
Multistate Models for Biomarker

Processes

by

Narges Nazeri Rad

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2014

c© Narges Nazeri Rad 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Multistate models are widely used for describing life history processes. In studies where

individuals are observed continuously, the transition times between states are known ex-

actly. However, when individuals are observed intermittently, transition times and even

the states visited between successive observations, may be unknown. Irregular intermittent

observation is a special case of intermittent observation where the observation times vary

across individuals.

In the case of intermittent observation, we may not be able to estimate model pa-

rameters precisely. In the first part of the thesis, we review methods of estimation for

Markov models in this situation, and provide a numerical study that shows the loss of

efficiency in estimation for intermittent observation compared to continuous observation in

both progressive and bi-directional multistate models. Then, application to data from the

CANOC, Canadian Observational Cohort study of HIV-positive individuals whose virus

has been suppressed by combination antiretroviral therapy, illustrates the effect of gap

times on estimation efficiency.

Irregular observation is very common in longitudinal data on disease history of individu-

als in observational studies. However, there are considerable challenges in checking models

with these observation schemes, since there is a strong possibility that this irregularity

may be induced by the dependency of inter-visit times on previous process history. As a

result, followup visits from this kind of data are subject to disease state-dependency, which

needs to be taken into account to prevent biased analysis. The second part of this thesis

begins with a review on the estimation of marginal process features such as failure time

distributions and prevalence probabilities in the context of Markov multistate models with

intermittent observations. A method for estimation of these features is developed using In-
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verse Intensity Weights (IIW). This method corrects the estimation bias due to dependent

observation times. Simulation studies illustrate that the proposed method yields estimates

that are close to the true values, while the method that ignores the dependency yields

estimates that differ substantially from the true values. Then, an application involving

viral load dynamics in a group of individuals from the CANOC study is presented.

In practice, we may want to consider models for which transition intensities depend on

internal covariates related to previous process history. There are, however, challenges in

fitting and checking models involving internal covariates, and in making predictions. In the

third part of this thesis, we have developed an algorithm that simulates possible sample

paths of individuals’ processes, and we use it for prediction and model checking.

Finally, there has been recent discussion of model assessment of multistate models.

There remain, however, some difficulties in model assessment with irregular intermittent

observations. The last part of this thesis addresses problems that arise with methods based

on comparison of empirical and model-based estimates. We propose the use of likelihood

ratio tests within the Markov process family, and methods of estimating the power of

these tests are given. We also propose a method for comparing models based on different

outcome spaces in terms of prediction. Finally, the proposed methods are applied to a

group of individuals in the CANOC study.

iv



Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Dr. Jerry

Lawless. It would not have been possible to write this thesis without his motivation,

enthusiasm, patience, encouragement, and continuous support. It was my honor to study

with prof. Lawless and have him as my supervisor.

I also extend sincere thanks to my thesis committee, Dr. Richard J. Cook, Dr. Cecilia

A. Cotton, Dr. Brian D.M. Tom, and Dr. Suzanne L. Tyas for their helpful suggestions

and insightful comments.

I would like to express my gratitude to all faculty members and staff. Especially, I

would like to thank Ms. Mary Lou Dufton for her patience with addressing my different

questions. I am thankful to Ker-Ai Lee for sharing her comments and helping me with the

statistical computing.

My gratitude also goes to Dr. Janet Raboud who kindly provided the CANOC data

and shared her experience on this data.

I would like to thank my friends in Waterloo. Especially, Liqun Diao, Meaghan Knight,

Nathalie Moon, and Atefeh Zarabadi.

Last but not least, I want to thank my loving and caring family. I am truely grateful to

my parents, Soroor Pandidan and Hossein Nazeri Rad for their endless love and support

without which I could not get this far. I am also thankful to my wonderful siblings Niloofar,

Mohammad, and Maryam for their emotional support and encouragement. Finally, words

cannot express my loving gratitude to my husband, Reza Noroozi. This thesis would

not have been possible without his support, unwavering love, remarkable patience, and

constant encouragement during my PhD journey. I consider myself the luckiest in the

v



world for having such a supportive family.

vi



To my caring parents, Soroor and Hossein

To the love of my life, Reza

vii



Table of Contents

List of Tables xix

List of Figures xxiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Event history models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Intensity functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Intensity function with covariates . . . . . . . . . . . . . . . . . . . 6

1.3 Multistate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Semi-Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Some pros and cons of multistate models . . . . . . . . . . . . . . . 9

1.4 Models for biomarker processes . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 A motivating study: CANOC . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fitting and Assessing Multistate Models When Observation is Intermit-

viii



tent 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Fitting multistate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Time dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Multistate models vs empirical estimates . . . . . . . . . . . . . . . . . . . 20

2.3.1 Survival curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Prevalence counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Formal tests of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Model expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Pearson goodness of fit test . . . . . . . . . . . . . . . . . . . . . . 23

3 Effects of Observation Schedule on Efficiency of Estimation 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Estimation and asymptotic covariance matrices . . . . . . . . . . . . . . . 29

3.2.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Asymptotic covariance matrice for panel data . . . . . . . . . . . . 30

3.2.3 Asymptotic covariance matrices for continuous observations . . . . 31

3.3 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Two-state models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Three-state models . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Application to data on viral load dynamics . . . . . . . . . . . . . . . . . . 36

3.4.1 Model fitting and estimation . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Effects of inter-visit times . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Appendix: Tables with Numerical Results on Relative Efficiency . . . . . . 50

ix



4 Estimation of Prevalence Probabilities and Failure Time Distributions 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Estimation of prevalence probabilities . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Multistate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Survival methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Empirical prevalence methods . . . . . . . . . . . . . . . . . . . . . 66

4.3 Process-dependent observation times . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Inverse intensity weight estimation (IIW) . . . . . . . . . . . . . . . 68

4.3.2 Estimation of the observation process intensity . . . . . . . . . . . . 70

4.3.3 Nonparametric estimation of prevalence probabilities and failure time

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Application to CANOC data . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Survival models for the time to first viral rebound . . . . . . . . . . 100

4.4.2 Prevalence estimation and viral rebounds . . . . . . . . . . . . . . . 101

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Model Assessment with Intermittent Observation 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Estimation of prevalence probabilities based on multistate models involving

internal covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Misspecification of the Markov assumption . . . . . . . . . . . . . . . . . . 122

5.4 Likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Prediction and comparison of models . . . . . . . . . . . . . . . . . . . . . 129

5.6 Application to CANOC data . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.1 Multistate models with covariate Blip . . . . . . . . . . . . . . . . . 133

x



5.6.2 KL of msm and Cox models for time to viral rebound . . . . . . . . 136

5.6.3 Prevalence probability estimates . . . . . . . . . . . . . . . . . . . . 137

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Topics for Research 150

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Heterogeneity in Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Models with dependence on history . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Recurrent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 IIW Prevalence Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xi



List of Tables

3.1 Characteristics of cohort members at time of cART initiation. . . . . . . . 39

3.2 Quartiles of length of follow up, number of visits, and gap times (in years)

between visits for the FARV1 and FARV2 groups. . . . . . . . . . . . . . . 39

3.3 Observed transitions for the three-state multi-state model in Figure 3.1-(b)

for the FARV1 group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Observed transitions for the three-state multi-state model in Figure 3.1-(b)

for the FARV2 group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Estimated baseline transition intensities, regression coefficients and their

standard errors (in brackets) for the piecewise constant Markov multistate

model for the FARV1 group. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Estimated baseline transition intensities, regression coefficients and their

standard errors (in brackets) for the piecewise constant Markov multistate

model for the FARV2 group. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Standard errors for estimators of baseline transition intensities, covariate

effects if all gap times were 3 months (∆t = 0.25), or 6 months (∆t = 0.5). 47

3.8 Standard errors for estimators of prevalence probabilities if all gap times

were 3 months (∆t = 0.25), or 6 months (∆t = 0.5) with Z vector 0. . . . . 48

3.9 Prevalence estimates for highest and lowest risk individuals. . . . . . . . . 48

xii



3.10 Ratios of asymptotic standard deviations (3.12) for estimators of transition

intensities and probabilities in two-state Markov models with (1) q12 = q21 =

1 (M1a(i)), (2) q12 = 1, q21 = 4 (M1a(ii)), and (3) q12 = 1, q21 = 0 (M1b).

Values of P11(t) in M1a(i) are P11(1) = 0.568, P11(2) = 0.509, P11(4) =

0.500, in M1a(ii) they are P11(1) = 0.801, P11(2) = 0.800, P11(4) = 0.800,

and in M1b they are P11(1) = 0.368, P11(2) = 0.135, P11(4) = 0.018. The

total followup time is 4 years. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Ratios of asymptotic standard deviations for estimators of transition inten-

sities and probabilities in two-state Markov models with (1) q12 = q21 = 1

(M1a(i)), (2) q12 = 1, q21 = 4 (M1a(ii)), and (3) q12 = 1, q21 = 0 (M1b). Val-

ues of P11(t) in M1a(i) are P11(1) = 0.568, P11(2) = 0.509, P11(4) = 0.500,

P11(8) = 0.500, in M1a(ii) they are P11(1) = 0.801, P11(2) = 0.800, P11(4) =

0.800, P11(8) = 0.800, and in M1b they are P11(1) = 0.368, P11(2) = 0.013,

P11(4) = 0.002, P11(8) = 3.3e− 04. The total followup time is 10 years. . . 52

3.12 Ratios of asymptotic standard deviations for estimators of transition inten-

sities and probabilities in three-state Markov models with (1) q12 = 1, q21 =

2, q23 = 1 (M2a) and (2) q12 = 1, q21 = 0, q23 = 1 (M2b). Values of P11(t)

and P13(t) in M2a are P11(1) = 0.608, P11(2) = 0.462, P11(4) = 0.270,

P13(1) = 0.178, P13(2) = 0.369, P13(4) = 0.631, and in M2b are P11(1) =

0.368, P11(2) = 0.135, P11(4) = 0.018, P13(1) = 0.264, P13(2) = 0.594,

P13(4) = 0.908. The total followup time is 4 years. . . . . . . . . . . . . . . 53

xiii



3.13 Ratios of asymptotic standard deviations for estimators of transition in-

tensities and probabilities in three-state Markov models as in Figure1(b)

with (1) q12 = 1, q21 = 2, q23 = 1 (M2a) and (2) q12 = 1, q23 = 1 M2b.

Values of P11(t) and P13(t) in M2a are P11(2) = 0.462, P11(4) = 0.270.

P11(8) = 0.092, P13(2) = 0.369, P13(4) = 0.631, P13(8) = 0.874 and in M2b

are P11(2) = 0.013, P11(4) = 0.002. P11(8) = 7.7e − 06, P13(2) = 0.594,

P13(4) = 0.908, P13(8) = 0.997. The total followup time is 10 years. . . . . 54

3.14 Ratios of asymptotic standard deviations for estimators of transition in-

tensities and regression coefficients in three-state Markov models with (1)

q12 = 1, q21 = 2, q23 = 1, β12 = −0.2, β21 = −0.5, β23 = −0.9 (M3a) and (2)

q12 = 1, q21 = 0, q23 = 1, β12 = −0.2, β21 = 0, β23 = −0.9 (M3b).The total

followup time is 4 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 Continuation of Table 3.14: Ratios of asymptotic standard deviations for

estimators of transition probabilities in three-state Markov models when an

individual has Z = 1. Values of P11 and P13 in M3a are P11(1) = 0.625,

P11(2) = 0.517, P11(4) = 0.384, P13(1) = 0.083, P13(2) = 0.202, P13(4) =

0.309 and in M3b are P11(1) = 0.440, P11(2) = 0.194, P11(4) = 0.038,

P13(1) = 0.112, P13(2) = 0.310, P13(4) = 0.647. The total followup time is

4 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.16 Ratios of asymptotic standard deviations for estimators of transition in-

tensities and regression coefficients in three-state Markov models with (1)

q12 = 1, q21 = 2, q23 = 1, β12 = −0.2, β21 = −0.5, β23 = −0.9 (M3a) and (2)

q12 = 1, q21 = 0, q23 = 1, β12 = −0.2, β21 = 0, β23 = −0.9 (M3b). The total

followup time is 10 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiv



3.17 Continuation of Table 3.16: Ratios of asymptotic standard deviations for

estimators of transition probabilities in three-state Markov models with Z =

1. Values of P11 and P13 in M3a are P11(2) = 0.517, P11(4) = 0.384. P11(8) =

0.215, P13(2) = 0.202, P13(4) = 0.403, P13(8) = 0.666 and in M3b are

P11(2) = 0.194, P11(4) = 0.038, P11(8) = 0.001, P13(2) = 0.310, P13(4) =

0.647, P13(8) = 0.924. The total followup time is 10 years. . . . . . . . . . 58

3.18 Ratios of asymptotic standard deviations for estimators of transition inten-

sities and probabilities in three-state Markov models with (1) q12 = 1, q21 =

2, q13 = 0.25, q23 = 0.5 (M4a) and (2) q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5

(M4b). Values of P11(t) and P13(t) in M4a are P11(1) = 0.515, P11(2) =

0.364. P11(4) = 0.188, P13(1) = 0.263, P13(2) = 0.469, P13(4) = 0.725 and

in M4b are P11(1) = 0.472, P11(2) = 0.223. P11(4) = 0.045, P13(1) = 0.259,

P13(2) = 0.487, P13(4) = 0.779. The total followup time is 4 years. . . . . . 59

3.19 Continuation of Table 3.18: Values of P22(t) and P23(t) in M4a are P22(1) =

0.237, P22(2) = 0.155, P22(4) = 0.080, P23(1) = 0.318, P23(2) = 0.510,

P23(4) = 0.746 and in M4b are P22(1) = 0.606, P22(2) = 0.368, P22(4) =

0.135, P23(1) = 0.393, P23(2) = 0.632, P23(4) = 0.865. The total followup

time is 4 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Ratios of asymptotic standard deviations for estimators of transition inten-

sities and probabilities in three-state Markov models with (1) q12 = 1, q21 =

2, q13 = 0.25, q23 = 0.5 (M4a) and (2) q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5

(M4b). Values of P11(t) and P13(t) in M4a are P11(2) = 0.364, P11(4) =

0.188. P11(8) = 0.050, P13(2) = 0.469, P13(4) = 0.725, P13(8) = 0.926 and

in M4b are P11(2) = 0.223, P11(4) = 0.500. P11(8) = 0.002, P13(2) = 0.487,

P13(4) = 0.779, P13(8) = 0.966. The total followup time is 10 years. . . . . 61

xv



3.21 Continuation of Table 3.20: Values of P22(t) and P23(t) in M4a are P22(2) =

0.155, P22(4) = 0.080, P22(8) = 0.021, P23(2) = 0.510, P23(4) = 0.746,

P23(8) = 0.932 and in M4b are P22(2) = 0.368, P22(4) = 0.135, P22(8) =

0.018, P23(2) = 0.632, P23(4) = 0.865, P23(8) = 0.982. The total followup

time is 10 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Estimated gap time intensities α̂1(b) and their standard errors for the first

simulation study, when gap times are generated from the Geometric dis-

tribution. The true gap time intensity estimate is 0.167. The estimated

Geometric gap time intensity and its estimated standard error are 0.184

and 0.003, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Estimated gap time intensities α̂2(b) and their standard errors for the first

simulation study, when gap times are generated from the Geometric dis-

tribution. The true gap time intensity estimate is 0.333. The estimated

Geometric gap time intensity and its estimated standard error are 0.348

and 0.006 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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Chapter 1

Introduction

1.1 Background

A longitudinal study in biomedical or public health research (e.g. clinical trials, observa-

tional studies, etc) is one for which participants are followed through time, rather than

observed at only one time. By following subjects, investigators can study processes in-

volving features such as (a) times to events (b) time-varying marker processes, and (c)

other covariates. A familiar setting is that of persons infected with the human immune

deficiency virus (HIV), where covariates, including treatment assignment, demographic in-

formation, and physiologic characteristics may be recorded on individuals in a cohort at a

baseline time, and measures of immunologic and virologic status such as CD4 count and

viral load copy number are biomarkers that are measured at subsequent clinical visits.

Time to progression to AIDS or death and recurrent events such as virologic rebounds are

also recorded for each participant. Higher CD4 cell counts, lower viral load copy num-

bers, and a lower rate of virologic rebounds are associated with better survival and fewer
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AIDS-related illnesses for HIV- positive patients.

Sometimes events are defined in terms of biomarkers Y (t). An example is in HIV studies

where a Viral Blip event (e.g. Grennan et al. (2012)) is defined as a viral load value greater

than 50 copies/ mL and less than 1000 copies/ mL, preceded and followed (at consecutive

visits) by an undetectable value (< 50 copies/ mL); another event type in these studies is

Virologic Rebound which can be defined as either (1) viral load greater than 50 copies/

mL at two consecutive visits at least 30 days apart, or (2) a viral load greater than 1000

copies/ mL.

For convenience, we assume here that individuals are followed from a specified time t=0.

Data at time t for each subject i = 1, ..., n is ideally of the form {Ni(t), Yi(t), Zi(t)} where

Ni(t) is a vector of numbers of events of different types occurring over the time interval [0, t],

that is Ni(t) = {Ni1(t), ..., Nik(t)} where k is the number of event types. {Yi(t), t ≥ 0} is

a longitudinal biomarker trajectory, and Zi(t) is a vector of external covariates which may

be fixed or time dependent. The time origin t=0 is designated according to the processes

under study. The observed biomarkers are frequently important health indicators that

represent the progression or status of disease. We also might be interested in events like

death or drop out from the study, or single or recurrent events such as symptoms of disease,

or other disease related events.

Usually observation of individuals is done at intermittent times, in other words, we

observe biomarker measures Yi(tij) at tij for individual i, where i = 1, ..., n and j = 1, ...,mi.

We also usually observe the external covariate Z(tij) at these time points. The event times

might be known exactly or interval censored.

Common problems encountered with biomarker data are measurement error, missing

data due to the measurement of markers only periodically, process-dependent observation
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times, and bias due to process-dependent dropout. Measurement errors can be thought of

as consisting of both laboratory error and short term biological variability. Similar prob-

lems can occur with external covariates. The error in measuring biomarkers or covariates

may lead to biased estimation of regression parameters that describe the relationship be-

tween event intensities and the true marker or covariate values. Event times may also be

measured with error in some settings, or they may be known only to lie in some speci-

fied time intervals. In this thesis we deal with missing information, but do not address

measurement error; that is, the raw measurements are used as the basis for modelling.

Joint analysis of survival or other events with either repeated measures or recurrent

events has been increasingly common in medical areas, for example in HIV or acquired

immunodeficiency syndrome (AIDS) studies. Faucett and Thomas (1996), Hogan and

Laird (1997 a, b, 1998), Wulfsohn and Tsiatis (1997), Henderson et al. (2000), Xu and

Zeger (2001), Tsiatis and Davidian (2001), Yu et al. (2004), Chi and Ibrahim (2006),

Borgan et al. (2007), Diggle et al. (2008), and others have discussed joint models for

repeated measures and survival times. Tsiatis and Davidian (2004) provide a thorough

review on joint models for covariate processes and single survival times or recurrent events.

Often in medical studies where the primary interest is in the time to some clinical event,

patients are also monitored longitudinally with respect to some biological measurements, or

biomarkers. These measurements are important because the trajectory of marker processes

may be predictive of times to event occurrence, and then we wish to assess the relationship

with event occurrence. Goals in such studies include investigation of the within-subject

patterns of change of markers, the effects of treatment and risk factors on the marker

processes and on disease-related events or death, the relationship of markers and events,

and sometimes whether the biomarkers can be used as surrogate endpoints in a clinical

trial. Sometimes markers can also help adjust for dropouts in a study. In AIDS studies, an
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example of a marker-related dropout process is that people who have faster rates of decline

in CD4 counts may be more likely to drop out of the study. Such “dependent” dropout

phenomena can lead to biased estimates of process parameters if not handled properly. As

well as correcting biases, joint modelling of biomarkers and event occurrence can improve

the efficiency of parameter estimates in either part of the model because extra information

is being used.

In this thesis, we model a biomarker process and any clinical events of interest jointly

by means of multistate models. This approach has been taken by many previous authors

(e.g. Gentleman et al. (1994), Copas and Farewell (2001), O’Keeffe et al. (2011), Tom

and Farewell (2011)). We discuss several issues in the context of multistate models with

intermittent observations. Some of these issues include investigation of the loss of informa-

tion in estimation when individuals are observed intermittently, challenges in fitting and

checking models incorporating internal covariates, and adjusting the estimation of some

marginal process features to accomodate dependent observation times. Motivated by stud-

ies of viral load dynamics for HIV-positive individuals in the CANOC study, we will focus

mainly on models for biomarkers.

The remainder of this Chapter is organized as follows, Section 1.2 reviews intensity-based

event history models. Section 1.3 focuses on multistate models, and discusses families of

models. Section 1.4 reviews models for biomarker processes and discusses some advantages

and disadvantages of multistate models. Section 1.5 contains a motivating example based

on the CANOC observational study, and Section 1.6 provides an outline of the rest of the

thesis.
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1.2 Event history models

Data from a marker process {Y (t), t ≥ 0} is usually a sequence of repeated measurements

which are taken on each individual or subject at several occasions. A single counting

process {N(t), t ≥ 0} records the cumulative number of events of some type up to time

t; N(t) =
∑∞

k=1 I(Tk ≤ t) is the number of events occurring over the time interval [0, t],

where T1 < T2... denote the event times. The individual event processes are considered to

start at time t=0, but in some settings, an individual is sampled and observation begins

from a time τ0 > 0, with events observed over the time interval [τ0, τ ] where τ is the end

of followup time.

1.2.1 Intensity functions

Models for events in continuous time can be specified by the probability of an event in a

short interval [t, t+ ∆t), given the history of event occurrence before time t. Let ∆N(t) =

N(t + ∆t−) − N(t−) denote the number of events in the interval [t, t + ∆t), and H(t) =

{N(s), 0 ≤ s < t} denote the history of the process at time t. Then, assuming that two

or more events can not occur at the same time, the event intensity function is given by

Andersen et al. (1993); Aalen et al. (2008); Cook and Lawless (2007) as

λ(t|H(t)) = lim
∆t→0

P{∆N(t) = 1|H(t)}
∆t

;

with J types of events, we can define the intensity function for a type j event as

λj(t|H(t)) = lim
∆t→0

P{∆Nj(t) = 1|H(t)}
∆t

, j = 1, ..., J.

In this case, H(t) represents the history of all events up to time t, so the previous occurrence

of one type of event can influence the occurrence of another event type.
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1.2.2 Intensity function with covariates

With external covariates Z(t), we can consider the intensity as being conditioned on the

whole covariate history Z(∞) where Z(t) = {Z(s), 0 ≤ s ≤ t}. Then it is assumed that

λ(t|H(t), Z(∞)) = λ(t|H(t), Z(t)). If Z(t) is an internal covariate, we can still define in-

tensity function λ(t|H(t), Z(t)); however, it is not generally equivalent to λ(t|H(t), Z(∞)).

