
Eigenvalue, Quadratic Programming
and Semidefinite Programming
Bounds for Graph Partitioning

Problems

by

Ningchuan Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Ningchuan Wang 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Graph Partitioning problems are hard combinatorial optimization problems. We are
interested in both lower bounds and upper bounds. We introduce several methods including
basic eigenvalue and projected eigenvalue techniques, convex quadratic programming tech-
niques, and semidefinite programming (SDP). In particular, we show that the SDP relaxation
is equivalent to and arises from the Lagrangian relaxation for a particular quadratically con-
strained quadratic model. Moreover, the bounds obtained by the eigenvalue techniques are
good and cheap.

iii

Acknowledgements

I would like to especially thank my advisor Henry Wolkowicz, who gave me the valuable
opportunity of Master degree and two years’ financial support. He patiently taught me many
optimization knowledge and guided me all the time.

I am from mainland of China. I have been in Canada since July 2008. I deeply thank
my parents for both mental and financial support during my studies. There were a lot of
difficulties in my life and study during these years. I cannot success without their encourage-
ment. Before I came to Canada, I barely read them. My father is a chief engineer in a ship.
He is on the sea most time for making money to support our family, even in the Chinese
new year eve. Now I more and more understand my parents. Thanks to my parents for
understanding. I would like to thank my uncle, Hongwei Wang, who immigrated to Canada
in 2003 and picked me up from the Pearson airport. Thanks to my uncle for providing me
a comfortable living environment at the beginning of my daily life in Canada.

I was brought up by my grandmother who is the most important person in my whole
life. I never left her untill 2008. From 2012, her momery became worse and worse because of
Alzheimer disease. Every time I thought of her, I lapsed into apologies and regrets. I hope
she can maintain a happy attitude.

I would like to thank Professors Chris Godsil and Thomas Coleman for their valuable
time and comments.

I would like to thank my girl friend, Lei Tong. Owing to her, I have the feeling of family
in Canada.

I would like to thank my friends, Zhihan Gao, Jiaxin Liu, Junbo Huang, and Longji Guo,
who helped me.

iv

Table of Contents

List of Tables vii

1 Introduction 1
1.1 Outline . 2

2 Preliminaries 3
2.1 Graphs and Partition Matrices . 3
2.2 Formulation of GP using a Quadratic Program 4
2.3 Semidefinite Programming . 6

2.3.1 Positive Semidefinite Matrices . 6
2.3.2 Inner Product and Norms . 9
2.3.3 Kronecker Product . 11
2.3.4 Duality Theory . 11
2.3.5 Facial Structures . 12

3 Eigenvalue Based Bounds 15
3.1 Basic Eigenvalue Bound . 16
3.2 Projected Eigenvalue Bound . 18

3.2.1 The projection technique . 18
3.2.2 The PE Bound . 21
3.2.3 Explicit Solution for Linear Term . 23
3.2.4 PE Bound via QAP . 24

4 Convex Quadratic Programming Bound 26
4.1 Introduction and Related Work . 26
4.2 QP Bound . 28

5 Semidefinite Programming Relaxation Bound 31
5.1 The Direct Approach to SDP Relaxation . 31
5.2 Lagrangian Relaxation . 33
5.3 The Final Semidefinite Relaxation Through Facial Reduction 36

v

6 Cut Minimization Problem 41
6.1 Introduction . 41
6.2 Lower Bounds for the CM Problem . 42

6.2.1 Eigenvalue Bounds . 42
6.2.2 Convex Quadratic Programming Bounds 46
6.2.3 SDP Bounds . 47

7 Numerical Tests 48
7.1 Feasible Solutions Upper Bounds . 48
7.2 Random Tests with Various Size . 49

8 Conclusion 56
Index . 57
Bibliography . 58

vi

List of Tables

7.1 Results for small structured graphs . 50
7.2 Results for small random graphs . 51
7.3 Results for medium-sized structured graphs 52
7.4 Results for medium-sized random graphs . 53
7.5 Results for larger structured graphs . 54
7.6 Results for larger random graphs . 55

vii

Chapter 1

Introduction

We consider graph partitioning, GP problems where we partition the node set of a graph
into k sets of given sizes in order to minimize the sum of the weights of the cut edges. This
problem contains the cut minimization problem as a special case. In both problems, we
can use a model with a quadratic objective function over the set of partition matrices. A
common problem in circuit board and microchip design, computer program segmentation,
floor planning and other layout problems can be modelled as GP problems. More applications
of GP problem can be found in [11].

The GP problems have a history since 1869, due to Jordan who had results for trees.
Three new algorithms, as well as three earlier algorithms, are summarized in [11]. We briefly
introduce some of these heuristic algorithms.

The Kernighan-Lin algorithm is one of the earliest algorithms proposed for partitioning
graphs. The algorithm starts with an initial partition into two sets, A and B whose sizes are
specified. At each iteration, we choose subsets, A′ of A and B′ of B with |A′| = |B′| such
that δ(A,B) > δ((A\A′)∪B′, (B\B′)∪A′). This algorithm is possible generated to partition
the graph into arbitrary number of sets. However, the running time and storage costs of the
algorithm will increase rapidly with the number of parts. In fact, most variants of graph
partitioning problem are NP-hard, i.e., it is unlikely to find a polynomial time algorithm.
Worse, Bui and Jones have shown that it is NP-hard to find approximately optimal vertex
and edge separators, even in graphs with maximum degree three.

Level-structure partitioning is another early algorithm. We first find a approximately
longest path in the graph, say uv-path. Then we apply breadth-first search from u to label
the vertices. We label u as level 0, and neighbors of u as level 1. We label the neighbors of
ith level vertices as (i + 1)th level. Then the algorithm chooses the vertices in the median
level as the vertex separator.

A spectral partitioning algorithm is introduced in [10]. We need to solve an eigenvector
corresponding to the second smallest eigenvalue of L, the Laplacian matrix of the graph.
Then we use the median of the components of the eigenvector to partition the vertices. We
say the median is xl. Let A contain all vertices whose components are less than xl. Let
B contain all vertices whose components are greater than xl. We put the vertices whose
components are equal to xl into either A or B such that the size of A differs the size of B at

1

most one. Let A′ ⊆ A be the set of vertices having neighbors in B. Let B′ ⊆ B be the set
of vertices having neighbors in A. Let E ′ be the set of edges joining A′ and B′. Obviously,
removing E ′ disconnect the graph. H := (A′, B′, E ′) is a bipartite graph. König’s Theorem
says that the size of maximum matching equals the size of minimum cover. Finding the
minimum cover of H gives us a vertex separator.

In this thesis, we don’t talk about algorithms. We focus on lower bounds for graph
partitioning. The lower bounds as well as upper bounds are also important because of the
following reasons. First, we can improve our bounds to get close to the optimal value.
Second, the good quality bounds are very helpful for a branch-and-bound scenario. We will
study both existing and new bounds and provide both theoretical properties and empirical
results.

In 1953, Hoffman and Wielandt proved Theorem (3.1.2) in [9]. In the early 70s, Do-
nath and Hoffman provided an eigenvalue-based bound in [5] using the Hoffman-Wielandt
result. The projection technique is studied and applied in [7, 14, 6] to eliminate two linear
constriants. These are based on a parametrization of the affine span of the linear equality
constraints. In [14], it shows that we can separate the objective function into three parts,
and further we can perturbate the diagonal of A to improve the bounds. Computational
results on variaty of randomly generated graphs are provided in [6].

Furthermore, we extend the approach in [1, 3, 2] from the quadratic assignment problem,
QAP, to our GP case. This allows for a convex quadratic programming (QP) bound that is
based on semidefinite programming (SDP) duality and that can be solved efficiently.

Finally, the SDP bounds are studied in [17, 18]. In [18], it shows that SDP relaxation
can be obtained from the dual of the homogenized Lagrangian dual of the quadratically
constrained quadratic problem. In [15], authors showed that the two constraints XTX =
Diag(m) and diag(XXT) = u are redundent.

Many of the results in this thesis are taken from the recent research report [15].

1.1 Outline

This thesis is organized as follows. We continue in Chapter 2 with preliminary discriptions of
graph partitioning problem and its formulation. We give a brief introduction to semidefinite
programming, which is applied in Chapter 5. In Chapter 3, we introduce the definition of
minimal scaler product and the projection technique. We get lower bounds by Theorem
(3.1.2) and Theorem (3.2.3). The quadratic programming (QP) bound is introduced in
Chapter 4. The semidefinite programming (SDP) bound is described in Chapter 5.

The Cut Minimization Problem (CM) is introduced in Chapter 6, including lower bounds.
Our empirical numerical tests are presented in Chapter 7.
We close with Chapter 8 presenting some conclusions.

2

Chapter 2

Preliminaries

2.1 Graphs and Partition Matrices

Definition 2.1.1. A graph G is a finite nonempty set, N(G), of objects, called vertices,
together with a set, E(G), of unordered pairs of distinct vertices. The elements of E(G) are
called edges.

Let G = (N,E) be an edge-weighted undirected graph with node set N = {1, . . . , n} and
edge weights wij > 0. In addition, we have an ordered positive integer vector of set sizes
m = (m1, . . . ,mk)

T ∈ Nk,m1,≥ . . . ,≥ mk, k > 2, such that the sum of the components∑k
i=1 mi = uk

Tm = n. Here uk is the vector of ones and k indicates its size. We define

Pm :=
{

(S1, . . . , Sk) : Si, Sj ⊂ N, Si ∩ Sj = ∅, for i 6= j,∪ki=1Si = N, |Si| = mi,∀i
}

to be the set of all partitions of N with the appropriate sizes specified by m. The partitioning
is encoded using an n × k partition matrix X ∈ {0, 1}n×k where the column X:j is the
incidence vector for the set Sj

Xij =

{
1 if i ∈ Sj,
0 otherwise.

Therefore, the set cardinality constraints are given by XTun = m; while the constraints that
each vertex appears in exactly one set is given by Xuk = un. We collect these matrices in
the set Mm,

Mm := {X ∈ {0, 1}n×k : Xuk = un, X
Tun = m}.

Remark 2.1.2. There is a one-to-one corresponding relation between Pm and Mm.

Definition 2.1.3. We denote the set of zero-one, nonnegative, linear equalities, doubly
stochastic type, m-diagonal orthogonality type, e-diagonal orthogonality type, and gangster

3

constraints as, respectively,

Z := {X ∈ Rn×k : Xij ∈ {0, 1},∀ij} = {X ∈ Rn×k : (Xij)
2 = Xij,∀ij}.

N := {X ∈ Rn×k : Xij ≥ 0,∀ij}.
E := {X ∈ Rn×k : Xuk = un, X

Tun = m} = {X ∈ Rn×k : ‖Xuk − un‖2 + ‖XTun −m‖2 = 0}.
D := N ∩ E .
DO := {X ∈ Rn×k : XTX = Diag(m)}.
De := {X ∈ Rn×k : diag(XXT) = un}.
G := {X ∈ Rn×k : X:i ◦X:j = 0, ∀i 6= j}.

Here Diag(v) denotes the diagonal matrix formed using the vector v; the adjoint
diag(Y) = Diag∗(Y) is the vector formed from the main diagonal of Y . We will indro-
duce the concept of adjoint later. A ◦B denotes the Hadamard product .

A nonnegative matrix X is called doubly stochastic if every row sum and column sum are
both equal to 1. D looks like the set of doubly stochastic matrices but not quite since the
column sums of elements in D are not 1. So we call D the set of doubly stochastic type.

There are many equivalent ways of representing the set of all partition matrices. Following
are a few.

Proposition 2.1.4.
Mm = E ∩ Z

= E ∩ DO ∩N
= E ∩ DO ∩ De ∩N
= E ∩ Z ∩ DO ∩ G ∩ N

(2.1.1)

Proof. The first equality follows immediately from the definitions.
The second equality is shown in [13, Prop. 1]. Here we include the proof for completeness:
X ∈Mm =⇒ X ∈ E ∩ DO ∩N is trivial.
Conversely, let X ∈ E ∩ DO ∩ N . X ∈ E ∩ N implies 0 ≤ Xij ≤ 1, hence (Xij)

2 ≤ Xij.
X ∈ DO implies tr(XTX) =

∑
imi = n.

So we have tr(XTX) =
∑

ij(Xij)
2 = n and s(X) = un

TXuk =
∑

ij Xij = n.

Therefore n =
∑

ij(Xij)
2 ≤

∑
ij Xij = n. Getting equality throughout gives (Xij)

2 = Xij.
So Xij ∈ {0, 1}.

The third and fourth equivalences contain redundant sets of constraints.

2.2 Formulation of GP using a Quadratic Program

Now we are going to formulate/model the GP Problem.
Let A be the matrix such that

Aij =

{
wij if ij ∈ E,
0 otherwise.

4

The matrix A is called the weighted adjacency matrix of the graph. Since G is a undi-
rected graph, A = AT . Now we use Sn to denote the set of all n × n symmetric matrices,
i.e.,

Sn = {H ∈ Rn×n : H = HT}.
Symmetric matrices are orthogonally diagonalizable, S = PDP T , where P ∈ Rn×n is the
orthogonal, P TP = PP T = In, matrix of eigenvectors, and D is the diagonal matrix of (real)
eigenvalues. Denote the matrices with orthogonal columns as

On×m := {Q ∈ Rn×m : QTQ = Im}.

We use On to simply denote On×n.
Throughout this thesis, we use the vector notation λ(H) = (λ1(H), λ2(H), · · · , λn(H))T ∈

Rn to denote the eigenvalues of an n-by-n symmetric matrix H in non-increasing order, where
λ1(H) ≥ λ2(H) ≥ · · · ,≥ λn(H)

For each partition matrix X, we can verify

(XXT)ij =

{
1 if node i and node j are in the same set,
0 otherwise.

So

wuncut(X) :=
1

2
tr(AXXT) =

1

2
tr(XTAX)

is the total weight of the uncut edges induced by the partition matrix X. Here, tr denotes
the trace of the matrix. Note that tr(·) is commutative, tr(XY) = tr(Y X) and tr(X) =∑n

i=1 λi(X).
Let r(A) denote the row sums of a n × n matrix A which indicates the degree of every

vertex, i.e.,
r(A) = Aun.

Let s(A) denote the sum of all entries of A, i.e.,

s(A) = un
TAun.

Notice that 1
2
s(A) = |E(G)|. Then the total weight for the cut edges induced by the

partition matrix X is

wcut(X) :=
1

2
s(A)− 1

2
tr(XTAX) =

1

2
(un

TAun − tr(XTAX)),

which is our objective function.
For each partition matrix X, we have

diag(XXT) = un.

So
un

TAun = (diag(XXT))TAun
= tr(Diag(Aun)XXT)
= tr(XT Diag(Aun)X).

5

The second last equality above is due to that Diag is the adjoint of diag. We will introduce
the adjoint of linear mapping later. So our objective function can be also written as:

wcut(X) =
1

2
tr(XTLX) (2.2.1)

where the matrix
L := Diag(Aun)− A

is called the Laplacian matrix of the graph G.
So the minimum weight of cut edges can be solved as:

(GP) w∗cut := min 1
2

tr(XTLX)
s.t. X ∈Mm.

(2.2.2)

Notice that
Lun = r(L) = r(Diag(Aun)− A) = r(A)− r(A) = 0.

So un is an eigenvector of L with the eigenvalue 0. Oberse that rank(L) = n− κ, where
κ is the number of components of G. By rank-and-nullity theorem, the multiplicity of 0
eigenvalue is κ.

Also,
s(L) = un

TLun = 0.

