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Abstract 

Chemical process design is still an active area of research since it largely determines the optimal and 

safe operation of a new process under various conditions. The design process involves a series of 

steps that aims to identify the most economically attractive design typically using steady-state 

optimization. However, optimal steady-state designs may fail to comply with the process constraints 

when the system under analysis is subject to uncertainties in the inputs (e.g. the composition of a 

reactant in a feedstream) or in the system’s parameters (e.g. the activation energy in a chemical 

reaction). This has motivated the development of systematic methods that explicitly account for 

uncertainty in optimal process design. In this work, a new efficient approach for the optimal design 

under uncertainty is presented. The key idea is to approximate the process constraint functions and 

outputs using Power Series Expansions (PSE)-based functions. A ranking-based approach is adopted 

where the user can assign priorities or probabilities of satisfaction for the different process constraints 

and process outputs considered in the analysis. The methodology was tested on a reactor-heat 

exchanger system, the Tennessee Eastman plant, which is an industrial benchmark process, and a 

post-combustion CO2 capture plant, which is a large-scale chemical plant that has recently gained 

attention and significance due to its potential to mitigate CO2 emissions from fossil-fired power 

plants. The results show that the present method is computationally attractive since the optimal 

process design is accomplished in shorter computational times when compared to the stochastic 

programming approach, which is the standard method used to address this type of problems. 

Furthermore, it has been shown that process dynamics play an important role while searching for the 

optimal process design of a system under uncertainty. Therefore, a stochastic-based simultaneous 

design and control methodology for the optimal design of chemical processes under uncertainty that 

incorporates an advanced model-based scheme such as Model Predictive Control (MPC) is also 

presented in this work. The key idea is to determine the time-dependent variability of the system that 

will be accounted for in the process design using a stochastic-based worst-case variability index. A 

case study of an actual wastewater treatment industrial plant has been used to test the proposed 

methodology. The MPC-based simultaneous design and control approach provided more economical 

designs when compared to a decentralized multi-loop PI control strategy, thus showing that this 

method is a practical approach to address the integration of design and control while using advanced 

model-based control strategies. 
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Chapter 1 

Introduction 

 

Chemical process design is an essential task performed to achieve the desired throughput and quality 

of the final products in the face of safety, environmental, operational and physical constraints at 

minimum cost. The design process involves a series of steps that aims to identify the most 

economically attractive design typically using steady-state optimization [1,2]. Although chemical 

processes have been traditionally designed using this approach, the designs obtained from those 

analyses may fail to comply with the process constraints when it is subjected to uncertainties in the 

inputs (e.g., the composition of a reactant in a feedstream) or in the system’s parameters (e.g., the 

activation energy in a chemical reaction). The resulting instances of infeasibility or constraint 

violations due to the presence of uncertainties will have adverse effects on the process economics. For 

example, a chemical process whose equipment sizing and operating conditions have been designed 

based on optimal steady-state design economics may be subjected to uncertainty in the composition 

of raw materials. This may result in products that may not meet the clients’ minimum products’ 

specifications and thus have no market for these goods or can only gain low profit margins because of 

their low quality. Therefore, the design obtained from steady-state calculations at the nominal 

operating conditions may no longer be ‘optimal’ when operating under uncertainty. Since 

uncertainties are inevitable and inherent in almost every process, the typical approach used to address 

this problem is to add overdesign factors, e.g., adding an additional (percentage) volume to a storage 

tank will aim to accommodate the uncertainty in the system at the expense of increasing the costs for 

this process. However, the main limitation with this approach is that there is no systematic method to 

assign overdesign factors and is typically done from process experience, using process heuristics or 

even arbitrarily. Moreover, this practice of overdesigning a process to ensure feasibility under 

uncertainty has been proven to be costly, especially in the design of an expensive process unit or 

when uncertain parameters only affect specific equipment or process units. This has motivated the 

development of systematic methods that explicitly account for uncertainty in the calculation of the 

optimal process design. The aim of these methods is to assess the effect of the uncertainty on the 

process outputs (or constraints), and then adjust the design of the plant (such as equipment sizes and 

operating conditions) to accommodate those uncertainties and maintain the operability of the plant 

within its feasible limits and close to its process design goals.  The designs obtained from those 
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analyses are expected to specify the most economically attractive process that complies with the 

process constraints in the presence of uncertainty. Several methods have been proposed in the 

literature to address the optimal design of chemical processes under uncertainty, e.g., stochastic 

programming, multi-scenario optimization and chance-constrained programming. Each of the 

methods proposed in the literature has its own benefits and limitations in terms of computational 

efficiency, conservatism of the designs, ease of implementation, and its applicability to large-scale 

nonlinear chemical processes. The development of practical computationally-efficient methods that 

can be applied to design industrially-relevant chemical plants is still an active area of research that 

has received great attention due to its relevance to the field. It is the aim of this study to develop a 

new practical approach to address the optimal design of large-scale chemical processes under 

uncertainty. The benefits of the proposed method have been evaluated using two industrial 

benchmark chemical processes.  

 

The Tennessee Eastman (TE) process is a widely studied industrial problem published by the 

Tennessee Eastman Company as a process simulation for academic research. A mathematical model 

describing the process plant is not explicitly given for this process; instead, a FORTRAN code has 

been provided for process simulations with no clear description of the actual process or chemical 

species being used. The process consists of a reactor, recycle compressor, partial condenser and flash 

separator with a recycle loop to produce two liquid products (labelled as G and H) and by-product F 

using four gaseous reactants, A, C, D and E. Hence, the Tennessee Eastman plant serves as a suitable 

design problem as it tests the applicability of the method to be developed in this study for large-scale 

systems. In addition, although this plant has been widely used by the academic community to test or 

validate different techniques or methods proposed in the field of process systems, the optimal steady-

state design under uncertainty of this plant has not been reported in the open literature to the author’s 

knowledge. 

 

Another industrially-relevant process that has received attention in recent years due to its significance 

to reduce greenhouse gas emissions is post-combustion CO2 capture plants. The effect of greenhouse 

gases on the global climate, also known as global warming, has become more drastic in recent 

decades and brought concerns to scientists and the general public about its possible threats to the 

environment [3]. Carbon dioxide (one of the greenhouse gases) has a significant impact on global 

warming [4,5] and is sometimes considered the principal contributor among all the other greenhouse 
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gases [6]. A large source of CO2 emissions to the environment are from power plants using fossil fuel 

combustion sources such as coal and natural gas. In general, coal-based power plants release twice the 

amount of CO2 per unit of electricity generated than natural gas-based power plants [7,8]. Currently, 

fossil fuels are the primary source of energy due to its availability, abundance, energy density and 

existing infrastructure for distribution and delivery, making it a more reliable and economically 

attractive option than newer alternative sources such as nuclear or renewables [9–11]. This has 

motivated approaches to mitigate and control CO2 emissions for the continuous use of fossil fuel 

energy. CO2 capture and storage is considered to be an effective option for reducing the amount of 

CO2 released to the environment [12–14] and has been implemented on various chemical processes, 

e.g., coal gasification, natural gas production, and fertilization [15]. As with any other chemical 

process, CO2 capture is subject to inherent uncertainties in its input streams or system parameters. 

This may have a direct effect on its performance such as meeting the target CO2 removal amounts or 

it may also alter the process operation causing undesired variability in operating variables such as 

temperature or pressure, which may lead to a plant shutdown in extreme cases. Since any plant is 

subject to uncertainties, the design of its process equipment is essential to ensure that the plant is 

operational under these uncertain circumstances. Input variables having their own ranges of 

variability will affect the process differently and thus require specific designs to operate feasibly. 

Therefore, a study of the effect of process uncertainties on the optimal design of a post-combustion 

CO2 capture plant can provide useful new insights. To the author’s knowledge, such studies have not 

yet been performed for this process. 

 

A key limitation in optimal process design is that it is usually performed using steady-state 

optimization calculations, although it has been shown that process dynamics does play an important 

role while searching for the optimal process design of a system under uncertainty. The selection of the 

optimal process design while taking into account the process dynamic performance, also referred to as 

simultaneous design and control or integration of design and control, has been suggested by both 

academia and industry [16–22]. Unlike the traditional sequential design approach which obtains 

optimal process designs first based on steady-state analysis and then only designs the process controls 

from dynamic analysis, the concept of integration of design and control aims to account for both 

steady-state and dynamic analysis in one single step to obtain both optimal process design and 

controllability characteristics simultaneously. The key idea is that processes designed based on 

steady-state economics may not provide suitable controllability of the outputs in the face of 
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disturbances. For example, a case study presented by Luyben [23] of a temperature-controlled 

reaction in a jacketed CSTR, assesses two different configurations: using a single large reactor or two 

smaller reactors in series. Steady-state economics suggested that using the two smaller reactors in 

series is more profitable as the capital costs are lower. However, dynamic response analysis of both 

configurations to a step disturbance in the heat of reaction showed that the larger single reactor 

provided better controllability of the reactor’s temperature. Hence, this illustrates the importance of 

taking process dynamics into account at the design stage. To obtain the optimal design and control of 

a process, knowledge of the disturbances is important to determine its effect on the dynamic response 

of the system, and thus adjust the sizing of equipment and aggressiveness of the control strategy to 

accommodate those disturbances. While some processes are subject to disturbances that follow a 

specific time-dependent behaviour, e.g., an oscillatory behaviour, there are processes for which the 

occurrence of a particular realization of the disturbances is stochastic or random. For the latter case, a 

probabilistic description is a suitable explanation of its behavior. Although methodologies exist for 

the integration of process design and control, most of the methods have assumed that the disturbances 

follow a certain class of time-dependent functions, e.g., a sinusoidal function with uncertain (critical) 

parameters [21,24], or a series of step changes with unknown (but bounded) magnitudes [25,26], or 

calculated from a worst-case scenario formulation [27,28]; very few methodologies have assumed 

that the disturbance follows a probabilistic-based behavior [29]. Probabilistic-based simultaneous 

design and control have not been widely explored, though it offers more economical optimal designs 

by reducing the conservativeness associated with the current approaches available in the literature. On 

the other hand, model-based control strategies such as Model Predictive Control (MPC) have matured 

enough and gained wide interest in the industrial applications due to its superior features over 

conventional feedback controllers. MPC offers optimal and multivariable control of systems and 

explicitly considers and can maintain in principle the dynamic operability of the manipulated and 

controlled variables within their feasible limits. As part of this research study, a new methodology for 

integration of design and control under the effect of stochastic-based disturbances using MPC has 

been developed.  
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1.1 Research objectives and contribution 

 

The research carried out in this work aims to achieve the following:  

 

i. Develop a practical and efficient method for the optimal design of large-scale chemical 

processes under uncertainty. A ranking-based approach will be adopted whereby the user 

can assign priorities or probabilities of satisfaction for the different process constraints and 

model outputs considered in the analysis. The user-defined ranking structure will determine 

the level of conservatism of the designed plant.  

 

ii. Implement the method developed in this work to address the optimal design under 

uncertainty of a post-combustion CO2 capture plant. This contribution will demonstrate the 

applicability of the proposed approach for large-scale chemical processes. This method will 

be used to study the effect of process uncertainties in the input flue gas stream on the 

design of CO2 capture plants. 

 

iii. Develop a method to integrate design and an advanced control strategy under dynamic 

uncertainty. In contrast to the method proposed in the first objective outlined above, which 

aims to specify optimal steady-state designs under uncertainty, a key characteristic of the 

method proposed in this point is that it will explicitly take into account the time-dependent 

variability of the disturbances and the dynamic operability of the process while searching 

for the optimal process design . A model-based Model Predictive Control (MPC) will be 

implemented as the control strategy in addition to the probabilistic ranking-based feature to 

test the compliance of the process constraints in the analysis. The proposed method will be 

tested using an industrial wastewater treatment plant located in Manresa, Spain.  
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1.2 Outline of thesis 

 

This thesis is organized in six chapters as follows: 

 

Chapter 2 presents the literature review on the key subjects covered in this work. The studies relevant 

to the different methods and approaches to the optimal process design under uncertainty are reviewed. 

Several studies carried out to address the optimal CO2 capture process plants with and without 

uncertainty are also summarized in this chapter. Further, a review on the simultaneous design and 

control strategies that have been proposed in the literature is discussed at the end of this chapter. 

 

Chapter 3 presents a novel approach for the optimal design of chemical processes in the presence of 

uncertainty. This includes a ranking-based approach whereby the user can assign priorities or 

probabilities of satisfaction for the different process constraints and model outputs considered in the 

analysis. The key idea in this work is to approximate the process constraint functions and process 

outputs using Power Series Expansion (PSE)-based functions. The method was initially tested on a 

reactor-heat exchanger system and the Tennessee Eastman process.  

 

Chapter 4 presents a study on the effect of process uncertainty on the optimal design of a CO2 capture 

plant. Such a study is important since the presence of uncertainties can affect the process operations 

leading to lower plant performance or may even deem the process inoperable. The ranking-based 

probabilistic method presented in Chapter 3 is used for the optimal design of the CO2 capture plant 

under uncertainty. In this work, uncertainty is assumed in three input variables affecting the operation 

of a CO2 capture plant, namely the CO2 content, temperature and flow rate of the flue gas stream. 

Several case scenarios considering single and simultaneous uncertainties are investigated.  

 

A stochastic-based simultaneous design and control methodology for chemical processes under 

uncertainty is presented in Chapter 5. The key novelties of the proposed method include the use of a 

multivariable advanced Model Predictive Control (MPC) scheme in the analysis and the computation 

of a stochastic-based worst-case variability (SB- WCV) index, which accounts for the probabilistic 

nature of the disturbances. A case study of an actual wastewater treatment industrial plant is presented 

and used to test the proposed method and compare its performance to that obtained using the 
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sequential design approach and then a simultaneous design and control method using conventional PI-

based control schemes.  

 

Chapter 6 summarizes the key research outcomes of the present study and discusses the future 

research avenues that can be further explored in this area. 
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Chapter 2 

Literature Review 

 

The field of optimal process design under uncertainty has gained wide interest among researchers due 

to the fact that these uncertainties may cause serious operational problems if not accounted for at the 

design stage. In addition, the presence of uncertainty is almost inherent in every process due to lack of 

knowledge or imprecise measurements, making it a general design issue and not just specific to 

certain processes. This chapter presents a review on the different methods and approaches published 

in the literature for optimal design of chemical processes under uncertainty. Similarly, a 

comprehensive review on the design of CO2 capture plants is presented since this specific process 

plant will be used to study the effect of uncertainties on its optimal design. Further, the methodologies 

that have been proposed in the literature for optimal design and control of chemical processes under 

uncertainty are revised with special emphasis on those approaches that have described disturbances 

using a stochastic (probabilistic-based) approach. 

 

2.1 Optimal process design under uncertainty 

 

The problem of optimal process design under uncertainty can be conceptually posed as follows: 

 

limitsDesign 

)inequalityor (equality  sconstraint Process

 EquatonsDesign  Process model, ProcessSubject to

)(Cost  Annualized Total Expectedminimize Φ

   (2.1) 

 

The objective function consists of the total economic costs of the process that are typically annualized 

and defined in terms of the process’ capital and operating costs. Since uncertainty will be accounted 

for in this problem, the expected value of the total capital (CC) and operating (OC) costs becomes the 

objective function to be minimized. A mathematical model (z) describing the process is usually 

available or derived from first-order principles (mechanistic) or from experimental data (empirical 

modelling). Uncertainty in the process inputs (u) or in the model parameters (p) will result in 



 

 9 

variability in the outputs (y) and states (x) of the system, and thus in the evaluations of the process 

feasibility constraints which may include safety, environmental or operational constraints. Problem 

(2.1) aims to find a process design (d) and process operation (u) that remains feasible with respect to 

the process constraints (h) under each realization of uncertainty ( θ ) which includes both input and 

parameter uncertainty. Based on the above, the mathematical description of problem (2.1) is as 

follows: 

 

ul

ul

E

uuu

ddd

0θuxdh

0θuyxpdz

θuxdθuxd
udη












),,,(

),,,,,(s.t.

)],,,OC(),,,CC([min
],[
Φ

     (2.2) 

 

The uncertain inputs and model parameters (θ ) are typically assumed to follow some known 

probability distributions from process knowledge or heuristics. However, usually they are random and 

assumed to follow a particular probabilistic description.  

A popular method used to account for uncertainty in process design is referred to as the stochastic 

programming approach [30–32]. This method evaluates the system’s optimal design by performing 

extensive simulations of the actual plant’s model (z) due to multiple realizations in the uncertain 

parameters ( θ ). The sampling of the uncertain realizations is usually based on the Monte Carlo 

sampling method [33]. Different approaches that employ the stochastic programming approach are 

available in literature, e.g., the stochastic branch and bound method [34,35] and the scenario-based 

simulation method, which assigns likelihood of occurrence (probability) to each uncertain scenario 

[36]. The multi-scenario optimization approach is a stochastic programming method that has also 

been proposed for optimal process design under uncertainty [37–42]. In this method, two stages are 

considered: the design stage and the operation stage. Selection of the first (design, d) stage aims to 

minimize the expected value of the costs incurred due to the operating conditions specified in the 

second (operation, u) stage in the presence of uncertainty. Scenarios of the uncertain realizations are 

introduced into the second stage of the formulation, where a feasible solution will be able to handle 

each scenario by manipulating the operating variables (u) of the process. For continuous uncertain 

domains, discrete sampling is required in the multi-scenario optimization approach. The more 

uncertain realizations (scenarios) included in the analysis, the more accurate the results are expected 
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to be at the expense of higher computational costs. The latter is a key limitation of this approach to 

address the optimal design of large-scale process systems [43]. 

 

The multi-scenario approach is suitable when process reliability, i.e., full compliance of the process 

constraints, is critical since it requires feasibility for all the possible uncertain scenarios at minimum 

cost. However, there are cases where the compliance of specific process constraints is critical (safety-

related) whereas violation in other process constraints may be allowed with no actual risk to the 

process operation or products quality. For example, a slight variation in the liquid level of a storage 

tank away from its corresponding feasible limits due to uncertainties in the process may cause no 

serious implications to the plant’s economics. On the other hand, the variability in a reactor’s working 

temperature outside its feasible limits due to uncertainty in the system parameters, e.g., reaction rate 

kinetic parameters, has a significant impact on the plant’s economics because it directly affects the 

products’ throughput and quality. Since compliance of the process constraints normally require larger 

(more expensive) designs, it may sometimes be more economical to allow violation of less critical 

constraints (e.g. tank liquid level) under uncertainty, than to design a robust process that satisfies the 

constraints at all times. In the latter case, it is therefore desired to develop a ranking-based design 

approach that ensures feasibility of the critical higher ranked constraints (e.g. reactor temperature) at 

all times but allows less ranked (non-critical) constraints to be partially violated with the aim of 

achieving more economical but yet feasible operational process designs.  

 

A systematic method that implements the ranking-based approach is chance constrained programming 

[44]. The conceptual formulation of this approach is as follows: 

u
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(2.3) 

In this method, the objective function aims to minimize the expected value and variance of the cost 

function whereas the constraints are redefined as minimum probability of satisfaction }P{  held by the 

actual physical and process constraints under uncertainty.   is a weighting factor that specifies the 

importance of the variability in the cost function due to random realizations in the uncertain 
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parameters (θ ); h , d  and u  are user-predefined confidence levels between 0 and 1. To calculate 

the probabilities of constraint satisfaction }P{ , monotonic relationships between individual uncertain 

variables and its corresponding constrained variables are used to map the output boundaries according 

to the region of the uncertain inputs. This information is then used in a multivariate integration to 

compute the probabilities in the limited region of the uncertain inputs. This chance-constrained 

programming is therefore transformed into a deterministic equivalent optimization problem. The main 

challenge with this approach is the need to evaluate multiple integrals to compute expected values 

(and/or variances) for the objective function and constraints (at a given probability limit  ) in the 

presence of uncertainty. Li et al. [45–47] developed a chance-constrained based methodology that 

addressees several industrial problems, i.e., production planning, process design and operation, 

optimal control. Ostrovsky et al. [48–50] developed a different approach to transform chance 

constraints into deterministic constraints using the concept of uncertainty regions. This method 

searches for the optimal form (or shape) and location of the ‘uncertain space’, which is a decision 

variable in the optimization formulation by assuring that the uncertain variables fall within this region 

with a high probability (close to unity). This approximation in the uncertainty region reduces the 

computational costs in the evaluation of multiple integrals. Despite the progress made in this area, the 

need to evaluate multivariate integrals to compute the statistic operations and probabilistic constraints 

}P{ , and the computational effort associated with this calculation, are the main challenges faced 

towards the application of these methodologies for large-scale industrial chemical plants.  

 

In summary, the computational challenges associated with both stochastic programming and chance-

constrained programming approaches hinder their applicability to design large-scale chemical 

processes under uncertainty. As a result, there have been continuous efforts to develop more efficient 

methodologies for the optimal design of process under uncertainty.  

 

2.2 Post-combustion CO2 capture plant 

 

Several approaches have been proposed to capture CO2 including pre-combustion [51], post-

combustion [52–55] and oxy-combustion method [56,57]. Post-combustion using chemical 

absorption with amine solvents is by far the most common and developed technique to capture CO2 

from flue gas having low CO2 concentrations. This method is preferred over the other two approaches 
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since it can be implemented in existing fossil-fired power plants without major changes in equipment 

configurations that would be more costly [3,54,58,59]. One such method is chemical absorption. A 

common approach is to react the CO2 in the flue gas with an amine solvent to form an intermediate 

compound which decomposes with the application of heat to regenerate the solvent. 

Monoethanolamine (MEA) is the most widely used amine solvent for this purpose due to its high 

reactivity with CO2 [60]. Typically, the carbon capture unit includes an absorption column in which 

CO2 in the entering flue gas stream is captured by the MEA solvent, a stripping column with a 

reboiler at its bottom to heat the CO2-rich solvent and regenerate it, and a condenser is typically 

located at the top of the stripper to recover a CO2-rich gas stream. Heat exchangers are also included 

in the plant layout to maintain the temperature requirements for this process. A specific description of 

this process is presented in Chapter 4. 

 

Several studies have been performed to optimize the design and operation of MEA-based CO2 capture 

plants [58,59,61–66]. The focus of those studies is to search for the process operations (e.g., amine 

solvent inlet concentration and temperature, stripper operating pressure and CO2 loading) and design 

decisions (e.g., number of stages for the absorber and stripper columns) that minimize the plant 

economics. The resulting optimal CO2 capture plant design is expected to satisfy its process and 

target constraints (e.g. CO2 emission, CO2 removal) under nominal operating conditions. However, in 

the presence of uncertainties in the process inputs, these designs may fail to comply with the desired 

targets or process constraints. In a practical context, uncertainty is inherent in every process. Hence, 

efforts to account for uncertainty at the design stage have been suggested and widely studied in the 

field of process systems engineering [67–71]. In the context of CO2 capture plants, the effect of 

uncertainties in the prices of fuel and CO2 on the investment behavior of choosing between coal, gas 

and nuclear power plants has been studied by Yang et al [72]. The option of installing a carbon 

capture unit has been considered in the analysis of coal and gas power plants. In another study by 

Geske and Herold [73], uncertainties in CO2 price and technology development (thermal efficiency 

and capital costs) have been considered in the analysis of installing a CO2 capture plant to an already 

existing plant. Several other studies have investigated the effect of uncertainty in the prices of key 

economic parameters (e.g. fuel, electricity, CO2) on the optimal planning of power generation plants 

coupled with CO2 capture when considering different technologies or timing of investments [74–79]. 