A widely used model is the multiplicative intensity model. This encompasses the famous

proportional intensity model, or the Cox model. We consider Cox models where, the

intensity is of the form

λ(t|H(t), Z(t)) = λ0(t)exp{Z ′(t)β},

where β is a vector of regression coefficients, and λ0(t) is the baseline intensity function.

The Cox model was introduced by Cox (1972) in the context of survival data. A natural

extension of the model to accommodate time-varying covariate effects is

λ(t|H(t), Z(t)) = λ0(t)exp{Z ′(t)β(t)},

where β(t) is a time-varying regression coefficient.

In some cases, it may be more appropriate to use models where the effect of covariates

is modelled on an additive scale. One additive model assumes that the intensity is of the

form

λ(t|H(t), Z(t)) = λ0(t) + Z ′(t)β.

The more general model was introduced by Aalen (1980), where

λ(t|H(t), Z(t)) = λ0(t) + Z ′(t)β(t).
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1.3 Multistate models

The natural history of a chronic disease can often be expressed in terms of distinct health

stages or biomarkers which are health status indicators, and multistate models have been

widely used in this situation. For example, O’Keeffe et al. (2011) used it in a study of

psoriatic arthritis, Gentleman et al. (1994) in an analysis of HIV-infected patients, and

Yu et al. (2008) in a study of cognitive impairment. Here we discuss continuous time

multistate models. Suppose individuals independently move among R states, denoted by

r = 1, ..., R, and let Yi(t) denote the state occupied by individual i(i = 1, ..., n) at time

t ≥ 0. Then the transition intensity from state r to s for r 6= s is

λrs(t|H(t)) = lim
∆t→0

P{(Y (t+ ∆t−) = s|Y (t−) = r,H(t))}
∆t

, r 6= s,

where H(t) = {(Y (u), Z(u)), 0 < u < t}. The transition probabilities for such models are

defined by

P (Y (t+ u) = s|Y (t) = r,H(t)) = Prs(t, t+ u|H(t)), r, s = 1, ..., R.

These are of interest for prediction.

1.3.1 Markov Models

In Markov multistate models, transition intensities are of the form λrs(t|H(t)) = Yr(t)qrs(t),

where Yr(t) = I(Y (t−) = r) indicates that an individual is at risk of transition from state r

at time t. We define the R×R transition intensity matrix Q(t) with entries qrs(t) for r 6= s,

and qrr(t) = −
∑

r 6=s qrs(t). The R×R transition probability matrix P (u, u+ t) in this case

does not depend on H(u) and has entries Prs(u, u+ t) = P (Y (u+ t) = s|Y (u) = r).
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If none of the transition intensities qrs(t) depends on time, the model is called time

homogeneous (stationary). In a time homogeneous Markov model with transition intensity

matrix Q, the transition probability matrix P (u, u + t) equals P (0, t), which we denote

for simplicity as P (t). If the elements qrs = qrs(θ) depend on b independent parameters

θ1, ..., θb with θ = (θ1, ..., θb), then we have (e.g. Kalbfleisch and Lawless (1985))

P (t; θ) = exp{Q(θ)t} =
∞∑
l=0

Ql(θ)tl

l!
.

Kalbfleisch and Lawless (1985) discussed efficient means of computing the transition in-

tensities via a canonical decomposition. When Q is diagonazable, that is Q has R linearly

independent eigenvectors and distinct eigenvalues d1, ..., dR, let A be the R × R matrix

whose jth column is a right eigenvector corresponding to dj. Then Q = ADA−1, where

D = diag(d1, ..., dR), and

P (t) = Adiag(ed1t, ..., edRt)A−1.

For some simple time-dependent Markov models, the transition probabilities can be ob-

tained analytically. This has been implemented in the msm package in R (Jackson (2011)).

More generally, however, we would need to use numerical methods of some type to obtain

transition probabilities from the transition intensities. A simple approach is to use the

product integral idea (e.g. Aalen et al. (2008), p. 460). The product integral representa-

tion of P (s, t) is given by

P (u, t) =
∏
v∈(u,t]

[I +Q(v)dv],

where I is a R×R identity matrix. Now, in order to approximate P (u, t), we must partition

(u, t] into a sequence of intervals (vl−1, vl] with u = v0 < v1 < ... < vm = t, such that to a

close approximation qij(v) = q
(l)
ij =

qij(vl−1)+qij(vl)

2
for vl−1 < v ≤ vl. Then we have

P (u, t) ≈
m∏
l=1

[I +Q(l)∆vl] ≈
m∏
l=1

exp[Q(l)∆vl],
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where ∆vl = vl − vl−1 and Q(l) = (q
(l)
ij ). Titman (2011) gives another numerical approach

in terms of the Kolmogorov differential equations for the process.

We often wish to let the transition intensities depend on covariates Zi or Zi(t). As

described in Section 1.2.2, this can be done in various ways. However, multiplicative

models where qrs(t|H(t), Z̄(t)) = q0rs(t)exp{Z ′(t)βrs} are used most often. We note that

there is in general a separate baseline intensity and separate regression parameter βrs for

each type of transition.

1.3.2 Semi-Markov models

In Semi-Markov models, we assume that the transition intensity functions are related to

the time B(t) since entry to the current state Y (t). That is,

λrs(t|H(t)) = Yr(t)hrs(B(t)), r 6= s,

where hrs(u) is a non-negative function. In many situations, it is hard to compute transition

probabilities for a Semi-Markov model. As a result, they are not easily handled when

observation of individuals is intermittent and we do not consider them further in the

thesis. However, see Titman and Sharples (2010b) for more details.

1.3.3 Some pros and cons of multistate models

Multistate models help to provide a comprehensive view of a disease process and they allow

the estimation of features such as proportions of individuals in different states at specific

times in the future, transition rates, and the distribution of time to first entry to a given

state.
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Multistate models can also have an advantage over time to event models in survival

analysis, for events associated with disease processes. For instance, we can study effects of

covariates on the various transition intensities, and gain biological insights which may be

ignored when using only a time to event model. In addition, multistate models can limit

the effects of process-dependent observation times. As an example, we refer to Gentleman

et al. (1994), where they considered a multistate model for the progression of AIDS disease

in a group of HIV-positive individuals. They expressed AIDS as an absorbing state, and

defined three transient states based on CD4 cell count values. The event of main interest

was the entry to the AIDS state, and we could look at this problem from the survival point

of view. However, the multistate model with the four states gives us the opportunity to

gain a better understanding of the disease process.

The msm package, (Jackson, 2011), has made fitting the multistate models more conve-

nient, but still there are issues that should be mentioned. First, sometimes it is crucial how

we discretize a process to a finite number of states. It is important that we define states

that are clinically useful, and which are not too susceptible to measurement (misclassifi-

cation) errors, but there are usually different choices of states that would be sensible. A

second issue is how to deal with misclassification errors (i.e. errors in the determination

of what state an individual is in at a given time). Jackson et al. (2003) discuss methods

to deal with this. The third issue concerns settings where individuals are seen only at

discrete times, and their states are only known at these times. In this situation, we do not

have full information at times between observations, such as exact transition times, states

visited between observation times, and covariate values between visit times. Fitting and

assessing multistate models are often challenging, and this is the basis for the research in

this thesis.
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1.4 Models for biomarker processes

In medicine, a biomarker is an internal covariate that exists only while the subject is alive.

A biomarker often indicates the progress or status of a disease in some sense, and their

relationship to clinical events is often of interest. In addition, often events are defined in

terms of biomarkers.

Two examples of biomarkers are as follows. The first example involves a prostate cancer

study (Proust-Lima and Taylor, 2009) where the prostate-specific antigen (PSA) is used

as a biomarker for persons who have been treated for prostate cancer, and clinical events

of interest include distant metastases, local recurrence, and death. A second example is

taken from Liu and Huang (2009), concerning patients with acquired immune deficiency

syndrome (AIDS) in which CD4 cell counts are the repeated biomarker measures, and the

occurrence of opportunistic diseases are clinical events of interest.

In longitudinal studies, two types of biomarker models are common. The first type is

where Y (t) is continuous and stochastic processes such as Gamma or Gaussian process are

used for {Y (t), t > 0}. Tsiatis and Davidian (2001), Xu and Zeger (2001), Liu and Huang

(2009), Proust-Lima and Taylor (2009), and many others have considered these types of

models. Another type of modelling is where the range of Y (t) is partitioned into a set

of R states. For example, Gentleman et al. (1994), Copas and Farewell (2001), Yu et al.

(2008), O’Keeffe et al. (2011), Tom and Farewell (2011) have studied this.

There are a number of situations where it is important to consider models for biomark-

ers and events together, as opposed to cases where only a model for the biomarker process,

Y (t), is needed, or to cases where only a model for the transition intensity of the event

process, λ(t|Z̄(t), H(t)), is needed. First, suppose that we focus on modelling the event
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process. Considering the biomarker process as a time dependent covariate in the event

intensity may require the biomarker value at any time t, but the biomarker is usually ob-

served on each individual only intermittently. Particularly, when we have irregular, long

gap times in the biomarker measurements, it is required to model biomarker processes

to deal with the biomarker’s missing values. Second, suppose we are interested in the

biomarker processes themselves. For inference on biomarker processes, ignoring the event

process can sometimes lead to biased estimation. This bias might be due to informative

observation times or censoring which is induced by the clinical events. For example, in-

dividuals with more serious HIV disease may be more likely to withdraw from a study or

have long gaps between observations than healthier individuals, and this leads to fewer

and more widely spaced viral load measurements.

As noted in Section 1.1, a multistate model is one approach for considering event times

along with a biomarker process. Other approaches have also been taken (e.g. see Tsiatis

and Davidian (2004)), but in this thesis, we focus on multistate models.

1.5 A motivating study: CANOC

CANOC is a Canadian cohort study of antiretroviral naive HIV-positive patients initiating

combination antiretroviral therapy (cART) since January 1st 2000 (Raboud et al. (2010),

Palmer et al. (2011)). Eligibility criteria for inclusion in this cohort is documented HIV

infection, residence in Canada, minimum age of 18 years, initiation of a first antiretrovi-

ral therapy (ART) comprised of a minimum of three individual agents, and at least one

measurement of HIV-1 RNA and CD4 cell count within six months of cART initiation.

Biomarkers that are measured at visit times (approximately every 3 months) for each
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individual include CD4 cell counts, viral loads, and other measures such as blood lipid

(Cholesterol) levels. Clinical events include AIDS defining illnesses (ADIs) such as Can-

didiasis of esophagus, bronchi, trachea, or lungs (CANDIDA), and other events such as

the diagnosis of heart disease or cancer, and death.

In the CANOC data we will also consider issues such as (a) identifying covariates which

are significantly related to the viral load biomarker, and assessing how the viral load process

changes with time, (b) determining whether the risks of biomarker events are related to

previous values and covariates, for instance, whether the occurrence of blips is related to

virologic rebounds, (c) examining whether observation times for individuals are related to

their biomarker histories, and (d) dealing with process dependent observation times.

1.6 Outline of the thesis

The remaining chapters of this thesis are organized as follows.

In Chapter 2, we review estimation procedures for panel data under Markov models.

Estimability issues in getting the maximum likelihood estimates are discussed. The existing

methods for assessing the model fit of multistate models are reviewed.

Chapter 3 examines estimation for progressive and bi-directional multistate processes

with continuous and intermittent observations. The estimates of asymptotic covariance

matrices for parameters of both situations are discussed. Numerical studies are conducted

to investigate the effect of observation schedule (in particular, the number and closeness

of visit times) on efficiency of estimation. We present applications involving an analysis of

time to viral rebound in observational CANOC data.
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In Chapter 4, we consider the estimation of prevalence probabilities and failure time

distributions associated with multistate models. We introduce inverse intensity weighted

(IIW) estimating equations to handle the dependency of inter-visit times on previous pro-

cess history, and we propose adjusted prevalence estimates that accomodate dependent

observation times. Simulations are conducted to evaluate the performance of the proposed

estimates, and they show that the IIW prevalence estimates are close to the true prevalence

values, whereas estimates that ignore the association between the gap times and previous

process history show bias. We present an application to CANOC data, where we show

that the gap times between visits depend on the previous viral load states that individuals

were in.

Chapter 5 considers the assessment of multistate models with intermittent observations

and possibly internal covariates. We present an algorithm for simulating sample paths

of individuals’ processes which facilitates estimation of the prevalence probabilities in the

presence of internal covariates. We also investigate the robustness of prevalence estimates

when the Markov assumption is violated, and discuss the implications for model assess-

ment. Simulation studies are given, which demonstrate that the violation of the Markov

assumption may induce only small biases in the estimation of prevalence probabilities.

We discuss likelihood ratio tests for assessment of multistate models within the family of

Markov processes, and give a way to estimate the effects of the gap times between visits on

the power of such tests. Finally, we propose a method that allows comparison of models

with different state spaces. Then, the proposed methods are applied to the observational

CANOC study.

Finally, Chapter 6 briefly summarizes overall findings, and discusses potential areas for

further study.
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Chapter 2

Fitting and Assessing Multistate

Models When Observation is

Intermittent

2.1 Introduction

In observational studies, individuals are seen intermittently at followup visits, and clinical

information about disease states and covariate values are recorded. However, informa-

tion for times between visits is missing or incomplete. This is often referred to as panel

data (e.g. Kalbfleisch and Lawless (1985), Hwang and Brookmeyer (2003)). In multistate

models, the difficulties with intermittent observations are that the exact transition times,

and sometimes the states visited between successive observation times are unknown. The

intermittent observations can be classified as either balanced (regular) or unbalanced (ir-
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regular). In the regular case, individuals have a common set of visit times. Suppose that

individual i is seen at times tij, where i = 1, ..., n and j = 0, 1, ...,mi. The regular observa-

tion scheme has tij = tj for i = 1, ..., n and j = 0, 1, ...,m. Many researchers have studied

Markov multistate models with intermittent observations, for example, Gentleman et al.

(1994), Kvist et al. (2010), Mandel and Betenesky (2008), Titman and Sharples (2010a),

and Cook and Lawless (2014). Titman and Sharples (2010b) and Yang and Nair (2011)

have studied semi-Markov models in this context.

In longitudinal studies, we often face incomplete data that may be due to missed study

assessments or premature loss to followup (LTF). Little and Rubin (1987) considered

analysing missing data mechanisms, and classified them into three categories. The mech-

anism is called “Missing Completely at Random” (MCAR) if the missing data process

does not depend on any variables of interest, and “Missing at Random” (MAR) if the

missing data process is independent of the unobserved data, given the observed data.

Finally, data are “Missing Not at Random” (MNAR) if the missing data process de-

pends on unobserved data. Cook and Lawless (2014) discussed visit times and LTF in

the case of intermittent observations. First, suppose the observation times for individ-

ual i are fixed values t0 < t1 < ... < tm, and Yi(t) is the state occupied at time t. Let

Z(t) denote covariates. The history of the observed data at the observation time tj is

H(tj) = {(Y (tl), Z(tl), tl), l = 0, 1, 2, ..., j − 1}. Let R(t) be the missing visit indicator at

time t, which equals 1 if the individual is observed at time t and 0 if Y (t) is missing. Cook

and Lawless (2014) classified LTF or missed visits as follows:

1. Sequentially Missing at Random (SMAR): Data are said to be SMAR if R(tj) is

conditionally independent of Y (tl) and Z(tl) for l ≥ j, given H(tj). If the SMAR

condition does not hold, we may be able to introduce a vector of observed covariates,

Zc(t), so that R(tj) becomes conditionally independent of Y (tl) and Z(tl) for l ≥
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j, given H(tj) and Zc(tj). In this situation, Zc(t) makes the SMAR assumption

reasonable.

2. Missing Sequentially Not at Random (MSNAR): The missing data process is said to

be MSNAR if it is not SMAR.

Cook and Lawless (2014) also investigated the case that observation times for individual i

are random values ti1, ..., timi ; this can occur, for example, when tj is scheduled based on

observed history up to time tj−1. They defined the SMAR assumption as Tj is independent

of {Y (t), Z(t), t > tj−1}, given history to tj−1.

This chapter reviews maximum likelihood estimation of Markov multistate model pa-

rameters based on intermittent observation of individuals. It also reviews methods for

checking time homogeneity and other assumptions.

2.2 Fitting multistate models

We focus here on Markov models, first considering the case with no covariates. Suppose

that individual i has observation times ti0 < ti1 < ... < timi that satisfy the SMAR

requirement. Then, the likelihood function based on n independent individuals and under

the Markov assumption is

L =
n∏
i=1

mi∏
j=1

P{Yi(tij)|Yi(tij−1); θ}, (2.1)

where θ is the vector of unknown transition intensity parameters. This likelihood is condi-

tional on the state occupied by the individual at time ti0. In many studies, all individuals

have the same initial state at the time of entry into the study. For a time homogeneous
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model, we can compute the transition probabilities Prs(ti,j−1, tij; θ) by the matrix expo-

nential function exp(Q(tij − ti,j−1)) as discussed in Section 1.3.1.

In the case where there are fixed covariates, the likelihood function can be written

as

L =
n∏
i=1

mi∏
j=1

P{Yi(tij)|Yi(ti,j−1), Zi; θ}, (2.2)

where Zi is a vector of fixed covariates for individual i. We should remark that the compu-

tation of transition probabilities in this case requires separate calculations for each distinct

covariate value. Therefore, if the number of distinct covariate values is large, maximum

likelihood estimation may require a lot of computation. Considering time-varying covari-

ates is more challenging, since the covariate values are only known at visit times. Cook and

Lawless (2014) mention two methods for addressing this problem. First, we can use sim-

plifying assumptions that would enable us to interpolate the covariate values at all times

between visits. For instance, we can assume that the covariate values for each individual

are constant between observation times. Then, the likelihood function is

L =
n∏
i=1

mi∏
j=1

P{Yi(tij)|Yi(ti,j−1), Zi(t); θ}, (2.3)

where Zi(t) = Zij for tij−1 < t ≤ tij. Note that the vector Zij is allowed to be a function of

observed history {Yi(til), Zil, l = 0, 1, ..., j−1}. We will discuss other interpolation methods

later in Section 2.3.2. Second, Cook and Lawless (2014) mention procedures for the joint

modelling of the covariate process with the multistate process, and provide discussion of

this. In this thesis we focus primarily on the first approach.

Jackson (2011) discussed algorithms for the computation and maximization of all the

above likelihood functions for models with time homogeneous baseline intensities. This is
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implemented in the msm package in R. There are, however, still some challenges in fitting

multistate models. First, when the times between observations are fairly large, or when

there are many parameters in the model, then the likelihood can be “flat” in certain places,

and msm often encounters convergence problems and fails to maximize the likelihood. The

number of parameters in the models is increased when there are many covariates or types

of transitions. Second, if for some intensities, there are no observed direct transitions in

the original data, we may encounter estimability problems. A third difficulty is that the

optimization algorithms in the msm package are very sensitive to the initial values that we

give for covariate effects and baseline transition intensities, and apparent convergence to

parameter vectors that do not maximize the likelihood is a common occurrence.

2.2.1 Time dependency

When the process is time homogeneous, the transition probabilities are obtained via a

canonical decomposition as discussed in Section 1.3.1. However, the assumption of time

homogeneity can be unsatisfactory. We mention two methods for checking this assumption.

First, we can use the piecewise constant intensities models. In these models, we assume

that for a set of cut points 0 = a0 < a1 < ... < aK =∞ we have transition intensities

qrs(t) = q(l)
rs al−1 ≤ t < al. (2.4)

Piecewise constant transition intensities models are flexible models and can be implemented

by the msm package. The time homogeneity assumption can be assessed by using a like-

lihood ratio test for a time homogeneous null against the piecewise constant model. We

note, however, that the choice of the location and the number of cut points can be crucial.

This method has been considered by Gentleman et al. (1994), among others.
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A second method for checking departures from time homogeneity is to use local score

tests. De Stavola (1988), Kalbfleisch and Lawless (1989), Gentleman et al. (1994), and

Titman and Sharples (2010a) have discussed this approach. In this method, we consider

the alternative hypotheses that the transition intensities qrs, r 6= s depend on time linearly

or through a power relationship that is common across all transitions. That is, we consider

HA : qrs(t) = qrs + tγ or HA : qrs(t) = qrst
β−1 and then we can test H0 : qrs(t) = qrs

against these alternatives. The authors develop score tests which have the advantage that

only the time homogeneous model needs to be fitted. In addition, we can apply this test

separately to each transition intensity, to assess where the time homogeneity assumption

might be violated.

2.3 Multistate models vs empirical estimates

One way that we can assess the adequacy of a multistate model is by comparing certain

estimates based on it with empirical estimates that are valid more generally. Three types of

model features are usually considered: (i) distributions of time to first entry in a state, (ii)

prevalence probabilities Pr(t) = P (Y (t) = r), and (iii) transition probabilities Prs(u, u +

t) = P (Y (t + u) = s|Y (u) = r). We discuss (i) and (ii) briefly here, and (iii) in the next

section.

2.3.1 Survival curves

The Kaplan-Meier estimate can be used to estimate the distribution of time to first entry

to a given state. Using this method, we often compare the estimated probability of entry

to an absorbing state based on the multistate model with the Kaplan-Meier estimate.
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Gentleman et al. (1994) used this method when the time of entry into the absorbing state

was exactly known. We can similarly use this method when times into the absorbing state

are interval censored, using the Turnbull (1976) estimate in place of the Kaplan-Meier. If

the Markov model is correct, we expect a close agreement between the model-based and

empirical estimates. We can consider, say 95% pointwise confidence intervals based on the

multistate model, and check if the empirical survival curve is inside this bounds. When

we do not have an internal covariate and the exact state entry times are known, this can

be implemented by the function plot.survfit.msm in the msm package. However, we can

no longer use this function in the presence of internal covariates. In Chapter 4, we will

discuss this approach in more detail.

2.3.2 Prevalence counts

Similar to empirical survival curves for time to first entry in a state, we can have empirical

curves for the probability of occupancy of all the states. These probabilities are called

prevalence functions (probabilities). We can define the prevalence probability for state r

at time t as Py0r(0, t) = P (Y (t) = r|Y (0) = y0), where y0 is a specified initial state at time

0, or as Pr(t) =
∑

y0
P (y0)Py0r(0, t), where P (y0) = P (Y0 = y0). However, in many studies,

individuals all start from some state 1 at time 0, so the prevalence probability becomes

P1r(t) = P (Y (t) = r|Y (0) = 1).

A check on a multistate model can be made by comparing prevalence probabilities

based on it with empirical prevalence probabilities. An equivalent approach is to compare

prevalence counts, or frequencies. In the prevalence counts method, we compare observed

or “empirical” state occupancy frequencies with the expected values based on the fitted

multistate models, at a series of times, 0, t1..., tm. In the case of a balanced observation
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scheme, when everyone starts from state 1 at time t0 = 0 and is seen at common times

t0, t1, ..., tm, we have observed prevalence counts

ojr(tj) =
n∑
i=1

I(tj ≤ ci)I(Yi(tj) = r), (2.5)

and

ejr(tj) =
n∑
i=1

I(tj ≤ ci)P̂1r(0, tj|zi), (2.6)

where ci is the censoring time of individual i, I(tj ≤ ci) indicates that the individual was

under observation, zi is the vector of fixed covariates for individual i, and P̂ denotes esti-

mates from the multistate model. A large deviation of observed counts, ojr, and expected

counts, ejr, indicates a poor fit. Formal chi-squared tests can also be given.

