
A Comprehensive Analysis of
Lift-and-Project Methods for
Combinatorial Optimization

by

Yu Hin Au

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Yu Hin Au 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In both mathematical research and real-life, we often encounter problems that can be
framed as finding the best solution among a collection of discrete choices. Many of these
problems, on which an exhaustive search in the solution space is impractical or even
infeasible, belong to the area of combinatorial optimization, a lively branch of discrete
mathematics that has seen tremendous development over the last half century. It uses
tools in areas such as combinatorics, mathematical modelling and graph theory to tackle
these problems, and has deep connections with related subjects such as theoretical com-
puter science, operations research, and industrial engineering.

While elegant and efficient algorithms have been found for many problems in combi-
natorial optimization, the area is also filled with difficult problems that are unlikely to be
solvable in polynomial time (assuming the widely believed conjecture P 6= NP). A com-
mon approach of tackling these hard problems is to formulate them as integer programs
(which themselves are hard to solve), and then approximate their feasible regions using
sets that are easier to describe and optimize over.

Two of the most prominent mathematical models that are used to obtain these ap-
proximations are linear programs (LPs) and semidefinite programs (SDPs). The study of
these relaxations started to gain popularity during the 1960’s for LPs and mid-1990’s for
SDPs, and in many cases have led to the invention of strong approximation algorithms
for the underlying hard problems. On the other hand, sometimes the analysis of these re-
laxations can lead to the conclusion that a certain problem cannot be well approximated
by a wide class of LPs or SDPs. These negative results can also be valuable, as they
might provide insights into what makes the problem difficult, which can guide our future
attempts of attacking the problem.

One mathematical framework that generates strong LP and SDP relaxations for inte-
ger programs is lift-and-project methods. Among many attractive features, an important
advantage of this approach is that tighter relaxations can often be obtained without sacri-
ficing polynomial-time solvability. Also, these procedures are able to generate relaxations
systematically, without relying on problem-specific observations. Thus, they can be ap-
plied to improve any given relaxation.

In the past two decades, lift-and-project methods have garnered a lot of research at-
tention. Many operators under this approach have been proposed, most notably those
by Sherali and Adams; Lovász and Schrijver; Balas, Ceria and Cornuéjols; Lasserre; and
Bienstock and Zuckerberg. These operators vary greatly both in strength and complexity,
and their performances and limitations on many optimization problems have been exten-
sively studied, with the exception of the Bienstock–Zuckerberg operator (and to a lesser
degree, the Lasserre operator) in terms of limitations.

In this thesis, we aim to provide a comprehensive analysis of the existing lift and
project operators, as well as many new variants of these operators that we propose in our
work. Our new operators fill the spectrum of lift-and-project operators in a way which

iii

makes all of them more transparent, easier to relate to each other, and easier to analyze.
We provide new techniques to analyze the worst-case performances as well as relative
strengths of these operators in a unified way. In particular, using the new techniques and a
recent result of Mathieu and Sinclair, we prove that the polyhedral Bienstock–Zuckerberg
operator requires at least

√
2n − 3

2
iterations to compute the matching polytope of the

(2n + 1)-clique. We further prove that the operator requires approximately n
2

iterations
to reach the stable set polytope of the n-clique, if we start with the fractional stable set
polytope. Moreover, we obtained an example in which the Bienstock–Zuckerberg operator
with positive semidefiniteness requires Ω(n1/4) iterations to compute the integer hull of
a set contained in [0, 1]n. These examples provide the first known instances where the
Bienstock–Zuckerberg operators require more than a constant number of iterations to
return the integer hull of a given relaxation.

In addition to relating the performances of various lift-and-project methods and pro-
viding results for specific operators and problems, we provide some general techniques
that can be useful in producing and verifying certificates for lift-and-project relaxations.
These tools can significantly simply the task of obtaining hardness results for relaxations
that have certain desirable properties.

Finally, we characterize some sets on which one of the strongest variants of the Sherali–
Adams operator with positive semidefinite strengthenings does not perform better than
Lovász and Schrijver’s weakest polyhedral operator, providing examples where even im-
posing a very strong positive semidefiniteness constraint does not generate any additional
cuts. We then prove that some of the worst-case instances for many known lift-and-
project operators are also bad instances for this significantly strengthened version of the
Sherali–Adams operator, as well as the Lasserre operator. We also discuss how the tech-
niques we presented in our analysis can be applied to obtain the integrality gaps of convex
relaxations.

iv

Acknowledgements

First, I would like to express my sincere gratitude towards my supervisor Levent Tunçel.
He has always led by example, and most of what I know about being a researcher, teacher,
and person are due to him. This project was possible primarily because of his invaluable
guidance and unwavering support.

I would also like to deeply thank Daniel Bienstock, Daniel Brown, Joseph Cheriyan
and Jochen Könemann for offering their time and expertise to serve on my examination
committee, and for reading and providing very helpful comments on this thesis.

Also, I want to thank everyone I have crossed paths with during my very pleasant and
fruitful stay at the University of Waterloo. In particular, I really appreciate the C&O
department for providing a very professional yet friendly environment under which to
work and study.

