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Abstract

Anomaly detection problems can be classified into three categories: point anomaly

detection, collective anomaly detection and contextual anomaly detection [10]. Many al-

gorithms have been devised to address anomaly detection of a specific type from various

application domains. Nevertheless, the exact type of anomalies to be detected in practice

is generally unknown under unsupervised setting, and most of the methods exist in lit-

erature usually favor one kind of anomalies over the others. Applying an algorithm with

an incorrect assumption is unlikely to produce reasonable results. This thesis thereby in-

vestigates the possibility of applying a uniform approach that can automatically discover

different kinds of anomalies. Specifically, we are primarily interested in Spectral Ranking

for Anomalies (SRA) for its potential in detecting point anomalies and collective anomalies

simultaneously. We show that the spectral optimization in SRA can be viewed as a re-

laxation of an unsupervised SVM problem under some assumptions. SRA thereby results

in a bi-class classification strength measure that can be used to rank the point anoma-

lies, along with a normal vs. abnormal classification for identifying collective anomalies.

However, in dealing with contextual anomaly problems with different contexts defined by

different feature subsets, SRA and other popular methods are still not sufficient on their

own. Accordingly, we propose an unsupervised backward elimination feature selection

algorithm BAHSIC-AD, utilizing Hilbert-Schmidt Independence Critirion (HSIC) in iden-

tifying the data instances present as anomalies in the subset of features that have strong

dependence with each other. Finally, we demonstrate the effectiveness of SRA combined

with BAHSIC-AD by comparing their performance with other popular anomaly detection

methods on a few benchmarks, including both synthetic datasets and real world datasets.

Our computational results jusitify that, in practice, SRA combined with BAHSIC-AD can

be a generally applicable method for detecting different kinds of anomalies.
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Chapter 1

Introduction

1.1 Motivation

The problem of anomaly detection is to find the data patterns that deviate from expected

normal behavior in a given dataset [10]. The patterns that do not conform with nor-

mal pattern are generally referred to as anomalies, and the terms outliers, novelties, and

exceptions are often used interchangeably in literature.

An enormous demand exists for anomaly detection mechanisms from a large variety

of application domains, these include but not limited to detecting intrusion activities in

network systems, identifying fraud claims in the health or automobile insurance, discov-

ering malignant tumor in MSI image, and capturing suspicious human or vehicles from

surveillance videos.

The economical value created by successful anomaly detection methods can also be sig-

nificant. For instance, insurance fraud has been a severe problem in insurance industry for

a considerably long time. While being difficult to estimate the exact loss due to insurance

fraud, fraud cases are believed to account for around 10% of total adjustment expenses

and incurred losses [27]. The situation is even more severe in certain subcategories. For

automobile insurance, this figure goes up to 36% as reported in [14], however, only 3%

among them are prosecuted. Since the fraud detection can be modeled as an anomaly de-
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tection problem, substantial loss reduction can be achieved by effective anomaly detection

algorithms.

Consider network intrusion detection system [40] [34] as another application of anomaly

detection. Almost all contemporary web-based applications, and upper level facilities,

require a secure networking infrastructure as their foundation. One important aspect of

security is to prevent networking systems from malicious activities. The intrusions include

any set of actions that threatens availability or integrity of networking resources. An

effective anomaly detection method is evidently crucial for such a system, so that it can

keep monitoring the network for possible dangerous misuse and abnormal activities. With

anomalies being discovered, alarms can be raised for further actions.

Just as previous examples have shown, reasons for presence of anomalies are usually

problem dependent. They can be pure noise introduced in data migration, or misrepre-

sented information injected by people with malicious intension. However, despite their

differences in actual causes, the main types of anomalies can be broadly categorized into

three, i.e. point anomalies, collective anomalies, and contextual anomalies [10]. While

many of ad-hoc methods proposed focus on a very specific problem, more studies focus on

generic methods that can find a broad type of anomalies (e.g. point anomalies) instead.

Although ad-hoc approaches can be more effective for a particular case, their success re-

lies on a very good understanding about the nature of the problem. Since attempting to

understand the cause of the anomalies, if not impossible, can pose additional complication

to the study of the problem, the generic methods which can be applied to detection of

different types of anomalies are thereby more desirable in general.

Most of existing anomaly detection methods adopt machine learning techniques, for

the reason that machine learning methods are generally very powerful in terms of ex-

tracting useful data patterns from the problem with considerable size and complexity [24].

Depending on whether labels are required and how many labels are actually used, these

machine learning methods can be further classified into supervised learning algorithms,

semi-supervised learning algorithms, and unsupervised learning algorithms. Different from

many other applications, where supervised learning normally plays the most important

role, a large proportion of anomaly detection problems can only be formulated as unsuper-

vised learning problems. This is primarily because of the practical difficulty in acquiring
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labels for many real world applications. Although many unsupervised learning methods

have been devised, we usually see strong assumptions made by these methods to detect

only a specific type of anomaly. Under these assumptions, the results often favor one type

of anomaly over the others. This makes it especially hard for users to choose appropriate

unsupervised algorithm when the nature of problem to be addressed is not obvious.

Therefore, we are interested in a more general unsupervised learning method that can

handle different kinds of anomalies at the same time. Based on the interpretation presented

in [58], Spectral Ranking for Anomalies (SRA) proposed in [37] has the potential to tackle

point anomalies and collective anomalies at the same time. Meanwhile, we notice how

Hilbert-Schmidt Independence Criteria (HSIC) has the property of capturing arbitrary

dependence relationships in a kernel space which can potentially be helpful in feature-

contextual anomaly detection. Therefore, based on SRA and HSIC, this thesis proposes

an unsupervised learning framework that has the flexibility to adapt to different types of

anomaly detection problems with little tuning of parameters.

1.2 Thesis Contribution

This thesis first reviews anomaly detection problem in general by discussing three most

common types of anomalies, namely point anomalies, collective anomalies and contextual

anomalies. It then reviews prevailing machine learning approaches with a focus on unsu-

pervised learning methods. Comments are made on advantages and limitations that are

shared in common by these approaches.

The Spectral Ranking for Anomalies (SRA) proposed in [37] is investigated in greater

details. In this thesis, we focus on the connection between SRA and unsupervised Support

Vector Machine (SVM) as presented in [58]. We demonstrate how spectral optimization

based on a Laplacian matrix can be viewed as a relaxation of the unsupervised SVM. Specif-

ically, it can be interpreted, under reasonable assumptions, as a constant scaling-translation

transformation of an approximate optimal bi-class classification function evaluated at given

data instances. Based on this perspective, we justify how SRA has the potential to tackle

point anomalies and collective anomalies at the same time by relating different settings of
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SRA to different kinds of anomaly being detected.

We further observe limitations of SRA and other unsupervised methods in handling

feature-contextual anomalies on their own. We thereby propose an unsupervised feature se-

lection filter scheme, named BAHSIC-AD, based on Hilbert-Schmidt Independence Criteria

(HSIC) for the purpose of identifying correct feature contexts of the contextual anomalies.

By utilizing the property of HSIC, the proposed method can retain a subset of features

that has strong dependence with each other in the implicit feature space. It thereby recon-

structs the contexts for approaches like SRA to address the feature-contextual anomalies.

With the insight we gain from unsupervised SVM and unsupervised feature selection, we

discuss how SRA combined with BAHSIC-AD has the flexibility to handle all three kinds

of anomalies with proper assumptions and appropriate problem formulations.

Computational results are presented to compare SRA and other approaches (with or

without unsupervised feature selection) for different types of anomaly detection problems.

Both synthetic data and real world dataset are utilized to evaluate the methods. We show

that SRA can identify both point anomalies and collective anomalies simultaneously and

HSIC helps reconstruct the contexts for detecting contextual anomalies. In addition, we

take automobile insurance fraud detection as an example to illustrate how feature selection

with HSIC also helps in improving the interpretability of the anomaly ranking results.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 provides the background about different types of anomaly detection problems

and reviews the popular machine learning methods to address them.

Chapter 3 investigates the SRA algorithm with the perspective made in [58] which

relates SRA with the unsupervised SVM problem. With the connection built with unsu-

pervised SVM, it justifies how SRA has the potential in detecting both point anomalies

and collective anomalies at the same time.

Chapter 4 proposes an unsupervised feature selection scheme based on HSIC to facilitate
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SRA and other approaches in handling contextual anomalies with contexts being defined

by feature subsets.

Chapter 5 compares the performance of SRA (with or without BAHSIC-AD) with other

anomaly detection methods on both synthetic datasets and real world problems. We also

justify how the algorithm improves the effectiveness and interpretability of the anomaly

ranking results by studying its performance on an automobile insurance fraud detection

dataset.

Chapter 6 concludes the thesis by highlighting the major contributions being made as

well as potential directions for future exploration.
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Chapter 2

Background

2.1 Types of Anomalies

Suppose we have a set of m training examples D = {x1,x2, · · · ,xm}, where xi ∈ X ⊆ Rd,

the goal of anomaly detection or anomaly ranking is to generate a ranking score f =

{f1, f2, · · · , fm} for each example in D where higher value of fi indicates the instance xi

more likely to be an anomaly.

As discussed in the survey of anomaly detection [10], the most common types of anoma-

lies can be classified into three major categories, i.e. point anomalies, collective anomalies,

and contextual anomalies. Point anomaly refers to the individual data instance that clearly

deviates from the rest of the dataset. Collective anomalies, on the other hand, refer to

the anomalous behavior revealed by a group of data instances. Point anomalies are the

most common anomalies discussed and studied in anomaly detection literature whereas the

collective anomalies is relatively less encountered but frequently emerged as a rare class

classification problem. These two kinds of anomalies are discussed together in Section 2.1.1.

Lastly, contextual anomaly refers to data instances that are anomalous in a certain context,

and not otherwise. Note that, the definition of contextual anomaly requires a clear notion

of “context” being defined and the definition of the contexts is crucial for anomalies to be

identified. The contexts can be feature subset, data clusters etc. Also, being contextual
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anomaly is not exclusive to other kinds of anomalies, as it is possible to have “contextual

point anomalies” and “contextual collective anomalies”. This thesis focuses on contextual

anomalies with contexts being defined by feature subset, and we provide our discussions

in Section 2.1.2.

2.1.1 Point Anomalies and Collective Anomalies
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Figure 2.1: Examples of point anomalies (a), collective anomalies (b), and combination of

both (c)

Examples of both point anomalies and collective anomalies are presented in Figure 2.1.

Subplot (a) presents two balanced moon shape clusters, each consists of 500 points. There

are additional 100 points (grey stars) uniformly scattered around the two moons which are

clearly anomalies with respect to the two major patterns. Therefore, the grey star points

can be treated as our examples of the point anomalies. Subplot (b), however, presents

two unbalanced moon patterns. The lower moon (blue) consists of 1000 points in total

and thereby has much higher mass and density compared with the upper moon (red),

which is only of size 300. In this scenario, the lower moon forms the major pattern of the

whole dataset. The individual points inside the red moon still lies inside the cluster, and

thus cannot be treated as point anomalies. They however collectively form an anomalous

pattern that deviates from the major pattern, i.e. the blue moon. This whole group of

red points can then be treated as an example of collective anomalies. Subplot (c) shows a
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combination of the two, where we have unbalanced patterns together with random scattered

noise. The right subplot in the figure also shows the possibility for the presence of both

kinds of anomalies in the same dataset.

2.1.2 Contextual Anomalies

Contextual anomalies is another type of anomalies that is frequently encountered in real

world applications. Nevertheless, compared with point anomalies and collective anomalies,

it is less studied in general because of the broad concept of “context”. Within same

dataset, different data instances can reveal distinctive anomalous behavior with different

notion of “context”. Indeed, a data cluster presents in the dataset can be a useful context

and a specific feature subset can as well be a meaningful context. Therefore, a proper

defined context is required if a reasonable anomaly ranking is expected. Most of successful

approaches in literature indeed tended to be ad hoc or tailored for a particular kind of

data such as time-series data [45] and spacial data [29] such that the notion of “context”

is defined specific to the problem.