Approaches for computing empirical prevalence counts for observational studies with

irregular sampling times have been rather ad hoc. Since the precise state each individual

occupies at the assigned times t1, ..., tm are not generally known, it is necessary to interpo-

late in some way. Gentleman et al. (1994) assumed that individuals would remain in the

state they were observed in at the previous observation time. An alternative is to assume

that transitions occur half way between successive observation times. Both approaches

have inaccuracy, but it is suggested that this might not be significant if individuals are

observed fairly frequently. The function prevalence.msm in the msm package R computes

prevalence counts and allows a choice of interpolation methods. Mathieu et al. (2005)

proposed another approach which does not use any interpolation method. They only con-

sidered subgroups of individuals who had a visit time close to the time of interest.
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2.4 Formal tests of fit

2.4.1 Model expansion

A likelihood ratio test is often used to compare the fit of two models, where one is nested

within the other. This is usually used when we want to test whether a simplifying assump-

tion for a model is valid. In the context of multistate models, we might want to test that

some covariates effects are zero, for example, or that a process is time homogeneous. Some

likelihood ratio tests can be implemented by the function lrtest.msm in the msm package.

Likelihood ratio tests will be discussed in Section 5.4.

2.4.2 Pearson goodness of fit test

Formal goodness of fit tests in Markov models have been based on a comparison of observed

transition counts with expected transition counts based on the model. Such tests are often

referred to as Pearson tests, given their connection to multinomial tests of fit.

In the case of the balanced observation scheme, when tij = tj for all i, and categorical

covariates, Kalbfleisch and Lawless (1985) grouped the transition counts according to the

observation number (j = 1, 2, ...,m) and the covariate value. Thus, the observed and

expected number of r to s transitions between tj and tj+1 for individuals with covariate

value c are as follows:

o(jc)
rs =

∑
i:zi=c

I{Yi(tj+1) = s, Yi(tj) = r)}, (2.7)

e(jc)
rs = P̂rs(tj, tj+1|zi = c)njcr, (2.8)
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where njcr is the number of individuals with covariate value c observed in state r at time

tj, and having an observation at time tj+1.

Within each group (jc) of observation number and covariate value, the transition prob-

abilities for each individual are the same in this case. Hence, within each group, the

transition counts are multinomial, given the values njcr, and we can obtain a Pearson

goodness of fit statistic. These groups are conditionally independent if the Markov model

is of order one, so an overall goodness of fit statistic is obtained by adding the statistics

calculated for each group. The overall Pearson goodness of fit statistic is then

X2 =
∑
j

∑
c

∑
r

∑
s

(o
(jc)
rs − e(jc)

rs )2

e
(jc)
rs

, (2.9)

which is asymptotically equivalent to the likelihood ratio test statistic

Λ =
∑
j

∑
c

∑
r

∑
s

o(jc)
rs log(

o
(jc)
rs

e
(jc)
rs

). (2.10)

Both statistics have an asymptotic Chi-square distribution with degrees of freedom given

by d − |θ|, where d is the number of independent cells and |θ| is the number of unknown

parameters for the fitted model. Suppose that nr is the number of possible values for Y (tj)

given Y (tj−1) = r. Then, the number of independent cells is G
∑

r(nr − 1), where G is the

product of the number of observation times multiplied by the total number of covariate

values. We note that in the case where χ2 or Λ are large, a comparison of the individual

o
(jc)
rs and e

(jc)
rs indicate the nature of the lack of fit.

We can not use this goodness of fit test if the observation scheme is unbalanced (irreg-

ular) or when we are not able to group observations due to the large number of possible

covariate values. Aguirre-Hernandez and Farewell (2002) proposed a Pearson goodness of

fit test that allows irregular sampling times and continuous covariates, and this has been
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extended by Titman and Sharples (2008). An excellent review of this and other methods

of fit is given by Titman and Sharples (2010a). For each allowable transition, the data

(Yi(tij−1), Yi(tij)) are partitioned by observation categories, h, which are groups based on

quantiles of the time since the start of the process. It is also partitioned within each obser-

vation category h, by a time interval category, lh, based on quantiles of the time interval

between observations. Additionally, observations are grouped by covariates, c, according

to quantiles of the estimated transition intensity qrs(z). For instance, suppose that we have

a three-state progressive model, and we consider Q33.3, and Q66.7 quantiles of transition

intensities q12(z) and q23(z) for all individuals. Then, the covariate groupings can be based

on the values of q12(zi) and q23(zi) compared to their quantiles for the whole sample. So,

in this case, we have 9 covariate groups.

Thus, for each transition r to s for individual i with observations at times tij, j =

1, ...,mi, we calculate for each group (hlhc) the frequencies

o(hlhc)
rs =

∑
I{Yi(tij+1) = s, Yi(tij) = r}, (2.11)

e(hlhc)
rs =

∑
P̂ (Yi(tij+1) = s, Yi(tij) = r)I(Yi(tj) = r), (2.12)

where the sum for each h is over the set of observations:

∀i, j : tj+1 − tj ∈ lh, q(z) ∈ c.

Then the statistic, T =
∑

h

∑
lh

∑
r

∑
s

∑
c

(o
(hlhc)
rs −e(hlhc)rs )2

e
(hlhc)
rs

, was proposed. Since the time

intervals and individuals within the groups are non-identical, the observed transitions are

approximate realizations from a set of independent but non-identical multinomials, and

the limiting distribution is a linear combination of variables with χ2(1) distribution, where

the coefficients depend on unknown parameter values. Titman (2009) described this in
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detail. In some cases the distribution of the test statistic is approximately Chi-squared

with degrees of freedom d− |θ|, similar to the degrees of freedom in the standard Pearson

goodness of fit test. However, this is in general a poor approximation.

Aguirre-Hernandez and Farewell showed that the Chi-squared distribution was adequate

for models without covariates, but for models with fitted covariates, T had a distribution

with a mean higher than the degrees of freedom. So, they proposed a parametric bootstrap

to approximate the distribution of the T statistic. Each bootstrap sample requires, first,

generating realizations of the process based on the maximum likelihood estimates of the

original data at the observation times from the original data. Then, fitting the multistate

model to the new data and computing the T statistic must be done. This method can

require an excessive amount of computation and in many cases is not practically applicable.

This becomes more infeasible as the number of states and time-dependent covariates in the

multistate models increase.

The Aguirre-Hernandez and Farewell method is not applicable in the common situation

where the process includes an absorbing state, such as death, for which the time of entry

is known exactly. Their method is based on partitioning the data set on the basis of in-

tervals between observations which are independent of the process. Titman and Sharples

(2008) proposed a modified method to extend the tests to deal with Hidden Markov mod-

els (HMM) as well as to handle terminal events. In their modified method, they impute

estimated times of the next observation assuming that the individuals survived. The pear-

son.msm function in the msm package uses the Aguirre-Hernandez and Farewell approach

when there are no absorbing states and the Titman and Sharples goodness of fit test when

there is an absorbing state.

Titman (2009) proposed another asymptotic approximation for the Aguirre-Hernandez
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and Farewell (2002) and Titman and Sharples (2008) statistics. This approximation is

obtained by showing that the asymptotic distribution of these statistics can be considered

as the joint distribution of the observed counts in the contingency table and the score func-

tion of the log likelihood. The new approximation provides more accurate p values in cases

where the bootstrapping is time consuming and χ2(d−|θ|) is not a good approximation for

the distribution of the statistic. However, it is cumbersome to apply and Titman (2009)

illustrates it only for a very simple model. In view of these various difficulties, we focus on

likelihood ratio tests for goodness of fit, and discuss this approach in Section 5.4.
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Chapter 3

Effects of Observation Schedule on

Efficiency of Estimation

3.1 Introduction

Sometimes it is possible, at additional cost, to determine the exact times at which certain

transitions or events occur. However, with panel data, we only know the states of an

individual at each observation time tij, and the exact transition times are unknown. In this

case, it is of interest to know the loss of information due to the intermittent observation, and

how this changes if times between visits are increased or decreased. Hwang and Brookmeyer

(2003) considered the effects of gap time between visits on precision of the transition

intensity estimates in progressive multistate models. Progressive or uni-directional models

refer to models in which the individuals can only move from state r to state s (s 6= r) in

one direction, whereas in bi-directional models, individuals can have reversible transitions.

Mehtala et al (2011) and Cook (2000) discuss two-state bi-directional models. In this
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chapter, we study and compare uni-directional and bi-directional models, and consider

estimation of baseline intensities, covariate effects, and transition probabilities.

The remainder of this chapter is as follows. Section 3.2 discusses estimation of parame-

ters in Markov models based on intermittent observation, and describes how we can obtain

asymptotic covariance matrices. Section 3.3 presents some numerical studies of the effects

of gap time between visits on estimation in both progressive and bi-directional models, and

Section 3.4 considers applications to the observational CANOC data described in Chapter

1. Finally, Section 3.5 contains some concluding remarks.

3.2 Estimation and asymptotic covariance matrices

3.2.1 Maximum likelihood estimation

In Section 2.2 of Chapter 2, we presented the likelihood function for Markov models based

on panel data. In this section, we focus on the special case, where tij = tj for i = 1, ..., n

and j = 1, ...,m. The likelihood function based on these n individuals with observation

times t0 < t1 < ... < tm is

L(θ) =
n∏
i=1

m∏
j=1

Pyi(tj−1),yi(tj)(wj; θ) (3.1)

where Prs(w; θ) = P (Yi(t + w) = s|Yi(t) = r; θ) and wj = tj − tj−1 (j = 1, ...,m).

The transition probability matrix P (w) can be computed using the methods described in

Section 1.3.1.
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3.2.2 Asymptotic covariance matrice for panel data

Kalbfleisch and Lawless (1985) discussed the expected (Fisher) information matrix I(θ) for

θ based on n independent individuals and gave an algorithm for computing it. The I(θ)

has elements

Iuv(θ) = E(
−∂2logL(θ)

∂θuθv
)

= Σm
j=1ΣK

r,s=1

Er(tj−1; θ)

Prs(wj; θ)

∂Prs(wj; θ)

∂θu

∂Prs(wj; θ)

∂θv
, (3.2)

where Er(tj−1; θ) = Σn
i=1P{Yi(tj−1) = r|Yi(t0); θ} is the expected number of individuals

in state r at time tj−1. Here, we assumed that all individuals are observed at common

times t1, ..., tm. Sometimes individuals can be lost to followup before tm. In this case, we

multiply the ith term in Er(tj−1; θ) by πi(tj−1) which is the probability that individual i

is still under observation at time tj−1.

We can either use the Kalbfleisch and Lawless (1985) algorithm for computing these

derivatives, or use the numerical differentiation formula

∂Prs(w; θ)

∂θu

.
=
Prs(w; θ + ∆u)− Prs(w; θ −∆u)

2δu
, (3.3)

where ∆u is a zero vector except for the small value δu for the element corresponding to

θu. Then,
√
n(θ̂ − θ) has the asymptotic covariance matrix lim nI(θ)−1 when the number

of individuals n approaches infinity. Here, we assume that there is an initial distribution

for individuals at time t0 and the Markov model is correct and that θ is the true parameter

vector.
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3.2.3 Asymptotic covariance matrices for continuous observa-

tions

The asymptotic covariance matrices for the case of continuous observations are discussed

by Andersen et al. (1993), Chapter 6. We will focus here on time-homogeneous models for

which qrs(t) = qrs for the time interval 0 ≤ t < τ , and individuals are observed over (0, τ).

The likelihood function is

L =
∏
r 6=s

qnrsrs exp{−qrs
∫ τ

0

δr(t)dt}, (3.4)

where δr(t) =
∑n

i=1 δir(t), δir(t) = I(Yi(t) = r), and nrs is the total number of r to s

transitions among the n individuals across all observation times.

The derivative of the loglikelihood function with respect to qrs is

dl

dqrs
=
nrs
qrs
−
∫ τ

0

δr(t)dt. (3.5)

The observed information is obtained from

−d2l

dq2
rs

=
nrs
q2
rs

, (3.6)

where −d2l
dqrsdqr′s′

= 0 if rs 6= r′s′. The expected information matrix has non-zero entries

E{−d
2l

dq2
rs

} =
Enrs
q2
rs

. (3.7)

Now, by equalizing the expected value of the score function to zero, we have

Enrs = qrsE{
∫ τ

0

δr(t)dt} = qrs

n∑
i=1

∫ τ

0

E{δir(t)}dt

= qrs

n∑
i=1

∫ τ

0

P{Yi(t) = r|Yi(0)}dt. (3.8)
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By substituting Enrs in the expected information, we thus get

E{−d
2l

dq2
rs

} =
1

qrs

n∑
i=1

∫ τ

0

P{Yi(t) = r|Yi(0)}dt. (3.9)

So, for the time homogeneous Markov model, the asymptotic covariance matrix for the

transition intensity estimates is a diagonal matrix with elements

asvar(
√
n(q̂rs − qrs)) =

nqrs∑n
i=1

∫ τ
0
P{Yi(t) = r|Yi(0)}dt

. (3.10)

3.3 Numerical studies

Hwang and Brookmeyer (2003) showed in their numerical study that, for a three-state

time-homogeneous progressive model with a fixed followup time, the loss of efficiency for

estimating qr,r+1(r = 1, 2) is small when the inter-visit time, w, is less than the average

sojourn time q−1
rr+1 in state r. However, in the case of bi-directional models, we are facing a

different situation. Suppose for example, we have a simple two-state bi-directional model

with transitions q12 and q21. The transition probability matrix P (t, t + w) is given by

Kalbfleisch and Lawless (1985) as 1− π(1− exp(−αw)) π(1− exp(−αw))

(1− π)(1− exp(−αw)) π + (1− π)exp(−αw)

 , (3.11)

where α = q12 + q21 and π = q12α
−1. As w increases, both rows of the above matrix

approach the limiting distribution (1 − π, π). Thus, if the gap time w is large, we might

be able to estimate π precisely, but not the transition intensities q12 and q21.

In this section, we consider the effects of a constant inter-visit time, w, on the precision of

estimation of transition intensities qrs, transition probabilities Prs(t), and covariate effects
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βrs. For this purpose, first we compute the asymptotic variance of the maximum likelihood

estimators of parameters obtained from panel data which we discussed in Section 3.2.2,

and then we calculate the asymptotic variance of the estimates in the special case where

the individuals are monitored continuously in time, as discussed in Section 3.2.3. Finally,

the relative efficiency of a specific estimator from panel data relative to continuous-time

data is defined as

reff(ψ̂(w)) =
asvar(ψ̂(0))1/2

asvar(ψ̂(w))1/2
, (3.12)

where asvar(ψ̂(0)) is the asymptotic variance of the maximum likelihood estimator for ψ

when we have continuous observation data (i.e. w = 0), and asvar(ψ̂(w)) is the asymptotic

variance of the maximum likelihood estimator for ψ when we have panel data. The diagonal

elements of the I(θ) matrix in Section 3.2.2, and equation (3.10) multiplied by 1/n represent

asvar(ψ̂(0)), and asvar(ψ̂(w)), respectively. In the following two subsections, we consider

several multistate models, and compute the relative efficiencies of different estimators. For

convenience, tables on these relative efficiencies are given all together in an Appendix

(Section 3.6) at the end of the chapter.

3.3.1 Two-state models

We first investigate the effect of gap times between visits on the precision of estimation

in two-state bi-directional and progressive models with no covariates. We compare models

M1a with q12, q21 > 0 and models M1b, where q12 > 0, q21 = 0. We considered two models

M1a with different average sojourn times in state 2. In M1a(i), the average sojourn times

in both states 1 and 2 equal 1, but in M1a(ii) the average sojourn time in state 2 is 1/4,

as might occur when state 2 represents a recurring transient condition. Additionally, we

33



considered two followup times, τ = 4 and 10 years, with fixed gap times w = ∆t ranging

from 0.25 to 2. Tables 3.10 and 3.11 show the asymptotic relative efficiencies of estimators

of transition intensities and prevalence probabilities for models M1a and M1b, with τ = 4

and 10, respectively. We decided not to show P12(t) to concur a little space in these

tables.

As we can see from both Tables 3.10 and 3.11, the relative efficiency of transition

intensity estimators decreases drastically with the increase of the gap times in model M1a.

However, the relative efficiency of these estimators does not change much in model M1b.

The tables also show that the relative efficiencies of transition intensity estimators for

M1a(i) model are higher than the corresponding values in M1a(ii). This is due to the

smaller average sojourn time in state 2 for model M1a(ii), which causes more transitions

between the two states. The results in Tables 3.10 and 3.11 show that the increase of

the followup time from 4 to 10 does not affect the relative precision of transition intensity

estimators, but can affect the prevalence probabilities, depending on the speed with which

these values approach the limiting distribution as w increases.

3.3.2 Three-state models

Here, we investigate the effect of ∆t on the relative efficiency of estimation for the multistate

models in Figure 3.1. First, we focus on Figure 3.1(b), which will be used later for modeling

viral load dynamics in the CANOC study. For models M2a and M2b, there are no covariates

and the transition intensities are taken to be q12 = 1, q21 = 2, q23 = 1 and q12 = 1, q21 =

0, q23 = 1 respectively. We will also consider these models in the presence of a binary

covariate z, and we will name them M3a and M3b respectively. Covariate effects are of

multiplicative form, as described in Section 1.3.1. That is, qrs(z) = q0rsexp(βrsz) for r 6= s.
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Figure 3.1: Two multi-state models

The covariate effects that we used in our numerical calculations are β12 = −0.2, β21 =

−0.5, β23 = −0.9 for model M3a and β12 = −0.2, β21 = 0, β23 = −0.9 for model M3b.

We again considered two followup times 4 and 10 years for each scenario. The choice of

parameter values for the numerical studies is based on some preliminary analysis of viral

load processes in specific groups of the CANOC data.

Tables 3.12 and 3.13 show similar results to Tables 3.10 and 3.11. We again decided to

not show P12(t) to concur a little space in these tables. For the bi-directional model M2a,

we have a considerable drop in the relative efficiencies of transition intensity estimators as

∆t increases. However, for the transition intensity q23 this drop is smaller, because this

transition is uni-directional. The loss of efficiency for prevalence probability estimators is

very small, except at t = 1 in Table 3.12 and t = 2 in Table 3.13. For the progressive

model M2b, the loss of efficiency for all estimators is negligible, except when ∆t = 2.

Tables 3.14 and 3.16 show the relative efficiencies for baseline transition intensities and

covariate effects in model 3.1(b) with the binary covariate. We assumed that the numbers

of individuals having covariate values z = 0 and z = 1 are equal. As we can see from

these two tables, the relative efficiencies for transition intensity estimators are similar to

Tables 3.12 and 3.13. For the M3a model, the relative efficiency of covariate effects β12 and

β21 drastically decreases as ∆t increases, just as for the relative efficiency of the transition
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intensities. This was expected, since exp(βrs) is a ratio of transition intensities for z = 1

and z = 0. However, for β23 we do not have loss of efficiency, as this transition is uni-

directional. For the uni-directional model M3b, the loss of efficiencies is very small. Tables

3.15 and 3.17 represent the relative efficiencies for prevalence probability estimators of a

group of individuals with z = 1 for the cases where τ = 4 and 10. Results for individuals

with covariate z = 0 are as in Tables 3.12 and 3.13. From Tables 3.15 and 3.17, we can

not see any substantial loss of efficiency except in model M3a for P11(1) and P11(2) for

followup times τ = 4 and 10 years, respectively.

Tables 3.18 to 3.21 show similar results for models M4a and M4b, illustrated in Figure

3.1(a). We assumed transition intensities q12 = 1, q21 = 2, q13 = 0.25, q23 = 0.5 and

q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5 for models M4a and M4b respectively. In addition,

we also presented the relative efficiencies for transition probabilities in Tables 3.19 and

3.21. As we can see from Tables 3.18 and 3.20, the pattern of drops in relative efficiencies

is similar to the results in Tables 3.12 and 3.13. In model M4a, the loss of efficiency is very

substantial for transition intensities, but much less for the uni-directional transitions (i.e.

for q13 and q23). It is interesting that estimators of transition probabilities P23(t) in model

M4a lose more efficiency than for probabilities P13(t).

3.4 Application to data on viral load dynamics

In this Section, we consider the analysis of CANOC data which we described earlier in

Section 1.5. We focus on the use of multistate models for viral load (VL) dynamics, and

the challenges in fitting such models based on data with irregular followup times. The

numerical results in Section 3.3 included equally spaced gap times between visits, but we
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expect the impact to be similar when they vary within and between subjects.

In the present analysis, individuals were included in the study if they achieved viro-

logic suppression (V L < 50) copies/mL on two consecutive visits. One main interest in

this study is the event of virologic rebound, and so we consider the time from virologic

suppression to virologic rebound (V L ≥ 1000). For individuals not having a viral rebound

during the followup period, the viral rebound times are censored at the last viral load

measurement times.

Grennan et al. (2012) studied viral rebounds in the CANOC data. Since there are

differences in patient characteristics across CANOC sites, we focus here only on males

in the British Columbia cohort, which has a good record for followup. We considered

1869 participants who had their first antiretroviral therapy between January 4, 2000 and

Febuary 25, 2009. We divided participants into two groups based on the year of their

first antiretroviral therapy (FARV), in order to allow for developments in cART over time:

FARV1 refers to those who started cART in years 2000− 2004, and FARV2 refers to those

who started in years 2005 − 2009. There are n = 834 individuals in the FARV1 and

n = 1035 individuals in the FARV2 group.

In our analysis, we are considering the same covariates as Grennan et al. (2012). Base-

line covariates include age, indication of injection drug use (IDU), indication of sex with

men (MSM), and type of the initial combination antiretroviral therapy (cART). Age is

taken to be a binary covariate which categorizes the age at entry to the study in years as

age ≤ 45 or age > 45. The reference level is age ≤ 45. Covariate IDU has three categories:

the reference category is for non injection drug users (IDU=No); the second category is

for those individuals who are injection drug users (IDU=Yes); (IDU=NA) refers to those

whose IDU status is unknown, of which they are many. Covariate cART has two categories
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of treatment (nonnucleoside reverse transcriptase inhibitor (NNRTI), or protease inhibitor

(PI)); the reference level is NNRTI. We also considered covariate MSM, but we dropped it

for the present discussion, since it did not have any significant effect in the cohort that we

considered. Table 3.1 shows some basic characteristics of the study individuals.

Cohort members are nominally seen about every three months, but are sometimes seen

more or less often. Table 3.2 shows the quartiles of length of followup, number of visits,

and gap times between visits (in years). In FARV1, there were 368 gap times which were

smaller than 0.05 years, and 13 gap times greater than 2 years. Similarly, in FARV2, we

had 222 gap times smaller than 0.05 years, and 1 gap time greater than 2 years. Figure

3.2 and 3.3 show plots of last visit times versus first antiretroviral visit times for FARV1

and FARV2 groups. The time origins for plots in Figures 3.2 and 3.3 are January 4, 2000

and January 1, 2005, respectively. In these plots, crosses indicate individuals who died; in

this case, the time of death is the last “visit” time. For individuals who were still alive

as of the administrative censoring time, dots indicate the time of their last visit. If every

inter-visit time were less than, say, 6 months then the dots would all be within 6 months of

the administrative end date. We see that this is the case for the majority of persons, but

that at the end of follow up some individuals have not been seen for a long time. These

persons might be deemed lost to followup, though in principle they could reappear in the

future.

