that the overheads do not negate the benefits of
cluster migration, we only migrate when the predicted service time benefits from migration
are more than a statically determine threshold, set to 10% in our experimental results. We
have accounted for all sources of overhead in our empirical evaluation, as discussed in the
experimental results chapter (chapter 5) .

22

Chapter 4

Experimental Setup

We experimentally evaluate a candidate asymmetric multi-core architecture consisting of
three clusters and a 16 MB LLC at the 11 nm technology node, where more than half the
chip is expected to be dark [3]. The cores in each of the three clusters are based on the
Intel Nehalem micro-architecture. Table 4.1 provides the micro-architectural parameters
of the cores in each of the three clusters.

Power and area numbers for the cores are obtained from the McPAT tool [26] for the
22 nm process node and scaled to 11 nm process node using the scaling factors indicated
by [3]. We conservatively estimate that at 11 nm, each MB of LLC dissipates 0.5 W of
power (more details in Table 4.2. Since we are interested in server class processors, the
total chip power budget is set to 115 W, of which 85 W is for the core components and the
remaining for the uncore components. At the given power budget, the small (S), medium
(M) and large (L) clusters accommodate 64, 32 and 16 cores, respectively.

To obtain experimental results, we make use of the Sniper multi-core simulator [27] and
test a wide range of applications from the SPLASH-2 benchmark suite [28], the PARSEC

Core
Type

Nominal
Frequency

Dispatch
Width

Window
Size

Peak
Power
Consumption

L1-D
Size

L1-I
Size

Normalized
Area

Small 4.5 GHz 1 16 1.29W 64 KB 64 KB 1×
Medium 4.5 GHz 2 128 2.59W 64 KB 64 KB 1.33×
Large 4.5 GHz 4 128 5.18W 128 KB 128 KB 1.66×

Table 4.1: Core micro-architectural details.

23

L3 Cache Sizes Area Power
4 MB 2.6 mm2 2W
8 MB 4.2 mm2 4W
16 MB 8.2 mm2 8W

Table 4.2: Last level cache details.

Application Description
PARSEC Benchmark Suite

Blackscholes Financial option pricing
Bodytrack Image processing

Phoenix Benchmark Suite
K-means Clustering

Linear regression Statistical machine learning
PCA Statistical machine learning

String match Text processing
Word count Text processing

SPLASH-2 Benchmark Suite
Barnes Simulation of interaction

Cholesky Sparse matrix factorization
FFT Fast Fourier transform

LU.ncont Dense matrix factorization
Radix Sorting

Raytrace Image rendering

Table 4.3: Application Details

24

benchmark suite [29] and the Phoenix benchmark suite [30] (more details in Table 4.3).
The applications selected are representative of the workloads that we expect to see in the
cloud setting and range from the finance to machine learning, text processing, and im-
age processing applications. The Phoenix benchmark suite, that is based on map-reduce,
is particularly representative of cloud computing workloads, although applications from
the SPLASH-2 and PARSEC benchmark suite are quite frequently used in the cloud set-
ting [31].

To determine the mean total service time, we need to simulate thousands of jobs as
they arrive for processing, which is prohibitively time-consuming to do in a detailed micro-
architectural simulator like Sniper. Instead, we use a hybrid approach that combines
execution time data from the Sniper with a Python based discrete event simulation (DES)
engine based on SimPy.1 We call this more practical approach Sniper+DES. A similar
simulation approach was proposed by [32].

1http://simpy.sourceforge.net/

25

Chapter 5

Results and Evaluation

5.1 Model Validation

Validating Sniper+DES We validate the Sniper+DES approach against a golden base-
line in which we set up an end-to-end simulation using Sniper alone to simulate hundreds
of jobs as they arrive for execution at a given arrival rate.1 Figure 5.1 compares the mean
service time versus arrival rate for Sniper and Sniper+DES. We observe that the mean
total service time obtained from Sniper+DES is within 8.25% of Sniper over a wide range
of arrival rates, while being several orders of magnitude faster in terms of simulation time.
The rest of the experimental data is presented using Sniper+DES simulations.

Validating Analytical Models Figure 5.1 also shows the mean total service time versus
arrival rate obtained from the proposed analytical models versus simulations. As it can be
seen, the two are in excellent agreement over a wide range of arrival rates. Recall that the
run-time scheduler uses the analytical models to make scheduling decisions, which is why
the accuracy of these models is particularly relevant.

