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Abstract

Static analysis (SA) tools that find bugs by inferring programmer beliefs (e.g., Find-
Bugs) are commonplace in today’s software industry. While they find a large number of
actual defects, they are often plagued by high rates of alerts that a developer would not
act on (unactionable alerts) because they are incorrect, do not significantly affect program
execution, etc. High rates of unactionable alerts decrease the utility of static analysis tools
in practice.

We present a method for differentiating actionable and unactionable alerts by finding
alerts with similar code patterns. To do so, we create a feature vector based on code
characteristics at the site of each SA alert. With these feature vectors, we use machine
learning techniques to build an actionable alert prediction model that is able to classify
new SA alerts.

We evaluate our technique on three subject programs using the FindBugs static analysis
tool and the Faultbench benchmark methodology. For a developer inspecting the top 5%
of all alerts for three sample projects, our approach is able to identify 57 of 211 actionable
alerts, which is 38 more than the FindBugs priority measure. Combined with previous
actionable alert identification techniques, our method finds 75 actionable alerts in the top
5%, which is four more actionable alerts (a 6% improvement) than previous actionable
alert identification techniques.
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Chapter 1

Introduction

Static analysis (SA) tools are widely used to find bugs in software before they have a
chance to manifest as run time faults. The most popular static analysis tools look through
static code and infer a wide variety of bugs, security holes and bad programming practice
[13]. Unlike more formal methods, this type of static analysis provides no guarantee that
it has found all bugs that it checks for or that the bugs it does find are real [7].

The widespread adoption of SA for entire codebases by commercial software companies
[10, 44] is evidence that SA is economically beneficial. However, SA suffers from high false
positive rates [6]. Many of the alerts generated by SA suggest errors are present when in
fact no errors exist. So despite its widespread use, high rates of false positives in SA still
prevent many users from adopting these tools [24].

The terms ‘true positive’ and ‘false positive’ can be ambiguous in static analysis. If
we define a true positive as any code that contains errors, the definition fails to cover
warnings that identify bad practice or places where a bug could be easily be introduced.
Alternatively, we could define a true positive as any warning identified by SA, because at the
very least the warning has flagged a source of bad practice. This fails for situations where
a programmer writes code that performs as intended and does not wish to modify. We
therefore use the term actionable alert (AA) to define a SA alert that the programmer would
act on to resolve and unactionable alert (UA) to define a SA alert that the programmer
would not act on to resolve [18].

Because of the prevalence of unactionable alerts in SA warnings, considerable work has
attempted to predict whether alerts are actionable or not; Heckman and Williams survey
this literature [18]. Of particular importance in this research are the set of characteristics
used to predict what SA alerts are actionable or unactionable. Heckman and Williams
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refer to these characteristics as alert characteristics (AC) [18], a term which we adopt in
this thesis.

Through our research investigating actionable and unactionable alert rates in SA tools,
we make the observation that for any program, a number of actionable and unactionable
alerts emerge that follow similar patterns. That is, developers frequently employ source
code patterns that are unactionable but are repeatedly flagged by SA tools. Similarly, de-
velopers may also use a code pattern that is always actionable. We call these patterns alert
patterns. These findings are supported by discussions with commercial SA tool developers.
In their case, where a low false positive rate is important to get clients to adopt a tool, it
is common to manually find patterns that result in many unactionable alerts and use these
patterns to modify the SA tool to ignore the pattern. This is time consuming because the
SA developer must manually re-program their tools for every unactionable alert.

In this thesis we propose a novel approach to predicting actionable and unactionable
alerts by finding alert patterns. We use features of the source code at and near the source
of the SA alert to extract ACs and find code patterns. We discuss our AC set in detail
in section 3. Using these ACs along with a priori knowledge about which code patterns
are actionable, we rank alerts according to the likelihood that they are actionable. This
reflects a situation where a developer has limited time before the next release and needs
to decide which alerts she should fix first.

We evaluate our technique by answering the following:

Research Question 1 Do SA alert patterns exist?

Research Question 2 Can we use SA alert patterns to improve actionable alert ranking
over previous techniques?

We implement our technique as an Eclipse [41] plugin and evaluate it on FindBugs [43,
22] alerts generated for Tomcat6 [3], Apache Log4j [2] and Apache Commons [1]. We
show that SA alert patterns do exist (RQ1). Our approach also effectively reorders the
alerts provided to the developer. By examining only the top 5% of alerts (113/2,249)
the developer is able to identify 57 of the actionable alerts while FindBugs only ranks 19
actionable alerts in the top 5%.

We show that SA alert patterns can improve actionable alert ranking (RQ2) by combin-
ing with previous actionable alert prediction techniques. Without using version histories,
we find 75 actionable alerts, or four more (a 6% improvement) than previous actionable
alert prediction techniques (which use version histories).
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This thesis makes the following contributions:

1. It defines the notion of SA alert patterns.

2. It describes a technique for discovering SA alert patterns using code pattern ACs
and provides an Eclipse plugin implementation of the technique. The code pattern
ACs are not used in previous work.

3. It shows that our technique alone predicts 38 more AAs than the standard Findbugs
ranking in the top 5% of alerts and four (6%) more than previous techniques when
combined with ACs from previous techniques.
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Chapter 2

Motivating Examples

To demonstrate the concept of alert patterns, we provide three concrete examples from
running the FindBugs SA tool on revision 1497967 (June 2013) of the Apache Tomcat 6
webserver.

Motivating Example 1 Consider Figure 2.1, which shows code that defines the mem-
ber variable cDateFormat. Running FindBugs with this code results in the following alert:
“STCAL: Sharing a single instance across thread boundaries without proper synchroniza-
tion will result in erratic behaviour of the application”. In this case, the alert is correct
and this statement could potentially result in a concurrency error. However, in practice
this SimpleDateFormat object is never written to beyond its construction. As long as this
is the case, there is no need to provide synchronized access to the object.

