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Abstract 

 

Stimulus probabilities affect detection performance. Rare targets, even in security or medical 

screenings, are missed more often than frequent ones. To minimize such probability-related 

costs, there is a need to understand how probability effects develop and how they might interact 

with perceptual processes. A previous experiment demonstrated that estimates of Gabor 

orientations were more precise on trials where the Gabor location was exogenously cued. 

Exogenous cues might be biasing perceptual processing towards the features in the cued location, 

and enhancing the perceptual representations of the target. Here, the same “attentional” effects 

were replicated without the use of explicit cues. Instead, different location-orientation 

conjunctions occurred with different probabilities. Across different probability distributions, it 

was consistently observed that participants rapidly developed faster and more precise estimations 

for higher-probability tilts. This occurred despite participants not being instructed on the 

underlying probability distributions, despite participants not being able to indicate confidence 

differences (Experiment 1b), despite the probability distribution being complex (Experiment 2), 

and despite probability differences being fine-grained (Experiment 3). High-probability tilts were 

also consistently associated with a distribution of angular errors that were more kurtotic than for 

low-probability tilts. Mixture model analyses suggested that these kurtosis differences reflect a 

mix of ‘precise’ and ‘coarse’ estimations, with high-probability tilts being associated with more 

of the former. Additionally, near-vertical orientations were associated with an increased kurtosis, 

particularly when vertical tilts were probable. Similar to mechanisms underlying perceptual 

biases, these findings suggest that acquired information might be affecting neural sensitivity to 

result in better-encoded perceptual representations for high-probability tilts. 
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Introduction 

 

The frequency of occurrence of stimuli affects detection performance in many real-word 

tasks. Rare targets are less likely to be detected, even in security (Wolfe et al., 2007, Lau & 

Huang, 2010), and in medical (Evans et al., 2011) screenings, resulting in severe detection-

related costs. To minimize this, there is a need to understand the cause of such probability 

effects. Numerous studies implicate probability as affecting the mechanisms that governs 

perception (Biederman & Zachary, 1970; Dykes & Pascal, 1981; Lau & Huang, 2010). This idea 

is supported by studies finding that probability manipulations interact with low-level perceptual 

manipulations, such as stimulus contrast (e.g. Miller & Pachella, 1973). However, given that lab-

based studies of this phenomena mainly utilize simple symbol or feature detection (Hon, Yap & 

Jabar, 2013; Miller & Pachella, 1973; Laberge, & Tweedy, 1964), or visual search (Rich et al., 

2008; Wolfe et al., 2007), accuracy measures boil down to some averaging of binary responses: 

On any single trial, participants are only required to indicate whether a target is present (or 

absent). On the other hand, if stimulus probability was truly affecting the perceptual processing 

pathways in some fashion, then more direct measurements on how participants perceive objects 

of differing prevalence could aid in elucidating the nature of the effect.   

Such measurements might be obtained from an orientation estimation task, where 

participants view an oriented stimulus, and are then asked to reproduce its tilt. A continuous 

measure of angular errors – the difference between the estimate and the presented orientation – 

can be obtained on a trial-by-trial basis. Exogenous cuing can be studied in such tasks by having 

a single Gabor patch (Methods, Experiment 1a) appear on either the left or right, and having the 

same or different location cued. Data from this task mirrors the classic Posner (1980) findings: 
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Participants are both faster and more precise in estimating the orientation of a Gabor when its 

location was cued (Anderson & Druker, 2013). The same Posner-described “attentional shift” 

pattern can be obtained without the use of exogenous cues by having regularities in the 

distribution of spatial-orientations. Left-tilting spatial Gabors could be made more likely to occur 

on the left, but right-tilting made more likely on the right. These location-orientation 

conjunctions can be counterbalanced across participants. Using this method, Anderson 

(submitted) found that participants were both faster and more precise in estimating the high-

probability tilts over the low-probability ones. High-probability tilts were also associated with a 

distribution of angular errors that had an increased kurtosis over the one for low-probability tilts. 

This paper seeks to extend those findings on orientation probability. Although the idea of 

inferring mechanisms based on the distribution of responses is not without precedent (see 

Prinzmetal, 1997), there is a need to further examine how these kurtosis differences might come 

about in response to probability differences. The kurtosis of a distribution is the standardized 

fourth population moment about the mean. Mathematically, it can be represented as: 

         
   (    ̅)

   

 (  (    ̅)   ) 
 

where n is the number of samples in the distribution,    are the individual observations, and  ̅ is 

the sample mean (DeCarlo, 1997). The kurtosis of normal distributions – or gaussians – is 

always constant regardless of their mean or variance: they have a kurtosis of three (typically 

standardized as an excess kurtosis of zero). While it is common to assume distributions to be 

normal, the error distributions from Anderson’s estimation task are not.  However, kurtosis 

differences can arise as a result of differences in the mixing of gaussians. Mathematically, if a 
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distribution is made up of gaussian components differing in variances, kurtosis differences can 

be induced by differences in the mixing proportions of those gaussians (Figure 1). 

Kurtosis differences in the estimation task could be reflecting some difference in 

component mixing between probability distributions. Mixture models have been used in memory 

research to account for differences in performance. For instance, to examine data from a colour 

recall task, Zhang & Luck (2008) used a mixture model on the distribution of colour judgement 

errors participants made. This enabled them to disentangle trials where the item to be reported 

was in memory, from guess trials where the item was not in memory. Similarly, a mixture model 

could uncover systematic differences in trial types across high and low-probability tilt 

estimations.  

Referring to Figure 1, if the green mixture is analysed, the optimal fit should indicate a 

mix of 80% narrow gaussians (M = 0, SD = 15) and 20% of a wide gaussian (M = 0, SD = 40). 

The red mixture fit should indicate the same components, but the reverse proportions (20% 

narrow and 80% wide). If the error distributions of high-probability tilts are indeed associated 

with a higher kurtosis, computationally, it could be the direct result of there being a higher 

proportion of gaussians with a small variance contributing to the high-probability error 

distribution, compared to the low-probability distribution. Hypothetically, systematic differences 

in the mixing of these two components could represent differences in the proportions of ‘precise’ 

trials where the stimulus information was well-encoded (resulting in a smaller variance), versus 

‘coarse’ trials (larger variance) where the information was not as well-encoded. 
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Figure 1 

  

Figure 1. Example of component mixing. Different mixing proportions of narrow gaussians (column 1) and 

wide gaussians (column 2) identical in means (M) and standard deviations (SD) can result in mixed 

distributions (column 3) with fundamentally different values of excess kurtosis (K). The Anderson study 

suggested that the distribution associated with low-probabilities is associated with a lower kurtosis, while the 

one for high-probabilities is associated with a higher kurtosis. If true, a mixture model should suggest that the 

high-probability distribution might be due to a greater mix of narrow gaussians than wide gaussians (blue 

scenario) to result in a high kurtosis, while the opposite might be true for low-probabilities (red scenario). 

Note: Gaussians always have an excess kurtosis of zero. 
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The Anderson study also differed from traditional detection tasks in the complexity of the 

probability distribution used. Probability was based on conjunctions of location and orientations 

(e.g., left-titling more likely only on the left side, etc.), yet participants showed clear probability 

effects. What are the limits of participants’ ability to acquire probability information? This was 

examined in Experiment 2 by introducing conditional feature conjunctions. For example, left-

titling was more likely only on the left side, but only when the fixation symbol was cyan. 

Probability information of such complex conjunctions would likely be too demanding for 

participants to deliberately use, let alone learn. Instead, finding probability effects in such an 

instance would support the idea that the learning of spatial-featural configurations can occur 

without the need for explicit processing (Chun & Jiang, 1998; Cosman & Vecera, 2014).  