1A single end-to-end Sniper simulation can take days for the larger benchmarks.

26

Figure 5.1: Mean total service time predictions from analytical model, DES + Sniper and
the Sniper multi-core simulator for the Radix benchmark - Medium Core.

27

5.2 Job Arrival Rate Aware Scheduling Results

We begin by validating empirically our observations about the arrival rate dependence of
optimal DoP and optimal cluster.

Optimal DoP Decreases With Arrival Rate Figure 5.2a shows the optimal DoP
configuration for the FFT benchmark executing on a cluster with 32 medium cores, across a
range of arrival rates. Observe that, as predicted, the optimal DoP reduces with increasing
arrival rate. A similar plot is seen in Figure 5.2b for the Raytrace benchmark executing
on a cluster with 16 big cores.

Optimal Cluster Depends on Arrival Rate In Figure 5.3a we show the service time
versus arrival rate curves on all three clusters for the Radix benchmark. It can be observed
that for low arrival rates, the cluster with medium sized cores is used first, and as the
arrival rate increases, the cluster with small sized cores is used. In the other example in
Figure 5.3b, it can be observed that for low arrival rates, the cluster with large cores is
used first, and as the arrival rate increases, the cluster with medium sized cores is used.
This validates the observation that as the arrival rate increases, clusters with smaller, more
power efficient cores become optimal.

Results with Real Arrival Rate Data To account for job arrival rate variations, we
use real world data obtained from a Facebook map-reduce cluster that traces the arrival
rate variations in a 24 hour period [33], as shown before in Figure 2.1. For each benchmark
the arrival rate curve is scaled to its maximum sustainable arrival rate.

With this arrival rate curve as input, we experimented with three different schedulers:

• A naive, baseline scheduler that determines for each benchmark the best static DoP
and best static cluster to execute on, i.e., the DoP and cluster do not change as the
arrival rate varies.

• A scheduler that statically determines the best cluster for each benchmark, but varies
the DoP based on job arrival rate. We show data when both oracular knowledge of
arrival rate is available, and when the arrival rate is predicted using the proposed
prediction mechanism.

28

(a) FFT

(b) Raytrace

Figure 5.2: Optimal DoP as a function of arrival rate for the (a) FFT (b) Raytrace bench-
marks.

29

(a) Radix

(b) Raytrace

Figure 5.3: Mean total service time versus arrival rate for three different clusters for (a)
Radix (b) Raytrace benchmarks.

30

Figure 5.4: The percentage improvement in the mean total service time over all benchmarks
with oracular knowledge of the arrival rate and using the naive prediction of the arrival
rate with baseline as the single best cluster using the single best DoP

• A scheduler that varies both the DoP and cluster type (i.e., performs cluster migra-
tions) based on job arrival rate. We show data when both oracular knowledge of
arrival rate is available, and when the arrival rate is predicted using the proposed
prediction mechanism.

Figure 5.4 plots the mean total service time for different benchmarks for different
scheduling approaches, normalized to the baseline scheduler. We note that averaged over
benchmarks, 25% improvement is observed by optimally selecting the DoP based on ar-
rival rate, and 34% improvement is observed using both optimal DoP selection and cluster
migration. If oracular arrival rate information were available, the improvements would be
31% and 39%, respectively. The naive predictor was only 8.7% worse off than with the
oracular knowledge when optimally selecting the DoP and only 8.1% worse off than the
oracular knowledge when optimally selecting both DOP and cluster migration.

31

Finally, we note that although we have so far discussed only improvements in mean
service time, service level agreements (SLA) for performance are sometimes based on X th

percentile service time [31] (X is typically 95%).

In the context of X th percentile SLAs, we note that the proposed job arrival rate aware
scheduler outperforms the baseline scheduler on this metric as well. This can be seen in
Figure 5.5 which shows the CDF of the service time of the Radix benchmark under the real
world arrival rate curve for the optimal, job arrival rate aware scheduler versus schedulers
that statically select the small, medium and large clusters. It can be seen that the proposed
optimal scheduler outperforms static schedulers for any percentile SLA. Figure 5.6 gives
the CDF of the service time of the Barnes benchmark, which shows the same trend.