The work it would take to provide synchronized access to the object, as well as the
increased complexity of the resulting program outweigh the possibility of a concurrency
error being introduced in the future. By our definition of unactionable alert, since the
Tomcat6 developers have not taken action to resolve this potential issue (FindBugs is used
by Tomcat6 developers [4]), the alert is likely unactionable.

This type of declaration of SimpleDateFormat is flagged as an alert seven times in

1 stat ic f ina l SimpleDateFormat cDateFormat
2 = new SimpleDateFormat (“yyyy−MM−dd” ) ;

Figure 2.1: Motivating Example 1 - Harmless shared instance variable, immutable? or
unmodified after construction?

4



1 public int read (byte [ ] b , int o f f s e t , int l en )
2 {
3 i f ( l og . i sTraceEnabled ( ) ) {
4 l og . t r a c e (“read ( ) ” + b +“ ”
5 + (b==null ? 0 : b . l ength )
6 + “ ” + o f f s e t + “ ” + len ) ;
7 }
8 . . .

Figure 2.2: Motivating Example 2 - Harmless implicit toString() call on an array: occurs
in logging code.

1 try { socke t . c l o s e ( ) ; }
2 catch ( Exception i gnore ) {}
3 try { reader . c l o s e ( ) ; }
4 catch ( Exception i gnore ) {}

Figure 2.3: Motivating Example 3 - Intentional ignoring of exceptions on calls to close().

the FindBugs anslysis of revision 1497967 of Tomcat 6. We can automatically iden-
tify these alerts as unactionable by looking for member variables of type static final

SimpleDateFormat in statements that are flagged by FindBugs with alert type STCAL.

Motivating Example 2 Figure 2.2 shows (abbreviated) code from Tomcat 6 which
reads a message in the form of a byte array. Running FindBugs with this code results in
the following alert: “USELESS STRING: This code invokes toString on an array, which
will generate a fairly useless result such as [C@16f0472.”. Indeed, the toString method is
being called on byte array b, which emits a memory address. However, we believe that this
behaviour is intentional, especially since the output of b.toString() appears in logging
code, where it might actually be useful to disambiguate different byte arrays.

In fact, any call to toString on an array within log.trace() is likely to be an unac-
tionable alert. We can automatically identify this unactionable alert pattern by looking for
calls to toString on an array inside the method log.trace(). There are 29 occurrences
of this unactionable alert pattern in Tomcat6 r1497967.

Motivating Example 3 Figure 2.3 shows code from Tomcat6 which closes Socket

and ObjectReader objects. Running FindBugs on this code results in the following alert
on lines 2 and 4: “This method might ignore an exception.”

5



This is a case of an unactionable alert, as the program is performing exactly as the
developer intends. Since both resources socket and reader are being closed, the program
is clearly done using them. One can easily see that if either are null or there is an
error while closing the resources, the program can ignore the exception and assume the
connection is closed with only minor consequences if the connection fails to close (i.e. trying
to determine what went wrong is not worth the developer’s effort in this situation). We can
automatically identify this unactionable alert pattern by finding calls to Socket.close()

or ObjectReader.close() within the preceding try statement of the offending catch

block.
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Chapter 3

Detecting Alert Patterns

Automatically detecting alert patterns presents a number of challenges. Alerts may be
tightly bound to their context. That is, two actionable or unactionable alerts may have
major semantic and syntactic differences that inhibit their being linked.

Observe the example from Tomcat6 r418016 in Figure 3.1. FindBugs generates the
same alert (NP NONNULL PARAM VIOLATION) at line 6 of both pieces of code. This
alert indicates that one of the parameters of the method call might be null, but it will be
dereferenced inside the method being called. Both code segments perform a similar func-
tion: they call the method of an object in the digester stack. However, there are semantic
and syntactic differences. The class is specified in the third parameter of callMethod1 on
line 7. Syntactically, in the code on the top from SetTopRule.java, a variable named child

is passed while in the code on the bottom, the variable parent is given. Semantically the
code on the top calls a method from the object at the top of the digester stack, while in
the code on the bottom the method is called on the root object.

Furthermore, the defining characteristic for each alert pattern may be different for each
alert type and there may even be multiple alert patterns within an alert type.

To account for semantic and syntactic differences, we use a machine learning approach
to detect alert patterns. Given a set of items that need to be classified, machine learning
algorithms take a set of features (ACs in our case) for each item (known as a feature
vector) and predicts a class for each item. In our case, the machine learning algorithm
predicts whether a SA alert is actionable or unactionable. The classification of the given
items (called the test set) is based on prior knowledge of the class of items in another set
of feature vectors (called the training set).
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1 public void end ( ) throws Exception {
2 Object ch i l d = d i g e s t e r . peek (0 ) ;
3 Object parent = d i g e s t e r . peek (1 ) ;
4 . . .
5 // Ca l l the s p e c i f i e d method
6 I n t r o s p e c t i o nU t i l s . cal lMethod1 ( ch i ld ,
7 methodName , parent , paramType ,
8 d i g e s t e r . getClassLoader ( ) ) ;

1 public void end ( ) throws Exception {
2 Object ch i l d = d i g e s t e r . peek (0 ) ;
3 Object parent = d i g e s t e r . root ;
4 . . .
5 // Ca l l the s p e c i f i e d method
6 I n t r o s p e c t i o nU t i l s . cal lMethod1 ( parent ,
7 methodName , ch i ld , paramType ,
8 d i g e s t e r . getClassLoader ( ) ) ;

Figure 3.1: An alert (NP NONNULL PARAM VIOLATION) pattern with semantic and
syntactic differences. The code on the top is from SetTopRule.java in Tomcat6 while the
code on the bottom is from SetRootRule.java.
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Figure 3.2: Activity diagram showing the method we use to classify SA alerts given slices
for each alert.

Given a set of SA alerts, Figure 3.2 shows an overview of our method to detect actionable
and unactionable alert patterns in those alerts:

1. We calculate a set of related statements by slicing the program at the site of the alert
(discussed further in Section 3.1).