3.4.1 Model fitting and estimation

In this section, we analyse viral loads up to the time of a first viral rebound by considering

the multistate model shown in Figure 3.1(b). We defined 3 states based on viral load values:

State 1 is V L < 50, state 2 is 50 ≤ V L < 1000, and state 3 is V L ≥ 1000 copies/mL.
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group. Time is in years, measured from January 1, 2000.
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Figure 3.3: The plot of length of followup times vs first antiretroviral visit for the FARV2

group. Time is in years, measured from January 1, 2000.
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Table 3.3: Observed transitions for the three-state multi-state model in Figure 3.1-(b) for

the FARV1 group.

Transition to

Transition from State 1 State 2 State 3

State 1 13764 426 275

State 2 359 191 52

Table 3.4: Observed transitions for the three-state multi-state model in Figure 3.1-(b) for

the FARV2 group.

Transition to

Transition from State 1 State 2 State 3

State 1 8228 464 112

State 2 400 211 16

State 1 effectively means that HIV in the blood is undetected, and state 3 represents viral

rebound. We assumed state 3 as an absorbing state, since after an individual enters this

state, treatment is adjusted so that they can achieve viral suppression. Then, after viral

suppression, we can model the next viral rebound once again. Tables 3.3 and 3.4 present

the transition counts for this multistate model in the FARV1 and FARV2 groups. The

counts in Tables 3.3 and 3.4 are totals across all pairs of successive visit times for all

individuals, and because the inter-visit times vary a good deal, should just be considered

as summaries of observed transitions.

We fit Markov regression models with transition intensities

qrs(t|z) = q0rs(t)exp(βrsz), (r, s) = (1, 2), (2, 1), (2, 3) (3.13)

where the vector βrs indicates the covariate effects for transitions r to s, and z is a covariate
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vector. We fitted time homogeneous and piecewise constant Markov models to both FARV1

and FARV2 groups using the msm package in R (Jackson 2011). The results for the time

homogeneous Markov model fitted are not presented. Tables 3.5 and 3.6 show estimates

and standard errors for the baseline transition intensities and covariate effects in the time

inhomogeneous models. In these models, the cut time point is chosen to be 2 years. The

msm software handles this by defining a time-dependent covariate which equals zero up

to t = 2 and 1 for t ≥ 2. So, the baseline intensities are for times t < 2 and the “time”

regression coefficient is the log ratio of the transition intensities for t ≥ 2 to those for

t < 2.

Tables 3.5 and 3.6 show that individuals with age above 45 years tend to enter state 3

from state 2 at a lower rate than people below age 45. However, the directions of estimated

regression coefficients for the older age people for moving between state 1 and 2 are different

in the FARV1 and FARV2 groups. In the FARV2 group, the older age individuals are more

likely to stay in state 2 once they have entered this state, whereas in the FARV1 group the

opposite is true. Injection drug users have a higher rate of entry into state 3, particularly

in the FARV2 group. Individuals with an unknown IDU status are similar to non-injection

drug users. Regarding the cART covariate, people with PI initial treatment tend to move

more from state 1 to state 2, and have less tendency to transition from state 2 to state 3.

Finally, we can also see that time has a negative effect on different transitions. That is,

individuals have less tendency to move between states after 2 years, especially from state

1 to state 2. One possibility is that this is a reflection of unobserved heterogeneity across

individuals, with individuals more likely to move already in state 3 as time goes by.
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3.4.2 Effects of inter-visit times

We investigate here the effects of the frequency of visits on the precision of baseline tran-

sition intensities and covariate effects estimators in the FARV2 group. Individuals are

nominally seen every three months. However, Table 3.2 shows that the median gap time

is 0.189 years. We examine how the standard deviations of estimates change when the

gap time between visits increases from 0.25 years (every three months) to 0.5 years (every

6 months). This exercise will illustrate the effect on estimation of having less frequent

followup. We consider the estimated model represented in Table 3.6 as the true process,

except that we assume the transition intensities do not change after 2 years. We then use

the approach discussed in Section 3.2.2 to compute the asymptotic standard deviations for

baseline transition intensities and covariate effects. We adjusted the total followup time

for each individual as the closest quarter-year value, thus allowing for the different lengths

of followup. Table 3.7 shows the results. As we see, the standard errors for baseline transi-

tion intensities and covariate effects are substantially larger when ∆t = 0.5 than when it is

0.25 years. Table 3.8 shows the standard error estimates for prevalence probabilities. The

estimates of probabilities are for an individual with z vector 0. The table indicates that

the estimates of prevalence probabilities such as P13(1) and P13(2) have almost the same

standard errors for both ∆t = 0.25 and ∆t = 0.5. Table 3.9 shows the estimated prevalence

probabilities for the highest risk individuals (age≤ 45, IDU=Yes, cART=NNRTI ) and the

lowest risk individuals (age> 45, IDU=No, cART=PI). The P̂13(t) at t = 1 and 2 for

the highest risk individuals are 0.176 and 0.330, respectively. Similarly, the corresponding

values for the lowest risk individuals are 0.043 and 0.089.
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3.5 Concluding remarks

In this chapter, we discussed the estimation of asymptotic covariance matrices for panel

data and for continuous observations. We investigated the effect of gap times between visits

on estimation in numerical studies, by considering the efficiency of maximum likelihood

estimators of transition intensities and probabilities based on panel data, relative to the

estimators obtained from continuous observation of individuals. The results show that

in bi-directional models, the relative precision of transition intensity estimators drops off

rapidly with increasing gap times between visits, but the decrease is smaller for transition

probabilities. However, in progressive models, the loss of efficiency for transition intensities

and probabilities is small. Therefore, we conclude that in bi-directional Markov models,

transition intensities can not be estimated precisely when the observation times are too far

apart.

The methods considered in this chapter can also be used to assess the relative preci-

sion of estimation for different gap times between visits, designing panel studies with the

appropriate length and frequency of followup. For example, investigators can look at the

effect of the frequency of visits on the precision of estimation of various model parameters,

and design followup based on the precision of estimation and budgetary constraints.

Another use of asymptotic covariance matrices is to assess when msm or other soft-

ware may encounter convergence problems when maximizing the likelihood functions. In

these situations, we can compute the asymptotic covariance matrices for estimated tran-

sition intensities, and check the range of the corresponding eigenvalues. The existence of

eigenvalues close to zero, indicates that certain combinations of the intensities can not be

estimated precisely, and that the likelihood is flat in directions specified by the correspond-

ing eigenvectors.
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3.6 Appendix: Tables with Numerical Results on Rel-

ative Efficiency
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Table 3.10: Ratios of asymptotic standard deviations (3.12) for estimators of transition

intensities and probabilities in two-state Markov models with (1) q12 = q21 = 1 (M1a(i)),

(2) q12 = 1, q21 = 4 (M1a(ii)), and (3) q12 = 1, q21 = 0 (M1b). Values of P11(t) in M1a(i)

are P11(1) = 0.568, P11(2) = 0.509, P11(4) = 0.500, in M1a(ii) they are P11(1) = 0.801,

P11(2) = 0.800, P11(4) = 0.800, and in M1b they are P11(1) = 0.368, P11(2) = 0.135,

P11(4) = 0.018. The total followup time is 4 years.

∆t q12 q21 P11(1) P11(2) P11(4)

M1a(i) 0.25 0.89 0.87 0.64 0.64 0.64

0.5 0.73 0.71 0.62 0.64 0.64

1 0.40 0.40 0.50 0.62 0.60

2 0.08 0.09 0.13 0.44 0.51

M1a(ii) 0.25 0.63 0.64 0.97 0.97 0.97

0.5 0.30 0.30 0.87 0.88 0.88

1 0.04 0.04 0.64 0.70 0.70

2 4.2e-04 4.4e-04 0.01 0.52 0.54

M1b 0.25 0.99 - 0.99 0.99 0.99

0.5 0.99 - 0.99 0.99 0.99

1 0.96 - 0.96 0.96 0.96

2 0.86 - 0.86 0.86 0.86

51



Table 3.11: Ratios of asymptotic standard deviations for estimators of transition intensities

and probabilities in two-state Markov models with (1) q12 = q21 = 1 (M1a(i)), (2) q12 =

1, q21 = 4 (M1a(ii)), and (3) q12 = 1, q21 = 0 (M1b). Values of P11(t) in M1a(i) are

P11(1) = 0.568, P11(2) = 0.509, P11(4) = 0.500, P11(8) = 0.500, in M1a(ii) they are

P11(1) = 0.801, P11(2) = 0.800, P11(4) = 0.800, P11(8) = 0.800, and in M1b they are

P11(1) = 0.368, P11(2) = 0.013, P11(4) = 0.002, P11(8) = 3.3e − 04. The total followup

time is 10 years.

∆t q12 q21 P11(1) P11(2) P11(4) P11(8)

M1a(i) 0.25 0.87 0.86 0.98 1.00 1.00 1.00

0.5 0.70 0.69 0.92 0.98 0.98 0.98

1 0.39 0.38 0.70 0.91 0.90 0.91

2 0.08 0.08 0.19 0.19 0.58 0.75

M1a(ii) 0.25 0.62 0.64 0.95 0.95 0.95 0.95

0.5 0.30 0.30 0.84 0.84 0.84 0.84

1 0.04 0.04 0.59 0.66 0.66 0.66

2 3.3e-04 3.4e-04 0.01 0.44 0.49 0.49

M1b 0.25 0.99 - 0.99 0.99 0.99 0.99

0.5 0.99 - 0.99 0.99 0.99 0.99

1 0.96 - 0.96 0.96 0.96 0.96

2 0.85 - 0.85 0.85 0.85 0.85
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Table 3.12: Ratios of asymptotic standard deviations for estimators of transition intensities

and probabilities in three-state Markov models with (1) q12 = 1, q21 = 2, q23 = 1 (M2a) and

(2) q12 = 1, q21 = 0, q23 = 1 (M2b). Values of P11(t) and P13(t) in M2a are P11(1) = 0.608,

P11(2) = 0.462, P11(4) = 0.270, P13(1) = 0.178, P13(2) = 0.369, P13(4) = 0.631, and in

M2b are P11(1) = 0.368, P11(2) = 0.135, P11(4) = 0.018, P13(1) = 0.264, P13(2) = 0.594,

P13(4) = 0.908. The total followup time is 4 years.

∆t q12 q21 q23 P11(1) P11(2) P11(4) P13(1) P13(2) P13(4)

M2a 0.25 0.80 0.74 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.5 0.56 0.49 0.98 0.97 1.0 1.0 1.0 1.0 1.0

1 0.27 0.23 0.90 0.85 0.99 1.0 0.91 1.0 1.0

2 0.13 0.11 0.72 0.58 0.89 1.0 0.67 0.99 1.0

M2b 0.25 0.99 - 1.0 0.99 0.99 0.99 1.0 1.0 1.0

0.5 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99

1 0.97 - 0.96 0.97 0.97 0.97 0.99 0.99 0.99

2 0.87 - 0.84 0.87 0.87 0.87 0.95 0.95 0.95
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Table 3.13: Ratios of asymptotic standard deviations for estimators of transition intensities

and probabilities in three-state Markov models as in Figure1(b) with (1) q12 = 1, q21 =

2, q23 = 1 (M2a) and (2) q12 = 1, q23 = 1 M2b. Values of P11(t) and P13(t) in M2a

are P11(2) = 0.462, P11(4) = 0.270. P11(8) = 0.092, P13(2) = 0.369, P13(4) = 0.631,

P13(8) = 0.874 and in M2b are P11(2) = 0.013, P11(4) = 0.002. P11(8) = 7.7e − 06,

P13(2) = 0.594, P13(4) = 0.908, P13(8) = 0.997. The total followup time is 10 years.

∆t q12 q21 q23 P11(2) P11(4) P11(8) P13(2) P13(4) P13(8)

M2a 0.25 0.79 0.73 0.99 0.99 1.00 1.00 1.00 1.00 1.00

0.5 0.55 0.48 0.95 0.98 0.99 1.00 1.00 1.00 1.00

1 0.26 0.22 0.85 0.94 0.98 0.99 0.98 1.00 1.00

2 0.13 0.10 0.66 0.81 0.95 0.98 0.90 1.00 1.00

M2b 0.25 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.5 0.99 - 0.98 0.99 0.99 0.99 0.99 0.99 0.99

1 0.96 - 0.94 0.96 0.96 0.96 0.98 0.98 0.98

2 0.86 - 0.81 0.86 0.86 0.86 0.93 0.93 0.93
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Table 3.14: Ratios of asymptotic standard deviations for estimators of transition intensities

and regression coefficients in three-state Markov models with (1) q12 = 1, q21 = 2, q23 = 1,

β12 = −0.2, β21 = −0.5, β23 = −0.9 (M3a) and (2) q12 = 1, q21 = 0, q23 = 1, β12 = −0.2,

β21 = 0, β23 = −0.9 (M3b).The total followup time is 4 years.

∆t q12 q21 q23 β12 β21 β23

M3a 0.25 0.80 0.74 1.0 0.85 0.80 1.0

0.5 0.56 0.49 0.98 0.66 0.59 1.0

1 0.27 0.23 0.90 0.35 0.30 1.0

2 0.13 0.11 0.72 0.15 0.14 0.90

M3b 0.25 0.99 - 1.0 1.0 - 1.0

0.5 0.99 - 0.99 0.99 - 1.0

1 0.97 - 0.96 0.98 - 1.0

2 0.87 - 0.84 0.90 - 0.99

55



Table 3.15: Continuation of Table 3.14: Ratios of asymptotic standard deviations for

estimators of transition probabilities in three-state Markov models when an individual has

Z = 1. Values of P11 and P13 in M3a are P11(1) = 0.625, P11(2) = 0.517, P11(4) = 0.384,

P13(1) = 0.083, P13(2) = 0.202, P13(4) = 0.309 and in M3b are P11(1) = 0.440, P11(2) =

0.194, P11(4) = 0.038, P13(1) = 0.112, P13(2) = 0.310, P13(4) = 0.647. The total followup

time is 4 years.

∆t P11(1) P11(2) P11(4) P13(1) P13(2) P13(4)

M3a 0.25 1.0 1.0 1.0 1.0 1.0 1.0

0.5 0.98 1.0 1.0 1.0 1.0 1.0

1 0.84 1.0 1.0 1.0 1.0 1.0

2 0.47 0.86 1.0 1.0 1.0 1.0

M3b 0.25 0.99 0.99 0.99 1.0 1.0 1.0

0.5 0.99 0.99 0.99 1.0 1.0 1.0

1 0.97 0.97 0.97 1.0 1.0 1.0

2 0.87 0.87 0.87 1.0 1.0 1.0
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Table 3.16: Ratios of asymptotic standard deviations for estimators of transition intensities

and regression coefficients in three-state Markov models with (1) q12 = 1, q21 = 2, q23 = 1,

β12 = −0.2, β21 = −0.5, β23 = −0.9 (M3a) and (2) q12 = 1, q21 = 0, q23 = 1, β12 = −0.2,

β21 = 0, β23 = −0.9 (M3b). The total followup time is 10 years.

∆t q12 q21 q23 β12 β21 β23

M3a 0.25 0.79 0.73 0.99 0.82 0.77 0.99

0.5 0.55 0.48 0.95 0.60 0.54 0.98

1 0.26 0.22 0.85 0.30 0.26 0.91

2 0.13 0.10 0.66 0.14 0.12 0.76

M3b 0.25 0.99 - 0.99 0.99 - 0.99

0.5 0.99 - 0.98 0.99 - 0.99

1 0.96 - 0.94 0.97 - 0.97

2 0.86 - 0.81 0.89 - 0.90
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Table 3.17: Continuation of Table 3.16: Ratios of asymptotic standard deviations for

estimators of transition probabilities in three-state Markov models with Z = 1. Values of

P11 and P13 in M3a are P11(2) = 0.517, P11(4) = 0.384. P11(8) = 0.215, P13(2) = 0.202,

P13(4) = 0.403, P13(8) = 0.666 and in M3b are P11(2) = 0.194, P11(4) = 0.038, P11(8) =

0.001, P13(2) = 0.310, P13(4) = 0.647, P13(8) = 0.924. The total followup time is 10 years.

∆t P11(2) P11(4) P11(8) P13(2) P13(4) P13(8)

M3a 0.25 0.99 1.00 1.00 1.00 1.00 1.00

0.5 0.99 1.00 1.00 1.00 1.00 1.00

1 0.93 0.99 1.00 0.99 1.00 1.00

2 0.76 0.93 1.00 0.85 1.00 1.00

M3b 0.25 0.99 0.99 0.99 1.00 1.00 1.00

0.5 0.99 0.99 0.99 1.00 1.00 1.00

1 0.97 0.97 0.97 0.99 0.99 0.99

2 0.90 0.90 0.90 0.98 0.99 0.99
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Table 3.18: Ratios of asymptotic standard deviations for estimators of transition intensities

and probabilities in three-state Markov models with (1) q12 = 1, q21 = 2, q13 = 0.25, q23 =

0.5 (M4a) and (2) q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5 (M4b). Values of P11(t) and

P13(t) in M4a are P11(1) = 0.515, P11(2) = 0.364. P11(4) = 0.188, P13(1) = 0.263, P13(2) =

0.469, P13(4) = 0.725 and in M4b are P11(1) = 0.472, P11(2) = 0.223. P11(4) = 0.045,

P13(1) = 0.259, P13(2) = 0.487, P13(4) = 0.779. The total followup time is 4 years.

∆t q12 q21 q13 q23 P11(1) P11(2) P11(4) P13(1) P13(2) P13(4)

M4a 0.25 0.75 0.74 0.83 0.80 0.99 1.0 1.0 1.0 1.0 1.0

0.5 0.48 0.48 0.66 0.62 0.97 1.0 1.0 0.99 1.0 1.0

1 0.14 0.15 0.40 0.37 0.80 0.96 1.0 0.93 1.0 1.0

2 7e-03 8e-03 0.04 0.05 0.08 0.80 0.97 0.56 0.99 1.0

M4b 0.25 0.97 - 0.94 0.98 1.0 1.0 1.0 0.98 1.0 1.0

0.5 0.93 - 0.88 0.95 1.0 1.0 1.0 0.96 1.0 1.0

1 0.83 - 0.75 0.90 0.99 0.99 0.99 0.90 0.99 1.0

2 0.60 - 0.51 0.76 0.93 0.93 0.93 0.70 0.90 1.0
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Table 3.19: Continuation of Table 3.18: Values of P22(t) and P23(t) in M4a are P22(1) =

0.237, P22(2) = 0.155, P22(4) = 0.080, P23(1) = 0.318, P23(2) = 0.510, P23(4) = 0.746 and

in M4b are P22(1) = 0.606, P22(2) = 0.368, P22(4) = 0.135, P23(1) = 0.393, P23(2) = 0.632,

P23(4) = 0.865. The total followup time is 4 years.

∆t P22(1) P22(2) P22(4) P23(1) P23(2) P23(4)

M4a 0.25 0.94 0.97 0.99 0.85 0.86 0.86

0.5 0.81 0.91 0.96 0.68 0.70 0.70

1 0.42 0.73 0.84 0.33 0.38 0.41

2 0.03 0.26 0.58 0.02 0.03 0.04

M4b 0.25 0.98 0.98 0.98 0.98 0.98 0.98

0.5 0.95 0.95 0.95 0.95 0.95 0.95

1 0.90 0.90 0.90 0.90 0.90 0.90

2 0.76 0.76 0.76 0.76 0.76 0.76
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Table 3.20: Ratios of asymptotic standard deviations for estimators of transition intensities

and probabilities in three-state Markov models with (1) q12 = 1, q21 = 2, q13 = 0.25, q23 =

0.5 (M4a) and (2) q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5 (M4b). Values of P11(t) and

P13(t) in M4a are P11(2) = 0.364, P11(4) = 0.188. P11(8) = 0.050, P13(2) = 0.469, P13(4) =

0.725, P13(8) = 0.926 and in M4b are P11(2) = 0.223, P11(4) = 0.500. P11(8) = 0.002,

P13(2) = 0.487, P13(4) = 0.779, P13(8) = 0.966. The total followup time is 10 years.

∆t q12 q21 q13 q23 P11(2) P11(4) P11(8) P13(2) P13(4) P13(8)

M4a 0.25 0.74 0.74 0.82 0.79 0.99 0.99 0.99 0.99 1.00 1.00

0.5 0.48 0.48 0.65 0.61 0.98 0.99 0.99 0.99 1.00 0.99

1 0.14 0.15 0.39 0.36 0.92 0.98 0.99 0.98 1.00 0.99

2 7.2e-03 8e-03 0.04 0.05 0.74 0.90 0.95 0.90 0.99 0.97

M4b 0.25 0.96 - 0.94 0.97 0.99 0.99 0.99 0.99 0.99 0.99

0.5 0.92 - 0.87 0.93 0.99 0.99 0.99 0.98 0.99 0.98

1 0.82 - 0.75 0.87 0.98 0.98 0.98 0.95 0.99 0.95

2 0.60 - 0.52 0.72 0.91 0.91 0.91 0.85 0.97 0.89
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Table 3.21: Continuation of Table 3.20: Values of P22(t) and P23(t) in M4a are P22(2) =

0.155, P22(4) = 0.080, P22(8) = 0.021, P23(2) = 0.510, P23(4) = 0.746, P23(8) = 0.932 and

in M4b are P22(2) = 0.368, P22(4) = 0.135, P22(8) = 0.018, P23(2) = 0.632, P23(4) = 0.865,

P23(8) = 0.982. The total followup time is 10 years.

∆t P22(2) P22(4) P22(8) P23(2) P23(4) P23(8)

M4a 0.25 0.96 0.98 0.99 0.95 0.98 0.99

0.5 0.89 0.94 0.97 0.89 0.95 0.98

1 0.72 0.82 0.90 0.72 0.85 0.92

2 0.26 0.56 0.71 0.43 0.60 0.75

M4b 0.25 0.97 0.97 0.97 0.97 0.97 0.97

0.5 0.93 0.93 0.93 0.93 0.93 0.93

1 0.87 0.87 0.87 0.87 0.87 0.87

2 0.72 0.72 0.72 0.72 0.72 0.72
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Chapter 4

Estimation of Prevalence

Probabilities and Failure Time

Distributions

4.1 Introduction

There has been considerable interest in the distribution of times to certain events in order

to assess disease progression. As we know, in multistate models, the states are often based

on underlying continuous measures, and failure times are often defined as the times of

entry to certain states. Failure time distributions can also be estimated using survival

analysis methods, and one way of assessing a multistate model’s fit is to compare the

estimates obtained by it and by a survival method. Similarly, state prevalence functions

are also used to check model fit, as we discussed in Section 2.3.2. Titman and Sharples
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(2010a) and Jackson (2011) mentioned such model checking methods for multistate models.

However, when there is considerable variability of observation times across individuals, we

have more chance of dependent observation times or dependent censoring. The estimation

of failure time distributions and prevalence probabilities by empirical methods described

in Section 2.3 can be biased in these situations.