In this thesis, we focus on the feature-contextual anomalies with a reasonable assump-

tion that different contexts of data correspond to different feature subset. These anomalies

are also referred to as conditional anomalies in [51]. The feature-contextual anomalies

actually emerge more frequent than people would normally expect. In many real world ap-

plications, when people construct the dataset, they normally tend to include features that

are potentially relevant at the risk of introducing additional noise. However, this can com-

promise the performance of unsupervised anomaly detection algorithms when they simply

treat all the features equally.

Consider the synthetic data presented in Figure 2.2 as an example of feature-contextual

anomalies. Suppose we have the following data with three features as shown on the

left side of Figure 2.2. The first two features are the noisy two moons which are very

similar to the point anomaly dataset presented in Figure 2.1, whereas the third dimen-

sion is an additional noisy feature that we have injected into the original dataset. In

this case, it is very difficult to identify red points as anomalies when we select subset

{feature1, feature3} or {feature2, feature3}, but they are clear anomalies when we only
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Figure 2.2: Example of feature-contextual anomalies defined by a feature subset: noisy

two moons with an additional noisy feature
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observe from {feature1, feature2}. Although the red points can still be identified with the

full feature set, they are definitely not as clear when we observe from the first two dimen-

sions. In this case, it is obvious that feature3 adds no value in detecting the anomalies and

the best feature contexts for anomaly detection is the subset features {feature1, feature2}.

2.2 Unsupervised Learning for Anomaly Detection

The existing machine learning approaches for anomaly detection in literature can be clas-

sified into three broad categories: supervised learning methods, unsupervised learning

methods and semi-supervised learning methods. The difference among three categories

lies in how many labeled training samples are utilized in the training process. Supervised

learning usually requires a full labeled training set. Unsupervised learning, on the other

hand, requires no labeled data instance in training. Lastly, semi-supervised operate on the

dataset that has only limited number of labeled samples (e.g. only part of normal instances

are labeled).

When the labels are actually available, it is generally preferable to apply supervised

learning approaches, since the labels can provide additional information about the depen-

dence relationship between features and the labels. Nevertheless, a very large number of

anomaly detection problems are formulated as unsupervised learning problems instead of

supervised learning problems. One important reason for the popularity of unsupervised

learning is the implicit assumption made by most of anomaly detection methods [10].

Namely, the normal instances generally account for the majority of the dataset. Therefore,

even without the labels, the pattern revealed by majority of the data can be considered as

the normal class. Accordingly, many techniques designed for anomaly detection problems

fall into the unsupervised learning category.

A more important reason for choosing unsupervised learning is the fact that the clean

labeled training data are very scarce for many real world applications. The labels of the

data can be difficult or even impossible to obtain due to practical limitations. Consider

insurance fraud detection again as an example, people who commit fraud would normally

deny their dishonest behavior unless strong evidence is presented. This also implies exis-
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tence of a large portion of unidentified fraud cases in the historical data. Additionally, as

time evolves, different types of anomaly emerge. Although supervised learning can best

mimic human decisions, they however lack the capability in discovering novel patterns.

This can potentially cause oversight of new kinds of fraud behavior. We thereby see the

necessity of applying unsupervised learning techniques for these problems.

In the following subsection, we review different unsupervised learning approaches in

Section 2.2.1 and the common problems they share in Section 2.2.2.

2.2.1 Existing Unsupervised Learning Methods

While there are numerous unsupervised learning methods designed for different tasks, here

we review some of the most commonly used approaches along with their applications and

assumptions behind them.

Nearest-Neighbor Based Methods

Nearest-Neighbor based methods are among most primitive methods to approach anomaly

detection problems. The most basic example is the classical k-Nearest Neighbor (k-NN)

global anomaly score. Given a set of training data, the k-NN algorithm finds the k data

points that have the smallest distance to each of the data instance, and the score is assigned

by either the average distance of the k nearest neighbors [59] [3] [6] or simply the distance

to the k-th neighbor [9] [43]. The basic assumption is that, the data point with higher

distance to its neighbors is more likely to be an anomaly and the normal instances generally

lie closer to its neighbors. While being simple and intuitive, the effectiveness of k-NN

methods however depend on the parameter k as well as an appropriate similarity or distance

function. The choice of distance function is especially important to make k-NN feasible on

the dataset with non-continuous features (e.g. nominal), and we note that several attempts

[54] [38] have been made to address the issue .

Density Based Methods

Density based methods are very similar to nearest-neighbor based methods. They also rely

on a notion of distance defined over the data and follow similar assumption as the nearest-

neighbor based approaches that normal data instances lie in a dense neighborhood whereas

11



anomalous instances usually have a neighborhood with low density. However, instead of

taking a global point of view as in nearest-neighbor based methods, density based methods

generally only take local density into consideration.

The most commonly used density-based method is Local-Outlier Factor (LOF) as pro-

posed in [8]. The local density of a data instance is calculated by first finding the volume

of the smallest hypher-sphere that encompass its k-th nearest neighbors. The anomaly

score is then derived by taking the average of the local density of its k-nearest neighbor

and the local density of the instance itself. The instance in a dense region are assigned a

lower score while the instances lie in the low density region will get higher score.

There are many variation of LOF methods that follow similar assumptions. The al-

gorithm of Outlier Detection using In-degree Number (ODIN) simply assign the anomaly

score as the inverse of the number of instances that have the given instance in their neigh-

borhood [25]. An noticeable variation called Local Correlation Integral (LOCI) is proposed

in [39]. LOCI claims to detect both point anomalies and a small cluster of anomalies at the

same time. One final variation is the local outlier probabilities (LoOP)[30] which improves

the interpretability of the ranking score by adopting a more statistically-oriented approach.

Clustering Based Methods

Clustering is one major stream of unsupervised learning research and many anomaly

detection algorithms are built on top of existing clustering methods. The fundamental

assumption behind most clustering based methods is that normal instances should form

clusters while anomalies either do not belong to any cluster or lie far away from the closest

cluster centroid. A few clustering methods have been proposed with the capability to

exclude anomalies (noise) from clustering results, such as Density-based spatial clustering

of applications with noise (DBSCAN) [18] and shared nearest neighbors (SNN) clustering

[17]. They can also be applied to only identify the anomalies. However, since the methods

are originally proposed for the purpose of clustering, they are generally not optimized for

the purpose of anomaly detection.

Another clustering-based scheme is based on a two step process. It first applies an

existing clustering algorithms (e.g. k-means [32], Self-Organizing Maps [28] or Hierarchical

Clustering [35]) to obtain clusters in the data along with the calculated centroids, then the
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anomaly scores are assigned as the distance to the closest cluster centroid.

One-Class Classification Based Methods

Anomaly detection problems can also be formulated as one-class classification problems.

The basic assumption is that there exists only one class, i.e., the normal class, in the

training set. The method then learns a boundary for the normal class, and classifies all

the training instances outside the boundary as the anomalies. Examples of this category

are the one-class Support Vector Machine (OC-SVM) [47] and one-class Kernel Fisher

Discriminants [44], OC-SVM is especially popular for many applications. These methods

usually utilize the kernel methods [48] so that they can be generalized to compute non-

linear boundaries. Note however, it is not necessary for the training set to be truly one-class

(every data instance comes from one class) for algorithms to produce reasonable results.

For instance, after transforming the feature using kernel trick, the OC-SVM tries to find

the smallest sphere enclosing the data in the space defined by kernel. The dissimilarity to

the center of the sphere can then be utilized as the anomaly score.

2.2.2 Limitations of Existing Approaches

There are some common problems shared by the existing unsupervised learning methods in

general. Successful unsupervised learning methods require a clear assumption made on the

data. However, we see all the unsupervised approaches are based on the assumption that

favors one kind of anomalies over the other, and most commonly, they favor towards the

detection of point anomalies. This is especially true for most of clustering-based methods

and density based methods. Assumptions of these methods generally ignore the possible

existence of collective anomalies. Even methods, e.g. LOCI, that do take some special

cases of collective anomalies into consideration, they are effective in cases that are specially

addressed, such as micro-clusters formed by a very small group of anomalies.

Moreover, we notice that most unsupervised anomaly detection algorithms themselves

are generally incomplete in dealing with feature-contextual anomalies. Consider again the

example presented in Figure 2.2. Under unsupervised learning settings, the potential noisy

feature can dramatically compromise the performance of these algorithms if they treated
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all the features equally. In order to handle cases like this, it is necessary to introduce an

unsupervised feature selection process whenever it is needed.

2.3 Receiver Operational Characteristic Analysis

Before we dive into the details of SRA, we review the Receiver Operational Characteristic

(ROC) Analysis since this will be an important evaluation method for the forthcoming

discussion in this thesis.

A ROC graph is a visualization tool for evaluating the performance of various classifiers.

Since we are only interested in anomaly detection problems, we illustrate the concept

under the settings for anomaly detection. We begin by considering an arbitrary anomaly

detector A. Essentially, A is a classifier that maps an input instance x to either positive

class, being anomaly, or negative class, being non-anomaly. However, instead of output

class membership directly, it is more often the case that A simply generate a continuous

output (e.g., an estimate of the probability) indicating the likelihood of this instance being

anomaly. Then a threshold is chosen to determine the class membership.

True

Positive
y = 1

A(x) = 1

False

Negative

A(x) = 0 total

m+

False

Positive
y = −1

True

Negative
m−

Actual

Value

Anomaly Detection Outcome

Figure 2.3: Example of confusion matrix

There are four possible outcomes with A and x. More precisely, if x is anomaly, and
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indeed classified as being anomaly, it is counted as true positive. If it is classified as non-

anomaly, it is counted as false negative. Similarly, if x is not an anomaly, but mistakenly

classified as an anomaly, it is counted as false positive. If it is correctly classified as non-

anomaly, it is a true negative. These quantities are generally summarised in a confusion

matrix as shown in the Figure 2.3.

We can then calculate the following metrics based on the classification result, i.e. True

Positive Rate (TP Rate),

TP Rate =
Anomalies correctly identified

Total number of anomalies

and False Positive Rate (FP Rate)

FP Rate =
Anomalies incorrectly identified

Total number of anomalies

If we vary the threshold, we can obtain different classification results. We thereby

obtain a set of pairs of TP Rate and FP Rate correspond to different threshold values. By

plotting the relationship between TP Rate and FP Rate, we obtain a ROC graph as shown

in Figure 2.4.

For anomaly detection problems, if we change the threshold, we can include more data

instances as anomalies, but at the risk of falsely including the normal cases. Therefore,

we are usually interested in the trade-off between the benefits (higher TP rate) and costs

(higher FP rate). This information can be obtained from the ROC graph, even without

any prior knowledge about the actual costs due to misclassification. When we have all

possible combinations of TP rate and FP rate, real world applications often require an

optimal optimal operating point where we set the actual threshold in making the decision.

This can be the point on the ROC curve that is closest to the ideal upper left-hand corner

or simply the point corresponds to the maximum FP rate that we can possibly tolerate

[52]. However, since selecting operating point is really problem dependent, we are more

interested in a universal criterion to directly compare different ROCs.

In order to use a single scalar value to compare two or more ROCs generated by

different anomaly detectors, it is natural to use the Area Under the ROC Curve (AUC) as

the comparison criterion. Since the plot is on a unit square, the value of AUC will always
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lie between 0 and 1.0, and a random guess will result in an 0.5 AUC. Although a ROC has

a higher AUC is not necessarily better than one with a lower AUC in a certain region of the

ROC plot, the value of AUC is generally a very reliable measure in practice. An important

property of AUC is that, it is equivalent to the probability that the anomaly detector ranks

a randomly chosen positive instance higher than a randomly chosen negative instance in

the given dataset [19]. It is also equivalent to the U statistic in the Mann-Whitney U test

as shown in [23].