2. Using the statements from step 1 and the class hierarchy for the subject program,
we extract a set of ACs.

3. A machine learning algorithm pre-computes a model with which to classify new alerts
as actionable or unactionable. The model is trained using previously classified alerts.
Alerts are classified by the developer or inferred by the version history.

4. Using the model from step 3, the machine learning algorithm ranks each alert, with
those more likely to be actionable at the top.
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Figure 3.3: Activity diagram showing the method we use to generate SA alert slices.

3.1 Generating Alert Characteristics

Our alert pattern detection technique extracts ACs from the source code regions flagged
by SA alerts. We begin by extracting statements that are potentially relevant to the alert.
For each alert we reduce the number of statements to inspect by generating a backwards
program slice [46] for each alert. A backwards program slice takes a statement in source
code (called a seed statement) and determines which statements could have affected the
outcome of the seed statement. We use the statements flagged with alerts by SA as seeds
for program slice construction.

Figure 3.3 shows an overview of generating program slices using SA alerts as seed
statements. The program’s source code is parsed into an abstract syntax tree (AST),
which is then used to build a call graph and pointer analysis. The call graph and pointer
analysis, along with the SA alerts as seed statements are used to construct backwards slices
for each alert.

Next, we extract characteristics from the statements selected by the slicer. The first
column of Table 3.1 shows the list of statement types that we handle from the set of
statements produced by program slicing (except for “Non-Seed Statements”, which we
explain later). We recognize five different statement types:

• Call statements
(e.g., System.out.println( "Hello World!" );)

10



• New object heap allocations
(e.g., new String( "Hello World!" )),

• Binary operations (e.g., i + 1;)

• Field access (e.g., array.length)

• Catch statements (e.g., catch( Exception e )).

The second column of Table 3.1 shows the list of ACs that we extract from each state-
ment type. Below are descriptions of each characteristic.

• Call Name — The name of the method being called.

• Call Class — The name of the class containing the method being called.

• Call Parameter Signature - The signature for the method parameters.

• Return Type — The signature for the method’s return type.

• New Type — The class of the object being created.

• Concrete Type — The class of the concrete type of the object being created.

• Operator — The operator for the binary operation.

• Field Access Class — The class containing the field being accessed.

• Field Access Field — The name of the field being accessed.

• Catch — Indicates that a catch statement is present.

For example, again consider the code in Figure 3.1 where a FindBugs warning exists
on line 6 in both pieces of code. Line 6 is used as the seed statement for calculating a
backwards program slice, which will produce the set of statements at lines {2, 3, 6}. In the
code on the left, lines 2 and 3 both contain a method call (statement type “Call” in Table
3.1). The following ACs are extracted:

• Call Name: peek
• Call Class: org.apache.commons.digester.Digester
• Call Parameter Signature: (int)
• Return Type: java.lang.Object

In the code on the right, the ACs above are extracted at line 2, but at line 3 a “Field
Access” is encountered with the following ACs extracted:

11



• Field Access Class: java.lang.Object
• Field Access Field: root

Line 6 also contains a call statement in both pieces of code from which we extract:

• Call Name: callMethod1
• Call Class: org.apache.tomcat.util.IntrospectionUtils
• Call Parameter Signature: (java.lang.Object;

java.lang.String; java.lang.Object; java.lang.String;
java.lang.ClassLoader)
• Return Type: java.lang.Object

Since the AC sets are similar (the ACs from lines 2 and 6 match) in both pieces of
code, the machine learning algorithm can recognize a similar code pattern and use the
classification of one alert to classify the other.

Some alerts flag fields, methods and classes, for which we cannot produce a program
slice because we do not have a seed statement. In these cases, we extract ACs from the
field, method or class definitions. These ACs are show in the “Non-Seed Statement” section
at the bottom of Table 3.1.

3.2 Speeding Up Analysis

Generating full call graphs, points-to analysis and program slices can take quite some time
and may be impractical for larger programs given limited computing resources. To speed
up our analysis and limit memory consumption, we make the following optimizations:

Limiting Call Graph and Slice Size. We make the assumption that most patterns
that define code clones can be found within or nearby the method that the alert occurs in.
Using this assumption, we exclude all external classes (i.e. classes from libraries that are
included in the project).

We create smaller slices by using context-sensitive thin slicing as described by Sridharan,
Fink and Bodik [40]. Thin slices track only statements that have a direct effect on the
seed statement. For example, if we use the method println(data) as our seed, whatever
operations produce or modify the variable data are included in the thin slice, but not
operations that produce or modify their containing objects. This significantly limits the
size of the slice.

12



Table 3.1: Statement ACs
Seed Statements

Statement Type Alert Characteristic

Call

Call Name
Call Class
Call Parameter Signature
Return Type

New
New Type
New Concrete Type

Binary Operation Operator

Field Access
Field Access Class
Field Access Field

Catch Catch
Non-Seed Statements

Statement Type Alert Characteristic

Field

Name
Type
Visibility
Is Static/Final

Method
Visibility
Return Type
Is Static/Final/Abstract/Protected

Class
Visibility
Is Abstract/Interface/Array Class

13



Alert ID [Statement 1 Features] [Statement 2 Features] ... [Statement D Features]

Figure 3.4: Sample feature vector.

Limiting Alert Characteristic Vector Size. Because program slices can be very
large, we limit the size of the feature vector by only using features from the five nearest
statements prior to the seed in each slice (where five is the distance from the alert). This
means we only look at the five statements in the slice that are adjacent to to the seed
statement. The distance from the alert is set to five based on manual inspection of a
number of alerts that we consider to have similar patterns.

We also only include statements that we believe are relevant to detecting code clones.
Currently, this includes the statements in Table 3.1.