2.3 Semidefinite Programming

A semidefinite programming (SDP) problem is a problem of minimizing or maximizing a
linear function of finitely many symmetric matrix variables with real entries subject to finitely
many linear equations and linear inequalities on these variables and subject to positive semi-
definiteness constraints on some of them. In this section, we will introduce some background
of SDP, which is needed in chapter 5. We also conclude some theorems and proofs, as well
as some related important results for SDP. Most of contents are taken from [16], which is
the textbook of the course CO 671, Semidefinite Optimization.

2.3.1 Positive Semidefinite Matrices

Definition 2.3.1. Let A ∈ Sn. A is called positive semidefinite (PSD) if ∀x ∈ Rn, we
have xTAx ≥ 0. The set of all positive semidefinite matrices is denoted by Sn+. Similarly,
A is called positive definite (PD) if ∀x ∈ Rn and x 6= 0, we have xTAx > 0. The set of all
positive definite matrices is denoted by Sn++.

Proposition 2.3.2. [16, Proposition 1.10](Characterization of PSD matrices) Let A ∈ Sn.
Then the following are equivalent:

1. A is positive semidefinite;

6

2. λj(A) ≥ 0,∀j ∈ {1, 2, . . . , n};

3. there exist µ ∈ Rn
+ and h(i) ∈ Rn, ∀i ∈ {1, 2, . . . , n} such that

A =
n∑
i=1

µih
(i)h(i)T ;

4. there exists B ∈ Rn×n such that A = BBT (here, B can be chosen as a lower triangular
matrix-the Cholesky decomposition of A);

5. for every nonempty J ⊆ {1, 2, . . . , n}, det(XJ) ≥ 0, where XJ := {[Xij] : i, j ∈ J};

6. ∀S ∈ Sn+, 〈X,S〉 ≥ 0.

Remark 2.3.3. Note that the number of nonzero eigenvalues of A ∈ Sn+ is equal to the rank
of A. In Item 4, if rank(A) = r, then we can choose B ∈ Rn×r. In Item 5, we call XJ the
symmetric minors of A.

Proposition 2.3.4. [16, Proposition 1.11](Characterization of PD matrices) Let A ∈ Sn.
Then the following are equivalent:

1. A is positive definite;

2. λj(A) > 0,∀j ∈ {1, 2, . . . , n};

3. there exist µ ∈ Rn
++ and h(i) ∈ Rn, ∀i ∈ {1, 2, . . . , n} linearly independent such that

A =
n∑
i=1

µih
(i)h(i)T ;

4. there exists B ∈ Rn×n nonsingular such that A = BBT (here, B can be chosen as a
lower triangular matrix-the Cholesky decomposition of A);

5. for every Jk := {1, 2, . . . , k}, k ∈ {1, 2, . . . n}, det(AJk) > 0;

6. ∀S ∈ Sn+\{0}, 〈X,S〉 > 0;

7. A � 0 and rank(A) = n.

Definition 2.3.5. Let A ∈ Sn. A is called diagonally dominant if Aii ≥
∑

j 6=i |Aij|, for
every 1 ≤ i ≤ n. Similarly, A is called strictly diagonally dominant if Aii >

∑
j 6=i |Aij|, for

every 1 ≤ i ≤ n.

Remark 2.3.6. The Laplacian matrix L is obviously diagonally dominant.

7

Lemma 2.3.7. [16, Lemma 1.22](Schur Complement) Let X ∈ Sn and T ∈ Sm++. Then

M :=

(
T UT

U X

)
� 0 if and only if X − UT−1UT � 0.

Moreover, M � 0 if and only if X − UT−1UT � 0.

Proof. Consider the following decomposition of M :(
I 0

UT−1 I

)
︸ ︷︷ ︸

R

(
T 0
0 X − UT−1UT

)(
I T−1UT

0 I

)
︸ ︷︷ ︸

RT

=

(
T UT

U X

)
.

Since R is lower triangular and det(R) = 1, R is nonsingular. Therefore,

M � 0⇐⇒ X − UT−1UT � 0.

Also,
M � 0⇐⇒ X − UT−1UT � 0.

Theorem 2.3.8. If A is diagonally dominant, then A � 0.

Proof. We prove it by induction on n.
Base case: n=2. A11 ≥ |A12| ≥ 0 and A22 ≥ |A12| ≥ 0. det(A) = A11A22 − A12

2 ≥ 0. So
A � 0.

Suppose it is true for 2 ≤ n ≤ k, where k is some natrual number. We need to prove it
is also true for n = k + 1.

Let A =

[
A11 aT

a Ā

]
∈ R(k+1)×(k+1) be a diagonally dominant matrix, where A11 ∈ R, a ∈

Rk, and Ā ∈ Rk×k.
If A11 = 0, then a = 0. By inductive hypothesis, Ā � 0, which implies A � 0.
If A11 > 0, by the Schur Complement Lemma,

A =

[
A11 aT

a Ā

]
� 0⇐⇒ Ā− 1

A11

aaT � 0.

If we can show Ā− 1
A11

aaT is a diagonal dominant matrix, we are done by the inductive
hypothesis.

(Ā− 1
A11

aaT)ij = Āij − aiaj
A11

.∑
j 6=i

∣∣∣(Ā− 1
A11

aaT)ij

∣∣∣ =
∑

j 6=i

∣∣∣Āij − aiaj
A11

∣∣∣
≤

∑
j 6=i

∣∣Āij∣∣+ |ai|
A11

∑
j 6=i |aj|

≤
∑

j 6=i

∣∣Āij∣∣+ |ai|
A11

(A11 − |ai|)
=

∑
j 6=i

∣∣Āij∣∣+ |ai| − ai
2

A11

=
∑

j 6=i |Aij| −
ai

2

A11

≤ |Aii| − ai
2

A11

= (Ā− 1
A11

aaT)ii

8

So A � 0, as desired.

Remark 2.3.9. Note that if A is strictly diagonally dominant, then A � 0.

Corollary 2.3.10. The Laplacian matrix L � 0 and λ(L) ≥ 0.

2.3.2 Inner Product and Norms

An inner product 〈·, ·〉 on Rn×m is defined as

〈X, Y 〉 = tr(XTY),

where X, Y ∈ Rn×m.

Remark 2.3.11. 〈·, ·〉 is indeed an inner product on Rn×m, i.e. ∀α ∈ R,∀X, Y, Z ∈ Rn×m,
we can easily verify:

1. positive semidefinite:

〈X,X〉 ≥ 0 and 〈X,X〉 = 0 if and only if X = 0.

2. linearity:

〈αX, Y 〉 = α 〈X, Y 〉 and 〈X + Z, Y 〉 = 〈X, Y 〉+ 〈Z, Y 〉 .

3. Symmetry:
〈X, Y 〉 = 〈Y,X〉 .

Theorem 2.3.12. [16, Proposition 1.19] Let X, Y � 0. Then 〈X, Y 〉 = 0 if and only if
XY = 0.

Proof. Suppose XY = 0. Then 〈X, Y 〉 = tr(XY) = tr(0) = 0.
Now suppose X, Y � 0 and 〈X, Y 〉 = 0. Then 〈X, Y 〉 = tr(XY) = tr(X1/2Y X1/2) = 0.

Since Y � 0 and X1/2 is symmetric matrix, we have X1/2Y X1/2 � 0. So λ(X1/2Y X1/2) ≥ 0.
Since tr(X1/2Y X1/2) = 0, we have λ(X1/2Y X1/2) = 0. It implies that

0 = X1/2Y X1/2 = X1/2Y 1/2(X1/2Y 1/2)
T
.

So X1/2Y 1/2 = 0. Then
XY = X1/2(X1/2Y 1/2)Y 1/2 = 0.

Now we talk about norms on Sn.

9

Definition 2.3.13. Let α ∈ R and X, Y ∈ Sn. The norm, ‖·‖, on Sn satisfies the following
three axioms:

1. ‖X‖ > 0,∀X 6= 0 and ‖X‖ = 0 if and only if X = 0.
2. ‖αX‖ = |α| ‖X‖.
3. ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ (triangle inequality).

Recall that for h ∈ Rn, ‖h‖p := (
∑n

j=1 |hj|p)
1
p . We introduce the Frobenius norm:

‖H‖F :=

√∑
i,j

(Hij)2,

and the operator p-norm:

‖H‖p := max
{
‖Hh‖p : h ∈ Rn, ‖h‖p = 1

}
.

Lemma 2.3.14. Let H ∈ Sn. Then ‖H‖F = 〈H,H〉1/2 = ‖λ(H)‖2.

Proof. Since H ∈ Sn, there exists an orthogonal matrix P such that

P THP = Diag(λ(H)).

Then

‖H‖2
F =

∑
ij(Hij)

2 = tr(HH) = tr(HPP THPP T) = tr
(
(P THP)(P THP)

)
= tr (Diag(λ(H)) Diag(λ(H))) =

∑n
j=1 (λj(H))2 = ‖λ(H)‖2

2 .

Next, we talk about adjoints of linear operators.

Definition 2.3.15. Let A : Sn −→ Rm be a linear operator. We define the adjoint of A as
a linear operator

A∗ : Rm −→ Sn

such that
〈A∗(y), X〉Sn := yTA(X) = 〈y,A(X)〉Rm , ∀X ∈ Sn,∀y ∈ Rm.

Notice that if we choose y = ei, then 〈A∗(ei), X〉 = eTi A(X) = [A(X)]i. So we can write
the explicit form of the linear operator A as

[A(X)]i := 〈Ai, X〉 ,∀i ∈ {1, 2, · · · ,m},

where Ai = A∗(ei) ∈ Sn,∀i ∈ {1, 2, · · · ,m}. The adjoint A∗ gives

A∗(y) =
m∑
i=1

yiAi.

Example 2.3.16. The adjoint of Diag is diag, i.e.,

〈diag(X), y〉 = 〈X,Diag(y)〉 ,∀X ∈ Sn, ∀y ∈ Rn.

10

2.3.3 Kronecker Product

Definition 2.3.17. Let X ∈ Rn×k. vec(X), the vector formed from the column of X, is
defined as

vec(X) = [X11, X21, · · · , Xn1, X12, · · · , Xn2, · · · , Xnk]
T ∈ Rnk.

vec is a linear mapping. The adjoint, as well as the inverse mapping of vec is Mat, which
maps nk-dimensional vectors to n× k matrices. Let x ∈ Rnk. [Mat(x)]:i = xn(i−1)+1:ni.

Definition 2.3.18. Let A ∈ Rm×n and B ∈ Rp×q. We define the Kronecker product to be

A⊗B :=

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ∈ Rmp×nq.

Note that, for compatible matrices, there are four obvious identities we use offen through-
out this paper:

1. (A⊗B)T = AT ⊗BT .

2. (A⊗B)(C ⊗D) = AC ⊗BD.

3. vec(AXB) = (BT ⊗ A)vec(X).

4. tr(AXBXT) = vec(X)T (B ⊗ A)vec(X).

2.3.4 Duality Theory

We define the semidefinite programming problem in standard form and its dual. Suppose
C ∈ Sn, b ∈ Rm and a linear transformation A : Sn → Rm are given. Then we define

(P) inf 〈C,X〉
s.t. A(X) = b,

X � 0.

(D) sup bTy
s.t. A∗(y) + S = C,

S � 0.

As we noted, A can be represented in a more explicit form. So let A1, A2, · · · , Am ∈ Sn
such that [A(X)]i = 〈Ai, X〉 ,∀X ∈ Sn. Then we can write (P) and (D) as

(P) inf 〈C,X〉
s.t. 〈Ai, X〉 = bi, ∀i ∈ {1, 2, · · · ,m}

X � 0.

(D) sup bTy
s.t.

∑m
i=1 yiAi + S = C,

S � 0.

11

This primal-dual pair is useful even in more general settings. We can replace Sn+ by an
arbitrary convex cone K. Given c ∈ Rn, b ∈ Rm,A : Rn → Rm a linear mapping. Then the
primal-dual pair is defined as

(CP) inf 〈c, x〉
s.t. A(x) = b

x ∈ K.

(CD) sup bTy
s.t. A∗(y) + s = c

s ∈ K∗,

where K∗ = {s ∈ Rn : 〈s, x〉 ≥ 0,∀x ∈ K} is called the dual cone of K.

Definition 2.3.19. X̄ is a Slater point for (P) if it is feasible for (P) and X̄ � 0. (ȳ, S̄) is
a Slater point for (D) if it is feasible and S̄ � 0.

Theorem 2.3.20. [16, Theorem 1.17] (Weak Duality Theorem for SDP) If (X̄, (ȳ, S̄)) are
feasible to (P) and (D),respectively, then〈

C, X̄
〉
− bT ȳ =

〈
X̄, S̄

〉
≥ 0.

Proof. 〈
C, X̄

〉
− bT ȳ =

〈
C, X̄

〉
−A(X̄)

T
ȳ

=
〈
C, X̄

〉
−
〈
A(X̄), ȳ

〉
=
〈
C, X̄

〉
−
〈
A∗(ȳ), X̄

〉
=
〈
C −A∗(ȳ), X̄

〉
=
〈
S̄, X̄

〉
≥ 0,

since X̄, S̄ ∈ Sn+.

The
〈
S̄, X̄

〉
is called the duality gap of (X̄, (ȳ, S̄)).

Theorem 2.3.21. [16, Theorem 2.14] (Strong Duality Theorem for SDP) Suppose (D) has a
Slater point. If the objective value of (D) is bounded from above then (P) attains its optimum
value and the optimum values of (P) and (D) coincide.

Corollary 2.3.22. [16, Corollary 2.17] If both (P) and (D) have Slater points, then both
optima are attained and they agree.

2.3.5 Facial Structures

Definition 2.3.23. A set C ⊆ Rn is convex, if for every x, y ∈ C and every λ ∈ [0, 1], we
have λx+ (1− λ)y ∈ C.

In above definition, the set {λx+ (1− λ)y : λ ∈ [0, 1]} is called the line segment of x and
y. So C is convex, if the line segment of every two points of C also lies in C.

12

Definition 2.3.24. A set K ⊆ Rn is a cone, if for every x ∈ K and every λ ∈ R+, we have
λx ∈ K.

If a cone is nonempty and closed, it must contain the 0-element by definition.

Definition 2.3.25. Let S1, S2 ⊆ Rn. We define the Minkowski Sum of S1 and S2 as

S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

It is not hard to verify that a set K ∈ Rn is a convex cone, i.e., K is a cone and a convex
set, if K +K ⊆ K and λK ⊆ K, ∀λ ∈ R+, where λK = {λx : x ∈ K}.

Next, we are going to introduce the notion of an extreme ray. Let K be a cone. The set
{λx : λ ∈ R+} for x ∈ K\{0} defines a ray inside K. A ray R ⊆ K is called an extreme ray
of K if for every pair of rays R1, R2 ⊆ K, such that R ⊆ R1 + R2 implies either R1 = R or
R2 = R possibly both. The union of all extreme rays is denoted by Ext(K).

Let R be an extreme ray of a cone K. We use a single nonzero normalized element of R
to represent R. The set of all representatives of extreme rays is denoted by ext(K).

Theorem 2.3.26.
ext(Sn+) = {xxT : x ∈ Rn, ‖x‖ = 1}.

Proof. Let R be an extreme ray of Sn+. We need to show that

R = {λxxT : λ ∈ R+}, for some x ∈ Rn.

Since R is a ray of Sn+, it can be written as

R = {λX : λ ∈ R+}, for some X ∈ Sn+.