Last, and most of all, I would like to express my deepest appreciation to my wife
Joann for her love, understanding, support and patience. She makes being who I am easy,
enjoyable and meaningful, and I am truly spoiled to have her presence in my life.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Linear programming . 1

1.2 Integer programming . 2

1.3 Lift-and-project methods . 4

1.4 Results and organization of this thesis . 8

2 Preliminaries 12

2.1 The BCC operator and the Lovász–Schrijver operators 12

2.2 The face lattice interpretation and the Sherali–Adams operator 14

2.2.1 Lifting to the face lattice of [0, 1]n 15

2.2.2 The SA operator . 17

2.2.3 The SA′ operator . 18

2.3 Utilizing positive semidefiniteness in lift-and-project operators 19

2.3.1 An extremely brief introduction to semidefinite programming 19

2.3.2 The operators LS+, SA+ and SA′+ 22

2.4 The Lasserre operator . 24

2.5 The Bienstock–Zuckerberg operator and their variants 27

2.5.1 The subset algebra of F . 28

2.5.2 Obstructions, walls and tiers . 29

2.5.3 The BZ′ and BZ′+ operators . 30

v

3 Lower-Bound Analysis 33

3.1 Identifying unhelpful variables in the lifted space 33

3.1.1 A general template . 33

3.1.2 Relating BZ′,BZ′+ with SA′, SA′+ 39

3.2 Applications to matching and stable set relaxations 41

4 Upper-Bound Analysis 45

4.1 Utilizing `-establishing variables . 45

4.2 Applications to matching relaxations . 48

5 Tools for Constructing and Verifying Certificate Matrices 50

5.1 Reducing certificate matrices using linear dependencies 52

5.2 Verifying positive semidefiniteness when weights align 54

5.2.1 The “last block” approach . 55

5.2.2 The inductive approach . 62

5.3 Connecting eigenspaces of certificate matrices with combinatorial objects . 64

5.4 Commutative maps and reductions using symmetries 72

5.4.1 Maps that commute with operators based on SA 73

5.4.2 Reducing matrices using permutation-commutative maps 77

6 When Positive Semidefiniteness Does Not Help 87

6.1 When SAk
+ does not outperform LSk0 . 87

6.2 Some bad instances for SA+,Las and BZ′+ 90

7 On the Integrality Gaps of Lift-and-Project Relaxations 101

7.1 Simplifying integrality gap computations by utilizing symmetries 102

7.2 Obtaining integrality gap results from lower-bound results 103

7.3 Integrality gaps of SA′+-relaxations for matching 106

7.4 Integrality gaps of polyhedral versus semidefinite lift-and-project
relaxations . 109

8 Conclusions and Future Research Directions 112

8.1 Relating the SA′+-, BZ′+-and Las′-relaxations for matching 113

8.2 More connections between matchings and integer partitions 115

8.3 Final remarks . 118

vi

APPENDICES 120

A The Original BZ,BZ+ Operators 121

A.1 Details of the original BZ,BZ+ operators 121

A.2 Strong and tractable — the BZ′′,BZ′′+ operators 124

References 128

vii

List of Tables

5.1 Eigenvalue breakdown of the reduced Y9,2,2(m). 85

5.2 Eigenvalue breakdown of the reduced Y13,3,3. 86

5.3 Eigenvalue breakdown of the reduced Y17,4,4. 86

8.1 Eigenvalues and multiplicities of Y13,3,3. 118

viii

List of Figures

1.1 A strength chart of some previously known lift-and-project operators. . . . 6

1.2 An updated strength chart with our new operators. 7

1.3 An illustration of several restricted reverse dominance results in this thesis. 11

2.1 An illustration of BCC and LS0 in two dimensions. 13

5.1 Young diagrams for all partitions of size 4. 67

5.2 Laying out vertices of S in a grid for λ = (3, 3, 2). 67

5.3 Example of a (3, 3, 2)-permutation. 67

5.4 A rearrangement of S under a λ-permutation. 68

5.5 Visualizing aligning matchings. 68

5.6 A set of vertices corresponding to λ = (3, 1) and two relevant matchings. . 69

5.7 λ-permutations related to matchings in Figure 5.6. 69

5.8 Illustrating the partition of S into S1, S2. 70

5.9 Examples of type 0 matchings (M1,M2) and type 1 matchings (M3,M4). . 71

5.10 The bijection between integer partitions and nonisomorphic unions of two
matchings. 84

6.1 An illustration of Theorem 51. 88

6.2 An illustration of Corollary 52. 88

6.3 The Las-rank of Q(α) for varying values of α, for n ∈ {3, 6, 9, 12}. 98

6.4 Computational results for f(n) := min
{
α : Lasn−1(Q(α)) 6= ∅

}
. 99

8.1 Relating the rank of MT (K2n+1) for various operators. 115

8.2 The nine standard Young tableaux of shape (4, 2). 116

8.3 A Young diagram where each box is labelled by its hook length. 116

A.1 A graph for which BZ performs better on FRAC (G) with a redundant
inequality. 127

ix

Chapter 1

Introduction

Optimization problems are abundant in everyday life, and we are often in situations where
we are trying to make the best decision among a given set of feasible choices (e.g. finding
the best route to travel from one city to another, given the schedule and prices of available
flights; deciding on a location to build a certain facility to maximize its benefits). Thus,
given a decision problem, it is natural to ask if it can be modelled as a mathematical
problem, and whether this mathematical problem can be solved easily.

1.1 Linear programming

One of the most well-studied ways to model decision problems mathematically is via linear
programming. A linear program (LP) is a problem of optimizing (i.e., either maximizing
or minimizing) a linear function subject to linear equalities and/or inequalities. Thus, an
LP can take the form:

max c>x
subject to Ax ≤ b,

(1.1)

where A is anm×n real matrix, b ∈ Rm, and c ∈ Rn. Note that each LP has many different
formulations that are equivalent to each other. For instance, the condition Ax ≤ b holds
if and only if there exists a nonnegative vector s ∈ Rm such that b = Ax + s. Thus, the
LP

max c>x
subject to Ax+ s = b

s ≥ 0,
(1.2)

is equivalent to (1.1). In fact, it is not hard to show that every LP can be described in
the form (1.1) for a suitable choice of the data A, b and c.