While these assumptions may not be correct in some cases, we feel they are necessary
for the AC generation to run in a reasonable amount of time and limit the size of the
feature vector for better machine learning performance. Our assumptions are supported
by positive results for RQ1 discussed in Section 6. In the future, we would like to study
the impact of these assumptions.

3.3 Classification

To classify new SA alerts, we need to keep track of actionable and unactionable alerts that
have been classified, along with the AC vectors for each alert. This requires a training
phase where the developer looks through a number of SA warnings and classifies them as
actionable or unactionable, or the classes of prior alerts are inferred from version histories
(as we do in section 5.1).

Over time, the developer will build a training set for the tool to differentiate actionable
and unactionable alerts. Classifying warnings can be automated by detecting which alerts
are closed from one SA to the next without any input from the developer. If there are
already a number of alert patterns in the program when the tool is first run, the developer
may classify a subset of the alerts and allow the tool to automatically classify the rest,
thus reducing the developer’s workload.

We use machine learning techniques to classify SA alerts. We test our AC set using
multiple machine learning algorithms in Section 6.
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Chapter 4

Method

We implement our AC extraction technique as an Eclipse plugin. For static analysis, we
use the T.J. Watson Libraries for Analysis (WALA) [45] and the Eclipse JDT [12] library
for AST generation.

To answer RQ1 and RQ2, we look at the following metrics: percent of actionable alerts
found, precision, recall and F-measure.

The first metric we use measures how many actionable alerts a developer would see if
she inspected the top N% of alerts in a ranked list. We express this as a percentage of the
total number of AAs so that we have a fair comparison across test subjects (which may
contain different numbers of AAs).

Given a set of ranked alerts R, a set of actionable alerts A (where A ⊆ R) and integer
N where 0 ≤ N ≤ 100, let %AAN be the percent of actionable alerts found if we inspect
the top N% of alerts in R . To get %AAN , we select the top N% of alerts in R and call
this set RN . We then extract all actionable alerts from RN into a new set called RNA.
%AAN is then |RNA|/|A| ∗ 100. For example, consider a situation where A contains 10
actionable alerts (|A| = 10) and R contains 200 alerts (|R| = 200). If N=10 then we
inspect 20 alerts (|R10| = 20). If there are five actionable alerts within R10 (|R10A| = 5),
then %AAN = 5/10 ∗ 100 = 50%. This formula is shown below.

%AAN =
|RNA|
|A|

∗ 100

We also measure precision, recall and F-measure for both classes AA and UA. Precision
is a measure of how accurate a classifier is. Recall measures the number of alerts of a given
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class that a classifier is able to correctly classify. The F-measure is a weighted average of
precision and recall.

We also calculate a weighted average of precision, recall and F-measure across both
classes (AA and UA). For this metric, precision, recall and F-measure are weighed according
to the number of alerts in each class and averaged. Given the precision, recall or F-measure
for actionable ([P,R,F]A) or unactionable ([P,R,F]U) classes, the number of actionable
alerts (AA) and the number of unactionable alerts (UA), the weighted average is:

Weighted Avg =
[P,R,F]A ∗ AA + [P,R,F]U ∗ UA

AA + UA
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4.1 Feature Vector Construction

We place our statement ACs in a feature vector according to which statement they occur
in. Because of this, the order in which statements appear in the code matters. Figure 3.4
demonstrates how we construct our feature vector, where D is the distance from the alert
as defined in section 3.2.

4.2 Classification

To classify SA alerts, we use the machine learning utility Weka [42]. We use three different
classification algorithms to classify the feature vectors: decision tree (ADTree), naive Bayes
and Bayesian network (BayesNet). The selection of these three classifiers is based on our
experience classifying alerts from the FaultBench v0.1 [20, 16] benchmark. For all classifiers
we use the default parameters.
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Chapter 5

Evaluation

We evaluate our technique on the three subject programs listed in Table 5.1: Apache
Tomcat6, Apache Commons Collections and Apache Logging for Java (Log4j). These
subjects are selected because of their size (they are large enough to have many static
analysis warnings), age (they have source code histories spanning multiple years before
FindBugs came into widespread use) and the fact that they have Subversion (a version
control system) repositories (using one single version control system for all subjects makes
implementing our evaluation easier).

5.1 Ground Truth

We first need a method to accurately classify alerts as actionable or unactionable. To do
this we use the FaultBench v0.3 [19] method proposed by Heckman and Williams [16].
This technique uses the source code history of a project to determine if alerts are actionable
or unactionable. This process is described below:

Table 5.1: Subject Programs
Subject Start Revision End Revision Revisions Revision

Interval
Size
(KLOC)

Tomcat6 June 2006 February 2008 11 2 months 110–122
Commons April 2001 July 2008 14 6 months 4–43
Log4j December 2001 November 2007 11 6 months 12–19
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1. Select a number of revisions across a subject project’s history.

2. Run a static analysis tool (FindBugs) on each revision to generate a list of alerts for
each revision.

3. Find alerts that are closed over the course of the project history:

• An alert is opened in the first revision it appears.

• An alert is closed in the first revision after the open revision where the alert is
not present (except in the case where it is not present because the file containing
it is deleted).

4. Alerts that are closed are classified as actionable, while alerts that are open following
the last revision analysed are classified as unactionable.

We chose this methodology because by definition, an actionable alert is an alert that a
developer resolves by modifying the program (at some point it will disappear from static
analysis). If it is unactionable, the alert will never disappear. If an alert is removed because
the file containing the alert is deleted, we consider the alert status as unknown and remove
it from the list.

5.2 A Baseline for Comparison

To evaluate our technique, we need a baseline to compare to. We use two baselines in
our evaluation: FindBugs priority ranking and machine learning based actionable alert
ranking.

Baseline 1 For our first baseline we use the default FindBugs ranking. FindBugs
assigns a priority measure (high, medium or low) to each alert [14]. High priority alerts
should be more likely to manifest as failures than low priority alerts, so we assume that
high priority alerts are more actionable than low priority alerts. Using this assumption,
we sort alerts according to the priority measure (higher priority alerts get ranked higher)
and randomize the order of alerts with the same priority. To eliminate any bias from
randomization, we take the average of %AAN across 100 runs.