Our purpose in this chapter is to discuss the estimation of marginal process features

such as failure time distributions and prevalence probabilities, and to present a method

to correct the bias of estimation in the presence of dependent observation times, Then,

we apply the methodology presented to assess the fit of the multistate model described in

Section 3.4.

The remainder of this chapter is as follows. Section 4.2 considers the estimation of failure

time distribution and prevalence probabilities based on multistate models and survival

methods. Section 4.3 discusses the effects of dependent observation times on estimation of a

failure time distribution and prevalence functions and presents a novel method that adjusts

the bias due to dependent observation. It also includes a simulation study for comparison

of multistate and survival models. Section 4.4 gives applications of our methodology to

CANOC data.

4.2 Estimation of prevalence probabilities

In this section, we describe the estimation of failure time distribution in both multistate and

survival models for intermittently observed data. In addition, we consider the estimation

of prevalence functions for multistate models when we have intermittent observation.
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4.2.1 Multistate models

In multistate models, we define a prevalence function as Py0r(t) = P (Y (t) = r|Y (0) = y0).

However, for many disease processes, all individuals are in the same initial state, say

state 1, at the time of entry into the study. So, the prevalence function can be denoted

as P1r(t) = P (Y (t) = r|Y (0) = 1). The estimates P̂1r(t) can be computed for Markov

models using the maximum likelihood estimates discussed in the Section 2.2. However,

if the processes involve internal covariates, direct calculation of prevalence probabilities is

complicated.

Sometimes in multistate models, the distributions of time to certain events are of in-

terest. For instance, we might be interested in the failure time T which is the time of

first entry to a specific state. Then, in this case, we make that state absorbing, and define

the failure time distribution F (t|z) = P (T ≤ t|z), for a given fixed covariate vector z.

So, in this situation, the failure time distribution can be considered as a special case of

prevalence functions. For example, we can use the model in Figure 3.1-b for analysis of

viral load processes in the CANOC data, and consider F (t) = P13(t) for the time T to a

viral rebound. In disease processes, sometimes multiple absorbing states can occur. This

is often called competing risks.

4.2.2 Survival methods

Suppose that Ti is a survival time for individual i with the distribution function P (Ti ≤

t|zi; θ) = F (t|zi; θ), where θ is a vector of parameters. As in Section 2.1, suppose that

individual i is seen at times tij(j = 1, ...,mi). We may then know that Ti ∈ (Li, Ri], where

Li = ti,j−1 and Ri = tij. Then, the likelihood function for θ based on n independent
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individuals is, under suitable assumptions,

L(θ) =
n∏
i=1

mi+1∏
j=1

{F (ti,j|Zi; θ)− F (ti,j−1|Zi; θ)}δij =
n∏
i=1

{F (Ri|zi; θ)− F (Li|zi; θ)}, (4.1)

where δij = I(ti,j−1 < Ti ≤ tij) and timi+1
=∞. Failure time distribution F (t|z; θ) can be

estimated by maximizing L(θ). Turnbull (1976) discussed the case where F (t) is treated

nonparametrically, where maximization of this likelihood produces the Turnbull estimator

(Lawless (2003), Section 3.5.3).

This likelihood function (4.1) is not valid if observation times tij are not conditionally

independent of Ti given zi. When there is a biomarker process {Yi(t), t > 0} this assumption

is for example violated when tij depends on Yi(ti,j−1) or previously observed process history,

Ȳi(ti,j−1) = {Yi(til), l = 0, 1, ..., j − 1}, and Ti is also related to the multistate process.

Then, Ti and tij are not conditionally independent given zi and that Ti > ti,j−1. In Section

4.3, we discuss a method to adjust for the estimation bias that arises from the violation

of the independent observation times assumption. We remark that in the setting just

described, estimation for the multistate model would not be subject to bias in the case

where tij depended on Yi(ti,j−1), as long as it is independent of {Yi(s), s > ti,j−1} given

Ȳi(ti,j−1).

4.2.3 Empirical prevalence methods

Suppose that individual i(i = 1, ..., n) is observed at times tij, j = 1, ...,mi, and all indi-

viduals start from state 1 at time 0. For a pre-specified set of times t1 < t2 < ... < tm, the

nonparametric prevalence probability estimates (naive estimates), P̃1r(t), are obtained by
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dividing the number of individuals in state r at time t by the number at risk,

P̃1r(tj) =
n∑
i=1

I(Yi(tj) = r)δi(tj)/
n∑
i=1

δi(tj), r = 1, ..., R, (4.2)

where δi(tj) = I(timi ≥ tj) indicates that individual i was still being followed at time

tj. In the case of a regular observational scheme, when all individuals are observed at the

same time points t1, ..., tm, we can compute the prevalence probabilities at these times.

However, when the observation scheme is irregular, we can no longer choose a set of times

that all individuals are observed. In this case, we can use one of the interpolation methods

described in Section 2.3.2 of Chapter 2 to calculate the prevalences at times of interest.

The msm package uses formula (4.2) to compute the empirical prevalences.

The empirical prevalence estimates can be used to assess the fit of multistate models by

comparison of them with the corresponding model-based estimates, and the agreement of

model-based estimates with the nonparametric estimates can be checked by constructing

confidence intervals based on either type of estimates. For example, we can construct

pointwise confidence intervals with the model based prevalence estimates by considering

standard errors obtained from the bootstrap or by using asymptotic covariance matrix

estimates discussed in Chapter 3. Bootstrap methods are very time-consuming, but can

be implemented by the function prevalence.msm in the msm package.

For the prevalence estimates (4.2), we assume that the gap times ∆tij = tij − ti,j−1 are

conditionally independent of {Yi(t), t > ti,j−1} given ti,j−1 and fixed covariate zi. However,

this assumption is often violated and the gap times might be related to the previous process

history and this can produce a bias in estimating the prevalence probabilities. We propose

a remedy for this issue in Section 4.3. There are some other problems in estimating the

probabilities with intermittent observation that we will discuss later in Chapter 5.
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4.3 Process-dependent observation times

In some studies, the gap times between visits depend on previous process history. For

example, ∆tij = tij − ti,j−1 may depend on Yi(ti,j−1). This dependency does not have

any effect on estimation in Markov models. However, it can produce bias in estimation

for failure time and nonparametric prevalence methods that we discussed in Sections 4.2.2

and 4.2.3.

There are different approaches for addressing the problem of the bias in estimation of

nonparametric prevalences in this context. One approach is to use a shared random effect

model for the observation and response processes, and assume that the underlying response

or event process is independent of the observation process given the unobserved random

effects. Sun et al. (2004), Liang et al. (2009), and Zhu et al. (2011) discussed this method.

Another approach is to use inverse intensity weights, described below. Lin et al. (2004),

Buzkova and Lumley (2007, 2009) and Pullenayegum and Feldman (2013) considered this

approach. This method provides unbiased estimating functions for marginal features of

the process, and can be adapted to the estimation of prevalence probabilities P1r(t) and

failure time distributions F (t). In this section, we describe this approach, and compare

different estimates under various scenarios of dependent observation times.

4.3.1 Inverse intensity weight estimation (IIW)

We define the counting process {Ni(t), t > 0} for observation times; that is, Ni(t) is the

number of observation times tij by time t for individual i. We also define the intensity

function λi(t|H̃i(t)) for the observation process, where H̃i(t) includes the previous history

of the multistate process and the observation process; H̃i(t) = {N̄i(t
−), Ȳi(t

−)}, where
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N̄i(t) = {Ni(s), 0 < s ≤ t} and Ȳi(t) = {Yi(s), 0 < s ≤ t}. External covariates are

also understood to be part of H̃i(t). It is further assumed that dNi(t) is independent

of Yi(t), given H̃i(t). The IIW method also requires the assumption that λi(t|H̃i(t)) =

λi(t|H̃obs
i (t)), where H̃obs

i (t) is the observed history; suppressing any covariates for now,

H̃obs
i (t) = {tij, Yi(tij), for j = 1, ..., Ni(t

−)}. This assumption can be violated, especially

when ∆tij’s are large, but models that do not assume it require uncheckable assumptions.

For convenience we write λi(t) for λi(t|H̃obs
i (t)). Finally, it is assumed that λi(t) is either

(a) positive for all H̃obs
i (t) or (b) zero for all H̃obs

i (t) at a given t. In the case of (b), we are

not able to estimate P1r(t) for that value of t.

Assuming that we know the intensity λi(t), an estimating function for P1r(t; θ) =

P (Y (t) = r; θ) is

Uw(θ) =
n∑
i=1

∫ τ

0

λi(t)
−1{Yir(t)− P1r(t; θ)}gi(t, θ)dNi(t), (4.3)

where Yir(t) = I(Yi(t) = r), gi(t; θ) is a p × 1 vector of functions of the same dimension

as θ, and τ is an administrative upper limit on followup. Lin et al. (2004) showed that

E{Uw(θ)} = 0 by using iterated expectations under regularity conditions, as follows:

E{Uw(θ)} = E{
n∑
i=1

∫ τ

0

E[gi(t; θ){Yir(t)− P1r(t; θ)}
dNi(t)

λi(t)
|H̃i(t

−)]} (4.4)

= E{
n∑
i=1

∫ τ

0

gi(t; θ)E{Yir(t)− P1r(t; θ)|Hi(t
−)}E[dNi(t)|H̃i(t

−)]

λi(t)
}

=
n∑
i=1

∫ τ

0

gi(t; θ)E[E{Yir(t)− P1r(t; θ)}|H̃i(t
−)]

=
n∑
i=1

∫ τ

0

gi(t; θ)E{Yir(t)− P1r(t; θ)} = 0.

Solving Uw(θ) = 0 produces a consistent estimator of θ with asymptotic normal distribu-

tion, under mild regularity conditions (e.g. White (1982)).
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An examination of (4.3) and (4.4) with λ−1
i (t) dropped shows why empirical estimators

(4.2) can be biased. We note that (4.2) arises from equating (4.3) to zero and associating θ

with the (non-countable) set of probabilities P1r(t), so when λ−1
i (t) is dropped from (4.3),

the inner expectation in (4.4) produces λi(t|H̃obs
i (t)), and Yir(t) is not independent of this

function of H̃obs
i (t) in general. Consequently, the expectation (4.4) is not zero, though it

is in the case where λi(t|H̃i(t
−)) does not involve H̃i(t

−).

An estimating function of the form (4.3) is given by the derivative of the weighted sum

of squares, Sw(θ),

Sw(θ) =
n∑
i=1

∫ τ

0

wi(tij){Yir(tij)− P1r(tij; θ)}2dNi(t) (4.5)

=
n∑
i=1

mi∑
j=1

wi(tij){Yir(tij)− P1r(tij; θ)}2

with respect to θ, where wi(t) = λi(t)
−1. So one choice of gi(t; θ) is gi(t, θ) = ∂P1r(t; θ)/∂θ.

Another alternative is the binomial generalized linear model choice gi(t; θ) = ∂P1r(t;θ)
∂θ

/[P1r(t; θ)

(1− P1r(t; θ))].

An important issue with using (4.3) is that, the observation process intensity λi(t) is

unknown and needed to be estimated via some family of models. We consider this next,

where Zi(t) contains features of H̃obs
i (t).

4.3.2 Estimation of the observation process intensity

One approach is to model λi(t) by the semiparametric Cox model: λi(t|H̃obs
i (t)) = λ0(t)exp(

βTZi(t)), Buzkova and Lumley (2007, 2009) used this model and showed that the baseline

intensity λ0(t) can be dropped from the estimating function. However, with intermittently

observed data, the observation intensities λi(t) typically depend more on the time since
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the last visit, t − tiNi(t−), rather than observation time t. Thus, we use the Semi-Markov

model

λ(t|H̃i(t)) = λ0(Bi(t))exp(β
T zi(t)), (4.6)

where Bi(t) = t − tiNi(t−), as our basic model. We assume that zi(t) = zij = zi(ti,j−1),

ti,j−1 ≤ t < tij; that is, zi(t) only depends on the information up to the previous observation

time. We let bij = tij − ti,j−1 denote the observed gap times between visits and bimi+1 =

τi − timi , where τi is the end of followup time for individual i. When the bijs are different

distinct values, the estimate of the observation process intensity at the observed gap time

bij is

λ̂0(bij) =
1∑n

l=1

∑ml+1
r=1 I(blr ≥ bij)exp(β̂zlr)

, (4.7)

as discussed in Chapter 4 of Cook and Lawless (2007). For continuous gap time models,

we should have distinct bij’s. However, a few ties can be handled by standard Cox model

methods. Then, the weights in (4.5) are estimated as

ŵi(tij) = { ˆλ0(bij)exp(β̂
T zij)}−1. (4.8)

4.3.3 Nonparametric estimation of prevalence probabilities and

failure time distributions

Suppose s1 < s2 < ... < sm are the distinct values among the set of observation times,

{tij, j = 1, ...,mi, i = 1, ..., n}. For a given r, we equate θsl with P1r(sl), and minimize (4.5)

for θ. We can rewrite (4.5) as

Sw(θ) =
m∑
l=1

n∑
i=1

mi∑
j=1

I(tij = sl)wi(tij){Yir(tij)− P1r(sl)}2, (4.9)
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and minimizing it gives nonparametric estimates P̃1r(sl) as

P̃1r(sl) =

∑n
i=1

∑mi
j=1 I(tij = sl)wi(tij)Yir(tij)∑n

i=1

∑mi
j=1 I(tij = sl)wi(tij)

=
dr(sl)

w+(sl)
. (4.10)

However, there are problems concerning nonparametric prevalence estimates (4.10). The

first issue is that, there are often few tij equal to any given sl, and in extreme cases each

sl may only be associated with just one tij and (4.10) is 0 or 1. Thus, the estimates (4.10)

are discrete and we need to use smoothing or grouping to obtain reasonable estimates. In

order to overcome this issue, a simple approach is to break time into intervals and estimate

prevalence probabilities for each interval. Suppose a grid of values al with 0 = a0 < a1 <

... < am partitions the time axis, and denote intervals Il = (al−1, al] for l = 1, ...,m + 1.

For each interval Il, we let tml = 0.5(al−1 + al) denote the midpoint of interval Il. Now, we

can define the nonparametric prevalence estimates for time interval Il as

P̃1r(tml)
.
= P̃1r(t ∈ Il) =

∑n
i=1

∑mi
j=1 I(tij ∈ Il)ŵi(tij)Yir(tij)∑n

i=1

∑mi
j=1 I(tij ∈ Il)ŵi(tij)

. (4.11)

If we choose intervals Il so that each interval contains a substantial number of observation

times tij, then the estimates (4.11) are less variable, though it is better not to use intervals

that are too wide. We may also want to smooth estimates (4.11) in some cases, using for

example a standard procedure such as loess in R.

Another problem with estimates (4.10) or (4.11) is that sometimes the prevalence func-

tion P1r(t) needs to be monotonic, but it is not. For instance, when state r is an absorbing

state, P1r(t) has to be nondecreasing with respect to time t. In this situation, we can

equate Yir(tij) and P1r(sl) in (4.9) with Yi(t) = I(Ti ≤ t) and F (t), respectively. Then,

we can minimize (4.9) subject to the Fsl being non-decreasing for l = 1, 2, .... This is

equivalent to minimizing S∗w(θ) which is

S∗w(θ) =
m∑
l=1

w+(sl){ȳl − F (sl)}2, (4.12)
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where w+(sl) =
∑n

i=1

∑mi
j=1 I(tij = sl)wi(tij) and ȳl =

∑n
i=1

∑mi
j=1 I(tij = sl)wi(tij)Yi(tij)/w+(sl).

Now, minimizing S∗w(θ) subject to the constraint, yields the isotonic regression estimate,

(e.g. Sun (2006), p. 210)

F̃ (sl) = maxr≤lminu≥l{
∑u

v=r dr(sv)∑u
v=r w+(sv)

}. (4.13)

Thus, we can get the raw estimates of (4.11) and then use the isotonic regression estimate

of (4.13) as nonparametric estimates of F (sl). The isotonic regression estimates are easily

computed utilizing the “isoreg” function in R.

In the discrete time framework, we assume that s1, ..., sm are the actual times of visits

which are prespecified. In the simulation studies of Section 4.3.4, we will use the discrete

setting.

4.3.4 Simulation studies

Now we conduct some simulation studies to assess the performance of the proposed IIW

method, and to evaluate its robustness with respect to different types of model misspecifica-

tion for estimating weights. Our primary aim is to compare the IIW method with the naive

method which does not incorporate weights to adjust for the process-dependent observa-

tion times. We do this for models that do not involve covariates, for simplicity. In Section

4.4 we analyze CANOC data and consider models with covariates. We show below that

large biases in the prevalence estimates can result if the dependency is not accounted for

when it should be. We also investigate the performance of the IIW prevalence probability

estimates when the estimated weights are obtained from misspecified models.
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Simulation 1

This simulation is motivated by the CANOC observational study, in which individuals

observation times are related to previous states (viral loads). In Section 4.4.2 of this

chapter, we will show that the states individuals were in at their previous observation

times are highly associated with the gap times between visits. Briefly, we will consider

states based on viral load values defined earlier in Section 3.4.1, and show that individuals

who were in state 2 at their previous visit time tend to have shorter gap times compared

to those whose last state was 1. The main objectives of the following simulation are,

first, to examine bias induced by the state dependency of observation times and second, to

assess the performance of the IIW method in the presence of process-dependent observation

times.

In this simulation, we consider only one set of n = 5000 sample paths, and the

bias and standard deviation are considered later in simulation 2. To keep complica-

tions to a minimum, we assume that individuals can be seen only at discrete times

t = 0, 0.1, 0.2, 0.3, ..., 4. We considered the multistate model in Figure 3.1(b) with tran-

sition intensities λ12 = 1, λ21 = 2, and λ23 = 1, and we assumed that all individuals are

in state 1 at time 0. For the process-dependent observation times, we supposed that the

discrete gap times ∆tij between visits depend on the states individuals were in at their pre-

vious observation times. We generated ∆tij = bij|Yi(tij−1) = 1 and ∆tij = bij|Yi(tij−1) = 2

from geometric distrubutions (1 − p)b−1p, b = 1, 2, .. with p = 1/6 and 1/3 respectively.

Here, for simplicity of notation b = 1, 2, 3, ... correspond to 0.1, 0.2, 0.3, .... Note that an

individual is in state 1 at a visit, then the mean time to their next visit is 0.6, whereas it

is 0.3 if they are in state 2.

In all the simulation studies of this section, we assume that the visit time processes are
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discrete; that is the actual visit times are prespecified at time 0.1, 0.2, 0.3, ..., 4. In order

to compute the IIW prevalence estimates in this discrete time framework, we assume all

the possible discrete visit times 0.1, 0.2, 0.3, ..., 4 as s1, s2, s3..., sm, and use equation (4.10)

to estimate the IIW prevalence probabilities P̂11(t) and P̂12(t).

To estimate the required weights for the IIW methods, we fitted geometric distributions

and more general semi-Markov models to both ∆tij|Yi(tij−1) = 1 and ∆tij|Yi(tij−1) = 2.

We denote P (bij = b|∆tij ≥ b, Yi(ti,j−1) = r) for r = 1, 2 by αr(b). The gap time intensities

αr(b) are estimated by α̂r(b) =
∑n
i=1

∑mi
j=1 I(bij=b)I(Yi(ti,j−1)=r)∑n

i=1

∑mi
j=1 I(bij≥b)I(Yi(ti,j−1)=r)

for r = 1, 2. For geometric

distributions, αr(b) = pr, (r = 1, 2), and it is estimated by
∑n
i=1

∑mi
j=1 I(Yi(ti,j−1)=r)∑n

i=1

∑mi
j=1 I(Yi(ti,j−1)=r)(bij/0.1)

for r = 1, 2. The estimated standard deviations for the semi-Markov and geometric in-

tensity estimators are SE(α̂r(b)) =
√

α̂r(b)(1−α̂r(b))
nr(b)

, r = 1, 2, and SE(p̂r) =
√

p̂r(1−p̂r)
nr

,

r = 1, 2, respectively, where nr(b) is
∑n

i=1

∑mi
j=1 I(bij ≥ b)I(Yi(ti,j−1) = r), and nr is∑n

i=1

∑mi
j=1 I(Yi(ti,j−1) = r). The estimated geometric probabilities were p̂1 = 0.184 and

p̂2 = 0.348 respectively for the sample of 5000 processes generated, and the corresponding

standard deviation estimates were 0.003 and 0.006. For semi-Markov models, the estimated

gap time intensities α̂r(b) for r = 1 and 2 are shown in Figure 4.1, along with the geometric

estimates. In addition, Tables 4.1 and 4.2 show the gap time intensity estimates and their

standard errors for the both geometric and more general semi-Markov models. For those

people who entered state 3, we kept them in this state at every time point after their entry

to this state and took wi(t) = 1 for each subsequent visit time t. Then, we applied the

IIW method using the two choices of weights obtained from the two fitted models. In the

geometric models, the IIW method can be applied by assigning weights as wi(t) = 1/p̂r,

when Yobs(t
−) = 1, 2, and 1 if Yobs(t

−) = 3. In the semi-Markov models, the IIW prevalence

estimates are estimated using weights wi(t) as 1/α̂r(b) when r = 1, 2, and 1 if Yobs(t
−) = 3.

After estimating prevalence probabilities P̂11(t) and P̂12(t) using equation (4.10), we used
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Table 4.1: Estimated gap time intensities α̂1(b) and their standard errors for the first

simulation study, when gap times are generated from the Geometric distribution. The true

gap time intensity estimate is 0.167. The estimated Geometric gap time intensity and its

estimated standard error are 0.184 and 0.003, respectively.

b 0.5 1 1.5 2 2.5 3 3.5

SM α̂1(b) 0.167 0.177 0.169 0.198 0.150 0.217 0.182

SE(α̂1(b)) 0.004 0.006 0.010 0.018 0.028 0.061 0.116

Table 4.2: Estimated gap time intensities α̂2(b) and their standard errors for the first

simulation study, when gap times are generated from the Geometric distribution. The true

gap time intensity estimate is 0.333. The estimated Geometric gap time intensity and its

estimated standard error are 0.348 and 0.006 respectively.

b 0.3 0.6 0.9 1.2 1.5 1.8 2.1

SM α̂2(b) 0.336 0.331 0.311 0.350 0.250 0.091 0.143

SE(α̂2(b)) 0.008 0.016 0.028 0.053 0.088 0.087 0.132

the loess() function in R with span=0.25 to smooth the estimates. A span is the window

which contains the percentage of cases in each local regression. A span that is too small

captures more trends and produces a curve with a lot of noise, while a large span will over

smooth the regression. Here, we decided to set the span to 0.25, after considering numbers

of observation times that fall within this window. For estimating P̂13(t), we computed the

raw estimates P̂13(t) = 1− (P̂11(t) + P̂12(t)) obtained from equation (4.10) as the input for

standard isotonic regression, iso.reg() in R, to provide monotone P̂13(t) estimates.