Nonetheless, those studies have targeted the effects of financial and risk uncertainties on higher-level 

decisions of planning, investment and technology selection rather than on the effect of process-level 
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uncertainties on process operation and equipment design. To the author’s knowledge, no study in the 

literature has investigated the latter case. 

 

2.3 Simultaneous design and control methodologies 

 

The design of chemical processes has been traditionally performed following a sequential approach 

where the process design parameters such as the equipment sizes and the process operating conditions 

are first estimated from the steady-state optimization of the process economics. Once the optimal 

steady-state design has been specified, process controllability is then addressed by assessing the 

dynamic response of the plant in closed-loop in the presence of disturbances and model parameter 

uncertainty. To achieve the required control performance, this second stage of the conventional 

design method involves the selection of suitable control structures, control algorithms and their 

corresponding tuning parameters that can meet the process design goals. However, the process design 

parameters and operating conditions specified in the first stage of the design analysis will impose a 

limitation on the control system’s ability to maintain the feasible and flexible operation of the process 

in the presence of disturbances or parametric uncertainty [2,80,81]. To accommodate such conditions, 

overdesign factors can be added to the process design parameters which may lead to the specification 

of expensive process designs. Hence, the selection of the optimal process design while considering 

the process dynamic performance in the analysis, also referred to as simultaneous design and control 

or integration of design and control, has been suggested by both academia and industry as an 

attractive alternative to overcome the issues associated with the traditional (sequential) design 

approach [16–22]. The problem of simultaneous process design and control under uncertainty can be 

conceptually posed as follows: 

 

LimitsDesign 

 sConstraintPoint  End s,ConstraintPath  Inequality

Equations Scheme Control

 EquatonsDesign  Process Model, Process DynamicSubject to

)( :Cost Annualized Total Expectedminimize tΦ

  (2.4) 

 

Similar to problem (2.1), the objective function in problem (2.4) aims to minimize the total 

annualized costs. However, since simultaneous design and control problems consider the effect of 
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time-varying disturbances )(tθ  on the process, the expected value of the cost function is computed 

with respect to the time domain. Similarly, a dynamic process model (J(t)) usually consisting of 

differential equations with respect to time are used here rather than steady state models. Besides the 

introduction of the transient time domain into the problem, a key difference with problem (2.1) is that 

control scheme equations, and its tuning parameters ( ), are considered in the calculations. The 

mathematical description of problem (2.4) is as follows: 
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  (2.5) 

 

The process design d, the manipulated variables u and the controller tuning parameters   are 

optimized to obtain the most economical process that remain dynamically feasible in the face of time-

varying disturbances )(tθ . 

Most of the methodologies developed for the simultaneous design and control of chemical processes 

have considered conventional feedback Proportional-Integral (PI) controllers in their analysis 

[18,25,82–85]. Although plant-wide control is still an active area of research [86–89], advanced 

model-based control strategies such as Model Predictive Control (MPC) has matured enough after 

almost three decades of implementation where it has been widely used and recognized in both the 

industry [90] and in the academia [91–94], making it one of the most significant advances in process 

control in the last decades [95]. While maintaining the control objectives on spec, the implementation 

of MPC ensures optimal control action through the optimization framework that is incorporated in its 

algorithm. MPC also has the advantage to handle constraints in the manipulated and controlled 

variables explicitly in its algorithm. In addition, it has been shown that MPC may provide better 

control performance than conventional feedback controllers [96,97]. Hence, it is desired to 

incorporate MPC in the simultaneous design and control methodology despite some of the 

computational challenges that are avoided while using conventional feedback controllers, e.g., the 

need to identify an internal MPC model and solve an optimization problem at each time step. 

Previous works in the literature that implemented MPC control algorithms in the context of 

simultaneous design and control are available [21,98–102].   
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Most of the optimization-based approaches reported in literature for simultaneous design and control 

follow the same key idea: determine (or specify) the critical realizations in the disturbances and in the 

uncertain system’s parameters that produce the largest deviations in the controlled variables and 

therefore demand significant efforts from the control system to maintain the process on spec in the 

presence of these conditions. This is often termed as the worst-case scenario, and the variability in 

the system due to this scenario is called the worst-case process variability. This worst-case scenario is 

then used by the simultaneous design and control methodologies to evaluate the process economics 

and constraints considered in the formulation. An optimal design and control scheme is referred to as 

the configuration that can accommodate the worst-case scenario (or critical scenarios identified a 

priori) in a safe and acceptable fashion without violating constraints in the control action movements 

or in the critical operating variables of the system. The challenge and difference in the approaches 

available in literature is in the method used to compute this worst-case scenario, e.g., using open-loop 

controllability indexes [81,82,103–105], from a formal dynamic optimization formulation 

[16,25,83,106,107], or from the implementation of robust control tools [27,71,99,108–110]. Recent 

comprehensive reviews on the current techniques and methods on integration of design and control 

are available [111–113]. 

 

Following a worst-case estimation method and then backing off to the closest optimum dynamically 

feasible and stable design as proposed by the previous methods may often lead to conservative 

(expensive) designs. This is because these methods use the worst-case (or the critical scenarios) to 

evaluate the dynamic performance of the system and estimate the optimal feasible design that 

accommodates this largest variability without considering how often this largest (worst-case) 

variability may occur during operation, nor considering the level of significance of each process 

constraint. For example, a large variability in the liquid level in a storage tank (which may cause an 

overflow) may be tolerated more than the variability in a reactor’s temperature that could have more 

serious effects on the product’s quality and the process economics. Therefore, it may be more 

profitable to allow for the water tank to overflow sometimes rather than overdesign the plant 

(increased costs), especially if the worst-case scenario causing this overflow is a rare occurrence. The 

need for a methodology that incorporates the probability of occurrence of worst-case process 

variability, and ranks variables and systems according to their safety or commercial significance, is 

motivated by the economic savings it can offer: specify less conservative (economically attractive) 
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yet dynamically feasible process designs. To date there are very few studies that present stochastic-

based approaches for integration of design and control. A recent method presented in the literature for 

optimal design that has adopted the ranking-based approach was proposed by Ricardez-Sandoval 

[29]. This work makes use of simulations using Monte Carlo sampling methods to obtain the 

distribution of the process constraints under uncertainty. A user defined probability limit is assigned 

to each constraint, which in turn sets the ranking or importance of that constraint. However, the 

analysis was limited to a simple case study of a CSTR tank, implementing conventional feedback 

controllers. To the author’s knowledge, an approach that implements advanced control strategies such 

as MPC is still an active area of research and has not been studied for disturbances that follow 

probabilistic-based (stochastic) descriptions. 

 

2.4 Uncertainty sampling methods 

 

Many of the methods described in this chapter require sampling of uncertain variables from 

probability distribution functions (PDFs). The Monte-Carlo (MC) sampling technique is one of the 

most popular methods used for sampling from a probability distribution, which generates nran 

pseudorandom numbers to approximate a standard uniform distribution. Then, to obtain the specific 

values for each random variable, the nran samples are inverted over the cumulative distribution of the 

specified PDF for that variable. Another sampling technique called the Latin hypercube sampling 

(LHS) uses stratification sampling that may provide more accurate estimates of the distribution 

function [114]. The range of the uncertain variable is divided into intervals of equal probability and a 

single value is sampled from each interval. In the case of multidimensional uncertainty, the nran 

samples obtained for one stochastic variable is randomly paired with all the other randomly sampled 

nran values of the other random variables. Florian [115] has proposed an efficient sampling scheme 

through an improved variant of the LHS which was called the Updated Latin Hypercube Sampling, 

that results in a substantial decrease of the variance in the estimates of statistical parameters (such as 

the mean value) using moderate number of simulations. Another sampling approach named the 

Antithetic Variates (AV) method [116], has been shown to reduce the mean squared error (bias) of an 

estimated statistical function when compared to the use of independent random sampling (such as 

MC), but it is not as efficient as the Latin Hypercube Sampling technique [117]. Johnson et al [118] 

proposed a sampling method based on Maximin designs, which spreads the sampling region around 

the entire domain space by maximizing the minimum distance between any two samples. Efficient 
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sampling methods nowadays make use of low-discrepancy sequences instead of random sampling as 

is the case with the Monte Carlo and Latin hypercube techniques. These methods, typically referred to 

as quasi-Monte Carlo methods, usually converge faster than techniques employing random or 

pseudorandom sequences. The Halton and Hammersley sequences are two such low-discrepancy 

sequences that have been used in several applications. Diwekar et al [119] have implemented an 

efficient sampling technique based on the use of the Hammersley Sampling Sequence (HSS), and 

showed that it requires considerably less sample points to estimate the statistical properties within a 

pre-specified tolerance than the Monte Carlo (or Latin hypercube) sampling methods when 

performing optimization under uncertainty. Other works that have implemented this more efficient 

sampling technique have been reported [120–122]. The sampling methods described thus far normally 

choose the set of samples a priori running the experiment or simulation, categorized as space-filling 

design methods. Another class of techniques called adaptive sampling adjusts the grid of the samples 

according to the complexity of the design space. For example, in variance-reduction sampling 

strategies, further sampling points are chosen from the region with high variance so that more 

samples are obtained to improve the accuracy of the estimate and reduce its variance. Adaptive 

multiple additive regression trees (AMART) [123] and the tree Gaussian process (TGP) [124] are 

sampling techniques based on the adaptive sampling method.  

 

In this work, most of the sampling is carried out using the well-known Monte Carlo method, while at 

some instances the more efficient Halton method will be used to evaluate the computational 

performance of the proposed methods.  
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Chapter 3 

Optimal design of large-scale chemical processes under 

uncertainty: A ranking-based approach 

 

This chapter presents a practical ranking-based method to address the optimal design and operation of 

large-scale processes under uncertainty. The organization of this chapter is as follows: an overview of 

the goals and benefits of the proposed methodology is given in Section 3.1. Next, Section 3.2 presents 

the mathematical framework proposed to compute the distributions in the constraints from knowledge 

of the uncertainty distribution of the model inputs and model parameters. The systematic method to 

address the optimal design under uncertainty is presented in Section 3.3. The approach proposed in 

this work has been tested using different case studies, which are presented in Section 3.4. The method 

is initially tested using a case study that involves the design of a reactor and heat exchanger system. 

This case study was evaluated under different scenarios, to analyze the benefits and limitations of the 

new approach. A second case study involving the optimal operation of the Tennessee Eastman plant 

[125] demonstrates the computational benefits and accuracy of the present approach to address the 

optimal design and operation of large-scale systems under uncertainty. Section 3.5 summarizes the 

methodology and work presented in this chapter. The content of this chapter has been published in the 

AIChE Journal [126] (see Appendix). 

 

3.1 Overview of proposed method 

 

The approach used for the proposed method employs Power Series Expansions (PSE) to express the 

actual process constraints and model outputs in terms of the uncertain parameters considered in the 

analysis. The resulting PSE analytical expressions are then used to compute the distributions of the 

process constraints and outputs (i.e. frequency histograms) based on the different (probabilistic-

based) realizations of the uncertain parameters. Accordingly, the feasibility in the process constraints 

is evaluated at a given (user-defined) probability of satisfaction from knowledge of their 

corresponding probability distributions. The effect of the system uncertainty on the cost function can 

also be assessed in a similar manner to the process constraints. Different process design alternatives 

can be assessed when the feasibility in the constraints is set to different probability of satisfaction 
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limits, i.e., a ranking-based design. Thus, the present approach aids the user in the decision-making 

process under uncertainty. The computational benefits and the accuracy in the calculations while 

using the present ranking-based design methodology are evaluated using two case studies, i.e., a 

reactor-heat exchanger system and the Tennessee Eastman (TE) process. The PSE method is a general 

and practical approach that can be readily implemented to approximate the behavior of nonlinear 

process models using sensitivity analysis. These features make this approach an attractive and 

practical alternative, especially for large-scale processes since their corresponding PSE-based 

functions can be readily estimated using established numerical methods, e.g. finite differences. 

However, the key benefit of this approach is the significant reduction in the computational costs 

associated with running multiple simulations of the system to estimate the process output 

distributions under uncertainty. 

 

Pintarič et al.[127] recently proposed an approach to design flexible process flowsheets for systems 

under uncertainty by performing first-order sensitivity analysis to identify the critical scenarios that 

may produce the worst-case realizations in the uncertain parameters. These critical points, together 

with an identified central basic point, were used to evaluate the process constraints, which were found 

to be sufficient to ensure the design flexibility. In this work, the objective function is evaluated only 

at the central basic point, with no need to evaluate a multidimensional integral. While this approach is 

computationally attractive, especially when dealing with a large number of uncertainties, it aims to 

identify robust (conservative) process designs since the process constraints are satisfied for the entire 

space of the uncertain parameters. This differs from the method presented here since the design 

attained by the proposed method in this chapter is subject to a probability of satisfaction in the 

process constraint functions and model outputs (i.e. a ranking-based approach) and therefore allows 

the specification of more economically attractive designs. In Section 3.4, the present approach is 

compared to that of Pintarič et al. to evaluate its computational benefits. 

 

3.2 Process design under probabilistic-based uncertainty 

 

This section presents a method for the optimal design of process systems under uncertainty in the 

model parameters or in the model inputs. The present analysis assumes that a process model z 

describing the behavior of the system under analysis is available for simulations and is described as 

follows: 
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0θuyxpdz ),,,,,(          (3.1) 

where d is the vector of design variables, p represents the model parameters whereas x, y and u are 

the state variables, the model outputs and inputs, respectively. The model parameters in p and model 

inputs in u that are uncertain are defined as p
~
 and u

~
 and will grouped in a single vector and referred 

from heretofore to as the system uncertainty θ, i.e., 

θ = [p
~
, u

~
]          (3.2) 

This work assumes that each uncertain model input or model parameter can be described according to 

a particular probability density function (PDF), i.e., 
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where the l
th
 uncertain variable included in θ  follows a specific PDF with distribution parameters lα

. The choice of the type of PDF to describe each uncertain parameter comes from process experience 

(when designing plants similar to an existing one) or historical data of the plant (when using the same 

input uncertainty source and such details are available). In the latter case, the distribution of the input 

uncertainty can be characterized by fitting the best PDF that describes the available data. When no 

such information is available, the PDFs of the uncertain variables are typically described using 

Gaussian or uniform probability distribution functions; however, the present method is not restricted 

to these functions and assumes that each uncertain parameter, such as lθ , can be described using any 

symmetric or non-symmetric probability distribution function, e.g. lognormal, exponential. Note that 

the description presented in (3.3) does not assign specific values for the uncertain variables. Hence, 

an appropriate sampling technique such as the Monte Carlo sampling method is needed to obtain the 

different realizations in θ. Monte Carlo (MC) sampling in the proposed approach chooses N 

independent sample points randomly from the known PDFs (with distribution parameters lα ) of the 

uncertain variables lθ . This is typically a standard task using available off-the-shelf computing 

software. Unlike the stochastic programming method, the present approach does not simulate the 

plant model z for all N uncertain realizations to compute the variability in the constraints due to θ. 



 

 21 

Instead, the present method represents the process constraint functions and model outputs using a 

Power Series Expansion (PSE) function. Then, N Monte Carlo sampling points representing the 

uncertain parameters’ distribution are generated and used as inputs to simulate the corresponding PSE 

functions. The simulation results, describing the variability in the constraint functions and the model 

outputs due to lθ , are then used to evaluate the feasibility and economics of the current design under 

analysis. As it will be shown in the next sections, the evaluation of the constraints and model outputs 

using PSE functions is a much less intensive task than simulating the actual process model (z) N 

times, especially for large complex models. The procedure to obtain the PSE constraint functions is 

described next. 

 

3.2.1 PSE method: analytical approximation of the process constraints 

  

The process constraints are typically described as a function of the system parameters, state variables 

as well as the model inputs and outputs, i.e. 

0θuyxph ),,,,(          (3.4) 

where the vector of process constraints h usually impose a safety, physical or operational limitation 

on the process to be designed. The key idea is to compute analytical expressions for each of the 

process constraint functions included in h due to the potential realizations in θ  using Power Series 

Expansion (PSE) functions. Therefore, the actual nonlinear constraint function h is represented in the 

present analysis as follows: 
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where M
(i)

 refers to the i
th
 sensitivity term of the process constraint function h, i.e., 

)1(
Μ  and 

)2(
Μ  

represent the Jacobian and Hessian matrices of the process constraint function h, respectively. 
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Similarly, θ  represents the nominal (mean) value of the uncertain parameters θ . The PSE constraint 

function in (3.5) is shown only up to an expansion order of 2, but it can be easily expanded to any 

higher order q. The constraint function h  is assumed to be (q+1) times totally differentiable with 

respect to θ . When a constraint h  is a function of a single uncertain variable θ , h  simplifies to the 

following expression: 
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As shown in (3.5), the PSE-based expansion used to describe the constraint functions is easier to 

evaluate since it is explicitly defined in terms of the system uncertain parameters θ . Therefore, the 

PSE constraint functions can be used to evaluate the process constraints h due to multiple realizations 

in the uncertain parameters θ with minimum computational effort. If an analytical expression of the 

sensitivity terms 
)1(

Μ ,
)2(

Μ ,…etc. is available, then it may be derived and computed analytically. 

Otherwise, they will be approximated numerically which will require computing the constraint value 

at several points by simulating the actual process model at those points. By substituting the N 

sampled uncertainty realizations 
LN

N

θ into each PSE-based process constraint expression 

similar to that shown in (3.5), a set of estimates of each constraint function h corresponding to each 

realization of the N sampled uncertain variables is obtained, i.e. 
1)(  N

Nh θ . The set of estimates 

collected in )( Nh θ are then used to generate a frequency histogram that describes the distribution 

(variability) of the constraint function h due to θ . The accuracy of the estimated distribution of the 

process constraints (depicted by the histogram) improves as N becomes larger and as the number of 

expansion terms considered in the PSE-based constraint function for h is increased. While increasing 

the order of the expansion improves the analytical approximation of the process constraint, it also 

increases the computational cost due to evaluation of higher order terms in the PSE-based expansion. 

Therefore, the choice of the expansion order in the PSE is problem specific since it depends on many 

aspects of the system under analysis, e.g., the degree of nonlinearity of the system, the size of the 

process model, the method used to compute the terms in the expansion, i.e. analytical or numerical 

[128], the probability distribution function assigned to the system’s uncertain parameters θ . These 

particular aspects of the method are further analyzed with the case studies presented in this work. 

Higher order PSE expansions may be required to represent systems with strong nonlinearities. In 
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those cases, the computational costs of the present method will increase, especially when many 

uncertain parameters are considered in the analysis, since the proposed method relies on the 

calculation of the sensitivities to the uncertain parameters. 

 

In the present approach, the distribution of each of the process constraints included in h  will be used 

as a tool to implement a ranking-based design approach. The significance of a process constraint is 

specified by assigning it a probability limit (Pbh), i.e., each constraint included in the analysis is 

ranked using Pbh based on its significance. This probability of satisfaction indicates how often a 

particular constraint is expected to meet its corresponding feasible limit. Thus, to ensure a feasible 

process design, the variability in the process constraints h  cannot violate their pre-specified limits 

(Pbh) due to the different realizations in θ . Using the assigned Pbh limit and )( Nh θ  obtained from 

the PSE-based constraint function, an estimate of the extreme possible value of the process constraint 

function h  that occurs (100Pbh)% of the time can be evaluated as follows: 
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NhhNhhh
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     (3.7) 

where CMF is the cumulative probability function of the process constraint function, )(P hh   

denotes the probability that h  is less than h . Figure 3.1 presents a schematic representation of the 

PSE-based constraint function h evaluated at a given probability Pbh. If the extreme possible value of 

the constraint h  (calculated at a given Pbh ) satisfies the process restrictions specified in (3.4), a 

feasible process design is obtained with a (100Pbh)% guarantee that constraint h is satisfied. Based 

on the above, the constraints (3.4) under system uncertainty are evaluated in the present analysis 

using the constraint function extreme estimates ( h ) at a user-defined probability of satisfaction 

(Pbh), i.e.,  

  hhNh hhCMF Pb0),,,,(P0)Pb),(,(  θuyxpθ   (3.8) 

The expression on the right-hand side in (3.8) denotes the probability of the actual nonlinear 

constraint functions obtained with the actual nonlinear plant model z whereas the extreme estimate on 

the left-hand side is obtained from the PSE-based constraint function shown in (3.5) followed by a 

probabilistic inference. 
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Figure 3.1 Schematic representation of the constraint function’s distributional analysis.  

 

Since h  is only an estimate of the constraint at a given probability limit Pbh, h  can still take values 

beyond h  with a probability of (1- Pbh). In the proposed approach, the probability of constraint 

satisfaction Pbh , which determines the rank assigned to each constraint, represents an input to the 

present method, i.e., it is a user-defined input parameter. Thus, higher probabilities should be 

assigned to those constraints that are considered to be critical. Setting Pbh →1 implies that the design 

will satisfy the constraints almost every time, this is often termed the worst-case scenario approach 

(see Figure 3.1). While the worst-case scenario ensures that the design remains feasible for almost all 

the realizations in θ , this robust design is typically conservative and expensive. The subscript in Pbh 

suggests that different probabilities can be assigned for each process constraint enabling a ranking-

based design. The latter will assist in achieving less conservative (economically attractive) designs 

but at the same time keeping the critical constraints within specification (at a given probability of 

occurrence). Therefore, the selection of a suitable ranking structure is problem-specific since it 

depends on the goals to be attained by the design, e.g., process economics and process safety. The 

analysis described above for the process constraints can also be implemented in the same fashion to 
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evaluate the variability in the model outputs and state variables that are included in the plant’s cost 

function. 

 

3.3 Optimal design under uncertainty 

 

Based on the above developments, the optimal design of a chemical system under uncertainty can be 

formulated as follows: 
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     (3.9) 

The above problem aims to minimize the economic cost of the process, usually described in terms of 

the capital (CC) and operating (OC) costs, by selecting feasible process designs d and operating 

conditions (i.e. model inputs u). The feasibility criteria follow a ranking-based approach where each 

function h can take different values of Pbh, which becomes the minimum probability of satisfaction 

for a constraint. Despite the stochastic nature of this process design formulation, i.e., each uncertain 

parameter is described with a specific PDF shown in (3.3), the implementation of the PSE-based 

approach proposed here to evaluate the process constraints and cost function under uncertainty in the 

parameters θ reduces problem (3.9) into a deterministic nonlinear constrained optimization problem 

that can be solved using available NLP solvers such as Sequential Quadratic Programming (SQP) 

[129]. The outcome of the present formulation returns an optimal process design that accommodates 

uncertainty in the parameters θ up to a user-defined probability of constraints satisfaction (Pbh). 