The AUC will be our main evaluation criterion in Chapter 5, when we compare the

performance of different anomaly detection methods.
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Figure 2.4: Examples of Receiver Operational Characteristic (ROC) curves
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Chapter 3

Spectral Ranking for Point and

Collective Anomalies

In this chapter, we analyze and discuss the algorithm of Spectral Ranking for Anomalies

(SRA) as proposed in [37]. In Section 3.1, we present the SRA algorithm and discuss the

motivation behind it. In Section 3.2, we analyze how spectral optimization based on the

Laplacian matrix can be interpreted as a relaxation of an unsupervised SVM. Based on

this connection between SRA and unsupervised SVM, we further justify effectiveness of

SRA in handling point anomalies and collective anomalies in Section 3.3.

3.1 Spectral Ranking for Anomalies

3.1.1 Spectral Clustering

We start our discussion with a brief review on Spectral Clustering [53], which has motivated

the SRA algorithm. Spectral clustering has gained its popularity in recent studies of

clustering analysis. It has shown to be more effective than traditional clustering methods

like k-means and hierarchical clustering. It is especially successful for applications like

computer vision and information retrieval [49] [57] [15].
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Suppose we have a set of m training examples D = {x1,x2, · · · ,xm}, where xi ∈ X ⊆
Rd. The goal of spectral clustering is to group data instances into k groups so that data

instances in each group are more similar to each other than to those in other groups.

Successful spectral clustering relies on a notion of similarity defined over data instances

which is provided in the form of a similarity matrix. We denote the given similarity matrix

as W ∈ Rm×m where Wij is the similarity between instance xi and instance xj. Note

however that, the choices for the kernel and similarity measure is problem dependent and

not the subject of this thesis. We refer interested readers to [37] for a more detailed

discussion on these issues. For the convenience of later discussion, we also let the degree

vector d be di =
∑

jWij, i = 1, 2, · · · ,m, as well as D be the diagonal matrix with d on

the diagonal.

The most important element for spectral clustering is the graph Laplacian matrix.

There exist several variations of Laplacian matrices with different properties. The most

popular ones include

• Unnormalized Laplacian [49]: L = D −W

• Random Walk Normalized Laplacian [12]: L = I −D−1W

• Symmetric Normalized Laplacian [36]: L = I −D− 1
2WD−

1
2

As discussed in [53], different variations of spectral clustering algorithms utilize different

graph Laplacians. However, the main ideas of these algorithms are similar. Namely, they

use graph Laplacians to change the representation of data so that it is easier to determine

cluster membership in their new representations. In this thesis, we focus on the symmetric

normalized Laplacian for majority of the discussion, and only briefly discuss unormalized

Laplacian. Moreover, the symmetric normalized Laplacian is the primary graph Laplacian

adopted by our SRA algorithm.

Following the spectral clustering algorithm in [36], an eigendecomposition is performed

on the Laplacian matrix L. Assume that the derived eigenvectors are g∗0,g
∗
1, · · · ,g∗n−1

which are associated to the eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1 respectively. We then use

the first k eigenvectors to construct a matrix U ∈ Rn×k such that columns correspond to
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the eigenvector g∗0,g
∗
1, · · · ,g∗k−1. After normalizing the rows of U to 1, we get a new set of

representations of the original data instances. More specifically, the i-th row of normalized

U is a new representation of xi in the k dimensional eigenvector space. Finally, we can

apply a traditional clustering algorithm, usually the k-means algorithm, to this new set of

representation to figure out the cluster membership.

Note that, each non-principal eigenvector can be regarded as a solution to a relaxation

of a normalized graph 2-cut problem. It finds a bi-class partition of the data in the

space orthogonal to all previous k − 1 eigenvector space. Therefore, spectral clustering

can actually be interpreted as a k-step iterative bi-cluster classification method. A more

rigorous and detailed discussion is provided in [53], along with other interpretations of

spectral clustering.

3.1.2 Spectral Algorithm for Anomaly Detection

Inspired by spectral clustering, Spectral Ranking for Anomalies (SRA) has been proposed

in [37] as a novel method to address anomaly detection problems. For practical applications

like automobile insurance fraud detection where multiple patterns present as being normal,

SRA has shown to be more effective than many traditional anomaly detection methods

we have mentioned in Chapter 2, such as one class Support Vector Machine (OC-SVM),

Local Outlier Factor (LOF), k-Nearest Neighbor(k-NN) etc. Same as spectral clustering,

a similarity matrix is required to capture different characteristics of data and a symmetric

normalized Laplacian is needed as the fundamental tool to generate the final ranking. We

thereby follow the notation from previous section.

As mentioned in Chapter 2, the objective of anomaly ranking is to generate a ranking

f = {f1, f2, · · · , fm} for each data instance in D where a higher value of fi indicates the

instance xi more likely to be anomaly. Therefore, deciding the cluster membership is not

as important as for clustering analysis and is insufficient for our purpose. However, as

discussed in [37], we believe that the first non-principal eigenvector g∗1 actually has infor-

mation beyond merely indicating memberships of data instances, and this information can

be utilized for the purpose of anomaly ranking. Specifically, recall that spectral clustering

can be interpreted as an iterative bi-cluster classification process. If we denote z∗ = D
1
2 g∗1,
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we can use |z∗i | as a measure of how much data instance xi contributes to the bi-class

classification.

To better understand how the values of |z∗| can be helpful in the anomaly ranking, we

consider the problem of getting the first non-principal eigenvector of L. It can be written

as the following optimization problem:

min
g∈<n

gTLg

subject to eTD
1
2 g = 0 (3.1)

gTg = υ

where υ =
∑n

i=1 di.

Since L = I − D− 1
2WD−

1
2 and if we now denote z = D

1
2 g and K = D−1WD−1, the

objective function can be transformed in the following manner

gTLg = gT (I −D−
1
2WD−

1
2 )g

= gTg − (D
1
2 g)T (D−1WD−1)(D

1
2 g)

= υ − zTKz

Therefore, if we ignore the constant υ, we have (3.1) in its equivalent form of

min
z∈<n

−zTKz

subject to eTz = 0 (3.2)

zTD−1z = υ

As discussed in [37], the objective function in (3.2) can be decomposed as

sim(C+) + sim(C−)− 2× sim(C+, C−)

where C+ = {j : zj ≥ 0}, C− = {j : zj < 0}, sim(C) =
∑

i,j∈C |zi||zj|Kij measures similarity

of instance in C (C can be either C+ or C−), and sim(C+, C−) =
∑

i∈C+,j∈C− |zi||zj|Kij

measures similarity between C+ and C−. The value of the objective function can then be

treated as a measure of the bi-class classification quality. Suppose the solution to (3.2) is
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z∗, the value of its i-th component |z∗i | can be used as a strength measure for how much

data instance xi contributes to the quality of bi-class classification.

With the bi-class classification strength information provided by |z∗|, we can generate

the final rankings for anomaly depends on different scenarios which can possibly be en-

countered. The first case is when the data presents multiple major normal patterns. In this

case, the data instances correspond to lower value of |z∗i | are more likely to be anomalies

since their memberships to different cluster are more ambiguous than others. Therefore,

we can simply use f(xi) = max(|z∗|)− |z∗i | as the ranking function for instance xi.

Another possible situation is when data instances are classified into two classes with

normal class being actually clustered into one class and the rest data forms another class.

This results in a normal vs. abnormal classification. In this case, the data instances that

actually contribute most to the abnormal class are ranked higher. Depends on whether the

number of data instances in C+ is higher than that of C−, we can use either f(xi) = −|zi|
or f(xi) = |zi| to rank the anomalies.

To see the meaning of eigenvector more clearly, in next section we present a connection

of spectral optimization (3.2) with unsupervised SVM.

3.2 SRA as a Relaxation of Unsupervised SVM

Before we illustrate how SRA can be used to detect point anomalies as well as collective

anomalies, we further justify the use of eigenvector for anomaly ranking by illustration

spectral optimization problem as an unsupervised SVM.

3.2.1 SVM Revisited

We first revisit the formulation of the standard supervised maximum margin SVM classifier.

While there are other possible equivalent forms of SVMs, we mostly follow the formulation

as in [46] and [60].

In a supervised bi-class classification problem, we are given a set of labeled training

examples D′ = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X ⊆ Rd and yi ∈ {+1,−1}. A
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hyperplane in Rd is given by

h(x) = wTx + b = 0

A hyperplane is called a separating hyperplane, if there exists a c such that h satisfies

yi(w
Tx + b) ≥ c ∀i = 1, 2, . . . , n

Moreover, by scaling w and b we can always get a canonical separating hyperplane, such

that

yi(w
Tx + b) ≥ 1 ∀i = 1, 2, . . . , n (3.3)

Suppose two classes in the given dataset are perfectly separable by a hyperplane h, we

then introduce the concept of margin (denoted as γh) of h, as twice the distance between

h to its nearest data instance in D′, i.e.

γ = 2× min
i=1,2,...,n

yidi (3.4)

where di is the distance between data instance xi to the hyperplane h. It can be easily

shown that, the distance di is equal to

di =
1

‖w‖
(
wTxi + b)

where ‖w‖ is the Euclidean norm of w. We can then rewrite the margin (3.4) as:

γ = 2× min
i=1,2,...,n

yidi =
2

||w||

A graphical illustration of margins, maximum margin and their corresponding hyper-

planes is provided in Figure 3.1.

Intuitively, the best choice, among all hyperplanes that can separate two classes, is the

one corresponds to the largest margin. Thereby, a linear hard-margin SVM tries to find

the optimal hyperplane which corresponds to the maximal margin between two classes.

This solves the following optimization problem:

min
w,b

1

2
‖w‖2,

subject to yi
(
wTxi + b

)
≥ 1, i = 1, ..., n,
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Figure 3.1: Example of margins and hyperplanes

However, a perfectly separable dataset is rare in practice. Therefore, we introduce slack

variables ξi’s to relax the separability condition in (3.3) when training instances are not

linearly separable, and we have

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi,

subject to yi
(
wTxi + b

)
≥ 1− ξi, i = 1, ..., n, (3.5)

ξi ≥ 0, i = 1, ..., n ,

where the regularization weight C ≥ 0 is a penalty, associated with margin violations,

which determines the trade-off between model accuracy and complexity. The optimal

decision function then has the following form

h(x) =

(
n∑
j=1

yjαjx
Txj + b

)
.

The SVM discussed so far is just a linear classifier, which has very limited power in many

situations. The “kernel trick” is utilized to cope with more complicated cases. Suppose
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we have φ : X 7→ F which is a non-linear feature mapping from input space X to a

(potentially infinite dimensional) feature space F derived from feature inputs. To find the

optimal hyperplane in the feature space, we formulate a kernel soft-margin SVM, which

solves the following optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi,

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi, i = 1, ..., n, (3.6)

ξi ≥ 0, i = 1, ..., n ,

with the optimal decision function

h(x) =

(
n∑
j=1

yjα
∗
jφ(x)Tφ(xj) + b∗

)

where (a∗, b∗) is a solution to (3.6).

Recall that the SVM problem (3.6) is a convex quadratic programming (QP) problem

which satisfies the strong duality. This means that an optimal solution to (3.6) can be

computed from its dual form

max
ααα

− 1

2

n∑
i,j=1

yiyjαiαjφ(xi)
Tφ(xj) +

n∑
i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, · · · , n (3.7)
n∑
i=1

αiyi = 0,

By observing the dual problem (3.7), we notice that we can use the inner product

φ(xi)
Tφ(xj) in the objective function to solve the problem without explicityly knowing

what φ is. In general, we can consider a Kernel Function K : Rd × Rd 7→ R such that

K(xi,xj) = 〈φ(xi), φ(xj)〉 = φ(xi)
Tφ(xj),∀i, j = 1, 2, · · · , n. Accordingly, the n-by-n

matrix K with Kij = K(xi,xj) is called a Kernel Matrix. Therefore, by simply utilizing

different kernel, such as polynomial kernel

K(xi,xj) =
(
xTi xj + 1

)d
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or Gaussian radial basis function (RBF) kernel

K(xi,xj) = e
‖xi−xj‖

2

σ2

we can find the optimal hyperplane in the implicit feature space induced by the corre-

sponding kernel and thereby give SVM a lot more generality. Note that, the necessary

and sufficient condition for K to be a valid kernel (also called a Mercer kernel) is that the

corresponding kernel matrix K is symmetric positive semidefinite for any {x1,x2, · · · ,xn}
with any n [26]. We assume K is a valid kernel for all upcoming discussions.