The prevalence probability estimates P̃1r(t), r = 1, 2, 3 for the fitted multistate model

76



0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Last state is 1

gap time (In years)

In
te

ns
ity

●
●●●●●●●●●●

●
●●

●

●

●
●

●

●
●

●
●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●

True

Geom

SM

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Last state is 2

gap time (In years)

In
te

ns
ity ●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

True

Geom

SM

Figure 4.1: The estimates of intensities for gap times between visits along with the true

values from the first simulation study, when gap times are generated from the Geometric

distribution.
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along with the curves obtained from the two IIW methods are presented in Figure 4.2.

Empirical prevalences (Naive) as well as the true probability values are also plotted. The

Naive prevalences were estimated at times t = 0, 0.1, 0.2, ..., 4, using (4.2). For individual

i who was seen at two consecutive times tj−1 and tj, where tj−1 ≤ t < tj, the state at

time t was assumed to be y(tj−1) if t ≤ tj−1+tj
2

, otherwise y(tj). The estimated prevalence

probabilities based on geometric weights and semi-Markov weights are referred as “IIW-

Geometric” and “IIW-SM” respectively. We can see that the both IIW estimates are in

good agreement with the prevalence estimates obtained from the multistate model and

the true probability values. In contrast, the biases of the naive prevalence estimates are

remarkable.

Figure 4.1 shows plots of the gap times intensity estimates for the fitted geometric

distributions and semi-Markov models along with the true values. It can be seen that the

estimates obtained from the both geometric and semi-Markov models are in good agreement

with the true intensity values when the last state is 1, except for the final very large gap

time. In contrast, the semi-Markov estimates differ from the geometric estimates and true

values when the last state is 2. This is due to the fact that few gap times are larger than

about b = 1 in this case, and so estimates of α2(b) for b > 1 are very imprecise. We have also

estimated the survival functions and their standard deviations by Ŝr(b) =
∏

u<b{1− α̂r(b)}

and SE(Ŝr(b)) =
√
Ŝ2
r (b)

∑
u<b(

α̂r(u)
nr(u)(1−α̂r(u))

), respectively. Figure 4.3 contains plots of the

survival functions of the gap times for the two IIW methods along with the true survival

probabilities when the previous states are 1 and 2. The plots reveal that the estimates

obtained from the general semi-Markov models are almost identical to the true survival

functions, and, the survival probabilities estimated from the geometric distributions are

slightly below the true curves. Tables 4.3 and 4.4 show the estimates of the gap time

survival functions and their standard errors for the both geometric distributions and semi-
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Table 4.3: Estimated gap time survivals Ŝ1(b) and their standard errors for the first simu-

lation study, when gap times are generated from the Geometric distribution.

b 0.5 1 1.5 2 2.5 3 3.5

True S1(b) 0.402 0.161 0.065 0.026 0.010 0.004 0.002

Geometric Ŝ1(b) 0.362 0.131 0.047 0.017 0.006 0.002 0.00

SM Ŝ1(b) 0.394 0.153 0.061 0.026 0.010 0.003 0.001

SE(Ŝ1(b)) 0.003 0.002 0.002 0.001 0.00 0.00 0.00

Note: SE = 0.00 means that it is less than 0.001.

Table 4.4: Estimated gap time survivals Ŝ2(b) and their standard errors for the first simu-

lation study, when gap times are generated from the Geometric distribution.

b 0.3 0.6 0.9 1.2 1.5 1.8 2.1

True S2(b) 0.296 0.088 0.026 0.008 0.003 0.001 0.00

Geometric Ŝ2(b) 0.277 0.077 0.021 0.006 0.002 0.00 0.00

SM Ŝ2(b) 0.293 0.091 0.030 0.009 0.003 0.002 0.001

SE(Ŝ2(b)) 0.005 0.003 0.002 0.001 0.00 0.00 0.00

Note: SE = 0.00 means that it is less than 0.001.

Markov models.

Simulation 2

It is also of interest to explore how the IIW prevalence estimates may be influenced by

an improper choice of model for the gap times. In the second simulation study, we also

look at variance of the estimators, in addition to the effects of misspecification. In this

simulation study, we first considered a sample of n = 5000 individuals, and we generated

∆tij = bij|Yi(tij−1) = 1 and ∆tij = bij|Yi(tij−1) = 2 from 0.1× [Poisson(µ) + 1] with µ = 5
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simulation study, when gap times are generated from the Geometric distribution.
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Figure 4.3: The estimates of survival functions for gap times between visits along with

the true values from the first simulation study, when gap times are generated from the

Geometric distribution.
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and 2 respectively. In this case the visit process (gap time) model is semi-Markov, but

the gap times do not follow a geometric distribution. Similar to the first simulation study,

we fitted geometric distributions and semi-Markov models to gap times. The estimated

geometric probabilities for gap times are p̂1 = 0.169 and p̂2 = 0.342, and the estimated gap

time intensities for it and for the semi-Markov model are presented in Figure 4.4. It can

be seen that the estimated gap times intensities obtained from the general semi-Markov

models are quite close to the corresponding true values except, once again, for large values

of b having small probability. The geometric intensity estimates are in this case far off the

true values. In addition, Tables 4.5 and 4.6 show the gap times intensity estimates and

their standard errors for the general semi-Markov models. The estimated standard errors

for the geometric intensity estimates are SE(p̂1) = 0.003 and SE(p̂2) = 0.005. We have

also shown the estimated survival functions of the gap times along with the true values

in Figure 4.5. This shows that the estimates obtained from fitting geometric distributions

differ from the semi-Markov estimates, which are close to the true survival functions. The

estimates for the gap times survival functions and their standard errors are also presented

in Tables 4.7 and 4.8.

The prevalence probability estimates are presented in Figure 4.6. It can be seen that

in each plot, the naive prevalence curve is farther from the true curve than the two IIW

curves, once again showing bias. The two IIW methods with different choices of weights

yield satisfactory estimates with small biases, but surprisingly the IIW-Geometric curve

is closer to the true curve, especially as time increases. In addition, we notice that the

IIW-SM estimates in this simulation are a bit more variable than in the first simulation.

This may be due to 1) imperfect fit of semi-Markov models for the gap times, or 2)

on insufficient number of observations at each time t to estimate precisely the IIW-SM

prevalence estimates P1r(t), r = 1, 2, 3. These factors are especially pronounced for longer
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Figure 4.4: The estimates of intensities for gap times between visits along with the true

values from the second simulation study, when gap times are generated from the Poisson

distribution.
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Table 4.5: Estimated gap time intensities α̂1(b) and their standard errors for the second

simulation study, when gap times are generated from the Poisson distribution. The esti-

mated Geometric gap time intensity and its estimated standard error are 0.169 and 0.003,

respectively.

b 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

True α1(b) 0.034 0.160 0.314 0.439 0.532 0.602 0.654 0.695

SM α̂1(b) 0.040 0.161 0.314 0.437 0.519 0.610 0.500 0.800

SE(α̂1(b)) 0.001 0.003 0.004 0.007 0.014 0.031 0.088 0.179

Table 4.6: Estimated gap time intensities α̂2(b) and their standard errors for the second

simulation study, when gap times are generated from the Poisson distribution. The esti-

mated Geometric gap time intensity and its estimated standard error are 0.342 and 0.005,

respectively.

b 0.2 0.4 0.6 0.8 1

True α2(b) 0.313 0.558 0.685 0.758 0.804

SM α̂2(b) 0.040 0.161 0.314 0.437 0.519

SE(α̂2(b)) 0.001 0.003 0.004 0.007 0.014
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Figure 4.5: The estimates of survival functions for gap times between visits along with

the true values from the second simulation study, when gap times are generated from the

Poisson distribution.
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Table 4.7: Estimated gap time survivals Ŝ1(b) and their standard errors for the second

simulation study, when gap times are generated from the Poisson distribution.

b 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

True S1(b) 0.959 0.735 0.384 0.133 0.032 0.005 0.001 0.00

Geometric Ŝ1(b) 0.690 0.476 0.329 0.227 0.157 0.108 0.075 0.051

SM Ŝ1(b) 0.953 0.724 0.378 0.131 0.032 0.005 0.001 0.00

SE(Ŝ1(b)) 0.001 0.003 0.003 0.002 0.001 0.00 0.00 0.00

Table 4.8: Estimated gap time survivals Ŝ2(b) and their standard errors for the second

simulation study, when gap times are generated from the Poisson distribution.

b 0.2 0.4 0.6 0.8 1

True S2(b) 0.594 0.143 0.016 0.001 0.00

Geometric Ŝ2(b) 0.433 0.187 0.081 0.035 0.015

SM Ŝ2(b) 0.588 0.146 0.023 0.003 0.00

SE(Ŝ2(b)) 0.006 0.004 0.002 0.00 0.00
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Figure 4.6: Comparison of true, naive, and IIW prevalence estimates for the second simu-

lation study, when gap times are generated from the Poisson distribution.
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values of t. In order to investigate these reasons, we computed weights based on the true

Poisson distributions, and then calculated the IIW prevalences with these weights. Figure

4.7 shows that these IIW prevalences are very close to the IIW-SM prevalences, which

points out that the choice of semi-Markov models for the gap times was reasonable.

We also did the simulation with a much bigger sample size of 50,000 individuals to see

whether we get similar results, since imprecision of intensity estimates will then be much

less of a problem. In addition, by splitting the 50,000 individuals into (a) 10 samples of size

5000, and (b) 50 samples of size 1000, we can study the variation in each estimator, and

estimate their variance for these specific sample sizes. In this simulation, the observation

times were generated from the Poisson distributions with the same parameter values as

the previous simulation study. The prevalence probability estimates are shown in Figure

4.8. We can see that the IIW-SM curves are now in better agreement with the true

curves compared to the IIW-Geometric estimates, and the amount of variability in the

IIW-SM estimates has been greatly reduced. However, the estimates obtained from IIW-

Geometric method are still performing well. In order to compute the standard deviations

of estimators, we partitioned the realizations for the 50,000 individuals into (a) 10 samples

of size 5000 and (b) 50 samples of size 1000. These partions were made to relate the results

of replications to the simulation of 5000 individuals realizations and the real data sample

size. The sample means and 95% confidence intervals of the two IIW estimators for the

both cases (a) and (b) are presented in Figures 4.9 and 4.10, respectively. In addition,

Tables 4.9, 4.10, and 4.11 show the samples means and standard deviations of the IIW

prevalence estimators as well as the naive and msm estimators.

The variability of the IIW-SM estimates in Figure 4.6 seems to be due to having insuf-

ficient observations for some time points t. It should be noted that the IIW prevalences at

time t are solely estimated on the basis of the observations at time t. Hence, although a
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sample of 5000 individuals has been simulated, the number of observed individuals at each

time point t is much less than the total number of individuals. In addition, as t increases,

fewer individuals remain in states 1 or 2. Therefore, some observations with very small

probabilities of occurrence can lead to extremely large weight values, which may result

in high variability of the IIW estimates. Thus, we also explored the variability of the

estimated IIW-SM prevalence probabilities in more detail. We considered the distribution

of the estimated weights obtained from the fitted semi-Markov models, and noticed that

there were 149 observations with weights 137.86. These weights were related to gap times

equal to 0.1 when the last state is 1. Hence, to obtain less variable prevalence estimates

in the smaller sample size, we adjusted these extreme weights by truncating them. The

weights were truncated at 25.1, which is the corresponding weight for the gap time of 0.2

when the last state is 1. The prevalence estimates obtained by this adjustment are shown

in Figure 4.11. We see that the variability in IIW-SM prevalence estimates has been re-

duced substantially by truncating large weights. As a second investigation, we revised the

second simulation by generating gap times from Poisson distributions that are truncated

at b = 1; that is, with probability function µb−1e−µ/(b−1)!
(1−e−µ)

, b = 2, 3, .... This model does not

have extremely small intensities for any value of b. The smallest α̂r(b)’s are 0.034 and 0.137

for r = 1 and 2, respectively. Figure 4.12 shows prevalence probability curves obtained

from this simulation. The plots reveal that the estimated IIW-SM prevalences have even

less variability than the similar estimates in Figure 4.11.

From the simulation results presented in this subsection, we can conclude the following.

First, in the presence of the process-dependent observation times, the IIW method yields

prevalence estimates that are close to the true values, while the naive method that ignores

this dependency yields estimates that are substantially far from the true values. Second,

simulations demonstrate that when there are sufficient number of observations, the IIW

89



0 1 2 3 4

0
20

40
60

80
10

0

State 1

time (In years)

pr
ev

al
en

ce
 (

%
)

0 1 2 3 4
0

5
10

20
30

State 2

time (In years)

pr
ev

al
en

ce
 (

%
)

0 1 2 3 4

0
20

40
60

80

State 3

time (In years)

pr
ev

al
en

ce
 (

%
)

IIW−SM Prevalence

IIW−True.weights Prevalence

Figure 4.7: Comparison of true and IIW prevalence estimates for the second simulation

study, when gap times are generated from the Poisson distribution.
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Figure 4.8: Comparison of true and IIW prevalences for the second simulation study, when

we increased the sample size to n = 50, 000.
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Figure 4.9: The two IIW prevalence means with their 95% confidence intervals, when we

partitioned the sample size of n = 50, 000 in the second simulation study into 10 samples

of size 5000.
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partitioned the sample size of n = 50, 000 in the second simulation study into 50 samples

of size 1000.
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Table 4.9: The results of the samples means and standard deviations of the IIW, naive,

and msm estimates for P11(t) when we partitioned n=50,000 sample into (a) 10 samples of

size 5000 and (b) 50 samples of size 1000.

t 1 2 3 4

True 0.608 0.462 0.353 0.270

(a) 50 samples of size 1000 Geometric Mean 0.560 0.432 0.334 0.227

SE 0.019 0.018 0.020 0.025

SM Mean 0.602 0.457 0.336 0.233

SE 0.035 0.039 0.035 0.047

msm Mean 0.607 0.461 0.353 0.270

SE 0.008 0.011 0.012 0.012

Naive Mean 0.710 0.536 0.410 0.312

SE 0.014 0.013 0.016 0.015

(b) 10 samples of size 5000 Geometric Mean 0.561 0.433 0.335 0.228

SE 0.006 0.007 0.010 0.010

SM Mean 0.607 0.461 0.339 0.238

SE 0.006 0.026 0.019 0.020

msm Mean 0.607 0.461 0.353 0.270

SE 0.004 0.006 0.006 0.006

Naive Mean 0.710 0.536 0.410 0.312

SE 0.005 0.007 0.009 0.008
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Table 4.10: The results of the samples means and standard deviations of the IIW, naive,

and msm estimates for P12(t) when we partitioned n=50,000 sample into (a) 10 samples of

size 5000 and (b) 50 samples of size 1000.

t 1 2 3 4

True 0.214 0.169 0.129 0.099

(a) 50 samples of size 1000 Geometric Mean 0.230 0.179 0.136 0.099

SE 0.017 0.017 0.012 0.012

SM Mean 0.221 0.169 0.134 0.092

SE 0.028 0.026 0.020 0.028

msm Mean 0.216 0.170 0.131 0.100

SE 0.005 0.004 0.004 0.004

Naive Mean 0.158 0.130 0.098 0.079

SE 0.012 0.008 0.007 0.008

(b) 10 samples of size 5000 Geometric Mean 0.229 0.179 0.136 0.099

SE 0.005 0.008 0.005 0.005

SM Mean 0.220 0.169 0.134 0.092

SE 0.005 0.016 0.011 0.012

msm Mean 0.216 0.170 0.131 0.100

SE 0.002 0.002 0.002 0.002

Naive Mean 0.158 0.130 0.098 0.079

SE 0.002 0.005 0.003 0.003
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Table 4.11: The results of the samples means and standard deviations of the IIW, naive,

and msm estimates for P13(t) when we partitioned n=50,000 sample into (a) 10 samples of

size 5000 and (b) 50 samples of size 1000.

t 1 2 3 4

True 0.178 0.370 0.518 0.631

(a) 50 samples of size 1000 Geometric Mean 0.211 0.387 0.529 0.688

SE 0.020 0.019 0.020 0.030

SM Mean 0.174 0.374 0.527 0.696

SE 0.023 0.030 0.030 0.054

msm Mean 0.177 0.369 0.516 0.630

SE 0.006 0.012 0.014 0.015

Naive Mean 0.132 0.334 0.492 0.608

SE 0.010 0.014 0.015 0.016

(b) 10 samples of size 5000 Geometric Mean 0.212 0.385 0.529 0.687

SE 0.012 0.011 0.012 0.015

SM Mean 0.212 0.385 0.529 0.687

SE 0.010 0.016 0.016 0.029

msm Mean 0.177 0.368 0.516 0.630

SE 0.003 0.006 0.007 0.008

Naive Mean 0.132 0.334 0.492 0.608

SE 0.005 0.007 0.007 0.009
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Figure 4.11: Comparison of true, naive, and IIW prevalence estimates for the second

simulation study, when we truncated the semi-Markov weights at 25.1.
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Figure 4.12: Comparison of true, naive, and IIW prevalence estimates for the second

simulation study, when observations are generated from the truncated Poisson distribution.
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method performs well, but when the number is not sufficiently large, high variability in

the weights can produce high variability in the prevalence estimates. In situations where

there is not enough observations, we should either use models that do not produce extreme

weights, or consider truncation of weights to adjust for influential observations obtained

from the large weights.

In practice, it is usually the case that the number of processes under observation is

smaller than the 5000 we chose for the simulation studies. For example, in the CANOC

studies a sample of about 1000 individuals is more common. In this situation, proper IIW

estimation of prevalences requires taking the existence of extreme weights into considera-

tion. We recommend the use of truncation, as well as, the use of intervals in (4.11) that

each contain a substantial number of gap times bij. We also recommend the use of para-

metric models to estimate the gap time intensities for each interval. They can be chosen

for flexibility (e.g. piecewise-constant intensities) and to avoid extreme weight values, by

effectively grouping gap times that are less frequently observed. In Section 4.4.2, we con-

sider the CANOC data, and we will find that there are no extreme estimated weights that

require adjustment.

4.4 Application to CANOC data

In this section, we apply the methodology in this chapter to the CANOC data which we

described in Section 1.6. First, we fit Cox survival model to time to the first viral rebound,

and then compare the covariate effects obtained from this approach with those estimated

by multistate models. Second, we show that the observation times tij are dependent on the

previous process history, in CANOC data. Then, we consider prevalence estimation and
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apply the IIW method to adjust for bias due to the dependent observation times.

4.4.1 Survival models for the time to first viral rebound

The distribution of time Ti to first viral rebound is estimated from the multistate model

3.1(b) by the probability of entry to state 3. Another way to analyze times to viral rebounds

is through ordinary failure time methodology that we discussed in Section 4.2.2. Here, we

consider the use of Cox models as in Grennan et al. (2012). We fitted the Cox model with

the intensity for Ti of the form λ(t|zi) = λ0(t)exp(βT zi), i = 1, ..., n, to the times of viral

rebounds, and considered covariates age, IDU, and cART as the baseline covariate vector

zi. We assumed “Ti” to be tij when tij is the first time a person is observed in state 3.

Tables 4.12 and 4.13 show the estimated covariate effects and their standard errors. From

the Tables 4.12 and 4.13, we can conclude that injection drug users, and individuals older

than 45 years have a higher, and lower probability for time to viral rebound, respectively.

Similarly, from the Tables 3.5 and 3.6 in Section 3.4 for multistate models, we see that

injection drug users tend to have more transitions from state 1 to state 2, and from state

2 to state 3, whereas they show less tendency to move from state 2 to state 1. This

leads to having larger probability of progression to viral rebound among injection drug

users. Persons over 45 tend to have less transitions from state 2 to state 3. In addition,

Tables 4.12 and 4.13 show that individuals with unknown IDU status, and those taking

PI treatment are similar to non-injection drug users, and persons with NNRTI treatment,

respectively. It should be noted, however, that a closer picture of time to viral rebound

estimates is obtained if we consider prevalence estimates P13(t) from the multistate models,

rather than just transition intensities. We do this next.

The comparison of multistate and survival models in the presence of internal covariates
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will be discussed later in Chapter 5.

4.4.2 Prevalence estimation and viral rebounds

In earlier sections, we noted that sometimes the observation times may depend on previous

process history. In the CANOC data, we now examine the dependency of gap times between

visits on the previous viral load state by fitting Cox models to the gap times, as discussed

in Section 4.3.2. We fit Cox models to the inter-visit gap times, bij = tij − ti,j−1, and

examined the effects of different covariates. Our baseline covariates include age, IDU, and

cART. We also define the time-varying covariate last.state, which is the corresponding viral

load state of the individual at the last visit. This covariate has two levels of 1 and 2; the

reference level is taken to be 1.

Tables 4.14 and 4.15 show the results of the fitted Cox models for both the FARV1

and FARV2 groups. From these tables, we can see that injection drug users have reduced

hazard function for the next visit, so the gap times between visits tend to be longer.

However, age > 45, PI treatment, and having last.state=2 increases the hazard, and thus

the gap times are shorter. In particular, the covariate last.state is highly significant in

connection with gap times. The estimated hazard of the gap times among individuals

with the last.state equal to 2 is 1.488 (1.443) times that of those with the last.state equal

to 1 in FARV1 (FARV2). This shows that the observation times are state dependent.

Since this dependency can cause bias in nonparametric prevalence estimates as discussed

in Section 4.3, we will use the IIW approach to obtain nonparametric estimates. These

will be compared with estimates based on the Markov multistate model.

We apply the IIW method by assigning weights based on Cox models for the gap times.

The Cox models were fitted using the “coxph” function in R, and the estimated covariate
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Table 4.12: The results of the fitted Cox model for time to viral rebound in the FARV1

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) -0.350 0.121 0.705 (0.556, 0.894) 0.004*

IDU (=Yes) 0.704 0.134 2.021 (1.554, 2.629) 1.55e-07*

IDU (=NA) -0.102 0.151 0.903 (0.672, 1.213) 0.499

cART (=PI) 0.155 0.112 1.167 (0.938, 1.453) 0.166

∗| β̂

se(β̂)
| > 1.96

Table 4.13: The results of the fitted Cox model for time to viral rebound in the FARV2

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) -0.320 0.181 0.726 (0.509, 1.036) 0.077

IDU (=Yes) 0.891 0.216 2.438 (1.595, 3.725) 3.82e-05*

IDU (=NA) -0.274 0.245 0.760 (0.470, 1.230) 0.265

cART (=PI) -0.296 0.182 0.744 (0.521, 1.062) 0.103

∗| β̂

se(β̂)
| > 1.96
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Table 4.14: The results of the fitted Cox model for gap times between visits in the FARV1

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) 0.228 0.016 1.256 (1.216, 1.298) < 2e− 16∗

IDU (=Yes) -0.184 0.021 0.832 (0.798, 0.867) < 2e− 16∗

IDU (=NA) -0.221 0.019 0.802 (0.772, 0.832) < 2e− 16∗

cART (=PI) 0.122 0.042 1.130 (1.094, 1.167) 1.02e-13*

Last.state (=2) 0.398 0.016 1.488 (1.371, 1.615) < 2e− 16∗

∗| β̂

se(β̂)
| > 1.96

Table 4.15: The results of the fitted Cox model for gap times between visits in the FARV2

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) 0.081 0.021 1.084 (1.041, 1.129) 9.71e-05*

IDU (=Yes) -0.265 0.027 0.767 (0.727, 0.809) < 2e− 16∗

IDU (=NA) -0.333 0.024 0.717 (0.684, 0.751) < 2e− 16∗

cART (=PI) 0.117 0.022 1.124 (1.076, 1.175) 1.42e− 07∗

Last.state (=2) 0.367 0.042 1.443 (1.330, 1.566) < 2e− 16∗

∗| β̂

se(β̂)
| > 1.96
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effects, β̂, were used to estimate the baseline intensity function in (4.7). We then estimated

weights for the observation times tij by taking the inverse of the estimated Cox model

intensities for corresponding gap times bij as in (4.8). The estimated weights in the FARV1

and FARV2 groups were within ranges 0.45− 5.65 and 0.27− 4.09 respectively, and 99.8%

of the observation times tij had weight values inside intervals 0.45 − 1 and 0.27 − 1.4

correspondingly. Hence, in this case, we did not face the extreme weight issue that we

discussed at the end of Section 4.3.4, and no truncation of weights was used.