If probability learning is implicit, it is of interest to examine how sensitive the learning 

mechanisms can be. Are changes induced by exposure to probability information all-or-none, or 

can they be varied in a graded manner? Probability studies utilizing symbol detection suggest the 

later: There is a degree of fine-grained sensitivity to probability information, since small 

differences in stimulus probability can result in observable changes at the behavioural level (Hon 

& Jabar, submitted; Miller & Pachella, 1973). If probability effects across tasks are due to the 

same fundamental mechanisms, this sensitivity should be observable in orientation estimations as 

well. This was examined in Experiment 3.  

What might those fundamental mechanisms be? A common account of probability effects 

is that, because they are more expected, higher probability targets enjoy a perceptual advantage 

(Biederman & Zachary, 1970; Miller & Pachella, 1973; Orenstein, 1970; Dykes & Pascal, 1981). 

While probability has to affect perception at some level, studies have reported mixed results 
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about the interaction between probability and low-level perception (De Jong & Sanders, 1986; 

Miller & Pachella, 1976; Pachella & Miller, 1976). Perceptual manipulations used in such 

studies typically involve contrast reduction or reducing discriminability of the target through the 

use of flankers (see Orenstein, 1970). However, people – and non-human animals – do have clear 

perceptual biases in their orientation judgements: Across a range of tasks, e.g., discrimination, 

detection, recognition, etc., observers tend perceive cardinal directions (vertical and horizontal) 

more precisely than oblique orientations (Appelle, 1972). Neurophysiological investigations into 

the “oblique effect” have suggested that orientation-selective simple V1 neurons have different 

tuning widths based on what their preferred direction is (Li, Peterson & Freeman, 2003), at least 

in cats. Human cortical V1 activation differences are also observable in fMRI, when comparing 

perceptions of cardinal versus oblique orientations (Furmanski & Engel, 2000). This oblique 

effect can be reduced by aligning the oblique stimuli to cardinal direction through head-tilting 

(Higgins & Stultz, 1948), supporting the idea of a locus in retinotopically-aligned V1 neurons.  

In an orientation estimation task, these orientation biases and their possible interactions 

with orientation probability could be concurrently studied, which could point towards a neural 

locus of probability effects. As seen in Figure 2, the tuning curve of an orientation-selective 

neuron would indicate how sensitive it is to orientations deviating from its preferred direction. 

The broader the tuning curve is, the greater the range of orientations it will be sensitive to. If 

orientation effects are the result of sensitivity differences across orientations, then a finding that 

probability effects differ as a function of orientation might further suggest possible mechanisms 

for probability effects: It could fundamentally also be due to sensitivity changes to neurons 

relevant to processing of the target features. 
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Figure 2 

 

  

Figure 2. Example of tuning curves in orientation-selective neurons. Neurons with broader 

tuning curves (purple) fire to a greater range of possible stimulus orientations deviating from its 

preferred direction. 
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Experiment 1a 

 

 Experiment 1a was a replication of Anderson’s study on probability cuing. Not only was 

this to serve as a foundation for the later experiments, but it was also intended as a means to 

probe the orientation probability effect with additional analyses. Given Anderson’s findings, it 

was expected that participants would demonstrate faster and more precise estimations for the 

higher-probability tilts. These tilts should also be associated with an error distribution that 

demonstrated increased kurtosis over the one for low-probability tilts. The mixture hypothesis 

(Figure 1) should suggest that the higher-probability distribution would be comprised of more 

narrow gaussians than in the lower-probability distribution. By subjecting the error distributions 

from the orientation estimation task to a mixture model analysis, this hypothesis was examined. 

Data from orientation estimation tasks also allows us to probe the issue of whether there 

are systematic biases in orientation. If probability affects how sensitive participants become to 

the different tilts, this might interact with pre-existing sensitivities to certain tilts (e.g., to cardinal 

directions). Since the “oblique effect” has been suggested, in part, to be due to neural tuning 

differences, variations in probability effects across orientations might indicate a similar locus: 

Orientation probability could be affecting the tuning functions of orientation-selective V1 

neurons. This potential interaction was probed for in Experiment 1a, and was replicated in the 

three experiments that follow. 

 

 

 

Methods 
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Participants 

Twenty undergraduate students from the University of Waterloo (9 females, 11 males) 

took part in the study in exchange for credits in their psychology classes. 17 participants were 

right-handed and 3 were left-handed. All participants had normal or corrected-to-normal vision, 

were not colour-blind, and did not declare any auditory deficits. This study was approved by the 

Departmental Ethics Review Committee (ORE #19255). 

 

Stimuli 

Oriented spatial Gabors were presented to participants on each trial. These were 

grayscale sine-wave gratings with a circular gaussian mask (see Figure 3). The Gabors had a 

spatial frequency of 4 cycles per degree of visual angle, and were presented on a grey 

background. When viewed from a distance of 60cm, the Gabors subtended approximately 4 

degrees of visual angle both vertically and horizontally. On any given trial, the center of the 

Gabor was located 4 degrees either to the left or right of the centre of the display, which was 

marked by a black fixation symbol. Lines, used as feedback and for participants to rotate to 

report their estimations, had a length of 4 visual degrees and always occurred in the same 

location as the Gabor for that trial. 

  



Orienting to Probability   

 

10 

Figure 3 

 

Figure 3. Experiment paradigm. On each trial of the task, participants began by looking at the 

fixation symbol for 500ms. The spatial Gabor then appears in one of the two locations (left or 

right) for 60ms, and then went off-screen. After a delay period of 500ms, a horizontal line is 

drawn onscreen, and participants are to rotate this line to best match their perception of the 

orientation of the Gabor. 
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Spatial Gabors were equally likely to appear on the left or right of the fixation symbol. 

Across these two locations, any orientation was equally likely. The critical manipulation was the 

occurrence-rate of the various probability-location conjunctions. For instance, half the 

participants saw the conjunction depicted in Figure 4: When a Gabor appeared on the left, its 

orientation was more likely (80% of the time) to be left-tilting, but this high-probability tilt is 

reversed if the Gabor appeared on the right. The lines in Figure 4 depict the distribution 

observed by the first participant. Probability distributions were maintained throughout the 

experiment. In every set of 20 trials, there were 8 left-tilting Gabors on the left, 2 right-tilting 

Gabors on the left, 8 right-tilting Gabors on the right, and 2 left-tilting Gabors on the right. 

Participants were not informed about these probability distributions. The location-orientation 

conjunctions were counterbalanced across participants. 

Auditory feedback was given at the end of each trial to encourage participants to be 

accurate. A high pitched sound (http://www.freesound.org/people/HardPCM/sounds/32950/) 

indicated they were at or below an error threshold (12 degrees), while a lower pitched sound 

(http://www.freesound.org/people/tombola/sounds/49219/) indicated that they were above this 

threshold. Participants were not explicitly told what this threshold was.   

http://www.freesound.org/people/HardPCM/sounds/32950/
http://www.freesound.org/people/tombola/sounds/49219/
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Figure 4 

 

Figure 4. Experiment 1 trial distribution. Half the participants saw that 80% of the time, when 

Gabors appear on the left, it will have a left-tilting orientation (blue: high-probability region), 

and reversed on the right. The other half of the participants saw the opposite pattern. The lines 

within the coloured regions show the actual orientations that the first participant saw. 
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Procedure 

 Participants sat approximately 60 cm from a 32 cm x 24 cm gamma-corrected CRT 

monitor that refreshed at 89Hz. Responses were made with a computer keyboard using their 

dominant hand. The experiments were programmed in Python using the PsychoPy library 

(Peirce, 2009). Participants were instructed to look at the center of the screen throughout the 

experiment. Eye movements were not recorded. 