Figure 3.2 summarizes the main features of the proposed approach in comparison to the traditional 

stochastic programming method.  
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Figure 3.2 Schematic representation of the algorithms for the (a) proposed PSE-based approach 

in comparison to the (b) traditional stochastic programming method. 

 

The most computational demanding part of each algorithm is represented by the blocks within the 

dashed box in Figure 3.2, which requires the simulation of the actual nonlinear process model z . For 

the stochastic programming approach (Figure 3.2b), the sampled uncertain realizations are input into 

this computationally intensive block directly, demanding N complete simulations of the process 

model corresponding to each uncertain realization. On the other hand, the proposed approach utilizes 

(a) 

(b) 
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the process model for sensitivity analysis, which demands only a few simulations depending on the 

order of the PSE approximation to be used. The N sampled uncertain realizations are inputs into the 

PSE-based model, which can be simulated orders of magnitude faster than the actual process model 

(dashed box in Figure 3.2b) thus making the present ranking-based approach computationally 

attractive and suitable to address the optimal design or large-scale systems. 

 

3.3.1 Remarks 

 

In the present approach, the equality constraints are satisfied for the entire space of the uncertain 

parameters. That is, the equality constraints, which are typically the process model equations in an 

optimal process design problem, i.e., z in problem (3.9), need to be solved for the different 

realizations considered in the uncertain parameters. This specification enables the evaluation of the 

output variability under uncertainty using the process model equations, which are then used to 

compute the distribution of the process constraint functions and model outputs. The present approach 

can also account for structural (discrete) decisions in the analysis. The computation of the sensitivities 

in the present approach only requires that the process model is continuous. In problems involving 

discrete decisions, the discrete variables are fixed in advance and the sub-problems to be solved have 

continuous process models that impose no restriction in the use of PSE to approximate and compute 

the process constraints and model outputs. 

 

Note that in the case where the uncertainty is bounded but its distribution is unknown, a uniform 

distribution assumption would be adopted as this kind of distribution is the most pessimistic, i.e., 

more realizations of the extreme values may occur. For a uniform distribution, any value within the 

specified bounds has equal probability of occurrence, unlike other distributions such as the normal 

distribution where the majority of realizations will be close to the mean value and only a rare 

occurrence for the extreme points. As a result, the uniform distribution assumption yields 

conservative designs and is adopted in the present methodology for those cases of unknown 

uncertainty distributions. In the next section, the application of the present approach to address the 

optimal process design and operation of two case studies under different scenarios is presented. The 

studies presented in the next section were performed on an Intel Core i7 3770 CPU @3.4GHz (8GB 

in RAM).  
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3.4 Case Studies 

 

In this section, the proposed method will be tested on two case studies: a reactor-heat exchanger 

system and the Tennessee Eastman plant. 

 

3.4.1 Case Study 1: Reactor-heat exchanger system 

  

The first case study considered in the present analysis is a plug-flow reactor coupled with a heat-

exchanger system as shown in Figure 3.3. This system has been previously studied for optimal 

process design [130]. A first order exothermic reaction is assumed for the production of product B 

from reactant A in the direct reaction: AB. F0, T0 and CA0 are the flowrate, temperature and 

concentration of reactant A, respectively, of the feed stream to the reactor. The concentration of the 

reactant remaining in the product stream is denoted by CA1. The variables T1, T2 and F2 are the 

temperature of the contents in the reactor, and the temperature and flowrate of the recycled stream 

from the heat exchanger, respectively. The recycled stream is cooled down in the heat exchanger 

using cooling water supplied at a temperature Tw1 and flowrate W to ensure that the reaction 

temperature T1 does not exceed a maximum temperature limit.  

 

  

Figure 3.3 Flowsheet of a reactor-heat exchanger system. 

 

The material and energy balances for the reactor and heat exchanger represent the process model for 

this system. 
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The steady-state mass and energy balances for the reactor are: 
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The steady-state energy balances for the heat exchanger system are: 
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where k0, E and H are the rate constant, activation energy and heat of reaction, respectively. QHE is the 

rate of heat transferred to the heat exchanger, U is the overall heat transfer coefficient, whereas the 

heat capacity of the recycled flow and cooling water are represented by Cp and Cpw, respectively. The 

reactor is assumed to be perfectly insulated with negligible heat loss to the surroundings. The design 

parameters are the reactor volume V and heat exchanger transfer area At. In addition, X represents the 

conversion of reactant A. The state variables are CA1, T2, F2 and W, which can be eliminated by 

analytic expressions using equations (3.10)-(3.11) as follows: 
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The nominal values for the model parameters of this process are listed in Table 3.1 [130]. In this case 

study, uncertainty is assumed in two model inputs (F0 and CA0) and one model parameter (k0). These 

uncertain parameters were assumed to follow a normal probability distribution with specific mean and 

variances, i.e., 
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As shown in (3.13), the expected values of these distributions correspond to the nominal operating 

conditions shown in Table 3.1 for each of these parameters. A variance of 5% of its mean is assumed 

for the feed flowrate F0 and concentration CA0, respectively, whereas a variance of 1% of its nominal 

value was assigned for the more sensitive parameter k0. The goal of this process is to achieve a 

minimum of 90% conversion of reactant A while maintaining temperature constraints in the process 

units (see Table 3.1). The decision variables for this case study consist of the design parameters 

],[ tAVd  and the operating variables ],[ 21 wTTu . 

 

Table 3.1 Reactor-heat exchanger case study: model parameters and process constraints. 

Model parameters [130] Process constraints 

Variable Estimate Units c1: 0.9 - X ≤ 0 

E/R 555.6 K c2: X - 1 ≤ 0 

H -23,260 kJ/kg.mol c3: T2 - T1 ≤ 0 

U 1635 kJ/m
2
.h.K c4: 311 – T2 ≤ 0 

Cp 167.4 kJ/kg.mol c5: T2 – 389 ≤ 0 

Cpw 75.327 kJ/kg.mol c6: Tw1 – T2 +11.1≤ 0 

F0 45.36 kg.mol/h c7: Tw1 – Tw2 ≤ 0 

k0 0.6242 m
3
/kgmol.h c8: Tw2 – T1 +11.1≤ 0 

CA0 32.04 kg.mol/m
3
 c9: 311 – T1 ≤ 0 

T0 333 K c10: T1 – 389 ≤ 0 

Tw1 300 K c11: 301 – T2 ≤ 0 

   c12: Tw2 – 355 ≤ 0 

 

Using the PSE approximation method presented in the previous sections, the variability in the process 

constraints due to uncertainty in 1CSθ  are calculated for each set of values in the design variables d 

and u tested by the optimization algorithm. Using a probability of satisfaction of Pbh=0.6827 for all 
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constraints, the extreme possible values )( hξ  at that probability value can be estimated as shown in 

(3.7). For example, for constraint c1 in Table 3.1, the probabilistic form given in (3.8) is as follows: 

  hc X Pb09.0P01       (3.14) 

The other process constraints shown in Table 3.1 are reformulated in a similar fashion. Based on the 

above, the optimal design problem shown in (3.9) is reformulated for the present case study as 

follows: 
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where the objective function is a combination of the capital and operating costs of the plant that was 

taken from the literature [130]. Problem (3.15) is solved with MATLAB SQP solver using different 

orders q for the PSE approximation and probability limits Pbh.  

 

As shown in Table 3.2(a), it is clear that the design obtained from the first order PSE approximation 

(q=1) is different from those obtained from higher order functions. Note that process designs obtained 

from a third-order (q=3) and a fourth-order (q=4) PSE approximation do not change significantly, 

which indicates convergence of the PSE approximation function at a given probability of satisfaction. 

This shows that the present methodology can account for the system nonlinearity using higher order 

PSE approximations to achieve accurate optimal designs. The expense of using higher orders in the 

PSE approximation can be observed in the increase of the computational time needed to solve the 

optimal design problem for these scenarios. In this case study, the maximum difference between the 

solutions obtained from orders q=3 and q=4 is only about 0.05% although the lower order identifies 

an optimal design in half the time than that needed by the fourth-order PSE approximation. Therefore, 

it is reasonable to select the PSE order to q=3 without losing accuracy in the results. Note that, 

although it is established that the solution of this case study converged using higher-order PSE 

functions, the design obtained from a first order PSE approximation is still feasible. An order of q=3 
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PSE is selected solely for the purpose of demonstrating the convergence property of using higher 

orders for systems with strong nonlinearities. 

 

Table 3.2 Results for the reactor-heat exchanger system using different expansion orders and 

different probabilities of satisfaction.. 

(a) Optimal designs for different PSE orders (Pbh=0.6827). 

Exp. Order  q=1 q=2 q=3 q=4 

V (m
3
) 90.77 92.13 91.65 91.70 

At (m
2
) 5.97 6.01 6.00 6.00 

T1 (K) 389.00 389.00 389.00 389.00 

Tw2 (K) 329.63 329.61 329.61 329.60 

Costs ($/yr) 19,757 19,933 19,871 19,878 

CPU time (s) 1.03 3.91 12.40 29.81 

(b) Optimal designs for different user-input probability Pb. (PSE method, q=3) 

Pbh 0.5 0.6827 0.9545 0.9973 

V (m
3
) 86.56 91.65 104.69 116.42 

At (m
2
) 5.94 6.00 6.14 6.24 

T1 (K) 389.00 389.00 389.00 389.00 

Tw2 (K) 329.57 329.61 329.69 329.75 

Costs ($/yr) 19,205  19,871  21,519  22,941  

CPU time (s) 10.29 12.40 16.55 15.45 

 

Table 3.2(b) shows the optimal process design alternatives obtained when probability limits Pbh are 

set to different values for all process constraints while using third-order PSE-based approximation 

functions (q=3). As expected, when a higher probability of constraint satisfaction is chosen, a larger 

reactor and heat transfer area in the heat exchanger are required, which leads to higher plant costs. For 

example, a 15% increase in total costs is needed to design a plant that will satisfy the constraints with 

a probability of 99.73% as opposed to the one that satisfies all the process constraints 68.27% of the 

time. As explained above, the choice of Pbh is user-defined; its direct relation to profitability can be 

clearly assessed using the present ranking-based method. Note that the computational times for 
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different choices of Pbh using third-order PSE approximation functions are similar. These designs 

have been validated through simulations of the actual plant model, i.e. Eqns (3.10)-(3.11), using 

100,000 MC realizations in the 3 uncertain variables included in 1CSθ . Figure 3.4 shows that the 

minimum conversion rate constraint (c1) complies with their corresponding pre-specified probability 

limits, i.e., they satisfied the constraints close to the user-defined 99.73% and 68.27% values. The rest 

of the process constraints are validated in the same fashion and are not shown here for brevity. 

 

To verify the accuracy of the results and the computational costs obtained using the present method, 

the present case study was also solved using a stochastic programming technique that uses the Monte 

Carlo sampling method applied to the actual process model. At each optimization step, random MC 

realizations of the uncertain parameters 1CSθ  are generated and used to simulate the complete process 

model. The results from the simulations are then used to obtain the output distributions and evaluate 

the compliance of the constraints and the cost function. For the present analysis, the actual plant 

model (3.10)-(3.11) is simulated for each realization and a histogram for the distribution of the 

constraints due to uncertainty in 1CSθ  is obtained. From these histograms, the extreme possible value 

at a given probability limit Pbh is computed as shown in Figure 3.1; however, the distribution at each 

single function evaluation of the optimization algorithm is now obtained from actual simulations of 

the plant model rather than from the PSE approximation method. For the present analysis, 100,000 

random MC sampling points are used in this approach. The optimal process design obtained at the 

user-defined probability limit Pb=0.9545 for all constraints is presented in Table 3.3(a). This result is 

in close agreement to that obtained by the new method shown in Table 3.2(b), i.e., the proposed 

method returned plant designs that are accurate within an error of less than 4%. Also, the new PSE-

based method achieves a solution a few orders of magnitude faster than the Monte-Carlo based 

stochastic approach. Since sampling realizations of the uncertain parameters from their respective 

probability distributions is a requirement of stochastic programming, the efficiency of the sampling 

method used in the analysis is a factor that contributes towards the computational costs 

[119,131,132].  
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Figure 3.4 Frequency histogram of the minimum conversion rate constraint at probability limits 

(a) Pb=0.9973, (b) Pb=0.6827. Dashed line represents the maximum constraint limit. 

 

To further demonstrate the computational benefits of the present approach, the present case study was 

also solved using the stochastic approach employing the Halton sampling technique [131], which is 

known to be more efficient than the standard MC sampling method. As shown in Table 3.3(a), it is 

clear that the Halton-based stochastic approach is more efficient than the MC-based approach since 

the computational costs are reduced by an order of magnitude due to fewer simulations needed to 
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attain the same convergence. However, the computational benefits of the present PSE-based approach 

are still striking when compared with the Halton-based stochastic approach (i.e. at least by one order 

of magnitude). It is important to note that, while stochastic programming approaches require 

simulation of the process model for each sampled point, the different sampling methods affect only 

the number of simulations N that are sufficient to obtain an accurate solution under the uncertainty 

conditions. On the other hand, the present PSE-method does not require sampling and so model 

simulations are done only a few times (<<N) depending on the order used to calculate the 

sensitivities. As such, regardless of the efficiency of the sampling technique, the proposed method is 

much less computationally intensive compared to stochastic programming approaches when handling 

large-scale problems. 

 

Table 3.3 Results for the reactor-heat exchanger system using stochastic and ranking-based methods.  

(a) Optimal design obtained using a stochastic approach that implements a different 

sampling technique (Pbh=0.9545) 

Sampling method:  
Monte 

Carlo 
 Halton 

V (m
3
)  108.06  107.50 

At (m
2
)  6.149  6.137 

T1 (K)  388.98  388.91 

Tw2 (K)  333.29  330.74 

Costs ($/yr)  21,885  21,872 

CPU time(s)  3,369  914 

(b) Ranking-based optimal design using PSE method with order (q=3).  

  Case A  Case B 

V (m
3
)  95.58  104.20 

At (m
2
)  6.05  6.14 

T1 (K)  389.00  389.00 

Tw2 (K)  329.63  329.69 

Costs ($/yr)  20,376  21,459 

CPU time(s)  12.61  15.19 
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To further demonstrate the ranking-based feature of the present approach, two additional cases (A and 

B), with different probabilities of constraint satisfaction for the various process constraints, are 

considered. In this case, the constraints on the conversion rate (X) shown in Table 3.1 (i.e. c1 and c2) 

are assigned to 80% and 95% for cases A and B, respectively, whereas the recycled stream 

temperature (T2) constraints, i.e., c3-c6 in Table 3.1, are set to 68% for both cases A and B. The 

remaining constraints (i.e. c7 to c12 in Table 3.1) are kept at high probabilities of satisfaction (99%). 

The optimal designs specified for cases A and B obtained using third-order PSE approximation 

functions are presented in Table 3.3(b). As shown, a different set of optimal designs are obtained 

compared to the case where equal probabilities are assigned to all constraints, e.g., Table 3.3(a). The 

results show that increasing the probability of satisfaction for the conversion rate constraints from 

80% to 95% leads primarily to an increase in the volume of the reactor, and total plant costs by more 

than 5%. The histograms in Figure 3.5 obtained from simulations of the actual plant model using 

different MC realizations in 1CSθ  show that the minimum conversion rate constraint complies with 

the corresponding probability limits (Pbc1) specified for case A and B, respectively.  

 

As mentioned previously, the recent computationally attractive approach of Pintarič et al. [127] was 

developed for optimal process design under uncertainty. A comparison between this approach and the 

PSE-based method method can only be made for the worst-case scenario, i.e. robust designs that 

satisfy process constraints all the time without any ranking feature. One key feature of the method 

proposed in this work is that it can be used to approximate robust optimization process design under 

uncertainty by setting the probabilities of satisfaction on the process constraints to unity. As shown in 

Table 3.4, the computational times required by both approaches to achieve the optimal (robust) 

process design are comparable, indicating that the new approach is also computationally attractive for 

optimal (robust) process design under uncertainty. A first order PSE is sufficient to obtain an optimal 

feasible design while using this approach. This design satisfies the constraints at a very high 

probability of satisfaction, i.e., Pbh=0.9999, which approximates the robust design obtained using the 

approach of Pintarič et al.  

 



 

 37 

 

Figure 3.5 Frequency histogram for the minimum conversion rate constraint: (a) Case A, and (b) 

Case B. 
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Table 3.4 Optimal designs using different approaches for the worst-case problem. 

  
Pintarič 

et al. 
 

PSE 

(q=1) 

V (m
3
)  171.2434  169.02 

At (m
2
)  6.5104  6.510 

T1 (K)  389.00  389.00 

Tw2 (K)  329.94  329.94 

Costs ($/yr)  29,038  28,807 

CPU time(s)  2.025  1.887 

 

3.4.2 Case study 2: Tennessee Eastman process 

 

The Tennessee Eastman (TE) process is a widely used industrial problem proposed by Downs & 

Vogel [125] based on an actual process of Tennessee Eastman Co. The process consists of a reactor, 

recycle compressor, partial condenser and flash separator to produce two liquid products (G and H) 

and by-product F using four gaseous reactants, i.e. A, C, D and E, from the following reactions:  

A (g) + C (g) + D (g)   G (liq) 

A (g) + C (g) + E (g)  H (liq) 

A (g) + E (g)   F (liq) 

3 D (g)    F (liq) 

The feed also contains an inert component B. The plant (shown in Figure 3.6) can operate at different 

production mix rates of G and H depending on market fluctuations. The base case is a 50/50 

production in both G and H at a production rate of 7038 kg/h; this is the case considered in the 

present study. The four reactions in the reactor are defined as irreversible exothermic reactions; the 

reaction rates are temperature-dependent and can be described by an Arrhenius-like function. The 

reactions are approximated by first order kinetics with respect to the reaction concentrations. As 

shown in Figure 3.6, the reactants A, D and E in the feed stream enter the reactor unit together with 

the gaseous recycled stream where they react to form the desired liquid products G and H. A 

nonvolatile catalyst dissolved in the liquid phase is used to drive the gas phase reactions and the 

products exit the reactor along with some unreacted gases in a vapor phase. The liquid products are 
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condensed and separated from the gaseous mixture in the partial condenser and flash separator 

respectively, while the non-condensable components (unreacted gases) are recycled back to the 

reactor through a centrifugal compressor. The liquids collected at the bottom of the separator is 

pumped to the stripper which helps recover the remaining unreacted species D and E which would 

otherwise be lost in the product stream. This separation in the stripper is achieved by using a mixture 

of A and C as the solvent stream entering the base of the stripper (stream 4 in Figure 3.6), sending the 

vapor stream leaving the top of the stripper back to the reactor through the mixed recycle stream. The 

liquid stream at the bottom of the stripper is refined by heating with steam to obtain an acceptable 

purity of the desired products G and H. The separation of these two products is carried out in a 

downstream separation unit not shown in Figure 3.6. Non-condensable inert species B enters through 

stream 4, and thus a purge stream is introduced that prevents the buildup of this species as well as the 

by-product F. 

 

 

Figure 3.6 Schematic flowsheet of the Tennessee Eastman process [125]. 

 

This plant has 50 state variables, 12 manipulated (operating) variables, and 41 available output 

measurements. Six operational constraints are specified for the safe operation of the process. Detailed 
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descriptions of the TE process are given in the original problem formulation presented by Downs & 

Vogel [125]. However, a mathematical model describing the behavior of this process was not 

explicitly provided; instead these authors made available a FORTRAN code that simulates this plant 

under various operating conditions, i.e., a black-box model. This original FORTRAN code has been 

translated into several computing languages. The present work makes use of a MATLAB code 

provided by Ricker [133] to carry out the present analysis. The optimal steady-state operation of the 

TE problem has been previously studied by Ricker [133]. In that work, the optimization aimed to 

identify the nominal values in the system’s states (x) that minimizes the plant’s operating costs. 

Uncertainty in the model parameters or the system’s states was not considered by Ricker [133]. At 

steady-state, the 12 manipulated variables u are represented by the last 12 states in x (i.e. x39 through 

x50).  

 

3.4.2.1 Scenario 1: Uncertainty in the model parameters 

 

This scenario is similar to that presented by Ricker [133] in that it aims to determine the optimal 

steady-state operation of the TE process; however, the present analysis will explicitly account for 

uncertainty in one of the TE’s model parameters. In this case, one of the states, i.e., the number of 

moles of liquid product G inside the reactor, will be assumed to be uncertain due to some model 

errors or lack of information that prevents the availability of accurate data. Hence, this uncertain 

parameter is described as follows:  

),(~
2

7,77 nomxNx          (3.16) 

where x7,nom and σ7 represent the state’s mean value and standard deviation (i.e. x7,nom=135.363, 

σ7=1.8396), respectively. The same objective function for the TE process as that presented by Downs 

and Vogel and used by Ricker will be used in the present analysis, i.e.: 

]1789.01456.02206.0[541.4]94.2244.3089.17

56.1406.22177.6209.2[44791.00318.0053.0
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           (3.17) 

The process constraints for the TE plant are as follows: 
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        (3.18) 

where mi represents the i
th
 measurement in the plant (41 measured outputs total) whereas Gp  and 

Hp  are the desired production of products G and H, respectively. The first two constraints in (3.18) 

are the liquid level constraints in the flash separator and stripper whereas g3 and g4 are production 

targets for products G and H, respectively. Pmax and Lmin represent the reactor’s maximum allowable 

pressure and the reactor’s minimum liquid level, respectively. Accordingly, g5 and g6 represent the 

reactor’s maximum pressure and minimum liquid level constraints, respectively. Following the 

methodology presented in this work, the above constraints were reformulated in the form shown in 

(3.8). Applying the PSE approximation analysis, the distribution (variability) in the process 

constraints due to uncertainty in x7 is obtained by substituting sampled uncertainty data into each of 

the PSE-based expressions developed for each of the process constraints shown in (3.18). Following 

(3.7)-(3.8), the TE process constraints shown in (3.18) were reformulated as follows: 

6,...,2,10)(  kkg         (3.19) 

where )(kg  represents the k
th
 process constraint in the TE process shown in (3.18) and that is 

evaluated using a PSE-based constraint function at a given probability of satisfaction Pbh. Based on 

the above descriptions, the optimal operation problem of the TE process under uncertainty in x7 can 

be formulated as follows: 
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where the TE process model was developed by Ricker [133] as a MATLAB code and not discussed 

here for brevity. The present analysis assumes that a suitable control scheme can be designed to 

maintain the feasible operation of the TE process. Problem (3.20) aims to identify the optimal 

operation of the 49 states in the TE process (which also include the nominal values in the manipulated 

variables) in the presence of uncertainty in x7, which follows the description shown in (3.16). For 

comparison purposes, problem (3.20) was solved using the mean (nominal) value in x7 (i.e. optimal 

design using only x7,nom) and using the uncertainty description shown in (3.16) for x7. Also, the 

optimal operation of the TE plant was solved for different confidence levels in the process constraints 

and the model outputs. The results obtained for the available manipulated variables u and the output 

measurements m, which specify the TE’s optimal steady-state operating conditions, are shown in 

Table 3.5. The present analysis shows that, for the nominal base case (i.e. x7=x7,nom), a total cost of 2% 

less than that reported by Ricker’s [133] (114.31 $/h) was obtained with the present method. As 

shown in Tables 3.5, conservative (expensive) plant designs were specified by the present method to 

accommodate the uncertainty considered in x7. For the present analysis, a first order PSE 

approximation was found to be sufficient to describe the output constraint distributions. A 13% 

increase in the total costs was observed for the case of compliance of the constraints under 

uncertainty (Pbh=0.9973) as opposed to the case when x7is fixed to its nominal value. As shown in 

Table 3.5, the optimal TE process operation requires more purging when x7 is assumed to be 

uncertain, which leads to high economic losses due to wasted products in the purge stream. Table 3.5 

also shows that in the purged stream, the concentration of the more expensive components (according 

to (3.17)), which are reactant D, products G and H, are higher when the uncertainty in x7 is 

considered in the analysis. This also results in higher losses in the purge stream than in the case of 

fixing x7 to its nominal (mean) value. Since x7 represents the number of liquid moles of the product G 

in the reactor, this state has a direct effect on the reactor’s pressure and liquid level, which results in a 

reduction in the condenser coolant flowrate.  
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Table 3.5 Optimal operation of the TE plant, Scenario 1. 