Baseline 2 For our second baseline, we use our machine learning approach to alert
ranking (Section 4.2), but exclusively use ACs from prior research. There are many papers
that are dedicated to finding or ranking actionable alerts (e.g., [18]). We use the set of
ACs used by Heckman and Williams [17] for predicting actionable alerts. We chose this
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Table 5.2: Alert Characteristics
Group Alert Characteristic

SA Tool

Warning Class
Warning Type
Project
Package
File
Class
Method
Method Signature
Field
Field Signature
Priority
Total Alerts for Revision

Java NCSS

Classes in Package
Functions in Package
Package NCSS
Functions in Class
Class NCSS
Function NCSS
Function CCN
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Table 5.3: Alert Characteristics (continued)
Group Alert Characteristic

Subversion

Open Revision
Prior Revision
Highest Contributing Developer
File Creation Revision
File Last Modified Revision
File Age
Project Added Lines
Project Deleted Lines
Project Growth
Project Total Modified Lines
Package Added Lines
Package Deleted Lines
Package Growth
Package Total Modified Lines
Package Percent Modified Lines
File Added Lines
File Deleted Lines
File Growth
File Total Modified Lines
File Percent Modified Lines
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AC set because we feel it is the most comprehensive to date for techniques using machine
learning.

The ACs we use for this baseline are listed in Tables 5.2 and 5.3. We omit some ACs
used in [17] from this baseline. These ACs and the logic behind their omission are described
below (with AC names as defined by Heckman and Williams):

1. Number of alert modifications - This AC requires information not available at
the alert opening and therefore not available in a practical application.

2. Total open alerts for revision - In our evaluation programs, relatively few alerts
are closed and this AC essentially encodes the revision number.

3. Alert lifetime - This AC indirectly encodes whether or not an alert is closed in
future revisions and gives a classifier a trivial way to classify alerts as actionabe or
unactionable.

4. Staleness - This AC requires information not available at the alert opening and
therefore not available in a practical application.

We retrieve these ACs from the sources listed in the Group column of Tables 5.2 and
5.3. The SA Tool ACs are retrieved from our FindBugs analysis of each revision from
Section 5.1. JavaNCSS [29] is run on each revision to retrieve source code metrics. Finally,
we analyse the log files of the Subversion repositories for each subject and calculate source
code history metrics.
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Chapter 6

Results

Table 6.1 shows the FindBugs alerts produced from our FaultBench implementation. TA
represents the total number of unique alerts generated across all revisions of the subject.
The AA column lists the number of those alerts that are classified as actionable, the UA
column shows the number of alerts classified as unactionable and DA are alerts that were
closed because the file they were contained in was removed. We classify 2,249 alerts in
total and use these alerts in our experiments. 252 of these are AA and 1997 are UA. 288
alerts are not classified (DA) and are not used in our experiments.

There is no guarantee that the FaultBench method has perfect accuracy. An alert
may disappear from the alert history for reasons other than its root being fixed by the
developer. For example, the method containing the alert triggering code may be deleted,
or the developer may introduce a feature that causes the alert to disappear. To get an
idea of how accurate our FaultBench implementation is, we manually inspect all actionable
alerts from Apache Commons. We choose Apache Commons because it has a reasonable
number of alerts (52) and since it is a general purpose library, the code may be easier to
understand and reason about.

Table 6.1: FaultBench classified alerts showing actionable alerts (AA), unactionable alerts
(UA) and unclassified alerts (DA)

Subject Total Alerts AA UA DA
Tomcat6 1971 178 1733 60
Commons 329 50 102 177
Log4j 237 24 162 51
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Table 6.2: Oracle (Faultbench) Accuracy
Number of Alerts Classification Percent of Total
37 Verified 74%
9 Method Deleted 18%
2 File Moved 4 %
2 Fixed Other 4%

Table 6.3: Alerts after extracting statement ACs
Subject Total

Alerts
Unknown Statement

Level
Field
Level

Method
Level

Class
Level

Error

Tomcat6 1971 60 494 712 233 73 399
Commons 329 177 51 32 35 13 21
Log4j 237 51 66 50 17 5 48

Table 6.2 shows the accuracy of the oracle for Apache Commons. 74% of alerts labelled
as actionable by FaultBench disappeared from the alert history because they had their
root cause fixed (i.e. they are actionable), 11% because the method containing the alert
triggering code was deleted, 4% because the file containing the alert triggering code was
moved and 4% because unrelated code was changed.

Table 6.3 shows a breakdown of the alerts after generating the alert slices and extracting
ACs. Columns one and two (Total Alerts and DA) are taken from Table 6.1. Statement
Level alerts are alerts which flag a line containing a statement which can be used as a
seed statement for generating a program slice. Field, method and class level alerts flag
fields, methods and classes and therefore cannot be used as seed statements for generat-
ing a program slice. For these we use characteristics of the field, method or class (e.g.,
name, visibility, type) shown in the bottom half of Table 3.1. The Error column indicates
statement flagging alerts for which we were unable to produce a program slice (because of
cases we do not yet handle or errors during static analysis). For example, alerts flagging
statements in classes created at runtime are in this category because they do not have a
statically-known name and cannot be identified through the class hierarchy.

To answer RQ1, we look at the the ability of statement ACs by themselves to pre-
dict AAs and UAs. Table 6.4 shows the classification results using only statement ACs.
Columns two to four show the percent of actionable alerts in the top 10, 20 and 30 percent
of all warnings. Columns five through seven show the precision (AP), recall (AR) and
F-measure (AF) for actionable alerts. Columns eight through 10 show the precision (UP),
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Table 6.4: Metrics from 10-fold cross validation using only statement ACs. %AAN , Preci-
sion (P), Recall (R) and F-Measure (F) are shown using three classifiers for each subject
program.