 

 Prior to the task, participants were instructed to make their estimations of the Gabor 

orientations as accurately as they could. They were not told that they needed to be fast. 

Participants were given 40 practice trials in which the orientations occur completely randomly. 

An experimenter was present for these practice trials. The main task consisted of 400 trials, 

which were sectioned into two blocks. Participants were given the option to take a break in-

between the blocks. At the end of the computerised task, participants were given a short 

questionnaire (see Appendix A) to examine whether they could explicitly report the probability 

distribution of the orientations that they saw. The experiment took approximately 20-25 minutes. 

 

On each trial, participants were shown the fixation symbol for 500ms. The spatial Gabor 

then appeared in one of the two locations for 60ms, and went off-screen for 500ms.  After this 

delay period, a horizontal line was drawn on-screen, and participants made their estimations by 

rotating this line counter-clockwise or clockwise by pressing “Z” or “C” on the keyboard. This 

rotation was at a maximum of 1 angular degree per frame refresh of the monitor. Participants 

pressed the “X” key to confirm their estimations. The auditory feedback was then given. On the 
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practice trials, a white feedback line with the actual orientation was displayed on top of the 

participant’s response. The visual feedback was not given in the main trials. 

 

Results 

All data analyses were conducted using the R statistical software package (R 

Development Core, 2012). Mixture model analyses were done using the “mixtools” R package 

(Benaglia et al., 2009). Angular errors for each trial were calculated as the difference between 

the Gabor orientation and the orientation of the participants’ estimates. The excess kurtosis 

measurement was applied on these sets of angular errors through the use of the R “e1071” 

package. Because angular errors can range from -90 to 90 degrees, a non-biased estimation 

would have a mean of zero. Vertical-biased estimations, e.g., where on a particular trial, 

participants estimated the orientation more vertically then it should have been, were coded as 

negative. The bias measurement gives the average of these angular errors across trials. 

To estimate the magnitude of the errors made, the mean angular error measure was taken 

as the average of the absolute value of the angular errors. Reaction time (RT) for each trial was 

taken as the time from when the response line appeared to when the orientation was confirmed. 

Total angular distance moved, time taken to initiate movement (IT), time taken to make 

movements after initiation (MT), initial rotation direction and number of direction switches 

(vacillations) per trial were also recorded. Unless otherwise stated, the only data excluded from 

the analyses were trials in which participants did not make a response within the given seven-

second response windows. This only occurred on 0.125% of the trials. 
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RT Analyses 

 Paired (two-tailed) t-tests were carried out between the high and low probability tilts on 

the various measures. Alpha cut-off for significance testing was the conventional p=.05. There 

was a significant effect of RT, (t(19) = 5.20, p < .001), with high-probability tilts (M = 1080ms, 

SD = 250ms) estimated faster than low-probability tilts (M = 1180ms, SD = 270ms). 19 

participants showed this trend, with 1 participant marginally showing the reverse trend.  The MT 

measure revealed a significant effect of probability, (t(19)= 3.65, p = .002), suggesting that high-

probability tilts take less time (M = 890ms , SD = 210ms) to estimate than low-probability tilts 

(M = 960ms, SD = 220ms). This might be because of differences in the total amount of 

movement made, (t(19) = 3.70, p = 0.02): Participants made more angular adjustments for low-

probability tilts (M = 58.7 deg , SD = 8.6 deg), as compared to high-probability tilts (M = 54.9 

deg , SD = 8.2 deg). This, in turn, might be due to the different number of times participants 

vacillate, (t(19) = 4.00, p < .001). Participants vacillate more when responding to low-probability 

tilts (M = 0.21, SD = 0.11) than to high-probability tilts (M = 0.14, SD = 0.12). This difference in 

movement patterns is unlikely to account for all the RT differences since the IT measure also 

varied by probability condition, (t(19)= 6.85, p < .001). Participants take less time to initiate 

movements in the high-probability trials (M = 210ms, SD = 130ms) than in the low-probability 

trials (M = 250ms, SD = 140ms). 
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Figure 5 

 

Figure 5. Reaction time and vacillation measures for Experiment 1a. RT indicates time from 

response line appearance to participants’ confirmation. IT indicates time from appearance to first 

directional movement. MT indicates time from movement to confirmation. Vacillations indicate 

number of direction switches participants made, on average on each trial. These measures show 

consistent probability effects (all ps < .01) in estimations. Error bars indicate one standard error.  
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Angular Error Analysis 

The high-probability tilts were significantly vertical-biased (t(19) = 2.66 , p = 0.015), 

whereas low-probability tilts were not, (t(19) = 0.57, p =  0.58). Compared against each other, 

there was a significant effect of probability on bias, (t(19) = 2.10, p = 0.049), with high-

probability tilts being more vertical-biased (M = -0.99, SD = 4.72) than low-probability tilts (M = 

0.47, SD = 4.81). The mean angular error measure also reflected a significant effect of 

probability, (t(19) = 3.08, p = .006), with high-probability tilts associated with smaller errors (M 

= 12.0 deg, SD = 5.8 deg) than low-probability tilts (M = 13.3 deg, SD = 6.4 deg). Of the 20 

participants, 17 showed this trend. 
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Figure 6 

 

Figure 6. Angular error measures for Experiment 1a. A negative bias indicates an overestimation 

towards the vertical meridian. Both measures show probability effects (ps < .05). Error bars 

indicate one standard error. 
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Kurtosis Analysis 

The distribution of angular errors made across trials was examined for each probability 

condition. Figure 7a shows the proportion of trials as a function of the extent of the error made 

(binned into increments of 10 degrees of error). A greater proportion of the high-probability 

trials were estimated with near-perfect precision, as compared to low-probability trials. For trials 

with larger errors, the proportion of high-probability trials was less than for low-probability 

trials. These differences in the peak and shoulders of the two distributions can be captured as a 

difference in their kurtoses, (t(19) = 2.11 , p = .048). High-probability tilts are associated with a 

higher kurtosis (M = 4.86, SD = 4.72), than low-probability tilts (M = 3.15, SD = 4.09). Of the 20 

participants, 14 showed this trend, with only one participant clearly showing the opposite trend.  

Because there were unequal numbers of high vs. low probability trials, additional 

analyses was done to ensure that the kurtosis differences observed were not due to uneven 

samples. Bootstrapping analyses suggested that a smaller sample size, e.g., selecting 10 or 40 

instead of 400 data points from the same distribution does not systematically result in a smaller 

or larger kurtosis (all ps > .05). Furthermore, sampling just the final 40 high-probability trials 

and the final 40 low-probability trials still revealed the same effect on kurtosis (t(19) = 2.55, p 

<.05).   
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Figure 7 

 

 

 

 

  

Figure 7. Kurtosis measure for Experiment 1a. Panel (a) shows the distribution of 

angular errors for high (blue) versus low (red) probability trials. Panel (b) shows that 

excess kurtosis measures on the distributions seen in panel (a) indicate high-probability 

tilts being associated with higher kurtosis. Error bars indicate one standard error. 
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Time-Course Analyses 

Because there are significant effect of probability on RT and the precision measures, the 

data were binned into 50-trial bins to examine how quickly the differences in estimation 

performance developed across the probability conditions. A two-way repeated measures 

ANOVA was run on these binned averages of RT. There was a main effect of probability, 

(F(1,19) = 26.28, MSE = 28700,  p < .001), a main effect of trial bin, (F(7,133) = 11.82, MSE = 

73210, p < .001), but no significant two-way interaction, (F(7,133) = 0.44, MSE = 19328, p = 

0.877). Post hoc t-tests demonstrated a significant difference, (t(19) = 3.93, p < .001), in RT 

between high (M = 1157ms, SD = 338ms) and low (M = 1293ms, SD = 387ms)  probability tilts 

in the second bin (trials 51-100). This difference was also present in the third, fourth, fifth and 

sixth bins (all ps < .05), although not in the final two bins (ps > .05) 

A two-way repeated measures ANOVA on the kurtosis measure revealed a main effect of 

probability, (F(1,19) = 45.91, MSE = 8.8,  p < .001), but no significant main effect of trial bins, 

(F(7,133) = 0.90, MSE = 4.98, p = .51), and no significant two-way interaction, (F(7,133) = 0.92, 

MSE = 4.26, p = 0.497). Post hoc t-tests demonstrated a significant difference, (t(19) = 3.72, p = 

.001), in kurtosis between high (M = 0.95, SD = 1.77) and low (M = -0.80, SD = 0.84)  

probability tilts within the first 50 trials. This difference persisted in all the successive bins (all 

ps < .05). 
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Figure 8 

 

Figure 8. Development of RT and kurtosis difference across trials in Experiment 1a. Each bin 

indicates 50-trial segments. High-probability tilts are indicated by blue, low-probability by red. 