Finally, we denote Y = diag(y), and the dual problem of a SVM (3.7) with an (possi-

bly) non-linear kernel can be rewritten into the following matrix form:

max
ααα

− 1

2
αααTY KYααα + eTααα

subject to 0 ≤ αi ≤ C, i = 1, · · · , n (3.8)

yTααα = 0

3.2.2 Unsupervised SVM

For unsupervised SVM learning, we are given the data instances without labels. The goal

then becomes finding the optimal label assignment for dataset such that the resultant

hyperplane from supervised SVM has the maximal margin. Figure 3.2 gives an intuitive

graphical illustration about how different label assignments can affect the maximum margin

found by SVM.

Specifically, an unsupervised SVM is to find the labels y so that the objective value in

(3.6) is minimum. Formally, this solves the following nested minimization problem:

min
yi∈{±1}

{
min

w,ξ,b,yi(wTφ(xi)+b)≥1−ξi,ξi≥0

1

2
‖w‖22 + C

n∑
i=1

ξi

}
(3.9)

Due to the integer constraints on yi, we note that (3.9) is a NP-hard problem.
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Figure 3.2: Example of different label assignments and resultant margins
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Since we know the inner convex optimization problem satisfies strong duality, we can

replace it by its dual problem and get the following equivalent minmax problem

min
yi∈{±1}

max
0≤αi≤C
yTααα=0

−1

2
αααTY KYααα + eTααα (3.10)

Recall our discussion in previous section about supervised SVM, we now introduce

another transformation of (3.8) as this will useful for the forthcoming discussions. If we

introduce vector z ∈ Rn such that

zi = αi · yi, i = 1, · · · , n

we have

αααTY KYααα = zTKz, and yTααα = eTz

Moreover, for any αi 6= 0, we have

yi = sign(zi), i = 1, · · · , n (3.11)

which also implies

eTα = eT |z|

Therefore, the optimization problem in (3.8) is also equivalent to

max
z

eT |z| − 1

2
zTKz

subject to eTz = 0, (3.12)

|z| ≤ C

We however notice the objective function in (3.12) is no longer concave, and it has many

local maximizers. Since (3.12) is equivalent to the dual of the inner optimization problem

in (3.10). Therefore, (3.10) can also be written as

min
yi=sign(zi)

max
eT z=0

|z|≤C

eT |z| − 1

2
zTKz (3.13)
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Now consider the following problem with a rectangular constraint

min
z

−1

2
zTKz

subject to eTz = 0, (3.14)

|z| ≤ C

Assume K is positive definite in the space {z : eTz = 0}, and all local minimizers of (3.14)

are at the boundary of |z| ≤ C. Also, assume all local maximizers of (3.14) have the

same value for the term eT |z|, then we can “simplify” the unsupervised SVM (3.13) to the

minimization problem (3.14).

To better understand why relaxation (3.14) is reasonable, we consider following example

with graphical illustrations. An examples of possible shapes of functions eT |z|, −1
2
zTKz,

and eT |z| − 1
2
zTKz in two dimensional case are depicted in Figure 3.3 (a), (b), and (c)

separately. For all plots, the x-axis and y-axis are the values of z1 and z2 separately. Recall

the problem of unsupervised SVM, we are only interested in the label assignment of z1 and

z2 such that we find the minimum of local maximums. In this two-dimensional case, we

observe there are four local maximum as shown in Figure 3.3 (c). However, these actually

correspond to only two cases, i.e. signs of z1, z2 are the same, or they are different. The

case that sign(z1) = sign(z2) corresponds to the upper right and lower left regions in the

heatmap whereas sign(z1) 6= sign(z2) corresponds to upper left and lower right regions.

We note that the minimum of these local maximums is the case where sign(z1) = sign(z2),

namely, optimal choice of z should lie in the upper right and lower left regions to the

origin. By observing the Figure 3.3 (b), we notice these are also the directions that function

−1
2
zTKz drops fastest. On the other hand, Figure 3.3 (a) shows that eT |z| elevates the

values in same fashion on all four directions. These observations suggest that the best

label assignments y for the minmax objective function (3.13) are simply the signs of z

that decreases fastest in the objective function of (3.14). Therefore, we can simply ignore

the label assignment and change our objective to finding the minimum of −1
2
zTKz under

the same constraints. In other words, we can change our objective function from (3.13) to

(3.14) and simplify our problem in the aforementioned manner.

Note however, (3.14) remains an NP-hard problem since it is trying to find minimum

of a concave objective function with rectangular constraint.
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3.2.3 Connection between Spectral Optimization and Unsuper-

vised SVM

Recall the optimization problem (3.1) for finding first non principal eigenvector is equivalent

to

min
z∈<n

−zTKz

subject to eTz = 0

zTD−1z = υ

as presented in (3.2). Assuming K is positive definite, then we can replace the ellipsoidal

equality constraint by an inequality constraint

min
z∈<n

−zTKz

subject to eTz = 0 (3.15)

zTD−1z ≤ υ

because the ellipsoidal constraint in (3.15) should be active at a solution. Assume that

we have K = D−1WD−1 and C = υ · d 1
2 , we notice the problem (3.15) can actually be

considered as an approximation to the optimization problem (3.14) by approximating the

rectangular constraint in (3.14) by the ellipsoidal constraint in (3.15).

This suggests that the normalized spectral optimization problem (3.1) can be re-

garded as an approximation to the unsupervised SVM problem (3.10) with the kernel

K = D−1WD−1 and C = υ · d 1
2 .

Since the optimal separating hypothesis from the unsupervised SVM has the form

h(x) =

(
n∑
j=1

y∗jα
∗
j ·K(x,xj) + b∗

)

and a non-principal eigenvector of the normalized spectral clustering z∗ yields an approx-

imation |z∗| ≈ α∗ and sign(z∗) ≈ y∗, which are the coefficients of the bi-class separating

optimal decision function, |z∗j | provides a measurement of the strength of support from the
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jth data point on the two class separation decision. We note however that, because of the

use of the ellipsoidal constraint rather than rectangular constraints and other approxima-

tions, z∗ is different from the exact SVM decision function coefficients. Specifically, the

components of eigenvector are mostly nonzero which suggests every data instance provides

certain level of support in this two clusters separation.

In addition, assume that g∗1 is the first non-principal eigenvector of a variation of un-

normalized Laplacian L = I − W , with the eigenvalue λ1. Then we have K = W and

z∗1 = g∗1. Under this assumption, it can be easily verified that

Kz∗1 = (1 + λ1)z
∗
1.

Consequently

(1 + λ1)z
∗
1 = Kz∗1 ≈


f(x1)

f(x2)
...

f(xn)

− b∗
Therefore z∗1 can as well be interpreted as a constant scaling-translation mapping of the

approximate optimal bi-class separation function f(x) evaluated at data instances. In

this case, it is reasonable to use spectral optimization solution z∗ as the ranking for the

bi-cluster separation.

One remaining issue about SRA is to choose right ranking function based on the results

of spectral optimization. As discussed in Section 3.1.2, two different rankings can be

generated by SRA, i.e. f(xi) = max(|z∗|)− |z∗i | for the case that multiple normal patterns

present, and f(xi) = |zi| for a normal vs. abnormal classification. To choose appropriate

ranking, SRA simply introduces an input parameter χ as a user-defined upper bound of

the ratio of anomaly. If the bi-class classification results in two very unbalanced clusters,

it is very likely that we are facing the second scenario. We then report the ranking respect

to a single major pattern and output an mFLAG = 0. On the other hand, if each class

actually accounts for sufficient mass, it is more likely to be formed by other major normal

patterns. Thereby, the ranking with respected to multiple major patterns is reported as in

the first case with mFLAG set to 1.

A detailed description of SRA algorithm is provided in Algorithm 1.
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Algorithm 1: Spectral Ranking for Anomalies (SRA)

Input: W : An m-by-m similarity matrix W .

χ: Upper bound of the ratio of anomaly

Output: f∗ ∈ <m: A ranking vector with a larger value representing more abnormal

mFLAG : A flag indicating ranking with respect to multiple major patterns

or a single major pattern

begin

Form Laplacian L = I −D−1/2WD−1/2 ;

Compute z∗ = D
1
2 g∗1 where g∗1 is the 1st non-principal eigenvector for L ;

Let C+ = {i : z∗i ≥ 0} and C− = {i : z∗i < 0};
if min{ |C+|

m
, |C−|
m
} ≥ χ then

mFLAG = 1, f∗ = max(|z∗|)− |z∗| ;

else if |C+| > |C−| then

mFLAG = 0, f∗ = −z∗ ;

else

mFLAG = 0, f∗ = z∗ ;

end

end
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3.3 Detecting Point Anomalies and Collective Anoma-

lies with SRA

Although not specifically addressed, it has been demonstrated in [37] that SRA is capable

of detecting point anomalies and collective anomalies at the same time. In this section,

we further justify this fact and investigate the performance of SRA on different cases by

taking the perspective based on its connection with the unsupervised SVM.

In order to examine the performance of SRA, we apply SRA to the two moon synthetic

datasets presented in Figure 2.1 from the previous chapter, as they cover several typical

scenarios of anomaly detection problems. In addition, the two moons are intuitive but

non-trivial examples of bi-class classification problems. Therefore, by applying SRA on

these datasets, we can see the performance of SRA as both an anomaly detection method

as well as an unsupervised SVM classifier.

The results we obtained by applying SRA on these synthetic datasets are provided in

Figure 3.4. The first row of the plots presents the information contained in the first and

second non-principal eigenvectors of the normalized Laplacian matrices L’s. It shows the

relationship between z∗1 = D
1
2 g∗1 and z∗2 = D

1
2 g∗2 where g∗1 and g∗2 are the first and second

non-principal eigenvectors, and the corresponding points are depicted with the same color

as in Figure 2.1. It can be seen, in all three cases, how the points from two moons are

separated by x = 0 on the x-axis which is in accordance with a bi-cluster separation in the

unsupervised SVM. The points are classified into a positive class C+ and a negative class

C− which encapsulates the points of red moon and blue moon separately.

In order to illustrate different behavior of different kinds of anomalies in the ranking

results, we consider only the 1st non-principal eigenvector and apply kernel density esti-

mation (KDE) to the points corresponding to whole dataset (green shaded area) as well as

only subsets of points corresponding to specific types of anomalies, i.e. the point anomalies

(black curve) and collective anomalies (red curve). The results are given in second row

of Figure 3.4. For all these cases, the score vector z∗1 derived from the 1st non-principal

eigenvector presents a roughly multi-modal pattern with at least one noticeable peak on

each side of the origin. We also notice that, the point anomalies are generally close to the
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origin as the highest peak of its KDE is right around 0. This also conforms the intuition

gained previously, as |z∗| provides a bi-class clustering strength measure and a smaller

value suggests more ambiguity in terms of identification of the instance, therefore more

likely to be the anomalies we are detecting. For the unbalanced case without additional

noise, we notice how the 1st eigenvector perfectly separates the points and the curve cor-

responds to the positive class C+ perfectly aligns with the distribution of the rare class,

i.e. the collective anomalies we defined. For the last case where both anomalies exist in

the data, the general principal also holds, as the peaks of the green shaded area have their

clear meaning: The highest peak of C− corresponds to the majority pattern whereas the

peak around 0 is related to the point anomalies, and the positive class still corresponds to

the collective anomalies.

The above observations also relate different values of resultant mFLAG to different

types of anomalies discovered. An output value of mFLAG = 0 would normally indicate

the possible existence of the collective anomalies identified by SRA. Moreover, if both

types of anomalies are present in the data at the same time, we notice the collective

anomalies are ranked higher due to their stronger contribution to the “abnormal” class.