%AAN , N = Unactionable Actionable Weighted
10 20 30 P R F P R F P R F

Tomcat6
ADTree 0.36 0.42 0.52 0.96 1.00 0.96 1.00 0.31 0.47 0.93 0.93 0.91
Naive Bayes 0.40 0.49 0.61 0.93 0.93 0.93 0.38 0.41 0.39 0.88 0.87 0.87
BayesNet 0.33 0.51 0.60 0.93 0.92 0.93 0.38 0.43 0.41 0.88 0.87 0.88

Commons
ADTree 0.13 0.29 0.49 0.75 0.73 0.75 0.53 0.58 0.55 0.69 0.68 0.68
Naive Bayes 0.24 0.49 0.64 0.60 0.47 0.60 0.45 0.84 0.59 0.71 0.60 0.60
BayesNet 0.18 0.42 0.58 0.80 0.81 0.80 0.62 0.58 0.60 0.73 0.73 0.73

Logging
ADTree 0.31 0.46 0.46 0.95 1.00 0.95 0.00 0.00 0.00 0.82 0.91 0.86
Naive Bayes 0.23 0.46 0.54 0.59 0.43 0.59 0.10 0.62 0.17 0.84 0.45 0.55
BayesNet 0.15 0.38 0.54 0.89 0.87 0.89 0.11 0.15 0.13 0.83 0.80 0.82

recall (UR) and F-measure (UF) for unactionable alerts. Finally, columns 11-13 show the
weighted precision (WP), recall (WR) and F-measure (WF).

We find that statement ACs perform significantly better than a random
ordering and conclude that alert patterns do exist. If alert patterns exist, then for
our first metric (%AAN) the classifier performance using statement ACs should perform
better than a random ordering. Using a random ordering, we would expect our %AAN

metric to evaluate to 0.1 for N=10%, 0.2 for N=20% and 0.3 for N=30%. Table 6.4 shows
a significant improvement over random for all classifiers. Take Tomcat6 and the ADTree
classifier. For N=10%, ADTree discovers three times as many actionable alerts as would
be expected for a random sorting while for N=20% that number is still over twice as many.
Since alert patterns exist, we can use them to enhance alert ranking and provide developers
with a better indication of which alerts they should investigate first.

The results in Table 6.4 also show the precision and recall for the classifiers using only
statement ACs. The average weighted precision (across all projects and classifiers) is 0.81,
the average weighted recall is 0.76 and the average weighted F-measure is 0.77. We find
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that while precision and recall for predicting actionable alerts is low (possibly because of
the low ratio of actionable to unactionable alerts), we can effectively use the classifier’s
probability distribution to rank the alerts.

For ADTree, the recall for Tomcat6 and Logging is 100%. Because there is a high
number of UAs compared to AAs, it is effective for the classifier to classify most alerts as
UA (resulting in a low recall for AAs). We might tune the precision and recall by setting
a lower threshold on the probability distribution (e.g., instead of using a 50% confidence
threshold, we say the classifier only needs to be 40% confident to classify a warning as
actionable and 60% confident to classify a warning as unactionable). For RQ2, we rank
alerts by the probability distribution.

We answer RQ2 in two parts: First we compare our method to Baseline 1 (FindBugs
priority ranking). Second, we compare our method to Baseline 2 (machine learning based
alert ranking).

Using only statement ACs (those from Table 3.1), our method discovers 38
more AAs than Baseline 1 in the top 5% of all alerts across our three subject
programs. Figures A.10, A.8 and A.11 shows the ranking results for our three subject
programs using the ADTree classifier. The y-axis shows the %AAN described in section 4,
while the x-axis shows the value of N (% of warnings inspected). Our technique using only
statement ACs is labelled Statement while FindBugs priority ranking is labelled Baseline
1. As an example, observe the graph for Tomcat6. When x=5, statement ACs discover
33% (or 51/153) of all AAs while FindBugs priority ranking discovers 10% (or 15/153) of
all AAs. Across all three subject programs, statement ACs discover 57 AAs in the top
5% of alerts and Baseline 1 discovers 19. This result shows that our technique by itself
out-performs FindBugs priority ranking and that it could be an effective tool to enhance
alert ranking.

Using statement ACs combined with SATool (FindBugs) ACs and JavaNCSS
ACs, our technique discovers four more AAs than Baseline 2 in the top 5% of
all alerts across our three subject programs. Figures A.10, A.8 and A.11 again show
the results of our evaluation. Our combined method is labelled SATool + JavaNCSS +
Statement. The machine learning results using SATool, JavaNCSS and Subversion ACs
are labelled Baseline 2. In all cases, our combined method performs better than or equal
to Baseline 2 for the top 5% and 10% of alerts. Across all three subject programs, our
method discovers 36% (75/211) of AAs in the top 5% of alerts and Baseline 2 discovers 34%
(71/211), which is a 6% improvement. This result shows that our technique out-performs
prior methods. Adding statement ACs to alert prioritization methods may be a useful tool
to help developers decide which alerts need to be resolved first.
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Figure 6.1: Commons decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure 6.2: Logging decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure 6.3: Tomcat6 decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Chapter 7

Related Work

7.1 Actionable Alert Prediction.

An abbreviated version of this work was originally published in MSR 2014 [15].

Heckman and Williams conduct a comprehensive literature review on actionable alert
identification techniques [18]. They identify 18 prior papers that provide methods of pre-
dicting actionable alerts and group what attributes were used to classify warnings as action-
able or unactionable. These methods include using alert characteristics, code characteris-
tics, source code repository metrics, bug database metrics and dynamic analysis metrics
to identify actionable alerts. In this thesis, we use attributes that would be classified as
code characteristics in the literature review. However, none of the research identified in
the literature review identifies similar code patterns and none use the code characteristics
we use in this thesis. Two closely related papers from the literature review are discussed
below.