Figure 5.5: Cumulative distribution function of total time spent in the system for the
Radix benchmark

Overhead of Cluster Migration. To understand how frequently the run-time scheduler
updates the DoP and/or migrates to a new cluster, we plot in Figure 5.7a the optimal
DoP and optimal cluster type as a function of time for the Radix benchmark. Note that
for this particular benchmark, the large core type is not used. However, it is used for the

32

Figure 5.6: Cumulative distribution function of total time spent in the system for Barnes
benchmark

Raytrace benchmark as show in Figure 5.7b .Typically, there is a discrepancy between the
execution time of a single job (milliseconds to seconds) and the variation in arrival rate
(over minutes or hours). In Figure 5.7a, the mean number of jobs that execute per change
in cluster type is more than 20,000. Thus, the performance overhead of cluster migration
is amortized over the relatively long period of time spent in each cluster. As another
example, Figure 5.7b shows the optimal DoP and optimal cluster type as a function of
time for the Raytrace benchmark. We can see that there are relatively few migrations as
with the Radix benchmark.

To further understand the overhead of cluster migration, we ran an experiment on an
architecture with two identical medium clusters, and migrated jobs from one cluster to
another at uniform intervals of time varying from 22 to 110 migrations per minute. The
overhead with respect to the scenario without migrations is shown in Figure 5.8. Even
with these relatively frequent migrations (relative to variations in job arrival rate), we find
that the overheads of migration are within 0.4%.

These jobs were from the Radix benchmark with jobs arriving at the maximum sus-

33

(a) Radix

(b) Raytrace

Figure 5.7: Graph showing the variation in optimal DoP and cluster type for (a) Radix
(b) Raytrace benchmarks under varying arrival rate.

34

tainable arrival rate. The DoP in this case, as expected was one. 22 migrations per minute
roughly translates into a migration every 100 jobs completed. It can be seen that the
overhead is always below 0.5%.

Figure 5.8: Graph comparing service time with number of migrations per minute against
a baseline, where no migrations happen.

35

5.2.1 Comparison with Dim Silicon architecture

Figure 5.9: An example heterogeneous Dim Silicon architecture

We now compare the clustered asymmetric architecture discussed so far with a homo-
geneous dark silicon CMPs using dynamic voltage frequency scaling (DVFS). Recent work
has looked at using DVFS to have a few of cores turned on at a high voltage/frequency
(V/F) level or have more cores turned on at a lower V/F level. The later mode of operation
referred to as “dim silicon”.We compare the asymmetric clustered architecture with a dim
silicon architecture consisting of 64 medium cores and 2 V/F levels. In the high V/F level

36

Figure 5.10: Normalized execution time vs degree of parallelism for the Radix benchmark
in both V/F levels

we have 32 cores which can be turned on and in the low V/F level all 64 medium cores can
be turned on. Remember that 32 medium cores at the high V/F level take up the entire
power budget of 85W. Table 5.1 shows the V/F pairs used.

Voltage(V) Frequency(GHz)
0.7 4.5
0.6 2.93

Table 5.1: V/F pairs used for the homogeneous dark silicon architecture. Values are shown
for 11 nm technology node using scaling factors indicated by [3]

Figure 5.10 shows the graph for normalized execution time versus degree of parallelism
for the radix benchmark for the two V/F levels.

We perform the comparison with two benchmarks from each benchmark suite over the
real world arrival rate curve used before. Here we scale the real world arrival rate curve to
maximum sustainable arrival rate from the asymmetric clustered architecture. Figure 5.11
plots the mean total service time (normalized to the mean total service time of the dim
silicon architecture with oracular knowledge of the arrival rate) for the chosen benchmarks
for the different scheduling approaches mentioned before. The clustered asymmetric archi-
tecture does 25% better than the dim silicon architecture with oracular information of the
arrival rate and 21% better when the arrival is predicted using the naive predictor.

37

Figure 5.11: The percentage improvement in the mean total service time over the chosen
benchmarks with oracular knowledge of the arrival rate and using the naive prediction of
the arrival rate with baseline as the Dim Silicon architecture with oracular knowledge of
the arrival rate

All though the clustered asymmetric architecture does better on average when compared
to dim silicon, it is not the case for the Blackscholes benchmark. With respect to the
Blackscholes benchmark, the dim silicon architecture outperforms the clustered asymmetric
architecture by 1% with oracular knowledge of the arrival rate and by 9% when using the
prediction mechanism.