This also suggests that mFLAG can be preset as an input to target a specific kind of

anomaly. For instance, if we only want the ranking for point anomalies, we can simply set

mFLAG = 0 and thereby ignore the ranking for collective anomalies. These observations

justify that SRA has the capability of detecting collective anomalies and point anomalies

simultaneously. It possesses the generality to detect different kinds of anomalies without

the prior knowledge about the type of anomalies to be detected, and also retains the

flexibility to let users determine what specific kind of anomalies they are interested in.

This is especially valuable under unsupervised setting, as most other methods relies on the

assumptions that only favor a specific kind of anomalies.

To justify the actual ranking quality obtained by SRA, we utilize the Receiver Operating

Characteristic (ROC) curve as discussed in Section 2.3. The resultant ROC for each case

is depicted on the last row of Figure 3.4. It can be seen that the collective anomalies

can be perfectly tackled, as we can see a perfect normal vs. abnormal classification in

the first non-principal eigenvector. The performance in terms of point anomalies is also

remarkable considering the fact that the anomalies are not perfectly separable from normal
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data instances due to the way they are generated. Finally, if we consider the case of

targeting both at the same time, we can still obtain a nearly perfect overall ROC.
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Figure 3.4: Result of SRA on the synthetic data shown in Figure 2.1. First row shows

z∗1 (x-axis) and z∗2 (y-axis) based on first and second non-principal eigenvectors. Sec-

ond row shows kernel density estimation of z∗1 over all dataset(green shaded area), point

anomalies(black) and collective anomalies(red). Third row shows the ROC curves and

corresponding AUCs.
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Chapter 4

Unsupervised Feature Selection with

HSIC to Detect Contextual

Anomalies

In this chapter, we propose an unsupervised feature selection scheme based on the Hilbert-

Schmidt Independence Criterion (HSIC) for the purpose of detecting feature-contextual

anomalies. This chapter is divided into the following sections. In Section 4.1, we discuss

how the feature selection for anomaly detection is different from other feature selection

problems and the key assumption behind our proposed algorithm. In Section 4.2, we

review the definition of HSIC and its application for the supervised feature selection. In

Section 4.3, we present an unsupervised feature selection scheme based on HSIC that is

useful for detecting contextual anomalies.

4.1 Feature Selection for Anomaly Detection

Extensive research has been conducted on the subject of supervised feature selection[22]

[41] [31], and many attempts have been made for the unsupervised clustering as well [16].

In general, unsupervised feature selection can be very difficult because of the absence of
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label information. With different selection criterion, the resultant feature subset can be

significantly different and thereby greatly distort the performance of underlying algorithms.

Moreover, most of existing unsupervised feature selection methods are not suitable for

anomaly detection problems, as they mostly focus on searching the subset of features that

results in best clustering quality, which is very different from the objective of anomaly

detection.

Comparing with clustering analysis, feature selection can be even more challenging for

anomaly detection problems due to the possible intervention from both unnecessary fea-

tures and anomaly data instances. Additionally, intrinsic questions in real world problems

inevitably inject uncertainty in the process of constructing features for training. Consider

again the insurance fraud detection example discussed in Chapter 2, it is generally hard to

target the exact relevant subset of features since adjusters or fraud experts tend to include

more potential useful features at the risk of introducing noise. Consequently, we need a

clear objective and reasonable assumptions to make feature selection possible for anomaly

detections.

Recall different kinds of anomaly detection problems we have discussed so far, despite

their differences, the abnormality are all defined over certain normal property that present

in other data instances. This provides certain insight for us to approach the feature selec-

tion problem. Especially, when we are aware of the potential existence of noisy or unrelated

features in the provided training dataset, we are most interested in the subset of features

that can best reveal the structure of the data. In other words, we are interested in the

subset of features the are actually useful for detecting anomalies. A reasonable assumption

is that, a useful context is constructed by interactions among a subset of features and the

interaction can be captured by a certain kind of dependence relationship among these fea-

tures. For the noisy features, they should have no dependence with others, and the features

that are not very helpful in constructing contexts should also have very limited dependence

with other features. In summary, for the purpose of detecting feature-contextual anomalies,

our objective is to reconstruct correct contexts for anomalies by eliminating the features

that have little dependence relationship with others.
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4.2 HSIC and supervised feature selection

To achieve the goal of effective feature selection for anomaly detection, we utilize Hilbert-

Schmidt independence criterion (HSIC) as a fundamental tool in detecting dependence

relationship among features. HSIC was proposed in [21] as a measure of statistical depen-

dence and was first used for supervised feature selection in [50]. To prepare subsequent

discussion, this section reviews the definition of HSIC and its useful properties that are

helpful in feature selection. The presentation mainly follows [21] and [50].

Before we discuss detection of arbitrary dependence among data using HSIC, we first

consider a simple case of detecting linear dependence among data. Following similar nota-

tions as previous chapters, assume that we have two feature domains X ⊂ Rd and Y ⊂ Rl,

and we have random variables (x, y) that are jointly drawn from X ,Y . Then we denote

the cross-covariance matrix of x, y as Cxy, and we have

Cxy = Exy
[
xyT

]
− Ex [x]Ey [y]

We know that Cxy contains all the second order dependence between x and y, and the

Frobenius norm of Cxy is defined as the trace of CxyCTxy, namely

‖Cxy‖2Frob = tr
(
CxyCTxy

)
which summarizes the degree of linear correlation between x and y. The value ||Cxy||2Frob
is zero if and only if there is no linear dependence between x and y, and this can thereby

be utilized in detecting linear dependence between them. However, capturing only linear

dependence is rather limited, especially when we are uncertain about the actual type of

data we are dealing with, and the dependence relationship might not be captured by

cross-covariance at all. Instead, we are interested in the flexibility of detecting arbitrary

dependence, possibly nonlinear dependence, relationship between x and y. We thereby

generalize the notion of cross-covariance to detect nonlinear relationship and to cope with

different kinds of data.

In order to handle nonlinear cases, we introduce two feature mappings φ : X → F
and ψ : Y → G from original feature domain to their corresponding reproducing kernel
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Hilbert spaces F and G. The inner product between features can then be rewritten via

their characteristic kernel functions

k(x, x′) = 〈φ(x), φ(x′)〉 and l(y, y′) = 〈ψ(y), ψ(y′)〉

Issues concerning of kernels are usually similar to the kernels selections for SVM as dis-

cussed in previous Chapter. Examples include polynomial kernel and Gaussian RBF kernel

that map data to higher dimensional spaces. Following [20] and [5], we then generalize the

idea of cross-covariance matrix and define a cross-covariance operator Cxy : G → F between

the feature maps such that

Cxy = Exy
[(
φ(x)− Ex[φ(x)]

)
⊗
(
φ(y)− Ey[ψ(y)]

)]
and ⊗ denotes the tensor product. Denote the distribution for sampling x and y as Prxy,

HSIC is then defined as:

HSIC(F ,G, P rxy) = ‖Cxy‖2HS
where ‖·‖HS is the Hilbert-Schmidt norm. The Hilbert-Schmidt norm is used here to extend

the notion of Frobenius norm to operators, and similarly it has the form of tr
(
CxyCTxy

)
. If

we rewrite this measure in terms of kernel functions k and l, we have:

HSIC(F ,G, P rxy) =

Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]− 2Exy
[
Ex′ [k(x, x′)]Ey′ [l(y, y′)]

]
(4.1)

One advantage of HSIC is that it is very easy to estimate. Two most popular estimators

are presented in [21] and [50] separately. With the chosen kernels and the set of observations

Z = (X, Y ) = {(x1, y1), . . . , (xm, ym)} that are drawn i.i.d from the joint distribution

Prxy, we can then construct two kernel matrices K,L ∈ Rm×m, where Kij = k(xi, xj) and

Lij = l(yi, yj). The one proposed in [21] has the following form

˜HSIC(F ,G, Z) = (m− 1)−2tr (KHLH) (4.2)

where H = I−m−1eeT with e being the vector of ones as before. This however is a biased

estimate of HSIC(F ,G, P rxy) with HSIC(F ,G, P rxy)− ˜HSIC(F ,G, Z) = O(m−1) as shown

in [50].
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In [50], an unbiased estimator for (4.1) is also proposed, which has the form:

˜HSIC(F ,G, Z) =
1

m(m− 3)

[
tr(K̃L̃) +

eT K̃e eT L̃e

(m− 1)(m− 2)
− 2

m− 2
eT K̃L̃e

]
(4.3)

where K̃ and L̃ are the matrices obtained by setting diagonal entries of K and L to zero.

Though the unbiased estimator has relatively more complex form, both estimators are

easy to compute and overall takes O(m2) time complexity. For upcoming discussions and

empirical evaluations, we stick with the unbiased estimator (4.3).

As discussed in [50], with properly chosen kernels, HSIC can be used to detect arbitrary

dependence between X and Y . The value of HSIC(F ,G, P rxy) = 0 if and only if there are

no dependence between x and y. We can thereby use ˜HSIC(F ,G, Z) as a feature selection

criteria. For supervised learning, if ψ is the kernel transformation corresponding to labels,

it is reasonable to assume the best subset of features should correspond to the ones that

maximize the dependence between features and labels.

Since finding the optimal feature subset with a given criteria is a typical NP-hard

problem [55], a good approximation can be achieved by performing greedy backward elim-

ination on the features which have least dependence with labels or forward appending the

features that can increase the dependence most. Applying two different strategies leads to

backward elimination (BAHSIC) and forward elimination HSIC (FOHSIC) respectively as

detailed in [50]. Here we reiterate the algorithm of BAHSIC in Algorithm 2.

Note that, for the convenience of presentation, we override the notion of ˜HSICkl(S,Y) to

denote the estimated value of HSIC between data with selected feature set S and labels Y .

The kernels k and l are used respectively to construct K and L. Also, we use ˜HSICk(S,S ′)
to denote the estimated value of HSIC between selected feature set S and S ′ with both K

and L constructed using k as their kernels.
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Algorithm 2: BAHSIC [50]

Input: k : kernel characteristic function for features

l : kernel characteristic function for labels

S: full featureset

Z = (X, Y ): full dataset

Output: S∗ : The selected subset of features

begin

S0 ← S, Y ← Y, i← 0,

while |Si| > 0 and stopping criteria not satisfied do

i← i+ 1

// removing features Ii results in maximum dependence with labels

Ii ← arg maxI
∑

I∈I
˜HSICkl(Si−1\{I},Y), I ⊂ Si−1

Si ← Si−1\Ii
S∗ ← S∗ ∪ Ii

end

S∗ ← Si
end

4.3 An unsupervised filter feature selection algorithm

based on HSIC

4.3.1 BAHSIC-AD

Inspired by the application of HSIC in supervised feature selection, we propose an unsu-

pervised filter algorithm BAHSIC-AD , with AD stands for Anomaly Detection, based on

HSIC to better facilitate anomaly ranking by existing algorithms. The basic assumption

follows the idea as discussed in Section 4.1. Namely, the goal is to eliminate the noisy

features and keep the subset of features that has strong dependence with each other in the

implicit feature space.

To accomplish this, we follow a greedy backward elimination procedure similar to BAH-
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SIC. However, in each iteration, instead of estimating the dependence between features and

labels, we estimate dependence among features. For each feature we calculate its depen-

dence with the rest of features in our selected kernel space and we continue eliminating

the feature that has the smallest dependence with the rest. The features get eliminated

would most likely to be the least helpful ones in reconstructing the meaningful contexts

we desired.

More specifically, assuming that we are at the ith iteration with the remaining feature

set Si−1 from the previous iteration, and we want to eliminate another set of features Ii,
which is of the size p. Then we calculate ˜HSICk

(
Si−1\{I}, {I}

)
for each feature I ∈ S\I,

and we get the Ii = {I1, I2, . . . , Ip} such that
∑

I∈Ii
˜HSICk

(
Si−1\{I}, {I}

)
has the smallest

value among all possible
∑

I∈I
˜HSICk

(
Si−1\{I}, {I}

)
for every I ⊂ Si−1 that is of the size

p. We keep removing the features following this manner, until certain stopping criteria is

satisfied. This algorithm is summarised in Algorithm 3.