Ruthruff, Penix and Morgenthaler use metrics and machine learning to predict action-
able FindBugs alerts in Google’s code base [39]. They use 33 metrics including information
from the warnings themselves (warning category and warning bug patterns). The bug pat-
terns reported by FindBugs contain attributes most similar to those discussed in this thesis.
However, the bug pattern information is limited (especially for more trivial checkers) [22]
and it is unclear how these attributes are used in their study. In our study, we could
theoretically modify the FindBugs checkers themselves to gather information, as FindBugs
checkers can make use of control flow and data flow graphs [22]. However, not all checkers
use this depth of analysis and program slicing is not directly supported.
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Heckman and Williams also use alert characteristics and machine learning to predict
actionable FindBugs alerts [17]. They evaluate 51 alert characteristics including those
discussed in Section 5.2. Using the FaultBench benchmark [16], they evaluate 51 alert
characteristics and 15 machine learning algorithms. This is one of the most comprehensive
actionable alert prediction studies to date and achieves very good precision and recall
(83-99%) using the FaultBench benchmark.

Our technique differs from the two above in that we include alert characteristics derived
from static analysis. Since our technique uses only metrics found within the source code,
our technique might be more practical and require less tooling. Our technique might also
be better at predicting more problematic unactionable alerts that occur frequently because
of a certain developer’s style, while still leaving important actionable alerts.

Bodden, Lam and Hendren use static analysis to deduce run-time properties of programs
[8]. They use decision trees with code characteristics as features to eliminate false positives.
The alert characteristics used in this thesis are different from ours and are used to filter
results from a much more specific type of static analysis.

7.2 Code Clone Detection.

Detecting code clones is a well studied field that involves detecting source code that has
been copied from one part of a program to another, with possible minor modifications. It
relates to this thesis because we are detecting a special kind of code clone: alert patterns.

Roy and Cordy [38] provide a summary of code clone detection techniques as well as a
study of the situations in which these techniques would work. We chose a unique detection
method that is similar to feature-based code clone detection methods discussed in the
summary.

7.3 Suppressing Known False Positives.

In a study by Chimdyalwar and Kumar [9], SA alerts that are marked as false positives
by users are suppressed from future SA runs by removing warnings from code regions that
were not affected by the latest set of changes. Our technique is complementary to this.
We automatically label alerts as unactionable or actionable in order to develop a model to
rank alerts.
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Chapter 8

Future Work

8.1 Method Improvements

In this paper we use WALA to perform an inter-procedural backwards data dependency
analysis and extract the five nearest statements from the seed statement. We found
WALA’s inter-procedural analysis to be time and resource expensive. WALA requires
a class hierarchy, data bindings, points-to analysis and call graph in order to run its de-
pendency analysis. Although WALA does allow the exclusion of some components, we
found this difficult to work with. Because of this, WALA might not be suitable for larger
evaluations or mining applications.

We are currently developing a lightweight intra-procedural analysis that only inspects
the method containing the alert. We believe this analysis will scale to large evaluations
and mining applications. Using this analysis, we plan on evaluating our technique on
more subject programs and revisions, comparing the run times of retrieving statement
ACs to that of other (e.g., version history) ACs, investigating what statement ACs rank
alerts the best and mining alert patterns on a large scale (e.g., to evaluate our technique’s
inter-project potential).

Another improvement we might consider is to adopt a bag of words approach. In this
case we collect words from our current feature set (e.g., statement types, method names and
field names) and use them as features. A feature’s value is then the number of occurrences
of that word in the statements we inspect. By doing this, we get two potential benefits:

1. The order of the statements does not matter (as it does with our current method).
This is true because the bag of words approach counts the number of occurrences
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of words in the statement set rather than using those words as values of ordered
statement features.

2. We can use natural language processing to extract words or tokens from method and
field names. For example, if we have a call to a method named closeUserFile( ), it
might be useful to extract the words close, user and file from the method name.
The fact that the method contains the word close might be more meaningful than
the fact that the method contains the string closeUserFile (e.g.,Figure 2.3).

We have done some preliminary evaluations using a bag of words approach by pivoting the
statement feature vector from Section 6. These results are displayed in Appendix A.4.

8.2 Evaluation Improvements

The method we use to evaluate the effectiveness of actionable alert ranking techniques can
be improved. In our current evaluation we randomly order all alerts (generated across
multiple revisions) and use cross validation to evaluate the classifiers. In a real world
application, the developer performs changes in a temporal order and alerts appear and
disappear following that order. To most accurately mimic a real world application, we
should therefore:

1. Extract alerts at a revision level granularity. Ideally, the static analysis tool is run on
each source control revision over some time period. This ensures that no actionable
alerts are missed (i.e. alerts that are opened and closed in the set of uninspected
revisions between two revisions that are inspected).

2. Train the classifiers on alerts that occur on or before the revision we wish to classify
alerts for. For example, take a developer performing a static analysis task on revision
3 of some software. He has classified the results for revisions 1 and 2, which make
up the training set. Because revisions > 3 do not exist yet, they cannot be used
to classify revision 3. Since we can not use alerts that will occur in the future in
practice, we should not in our evaluation.

These changes to the evaluation would demonstrate how effective our technique is as
a developer aid. Ideally, when a developer classifies a new alert, our technique can then
correctly classify all future alerts with a similar pattern. We can then measure the number
of unactionable alerts which the developer does not have to view.

33



8.3 Inspecting All Alerts

An often overlooked part of static analysis is the benefit of fixing bad practice alerts as
well as the time spent reviewing code while investigating alerts. A case might be made
that developers should fix or investigate all static analysis alerts, since this may lead to
improved code (fewer post-release defects). In fact, Nagappan and Ball demonstrate how
Microsoft uses the number of static analysis alerts to predict how many defects will be
found through testing [33]. This might suggest that if developers fix all static analysis
alerts, the code will have fewer defects that aren’t detected directly by static analysis.

