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Abstract

It has long been a goal of neuroscientists to understand how electrophysiological activity

in the nervous system corresponds to, and causes, specific physiological actions. Such knowl-

edge could be used to develop cures for disabilities related to nervous system dysfunction, and

to control artificial limbs or restore motion to a paralyzed patient. This has motivated research

into technologies, broadly termed brain-machine interfaces, for interfacing with the nervous sys-

tem. One category of such neural interfaces is implantable neural recording devices, which

monitor and record neural signals through a microelectronic device implanted in the body. Typi-

cal implantable neural recording devices use a micro-electrode array to record electrical signals

simultaneously from a multitude of neurons. Unfortunately, devices employing micro-electrode

arrays have several issues from both the biological and circuit design points of view. These issues

include tissue damage due to implantation of a micro-electrode array, degradation of recording

fidelity over time, limited spatial resolution, the requirement to maintain charge balance in tissue,

and the difficulty in implementing low-frequency (large time constant) filter cutoffs with limited

chip area. These issues provided the motivation to investigate alternative methods for neural

recording - namely optical methods based on fluorescence detection with voltage-sensitive flu-

orescent proteins. Optical recording methods can alleviate many of the issues with electrical

recording, as well as provide other advantages, such as recording targeted to specific neuron-

s/neuron types and higher spatial resolution due to reduced recording site pitch. The major limi-

tations of fully implantable optical recording devices stem from size constraints, the attenuation

of light in tissue, which limits imaging depth, and the need for genetically programmed voltage-

sensitive fluorescent proteins, which must be introduced to the tissue in the case of chronic

iii



recording.

This research began with investigating the feasibility of replacing an electrical neural record-

ing front end with an optical front end - the conclusion being that producing an initial design was

worthwhile. Thus, this thesis presents a prototype optical neural recording device for detecting

individual spikes in Layer I of the brain. The device is designed for the fully implantable sce-

nario, where space for typical fluorescence imaging optical components is limited, and a high

level of integration is required. The thesis describes: 1) Modeling: a general framework for

modeling near-field fluorescence detection systems is presented; the model is then extended and

applied to the design of the optical neural recording device for detecting individual spikes in

Layer I of the brain, taking into account light attenuation in tissue; 2) Design: the design of

a high-sensitivity CMOS imaging chip used in the device; 3) Packaging: the packaging of the

CMOS imager with LED dies and an excitation filter; and 4) Testing: the experimental results

from testing the packaged device with a fluorescent tissue phantom designed to emulate layer I

of the brain. Ideas for future work on such devices are discussed.
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Chapter 1

Introduction

1.1 Motivation

It has long been a goal of neuroscientists to understand how electrophysiological activity in

the nervous system corresponds to, and causes, specific physiological actions. Such knowledge

could be used to develop cures for disabilities related to nervous system dysfunction, such as

Parkinson’s disease [5], and to control artificial limbs or restore motion to a paralyzed patient.

This has motivated research into technologies, broadly termed brain-machine interfaces (BMIs),

for interfacing with the nervous system. A BMI is a device, either invasive (implantable) or non-

invasive, that provides access to neural signals, either through recording or stimulation of neural

activity. In theory, functions of the nervous system could be restored artificially if access to the

necessary signaling was available.

Past experiments have shown that rats [13], monkeys [98], and paralyzed humans [46], can
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control computer cursors or robotic arms through neuroprosthetic devices that monitor multiple

neural signals. Such experimental results suggest that interfacing with the nervous system is a

possible approach for treating paralysis and other disorders and disabilities in humans [55]. One

of the more recent examples of an implanted BMI in humans is in [45], where a woman with

tetraplegia was able to use a robotic arm to reach out, grab a beverage container, bring it to her

mouth, and drink from it.

A state-of-the-art fully implantable BMI device provides wireless transmission of recordings

from a 100-channel micro-electrode array (MEA), for hours at a time, with the ability to be

recharged [11]. While the capability of such a device is impressive, there is still a long way to

go before implantable BMIs become reliable, unobtrusive and widely used in humans. Conven-

tional BMIs rely on microelectrodes to electrically interface with neurons. In order to improve

on existing BMIs and overcome some of their limitations, researchers are considering different

modalities. In particular, research on optogenetics and its use in neural recording and stimula-

tion is becoming more popular. Different groups have begun pursuing optical interfacing based

on optogenetic techniques [53], [97], [78], [69], [36]. Optical interfacing has advantages over

electrical interfacing, and shows promise for future BMIs. These advantages are discussed in

Chapter 2. Optical neural recording systems have been implemented, but are typically restricted

to large bench-top systems; there has been some work on shrinking large bench-top systems

down to head-mountable systems (for mice) [97], [78], but until very recently there has been

very little work done on shrinking these systems down to sizes appropriate for full implantation,

as was done in [53].
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1.2 Aim and Contributions

The high-level aim of this research work is to advance the state of the art in implantable neural

interfaces in order to improve capabilities for learning about nervous system function, as well

as to further enable the design of devices for restoration of nervous system function. The focus

in this thesis is on neural recording (as opposed to stimulation). More specifically, the goal

is advancement of neural recording through the design of implantable optical neural recording

devices based on fluorescence detection. The contributions of this work are as follows:

1. An optical modeling framework for prediction of fluorescence detection device perfor-

mance.

• The modeling framework can be generalized to other near-field fluorescence detec-

tion systems.

• The framework is used to model the implantable optical neural recording device de-

scribed below.

2. A CMOS imaging chip designed to detect low-intensity light, which is to be used in an

optical neural recording device.

3. A fluorescence detection-based optical neural recording device.

• The device consists of a CMOS imager, light-emitting diode (LED) die excitation

sources, and an optical excitation filter.

• The device is designed to detect individual spikes in layer I of the brain (a depth of

about 300µm ).
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4. A method for testing an optical neural recording device using a fluorescent tissue phantom.

• The tissue phantom uses embedded fluorescent microspheres coupled with modulated

excitation light to emulate the functionality of neurons containing voltage-sensitive

fluorescent molecules.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 provides background information on

the characteristics of neural signals, and discusses neural recording device specifications. Elec-

trical and optical neural recording methods are compared. Lastly, fluorescence detection and its

application to neural recording is described.

Chapter 3 presents work done towards electrical neural recording circuitry.

Chapter 4 presents a low-complexity model for predicting the near-field distribution of light

from an excitation source. The model is applied to predicting the light distribution in a CMOS

imager chip with LED dies bonded on top of the chip. The design and testing of the first optical

chip with LED dies bonded on top of the chip is presented, and the experimentally measured

results are compared to the model results.

In Chapter 5 the basic optical model is extended to include light propagation in tissue and

fluorescence. The extended model is used to predict the recorded signal in an implantable optical

neural recording device consisting of a high-sensitivity CMOS imaging chip with an optical

excitation filter and LED dies bonded beside it.
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Chapter 6 presents the design, packaging, and testing of the optical neural recording device

described in Chapter 5. This includes the design and testing of a second CMOS imager chip, and

fluorescence testing with a tissue phantom.

Chapter 7 summarizes the contributions of the thesis and discusses directions for future work.
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Chapter 2

Background

This chapter provides background information on the characteristics of neural signals and the

characteristics of ideal BMIs. Neural recording device specifications are discussed. Next, elec-

trical and optical neural recording methods are compared. Lastly, fluorescence detection and its

application to neural recording is described.

2.1 Characteristics of Neural Signals

The following subsection describes the neural signals that are of interest in neural recording. The

description is based on [7] and Chapter 7 in [50].
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2.1.1 Action Potentials

Neurons are the excitable cells of the nervous system that are capable of generating action po-

tentials (APs), or spikes. Note that muscle cells can also generate potentials. Like all cells in the

body, neurons have a cell membrane. In the resting state, there exists a potential difference across

the membrane, which is called the resting potential. The resting potential is due to the electrical

charge of ions on either side of the membrane. Ion pumps fed by ATP (adenosine triphosphate)

maintain the intracellular (inside the cell) and extracellular (outside the cell) ion concentrations

in the resting state. The most significant pump is the Na+-K+ pump, which exchanges Na+ ions

inside the cell for K+ ions from outside the cell. Thus, the extracellular Na+ concentration is

high, and the intracellular K+ concentration is high. The resting potential due to the concentra-

tions of Na+, K+ and other ions is about -70mV. This is shown as part A in Fig. 2.1. The figure

shows a theoretical plot of an AP. These pulses typically have an amplitude of approximately

100mV relative to the resting potential, and a duration of approximately 1ms.

In addition to ion pumps, the membrane has voltage-gated ion channels. These ion channels

are made of proteins, and can change their shape. When triggered by an increase in membrane

potential, the ion channels open, permitting the diffusion of certain ions across the membrane.

When the ion channels are closed, ions are prevented from diffusing across the membrane.

When a stimulus excites a neuron a small increase in the membrane potential occurs, some

Na+ channels open and Na+ ions diffuse into the cell, carrying with them a net positive charge.

If the stimulus is too small, the membrane potential will not increase past the threshold potential,

no AP will be generated, and the membrane potential will drop back to the resting potential.

However, if the stimulus is large enough, the membrane potential increases past the threshold
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Figure 2.1: Theoretical plot of an action potential. Each letter on the plot indicates a different
portion of the action potential.

value, and an AP occurs. See part B in Fig. 2.1 (the dashed line is the threshold potential). When

an AP occurs the membrane potential is high enough to open more Na+ ion channels, increasing

the diffusion of Na+ ions into the cell, and positive feedback continues to sharply increase the

membrane potential, but not indefinitely. See part C in Fig. 2.1. Na+ ion channels will close after

about 1ms despite the depolarization of the membrane potential. Also, K+ ion channels begin

to open, allowing K+ ions to diffuse out of the cell. These channels require a higher membrane

voltage to open than do the Na+ channels. As the Na+ channels close and the K+ channels open,

the membrane potential is driven back to the resting potential. See part D in Fig. 2.1. The K+

channels are slower to deactivate, and so there can be an overshoot of the resting potential during

repolarization. See part E in Fig. 2.1.

When an AP is generated (the membrane potential exceeds the threshold), the full AP wave-

form is generated. i.e. it is an all-or-none response. Each spike from the same neuron will have

nearly identical amplitude and duration. Therefore, though spikes are inherently analog signals,

a spike train can be thought of as a digital signal. An active neuron typically generates 10-100

spikes per second, whereas a resting neuron generates around 1-10 spikes per second [39].

8



2.1.2 Recording Neural Signals

While the underlying processes of the nervous system are chemical in nature, we indirectly

measure them by recording the resulting neural voltage waveforms. Typical electrical recording

of neural signals through an implantable device relies on implanting electrodes in the neural

tissue. The types of electrodes and their locations determine the type of signals that are recorded.

Cell Potentials

Ideally we could simultaneously measure the full-scale APs (cell potentials, ∼100mV) of many

individual neurons. With electrical recording this would require intracellular penetrating elec-

trodes. Unfortunately, this type of measurement will quickly result in cell death, and cannot be

used for chronic implants [39].

Extracellular Signals

Extracellular signals are recorded from electrodes that do not penetrate cell bodies, but rather

sit nearby in the extracellular fluid. Extracellular voltages resulting from APs are much lower

outside of the cell than inside the cell, and are increasingly attenuated as the distance between

the electrode and cell increases. In the case where an electrode is very close to a single neuron,

single-unit recordings (SURs, spikes from a single neuron) can be obtained.

Another possibility is recording the superposition of signals from several neurons grouped

closely together, as either multi-unit recordings (MURs) or local field potentials (LPFs). MURs

are from a few cells, while LFPs are from a larger number of cells. Another option is to record
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signals that are a result of an even larger number of neurons over several square centimeters,

called electroencephalography (EEG) [80]. Each of these types of recording has its advantages.

For example, EEG may provide information on the big picture of brain intent but neglect the

information of individual or a small group of neurons. Conversely, performing only MUR or

LFP recordings may neglect the overall intent of the signals. Determining the appropriate control

(stimulation) signal to send to the destination in a closed-loop system may require a combination

of recording methods [80].

The nature of neuronal signals response to motion was documented four decades ago [27]. It

was found that neighboring neurons may exhibit distinct firing patterns for a certain movement,

but the firing of a single neuron may vary significantly in different trials of that same movement.

The average of firing patterns for many trials is usually quite consistent [55]. These charac-

teristics mean that in a neuroprosthetic device whose goal is to stimulate motion, signals from

several neighboring neurons must be simultaneously recorded in order for the device to reliably

extract the intent of the signals and respond with appropriate stimulation patterns. Thus, neural

recording devices must be multi-channel devices.

It should be noted that several groups have investigated decoding LPFs and other lower fre-

quency neural activity for the purposes of motor control. In their recent review of neural record-

ing techniques, the authors of [48] state that while recordings from LFPs for the purpose of motor

control have progressed in recent years and do have merit, LFP recordings still do not perform

as well as spikes.
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Extracellular Signal Characteristics

Typical single- and multi-unit recordings have frequency content from 100-300Hz up to 7-10kHz,

and amplitudes from 50µV to 1mV (depending on the distance from the electrode to the cells)

[12], [8]. Due to electrochemical effects at the electrode-tissue interface, there also exist large DC

offset voltages (1-2V) at the electrodes [8]. LFPs frequency components can be below 1Hz [8],

but typically are in the 10-200Hz range [40]. LFPs and MURs can be separated from a single

extracellular recording with reasonably simple filtering since they occupy different frequency

bands. It is also possible to distinguish between spikes from different neurons from a single

recording [40], [80]. This is usually referred to as spike sorting. A single electrode in a MEA

may see spikes from 1-4 separate neurons, whereas other electrodes in the array may see no

spikes [40].

2.2 Ideal Brain-Machine Interfaces and Design Specifications

Brain-machine interfaces are devices that provide access to neural signals. In this work the

focus is implantable neural recording (as opposed to stimulation) devices. From a high-level

perspective, an ideal neural recording device would provide the capability to accurately monitor

the activity of a population of interconnected neurons and provide a visual map of the neural

connections [24]. Additionally, the device would operate in such a manner that it would not

inhibit the subject in any way, and would be functional for long periods of time when chronically

implanted. In the context of recording from a mouse, for example, the mouse must be able to

move freely in a large area, and the device should not place excessive physical stress on the
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mouse, or alter the normal functionality of its nervous system and other biological systems.

Similar requirements exist in the case of recording from humans. These requirements place

several constraints on the design of the neural recording device. These constraints are outlined

as follows.

2.2.1 Wireless Operation

An implantable device must operate wirelessly to allow for unrestricted movement of the subject

and to allow for full subcutaneous (under the skin) implantation [8]. Subcutaneous implantation

is necessary to prevent infection. A device with wires protruding from the skin provides a path

for infection which can be damaging to the patient.

2.2.2 Form Factor

Unfortunately, subcutaneous implantation imposes severe contraints on the size of implanted

devices. The limitations will vary depending on implant location. For example, the thickness of

the device in [79] is limited to 1-2mm due to the amount of space between the dura and the skull,

where the device will be implanted.

2.2.3 Power Supply

Another problem posed by full implantation is access to a power supply. An external wireline

power supply is no longer an option. The device may have to include some sort of energy

storage solution. Batteries may be an option. However, battery size, and thus lifetime, are
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severely limited by the size requirements. This is a problem because frequent surgery to replace

batteries is highly undesirable. Surgery is costly in terms of money and man-power, and involves

some risk to the patient no matter how reliable the surgery may be. Therefore, any batteries

must be rechargeable. Inductive power coupling can be used to recharge batteries, or continuous

inductive coupling could be used to power the device without a battery. Ideally, energy harvesting

of ambient energy within the body could be used to recharge the batteries and power the device

indefinitely.

2.2.4 Power Consumption

Perhaps the most important design constraint is power consumption. Low power design is abso-

lutely essential for two reasons. One, as has been discussed, is the difficulty in supplying power

to the device. The other is that excessive heat dissipation causes temperature gradients at the im-

plantation site. If too much heat is dissipated, surrounding cells will die, which is not acceptable

[29]. A temperature difference of even 1◦C is enough to damage cells [38]. Experimental results

have shown that power dissipation must be less than 150µW/mm2 of chip surface area in order to

limit the temperature change to 1◦C [38]. Another study has shown that the power consumption

of an implanted device must be less than 80mW/cm2 in order to avoid tissue damage [86].

2.2.5 Biocompatibility

Biocompatibility is an issue with device implantation. The body sees an implanted device as a

foreign substance, and encapsulates it with a glial (non-neural support cells in nervous tissue)

tissue, which can be 50-100µm thick and takes 6-12 weeks to form [17]. This reaction makes

13



electrical recording of extracellular signals more difficult, because impedance is increased and

neurons are further away from the electrode [17]. Hence, recording degrades over time [38].

Other problems with implanting devices are possible surgical trauma, and the movement of elec-

trodes over time relative to the surrounding cells due to motion of the subject [17].

2.2.6 Density of Recording Sites

It is desirable to have a high density of recording sites on the device in order to extract informa-

tion from as many neurons as possible. The density of recording sites will impact device form

factor, packaging, data rates, power consumption and potentially biocompatibility.

2.2.7 Data Rates

MEAs include up to 100 channels [65], and future recording systems may include multiple

recording sites with multiple MEAs. In order to capture the shape of spikes, each of these

channels will be continuously sampled at a sampling rate in the vicinity of 15-20kSps, such that

all of the frequency content (up to 7.5-10kHz) can be captured without aliasing. Additionally

the recordings should reproduce the actual shape of the waveform, which is necessary for spike

sorting algorithms to operate. The desired sample resolution (amplitude resolution) is typically

8 bits.

It is easy to produce tens of megabits of data per second in this case with continuous recording

[14], [40]. Given the power consumption constraints the wireless communication circuitry likely

cannot reliably transmit these high data rates through tissue. Therefore, the system must include
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some method for reducing the transmitted data rate [40].

2.2.8 Functionality

The device should have some sort of built-in testing circuitry to verify that the device is working

properly, and that it won’t harm the patient [71]. One example is a temperature sensor to ensure

heating limits are satisfied.

2.2.9 Generic, Cheap, Programmable

In the case of commercial adoption of an implantable device, ideally the developed device would

be capable of implantation anywhere in the body, and capable of recording any type of neural

signal. It would be wirelessly programmable such that the user could optimize its performance

for the specific application [29]. With a wirelessly programmable device, security is also an

issue. Without security, anyone with malicious intent could take control of the device. The

device should be designed and fabricated with standard technologies to keep costs low.

2.2.10 Extensive Testing

Lastly, extensive testing (electrical, long term biocompatibility) of the devices is imperative. The

ultimate goal is to have a fully functioning device chronically implanted in a human. Existing

devices have been tested in animals, and successful tests may create a push to implant in humans.

However, testing must be sufficient to ensure the safety of the patient [55].
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2.3 The State of Electrical Neural Recording Devices

Partially implantable wireless BMI devices have been used to successfully record neural signals

in animal experiments [41], [10], [84], [83]. In [1], a fully implantable device has been designed

and its functionality is verified in bench testing. In [79], an implantable device was tested in a

rat. The device is not currently wireless, but rather uses a fiber-optic system to transmit recorded

data to the implant. They state that in the future data could be transmitted through the skin with

a near-infrared laser. Perhaps the most advanced fully implantable device is presented in [11].

The hermetically sealed device connects to a 100-channel MEA, and wirelessly transmits the

24Mbps of recorded data to a receiver 1 meter away. The system is battery powered and can run

continuously for 7 hours between recharge cycles (through an inductive link). The device is 5.6

x 4.2 x 1.1 cm3. The device was tested in a non-human primate and was shown to operate safely

and effectively for over 1 year.

Despite these achievements, there are still several milestones to achieve before these devices

can truly become clinically relevant. Remaining issues for chronic fully implantable devices

include the physical size and tissue damage, power dissipation being small enough for long term

recording and supplying power to the devices, increasing the number of channels and long term

signal quality and reliability, and biocompatibility [35]. New techniques and novel design work

are required to address these current limitations.
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2.4 Electrical vs. Optical Recording

Conventional BMI technologies focusing on MUR or LFP recordings interface electrically with

the nervous system through miniature MEAs. An example of such an array is the Utah Elec-

trode Array, which is a 10 x 10 array of platinum-tipped silicon microelectrodes. The MEA is

4 x 4 x 1.5mm3 [65]. MEAs can be connected to a microchip with recording circuitry, and then

implanted. Unfortunately, recording through an electrical interface with MEAs has several draw-

backs, from both the biological and circuit design points of view, that make the implementation

of a fully implantable recording interface a difficult task.

Implanting an MEA damages tissue. As discussed previously, the response of the body is

to encapsulate the micro-electrodes, which degrades the fidelity of recording and makes chronic

recording difficult. The size of the micro-electrodes is limited by the amount of tissue damage

that is deemed acceptable. Limited micro-electrode size and spacing places limits on the resolu-

tion of recording. A micro-electrode cannot necessarily target and record the membrane potential

from only individual cells; often the recorded signal is an MUR or LFP. Such recordings are use-

ful for certain applications, but not necessarily useful for others where single-unit recordings are

required.

From a circuit design point of view there are several issues that must be overcome. Charge

balance in the tissue must be maintained so as not to upset the electrochemistry of the tissue.