Manipulated variables x7=x7,nom Pb=0.6827 Pb=0.9545 Pb=0.9973 

  PSE MC Halton   

D feed flow, % 62.781 62.781 62.782 62.782 62.796 62.816 

E feed flow, % 53.216 53.403 53.375 53.368 53.873 53.990 

A feed flow, % 27.594 27.786 27.851 27.844 27.442 26.933 

A+C feed flow, % 60.503 60.528 60.510 60.508 60.647 60.550 

Recycle valve,% 63.722 63.487 63.598 63.572 55.470 46.516 

Purge valve,% 20.978 20.836 20.816 20.825 21.601 22.624 

Separator valve,% 36.812 36.976 36.973 36.970 37.522 38.100 

Stripper valve,% 46.615 46.687 46.675 46.671 46.841 46.841 

Steam valve,% 1.000 1.000 1.000 1.000 1.000 1.000 

Reactor coolant,% 37.641 37.862 37.839 37.832 38.400 38.587 

Condenser coolant,% 100.000 100.000 100.000 100.000 52.640 38.300 

Agitator speed,% 48.623 48.702 48.676 48.673 49.054 49.172 

Key measured outputs       

Recycle flow, ksmch 20.834 20.909 20.896 20.892 21.708 22.387 

Reactor pressure, kPa 2800.000 2788.400 2788.200 2788.100 2757.400 2726.000 

Reactor level, % 65.001 65.241 65.226 65.220 65.846 66.377 

Reactor temp., 
o
C 125.180 124.770 124.800 124.820 123.930 123.400 

Compressor work, kW 327.860 330.090 330.120 330.050 338.200 340.160 

Cond. cool. temperature, 
o
C 46.839 46.887 46.880 46.878 53.112 58.015 

Purge %A, mol% 39.525 40.011 40.115 40.087 38.359 35.838 

Purge %B, mol% 22.283 22.394 22.397 22.398 22.600 22.854 

Purge %C, mol% 15.327 14.461 14.299 14.315 13.720 12.920 

Purge %D, mol% 0.600 0.646 0.644 0.643 0.787 0.958 

Purge %E, mol% 11.554 12.109 12.096 12.091 14.181 16.767 

Purge %F, mol% 4.858 4.636 4.688 4.699 4.396 4.383 

Purge %G, mol% 3.974 3.898 3.912 3.916 4.033 4.249 

Purge %H, mol% 1.879 1.845 1.851 1.853 1.924 2.031 

Product %D, mol% 0.013 0.014 0.014 0.014 0.017 0.020 

Product %E, mol% 0.807 0.875 0.870 0.869 0.999 1.136 

Product %F, mol% 0.329 0.325 0.327 0.327 0.300 0.288 

Product %G, mol% 53.629 53.547 53.560 53.564 53.370 53.371 

Product %H, mol% 43.749 43.767 43.756 43.754 43.844 43.719 
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Table 3.5 continues. 

Costs breakdown x7=x7,nom Pb=0.6827 Pb=0.9545 Pb=0.9973 

  PSE MC Halton   

Purge losses ($/h) 56.824 56.347 56.362 56.388 58.378 61.221 

Product losses ($/h) 37.971 39.980 39.911 39.864 43.146 47.044 

Compressor ($/h) 17.575 17.693 17.694 17.691 18.128 18.233 

Steam ($/h) 0.209 0.212 0.212 0.212 0.210 0.207 

Total Cost ($/h) 112.580 114.230 114.180 114.150 119.86 126.710 

CPU Time(s) 5.706 32.108 16,295.361 7721.978 36.651 36.875 

 

As shown in Table 3.5, the computational time needed to solve this problem was about half a minute 

when using the present PSE approach. However, the stochastic programming approaches using the 

standard MC sampling method and the efficient Halton-based sampling method required CPU times 

that are at least 500 and 240 times larger than that required by the present PSE-based method. This 

result shows the potential computational benefits of the present methodology to address the optimal 

design of large-scale processes under uncertainty.  

 

3.4.2.2 Scenario 2: Uncertainty in multiple parameters 

 

This scenario aims to further explore the effect of using high-order terms in the PSE approximation 

functions due to the use of multiple uncertain parameters in the analysis. Accordingly, the uncertain 

states considered for this scenario follow a normal distribution PDF with the following 

characteristics: 
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        (3.21) 

where the means are the nominal values for the TE optimal base case [133] and a variance of 2.5%, 

5% and 15% were assumed as parametric uncertainty for states 7, 2 and 9, respectively. The rest of 

the specifications are the same as in Scenario 1. This scenario was solved using different orders q in 

the PSE approximation at a constant user-defined probability for all the constraints (Pbh=0.6). As 

shown in Table 3.6, the computational time required for Scenario 2 is larger than for Scenario 1 even 
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for the case of a first order PSE approximation (Scenario 2, q=1). This increase in the computational 

costs is mostly due to the simultaneous consideration of multiple uncertainties occurring in the plant. 

Table 3.6 also shows that the first order PSE approximation does not provide accurate results when 

compared to the designs achieved with high order PSE approximations, i.e., using a first-order PSE 

approximation in the calculations resulted in plant costs that are 11% lower than that obtained from a 

second-order PSE approximation. Thus, high order PSE approximation functions needed to be 

considered in the calculations to accurately describe the variability in the constraints due to the 

uncertainty in states x2, x7 and x9. As shown in Table 3.6, the operating costs obtained for the second-

order (q=2) and the third-order PSE approximation (q=3) have a relative error less than 1%. Hence, 

the current scenario will adopt a second order PSE approximation as it identifies the optimal 

operating conditions of the TE plant in a CPU time that is about 5 times faster than using third-order 

PSE approximation functions for the process constraints and model outputs considered in the 

analysis. 

 

As shown in Table 3.6 (Scenario 2, q=2), a total operating cost of 140.71 $/h is needed to satisfy the 

TE process constraints at a probability limit of Pbh=0.6. This operating cost is more than 20% higher 

than that obtained for Scenario 1, i.e., only one uncertain state (x7) at Pbh=0.687, and about 25% 

higher than that obtained when x7 is fixed to its nominal mean value (see Table 3: x7=x7,nom). As 

shown in Table 3.6, the purge losses still dominates the total TE plant costs. Note that the 

concentration of the products lost in the purge stream is higher in Scenario 2 than in Scenario 1. 

Similarly, the estimates manipulated variables shown in Table 3.6 indicate that a larger purge valve 

opening (more purging) is needed when compared to the design obtained under perfect knowledge of 

all the system’s states, i.e. x7=x7,nom in Table 3.5. This result indicates that the specification of the 

optimal operation of the TE process under the assumption of system’s states or model parameters that 

are assumed to be perfectly known results in inoperable plants under uncertainty. On the other hand, 

the present method identified (at minimum computational cost) an optimal operating condition for 

this process that remains feasible (at given probability of satisfaction, Pbh) in the presence of 

uncertainty in multiple system’s states.  
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Table 3.6 Optimal operation of the TE plant, Scenarios 2 and 3. 

Manipulated variables 

Scenario 2 

(q=1) 

Scenario 2 

(q=2) 

Scenario 2 

(q=3) 

Scenario 3 

(q=2) 

D feed flow, % 62.89 65.88 65.88 62.89 

E feed flow, % 53.72 54.34 54.35 56.72 

A feed flow, % 26.71 27.26 27.25 26.45 

A+C feed flow, % 60.50 62.03 62.03 61.62 

Recycle valve,% 45.13 43.90 43.82 1.00 

Purge valve,% 23.05 24.01 24.01 26.39 

Separator valve,% 38.03 40.07 40.10 41.33 

Stripper valve,% 46.75 48.16 48.17 47.78 

Steam valve,% 1.00 1.00 1.00 41.30 

Reactor coolant,% 38.33 38.90 38.91 40.80 

Condenser coolant,% 37.27 100.00 100.00 18.78 

Agitator speed,% 48.93 48.88 48.89 50.26 

Key measured outputs     

Recycle flow, ksmch 22.24 20.84 20.85 31.87 

Reactor pressure, kPa 2720.00 2678.70 2678.40 2800.00 

Reactor level, % 66.11 65.83 65.86 70.00 

Reactor temperature, 
o
C 123.97 125.06 125.03 118.48 

Compressor work, kW 336.94 323.55 323.56 269.33 

Cond. cool. temperature, 
o
C 58.30 47.20 47.20 81.65 

Purge %A, mol% 34.65 31.66 31.64 32.39 

Purge %B, mol% 22.90 23.85 23.85 21.31 

Purge %C, mol% 13.40 12.47 12.44 11.02 

Purge %D, mol% 0.92 1.05 1.06 1.80 

Purge %E, mol% 16.68 19.16 19.23 24.62 

Purge %F, mol% 4.86 5.47 5.44 2.61 

Purge %G, mol% 4.47 4.36 4.35 4.17 

Purge %H, mol% 2.13 1.98 1.98 2.08 

Product %D, mol% 0.02 0.02 0.02 0.03 

Product %E, mol% 1.06 1.35 1.36 1.45 

Product %F, mol% 0.30 0.38 0.37 0.15 

Product %G, mol% 53.53 54.44 54.43 52.33 

Product %H, mol% 43.62 42.35 42.34 44.57 



 

 47 

Table 3.6 continues. 

Costs breakdown 

Scenario 2 

(q=1) 

Scenario 2 

(q=2) 

Scenario 2 

(q=3) 

Scenario 3 

(q=2) 

Purge losses ($/h) 62.44 64.25 64.24 74.74 

Product losses ($/h) 44.85 58.91 59.23 53.33 

Compressor ($/h) 18.06 17.34 17.34 14.44 

Steam ($/h) 0.20 0.21 0.21 7.03 

Total Cost ($/h) 125.54 140.71 141.02 149.54 

CPU Time(s) 201.79 358.71 1,868.93 274.19 

 

For this case study, it was not possible to compare the results presented in Table 3.6 with that of a 

stochastic programming approach because the solution of the optimal operation of the TE plant will 

require intensive calculations. That is, assessing the variability in the process constraints and model 

outputs at each optimization step using extensive simulations of the full TE plant model for a large set 

of realizations in the uncertain parameters may result in prohibitive computational times. In order to 

compare the computational costs while using the actual TE process model and different orders in the 

PSE approximation functions, the CPU time needed to obtain the distribution (frequency histogram) 

in the reactor’s maximum pressure constraint was assessed. To perform this analysis, the 

specifications obtained for the second-order PSE approximation shown in Table 3.6 (Scenario 2, q=2) 

were used to generate the frequency histogram for this constraint via the MC sampling method 

applied to the full plant model. The same frequency histogram was generated using a first-order, 

second-order and a third-order PSE approximation function for that constraint. 10,000 realizations 

that follow the description in (3.21) for the uncertain parameters were used in this analysis. As shown 

in Figure 3.7, second-order and third-order PSE approximations accurately capture the distribution in 

the reactor’s pressure due to the realizations considered for the uncertain parameters. The CPU time 

needed to generate this distribution using the full plant model and the different PSE approximations 

are shown in the legends of Figure 3.7. These results indicate that using a third order PSE 

approximation (q=3) returns accurate approximations in a CPU time that is about 80 times faster than 

using the complete TE plant model. 
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Figure 3.7 Frequency histogram for the reactor’s pressure obtained via the Monte Carlo method 

applied to the full TE plant model and the PSE-based model using different approximation orders.  

 

3.4.2.3 Scenario 3: Ranking-based designs 

  

The present scenario aims to demonstrate the ranking-based feature of the proposed approach to 

address the optimal operation of the TE process. To perform this analysis, the results obtained from 

Scenario 2 will be compared to the case were the probability of satisfaction for the reactor’s level and 

pressure constraints are set to 0.9 and 0.5, respectively, i.e. 9.0Pb 6 g  and 5.0Pb 5 g . The 

probability of satisfaction for the rest of the constraints considered for this plant, i.e., Pbg1-Pbg4, was 

set to 99.73%. The uncertainty in the parameters were assumed to be same as in Scenario 2 and 

shown in (3.21) whereas the order of the PSE approximation was set to q=2. Table 3.6 shows the 

results obtained for the present scenario (Scenario 3). Figure 3.8 shows the validation of the results 
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obtained for the present scenario by evaluating the distribution (variability) in the reactor’s level and 

pressure constraints using the actual TE plant model. 

 

 

Figure 3.8 Frequency histogram for (a) the reactor’s maximum pressure constraint, and  (b) the 

reactor’s minimum level constraint, obtained for Scenario 3 via the Monte Carlo sampling method 

applied to the full TE process model 

(a) 

(b) 
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 As shown in this Figure, good approximations to the probability limits considered for the reactor’s 

level and pressure are obtained while using the present ranking-based approach with as second-order 

PSE approximation. As shown in Table 3.6, the total costs specified for Scenario 3 are about 6% 

higher than those obtained Scenario 2 where the constraints were set to an equal probability of 

satisfaction of 60% (Pbh=0.6). To ensure the high probability of satisfaction assigned to the reactor 

level constraint in the present scenario ( 9.0Pb
6


g
), the optimal operation requires the nominal value 

of the reactor level to be set at 70%, which is 4% higher than that specified for Scenario 2 (q=2). This 

increase in the reactor’s nominal liquid level also increased the reactor coolant’s flowrate by almost 

2% with respect to Scenario 2 (q=2). Similarly, the reactor pressure constraint is not active at the 

solution for the Scenario 3 due to the low probability of satisfaction assigned to this constraint (

5.0Pb 5 g ). Hence more violations were assumed to be allowed on this constraint for this Scenario. 

Moreover, the present scenario specified a nominal temperature in the reactor that is 7
 o

C lower than 

that obtained for Scenario 2. This decrease in temperature, combined with a high reactor working 

pressure, resulted in a decrease in the coolant flowrate in the condenser unit. Note that the 

computational time required to achieve a solution for the present Scenario is comparable to that 

required by Scenario 2 (q=2). These results show that the ranking-based approach proposed in this 

work is a computationally attractive practical tool that can be used to study different design 

alternatives that involve tradeoffs between profitability and robust (expensive) plant designs under 

uncertainty.  

 

3.5 Chapter Summary 

 

In this chapter, a new method that addresses the optimal process design under uncertainty was 

presented. A ranking-based approach is considered in the present study where the user can assign 

different probability limits to each of the safety, environmental and operational constraints considered 

in the analysis. Thus, critical constraints are enforced to be satisfied all the times by setting a high 

probability limit whereas less sensitive constraints to the process safety and economics may be 

allowed to be violated at an accepted level of confidence. This feature gives the flexibility to select 

between conservative (expensive) designs and economically attractive designs that allow constraint 

violations. An analytical expression for the process constraints in terms of the uncertain variables is 

obtained using a Power Series Expansion (PSE) approximation. The PSE expressions are then used to 
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compute (at minimum computational cost) the distribution (variability) in the process constraints and 

model outputs due to multiple realizations in the uncertain parameters, which are assessed using the 

MC sampling method. The proposed approach is computationally attractive because it avoids the 

need to simulate the complete plant model for each realization in the uncertain parameters as it is the 

case in stochastic programming-based approaches. The key computational effort in the present 

method relies in the identification of the sensitivity terms for each of the PSE approximations that 

need to be developed for the process constraints and model outputs considered in the analysis. 

However, the two case studies examined in this work indicate that the computational times needed by 

the present method to address the optimal design of a large-scale system is orders of magnitude 

shorter than those required by the traditional stochastic programming-based methods, which rely on 

extensive simulations of the complete process model.  
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Chapter 4 

Optimal design of a post-combustion CO2 capture plant under 

process uncertainty 

 

This chapter presents a study on the effect of process uncertainty on the optimal design of CO2 

capture plants. The work presented in this chapter employs the novel method described in Chapter 3 

[126], for the optimal design of large-scale chemical processes (such as the CO2 capture plant) under 

uncertainty, which uses a Power Series Expansion (PSE) approximation to the actual nonlinear 

process in computing the output distribution of the process constraints in the presence of uncertainty. 

The motivation behind implementing the developed approach on a CO2 capture plant is to 

demonstrate the applicability of the approach on an actual large-scale chemical process as well as to 

provide insights on the optimal design of CO2 capture plants under uncertainty. The organization of 

this chapter is as follows: The process description of a post-combustion CO2 capture process along 

with the implementation and formulation of the problem is presented in Section 4.1. Two case studies 

involving the optimal design of the CO2 capture plant under single and multiple process uncertainties 

are presented in Section 4.2. The effect of process uncertainty on the optimal design of CO2 capture 

plants is summarized in Section 4.3. 

 

4.1 Post-combustion CO2 capture process design problem 

 

Post-combustion using chemical absorption with amine solvents (such as MEA) is by far the most 

common and developed technique to capture CO2 from flue gas with low CO2 concentrations. Figure 

4.1 presents a schematic diagram of a typical amine-based carbon capture unit, consisting mainly of 

an absorber and a stripper column with the required heating and cooling equipment. The flue gas 

enters through the bottom of the absorption column and comes in contact with the lean amine solvent 

(such as MEA) flowing downwards from the top of the absorber column, selectively absorbing CO2 

from the flue gas. The treated flue gas leaves the top of the absorber column and is discharged from 

the process in the vent gas stream; the bottoms of the absorption process represent rich amine solvent 

with all the absorbed CO2. This rich amine solvent is then pre-heated in a cross heat exchanger using 
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the recycled lean amine solvent stream coming from the stripping section of the plant. The heated rich 

amine stream enters the stripper column for solvent regeneration (removal of absorbed CO2). 

Desorption of CO2 from the amine solvent is an endothermic process, requiring additional heat 

supplied by the reboiler steam unit located at the bottom of the stripper column (Figure 4.3). 

Desorbed CO2 leaves the top of the stripper in a vapor stream, which is then passed through a reflux 

condenser to obtain a CO2-rich product gas. On the other end, regenerated lean amine solvent is 

cooled down before it is recycled back to the absorber column to remove the incoming CO2 in flue 

gas stream. Since solvent will be lost in the regeneration process, make-up streams consisting of 

water and MEA are needed to maintain the operation of this plant. 

 

 

Figure 4.1 Schematic diagram of the main units of a typical amine-based carbon capture unit. 

 

A previous study presented by Dugas [134] on a CO2 capture pilot plant using MEA has been used as 

the design basis for this work because of the availability of the actual design and operating conditions 
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data. In addition to the process flowsheet reported by Dugas [134], the present work adds a condenser 

unit (as shown in Figure 4.1-state process was modelled in Aspen HYSYS using the base case 

operating conditions of the pilot plant process data reported by Dugas [134]. A rate-based model was 

adopted to model the absorption/stripping columns as opposed to the equilibrium-based model. The 

assumptions of theoretical stages and phase equilibrium are insufficient to describe the behaviour of 

the absorption process where reactions are taking place inside the packed column. Thus, the rate-

based method, which uses a reaction mechanism model, has gained more acceptance over traditional 

equilibrium-based approaches [6,7,135], and is adopted in the present work. The mechanism that 

describes the reaction between CO2 and MEA used in the present model is the Zwitterion mechanism, 

which is the most accepted kinetic model for absorption of CO2 in aqueous MEA [136]. For this 

model, the kinetic data presented in [137,138] were used. NRTL was implemented as the base 

equation of state for this process while the Kent-Eisenberg thermodynamic model is used for the 

aqueous amine solutions.  Table 4.1 shows the validation of the developed plant model in Aspen 

HYSYS. As shown in that Table, the developed model is in reasonable agreement with the 

experimental data reported in the literature for this CO2 capture plant [12,13,134]. Note that some of 

the operating conditions and equipment sizes were compared with other references in the literature 

since those parameters were not reported by Dugas [134]. 
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Table 4.1 Validation of the developed plant model in Aspen HYSYS. 

 
Plant model Specification [Source] 

Flue-gas flowrate 

   

Temperature (K)  319.70 319.71 [134] 

Molar flowrate (mol/s)  4.01 4.01 [134] 

Mole fractions: 
   

CO2 0.175 0.175 [134] 

H2O 0.025 0.025 [134] 

N2 0.8 0.8 [134] 

 

Absorber 

 

 
  

Height (m)  6.1 6.1 [134] 

Internal diameter (m) 0.43 0.43 [134] 

Temperature (K)  325 314–329 [134] 

Pressure (kPa)  102 101.3-103.5 [134] 

 

Stripper 

 
   

Height (m) 6.1 6.1 [134] 

Internal diameter (m)  0.43 0.43 [134] 

Temperature (K)  358 350–380 [134] 

Pressure (kPa)  160 159.5–160 [134] 

 

Process variable  

 
   

Reboiler Temperature (K)  386.9 383-393 [12] 

Reboiler Pressure (kPa)  160 160 [12] 

Condenser Temperature (K)  314.3 312-315 [13] 

Condenser Pressure (kPa)  159.5 159 [13] 

CO2 recovery (mole %) 95.04 95.9 [13] 

CO2 product (mole %) 95 95 [13] 

Lean solvent temperature (K) 314 312.8 [13] 

Vent gas CO2 content (mole 

fraction) 
0.0010 0.0055-0.0085 [12] 
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4.2 Optimal design under uncertainty framework 

 

This section presents the implementation of the optimal design methodology presented in Chapter 3 

on the post-combustion CO2 capture plant described in the previous section. The objective function 

and the process constraints are explained first followed by the optimization variables selected for the 

present analysis.  