One of the most fascinating aspects of linear programming is its rich and robust duality

1

theory. Given an LP in the form of (1.1), its dual problem is defined to be:

min b>y
subject to A>y = c,

y ≥ 0.
(1.3)

Note that the dual problem is also an LP. A LP is very closely related with its dual.
For example, notice that, if x is feasible in (1.1) and y is feasible in (1.3), then

b>y ≥ (Ax)>y = x>(Ay) = x>c = c>x,

and so the objective value of y in (1.3) is no less than that of x in (1.1). This is the weak
duality relation between a primal-dual pair of LPs, which has many implications. First, if
(P) is a maximization problem and (D) is its dual, then the objective value of any feasible
solution in (D) is an upper bound of the optimal value of (P) (if it exists). On the other
hand, if there are feasible solutions in (P) with arbitrarily high objective values, then the
weak duality relation implies that (D) does not have any feasible solutions.

Furthermore, the following holds for every primal-dual pair of LPs, and is known as
the strong duality relation.

Theorem 1. If either an LP or its dual problem has an optimal solution, then both
problems have optimal solutions. Moreover, the optimal values of the two problems must
coincide.

Another attractive property of LPs is that they can be solved efficiently, both theoret-
ically and in practice. The first polynomial-time algorithm for solving LPs is the ellipsoid
method, due to Khachiyan [Kha80]. While it has a significantly better worst-case run-
time than previously known algorithms for LPs, the ellipsoid method does not work very
well in practice. A few years later, Karmarkar [Kar84] invented an interior-point method,
which can solve many large-scale LPs efficiently, and has been generalized to apply to
other problems in convex optimization. The simplex algorithm due to Dantzig in 1947, is
also proficient in solving LPs, as well as pure and mixed integer programs. Even though
many variants of the simplex algorithm have been shown to have exponential run-time
in the worst case (see, for instance, [KM72], for a well-known example), it is widely used
and works remarkably well in practice.

Thus, while being able to model a wide variety of problems on their own, the simplic-
ity and solvability of LPs also make them good candidates for providing “approximate
models” to problems that are harder to solve directly, such as integer programs.

1.2 Integer programming

An integer program (IP) is an LP with the additional requirement that some or all of
its variables can only take on integer values. Integer programming is a very powerful

2

mathematical model both in theory and in practice, as it captures the discreteness that
arises in many decision making processes, as well as in the study of mathematical objects
such as sets and graphs. In particular, many problems that have a binary, yes/no nature
in their decision variables can be naturally modelled by IPs in which every variable has
to take on value 0 or 1. Thus, 0-1 integer programs make up an important subclass of
IPs.

For example, consider the stable set problem of graphs. Given a graph G = (V,E), we
say that S ⊆ V is a stable set if, for every edge {u, v} ∈ E, | {u, v} ∩ S| ≤ 1. That is,
no two vertices in S are joined by an edge. Then the stable set problem is the problem
of finding a stable set of maximum size in a given graph G. There are many real-life
interpretations of this problem — for instance, we can take V to be a set of codewords we
can transmit through a noisy channel, and we join two codewords by an edge if they could
become indistinguishable after transmission. Then a solution to the stable set problem
on this graph corresponds to a largest possible set of codewords in which no two will be
mixed up after passing through the channel. Alternatively, one can take V as the set of
possible locations in a city where a chain coffee shop can open up a new store, with two
locations joined by an edge if they are deemed too close to each other, and that setting up
shops at both locations can cause diminishing returns. Then the size of a largest stable
set in this graph would be the maximum number of locations the chain can open without
having the stores competing with each other.

We can easily formulate the stable set problem as an IP as follows. Define a 0-1
variable xi for every vertex i ∈ V , and set xi = 1 if and only if vertex i is included in our
stable set, the solution to the stable set problem can be obtained by solving the IP:

max
∑

i∈V xi
subject to xi + xj ≤ 1 ∀ {i, j} ∈ E

xi ∈ {0, 1} ∀i ∈ V.
(1.4)

Despite its simple statement, the stable set problem is NP-hard [Kar72]. In fact, it has
been proven that the optimal value of the stable set problem on a general n-vertex graph
cannot even be approximated to within a factor of n1−ε for any ε > 0 in polynomial time,
assuming the widely believed conjecture P 6= NP [H̊as96]. Since any instance of the
stable set problem can bereduced to an IP, we see that IPs in general are at least as hard
to solve.

However, if we relax the integrality constraint of an IP, we obtain an LP, which can
be solved efficiently. For some problems (such as bipartite matching and maximum flow),
it turns out that the feasible regions of their LP relaxations always have integral extreme
points, which can lead to polynomial-time algorithms for the underlying optimization
problems. However, for hard problems such as the stable set problem, it usually does
not work out that nicely. For example, if we relax the integrality constraint in (1.4), we
obtain the LP:

max
∑

i∈V xi
subject to xi + xj ≤ 1 ∀ {i, j} ∈ E

0 ≤ xi ≤ 1 ∀i ∈ V.
(1.5)

3

While the optimal value of (1.5) does provide an upper bound on the optimal value
of (1.4), this bound can be extremely weak. For example, note that the solution obtained
by setting xi = 1

2
for all i ∈ V is feasible in (1.5), and thus the optimal value of (1.5) is

at least n
2

for every graph G. However, the true optimal value can be much smaller — in
the extreme case when G = Kn (the complete graph on n vertices), the largest stable set
in G only has size 1.