Neural signals occupy a low frequency band, which means filtering circuitry requires very large

RC time constants. Large on-chip capacitors and resistors require significant chip area. Large

(10s of MΩ and larger) resistances are typically implemented with transistors operating in the

subthreshold regime where process variation reduces precision, which then requires extra cir-
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cuitry for programming/tuning the correct resistances. Stimulation is also typically performed

electrically, and stimulation artifacts affect recorded waveforms [42].

Given these issues, there is motivation to find other ways to implement neural recording.

Replacing electrical interfacing with the nervous system with optical interfacing is a possible

option. Optical recording and stimulation have the following potential advantages over electrical

recording and stimulation:

• Reduced tissue damage compared to an MEA, assuming the implant sits on the surface of

tissue rather than puncturing the tissue.

• Optical recording may not degrade over time, and may be a better solution for chronic

implants.

• Higher spatial resolution is possible (more photodetectors or light sources per unit area

than electrodes).

• Light does not interfere with neuronal function [85].

• Specific cell types can be targeted (using optogenetic techniques).

• Electrical frequency response requiring large time constants may be avoided.

Due to these potential advantages, optical interfacing is becoming an area of increasing in-

terest to the research community. Several groups have designed implantable devices with optical

stimulation [74], [97], some with simultaneous electrical recording [100], [96]. However, few

groups have designed devices for implantable optical neural recording. The basis for an optical
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recording system is fluorescence detection, which is described in the next section. The state of

the art in implantable optical neural recording devices is then reviewed in Section 2.6.

2.5 Neural Recording With Fluorescence Detection

In a fluorescence detection (FD) system the goal is to obtain an image of some system of interest

by detecting fluorescent light emitted from the system. The system of interest must contain

fluorescent molecules, which contain fluorophores. A fluorophore is a part of the molecule that

absorbs light of a certain energy (or energies) and then in response emits light of a certain lower

energy. The most basic FD system includes an excitation light source for the fluorophores, and a

photodetector to record the light emitted by the fluorophores. A photodetector captures photons

that are emitted from the fluorophore and produces an electrical signal proportional to the amount

of captured photons. The signal can then be processed to extract relevant information about the

system being imaged.

Most conventional FD systems are rather large, and include several optical components, such

as filters, mirrors and lenses, as well as a lamp or laser excitation source and some sort of camera

as the photodetector. An example of a bench-top FD system for in vivo imaging is seen in [85].

Their particular system includes a mercury arc lamp connected through a fiber to a structure that

includes excitation and emission filters, a dichroic mirror and a projection lens. The dichroic

mirror allows detected light to reach an EMCCD (electron-multiplying charge-coupled device)

camera. The structure is connected through a fiber optic cable to a small headstage on a rat. The

system allows for detection within a somewhat freely moving mouse, though the fiber optic cable

tethering still restricts movement.
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2.5.1 Fluorophore Characteristics

A given fluorophore has a characteristic excitation (absorption) spectrum and emission spectrum,

which define the energies (or wavelengths) of photons that it will absorb and emit. Fig. 2.2

shows the excitation and emission spectra for Cy3, a common fluorophore [18]. The wavelength

of emitted light is longer than the wavelength of absorbed light (or the energy of the emitted

light is lower than the energy of the absorbed light). This shift in energies between absorbed and

emitted light is known as the Stokes shift.
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Figure 2.2: Excitation and emission spectra of Cy3.

Different types of fluorophores are used for different applications. Many FD systems are

designed to produce a static image of some biological system, and therefore use a relatively long

exposure time when recording the image. Such a system might be used simply to determine if a
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certain type of cell exists in the system of interest. In this case the sensitivity of the fluorophore

to some biological signal is not very important, nor is its response time. However, in other FD

systems, such as those used in neural recording, the sensitivity of the fluorophore to the signal of

interest and the speed with which it can respond are very important characteristics.

2.5.2 Types of Fluorophores

The two main types of fluorophores are fluorescent dyes and fluorescent proteins. Two common

types of dyes for imaging neural activity are voltage-sensitive dyes (VSDs) and calcium-sensitive

dyes (CSDs). A VSD changes its intensity of fluorescence in response to a change in membrane

voltage of a neuron. A CSD changes its intensity of fluorescence in response to a change in

calcium ion concentration near the fluorophore. This change in intensity is the signal of interest.

The advantage of dyes in neural recording is that they can have good sensitivity and are very fast

to respond to neural signals, and support high temporal resolution. The disadvantage of dyes is

that they stain all of the cells in the area where the dye is injected and do not target specific cell

types. This means that the FD system will collect a lot of undesired light, which is often referred

to as noise or background light. Dyes can also be toxic and can not be used for chronic imaging.

Fluorescent proteins are similar to dyes except that they can be genetically programmed. The

genes encoding a protein can be introduced into an organism, which then can produce the protein.

Through appropriate genetic coding, fluorescent reporter proteins can be targeted to specific cell

types, and even to certain locations in cells [85]. Fluorescent reporter proteins can be designed

to sense voltage or calcium signals, or other signals that may be of interest. The capability to

design such light-sensitive proteins has brought rise to the field of optogenetics, which combines
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genetics with optical systems for the purpose of monitoring or controlling cells in vivo [101].

Voltage-sensitive fluorescent proteins (VSFPs) are proteins that sit inside the plasma mem-

brane of neurons. In response to a changing membrane potential, VSFPs alter their optical char-

acteristics; usually the intensity of fluorescence [90]. Early generations of VSFPs suffer from

low SNR, low response time, or poor targeting to the plasma membrane [6]. However, develop-

ment of VSFPs is occuring at a rapid pace [85]. VSFPs are much more promising than VSDs for

chronic recording.

Similar to VSFPs are genetically encoded calcium indicators (GECIs). In neurons, “action

potentials trigger large and rapid changes in cytoplasmic-free calcium concentration” [95]. In-

stead of directly sensing the neuron membrane potential, GECIs respond to the concentration of

calcium ions. GECIs are commonly used to image neural activity [95].

2.5.3 Comparison of VSFPs

There are several important characteristics of VSFPs that must be taken into consideration when

choosing an appropriate VSFP for an application:

• Targeting Specificity: This is how well the VSFP targets the correct cell type/location.

Attachment to the wrong location contributes to noise in the recorded signal [6].

• Capacitive Loading: Adding molecules to the cell membrane contributes to extra capac-

itive loading of the neuron. High levels of expression can increase the capacitive loading

enough to alter the functionality of the neuron [56]. However, as shown in [2], sufficient

22



SNRs could be achieved for VSFP2.3 at concentrations that did not affect action potential

generation in response to applied synaptic stimulation.

• Photostability: This is a measure of how well the VSFP maintains performance when

exposed to excitation light for a long period of time.

• Wavelengths: The absorption and emission wavelengths of the VSFP should be suffi-

ciently far apart such that excitation light can be separated (filtered out) from the signal

of interest. Higher wavelength light can penetrate deeper into tissue. Red-shifted spectra

overlap less with hemoglobin absorption and tissue autofluorescence [6]. Autofluorescence

is due to light emitted by naturally occuring fluorescent molecules. For example, NADH

and flavins, which are products of metabolism, produce strong autofluorescence [64].

• Sensitivity: This is how sensitive the VSFP signal (change in fluorescence intensity) is to

the voltage signal. This is often expressed as a percent change in fluorescence intensity per

100mV change in membrane potential. It is argued in [54] that this metric of sensitivity is

inaccurate, but nevertheless it is widely used. The sensitivity of the VSFP directly impacts

the required power of the excitation source.

• Speed of Response: This is how fast the VSFP can respond to a change in membrane

voltage. The response time should be faster than the desired sampling rate.

Fig. 5 from [54] shows a comparison of the speed and sensitivity of several VSFPs from

the literature. Most VSFPs are not fast enough to allow for the recording of individual action

potentials, and have fairly low sensitivity (typically less than 10%/100mV). However, recently

Kralj et. al. [54] reported a new VSFP called Archaerhodopsin 3 (Arch) which greatly exceeds
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the performance of existing VSFPs, both in terms of speed and sensitivity. They could not

accurately measure the response speed of Arch because of the limitations of their equipment,

but it was faster than 500µs. The sensitivity is around 65%/100mV, while the phototoxicity

is comparable to other VSFPs. The quantum yield is quite low, but high sensitivity somewhat

makes up for that. The absorption and emission wavelengths are relatively high, where tissue is

relatively transparent and where corruption due to autofluorescence is low.

The authors were able to resolve individual spikes in mammalian neurons in vitro with high

SNR and submillisecond temporal resolution, as shown in Fig. 2 of [54]. These results are very

promising, and should make it possible to design a system to perform high temporal resolution

neural recording based on VSFPs. The authors suggest that improvements on Arch may be found

within the family of about 5000 known microbial rhodopsins.

2.6 The State of Integrated Optical Neural Recording Devices

Numerous integrated optical detection systems have been developed for lab-on-a-chip type ap-

plications [34], and contact imaging applications [88], [9], [89], but only a handful of groups

have looked at developing integrated optical neural recording devices.

One notable work is from Schnitzer’s group [33]. They presented a miniaturized fluorescence

microscope for brain imaging that is head-mountable on a rodent, though tethered. The device

weighs 1.9g and is made entirely from mass-producable parts. The device was used to image

Ca2+ spiking over a 0.5mm2 area of a mouse brain at up to 100Hz. The imager is 300 x 300

pixels, and the imaging resolution is about 2.5µm .
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Coskun et. al. designed a lensless wide field-of-view fluorescence microscope [20]. Com-

pressed sensing/sampling algorithms are used to improve the spatial resolution of the imaging.

Long integration times around 1 second are used. Instead of optical filters, the device includes a

large prism to reject excitation light through total internal reflection. The prism is 25mm x 35mm

x 17mm, which is too large for an implant.

A few groups have designed integrated partially implantable devices for optical neural record-

ing. Several papers by one group describe the evolution of their implantable optical neural

recording devices [76], [78], [77], [72]. The latest device can be mounted on the head of a

rodent, though it is quite a large system. Their design specifications state that “the system must

contain all the elements of a traditional fluorescent microscope: illumination source, collector

lens, dichroic excitation filter, dichroic mirror, objective lens, emission filter, transfer lens and

image detector.” They use a high power LED, driven at up to 750mA. It includes a 32 x 32 pixel

image sensor and images at 900fps. It can sense a 0.2% change in fluorescence. The pixels have

a well capacity of 2.1Me−, a peak SNR of 61dB, and a conversion gain of 4.9µV/e−.

Another group has several papers presenting their work [67], [62], [68], [69]. Their ear-

lier work is geared towards a head-mounted imaging device for a mouse. The head-mounted

device includes lenses, a CMOS imager and an excitation LED. The device in [68] includes a

CMOS imager with one LED on opposite sides on a flexible substrate. The imager is 90 x 30

pixels, with 7.5µm x 7.5µm 3T (three transistor) active pixel sensor (APS) pixels, designed in

the ams 0.35µm 2P3M (two poly three metal) technology. The pixel fill factor (FF) (the percent

of the total pixel area allocated to photodetector area) is 35%. The imager is coated with an

excitation filter (through a spin coating process). They state that, “an interference filter, which is

conventionally equipped in a fluorescence microscope, is not applicable to our sensor, because
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fluorescence is so strongly scattered in the tissues that it enters into the sensor from every di-

rection.” Note that an interference filter is most useful in cases when the light to be filtered is

incident perpendicular to the filter surface. The implantable portion of the device is about 0.5mm

wide and 0.2mm thick, which is smaller than the previous device. As part of their testing they

placed fluorescent beads (15µm ) on the surface of the device to measure the spatial resolution

and excitation light distribution of the device. 7µW LED optical power (from 50µA) was used

in this test. They mention a new device design where the LED dies are buried into the image

sensor substrate after a deep reactive ion etching (DRIE) step to hollow out a place for them.

This allows the LED surfaces to line up with the imager surface.

They have also developed an implantable device for imaging in deeper tissue [69]. This

device includes no imaging optics and utilizes proximity-based imaging. The device is packaged

with with LEDs and an excitation filter on a flexible polyimide substrate, and is designed to be

implanted much like a microelectrode or needle. It is encapsulated with Parylene-C.

Murari et. al. present a high-sensitivity CMOS fluorescence imager in [60]. The imager is

132 x 124 pixels with 20.1µm pixel pitch, fabricated in a standard 0.5µm technology. The pixels

include CTIA-based amplification. The chip includes delta differencing circuits to “calculate

the difference between a pixel’s light-dependent signal value and the subsequent reset value as a

measure of the photon flux”. With the nominal frame rate (FR) of 70fps, the sensitivity is about

4nW/cm2. The imager is used in a head-mounted fluorescence microscope system in [87]. The

laser speckle contrast imaging system is used to visualize micro-vessels and monitor blood flow

in a rat brain.

An interesting device is presented in [53]. The device is a miniature injectable device capable
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of optical stimulation through 4 addressable microscale LEDs. Adjacent to the 50µm x 50µm

micro-LEDs are a 20µm x 20µm Pt microelectrode for electrical stimulation or recording, a

200µm x 200µm photodiode, and a precision temperature sensor or microheater. The important

advantage of the device is that it can be implanted deep in tissue. The device must still attach

to wires for power and control, and is thus not fully implanted. The external components are,

however, wireless, allowing for freely moving rodents.

A more detailed comparison of image sensors from the literature described above is provided

in Section 6.4.7.

2.7 Summary

This chapter described the signals of interest for neural recording, and the constraints involved in

the design of implantable neural recording devices. The potential for optical recording devices

based on fluorescence detection to improve on conventional electrical recording devices was

discussed. The existing literature for both electrical and optical recording devices was reviewed.

While good progress has been made in wireless implantable electrical recording devices, op-

tical recording devices are considerably further behind. A key parameter in optical recording

devices that must be improved is the frame rate, which should be fast enough to detect individ-

ual spikes. If optical recording devices are ever to be fully implanted, the level of integration

must also be improved; there is plenty of room for optimization of device design left. Wireless

operation, power delivery and heat dissipation are also important factors that must be considered.

In this work the goal is to design a prototype implantable optical recording device with suf-
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ficient frame rate to detect individual spikes while eliminating as much of the optics as possible

and relying on imaging from the surface of tissue in order to avoid any serious damage due to

puncturing of the tissue. As will be seen in chapters 5 and 6, the target imager specifications

used in this work are as shown in Table 2.1. The specifications are derived from the modeling

results of chapter 5. The sampling rate (frame rate) is relaxed from the Nyquist rate as the goal

is to detect spikes rather than record their shapes.

Pixel pitch 100µm
Frame rate 2.5kHz
Resolution 1mV

Table 2.1: Optical recording device specifications for this work.

The remainder of this thesis presents the work done towards electrical and optical recording

front ends.
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Chapter 3

Electrical Recording Chips

This Ph.D. work began with the goal of designing multi-channel front-end electrical neural

recording circuitry to interface with a microelectrode array in an implantable wireless neural

recording device. This chapter describes the work that was done for electrical neural recording

circuitry that was to be integrated on a system-on-chip with wireless communications and pow-

ering, as well as any other circuitry required for a fully implantable device. Ideas for future work

on the recording circuitry are discussed.

3.1 AF4 Design

In collaboration with colleagues from the Alberta Innovates - Health Solutions (AIHS) Sensory

Motor Adaptive Rehabilitation Technology (SMART) multidisciplinary team in neural prosthe-

ses, we arrived at specifications for the front-end circuitry that would interface with a microelec-

trode array:
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• 16 channels

• amplification of neural signals as large as 200µV (peak)

• 750Hz to 7.5kHz bandpass frequency response

• 15kSps sampling rate (per channel)

• 8-bit resolution

• low power and low area

The key circuit for the front-end circuitry described here is the low-noise amplifier (LNA),

which connects to the microelectrodes (∼ 200kΩ impedance). The LNA must have the following

characteristics:

• very low input-referred noise so as not to corrupt the small and noisy neural signals.

• DC-coupling at the input to reject potentially large DC offsets

• bandpass filter characteristic, with high-pass cutoff at 750Hz and low-pass cutoff at 7.5kHz

It was also decided that the LNA should be fully differential in order to have very good

common-mode and power-supply rejection ratios, given that the power supply of an implanted

device may be noisy.

Fig. 3.1 shows the chosen circuit schematic for the LNA, including common-mode feed-

back (CMFB) circuitry. The telescopic amplifier was chosen for its combination of low power

consumption (only one tail current branch) and high gain. The limited swing of the telescopic
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amplifier is not an issue in this case because the output signal is on the order of 10s of mV at

the LNA output (a second gain stage is used to provide the rest of the gain). Table 3.1 shows the

LNA device sizing.

MP4

MP1

MP3

MP2

MN6

Vbias2

Vcmfb

MN5

Vbias3

Vbias4

MN8MN7

MP10MP9

Vp Vn

Von Vop

MCN6

Vcmfb

MCN5

Vbias3

Vbias4

MCN8MCN7

MCP10MCP9

MCN3MCN1 MCN2Vop VonVocm

Figure 3.1: LNA schematic.

MP1 MP3 MP5 MP7 MP9 MCN1 MCN3 MCN5 MCN7 MCP9
W 40 8 2 4 8 4*2 4 2 4 8
L 20 10 10 20 10 10 10 10 20 10

Table 3.1: LNA device sizing (all sizes in µm).
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Figure 3.2: LNA feedback schematic. The transistors operate in the subthreshold region and
implement the large resistance values. The M2 devices correspond to R2.

Fig. 3.2 shows the LNA feedback circuitry, which implements a high-pass filter, as described

by Eq. 3.1.

A(s) ≈ −sC1R2

1 + s

(
C1R2

1+A
+ C2R2

) . (3.1)

The mid-band gain is set by the capacitor ratio C1/C2. The high-pass cutoff frequency is set by

the C1R2 time constant. A main issue in the design of this circuit is the very large resistance

value required for the high-pass filter time constant. The input capacitors C1 are chosen to be

10pF. Their size is limited by circuit area. This means the required feedback resistance is:

R2 =
1

2πfLC1

=
1

2π ∗ 750 ∗ 10x10−12
≈ 21.2MΩ . (3.2)
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This is too large to implement with a typical polysilicon resistor, which would require significant

area. Instead, the resistance is implemented with a MOSFET operating in the subthreshold re-

gion, where the channel resistance can be made very large. The problem with using a MOSFET

in subthreshold is that process variation has a significant effect on the device’s channel resis-

tance. Simulation shows that the filter cutoff frequency can vary by about 4 orders of magnitude.

This means that the device bias voltage must be tuned post-fabrication in order to obtain the de-

sired cutoff frequency. This tuning requirement could be thought of as an advantage, as different

high-pass cutoff frequencies could be used to record neural signals other than action potentials.

However, when a precise cutoff frequency is desired, this variability due to process variation is a

problem. Section 3.5 discusses some potential solutions to this problem. Another issue with the

MOSFET device in feedback is linearity, in the case where the output signals are larger than a

few 10s of mV, which is the case in the second stage amplifier.

3.2 AF4 Results

The LNA, along with a second stage amplifier, was fabricated in a 0.35µm CMOS technology

and bench tested. Figs. 3.3 and 3.4 show oscilloscope captures of the channel outputs (green

and yellow are positive and negative) with a pre-recorded neural signal used as the input (the

dark pink at the bottom). The light purple waveform in the middle is the difference between

the differential outputs. Note that the input signal scale shows the signal as much larger than it

actually is. The signal from the waveform generator is divided down to typical microvolt neural

signal levels before being fed to the LNA.
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Figure 3.3: Analog channel output (LNA and second stage), single spike.

Figure 3.4: Analog channel output (LNA and second stage), multiple spikes.
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3.3 AF5 Design

After verifying the functionality of the channel design, a multi-channel chip, internally referred

to as AF5, was designed. The chip has 4 blocks of 4 channels. The channels in each block

had slightly different feedback circuitry - some used NMOS devices in feedback, some used

PMOS, some were single-ended output and some were fully differential. Within each block,

each channel output is wired to a multiplexer before going off chip. Also included on the chip

was a 5-bit resistor string digital-to-analog converter (DAC) for controlling each feedback device

tuning voltage, as well as the CMFB voltages. The DACs are programmed through a serial shift

register. This chip is to be used in live recording experiments.

3.4 ADC

An 8-bit 1MSps successive approximation register (SAR) analog-to-digital converter (ADC) was

designed to be used with the analog front-end. The design was not included in the AF5 chip,

but was included in the OR2 chip discussed in Chapter 6. The ADC design and test results are

discussed in Appendix B.

3.5 Future Work

Regarding electrical recording, there are a few directions that can be investigated for improving

the analog front-end circuitry.
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3.5.1 Auto-Calibration

In order to solve the problem of process variation affecting the high-pass cutoff frequency, auto-

calibration of the bias voltages could be implemented. The idea is to use a DAC to generate a sine

wave as an input to the channel, and use the (already existing) ADC to find the gain at an input

frequency in the tunable range, and compare it to the desired value. Digital logic would control

the tuning voltage through a DAC, and implement the control loop. Such an auto-calibration

scheme could also be used to compensate for any drift in the tuning over time if it was run

periodically.

Reducing the channel electronics to a single amplification stage is feasible, and would greatly

simplify any calibration routine, as it eliminates combinations of variables that need to be opti-

mized.

Originally, small resistor-string DACs were used to control the tuning voltages. A much

more compact and potentially lower power solution may be to use a dynamic switching DAC

that periodically charges a capacitance and relies on slow leakage to maintain the voltage. Such

a DAC could be multiplexed between several different outputs.