 

4.2.1 Objective function 

 

The aim of this work is to optimize the CO2 capture (CCap) plant’s design based on an economic 

objective function. The annualized objective function for this plant is defined in terms of the capital 

costs (CC) and the operating costs (OC) and is as follows:   

rebCCap

condHXstrpabsCCap

CCapCCapCCap

C

CCCC

CΦ







OC

CC

OCC

       (4.1) 

where the capital costs include the costs of the main process equipment, i.e., absorber ( absC ), stripper 

( strpC ), cross heat exchanger ( HXC ) and condenser ( condC ), whereas rebC  denotes the operating costs 

associated with the reboiler heat duty ( rebQ ). In this work, only the cost of reboiler heat duty will be 

considered in the operating costs since the heating consumption for solvent regeneration dominates all 

other operational costs [9]. The cost function CCapΦ  will be used as the objective function in the 

formulation (3.9) presented in Section 3.3 of the previous chapter. 

The detailed expressions for the cost functions in (4.1) are calculated using Guthrie’s [139] 

correlations and are as follows: 

Capital costs: 

1. Heat exchanger costs (2011 US$/y) = ROR(Purchased Cost + Installed Cost) (4.2) 
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Purchase Cost, $ = )3.101(
280

S&M 65.0
cFA








      (4.3) 

Installed Cost, $ = )29.2(3.101
280

S&M 65.0
cFA 








     (4.4) 

Fc = (Fd + Fp) Fm         (4.5) 

A=heat transfer area, ft
2
 

Fc is a correction factor due to design (Fd), pressure (Fp) and material (Fm) of the equipment. 

Correction factors: Fd =0.85, Fp =0.25, Fm =1. 

 

2. Column costs, (2011 US$/y) = ROR(Purchased Cost + Installed Cost)   (4.6) 

Purchase Cost, $ = )9.101(
280

S&M 82.0066.1
cFHD








     (4.7) 

Installed Cost, $ = )18.2(9.101
280

S&M 82.0066.1
cFHD 








    (4.8) 

 Fc = Fm Fp          (4.9) 

D = diameter of absorber (or stripper), ft  H = height of absorber (or stripper), ft  

Fc is a correction factor due to material (Fm) and pressure (Fp) of the equipment 

Correction factors: Fm = 1, Fp = 1.  

 

ROR=20% (rate of return) 

M&S = 1, 536.5 (Marshall & Swift equipment cost index, 2011 4
th
 Q) [140] 

 

Operational Costs: 

rebC  (2011 US$/y) steam
vap

reb C
H

Q










       (4.10) 
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4.2.2 Process constraints 

 

The optimal process design of a CO2 capture plant is subject to operational and performance 

constraints that needs to be satisfied in the presence of process uncertainties. The percentage of CO2 

removed or captured ( ) from the flue gas stream is a metric typically used to measure the 

performance of these plants and is usually expected to be high enough for the process to be 

economically viable, with a recent study showing that a 95% CO2 capture rate to be optimal [9]. The 

percentage of CO2 captured   is defined as follows: 

gasflueinCOofmoles

gasventinCOofmoles
1

2

2        (4.11) 

According to the optimization framework shown in (3.9), this performance metric will be used as a 

process constraint that targets the optimal design to achieve at least 95% CO2 capture, i.e., 

095.0           (4.12) 

The CO2 product stream leaving the top of the stripper is desired to have high concentrations in CO2; 

hence, a minimum of 95% CO2 purity ( ) in the product stream is defined as a constraint as follows: 

095.0           (4.13) 

In addition to constraints (4.12) and (4.13), operational constraints on the temperature in the reboiler 

and the lean solvent entering the absorber are included to ensure the feasible operation of this process, 

i.e.,   

0383  rebT          (4.14)

0393 rebT          (4.15)

0313  leanT          (4.16)

0315 leanT          (4.17) 

When heating the bottom stream of the stripper in the reboiler to regenerate amine solution, 

degradation of the MEA solvent can occur at high temperatures [15]. Hence, constraints (4.14) and 
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(4.15) are aimed to maintain the operating temperature range in the reboiler rebT  within 383-393 K 

[12,13]. The temperature of the lean amine solvent entering the absorber has a direct effect on the 

amount of CO2 captured [141], and thus its operating temperature range is maintained at 

approximately 314 K [142]. In order to ease the optimal search, the formulation in (4.16)-(4.17) 

allows for a deviation of 1 K from the target value of 314 K.  

 

To implement the ranking-based optimization framework proposed in the previous chapter, the 

constraints considered in the CO2 capture plant have been reformulated using the PSE-based approach 

as shown in (3.8). Given the order q of the PSE approximation, the PSE-based function (hPSE) is 

constructed first using the actual nonlinear CO2 capture plant model described above. Then, N MC 

sampled realizations of the uncertain variables will be used in PSE-based function ( PSEh ), to obtain a 

histogram of the distribution of each process constraint. Using a user-defined probability value ( hPb

), along with the obtained histograms, the extreme value ( h ) for each constraint is computed as 

shown in Figure 3.1. For example, the PSE-based constraint formulation for constraint (4.12) is as 

follows: 

  0Pb095.0P )12.4(constraint)12.4(constraint      (4.18) 

The rest of the constraints are formulated in the same fashion and are not shown here for brevity. The 

probabilistic form of constraints (4.12)-(4.17) as shown in the right hand side of equation (4.18) will 

be used as the set of constraints for the optimization formulation shown in equation (3.9).  
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4.2.3 Optimization variables 

 

The set of design and operating variables for the CO2 Capture (CCap) plant ( CCapη ) that has been 

considered include the heights and diameters of both packed columns, the heat transfer areas of both 

the cross heat exchanger and the condenser, and the heat duty of the reboiler, i.e., 

],[

][

],,,,,[

CCapCCapCCap

rebCCap

condHXstrpabsstrpabsCCap

Q

AADDHH

udη

u

d







     (4.19) 

The base case design and operation of the CO2 capture plant is given in Table 4.1 [12,13,134]. The 

cost of this base case design is evaluated using the capital and operating cost functions shown in (4.1). 

Detailed equipment specification and operating conditions of the CO2 plant can be found in 

[12,13,134].  

 

In the next section, the application of the present approach to address the optimal process design and 

operation of the CO2 capture process is presented. The application of the optimization-based 

framework employed in this study has been implemented in MATLAB whereas the CO2 capture 

process was modelled in Aspen HYSYS. This means that the optimization framework and all PSE 

computations were performed in MATLAB, with communications to and from the Aspen HYSYS 

whenever process simulations involving the plant model were needed. The studies presented in the 

next section were performed on an Intel Core i7 3770 CPU @3.4GHz (8GB in RAM).  
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4.3 Results and discussion 

 

In this section, the formulation proposed to address the optimal design of the CO2 capture plant has 

been tested under various scenarios. In this work, uncertainty is assumed in three input variables, i.e., 

the CO2 content of the entering flue gas (%CO2), the temperature of this stream (Tin) as well as its 

flow rate (Fin). The results obtained for each scenario considered are presented next.   

 

4.3.1 Scenario A: Steady state optimization without uncertainty 

 

The first scenario considers the CO2 capture plant’s design under the assumption of perfectly known 

process parameters, i.e. all three input uncertain variables were assumed to be perfectly known and 

equal to their nominal steady state values, i.e., 

smolF

KT

molCO

in

in

/01.4

319

%5.17% 2







        (4.20) 

where the overbar sign denote the nominal values of those variables. As shown in Table 4.2, the 

optimal design obtained for Scenario A is half the height of the stripper specified for the base-case 

design; also, the diameters of both packed columns are slightly smaller than those specified by the 

base-case design. Both the heat exchanger and the condenser were also slightly smaller than in the 

actual plant’s design specified by Dugas [134]. To maintain the performance specifications and still 

satisfy the plant’s process constraints, a higher reboiler duty was required when using smaller 

equipment sizes. This tradeoff, i.e. higher reboiler duty for lower equipment sizes, have resulted in a 

more economic design since the plant’s capital costs dominates the process economics. Thus, 

although the present scenario has higher operational costs, the optimal design specified for this 

scenario is about 18% lower in total costs than that obtained with the base-case design.   
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Table 4.2 Base case plant design and the optimal steady-state plant design (Scenario A). 

Decision variables 
Base-case design 

[12,13,134] 
Scenario A 

Reboiler duty, Qreb (kW) 153.6 172.12 

Absorber height, Habs (m) 6.1 6.1 

Absorber diameter, Dabs (m) 0.43 0.3005 

Stripper height, Hstrp (m) 6.1 3.05 

Stripper diameter, Dstrp (m) 0.43 0.3011 

Heat trans. area, AHX (m
2
) 22.47 19.80 

Heat trans. area, Acond (m
2
) 14.40 11.10 

Annualized Costs 

 

 

CC ($/y) 4.66E+04 3.58E+04 

OC ($/y) 6.17E+03 7.42E+03 

Total Costs ($/y) 5.27E+04 4.33E+04 

 

4.3.2 Scenario B: Uncertainty in the flue gas stream’s CO2 composition 

 

This scenario aims to search for the optimal CO2 capture plant’s design that remains feasible in the 

presence of uncertainty in the flue gas stream’s CO2 content. The uncertainty in this input variable is 

assumed to follow a Gaussian (Normal) distribution with the following mean and standard deviation 

parameters: 

%)175.0%,5.17(~% 2 molmolNCO       (4.21) 

Based on the ranking-based approach, the user-defined minimum probability of satisfaction hPb  was 

set to 85% for each of the constraints as shown in Table 4.3. This means that the optimal design will 

need to satisfy each constraint 85% of the time or more when subjected to the process uncertain 

description shown in (4.21).  
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Table 4.3 Input probability limits for the process constraints.  

 

Probability of satisfaction (%) 

Constraint Scenario B Scenario C Scenario D 

(4.12) 85 85 95 

(4.13) 85 95 85 

(4.14) 85 75 75 

(4.15) 85 75 75 

(4.16) 85 90 90 

(4.17) 85 90 90 

 

Table 4.4 Optimal steady-state plant designs under uncertainty; Scenario B. 

Decision variables 
Scenario B 

q=1 

Scenario B 

q=2 

Scenario B 

q=3 

Scenario B 

q=4 

Scenario B 

q=5 

Scenario B 

q=6 

Reboiler duty, Qreb (kW) 184.5000 195.4961 194.2464 194.5281 197.2880 196.1544 

Absorber height, Habs (m) 6.1 6.1 6.1 6.1 6.1 6.1 

Absorber diameter, Dabs (m) 0.3950 0.3794 0.3401 0.3390 0.3345 0.3371 

Stripper height, Hstrp (m) 3.05 5.3375 5.3375 5.3375 5.3375 5.3375 

Stripper diameter, Dstrp (m) 0.3150 0.4322 0.6365 0.6377 0.6382 0.6379 

Heat trans. area, AHX (m
2
) 10.7991 10.8259 10.8553 10.8260 10.8259 10.8262 

Heat trans. area, Acond (m
2
) 19.7984 19.7987 20.3930 20.3932 20.3935 20.3928 

Cost     
  

CC ($/y) 3.76E+04 4.12E+04 4.43E+04 4.44E+04 4.43E+04 4.44E+04 

OC ($/y) 7.42E+03 7.86E+03 7.81E+03 7.82E+03 7.93E+03 7.88E+03 

Total ($/y) 4.50E+04 4.91E+04 5.21E+04 5.22E+04 5.22E+04 5.22E+04 

CPU Time (h) 1.489 2.031 2.934 3.832 5.089 6.394 

 

As discussed in Section 3.2.1 in the previous chapter, the method used in this work approximates the 

actual distribution of the process constraints due to the realizations of the uncertain process variables 

using a q
th
 order Power Series Expansion (PSE). Increasing the expansion order q improves the 
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distribution approximation and is needed when dealing with highly nonlinear systems. However, the 

higher the expansion order used, the more computationally intensive the problem becomes. Thus, an 

increase in the expansion order is only justified if it yields significant improvement in the resulting 

probability distribution of the process constraints. To further illustrate the convergence characteristics 

of the PSE-based method, and to also select the order q to be used in this problem, the present 

scenario was solved using different expansion orders (see Table 4.4). Figure 4.2 shows the 

convergence of the distribution while using different orders in the PSE expansion, i.e., from q=1 to 

q=6. 

 

Figure 4.2 PSE fitting for the distribution of the CO2 capture rate constraint using different 

expansion orders. 
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While Figure 4.2 may suggest that q=6 is the best approximation, Table 4.4 shows that the optimal 

solution converges at or near q=3, where the maximum difference with the solution of q=6 in both 

process design and plant’s cost is less than 1%. As shown in Table 4.4, the computational effort for 

solving the optimal design problem is directly correlated with the expansion order used. Therefore, 

q=3 is sufficient enough to yield good accuracy and save computational time (23% faster than q=4 

and 54% faster than q=6). As shown in Table 4.4 (Scenario B, q=3), uncertainty in the flue gas 

stream’s CO2 composition has affected the optimal design requiring larger columns (absorber’s 

diameter and stripper height and diameter) as well as a larger heat duty than that required for Scenario 

A. Due to the presence of uncertainty, there will be instances where the CO2 composition in flue gas 

will be higher than its nominal value, which demands larger columns and reboiler duty to capture the 

extra CO2 contained in the flue gas stream as well as to regenerate the MEA from the rich amine 

solvent stream. As a result, this scenario yielded optimal designs that are 5% and 24% higher in 

operational and capital costs than that obtained from Scenario A’s design; however, Scenario B’s 

design satisfies the process constraints under uncertainty in %CO2 at least 85% of the time, which is 

the minimum probability of constraint satisfaction specified for this scenario (see Table 4.3). Process 

constraint (4.12), which is associated with the percentage of CO2 captured  , was found to be the 

only active constraint at the solution for Scenario B. The optimal design obtained for Scenario B was 

validated by running the actual plant model 1,000 times using sampled uncertain realizations in 

%CO2 for each simulation; as shown in Figure 4.3a, Scenario B’s design is able to satisfy the active 

process constraint (4.12) according to the user-defined minimum probability limit, 85.0Pb h . On 

the other hand, Figure 4.3b shows that the original base-case design is inoperable under uncertainty in 

%CO2 since process constraint (4.12) was found to be violated almost 82% of the time when using 

that design. Scenario A’s design yielded similar high violations in the active constraint (4.12) when 

operating under the uncertainty description (4.21) and it is not shown here for brevity. Note that the 

cross heat exchanger and condenser areas were not significantly affected by the presence of 

uncertainty in this scenario.  
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Figure 4.3 Frequency histograms for the CO2 capture rate constraint under single uncertainty for (a) 

Scenario B design, and (b) the base-case design. 

 

4.3.3 Scenario C: Ranking-based designs 

 

In this scenario, the ranking-based feature of the optimal process design approach described in 

Section 2 has been explored for this process. Accordingly, each process constraint has been assigned 

to different probability limits hPb  and it is shown in Table 4.3. Instead of the Gaussian distribution 

assumption shown in (4.21), a more conservative approach is used in this scenario; thus, the 

uncertainty in %CO2 was assumed to follow a uniform distribution with upper and lower bounds 

defined as follows: 

%)25.19%,75.15(~% 2 molmolUCO       (4.22) 
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Based on the results from the previous scenario, the order in the PSE expansion was set to q=3 for 

this scenario. Table 4.5 (Scenario C) shows the optimal design obtained for this scenario. With a 

uniform probability distribution describing the uncertainty (rather than Gaussian), a more expensive 

design was obtained; this was mainly due to the 16% increase in the plant’s capital costs with respect 

to Scenario B’s design. The optimal design for this scenario has larger absorber diameter and stripper 

height than that obtained for Scenario B’s design; nevertheless, the stripper’s diameter was the design 

parameter that changed the most, with a 37% increase in size with respect to Scenario B’s design. 

Even though the larger sized plant required lower heat duty in the reboiler unit during the 

regeneration process of the amine solvent, the capital costs associated with the columns’ size 

(diameter and height) dominate the process economic, and thus resulted in an overall increase of 13% 

in the total costs for this scenario as compared to Scenario B’s design. The ranking-based structure of 

the input probability limits (shown in Table 4.3) did not change the active constraint of the problem, 

which remained to be the percentage of CO2 captured  (4.12).  

 

Table 4.5 Optimal steady-state plant designs under uncertainty; Scenarios C and D. 

Decision variables 
Scenario C 

q=3 

Scenario D 

q=4 

Reboiler duty, Qreb (kW) 180.5022 252.0000 

Absorber height, Habs (m) 6.1 7.625 

Absorber diameter, Dabs (m) 0.3900 0.8370 

Stripper height, Hstrp (m) 6.1 6.1 

Stripper diameter, Dstrp (m) 0.8722 0.5550 

Heat trans. area, AHX (m
2
) 10.8933 10.8855 

Heat trans. area, Acond (m
2
) 20.4159 21.2527 

Cost   

CC ($/y) 5.14E+04 5.76E+04 

OC ($/y) 7.26E+03 1.01E+04 

Total ($/y) 5.87E+04 6.77E+04 

CPU Time (h) 2.943 3.901 
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4.3.4 Scenario D: Multiple process uncertainties 

 

The present scenario extends Scenario B and considers the simultaneous occurrence of three uncertain 

realizations in the flue gas stream, i.e., CO2 content, flow rate and temperature. The uncertainty 

description for this scenario is defined as follows: 

)/2.0,/01.4(~

)16,319(~

%)175.0%,5.17(~% 2

smolsmolNF

KKNT

molmolNCO

in

in       (4.23) 

The input probability limits assigned for the process constraints is shown in Table 4.3. Due to the 

increased degree of nonlinearity from the interaction of simultaneous occurrence of multiple 

uncertainties, an order of q=4 was found to be suitable to obtain reasonably good approximations to 

the process constraints’ output distributions. Also note in Table 4.3 that a higher probability limit 

(compared to the previous scenarios) of 95% was assigned to the active constraint (4.12). This aspect, 

along with the simultaneous occurrence of multiple process uncertainties, makes this scenario even 

more challenging and computationally demanding. The simultaneous occurrence of multiple process 

uncertainties can lead to higher nonlinearities in the output of the process constraints, and thus may 

require higher PSE orders. From the computational point of view, this scenario requires the 

computation of higher order sensitivity terms of the process constraints with respect to ‘three’ 

different uncertain variables, as opposed to just ‘one’ as in the previous scenarios. In addition, the 

higher probability limit assigned to the active constraint in this scenario means that the optimal design 

has to satisfy the same constraint more frequently while subjected to more (multiple) uncertainties. 

The optimal design obtained for Scenario D is shown in Table 4.5 (Scenario D). For this scenario, a 

25% increase in the absorber’s height and more than double the diameter than that reported for 

Scenario B was specified. Likewise, the stripper column’s overall volume was reduced by about 13% 

due to its smaller diameter, and only a slight increase in its height, when compared to Scenario B’s 

design. As shown in Table 4.5 (Scenario D), a 30% increase in the reboiler heat duty than that 

obtained for Scenario B was necessary to achieve a feasible design. Overall, both the operation and 

capital costs are higher for this scenario which may be directly justified by the need to accommodate 

additional uncertainties; also, the present scenario is required to meet a higher demand of satisfying 

the active constraint with a minimum probability of 95% (rather than 85% as in the previous 
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scenarios). Moreover, the cross heat exchanger and condenser areas were not significantly affected by 

the presence of multiple uncertainties. Although the plant’s costs for this scenario is 30% more than 

that obtained for Scenario B, this scenario specifies a CO2 capture plant that can meet the desired 

specifications at the predefined minimum probability of satisfaction while using the uncertainty 

descriptions given in (4.23) (see Figure 4.4). Since a higher expansion order (q=4) was used in this 

scenario, a higher CPU time was needed to solve the optimal design problem under uncertainty than 

that required for Scenarios B and C where a lower order (q=3) was employed. Note that, the CPU 

time for this scenario is comparable to that in Scenario B when using q=4, even though more process 

uncertainty were considered in this scenario.   

 

 

Figure 4.4 Frequency histogram for the CO2 capture rate constraint under multiple uncertainty 

for Scenario D design. 
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4.4 Chapter summary 

 

The optimal design of a CO2 capture plant in the presence of process uncertainty has been studied in 

this chapter. The present work employed the proposed method for the optimal design of large-scale 

chemical processes under uncertainty in the previous chapter, which uses a Power Series Expansion 

(PSE) approximation to the actual nonlinear process to obtain the output distribution of the process 

constraints. The need to incorporate uncertainty in the optimal design procedure was justified by the 

fact that process constraints are usually violated more often for those designs that did not consider the 

effect of process uncertainty at the design stage. At steady-state, without consideration of uncertainty, 

the optimal feasible design specified an absorber that is double the height of the stripper column. In 

the presence of uncertainty in the flue gas stream’s CO2 content, the size of the stripper column (both 

diameter and height) increased significantly to satisfy the process constraints; the absorber size 

remained unchanged. The reboiler heat duty, which is an operating variable in the stripping section of 

the plant, is also higher when considering uncertainty in the flue gas stream’s CO2 content. With more 

uncertainties introduced in the flue gas input stream, the plant’s absorber column increased more than 

the stripper. While the addition of uncertainties required higher reboiler heat duty, and therefore 

higher operational costs, the cross heat exchanger and condenser areas did not seem to be affected by 

the process uncertainty considered in this analysis. The optimal designs obtained under uncertainty 

specified larger sized plants and needed more utility (i.e., reboiler duty). As a result, these designs 

were more expensive than the steady state design (without considering uncertainty); with higher 

operational and especially capital costs which were the dominant term in the economic cost function. 

However, this increase in costs is justified by the fact that these designs satisfy the process constraints 

according to the user-defined probability of satisfaction, whereas the optimal steady-state design 

failed to satisfy the constraints most of the time when operating under uncertainty in the input flue gas 

stream.  

  



 

 71 

Chapter 5 

Simultaneous design and MPC-based control for dynamic systems 

under uncertainty: A stochastic approach 

 

Although optimal process design is typically performed using steady-state optimization calculations, 

it has been shown that process dynamics play a significant role while searching for the optimal 

process design of a system under uncertainty. Therefore, the dynamic behavior of processes needs to 

be considered in the optimal design under uncertainty problem. This chapter presents a simultaneous 

design and Model Predictive Control (MPC)-based control methodology that gives the user the 

freedom of assigning priorities to the key goals of the system to be designed through the 

implementation of a stochastic approach. The key idea of the present probabilistic-based method is to 

determine the dynamic variability of the system that will be accounted for in the process design by 

assigning probability levels to each process variable (or combination of variables) according to their 

significance. The organization of this chapter is as follows: Section 5.1 presents the mathematical 

formulation of the MPC and its implementation in the optimization framework for the simultaneous 

design and control using the proposed probabilistic approach. The implementation of the proposed 

methodology to an actual wastewater treatment plant is presented next in Section 5.2. A comparison 

between the proposed MPC-based strategy and conventional multi-loop PI control, as well as a 

computational cost study of the proposed approach are also presented in this Section. A summary of 

this work is presented in Section 5.3. The content of this chapter has been published in  Computers & 

Chemical Engineering [70] (see Appendix). 