We can try to improve our LP relaxation by making observations about our problem
at hand. For example, it is not hard to see that if C ⊆ V is the vertex set of an odd cycle
in G, then the inequality ∑

i∈C

xi ≤
|C| − 1

2

holds for all feasible solutions in (1.4), but is violated by the vector of all-halves. Thus,
the following LP should be a tighter relaxation of (1.4) than (1.5):

max
∑

i∈V xi
subject to xi + xj ≤ 1 ∀ {i, j} ∈ E∑

i∈C xi ≤
|C|−1

2
∀ odd cycles C

0 ≤ xi ≤ 1 ∀i ∈ V.

(1.6)

However, a couple issues arise: First, it is not clear that we could enumerate all odd cycles
in a general graph G efficiently, and thus the “improvement” we obtain might be rendered
meaningless if we have to sacrifice the polynomial-time solvability of the relaxation to get
it. Secondly, this observation only applies to the stable set problem, and may not lend a
clue to improving a relaxation of another optimization problem.

Therefore, it would be nice if, given an LP relaxation of an optimization problem,
we can find means to “automatically” improve the relaxation without relying on specific
observations on the problem. Moreover, we would hope that the improvement comes with
only a minimal trade-off in the solvability of the relaxation. As we shall see, these goals
(and more) can be achieved by lift-and-project methods.

1.3 Lift-and-project methods

Note that the feasible region of an LP relaxation of a 0-1 integer program is a polytope
P contained in [0, 1]n, the unit hypercube. Then we are interested in

PI := conv(P ∩ {0, 1}n),

the integer hull of P . Then the desired optimal integer solutions of the underlying integer
program must be one of the extreme points of PI . While the set PI itself is usually hard
to describe, we want to strive for “tight” relaxations. For instance, if we can describe a
set P ′ where PI ⊆ P ′ ⊂ P , then optimizing over P ′ would yield a better approximation
of our integer program than optimizing over P .

4

One way to obtain tight relaxations for 0-1 integer programs is via lift-and-project
methods. Given a polytope P ⊆ [0, 1]n, a lift-and-project operator systematically gener-
ates a sequence of polyhedral or nonpolyhedral convex sets that converge to PI . These
operators all take the following approach: They lift P to a set in higher dimensions (usu-
ally a set of matrices), and use properties that we know are satisfied by points in PI to
derive inequalities that are valid for PI but not P . Then the projection of this higher
dimensional set to Rn provides a relaxation that is potentially tighter than P .

Lift-and-project methods have a special place in optimization as they lie at the in-
tersection of combinatorial optimization and convex analysis (this goes back to work by
Balas and others in the late 1960s and the early 1970s — see, for instance, [Bal98] and
the references therein). Some of the most attractive features of these methods are:

• Convex relaxations of PI obtained after O(1) iterations of the procedure are tractable
provided P is tractable. Here, tractable may mean either that the underlying linear
optimization problem is polynomial-time solvable, say due to the existence of a
polynomial-time weak separation oracle for P (the reader may refer to [MGS88]
for a background on seperability and optimization); or, more strongly, that P has
an explicitly given, polynomial size representation by linear inequalities (we will
distinguish between these two versions of tractability, starting with the strength
chart given in Figure 1.1). Moreover, all known lift-and-project operators converge
to PI in at most n iterations, for every input relaxation P ⊆ [0, 1]n.

• Notice that a projection of a set may have more facets than itself. Thus, the lifted
(higher dimensional) representations for the relaxations used by these operators
sometimes allow compact (polynomial size in the input) convex representations of
exponentially many facets. We will see such an example in Section 2.1.

• Most of these methods allow easy addition of positive semidefiniteness constraints
in the lifted space. This feature can make the relaxations much stronger in some
cases, without sacrificing polynomial-time solvability (perhaps only approximately).
Moreover, these semidefiniteness constraints can represent an uncountable family of
defining linear inequalities, such as those of the theta body of a graph [Lov79]. We
will formally introduce semidefinite programs in Chapter 2.

• Systematic generation of tighter and tighter relaxations converging to PI makes the
strongest of these methods good candidates for utilization in generating polynomial-
time approximation algorithms for hard problems, or for proving large integrality
gaps (hence providing a negative result about approximability in the underlying
hierarchy of relaxations). Moreover, since these lift-and-project operators generate
relaxations automatically and do not rely on specific observations on the underlying
optimization problem, they can be applied to improve any relaxation.

In the last two decades, many lift-and-project operators have been proposed (see, for
example, most notably those by Sherali and Adams [SA90]; Lovász and Schrijver [LS91];

5

Balas, Ceria and Cornuéjols [BCC93]; Lasserre [Las01]; and Bienstock and Zuckerberg [BZ04].
These operators vary greatly both in strength and complexity, and have been applied
to various discrete optimization problems (see, for example, [SL96], [dKP02], [PVZ07]
and [GL07]). Many families of facets of the stable set polytope of graphs are shown to be
easily generated by these procedures [LS91, LT03]. Also studied are their performances
on max-cut [Lau02], set covering [BZ04], k-constraint satisfiability problems [Sch08],
knapsack [KMN11], sparsest cut [GTW13], directed Steiner tree [FKKK+14], set par-
titioning [SL96], TSP relaxations [CD01, Che05, CGGS13], and matching [ST99, ABN04,
MS09]. For general properties of these operators and some comparisons among them,
see [GT01], [Lau03a] and [HT08].