3.5.2 Switched-Capacitor Operation

Using a switched-capacitor resistor in place of the subthreshold MOSFET for the large resistance

value is another possible option. In this case the resistance is determined by a capacitor value,

and a clock frequency, which is well controlled and can be programmed. A key factor in such a

design would be the kT/C noise contributed by the switched capacitor.
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3.5.3 Other Improvements

A few other improvements would be including the ability to power-down individual channels,

and including a reset switch across the feedback resistance to provide a quick way to bias the

amplifiers and to avoid any drift in DC levels.

3.6 Summary

The experience with the electrical recording circuitry design uncovered the key design challenges

that must be tackled in future work, and also led to the exploration of alternative methods for

neural recording. With a new M.Sc. student to take over the electrical recording work under

my guidance, my focus shifted to optical neural recording, which is the focus of the remaining

chapters of this thesis.
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Chapter 4

Basic Optical Model and OR1 Chip

Given the potential benefits of optical recording and promising results from VSFP testing dis-

cussed in Chapter 2, I decided that the feasibility of an implantable optical recording system

should be explored through optical modeling of an envisioned system. Modeling is an important

first step for two main reasons: 1) it is very costly in terms of time and effort to design, fabricate,

and test a microelectronic device; modeling is much quicker and modeling results can indicate

whether or not undertaking the design of a device is worth the time and effort, and 2) having a

parameterized model allows for optimization of system parameters and derivation of appropriate

design specifications.

One of the main goals of this work is to shrink the size of existing optical systems down to

something that could be fully implanted. In order to do that, the idea is to eliminate all of the

optical components (other than excitation filter) and rely on contact (proximity-based) imaging.

Note that eliminating lenses from the design will mean that the images are out of focus due to
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scattering of the light we are trying to image. Thus, the source of fluorescent light must be close

to the image sensor, which means the useful imaging depth is limited. The initial idea was to

bond LED dies directly on top of a CMOS imager chip.

The rest of this chapter first describes the aforementioned system, then proceeds to describe

a basic general model to predict where light from an excitation source will end up in a system,

and in particular applies the model to the system described here. Next, the design of the first

optical chip, referred to as OR1, is presented. Lastly, experimental measurements from the OR1

chip are compared with the modeling results. The following chapter extends the optical model

presented here to an implantable neural recording device.

4.1 OR1 System Design and Basic Optical Model

Fig. 4.1 shows a drawing of the initial OR1 device design, which guided the optical modeling.

The design has the following characteristics:

• A pixel array in the center of the chip

• LED dies bonded to large bondpads on the chip, adjacent to the pixel array

• Nothing blocking the line of sight between the p-n junctions of the LED dies and the pixel

array (i.e. free space)

To model the system we must consider how light is emitted from an LED. An LED radiation

pattern is typically specified from a far-field point of view, where the LED can be modeled as a

point source within the larger system. The radiation pattern of a packaged LED can be assumed
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Figure 4.1: OR1 device design.

to be either Lambertian, or isotropic (but with light only emitted in the upwards direction, as any

light emitted downwards from the junction would be reflected back up by the package). Light

from a Lambertian source is not equally distributed in the beam angle, but rather most of the

light is emitted directly upward, and less is emitted as the angle from the normal increases. The

packaging of the die can affect the radiation pattern. However, in this case we are using bare

LED dies, not packaged LED dies.

For an isotropically radiating point source of light (in free space), the optical intensity de-

creases with radial distance from the source due to spreading according to

I(r) =
P0

4πR2

[
W

m2

]
, (4.1)

where P0 is the total power emitted by the source, and R is the radial distance from the source

[37]. In the case where the source emits not isotropically, but rather in a given solid angle ω, the
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previous equation can be modified as follows:

I(r) =
P0

ωR2

[
W

m2

]
. (4.2)

The total point source power P0 can be found from the radiant intensity, Ie, in Watts per

steradian, where the steradian is the unit of solid angle [91], and from the solid angle of emission,

ω, as follows:

P0 = Ieω [W]. (4.3)

Though the LED dies are above the imager array and mainly shining away from the array, we

cannot assume that no light hits the array. One might assume that because the LED die is bonded

to a large metal bondpad, any light emitted downward would just be reflected upwards, and no

light should hit the pixel array. However, the p-n junctions of the LED dies are at a non-zero

height above the LED die bottom surfaces. Photons can be emitted downwards and exit the side

of the die without reflecting back upwards, and can actually hit the pixels below the dies, hence

contributing to an undesired baseline excitation signal. Therefore, the main goal of the basic

model is to predict how much baseline excitation power from the LED die will directly hit the

pixel array, and how the absorbed light signal changes as a function of distance between the pixel

and the LED die.

Because the system geometry is comparable to the LED die dimensions, a far-field model of

the LED die emission is not applicable. Thus, here the LED die is modeled as a set of distributed

point sources in a plane at the location of the p-n junction in the die. The total power of the

LED is divided equally into each of the distributed point sources. By using tiny distributed point
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sources, the distance between each point source and each pixel in the array is large enough to use

the basic far-field equation for isotropic radiation. The contribution of each point source to each

pixel is summed to determine the total power absorbed in that pixel. The model neglects any

potential reflections in the system, assumes there is a direct line of sight from each point source

to each pixel, and assumes no photon reabsorption or scattering inside the LED die.

The power absorbed in a pixel is then converted to the change in voltage during the integration

time according to the equations for the imaging circuitry. The 3T APS circuit shown in Fig. 4.2

is a well known basic pixel circuit, and is used in OR1. By inspection, the equation for this

circuit is:

∆Vpx = PpxResp
Tint
Cp

Av , (4.4)

where Ppx is the power absorbed in the pixel [W], Resp is the responsivity of the pixel [A/W],

Tint is the integration time [s], Cp is the pixel capacitance integrating the photocurrent [F], and

Av is the additional voltage gain of the readout circuitry [V/V].

Fig. 4.3 shows example model results for the OR1 model. The black square represents the

LED junction. The colors represent the change in voltage in each pixel.
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Figure 4.3: Plot of typical OR1 model results. The black square represents the LED junction.
The colors represent the change in voltage in each pixel.
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4.2 OR1 Chip Design

A test chip, OR1, was designed to verify the optical modeling presented above. For OR1 the

concern was not with imaging fluorescence or optimizing the imaging circuits. The goals for the

OR1 design were to:

• Determine the baseline light signal hitting the imager as a function of distance between an

LED die and the pixel

• Verify the mixed-signal design flow for the austriamicrosystems 0.35µm (amsp35) tech-

nology

• Verify the basic imager architecture and digital control logic

• Test the bonding of LED dies to large pads on a CMOS chip, and the simple LED driver

circuits

In summary, the chip includes an 8 x 8 array of 50µm x 50µm 3T pixels, programmable

imager control and readout logic, and four 500µm x 500µm bondpads adjacent to the pixel

array, with an LED die bonded to each. Fig. 4.4 shows the die photo of the chip with the LED

dies bonded. The pixel array rows and columns are labeled. Pixel 1 is row 1, col 1. Pixel 2 is

row 1, col 2. Pixel 9 is row 2, col 1, etc. LED2 and LED4 have single-transistor on-chip drivers

whose gate voltages are set with off-chip DACs, while LED1 and LED3 are driven through off-

chip circuitry. Fig. 4.5 shows a picture of OR1 with a side perspective. The design details for

the chip are discussed in the following sections.
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Figure 4.4: Die photo of ICMWTOR1 with LED dies bonded.

4.2.1 Photodiodes

The authors of [59] did a study comparing the performance of different types of photodiodes and

determined that N-well p-substrate (NW-PSUB) photodiodes were the best choice. NW-PSUB

diodes are used in this work.
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Figure 4.5: Side view of ICMWTOR1 with LED dies bonded.

4.2.2 Imaging Circuitry

For this first chip a basic 3T APS pixel circuit was designed, as shown earlier in Fig. 4.2. RS is

pulsed high to reset the pixel (setting Vd = VRS − Vthn). When RS goes low again, photocurrent

discharges the pixel capacitance, causing Vd to decrease. M2 and the bias device at the bottom of

the column line (shown in Fig. 4.6) form a source follower, which buffers the pixel voltage from

the column line, Vo. When ROW is set high, the switch M3 is turned on, and the row is selected.

The source follower drives the column line Vo to Vd − Vgs2.

The architecture of the image sensing circuitry is shown in Fig. 4.6. The figure indicates

an array with N rows and M columns. The column amplifier used in this design accomplishes

a few things: 1) it buffers the column line from the output line (Vout); and 2) it shifts and am-
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Figure 4.6: The architecture of the image sensor circuitry.

plifies the column voltage to maximize signal swing. Regarding the timing, essentially phase

1 (TSAMPCOL) is the sampling phase where S1 and S2 are closed, and S3 is open. In phase 2

(THOLDCOL) the switches all flip, and the input voltage is amplified at the output. The gain is set

by the ratio C1/C2.

The voltages from the pixel source followers are decreasing voltages. When no light hits

the pixel, the pixel voltage remains high, and the output voltage remains high. When light hits

the pixel, the pixel voltage decreases, and the output voltage decreases. Ideally Vref would be

ground in order to maximize the signal swing. However, Vref can only be as low as the minimum

input common mode voltage of the amplifier.

In the time that the pixel outputs from one row are sampled, each of the column outputs must

be multiplexed to Vout, which is then driven off-chip through a buffer to a sampling circuit and

ADC.
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The ROWx signals are the outputs of a circular shift register with one 1 loaded into it. Each

cycle of ROWCLK activates the next row. The COLx signals controlling the column multiplexer

(MUX) are set in the same way.

4.2.3 LED Die Bondpads

Four large bondpads were placed on the top metal layer adjacent to the imaging circuitry for the

purposes of bonding LED dies to the chip. These bondpads were each 500µm x 500µm (refer

to Fig. 4.4). All of the bondpads have metal slotting, due to their large size. Typically bondpads

include a full stack of all metal layers to improve their mechanical stability and prevent damage

during the bonding process (the amsp35 technology design rules require all metal layers to be

included in the bondpad stack). There was concern that this would be even more important

for the extra large bondpads. However, when bondpads for flip-chip bonding are included in a

design, it is beneficial to only have the top metal included, and not the full metal stack, because

that would allow for circuitry and routing underneath the bondpad, which would save significant

area. This is especially important in this design with such large area bondpads. In OR1, bondpad

1 (LED1) included the full metal stack (MET1 to MET4). Bondpad 2 (LED2) included MET2

to MET4, since its driver circuit required MET1 for connections. Bondpads 3 (LED3) and 4

(LED4) included only MET4. It turned out that both types of bondpads worked fine in this case.
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4.3 Packaging

Packaging of OR1 required extra steps to bond the LED dies onto the large bondpads on the

chip. The top electrodes of the LED dies were then wirebonded out to package pins. This special

bonding was arranged through CMC Microsystems [57].

4.3.1 The LED Dies

Samples for two different LED dies were acquired from two different companies. The green die

(LED2) is the CPR3ED (C527EZ400-0205-2) from Cree [22]. The yellow dies (LED1, LED3,

LED4) are the ED-113SG from Optotech [70]. The LEDs have the specifications shown in Table

4.1.

LED CPR3ED ED-113SG
Wavelength 527nm 570nm

Full-Width Half Max. 35nm 26nm
Current 25mA 20mA

Radiant Flux 10mW 3mcd (min)
Width 380µm x 380µm 285µm x 285µm
Height 170µm 255µm

Junction Height ∼170µm a 165µm
Radiation pattern Lambertian isotropic

a The junction is made from thin-films deposited at the surface
of the substrate.

Table 4.1: LED die specifications. The CPR3ED is C527EZ400-
0205-2.
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4.4 Results

This section discusses the testing results for the chip and compares the results to predicted MAT-

LAB model results.

4.4.1 Test Setup

A custom printed circuit board (OR1PCB) was designed with Altium Designer [4], obtained

through CMC Microsystems. OR1PCB interfaced with an Opal Kelly XEM6010 field-programm-

able gate array (FPGA) circuit board [52], through high-density connectors. Opal Kelly FPGA

boards along with their HDL (hardware description language) endpoints and API (application

programming interface) software (Python, CPP, MATLAB) provide a USB interface to talk to

the FPGA. Fig. 4.7 shows a high-level block diagram of the testing setup. A black cover is

placed over the chip to eliminate ambient light and unwanted optical reflections.

PC
(python
 script)

XEM6010

FPGA

OR1
ADCDAC

OR1PCB

Figure 4.7: Block diagram of OR1 testing setup.
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4.4.2 Testing Procedure

Initial electrical testing confirmed that the chip was functioning correctly, which verified that the

mixed-signal design flow is complete and trustworthy. The simple on-chip LED driver circuits

worked correctly (for LED4), as did the off-chip driver circuit (LED2 and LED3). The imaging

circuitry (pixel circuitry and digital control) worked correctly as well.

In order to characterize how much baseline light from an LED die hits each pixel in the

array, the LED intensity (proportional to the LED current, ILED) is set to a level such that the

pixels do not saturate during the integration time correponding to the desired frame rate. In

order to determine the actual light intensity, ILED is measured, and the current value is mapped

to intensity using the LED datasheet (this is not an exact measurement of light intensity, but is

sufficient for our purposes given the other sources of error in the system, discussed below). Once

the intensity is set, several consecutive frames are captured and digitized by an off-chip ADC

(AD7985) on OR1PCB, and the captured data is processed offline with Python.

4.4.3 Sources of Error and Data Normalization

There are several variables affecting the absolute voltage levels (in both the model and experi-

mental results) that are not known exactly. The most significant sources of error are:

• the optical characteristics (peak wavelength, conversion efficiency, etc.) and geometrical

characteristics (width and length of emission area) vary from die to die

• the mapping of current to intensity through the datasheet is quite prone to error in this case

because of the poor resolution of the curve at the current levels used in this work
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• the ED-113SG datasheet only provides a minimum value for luminous intensity, but no

typical or maximum value; this is likely the most significant source of error

• the thickness of epoxy bonding the LED die to the bondpad is not known exactly, which

means the LED junction height relative to the imager surface is unknown

Other sources of error include:

• Fixed pattern noise due to component variation in the circuitry.

• The column amplifiers in the imaging circuitry can have significant variation in input-offset

voltage (10s of mV), and each pixel will have some variation as well. This is verified by

observing the imager output voltage when the LEDs are turned off. Ideally the voltage

should be constant for all pixels, but instead has variation. However, the effects of variation

are somewhat eliminated by considering the change in voltage between when the LEDs are

on and off, and not just the voltages when the LEDs are on. Averaging the results of many

frames reduces noise and the remaining variation is indicative of pixel offsets.

• The conversion from candelas to watts in the model is not exact, because 555nm monochro-

matic light was assumed. The LED peak wavelength is nominally 570nm (ED-113SG), but

it is not monochromatic either. There is a spectrum with 26nm FWHM (however, assum-

ing the spectrum is symmetric, the average energy would be that correponding to the peak

wavelength).

• The LED operating temperatures are unknown.

• The exact height of the p-n junctions inside the LED dies is unknown (eyeballed from

datasheet for ED-113SG, near the surface for CPR3ED).
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• The pixel circuitry is not shielded from light in this chip. Therefore, there could be some

modulation of the biasing if light is hitting the pixel circuitry (however, given that the

circuits are working, this may be insignificant).

• There is some nonlinearity in the 3T APS circuit.

• (x,y) coordinates of the array and LED for the model are “measured” from the die photo.

• It is not certain that there are no reflections inside the chip package.

Given these sources of error, the interest here is not in comparing the absolute values of the

predicted and measured voltages. Rather, the relative change in voltage from pixel to pixel, i.e.

the shapes of the curves, and how well they match, is more important. Worst-case parameter

values can be used to account for absolute voltage levels when modeling future system designs.

Therefore, the difference between predicted model results and experimentally measured re-

sults is calculated after normalizing each of the data sets. The model data is first shifted, and then

scaled, such that the resulting root mean square error (RMSE) between the datasets is minimized.

The RMSE is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (4.5)

where xi are the ideal model values, x̂i are the experimental values, and n is the number of data

points (number of pixels in this case).
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4.4.4 Dark Levels

The average zero-light voltage is found for each pixel by averaging its zero-light voltage over

192 frames with a 1 second delay between each frame capture. The resulting average zero-light

voltages for all pixels are in the range of 1.7525±0.0015V.

4.4.5 LED1

There was an issue with LED1, and it would not produce light (in both chips that were tested),

so there are no results. There is no obvious problem in the chip or PCB design, or packaging, so

the reason is unknown.

4.4.6 LED2

LED2 has a Lambertian radiation pattern. Modeling of a Lambertian radiation pattern indicates

that zero light should exit the die in the downward direction, and that zero light should hit the

pixels. Therefore LED2 is not compared with models in this chip. LED2 was included in the

design to test its functionality and evaluate it for use in future system designs.

4.4.7 LED3

Fig. 4.8 shows: (a) the predicted change in voltage for each pixel, shifted and scaled to minimize

the RMSE; (b) the measured change in voltage for each pixel with LED3 turned on (the difference

between the sampled voltage and the average zero-light voltage); (c) the difference between the

measured values of (b) and the normalized model values of (a).
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The change in voltage increases as more light hits a pixel during its integration time. As

expected, pixels closer to the LED have a larger change in voltage than pixels further from the

LED. The top right corner of Fig. 4.8(b) indicates some deviation from predicted results; this is

likely due to reflections off of bondwires near that corner of the imager. For LED3 the optimized

values for the shift and scale factor are 0.068V and 4.23V/V, resulting in an RMSE of 0.0509V.

4.4.8 LED4

Fig. 4.9 shows: (a) the predicted change in voltage for each pixel, shifted and scaled to minimize

the RMSE; (b) the measured change in voltage for each pixel with LED4 turned on (the difference

between the sampled voltage and the average zero-light voltage); (c) the difference between the

measured values of (b) and the normalized model values of (a).

As with LED3, the change in voltage increases as more light hits a pixel during its integration

time. As expected, pixels closer to the LED have a larger change in voltage than pixels further

from the LED. Here, there is no obvious deviation from the model. For LED4 the optimized

values for the shift and scale factor are 0.054V and 1.62V/V, resulting in an RMSE of 0.0437V.
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Figure 4.8: LED3 results: (a) predicted voltages (scaled to minimize RMSE); (b) measured
change in voltage; (c) difference between normalized model data and measured data.
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Figure 4.9: LED4 results: (a) predicted voltages (scaled to minimize RMSE); (b) measured
change in voltage; (c) difference between normalized model data and measured data.
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4.5 Summary

A low-complexity distributed point source model for predicting the near-field light distribution

from an excitation source was described. The model was used to predict the signal in a CMOS

imager due to LED dies bonded directly on top of the chip surface to large bondpads. A test

chip for verifying the optical modeling was successfully designed and tested. Prior to this work

it was not clear what kind of light distribution would be seen below the bottom surface of an

unpackaged LED die. Experimental measurements of the ED-113SG isotropically radiating dies

show that significant amounts of light do exit the die in the downwards direction. For the ED-

113SG dies, the distributed point source model is applicable, which indicates that scattering of

light inside the LED die substrate is not a significant effect. In general, such a model can be used

to predict the excitation light power incident at different locations within this type of integrated

device with near-field lighting conditions.
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Chapter 5

Optical Model for Implantable Recording

Device

The previous chapter established the usefulness of optical modeling for predicting the near-field

light distribution in an optical device. We are now interested in a full neural recording system

with the device implanted in tissue, or alternatively a tissue sample sitting on top of the device.

This chapter begins by describing light propagation in tissue, which is a very important con-

sideration for implantable optical devices. The effects of light propagation in tissue, as well as

fluorescence, are added to the basic model to create a model for an implantable optical neural

recording device. The model works from excitation power from off-chip LED sources to predict

fluorescent power from fluorophores in tissue and ultimately the voltage signal in the imager that

absorbs the fluorescent light. The model is used to choose design specifications for the OR2 chip

and the overall system to perform optical detection of individual spikes from individual neurons.
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5.1 Light Propagation in Tissue

The amount of fluorescence produced by a fluorophore is dependent on the local excitation pho-

ton flux, which can be defined as the number of incident photons per unit area per unit time [101].

The photon flux at the fluorophore is highly dependent on the propagation of light through tissue.

Therefore, when designing an implantable optical recording system it is essential to model light

propagation in tissue. Usually the photon flux is reported as a light power density in mW/mm2.

Light power density is the photon flux multiplied by the energy of a single photon.

As light propagates through the system, it will be absorbed and scattered, and the intensity

of light at the end of the optical path will be lower than at the start. We need to model how the

light intensity decreases from its starting point, the LED, to the end point, the photodetector. The

attenuation will dictate the excitation power required in the LED that will ultimately produce a

detectable signal with a certain SNR at the photodetector.

The following description is based on that in Chapter 2 from [47] and from [58]. The absorp-

tion of light in a material can be modeled by the Beer-Lambert Law:

I = I0e
−µad [W/m2], (5.1)

where I is the intensity of light transmitted through the material in W/m2, I0 is the intensity of

incident light in W/m2, µa is the absorption coefficient of the material in mm−1, and d is the

distance traveled through, or thickness of, the material in mm.

Elastic (no energy loss) scattering in a material can also be modeled by the Beer-Lambert
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Law:

I = I0e
−µsd [W/m2], (5.2)

where I is the intensity of light transmitted through the material in W/m2, I0 is the intensity

of incident light in W/m2, µs is the scattering coefficient of the material in mm−1, and d is the

distance traveled through, or thickness of, the material in mm.