Note that, although we are interested in the subset of features that are dependent

among each other, we are not interested in the features that are perfectly correlated. This

is because the perfectly correlated features will add no information regardless applying

either supervised or unsupervised learning. However, this is rarely the case in real world

applications especially when anomalies are present.

4.3.2 A synthetic example

To demonstrate how the process of BAHSIC-AD affects the quality of our anomaly detec-

tion algorithm, we apply it on a synthetic dataset with 7 features, including 4 injected noisy

features. The first three features {feature1, feature2, feature3} of the synthetic dataset

are the only non-noisy features, and they are depicted in Figure 4.1. Two Gaussian mix-

ture clusters are generated with mean µ1 = (−1, 1,−1) and µ2 = (3,−4, 3) separately, and

simply using Σ1 = 2I, and Σ2 = I as the covariance matrices where I is the identify matrix.

The blue (left) cluster C1 contains 400 points whereas the green (right) cluster C2 contains

600 points. Additional 50 points are generated uniformly in [−4, 3] × [−3, 3] × [−4, 3] as

point anomaly targets. It is designed to have two major patterns, with one relatively dense

but having fewer points, and the other more points but relatively sparse. Most importantly,

43



Algorithm 3: BAHSIC-AD: HSIC based unsupervised feature selection algorithm

for anomaly detection

Input: k : kernel characteristic function for features

S: full feature set

Z: full dataset

Output: f∗ ∈ <n: A ranking vector with a larger value representing more abnormal

S∗ : The final subset of features that defined the context

begin

S0 ← S, i← 0

while |Si| > 0 and stopping criteria not satisfied do

i← i+ 1

//select features Ii that are least dependent with rest of features

Ii ← arg min
∑

I∈I
˜HSICk

(
Si−1\{I}, {I}

)
, I ⊂ Si−1

Si ← Si−1\Ii
end

S∗ ← Si
Apply anomaly detection algorithm with respect to chosen S∗ to get f∗

end
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we inject 4 more noisy features that contain pure noise generated by uniform distribution.

Each dimension is then standardized subsequently to zero mean and unit variance. Note

that, this dataset is designed for clear visualization for upcoming discussions.
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Figure 4.1: First two dimensions of toy dataset: two Gaussian clusters with anomalies

Similar to the example presented in Figure 2.2, where the first two dimensions are the

context for contextual anomalies, the first three dimensions here apparently construct the

context we are most interested in. Therefore, our goal is to first remove noisy features from

the seven feature dataset to reconstruct the context and apply some anomaly detection

algorithm, such as SRA, to identify anomalies.

We start with the dataset as the full feature set and trace down the feature selection

process. Specifically, we are interested in how the quality of anomaly detection improves

when the noisy feature gets eliminated and how the value ˜HSICk(Si\{I}, {I}), for any

feature I, changes in each iteration i throughout the entire learning process. Here, we

utilize the SRA algorithm we have discussed in Chapter 3 for the purpose of visualization
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and comparisons. In each iteration, we apply SRA on the dataset with the remaining

features, and for both SRA and BAHSIC-AD we use the Gaussian RBF kernel. The results

are presented in Figure 4.3 with information in the eigenvector space and the corresponding

ROC. The values of ˜HSICk(Si\{Ii}, {Ii}) for every feature Ii ∈ S are also provided on the

left subplot in Figure 4.2. Note that, if a feature gets eliminated at a specific iteraion, the

corresponding line plot also terminates. For instance, feature 5 gest eliminated at the 4-th

iteration, therefore the star black line plot that corresponds to feature five simply ends at

iteration No.4.
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Figure 4.2: In each iteraion of feature elimination, the values of ˜HSICk(Si\I, I) for each

feature (left plot) and the value of min( ˜HSICk(S\I, I)) (right plot)

From Figure 4.2, we notice how the noisy features are identified and eliminated from

the beginning, as the first four features removed are feature4, feature6, feature5 and

feature7, which match exactly the set of noisy features injected into the original dataset.

While eliminating features, we can also observe, from Figure 4.3, how the two-class clas-

sification becomes more clear as the peaks of bi-modal pattern are further stretched when

we have only two or three relevant features left. Also the red curves, which correspond
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to anomalies, lie closer to the origin when we eliminate the noisy features and the AUC

becomes significantly higher. This implies the BAHSIC-AD algorithm is very helpful in

terms of revealing the context for anomaly detection. In the end, it correctly identifies

the relevant feature subset, i.e. {feature1, feature2, feature3}, in the second to the last

iteration.

By observing the pattern of the data in the eigenvector space, we can also see how they

better reveal the structure of the data in the original space. The values of ˜HSICk(Si\I, I)

of relevant features also become more significant after the noisy ones get eliminated. More-

over, it also demonstrates how important proper context is when identifying the anomalies

as the performance of SRA is significantly distorted when one of the useful feature (fea-

ture 3) gets eliminated. This is related to another important issue in the feature selection

process, i.e. the stopping criteria. The stopping criteria is very important because we do

not want the actual relevant features get eliminated while removing features.

The simplest way to stop the process is to set a fixed number k for the top k features.

This is sometimes desirable in terms of interpretability of the results as many applications

only require the knowledge about the top features that lead to the final ranking. Never-

theless, it is more often the case that there are lack of knowledge in the actual number of

relevant features. While being an interesting research problem itself, there are rarely good

solutions with respect to unsupervised learning problems, and effective supervised learning

approaches like cross-validation are simply not applicable due to absence of labels.

The way we approach this problem is by observing the value ˜HSICk(S\I, I) of the

feature to be eliminated in each iteration. We notice that the minimum of ˜HSICk(S\I, I)

among all features is a good general stopping criteria, and the previous example also con-

firmed this point. The minimum value of ˜HSICk(S\I, I) graphed in the right subplot in

Figure 4.2. In this case, there are at most three relevant features and each time we elimi-

nate a feature the value of min( ˜HSICk(S\I, I)) significantly increase until the feature set

size is reduced to 3 which is the point where all features are relevant. A significant increase

of min( ˜HSICk(S\I, I)) is therefore a good indicator to stop the feature elimination. In

practice, there are several other possible scenarios. For instance, it is possible to see that

min( ˜HSICk(S\I, I)) values drop from the very beginning of the feature elimination, this

phenomenon strongly suggests all features are greatly dependent with others, and thereby
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Figure 4.3: In the process of the feature selection, effect of feature selection on 1st and 2nd

non-principal eigenvectors of Laplacian matrix(left), density of all data and anomalies on

z1 = (middle) and the ROC curve(right)
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very important to the anomaly ranking. Empirically, this approach do not always guar-

antees the optimal stopping point, but as long as the data conforms with our assumption

that useful features have strong dependence with each other, it generally provides a sat-

isfactory result. The method described here is also the stopping criteria we used in the

computational evaluations in the next chapter.
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Chapter 5

Computational Results

In this chapter, we empirically evaluate the effectiveness of SRA combined with BAHSIC-

AD, in dealing with different types of anomalies. We perform a comprehensive evaluation

comparing its performance with some other prevailing anomaly detection methods on a

series of benchmark datasets. Section 5.1 discusses the experiment settings and benchmark

datasets which we apply in the evaluation. Section 5.2 presents the results. Finally,

Section 5.3 uses automobile insurance fraud dataset as an example to discuss how feature

selection with BAHSIC-AD can be helpful in terms of interpretation of the ranking results.

5.1 Benchmark Datasets and Experiment Settings

5.1.1 Synthetic Datasets

For the purpose of a comprehensive evaluation, we generate different synthetic datasets to

simulate different common scenarios in anomaly detection. Similar to examples presented

in the previous chapters, we mainly apply two mechanisms to generate synthetic examples,

i.e., two moon clusters, and Gaussian clusters. A detailed description about the synthetic

dataset is provided in the Table 5.1 and several examples are depicted in Figure 5.1.

Similar to the cases that we have discussed in Chapter 2, variations of two moon clusters
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are included because they are conceptually easy problems for humans but generally hard

for common classification based algorithms. We first simulate cases that only one kind of

anomalies present, either point anomaly only or collective anomaly only. Figure 5.1 (a)

presents the case when two major balanced moons are presented with random noise scat-

tered around the major patterns. Figure 5.1 (b) and Figure 5.1 (c) simulate cases where

only collective anomalies present.

In addition, we also generate multiple Gaussian clusters to simulate cases that both

point anomalies and collective anomalies appear at the same time. Specifically, we generate

different number of clusters other than the ideal bi-cluster case, as we are equally interested

in scenarios when more than two noticeable patterns present. We also change the number

of relevant features to see how different algorithms perform on datasets with more than 2

relevant features. The point anomalies are always noise deviated from any major pattern

and the collective anomalies are the relative insignificant clusters among multiple clusters.

To test how algorithms perform in dealing with contextual anomalies, we also inject 5 or

10 noisy features to exam how they react to noisy features and whether BAHSIC-AD can

reconstruct the original datasets.

An additional note about synthetic datasets in general is the fact that the way we

generate the datasets particularly favors nearest-neighbor based approaches, like k-NN or

weighted k-NN. Since the anomalies we defined here mostly conform with the assumption

made by this set of methods. These synthetic examples are used to illustrate some typical

cases, and we still need real world datasets to make a comprehensive evaluation.

5.1.2 Real World Datasets

Weal world datasets are also included to evaluate the performance of different algorithms

for applications arises from practice. These datasets are mainly selected from UCI ma-

chine learning repository [4] and KEEL dataset repository [2], and they originated from

various application domains, including life science, business, physics, and others. The

automobile insurance dataset which has been utilized as a benchmark in [42] is also in-

cluded for two reasons: Firstly, the insurance fraud detection is an important application
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Table 5.1: Description of synthetic benchmark datasets

Name1 Source Type2 Features3 m m+

Unbalanced Two Moons (0) Synthetic C 2C 1200 200

Unbalanced Two Moons (5) Synthetic C 7C 1200 200

Unbalanced Two Moons (10) Synthetic C 12C 1200 200

Close Unbalanced Moons (0) Synthetic C 2C 1200 200

Close Unbalanced Moons (5) Synthetic C 7C 1200 200

Close Unbalanced Moons (10) Synthetic C 12C 1200 200

Noisy Two Moons (0) Synthetic P 2C 1650 50

Noisy Two Moons (5) Synthetic P 7C 1650 50

Noisy Two Moons (10) Synthetic P 12C 1650 50

Gaussian (3,2,0) Synthetic C+P 2C 1400 400

Gaussian (3,2,5) Synthetic C+P 7C 1400 300

Gaussian (3,2,10) Synthetic C+P 12C 1400 400

Gaussian (4,4,0) Synthetic C+P 4C 1400 400

Gaussian (4,4,5) Synthetic C+P 9C 1400 400

Gaussian (4,4,10) Synthetic C+P 14C 1400 300

1 The Gaussian (x, y, z) and Two Moons (z) are synthetic datasets, where x is

the number of clusters, y is the number of relevant features and z is the number

of injected noisy features.
2 For the type of anomalies, “C” stands for collective anomalies, “P” for point

anomalies and “C+P” for presence of both. The exact type of anomalies in real

dataset is unknown.
3 For the feature type of the data, “C” stands for continuous valued feature
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Examples of synthetic datasets, anomalies are marked by red “+” while normal

patterns are depicted by blue dots. (a) Noisy Two Moons (b) Unbalanced Two Moons (c)

Close Unbalanced Two Moons (d) Gaussian(3,2,0) (e) Gaussian(4,4,0) feature 1 vs feature

2 (f) Gaussian(4,4,0) feature 3 vs feature 4
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for anomaly detection. Secondly, this is an example of data consists mainly of categorical

(nominal) features. Among the benchmarks, all the bi-class datasets are highly unbalanced

bi-classification problem, and we therefore treat the rare class as the anomaly class. For

the datasets that are originally multi-class datasets, we treat the class that consists of

the smallest number of instances as the anomaly class. In real world applications, the

exact type of anomalies is usually unknown. Moreover, whether they present as contextual

anomalies and whether feature selection is helpful are blind to users. We however stick

with the BAHSIC-AD algorithm described previously, and see whether the feature selec-

tion can actually be helpful in all these cases. Detailed descriptions of benchmarks from

real applications are provided in Table 5.2.