By spectral decomposition of X,

X =
n∑
i=1

αixix
T
i ,

where xi is the normalized eigenvector of X corresponding to the i-th largest eigenvalue αi.
We prove by contradiction. Suppose rank(X) > 1. Since rank(X) equals the number

of nonzero eigenvalues of X, then at least two of eigenvalues of X are greater than 0. Let

R1 = {λx1x
T
1 : λ ≥ 0} and R2 =

{
λ(

n∑
i=2

αixix
T
i) : λ ≥ 0

}
. Both R1 and R2 are rays, and

R ⊆ R1 +R2. But neither R = R1 nor R = R2, which is a contradiction.

Remark 2.3.27. The above theorem tells us Ext(Sn+) is the set of all rank one positive
semidefinite matrices.

13

Definition 2.3.28. Let C ⊆ Rd be a closed convex cone. A convex cone K ⊆ C is a face of
C, if

x, y ∈ C, x+ y ∈ K ⇒ x, y ∈ K.

We denote K � C.
A face K of C is exposed if there exists a ∈ Rd such that

K = {x ∈ C : 〈a, x〉 = 0} and C ⊆ {x ∈ Rd : 〈a, x〉 ≤ 0},

i.e., K is the intersection of C with one of its supporting hyperplanes.
A face K of C is a proper face of C if

{0} ⊂ K ⊂ C.

The notation K ⊂ C means that K is a proper subset of C. K ⊆ C means that K is a
subset of C and K may equal C.

Theorem 2.3.29. [16, Theorem 2.25]

1. Every nonempty face F of Sn+ is characterized by a unique subspace S ⊆ Rn such that

F = {X ∈ Sn+ : S ⊆ N (X)}

and
relint(F) = {X ∈ Sn+ : S = N (X)}.

2. Every proper face F of Sn+ is exposed.

3. Every nonempty face F of Sn+ can be expressed as

F = (I −Q)Sn+(I −Q),

where Q ∈ Sn is the projection onto the unique subspace S defining F .

Remark 2.3.30. The above theorem implies that every proper face of Sn+ is isomorphic to
Sp+ for some p < n.

14

Chapter 3

Eigenvalue Based Bounds

We first present bounds on w∗cut based on X ∈ DO, the m-diagonal orthogonality type

constraint XTX = M , where we let M := Diag(m); and m̃ =:
(√

m1, . . . ,
√
mk

)T
, M̃ :=

Diag(m̃) for notational simplicity. Note that M̃ = M1/2.
Notice that tr(XTLX) = s(A) − tr(XTAX), under the condition X ∈ Mm. But we

don’t guarantee that the equality holds if we only subject to X ∈ DO. That is

min 1
2

tr(XTLX) 6= min s(A)
2
− 1

2
tr(XTAX)

s.t. X ∈ DO. s.t. X ∈ DO.
(3.0.1)

It gives us two options of objective functions when we do the relaxation over X ∈ DO.
But we can perturb the diagonal of L by adding a parameter d ∈ Rn to combine these two
cases together.

Lemma 3.0.31. tr(XTLX) = tr
(
XT (L+ Diag(d))X

)
− s(d), ∀X ∈Mm,∀d ∈ Rn.

Proof. SinceX ∈Mm, we have diag(XXT) = un. So tr(XT Diag(d)X) = tr(Diag(d)XXT) =〈
Diag(d), XXT

〉
=
〈
d, diag(XXT)

〉
= dTun = s(d).

We denote L(d) := L+ Diag(d) = Diag(Aun + d)− A. So our objective function can be

written as 1
2

tr(XTL(d)X)− s(d)
2

. Notice that

1

2
tr(XTL(d)X)− s(d)

2
=

{
1
2

tr(XTLX) if d = 0,
s(A)

2
− 1

2
tr(XTAX) if d = −Aun.

So our Graph Partitioning Problem is equivalent to

w∗cut = min 1
2

tr(XTL(d)X)− s(d)
2

s.t. X ∈Mm.
(3.0.2)

Because we are allowed to choose any d ∈ Rn, the objective function in (3.0.2) performs
better than the previous two when doing relaxation on X ∈ DO if we choose appropriate
d ∈ Rn.

15

3.1 Basic Eigenvalue Bound

The Donath-Hoffman [9] bound can be applied to get a simple eigenvalue bound, i.e., we
solve the relaxed problem

p∗eig(d) := min 1
2

tr(XTL(d)X)− s(d)
2

s.t. X ∈ DO,
(3.1.1)

where d ∈ Rn.
Here, by setting X = YM1/2 gives

tr(XTL(d)X) = tr
(
M1/2Y TL(d)YM1/2

)
= tr

(
L(d)YMY T

)
.

Since X ∈ DO if and only if Y TY = Ik, our relaxation (3.1.1) is equivalent to

(BE) p∗eig(d) = min 1
2

tr
(
L(d)YMY T

)
− s(d)

2

s.t. Y TY = Ik.
(3.1.2)

We first introduce the following definition.

Definition 3.1.1. For two vectors x, y ∈ Rn, the minimal scalar product of x and y is
defined by

〈x, y〉− := min

{
n∑
i=1

xiyφ(i) : φ is a permutation on N

}
.

We need the following theorem to get the optimal value of (BE) hence a lower bound for
(GP).

Theorem 3.1.2 ([9]). Let A,B be symmetric matrices of order n, k, respectively, with k ≤ n.
Then

min
{

tr(AXBXT) : XTX = Ik
}

=

〈
λ(A),

(
λ(B)

0

)〉
−
. (3.1.3)

The minimum is attained for X =
(
pφ(1), . . . , pφ(k)

)
QT , where pφ(i) is a normalized eigenvec-

tor to λφ(i)(A) and the columns of Q =
[
q1 . . . qk

]
contains the normalized eigenvectors

qi of λi(B), and φ is the permutation of N attaining the minimum in the minimal scalar
product.

Proof. For completeness we include an optimization based proof.
Let G(X) := XTX−Ik = 0 denote the orthogonality constraint. Then the derivative act-

ing on H ∈ Rn×k is∇G(X)(H) := XTH+HTX. We note that vec(XTH) = (I⊗XT) vec(H)
and that the Kronecker product (I⊗XT) has full row rank at the minimizer X since XT has
full row rank. Therefore the standard linear independence constraint qualification (LICQ)
that ∇G(X) is onto holds. We can now apply the Lagrange multiplier approach to the
minimization problem in (3.1.3). Recall that the Lagrangian is defined as

L(X,S) = tr(AXBXT)− tr(S(XTX − I)),

16

where S ∈ Sk. From the LICQ, there exists a Lagrangian multiplier S ∈ Sk so that the
minimizer X satisfies the stationary condition

0 = ∇XL(X,S) = 2AXB − 2IXS.

Therefore, XTAXB = S = ST which implies that at the optimum X, the matrices XTCX
and D commute and hence are mutually orthogonally diagonalizable by a k × k orthogonal
matrix Q. We can then write the optimal value at the optimum X to be

tr(AXBXT) = tr(QTXTAXQQTBQ)
= tr((XQ)TA(XQ))(Diag(λ(B)))

≥ λφ(A)T
(
λ(B)

0

)
.

where the last inequality follows from the interlacing of eigenvalues and the fact that (XQ)T (XQ) =
Ik. We have padded the vector of eigenvalues of B with zeros and λφ(A) is a suitable per-
mutation of the eigenvalues of A. The conclusion now follows from this last observation, the
definition of minimal scalar product, and the attainment for the choices of X,Q stated in
the hypothesis.

Remark 3.1.3. By Theorem (3.1.2), the optimal value p∗eig(d) of (3.1.2) is attained at

Y =
[
pn pn−1 · · · pn−k+1

]
,

where pi is the normalized eigenvector corresponding to λi(L(d)). Then we can recover an
approximate solution X = YM1/2.

Theorem 3.1.4. Let d ∈ Rn. Then:

w∗cut ≥ p∗eig(d) = 1
2

〈
λ(L(d)),

(
m
0

)〉
−
− s(d)

2

= 1
2

(∑k
i=1mi · λn−i+1(L(d))

)
− s(d)

2
.

(3.1.4)

Proof. This result is a direct application of the Donath-Hoffman bound. We provide a proof
for completeness.

We now solve the equivalent problem (BE) in (3.1.2):

min 1
2

tr
(
L(d)YMY T

)
− s(d)

2

s.t. Y TY = Ik.

The optimal value of quadratic part is obtained using the minimal scalar product of
eigenvalues as done in the Hoffman-Wielandt result, Theorem 3.1.2.

Observe that w∗cut ≥ 0. So 0 is a natural lower bound. If p∗eig(d) < 0, then the lower
bound is useless. However we can simply use eigenvalues of L and A to get a useful lower
bound as below.

17

Corollary 3.1.5.

w∗cut ≥ max{p∗eig(0), p∗eig(−Aun)}

= max

{
1
2

〈
λ(L),

(
m
0

)〉
−
, 1

2

〈
λ(−A),

(
m
0

)〉
−

+ s(A)
2

}
= max

{
1
2

∑k
i=2mi · λn−i+1(L),−1

2

∑k
i=1 mi · λi(A) + s(A)

2

}
≥ 0.

(3.1.5)

Proof. If we choose d = 0, the objective function is purely quadratic. L(0) = L � 0 =⇒
λ(L) ≥ 0 =⇒

∑k
i=2 mi · λn−i+1(L) ≥ 0 =⇒ p∗eig(0) ≥ 0.

Remark 3.1.6. There is no relation between p∗eig(0) and p∗eig(−Aun) so far. We don’t know
which one is greater in general. However, we can always obtain nonnegative bounds by using
p∗eig(0).

Here we provide an alternative envidence of p∗eig(0) ≥ 0 by using the fact

tr(LYMY T) = vec(Y)T (M ⊗ L)vec(Y).

First, we need the following Lemma:

Lemma 3.1.7. If A � 0 and B � 0, then A ⊗ B � 0. Moreover, if ui is an eigenvector
of A with λi(A) and vj is an eigenvector of B with λj(B), then ui ⊗ vj is an eigenvector of
A⊗B with eigenvalue λi(A)λj(B).

By the above Lemma, we have M⊗L � 0. Y TY = Ik implies ‖vec(Y)‖2 =
√
k. Consider

the problem:
p∗ = min xT (M ⊗ L)x

s.t. ‖x‖2 =
√
k

which is a relaxation of
p∗eig(0) = min tr(LYMY T)

s.t. Y TY = Ik.

So we have 0 ≤ k · λnk(M ⊗ L) = p∗ ≤ p∗eig(0).

3.2 Projected Eigenvalue Bound

3.2.1 The projection technique

Consider the minimization problem

min 1
2

tr
(
XTL(d)X

)
− s(d)

2

s.t. X ∈ DO ∩ E .
(3.2.1)

We now project X ∈ Rn×k onto the E-space.

18

Let the n× (n− 1) matrix V be such that

V Tun = 0; V TV = In−1.

The columns of V form an orthonormal basis to the orthogonal complement of un.
Similarly, let the k × (k − 1) matrix W be such that

W T m̃ = 0; W TW = Ik−1.

The columns of W represent the orthogonal complement to m̃.
Clearly, both V and W are not uniquely determined.
We define the n× n and k × k orthogonal matrices P,Q with

P =
[

1√
n
un V

]
∈ On, Q =

[
1√
n
m̃ W

]
∈ Ok. (3.2.2)

Note that

PP T = In ⇒ V V T = In −
1

n
unun

T

and

QQT = Ik ⇒ WW T = Ik −
1

n
m̃m̃T .

Lemma 3.2.1. [14, Lemma 3.1] Let P,Q be defined in (3.2.2). Suppose that X ∈ Rn×k and
Z ∈ R(n−1)×(k−1) are related by

X = P

[
1 0
0 Z

]
QTM̃. (3.2.3)

Then the following holds:

1. X ∈ E.

2. X ∈ N ⇐⇒ V ZW T ≥ − 1
n
unm̃

T .

3. X ∈ DO ⇐⇒ Z ∈ O(n−1)×(k−1).

Conversely, if X ∈ E, then there exists Z such that the representation (3.2.3) holds.

Proof. Define X̂ := 1
n
unm

T . We expand (3.2.3) by substituting (3.2.2) yields

X = P

[
1 0
0 Z

]
QTM̃

=
[
un√
n

V
] [1 0

0 Z

][
m̃T
√
n

W T

]
M̃

= 1
n
unm

T + V ZW TM̃

= X̂ + V ZW TM̃.

(3.2.4)

19

Since V Tun = 0, we have

XTun =
1

n
Mukun

Tun + M̃WZTV Tun = Muk = m.

Similarly, since W TM̃uk = W T m̃ = 0, we have

Xuk =
1

n
unuk

TMuk + V ZW TM̃uk = un.

So
X ∈ E .

By (3.2.4), we can write

X =
1

n
unm̃

TM̃ + V ZW TM̃ = (
1

n
unm̃

T + V ZW T)M̃.

Thus

X ∈ N ⇐⇒ (
1

n
unm̃

T + V ZW T)M̃ ≥ 0⇐⇒ V ZW T ≥ − 1

n
unm̃

T ,

because multiplying with the positive diagonal matirx M̃−1 does not change the inequality.
Finally, since P ∈ On and Q ∈ Ok, we have

XTX = M ⇐⇒ Q

[
1 0
0 ZT

]
P TP

[
1 0
0 Z

]
QT = I ⇐⇒ Z ∈ O(n−1)×(k−1).

Suppose X ∈ E . Then

P TXM̃−1Q =

[
unT
√
n

V T

]
XM̃−1

[
m̃√
n

W
]

=

[
1 0

0 V TXM̃−1W

]
.

Please note that the XZ relation (3.2.4) in Lemma (3.2.1) will be used frequently in
Chapter 4. So we emphasize it here.

If we substitute (3.2.4) into our objective function 1
2

tr(XTL(d)X)− s(d)
2

, we will obtain an
equivalent formulation of the graph partitioning problem in the lower dimensional Z-space.

1
2

tr(XTL(d)X)− s(d)
2

= 1
2

tr
(

(X̂ + V ZW TM̃)TL(d)(X̂ + V ZW TM̃)
)
− s(d)

2

= 1
2

tr(X̂TL(d)X̂) + tr
(
V TL(d)X̂M̃WZT

)
+1

2
tr
(
(W TMW)ZT (V TL(d)V)Z

)
− s(d)

2

=
(
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
+ 1

2
tr
(
L̂(d)ZM̂ZT

)
,

(3.2.5)

20

where

α(d) =
1

2
tr(X̂TL(d)X̂) =

s(M2)s(d)

2n2
, C(d) =

1

n
V TdmTM̃W, L̂(d) = V TL(d)V and M̂ = W TMW.

(3.2.6)

Notice that the linear term can be further written as

tr(C(d)ZT) = 1
n

tr
(
V TdmTM̃WZT

)
= 1

n
tr
(
dmT (V ZW TM̃)T

)
= 1

n
tr
(
dmT (X − X̂)T

)
= 1

n
tr
(
dmTXT

)
− 1

n
tr
(
dmT X̂T

)
= 1

n
(Xm)Td− 2α(d).

(3.2.7)

So

1

2
tr(XTL(d)X)− s(d)

2
=

(
−α(d)− s(d)

2

)
+

1

n
(Xm)Td+

1

2
tr
(
L̂(d)ZM̂ZT

)
. (3.2.8)

3.2.2 The PE Bound

By Lemma (3.2.1), we can obtain the new formulation (PE) by using the variable Z ∈
R(n−1)×(k−1), which is equivalent to our original graph partitioning problem (GP) in (2.2.2):

(PE) w∗cut = min
(
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
+ 1

2
tr
(
L̂(d)ZM̂ZT

)
s.t. ZTZ = Ik−1,

V ZW T ≥ − 1
n
unm̃

T .