 

5.1 Simultaneous design and MPC-based control methodology 

 

In this section, the details of the proposed simultaneous design and control methodology are 

presented. The mathematical description of the simultaneous design and control procedure that 

incorporates all the features included in this method is presented next. The key novelties of the 

present approach with respect to those published in the literature are explained at the end of this 

section.  
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A chemical process can be characterized by its nonlinear dynamic process model ( J ), the process 

inputs ( ε ), process outputs (δ ), a control algorithm and its tuning parameters (Λ ). The process 

model of a system is represented by the set of differential equations that describe the behavior of the 

process in the transient domain. This work assumes that the process model ( J ) is available for 

simulations. Process inputs ( ε ) include the available manipulated variables ( ς ) that can be used by 

the control strategy to maintain stability and performance of the system within specifications, as well 

as the disturbances ( λ ) affecting the process: 

],[ λςε            (5.1) 

Both (ς ) and ( λ ) can be further classified into: 

],[ ρuς            (5.2) 

],[ ωνλ            (5.3) 

where u  represents the manipulated variables used by the controller whereas ρ  are the remaining 

available manipulated variables that are kept constant and unused by the controller; ν  represents the 

unmeasured disturbances while ω  represents those disturbances that are measured and can 

potentially be used for feedforward control. The process outputs are classified as follows: 

],[ χγδ            (5.4) 

where γ  are the process controlled variables whereas χ  represents the remaining output variables 

that are not in closed-loop. In this work, for any process variable, e.g., S , its steady state value will 

be represented by an overbar ( S ) whereas a hat symbol ( Ŝ ) denote deviation form. 

 

The present methodology implements the simultaneous design and control procedure using a 

probabilistic approach to handle the process constraints and cost function terms that depend on the 

system’s dynamics. The disturbances are assumed to be stochastic (random) time-varying variables 

that follow predefined probability distribution functions defined by the user. The simultaneous design 

and MPC-based control methodology proposed in this work can be conceptually formulated as 

follows: 
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     (5.5) 

where the objective function Φ  represents an economic measure of the plant costs incurred and thus 

need to be minimized by searching for the optimal values in the decision variables ( η ) that minimize 

such function. The optimization variables η  include the process design variables κ , consisting of 

both fixed design parameters d  (e.g. reactor’s size) and continuous nominal (steady-state) operating 

conditions, u  and γ  (e.g. nominal flow rates in the outlet streams); and Λ , which represent the 

MPC controller tuning parameters that will be defined below. The number of process design variables 

that can be considered as optimization variables is deduced from a degrees of freedom analysis. That 

is, once the values for the design variablesκ  have been specified by the optimization algorithm, then 

the nominal (steady-state) conditions for the rest of the process variables, ρ  and χ , can be 

calculated by solving the first principle model equations at steady-state ( J ). Each of the terms 

included in the optimization problem (5.5) is described next. 

 

5.1.1 MPC Scheme 

 

The present methodology adopts a model-based control strategy such as a linear constrained Model 

Predictive Control (MPC) to maintain the manipulated and controlled variables within its feasible 

limits in the presence of disturbances. The mathematical formulation of a linear constrained MPC is 

as follows: 
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    (5.6) 

where r|kkγ̂  represents the predicted output controlled variables at the (k+r)th time interval, with the 

assumption that the corresponding value of each controlled variable in the vector kγ̂ at the kth interval 

is available. The control moves needed at each time step to keep the controlled variables γ to their 

desired set points spγ , is represented by the vector |kmkuΔ ˆ  where the subscript denotes the (k+m)th 

time interval. The set points spγ̂ , also known as the reference signals, remain constant during the 

calculation of the MPC formulation (5.6). The controller’s prediction and control horizons are 

denoted by R and M, respectively. The internal model used by the MPC is represented by a discrete 

linear state space model that describes the process transient behavior around a nominal operating 

condition specified by the fixed design parameters d , the nominal (steady-state) conditions of the 

manipulated variables u , and the process set points spγ . Since the linear MPC model depends on d ,

u  and spγ , and these variables are included in the decision variables vector κ  in the optimization 

framework (5.5), the MPC internal model needs to be identified (re-calculated) at each optimization 

step. The vector kx̂ denotes the state variables of the system at the kth time interval which are 

estimated using the linear state-space model around the operating condition defined by d , u  and spγ , 

respectively. Following (5.6), kŵ
 
represents the inputs to the linear state space model and include 

the manipulated variables kû  and the disturbances kν̂ . While kû  is assumed to change up until the 

last control horizon M considered in the MPC formulation, the disturbances kν̂  are assumed to 

remain constant for the entire control horizon M and equal to realization of the disturbances at the k
th 

(current) time interval. As shown in (5.6), estimates for the output variables kγ̂  are obtained from the 
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linear MPC model and used to compute the control actions in manipulated variables uΔ ˆ . To simplify 

the analysis, the system’s states are estimated at each sampling interval from a linear discrete state 

observer computed from the internal linear MPC model [143]. Since a linear state space model is used 

to describe the process dynamics of the system (which is usually nonlinear), kγ̂ will only be an 

approximation to the actual continuous controlled process outputs γ . The MPC weights for the 

manipulated and controlled variables, i.e., the MPC controller tuning parameters, are represented in 

the MPC formulation (5.6) by the matrices Γ and Ω , respectively, which are assumed to be positive 

semi-definite diagonal matrices, i.e., 

T)](diag),(diag[ ΩΓΛ 
         (5.7)

 

Hence, the diagonal elements of the matrices Γ and Ω  represent decision variables that will be 

calculated from the simultaneous design and control methodology presented in (5.5). The linear 

constrained MPC problem formulation presented in (5.6) can be efficiently solved using numerical 

subroutines available on commercial software packages such as the MPC toolbox in MATLAB
TM

. 

 

5.1.2 Process constraints 

 

To ensure feasibility, the process design variables κ  and controller tuning parameters Λ  selected by 

optimization algorithm must satisfy the process constraints h, which usually impose a physical 

limitation (e.g. valve saturation), a safety restriction or an operational constraint. These constraints are 

usually limited by critical values represented by the input limit a. As shown in problem (5.5), the 

constraints h can be a function of the design parameters, the process input and output variables. The 

present methodology evaluates the process constraints in a probabilistic manner using a stochastic-

based worst-case variability (SB-WCV) index. A description of the process disturbances and the 

method used to compute the SB-WCV index are described next. 

 

5.1.2.1 Process disturbances 

 

Previous simultaneous design and control methodologies assumed that the time-dependent 

realizations in the disturbances follow a certain class of time-dependent functions, e.g., a sinusoidal 

function with uncertain (critical) parameters [21,24], or a series of step changes with unknown (but 
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bounded) magnitudes [25,26], or calculated from a worst-case scenario formulation [27,28]. The 

present approach differs from the previous methods in the sense that the disturbances are assumed to 

be stochastic (random) time-varying perturbations that follow a user-defined probability distribution 

function, i.e., 

fcccc ttt  0)};(PDF~|{)( αννν       (5.8) 

where cν  represents the c
th
 disturbance included in ν whereas cα represents the parameters of the c

th
 

disturbance’s probability distribution function (e.g. mean and standard deviation for a normal 

distribution). Description (5.8) assumes that the disturbances are stochastic; its actual value at any 

time t is not specified but given by the probability distribution function PDF. To simplify the analysis, 

the disturbances’ time-dependence is relaxed by discretizing the disturbances’ estimates at specific 

time intervals, i.e., 

tKttktkkt fcc
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

,);(PDF~)()()(
1

αννν    (5.9) 

where k and t represent the sampling period and the sampling interval, respectively. The 

disturbance description shown in (5.9) is an input to the present methodology. The choice of 

probability distribution function to represent the stochastic behaviour of the disturbances needs to be 

specified by the user. A common assumption is to use Gaussian or Uniform distributions if no prior 

knowledge is available; however the present method is not restricted to the form of the disturbance’s 

probability distribution function and can take symmetric and non-symmetric probability distributions, 

e.g., lognormal distributions. The information about the disturbances’ dynamic characteristics is 

usually not available at the design stage. Despite of that, the current approach of using a PDF such as 

a normal PDF is suitable since it provides a more general description of the disturbances, than other 

assumptions made at the design stage, e.g., the use of a sinusoidal function or series of steps, 

especially when the process to be designed is a new process for which plant experience is not 

available. 

 

5.1.2.2 Stochastic-based worst-case variability (SB-WCV) index 

 

The use of stochastic disturbances and analyzing its effect on the constrained variables has previously 

been studied by [144]. In the present work, a probabilistic-based approach is employed to evaluate the 
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process constraints h  shown in problem (5.5). The closed-loop nonlinear process model ( closedJ ) is 

simulated using multiple stochastic realizations of the disturbances that comply with (5.9) and the 

dynamic response of the process constraints )(th  is analyzed. The worst-case (largest) deviation 

observed in any constraint )(th  for a particular realization in the disturbances ν  is called the 

stochastic-based worst-case variability (SB-WCV), h , and can be obtained as follows: 

],[

)6.5(schemeMPC

)( modelnonlinear  Process

s.t .

)(maxarg

Λκη

J



 thh

       (5.10)  

where h  refers to the largest deviation in the positive direction observed in the process constraint 

hh . The largest (worst-case) deviation in the negative direction can be obtained by replacing the 

‘max’ argument in (5.10) with a ‘min’ for minimum. Since random (stochastic) time-dependent 

realizations of the disturbances ν  generated from (5.9) were used to obtain h , there is no guarantee 

that other disturbances' realizations that also comply with the disturbance description (5.9) can result 

in larger variability in h , i.e. h  may not be the actual worst (largest) value that process constraint h 

can assume during the dynamic operation of the system. Accounting for all possible realizations in 

the disturbances ν  can be computationally intensive or even prohibitive. To address this issue, the 

present method uses a Monte Carlo (MC) sampling technique to generate N stochastic realizations of 

the disturbances that will be used in the nonlinear closed-loop process model ( closedJ ), i.e. the process 

nonlinear model J  engaged with the MPC control algorithm shown in (5.6), to obtain a set of N SB-

WCV estimates for h, ]...,[ 21 hphhh ψ . The MC sampling in the present method consist of a 

set of random samples that were selected using a pseudo random number generator function. For 

example, the MATLAB built-in function ‘randn’, which implements the ziggurat algorithm [145], 

selects pseudo random numbers from a normal PDF with given mean and variance. This sub-routine 

in MATLAB was used in the present analysis to generate the disturbance realizations that follow a 

normal PDF. If N is sufficiently large, a frequency histogram of hψ  will approximate to the true 

probability distribution of h  around a nominal operating point defined by κ , ρ  and χ . The 
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resulting worst-case variability distribution function can then be approximated by a known 

probability distribution function, e.g., exponential, normal (Gaussian), lognormal. The distribution 

function that fits hψ  to a known probability distribution is referred from heretofore as the worst-case 

variability distribution function, )( hψg . In a previous work, a normal (Gaussian) distribution was 

used to fit the N worst variability estimates in the process variables, which was obtained from 

simulations of N random Monte Carlo disturbances [29]. In the current methodology, a lognormal 

probability distribution is adopted because it can describe a wider range of probability distributions 

relatively well, e.g., a lognormal distribution can fit both skewed and symmetric random distributions 

whereas a normal distribution poorly fits a skewed distribution [146]. Accordingly, the use of a 

lognormal distribution is expected to improve the accuracy in the description of the probability 

distribution function and will therefore improve the evaluation of the process constraints. Thus, the 

worst-variability distribution function )( hψg  is calculated as follows [146]: 
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where h  and h  are the mean and standard deviation of the lognormal distribution function, 

respectively. In order to improve the estimates of the mean and standard deviation for each process 

constraint h, the present method iterates over N, i.e., perform N disturbances realizations and compute 

the output probability distribution function at each iteration, up until the improvement in the estimates 

is less than a pre-specified criterion. The step-by-step procedure used to obtain the SB-WCV, hψ , 

and then fitting to a probability distribution function )( hψg , can be found in [29]. The distribution 

function )( hψg  can then be used to evaluate the stochastic-based worst-case variability (SB-WCV) 

of constraint h at a given (user-defined) probability level (Pbh), i.e., 
*

h , using the identified 

lognormal probability distribution function (5.11) with model parameters h  and h : 
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Figure 5.1 presents a schematic of the computation of 
*

h . Using the calculated SB-WCV from 

(5.12), the process constraints shown in (5.5) can be reformulated in the present analysis as follows: 

aψχρκh ),,,( *
z          (5.13) 

which is defined in terms of the design parameters, the steady-state inputs/outputs, and the 

corresponding SB-WCV index (
*

hψ ) for each constraint h considered in problem (5.5). In the present 

analysis, algebraic manipulations need to be performed to ensure that h in (5.13) remains positive all 

the time. 

 

 

Figure 5.1 Schematic representation of the computation of the SB-WCV index. 

 

The choice of (Pbh) for each process constraint included in h depends on the significance of that 

constraint for the process design. That is, the present method allows 1-Pbh violations for constraint h. 

Hence, process constraints that need to be satisfied at all times, e.g., a safety constraint, need to be 

evaluated using a relatively high probability limit, i.e., Pb→1, which will ensure that that constraints 

are only violated (almost surely) in a very few (rare) occasions. The selection of (Pb) also represents a 

 @Pb=Pbz) 
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tradeoff between economically attractive process designs and conservative (expensive) designs. High 

probability limits (Pb) may be considered for critical systems to obtain conservative designs whereas 

low probability levels for (Pb) can be assigned to less critical variables for a more economic design. 

Accordingly, the present methodology offers the user the freedom in handling the process constraints, 

whether to follow a strict worst-case scenario approach by assigning high probability limits or attempt 

for a less expensive (economically attractive) design using low probability levels for all (or a few) of 

the process constraints. 

 

The procedure described above to evaluate the process constraints using the SB-WCV index (
*

h ) can 

also be used to evaluate the process variables used to measure the system’s dynamic performance. For 

example, the process dynamic performance costs can be calculated by assigning a dollar value to the 

process manipulated variables u or controlled variables γ  that determine the dynamic performance of 

the system. The variability in these variables will be obtained from the SB-WCV indexes (
*

u  and 

*

 ) evaluated at a user-defined probability limit, i.e., Pbu and Pbγ. For simplicity, a general notation (

*

z ) would be used from heretofore to refer to the calculation of the SB-WCV index, where z may 

denote a process constraint h, a manipulated variable u, or a controlled variable  .  

 

5.1.3 Stability test 

 

To ensure process stability, the current methodology makes use of local and global stability tests. 

Following the formulation presented in (5.5), a nominal stability test is embedded within the 

optimization problem (5.5) to ensure that the optimal design and control scheme obtained from that 

optimization problem is nominally stable. This test is carried out by calculating, at each optimization 

step, the eigenvalues of the sensitivity matrix )(xA  from the closed-loop system evaluated at the 

nominal operating point specified byκ and the MPC controller parameters Λ , which are the decision 

variables in problem (5.5). Therefore, the stability criterion shown in problem (5.5) is formulated as 

follows: 

0A Λκ ))|)((Re(eig ,x          (5.14) 
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where nominal stability is ensured if the real part of all eigenvalues are negative. The sensitivity 

matrix A(x) can be computed using numerical methods such as finite differences; however, efficient 

methods that compute the sensitivity matrix of the system around a nominal operating point have 

been recently published in the literature, e.g., Kookos et al [147]. The addition of the stability 

criterion (5.14) ensures that the design obtained by the present method is nominally stable; however, 

it does not guarantee asymptotic stability. To this regard, a robust stability test based on the Quadratic 

Lyapunov (QL) function is considered in the present methodology to evaluate the system’s 

asymptotic stability. The implementation of this test has been explicitly described in a previous study 

[20] and is not shown here for brevity. One drawback of the QL test is related to its computational 

costs for systems with a large number of states. For that reason, the present analysis only evaluates 

the asymptotic stability of those process design and control schemes obtained from the solution of 

present methodology’s optimization formulation. In the case that the optimal design does not satisfy 

the QL stability test, this asymptotic stability criterion will need to be included in the formulation and 

therefore implemented at each iteration in the present optimization framework. Nevertheless, in the 

present work the latter case was never encountered since all the optimal designs obtained from the 

present method satisfied the QL stability test.  

 

5.1.4 Cost function 

 

As shown in problem (5.5), the objective function Φ  can be defined as the addition of the annualized 

capital costs (CC), the operating costs (OC) and the dynamic performance costs (DC). The capital 

costs (CC) refer to the fixed annualized costs of purchasing and installing equipment and units in the 

process flowsheet. Estimates for the process units’ costs can be obtained from empirical correlations 

available in literature [2,148,149]. The annual operating costs (OC) refer to the cost of the utilities 

used in the daily operation of the plant such as electricity or heating steam. Both capital (CC) and 

operating (OC) costs are normally calculated from the steady-state design and operating conditions, 

e.g., tank volume, cooling water duty or pumping power. On the other hand, the dynamic 

performance costs (DC) aim to measure the process variability in economic terms due to sudden 

fluctuations in the disturbances. The costs could be incurred due to loss profitability, e.g., off-spec 

product quality, or due to certain environmental costs implied on the discharge of wastes to the 

atmosphere or the surroundings. Thus, the dynamic performance costs are considered process 

specific. The specification of dynamic performance costs for different case studies and applications 
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can be found elsewhere [28,29,101,109]. The costs are annualized over an assumed plant life of 20 

years. 

 

5.1.5 Optimization framework and algorithm 

 

Based on the above developments, the simultaneous design and MPC-based control methodology 

proposed in this work is formulated as follows: 
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    (5.15) 

Due to the use of stochastic realizations to calculate the SB-WCV indexes for the constraints (
*

h ) 

and the dynamic performance costs (
*

u  and 
*

 ), the present problem is casted as a nonlinear 

constrained stochastic optimization problem. Stochastic optimization algorithms such as Genetic 

Algorithms [150], which is essentially a global optimization method, can be implemented to solve 

this type of optimization problems. However, GA is computationally intensive requiring multiple 

restarts to obtain a reliable solution of the decision variables. Nonetheless, the structure of the 

formulation presented in (5.15) allows the implementation of computer parallelization techniques 

which reduces the computational efforts required by the present method. To show the potential 

benefits of the present method while using multiple cores, a study on the computational costs of the 

proposed methodology while using computer parallelization techniques is presented later in Section 

5.2.5. The step by step algorithm that needs to be followed to perform a single function evaluation of 

problem (5.15) is schematically shown in Figure 5.2 and it is described next. 
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Figure 5.2 Algorithm for the MPC-based probabilistic approach in design and control. 
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Given, a set of decision variables oη , the nonlinear process model J , a defined probability 

distribution function with its parameters for the disturbances ( )(PDF~ αν ), the user-defined 

probabilities for the SB-WCVs ( Pb ), and a maximum number of disturbance realizations (N), 

perform the following steps: 

1. Estimate the nominal (steady-state) operating conditions for the process variables that are not 

included in η  from the process (steady-state) nonlinear model ( J ). 

2. Identify the internal linear state-space MPC model around a nominal operating condition 

specified by the design parameters d and nominal steady-state operating conditions ( spγu, ). This 

model can be obtained using analytical methods, e.g., Taylor series expansion, or from systems 

identification. 

3. A set of N random realizations of the disturbances ν  is generated using Monte Carlo sampling 

from the particular probability distributions (PDFs) assigned to each disturbance (see description 

(5.9)). 

4. The closed-loop process ( closedJ ), i.e., the process model J  and the MPC controller specified in 

(5.6), is simulated N times, with a different random realization of the input disturbances ν  used 

at each simulation. The process responses obtained from these simulations are used to obtain the 

worst-case variability from each of the N dynamic simulations ( zψ ) using the formulation 

presented in (5.10). The complete set of zψ  values is lumped in a vector zψ . 

5. Fit zψ  to a lognormal distribution function: )( zψg . 

6. Calculate the SB-WCV index, 
*

zψ , from equation (5.12) using )( zψg  and the probability limit 

(Pbz) defined by the user for each constraint or process variable z. The calculation of the SB-

WCV index (
*

zψ ) represents the main calculation performed in this methodology and is explicitly 

shown by the enclosed dashed box in Figure 5.2. 

7. Use SB-WCV (
*

zψ ) indexes to evaluate the process constraints h  and process variability terms in 

the cost function Φ . If the optimization criteria are satisfied, then STOP, an optimal solution 
*

d  

have been found, otherwise update d  and go to step 1. 
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5.1.5.1 Remarks 

 

The methodology presented above is based upon a previous approach proposed by one of the authors 

for the simultaneous design and control of a chemical process with multi-loop PI controllers [29]. 

Further improvements have been made in the methodology to consider advanced (model-based) 

control schemes in the analysis and to improve the accuracy of the results. In the present method, a 

model-based control strategy such as Model Predictive Control (MPC) is considered in the analysis to 

maintain the system within specifications and stable in the presence of the stochastic disturbances. 

This improvement in the method will enable the specification of more economically attractive designs 

than those obtained with multi-loop (PI) control schemes since it offers the possibility to explicitly 

account in the control actions for constraints on the process inputs and outputs, e.g., saturation limits 

in the manipulated variables. Another improvement in the present methodology with respect to that 

shown in Ricardez-Sandoval [29] is the use of a lognormal distribution to describe the worst-case 

variability distributions in the process variables due to the fluctuations in the stochastic disturbances. 

A lognormal distribution can describe a wider range of probability distributions compared to the 

normal distribution. Therefore, it is expected that the adoption of a lognormal distribution will 

improve the accuracy in the results by providing better estimates for the worst-case variability 

distributions. To the authors’ knowledge, this is the first stochastic-based methodology that proposes 

an MPC-based framework for simultaneous design and control of dynamic systems under uncertainty. 

 

The methodology presented above assumes that the process flowsheet remains fixed during the course 

of the calculations. Although discrete decisions can be added into the present formulation to account 

for structural decisions in the analysis, and therefore obtain more attractive (economic) designs, the 

solution of those stochastic mixed-integer optimization problems is a challenging task that have been 

limited to small process systems [151]. Hence, the application of such highly demanding optimization 

methods to address the simultaneous design and control of large-scale systems is still an active area of 

research and is considered outside the scope of the present study.  