When scattering is the dominant factor the material can be modeled as a diffusing substance.

The amount of light that is scattered in the forward direction after a scattering event is modeled

by g, the anisotropy coefficient, or cosine of scatter. A rule of thumb for determining when the

diffusion approximation is valid is to test when the following condition is true [58]:

µs(1− g)

µa
> 10 . (5.3)

When the diffusion model is valid, scattering can be represented with a modified scattering co-

efficient, µ′s = (1 − g)µs. In tissue, it is usually the case that scattering is significant, and the

anisotropy coefficient is usually taken to be g = 0.9.

Combining the effects of absorption and scattering, the attenutation of light in tissue can be

modeled by the following equation:

I = I0e
−(µa+(1−g)µs)d = I0e

−(µa+µ
′
s)d [W/m2]. (5.4)

It is important to note that the absorption and scattering coefficients are dependent on wavelength.

The authors in [32] did a study characterizing the absorption and scattering coefficients of brain

tissue. Through in vitro experiments on 82 samples of brain tissue they found µa and µ′s for a
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range of wavelengths for grey matter, white matter, and glioma tissues. Their results are used

here in the optical modeling.

Certain fluids, such as HbO2 (oxygenated hemoglobin), HbR (de-oxygenated hemoglobin),

and water have a significant effect on the propagation of light in tissue [44]. The effects are

wavelength dependent. Light of less than 600nm is strongly absorbed by hemoglobin molecules.

Light of more than 900nm is strongly absorbed by water. As mentioned previously, certain

structures like flavins autofluoresce, which contributes to background noise. These structures

generally emit in the range of about 500-550nm [44]. Considering light absorption in neural

tissue and autofluorescence, wavelengths in the near-infrared (NIR), between 600nm and 900nm

are preferred for deep-tissue imaging. However, at higher wavelengths where absorption is lower,

scattered light also will travel further. In this work where proximity-based imaging is used, this

extra scatter can reduce spatial resolution. Therefore, the choice to use higher wavelengths would

require more consideration.
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5.2 General Optical Path Model

This section combines the equations for light attenuation in tissue with the modeling techniques

of Chapter 4 to derive a general model and calculations that can be used to describe an im-

plantable fluorescence detection system from LED optical power to photodetector voltage signal.

5.2.1 Noise and Signal-to-Noise-Ratio

The Signal in Optical Recording

When a VSFP is excited it will fluoresce, but the intensity of fluorescence changes based on

the neuron membrane voltage. Therefore, the signal of interest is the change in fluorescence

intensity at the detector due to a change in membrane voltage. The signal power is proportional

to the change in fluorescence intensity,

∆Ifl = Ifl,peak − Ifl,base , (5.5)

where Ifl,peak is the peak fluorescence level corresponding to the peak membrane voltage and

Ifl,base is the baseline fluorescence level at the resting potential.

Noise in Optical Detection

For a fluorescence detection system the lower bound of the noise (neglecting circuit noise) is set

by the stochastic nature of photon arrival at the detector [61]. When the number of photons ar-

riving in a given time interval is relatively small, fluctuations around the mean can be significant,
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which reduces the SNR. This is called shot noise [85]. The number of photons arriving at the

detector in a given time interval Ts (the sample time) can be modeled by the Poisson distribution.

If the average number of events (photons arriving at the detector) is given by N , then the proba-

bility of k events occuring in the time interval is given by the Poisson probability mass function

(PMF) [90]:

f(k,N) =
Nke−N

k!
. (5.6)

When N is large, the Poisson distribution can be approximated as a Gaussian distribution where

the variance is equal to the mean; in this case N , and the standard deviation is
√
N . This defines

the Poisson noise, or shot noise. The SNR for an optical detection system obeying a Poisson

distribution can be defined as follows [103]:

SNR =
N√
N

=
√
N . (5.7)

The SNR of Optical Detection

For a fluorescence detection system, the optical SNR (before conversion to an electrical signal

and corruption with electrical noise) is proportional to the ratio of ∆Ifl to the shot noise of the

baseline signal,
√
Nbs, where Nbs is the number of baseline photons detected [85].

An implantable fluorescence detection system has other sources of noise besides the shot

noise of the optical signal. Spatial movement caused by the heartbeat and breathing, tissue

autofluorescence, changes in hemoglobin oxygenation all contribute to noise [2]. There is also

electrical noise introduced by the detector, including thermal, flicker and shot noise, and noise

due to dark current [23]. Ideally the system would introduce minimal noise such that only the

64



shot noise of the optical signal limits the SNR. Therefore, we are interested in translating the

photon shot noise to an equivalent noise voltage, which would become the design specification

for the noise performance of the detection circuitry.

Assuming a general CTIA design as shown in Fig. 5.1, the photocurrent is integrated on the

feedback capacitance for a time period Ts to generate the output voltage, as described by:

vout(t) =
1

Cfb

∫
ipddt , (5.8)

where, Cfb is the amplifier feedback capacitance, and ipd is the photocurrent. Given the rate,

rbs, of baseline photons hitting the detector per second, the output RMS noise voltage can be

calculated as follows. The time interval for the Poisson distribution is Ts, so the number of

baseline photons that hit the detector in Ts is

Nbs = rbsTs [photons], (5.9)

and the number of baseline electrons generated in Ts is

Nbe = NbsQEpd [e−], (5.10)

where QEpd is the quantum efficiency of the photodetector. The corresponding electrical shot

noise due to the optical signal is then
√
Nbe, which can be considered an RMS value. The RMS

noise charge integrated on the feedback capacitance, Cfb, during Ts is
√
Nbeq, where q is the
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Figure 5.1: Generic capacitive transimpedance amplifier (CTIA) circuit. Photocurrent is inte-
grated on the feedback capacitor to produce the output voltage.

charge of an electron. Finally, the RMS noise voltage is given by

Vn,rms =

√
Nbeq

Cfb
=
√
rbsQEpdTs

q

Cfb
[Vrms]. (5.11)

The average signal voltage can be found in a similar manner. The extra number of photons

hitting the detector during Ts assuming a spike with voltage Vap during all of Ts is:

Ns = Nbs
Sfl
100

Vap
100

[photons], (5.12)

where Vap is the actual action potential magnitude [mV ], and the sensitivity of the fluorophore is

Sfl = ∆Ifl/Ifl in %/100mV. The peak number of electrons generated during Ts is then

Nse = NsQEpd [e−]. (5.13)
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The signal voltage is then given by

Vs = Nse
q

Cfb
[V]. (5.14)

Finally, the SNR (in terms of electrical power) is given by

SNRe =
V 2
s

V 2
n,rms

= rbsTsQEpd

(
Sfl
100

Vap
100

)2

[V2/V2]. (5.15)

The SNRe can be increased by improving the fluorophore sensitivity, increasing the photon flux

at the detector, improving the quantum yield of the detector, and increasing the sampling time.

It is important that the sum of the baseline and signal voltages is not enough to saturate

the detector. Perhaps the most important factor is the distance between the fluorophore and the

detector, given its significant affect on the optical signal path, which will be seen in the next

section. An implantable detector might have to calibrate or dynamically adjust the power of each

LED, or the sampling time, to ensure saturation does not occur.

5.2.2 General System

There are several possible geometrical designs for the implant, in terms of the sizes of the ex-

citation sources and photodetectors and their relative locations. The general model presented

here considers a single excitation point source, a single neuron, and a single photodetector; these

comprise a single optical path. The center of the photodetector is at the origin, and the other ob-

jects are arbitrary coordinates relative to the photodetector. The geometry of the model is shown

in Fig. 5.2.

67



x

z

Rpn Rnl

y

N(x,y,z)

L(x,y,z)

Figure 5.2: Coordinate system and geometry for the general optical path model. The blue rect-
angle is the photodetector (surface in the x-y plane); the pink cube is a neuron.

5.2.3 LED-to-Neuron Path

Consider the model for light propagation from the LED to the neuron in Fig. 5.3, where the

LED is assumed to be a point source, the neuron has a surface area (facing the LED) of An,

a thickness of dn, and dn � Rnl, where Rnl is the distance between the neuron and the LED.

This point-source model is also used for the path from the neuron to the photodetector, where the

neuron is assumed to be a point source, and the photodetector has a surface area of Apd.

Rnled
dn

An

Figure 5.3: Model of the optical path from the LED to the neuron. The LED is modeled as a
point source. The neuron has a depth dn and surface area facing the LED An.

Now, the Beer-Lambert law is valid when the excitation source is a laser, where there is very

68



little spatial spreading of light from the source. When the excitation source is an LED, this model

is not entirely accurate because LEDs emit light with spreading. Here, the same calculations as

were used in the basic model for OR1 can be used to find the light power hitting the neuron from

the excitation point source. Combining Eq. 4.2 with the Beer-Lambert law, the optical power

from the LED seen at the neuron can be modeled by

Pn =
P0

ωR2
nl

· An · e−µtRnl [W] , (5.16)

where µt = µa + µ
′
s is the total coefficient of absorption and scattering in tissue at the excitation

wavelength.

5.2.4 Fluorophore Absorption

If we assume that the fluorophores are evenly distributed throughout the volume of the neuron,

the optical power absorbed by the fluorophores in the neuron can then be found using the Beer-

Lambert law:

Pn,abs = Pn · (1− e−µndn) [W] , (5.17)

where µn is the absorption coefficient of the neuron (due to the fluorophores). The optical power

of fluorescence is then given by

Pfl = Pn,absQYfl [W] , (5.18)
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where QYfl is the quantum yield of the fluorophore (the number of photons emitted for each

photon absorbed).

5.2.5 Neuron-to-Photodetector Path

The optical path from the fluorophores (neuron) to the photodetector can now be modeled in

a similar way to the LED-to-neuron path. Assuming the fluorophores together are an isotropi-

cally radiating point source, and the photodetector has a surface area of Apd, the optical power

absorbed by the photodetector can be modeled as

Ppd =
Pfl

4πR2
pn

· Apd · e−µfRpn [W] , (5.19)

where µf = µa + µ
′
s is the total absorption coefficient of the tissue at the wavelength of fluo-

rescence. Note that again the model is assuming that a far-field scenario applies, and that the

photodetector area is perpendicular to the vector Rpn. The assumption is that any error in the

calculation due to a non-perpendicular angle is negligible.

5.2.6 Photodetector Absorption and SNR

Given Ppd and the energy of a photon at the fluorophore emission wavelength Eph = hc/λfl [J],

where h is Planck’s constant, c is the speed of light, and λfl is the wavelength of the photons, we

can find the number of baseline photons that hit the photodetector during Ts:

Nbs =
Ppd
Eph

Ts [photons] . (5.20)
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Referring back to the section on SNR, and combining the optical path equations, we can

derive a single equation relating the SNR to all of the system parameters:

SNR =
P0 · An · Apd ·QYfl ·QEpd · Ts · (1− e−µndn)

ω4π · Eph ·R2
nl ·R2

pn · eµtRnl · eµfRpn

(
Sfl
100

Vap
100

)2

. (5.21)

It is clear that the distances Rnl and Rpn have a very strong effect on the SNR. Consider the

parameters that the circuit designer can control:

• P0: the LED power should be high to maximize SNR, but in practice it is limited by the

acceptable power consumption of the device and tissue heating effects, as well as possible

saturation of the photodetector.

• Apd: the photodetector area should be large to maximize SNR, but it will be limited by the

required spatial resolution of the detector.

• Ts: the sampling time should be large to maximize SNR, but it will be limited by the

required sampling frequency of the system.

• Rnl and Rpn: the distance between the light source and fluorophores, and between the

fluorophores and photodetector, should be small to maximize SNR. These distances are

perhaps the key to the system design. They can be controlled to some degree by the design

of the system geometry. However, from another point of view, in a neural recording system

being able to record deeper into tissue is desirable. Optimizing the geometry of the system

design can only get you so far due to the physical limitations of light propagation through

tissue.
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5.3 MATLAB Modeling

The equations described in the previous section can be applied to a MATLAB model for a given

system design. In general, the MATLAB models for different system designs are all very similar.

The following is a list of key points about the MATLAB modeling, followed by pseudocode

describing what the models calculate:

• The equations in the previous section assume a single point source for the LEDs (and neu-

rons). However, that assumption is not necessarily valid in a near-field system. Therefore

each LED can be modeled as a distributed point source. The point sources are distributed

over the planar cross-section where the p-n junction is located. The total LED power is

divided equally between the point sources.

• Each “neuron” in the model is also represented by a square surface that is split up into

smaller squares. The total power hitting each neuron is the sum of the power hitting each

small square. The reason for splitting up the neuron area is it allows us to model a near-

field situation by creating a set of far-field situations and summing the results (far-field

allows us to assume a point source model).

• The models only account for light that directly hits its target, and do not account for any

reflections in the system (advanced optical ray tracing software would be needed for that).

From the point of view of light collection efficiency, this could be considered a pessimistic

model.

• The models including fluorophores do not necessarily account for excitation light being

absorbed in the photodiodes. This is related to the last point. However, optical excitation
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filters and system geometry are designed to take care of this.

The pseudocode in Algorithm 1 describes at a high level what the MATLAB code is doing

for the OR2 system design (certain steps may or may not be needed for different system models):

define system geometry and object parameters;
find LED power emitted in each direction given the radiation pattern;
foreach neuron location do

foreach LED do
foreach point source location on LED do

add excitation power hitting neuron area to total power hitting neuron
end

end
end
foreach neuron do

calculate baseline power of fluorescence from absorbed power
end
create spike waveform;
foreach neuron do

modulate neuron fluorescence over time with randomly inserted spike waveform
end
foreach pixel location do

find fluorescent power hitting pixel vs. time due to all neurons
end
foreach pixel location do

foreach sample time do
find total number of photons collected during sample time
find pixel voltage at the sample time

end
end

Algorithm 1: General MATLAB model pseudocode.
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5.4 OR2 Optical Model

The general optical path model in the previous section provides the basis for constructing more

complex system models. The goal for the OR2 system is to have multiple LED dies bonded

beside the imager chip. The main reason for moving the LEDs from the top of the imager

chip (as they were for OR1) to beside the imager chip is to allow the tissue to sit closer to the

photodetectors, which, based on MATLAB model results, improves detection resolution.

To model the system, the LED dies are represented with distributed point sources, as they

were in the OR1 model. The “tissue” sits on top of the imager chip (and LED dies). Multiple

neurons are placed at various locations within the tissue space. The imager chip includes a multi-

pixel array. In order to ensure the far-field equations are applicable to the near-field system, each

neuron can also be split into a grid of smaller areas, as can each photodiode in the imager array.

Essentially, the model simply repeats the equations described in the previous section, summing

up the contribution of each distributed LED point source to each neuron (or smaller neuron area),

and each neuron (or smaller neuron area) to each photodetector (or smaller photodetector area).

Lastly, as in OR1, the total power absorbed in each photodetector is then converted to the sample

voltage signal.

The OR2 design is meant to detect action potentials, which means it has to compare recorded

pixel voltages over time. Therefore, the model calculations described above are essentially mod-

ulated by neural waveforms (sine wave snippets of appropriate frequency) in order to model the

response over time. This mimics the effect of the reporter proteins.

74



5.4.1 GCaMP3 Model

First, a model relating to a common genetically encoded calcium indicator used in neural record-

ing, GCaMP3, is considered. GCaMP3 is used for monitoring neural activity in several different

cases, including fruit flies, zebrafish, worms, and mice [95], [3], [102]. The case of recording in

the mouse cortex is one where the implantable devices proposed in this thesis might be applied.

GCaMP3 allows for the simultaneous chronic (several months) recording of dozens of neurons in

behaving mice. Multiple recording sessions make it possible to track learning-induced changes

in neural activity [95]. The authors of [102] used mice transfected with GCaMP3 in various

recording experiments. Table 5.1 shows the parameter values used in the model. The GCaMP3

parameters are from [3], except for Cfl, which is from [102]. The rise time for GCaMP3 is

approximately 100 ms, therefore the sine wave snippet frequency is chosen as 10 Hz. The LED

parameters are for the CPR3ED (but assuming a different excitation wavelength). The LED ex-

citation power is chosen such that the pixels would not be saturated. Table 5.2 shows the neuron

locations used in the model. Note that the top surface of the LEDs is at the same height as the

pixel array.

Fig. 5.4 shows the system geometry, including pixel, LED, and neuron locations. The color-

bar indicates the baseline optical (fluorescent) power hitting the array. Note that the squares of

the pixel array are not actually the pixels. Rather, the points of the grid are the centers of each

pixel. Fig. 5.5 plots the fluorescent power emitted by each neuron over time. Each neuron has

a sine wave snippet inserted at a random time. Neuron 8 (N8) has the largest fluorescent power

because it is in a position that sees a lot of excitation power from the LEDs. Neuron 3 (N3) has

the smallest fluorescent power because it is in a position that does not see much excitation power
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Parameter Name Value
simulation time step tScale 1 ms
sine wave snippet frequency Fspike 10 Hz
imager sampling time Ts 40 ms
neuron resolution kN 2 µm
LED resolution kL 20 µm
pixel fill factor FF 0.83
CTIA feedback capacitance Cp 4 fF
photodiode responsivity Resp 0.29 A/W
fluorophore quantum yield QY fl 0.65
fluorophore emission wavelength Lfl 515 nm
fluorophore extinction coefficient Exfl 37700 L/(mol cm)
fluorophore concentration Cfl 5 µM
fluorophore sensitivity Sfl 10 %/100mV
LED excitation power Pex 0.5 mW
LED excitation wavelength Lex 500 nm
fluorescent wavelength absorption coefficient aaf 0.23/1000 µm−1

fluorescent wavelength scattering coefficient asf 1.4/1000 µm−1

LED wavelength absorption coefficient aat 0.23/1000 µm−1

LED wavelength scattering coefficient ast 1.4/1000 µm−1

Table 5.1: OR2 model parameters for GCaMP3 case. The GCaMP3 parameters are from [3],
except for Cfl, which is from [102]. The rise time for GCaMP3 is approximately 100 ms,
therefore the sine wave snippet frequency is chosen as 10 Hz. The LED parameters are for the
CPR3ED (but assuming a different excitation wavelength). The LED excitation power is chosen
such that the pixels would not be saturated.
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Neuron X Y Z
N1 0 0 300
N2 400 0 300
N3 400 400 300
N4 0 400 200
N5 -400 400 200
N6 -400 -400 100
N7 0 0 100
N8 -400 -400 300

Table 5.2: Neuron coordinates for OR2 models.
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Figure 5.4: System plot of the OR2 model for GCaMP3, showing pixel, LED, and neuron loca-
tions, as well as the baseline optical (fluorescent) signal power hitting the array.
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Figure 5.5: Plot of fluorescent output power for each neuron in the GCaMP3 model.
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Figure 5.6: Photocurrent in selected pixels over time in the GCaMP3 model.
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Figure 5.7: Sampled voltages in selected pixels over time in the GCaMP3 model.
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Figure 5.8: Plot of SNR vs. fluorophore concentration for the GCaMP3 model.
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Figure 5.9: Plot of signal and noise voltages vs. fluorophore concentration for the GCaMP3
model. The signal and noise voltages due to the optical signal are Vs and Vnrms, shown for
each of three distances. The read, reset and total noise voltages due to the pixel circuitry are also
shown, in black.

from the LEDs. Fig. 5.6 plots the photocurrent in selected pixels over time. The currents change

in response to the changing fluorescent power in the neurons. Pixels (1,1) at (-450,-450) and

(2,2) at (-350,-350) have almost the exact same photocurrent, and have the largest photocurrent

due to their position underneath N8, which provides the largest fluorescent signal. These pixels

clearly see the spikes from N8 and N6, but do not really see any of the other spikes. Fig. 5.7 plots

the signal voltage (sampled voltage minus baseline voltage when there is no spike) in selected

pixels over time, at the 25Hz sampling rate. The plot is similar to the photocurrent plot, but here

the actual voltage levels are shown, so it gives an idea of the resolution of the imager required to

detect spikes. While some larger signals are in the 10s of mV range, resolution in the 1mV range

80



would be good to detect spikes from some of the neurons that produce small signals. Fig. 5.8

plots the SNR (as in Eq. 5.21) vs. the fluorophore concentration, Cfl, for three different distance

values. The SNR increases as Cfl increases, and increases as the distancesRnl andRpn decrease.

Fig. 5.9 plots the signal and noise voltages vs. fluorophore concentration, Cfl, for three different

distance values. The signal and noise voltages due to the optical signal are Vs and Vnrms, shown

for each of three distances. The read, reset and total noise voltages due to the pixel circuitry

are also shown, in black. These noise levels are independent of the fluorophore concentration.

This plot relates the circuit noise to the optical signal noise. The circuit noise begins to dominate

around a concentration of 0.1µM for the case where Rnl = Rpn = 100µm. For a given distance

case, as Cfl increases, the optical signal increases faster than the optical noise, and the SNR im-

proves (as was seen in Fig. 5.8). This plot also gives an indication of absolute signal levels, and

what concentrations can be detected before saturating the pixel circuitry. In the 100µm distance

case, for example, the imager will saturate around 0.3µM .

5.4.2 Arch Model

The second model presented here is geared toward the case where a fast VSFP such as Arch

is available to record individual action potentials. In this case the frame rate must be increased

significantly from the GCaMP3 case. Table 5.3 shows the parameter values used in the model.

The Arch parameters are from [54], except for Cfl, which is assumed to be the same as in [102].