(3.2.9)

Theorem 3.2.2. [14, Theorem 3.1] Suppose X and Z are related by (3.2.3). Then X solves
(2.2.2) if and only if Z solves (3.2.9).

Theorem 3.2.3. Let d ∈ Rn. Then:

w∗cut ≥ p∗peig(d) : =
(
α(d)− s(d)

2

)
+ min

0≤ 1
n
unm̃T +V ZWT

tr
(
C(d)ZT

)
+ 1

2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

=
(
−α(d)− s(d)

2

)
+ 1

n
min
X∈D

(Xm)Td+ 1
2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−
.

(3.2.10)

Proof. Notice that the objective function in (3.2.9) has three parts: the constant, the linear
part, and the quadratic part. We separate the objective function into three parts and subject
to different partial constraints. For the notational simplicity, we denote

SZ := {Z ∈ R(n−1)×(k−1) : ZTZ = Ik−1,
1

n
unm̃

T + V ZW T ≥ 0}.

21

Then

w∗cut = min
{(
α(d)− s(d)

2

)
+ tr(C(d)ZT) + 1

2
tr(L̂(d)ZM̂ZT) : Z ∈ SZ

}
≥
(
α(d)− s(d)

2

)
+ min

{
tr(C(d)ZT) : Z ∈ SZ

}
+ 1

2
min

{
tr(L̂(d)ZM̂ZT) : Z ∈ SZ

}
≥
(
α(d)− s(d)

2

)
+ min

1
n
unm̃T +V ZWT≥0

tr(C(d)ZT) + 1
2

min
ZTZ=Ik−1

tr(L̂(d)ZM̂ZT)

=
(
α(d)− s(d)

2

)
+ min

0≤ 1
n
unm̃T +V ZWT

tr(C(d)ZT) + 1
2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

=: p∗peig(d)

=
(
−α(d)− s(d)

2

)
+ 1

n
min
X∈D

(Xm)Td+ 1
2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−
.

(3.2.11)
The first equality is due to theorem (3.2.2). The second equality follows from

min
ZTZ=Ik−1

tr(L̂(d)ZM̂ZT) =

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

by theorem (3.1.2). The last equality follows from the relation in (3.2.7).

Notice that p∗peig(0) = 1
2

〈
λ(L̂),

(
λ(M̂)

0

)〉
−

. Next we explore the information of eigen-

values of L̂ and M̂ .

Lemma 3.2.4. [13, Lemma 7] Let v1, v2, · · · , vn = un be n eigenvectors of L, pairwise
orthogonal, with eigenvalues λ1(L), λ2(L), · · · , λn(L) = 0. Then the eigenvalues of L̂ are
λ1(L), λ2(L), · · · , λn−1(L) with eigenvectors V Tvi for i = 1, 2, · · · , n− 1.

Proof. Since V V T = In − 1
n
unun

T and Lun = 0, we have L̂(V Tvi) = (V TLV)(V Tvi) =
V TL(In − 1

n
unun

T)vi = V TLvi = λiV
Tvi.

Lemma 3.2.5. Let U ∈ Rp×q where p ≤ q. Then rank(UTU) = rank(U) = rank(UT) =
rank(UUT).

Here, the notation N (U) = {x ∈ Rq : Ux = 0} is called the null space of U .

Proof. We start by showing N (UTU) = N (U). N (U) ⊆ N (UTU) is trivial.
Now we prove N (UTU) ⊆ N (U). Suppose x ∈ N (UTU). Then UTUx = 0. So

(Ux)T (Ux) = xTUTUx = 0, which implies Ux = 0. So x ∈ N (U). So we have N (UTU) ⊆
N (U).

By the Rank-and-Nullity Theorem, we have rank(UTU) = q − dimN (UTU) = q −
dimN (U) = rank(U).

Lemma 3.2.6. M̂ = W TMW � 0.

Proof. M̂ = W TM̃M̃W � 0. Since M̃ is nonsingular, rank(M̃W) = rank(W) = k − 1. By
the above lemma (3.2.5), we have rank(M̂) = rank(M̃W) = k − 1. Hence M̂ � 0.

22

Theorem 3.2.7.

p∗peig(0) =
1

2

〈
λ(L̂),

(
λ(M̂)

0

)〉
−

=
1

2

k−1∑
i=1

λi(M̂) · λn−i(L) ≥ 0.

Proof. The first equality follows from the definition of p∗peig(0). The second equality follows

from the definition of minimal scalar product. We proved M̂ ∈ Sk−1
++ in lemma (3.2.6) and

L ∈ Sn+. So λi(M̂) > 0 and λi(L) ≥ 0.

As we did in the basic eigenvalue bound method, we can simply use the eigenvalues of L̂
and M̂ to obtain a useful lower bound by above theorem.

Remark 3.2.8. Since p∗peig(d) has both linear term and quadratic term and we optimize the
two terms separately, the optimal solution of quadratic term will not be an optimal solution
of linear term in general. Here we obtain an approximate solution by solving the optimal
solution of the minimal scalar product. Let Q ∈ Ok−1 with columns consisting of the eigen-
vectors of M̂ , defined in (3.2.6), corresponding to the eigenvalues of M̂ in nondecreasing
order. Let P ∈ R(n−1)×(k−1) be the matrix with orthonormal columns consisting of the k − 1
eigenvectors of L̂(d), corresponding to the smallest k−1 eigenvalues of L̂(d) in nonincreasing
order. From the theorem (3.1.2), the minimal scalar product term in (3.2.10) are attained at

Z = PQT , (3.2.12)

and the corresponding point in E ∩ DO is

X = X̂ + V ZW TM̃. (3.2.13)

Corollary 3.2.9. If the problem is graph equipartitioning, i.e. m1 = m2 = · · · = mk = n
k

,
then

p∗peig(0) =
n

2k

k−1∑
i=1

λn−i(L).

Proof. If the problem is equipartitioning, then

M̂ = W TMW = W T (
n

k
Ik)W =

n

k
W TW =

n

k
Ik−1.

So λi(M̂) = n
k
,∀i = 1, . . . , k − 1.

3.2.3 Explicit Solution for Linear Term

The constant term −α(d)− s(d)
2

= s(d)
2

(
− s(M2)

n2 − 1
)

in (3.2.10) can be computed easily. The

minimal scalar product

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

=
k−1∑
i=1

λi(M̂) · λn−i(L̂(d)) in (3.2.10) can be

also computed efficiently. We now going to show the linear term can be computed efficiently

23

by deriving a explicit solution. In theorem (7.1.1), we have shown that D is the convex hull
of Mm. So min

X∈D
(Xm)Td is equivalent to min

X∈Mm

tr(Xm)Td. We define

x0 := (m1, · · · ,m1︸ ︷︷ ︸
m1

, · · · ,mk, · · · ,mk︸ ︷︷ ︸
mk

)T ∈ Rn,

and

X0 :=

um1 0 · · · 0
0 um2 · · · 0
...

.
...

0 · · · 0 umk

 ∈Mm. (3.2.14)

Notice that X0m = x0.

Lemma 3.2.10. Let d ∈ Rn. Then

min
X∈Mm

(Xm)Td = 〈d, x0〉− .

Proof. Oberve that X ∈ Mm if and only if there exists a permutation matrix P on N such
that X = PX0. Let Π denote the set of all permutation matrices on N . Then

min
X∈Mm

(Xm)Td = min
P∈Π

(PX0m)Td

= min
P∈Π

(Px0)Td

= 〈d, x0〉− .

where the last equality follows from the definition of minimal scalar product.

3.2.4 PE Bound via QAP

In this subsection, we first show GP problem can be convert into Quadratic Assignment
Problem QAP, hence a special case of QAP. Formally, QAP consists of minimization

f(Y) = tr((AY BT + C)Y T)

over the set of permutation matrices. A,B, and C are given real matrices defining the QAP.
We now convert the problem (3.0.2) into QAP.
Recall that X ∈Mm if and only if there exists a permutation matrix Y on N such that

X = Y X0, where X0 is defined in (3.2.14).
So

tr(XTL(d)X) = tr(L(d)XXT) = tr(L(d)Y X0X0
TY T).

Define

T0 := X0X0
T =

Em1 0 · · · 0

0 Em2 · · · 0
...

...
. . .

...
0 0 · · · Emk

 ∈ Rn×n

24

where X0 is defined in (3.2.14) and E is a square matrix of all ones. Notice that T0 �
0, rank(T0) = k and λi(T0) = mi for i = 1, . . . , k. Also, r(T0) = T0un = x0.

Let Π denote the set of permutation matrices. So the problem (3.0.2) is equivalent to
the QAP

w∗cut = min 1
2

tr(L(d)Y T0Y
T)− s(d)

2

s.t. Y ∈ Π.
(3.2.15)

By considering the relaxation Y ∈ On, we have the lower bound for w∗cut as same as the
basic eigenvalue bound.

Now define
N̂ := {Y ∈ Rn×n : Yij ≥ 0,∀ij}.
Ê := {Y ∈ Rn×n : Y un = un, X

Tun = un}.
Notice that

Π = On ∩ N̂ ∩ Ê .

We now project Π onto Ê by the following lemma, see [7].

Lemma 3.2.11. [7, Lemma 3.1] Let Y be n×n and Z be (n− 1)× (n− 1). Suppose Y and
Z satisfy

Y = P

[
1 0
0 Z

]
P T . (3.2.16)

Then
Y ∈ Ê ,

Y ∈ N̂ ⇔ V ZV T ≥ 1
n
unun

T ,
Y ∈ On ⇔ Z ∈ On−1.

Conversely, if Y ∈ Ê, then there is a Z such that (3.2.16) houlds.

After substituting Y = 1
n
unun

T +V ZV T into the problem (3.2.15), we have the following
bound which is equal to our projected eigenvalue bound p∗peig(d):

w∗cut ≥
(
α(d)− s(d)

2

)
+ 1

n
min

V ZV T≥ 1
n
ununT

tr
(
(V Tdx0

TV)ZT
)

+ 1
2

〈
λ(L̂(d)), λ(T̂0)

〉
−

=
(
−α(d)− s(d)

2

)
+ 1

n
min

Y ∈Ê∩N̂
(Y x0)Td+ 1

2

〈
λ(L̂(d)), λ(T̂0)

〉
−

=
(
−α(d)− s(d)

2

)
+ 1

n
〈d, x0〉− + 1

2

〈
λ(L̂(d)), λ(T̂0)

〉
−

= p∗peig(d),
(3.2.17)

where d ∈ Rn, T̂0 = V TT0V . The last equality follows from the fact〈
λ(L̂(d)), λ(T̂0)

〉
−

=
〈
λ(L̂(d)), λ(M̂)

〉
−
.

25

Chapter 4

Convex Quadratic Programming
Bound

4.1 Introduction and Related Work

A new successful and efficient bound used for the quadratic assignment problem (QAP) is
given in [1, 3]. In this chapter, we adapt the idea described there to obtain a lower bound for
w∗cut, which is stronger than the projected eigenvalue bound. This bound is obtained from
a relaxation that is a Convex Quadratic Programming, i.e., the minimization of a quadratic
function that is convex on the linear manifold defined by linear constraints. Approaches
based on nonconvex QPs are given in e.g., [8].

The main idea in [1, 3] is to use the zero duality gap result for a homogeneous QAP
[2, Theorem 3.2] on an objective obtained via a suitable reparametrization of the original
problem. Following this idea, we consider the parametrization in (3.2.5) where our objective
function in (3.0.2) is rewritten as:

1

2
tr(XTLX) =

(
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
+

1

2
tr
(
L̂(d)ZM̂ZT

)
(4.1.1)

with X and Z related according to (3.2.3). Now we look at the homogeneous part:

v∗p := min 1
2

tr
(
L̂(d)ZM̂ZT

)
s.t. ZTZ = Ik−1,

(ZZT � In−1.)

(4.1.2)

Lemma 4.1.1. If H ∈ On,k, then HHT � In.

Proof. Since H ∈ On,k, there exists H0 ∈ On,n−k, such that [H0 H] ∈ On. Then In =
[H0 H][H0 H]T = H0H

T
0 +HHT . Since 0 � H0H

T
0 = In −HHT , we have HHT � In.

By lemma (4.1.1), ZZT � In−1 is a redundant constraint in (4.1.2). But it does not mean
that it is redundant in our Lagrangian dual problem because we may close the duality gap
if we add the redundant constraint.

26

The Lagrangian dual problem of (4.1.2) is the following, with variables in Lagrangian
multipliers S and T :

v∗d := max 1
2

tr(S) + 1
2

tr(T)

s.t. Ik−1 ⊗ S + T ⊗ In−1 � M̂ ⊗ L̂(d),
S � 0,
S ∈ Sn−1, T ∈ Sk−1.

(4.1.3)

Claim 4.1.2. [12, Theorem 2] v∗p = v∗d.

Proof. It is clear that v∗p ≥ v∗d. Next we are going to show v∗p ≤ v∗d.

Write M̂ = U1 Diag(λ)UT
1 and L̂(d) = U2 Diag(σ)UT

2 in eigenvalue orthogonal decompo-
sition forms. We substitute Ŝ = UT

2 SU2 and T̂ = UT
1 TU1 and rename of Ŝ and T̂ . Then we

have
2v∗d = max tr(S) + tr(T)

s.t. Ik−1 ⊗ S + T ⊗ In−1 � Diag(λ)⊗Diag(σ),
S � 0,
S ∈ Sn−1, T ∈ Sk−1.

(4.1.4)

Suppose (S0, T0) is a pair of optimal solution to (4.1.4). It is easy to verify that

(Diag(diag(S0)),Diag(diag(T0))

is also a optimal solution to (4.1.4). So it suffices to consider the variables S and T to
be diagnal matrices. So we can reduce (4.1.4) to solving the following LP with variables
s ∈ Rn−1 and t ∈ Rk−1,

2v∗d = max un−1
T s+ uk−1

T t
s.t. ti + sj ≤ λiσj, i = 1, . . . , k − 1, j = 1, . . . , n− 1,

sj ≤ 0, j = 1, . . . , n− 1.
(4.1.5)

The dual problem of (4.1.5) is

2v∗d = min
k−1∑
i=1

n−1∑
j=1

λiσjzij

s.t.
n−1∑
j=1

zij = 1, i = 1, . . . , k − 1,

k−1∑
i=1

zij + yj = 1, j = 1, . . . , n− 1,

zij ≥ 0, i = 1, . . . , k − 1, j = 1, . . . , n− 1,
yj ≥ 0, j = 1, . . . , n− 1.

(4.1.6)

Notice that (4.1.6) is totally unimodular. So there is an optimal solution (z∗, y∗) which
is integral. z∗ defines an injection φ∗ : {1, . . . , k − 1} → {1, . . . , n − 1} with φ∗(i) = j, if
zij = 1. Hence we have

2v∗d =
k−1∑
i=1

n−1∑
j=1

λiσjz
∗
ij =

k−1∑
i=1

λiσφ∗(i) ≥
〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

= 2v∗p.