Error bars indicate one standard error. 
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Orientation Analysis 

 People demonstrate biases towards cardinal (horizontal and vertical) directions. Across 

tasks, these are better estimated or perceived than oblique directions (Appelle, 1972). Therefore, 

it was also of interest to examine if the differences in precision across the probability conditions 

also differ as a function of orientation. 

Orientations across the 400 trials were grouped up into bins of 20 degrees, and the 

kurtosis measure was applied on each orientation bin of each condition of each participant. A 

repeated measures ANOVA across the 2 levels of probability and 9 levels of orientation revealed 

a significant main effect of probability, (F(1,19) = 91.88, MSE = 8.70, p < .001), a significant 

main effect of orientation, (F(8,152) = 4.30, MSE = 6.41, p < .001), and a significant two-way 

interaction, (F(8,152) = 4.34, MSE = 7.42, p < .001). One-way ANOVAs were run on each of the 

two probability conditions separately, both of which revealed a significant quadratic trend of 

stimulus orientation, (ps <.05). As Figure 9 demonstrates, the kurtosis for the high-probability 

vertical tilts was the highest. 

 

Mixture Model Analysis  

The findings on probability effects on kurtoses by Anderson were replicated, with the 

additional findings that these kurtosis differences developed rapidly, and were also modulated by 

the orientation of the Gabor. As highlighted by Figure 1, kurtosis differences can reflect 

differences in the mixing of gaussian components. This mixture hypothesis was examined by 

fitting the data on angular errors with a mixture model.   
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Figure 9 

 

Figure 9. Interaction of probability and orientation in Experiment 1a. Each bin indicates 20-

degree orientation segments (exemplified by the figures in the x-axis). High-probability tilts are 

indicated by blue, low-probability by red. High-probability vertical tilts are associated with the 

highest kurtosis. Error bars indicate one standard error. 
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 A component selection analysis was carried out. The Akaike's information criterion 

(AIC), Schwartz's Bayesian information criterion (BIC), Bozdogan's consistent AIC (CAIC), and 

Integrated Completed Likelihood (ICL), are measures which assess the number of components 

that give the maximum log-like estimation, taking into account over-fitting from increasing the 

number of parameters. While there are minor differences in the calculations involved across 

these measures that could affect the optimal model, all measures reliably found a two-component 

model optimal, for both the high and low-probability error distributions. 

 The error distributions from each participant were fitted with the two-component model. 

The two components were free to have any mu (mean) and any sigma (standard deviation). A 

fifth free parameter, lambda, controlled the proportion of each component’s contribution to the 

final mixture. Figure 10a illustrates the model fit (bottom panel) to participants’ error 

distributions (top panel). Figure 10b compares the behavioural mean errors and kurtoses to that 

of the model output. All possible pairwise comparisons of the model to the behavioural data were 

non-significant (ps > .9), suggesting that the mixture model was accurately fitting the participant 

data. Figure 11 depicts the five parameters for each probability condition. The means of the two 

components of both probabilities were not significantly different from zero (all ps > .05). 

However, there was a clear difference between the standard deviations of the two gaussian 

components making up each fit: one gaussian is wider (mean sigma of 29.9 deg, SD = 15.8 deg) 

and the other narrower (mean sigma of 9.1 deg, SD = 4.5 deg). This difference in sigma between 

components is significant, (t(39) = 10.3, p <.001).  As seen in Figure 11, the proportion of the 

narrow component was significantly higher (t(19) = 4.16, p < .001) for the high-probability tilts 

(M = 73.6% , SD = 34.2%), than low-probability tilts (M = 37.2%, SD = 33.8%).  
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Figure 10 

 

Figure 11 

Figure 10. Mixture model fits for Experiment 1a. Panel (a) shows how the model distribution (bottom 

panel) fits the behavioural error distribution (top panel). X-axis: Angular Error, Y-axis: Density. Blue 

distributions indicate the distribtuions of angular errors for the high-probability trials, red for low.  

Panel (b) compares the actual (top) versus the fit (bottom) measured means on mean error (left) and kurtosis 

(right). Red lines indicate the low-probability trials, blue for high. Error bars indicate one standard error. 
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Figure 11. Optimal mixing components for Experiment 1a. Red markers indicate the low-probability 

trials, blue for high. The lambda measure gives the proportion of the narrow gaussian that lends to 

the optimal mix, and is expressed as a percentage of the final mix. The other measures (mu –mean, 

sigma – standard deviation) indicate the mean fits of the two components (narrow and wide) in terms 

of degrees. The mixture model indicates that the difference between the high and low-probability 

error distributions can be captured by using different mixing proportions of a narrow zero-centred 

gaussian and a wide zero-centred gaussian. Error bars indicate one standard error. 
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Post-study questionnaire 

 None of the 20 participants were able to accurately describe the location-orientation 

conjunction. 

Discussion 

 

Orientation probability affects participants’ estimation performance. Participants were 

both faster and more precise in estimating probable tilts, as compared to the rarer tilts. This 

pattern of data is consistent with the Anderson study and with the vast literature on probability 

effects across a range of detection tasks. The findings on kurtosis differences were also 

replicated: The distribution of estimation errors from high-probability trials demonstrated 

increased kurtosis over the one for low-probability trials. 

The mixture model suggested that a two-component model was optimal in representing 

the error distributions of high and low-probability trials, where the two components are zero-

centred gaussians that significantly differed in their variances. As hypothesized, the error 

distributions for high-probability tilts were associated with more narrow gaussians than for low-

probability trials. This simple shift in proportion between the narrow and wide gaussian 

components comprising the mixture was sufficient for the model to replicate the behavioural 

differences seen in both the mean error and kurtosis measurements. An implication of the 

mixture model is that there could be separate perceptual mechanisms, or ‘modes’, guiding 

perceptual estimation. One might allow for coarse estimations, leading to a wide distribution of 

errors. The other might allow for more precise estimations. If true, then probability information 

could be biasing participants to rely more on one ‘mode’. The net effect of this shift in 
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‘perceptual modes’ is that for high-probability tilts, participants end up making precise 

judgements and smaller errors when prior experience informs them that the tilt is likely. 

Differences in perception across probability conditions can parsimoniously account for 

probability effects both in precision and in RT. If participants rely less on the ‘precise’ mode for 

the rare tilts, the perceptual information cannot be as well-encoded as for high-probability tilts. 

Poorer encoding of the rarer tilts should be expected to cause imprecision: On average, low-

probability tilts are associated with larger mean angular errors. Poorer encoding would also be 

expected to cause uncertainty in participants’ estimations: Participants do show implicit signs of 

being more uncertain in estimating low-probability tilts, taking longer to start making their 

estimations.  Participants also demonstrate uncertainty by making more vacillations for low-

probability trials, causing them to be slower in confirming their responses.  