The LED parameters are for the CPR3ED (but assuming a different excitation wavelength). Table

5.2 shows the neuron locations used in the model (same as GCaMP3 model).

Figs. 5.10, 5.11, 5.12, and 5.13 show the system geometry, the fluorescent power emitted by
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Parameter Name Value
simulation time step tScale 10 µs
sine wave snippet frequency Fspike 1 kHz
imager sampling time Ts 400 µs
neuron resolution kN 2 µm
LED resolution kL 20 µm
pixel fill factor FF 0.83
CTIA feedback capacitance Cp 4 fF
photodiode responsivity Resp 0.29 A/W
fluorophore quantum yield QY fl 0.0009
fluorophore emission wavelength Lfl 687 nm
fluorophore extinction coefficient Exfl 6300 L/(mol cm)
fluorophore concentration Cfl 5 µM
fluorophore sensitivity Sfl 65 %/100mV
LED excitation power Pex 11 mW
LED excitation wavelength Lex 558 nm
fluorescent wavelength absorption coefficient aaf 0.08/1000 µm−1

fluorescent wavelength scattering coefficient asf 0.8/1000 µm−1

LED wavelength absorption coefficient aat 0.25/1000 µm−1

LED wavelength scattering coefficient ast 1.25/1000 µm−1

Table 5.3: OR2 model parameters for the Arch case. The Arch parameters are from [54], except
for Cfl, which is assumed to be the same as in [102]. The LED parameters are for the CPR3ED
(but assuming a different excitation wavelength).

each neuron over time, the photocurrent in selected pixels over time, and the signal voltage in

selected pixels over time. The plots look similar to the GCaMP3 case, but the key difference is

the signal amplitudes. In this case all of the final voltage signals are less than 1mV, and mostly

are tens of µV . This is largely due to the low extinction coefficient of Arch. These signals are

too small to be detected without significantly increasing the excitation power. Fig. 5.14 plots

the SNR (as in Eq. 5.21) vs. the fluorophore concentration, Cfl, for three different distance

values. The trends are the same as for the GCaMP3 model, but here the SNR values are lower for
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the same fluorophore concentration and distances. Fig. 5.15 plots the signal and noise voltages

vs. fluorophore concentration, Cfl, for three different distance values. Here the circuit noise

dominates around all concentrations shown, and only for the case where Rnl = Rpn = 100µm

could we detect any signal above the noise, at high fluorophore concentration.
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Figure 5.10: System plot of the OR2 model for Arch, showing pixel, LED, and neuron locations,
as well as the baseline optical (fluorescent) signal power hitting the array.
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Figure 5.11: Plot of fluorescent output power for each neuron in the Arch model.
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Figure 5.12: Photocurrent in selected pixels over time in the Arch model.
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Figure 5.13: Sampled voltages in selected pixels over time in the Arch model.
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Figure 5.14: Plot of SNR vs. fluorophore concentration for the Arch model.
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Figure 5.15: Plot of signal and noise voltages vs. fluorophore concentration for the Arch model.
The signal and noise voltages due to the optical signal are Vs and Vnrms, shown for each of three
distances. The read, reset and total noise voltages due to the pixel circuitry are also shown, in
black.

5.4.3 Voltage Sensitive Dye Model

In order to demonstrate high frame rate operation, model results for a common voltage sensitive

dye, di-4-ANEPPS, are shown. This main difference here compared to the Arch model is that the

VSD has much higher quantum yield, resulting in larger signals. Table 5.4 shows the parameter

values used in the model. The di-4-ANEPPS parameters are from [93] and [31], except for Cfl,

which is assumed to be the same as in [102]. The quantum yield for this dye is not known exactly.

A conservative value for quantum yield comparable to similar dyes as shown in [31] (with lipid

binding) is used. Table 5.2 shows the neuron locations used in the model (same as GCaMP3 and
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Arch models).

Parameter Name Value
simulation time step tScale 10 µs
sine wave snippet frequency Fspike 1 kHz
imager sampling time Ts 400 µs
neuron resolution kN 2 µm
LED resolution kL 20 µm
pixel fill factor FF 0.83
CTIA feedback capacitance Cp 4 fF
photodiode responsivity Resp 0.29 A/W
fluorophore quantum yield QY fl 0.2
fluorophore emission wavelength Lfl 617 nm
fluorophore extinction coefficient Exfl 42000 L/(mol cm)
fluorophore concentration Cfl 5 µM
fluorophore sensitivity Sfl 10 %/100mV
LED excitation power Pex 11 mW
LED excitation wavelength Lex 475 nm
fluorescent wavelength absorption coefficient aaf 0.13/1000 µm−1

fluorescent wavelength scattering coefficient asf 1.00/1000 µm−1

LED wavelength absorption coefficient aat 0.28/1000 µm−1

LED wavelength scattering coefficient ast 1.6/1000 µm−1

Table 5.4: OR2 model parameters for di-4-ANEPPS. The di-4-ANEPPS parameters are from
[93] and [31], except for Cfl, which is assumed to be the same as in [102]. The LED parameters
are for the CPR3ED (but assuming a different excitation wavelength).

Figs. 5.16, 5.17, 5.18, and 5.19 show the system geometry, the fluorescent power emitted

by each neuron over time, the photocurrent in selected pixels over time, and the signal voltage

in selected pixels over time. The plots look similar to the Arch case, but the key difference is

the signal amplitudes. In this case the final voltage signals can be higher than 10mV, which

is much higher than for Arch. This is largely due to the higher quantium yield of the VSD.

These signals are large enough to be detected. Fig. 5.20 plots the SNR (as in Eq. 5.21) vs. the
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fluorophore concentration, Cfl, for three different distance values. The trends are the same as for

the GCaMP3 and Arch models. Here, for the same fluorophore concentration and distances, the

SNR values are higher than for Arch. Fig. 5.21 plots the signal and noise voltages vs. fluorophore

concentration, Cfl, for three different distance values. Here the circuit noise begins to dominate

around a concentration of 1µM for the case where Rnl = Rpn = 100µm, and at this point the

SNR is still relatively high.

−500

0

500

−500

0

500

0

100

200

300

400

 

 

N6

N7

N4
N5

N1
N2

N3

N8

z
 [
u
m

]

Baseline power hitting pixels [photons/s]

x [um]y [um]
0

2

4

6

8

10

x 10
6

Figure 5.16: System plot of the OR2 model for di-4-ANEPPS, showing pixel, LED, and neuron
locations, as well as the baseline optical (fluorescent) signal power hitting the array.
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Figure 5.17: Plot of fluorescent output power for each neuron in the di-4-ANEPPS model.
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Figure 5.20: Plot of SNR vs. fluorophore concentration for the di-4-ANEPPS model.
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Figure 5.21: Plot of signal and noise voltages vs. fluorophore concentration for the di-4-ANEPPS
model. The signal and noise voltages due to the optical signal are Vs and Vnrms, shown for each
of three distances. The read, reset and total noise voltages due to the pixel circuitry are also
shown, in black.

5.4.4 Discussion

In this work layer I (the top layer) of the brain is chosen as the target recording area. Layer I

of the brain is approximately 300µm thick, and has on average 13000 neurons per mm3 [99].

Therefore in a 1mm x 1mm area there would be about 4000 neurons in layer I. The characteristics

of layer I neurons were studied in [43]. They found that neurons with axons descending down to

layer II or deeper had somata (cell body, not including axons/dendrites) that were 14.9 x 7.9µm2

on average. Consider the case of 100µm x 100µm pixels. That would mean there are about 40

neurons above each pixel. Given that resting neurons fire at up to 10Hz, and active neurons fire
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at up to 100Hz, we would expect only a couple of neurons (or fewer) above each pixel to fire at

once. Now, if our VSFPs target only a fraction of the neuron population, we have a manageable

number of neurons to track.

The modeling indicates that recording applications using a reporter like GCaMP3 could be

immediate targets for the type of implantable recording device proposed in this work. Such de-

vices may also work for detecting individual action potentials once a sufficient VSFP is created.

Alternatively the device could be used with voltage sensitive dyes, keeping in mind that dyes

are not appropriate for chronic recording. There are a few takeaways regarding choosing system

design specifications:

• Pixels that are close together usually detect a given spike. For this reason in an imager that

is only concerned with spike detection, smaller pixels are not particularly advantageous;

in fact smaller pixels have less area to collect photons and produce lower signal levels,

making spike detection more difficult. Larger pixels produce larger signal levels, but at the

expense of spatial resolution. Larger pixels also allow for more circuitry to be included in

the pixel. This is an important tradeoff in these systems. The general takeaway is that the

physical size of neurons and neuron density can dictate the appropriate pixel size. Having

pixels smaller than neuron diameters would not be useful. Having pixels the same size as

neurons may also not be a good choice because a cluster of neighboring pixels will still

see nearly the same signal.

• For simply detecting spikes rather than recording their shape, it is useful to reduce the

frame frate from the Nyquist rate. The longer integration time allows for the collection of

more photons, resulting in a larger signal. This is especially useful in applications where
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the signals can be very weak.

• For the Lambertian LED dies there is a sweet spot for neuron height above the imager

surface where the recorded signal amplitude is maximized. When neurons are too close

to the imager surface, they see very little excitation light, and thus have a weak signal.

When neurons are too high above the imager surface, they see more excitation light, but

the spatial resolution decreases, since the signal can be seen across the entire array.

5.5 Summary

This chapter has added tissue attenuation and fluorescence to the optical model of Chapter 4,

and applied the model to a complete implantable optical neural recording device design. The

model output consists of the sampled voltage in each pixel over time, and shows the detection

of spikes from different neurons. The model results are used to arrive at specifications for the

device design; these are discussed in the next chapter.
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Chapter 6

Second Optical Chip - OR2

The OR1 chip was designed to verify the optical modeling. A second optical chip was designed

for use in an actual optical neural recording device. The second chip (as well as the overall

system design) is referred to as OR2. The goals for the OR2 design were to:

• Produce a full fluorescence detection imaging system, including optical filtering, which is

capable of detecting individual action potentials in the top layer (layer I) of brain tissue;

this includes significantly higher sensitivity pixel circuitry

• Include on-chip analog-to-digital conversion of the imager output

• Test the system with a fluorescent tissue phantom

In this chapter the OR2 system design and packaging is discussed, followed by the circuit design,

and finally the testing results.
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6.1 System Design and Packaging

There are two main packaging options with regard to testability. One option is to do a system-

in-package (SiP), where the chip and LED dies are bonded inside a package (in this case an

80-pin ceramic quad flat pack (CQFP80)) with the lid left off. The other option is to bond the

chip and LED dies directly to a PCB. The SiP approach was taken here. The main advantage of

the SiP approach is that it makes it easy to test multiple chips on a PCB, because it is easy to

solder/desolder packages to a board and bonding is no longer a concern. If the device were to

be tested in vivo then direct-to-PCB bonding may be a better option, as package walls would not

prevent the chip surface from contacting the tissue.

6.1.1 System Components and Geometry

Fig. 6.1 shows a drawing of the SiP design (the chip and LEDs are close to scale, the surrounding

package and bonding is not). The OR2 chip is 3mm x 3mm. The pixel array is 1mm x 1mm, and

is located in the southeast corner of the chip. The goal was to have the array as close as possible

to the LEDs to ensure that as much excitation light as possible could hit the tissue above the

array. Therefore, no bondpads were included in that corner. Four LED dies surround the array.

The original plan was to have the imaging chip 1mm x 5mm, with the pixel array in the center

and two LED dies on either side of the chip. This design would have provided a much more

uniform illumination across the entire array. However, it was advised in design review that such

a narrow chip may have poor yield in fabrication, so the square chip was chosen. The square

design also makes placement and routing, and bonding, much easier. On top of the pixel array is

a thin optical filter, which is discussed in Section 6.1.5.
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Figure 6.1: OR2 system diagram. The imager chip sits in a QFP80 package. The pixel array is
in the bottom right corner of the imager. Four LED dies sit adjacent to the pixel array. The LED
dies are placed on top of die spacers to match their height to the surface of the imager chip. An
optical filter is attached above the pixel array.

6.1.2 Controlling Die Height

Based on the work of Chapter 4, we saw that when the LED junction is above the imager height,

excitation light can directly hit the imager. A filter would limit the significance of that light. But

regardless, we may want the LED junction to be below the imager height. However, a concern

with having the LEDs below the surface of the imager is that LED light could still directly hit the

pixels through the side of the chip where there is no filter. Therefore, the optical characteristics

of silicon must be considered.

The fraction of incident light reaching a given depth into the silicon is given by the Beer-

Lambert law (see Section 5.1). At 570nm, which is the high end of excitation wavelengths in this

system, and the worst case for this calculation, the absorption coefficient of silicon is 751286m−1

[16]. Table 6.1 shows the depth of light penetration for a range of transmission (T ) values. For

example, 0.1% of light gets through 9.2µm. This result indicates that in terms of excitation light
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T d [µm]
0.100000 3.1
0.010000 6.1
0.001000 9.2
0.000100 12.3
0.000010 15.3
0.000001 18.4

Table 6.1: Depth of light penetration in silicon.

hitting the pixels, it is not an issue to have the LED below the pixel surface because any light

that hits the side of the chip is absorbed before it reaches the pixels (assuming the pixels are not

right up against the edge of the chip). On the other hand, this also means that light that hits the

side of the imaging chip will not make it to the tissue (at least not directly) either, and is thus

not useful for excitation. Therefore, this means that the height of the LED dies relative to the

imager surface is a very important system parameter. Ideally the LED die junctions would be at

the same height (or slightly below) as the imager chip surface.

In the case of Lambertian LED dies with restricted beam angles, there is a tradeoff between

the height of the dies relative to the imager surface and the height the tissue must be at to have

excitation light hit it. If the LED die height is lower than the chip surface, the widest angle

excitation light is blocked from hitting the tissue by the imager chip, and thus the tissue would

have to be higher. Assuming there were LED dies on both (opposite) sides of the imager, the

width of the array (and the chip) will strongly impact how much light can hit tissue at a given

height over the center of the array. And recall that the impact of moving tissue higher (further

from the array) is reduced imaging spatial resolution and a weaker signal.

It is possible to use die spacers to adjust die height during bonding. This means there can be

97



some control of LED die height relative to the imager height. The specification for the packaging

house was to have the top surface of the LED dies (where the junction is in this case) at the same

height as the imager, or slightly below (we wish to err on the lower side). They must consider

their margin for error when selecting the die spacer thickness.

6.1.3 Cavity Potential

In the CPR3ED dies the bottom contact, which gets bonded to the CQFP80 package cavity

(through the spacers, which must be conductive), is the positive terminal of the LED, and must

be connected to VDD. However, the imager chip substrate, which gets bonded to the same cavity,

must be GND. Therefore, down-bonds are used to connect the package cavity to VDD, and a

non-conductive epoxy is used to bond the imager chip to the cavity.

6.1.4 Encapsulation

For an implantable device encapsulation is required to protect the device from the biological

environment. In the bench testing environment encapsulation of the bondwires is still desirable

to prevent any damage from accidental contact between the bondwires and the optical filter or

fluorescent sample during handling.

In this case, however, encapsulation was not included for the bench testing, due to difficulties

with creating a moat around the imager surface (which is lower than the bondwires), where the

encapsulant would need to be very thin (to keep the tissue close to the imager). Future system

designs should account for this.
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6.1.5 Optical Filter

Fluorescence detection systems typically require an optical filter to prevent excitation light from

hitting the photodetectors. In this system where the Lambertian LEDs (at least in theory) emit

upwards, no excitation light would hit the photodetectors without reflections (off of tissue). At

this stage, the optical modeling does not model reflections, so it isn’t clear how much excitation

light would be reflected back down to the photodetectors. The system geometry is designed to

limit excitation light hitting the photodetectors, but the contribution is likely not zero. Therefore

an optical filter is included in the system.

The CPR3ED datasheet does not include a plot of the emission spectrum, but it states that the

dies have a full width half max of 35nm. A wavelength shift of about 20nm (extrapolated from

the datasheet curve) is assumed because this system uses very low current. Therefore the LED

spectrum is estimated to have a peak wavelength around 547nm ± 15nm to the half max values.

The fluorophores used in the tissue phantom (described in more detail in Section 6.3.2) are

orange fluorescent microspheres from Cospheric [21]. On the webpage for the microspheres

emission spectra for various excitation wavelengths are shown. The white excitation curve is

assumed here. Emission wavelengths are all higher than about 570nm.

Based on the excitation and emission wavelengths, the optical filter should have a high-

pass cutoff frequency of about 565nm. The optical density specification for a filter cannot be

determined accurately as explained above. Higher optical density is better, as a filter with a

higher optical density will reject a higher fraction of incident light. An important requirement of

the filter is the thickness - it should be thin enough to keep the fluorescent sample close to the

imager surface, but not too thin, otherwise fluorophores at the imager surface will see very little
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Figure 6.2: Plot of LED (APTL3216), filter, and fluorophore spectra.
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Figure 6.3: Plot of LED (CPR3ED), filter, and fluorophore spectra.
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excitation light. According to the optical modeling, the desired filter thickness is around 100µm.

A custom filter design was considered for this work. However, it turns out that a much

cheaper alternative is to use “theatre gels”, or “color gels”. These are color filters that are placed

over lighting in theatre productions to get desired lighting effects. These filters are sold by several

companies, and a single sheet close to 2ft x 2ft can be purchased for less than $10. The filter

chosen for this work is 135 Deep Golden Amber from Lee Filters [30]. It is an absorption filter,

made from a thin surface coated PET (Polyester Film), and is 80µm thick.

Fig. 6.2 shows a plot of the filter transmission spectrum (Lee135), along with the fluorescent

microsphere emission spectrum (UVPMS) and a test LED emission spectrum (APTL3216). Fig.

6.3 shows a plot of the filter transmission spectrum (Lee135), along with the fluorescent micro-

sphere emission spectrum (UVPMS) and the LED emission spectrum for the CPR3ED, which is

used in the actual system for fluorescence testing (not for imager characterization).

6.1.6 Final Packaged Device

The final packaging of the device, including die-attach, bonding, and filter attach, was done by

Quik Pak [73], facilitated by CMC Microsystems. Fig. 6.4 shows one of the final packaged

devices. Fig. 6.5 shows a zoomed view of the pixel array with filter and LEDs. From these

pictures a fabrication/packaging issue is apparent: the OR2 chips were diced larger than they

should have been. The chip edge should have been at the edge of the pad frame, but instead is

around 400µm away. The result of this is that the LED dies are about 400µm further away from

the pixel array than they should be. This will be discussed further in Sec. 6.5.
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Figure 6.4: Photo of final packaged device. The red absorption filter sits on top of the pixel array.
The LED dies sit adjacent to the array. Four downbonds for VDD are seen in the bottom right
corner of the package.
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Figure 6.5: OR2 microphotograph zoomed in to the imager and LED dies. The imager rows and
columns are labeled. The wide dicing of the chip is apparent. The edges of the LED dies (closest
to the chip) are still about 150-200µm from the chip.
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6.2 Imaging Circuitry Design

As discussed in the modeling section 5.4, the chip is designed based on a new system design

where LED dies are bonded beside the chip instead of bonded on top of the chip. Thus, OR2

does not include the large bondpads for bonding LED dies to the top of the chip. Compared

to OR1, OR2 includes much higher sensistivity imaging circuitry, with in-pixel CTIAs, and

programmable gain (individually controlled for each pixel).

6.2.1 Imager Architecture and Pixel Circuitry

Based on the MATLAB model results, the following main imaging specifications were chosen:

• 10x10 pixel array with 100x100µm2 pixels; adjacent smaller pixels see nearly the same

signal, so it is worthwhile to increase pixel size, which allows each pixel to collect more

photons and produce a larger signal

• Up to 10kHz frame rate (but also programmable); 2.5kHz is the ideal target speed based

on modeling of Arch and di-4-ANEPPS, from the point of view of maximizing peak signal

levels. Frame rates lower than 2.5kHz may miss spikes, while higher frame rates reduce

signal strength. In order to work with slower responding reporters like GCaMP3, the frame

rate can be significantly reduced.

• 1mV resolution; This strikes a balance between higher resolution required to detect weaker

signals (or signals deeper in tissue) and the technical difficulties with designing high reso-

lution data converters.
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• Programmable gain; This is desirable because signal strength can vary greatly across the

pixel array. Neurons that are close to a light source and close to the array could saturate

pixels. Therefore it is useful to be able to reduce the gain in individual pixels.

The overall architecture of the imager is shown in Fig. 6.6. Each column has an op-amp

buffer before the column MUX switches. These op-amps are strong enough to drive the signal

off chip. The column MUX drives the output signal through the imager MUX, which sends it

either off chip or to the on-chip ADC. The ADC block includes the sample and hold circuit.

Fig. 6.7 shows the basic pixel circuit, which is a CTIA. The transfer function of the circuit is

given by:

Vout(s) =
Ipd(s)

sCfb

(
1− 1

A(s)
− Cpd

CfbA(s)

) (6.1)

or

Vout(s) =
Ipd(s)

sCfb

(
1− 1

A(s)

(
1− Cpd

Cfb

)) (6.2)

Assuming A� Cpd/Cfb and Cpd� Cfb, the transfer function of the circuit is

Vout(s) =
Ipd
sCfb

, (6.3)

which in the time domain is

vout(t) =
1

Cfb

∫
ipddt . (6.4)

The actual implemented pixel circuit is shown in Fig. 6.8. Table 6.3 shows device sizes

for the pixel transistors (other than the SRAM, which is shown in Fig. 6.10, and the amplifier
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Figure 6.8: Final CTIA pixel schematic. The reset and row select switches are NMOS devices
with a dummy device on each side. The main feedback capacitor is 4fF. Additional 16fF and 80fF
capacitors can be switched in as desired. The capacitor switches C1 and C2 are programmed by
the two SRAM cells that are included in the pixel.