5.1.3 Experiment Settings and Evaluation Method

In addition to the SRA algorithm described in Chapter 3, we also select five exemplary

but also prevailing methods for comparisons. These methods have been briefly discussed

in Chapter 2, including kernel based approaches: One-Class SVM [33], density based ap-

proaches: Local Outlier Factor (LOF) and Local Outlier Probabilities (LoOP), approxi-

mate Local Correlation Integral (aLOCI) as well as the nearest neighbor approaches: k-NN

(k-Nearest Neighbor) and weighted k-NN. For implementation of these algorithms, we use

LibSVM [11] for the implementation of One-Class SVM, and ELKI [1] for LOF, LoOP,

ALOCI, k-NN, and weighted k-NN.

For any kernel-based approach that requires a similarity or kernel defined over the data,

such as OC-SVM, SRA, we use a consistent choice of the kernel. We apply RBF Guassian

kernel k(x, x′) = exp(−||x − x′||/2σ2) for every dataset that consists of mainly numerical

features. For the methods that require a distance function, we simply apply Euclidean

distance.

Since the RBF kernel and Euclidean distance are only valid for continuous numerical

features, we thereby need some preprocessing for certain datasets. For datasets that consist

of a mixture of continuous numerical and nominal features such as Thyroid, we need to

convert nominal features to continuous features. While there are a few technique designed

for this kind of problem, here we apply one of the most commonly applied unsupervised

54



Table 5.2: Description of real world benchmark datasets

Name Source Features 1 m m+

Shuttle0vs4 Keel 9C 1829 123

Satellite UCI 36C 6435 626

Ecoli UCI 7C 336 35

YeastME2 UCI 8C 1484 51

Thyriod UCI 21N, 7C 3772 231

Glass4 Keel 13C 214 13

Libras UCI 90C 360 24

Diabetes UCI 8C 768 268

Survival UCI 3C 306 81

Wine3 UCI 13C 178 48

Breast-Wisc UCI 9C 699 241

Zoo UCI 15B 101 4

Mushroom UCI 22N 4508 300

Automobile Fraud [42] 31N 15420 923

1 For the feature type of the data, “C” stands for continu-

ous numerical feature, “N” for nominal feature and “B” for

binary feature

55



approach [56]. Namely, we transform the original nominal features into a set of binary

features which can be treated as continuous. Specifically, we use k − 1 binary features to

represent a nominal feature which originally has k distinct values, with i-th binary feature

set to 1 only when the original feature has its ith value. For example, suppose we have a

nominal feature season which has 4 distinct values {spring, summer, autumn, winter},
we replace the feature set by three binary numerical features with values determined by

season = spring, season = summer, and season = autumn. If a data instance has

season = spring in original dataset, then it has (1, 0, 0) after transformation, and if another

data instance has season = winter, it becomes (0, 0, 0). Then we can treat the whole

dataset as completely numerical. While there are other possible techniques for mapping

the nominal values into numerical values, this technique can retain the information in the

nominal feature without injecting the unnecessary ordinal information possessed by most

numerical features. Note that, since dataset Zoo contains only binary features, we simply

regard it as a numerical dataset.

In addition to the RBF Gaussian kernel, we are interested in whether a suitable ker-

nel for a specific dataset can actually improve the results of kernel-based methods, we

thereby purposely include two datasets with pure nominal features, i.e. Mushroom and

Automobile Fraud datasets. For these two datasets, we compare binarizing the features

as described above with applying the Hamming distance kernel directly on the original

non-transformed dataset. Briefly speaking, a Hamming distance kernel is of the form

k(x, x′) =
∑

u∈Dn θu(x)θu(x
′) where Dn is an n-dimensional nominal feature space with Di

corresponds to i-th feature, and θ(x) = λd
H(u,x) with dH(x, x′) = (1/n)

∑n
i=1(δ(x, x

′)) and λ

being a damping parameter. δ is the overlapping similarity function such that δ(x, x′) = 1

when x and x′ are identical, δ(x, x′) = 0 otherwise. The Hamming distance kernel is derived

from a String Kernel, and specifically designed for datasets with pure nominal features.

However, the detailed derivation of a Hamming distance kernel is not the subject of this

thesis, we thereby refer interested readers to [13] and [37] for a more detailed discussion.

For consistency, we use the bandwidth σ =
√
n, with n being the number of features,

for the Gaussian RBF kernel, and damping parameter λ = 0.8 for the Hamming distance

kernel. For all methods except for SRA, OC-SVM and aLOCI, number of the nearest

neighbor parameter k is required. Here we set k = min{100,m/10} where m is the total
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number of data instances. The threshold parameter χ required by SRA is set as 35% for

all the experiments. Additionally, we standardize all real world datasets to zero mean and

unit variance i.e., µ = 0, σ2 = 1, before running any experiment.

Note that, the choice of parameters here can be suboptimal for a specific dataset. By

fine tuning the parameters, we can observe certain level of improvement for a particular

method. However, without labels being provided, parameter tuning under unsupervised

setting can be dramatically harder than the supervised case. Therefore, we stick with a

consistent choice of parameters here for the fairness of comparisons.

The Receiver Operating Characteristic (ROC) curve discussed in section 2.3 is applied

as our primal evaluation method, and we only report the area under curve (AUC) as the

performance comparison criterion.

5.2 Experiment Results

5.2.1 Results on the Synthetic Data

The computational results for the synthetic data are provided in Table 5.3 and Table 5.4.

Table 5.3 presents the AUCs achieved by different algorithms on the synthetic datasets

without any feature selection whereas Table 5.4 presents the results after feature selection

by BAHSIC-AD .

In Table 5.3, we first focus on the performance of different algorithms on the cases

without intervention of noisy features, namely, the point anomalies and collective anomalies

do not present as contextual anomalies. The corresponding synthetic datasets are ones

suffixed with (0) in Table 5.3.

The density based approaches, including LOF and LoOP, achieve top AUCs in detecting

point anomalies on the Noisy Two Moon dataset. However, they significantly underper-

form other methods when dealing with contextual anomalies in Unbalanced Two Moon

datasets and Gaussian datasets. This is expected considering that these methods assume

the anomalies appear only in the low density region. For datasets with collective anoma-

lies, even when the collective anomaly clusters clearly deviate from the normal pattern,
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they however form clusters with sufficient density, which causes density based approaches

less effective. It is also noticeable that since aLOCI was proposed to handle small anomaly

clusters, it indeed outperforms LOF and LoOP in detecting collective anomalies. However

it becomes much less effective in handling point anomalies.

Compared with density based approaches, the simplest nearest neighbor approaches

perform much better for two moon datasets. Nevertheless, this is mainly due to the

mechanism we generate two moons datasets actually favor these methods. The noticeable

gap between two moons contributes significantly to their average distance to the nearest

neighbors. However, they appear to be much less effective on Gaussian datasets with more

than two major clusters present.

SRA in general produces more consistently better ranking among all methods under

different scenarios. It can correctly identify the presence of collective anomalies while

perform reasonably where in handling point anomalies. As a comparison among kernel

based methods, we see OC-SVM is always dominated by SRA, especially in the cases when

datasets with multiple patterns are :w present, such as Gaussian(4,4,0).

Now we observe how the algorithms are affected when the anomalies present themselves

as contextual anomalies. For almost all algorithms, the injection of noisy features on the

original dataset results in a significant performance degradation. An intuitive bar chart

on how the performance is affected is depicted in Figure 5.2. When dealing with point

anomalies, the methods utilized Gaussian kernels are especially susceptible to the noisy

features, as both SRA and OC-SVM has a dramatic decrease in their AUCs. SRA however

is relatively more robust with collective anomalies whereas OC-SVM performs consistently

worse. One interesting observation we have on other methods is that, the density based

methods can get a small boost of performance for collective anomalies when the noisy

features are injected. This is mainly due to the fact that injected noisy features actually

diluted the points that are originally incorrectly identified.

If we apply BAHSIC-AD first on the datasets with noisy features, and apply each

anomaly detection algorithm on the dataset with selected features, their performance is

presenting in Table 5.4. We notice that all the algorithms here have identical resultant

AUCs as they achieved in the original datasets without noisy features. Also the stopping
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iteration are exactly the same as the number of noisy features injected in each dataset. This

suggests that BAHSIC-AD indeed correctly eliminates all the noisy features and correctly

identify the best contexts for contextual anomalies. This property is especially valuable

for methods like SRA which have the drawback of being more sensitive to noisy features.

BAHSIC-AD thereby make these methods feasible to detect contextual anomalies that

correspond to the feature subset.
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Figure 5.2: Effect of noisy features on the performance of different anomaly detection

algorithms on synthetic dataset
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5.2.2 Results on the Real World Data

The experiment results on the real world data datasets are provided in Table 5.5, and

Table 5.6 presenting the performance of different algorithms on the datasets before and

after the feature selection with BAHSIC-AD . Note that, Survival dataset is excluded in

Table 5.6 as it contains only 3 features.

By observing the results in Table 5.5, we see different methods have vastly varied perfor-

mance on different benchmarks. There are some interesting observations worth mentioning

here. Similar to the results from the synthetic data, SRA still gives one of the best ranking

quality for most of the datasets. This is because many problems being tested originated

from a supervised classification problem, and thereby present themselves as a rare class

detection problem. SRA with an output of mFLAG = 0 therefore performs a normal vs.

abnormal classification and generates a ranking for the collective anomaly detection.

Compared with SRA, the performance of OC-SVM is always dominated by SRA and

the gap is almost always noticeable. Similar to the synthetic cases where density based

approaches are less effective in handling collective anomalies, they still suffer the drawback

that they perform reasonably well on some of the datasets, such as Thyroid and Shut-

tle0vs4 while being significantly inferior to other methods on other datasets like Ecoli,

Libras. This also confirms the point we made before that types of target anomalies do not

always conform with the assumptions made by the density based methods. The nearest-

neighbor approaches suffer similar problem, and they rarely provide the best results on

the benchmarks. Finally, we notice that aLOCI almost always produces one of the worst

ranking results. While it does deserve the merit of being parameter free, the ranking results

are however far from being acceptable in general.

The results obtained after applying BAHSIC-AD are given in Table 5.6 and a plot

that compares and contrasts the performance of different algorithms, with and without

feature selection, is provided in Figure 5.3. In general, most anomaly detection algorithms

can achieve better results, on the subsets of features selected by BAHSIC-AD, than their

performance on the unfiltered dataset. Especially, we notice that some algorithm originally

gives unsatisfactory results can achieve best results after the feature selection, such as LOF

on Libras and SRA on Satellite. We believe this is because BAHSIC-AD indeed helps
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identify the best contexts for these problems. Nevertheless, it is worth noting that in

many cases the improvements are not as significant as the synthetic examples presented

before, and there are several cases that BAHSIC-AD actually cause a marginal performance

decrease. For example, for the Diabetes dataset, the algorithms that perform reasonably

well on the full feature set actually become less effective on selected feature set, and the

best AUC is achieved by SRA without feature selection. Nevertheless, except for rare cases

like these, SRA can typically benefit from the selected feature set from BAHSIC-AD .

One final important observation we have is the improvement obtained from utilizing

Hamming kernels on the nominal only feature set, i.e., Mushroom and Automobile Fraud.