The IIW prevalence estimates were calculated via (4.11) and (4.13). We took a set of

grid values al = 0, 0.25, 0.5, 0.75, ..., and made associated intervals Il as in Section 4.3.3.

The IIW prevalence estimates were computed at midpoints tml = 0.125, 0.375, 0.625, ....

Figures 4.13 to 4.18 show prevalence probability estimates P̂1r(t), r = 1, 2, 3 including esti-

mates obtained from fitting multistate models, empirical, and IIW methods. The empirical

prevalence estimates (denoted “Naive Prevalence”) were calculated using formula (4.2), and

the model based estimates (denoted “msm Prevalence”) are based on the fitted multistate

models associated with Tables 3.5 and 3.6. The nonparametric prevalence estimates were

computed at points t = 0, 0.125, 0.375, 0.625, .... Figures 4.13 and 4.16 show aggregated

estimates obtained from averaging the estimated probabilities for all individuals (averaging

over covariate values) at each time point t. Figures 4.14, 4.15, 4.17, and 4.18 represent the

combined probability estimates for injection drug users or non users. In Figures 4.13 and

4.16, we have also shown the empirical prevalence estimates given by the msm package

(denoted “Empirical-msm Prevalence”). In this case, suppose that individual i was seen at

two consecutive times tj−1 and tj, where tj−1 ≤ t < tj. Then, the msm software assumes

that the state of this individual at time t is y(tj−1) if t ≤ tj−1+tj
2

, otherwise y(tj). These

empirical prevalences given by the msm software are very similar to the naive estimates of

(4.2).
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Figure 4.13: Comparison of naive, msm, empirical-msm, and IIW prevalences for all indi-

viduals in the FARV1 group.

105



0 2 4 6 8

0
20

40
60

80
10

0

State 1

time (In years)

pr
ev

al
en

ce
 (

%
)

0 2 4 6 8

0
5

10
15

20

State 2

time (In years)

pr
ev

al
en

ce
 (

%
)

0 2 4 6 8

0
20

40
60

80
10

0

State 3

time (In years)

pr
ev

al
en

ce
 (

%
)

Naive Prevalence
msm Prevalence
IIW Prevalence

Figure 4.14: Comparison of naive, msm, and IIW prevalences for injection drug users in

the FARV1 group.
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Figure 4.15: Comparison of naive, msm, and IIW prevalences for non-injection drug users

in the FARV1 group.
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Figure 4.16: Comparison of naive, msm, empirical-msm, and IIW prevalences for all indi-

viduals in the FARV2 group.
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Figure 4.17: Comparison of naive, msm, and IIW prevalences for injection drug users in

the FARV2 group.
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Figure 4.18: Comparison of naive, msm, and IIW prevalences for non-injection drug users

in the FARV2 group.
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The figures show that there is good agreement between the msm and IIW prevalence

estimates when we have sufficient number of individuals in the three states at different

times t. However, as time increases, the number of individuals in states 1 and 2 decreases,

and the plots show that the msm and IIW prevalence curves get farther apart for the large t

values. Tables 4.16 and 4.17 show the number of individuals at different times t. The good

agreement of the msm and IIW estimates provides support for the msm models. However,

the naive curves do not agree with these two estimates in many cases, and they would lead

us to believe erroneously that the multistate model did not estimate prevalences well.

We note that Figures 4.13 to 4.18 provide considerable information on time to viral re-

bound. In particular, injection drug users, as might be expected, experience viral rebounds

sooner and more frequently than non-users. The individuals in FARV1 also experience

higher rate of viral rebounds; this could be due to improvements in cART over the years

since 2000, or differences in the distribution of covariate values. We note that estimates

can also be based on the Cox model of Section 4.4.1. However, these estimates can also be

biased due to the dependent observation times. Figures 4.19 to 4.22 show the Cox models

probability estimates for time to viral rebound along with the corresponding probability

estimates obtained from fitting the multistate models for the injection drug users and non

users in the both FARV1 and FARV2 groups. The“msm probability” estimates are similar

to the P̂13(t) estimates in Figures 4.14, 4.15, 4.17, and 4.18. The figures show that there

is good agreement between the two estimates, and the dependent observation times did

not have that much effect on the estimation of the Cox model probabilities. Finally, we

remark that the IIW prevalence estimates could be smoothed; this is a topic for further

development.
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Table 4.16: The number of individuals in different groups of the FARV1 at specified time

points (time is in years).

Time

Group 0 1 2 3 4 5 6 7 8

FARV1 834 820 800 781 753 685 560 459 412

Non-injection drug users 272 272 271 264 258 232 196 159 103

Injection drug users 272 262 253 247 235 220 186 167 163

Table 4.17: The number of individuals in different groups of the FARV2 at specified time

points (time is in years).

Time

Group 0 0.5 1 1.5 2 2.5 3 3.5 4

FARV2 1035 1011 876 724 480 361 292 225 156

Non-injection drug users 323 318 284 243 191 156 120 98 71

Injection drug users 287 279 235 194 156 137 107 90 78
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Figure 4.19: The msm and Cox model probability estimates of time to viral rebound for

injection drug users in the FARV1 group.
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Figure 4.20: The msm and Cox model probability estimates of time to viral rebound for

non injection drug users in the FARV1 group.
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Figure 4.21: The msm and Cox model probability estimates of time to viral rebound for

injection drug users in the FARV2 group
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Figure 4.22: The msm and Cox model probability estimates of time to viral rebound for

non injection drug users in the FARV2 group.
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4.5 Concluding Remarks

In this chapter, we considered process-dependent observation times, and the importance of

accounting for it when estimating marginal process features such as failure time distribu-

tions and prevalence probabilities was discussed. We proposed the IIW estimation method

which incorporates the association between the gap times between visits and previous pro-

cess history. Simulations were conducted to evaluate the bias-correction performance of the

proposed estimates. The simulation results demonstrate that the IIW prevalence estimates

are much less biased than naive estimates that ignore the dependency between inter-visit

times and previous process history. In observational studies like CANOC, where times

between visits vary considerably across individuals, there is a strong possibility that this

irregularity of followup visits may be induced by their dependency on previous process his-

tory. The IIW method was used here to correct bias due to this dependency. However, in

order to compare the IIW prevalence estimates and corresponding estimates obtained from

Markov models more precisely, it is required to have confidence intervals based on the IIW

estimates. One approach for computing the variance estimates is to assume a parametric

model for the observation process intensity, and then apply White (1982) results on the

estimating function for the observation process parameters and (4.3) estimating function to

obtain the asymptotic covariance matrix for the observation process parameter estimates

as well as the IIW prevalence estimates. An alternative approach for computing variances

for the IIW prevalence estimates is to use bootstrap. We can generate B samples from

the fitted observation model and compute the IIW prevalence estimates for each sample.

Then, we can get the empirical standard deviation for each estimator. The development of

variance estimates and confidence intervals is a needed area of study, and will be considered

as future work.
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Chapter 5

Model Assessment with Intermittent

Observation

5.1 Introduction

The assessment of bi-directional multistate models with irregular intermittent observation

times is challenging. Kalbfleisch and Lawless (1985) considered model checking and tests

for Markov models with regular intermittent observations. Titman and Sharples (2010a)

reviewed methods for assessing Markov models with irregular observation times and the

msm package in R provides model checking approaches for models with piecewise-constant

intensities. The methods in the msm package involve the comparison of empirical and

model-based estimates such as prevalence functions and transition probabilities. The msm

package also provides Pearson-type tests of fit that are discussed by Titman (2009, 2010)

and Titman and Sharples (2010a). There are several problems with methods that are based

on the comparison of empirical and model-based estimates. We will discuss these issues in
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Section 5.2.

Another difficulty in the assessment of multistate models with intermittent observation

is the dependency of transition intensities of Markov models on internal covariates that

are related to the previous process history. In studies with intermittent observations, the

values of time-dependent covariates are only known at observation times, and their values

are unknown at times between visits. In this situation, likelihood functions based on

observed data can be computed by assuming that covariate values for a given individual

are constant between visit times. Then, the transition intensity estimates can be obtained

by maximizing the likelihood function. However, the assumption that the covariate values

are constant between observation times can be problematic when visit times are far apart,

and the direct estimation of prevalence probability estimates is complicated because of

various internal covariate paths for each individual.

This chapter has several objectives. One is to present a method for computing prevalence

probabilities in multistate models in the presence of internal covariates. We also discuss how

the prevalence estimates obtained from fitting flexible parametric models to intermittently

observed data are robust for non-Markov processes, assuming that the observation times

are independent of process history. The chapter then provides a discussion on difficulties

which arise for model assessment tests based on comparison of empirical and model-based

estimates. Then, the use of likelihood ratio tests within the Markov process family is

suggested, and methods for estimating the power of likelihood ratio tests of fit are proposed.

Another objective of the chapter is to propose a method for comparing models based

on different outcome spaces in terms of prediction. Finally, we apply the methodology

presented here to the assessment and prediction of viral rebounds for individuals in the

CANOC study.
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The remainder of this chapter is as follows. Section 5.2 discusses the estimation of preva-

lence probabilities with Markov models including internal covariates. Section 5.3 considers

the effect of misspecification of the Markov assumption on estimation of prevalence prob-

abilities based on flexible parametric models. Section 5.4 discusses difficulties for model

assessment and proposes the use of likelihood ratio tests. In Section 5.5, we propose a

method for comparison of different models in terms of prediction. Section 5.6 examines

viral rebounds for individuals in the CANOC study using the methods discussed in this

chapter.

5.2 Estimation of prevalence probabilities based on

multistate models involving internal covariates

We discussed in Section 2.2 the likelihood functions (2.3)-(2.5) based on intermittently

observed processes that had Markov multistate models. The computation of transition

probabilities for processes that depend on fixed or external time-dependent covariates is

straightforward, provided covariates are fixed between visit times. Prevalence estimates are

also readily computed in these cases. However, if the process involves internal covariates,

we can not compute prevalence probability estimates directly, because of many internal

covariate paths that can occur for each individual. Thus, we propose simulating a large

number of sample paths for each individual in order to approximate prevalence probability

estimates. In many analyses, fixed covariates take on a small number of distinct values,

and all individuals start from the same initial state, and then we can simulate paths for

different combinations of fixed covariates.

We assume that the process is of modulated Markov form, with transition intensi-
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ties

qrs(t|H(t), Y (t−) = r) = q0rs(t)exp(β
T z(t)), r 6= s, (5.1)

and that the baseline intensities are piecewise-constant. We assume that an internal co-

variate is a deterministic function of previous observed state-history. For simplicity, we

suppose there is only a single time-dependent internal covariate z(t) in the model. We

simulate the process {Y (t), t > 0} at a discrete set of times tj(j = 1, ...,m), and assume

that z(t) = zj is fixed over (tj−1, tj]. Thus, we have a time-homogeneous Markov process

over (tj−1, tj] with the transition intensity matrix Qj having elements q
(j)
rs exp(βT zj), r 6= s.

By knowing Y (t0) = y0, parameter values q
(j)
rs , β, and that the state Y (tj) has a multino-

mial distribution given Y (tj−1) = r, an algorithm for simulating {Y (tj), j = 1, ...,m} is as

follows:

1. Set Y (t0) = y0, Z1 = 0. Then, for j = 1, ...,m,

2. Compute Qj = (q
(j)
rs exp(β

′
Zj)) and P (j) = exp(Qj(tj − tj−1)).

3. Generate Y (tj) = yj from multinom (1;P
(j)
yj−1,s (s = 1, ..., K)).

4. If j = m, stop, otherwise compute Zj+1 based on {Y (t0) = y0, ..., Y (tj) = yj}, and

return to 2.

By simulating a large number (B) of sample paths, we can estimate prevalence proba-

bilities of interest. In particular, if y0 = 1 then

P̂1r(tj) =
1

B

B∑
b=1

I(Yb(tj) = r), r = 1, ..., K, (5.2)

where {Yb(t), t > 0} is the b’th simulated sample path. We illustrate the use of this

procedure in Section 5.6.
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5.3 Misspecification of the Markov assumption

Aalen et al. (2001) and Datta and Satten (2001) showed that the Markov (Aalen-Johansen)

nonparametric estimates of prevalence probabilities based on continuous observation are

robust for non-Markov processes, assuming that the loss to followup is independent of the

process history. This suggests that flexible parametric models such as piecewise-constant

models with sufficient number of pieces would also be fairly robust in the case where

observation is intermittent and the observation times are not too far apart, and independent

of the process history. To examine this, we considered the three-state model in Figure

3.1-(b). We assumed that the true process is semi-Markov, with transition intensities of

Weibull form,

qrs(t|H(t)) = arsB(t)brs , r 6= s, (5.3)

where B(t) is the time since entry to the current state. For the model parameters, we

used the values a12 = a23 = 1.5, a21 = 0.707, b12 = b23 = 0.5, b21 = −0.5. We considered a

single sample of 10, 000 individuals with all individuals starting from state 1 at time t = 0.

Individuals were followed over time interval (0, 4], and were observed with regular inter-

visit times, ∆t = 0.5, 1, or 2. Tables 5.1 and 5.2 show estimates of prevalence probabilities

at times t = 1, 2, 3, 4 obtained by fitting three different piecewise-constant Markov models.

In the tables, PC(0,4), PC(0,2,4), and PC(0,1,2,3,4) stand for models with 1, 2, and 4

pieces. For instance, in PC(0,2,4) the two pieces are t ∈ [0, 2] and t ∈ (2, 4]; the one-piece

model is time-homogeneous. The “Empirical values” in the tables are the estimates of the

true prevalence probabilities, and should be close to the true values, since they are based

on a sample of 10,000 processes.

As we can see from the Tables 5.1 and 5.2, piecewise-constant models can provide
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prevalence probability estimates with small biases. The prevalence estimates from the

model with 4 pieces and visit gap time of 0.5 are close to the true prevalence values, except

for t = 1, and the estimates are reasonably close when models with 1 or 2 pieces are used.

However, msm was not able to fit the 4 piece model when inter-visit times were 1, and only

the one-piece model could be fitted with gaps of size 2. The simulation thus shows that

the prevalence estimates obtained from Markov models with several pieces are quite robust

here. This implies that prevalence estimates will not be able to detect non-Markov behavior

of true processes, since they are robust in terms of violation of the Markov assumption.

In addition, prevalence function estimates can be adjusted for dependent irregular visit

times, as discussed in Chapter 4. Therefore, we can conclude that tests of fit based on

prevalence functions are not good options for detecting non-Markov behaviour. They can,

however, detect departures from assumed forms of time-dependence in transition intensities

for Markov models.

5.4 Likelihood ratio test

There are different problems with assessing the model fit on the basis of comparison of

model-based and empirical estimates. Here, we review these difficulties, and suggest the use

of the likelihood ratio test in order to overcome some of these issues. First, as we discussed

in Section 5.3, prevalence estimates based on fitted Markov piecewise-constant models

tend to be robust and so are not good at detecting non-Markov behaviour. Second, we

discussed in Chapter 4 that the empirical estimates of prevalences are biased when we have

dependent observation times, and we proposed nonparametric estimates that adjust for this

bias. However, this adjustment affects the distribution of test statistics and consequently

obtaining reliable p-values of formal tests of fit can be challenging. A third problem is
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Table 5.1: Estimates P̂11(t) from fitting piecewise-constant Markov models with 1, 2 and

4 pieces when the true model is semi-Markov and gap time between visits is ∆t = 0.5, 1, 2.

t = 1 t = 2 t = 3 t = 4

Empirical values 0.663 0.472 0.341 0.252

∆t = 0.5 PC(0,4) estimates 0.616 0.461 0.354 0.273

PC(0,2,4) estimates 0.638 0.4962 0.350 0.255

PC(0,1,2,3,4) estimates 0.687 0.480 0.344 0.253

∆t = 1 PC(0,4) estimates 0.625 0.461 0.349 0.267

PC(0,2,4) estimates 0.637 0.483 0.351 0.256

PC(0,1,2,3,4) estimates — — — —

∆t = 2 PC(0,4) estimates 0.642 0.462 0.343 0.257

PC(0,2,4) estimates — — — —

PC(0,1,2,3,4) estimates — — — —
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Table 5.2: Estimates P̂12(t) from fitting piecewise-constant Markov models with 1, 2 and

4 pieces when the true model is semi-Markov and gap time between visits is ∆t = 0.5, 1, 2.

t = 1 t = 2 t = 3 t = 4

Empirical values 0.248 0.225 0.169 0.121

∆t = 0.5 PC(0,4) estimates 0.234 0.200 0.155 0.120

PC(0,2,4) estimates 0.231 0.203 0.168 0.124

PC(0,1,2,3,4) estimates 0.217 0.221 0.172 0.123

∆t = 1 PC(0,4) estimates 0.232 0.205 0.160 0.123

PC(0,2,4) estimates 0.238 0.217 0.163 0.120

PC(0,1,2,3,4) estimates — — — —

∆t = 2 PC(0,4) estimates 0.225 0.211 0.166 0.126

PC(0,2,4) estimates — — — —

PC(0,1,2,3,4) estimates — — — —
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when we have irregular intermittent observation, in order to compute empirical prevalence

or transition counts as in msm, we need to interpolate and impute the states of individuals

at common set of times, or else to group individuals. However, the formal tests of fit do

not handle this well with regard to calculation of p-values. Moreover, test statistics based

on prevalence or transition counts involve a mixture of multinomial variables, and limiting

distributions of test statistics depend on unknown parameter values.

Considering the above mentioned difficulties, we suggest using likelihood ratio tests

based on nested models within the family of Markov processes. The likelihood ratio tests

have a number of advantages over the other model checking methods that we mention here.

These tests are easily implemented and are asymptotically equivalent to the Pearson tests

based on transition counts when individuals are observed at a common set of times (Section

2.4.2). In addition, we can use asymptotic chi-squared approximations for obtaining reliable

p-values of likelihood ratio tests. Another advantage is that the presence of dependent

observation times of the type considered in Chapter 4 does not have an effect on transition

probability estimates, and consequently the likelihood ratio tests would not be affected by

this issue. A further advantage of these tests is that the assessment of models involving

fixed or time-dependent covariates can be carried out easily through computing likelihood

functions of null and expanded models. However, the problem with recognizing the non-

Markov property still remains, and this should be taken into account when considering

internal covariates which can make models non-Markov.

Finally, it is usually of interest to know the power for discriminating between different

Markov models when planning studies or followup. In this section, we present different

approaches for estimating the power of likelihood ratio tests. A nested multistate model
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M0 can be tested against a model M1 that includes it via a likelihood ratio statistic

Λ = 2logL(θ̂1)− 2logL(θ̂0), (5.4)

where θ0 and θ1 are parameters corresponding to models M0 and M1, respectively. Λ is

asymptotically chi-squared under the null model M0, assuming that the observation times

are independent of the process history. The degrees of freedom d for this asymptotic chi-

squared distribution is dim(θ1)− dim(θ0), which is the difference in the dimensions of the

parameter spaces for models M0 and M1. Under model M1, Λ is approximately non-central

chi-squared with degrees of freedom d and the non-centrality parameter δ. This can be

used for approximating the power for an alternative model by assuming that for a sample

of size n, the likelihood ratio statistic Λn is approximately chi-squared with non-centrality

parameter δn = nγ. Now, we can estimate γ by the fact that

E(Λn)
.
= E(χ2(d, δn)) = d+ δn. (5.5)

One approach for estimating γ is to generate different samples of n individuals, and to

compute Λ for each sample. Since d is known, we can obtain δn via estimating EΛn by

Λ̄n. So, δ̂n = Λ̄n − d, and γ̂ = Λ̄n−d
n

. If n is large, we can also estimate power directly

by the proportion of samples giving Λn larger than the critical value under M0. However,

this approach is computationally time consuming, because of the need to generate many

different samples of size n, and then fitting multistate models M0 and M1 to each.

Another way to estimate γ is to generate a single large sample of size N and compute

the observed likelihood ratio statistic ΛN . Then, we can estimate γ = δN
N

as γ̂ = ΛN−d
N

.

We can then estimate δn for an arbitrary sample size n by δ̂n = nγ̂.

A third approach is related to asymptotic results for maximum likelihood. Suppose we

write θ = (α, β) such that the null hypothesis is β = 0. Then, γ is estimated by β̂
′
V̂ −1β̂,
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where V̂ is N times the estimated covariance matrix for β̂ for the sample of size N . We will

discuss here the details of this approach. We know that under a sequence of alternative

models M1 that approach the null model at rate 1/
√
n, the asymptotic distribution for

Λ is χ2(d, δ). So, we can test the null hypothesis β = 0 for a sequence of alternatives

β = φ√
n
, and it can be shown that as n approaches ∞, the limiting distribution of Λn

under the alternative hypothesis φ = 0 is χ2(d, δ), where δ = lim
n→∞

φ̂
′
(n ˆvar(β̂))−1φ̂. To

show this, we use the fact that
√
n(β̂ − β)

d−→ N(0, n ˆvar(β̂)) as n → ∞, and equiv-

alently
√
n(β̂ − φ√

n
)

d−→ N(0, nvar(β̂)) as n → ∞. Thus,
√
nβ̂

d−→ N(φ, nvar(β̂)) as

n → ∞, and consequently nβ̂
′
(n ˆvar(β̂))−1β̂

d−→ χ2(d, φ
′
(nvar(β))−1φ) as n → ∞. There-

fore, β̂
′
( ˆvar(β̂))−1β̂

d−→ χ2(d, β
′
(var(β))−1β) as n → ∞, and γ can be estimated by

1
N
β̂
′
( ˆvar(β̂))−1β̂, where N is large.

For illustration, we used the second method of estimating the power of likelihood ratio

tests. We considered testing the time homogeneity of the Markov model in Figure 3.1(b).