 

The number of N input disturbance realizations used in this method determines the accuracy of the 

lognormal fit worst variability function )( zψg . While a large number of disturbances realizations can 

improve the estimates of the index 
*

zψ , this also implies large computational costs. There is no clear 
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rule on the selection of N, the choice is normally decided after preliminary simulation tests to 

determine the optimal tradeoff between computational time and the desired accuracy in the 

calculations. The current methodology assumes stochastic disturbances with certain input probability 

distribution parameters. This description as shown in (5.9) can fit a wide range of applications where 

the disturbance is known to fluctuate randomly around a specific nominal value, e.g., raw material 

flowrate from a supplier usually incorporates variability around a certain agreed supply value. Unlike 

other simultaneous design and control methodologies that use a particular known function for the 

disturbance (e.g. sinusoidal), this stochastic disturbance description gives to the proposed 

methodology a more general and thus wider application. However, if the perturbations are known to 

follow a particular class of time-dependent functions, or is available from previous experiences with 

similar processes or from process design heuristics, such as the case of known deliberate changes to 

achieve different production levels, the current method may not adequately capture the actual 

dynamics of the process yielding less accurate (and perhaps more expensive) plant designs. Since the 

stochasticity in the disturbances is no longer considered in that case, deterministic dynamic 

optimization-based methods can be implemented to perform the integration design and control, e.g., 

Mohideen et al. [18], Bansal et al. [83], Swartz [26]. 

 

In principle the use of other type of models besides mechanistic process models to represent the 

actual process behavior can be also used as the process model J  in the present methodology, e.g., 

empirical or black-box models obtained from systems identification. These empirical or black-box 

models need to be identified such that they provide a sufficiently accurate description of the transient 

behavior between the disturbances and manipulated variables and the system’s outputs. Also, most of 

the empirical models are linear process models whereas the actual process behaves in a nonlinear 

fashion. Thus, the use of empirical linear models in the present methodology may introduce an error 

on the computation of the histograms for the constraint functions h since an approximated linear 

model is being used instead of the actual (typically nonlinear) process model. The latter may result in 

the specification of process design and control schemes that may not necessarily satisfy the process 

constraints h in the presence of random realizations in the disturbances. Another possible implication 

of using empirical process models is that the model parameters do not have a physical meaning as it is 

the case for mechanistic process models. The introduction of additional disturbances or uncertainties 

in the system’s physical parameters is straightforward in the case of a mechanistic process model, i.e., 

assign a probability distribution function (PDF) to that disturbance or uncertain parameter and then 
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impose N stochastic realizations sampled from that PDF to that parameter and evaluate the process 

constraints and cost function under this scenario. On the other hand, an empirical model may not 

allow the user to alter physical parameters within the model other than the process inputs and outputs. 

This may result in the re-identification of a new empirical model while considering that new 

disturbance/uncertain parameter as an input. Nevertheless, the computational costs of using empirical 

models are relatively low when compared to the mechanistic process models. Thus, the 

implementation of empirical models in the present method may become computationally attractive to 

tackle large-scale nonlinear systems such as chemical plants. 

 

5.2 CASE STUDY: Wastewater treatment industrial plant 

 

To demonstrate the implementation of the present methodology, an actual industrial wastewater plant 

located in Manresa, Spain, has been used as a case study in this work. The real wastewater plant 

consists of six aeration tanks and two settlers as described by Gutierrez & Vega [152]. To simplify 

the analysis, the present study only considers the most significant units of that system, i.e., an aeration 

tank (bioreactor) and a clarifier/settler (see Figure 5.3).  

 

 

Figure 5.3 Schematic figure of the wastewater plant configuration considered for the case study. 
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The goal of the process is to remove biodegradable pollutants (substrate) from the wastewater that is 

fed to the aeration tank with the help of microbial population (biomass). The aeration turbine in the 

bioreactor supplies the necessary level of oxygen needed by the biomass to feed on the substrate, 

growing in size and forming an activated sludge. The water effluent is passed through a clarifier that 

is used to separate the activated sludge, which settles at the bottom of the tank by sedimentation, from 

treated water which is obtained at the top of that tank. The activated sludge is recycled back to the 

bioreactor to remove more substrate entering through the feed wastewater. As shown in Figure 5.3, a 

purge stream is needed to maintain the microbial biomass within specific limits inside the aeration 

tank. The mathematical model representing the rate of change of biomass and consumption of 

substrate inside the bioreactor is as follows [152]: 
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where   and s are the biomass and organic substrate concentrations (mg/L) inside the bioreactor, 

respectively. Similarly, ir  and irs  are the biomass and organic substrate concentrations (mg/L) 

entering the bioreactor, respectively. The volume of the reactor is denoted by Vb (m
3
) whereas w 

(m
3
/h) represents the bioreactor’s outlet flow. Concentration gradients exist along the height of the 

clarifier. In this analysis, this gradient is approximated by breaking the clarifier into distinct layers 

that have different concentrations. The concentration within each layer is uniform. In this analysis, 

three layers are considered and are modeled as follows [152]:  
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ri www            (5.25) 

where d , b  and r  are the biomass concentrations (mg/l) at the different layers in the clarifier 

unit, i.e., surface, intermediate and bottom, respectively. The cross-sectional area of the settler is 

denoted by Acl (m
2
) whereas ld, lb and lr represent the height (depth) of the first, the second and the 

bottom layer in the settler, respectively. The terms vs(d), vs(b) and vs(r) refer to the rate of settling for 

the activated sludge, which varies from layer to layer depending on the concentration of biomass. 

Dissolved oxygen, originally supplied to the system by the aeration turbines, is denoted by co, 

whereas fk represents the aeration turbine speed. The rest of the model parameters shown in (5.16)-

(5.25) are described in Table 5.1. 

 

Table 5.1 Description of the model parameters in Equations (5.16)-(5.25) 

Symbol Value (unit) Description 

  0.1824 (h
-1

) specific growth rate 

y  0.5948 fraction of converted substrate to biomass 

ks 300 (h
-1

) saturation constant 

kd 5.0000E-05 (h
-1

)  biomass death rate 

kc 1.3333E-04 (h
-1

) specific cellular activity 

kla 0.7 (h
-1

) oxygen transfer into the water constant 

k01 1.0000E-04 (h
-1

) oxygen demand constant 

cs 8.0 (h
-1

) oxygen specific saturation 

fkd 0.2 fraction of dead biomass (to substrate) 

 

The control objectives for this case study are: 1) maintain the level of organic substrate leaving the 

system s  below a certain maximum allowable value, 2) keep the biomass concentration   in the 
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bioreactor, and 3) maintain the dissolved oxygen concentration oc , at pre-specified targets. The first 

objective is needed to meet environmental regulations regarding the quality of treated water ( 1w ) 

discharged to the effluents, i.e., with less organic substrates (pollutants). The biomass concentration is 

desired to be at a certain target because higher concentrations may lead to activated sludge to settle to 

the bottom of the clarifier, which may lead to additional operational costs needed to remove the 

sludge from the tank. The third objective of maintaining an oxygen concentration inside the 

bioreactor is important to maintain the biomass organisms alive, as they are needed to remove the 

organic substrate from the feed (control objective 1). These control goals need to be achieved in the 

presence of possible disturbances in the feed flow rate ( iw ), inlet substrate concentration ( is ) and 

inlet biomass concentration ( i ). As shown in Figure 5.3, the available manipulated variables for the 

present system are the recycle flow rate ( 2w ), purge flow rate ( pw ) and the aeration turbine speed 

)( fk .  

 

The stochastic-based simultaneous design and control methodology presented in the previous section 

has been implemented for the water treatment process described above. Process disturbances ( iw , is  

and i ) were assumed to be stochastic and follow the description shown in (5.9). A linear constrained 

MPC algorithm such as that shown in (5.6) is used in this case study as the multivariable control 

scheme. The goal of this analysis is to obtain the optimal design parameters for this process and the 

MPC input and output weights that will minimize the plant’s economics, while maintaining the 

dynamic operability of the process within its corresponding limits (up until a certain user-defined 

probability limit) in the presence of stochastic time-varying disturbances that follow a particular 

(user-defined) probability distribution. The simultaneous design and control optimization framework 

shown in (5.15) was applied to this process. The design variables selected for this case study are 

],,,,[ 2 clbpWW AVfkwwκ  whereas the MPC tuning weights are ],,,,,[ 2 cosfkwpwWW  Λ . 

In the design variables ( WWκ ), fkww p and,2  represent the nominal (steady-state) operating 

conditions for the corresponding manipulated variables. In the tuning weights vector WWΛ , 

fkwpw and  ,2  are the weights on the corresponding manipulated variables whereas s , and 
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co  are the weights on the controlled variables, respectively. The cost function defined for the 

present case study is as follows: 

WWWWWWWW DCOCCC Φ        (5.26) 

The annualized capital costs are calculated as follows: 

)2300 + (3500 0.16 = CC clbWW AV         (5.27) 

That is, the capital cost depends only on the steady-state design variables: volume of the bioreactor 

(Vb) and cross-sectional area (Acl) of the clarifier. The operating costs for this process are those 

associated with the electricity used by the aeration turbines in the bioreactor and pumps for the purge 

flow, i.e., 

) + (870 = OC **

pwfkWW          (5.28) 

where stochastic-based worst-case variability (SB-WCV) indexes for the aeration turbines and the 

pumps for the purge flow are used here instead of the steady-state operating conditions ( fk  and pw ). 

This has been done to account for the variability of these process variables due to changes in the 

process disturbances. With regards to the dynamic performance cost, an economic value has to be 

assigned to those process variables that measures the system’s dynamic performance or to those 

variables that has economic significance when its variability exceeds pre-specified limits. In this case 

study, the deviation of both the organic substrate and biomass concentrations from their target values 

in the bioreactor represent economic losses. This is because high substrate concentrations in the 

discharge effluent can have environmental penalty costs, whereas removing settled excess activated 

sludge in the tank due to high biomass concentrations may lead to additional operational costs. 

Therefore, the dynamic performance cost for this process is defined as follows: 

)(10  + )(10 = DC *3*5   -s-sWW         (5.29)  

where s  and   are the nominal steady-state values of the organic substrate and biomass 

concentrations respectively, and the SB-WCV indexes, 
*

s  and 
*
 , are used to measure the 

variability in the substrate and the biomass concentrations due to fluctuations in the process 

disturbances, respectively. Note that a higher dynamic performance cost is assigned to the variability 
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in organic substrate (10
5
 ($/yr)/(mg/L)) because of the environmental significance and restriction in 

having high concentrations of substrate in the treated water discharged to the effluents. Variability in 

biomass concentrations incurs a dynamic performance cost (10
3
 ($/yr)/(mg/L)) because large biomass 

concentrations requires additional pump power to remove the activated sludge accumulated at the 

bottom of the clarifier. Moreover, the present case study considers the following dynamic path 

feasibility constraints: 
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The first two constraints represent the restrictions on the ratio between purge-to-recycled flow rates 

and in the purge age in the decanter, respectively. The last constraint in (5.30) refers to the maximum 

allowable organic substrate concentration in the treated water that leaves the clarifier. These 

inequality constraints need to be satisfied during the entire operation of the plant (transient and 

steady-state) up to a certain probability limit. Therefore, the inequality constraints (5.30) can be 

reformulated using the proposed SB-WCV indexes with a defined probability level to test the 

compliance of these constraints with their corresponding limits, i.e., 
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where c1 and c2 denote the ratio between purge-to-recycled flow rates and the purge age in the 

decanter, respectively. The ‘max’ and ‘min’ notations in the subscripts of (5.31) indicate that the SB-

WCV indexes are calculated with respect to the worst-case variability in the positive and in the 
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negative direction, respectively. Note that each SB-WCV (
*

z ) is evaluated around a nominal 

operating point defined by the process decision variables vector WWκ  and MPC controller tuning 

parameters WWΛ , respectively. Based on the above, the optimization framework described in (5.15) 

can be adapted for the present case study as follows: 
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This simultaneous design and control formulation was coded and solved using the Genetic Algorithm 

(GA) method in MATLAB for the different scenarios considered in this work. At each optimization 

iteration, a linear discrete state-space model (as shown in (5.6)) obtained from J  and evaluated 

around the nominal conditions defined by WWκ  is obtained and used by the MPC to estimate the 

control actions Δu needed to maintain the system within limits in the presence of stochastic 

fluctuations in the disturbances. The linear MPC model was obtained using Taylor Series expansion 

methods; however conventional systems identification methods can also be implemented in the 

present scheme to obtain a linear process model. To calculate the SB-WCV indexes (
*

z ) needed to 

evaluate the constraints and the terms in the cost function, the nonlinear closed-loop process model 

closedJ , which consists of J  (Equations (5.16)-(5.25)) engaged with the MPC algorithm (5.6), is 

simulated with N realizations in the disturbances ( iw , is  and i ), to obtain N dynamic responses for 

each process constraint formulated in (5.31), as well as for the input ( fkwp , ) and the output 

variables ( s, ) that are used to calculate the operational and dynamic performance costs. From each 

response to a single disturbance realization, the worst-case deviation, which may be the highest or 

lowest value according to the formulations presented above, is recorded to yield a set of N worst-case 

values. For example, for the minimum purge-to-recycled flow ratio constraint, a set of N lowest 

values obtained from the system’s responses to the disturbances was obtained (
N

c
 1

)1min(ψ ). This 
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set is fit to a lognormal distribution function ( )( )1min(cψg ). The SB-WCV index (
*

)1min(c ) is 

obtained by evaluating )( )1min(cψg  at the given probability level assigned by the user for that 

particular constraint ( )1min(Pb c ). The rest of SB-WCV indexes are estimated in a similar fashion and 

then used to evaluate either the process constraints or some of the economic costs in the objective 

function shown in problem (5.32). In addition, the nominal stability criterion is implemented on 

closedJ  at each optimization step to ensure local stability. The aim of optimization problem (5.32) is to 

select the design variables ( WWκ ) and MPC controller tuning ( WWΛ ) that will yield a feasible 

solution, with the least (minimum) plant costs. Next, a few scenarios tested with the proposed 

approach to obtain the optimal design and control for the wastewater plant case study are presented.  

 

5.2.1 Scenario A: Disturbance in the inlet flow rate (wi ) 

 

In the first scenario, the inlet flow rate (wi) is assumed to be a stochastic disturbance that follows a 

Gaussian (normal) distribution with standard deviation 70wi m
3
/h and mean (nominal) value of 

1492iw  m
3
/h. The other two disturbances were assumed to remain constant and equal to their 

corresponding nominal (steady-state) operating values ( 366is  mg/l, 80i  mg/l). In this 

scenario, each process constraint needs to be satisfied 50% of the time, i.e., Pbh was set to 0.5 for each 

of the process constraints shown in (5.31). Similarly, the SB-WCV indexes for the maximum biomass 

concentration (
*
 ), substrate concentration (

*

s ), turbine speed (
*

fk ), and purge flowrate (
*

pw ), 

which are needed to evaluate the cost function terms in (5.32), will also be evaluated at Pb=0.5. A set 

of 100N disturbance time-dependent realizations that fits the probability description specified wi 

were used to simulate the closed-loop nonlinear process model closedJ  for each set of decision 

variables WWη  selected by the optimization algorithm used to solve problem (5.32). The disturbance 

realizations for qi were generated randomly (at each optimization step) using MC sampling 

techniques. The results obtained from the simulations were used to compute the SB-WCV indexes for 

the process constraints and the process time-dependent process variables that appear in the cost 

function in (5.32) following the procedure explained above. The feasible and stable optimal process 

design and MPC control scheme obtained for this scenario is presented in Table 5.2 (Scenario-A).  
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Table 5.2 Optimal design and control schemes. 

 

Optimal 

sequential 

design 

  wi ~N(1492,70) 

  si=366 mg/L 

i  =80 mg/L 

(Dynamically 

infeasible) 

Scenario-A  

(MPC) 

  wi ~N(1492,70) 

  si=366 mg/L 

i =80 mg/L 

Scenario-B1  

(MPC) 

  wi ~N(1492,70) 

  si ~N(366,20) 

i =80 mg/L 

Scenario-B2  

(PI) 

  wi ~N(1492,70) 

  si ~N(366,20) 

i =80 mg/L 

Scenario-C1  

(MPC) 

  wi ~N(1492,70) 

  si ~N(366,20) 

i =80 mg/L 

Scenario-C2  

(PI) 

  wi ~N(1492,70) 

  si ~N(366,20) 

i =80 mg/L 

Scenario-D 

(MPC) 

 wi ~U(1268,1716) 

  si ~U(312,422) 

i  ~U(68,92) 

Decision Var.        

2w  458.41 1507.00 532.26 804.90 555.82 380.96 1161.90 

pw  13.75 46.64 25.95 35.80 36.59 20.04 39.83 

kf  
0.05 0.87 0.95 0.30 0.98 0.26 0.55 

bV  4458.70 8414.80 8875.40 9109.90 8766.30 11397.49 9700.50 

clA  4445.20 3278.40 3406.50 3309.80 3708.30 4819.49 3503.20 

2w  -- 8.94 3.11 2Kcw
=3.20 3.61 2Kcw

=4.86 0.70 

wp  -- 9.32 9.06 wpKc =0.20 9.06 wpKc =0.43 3.63 

fk  -- 0.48 1.66 cfkKc  = 0.80 1.66 cfkKc = 1.29 2.10 

s  -- 3.178 1.85 
2Iτ w

= 4.90 1.85 
2Iτ w

= 7.39 1.07 

  -- 0.330 11.57 
pwIτ =21.50 12.95 

pwIτ = 3.04 0.10 

co  -- 0.020 0.32 
cfkIτ = 1.20 1.32 

cfkIτ = 1.93 2.99 

Costs ($/yr)        

CCWW 4.13E+06 5.92E+06 6.22E+06 6.32E+06 6.27E+06 8.16E+06 6.72E+06 

OCWW 1.21E+04 4.25E+04 5.527E+04 3.27E+04 6.26E+04 2.116E+04 3.555E+04 

DCWW -- 5.79E+05 1.21E+06 1.26E+06 1.177E+06 9.40E+05 1.59E+06 

Total costs 4.14E+06 6.54E+06 7.49E+06 7.61E+06 7.51E+06 9.12E+06 8.34E+06 

 

A bioreactor volume of 8414.8 m
3
 and a clarifier cross-sectional area of 3278.4 m

2
 were selected as 

the optimal design that complies with the process constraints considered for this scenario in 

approximately 50% of the time, i.e. Pbh=0.5. To validate this result, 1,000 disturbance realizations in 

the inlet flow rate (wi ~N(1492,70)) were generated and used to simulate the nonlinear process model 

(Equations (5.16)-(5.25)) and the MPC algorithm (5.6) using the process design parameters and MPC 

weights obtained for this scenario (Table 5.2, Scenario-A). Figure 5.4 displays a frequency histogram 

of the worst-case realizations identified for the maximum substrate concentration (s), which was the 
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only active constraint identified for the present process design and MPC-based control configuration. 

As shown in this Figure, approximately 50% of the time the substrate concentration exceeds the 

constrained limit of 58 mg/L, which agrees with the restriction imposed for that constraint, i.e., 

Pbs=0.5. The rest of the constraints considered for this scenario remained within their corresponding 

operational limits at all times in the presence of changes in the feed flow rate, wi.  

 

 

Figure 5.4 Frequency histogram of the SB-WCV distribution of organic substrate concentration 

(s), Pb=0.5. Dashed line represents the maximum constraint limit. 

 

In order to compare the results obtained for the present scenario, a sequential optimal steady-state 

process design followed by the optimal tuning of an MPC controller was considered. In this case, the 

steady-state design optimization function to be minimized is the addition of the plant’s capital costs 

(CCWW) and the plant’s operating costs (OCWW) evaluated at steady-state. As shown in Table 5.2 

(Optimal sequential design), the steady-state design specifies a bioreactor volume and a clarifier 

cross-sectional area that are 50% and 35% smaller than those obtained by the present scenario (Table 

5.2, Scenario-A). To perform the controllability analysis, problem (5.32) was solved under the 

)( *

max s
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assumption that the process design parameters obtained from the optimal steady-state design (κWW) 

remained fixed in the calculations, i.e., only the weights of the MPC (ΛWW) were considered as 

decision variables in problem (5.32). The implementation of such optimal MPC tuning strategy was 

not able to return a feasible solution. The volume of the bioreactor has an inverse relationship with 

the substrate concentration; larger volume means more substrate is removed in the bioreactor and 

hence lower substrate effluent. The optimal steady-state design provided a small bioreactor volume 

since it did not take into account the variability of the process inputs (disturbances). Therefore, it was 

not possible for the MPC control strategy to maintain the effluent substrate concentration below its 

feasible limit (58 mg/L) in the presence of stochastic time-dependent realizations in the disturbances, 

giving an infeasible process design. The costs reported in Table 5.2 for the sequential design method 

correspond to those obtained from the optimal steady-state design formulation. 

 

The analysis performed on this case scenario shows that the sequential design approach returned a 

process design and control configuration that is 30% less expensive than that specified by the present 

methodology. However, the sequential design is not dynamically feasible since it does not satisfy the 

process constraints in the presence of changes in the inlet flow rate wi as described above. On the 

other hand, the simultaneous design and control methodology proposed in this work specified a 

plant’s design that remained feasible (up to a 50% chance of compliance) and stable in the presence 

of sudden (stochastic) fluctuations in wi. Note that fewer violations in the process constraints can be 

obtained by setting higher values to the probability of occurrence of the worst-case variability (Pb). 

The economic costs shown in Table 5.2 for the present scenario indicate that the capital cost (CC) 

dominates the plant economics ($5.92E+06), followed by the dynamic performance costs (DC), 

which aims to keep the substrate concentration below the specified maximum ($5.79E+05), whereas 

the operational costs (OC) are much lower than both capital and dynamic performance costs having 

no significant effect on the plant’s costs ($4.25E+04). The larger bioreactor volume of Scenario A 

means that it can accommodate more biomass in the system, which is directly used to remove the 

organic substrates in the inlet stream. This means that the increase in the bioreactor’s size provides 

better control on the substrate in the effluent, which is an active constraint and a key process variable 

that determines the performance of this process. 
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5.2.2 Scenario B: Simultaneous disturbance in the inlet’s flow rate (wi) and substrate 

concentration (si) 

 

This scenario considers the simultaneous occurrence of sudden fluctuations in the inlet substrate 

concentration si and the inlet flowrate wi. The disturbance description for the inlet flow rate is the 

same used in Scenario A, i.e., wi ~N(1492,70), whereas the realizations in si are assumed to follow a 

normal probability distribution with mean 366is  mg/L and standard deviation 20si m
3
/h, 

i.e., si ~N(366,20). The inlet biomass concentration is assumed constant for this scenario at 80i  

mg/L. In this case, the minimum purge-to-recycled flow ratio and maximum substrate concentration (

*

)1min(c  and 
*

max s ) were both assigned to a higher probability limit (Pb=0.9973). This means that 

optimal design and MPC-based control scheme specified by the present scenario need to comply with 

those two constraints approximately 99.73% of the time. The probability levels for the rest of the 

constraints as well as the time-dependent variables that appear in the cost function remained at 

Pb=0.5 as in the previous scenario. In order to compare different control strategies while using the 

present stochastic-based methodology, this scenario was solved using the MPC control scheme 

proposed in this work and a conventional multi-loop control structure composed of Proportional-

Integral (PI) controllers. The wastewater treatment plant process involves removal of substrate in the 

inlet using biomass in the bioreactor. The outlet substrate concentration from the clarifier is a critical 

controlled variable that is required to remain below a certain specification. Also, the biomass 

concentration in the bioreactor is required to be maintained at a specific target. The transient 

behaviour of the biomass is sensitive to changes in the inlet stream and therefore will determine the 

relative performances of PI and MPC based on the degree of variability of this variable from its 

desired target and its degree of interactions with the other key process variables such as the substrate 

concentration at the outlet stream. 