27

Remark 4.1.3. The SDP in (4.1.3) can be efficiently solved as the LP in (4.1.5). If we have
an optimal solution (s∗, t∗) of (4.1.5), we can recover an optimal solution of (4.1.3) as

S∗ = U2 Diag(s∗)UT
2 and T ∗ = U1 Diag(t∗)UT

1 . (4.1.7)

4.2 QP Bound

Next, suppose that the optimal value of the dual problem (4.1.3) is attained at (S∗, T ∗). Let
Z be such that the X defined according to (3.2.3) is a partition matrix. Then we have

1
2

tr(L̂(d)ZM̂ZT) = 1
2
vec(Z)T (M̂ ⊗ L̂(d))vec(Z)

= 1
2
vec(Z)T (M̂ ⊗ L̂(d)− Ik−1 ⊗ S∗ − T ∗ ⊗ In−1)︸ ︷︷ ︸

Q̂

vec(Z)

+1
2

tr(S∗ZIk−1Z
T) + 1

2
tr(In−1ZT

∗ZT)

= 1
2
vec(Z)T Q̂vec(Z) + 1

2
tr(ZZTS∗) + 1

2
tr(T ∗)

= 1
2
vec(Z)T Q̂vec(Z) + 1

2
tr([ZZT − In−1]S∗) + 1

2
tr(S∗) + 1

2
tr(T ∗)

≥ 1
2
vec(Z)T Q̂vec(Z) + 1

2
tr(S∗) + 1

2
tr(T ∗),

where the last inequality uses S∗ � 0 and ZZT � In−1. Notice that our Q̂ � 0 since
Ik−1 ⊗ S∗ + T ∗ ⊗ In−1 � M̂ ⊗ L̂(d) since (S∗, T ∗) is a feasible solution to (4.1.3).

Recall that the original nonconvex problem (3.0.2) is equivalent to minimizing the right
hand side of (4.1.1) over the set of all Z so that the X defined in (3.2.3) corresponds to a
partition matrix. From the above relations, the third equality in (2.1.1) and Lemma 3.2.1,
we see that

w∗cut ≥ min
((
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
+ 1

2
vec(Z)T Q̂ vec(Z)

)
+ 1

2
tr(S∗) + 1

2
tr(T ∗)

s.t. ZTZ = Ik−1,

X̂ + V ZW TM̃ ≥ 0.
(4.2.1)

We also recall from (4.1.3) that 1
2

tr(S∗) + 1
2

tr(T ∗) = v∗d = v∗p, which further equals

1

2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

according to (4.1.2) and Theorem (3.1.2).
A lower bound can now be obtained by relaxing the constraints in (4.2.1). For example,

by dropping the orthogonality constraints, we obtain the following lower bound on w∗cut:

p∗QP (d) := min R(Z) :=
(
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
+ 1

2
vec(Z)T Q̂ vec(Z)

+1
2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−

s.t. X̂ + V ZW TM̃ ≥ 0.

(4.2.2)

28

Notice that this is a QP with (n− 1)(k − 1) variables and nk constraints.
As in [1, Page 346], it is possible to reformulate (4.2.2) into a QP in variables X ∈ D.

Note that Q̃ defined in (4.2.4) is not positive semidefinite in general. Nevertheless, the QP
is implicitly convex. Also notice that

p∗QP (d) ≥ p∗peig(d) + min
X̂+V ZWT M̃≥0

1

2
vec(Z)T Q̂vec(Z).

Since Q̂ � 0, we have p∗PQ(d) ≥ p∗peig(d). The euquality can hold. If d = 0, then

α(d) − s(d)
2

= 0 and C(d) = 0. Z = 0 is in our feasible region X̂ + V ZW TM̃ ≥ 0. So we
have p∗QP (0) = p∗peig(0) ≥ 0.

Theorem 4.2.1. Let (S∗, T ∗) be optimal solutions of (4.1.3) as defined in (4.1.7). A lower
bound on w∗cut is obtained from the following QP:

w∗cut ≥ p∗QP (d) = min
X∈D

1

2
vec(X)T Q̃ vec(X) +

1

2

〈
λ(L̂(d)),

(
λ(M̂)

0

)〉
−
− s(d)

2
(4.2.3)

where
Q̃ := Ik ⊗ L(d)−M−1 ⊗ (V S∗V T)− (M̃−1WT ∗W TM̃−1)⊗ In. (4.2.4)

The QP in (4.2.3) is implicitly convex since Q̃ is positive semidefinite on the tangent space
of E.

Proof. We start by rewriting the quadratic term of R(Z) in (4.2.2) using the relation (3.2.3).
Since V TV = In−1 and W TW = Ik−1, we have from the definitions of M̂ and L̂(d) that

Q̂ = M̂ ⊗ L̂(d)− Ik−1 ⊗ S∗ − T ∗ ⊗ In−1

= (W TM̃IkM̃W)⊗ (V TL(d)V)− Ik−1 ⊗ S∗ − T ∗ ⊗ In−1

=
(

(M̃W)⊗ V
)T

[Ik ⊗ L(d)−M−1 ⊗ (V S∗V T)− (M̃−1WT ∗W TM̃−1)⊗ In︸ ︷︷ ︸
Q̃

]
(

(M̃W)⊗ V
)
.

(4.2.5)

On the other hand, from (3.2.4), we have

vec(X − X̂) = vec(V ZW TM̃) =
(

(M̃W)⊗ V
)

vec(Z).

Hence, the quadratic term in R(Z) can be rewritten as

vec(Z)T Q̂ vec(Z) = vec(X − X̂)T Q̃ vec(X − X̂), (4.2.6)

where Q̃ is defined in (4.2.4). Next, we see from vec(X̂) = m⊗ un and V Tun = 0 that(
M−1 ⊗ (V S∗V T)

)
vec(X̂) =

1

n

(
M−1 ⊗ (V S∗V T)

)
(m⊗ un) =

1

n
uk ⊗ (V S∗V Tun) = 0.

29

Similarly, since W T m̃ = 0, we also have(
(M̃

−1
WT ∗W TM̃−1)⊗ In

)
vec(X̂) =

1

n

(
(M̃−1WT ∗W TM̃−1)⊗ In

)
(m⊗ un)

=
1

n
(M̃−1WT ∗W T m̃)⊗ un = 0.

Combining the above two relations with (4.2.6), we obtain further that

1

2
vec(Z)T Q̂vec(Z)

=
1

2
vec(X)T Q̃vec(X)− vec(X̂)T [Ik ⊗ L(d)]vec(X) +

1

2
vec(X̂)T [Ik ⊗ L(d)]vec(X̂)

=
1

2
vec(X)T Q̃vec(X)− tr

(
L(d)X̂XT

)
+

1

2
tr(L(d)X̂X̂T)

=
1

2
vec(X)T Q̃vec(X)− 1

n
tr(dmTXT) + α(d).

For the first two terms of R(Z), we have(
α(d)− s(d)

2

)
+ tr

(
C(d)ZT

)
=

(
−α(d)− s(d)

2

)
+

1

n
tr(dmTXT).

Furthermore, recall from Lemma (3.2.1) that with X and Z related by (3.2.3), X ∈ D if,

and only if, V ZW TM̃ ≥ −X̂.
The conclusion in (4.2.3) now follows by substituting the above expressions into (4.2.2).
Finally, from (4.2.5) we see that Q̃ is positive semidefinite when restricted to the range

of M̃W ⊗ V . This is precisely the tangent space of E .

Notice that (4.2.2) and (4.2.3) are equivalent. (4.2.3) has nk variables and nk + n + k
constraints. But the constraints of (4.2.3) look simpler than that of (4.2.2).

30

Chapter 5

Semidefinite Programming Relaxation
Bound

In this chapter, we are going to apply semidefinite programming (SDP) method to compute
lower bounds for GP problem. We are going to present two methods to obtain the same SDP
relaxation. One way is doing lifting process through quadratic formulation. This method is
called the direct approach. The other method is using Lagrangian relaxation.

5.1 The Direct Approach to SDP Relaxation

We now show that SDP relaxation can be obtained from lifting process, i.e., we lift the vector
x = vec(X) into the matrix space Sn2+1.

We starts with the equivalent quadratically constrained quadratic formulation:

w∗cut = min 1
2

tr(XTLX)
s.t. X ◦X = X,

‖Xuk − un‖2 = 0,∥∥XTun −m
∥∥2

= 0,
X:i ◦X:j = 0 ∀i 6= j.

(5.1.1)

Here: ◦ is the Hadamard (elementwise) product. The last constraint is redundant. But
it may not be redundant in our SDP relaxation.

Now we do the lifting process.
First, we define

YX :=

(
1

vec(X)

)(
1 vec(X)T

)
=

[
1 vec(X)T

vec(X) vec(X)vec(X)T

]
∈ Rnk+1.

Then YX � 0 and rank(YX)=1.

Remark 5.1.1. Y ∈ Sp+ and rank(Y) = 1 if and only if there exists x ∈ Rp such that Y =
xxT by Item 4 of Theorem (2.3.2).

31

Define

L0 :=

[
0 0
0 Ik ⊗ L

]
.

Then our objective function becomes

1

2
tr(XTLX) =

1

2
tr(LXIkX

T) =
1

2
vec(X)T (Ik ⊗ L)vec(X) =

1

2
tr(L0YX).

The first constraintX◦X = X is equivalent toXij ∈ {0, 1},∀ij which is further equivalent
to

vec(X) = diag
(
vec(X)vec(X)T

)
.

We now define the linear mapping arrow : R(nk+1)×(nk+1) −→ Rnk+1 to be

arrow (Y) := diag(Y)− (0, Y0,1:nk)
T .

Therefore, X ◦X = X is equivalent to

arrow (YX) = e0.

Observe that

‖Xuk − un‖2 = (Xuk − un)T (Xuk − un)
= uk

TXTXuk − 2un
TXuk + uTnun

= tr(InXukuk
TXT)− 2un

TXuk + n
= vecT (X)[(ukuk

T)⊗ In]vec(X)− 2vecT (X)(uk ⊗ un) + n

and ∥∥XTun −m
∥∥2

= (XTun −m)T (XTun −m)
= uTnXX

Tun − 2un
TXm+mTm

= tr(unun
TXIkX

T)− 2un
TXm+mTm

= vecT (X)[Ik ⊗ (unun
T)]vec(X)− 2vecT (X)(m⊗ un) +mTm.

We define D1, D2 ∈ Snk+1 to be

D1 :=

[
n −ukT ⊗ unT

−uk ⊗ un (ukuk
T)⊗ In

]
and D2 :=

[
mTm −mT ⊗ unT
−m⊗ un Ik ⊗ (unun

T)

]
.

Then ‖Xuk − un‖2 = 0 and
∥∥XTun −m

∥∥2
= 0 is equivalent to

tr(D1YX) = 0 and tr(D2YX) = 0.

We now define the gangster operator GJ : Snk+1 → Snk+1 to be

(GJ(Y))ij :=

{
Yij if (i, j) or (j, i) ∈ J,
0 otherwise,

32

where the set

J :=

{
(i, j) :

i = (p− 1)n+ q,
j = (r − 1)n+ q,

for
p < r,

p, r ∈ {1, . . . , k}, q ∈ {1, . . . , n}

}
.

The Hadamard constraint X:i ◦X:j = 0, ∀i 6= j is equivalent to

GJ(YX) = 0.

We can see that the gangster operator GJ shoots many “holes” in the matrix YX .
If we ignore the last rank-one hard constraint and use a general symmetric matrix Y

rather than YX , we obtain the following SDP relaxation:

w∗cut ≥ p∗SDP := min 1
2

tr(L0Y)
s.t. arrow(Y) = e0,

tr(D1Y) = 0,
tr(D2Y) = 0,
GJ(Y) = 0,
Y00 = 1,
Y � 0.

(5.1.2)

5.2 Lagrangian Relaxation

In this section, we develop the SDP relaxation constructed from the various equality cons-
triants in the representation in (2.1.3) and the objective function in (2.2.1). We follow the
approach in [18].

We start with the following equivalent quadratically constrained quadratic problem to
(GP) in (2.2.2):

w∗cut = min 1
2

tr(AXBXT) = min 1
2

tr(AXBXT)
s.t. X ◦X = X, s.t. X ◦X = x0X,

‖Xuk − un‖2 = 0, ‖Xuk − x0un‖2 = 0,∥∥XTun −m
∥∥2

= 0,
∥∥XTun − x0m

∥∥2
= 0,

X:i ◦X:j = 0,∀i 6= j, X:i ◦X:j = 0,∀i 6= j,
XTX −M = 0, XTX −M = 0,
diag(XXT)− un = 0, diag(XXT)− un = 0,

x0
2 = 1.

(5.2.1)

Here we use a trick of adding a new variable x0 and a new constraint x0
2 = 1 to the

second optimization problem in (5.2.1). The reason is that we can kill all linear terms in
our Lagrangian L, while not changing the optimal value. x0 can only take values 1 or -1
in the second problem. (X, 1) is an optimal solution of second problem if and only if X
is an optimal solution of first problem. (X,-1) is an optimal solution of second problem if
and only if −X is an optimal solution of the first problem. In both cases, the two problems

33

are equivalent and their optimal values agree. Again, the last two constraints in the first
problem of (5.2.1) are redundant. They may be not redundant in the Lagrangian dual.

The Lagrangian of second optimization problem in (5.2.1) is the sum of the objective
function along with inner-products of the Lagrangian multipliers and the corresponding
constraints.

L(X, x0,Γ, β,G,Ψ, φ, t) = 1
2

tr(AXBXT)
+ 〈Γ, X ◦X〉+ β(uk

TXTXuk + un
TXXTun) +

∑
i 6=j Gij(X:i ◦X:j)

+
〈
Ψ, XTX

〉
+
〈
φ, diag(XXT)

〉
+ tx0

2

−〈Γ, x0X〉 − 2β(x0un
TXuk + x0m

TXTun)
+β(n+mTm)x0

2 − 〈Ψ,M〉 − 〈φ, un〉 − t.

Then we use the implicit constraint that the Hessian of the Lagrangian must be positive
semidefinite in the Lagrangian relaxation

max
Γ,β,G,Ψ,φ,t

(
min
X,x0
L(X, x0,Γ, β,G,Ψ, φ, t)

)
.

Moreover, there is a hidden constraint that we want the inner minimization problem to
be bounded below. So the inner minimization is attained at x0 = 0 and X = 0. Plugging
these in, we obtain a maximization SDP in the Lagrangian multipliers.

w∗cut ≥ max
Γ,β,G,Ψ,φ,t

−〈Ψ,M〉 − 〈φ, un〉 − t
s.t. ∇2

(X,x0)L(X, x0,Γ, β,G,Ψ, φ, t) � 0.
(5.2.2)

Finally, we take the dual of (5.2.2), using the adjoints of the linear transformations in
the constraints in (5.2.2) and obtain an SDP relaxation of (5.2.1):

w∗cut ≥ p∗LSDP := min 1
2

tr(L0Y)
s.t. arrow (Y) = e0,

tr(D1Y) = 0,
tr(D2Y) = 0,
GJ(Y) = 0,
DO(Y) = M,
De(Y) = un,
Y00 = 1,
Y � 0.

(5.2.3)

Now we denote the set of feasible solution of (5.2.3) by F .
By abuse of notation, we use the symbols for the sets of constraints DO,De to represent

the linear transformations in the SDP relaxation in (5.2.3). Note that〈
Ψ, XTX

〉
= tr(InXΨXT) = vec(X)T (Ψ⊗ In)vec(X).

34

Therefore, DO∗, the adjoint of DO, is made up of a zero row and column and k2 blocks
that are multiplies of the identity matrix:

DO∗(Ψ) =

[
0 0
0 Ψ⊗ In

]
.

If we block Y appropriately as:

Y =

[
Y00 Y0,:

Y:,0 Ȳ

]
, Ȳ =

Ȳ(11) Ȳ(12) · · · Ȳ(1k)

Ȳ(21) Ȳ(22) · · · Ȳ(2k)
...

.
...