The uncertainty associated with low-probability tilts is unlikely to stem from explicit 

awareness of the distribution of orientations: Participants cannot explicitly report the probability 

distribution. To further examine this claim, participants can be made to explicitly report how 

confident they are of their estimations on every trial. Lack of probability-related differences in 

confidence values for the different probability conditions would further support the notion that 

the mechanisms which allow for the switch in detection ‘modes’ acts implicitly. The interaction 

found between orientation and probability suggests that this mechanism involves V1 neuron 

tuning. Experiment 1b was also intended to replicate that finding. 

 

  



Orienting to Probability   

 

30 

Experiment 1b 

Experiment 1b was carried out to ascertain whether participants might be able to 

explicitly report how confident they are of their responses for high versus low-probability tilts. If 

the mechanism that allows for precise estimations operates explicitly, participants should show 

probability-related differences in confidence reports. It also served to replicate the interaction 

between orientation and probability seen in Experiment 1a. 

 

Methods 

Twenty additional students (9 male, 11 female) took part in Experiment 1b. 19 

participants used their right hand and 1 used their left. All participants had normal or corrected-

to-normal vision, were not colour-blind, and did not have any known auditory deficits. 

 The procedure was similar to that of Experiment 1a. The only difference was that before 

participants were given the auditory feedback, there was a separate screen on which participants 

controlled a slider to make their confidence judgements on how they think they did on that 

particular trial (see Figure 12). Using the same three keyboard buttons, they could move the 

continuous slider that always began with a default value of 50, either towards the left 

(Completely Unsure, value of 0), or towards the right (Completely Sure, value of 100). Time 

participants took to make the confidence judgement was recorded as well. The distribution of the 

Gabor orientations was identical to Experiment 1a. 
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Figure 12 

 

 

  

Figure 12. Confidence measure scale used in Experiment 1b. Participants control a continuous slider 

that by default starts at the midpoint. The central number assigns them a confidence value based on 

the position of the slider. Confidence analyses were carried out on these values. 
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Results 

Estimation Task analysis 

T-tests were again carried out between the high and low probability tilts on the various 

measures. There was a significant effect of RT, (t(19) = 2.66,  p = .015), with high-probability 

tilts (M = 1370ms, SD = 370ms) faster estimated than low-probability tilts (M = 1430ms, SD = 

370ms). There was also a significant effect of IT, (t(19) = 4.70,  p < .001), with less time taken to 

start estimating high-probability tilts (M = 230ms, SD = 110ms) than low-probability tilts (M = 

260ms, SD = 120ms). There was no significant effect of MT, (t(19) = 1.40,  p = .177), and no 

significant effect of vacillations, (t(19) = 1.42,  p = .172).  

In the mean angular error measure, the effect of probability was again significant, (t(19) = 

3.53, p = .002), with high-probability tilts being associated with smaller errors (M = 11.0deg, SD 

= 4.1 deg) than low-probability tilts (M = 12.3 deg, SD = 4.7 deg). High probability tilts (M = -

1.60, SD = 3.58) were marginally biased towards the vertical (t(19) = -1.98, p = 0.062). Low 

probability tilts (M = -1.35, SD = 3.61) were not (t(19) = -1.68, p = 0.109). There was no 

significant difference in bias between the probability conditions (t(19) = 0.514, p = .613).  

Examining the kurtosis measurement the same way as in Experiment 1a, the two-way 

ANOVA across the 2 levels of probability and 9 levels of orientation again revealed a significant 

main effect of probability, (F(1,19) = 147.9, MSE = 6.3, p < .001), a significant main effect of 

orientation, (F(8,152) = 6.3, MSE = 10.9, p < .001), and a significant two-way interaction, 

(F(8,152) = 3.9, MSE = 9.7, p < .001) . Similar to Experiment 1a, the probability effect in the 

kurtosis measure was already present within the 1
st
 50 trials, (t(19) = 2.36, p = .029). 
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Figure 13 

  

Figure 13. Estimation performance for Experiment 1b. Error bars indicate one 

standard error. 
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Confidence Analysis 

There was a significant, moderately strong correlation between the estimation error and 

the confidence values (r = -.36, p < .001), with smaller confidence being associated with larger 

errors. Running a two-tailed paired t-test on the confidence reports by participants across the 

probability conditions revealed no significant difference in either the reported confidence value, 

(t(19) = 1.13, p = .274), or the time taken to report the confidence (t(19) = 1.68, p = .110). 

Confidence reports or time to report confidence did not systematically vary as a function 

of orientation or as the experiment progressed (all ps > .05). 

 

Post-study questionnaire 

None of the twenty participants explicitly and accurately described the distribution of 

orientations. 

 

Discussion 

The data from Experiment 1b largely replicates that of Experiment 1a. Despite being 

unable to report the probability distributions, participants were faster and more precise in 

estimating high probability tilts over low probability tilts. Differences in the kurtosis measure 

were again seen across the probability conditions: High-probability vertical tilts were estimated 

most precisely. The main departure of this dataset from Experiment 1a’s was that there was no 

difference in the time used to make the movements, with no difference in the amount of 
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vacillations, made between the conditions. The presence of the confidence scale might have 

caused them to make more deliberate movements. Regardless, the time taken to initiate 

movement was significantly different, indicating that these participants were also uncertain about 

their estimations of low-probability tilts. However, this uncertainty was not explicit. Especially 

considering that there was a moderately strong correlation between confidence and error made, 

participants’ failure to demonstrate probability-based confidence differences was most likely due 

to them being unaware of the probability distribution.  

Studies on statistical learning (e.g., Cosman & Vecera, 2014) have suggested that 

capacity-limited working memory representations might not be a requirement in picking up 

statistical information, at least in some cases (cf. Downing, 2000). It has also been suggested that 

stimulus probabilities can be acquired rapidly and without much effort (Estes, 1964; Hasher & 

Zacks, 1984). In simpler symbol detection studies, it seems as if ten target instances are 

sufficient for the probability effect to be fully-realised (Hon, Yap & Jabar, 2013; Hon & Jabar, 

submitted). Here, probability effects in the relatively more complex orientation estimation task 

also manifests very quickly, being observable both in RT and in precision measures within the 

first 50-100 trials. In addition to being unable to report the probability distributions at the end of 

the task, participants were also unable to report awareness of such probability effects taking 

place on a trial by-trial basis. 

Probability effects are therefore likely due to implicit or passive mechanisms. What 

might this implicit mechanism be? Both Experiments 1a and 1b highlighted an interaction 

between probability and orientation: Participants are especially precise in estimating high-

probability vertical orientation. Given neurophysiological data suggesting different tuning widths 
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for different preferred-directions, it is possible that probability effects have a similar neural 

locus: Experience might render orientation-selective V1 neurons more or less sensitive to 

orientations similar to the one it prefers. Hypothetically, such a mechanism could operate 

implicitly if sensitivity shifts are just dependant on the rate of activation of the neurons. 

However, it has been suggested that conditional probability effects have to be preceded 

by explicit, deliberative, learning before it can affect task performance in visual search (Cort & 

Anderson, 2013). As an additional test to help disambiguate between probability learning being 

explicit or implicit, the difficulty associated with the learning can be increased. In Experiment 2, 

the location-orientation junction from Experiment 1 was made conditional on another feature. If 

the increased complexity prevents the learning and usage of probability information, it would 

suggest that the learning of spatial-featural regularities would have to be deliberate before 

probability effects manifest. On the other hand, retaining probability-sensitivity even in such 

instances would suggest that this learning is implicit and robust to task complexity.  

 

Experiment 2 

 Experiment 2 extended Experiment 1 by examining the orientation probability effect 

under a more complex distribution. The colour of the fixation symbol randomly alternated, and 

the location-orientation conjunction from Experiment 1 was made conditional on this colour cue. 