By utilizing a Hamming kernel, we see SRA can achieve significantly better results than

ones achieved with RBF Gaussian kernel. Meanwhile, other algorithms can only achieve

around 0.5 AUCs, which are almost equivalent to random guesses. While not significant

in general, OC-SVM also gets a performance boost from using the Hamming kernel. It is

especially noticeable when we use OC-SVM on the Mushroom dataset with the selected

subset. These observations suggest the importance of introducing proper kernels in han-

dling specific dataset, and simply preprocessing the nominal features by transforming them

into binary features is not a good approach for the unsupervised anomaly detection.

In summary, the results are in accordance with the common belief about unsupervised

learning that there is hardly a universal method which is applicable for every dataset. It

is also important to introduce any prior knowledge by utilizing proper kernels or distance

functions. It is thereby crucial for user to choose the right algorithm for a specific prob-

lem. However, lacking of the prior knowledge about the nature of the data and the specific

type of anomalies to be detected, we observe SRA can handle most of the problems rea-

sonably well, as other approaches fail in one or the other. This is especially true when

we incorporate SRA with the proposed BAHSIC-AD. Additionally, it is noticeable that

applying BAHSIC-AD can be beneficial in improving the performance of anomaly detec-

tion algorithms in general, as it helps to identify a correct context defined by a subset of

features.
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Figure 5.3: Effect of feature selection with BAHSIC-AD on the performance of different

anomaly detection algorithms on real world dataset
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5.3 Feature Ranking Facilitates Interpretation of Rank-

ing Results

As mentioned in Chapter 2, insurance fraud detection is one of the most important ap-

plications of anomaly detection algorithms. This application generally requires highly

interpretable results to help people make reasonable decisions, as more interpretable re-

sults can be more meaningful and convincing and thus significantly increase the value of

the ranking results. For similar reasons, people occasionally sacrifice the accuracy in mak-

ing prediction with simpler supervised methods like decision trees or logistic regressions,

instead of adopting more sophisticated methods like Support Vector Machine or Neural

Network, as the results generated by former methods are in general easier to interpret to

humans.

In this section, we thereby focus on the automobile insurance fraud dataset that has

been utilized as the benchmark in [42] for a more detailed discussion in terms of inter-

pretability of the feature ranking result. We show how the rankings with BAHSIC-AD,

can be helpful for interpretability even when methods like SRA already provide reason-

able performance, and how the feature ranking quality can be on par with ones generated

by supervised methods. From the results presented in Table 5.5, we notice that the fea-

ture selection with BAHSIC-AD does not significantly improve the ranking quality for this

problem, as the AUC is almost the same as ones applied on the full set of feature. However,

we illustrate that the results actually becomes more interpretable.

5.3.1 Feature Importance from Supervised Random Forest

We first consider whether the ranking of the features is reasonable. To find a reliable

feature ranking comparison, we apply random forest [7] to generate a feature importance

ranking as a trustworthy reference from supervised learning methods. Random Forest

trains an ensemble of Nt decision trees, and the prediction of the ensemble is based on

the aggregated prediction result of each decision tree. More precisely, we sample a subset

Xb, Yb of training instances form X, Y and train a decision tree fb on Xb, Yb. The final
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prediction for a new sample u is then made by

fr =
1

Nt

Nt∑
b=1

fb(u)

While training the random forest, an out-of-bag error is calculated by taking the mean

prediction error on the training sample xi using the trees which do not have xi as a training

sample. In order to measure the feature importance of the ith feature, the ith is perturbed

feature by replacing it with random noise and re-calculate the out-of-bag error on the

perturbed dataset. The average difference between out-of-bag error before and after the

perturbation is the feature importance measure. In other words, a larger increase of the

out-of-bag error suggests a more important feature and the feature thereby gets ranked

higher.

5.3.2 Feature Ranking Comparison

Now we compare supervised random forest and BAHSIC-AD in generating the feature

ranking for automobile insurance dataset. For BAHSIC-AD, we do not terminate the fea-

ture elimination process until the last feature gets eliminated, and the ones get eliminated

later ranks higher. The top ranked features from both methods are provided in Table

5.7. Among all 31 features, we notice that the top ranked features significantly overlap

with each other, which strongly suggests that the feature selection with HSICs provides a

meaningful ranking even without the labels provided. The top ranked features from HSIC

can accordingly help fraud investigators to determine a more useful feature subset.

Utilizing SRA on the selected feature subset, we can examine how the top ranked

features affect the formation of the clusters in the eigenspace. The information presented

in the first and second non-principal eigenvectors of Laplacian, constructed with the full

feature set and the selected feature subset are both depicted in Figure 5.4. We notice that

the clusters closer to origin have much higher fraud ratios comparing with the clusters that

lie further away from the origin. Furthermore, we can utilize this visualization to explore

the useful information revealed by the subset of features. Since the dataset consists of only

nominal features, we can observe a more concise and succinct representation of the clusters
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Ranking Random Forest BAHSIC-AD

1st base policy base policy

2nd party at fault vehicle category

3rd vehicle category past no. of claims

4th incidence time month party at fault

5th claimed time month age of vehicle

6th age of policy holder age of policy holder

Table 5.7: Top ranked features from supervised random forest and HSIC among 31 features

of car insurance dataset

with the selected feature subset. This also provides a useful method in identifying what

values actually form a suspicious cluster as shown in Figure 5.4, majority of points close

to the origin are the cases with collision as the base policy, sedan as the vehicle type and

the at-fault party are usually policy holder. This is helpful in justifying how the potential

anomalies (ones close to origin) in this scenario correspond to the fraud cases.
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Figure 5.4: z∗1 and z∗2 based on the first and second non-principal eigenvectors of Laplacian

for Automobile Insurance dataset with the full features (left) and selected feature set

(right).
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

Anomaly detection has been an active and challenging research area with tremendous

practical values in a wide variety of application domains. While the problem formulation

can be problem dependent, anomaly detection problems can be roughly classified into

three categories: point anomaly detection, collective anomaly detection, and contextual

anomaly detection. Many existing methods exist in the literature have been devised to

address different anomaly detection problems. Nevertheless, the assumptions made by

most of the prevailing approaches usually emphasis on one type of anomalies over the

other. Since the exact type of anomalies to be discovered in real world applications is often

unknown to users, we want to develop a more general approach that can automatically

discover different kinds of anomalies at the same time. This is one of the main motivations

behind our work on SRA and unsupervised feature selection with BAHSIC-AD.

In this thesis, we first discuss and analyze the SRA algorithm in greater detail by focus-

ing on its connection with unsupervised SVM. We realize that, with proper assumptions,

the spectral optimization in SRA can be viewed as a relaxation of unsupervised SVM prob-

lem. Taking this perspective, we observe SRA has the potential to tackle point anomalies

and collective anomalies at the same time. Specifically, it provides a bi-class classification
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strength measure that can be used to rank the point anomalies and to generate a normal

vs. abnormal classification for identifying the collective anomalies.

For feature-contextual anomaly detection problems with different contexts correspond

to different feature subsets. We explore the possibility of utilizing dependence between

features as the feature selection criteria and propose a backward elimination filter algo-

rithm BAHSIC-AD. The main assumption of BAHSIC-AD is that the anomalies present

as anomalies in the subset of features that has strong dependence with each other. By

utilizing HSIC, we can estimate the dependence among features in the space defined by

the selected kernel.

We evaluate the effectiveness of SRA by comparing its performance with other pop-

ular anomaly detection methods on a collection of benchmarks, including both synthetic

datasets and real world datasets. The synthetic datasets simulate different common sce-

narios of anomaly detection problems and the real world datasets are taken from various

application domains. The results confirm that most other popular methods do favor certain

types of anomalies over the other, while SRA can deliver a satisfactory results consistently,

even when the exact type of anomalies to be targeted is unknown. By detecting contextual

anomalies with the help of BAHSIC-AD, the results also demonstrate that BAHSIC-AD

are generally helpful in reconstructing the contexts for anomaly detections.

6.2 Possible Future Work

There are several directions which can be further explored. The SRA algorithm solely

utilizes the first non-principal eigenvector in generating anomaly ranking. However, as

multiple eigenvectors are utilized in spectral clustering, it will be interesting to explore how

we can make use of the information present in the additional non-principal eigenvectors.

With respect to the unsupervised feature selection for anomaly detection, especially the

application of BAHSIC-AD, it will be interesting to come up with a better stopping criteria

to terminate the feature elimination process. While the current strategy do provide certain

level of improvement in general, it can be suboptimal. Another interesting direction is to

utilize HSIC for parameter selection. Since we see the dependence among features in the
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kernel space can be helpful in feature selection, it is also reasonable to assume it can be

used for optimizing the parameter selection.
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[30] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Loop: local

outlier probabilities. In Proceedings of the 18th ACM conference on Information and

knowledge management, pages 1649–1652. ACM, 2009.

76

http://www.iii.org/issue-update/insurance-fraud
http://www.iii.org/issue-update/insurance-fraud


[31] Huan Liu and Lei Yu. Toward integrating feature selection algorithms for classification

and clustering. Knowledge and Data Engineering, IEEE Transactions on, 17(4):491–

502, 2005.

[32] Stuart Lloyd. Least squares quantization in PCM. Information Theory, IEEE Trans-

actions on, 28(2):129–137, 1982.

[33] Larry M Manevitz and Malik Yousef. One-class svms for document classification. the

Journal of machine Learning research, 2:139–154, 2002.

[34] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intrusion de-

tection. Network, IEEE, 8(3):26–41, 1994.

[35] Julio F Navarro, Carlos S Frenk, and Simon DM White. A universal density profile

from hierarchical clustering. The Astrophysical Journal, 490(2):493, 1997.

[36] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering: Analysis

and an algorithm. Advances in neural information processing systems, 2:849–856,

2002.

[37] Ke Nian, Haofan Zhang, Aditya Tayal, Thomas Coleman, and Yuying Li. Auto in-

surance fraud detection using unsupervised spectral ranking for anomaly. Submitted

to Journal of Risk and Insurance, 2014.

[38] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. Fast distributed

outlier detection in mixed-attribute data sets. Data Mining and Knowledge Discovery,

12(2-3):203–228, 2006.

[39] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos Faloutsos.

Loci: Fast outlier detection using the local correlation integral. In Data Engineering,

2003. Proceedings. 19th International Conference on, pages 315–326. IEEE, 2003.

[40] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

networks, 31(23):2435–2463, 1999.

77



[41] Hanchuan Peng, Fulmi Long, and Chris Ding. Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226–1238, 2005.

[42] Clifton Phua, Damminda Alahakoon, and Vincent Lee. Minority report in fraud detec-

tion: classification of skewed data. ACM SIGKDD Explorations Newsletter, 6(1):50–

59, 2004.

[43] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for

mining outliers from large data sets. In ACM SIGMOD Record, volume 29, pages

427–438. ACM, 2000.

[44] Volker Roth. Kernel fisher discriminants for outlier detection. Neural computation,

18(4):942–960, 2006.

[45] Stan Salvador, Philip Chan, and John Brodie. Learning states and rules for time series

anomaly detection. In FLAIRS Conference, pages 306–311, 2004.

[46] Bernhard Schölkopf, Christopher JC Burges, and Alexander J Smola. Advances in

kernel methods: support vector learning. MIT press, 1999.

[47] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural com-

putation, 13(7):1443–1471, 2001.

[48] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cam-

bridge university press, 2004.

[49] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[50] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature

selection via dependence maximization. The Journal of Machine Learning Research,

98888(1):1393–1434, 2012.

78



[51] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Conditional

anomaly detection. Knowledge and Data Engineering, IEEE Transactions on,

19(5):631–645, 2007.

[52] Arian R Van Erkel and Peter M Th Pattynama. Receiver operating characteristic

(roc) analysis: basic principles and applications in radiology. European Journal of

radiology, 27(2):88–94, 1998.

[53] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[54] Li Wei, Weining Qian, Aoying Zhou, Wen Jin, and X Yu Jeffrey. Hot: Hypergraph-

based outlier test for categorical data. In Advances in Knowledge Discovery and Data

Mining, pages 399–410. Springer, 2003.
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