Ȳ(k1) Ȳ(k2) · · · Ȳ(kk)

 ,
with each Ȳ(ij) being a n× n matrix, then

DO(Y) = [tr(Ȳ(ij))] ∈ Sk.

Similarly,〈
φ, diag(XXT)

〉
=
〈
Diag(φ), XXT

〉
= vec(X)T (Ik ⊗Diag(φ)) vec(X).

So we get the De∗, the adjoint of De:

De∗(φ) =

[
0 0
0 Ik ⊗Diag(φ)

]
.

Therefore we get the sum of the diagonal parts

De(Y) =
k∑
i=1

diag(Ȳ(ii)) ∈ Rn.

Claim 5.2.1. DO(Y) = M and De(Y) = un are redundant in (5.2.3).

Proof. Write v := Y0:kn,0, v1 := Y1:kn,0, and X = Mat(v1). So we have

‖Xuk − un‖2 = uTkX
TXuk − 2uTkX

Tun + uTnun
= vecT (X)[(uku

T
k)⊗ In]vec(X)− 2vecT (X)(uk ⊗ un) + n

= vT1 [(uku
T
k)⊗ In]v1 − 2vT1 (uk ⊗ un) + n

= tr(D1vv
T)

and ∥∥XTun −m
∥∥2

= uTnXX
Tun − 2mTXTun +mTm

= vecT (X)[Ik ⊗ (unu
T
n)]vec(X)− 2vecT (X)(m⊗ un) +mTm

= vT1 [Ik ⊗ (unu
T
n)]v1 − 2vT1 (m⊗ un) +mTm

= tr(D2vv
T).

35

By Schur complement of Y00 = 1, Y � 0 if and only if Ȳ � v1v
T
1 if and only if Y �[

1 vT1
v1 v1v

T
1

]
= vvT . We see further that

0 = tr(DiY) ≥ tr(Divv
T) =

{
‖Xuk − un‖2 if i = 1,∥∥XTun −m

∥∥2
if i = 2.

XTun = m together with the arrow constraint imply that tr(Ȳii) =
∑

j=(i−1)n+1 Yj0 = mi.

Thus DO(Y) = M holds. Similarly, Xuk = un together with the arrow constraint imply that
De(Y) = un.

5.3 The Final Semidefinite Relaxation Through Facial

Reduction

Claim 5.3.1. D1 � 0 and D2 � 0.

Proof. Observe that rank(D1) = n and rank(D2) = k.

Let B1 =

−uTn
In
In
...
In

 ∈ R(nk+1)×n. Then D1 = B1B
T
1 . So D1 � 0.

Let B2 =

−mT

J1

J2
...
Jk

 ∈ R(nk+1)×k, where Jl ∈ Rn×k with everywhere 0 but l-th column all

ones. Then D2 = B2B
T
2 . So D2 � 0.

Since D1, D2, Y � 0, by Theorem (2.3.12), we have D1Y = 0 and D2Y = 0. So we
cannot find a feasible Y � 0 such that tr(D1Y) = tr(D2Y) = 0. So we encounter numerical
difficulties if we apply the Interior Point Method. Actually, for many problems in the reality,
the Slater’s condition fails. But by Theorem (2.3.29), every nonempty face of Sn+ is uniquely
characterized. So we can find the minimal face of Sn+ which contains F , the feasible set of
(5.2.3), by finding the barycenter point in the relative interior of the minimal face. Because
the minimal face we found is isomorphic to a smaller dimensional space Sq+, where q < n,
we can project F onto Sq+. This procedure is called the facial reduction. We now explain
the procedure in detail.

Let X ∈ Mm and x = vec(X). YX =

(
1
x

)(
1 xT

)
=

[
1 xT

x xxT

]
∈ F . Observe that

36

|Mm| = m1!···mk!
n!

. We define the barycenter point

Ŷ :=
m1! · · ·mk!

n!

∑
X∈Mm

[
1 xT

x xxT

]
.

For each X ∈Mm, rank(YX) = 1. By Theorem (2.3.26), YX is on an extreme ray of Sn.
We need only consider the intersection of faces of Sn+ which contain all YX . To achieve this,

we need to find a matrix V̂ with range equal to the intersection of the nullspaces of D1 and
D2.

Let Vj ∈ Rj×(j−1), r(V T
j) = V T

j uj = 0, e.g.,

Vj :=

1 0 · · · · · · 0
0 1 · · · · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · 1
−1 · · · · · · −1 −1

 .
Let

V̂ :=

[
1 0

1
n
m⊗ un Vk ⊗ Vn

]
.

Theorem 5.3.2. [17, Theorem 3.1]

1. The barycenter

Ŷ =

1 m1

n
uTn · · · mk

n
uTn

m1

n
un (m1

n
In + m1(m1−1)

n(n−1)
(En − In)) · · · m1mk

n(n−1)
(En − In)

...
...

. . .
...

mk

n
m1mk

n(n−1)
(En − In) · · · (m1

n
In + m1(m1−1)

n(n−1)
(En − In))

 ,
where En is the n× n matrix with entries all 1’s.

2. The rank of the barycenter

rank(Ŷ) = (k − 1)(n− 1) + 1.

3. The rows of

T :=

−m1 uTn 0 · · · · · · 0
−m2 0 uTn 0 · · · 0

...
...

...
...

...
...

−mk 0 · · · · · · 0 uTn
−un In In · · · · · · In

form a basis of the null space of Ŷ .

37

4. The columns of V̂ form a basis of the range of Ŷ .

By the above theorem, we conclude that Y � 0 is in the minimal face if and only if
Y = V̂ ZV̂ T , for some Z � 0. By substituting

Y = V̂ ZV̂ T ∈ Skn+1, Z ∈ S(k−1)(n−1)+1

into (5.2.3), we get the reduced SDP

w∗cut ≥ p∗SDP = min 1
2

tr(V̂ TL0V̂ Z)

s.t. arrow (V̂ ZV̂ T) = e0

GJ(V̂ ZV̂ T) = 0

(V̂ ZV̂ T)00 = 1
Z � 0, Z ∈ S(k−1)(n−1)+1.

(5.3.1)

Lemma 5.3.3. [17, Lemma 4.1] Let Z be an arbitrary symmetric matrix of order (n−1)(k−
1) + 1 with

Z =

Z00 Z01 · · · Z0(k−1)

Z10 Z11 · · · Z1(k−1)
...

...
. . .

...
Z(k−1)0 Z(k−1)1 · · · Z(k−1)(k−1)

 ,
where Z00 is a scalar, Zi0 ∈ Rn−1 for i = 1, . . . , k − 1 and Zij ∈ R(n−1)×(n−1) for i, j =

1, . . . , k − 1 are blocks of Z. Let Y = V̂ ZV̂ T and block Y as

Y =

Y00 Y01 · · · Y0k

Y10 Y11 · · · Y1k
...

...
. . .

...
Yk0 Yk1 · · · Ykk

 ,
where Y00 is a scalar, Yi0 ∈ Rn−1 for i = 1, . . . , k and Yij ∈ Rn×n are blocks of Y . Then

1. Y00 = Z00,

Y0iun = Z00mi for i = 1, . . . , k

and
k∑
i=1

Y0i = Z00u
T
n .

2. miY0j = uTnYij for i, j = 1, . . . , k.

3.
k∑
i=1

Yij = unZ0j for j = 1, . . . , k.

and
k∑
i=1

diag(Yij) = Z0j for j = 1, . . . , k.

38

By Lemma (5.3.3), the arrow operator is redundant if both the gangster constraint holds
and (V̂ ZV̂ T)00 = 1.

Lemma 5.3.4. [17, Lemma 4.2] Suppose that W ∈ Snk+1. Then

V̂ TGJ(W)V̂ = 0 ⇒ GJ(W) = 0.

Lemma (5.3.4) tells us there are no other redundant constraints.

Theorem 5.3.5.

w∗cut ≥ p∗SDP = min 1
2

tr
(

(V̂ TL0V̂)Z)
)

(SDP final) s.t. GJ̄(V̂ ZV̂ T) = GJ̄(e0e
T
0)

Z � 0, Z ∈ S(k−1)(n−1)+1,

(5.3.2)

where J̄ := J ∪ (0, 0).
The dual problem is

max 1
2
W00

s.t. V̂ TGJ̄(W)V̂ � V̂ TL0V̂ .
(5.3.3)

Theorem 5.3.6. [17, Theorem 4.1]

Ẑ =

 1 0

0 1
n2(n−1)

(nDiag(m̄k−1)− m̄k−1m̄
T
k−1)⊗ (nIn−1 − En−1)

 ∈ S(k−1)(n−1)+1
+ ,

where m̄k−1 = (m1, . . . ,mk−1)T is a Slater point for (5.3.2).

Theorem 5.3.7. [17, Theorem 4.2]

Ŵ =

[
α 0
0 (Ek − Ik)⊗ In

]
is a Slater point for (5.3.3), if α is a sufficiently negative real scalar.

We next present two properties for recoving approximate solutions X from a solution Z
of (SDP final).

Proposition 5.3.8. [15, Proposition 5.2] Suppose that Z is feasible for (SDP final) and

Y = V̂ ZV̂ T . Let v1 = Y1:kn,0. Then X1 := Mat(v1) ∈ E ∩ N . Let (v0 vT2)T denote a unit
eigenvector of Y corresponding to the largest eigenvalue. If v0 6= 0, then X2 := Mat(1

v0
v2) ∈

E. Moreover, if Y ≥ 0, then v0 6= 0 and X2 ∈ N .

Proof. The fact that X1 ∈ E was shown in the proof of Lemma (5.2.1). That X1 ∈ N follows
from the arrow constraint saying that the first column of Y equals the diagonal of Y which
is nonnegative since Y � 0. We now prove the result for X2. Suppose v0 6= 0. Then

Y � λ1(Y)

(
v0

v2

)(
v0 vT2

)
.

39

Using this and the definition of Di and X2, we see further that

0 = tr(DiY) ≥
{
λ1(Y)v2

0 ‖X2uk − un‖2 , if i = 1,

λ1(Y)v2
0

∥∥XT
2 un −m

∥∥2
, if i = 2.

(5.3.4)

Since λ1(Y) 6= 0 and v0 6= 0, we must have ‖X2uk − un‖2 = 0 and
∥∥XT

2 un −m
∥∥2

= 0. So
X2 ∈ E .

Finally, we suppose Y ≥ 0. We claim that for any eigenvector (v0 vT2)T corresponding
to the largest eigenvalue must satisfy:

1. v0 6= 0.

2. all entries if the eigenvector have the same sign, i.e., v0v2 ≥ 0.

From this claim, we have X2 = Mat(1
v0
v2) ∈ N .

To prove the cliam, we note from the classical Perron-Fröbenius theory, e.g. [4], that the
vector (|v0| |v2|T)T is also an eigenvector to the largest eigenvalue. Let χ := Mat(v2). We
do the same procedure as in (5.3.4), we conclude that

‖χum − v0un‖2 = 0 and ‖|χ|um − |v0|un‖2 = 0. (5.3.5)

Suppose by contradiction that v0 = 0. Then the second equality implies χ = 0. Then
v2 = vec(χ) = 0. It is a contradiction since eigenvectors cannot be 0. So we conclude that
v0 6= 0.

Now suppose v0 > 0. Then the two equalities give us

k∑
j=1

χij = v0 =
k∑
j=1

|χij| ,

for all i = 1, . . . , n. So we have χij ≥ 0 for all i, j, which implies v2 ≥ 0. One can show
similarly for the case v0 < 0. Hence we proved v0v2 ≥ 0.

40

Chapter 6

Cut Minimization Problem

6.1 Introduction

There is another type of GP Problem. We partition the node set of a graph into k sets of
given sizes. The goal is to minimize the size of cut edges obtained by removing the k-th set.
This problem is called Cut Minimization, CM Problem, which is contained as a special case
of GP Problem because the two minimization problems share the same constraints. Most of
the contents in this chapter is taken from [15].

We let δ(Si, Sj) denote the set of cut edges between the sets Si and Sj, i.e.,

δ(Si, Sj) = {uv ∈ E(G) : u ∈ Si, v ∈ Sj}.

We denote the set of edges with endpoints in distinct partition sets S1, . . . , Sk−1 by

δ(S) = ∪i<j<kδ(Si, Sj). (6.1.1)

The minimum of the cardinality |δ(S)| is denoted

cut(m) = min {|δ(S)| : S ∈ Pm} . (6.1.2)

The graph G has a vertex separator if there exists an S ∈ Pm such that δ(S) = ∅,
i.e., cut(m) = 0. Otherwise, cut(m) > 0. We call the later problem the Vertex Separator
Problem.

We define the k ordered matrix

B :=

[
uuT − Ik−1 0

0 0

]
∈ Sk.

Proposition 6.1.1. [15, Proposition 2.3] For S ∈ Pm let X ∈ Mm be the associated
partition matrix. Then

|δ(S)| = 1

2
tr
(
(A−Diag(d))XBXT

)
,∀d ∈ Rn. (6.1.3)

41

Proof. We include the proof for completeness. Let X ∈ Mm be the partition matrix as-
sociated to S ∈ Pm. Write X =

(
x1 x2 · · · xk

)
, where xi is the i-th column of X.

Then XBXT =
∑

0<i<j<k xix
T
j + xjx

T
i . So XBXT is the adjacency matrix of the complete

(k − 1)-partite graph with the parttition S ∈ Pm. In particular,

(XBXT)ij =

{
1 if i and j are in the distinct sets S1, . . . , Sk−1 ,
0 otherwise.

So

Aij(XBX
T)ij =

{
1 if ij ∈ δ(S),
0 otherwise.

Therefore tr(AXBXT) =
∑

ij Aij(XBX
T)ij = 2 |δ(S)|.

Since diag(XBXT) = 0 and Aij = (A − Diag(d))ij for i 6= j, we have tr(AXBXT) =
tr
(
(A−Diag(d))XBXT

)
,∀d ∈ Rn.

Remark 6.1.2. ∀S ∈ Pm, |δ(S)| = tr(AXBXT) if d = 0, while |δ(S)| = tr(−LXBXT) if
d = Aun. So the above proposition is a general version of [13, Prop.2].

So the Vertex Separator Problem can be solved as

min 1
2

tr
(
G(d)XBXT

)
s.t. X ∈Mm,

(6.1.4)

where G(d) = A−Diag(d), d ∈ Rn.
The format of objective function in (6.1.4) is same as that of (3.0.2), i.e., they are

both quadratic. So we can apply the same strategies to derive the eigenvalue bounds, con-
vex quadratic programming bounds, and semidefinite programming bounds for the Vertex
Seperator Problem. We are going to go over some main details in the following sections.

6.2 Lower Bounds for the CM Problem

We briefly conclude the three types of lower bound for CM problem. Numerical tests for
CM problem can be found in [15].

6.2.1 Eigenvalue Bounds

The same idea in Chapter 2 can be applied to derive the basic eigenvalue bound for the CM
problem. Consider the relaxed problem

cut(m) ≥ min 1
2

tr(GXBXT)
s.t. X ∈ DO.

(6.2.1)

Lemma 6.2.1. [13, Lemma 4] The k − ordered eigenvalues of the matrix B̃ := M̃BM̃
satisfy

λ1(B̃) > 0 = λ2(B̃) > λ3(B̃) ≥ · · · ≥ λk(B̃).

42

Proof. We include the proof for completeness. The matrix uk−1u
T
k−1 has rank one and

tr(uuT) = k−1 so it has eigenvalues (k−1, 0, · · · , 0)T ∈ Rk−1. So the matrix uuT − Ik−1 has
eigenvalues (k − 2,−1, · · · ,−1)T ∈ Rk−1. Because B has a row of 0, then 0 is an eigenvalue
of B. So B has eigenvalues (k − 2), 0,−1, · · · ,−1)T ∈ Rk.