We assumed that the alternative M1 is a piecewise-constant model with 4 pieces (0, 1],

(1, 2], (2, 3], and (3, 4]. The corresponding transition intensities (q12, q21, q23) for these

pieces are (0.44, 2.13, 0.86), (0.90, 1.57, 0.95), (1.19, 1.21, 1.13) and (1.30, 1.07, 1.46),

respectively, and the prevalence probability values are given in Table 5.3. We generated a

single large sample of N = 10, 000 processes from M1, so that each of the processes was

observed with gap times ∆t = 0.25, 0.5, or 1 over time interval (0, 4]. We then fitted a

time-homogeneous model (M0) and a 4-piece model M1 and obtained the likelihood ratio

statistic (5.4), and thus γ̂. The results on power are given in Table 5.4. Powers were

computed for a test of size 0.05, as P (χ2(q, nγ̂) > χ2
0.95(q)), where χ2

0.95(q) is the 0.95

quantile for χ2(q). We have also computed confidence intervals for the power of tests, by

using the fact that χ2(d, δ) has variance 2(d+ 2δ).
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Table 5.3: The prevalence probability values for the simulation study of Section 5.4.

t P11(t) P12(t) P13(t)

1 0.804 0.118 0.078

2 0.533 0.205 0.262

3 0.311 0.187 0.502

4 0.169 0.112 0.718

The estimated powers in Table 5.4 are all high. However, they are based on asymptotic

power formulas, so might not be highly accurate for smaller values of n. In order to check

the accuracy of the power estimates for a typical case n = 100 and ∆t = 0.5 presented

in Table 5.4, we conducted a simulation which includes B = 1000 samples of n = 100

processes. We simulated the data under the model M1, and fitted both models M0 and

M1 to each sample to compute the corresponding likelihood ratio statistic Λ. Then, we

estimated the power for the test with size α = 0.05 by taking the proportion of the B

samples for which the likelihood ratio statistic exceeds the χ2
0.95(9). The simulation gave

972 samples, all of which had Λ > χ2
0.95(9). However, for the remaining 28 samples, msm

was not able to fit the M1 model. This was due to not having any observed transitions for

at least one of the time intervals in the 4-piece model M1. We nevertheless can conclude

here that the estimated power of 0.996 in Table 5.4 is not very inaccurate.

5.5 Prediction and comparison of models

We may assess models in terms of their model fit or predictive performance. The former is

usually evaluated by checking how closely models fit the observed data while assessment

of the latter requires new data or cross-validation. In Chapter 4 and earlier sections of
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Table 5.4: Estimates of the power of likelihood ratio tests with size 0.05.

∆t γ̂ (%95 CI) n Power of test (%95 CI)

0.25 0.343 (0.320, 0.366) 50 0.843 (0.811, 0.870)

100 0.995 (0.991, 0.997)

200 1.00 (1.00, 1.00)

500 1.00 (1.00, 1.00)

1000 1.00 (1.00, 1.00)

0.5 0.354 (0.330, 0.377) 50 0.856 (0.826, 0.881)

100 0.996 (0.993, 0.998)

200 1.00 (1.00, 1.00)

500 1.00 (1.00, 1.00)

1000 1.00 (1.00, 1.00)

1 0.270 (0.249, 0.290) 50 0.724 (0.682, 0.762)

100 0.974 (0.961, 0.983)

200 1.00 (1.00, 1.00)

500 1.00 (1.00, 1.00)

1000 1.00 (1.00, 1.00)
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this chapter, we discussed the assessment of Markov multistate models based on the data

set from which they were derived. In this section, we describe an approach to assess

the predictive performance of these models. In addition, this method will enable us to

compare families of models with different structures in terms of their ability to predict

specific outcomes. For instance, this allows us to compare models based on failure time

distributions and multistate models. Moreover, the comparison of multistate models with

different state spaces becomes possible.

Van Houwelingen and Putter (2012, Chapter 3), discussed three ways for measuring

the predictive performance of models. They mentioned 1) the absolute error, 2) the Brier

score, and 3) Kullback-Leibler (KL) score. However, because of some unpleasant properties

of the absolute error approach, they restricted their attention to the Brier and KL scores.

Here, we consider the KL measure, since it has a close connection to maximum likelihood

estimation, which we use. Our method is similar to Liquet and Commenges (2011), where

they used the KL score to compare the illness-death model with a survival model in terms

of their ability to predict the survival probability.

Suppose that we want to compare two models in terms of their ability to predict the

probability for the time T of a specific event, given that it has not occured by time t∗0, and

still under observation between times t∗0 and t∗. We also have a vector of covariates z(t∗0).

In this context, our predictive probability is

P (T > t∗|T > t∗0, Z(t∗0)) t∗ > t∗0. (5.6)

The KL measure based on a predictive probability model for (5.6) can be written as

KL(M) = V (t∗)logP (T > t∗|T > t∗0, z(t
∗
0)) (5.7)

+ (1− V (t∗))log{1− P (T > t∗|T > t∗0, z(t
∗
0))},
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where V (t∗) = I(T > t∗), and “M” is the model for (5.6). In the comparison of two models

based on the KL measure, the model that has larger KL(M) value is preferred.

KL(M) can be extended to consider a set of times t∗1 < t∗2 < ... < t∗p. In this case,

the KL measure compares models based on observed data {tij, Zi(tij), Ti; j = 1, ...,mi} for

individuals i = 1, ..., n. We can write the extended KL measure as

KL(M) =
n∑
i=1

mTi∑
j=1

{ RijlogPr(Ti ≤ tij|Ti > ti,j−1, Zij) (5.8)

+ (1−Rij)logPr(Ti > tij|Ti > ti,j−1, Zij)},

where covariate vector Zij = Zi(t) is fixed over ti,j−1 < t ≤ tij, Rij = I(Ti ∈ (ti,j−1, tij])

and mT
i = min{maxj(j : Ti ≤ tij),mi}. In order to compare the KLs of two models,

we use cross-validation. That is, we randomly split the n individuals into L groups of

approximately the same size. At each stage, we drop group l from the data, and fit model

M to the remaining groups; then, we calculate the average KLl(M) for the l’th group

as the observed value (5.8), summing only over i in group l. The measure of predictive

performance is then given by KL =
∑L

l=1(1/L)KLl(M). We illustrate this method in

Section 5.6, where we compare the Cox model and multistate models in terms of the

probability of viral rebounds.

5.6 Application to CANOC data

The importance of viral fluctuations on the occurrence of viral rebound has been raised

in clinical research related to HIV (Grennan et al.(2012)). In this section, we define a

time-dependent covariate “Blip” as an occasion in which a viral load value of 50 − 999

copies/mL at a visit is preceded and followed by observed viral load values below 50
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copies/mL. Here, we investigate the association between Blip and risk of viral rebounds,

considering Blip as an internal covariate. First, we fit Markov multistate models similar

to those in Section 3.4.1. Second, we compare the multistate and Cox models in terms of

predicting the probability of viral rebounds, using the KL measure. Third, we check the fit

of multistate models by comparison of the nonparametric prevalence probability estimates

with the model-based estimates.

5.6.1 Multistate models with covariate Blip

We fit Markov regression models with transition intensities

qrs(t|z(t)) = q0rs(t)exp(β
T
rsz(t)), r, s = 1, 2, 3. (5.9)

In these models z(t) includes fixed covariates and two time-varying covariates, (i) z1(t) =

I(t > 2), and (ii) z2(t) = I(Blip has been observed before time t). Piecewise-constant

Markov models for both FARV1 and FARV2 groups were fitted using the msm package in

R. Tables 5.5 and 5.6 show estimates and standard errors for the baseline intensities and

covariate effects for two-piece models with cut point 2 years.

The estimated covariate effects associated with the Tables 5.5 and 5.6 are similar to the

ones that we had earlier in Tables 3.5 and 3.6, except for the new covariate Blip. From

Tables 5.5 and 5.6, we can see that individuals who have experienced a Blip are more likely

to move from state 1 to state 2, and to remain longer in this state. However, they are also

less likely to make the transition into the viral rebound state 3. We remark that Grennan

et al. (2012) found in analysis for the entire CANOC cohort that Blips involving a viral

load of over 500 were associated with higher risk of viral rebound. Our analysis does not

support this.
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Table 5.7: -2 log likelihood values for models without covariate Blip.

Model FARV1 FARV2

Time-homogeneous 7550.006 5697.425

Two-piece 7417.230 5669.010

Table 5.8: -2 log likelihood values for models with covariate Blip included.

Model FARV1 FARV2

Time-homogeneous 7470.755 5677.601

Two-piece 7332.435 5641.255

Tables 5.7 and 5.8 show the -2loglikelihood values for time homogenous and two-piece

models. These models include covariates age, IDU, and cART. The covariate Blip was also

included in models considered in Table 5.8. As we can see, the likelihood ratio tests of

models with Blip against models without Blip show significant Blip effects. In addition, the

two-piece models have substantially smaller -2loglikelihood values compared to the time

homogeneous models.

5.6.2 KL of msm and Cox models for time to viral rebound

We next compare Cox and multistate models in terms of their ability to predict the prob-

ability of viral rebounds. We use two-piece multistate models, and consider covariates age,

IDU, cART, and Blip in fitting both multistate and Cox models. For comparison of the

KL values of two models, we use L = 10 fold cross-validation method. Tables 5.9 and

5.10 show the results of the fitted Cox model for time to viral rebound in the FARV1 and

FARV2 groups. The estimated covariate effects associated with these tables are similar to
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the ones that we had earlier in Tables 4.12 and 4.13, except for the new covariate Blip.

We can also compare the covariate effect estimates of Blip in Tables 5.9 and 5.10 with

the covariate effect estimates obtained from multistate models in Tables 5.5 and 5.6. All

tables do not show any significant association between occurrence of Blip and having viral

rebound.

Tables 5.11 and 5.12 show the KL values of fitted Cox and multistate models for the

lth, (l = 1, 2, ..., 10) subgroup. As we can see from these tables, the multistate model has

somewhat larger KL values than the Cox model in the FARV1 group. However, in the

FARV2 group total, KL values of the multistate and Cox models are very close to each

other.

5.6.3 Prevalence probability estimates

For checking the fit of multistate models, we estimate prevalence using the Naive, IIW,

and msm prevalence probabilities, and compare them in plots similar to those presented

in Section 4.4. However, since the process involves the internal covariate Blip, we are not

able to compute the msm prevalence estimates directly. Therefore, we use the Section 5.2

simulation approach to approximate them. We simulate B = 1000 sample paths for each

combination of age, IDU, and cART categories. Each path is simulated at a discrete set

of times tj = 0, 0.25, 0.5, 0.75, ..., assuming that the covariate Blip has fixed values over

(tj−1, tj].

We also computed Naive prevalence estimates following the same approach presented in

Section 4.4.2. The IIW method was applied by assigning weights based on the Cox model

results given in Tables 4.14 and 4.15. Figures 5.1 and 5.4 show aggregated estimates of

the prevalence probabilities P1r(t), r = 1, 2, 3 for all individuals in the FARV1 and FARV2
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Table 5.9: The results of the fitted Cox model for time to viral rebound in the FARV1

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) -0.354 0.122 0.701 (0.553, 0.890) 0.003*

IDU (=Yes) 0.704 0.134 2.021 (1.554, 2.629) 1.54e-07*

IDU (=NA) -0.100 0.151 0.905 (0.674, 1.216) 0.508

cART (=PI) 0.144 0.114 1.155 (0.925, 1.443) 0.204

Blip 0.093 0.174 1.097 (0.779, 1.545) 0.595

∗| β̂

se(β̂)
| > 1.96

Table 5.10: The results of the fitted Cox model for time to viral rebound in the FARV2

group.

Covariates β̂ se(β̂) Relative Risk (RR) 95% CI for RR P-value

Age (> 45) -0.320 0.181 0.726 (0.510, 1.036) 0.078

IDU (=Yes) 0.893 0.216 2.443 (1.598, 3.733) 3.68e-05*

IDU (=NA) -0.279 0.246 0.756 (0.467, 1.224) 0.256

cART (=PI) -0.311 0.184 0.733 (0.511, 1.051) 0.091

Blip 0.147 0.254 1.158 (0.704, 1.904) 0.563

∗| β̂

se(β̂)
| > 1.96
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Table 5.11: KL comparison of msm and Cox models for time to viral rebound in the FARV1

group.

Subgroups multistate model Cox model (F-H)

1 -130.106 -136.169

2 -166.254 -169.781

3 -118.617 -126.848

4 -134.207 -136.758

5 -175.594 -171.924

6 -123.198 -123.643

7 -142.557 -143.917

8 -130.179 -127.907

9 -148.163 -148.579

10 -159.737 -160.495

Total -1428.612 -1446.021
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Table 5.12: KL comparison of msm and Cox models for time to viral rebound in the FARV2

group.

Subgroups multistate model Cox model (F-H)

1 -60.161 -63.420

2 -43.101 -46.586

3 -45.742 -46.186

4 -70.312 -73.492

5 -89.888 -86.038

6 -87.619 -84.288

7 -56.097 -58.136

8 -56.084 -56.453

9 -76.333 -70.274

10 -29.607 -32.849

Total -614.944 -617.722
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Table 5.13: The msm prevalence estimates for Figures 5.1 and 4.13.

Time 1 2 3 4 5 6 7 8

P11(t) without Blip 0.806 0.706 0.671 0.639 0.608 0.578 0.553 0.525

with Blip 0.807 0.704 0.665 0.631 0.559 0.569 0.537 0.514

P12(t) without Blip 0.039 0.026 0.025 0.021 0.021 0.021 0.017 0.020

with Blip 0.041 0.023 0.024 0.022 0.022 0.022 0.024 0.019

P13(t) without Blip 0.155 0.267 0.304 0.340 0.371 0.400 0.429 0.455

with Blip 0.152 0.273 0.311 0.347 0.379 0.409 0.439 0.466

groups. Figures 5.2, 5.3, 5.5, and 5.6 represent the aggregated probabilities for injection

drug users or non users. The msm prevalence estimates are based on the fitted multistate

models associated with Tables 5.5 and 5.6. As shown in Figures 5.1 to 5.6, the model-based

prevalence estimates are close to the estimates obtained from the IIW method. The good

agreement of the msm and IIW estimates provides support for the msm models. However,

the naive curves do not agree with these two estimates in many cases, and they would lead

us to believe erroneously that the multistate model did not estimate prevalences well.

Comparing the msm prevalence estimates in Figures 5.1 to 5.6 with the msm estimates

in Figures 4.13 to 4.18 shows there are differences in the msm prevalence estimates obtained

from models with and without Blip.In order to see the differences, a couple of prevalence

estimate values for the both models are given in Tables 5.13 and 5.14. However, considering

the variability of the IIW estimates, we are not able to conclude which model outperforms

the other based on the prevalence estimates.
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Figure 5.1: Comparison of Naive, msm, and IIW prevalences for all individuals in the

FARV1 group, considering the BLIP covariate
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Figure 5.2: Comparison of Naive, msm, and IIW prevalences for injection drug users in

the FARV1 group, considering the BLIP covariate
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Figure 5.3: Comparison of Naive, msm, and IIW prevalences for non-injection drug users

in the FARV1 group, considering the BLIP covariate
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Figure 5.4: Comparison of Naive, msm, and IIW prevalences for all individuals in the

FARV2 group, considering the BLIP covariate
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Figure 5.5: Comparison of Naive, msm, and IIW prevalences for injection drug users in

the FARV2 group, considering the BLIP covariate
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Figure 5.6: Comparison of Naive, msm, and IIW prevalences for non-injection drug users

in the FARV2 group, considering the BLIP covariate
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Table 5.14: The msm prevalence estimates for Figures 5.4 and 4.16.

Time 1 2 3 4

P11(t) without Blip 0.864 0.828 0.798 0.760

with Blip 0.860 0.829 0.792 0.763

P12(t) without Blip 0.070 0.038 0.031 0.033

with Blip 0.069 0.040 0.042 0.039

P13(t) without Blip 0.066 0.133 0.171 0.208

with Blip 0.071 0.131 0.165 0.198

5.7 Concluding remarks

In this chapter, we proposed a method for estimating prevalence probabilities in modulated

Markov models for which transition intensities depend on internal covariates related to

previous process history. This method, which is based on an algorithm that simulates

sample paths of processes, can be used in model checking and prediction of the modulated

Markov models. Modeling the covariate process, enables us to estimate the distribution of

time to viral rebound in the presence of a time dependent covariate such as blip. This is

an advantage of the multistate models over survival methods.

We also discussed difficulties in model assessment with irregular intermittent observa-

tions when comparing empirical and model-based estimates. We addressed these problems

using likelihood ratio tests within the Markov process family. In addition, methods of

estimating the power of these tests were proposed. Finally, besides assessing models in

terms of how well they fit the observed data, we may be interested in evaluating their
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performance in predicting new outcomes. In this chapter, we proposed a method which

enables us to compare the prediction performance of different models, even if they have

different outcome spaces.
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Chapter 6

Topics for Research

In this last chapter of the thesis, we give a brief overview of the proposed methods in the

previous chapters, and briefly discuss further research topics.

6.1 Overview

As a brief summary, in Chapter 3 of the thesis, we discussed the use of asymptotic co-

variance matrices for investigation of the loss of efficiency in estimation of parameters for

intermittently observed data. We concluded that in progressive models, the precision of

transition intensity and probability estimators based on panel data, relative to the preci-

sion of estimates obtained from continuous observations, did not change much with the

increase of the gap times between visits. In bi-directional models, the relative precision of

transition intensity estimates dropped off rapidly, but the decrease was smaller for tran-

sition probabilities. In Chapter 4, we proposed the IIW method for estimating marginal
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process features such as failure time distributions and prevalence probabilities, when the

observation times were process-dependent. We demonstrated via simulations that the IIW

prevalence estimates have little bias but the naive estimates that ignore the dependency

between inter-visit times and previous process history can have large bias. In Chapter

5, we developed a method that facilitates estimation of the prevalence probabilities in

the presence of internal covariates. In addition, we addressed various problems that may

arise in the assessment of multistate models with irregular intermittent observations by

the use of likelihood ratio tests within the Markov process family. Finally, we proposed a

method that compares the prediction performance of models based on different outcome

spaces.

More detailed discussion and practical recommendations on the usage of the proposed

methods are presented at the end of each individual chapter, and the illustrations involving

CANOC data demonstrated practical aspects of their application.

6.2 Heterogeneity in Markov Models

Sometimes individuals may follow a Markov process, but even after conditioning on co-

variates that are significantly associated with the transition intensities, there may remain

substantial heterogeneity with respect to the transition probabilities. In this case, there

are basically two approaches to consider, each of which involves incorporating unobserved

random effects.

The first is when the unobservable heterogeneity can be generally incorporated in a

model through continuous random effects. In this approach, each individual’s transition

intensity matrix can include random effects. Introducing random effects to Markov models
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has two advantages. Firstly, it gives processes that depend on the whole event history, but

still keeps the model parsimonious, unlike, e.g. models that increase the order of the Markov

chain. Secondly, it accounts for and provides measures of the heterogeneity. Mandel and

Betensky (2008) proposed random effects Markov models to account for heterogeneity in

the population, and studied prediction based on them. Another examination of random

effects in multi-state models is given by O’Keeffe et al. (2011).

The second approach for dealing with heterogeneity involves discrete random effects, and

arises when there are unobservable and different types of individuals, and all individuals

of the same type follow a Markov process with specific transition intensity matrix. We

can either consider these models as latent class models or discrete mixture models. One

such model is the so called Mover-Stayer model. This model extends the Markov process

by allowing for the existence of a subgroup of individuals who, with probability one, will

remain in their initial state throughout the observation period. These individuals are

called “Stayers”. The remaining individuals, called “Movers”, follow a common Markov

process with specific transition probabilities. This approach has been used by some authors

(e.g. Goodman (1961), Frydman (1984), Cook and Lawless (2014)). This model is very

restrictive and in general, more than two classes of individuals may be called for.

In the CANOC data, the viral load paths are highly variable between and within individ-

uals, and continuous random effects may not represent such heterogeneity well. However,

we might consider latent classes based on baseline covariates, and then use transition in-

tensity matrices which are independent of covariates, conditioning on the classes. Another

potential research topic is to compare random effects models with models that incorporate

more dependence on past history, which will be discussed in the next section.
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6.3 Models with dependence on history

One of the important challenges in modeling is to specify intensity functions that ade-

quately describe life history processes or events. In the analysis of the CANOC viral load

data, the occurrence of Blips and the impact of Blips on virologic rebounds are of interest,

for example. However, the exact nature of a Blip is uncertain, and different definitions

can be used to define this event practically. In the thesis, we used the definition of Blip

in Grennan et al. (2012). However, this definition of Blip is affected by the gap times

between visits. In the CANOC study, the viral load values were designed to be measured

roughly every three months, but some people delayed or missed their visits. Thus, persons

who missed their appointments while they were in state 2, could have moved back to state

1 by the next visit. Since these transitions were not observed, the Blip occurrence would

not be noted. Ways to define internal covariates that can deal with irregular observation

times is an important topic for research. For the CANOC data, we can investigate the

effects of other covariates on the occurrence of viral rebounds. For instance, we may con-

sider covariate “recent-Blip” which can stand for having experienced Blip within 3 months

before time t; that is Z(t) = 1{Blip in the last three months before t}. This would help us

to distinguish between the occurrence of Blip at any time in the past and the recent ones.

In addition, it might give us a better understanding of the impact of viral load values on

the occurrence of viral rebounds. van Houwelingen and Putter (2012) in Chapter 6 of their

book considered the effects of different types of time dependent covariates on prediction of

specific events.
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6.4 Recurrent Events

We discussed the case where viral load processes produce a single event, viral rebound.

However, we may be interested in considering viral rebounds as recurrent events. In this

case, the occurrence of an earlier viral rebound may affect the probabilities of a new viral

rebound. These type of effects can be modeled by defining covariates associated with the

occurrence of the previous events, and then including these covariates in the transition

intensities of the multistate models associated with the future.

In the CANOC study, we can use the multistate model in Figure 3.1(b), and the tran-

sition intensities in Sections 3.4 or 5.6 for modeling the viral load processes after the first

viral rebound. However, we may set the time to zero after the occurrence of a viral rebound

and subsequent viral suppression, and include covariates which indicate the occurrence of

the previous viral rebounds in the transition intensities.

6.5 IIW Prevalence Estimates

In the second simulation study of subsection 4.3.4, we found that extreme weight values

cause influential observations, and consequently high variability of the IIW-SM prevalence

estimates. We recommended the use of truncation for the adjustment of large weight

values. This approach was applied in the second simulation, and the results demonstrated

that the variability in prevalence estimates was reduced to some extent. Another approach

that can be considered as future work is to use parametric models instead of nonparametric

semi-Markov models for the gap times. For instance, we can fit flexible parametric models

such as piecewise constant. This may avoid extreme weight values and give estimates of θ
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with less variability.

Another source of variability in nonparametric IIW prevalence estimates is insufficient

number of observations at each time t, or time interval. This becomes more challenging

when we deal with irregular observation times. In this situation, for each time t, there might

be only one observation, leading to binary estimates of P1r(t) as discussed in subsection

4.3.3. In order to tackle this problem, we applied smoothing approaches such as loess

for the simulation study, and a grouping method for the CANOC data. Since different

smoothing methods may influence the estimation of IIW prevalences, the impact of these

approaches requires further investigation.

In this thesis, we proposed the IIW prevalence estimates to reduce the bias in nonpara-

metric estimates when the observation times are process dependent. However, in order

to make a more precise comparison between estimates obtained from Markov models and

corresponding IIW estimates, and more generally, to use the IIW estimates more broadly,

we would like to construct confidence intervals based on the IIW estimates. Research is

needed to develop variance estimates and confidence intervals.
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