For example, left-titling was more likely only on the left side, but only when the fixation symbol 

was cyan. Given participant’s inability to explicitly report the probability distribution and 

inability to explicitly report any probability-related confidence differences in the previous 

experiments, it was unlikely that participants could learn such complex relationships 
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deliberately. Instead, finding probability effects in Experiment 2 would suggest that probability 

learning is implicit and robust. 

Methods 

 

Twenty participants (17 females, 3 males) took part in Experiment 2. They did not take 

part in the previous experiments. Sixteen participants used their right hand and four used their 

left. All participants had normal or corrected-to-normal vision, were not colour-blind, and did not 

have any known auditory deficits. 

The paradigm used was similar to Experiment 1’s. The probability distribution was made 

more complex by having the tilt-location conjunction be dependent on the colour of the fixation 

symbol. Half the participants saw the distribution depicted in Figure 14. When the central 

fixation symbol was presented in magenta, left-positioned Gabors would be more likely to be 

left-tiling, but right-tilting would be more likely if the Gabor appeared on the right. This 

orientation-likelihood reversed when the fixation symbol appeared in cyan. The other half of the 

participants saw the reverse colour-location-orientation mapping. The fixation symbol had a 50% 

chance to be in magenta or cyan on any given trial. Participants were not instructed on the 

orientation distribution or about the significance of the colour cues. 

Forty practice trials were given prior to the main task. To prevent probability learning 

prior to the main task, the practice trials only consisted of a black fixation symbol and random 

location-orientation assignments. The same questionnaire was given to participants at the end of 

the study. 

Figure 14 
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Figure 14. Experiment 2 trial distribution. The fixation symbol randomly changes in colour, and 

the location-orientation conjunction follows this colour cue. The lines within the shaded region 

show the actual orientations seen by the first participant. This colour-location-orientation 

mapping is reversed in half of the participants. 
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Results 

Post-study questionnaire 

No participant explicitly and accurately described the probability distribution presented. 

No participant attempted to guess the significance of the colour cue. 

Cue Colour 

 Pairwise t-tests were run across the colour cue conditions (cyan or magenta) across both 

probability conditions. The RT, mean angular error and kurtosis measures all revealed no 

significant effect of colour cue (all ps > .05). Additionally, trials with colour cues repeated (e.g., 

cyan on trial 3 and cyan on trial 4), were contrasted with non-repeats of colour cues. There was 

no significant effect of colour repetition on any of the measures used, (all ps >.05). Therefore, 

the data were collapsed across the cue colour. 

Estimation Data 

There was a significant effect of RT, (t(19) = 2.44, p = .025), with high-probability tilts 

(M = 1140ms, SD = 230ms) faster estimated than low-probability tilts (M = 1180ms, SD = 

260ms). Of the 20 participants, 14 participants showed this trend, with the other participants not 

showing clear differences.  

The mean angular error did not show a significant probability effect, (t(19) < 1 1.88, p > 

.05), but the kurtosis measure did. The two-way ANOVA across the 2 levels of probability and 9 

levels of orientation revealed a significant main effect of probability, (F(1,19) = 133.4, MSE = 

6.4, p < .001), a significant main effect of orientation, (F(8,152) = 5.5, MSE = 6.2, p < .001), and 

a significant two-way interaction, (F(8,152) = 2.5, MSE = 6.8, p = .014). 
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Figure 15 

  

Figure 15. Estimation performance for Experiment 2. Error bars indicate one standard error. 
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Time-course 

To ascertain how fast these probability effects developed, the probability effect was 

examined across trials. Similar to Experiment 1, significant probability effects were observed 

within the 1
st
 50 trials for both the RT measurement, (t(19) = 2.58,  p = .033), and the kurtosis 

measurement, (t(19) = 2.58, p = .018). 

 

Mixture model 

 The data on angular errors was fit with a mixture model. The AIC, BIC, CAIC and ICL 

adjusted log-likelihood analyses all suggested a two-component model was optimal for both the 

high and low-probability error distributions. The means of the two components for both 

probabilities were not significantly different from zero (all ps > .05). There was a significant 

difference between the variances of the two gaussian components (t(39) = 11.1, p <.001). One 

gaussian is wider (mean variance of 30.1 deg, SD = 15.8 deg), and the other narrower (mean 

variance of 9.2 deg, SD = 4.6 deg). The (lambda) proportion of the narrower gaussian was 

significantly higher (t(19) = 2.67, p = .015) for the high probability tilts (M = 74.8%, SD = 

35.5%), than the low-probability tilts (M = 45.1%, SD = 36.4%). 
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Figure 16 

      

  

Figure 16. Optimal mixing components for Experiment 2. Red markers indicate the low-

probability trials, blue for high. The lambda measure gives the proportion of the narrow 

gaussian that lends to the optimal mix, and is expressed as a percentage of the final mix. 

The other measures (mu –mean, sigma – standard deviation) indicate the mean fits of the 

two components (narrow and wide) in terms of degrees. The mixture model indicates that 

the difference between the high and low-probability error distributions can be captured by 

using different mixing proportions of a narrow zero-centred gaussian and a wide zero-

centred gaussian. Error bars indicate one standard error. 
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Discussion 

 

 The results from Experiment 2 largely mirrored those obtained in Experiment 1, despite 

the probability distribution being more complex. Participants responded faster to high-

probability tilts and these probability effects manifested very quickly. Although the mean 

accuracy measure did not show a difference in precision, the kurtosis measure did show the same 

trend seen in the previous experiments. The interaction between orientation and probability was 

replicated, with participants being most precise for high-probability vertical tilts. The mixture 

model analyses again suggested a two-component model to be optimal, the difference in error 

distributions between the probability conditions largely resting on how these components are 

mixed. Had explicit or deliberate consideration of the probability information been required for 

one to demonstrate the probability effect, one would have expected the effect to be diminished 

for Experiment 2, due to the demands on the participants to keep track of the conditional 

probabilities. The fact that participants reliably showed the effect, coupled with the apparent 

inability for participants to verbalise what the probability distributions were suggests that the 

‘learning’ of these probability distribution is largely implicit. 

If probability learning mechanisms are implicit, how sensitive can they be? Probability 

studies using simple symbol detection find fine-grained sensitivity to probability information: 

Small differences in stimulus probability results in observable changes at the behavioural level 

(Hon & Jabar, submitted; Dykes & Pascal, 1981). Is that level of sensitivity to visual-spatial 

statistical information present even in a more complex task such as orientation estimations? This 

was investigated in Experiment 3, which used multiple probabilities. If the implicit mechanisms 
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behind probability effects are sensitive to fine-grained probability differences, this should be 

observable at the behavioural level. 

Experiment 3 

 Experiment 3 sought to extend the findings of Experiments 1 and 2. By using multiple 

probability levels, it was examined if the implicit mechanisms behind the probability effect are 

sensitive to fine-grained differences in probability. Furthermore, mixture model analyses were 

performed as a test of the hypothesis that probability affects performance by weighting the 

influence of one ‘mode’ of estimation over another. If true, the model should show that two-

component fits are optimal, despite there being three distinct probability values. The only 

differences in error distributions across the three probability-values should be the mixing 

proportions of the two components.  

Methods 

 

Thirty-six participants (11 males, 25 females) took part in Experiment 3. They did not 

take part in the previous experiments. 31 participants used their right hand and 5 used their left. 

All participants had normal or corrected-to-normal vision, were not colour-blind, and did not 

have any known auditory deficits. The paradigm used was the similar, with two differences. The 

Gabors now only appeared centrally, in foveal vision. Instead of a strict high or low probability, 

probabilities were graded. This graded probability was imposed by splitting the possible 

orientations into three ‘chunks’ and associating  the orientation falling within each region with a 

different probability of 10%, 30% or 60% (see Figure 17). The orientation-to-probability 

associations were counterbalanced across the participants. 