M1 M2 M3 M4 M5 M6 M7
W 0.8 0.4 0.8 0.4 0.55 1 0.45
L 0.35 0.35 0.35 0.35 0.35 0.35 0.35

M8 M9 M10 M11 M12 M13 M14
W 0.5 1 0.5 0.5 0.5 0.5 0.5
L 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Table 6.2: Pixel external device sizing (all sizes in µm).
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internals).

The pixel amplifier is designed to meet the following key specifications (assuming one LSB

is 1mV and the supply voltage is 3.3V):

• The rising slew rate and settling time must ensure that the output has settled to within 0.5

LSB within the sample time (400µs for the target frame rate). The settling is related to the

gain-bandwidth product (GBW) of the amplifier. Assuming a single-pole step response,

the amplifier output voltage can be written as

Vout(t) = V0(1− et/τ ) , (6.5)

where τ = 1/GBW . Assuming 90% of the sample time is allocated to linear settling, we

have:
3.3− 0.0005

3.3
= 1− e−0.9∗400∗10−6∗GBW . (6.6)

This results in a minimum GBW of 24.5kHz. Assuming 10% of the sample time is allo-

cated to slewing, we have:

i = C
dV

dt
= 1 ∗ 10−12 ∗ 3.3

0.1 ∗ 400 ∗ 10−6
, (6.7)

resulting in a required output current of 0.083µA.

• The falling slew rate and settling time must ensure the output has settled to within 0.5 LSB

of the reset level within the reset time (assume 1% of the target frame rate). Assuming a
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single-pole step response, the amplifier output voltage can be written as

Vout(t) = V0e
t/τ , (6.8)

where τ = 1/GBW . Assuming 90% of the reset time is allocated to linear settling, we

have:

0.7 = 3.3e−0.9∗4∗10−6∗GBW . (6.9)

This results in a minimum GBW of 431kHz. During reset, the output of the pixel is dis-

connected from the column line, and the output load is much smaller (0.1pF). Assuming

10% of the sample time is allocated to slewing, we have:

i = C
dV

dt
= 0.1 ∗ 10−12 ∗ 3.3

0.1 ∗ 4 ∗ 10−6
, (6.10)

resulting in a required output current of 0.83µA.

• DC gain must be large enough such that the amplifier achieves a steady-state error less

than 0.5 LSB. During reset, the amplifier is in unity-gain configuration. We require the

error voltage to be less than 0.5 LSB:

1

1 + A0

< 0.0005 (6.11)

resulting in a minimum DC gain of 1999V/V .

Note that these numbers are conservative since they assume that the output swings rail to rail.

In this case, the DC gain is the hardest to achieve. A single transistor (differential pair) would not
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provide the necessary gain. Therefore, the differential pair was cascoded. This came at the cost

of a reasonably small amount of pixel area (which isn’t much of an issue given the large pixel

size), but no increase in noise (since the noise contribution of cascode devices is negligible). In

order to reduce noise, the input pair device sizes were increased.

Fig. 6.9 shows the transistor-level telescopic amplifier. Table 6.2 shows the amplifier device

sizes. Table 6.4 shows the simulated characteristics of the telescopic amplifier alone (without

the rest of the pixel circuitry), with a 1 pF load (approximate column capacitance and column

amplifier input capacitance). Transient characteristics are found from the step response (step in

output swing range) in the unity-gain configuration, with 1 pF load.

M1 M2

M10

M4M3

M5 M6

M7 M8

M9

VN VP

VBIAS4

VBIAS3

VBIAS2

Vout

Figure 6.9: Pixel telescopic amplifier schematic.
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M1 M3 M5 M7 M9
W 32 1 2 2 1.4
L 1 1 1 1 1

Table 6.3: Pixel amplifier device sizing (all sizes in µm).

Spec. Value Units
DC Gain 94.4 dB

3-dB Freq. 101 Hz
Unity-gain Freq. 5.5 MHz

Phase Margin 86 degrees
Input Capacitance 80 fF

Input Referred Noisea 4.8 µVrms
Output Resistanceb 47.3 MΩ

Input Offsetc 320 µV
Static Powerd 9.4 µW
Vout,min 0.7 V
Vout,max 2.4 V

Slew rate (rising) 2.891 V/µs
Slew rate (falling) 2.985 V/µs

Settling time (rising) 209 µs
Settling time (falling) 0.645 µs
a Integrated from 0.1 to 158 Hz (noise

equivalent bandwidth).
b At 10 kHz, a 20 mVpp voltage into the

output produced 0.423nApp current.
c Systematic offset.
d 2.852 µA at 3.3 V .

Table 6.4: Simulated characteristics of the pixel telescopic amplifier, with 1pF load and 0.7V
DC input level. Transient characteristics are found from the step response (step in output swing
range) in the unity-gain configuration, with 1 pF load.
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Photodiodes

The photodiodes are NW-PSUB diodes (same as OR1).

Reset Switch

The non-ideal effects of the reset switch can have a significant impact on the design. The high-

impedance Vpd node is very sensitive, and any change there gets amplified at the output. Thus

any charge injection can cause a significant jump in the output voltage when the switch is turned

off. Adding dummy switches to collect the charge helps. The downside is that complementary

clocks are now needed, which requires an inverter and extra area in the pixel.

Another option would be to use transmission gate switches instead of dummy switches. How-

ever, a transmission gate requires a PMOS device, which requires an N-well in the layout, and

thus a lot more area. Also, PMOS and NMOS devices do not track with process variation; the

dummy switch uses all NMOS devices.

Variable Cfb

The imager circuitry must be very sensitive to detect weak signals from neurons farther away

from the device. This means the feedback capacitance of the CTIA must be very small to produce

a larger voltage from small photocurrents. However, for neurons close to the device the signals

could be significantly stronger, and having such a small feedback capacitor might mean that the

pixel would saturate for closer neurons. For this reason, each pixel has a variable Cfb, which is

individually controllable for each pixel, as shown in Fig. 6.8.
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The feedback capacitors are poly capacitors; in the 0.35µm technology, cpoly has a minimum

width of 0.8µm , and leakage of 1aA/µm2. Because of the requirements for small Cfb, the

capacitors will be very small, which means capacitor matching is not very good. In the chosen

technology, based on the provided matching information, 1µm x 1µm capacitors that were close

together would have a 0.45% standard deviation. The value for 10µm x 10µm capacitors would

be to 0.045%. However, according to the plots in the documentation, the smallest capacitors

that were measured for mismatch were 5µm x 5µm , and at that small size it looked like the

matching was worse than what the equations indicate. In this design the devices are not close

together (matching between pixels) so matching may be quite poor regardless. However, in this

application matching between pixels is not particularly important. Because the device is trying

to simply detect action potentials, the important output is the change in voltage in a given pixel

from frame to frame. The three capacitors used here are shown in Table 6.5. These values were

chosen such that switching in each larger capacitor increases Cfb by approximately 5x (total Cfb

settings of approximately Cmin = 4fF, Cmid = 20fF, Cmax = 100fF). Cmin is close to the

smallest capacitor that can be designed in the technology.

Name W [µm] L [µm] C [fF]
Cmin 2 2 4.128
Cmid 2 8 15.480
Cmax 2 42.5 80.754

Table 6.5: Pixel feedback capacitor values. Switching in the next largest capacitor increases the
total capacitance by a factor of 5.
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Programming the Variable Cfb

Considering the pixel layout, it would be relatively easy to make the capacitor variable if all

pixels were to have the same Cfb value (at the same time); it would be a matter of adding two

more wires to the pixel - basically an extra “row select" line for each set of switches between

adjacent capacitors. However, because different pixels could see significantly different light lev-

els, depending on neuron depths, each pixel should have independently controlled Cfb. Having

separate wires going to each pixel to control each individual set of switches would require too

much area. Instead, each pixel needs to store its own bit values. One way to do this would be to

have flip-flops in the pixels. All of the flip-flops in the array could be connected as a serial shift

register so that only one wire line would be needed in the pixel. The problem with this method

is that flip-flops are quite large in the 0.35µm technology and would reduce the fill factor signifi-

cantly. The other way to store the information is to have RAM (random access memory) cells in

the pixels. Single-transistor dynamic RAM (DRAM) would take up very little area, but it must be

refreshed. Static RAM (SRAM) is non-volatile and doesn’t have dynamic power consumption.

For these reasons SRAM was chosen in this case. Once the bit values are set they will rarely, if

ever, have to change, so the dynamic power consumption of DRAM would be especially waste-

ful. It is also best to avoid digital signals switching in the pixels, as coupling of such signals can

corrupt the analog signal of interest.

SRAM Design

There are two SRAM cells in each pixel - one for each extra feedback capacitor. Typical SRAM

cells have six transistors (6T). It is not actually necessary to have two bitlines. Two bitlines would
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improve noise margins, and make reads easier, but here there is no need for read operations.

Therefore, one bitline is used, which means only 5 transistors per cell are needed, as shown in

Fig. 6.10. This saves layout area. All minimum-sized devices (NMOS and PMOS) were used for

the inverters (0.4µm width). The key is that the pass transistor and drive strength on the bitline

must be able to overpower the inverters. Monte Carlo simulation shows that with a 1.2µm pass

transistor, 100 of 100 cells functioned correctly.

RST

BIT

W2

X

BIT

X
1.2
0.35

0.4
0.35

0.4
0.35

Figure 6.10: 5T SRAM schematic. The pass transistor is sized strong enough to overpower the
inverters.

Layout

Fig. 6.11 shows the full pixel layout. Fig. 6.12 zooms in on the main circuitry (top metal (MET4)

is removed from the picture). Note that the feedback capacitors extend to the left underneath the

wires along the top of the pixel. The fill factor is 83.3%. The following are considerations for

the pixel layout:

• All of the circuitry besides the photodiode was covered in MET4 to ensure that any light

hitting the pixel circuitry does not affect the biasing.

• Power rails of 1µm width were used. Given the pixel bias current, this results in approxi-

mately a 20mV voltage drop from the first to last row of the array.
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• Double-vias were used for reliability, with minimal impact on fill factor.

• The poly capacitors used for the feedback do not have guard rings. This should be accept-

able because the pixel circuitry should be very quiet during integration, when no digital

signals in the array are switching.

• Transistors were positioned such that N-wells were kept away from the perimeter of the

pixel (on the right and top sides) to minimize how much they cut into the photodiode of

the adjacent pixel.

• Even very small parasitic capacitances have to considered in the layout, especially parasitic

capacitance to the sensitive Vpd node. Care was taken to minimize capacitance between

Vpd and the digital nets, and to try to equalize the capacitance between Vpd and comple-

mentary digital nets (like RST and RSTB). Crosstalk due to a parasitic capacitance can be

described by:

V x(t) =

(
Cc

Cc + Ctot

)
VDDe

−t/τu(t) (6.12)

where Cc is the coupling capacitance between the agressor net (such as a digital net), Ctot

is the total capacitance on the victim net (such as the sensitive Vpd node), and u(t) is the

unit step function. If the only concern is the final voltage, then the time constant and step

function can be neglected. For example, a 10fF parasitic capacitance between a digital net

and Vpd (assuming 1pF on Vpd) gives:

0.10e−15

0.10e−15 + 1e−12
∗ 3.3V = 0.33mV (6.13)

This 0.33mV is amplified by the amplifier to produce a shift in the output voltage of around
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150mV. To fix such an issue, the layout can be modified, either to completely eliminate

the coupling capacitance, or to cancel the effect by adding extra coupling capacitance

between Vpd and the complementary net. To add extra capacitance, wires can be extended.

However, when doing this, it is important to keep in mind that during fabrication metal

layers can shift relative to one another, so the layout should be robust to such shifts.

• The pixels are designed to tile together perfectly.

• It is important to know the total capacitance (including parasitics) on each input, so that

information can be given to Synopsys, which will ensure the digital nets are properly

driven.
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Figure 6.11: Full pixel layout. All of the circuitry other than the photodiode is covered in top
metal. The feedback capacitors extend along the top edge underneath the wire lines.
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Figure 6.12: Zoomed pixel layout. Here the top metal is removed. Double-vias are used for
reliability. Certain wires are extended over the large input device transistors to balance coupling
from digital nets.
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6.3 Testing Apparatus

6.3.1 Circuit Boards

As with OR1, a custom printed circuit board (OR2PCB) was designed with Altium Designer.

OR2PCB is similar to OR1PCB, in that it interfaces with the Opal Kelly XEM6010 FPGA board.

OR2PCB includes a separate constant current source driver circuit for each LED die bonded

beside the imager. The circuit is shown in Fig. 6.13. The op-amp forces the DAC (AD5060)

voltage across the resistor Re such that the current through the LED is ILED = Vdac/Re. The

Rsmall resistor allows for an ammeter to be inserted in the circuit to measure the collector current

(the true LED current) if desired. Alternatively the emitter current can easily be calculated by

measuring Vr/Re. The PCB includes a 16-bit ADC (AD7985) for digitizing the imager analog

output. This off-chip ADC is an alternative option to the on-chip ADC. All measurement results

+

-
A

Re

Vr

Vdac
ILED Rsmall

VLED

DAC

Figure 6.13: Constant current LED driver circuit. The amplifier feedback forces Vr = Vdac.
Vr/Re then defines the current.
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in this section used the higher-resolution off-chip ADC.

A second printed circuit board (LEDPCB) was also designed. It is mounted on top of

OR2PCB. The bottom side of LEDPCB has three surface-mounted LEDs (Kingbright APTL3216:

525nm, 601nm, 630nm) that are used to illuminate the imager chip during imager performance

characterization. A similar constant current source circuit to the one described above is included

on this board to drive the LED. Fig. 6.14 shows a picture of OR2PCB with and without LEDPCB

sitting on top of it.

Testing is controlled through verilog HDL code and Python scripts that use the Opal Kelly

API. The scripts configure the FPGA, program the imager chip and LEDs, read out the sampled

ADC data and process it.

6.3.2 Tissue Phantom

A tissue phantom allows for repeatable experiments that do not require a wet lab or any special

handling protocols, and is appropriate for testing initial device prototypes. The tissue phantom is

a simple design consisting of fluorescent microspheres mixed into a clear PDMS (polydimethyl-

siloxane) gel. The fluorescent microspheres are UVPMS-BO-1.00 (27-32µm diameter) from

Cospheric [21]. The PDMS is MED 6215 from Nusil [66]. The density of the fluorophores in

the gel is representative of targeted neuron density in the brain. Fig. 6.15 shows a picture of the

tissue phantom that was used in this work, illuminated with UV light. Sec. 6.5.1 describes in

more detail how the tissue phantom is used.
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Figure 6.14: Picture of the OR2 testing setup. LEDPCB sits on top of OR2PCB. Green, or-
ange and red LEDs on the bottom side of LED BOARD are used to illuminate the imager for
characterization.
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Figure 6.15: Picture of the tissue phantom under UV light (the blue container is about 4cm on a
side).

6.4 Imager Performance Characterization

As discussed above, the LEDs on LEDPCB are used to characterize the imager. Several of the

plots in the following sections plot some performance metric vs. incident light power, or irradi-

ance (W/cm2). Therefore, the first step in the testing process is to map the LED current (which

is controlled) to LED irradiance. This is done by setting the current and then measuring the LED

light output with a radiometer. See Appendix C for the radiometer measurement procedure.

Fig. 6.16 shows a plot of irradiance vs. LED current for each of the three LEDPCB LEDs.

Similarly, the irradiance vs. current curve is found for the LED dies that are bonded beside the

imager, as shown in Fig. 6.17. Unfortunately LED4 was not operational (determined to be a
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Figure 6.16: Irradiance as a function of current for the LEDPCB LEDs.

Figure 6.17: Irradiance as a function of current for the LED dies.
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bonding issue) and is not included here.

The imager is characterized at each value of integration capacitance: Cmin = 4fF, Cmid =

20fF, and Cmax = 100fF. Unless otherwise stated, the results are for the target frame rate of

2500fps. For performance metrics where the statistics are averaged over all of the pixels in the

array, such as SNR or fixed pattern noise, only the core 8x8 pixels are included in the calculations.

The reason for this is that the pixels around the outer edge of the array see a different environment

than the core pixels (which are surrounded on all sides by other pixels), and their outputs are

typically much different than the core pixels, which produce relatively similar results. In some

instances where frame images are shown, all 10x10 pixels are included; in other instances only

the core 8x8 pixels are included.

6.4.1 Pixel Operation

A test pixel was included on the chip for testing purposes. It provides direct control over all pixel

signals. This is in contrast to the pixel array which is controlled by on-chip logic only. The main

advantage of the test pixel is that its output voltage can been seen over all time.

Fig. 6.18 (top) shows an oscilloscope capture of the test pixel output over time, at 2500fps,

and with Cmin. D6 (green) is the row select signal (which is just left high). D5 (blue) is the reset

signal, which pulses high to reset the pixel. In this capture the incident light is just strong enough

to saturate the output. Here 16 averages are used on the oscilloscope to eliminate the effect of

reset noise. Fig. 6.18 (bottom) zooms in on the output voltage around the reset pulse. When

reset goes low, the output quickly jumps up about 350mV. This is due to parasitic coupling into

the sensitive CTIA input node, as was discussed previously, and is also seen in simulation.
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Figure 6.18: Top: Pixel output voltage with pixel just saturated, with Cmin and 2500fps (16
averages). Bottom: Pixel output voltage zoomed in on the reset pulse (16 averages).
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Figure 6.19: Single-shot oscilloscope capture of the imager analog output voltage for all 100
pixels in a frame (top), and for a few pixels (bottom), for Cmin and 2500fps. A combination of
fixed pattern and reset noise is seen.
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Fig. 6.19 (top) shows a single-shot (no averaging) oscilloscope capture of the imager analog

output voltage for an entire frame, for Cmin and 2500fps. Fig. 6.19 (bottom) zooms in on a few

pixels. D7 is the CAPTURE (imager enable) signal. D6 is the FRAMEDONE signal, which

pulses high at the end of each frame capture. D3 is the SHIFTCOL signal, which pulses to

select the next column output. D2 is the SHIFTROW signal, which pulses to select the next row.

Ideally the output should be a constant value, but we see steps in the waveform due to noise in

the imager (fixed pattern and random).

Fig. 6.20 shows a single-shot oscilloscope capture of the imager analog output voltage where

Cfb changes for adjacent pixels. The high, middle, and low output voltage levels correspond to

Cmin, Cmid and Cmax, respectively.

6.4.2 Dark Signal

The dark signal is measured using the test pixel. It is important to see the pixel voltage over the

entire integration time because the reset noise of the pixel turned out to be significant, and causes

the reset level (the output voltage immediately after reset, at the start of the integration period)

to vary by tens of mV, as is shown later in Fig. 6.28.

The dark current is calculated with

idark = Cfb
Vsamp − Vreset

tint
[A] . (6.14)

In order to get reliable dark current measurements, a long integration time of 50ms is used such

that the output voltage is significant. 1024 averages on the scope are also used to eliminate the
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Figure 6.20: Single-shot oscilloscope capture of the imager analog output voltage where Cfb
changes for adjacent pixels. The high, middle, and low output voltage levels correspond to Cmin,
Cmid and Cmax, respectively.

reset noise, which effectively DC-shifts the output. Cursors are then used to find Vsamp and Vreset.

According to design kit documentation, the dark current should be around 8fA for this pixel

size. Table 6.6 shows the dark current with each Cfb setting. The larger measured dark current is

likely due to another leakage component. The dark current of 38fA corresponds to 0.45nA/cm2

Cfb idark

Cmin 38fA
Cmid 39fA
Cmax 38fA

Table 6.6: Measured pixel dark current.

when dividing by the photodiode area. The dark signal is 9.5V/s (with Cmin).
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The dark current level can be converted to an equivalent incident light power as follows:

I =
idark
Resp

∗ 1

Apx ∗ FF
∗ 1

(10−4)2
[W/cm2] , (6.15)

whereResp is the photodiode responsivity (0.29A/W),Apx is the pixel area in µm2 (10000µm2),

and FF is the fill factor (83.3%). The following equations can be used to convert to a photon

count:

qdark = Cfb(Vsamp − Vreset) = idarktint [Coulombs] (6.16)

Ne− =
qdark

1.6 ∗ 10−19
[electrons] (6.17)

Nph = Ne− ∗QEpd [photons] (6.18)

where QEpd is the quantum efficiency of the photodiode (0.6321). Table 6.7 shows each of these

calculated values.

idark irradiance electrons photons
38fA 1.57nW/cm2 95 60

Table 6.7: Dark current equivalents (2.5kHz frame rate).

6.4.3 Imager Average Reset Level and Fixed Pattern Noise

In this work, the reset level of the pixel is defined as the pixel output voltage under zero-light

conditions (i.e. due to dark current). This reset level is subtracted from the output voltage
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samples to get the voltage signal of interest (i.e. the voltage due to light integration).

The fixed pattern noise (FPN) of the imager is defined as the standard deviation of the average

pixel values (over 1000 frames). FPN will vary for different lighting and circuit conditions. Figs.