Changes in maximum sustainable arrival rate.

In the previous experiments the real-world arrival rate curve has been scaled to the maxi-
mum sustainable arrival rate from the clustered asymmetric architecture. For some bench-
marks, the dim silicon architecture showed an increase in maximum sustainable arrival rate,
with 2.85% increase on average. In some cases, like Raytrace the maximum sustainable
arrival rate increased by as much as32.39%. Results for all the benchmarks are tabulated
in table 5.2

38

Benchmark % change in λmax
Blackscholes 7.70
Bodytrack 4.54

Matrix Multiply -1.34
Radix -17.37

Raytrace 32.39
String Match -8.77

Average 2.85

Table 5.2: Percentage change in maximum sustainable arrival rate of dim silicon architec-
ture over clustered asymmetric architecture.

39

Chapter 6

Conclusions

In this thesis we have shown, both analytically and empirically, that the optimal degree
of parallelism (DoP) for multi-threaded applications executing on multi-core servers in a
data-center changes with job arrival rate. In addition, for asymmetric multi-core processors
with multiple clusters, the optimal cluster type also varies with job arrival rate. Based
on these observations, we have proposed a job arrival rate run-time scheduler that makes
optimal cluster migration and DoP selection decisions so as to minimize mean service time
within a power budget. Experimental results that compared to a baseline static scheduler,
the proposed scheduling mechanism can improve mean service time by 34%, averaged over
a wide range of benchmark applications.

40

Chapter 7

Future Work

For future work, we plan to focus on the following

Arrival Rate Prediction. The arrival rate predictor used by us was only 8.7% worse
than with the oracular knowledge when optimally selecting the DoP and only 8.1% worse
than the oracular knowledge when optimally selecting both DOP and cluster migration.
This may not be true for all arrival rate curves. Hence, a better prediction mechanism
would certainly improve the performance.

Run-time Characterization of Workload properties. We assume pre-characterized
information about workloads and their service times on each of the clusters. This might
not be feasible. Characterizing the workload during run-time will help run different types
workloads in the future.

Migration Policies. When the need arises to migrate to a different cluster, we use a
naive policy of waiting for waiting for all current jobs to finish before switching clusters.
As stated in the results the overhead of migration is not too much but it can be improved
with better migration policies.

Dim Silicon Architecture. Though the dim silicon architecture was worse than the clus-
tered asymmetric on average. It did provide benefits in terms of havinng higher maximum
sustainable arrival rate. It might be useful to pursue a hybrid approach.

41

References

[1] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu, “Cherry-picking: exploit-
ing process variations in dark-silicon homogeneous chip multi-processors,” in Proceed-
ings of the Conference on Design, Automation and Test in Europe.

[2] B. Raghunathan and S. Garg, “Job arrival rate aware scheduling for asymmetric multi-
core servers in the dark silicon era,” to appear in Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2014 IEEE/ACM/IFIP International Conference
on, 2014.

[3] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Computer Architecture (ISCA), 2011 38th
Annual International Symposium on, 2011.

[4] B. Jeff, Advances in big.LITTLE Technology for Power and Energy Savings,
September 2012. [Online]. Available: http://www.arm.com/files/pdf/Advances in
big.LITTLE Technology for Power and Energy Savings.pdf

[5] R. Almeida, B. Mozafari, and J. Cho, “On the evolution of wikipedia,” in International
Conference on Weblogs and Social Media, 2007.

[6] L. A. Barroso and U. Holzle, “The case for energy-proportional computing,” Com-
puter, vol. 40, no. 12, 2007.

[7] H.-D. Cho, C. Kisuk, and T. Kim, Benefits of the big.LITTLE Architecture, February
2012. [Online]. Available: http://www.samsung.com/global/business/semiconductor/
minisite/Exynos/data/benefits.pdf

[8] N. Leavitt, “Is cloud computing really ready for prime time?” Computer, vol. 42,
2009.