Orienting to Probability   

 

45 

Figure 17 

 

Figure 17. Experiment 3 trial distribution. Gabors appeared in the center of the display. 

Orientations are divided up to fall into one of three-similarly sized regions. 60% of the 

orientations fell within the blue region, 30% in the green region and 10% in the red region. The 

order of these regions was counterbalanced across participants. The lines within the coloured 

regions show the actual orientations that the first participant saw. 
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Results 

Post-study questionnaire 

Four of the thirty-six participants managed to correctly report an approximate region of 

the highest probability tilts, e.g., “Vertical directions were most common” or “Things that look 

like ‘/’ were most common”. None realised that there were three separate probability regions. 

 

Data Analyses 

 One-way repeated measures ANOVA on the RT measure revealed a marginally 

significant effect of probability, (F(2,70) = 3.08, MSE = 85600,  p = .050). Pairwise t-tests 

revealed this was mainly due to the difference between the 30% (M = 1290ms, SD = 410ms) and 

10% (M = 1430ms, SD = 530ms), (t(35) = 2.19, p = .035), and between the 10% and the 60%, (M 

= 1270ms, SD = 430ms), (t(35) = 2.05, p = .048), with there being no significant difference 

between the 30% and 60% tilts, (t(35) < 1, p>.05). 

 For angular error, one-way repeated measures ANOVA suggested a significant effect of 

probability, (F(2,70) = 6.95, MSE = 4.63,  p = .002). As with the RT measure, pairwise t-tests 

revealed this was mainly due to the difference between the 30% (M = 8.36deg, SD = 2.62deg) 

and 10% (M = 10.1deg, SD = 4.54deg), (t(35) = 2.79 , p = .008), and between the 10% and the 

60%, (M = 8.51deg, SD = 3.12deg), (t(35) = 3.21, p = .003), with there being no significant 

difference between the 30% and 60%, (t(35) < 1, p>.05).  

The results above suggest that there is a probability effect, but only between the lowest 

(10%) and the higher (30% and 60%) probabilities. Given the results from Experiment 1 and 

Experiment 2 that suggested a possible interplay between orientation biases and probability 
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effects, this was evaluated for Experiment 3. As before, orientations were chunked into 20-

degree bins and the kurtosis measurements calculated. Figure 18 shows the same effects seen in 

Experiments 1 and 2. A two-way ANOVA on this data revealed a significant main effect of 

probability, (F(2,66) = 12.55, MSE = 41.8, p < .001), a significant main effect of orientation, 

(F(2,66)  = 5.118, MSE = 41.8, p =.009), and a significant interaction, (F(2,66) = 3.55, MSE = 

41.6, p = .045). To see if separating out the orientations can reveal that there actually is a graded 

effect, t-tests were done on this set of data : There was a significant difference between the 30% 

and 10%, (t(136) = 4.91 , p < .001), and between the 10% and the 60%, (t(114) = 5.19 , p < 

.001), with there now also being a significant difference between the 30% and 60%, (t(157) = 

2.37, p= .019). 

 To examine how fast such probability effects developed, trial bins were compared. 

Within the 1
st
 50 trials, there was a difference in both the mean angular error, (t(35) =  2.59, 

p=.014), and kurtosis measures of precision, (t(35)= 5.6, p<.001), between the highest and lowest 

probabilities.  
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Figure 18 

 

 

  

Figure 18. Estimation performance for Experiment 3. Red markers indicate the lowest 

probability trials (10%), green for 30% and blue for 60%. Error bars indicate one standard 

error. 
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Mixture model 

The data on angular errors from Experiment 3 was fit with a mixture model. The AIC, 

BIC, CAIC and ICL adjusted log-likelihood analyses all suggested that a two-component model 

was optimal, even though there were three probability conditions. Each distribution was fit with 

two components to look at mixture proportions (see Figure 19). The data from one subject was 

dropped from this analysis because the model algorithm could not reach a stable convergence 

point. There was a clear difference between the variances of the two gaussian components 

making up each fit: one gaussian wide (mean variance of 16.6 deg, SD = 14.0 deg) and the other 

narrow (mean variance of 4.7 deg, SD = 3.1 deg). This difference in the variance between 

components was significant, (t(104) = 10..0, p <.001). Looking at the differences in the 

proportion of these two components across the error distributions of the three error probabilities, 

a one-way repeated measure ANOVA revealed a significant effect of probability, (F(2,68) = 

4.21, MSE = 1129, p=.021). Paired t-tests revealed that the 10% tilts (M = 29.9%, SD = 27.3%) 

were associated with a significantly lower proportion of the narrower gaussian component than 

30% tilts (M = 45.2%, SD = 38.9.1%) and 60% tilts (M = 55.4%, SD = 40.1%), (both ps < .05). 

The difference in proportion between the 60% and 30% was not significant, but did show the 

expected difference in direction. 
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Figure 19 

 

Figure 19. Optimal mixing components for Experiment 3. Red markers indicate the lowest 

probability trials (10%), green for 30% and blue for 60%. The lambda measure gives the 

proportion of the narrow gaussian that lends to the optimal mix, and is expressed as a percentage 

of the final mix. The other measures (mu –mean, sigma – standard deviation) indicate the mean 

fits of the two components (narrow and wide) in terms of degrees. Error bars indicate one 

standard error. 
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Discussion 

 

 As in Experiments 1 and 2, high-probability tilts were again estimated faster and more 

precisely than lower-probability tilts. Although the RT and the mean angular difference measures 

did not show this in a graded manner, the kurtosis measure did. This could be because examining 

the shape of the error distributions that participants make might be more informative than just 

looking at performance summary statistics. Across all measures, participants do clearly 

differentiate between a 10% and a 30% tilt probability, suggesting that probability differences do 

not have to be drastic for behavioural differences to be observable. 

 The mixture model analysis suggested that the error distributions across the different 

probabilities still comprised a mix of two components: a wide and a narrow gaussian. The 

difference in distributions largely rests on the proportion of one component to the other. This 

finding supports the hypothesis that what probability information does it to shift the reliance on 

one ‘mode’ of perception over the other. In Experiments 1 and 2, it might have been suggested 

that the two ‘modes’  might be due to participants not following instructions or moving their 

eyes, to result in some trials where some stimuli are processed in foveal vision, and others in 

peripheral vision. This cannot account for the two-component model still being the best fit for 

the data from Experiment 3, where all stimuli were shown in foveal vision. Additionally, 

Experiment 3 again demonstrated an interaction between tilt-probability and orientation. As 

discussed earlier, this would be expected if they both affect neural tuning. Potentially, the 

hypothetical ‘modes’ of perception could be linked to neural tuning differences. This idea will be 

explored in the next section. 
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Table 1 
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General Discussion 

  

Probability effects in RT are well-documented in symbol detection, as are probability 

effects in detection accuracy in visual search paradigms. The experiments reported here, as in the 

Anderson study, suggest that there are robust probability effects in perceptual estimations as 

well. In orientation estimations, higher-probability tilts are estimated faster and more precisely 

than are lower-probability tilts.  

The experiments presented here further examined the characteristics of those probability 

effects. The effects occur without participants being able to explicitly describe the probability 

distributions, or being more confident of making judgements of one probability over another. 

The probability effects develop very quickly, being observable within only fifty to a hundred 

trials into the experiment, with participants showing some signs of sensitivity to fine differences 

in probability. Additionally, these behavioural effects develop even when the probability 

distributions are highly complex. Clearly, probability is doing something to affect the perceptual 

representation of the orientation. One suggestion is that probability information results in 

changes to how well the Gabor orientation is perceptually encoded before it goes off-screen. 