6.21, 6.22 and 6.23 plot the FPN vs. irradiance at 2500fps for red, orange and green illumination,

respectively.

Fig. 6.24 (a-c) shows the average reset level of each pixel for each Cfb value. (d-f) shows the

average sample level of each pixel for orange illumination at 2e-6 W/cm2, for each Cfb value.

From looking at the images it is clear that the core pixels (8x8 in the center) in the array have

relatively little variation in their response, whereas many of the outer pixels of the array (rows

and columns 1 and 10) deviate from the average response of the core pixels. Column 10 and row

1 tend to have higher voltages. These pixels are closer to the edge of the chip. Row 10 tends to

have lower voltages; it is closer to the center of the chip. In general the outer pixels do not see the

same environment as the inner pixels, because they are not entirely surrounded by other pixels

like the inner pixels are. In future designs it may be prudent to include an extra ring of pixels to

improve matching, but not necessarily connect the pixels to the control or readout circuitry.

6.4.4 Output-Referred Read and Reset Noise

The total output noise of the imager, including reset and read noise, can be calculated from the

sampled data by finding the standard deviations of each pixel over 1000 frames, and averaging

the results. Figs. 6.25, 6.26 and 6.27 plot the output noise vs. irradiance for red, orange and green

illumination, respectively. For a given Cfb, the noise is essentially constant and independent of

wavelength, and a larger Cfb results in lower noise.
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Figure 6.21: Imager FPN vs. irradiance for red illumination.
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Figure 6.22: Imager FPN vs. irradiance for orange illumination.
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Figure 6.23: Imager FPN vs. irradiance for green illumination.

The pixel reset noise is found from estimating the peak-to-peak variation in reset level of

the pixel output voltage. This is done using the persistance functionality of the oscilloscope.

A common way to estimate RMS noise is to equate the peak-to-peak noise to a 6σ or 6.6σ

range. 6.6σ variation corresponds to 1/1000 samples being outside that range. Therefore, if we

collect 1000 samples and find the peak-to-peak value, we can divide the result by 6.6 to obtain

a value for the RMS noise (1σ). 1000 data points are captured several times and the results are

averaged to find the final estimate. To estimate the peak-to-peak noise using the oscilloscope, the

oscilloscope persistance is set to a time frame corresponding to the desired number of samples

(the oscilloscope update rate must be known). Then for one trial we stop the oscilloscope and use

cursors to measure the peak-to-peak voltage range at a given instant in time (here, after reset).

This is repeated 10 times and the results are averaged. Fig. 6.28 shows an example of this. The

time instant at 50us is chosen. From this method, the RMS reset noise was found to be 24.06mV
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Figure 6.24: (a-c) Average reset level of each pixel for Cmin, Cmid, and Cmax. (d-f) Average
voltage level near saturation (for Cmin) for Cmin, Cmid, and Cmax. Here is is clear that the pixels
around the outside of the imager have significant variation compared with the core pixels.
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Figure 6.25: Imager output noise vs. irradiance for red illumination.
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Figure 6.26: Imager output noise vs. irradiance for orange illumination.
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Figure 6.27: Imager output noise vs. irradiance for green illumination.

Figure 6.28: Oscilloscope capture of the test pixel output voltage with persistance, used to find
the pixel reset noise.
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(note this is for Cmin and 2500fps).

The read noise can then be found using the following equation:

V 2
n,read = V 2

n,total − V 2
n,reset . (6.19)

In this case, the estimated reset noise from the test pixel is actually larger than the total noise

calculated from the sampled data from the imager. The likely cause of this is that capacitive

loading of the test pixel is lower than that of the pixels in the array, which all see an extra 9 pixels

of column capacitance. The noise analysis in Appendix A indicates that the reset noise is much

more significant than the read noise. Therefore, the read noise is assumed to be small and is not

calculated here.

6.4.5 Imager Average Output

The imager average output is a plot of the average signal voltage for all pixels in the array at

a given incident light power and given wavelength. The average signal voltage is found by

subtracting the average dark signal voltage from the average light signal voltage (both over 1000

frames). Figs. 6.29, 6.30 and 6.31 plot the average output vs. irradiance at 2500fps for red,

orange and green illumination, respectively.
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Figure 6.29: Imager average signal vs. irradiance for red illumination.
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Figure 6.30: Imager average signal vs. irradiance for orange illumination.
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Figure 6.31: Imager average signal vs. irradiance for green illumination.

6.4.6 Limit of Detection

The limit of detection (LOD) of the imager is defined here as the incident light power that gives

an SNR of 0dB. The average SNR of the imager is defined as

SNR =

(∑N
1 µi

)
/N(√∑N

1 σ
2
i

)
/N

(6.20)

where N is the number of pixels, µi and σi are the mean and standard deviation of the output of

the ith pixel calculated over 1000 frames [60]. Note that here the output is defined as the average

sampled output voltage of the pixel minus the average reset level of the pixel. The average reset

level is found by averaging the pixel dark current output voltage over 1000 frames. Note this

“reset” level is not the pixel voltage immediately after the pixel is reset.
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Figure 6.32: Imager SNR vs. irradiance for red illumination.
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Figure 6.33: Imager SNR vs. irradiance for orange illumination.
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Figure 6.34: Imager SNR vs. irradiance for green illumination.
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Figure 6.35: Imager SNR vs. irradiance for each wavelength and Cmin.
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Figs. 6.32, 6.33 and 6.34 plot the SNR vs. irradiance at 2500fps for red, orange and green

illumination, respectively. Fig. 6.35 compares the SNR for each incident wavelength at the

minimum feedback capacitance. We can see that, as expected, for the green light that is blocked

by the optical filter, a higher irradiance is required to achieve the same SNR as the higher orange

and red wavelengths.

Fig. 6.36 shows the SNR vs. irradiance curves for a chip with no optical filter included, with

green excitation. We can see here that a lower LOD is achievable with no filter. This indicates

that the filter absorbs some light even at wavelengths that it should pass.

10-10 10-9 10-8 10-7 10-6

Irradiance [W/cm2 ]

30

20

10

0

10

20

30

40

50

SN
R 

[d
B]

SNR vs. Irradiance, No filter

Cmin
Cmid
Cmax

Figure 6.36: Imager SNR vs. irradiance for green excitation and no filter.

Table 6.8 summarizes the LOD in W/cm2 for each feedback capacitance and incident wave-

length, and for the case with no filter and green illumination. The LOD values are estimated

from the SNR curves.
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LOD Green Orange Red No Filter
Cmin 6.4e-7 3.1e-8 1.2e-8 3.3e-9
Cmid 1.5e-6 2.0e-8 2.0e-8 2.0e-9
Cmax 1.8e-6 6.0e-8 2.1e-8 1.3e-9

Table 6.8: Limit of detection (W/cm2) for each Cfb and LED color, and for green illumination
with no filter.

6.4.7 Comparison With the Literature

Table 6.9 compares the imager designed in this work with several low-intensity CMOS imagers

from the literature. For this work the imager characterization results for two cases are shown:

1) Cmin and the 601nm orange light with the optical filter included, and 2) Cmin and the 525nm

green light without filter. A simple figure of merit (FOM) for imager performance comparison is

proposed here:

FOM =
FR

ApxILOD

[
Hz

nW

]
, (6.21)

where FR is the frame rate in frames per second, Apx is the pixel area [cm2] and ILOD is the

limit of detection at an SNR of 0dB [nW/cm2]. Here a larger FOM (higher frame rate, smaller

pixel area, lower LOD) indicates higher performance. Case 2 with no filter achieves the highest

FOM among devices where the FOM could be calculated.
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6.5 System Testing

As was discussed in Sec. 6.1.6, the OR2 dies were diced larger than they should have been,

resulting in the LED-to-imager distance being about 400µm larger than desired. This larger

distance has some impact on the testing results. In theory, if zero excitation light is hitting

the imager, then simply increasing the LED current can compensate for the larger distance to the

fluorophores. However, if excitation light does hit the imager, then increasing the LED irradiance

may result in greater pixel saturation and lower SNR. Fortunately, it turned out that the problem

was not too severe.

In the particular chip used for this testing, LED4 was not functional. The results shown here

are for LEDs 1, 2 and 3.

6.5.1 Adding the Tissue Phantom

An x-acto knife was used to cut a piece from the tissue phantom. In order to cut the sample to the

same size as the imager, a 1mm x 1mm line grid was printed on paper. Placing the clear tissue

phantom on the paper, the grid lines are visible and can be used as a guide for cutting.

Before placing the sample on the chip, the sample was cleaned with alcohol and a cloth.

Tweezers were used to pick up the sample and carefully place it on the chip. The handling must

be gentle to avoid damaging any bondwires, which were not encapsulated.

Figs. 6.37 and 6.38 show microphotographs of the tissue sample sitting on the chip above

the pixel array. The dark round shapes are microspheres. In this particular sample, there are no

microspheres over the lower half of the pixel array.
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Figure 6.37: Microphotograph of the tissue sample sitting on the chip.

Figure 6.38: Close-up microphotograph of the tissue sample sitting on the chip. The black dots
are the microspheres. Microspheres are generally located along the left edge, across the middle
and along the top edge to the right, and not in the bottom portion of the phantom.
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6.5.2 Baseline and Fluorescent Signal

The left side of Fig. 6.39 shows the baseline signal in the imager due to each adjacent LED die

(by itself) without the tissue sample. For this plot the LED currents were set to 24µA, 24µA

and 48µA. Cmin and 2500fps are used. The plots are an average signal level over 1000 frames.

The baseline signal is near zero, indicating that almost no excitation light is being collected. The

right side of the figure shows the signal with the tissue phantom placed on top of the chip, at

the same settings. We see that the fluorescent signal is significant, up to the 1V range, despite

the LED intensity amplitude being less than 100% of the baseline level. This indicates that the

signal is indeed due to fluorescence. The apparent fluorophore locations match the fluorophore

locations seen in the microphotograph.

6.5.3 Fluorescent Signal Over Time

The key test for this device is whether or not it can distinguish a spike from the baseline signal.

In order to emulate a spike, the LED current was modulated with 1ms sine wave snippets. Sine

wave data with the desired DC level and amplitude was loaded into block RAM (BRAM) on the

FPGA. The BRAM data was then periodically written to the DAC controlling the LED current,

at the required speed. Fig. 6.40 shows the resulting signal from pixel (7,2) due to the modulated

light from LED1 (the 1ms sine wave snippet is inserted approximately every 5ms). The signal is

strong enough to overcome the noise level.

Fig. 6.41 shows a series of consecutive frame images (like a video) around a sine wave

snippet. Each frame is a plot of the current frame minus the previous frame; i.e. the difference
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Figure 6.39: Left: Baseline excitation signal for LEDs 1, 2, 3 with 24µA, 24µA, and 48µA
current, respectively, Cmin, and 2500fps. Right: Baseline plus fluorescence signal for LEDs 1,
2, 3 with the same settings. 148



Figure 6.40: Signal from pixel (8,3) due to LED1 light modulated with 1ms sine wave snippets
every 5ms.

between frames. Dark red and dark blue indicate large positive and negative signal swings be-

tween frames, which indicates the presence of a spike. We see that pixels on the left side of the

array detected the spike in (b), while pixels on the right side were detected in frame (c). This is

due to the timing of the imager circuitry, which has a rolling shutter. The negative half of the

spike is detected in (d). Frames (a), (e), and (f) represent the “resting state”, where the change in

signal between frames is due to noise, which results in neutral colors in the plots.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.41: Consecutive frame images around a sine wave snippet, where each image is a plot
of the current frame minus the previous frame, with Cmin and 2500fps, for LED1.
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6.6 Summary

This chapter detailed the design of a high-sensitivity CMOS imaging chip, as well as an optical

neural recording system that included the imaging chip, LED dies and an optical excitation filter

packaged together. The system was designed with the speed and sensitivity to detect individual

spikes from neurons in layer I of the brain. The performance characterization of the imager

chip was presented, followed by full system fluorescence testing with a tissue phantom. The test

results indicate that the system functions as intended, and that optical spike detection is indeed

feasible.

151



Chapter 7

Conclusion

In summary, this thesis work was concerned with advancing the state-of-the-art in neural record-

ing devices. The main contributions of this thesis are the modeling, design and testing of an

implantable optical neural recording device capable of detecting individual action potentials.

The following sections discuss the conclusions for each of these contributions and improvements

that could be made through future work.
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7.1 Optical Modeling

7.1.1 Contributions

OR1 Model

From the distributed point source optical model introduced in the OR1 work, the following was

learned:

• Typically LED radiation patterns are considered from a far-field perspective. Prior to this

work it was not clear what kind of light distribution would be seen in a system with dimen-

sions on par with the LED die dimensions, and in particular, below the bottom surface of

an unpackaged LED die. It was determined that significant amounts of light from an LED

die can exit the die in the downwards direction.

• The testing results for the ED-113SG LED die showed that the distributed isotropic point

source MATLAB model was useful for predicting the light distribution in the system.

• In general, such a model can be used to predict the excitation light power incident at

different locations within this type of integrated device with near-field lighting conditions.

The model can be extended to systems with multiple LEDs, and to predict fluorescent light

power as well. The model can provide valuable insight into the design of these systems

and guide circuit and system design specifications for fluorescence-detection systems.
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OR2 Model

The basic distributed point source model was extended to include multiple LED sources, light

attenuation in tissue, fluorescence from multiple neurons and imager response over time. The

new model was used to guide design choices for the OR2 chip. The following was learned from

the OR2 modeling:

• Most typical imager designs aim to reduce the pixel size as much as possible to increase

the imaging resolution. However, in this case larger pixels improve the imaging depth.

Additionally, smaller pixels are not necessarily advantageous in this type of contact imag-

ing application, as they may contain a lot of redundant information if they see the same

signal from a given neuron. Therefore, pixel size presents a very important tradeoff in

these devices.

• For LED dies with a Lambertian light distribution there is a sweet spot for neuron height

above the imager surface where the recorded signal is maximized; if the neurons are too

close to the imager or too far away, they will not see much excitation light. This sweet spot

depends on the lateral distance between the LED and neuron.

• There exists a design tradeoff related to frame rate. At faster frame rates (such as the

Nyquist rate,∼15kHz), the received signal is smaller, since there is less time for photocur-

rent to charge the pixel capacitor. By slowing the frame rate down and allowing a longer

integration time (in this case about 2.5kHz), larger signals, or alternatively neurons deeper

in tissue, can be seen. Thus, for simply detecting spikes rather than recording their shape,

relaxing the requirement of the Nyquist sampling rate is beneficial.
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• It is important to note that the optical modeling could be considered pessimistic in terms

of light collection efficiency, since the model does not consider what happens to light that

does not directly hit a neuron. In reality, scattered light could continue on to excite adjacent

neurons, which would help the device performance.

Modeling results indicate that the type of device presented in this work could be used in

recording applications that use a reporter like GCaMP3. Such devices may also work for detect-

ing individual action potentials once a sufficient VSFP is created. Alternatively the device could

be used with voltage sensitive dyes, keeping in mind that dyes are not appropriate for chronic

recording.

7.1.2 Future Work

While the MATLAB modeling presented in this work was useful as a starting point for design,

it is possible to create much more accurate optical models by using Monte Carlo-based ray-

tracing software, such as FRED, by Photon Engineering [26], or TracePro, by Lambda Research

Corporation [19]. With this type of software, a physical system geometry can be defined, using

different materials with different types of properties, including biological tissue. The software

computes the random paths of individual photons based on their interaction with the system

components. Creating such a model should give a much better idea of how much fluorescent

light and excitation light (including due to reflections) would arrive at the photodetectors. This

would allow for more accurate design specifications.
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7.2 CMOS Imaging Chip

7.2.1 Contributions

The key aspect that differentiates the OR2 imager design from the existing literature is that the

device is designed specifically for neural recording at frame rates sufficient to detect individual

spikes, and not for imaging (i.e. visualizing) the tissue. This resulted in design choices to

maximize sensitivity (and imaging depth) to such signals while maintaining the required frame

rates.

The pixel pitch in this imager is 4x smaller than that of a typical MEA (400µm). However, a

large 100µm x 100µm pixel could see signals from many neurons (based on total neuron density

in the brain) if all neurons were fluorescently labeled. The appropriate pixel size would depend

on the particular application, and the fraction of neurons that would be labeled by a given VSFP.

If only a small fraction of neurons are labeled, then larger pixels would be more appropriate; if a

large number of neurons are labeled, then smaller pixels would provide better resolution, though

at the expense of imaging depth.

7.2.2 Future Work

There are several changes and/or improvements that could be made to imager.

• Design parameters could likely be improved if a more complete optical model was created,

as discussed above. Certainly the pixel size (spatial resolution) would be reconsidered for

different system geometries and LED locations, and different LED emission patterns. One
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way to address the issues discussed above might be to design the imager with smaller

pixels, but also provide the capability to combine adjacent pixels into larger pixels. Such

programmability would make it possible to tailor the imager to the specific application.

• The reset noise is significant and needs to be significantly reduced in future designs in

order to have decent resolution. Future imager circuitry should include some form of

double-sampling to help eliminate the reset noise.

• In-pixel (perhaps at the column level) analog circuitry to subtract adjacent samples and

find the difference signal may be beneficial.

• Improvements to the imaging circuitry, such as lower noise, higher SNR, and increased fill

factor, will always help.

• It is worth investigating methods of asynchronous imaging, which may have the advantage

of reduced data rates and reduced power consumption.

• For characterization purposes, it would be useful if the output voltage waveform for the

entire integration time, and not just the final sampled voltages, could be seen for all pixels

in the array. This would require a change in the digital control circuitry.

• The dark current readings were about 5x higher than expected, likely due to other leakage

current in the pixels. Reducing such leakage current is another way to improve sensitivity.
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7.3 Optical Neural Recording Device

7.3.1 Contributions

The key contribution of this work is a functioning optical neural recording device based on

fluorescence detection. To the best of the author’s knowledge, this is the first integrated device

designed specifically for detecting individual spikes in an implant.

An absorption filter made from theatre gels was used to prevent excitation light from hitting

the imager. An interference filter could achieve a higher optical density, but only for light incident

perpendicular to the filter surface. The absorption filter used here was sufficient, and seems to be

a good choice for future designs.

The fabricated device did not match the intended system geometry due to an error in chip

dicing that resulted in the LED dies being located about 400µm further from the imager than

they should have been. However, the device was still functional. When tissue attentuation is

introduced, this could be more of an issue.

7.3.2 Future Work

• In this type of system, uniform delivery of excitation light to all areas of the tissue is

desirable, as is targeted excitation. Micro-LED arrays may be a nice solution for this. One

method would be to flip-chip bond a micro-LED array, such as those used in [36], to the

imager chip. Another option would be to deposit organic LEDs on the imager chip through

CMOS post-processing steps, as was done in [81] or [82]. This type of integration may
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make the inclusion of the optical filter more difficult, and that would need to be considered.

• Improved optical modeling would provide much better information on how much excita-

tion light is expected to hit the photodetectors, and at what angle of incidence the light

will hit. Such information would be very useful for specifying the requirements for the

excitation filter, including whether or not an interference filter is appropriate, and what the

optical density should be. A dichroic (interference) filter may be a good choice because

it would reflect incident excitation light back into tissue, so that the excitation light could

be “re-used” to excite fluorophores, rather than absorbed and converted to heat, as in an

absorption filter.

• Another improvement would be to deposit the filter directly on the imager chip during

the fabrication process, which would likely reduce the device thickness, eliminate extra

packaging costs, and eliminate defects that may result from the filter attachment process.

• Longer wavelengths, into the near-infrared region, for both excitation and emission light

may be advantageous in making deeper imaging possible, though increased scattering

would have to be considered. A key in this regard is VSFP design. Improved VSFPs

(ideal wavelengths, higher sensitivity, etc.) could go a long way to making these devices

even more feasible.

• Signal processing such as that done with compressed sensing/sampling algorithms as in

[20] may be beneficial in improving spatial resolution.

• The details of encapsulation must be considered in future device designs.
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7.4 Device Testing

7.4.1 Contributions

An important contribution of this work is the use of a fluorescent tissue phantom for device

testing. The reasons to use a tissue phantom are: 1) it alleviates the need for a wet lab and all of

the procedures required to test with real tissue, and 2) it allows for repeatable experiments where

the system parameters are known. This is appropriate for initial testing of new prototypes. Such

a tissue phantom can be created in a matter of hours, and the properties of the tissue phantom,

such as thickness, optical properties, and fluorophore concentration can be tuned as needed for

the application.

Because relatively little excitation light hits the imager due to system geometry and the opti-

cal filtering, LED intensity can be modulated with sine/spike waveforms to emulate the action of

VSFPs for temporal device testing.

7.4.2 Future Work

Future tissue phantoms that incorporate actual optical properties of tissue would be a very useful

step up. It may also be useful to incorporate fluorescent microspheres of different colors.

Once an optimized prototype has been tested with a tissue phantom, then further testing with

real tissue would be appropriate.
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7.5 Feasibility of Fully Implantable Optical Recording

The results of this work indicate that fully implantable optical neural recording devices could

be feasible, and should be investigated further. The device in this work was able to detect spike

shapes from the fluorescent signal, as designed. Future work to further answer this question

must include improved device design and testing with real tissue with VSFPs. The achievable

imaging depth in an optimized device may dictate the applications where the device can be used.