The conclusion for B̃ follows from the Sylvester Law of Inertia for nonsingular congru-
ences.

Remark 6.2.2. The Sylvester Law of Inertia states that if H ∈ Sp and Q ∈ Rp×p is nonsin-
gular, then H and QHQT have the same number of positive, negative and zero eigenvalues
(same inertia). QHQT is said to be congruent to H.

Theorem 6.2.3. [15, Theorem 3.4] Let d ∈ Rn, G = A−Diag(d). Then

cut(m) ≥ 0 > q∗eig(G) :=
1

2

〈
λ(G),

(
λ(B̃)

0

)〉
−

=
1

2

(
k−2∑
i=1

λk−i+1(B̃)λi(G) + λ1(B̃)λn(G)

)
.

Moreover, the function q∗eig(G(d)) is a concave function of d ∈ Rn.

Proof. Let Y = XM̃−1. We have XTX = M if and only if Y TY = Ik. We substitude
X = Y M̃ into (6.2.1) to get the equivalent problem to (6.2.1):

min 1
2

tr(GY B̃Y T)
s.t. Y TY = Ik,

(6.2.2)

where B̃ = M̃BM̃ .
Since (6.2.2) is a relaxation to the CM Problem, we have cut(m) ≥ q∗eig(G). The explicit

formula for the minimal scalar product follows immediately from Lemma (6.2.1).
We are going to show 0 > q∗eig(G). Let φ̂ be a permutation of N = {1, 2, . . . , n} that

attains the minimal value min
{∑k

i=1 λφ(i)(G)λi(B̃) : φ is a permutation
}

. Then for any

permutation ψ, we have

k∑
i=1

λψ(i)(G)λi(B̃) ≥
k∑
i=1

λφ̂(i)(G)λi(B̃). (6.2.3)

Note that
∑k

i=1 λi(B̃) = tr(B̃) = tr(M̃BM̃) = tr(MB) = 0, since diag(B) = 0 and M is
a diagonal matrix.

Let T be the set of all permutations of N , then we have

∑
ψ∈T

(
k∑
i=1

λψ(i)(G)λi(B̃)

)
=

k∑
i=1

(∑
ψ∈T

λψ(i)(G)

)
λi(B̃) =

(∑
ψ∈T

λψ(1)(G)

)(
k∑
i=1

λi(B̃)

)
= 0,

(6.2.4)
since

∑
ψ∈T λψ(i)(G) is independent of i. It implies that

∑k
i=1 λψ̂(i)(G)λi(B̃) ≤ 0.

43

Now we prove by contradiction. Suppose
∑k

i=1 λψ̂(i)(G)λi(B̃) = 0 which implies that∑k
i=1 λψ(i)(G)λi(B̃) = 0,∀ψ ∈ T . Recall from the Lemma (6.2.1) that λ1(B̃) > λk(B̃). It

implies that all eigenvalues of G are equal. Moreover, if all eigenvalues of G were equal, then
necessarily G = βIn for some β ∈ R and A must be diagonal matrix. This implies that A=0
since diag(A) = 0, which is a contradiction. Therefore q∗eig(G) < 0.

Finally, the concavity follows by observing from (6.2.2) that

q∗eig(G(d)) = min
Y TY=Ik

1

2
tr
(
G(d)Y B̃Y T

)
,

is a function obtained as a minimum of a set of affine functions in d, and recall that the
minimum of affine functions is concave.

Since q∗eig(G(d)) ≤ 0,∀d ∈ Rn, the basic eigenvalue bound for the CM problem is not a
useful bound. Next theorem provides the projective eigenvalue bounds.

Theorem 6.2.4. [15, Theorem 3.7] Let d ∈ Rn, G = A−Diag(d). Let V and W be defined

in (3.2.2) and X̂ = 1
n
unm

T ∈ Rn×k. Then:

1. For any X ∈ E and Z ∈ R(n−1)×(k−1) related by (3.2.3), we have

tr(GXBXT) = α + tr(ĜZB̂ZT) + tr(FZT)

= −α + tr(ĜZB̂ZT) + 2 tr(GX̂BXT),
(6.2.5)

and
tr(−LXBXT) = tr(−L̂ZB̂ZT), (6.2.6)

where

Ĝ = V TGV, L̂ = V TLV, B̂ = W TM̃BM̃W,α =
1

n2
(uTGu)(mTBm), F = 2V TGX̂BM̃W.

(6.2.7)

2. We have the following lower bounds:

(a)

cut(m) ≥ q∗peig(G) := 1
2

{
−α +

〈
λ(Ĝ),

(
λ(B̂)

0

)〉
−

+ 2 min
X∈D

tr(GX̂BXT)

}

= 1
2

{
α +

〈
λ(Ĝ),

(
λ(B̂)

0

)〉
−

+ min
0≤X̂+V ZWT M̃

tr(FZT)

}
= 1

2

{
−α +

∑k−2
i=1 λk−i(B̂)λi(Ĝ) + λ1(B̂)λn−1(Ĝ) + 2 min

X∈D
tr(GX̂BXT)

}
.

(6.2.8)

(b)

cut(m) ≥ q∗peig(−L) :=
1

2

〈
λ(−L̂),

(
λ(B̂)

0

)〉
−
≥ q∗eig(−L). (6.2.9)

44

Proof. We substitute the parametrization (3.2.3) into our objective function tr(GXBXT).
Then we get a constant, quadratic, and linear term:

tr(GXBXT) = tr
(
G(X̂ + V ZW TM̃)B(X̂ + V ZW TM̂)T

)
= tr(GX̂BX̂T) + tr

(
(V TGV)Z(W TM̃BM̃W)ZT

)
+ tr(2V TGX̂BM̃WZT)

and

tr(GXBXT) = tr(GX̂BX̂T) + tr
(

(V TGV)Z(W TM̃BM̃W)ZT
)

+ 2 tr
(
GX̂B(V ZW TM̃)T

)
= tr(GX̂BX̂T) + tr

(
(V TGV)Z(W TM̃BM̃W)ZT

)
+ 2 tr

(
GX̂B(X − X̂)T

)
= − tr(GX̂BX̂T) + tr

(
(V TGV)Z(W TM̃BM̃W)ZT

)
+ 2 tr(GX̂BXT).

These together with (6.2.7) yield the two equations in (6.2.5). Since Lu = 0 and hence

LX̂ = 0, we obtain (6.2.6) by replacing G with −L. We proved Item 1.
Now we are going to prove (6.2.8), i.e., Item (2a). Recall from (6.1.4) and (2.1.1) that

cut(m) = min

{
1

2
tr(GXBXT) : X ∈ D ∩ DO

}
.

Combining this with (6.2.5), we see further that

cut(m) = 1
2

(
−α + min

X∈D∩DO

{
tr(ĜZB̂ZT) + 2 tr(GX̂BXT)

})
≥ 1

2

(
−α + min

X∈D∩DO

tr(ĜZB̂ZT) + 2 min
X∈D∩DO

tr(GX̂BXT)

)
≥ 1

2

(
−α + min

ZTZ=Ik−1

tr(ĜZB̂ZT) + 2 min
X∈D

tr(GX̂BXT)

)
= 1

2

(
−α +

〈
λ(Ĝ),

(
λ(B̂)

0

)〉
−

+ 2 min
X∈D

tr(GX̂BXT)

)
= q∗peig(G),

(6.2.10)

where X and Z are related via (3.2.4), and the last equality follows from Lemma (3.2.1) and
Theorem (3.1.2).

Furthermore, notice that

−α + 2 min
X∈D

tr(GX̂BXT) = α + 2 min
X∈D

tr
(
GX̂B(X − X̂)T

)
= α + 2 min

0≤X̂+V ZWT M̃
tr
(
GX̂B(V ZW TM̃)T

)
= α + min

0≤X̂+V ZWT M̃
tr(FZT),

(6.2.11)

where the second equality follows from Lemma (3.2.1), and the last equality follows from
the definition of F in (6.2.7). Combining this last relation with (6.2.10) proves the first two
equalities in (6.2.8).

45

The last equality in (6.2.8) follows from the fact that

λk(B̃) ≤ λk−1(B̂) ≤ λk−1(B̃) ≤ · · · ≤ λ2(B̃) = 0 ≤ λ1(B̂) ≤ λ1(B̃), (6.2.12)

which is a consequence of the eigenvalue interlacing theorem, the definition of B̂ and Lemma(6.2.1).
Next, we prove (6.2.9), i.e., Item 2b. Recall from (6.1.4) and (2.1.1) that

cut(m) = min

{
1

2
tr(−LXBXT) : X ∈ D ∩ DO

}
.

Using (6.2.6), we see further that

cut(m) ≥ min
{

1
2

tr(−LXBXT) : X ∈ E ∩ DO
}

= min
{

1
2

tr(−L̂ZB̂ZT) : ZTZ = Ik−1

}
= 1

2

〈
λ(−L̂),

(
λ(B̂)

0

)〉
−

(= q∗peig(−L))

≥ min
{

1
2

tr(−LXBXT) : X ∈ DO
}

(= q∗eig(−L)),

where X and Z are related via (3.2.4). The last inequality follows from dropping the con-
straint X ∈ E .

6.2.2 Convex Quadratic Programming Bounds

We follow the approach we used in chapter 4. Let (S∗∗, T ∗∗) be an optimal solution to the
following problem

max 1
2

tr(S) + 1
2

tr(T)

s.t. Ik−1 ⊗ S + T ⊗ In−1 � B̂ ⊗ Ĝ,
S � 0,
S ∈ Sn−1, T ∈ Sk−1,

where B̂ and Ĝ are defined in (6.2.7).
We define ̂̂

Q := B̂ ⊗ Ĝ− Ik−1 ⊗ S∗∗ − T ∗∗ ⊗ In−1 � 0.

Then,

cut(m) ≥ q∗QP (G) := min 1
2

(
α + tr(FZT) + vec(Z)T

̂̂
Q vec(Z) +

〈
λ(Ĝ),

(
λ(B̂)

0

)〉
−

)
s.t. X̂ + V ZW TM̃ ≥ 0,

(6.2.13)
where F is define in (6.2.7).

Notice that (6.2.13) is a convex QP with (n− 1)(k − 1) variables and nk constraints.

46

Theorem 6.2.5. [15, Theorem 4.1]

cut(m) ≥ q∗QP (G) = min
X∈D

1

2
vec(X)T

˜̃
Q vec(X) +

1

2

〈
λ(Ĝ),

(
λ(B̂)

0

)〉
−

(6.2.14)

where ˜̃
Q := B ⊗G−M−1 ⊗ (V S∗∗V T)− (M̃−1WT ∗∗W TM̃−1)⊗ In.

The QP in (6.2.14) is implicitly convex.

6.2.3 SDP Bounds

Like what we did in Chapter 5, we can obtain a lower bound for cut(m) through the semidef-
inite programming. Let

LG :=

[
0 0
0 B ⊗G

]
.

So we have the semidefinite programming bounds for cut(m) as following.

Theorem 6.2.6. [15, Theorem 5.1]

cut(m) ≥ p∗V SDP (G) := min 1
2

tr(V̂ TLGV̂ Z)

s.t. GJ̄(V̂ ZV̂ T) = GJ̄(e0e
T
0), (VSDP final)

Z � 0, Z ∈ S(k−1)(n−1)+1.

The dual problem is
max 1

2
W00

s.t. V̂ TGJ̄(W)V̂ � V̂ TLGV̂ .

Both primal and dual satisfy the Slater constraint qualification and the objective function
is independent of the d ∈ Rn chosen to form G.

Proof. The only thing we need to prove is the independence of choice of d. Let Y = V̂ ZV̂ T

with Z feasible for (VSDP final). Then Y satisfies the gangster constriants, i.e., diag(Ȳ(ij)) =
0,∀i 6= j. On the other hand, notice that tr(LGY) = tr(LAY) − tr(LDiag(d)Y). From the
structure of B⊗Diag(d), LDiag(d) has nonzero elements only in the diagonal positions of the
off-diagonal blocks. So we have tr(LDiag(d)Y) = 0. As a result,

tr
(

(V̂ TLGV̂)Z
)

= tr(LGV̂ ZV̂
T) = tr(LGY) = tr(LAY) = tr(V̂ TLAV̂ Z),

for all d ∈ Rn.

47

Chapter 7

Numerical Tests

In this chapter, we provide some empirical comparisons for the lower and upper bounds
obtained from above methods. All the numerical tests are performed in MATLAB version
2013b on a single node of the COPS cluster at University of Waterloo.

7.1 Feasible Solutions Upper Bounds

As an extension of the well-known Birkhoff-von Neumann Theorem relating the extreme
points of the doubly stochastic matrices to the permutation matrices, we have the following.
(We include a proof for completeness.)

Theorem 7.1.1. [15, Theorem 6.1] The set of extreme points of the doubly stochastic type
matrices D equals the set of partition matrices Mm, i.e.,

ext(D) =Mm.

Proof. It is clear that Mm ⊆ ext(D). Next we prove ext(D) ⊆ Mm by showing that all
entries of elements in ext(D) are integral. Let X̃ ∈ D have a non-integral entry. We are

going to show that X̃ is a nontrivial convex combination of partition matrices, and hence is
not extremal. We define

X0 =

um1 0 · · · 0
0 um2 · · · 0
...

.
...

0 · · · 0 umk

 ∈Mm.

Consider the linear map h : Rn×n → Rn×k with h(D) = DX0. Then for any doubly
stochastic matrix D of order n, we have h(D) ∈ D. Moreover, for any permutation matrix
P of order n, we have h(P) ∈Mm. Next we define

X̄ := [
1

m1

X̃:1 · · ·
1

m1

X̃:1︸ ︷︷ ︸
m1

· · · 1

mk

X̃:k · · ·
1

mk

X̃:k︸ ︷︷ ︸
mk

] ∈ Rn×n.

48

It is easy to verify X̄ is doubly stochastic and h(X̄) = X̃. Since X̄ is doubly stochastic
matrix, by the Birkhoff-von Neumann Theorem, there exist λi > 0 and permutation matrices
Pi, i = 1, . . . , l, such that X̄ =

∑l
i=1 λiPi and

∑l
i=1 λi = 1. Applying the linear map h on

both sides gives

X̃ = h(X̄) = h

(
l∑

i=1

λiPi

)
=

l∑
i=1

λih(Pi).

Since there is a entry of X̃ that is fractional, there is at least one λi that is fractional.
Consequently, since

∑l
i=1 λi = 1, there are two λ′is that are fractional. So X̃ is a nontrivial

convex combination of partition matrices.

Theorem 7.1.2. [15, Theorem 6.2] Let X̄ ∈ Rn×k. Then an optimal solution of min
X∈Mm

∥∥X − X̄∥∥
F

can be found by using simplex method to solve the LP problem

min − tr(X̄TX)
s.t. Xuk = un,

XTun = m,
X ≥ 0.

(7.1.1)

Proof. If X ∈Mm, then Diag(XTX) = m. So tr(XTX) = n. Hence we have

min
X∈Mm

∥∥X − X̄∥∥2

F
= min

X∈Mm

〈
X̄ −X, X̄ −X

〉
= tr(X̄T X̄) + min

X∈Mm

tr(XTX − 2X̄TX)

= tr(X̄T X̄) + n+ 2 min
X∈Mm

tr(−X̄TX).

The simplex algorithm can give us an extreme point of D which is optimal. So this
optimal solution is in Mm by the theorem (7.1.1).