How might probability change the quality of perceptual representations? People – and 

non-human animals – have been found to be more accurate in perceiving cardinal directions than 

oblique directions (Appelle, 1972). In cats, these orientation biases have been suggested to be in 

part due to tuning differences across neurons with different preferred orientations (Li, Peterson, 

& Freeman, 2003). Since the probability effect apparently interacts with orientation, it would 

suggest that probability affects neural tuning of orientation-selective V1 neurons as well. In 
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macaques, orientation tuning of neurons in the V1 region is not static, but instead changes over 

time (Ringach, Hawken & Shapley, 1997). In orientation training of rhesus monkeys, only the 

V1 neurons preferring the trained orientation showed tuning changes, suggesting specific 

increases in neuronal sensitivity (Schoups et al., 2001). Given these information, it might be 

possible that neurons’ orientation tuning over time occurs differently according to the rate of 

occurrence of the orientations: Perhaps the rate at which the neuron is ‘activated’ affects its 

sensitivity to its preferred direction. However, if this is true, then Experiment 2 would also 

suggest that this occurrence-dependant tuning would have to be context-sensitive to other non-

orientation features, such as the colour of another stimulus in another location. Additionally, the 

data suggests that this tuning would have to occur very rapidly, approximately within 100 trials. 

Schoups et al. had monkeys practice the orientations 2000-5000 trials daily for several months. 

 Instead of neurons being tuned directly by contextually-constrained occurrence rates, 

another mechanistic possibility is that probability information weights the relative influence of 

subpopulations of V1 neurons that already differ in tuning width. There are laminar differences 

in neural tuning in the V1 cortical area, with orientation-selective cells having a larger bandwidth 

in layers 4C and 3B (Ringach, Shapley, & Hawken, 2002). Neural tuning width is related to the 

sensitivity of the neurons.  Relying completely on one set of neurons with a specific sensitivity 

should result in estimation precision in the behavioral task that is different as compared to when 

relying on a set of neurons that has a different tuning. However, perceptual decisions are also 

based on different neural activity depending on the complexity of the task. Making precise 

discriminations between very similar stimuli might rely on the activity of neurons tuned away 

from the target feature (Scolari & Serences, 2010).  By comparison, coarse discrimination of 

distinct features might depend more on listening to the most responsive neurons, which are ones 
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tuned on the target features (Ditterich, Mazurek & Shadlen, 2003). Therefore, optimal V1 

sensitivity would vary depending on what level of discrimination is needed, and separate 

populations with tuning differences might allow for flexibility in how these discrimination 

‘modes’ operate.  

The orientation estimation task likely depends on both these discrimination ‘modes’. 

Because high-probability tilts occur frequently, that might cause participants to adopt more of a 

‘precise’ mode to tell the difference between similar orientations. Where the tilts occur 

infrequently, it might be enough to rely more on the neurons which subserve the ‘coarse’ mode. 

Accordingly, the sensitivity of the neurons relied on would change how well-encoded the 

orientations of the observed Gabors can be, especially given the short presentation time (60ms). 

In the case of high probability tilts, relying more on the ‘precise’ mode would result in better-

encoded perceptual representations, which would result in more confident estimations, reducing 

RT and vacillations, as well as resulting in more precise estimations. Consistent with the idea of 

there being two perceptual ‘modes’, the mixture models suggest that there are always two 

components present in participants’ response distributions: One is precise and associated with 

smaller errors (narrow gaussian); the other is coarse and associated with larger errors (wide 

gaussian). The model also suggests that all that that is needed to account for the difference in the 

shape (kurtosis) of the response distributions is for probability to change the relative contribution 

of each component. Assuming that these components are linked to the two detection ‘modes’, 

which are in turn  linked to the different V1 populations, what probability might be doing is to 

assign more weight to output of one neural population over the other.  



Orienting to Probability   

 

56 

As compared to V1 neurons being constantly tuned and re-tuned through experience, it 

would be more resource-efficient and quicker, given existing population differences in tuning, to 

weight the output of one population over another. This would account for how probability effects 

can rapidly develop. Regardless of whether sensitivity changes in feature-processing neurons 

happens directly or indirectly, it is particularly elegant as an explanation for probability effects in 

general since it could be extended to account for probability effects in other non-orientation 

scenarios. Still, while suggestions about a mechanistic link between estimation performance and 

neural tuning differences are intriguing, it ought to be explored further, either 

neurophysiologically or computationally, before any concrete claims can be made. 

Other accounts for the data should be considered. There is a potential issue with the 

finding that people are most precise for estimating near vertical tilts. In Experiments 1 and 2, the 

boundaries for the high and low probability region respected the vertical (see Figures 4 and 14). 

However, the horizontal was also a boundary, but near-horizontal trials did not show any 

increased precision. These boundaries were also not respected in Experiment 3 (Figure 17), 

which still showed the increased precision for near-vertical tilts. It might be argued that the 

vertical precision might be because participants start off responding with a horizontal line. 

However, the Anderson & Druker (2013) study used a vertical start. Re-analysing that dataset 

shows the same trend in precision: near-vertical tilts showed an increased precision. Orientation 

effects were therefore not likely to have been caused by the experiments, but likely reflect pre-

existing orientation sensitivity differences, perhaps due to differences in V1 neural tuning. 

It can be argued that repetition effects are confounds in probability-related studies, since 

high-probability targets are more likely repeated, while rare targets are not. In detection tasks, 
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probability effects are still present when repetition is accounted for (Hale, 1969). Repetition 

effects are even less of a concern in orientation estimation because probability is not restricted to 

a single orientation. It may be the case that a left-tilting Gabor on the left might follow another 

left-tilting Gabor on the left, but there could be a 40-degree difference in their orientation, which 

is unlikely to lead to repetition priming. Additionally, the use of the conditional cue in 

Experiment 2 further reduces the chances of this repetition effect being a factor: Even the high 

probability ‘zone’ is randomly switching from trial to trial. 

Probability effects are robust and evident across various tasks. Unfortunately, they are 

also ill-understood. Although detection tasks might be more related to real-world tasks where the 

increased miss-rates of rare targets are an issue (e.g., in security and medical screenings), what 

has hopefully been demonstrated here is that studying probability effects in the context of how 

they affect perceptual estimations can result in a richer set of data than could be obtained from 

detection tasks alone. In the orientation estimation task, the use of the kurtosis measurement to 

look at the shape of the error distributions participants make not only mirrors the probability 

effect seen in traditional measures such mean accuracy and RT, but also serves to highlight 

possible processes that govern participants’ perceptions of the target stimuli. More can be learnt 

about the nature of probability effects by examining perceptual estimations in other feature-

dimensions, such as location, colour, or pitch. Particularly, it might be of interest to examine how 

probability manipulations affect the types of errors that participants make for other such features. 

If the kurtosis measure proves robust across those tasks as well, it would support the hypothesis 

that probability information affects perceptual representations of the stimuli, perhaps by affecting 

the sensitivity of the neural populations that code for the relevant target features. 
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Age: ____ 

Gender: ________ 

 

Are you: left-handed, right-handed, mixed-handed, or ambidextrous? (Circle one.) 

Do you have normal, corrected, or impaired vision? (Circle one.) 

 If you have impaired vision, please describe the impairment: ______________________ 

 _______________________________________________________________________ 

 

1. Did anything about the experimental task stand out to you? 

 

 

 

2. Please describe any strategies you may have used. 

 

 

 

3. Did you feel that you perceived some stimuli better or differently than others, or in certain cases? Did 

you notice any change over time in your experience? 

 

 

 

4. Do you think that some orientations are more likely at certain times? If yes, please elaborate. 

 