The target recording site in this work was layer I of the brain. This was chosen as a first step in

exploring the feasibility of these devices. It should be noted that there are applications where for

the human brain recording in deeper layers is desired. However, there are also other potential

recording sites, such as the spinal cord, where these devices might be useful. The baseline results

in this thesis can be used as a starting point for investigation of specific applications to target in

future work.

7.6 Other Work

There are other design areas that must be tackled to produce a fully implantable device:

• Integration with wireless data transmission and power sources.

• LED power consumption and tissue heating effects must be investigated further.

• For a real implant it may be advantageous to use a flexible PCB instead of a conventionally

packaged devices. Eliminating the chip package would allow the tissue to be as close as

possible to imager (though LED emission patterns would dictate how important that is).
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7.7 Other Applications

Fluorescence detection is used in many other biomedical applications, such as in lab-on-a-chip

systems. Lab-on-a-chip systems also require a high level of integration in order to reduce their

cost. Integration of LED dies with an imager chip, as well as the optical modeling presented in

this work could be applied to these types of applications.
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Appendix A

Pixel Noise Analysis

The noise analysis for the pixel is split into two phases: the reset phase and the integration

phase. Figs. A.1 and A.2 show the circuits used to calculate the noise of the integration phase

and reset phase, respectively. In the integration phase, each noise source is referred to the pixel

output (Vout). In the reset phase, each noise source is referred to the input node (Vpd), and then

multiplied by the gain to get the equivalent output noise.

Cfb

Vpd
Vout

Cpd

Vn,a

gmVgs

ro CL
In,pd

Vgs=Vn,a-Vpd

Figure A.1: Pixel integration noise circuit.
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Cfb

Vpd
Vout

Cpd

Vn,a

gmVgs

ro CL
In,pd

Vgs=Vn,a-Vpd

In,sw

Rsw

Figure A.2: Pixel reset noise circuit.

A.1 Amplifier Input-Referred Noise

Fig. A.3 shows the telescopic amplifier circuit used to find the input-referred noise (the amplifier

noise is referred to the non-inverting input).

In general, a MOSFET has the following noise power spectral density (PSD) for thermal and

flicker noise:

V 2
i (f) = 4kT

2

3

1

gm
+

K

WLCoxf

[
V 2

Hz

]
, (A.1)

I2i (f) = 4kT
2

3
gm +

K

WLCoxf
g2m

[
A2

Hz

]
. (A.2)

The cascode devices and the tail current device do not contribute significant noise to the

amplifier. The input devices and the load current source devices are the significant noise contrib-
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VN VP

Vout

M1

M4

M2

M3

M9

M6

M8M7

M5

I 21 I 22

I 29

I 23 I 24

I 26I 25

I 27 I 28

Figure A.3: Telescopic amplifier noise circuit.

utors. The noise current of each of these devices is in parallel with each device (drain to source).

These noise currents flow directly to the output. Therefore, the output noise current is given by

I2o,n = I21 − I22 + I27 − I28 . (A.3)

We can refer the output noise current to a corresponding input voltage by dividing by the transcon-
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ductance of the amplifier:

V 2
i,n =

I2o,n
g2m1

=

(
8kT

3gm1

+
K1

W1L1Coxf

)
+

(
8kT

3gm1

+
K2

W2L2Coxf

)
+

(
8kTgm7

3g2m1

+
K7g

2
m7

W7L7Coxfg2m1

)
+

(
8kTgm8

3g2m1

+
K8g

2
m8

W8L8Coxfg2m1

)
.

(A.4)

Assuming M7 = M8 and M1 = M2,

V 2
i,n =

(
16kT

3gm1

+
2K1

W1L1Coxf

)
+

(
16kTgm7

3g2m1

+
2K7g

2
m7

W7L7Coxfg2m1

)
. (A.5)

Now given that

gm ∝
√
ID
√
W√

L
, (A.6)

and neglecting constants, we can write an equation that is a function of only parameters that we

directly control:

V 2
i,n ∝

√
L1√

ID1

√
W1

+
1

W1L1

+

√
ID7

√
W7√

L7

L1

ID1W1

+
W7L1

L7W1

. (A.7)

This equation tells us that to minimize the noise we should do the following:

• increase current (but the effect on the noise bandwidth must also be considered)

• at a given current, scale up W1, scale down L1 (if thermal noise is greater than flicker

noise)

• at a given current, scale down W7, scale up L7
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The transfer function for the integration (read) noise of the amplifier is

Vout
Vn,a

=
−gm(Cpd + Cfb)ro

Cfb(sCfb − gm)ro − (1 + sroCL − sroCfb)(Cpd + Cfb)
. (A.8)

The transfer function for the reset noise of the amplifier is

Vpd
Vn,a

=
gm

gm + sCpd +

(
1
ro

+ sCL

)(
sCpdRsw

1+sCfbRsw
+ 1

) . (A.9)

A.2 Reset Switch Noise

The transfer function for the reset switch noise to the input (Vpd) during reset is

Vpd
In,rst

=
−sCL − 1/ro

s2CpdCL + s(Cfbgm +
Cpd+CL

Rsw
) + ( 1

ro
+ gm) 1

Rsw

. (A.10)

A.3 Photocurrent and Dark Current Read Shot Noise

The transfer function for all types of current shot noise at the input node (Vpd) during integration

is:
Vout
In

=
ro(gm − sCfb)

(1 + sro(CL + Cfb))s(Cpd + Cfb)− sroCfb(sCfb − gm)
. (A.11)

The sources of current shot noise are dark current, excitation light current and signal (fluo-
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rescent) current. The noise spectral density due to these sources is given by:

i2shot = 2q(Idark + Iex + Ifl) , (A.12)

where q is the charge of an electron, 1.6 ∗ 10−19C.

The dark current shot noise is due to the dark current in the photodiode, which depends on

the area of the photodiode and temperature. According to design kit documentation, the dark

current at 27◦C for a 100x100µm2 photodiode (opto process option) is 8fA, regardless of the

reverse bias voltage on the photodiode. The excitation light current refers to excitation light

from the LEDs that manages to make it through the optical filter and hit the photodiodes. This is

expected to be very low. The signal current refers to the fluorescent light from fluorophores that

reaches the photodiode, and is the signal of interest. Note that the shot noise values related to the

fluorescence and excitation signals will be different for different pixels, because different pixels

will be seeing different amounts of light.

A.4 Photodiode Thermal Noise

Photodiode thermal noise is the noise generated by the shunt resistance [51], and is given by:

i2pd =
4kT

Rpd

. (A.13)

The photodiode shunt resistance Rpd “is defined to be the inverse slope of the I-V curve at

the 0V point" [94]. “The generally accepted practice in industry is to measure the current I at
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V = 10mV, and apply Ohm’s law to find the shunt resistance" [94]. Rpd can be found through

Ohm’s law by taking the reverse-bias diode voltage and dividing by the leakage current. But a

better way is to average the results for -10mV and +10mV. However, in simulation a DC sweep

of the reverse-bias voltage can be performed, and the current plotted. Because the current is so

small, the simulator parameters gmin and iabstol are reduced to 1e-15, and the voltage is swept

over a small range so there are enough points around 0V to get a nice curve. For the nwd (N-well

diode) model in the design kit (90µm x 90µm photodiode) this gives:

Rpd =
1mV − (−1mV )

1.298fA− (−1.354fA)
= 7.54e11Ω = 754GΩ . (A.14)

This gives i2n = 2.196e-32 A2/Hz, and Vo,nrms = 706µV .

A.5 Output-Referred Noise Spectral Density

Fig. A.4 shows a plot of the output-referred noise spectral density of each noise source, with the

values from Table A.1. Note that in this plot only the dark current is considered (Iex and Ifl are

set to 0, as they could vary widely).
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Parameter Value
gm 28µA/V
ro 26.6MΩ
Rsw 3726Ω
Cpd 7.3182pF
Cfb 4.6688fF
CL 0.95353pF
T 300K
Idark 38fA

Table A.1: Parameters used to plot output-referred noise spectral density of Fig. A.4.
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Figure A.4: Output-referred noise spectra of the pixel.
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A.6 Integrating Noise Over the Bandwidth of Interest

Table A.2 shows the output RMS noise voltage of each pixel noise source, integrated from 0 to

∞, for each value of Cfb. The photocurrent shot noise is calculated assuming a photocurrent of

0.1pA, which is the minimum detectable signal with Cmin and 2.5kSps frame rate; this minimum

detectable current gives the worst case SNR. Summing all of the output noise PSDs and integrat-

ing from 0 to∞, the worst-case (Cfb,min) total RMS output noise due to all sources is 13.3mV.

The majority of this noise is due to the switch reset noise, which is 12.7mVrms.

However, the signal of interest in this work is the difference in output voltage in a given pixel

between adjacent samples. Because the sampling frequency is 2.5kHz, lower frequency noise

would not show up in these difference calculations. Therefore, the lower limit of integration can

be higher than 0Hz. If a value of 1kHz is used, the RMS output noise is 13.1mV. This value is

nearly the same as before, because the switch thermal noise is dominating, and eliminating 1kHz

of white noise from a wide-band noise spectrum is insignificant.

Noise Source Cfb,min Cfb,mid Cfb,max

VonswRST 12.7mV 3.7mV 0.7mV
VoampRST 2.7mV 1.6mV 0.8mV

VoutampREAD 2.1mV 1.6mV 0.9mV
VoutipdREAD 2.0mV 1.1mV 0.3mV

VoutidarkREAD 1.2mV 0.7mV 0.2mV
Voutntotal 13.3mV 4.5mV 1.4mV

Table A.2: Output-referred RMS noise voltage for each pixel noise source.

In order to reduce the switch reset noise, according to Eq. A.10, we can try increasing gm, or

ro, or reducing Rsw or CL (assuming we cannot change Cpd or Cfb). However, changing these

parameters affects the other noise contributors as well. According to the models, reducing CL
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is the most effective way to reduce the noise. However, CL is largely defined by the column

amplifier input capacitance. The column amplifier input devices are sized relatively large for

noise and offset performance, and can’t really be reduced. Reducing Rsw actually has minimal

impact on the switch reset noise, but a significant negative impact on the other noise sources.

Increasing ro and/or gm also does not help. Thus, there is not much that can be done to improve

the noise performance of the pixel simply by adjusting device sizes (and not significantly af-

fecting the fill factor). Other methods for reducing the effects of reset noise, such as correlated

double-sampling, could be used.
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Appendix B

SAR ADC Design

An 8-bit SAR ADC was designed to be used in the OR2 imager chip, as well as in future electrical

recording chips. The requirements for the imager chip were more stringent, so they were used

for the design specifications.

Given a 100 pixel imager sampled at 10kSps, the required ADC sampling rate is 1MSps.

The ADC uses 10 cycles per conversion/sample, so the required clock rate is 10MHz. The target

sampling rate is 2.5kSps, so this 10kSps specification should be more than sufficient.

The ADC uses a binary-weighted capacitive charge-sharing DAC, a basic sample and hold

circuit, and a clocked comparator. Fig. B.1 shows a block diagram of the ADC design. The

ADC is designed to operate with a rail-to-rail reference range; operating over 3.3V gives VLSB =

12.89mV.

At the start of the conversion cycle, DACRESET is high, and the DAC is reset. Vin is sampled

by the S/H in the sample phase, and the S<7:0> signal is set to 01111111. DACRESET then
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RST

S[7:0]
VOUT DAC

VP

VN
Q

QB
CLKB

IN OUT

SELN

S/H

RESET

CLK

EN

VCOMP

S[7:0]

DACRESET

COMPCLKB

DOUT[7:0]

DONE

DACRESET

Vin

Comparator

Logic

Figure B.1: SAR ADC block diagram.

goes low and Vin is held. For the 8 comparison cycles DACRESET stays low, and the value of

VCOMP determines the next S setting. When the conversion is complete, DONE goes high, the

result is written to DOUT<7:0>, and DACRESET goes high.

DACRESET (and DACRESETB, its complement, not shown here) is used as the sampling

signal for the S/H switch. DACRESETB is also used to gate the clock signal going into the

comparator (not shown here). VCOMPB, the complemented output from the comparator, is

actually the signal used by the SAR logic (VCOMP input).

An important consideration with the timing is that the comparator output is properly read by

the SAR logic before the comparator is reset. Therefore, the comparator clock signal is a slightly

delayed version of the main clock. Some delay cells were also added at the comparator outputs

to help with this.
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B.1 DAC

B.1.1 Operation

Fig. B.2 shows an example 3-bit binary-weighted capacitor DAC. Cp is any parasitic and load

capacitance (such as input capacitance of the comparator) on the DAC output. C is the unit

capacitance.

In the RESET phase, the RST switch is closed, grounding the output (to VrefL), and the other

switches are switched to VrefL as well. Both terminals of all capacitors are grounded, discharging

all capacitors and Vout.

In the OUTPUT phase, the RST switch is opened, allowing the output to float. The capacitor

switches are set according to the digital input values. If the input is a 1, the switch connects the

capacitor to VrefH .

4C 2C C C

S2 S1 S0
RST

Cp

VrefL

VrefH

Vout

Figure B.2: Example 3-bit binary-weighted capacitor DAC.

4C

2C

C

C Cp

Vout

VrefL

VrefH

Figure B.3: Example 3-bit DAC redrawn with switches set as in previous figure.
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As becomes clear in the the equivalent circuit of Fig. B.3, with the digital inputs set to 101,

a capacitive divider is formed between VrefH and VrefL, and the output voltage is given by:

Vout =
(4C + C)(VrefH − VrefL)

(4C + C) + (2C + C) + Cp
=

Ceq(VrefH − VrefL)

Ceq + (2NC − Ceq) + Cp
=
Ceq(VrefH − VrefL)

Ctotal + Cp

(B.1)

Vout =
5C

8C + Cp
(VrefH − VrefL) (B.2)

Note that the digital inputs can change and the output voltage will change without the need for

reset. i.e. in the SAR ADC the DAC is only reset at the start of a conversion, not in every cycle.

B.1.2 Design

Fig. B.4 shows the full 8-bit DAC schematic. The unit capacitance value is C = 15.14fF. In each

switch, a single NMOS is used to connect VrefL to the capacitor, and a single PMOS is used to

connect VrefH to the capacitor. Both transistor gates are controlled by the same switch signal.

Note that for S6 each transistor width is 2x unit size (2 fingers), and for S7 each transistor width

is 4x unit size (4 fingers). This was required to speed up the response for the most significant bits

with the largest changes in voltage.

B.1.3 Layout

In schematic simulation the DAC works beautifully, because the ratios of the capacitors are per-

fect (disregarding load capacitance, which introduces gain error). However, when simulating an
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S2 S1 S0
RST

Cp

VrefL

VrefH

Vout

8C

S3

16C

S4

32C

S5

64C

S6

128C

S7

Figure B.4: 8-bit charge-sharing DAC schematic.

extracted version of the DAC layout, it is clear that parasitics can cause significant non-linearities.

Therefore, an iterative process of adjusting the layout and simulating the DAC performance was

undertaken in order to reduce the non-linearities.

The unit capacitor placement for minimizing not only mismatch due to process variation, but

also parasitics, discussed in [49], was considered here. The paper includes a diagram showing

the placement of each unit capacitor, which by eye looks essentially random. This placement

was tried here, and was manually routed. The extracted simulation results were not good; there

was significant gain error and non-linearity. With this type of placement an automatic routing

algorithm that takes the parasitics into account is required.

Therefore, a more conventional common centroid placement, shown in Fig. B.5, which is

much easier to route, was used. Given the regular routing patterns it is much easier to see how

the routing affects the parasitics, and to come up with tweaks to optimize it. Therefore, the

extracted simulation results are much better.

The simulated INL (integral non-linearity) and DNL (differential non-linearity) graphs in

Figs. B.7 and B.8 show the improvement in INL and DNL due to layout tweaks between the

first, second last (v4) and last (v5) design iterations.

Fig. B.6 shows the final layout of the DAC capacitor array. The layout is an array of 19 x 19
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unit capacitors, including a ring of dummy capacitors around the outside and other dummy de-

vices in central locations, for matching. A SKILL script was used to read in a text file describing

the placement and to place the unit capacitors, as well as some wiring, in the layout.

Each unit capacitor is 4µm x 4µm . The array has a large N-well underneath it to shield

it from the substrate. The N-well is contacted around the perimeter by an N+ guard ring (to

VDD). A P+ guard ring (to GND) surrounds the N-well. The dimensions of the entire layout are

230.9µm x 230.9µm (not including the wires extending down from the bottom).
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Figure B.5: DAC capacitor array common centroid placement.
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Figure B.6: DAC capacitor array layout.
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Figure B.7: DAC INL plot.
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Figure B.8: DAC DNL plot.
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B.2 Comparator

B.2.1 Specifications

The 8-bit ADC operating over 3.3V has VLSB = 12.89mV. The comparator needs to meet that

resolution. The goal is to have the comparator input offset voltage VIOS , input-referred noise

VN,RMS , and kickback noise all less than 0.5 LSBs, or less than about 6mV. The other main

specification is the speed. The comparator has half a clock cycle to settle and produce the correct

output. Given the target 10MHz clock frequency, the comparator has 100/2 = 50ns to arrive at an

answer.

B.2.2 Design

Fig. B.9 shows the rail-to-rail clocked comparator schematic, based on the design from [15].

When CLK is high it is in the reset mode (VON and VOP are pulled low) and when CLK is

low it is in the regeneration mode (output is produced). Thus the output changes after the falling

clock edge. When VP > VN, Q = VDD. When VP < VN, Q = GND. This design has good

kickback noise performance due to the current mirror pre-amp approach.

VBIAS1 and VBIAS4 are generated by simple current mirrors (not shown). The currents of

first stage complementary differential pairs are summed and mirrored to the second stage. Nx

represents N extra inverters to implement necessary delay required for robust ADC operation. In

this case, there is one inverter on each of VON and VOP, followed by 8 extra inverters each.
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Figure B.9: Comparator schematic.

B.3 ADC Performance

Fig. B.10 shows a scope capture of the ADC output. This is sampling a 4kHz sine wave at

800kSps. Fig. B.11 shows the ADC performance from Cadence simulation of the schematic.

Fig. B.12 shows the measured performance at the default imager sampling rate of 250kSps. Fig.

B.13 shows the measured performance near the maximum sampling rate of 800kSps (maximum

is 830kSps).
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Figure B.10: ADC output scope capture. 4kHz sine wave sampled at 800kSps.
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Figure B.11: ADC performance simulated at 1.0 MSps (coherent sampling, 2048 point FFT).
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Figure B.12: ADC performance measured at 250kSps (coherent sampling, 2048 point FFT).

185



0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [Hz]

M
a
g
n
it
u
d
e
 (

P
o

w
e
r)

 [
d
B

]

Top Spur = −58.6dB

Fundamental = −6.9dB

Noise Floor = −84.4dB

SINAD = 43.72dB

 ENOB = 7.11

 SFDR = 51.75dBc

  THD = −47.87dBc

  SNR = 45.83dB

 NFLR = −84.37dB

   PG = 30.10dB

    M = 2048

Figure B.13: ADC performance measured at 800kSps (coherent sampling, 2048 point FFT).

B.4 Potential Improvements

With an N-bit ADC it is impossible to achieve an ENOB of N in the real world. The measured

ADC ENOB is over 7 bits, however. Thus there may not be a need to improve the design for

our application. However, I see two main ways to improve the design. One is to improve the

comparator, whose offset is limiting the performance. The layout could have better matching.

The other is to relax the design requirement of rail-to-rail operation, which isn’t really necessary,

as the main signals that will be sampled are not rail-to-rail signals. Relaxing this requirement

would make the circuit design simpler (especially the comparator).
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Appendix C

Radiometer Measurement Procedure

The purpose of the irradiance measurements is twofold: 1) to find the true optical power of the

LED, and its relation to current draw, and 2) to find the true optical power hitting the pixels so

that the LOD of the imager can be found.

Fig. C.1 shows the parameters used in the calculations. The left side of the figure shows the

LED (on LEDPCB) to imager distance, rp, which is fixed. The right side of the figure shows

the LED (on LEDPCB) to radiometer detector distance, rd, which is variable. Note that in these

measurements the geometry must be such that the LED can be treated as a point source, so the

inverse-square law can be used in calculations (i.e. the diameter of the LED is < 1/10th the

distance between LED and detector).

The basic idea is to measure the on-axis power emitted by the LED by placing a photode-

tector with a given active area at some distance away from the LED, and recording the average

power hitting the photodetector. Note that the light distribution across the detector may vary if
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Figure C.1: Diagram of irradiance measurement geometry.

the illumination is not uniform, and we are measuring the average power. However, when the

diameter of the photodetector is significantly smaller than the distance between the LED and

photodetector (about 5x), then the irradiance will be independent of the photodetector size, and

the reading can be considered accurate [28]. Then the inverse-square law can be used to find the

irradiance at a different distance from the LED, as follows:

Ep =
Edr

2
d

r2p
(C.1)

The geometrical parameters for this work are shown in Table C.1 (distances in mm). All

parameters are such that the inverse-square law is satisfied.

To perform the LED irradiance measurements, the ILT1700 Research Radiometer from In-
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Parameter LEDPCB
rp 24.6
rd 63.5
dp 0.1
dd 10.0

Table C.1: Irradiance measurement system parameters (all values in mm).

ternational Light Technologies is used, along with their SED033 detector coupled with the F flat

band filter [92]. The ILT1700 can provide measurement readings in irradiance units of W/m2.
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