Performing this research would be a difficult task. Two ways we might do this are
through a user study or by mining software repositories.

A user study would have a number of challenges. Real world software systems are
large and evolve over years. The effects of repairing all static analysis alerts might not
manifest until a few months or even years after the practice starts. A user study in a lab
environment therefore might not be suitable because subjects are generally available for
a very short period of time. Real world software system are also complex. Having users
modify a small program might not reflect a real world setting. Still, a user study operating
on a small program might give us insights into whether or not repairing all alerts improves
code quality.

Mining software repositories might give us insights into a potential relationship between
the number of alerts and the number of defects. However, external factors are difficult to
control. For example, every software system is built and maintained by different developers
for different purposes. The results for a web browser might not generalize to a web server.
Other factors that would need to be controlled include commercial vs. open source software,
software age and position in the software lifecycle.

8.4 Tool Improvements

Reducing the number of unactionable alerts is only one part of a bigger challenge of getting
the software community to adopt static analysis tools. Johnson et. al. [24] conduct a user
study to investigate why developers do not use static analysis tools. One of their findings
is that developers want information about potential bugs inside the editor with the code
it is flagging. Commercial tools address this problem somewhat by providing web based
code browsers where a user can trace through the events that led to the alert with in-code
annotations. Modern IDEs are not yet equipped to support this functionality. It may be
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worth studying this more to build a case for (or direct the implementation of) better IDE
support for bug understanding.
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Chapter 9

Conclusions

In this thesis we present alert patterns: similar patterns of code that are frequently flagged
by SA alerts that as a group may or may not result in remedial action by a developer. We
introduce a technique for finding alert patterns using statement ACs.

We show that SA alert patterns do exist by using our technique, which is able to rank
57/211 actionable alerts in the top 5% (113) of all warnings, while the standard FindBugs
ranking only finds 19.

We show that SA alert patterns can improve actionable alert ranking. Our technique
combined with previous work finds 75/211 actionable alerts, or four more (a 6% improve-
ment) than previous actionable alert prediction techniques. By tuning our method and
incorporating cross-project data, we believe we can significantly improve our method for
practical use.
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Appendix A

Full Classification Results

A.1 All Feature Combinations

To find the best combination of features, we produce graphs showing all feature-group
combinations (using the SATool, JavaNCSS, Subversion and Statement feature groups
from Tables 5.2 and 5.3). These graphs show the results for all feature-group combinations
for values up to N=20%.

38



0 10 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Commons_SL + ADTree

% of Warnings

A
c
ti
o

n
a

b
le

 /
 T

o
ta

l

SATool,JavaNCSS,Subversion,Statement
JavaNCSS,Subversion,Statement
SATool,Subversion,Statement
SATool,JavaNCSS,Statement
SATool,JavaNCSS,Subversion
Subversion,Statement
JavaNCSS,Statement
JavaNCSS,Subversion
SATool,Statement
SATool,Subversion
SATool,JavaNCSS
Statement
Subversion
JavaNCSS
SATool
Findbugs Priority (Baseline)

Figure A.1: Commons decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.2: Logging decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.3: Tomcat6 decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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A.2 Seed Statement Results

Graphs of classification results for alert types flagging seed statement (i.e. the alerts do
not flag fields, methods or classes).
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Figure A.4: Commons decision tree results showing the percent of actionable alerts found
within the first n% of warnings.

41



0 10 20 30 40 50 60 70 80 90 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Logging_ST + ADTree

% of Warnings

A
ct

io
n

a
b

le
 /

 T
o

ta
l

SATool,JavaNCSS,Statement
SATool,JavaNCSS,Subversion
Statement
Findbugs Priority (Baseline)

Figure A.5: Logging decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.6: Tomcat6 decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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A.3 Non-seed Statement Feature Graphs

Graphs of classification results for alert types flagging non-seed statements (i.e. the alerts
flag fields, methods or classes).
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Figure A.7: Commons decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.8: Logging decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.9: Tomcat6 decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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A.4 Bag of Words Approach

Graphs of classification results using a bag of words approach.
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Figure A.10: Commons decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Figure A.11: Tomcat6 decision tree results showing the percent of actionable alerts found
within the first n% of warnings.
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Appendix B

UML Diagrams

B.1 Process Sequence Diagram

Researcher

Generate alerts & 
determine ground truth.

Set of static analysis
alerts & their
classification.

Alert Acquisition & Classification

Faultbench

Feature Generation

JClone

Alert Classification

WEKA

Generate the feature vectors for the alerts 
(includes alert, NCSS, SVN and statement features.)

Set of feature vectors for all alerts.

Classify alerts (using cross-validation or training/testing sets in temporal order).

Classifier / ranking performance results.

Figure B.1: A sequence diagram showing the interaction between the researcher and soft-
ware components in order to investigate the performance of the feature set.

47



B.2 Feature Generation Sequence Diagrams

FeatureGeneration JClone JavaNCSS SVNSourceHistoryMetrics WALA FeatureVector

Create Feature
Vector

Get FindBugs 
Features

Get JavaNCSS
Features

Get SVN Features

Get Related Statements (Dependencies)

Get Statement 
Features

Get Statement Feature Vector

Get Feature
Vector

Figure B.2: A sequence diagram showing the interaction between classes in the JClone
feature generation software component that is used for this work.
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FeatureGeneration JClone JavaNCSS SVNSourceHistoryMetrics Slicer AbstractFeatureVector

Create Feature
Vector

Get FindBugs 
Features

Insert FindBugs Features

Get JavaNCSS
Features

Insert JavaNCSS Features

Get SVN Features

Insert SVN Features

Get Related Statements (Dependencies)

Insert Statements

Get Statement 
Features

Get Feature Vector

Feature Vector for Alert

Figure B.3: A sequence diagram showing the interaction between classes in the next-
generation JClone feature generation software component (as discussed in Section 8.2).
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