Figure 1.1 provides a glimpse of the spectrum of these lift-and-project operators, as
well as their strengths relative to each other. Note that some of them produce polyhe-
dral relaxations, while a few others generate semidefinite relaxations. The complexity
assumptions on their input relaxations are also distinguished. Also, each solid arrow in
the chart denotes “is dominated by” (i.e., the operator that is at the head of an arrow is
at least as strong as that at the tail). For instance, when applied to the same set P , the
LS0 operator yields a relaxation that is at least as tight as that obtained by applying the
BCC operator.

BCC LS0 LS SA BZ

LS+ BZ+

Las

Semidefinite
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 1.1: A strength chart of some previously known lift-and-project operators.

In our analysis, we have also defined many new operators. Two of them are strong,
semidefinite versions of the Sherali–Adams operator that we call SA+ and SA′+. There
are other weaker versions of these operators in the recent literature called Sherali–Adams
SDP which have been previously studied, among others, by Chlamtac and Singh [CS08]
and Benabbas et al. [BGM10, BM10, BCGM11, BGMT12], even though our versions
are the strongest yet. We also propose operators that refine the Bienstock–Zuckerberg
operators (BZ and BZ+) and the Lasserre operator (Las). Note that BZ′ and BZ′+ are

6

very strong operators that are not tractable, and we will mostly use them to establish
inapproximability results. Also, while the Bienstock–Zuckerberg operators were defined to
apply on any polyhedral relaxations contained in [0, 1]n, in this thesis we state and analyze
restricted versions of these operators that only apply to lower-comprehensive polytopes,
as we are mostly interested in applying these operators to polytopes that arise from set
packing problems. Here, a set P ⊆ [0, 1]n is lower-comprehensive if for every x ∈ P , every
nonnegative y where y ≤ x belongs to P .

Figure 1.2 shows the dominance relationships between our new operators (boldfaced in
the diagram) and the existing ones. These new operators fill the spectrum of polyhedral
lift-and-project operators in a way which makes all of them more transparent, easier to
relate to each other, and easier to analyze in a comprehensive way. These operators will
be formally defined in Chapter 2 (with exception to BZ,BZ+, BZ′′ and BZ′′+, which are
defined in the Appendix).

BCC LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las Las′

Semidefinite
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 1.2: An updated strength chart with our new operators.

Observe that BCC is dominated by every other operator in Figure 1.2. Since BCC
admits a very short and elegant proof that it returns PI after n iterations for every
P ⊆ [0, 1]n, it follows immediately that every operator in Figure 1.2 converges to PI in at
most n iterations. Moreover, if one can prove an upper-bound result for any operator Γ in
Figure 1.2, then the same result applies to all operators in the diagram that can be reached
from Γ by a directed path. Moreover, any lower-bound result on the BZ′ operator implies
the same result for all polyhedral lift-and-project operators in Figure 1.2. Likewise, to
obtain a lower-bound result for all lift-and-project operators shown in the diagram, it
suffices to show that the result holds for BZ′+ and Las′. (For some bad instances for Las,
see [Lau02] and [Che07], as well as Chapter 6 in this thesis.)

As seen in Figure 1.2, the strongest lift-and-project operators known to date are based
on the operators SA,BZ and Las. We are interested in these strongest operators because

7

they provide the strongest tractable relaxations obtained this way. On the other hand, if
we want to prove that some combinatorial optimization problem is difficult to attack by
lift-and-project methods, then we would hope to establish them on the strongest existing
hierarchy for the strongest negative results. For example, some of the inapproximability
results on vertex cover are based on the LS+ operator [GMPT06, STT06], and some other
integrality gap results are based on SA [CMM09].

Furthermore, it was shown in [CLRS13] that inapproximability results for the SA re-
laxations of approximate constraint satisfaction problems can be extended to lower-bound
results on the extension complexity (i.e., the smallest number of variables needed to rep-
resent a given set as the projection of a tractable set in higher dimension) of the max-cut
and max 3-sat polytopes. (The reader may refer to [Yan91] for the first major progress on
the extension complexity of polytopes that arise from combinatorial optimization prob-
lems, and [Goe09, FMP+12, Rot14] for some of the recent breakthroughs in this line of
work.)

Therefore, by understanding the more powerful lift-and-project operators, we could
either obtain better approximations for hard combinatorial optimization problems, or lay
some of the groundwork for yet stronger inapproximability results. Moreover, we shall see
that these analyses typically also lead to other crucial information about the underlying
hierarchy of convex relaxations, such as their integrality gaps.

1.4 Results and organization of this thesis

With this thesis, we strive to provide a comprehensive analysis of the existing lift-and-
project methods, with more focus on the strongest operators that give us the tightest
relaxations, and their applications to relaxations that arise from combinatorial optimiza-
tion problems. We study the most powerful cut-generating mechanisms of these operators,
such as utilizing positive semidefiniteness constraints and lifting to higher dimensions to
allow more variables in their formulations, and characterize situations where these condi-
tions are helpful in delivering tight relaxations, or do not add extra strength over another
operator that is less computationally costly. We prove numerous results that relate the
performances of different lift-and-project operators, both in general and on relaxations
with specific properties. Through the tools and techniques we provide, we aim to lay the
groundwork for subsequent research of the lift-and-project approach, and help streamline
and simplify the future analyses of these methods. Some of the results in this thesis were
reported in an extended abstract and presented at IPCO 2011 [AT11].