42

http://www.arm.com/files/pdf/Advances_in_big.LITTLE_Technology_for_Power_and_Energy_Savings.pdf
http://www.arm.com/files/pdf/Advances_in_big.LITTLE_Technology_for_Power_and_Energy_Savings.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/benefits.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/benefits.pdf

[9] D. Hamilton, SAP to Create Cloud Computing Solutions for Specific Indus-
tries, June 2014. [Online]. Available: http://www.thewhir.com/web-hosting-news/
sap-create-cloud-computing-solutions-specific-industries

[10] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of
the IEEE, vol. 86, 1998.

[11] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” Solid-
State Circuits, IEEE Journal of, vol. 9, no. 5, 1974.

[12] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation cores: Reducing the energy of mature
computations,” in Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems. ACM, 2010.

[13] M. B. Taylor, “Is dark silicon useful?: harnessing the four horsemen of the coming dark
silicon apocalypse,” in Proceedings of the 49th Annual Design Automation Conference,
2012.

[14] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron, “Scaling with design con-
straints: Predicting the future of big chips,” IEEE Micro, vol. 31, 2011.

[15] Y. Turakhia, B. Raghunathan, S. Garg, and D. Marculescu, “HaDeS: Architectural
synthesis for heterogeneous dark silicon chip multi-processors,” in Proceedings of the
50th Annual Design Automation Conference, 2013.

[16] E. Rahm, “Dynamic load balancing in parallel database systems,” in Euro-Par’96
Parallel Processing, 1996.

[17] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August, “Parallelism orchestration
using DoPE: the degree of parallelism executive,” in ACM SIGPLAN Notices, vol. 46,
no. 6, 2011.

[18] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of parallel com-
putation on chip multiprocessors,” in The Twelfth International Symposium on High-
Performance Computer Architecture, 2006, 2006.

[19] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura, “Scalability-based manycore par-
titioning,” in Proceedings of the 21st international conference on Parallel architectures
and compilation techniques.

43

http://www.thewhir.com/web-hosting-news/sap-create-cloud-computing-solutions-specific-industries
http://www.thewhir.com/web-hosting-news/sap-create-cloud-computing-solutions-specific-industries

[20] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, “Single-
ISA heterogeneous multi-core architectures for multithreaded workload performance,”
in ACM SIGARCH Computer Architecture News, vol. 32, no. 2, 2004.

[21] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A manycore simula-
tor with application-level+ simulation and detailed microarchitecture modeling,” in
Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International
Symposium on.

[22] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling
heterogeneous multi-cores through performance impact estimation (PIE),” in ACM
SIGARCH Computer Architecture News, June 2012.

[23] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin, “Hi-
erarchical power management for asymmetric multi-core in dark silicon era,” in Pro-
ceedings of the 50th Annual Design Automation Conference, 2013.

[24] F. S. Hillier, Intro To Operations Research. Tata McGraw-Hill Education, 1995.

[25] G. M. Amdahl, “Validity of the single processor approach to achieving large-scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer
conference, 1967.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, 2009.

[27] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation,” in Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2011.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs:
characterization and methodological considerations,” in ACM SIGARCH Computer
Architecture News, 1995.

[29] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for chip-multiprocessors,”
in Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simula-
tion, 2009.

44

[30] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating
mapreduce for multi-core and multiprocessor systems,” in High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on, Feb
2007.

[31] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Bridging the
tenant-provider gap in cloud services,” in Proceedings of the Third ACM Symposium
on Cloud Computing.

[32] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation infrastructure for
data center systems,” in Performance Analysis of Systems and Software (ISPASS),
2012 IEEE International Symposium on, 2012.

[33] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating mapreduce
performance using workload suites,” in Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Sym-
posium on.

45

	List of Tables
	List of Figures
	Introduction
	Thesis Contributions
	Outline

	Background and Related Work
	Cloud Computing
	The Dark Silicon Era
	DoP optimization
	Motivation for Heterogeneous Multi-core Processors

	Approach
	Introduction to Queueing theory
	Important Terms

	Queueing Theoretic Modelling
	Performance modelling for multi-threaded applications
	Analysis
	Impact of multiple jobs running in parallel

	Job Arrival Rate Aware Scheduler

	Experimental Setup
	Results and Evaluation
	Model Validation
	Job Arrival Rate Aware Scheduling Results
	Comparison with Dim Silicon architecture

	Conclusions
	Future Work
	References