7.2 Random Tests with Various Size

We first fix a positive integer k ≥ 4 and generate k integers m1, . . . ,mk each chosen randomly
from {1, . . . , imax}. If any of mi happened to be 1, then we increase all the mi by 1. Next
we construct our graphs in two ways:

1. Structured graphs: We construct k disjoint cliques. The i-th clique has mi nodes.
Then we add u0 edges between the k cliques, chosen uniformly at random from the
complement graph. In our tests, we set u0 = becpc, where ec is the number of edges in
the complement graph and 0 ≤ p < 1. By our construction, u0 is very likely to be the
optimal value, i.e., u0 = w∗cut.

2. Random graphs: We generate a graph with n = uTkm nodes. The adjacency matrix is
generated by

A = round(rand(n));A = round((A + A′)/2);A = A− diag(diag(A));

49

As a consequence, an edge is chosen with probability 0.75.

we define the relative gap (Rel. gap) as

Rel. gap =
best upper bound− best lower bound

best upper bound + best lower bound
.

In Tables 7.1 and 7.2, we consider small instances where k = 4, 5, p = 20% and imax = 10.
The tables include BEL with value p∗eig(0), BEA with value p∗eig(−Au), PEL with value
p∗peig(0), PEA with value p∗peig(−Au), QP with value p∗QP (−Au), SDP bounds and the dou-
bly nonnegative programming (DNN) bounds1. For each approach, we present the lower
bounds (rounded up to the nearest interger) in the first line and the corresponding upper
bounds (rounded down to the nearest integer) obtained via the linear programming technique
described in Section (7.1)2 in the second line.

In terms of lower bounds, the DNN approach usually gives the best lower bound. While
the SDP bounds are better than the QP bounds for random graphs, they are comparable
for structured graphs.

Data Lower
Upper bounds Rel. gap

n k |E| u0 BEL BEA PEL PEA QP SDP DNN

21 4 93 29 16 23 20 26 27 28 29 0.0000
51 57 56 39 29 36 29

27 4 139 52 33 45 34 46 47 46 52 0.0877
77 83 68 79 62 62 62

25 5 115 46 28 36 33 40 42 40 46 0.0000
66 71 71 55 57 55 46

31 5 173 73 43 61 48 65 66 65 73 0.0000
117 119 117 80 73 92 73

Table 7.1: Results for small structured graphs

We consider medium-sized instances in Tables 7.3 and 7.4, where k = 8, 10, 12, p =
20% and imax = 20. We do not consider DNN bounds due to computational complexity.
It is very interesting that QP bounds are better than SDP bounds in the medium-sized
structured instances while SDP bounds are better than QP bounds in the medium-sized
random instances. BE bounds and PE bounds are comparable.

Finally, in Tables 7.5 and 7.6, we consider larger instances with k = 35, 45, 55, p = 20%
and imax = 100. We do not consider QP, SDP and DNN bounds due to computational
complexity.

1The doubly nonnegative programming relaxation is obtained by imposing the constraint V̂ ZV̂ T ≥ 0
onto (SDP final).

2The SDP and DNN problems are solved via SDPT3 (version 4.0) with tolerence gaptol set to be 1e-6
and 1e-3 respectively. The problem (4.1.5) and (4.2.2) are solved via SDPT3 (version 4.0) called by CVX
(version 1.22), using the default settings. The problem (7.1.1) is solved using simplex method in MATLAB
using the default settings.

50

Data Lower
Upper bounds Rel. gap

n k |E| BEL BEA PEL PEA QP SDP DNN

16 4 93 36 40 46 50 52 52 58 0.0085
60 60 60 59 59 62 59

27 4 271 149 165 156 172 173 176 188 0.0105
196 195 195 192 195 199 208

31 5 360 196 224 212 238 241 244 262 0.0113
268 270 275 269 274 275 286

35 5 446 242 276 261 294 299 302 324 0.0167
344 335 340 337 338 347 347

Table 7.2: Results for small random graphs

In all tables, we have PEA ≥ PEL ≥ BEL and PEA ≥ BEA ≥ BEL, while PEL and BEA

are comparable.
Before ending this section, we briefly talk about the computational time measured by

MATLAB tic-toc function. For lower bounds, the eigenvalue bounds are fastest to compute.
The computational time for small, medium and large problems are usually less than 0.01
seconds, 0.1 seconds and 0.5 seconds, respectively. The QP bounds are more expensive to
compute, taking around 0.5 to 2 seconds for small problems and 0.5 to 15 minutes for medium
problems. The SDP bounds are even more expensive to compute, taking 0.5 to 3 seconds for
small problems and 2 minutes to 2 hours for medium problems. The DNN bounds are the
most expensive to compute. Even for small problems, it can take 20 seconds to 40 minutes
to compute a bound. For upper bounds, using the MATLAB simplex method, the time for
solving (7.1.1) is usually less than 1 second for small and medium problems; while for the
large problems in Table (7.5) and Table (7.6), it takes 1 to 5 minutes.

51

Data Lower
Upper bounds Rel. gap

n k |E| u0 BEL BEA PEL PEA QP SDP

58 8 501 287 202 235 220 251 256 232 0.1065
380 382 364 357 317 394

62 8 594 324 225 275 248 294 300 291 0.1071
422 438 442 426 372 394

95 8 1481 745 583 665 619 691 701 678 0.0377
1045 972 1047 988 756 1079

117 10 1979 1201 994 1084 1033 1115 1123 1097 0.0369
1565 1474 1464 1521 1209 1472

94 10 1387 745 590 652 633 682 692 675 0.0559
992 1003 971 774 878 911

123 10 2147 1338 1061 1190 1120 1241 1253 1197 0.0504
1645 1641 1662 1597 1386 1757

132 12 2346 1575 1259 1408 1316 1460 1469 1438 0.0498
1952 1876 1940 1623 1717 1983

132 12 2368 1569 1242 1402 1285 1438 1449 1380 0.1003
1907 1851 1966 1772 1790 2012

115 12 1845 1177 912 1025 972 1073 1085 1047 0.0683
1513 1440 1501 1244 1326 1477

Table 7.3: Results for medium-sized structured graphs

52

Data Lower
Upper bounds Rel. gap

n k |E| BEL BEA PEL PEA QP SDP

65 8 1571 980 1055 1089 1162 1170 1175 0.0435
1292 1290 1297 1282 1299 1316

67 8 1681 1050 1126 1182 1261 1270 1272 0.0450
1407 1392 1408 1396 1398 1401

73 8 1987 1245 1323 1420 1497 1511 1516 0.0408
1656 1662 1663 1645 1653 1669

92 10 3130 2138 2289 2322 2474 2486 2492 0.0384
2716 2708 2720 2691 2708 2724

122 10 5457 3898 4156 4089 4343 4358 4362 0.0377
4732 4704 4735 4711 4718 4783

108 10 4362 3121 3250 3323 3444 3457 3467 0.0355
3722 3732 3740 3722 3732 3775

130 12 6296 4701 4897 4936 5120 5135 5146 0.0331
5549 5517 5546 5498 5549 5580

144 12 7728 5674 6089 5983 6402 6419 6429 0.0340
6926 6881 6911 6891 6929 6976

137 12 6982 5127 5443 5414 5726 5743 5747 0.0348
6181 6173 6192 6162 6184 6271

Table 7.4: Results for medium-sized random graphs

53

Data Lower
Upper bounds Rel. gap

n k |E| u0 BEL BEA PEL PEA

2004 35 461865 386285 361900 376315 366025 380173 0.0170
431210 418626 433334 393350

1763 35 359293 298477 271810 288338 276742 292997 0.0273
335801 327283 340000 309453

1631 35 305901 255840 235396 247030 239323 250704 0.0269
285787 277977 287345 264577

2238 45 557743 486365 452193 469991 459627 477125 0.0352
528404 519478 533745 511978

2429 45 655197 573402 533846 556720 540877 563493 0.0168
624029 607715 627066 582761

2363 45 620375 542582 506838 526087 514241 533235 0.0222
588947 569792 589190 557422

2834 55 878964 783849 733871 761522 742441 769788 0.0233
844913 826628 848004 806582

3195 55 1113466 997237 941234 973997 948921 981431 0.0194
1069036 1049898 1074344 1020181

2863 55 892381 801142 750958 777796 760249 786835 0.0239
860769 844305 862399 825361

Table 7.5: Results for larger structured graphs

54

Data Lower
Upper bounds Rel. gap

n k |E| BEL BEA PEL PEA

1863 35 1300266 1179478 1199702 1202727 1222947 0.0113
1252578 1250970 1252942 1251010

1952 35 1428503 1300322 1322867 1317912 1340382 0.0110
1372084 1370239 1372118 1370104

2089 35 1635134 1495514 1520705 1515972 1541096 0.0107
1576666 1574543 1576794 1574286

2383 45 2128866 1966436 1994338 1993357 2021177 0.0101
2064791 2062844 2065059 2062515

2262 45 1918577 1765491 1792213 1794208 1820953 0.0104
1861114 1859275 1861269 1859358

2429 45 2211867 2044687 2076008 2068729 2099995 0.0100
2144815 2142597 2144933 2142573

2764 55 2863291 2664605 2701727 2695612 2732598 0.0095
2787232 2785471 2787807 2785103

2744 55 2822053 2625297 2662913 2655062 2692538 0.0095
2746913 2744450 2747459 2744324

2936 55 3231089 3018448 3057504 3051330 3090316 0.0092
3150582 3148539 3150742 3147990

Table 7.6: Results for larger random graphs

55

Chapter 8

Conclusion

In this thesis, we have introduced eigenvalue bounds, QP bounds, and SDP bounds for the
GP problem. We have used the Hoffman-Wielandt result together with projection techniques
to find the eigenvalue bounds. In particular, we break the projected eigenvalue bound into
three parts and find their optimal values separately. We have used a zero duality gap result
and implicit convexity to find the QP bound and have shown that the QP bound is stronger
than the projected eigenvalue bound. We have used the lifting process, or equivalently
Lagrangian duality, to derive the SDP relaxation for the GP problem. We then obtain a
faciallly reduced SDP relaxation and show that the so-called gangster constraint is very
strong so that many other constraints are redundant. We have shown how to recover a
feasible solution from an approximate solution by solving an LP . We have also summarized
the eigenvalue, quadratic programming and semidefinite programming bounds for the CM
problem, a special case of the GP problem.

Our eigenvalue bounds and QP bound can be found efficiently. The computational ex-
pense for the basic eigenvalue bound is less than for the projected eigenvalue bound which
is less than for the QP bound which is less than for the SDP bound. In our numerical tests,
we conclude that the quality of the eigenvalue bounds is comparable to the QP and SDP
bounds, but the computational expense of the eigenvalue bounds is much cheaper. Surpris-
ingly, we found that the bounds found by setting the parameter d = −Au are stronger than
the bounds using d = 0.

56

Index

A, adjacency matrix, 5
A ◦B, Hadamard product, 4
B, 41
En, matrix of all 1’s, 37
G(d), 42
L = Diag(Aun)− A, the Laplacian, 6
M = Diag(m), 15
Vj, 37
D, 4
DO, 4
De, 4
Diag, 4
E , 4
G, 4
N , 4
On×m, orthogonal matrices, 5
Sn, 5
Sn, symmetric matrices, 5
Sn+,Sn++, 6
Z, 4
diag, 4
V̂ , 37
L̂, 21
M̂ , 21
〈x, y〉−, the minimal scalar product, 16
λ(H), eigenvalues, 5
B̃, 42
M̃ = Diag(m̃), 15
m̃, 15
vec(X), 11
r(A), 5
s(A), 5
u, vector of ones, 3
wcut, the total weight of cut edges, 5
wuncut, the total weight of uncut edges, 5

adjacency matrix, A, 5
arrow operator, 32

doubly stochastic, 4

eigenvalues, λ(H), 5

Gangster operator, G, 32
graph

G, 3
edge set, E, 3
node set, N, 3

graph partitioning, GP, 1

Hadamard product, 4

Kronecker product,⊗, 11

orthogonal matrices, On×m, 5

partitions, 3
Pm, set of all partitions, 3
partition matrix, X, 3
set of all partition matrices, Mm, 3

QAP, quadratic assignment problem, 26
QP, quadratic program, 26
quadratic assignment problem, QAP, 26
quadratic program, QP, 26

symmetric matrices, Sn, 5

trace, tr, 5

57

Bibliography

[1] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem
based on convex quadratic programming. Math. Program., 89(3, Ser. A):341–357, 2001.

[2] K.M. Anstreicher and H. Wolkowicz. On Lagrangian relaxation of quadratic matrix
constraints. SIAM J. Matrix Anal. Appl., 22(1):41–55, 2000.

[3] N.W. Brixius and K.M. Anstreicher. Solving quadratic assignment problems using
convex quadratic programming relaxations. Optim. Methods Softw., 16(1-4):49–68, 2001.
Dedicated to Professor Laurence C. W. Dixon on the occasion of his 65th birthday.

[4] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Cambridge University
Press, New York, 1991.

[5] W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs. IBM J.
Res. Develop., 17:420–425, 1973.

[6] J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph partitioning.
Math. Programming, 66(2, Ser. A):211–239, 1994.

[7] S.W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection for the
quadratic assignment problem. Math. Oper. Res., 17(3):727–739, 1992.

[8] W.W. Hager and J.T. Hungerford. A continuous quadratic programming formulation
of the vertex separator problem. Report, University of Florida, Gainesville, 2013.

[9] A.J. Hoffman and H.W. Wielandt. The variation of the spectrum of a normal matrix.
Duke Mathematics, 20:37–39, 1953.

[10] A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990. Sparse matrices (Gleneden
Beach, OR, 1989).

[11] Alex Pothen. Graph partitioning algorithms with applications to scientific comput-
ing. In Parallel numerical algorithms (Hampton, VA, 1994), volume 4 of ICASE/LaRC
Interdiscip. Ser. Sci. Eng., pages 323–368. Kluwer Acad. Publ., Dordrecht, 1997.

58

[12] Janez Povh and Franz Rendl. Approximating non-convex quadratic programs by
semidefinite and copositive programming. In KOI 2006—11th International Confer-
ence on Operational Research, pages 35–45. Croatian Oper. Res. Soc., Zagreb, 2008.

[13] F. Rendl, A. Lisser, and M. Piacentini. Bandwidth, vertex separators and eigenvalue
optimization. In Discrete Geometry and Optimization, volume 69 of The Fields Insti-
tute for Research in Mathematical Sciences, Communications Series, pages 249–263.
Springer, 2013.

[14] F. Rendl and H. Wolkowicz. A projection technique for partitioning the nodes of a
graph. Ann. Oper. Res., 58:155–179, 1995. Applied mathematical programming and
modeling, II (APMOD 93) (Budapest, 1993).

[15] H. Sun, N. Wang, T.K. Pong, and H. Wolkowicz. Eigenvalue, quadratic programming,
and semidefinite programming bounds for vertex separators. Technical report, Univer-
sity of Waterloo, Waterloo, Ontario, 2014. 32 pages, submitted.

[16] Levent Tunçel. Polyhedral and semidefinite programming methods in combinatorial op-
timization, volume 27 of Fields Institute Monographs. American Mathematical Society,
Providence, RI, 2010.

[17] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph par-
titioning problem. Discrete Appl. Math., 96/97:461–479, 1999. Selected for the special
Editors’ Choice, Edition 1999.

[18] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming re-
laxations for the quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998.
Semidefinite programming and interior-point approaches for combinatorial optimization
problems (Fields Institute, Toronto, ON, 1996).

59