Some of the highlights of the contributions of this thesis are:

• We define the notion of “admissible” lift-and-project operators, and identify vari-
ables used by an operator that are unhelpful in generating cuts. Under this frame-
work, we prove that the BZ operator requires at least

√
2n− 3

2
iterations to compute

8

the matching polytope of the (2n+1)-clique, and approximately n
2

iterations to com-
pute the stable set polytope of the n-clique. To the best of our knowledge, these
results are the first results, since the invention of the BZ operator in 2004, which
identify a class of combinatorial optimization problems on which BZ requires more
than O(1) iterations to reach the integer hull.

• We prove several results that can be seen as “approximate converses” of the dom-
inance relationship among existing and new lift-and-project operators, each repre-
sented by dashed arrows in Figure 1.3. This shows that sometimes a weaker operator
can be guaranteed to perform at least as well as a stronger one, by an appropriate
increase of iterate number and/or certain assumptions on the given relaxation.

• We introduce the notion of “establishing” variables, and show that the presence of
these variables in the formulation, together with a positive semidefiniteness con-
straint, can provide a guarantee on the overall performance of a lift-and-project

operator. We then use these tools to show that SA′+ requires at most n−
⌊√

2n+1−1
2

⌋
iterations to compute the matching polytope of the (2n + 1)-clique, while the BZ+

operator requires no more than
⌈√

2n+ 1
4
− 1

2

⌉
iterations.

• We characterize instances when SA+ does not outperform polyhedral operators as
weak as LS0, generalizing on some of the results by Goemans and Tunçel in [GT01].
We also show that the notion of commutative maps for lift-and-project methods,
which was proposed by Hong and Tunçel in [HT08] and proven to be useful in
analyzing the Lovász–Schrijver operators, can be extended to handle stronger lift-
and-project operators such as SA and SA+.

• We provide a template for obtaining integrality gap results from lower-bound re-
sults for lift-and-project relaxations, and prove several integrality gap results on
relaxations for the matching and stable set problem.

In Chapter 2, we introduce the existing lift-and-project methods, as well as many new
operators. We will present multiple interpretations of these operators, such as viewing
them as lifting to the face lattice of [0, 1]n and the subset algebra of {0, 1}n. Some general
properties of these operators will be discussed.

Next, we provide in Chapter 3 and 4 new techniques to analyze the worst-case perfor-
mances, as well as relative strengths of these operators in a unified way. We show that,
under certain conditions, the performances of SA′ and BZ′ are closely related to each
other, and prove an analogous result relating the semidefinite operators SA′+ and BZ′+.
Since SA′ and SA′+ inherit many properties from the well-studied SA operator, our find-
ings provide another venue to understanding and analyzing BZ and BZ+. We then utilize
these tools we have established to prove the aforementioned inapproximability results on
stable set and matching relaxations.

9

In Chapter 5, we turn to look at a few general tools that can help establish the
membership of points in lift-and-project relaxations. Showing that a certain point lies in
a lift-and-project relaxation usually requires constructing a matrix whose projection yields
the desired point, and verifying that the matrix satisfies all conditions of the operator and
indeed belongs to the lifted space. We shall see that the rows and columns of matrices we
work with often have a lot of linear dependencies that are either enforced by a lift-and-
project operator, or are present because the entries of our candidate matrix satisfy some
nice set theoretical properties. These dependencies can simplify the task of verifying the
membership conditions of these matrices. Next, since many semidefinite lift-and-project
operators require the matrices in its lifted space to be positive semidefinite, we look into
cases where there are natural connections between the eigenspaces of a candidate matrix
and families of combinatorial objects, and present examples where these connections can
give us valuable information about the eigenvectors and eigenvalues of our candidate
matrix. We will also look at Hong and Tunçel’s framework of proving lower-bound results
using commutative maps for lift-and-project operators [HT08], and extend some of their
results on the Lovász–Schrijver operators to stronger operators such as SA and SA+. In
particular, we will see that in the case when our given relaxation has a lot of symmetries,
these maps can help reduce the task of checking the positive semidefiniteness of certificate
matrices to verifying that on much smaller matrices. Examples where these tools applies
(such as the relaxations for max-cut and matching) will be presented.

Then, in Chapter 6, we build on the work of Goemans and Tunçel in [GT01] and char-
acterize some sets where applying SA+ does not yield a tighter relaxation than applying
LS0, showing that sometimes even a very strong positive semidefiniteness constraint does
not help generate any additional inequalities. We show that some well-known worst-case
instances for LS+ and SA are also worst-case instances for SA+ and Las. In the process,
we obtain a new example where the Las operator requires as many iterations as the di-
mension of the initial relaxation to return its integer hull. (The first of such results was
obtained by Cheung in [Che07].) We also obtain what we believe to be the first example
in which BZ+ requires more than a constant number of iterations to return the integer
hull of a set.

Finally, we illustrate in Chapter 7 how the analyses and the tools we provided may
be used to prove integrality gaps for various classes of relaxations obtained from lift-
and-project operators with some desirable invariance properties, and conclude with some
possible future research directions in Chapter 8.

10

BCC LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las Las′

Thm. 14

Thm. 13

Prop. 6

Prop. 3

Cor. 54

Semidefinite
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 1.3: An illustration of several restricted reverse dominance results in this thesis.