 

The results obtained with the MPC-based control scheme are shown in Table 5.2 (Scenario-B1). As 

shown in this Table, a larger reactor’s volume (8875.4 m
3
) and clarifier’s area (3406.5 m

2
) than that 

obtained for Scenario A were specified because of the additional disturbance considered in the 

present scenario. From an economic perspective, the additional disturbance increased the capitals 

costs by about 5% due to increased size of equipment (CC=$6.22E06), almost doubled the dynamic 

performance costs (DC=$1.21E06), and increased the operational costs by almost 30% 
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(OC=$5.53E04). The increase in the dynamic performance and operational costs are due to increased 

variability in the process outputs and in the manipulated variables used by the MPC scheme to 

maintain the system on target in the presence of simultaneous fluctuations in wi and si, respectively. 

Figure 5.5 displays the frequency histogram of the worst-case realizations for the two active 

constraints (
*

)1min(c  and 
*

max s ), when the design was simulated for validation using the process 

design parameters and the MPC weights shown in Table 5.2 for this scenario (Scenario-B1). Note that 

the constraints comply with the predefined probability levels of 99.73% assigned to these constraints.  

 

 

Figure 5.5 Frequency histograms of the SB-WCV distribution for (a) maximum organic 

substrate concentration and (b) minimum purge-to-recycled flow ratio, with Pr=0.9973. Dashed lines 

represent the maximum for (a) and minimum for (b) constraint limits. 

 

Next, the MPC algorithm shown in (5.6) and that is used in problem (5.32) was replaced by a multi-

loop control scheme composed of three PI control algorithms. In this case, the PI control algorithms 

will aim to control  , s and co independently by making changes in w2, wp and co, respectively. The 

control pairing is obtained from the RGA matrix shown in (5.33), which was computed around the 

steady-state optimal design obtained in the previous scenario. From the RGA matrix, it can be 

observed that the oxygen concentration controlled by aeration turbines’ speed is decoupled from any 

interactions. However, the relatively large value of RGA for the other two control pairings suggests 

the presence of dynamic interactions between these control loops.  

(a) 

)( *
max s )( *

)1min(c

(b) 
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The optimal design obtained from this control strategy is presented in Table 5.2 (Scenario-B2). Note 

that the controller tuning parameters for this case are the PI controller gains and integral time 

constants, i.e., Kc, τI. The results show that a multi-loop PI control scheme required a larger 

bioreactor volume (9109.9 m
3
) with a slightly smaller clarifier area (3309.8 m

2
) than that obtained 

using multivariable MPC-based control scheme (Scenario-B1). The larger reactor design specified by 

the multi-loop control scheme increased the capital costs by about 2% ($6.32E06) with respect to that 

obtained with the MPC-based control scheme. Although the operational cost is about 40% less for the 

case of the multi-loop PI control strategy to that obtained by the MPC-based control scheme, this 

allows the MPC scheme to reduce the variability in the key process outputs, i.e., biomass and 

substrate concentration, and therefore reduce the capital costs and the process dynamic performance 

costs, which are two orders of magnitude more significant than the operational costs. Figure 5.6 

shows the dynamic responses of biomass concentration when the system is evaluated with 1,000 

disturbance realizations, for the designs obtained using both the MPC and the multi-loop PI control 

strategies. Similarly, Table 5.3 shows the sum of squared errors of biomass and substrate 

concentrations with respect to their nominal steady-state values for both the MPC and the PI control 

schemes. As shown in that Table, higher sum of squared error values (especially for the biomass 

concentration) were obtained for the PI control scheme when compared to the MPC-based control 

strategy. This can also be observed by comparing Figures 5.6 a) and b). This superior performance 

observed for the MPC in controlling the key process variables are reflected in the 4% decrease in the 

MPC dynamic performance costs when compared to that obtained for the PI scenario (Table 5.2, 

Scenario-B2). Since the process economics in this case study are dominated by the capital and 

dynamic performance costs, the proposed MPC control-strategy produce a slightly more 

economically attractive optimal design, i.e., about 1.6% lower than the total costs incurred by the PI 

control design. 
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Figure 5.6 Dynamic response of the biomass concentration (a) Multi-loop PI control scheme, 

and (b) MPC control-strategy.  

 

(a) 

(b) 
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Table 5.3 Sum of squared errors for the deviation of controlled variables from their steady-state for 

both biomass and substrate concentrations, between PI and MPC control systems. 

Controlled 

Variable 

Sum of squared errors (x10
3
) 

Scenario B1  

(MPC) 

Scenario B2 

(PI) 

Scenario C1  

(MPC) 

Scenario C2 

(PI) 

 

Biomass 28.653 111.88 26.466 16.035 

Substrate 6.7253 7.504 7.1312 4.1819 

Oxygen 0.003307 0.000154 0.000717 9.47E-05 

 

5.2.3 Scenario C: Constraints on the biomass concentration 

 

Biomass concentration in the bioreactor, which is a key controlled variable in the present system, is 

sometimes desired to be maintained within certain upper and lower limits. High biomass 

concentrations may lead to sedimentation at the bottom of the clarifier tank which will increase 

operational costs, whereas low biomass concentrations may not be enough to remove the required 

amount of organic substrate causing an economic penalty to the water treatment plant’s owner. In this 

scenario, biomass concentration is targeted at 2384  mg/L with upper and lower limits 

2410U  mg/L and 2360L  mg/L, respectively. Using the same disturbance specification as in 

Scenario B, optimal designs using both an MPC scheme (Scenario C1) and a multi-loop PI control 

strategy (Scenario C2) were calculated using the present simultaneous design and control 

methodology (Table 5.2). For the MPC scenario (Scenario-C1), these upper and lower limits were 

explicitly incorporated into the MPC algorithm in (5.6) as constraints on the controlled variables. For 

the multi-loop PI case, it is not possible to include these additional limits into the control algorithm. 

Nonetheless, these limits have been added into the main optimization framework (5.32) as process 

constraints for both cases. As shown in Figure 5.7, the optimal design obtained for Scenario C1 

maintained the biomass concentration within its limits in the presence of changes in the inlet flow rate 

and the substrate inlet concentration. Table 5.2 shows that the capital and operating costs for Scenario 

C1 are 1% and 13% higher than those obtained for the case of no constraints on the biomass 

concentration (Table 5.2, Scenario-B1). On the other hand, in order for the multi-loop PI control 
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scheme to meet the biomass constraint, a bioreactor volume (11,397.5 m
3
) and a clarifier area (4819.5 

m
2
) that are approximately 30% larger than that specified by Scenario C1 are required to 

accommodate the disturbances affecting the system. The total plant cost is more than 20% higher 

when using PI controllers as opposed to when implementing an advanced MPC control-strategy. 

Table 5.3 shows that for this scenario, the PI-based design (Scenario C2) provide slightly better 

control of the output variables with lower sum of squared errors than the MPC-based design (Scenario 

C1). However, this improvement in performance is possible at the expense of the 30% larger sized 

reactor volume and clarifier’s area specified by the multi-loop PI control scheme, which caused the 

total costs to be 20% more than the MPC-based design. The results from Scenarios B and C show the 

improvements of the current methodology and the potential benefits when incorporating an MPC-

based control scheme within a simultaneous design and control methodology.  

 

 

Figure 5.7 Biomass concentration response to disturbances for Scenario C1 with MPC-based 

control. Dashed lines represent the maximum and minimum constraint limits. 
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5.2.4 Scenario D: Multiple disturbances with a uniform distribution 

 

This scenario considers the simultaneous occurrence of the three key input variables for this process, 

i.e., wi,  i, si. Also, each of these disturbances was assumed to follow a uniform distribution with 

specific lower and upper limits, i.e., 

U(68,92)~

U(312,422)~

6)U(1268,171~

 

 s

 w

i

i

i



         (5.34) 

Using the proposed simultaneous design and control approach, an optimal and feasible design is 

obtained that can accommodate the above disturbances into the system while maintaining the 

prescribed constraints (Table 5.2, Scenario-D). A high probability level (Pr=0.9973) was assigned to 

the two active constraints obtained from the previous scenarios (
*

)1min(c  and 
*

max s ) while the rest of 

the constraints as well as the dynamic performance measures are kept at Pb=0.5. Owing to the 

description considered for the disturbances, this scenario resulted in a larger plant’s size (Vcl=9700.5 

m
3
, Aa=3503.2 m

2
) than those obtained from the previous MPC-based scenario designs. The 

bioreactor volume specified for this scenario is approximately 15% and 9% larger than that obtained 

for Scenario-A and Scenario-B1, respectively. This increase in the plant’s size also increased the 

plant’s capital costs by approximately 12% and 8% with respect to the capital costs specified by 

Scenario-A and Scenario-B1, respectively. 

 

5.2.5 Computational costs 

 

In addition to the economic and operational analyses described above, the computational costs 

associated with the present simultaneous design and control methodology are discussed next. In the 

present approach, the calculation of the SB-WCV indexes (
*

z ) represent the highest computational 

burden since it involves the simulation of the nonlinear closed-loop process model for N disturbance 

realizations. Besides the computational cost involved in solving for the nonlinear process models, the 

MPC control actions are obtained from an optimization formulation that needs to be executed at each 

time interval. Nevertheless, the dynamic responses of the process constraints or process variables to 

the N disturbance realizations can be performed simultaneously in a parallel fashion. As shown in 
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Figure 5.2, this parallelization structure in carrying out the SB-WCV calculations reduces the 

computational costs associated with the present method. To show the benefits of implementing a 

parallelization technique, a study on the computational time required to perform a single evaluation of 

the proposed simultaneous design and control problem (5.32) for the Scenario D was conducted using 

a different number of disturbance realizations N, as well as different number of processor cores Nc. 

This study was performed on an Intel Core i7 3770 CPU @3.4GHz (8GB in RAM) with 4 physical 

cores and made use of the Parallel Computing Toolbox available in MATLAB
TM

. Figure 5.8 presents 

the CPU times obtained from running one function evaluation of Scenario D’s optimization problem 

using the proposed stochastic-based simultaneous design and control methodology. 

 

 

Figure 5.8 Computational times needed for a single function evaluation of problem (32) using 

different no. of processors. 

 

This Figure shows that the CPU time is directly proportional to the number of disturbance realizations 

p used in the analysis, e.g. for Nc =1, if N increases by an order of magnitude from 100 to 1,000, then 

the CPU time also increases by approximately an order of magnitude, i.e. from 189 to 1,866 sec. The 

effect of parallelization is represented in Figure 5.8 by the use of different number of processor cores, 

from 1 (serial calculation) through 4. The trend shown in the Figure is that computational times are 
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reduced as the number of cores increases because the p simulations that need be executed are 

simultaneously performed in parallel. The current computational study requires the calculation of 

eight SB-WCV indexes at each optimization step (for constraints and dynamic performance 

measures).  

 

A single function evaluation takes at most 3 minutes when using N=100 (1 core) and goes down to 59 

seconds when engaging four processing cores for a total reduction of about 70% in CPU time. The 

same reduction in computational time is observed when p was set to 1000 and 10,000, respectively. 

This significant improvement in the efficiency of the algorithm while using computer parallelization 

techniques allowed for the wastewater treatment plant problem to be solved in about 9 hours using 10 

multiple initial conditions. While this cost may be significant, this calculation is performed offline.  

A significant decrease in CPU time is observed when using 1 to 2 cores (almost 50% reduction). 

Figure 5.8 also shows an improvement of about 30% and 20% when going up from 2 to 3 cores and 

from 3 to 4 cores, respectively. A linear decrease in the CPU time when increasing the number of 

cores will not be observed because adding more cores also increases communication overheads and 

memory allocation requirements between the cores. Hence, an exponential decay in the CPU time is 

typically observed while using computer parallelization techniques [153,154]. However, the 

improvements observed while using the present case study are significant and shows the potential of 

the present methodology to address the optimal design of large-scale systems. 

 

Increasing the number of differential equations in the problem will increase the computational costs 

of the proposed methodology. The actual increase in CPU time will depend on the specific problem to 

be considered, e.g., the size of the system in terms of the number of inputs, outputs and process 

constraints, the type for process models to be used (i.e. mechanistic or empirical models), the level of 

nonlinearity of the proposed process model, the degree of stiffness of the differential process model 

equations and the control strategy to be implemented in the system. These factors need to be 

considered for scalability. Nonetheless, the present analysis provides a base case of the wastewater 

treatment plant as a reference to estimate the computational costs that may be required to address the 

simultaneous design and control of large-scale systems while using the present methodology. 
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5.3 Chapter summary 

 

This paper presented a stochastic-based simultaneous design and MPC-based control methodology 

that considers random stochastic disturbances in the analysis. Flexibility in the design stage is offered 

to choose between conservative expensive designs that ensure process feasibility at all times, and 

attractive economical designs that satisfies process constraints at a given user-defined probability 

limit. The novelties of the proposed method include the use of a multivariable MPC control scheme in 

the analysis and the computation of a stochastic-based worst-case variability (SB-WCV) index, which 

is the key calculation performed in this method and is used to evaluate the process constraints and the 

key time-varying process variables at a given probability of occurrence. The proposed method was 

implemented for the optimal design and control of an actual wastewater treatment industrial plant. 

The designs obtained by the present method satisfied the process constraints up to the user-defined 

probability levels assigned for each constraint. They were also able to maintain dynamic feasibility 

when the system was subject to single and multiple disturbances. A sequential steady-state design 

followed by optimal MPC tuning was performed for the present case study and shown to exhibit 

dynamic infeasibility. A comparison between the use of MPC or multi-loop PI control strategies 

embedded in the design and control approach has also been studied and presented in this work. 
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Chapter 6 

Conclusions and Recommendations 

 

The importance of optimal process design under uncertainty arises from the fact that they provide 

more reliable designs that ensure feasible operation of the process even under the presence of 

uncertain variability in the inputs. In order to apply systematic methods to design large-scale 

nonlinear chemical systems, there is a need to develop computationally efficient approaches for 

optimal design under uncertainty. A summary of the findings concluded from this work is presented 

in Section 6.1; recommendations for future work in this field are discussed in Section 6.2. 

 

6.1 Conclusions 

 

A practical ranking-based novel methodology to address the optimal design and operation of large-

scale processes under uncertainty has been developed. The key idea in this method is to approximate 

the process constraint functions and process outputs using Power Series Expansions (PSE)-based 

functions. The ease of implementation of this novel method has been demonstrated through several 

case studies of different sizes: (i) reactor-heat exchanger system, (ii) Tennessee Eastman process, and 

(iii) a post-combustion CO2 capture plant. The accuracy of the results obtained when implementing 

the proposed PSE-based approach can be improved by using higher expansion orders, and yet was 

shown to be computationally more efficient than traditional methods such as stochastic programming. 

The computational benefit of the proposed approach has been demonstrated when applied to address 

the design of large-scale systems such as the Tennessee Eastman and a post-combustion CO2 capture 

plant. Solving those large-scale problems using the traditional stochastic programming approach 

would require the simulation of the actual plant model many times to obtain a probability distribution 

of the output process constraints. This task needs prohibitive computational times. The ranking-based 

feature of the approach developed in this work gives the user the flexibility to decide between high or 

low probabilities of satisfaction for the process constraints. Selection of low probabilities of 

satisfaction means that lower sized equipment design may be specified, which is more economically 

attractive at the expense of more violations in those less critical constraints. Thus the proposed 
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ranking-based method offers the option between conservative designs, which satisfies constraints 

most of the time, and economically attractive designs that allows for few violations in the constraints.   

 

A study that evaluates the effect of process uncertainty on the optimal design of a post-combustion 

CO2 capture plant using the novel ranking-based method developed in this work has been presented. 

The search for the optimal plant’s design is carried out by searching for the sizes of the key process 

units included in the CO2 capture plant (e.g., packed column’s height and diameters, heat exchanger 

and condenser areas) that minimizes the process economics in the presence of uncertainty in the flue 

gas stream conditions. Case studies involving a single uncertain variable and all three (multiple) 

uncertain variables were studied. The optimal designs obtained under uncertainty yielded in general 

larger sized plants and needed more utility (i.e., reboiler duty). As a result, these designs were more 

expensive than the actual plant’s design and the design obtained from optimization (without 

considering uncertainty) with higher operational and capital costs. However, while the present 

method yielded larger and thus more expensive designs, it ensures that the environmental and 

operational constraints are satisfied according to the user-defined probability of satisfaction, whereas 

the original plant base-case design did not meet the CO2 removal rate target most of the time when 

operating under uncertainty. Therefore, the designs presented in this study will potentially lead to 

economic savings since the plant’s CO2 removal rate may not need to be reduced, or the plant itself 

may not need to be shut down, when changes in the flue gas stream’s conditions may occur. Instead, 

the proposed designs will ensure that the plant can continuously operate at its design specifications 

since it can accommodate the potential changes that may occur in the fossil-fired power plant’s 

operation due to varying changes in the electricity demands. 

 

A stochastic-based simultaneous design and control methodology for dynamic chemical processes 

under uncertainty was developed. The key idea is to determine the dynamic variability of the system 

that will be accounted for in the process design using a stochastic-based worst-case variability (SB- 

WCV) index. The novelties of the proposed method include the use of a multivariable advanced 

Model Predictive Control (MPC) scheme in the analysis and the computation of a SB-WCV index, 

which is the key calculation used to evaluate the process constraints and the key time-varying process 

variables at a given probability of occurrence. A case study of an actual wastewater treatment 

industrial plant was used to evaluate the performance of the present methodology. A comparison 

between the use of MPC and conventional multi-loop PI control strategies embedded in the design 
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and control approach was also considered. The results have shown that the present MPC-based 

simultaneous design and control approach provided more economical designs owing to its superior 

control on the key process variables and thus handled the process constraints better than the multi-

loop PI control-base strategy. A study on the computational costs of the simultaneous design and 

control methodology shows that the present approach can be considered for the optimal design of 

large-scale systems if multiple cores are available for simulation. Therefore, the present stochastic-

based methodology represents a practical approach to address the integration of design and control 

while using advanced model-based control strategies such as Model Predictive Control. 

 

6.2 Recommendations 

 

The research presented in this work can be extended further to increase its contribution to the field of 

optimal process design under uncertainty. Some of the recommendations for the way forward of this 

research are discussed below. 

 

 The ranking-based method developed in this work for optimal process design under uncertainty 

has proved to be computationally attractive even when dealing with relatively large chemical 

processes such as the Tennessee Eastman or a post-combustion CO2 capture plant. The key 

benefit of the approach was the employment of Power Series Expansion (PSE) functions to 

replace the actual nonlinear process models with appropriate selection of the PSE’s expansion 

order. Although this work has produced considerably accurate and validated optimal solutions in 

reasonable computational times, both the Tennessee Eastman and the CO2 capture plant 

considered the simultaneous occurrence of up to three uncertain variables (or parameters). The 

problem of plant-wide process design involving many uncertainties (>10) has not been widely 

studied. Furthermore, the analysis presented in this work did not consider any integer decisions 

such as selecting the number of stages in a distillation column, or deciding between the 

installation of one large heat exchanger as opposed to employing two in series. These structural 

decisions can add the process synthesis aspect to the optimal design formulation. Thus, to further 

test the applicability of the proposed approach, a study on plant-wide design of a process plant 

involving multiple uncertain parameters with process synthesis decisions is recommended. The 

challenges of the proposed method in dealing with that many uncertain variables (>10) are in the 

computational burden of computing the sensitivity terms with respect to each uncertain variable. 
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More terms will appear in the PSE expression as the expansion order is increased to capture the 

higher nonlinearity. The development of more efficient ways of calculating the sensitivity terms 

in the PSE expression, such as the use of parallel computing, may need to be employed when 

dealing with such problems. 

 

 The PSE-based method developed in this work was applied to perform optimal steady-state 

design processes. The extension of this approach to develop approximation methods to dynamic 

systems is recommended to gain the same computational benefits in the field of simultaneous 

design and control. The sensitivity terms in the PSE expression is constant at steady-state for a 

given equipment design. However, when introducing the time domain in analysis, these 

sensitivity terms will be also a function of time and thus change at each sampling interval. This 

means that instead of computing one sensitivity term for each set of design variables, it will have 

to be computed at different sampling intervals for that specific set of design variables. As a result, 

more sensitivity computations will be required to obtain a dynamic response of the output 

variables and constraint functions. Therefore, the use of other approximation methods may be 

necessary for nonlinear dynamical systems. One such promising approach may be the use of 

Polynomial Chaos Expansions (PCE), which is a method used to determine propagation of 

uncertainty in dynamic systems when there is probabilistic uncertainty in the system inputs. 

 

 The study presented in this work on the effect of uncertainty on the design of a post-combustion 

CO2 capture plant can be extended to consider more design parameters and uncertainties. In this 

work, uncertainty was assumed in only three variables of the input flue gas stream. As uncertainty 

is inherent in every process, the study of its effect on the design and operation of the plant is 

essential to understand the potential benefits of considering uncertainty in the design stage. 

Besides the flue gas stream, uncertainty may be considered in the reboiler duty as this study 

shows that this is a critical variable that affects the CO2 loading of the recycled lean amine 

solvent stream. The effect of other uncertainties that could be studied include the heat transfer 

efficiency parameter of the heating and cooling equipment, condenser duty as well as the kinetic 

parameters that govern the mass transfer process in the absorber unit. Additional process 

equipment such as pumps, compressors can be included in the analysis to study its contribution (if 

any) to mitigate the effect of uncertainties. Thus, a more detailed study of the design of a post-

combustion CO2 capture plant in the presence of uncertainty is recommended for future work. 
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The study presented in this work made use of a steady-state model. Expanding the study to 

address the simultaneous design and control of this plant is recommended as part of the future 

work in this research. 
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Appendix 

 

The contents of Chapter 3 has been published in the AIChE Journal [126]. The author of this thesis is 

the first and main author of this publication and contributed all the technical aspects of the work as 

well as writing the manuscript. Permission to reuse the content of the article has been granted by the 

publisher (see Figure A.1).  

 

The contents of Chapter 5 has been published in the Computers &Chemical Engineering [70]. The 

author of this thesis is the first and main author of this publication and contributed all the technical 

aspects of the work as well as writing the manuscript. Permission to reuse the content of the article 

has been granted by the publisher (see Figure A.2).  

 



 

 125 

 

Figure A.1 License agreement copy from John Wiley and Sons to reuse content of article. 
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Figure A.2 License agreement copy from Elsevier to reuse content of article. 