11

Chapter 2

Preliminaries

In this section, we establish some notation and describe many lift-and-project operators
that are known in the literature, as well as a few new ones that we devised. We start with
the simpler (but weaker) procedures that produce polyhedral relaxations. Next, we give a
brief introduction to semidefinite programming, and move on to discussing operators that
utilize positive semidefiniteness constraints in their lifted spaces. We round up the chapter
by defining slightly strengthened versions of operators by Bienstock and Zuckerberg.

2.1 The BCC operator and the Lovász–Schrijver op-

erators

One of the most fundamental ideas behind the lift-and-project approach is convexification,
which can be traced back to Balas’ work on disjunctive cuts in the 1970s. For convenience,
we denote the set {1, 2, . . . , n} by [n] herein. Observe that, given P ⊆ [0, 1]n, if we have
mutually disjoint sets Q1, . . . , Q` ⊆ P such that their union,

⋃`
i=1 Qi, contains all integral

points in P , then we can deduce that PI is contained in conv
(⋃`

i=1Qi

)
, which therefore

is a potentially tighter relaxation of PI than P . Perhaps the simplest way to illustrate
this idea is via the operator devised by Balas, Ceria and Cornuéjols [BCC93] which we
call the BCC operator. Given P ⊆ [0, 1]n and an index i ∈ [n], define

BCCi(P) := conv ({x ∈ P : xi ∈ {0, 1}}) .

Moreover, we can apply BCCi followed by BCCj to a polytope P to make progress. In
fact, it is well known that for every P ⊆ [0, 1]n,

BCC1(BCC2(· · · (BCCn(P)) · · ·)) = PI .

This establishes that for every polytope P , one can obtain its integer hull with at most n
applications of the BCC operator.

12

While iteratively applying BCC in all n indices is intractable (unless P = NP),
applying them simultaneously to P and intersecting them is not. Furthermore, it is easy
to see that PI is contained in the intersection of these n sets. Thus,

LS0(P) :=
⋂
i∈[n]

BCCi(P),

devised by Lovász and Schrijver [LS91], is a relaxation of PI that is at least as tight
as BCCi(P) for all i ∈ [n]. Figure 2.1 illustrates how BCC and LS0 operate in two
dimensions.

1

1

0

P

1

1

0

BCC1(P)

1

1

0

BCC2(P)

1

1

0

LS0(P)

Figure 2.1: An illustration of BCC and LS0 in two dimensions.

Before we look into operators that are even stronger (and more sophisticated), it is
helpful to understand the following alternative description of LS0. Given x ∈ [0, 1]n, let x̂

denote the vector

(
1
x

)
in Rn+1, where the new coordinate is indexed by 0. Let ei denote

the ith unit vector (of appropriate size), and for any square matrix M , let diag(M) denote
the vector formed by the diagonal entries of M . Next, given P ⊆ [0, 1]n, define the cone

K(P) :=

{(
λ
λx

)
∈ R⊕ Rn : λ ≥ 0, x ∈ P

}
.

Then, it is shown in [LS91] that

LS0(P) =
{
x ∈ Rn : ∃Y ∈ R(n+1)×(n+1), Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n],

Y e0 = Y >e0 = diag(Y) = x̂
}
.

To see that LS0(P) ⊇ PI in this perspective, observe that given any integral vector x ∈ P ,
the matrix Y := x̂x̂> is a matrix which “certifies” that x ∈ LS0(P). Then PI ⊆ LS0(P)
follows from the fact that the latter is obviously a convex set.

Next, observe that x̂x̂> is symmetric for all x ∈ {0, 1}n. Thus, if we let Sn denote the
set of n× n real, symmetric matrices, then

LS(P) :=
{
x ∈ Rn : ∃Y ∈ Sn+1, Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n], Y e0 = diag(Y) = x̂

}
13

also contains PI by the same argument. By enforcing a symmetry constraint on the
matrices in the lifted space (and still retaining all integral points in P), we see that
LS(P) is a potentially tighter relaxation than LS0(P).

We can also apply these operators iteratively to a polytope P to gain progressively
tighter relaxations. Let LSk0(P) (resp. LSk(P)) denote the set obtained from applying
LS0 (resp. LS) to P iteratively for k times. It is apparent from their definitions that

LS(P) ⊆ LS0(P) ⊆ BCCi(P),

for every i ∈ [n]. Hence, it follows that LSn0 (P) = LSn(P) = PI , for every P ⊆ [0, 1]n.

Recall the stable set problem introduced in Section 1.2. What happens if we apply
LS0 and LS to the feasible region of the LP relaxation (1.5)? Turns out that, as shown
in [LS91], the performance of LS0 and LS coincide in this case, and we get exactly the
feasible region of (1.6), for every graph G. Thus, while the feasible region of (1.6) may
have exponentially many facets, this set can be expressed as the projection of a tractable
set of dimension O(|V |2).

In general, it is easy to find examples where LS strictly performs better than LS0,
and that the additional condition in LS requiring the matrices in its lifted space to be
symmetric do generate extra cuts [AT09]. Also, while applying LS0 and LS once to the
feasible region of (1.5) always return the same relaxation, there are graphs on which ap-
plying LS twice to the feasible region of (1.5) yields a strictly tighter relaxation than
applying LS0 twice. The reader may refer to [Au07, AT09] for details of these examples,
as well as [LT03] for more properties of LS0- and LS-relaxations of the stable set prob-
lem. In subsequent chapters, we will return to this problem and discuss more about the
performances of the stronger lift-and-project operators on the stable set relaxations.

2.2 The face lattice interpretation and the Sherali–

Adams operator

In the two aforementioned Lovász–Schrijver operators, the certificate matrices all have
dimension (n+1) by (n+1). We next look into the potential of lifting the initial relaxation
P ⊆ [0, 1]n to sets of even higher dimensions.

Note that given a point x ∈ LS0(P) (or LS(P)), its certificate matrix Y and any index
i ∈ [n], we know that Y [0, i] = Y [i, i] (by the condition diag(Y) = Y >e0) and Y ei ∈ K(P).
Thus, we see that

Y ei ∈ K(P ∩ {x ∈ Rn : xi = 1}).
One can similarly derive that

Y (e0 − ei) ∈ K(P ∩ {x ∈ Rn : xi = 0}).
Hence, we can interpret the column Y ei as “representing” the set P intersected with the
face of the unit hypercube that is consisted of the points of which the i-coordinate is 1.
Likewise, Y (e0− ei) can be interpreted as corresponding to the points in P where xi is 0.

14

2.2.1 Lifting to the face lattice of [0, 1]n

Lovász and Schrijver noted in [LS91] that this interpretation can be made more general.
Let F denote {0, 1}n. Given a set of indices S ⊆ [n] and t ∈ {0, 1}, we define

S|t := {x ∈ F : xi = t, ∀i ∈ S} .

In other words, S|t is the set of points in F whose coordinates in S are all equal to t. To
reduce cluttering, we will write i|t instead of {i} |t when dealing with sets with just one
index. Also, in the case when S is empty, we have ∅|1 = ∅|0 = F .

Next, given an integer ` ∈ {0, 1, . . . , n}, we define

A` := {S|1 ∩ T |0 : S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ `}

and
A+
` := {S|1 : S ⊆ [n], |S| ≤ `} .

Note that there is a natural one-to-one correspondence between sets in An and faces of
the unit hypercube.

Now consider the following lift-and-project operator Ψ, defined as follows:

1. Let Ψ̃(P) denote the set of matrices Y ∈ RA+
1 ×An which satisfy all of the following

conditions:

(Ψ1) Y [F ,F] = 1.

(Ψ2) Y eα ∈ K(P), for every α ∈ An.

(Ψ3) ∑
S⊆[n]

Y eS|1∩([n]\S)|0 = Y eF .

(Ψ4) For all α ∈ A+
1 , β ∈ An such that α ∩ β = ∅, Y [α, β] = 0.

(Ψ5) For all α1, α2 ∈ A+
1 , β1, β2 ∈ An such that α1 ∩ β1 = α2 ∩ β2,

Y [α1, β1] = Y [α2, β2].

2. Define
Ψ(P) :=

{
x ∈ Rn : ∃Y ∈ Ψ̃(P), Y eF = x̂

}
.

Then we have the following:

Proposition 2. For every P ⊆ [0, 1]n, Ψ(P) = PI .

15

Proof. First, we show that PI ⊆ Ψ(P). Given x ∈ P ∩ F , define Y ∈ RA+
1 ×An such that

Y [F , S|1 ∩ T |0] =

(∏
j∈S

xj

)(∏
j∈T

1− xj

)
,

and

Y [i|1, S|1 ∩ T |0] =

 ∏
j∈S∪{i}

xj

(∏
j∈T

1− xj

)
,

for every S|1 ∩ T |0 ∈ An, and for every i ∈ [n]. We let Y [F ,F], the empty product, to
evaluate to 1. Note that Y is a 0-1 matrix.

Clearly, (Ψ1) holds, and (Ψ3), (Ψ4) and (Ψ5) are satisfied as well by construction.
For (Ψ2), notice that given any S ⊆ [n], Y eS|1∩([n]\S)|0 is either the zero vector (which
is in K(P)), or Y [F , S|1 ∩ ([n] \ S)|0] = 1, which implies that S is exactly the support
of x, and Y eS|1∩([n]\S)|0 = x̂ ∈ K(P) (since x ∈ P). Thus, Y ∈ Ψ̃(P), and consequently
x ∈ Ψ(P) as Y eF = x̂. Since Ψ(P) is obviously convex, we see that PI ⊆ Ψ(P).

To show the reverse containment, let x ∈ Ψ(P) and Y be its certificate matrix. Con-
sider any S ⊆ [n]. Then note that by (Ψ4) and (Ψ5),

Y [i|1, S|1 ∩ ([n] \ S)|0] =

{
Y [F , S|1 ∩ ([n] \ S)|0] if i ∈ S;
0 otherwise.

Thus,

Y eS|1∩([n]\S)|0] = Y [F , S|1 ∩ ([n] \ S)|0]

(
1
χS

)
,

for every S ⊆ [n], where χS is the incidence vector of S. Then it follows from (Ψ1) and
(Ψ3) that x is a convex combination of integral points in P , which means that x ∈ PI .

Thus, we see that Ψ is an extremely powerful operator that always returns the integer
hull of the given set P . However, the certificate matrices in Ψ̃(P) have exponential size
(in n), and explicitly constructing elements in a lifted space of such a high dimension
could yield an intractable structure, which makes the underlying algorithm no better
than simply enumerating the integral points in P .

Nevertheless, we can still take advantage of the framework we developed for Ψ, and
try to obtain a tight relaxation by only working with polynomial-size submatrices of those
in Ψ̃(P), and imposing constraints that are relaxations (Ψ1)–(Ψ5), in hope of capturing
some important inequalities that are valid for PI but not P . In particular, we can devise a
lift-and-project operator by looking at a matrix whose columns are indexed by a portion
of sets in An.

We next express the operators devised by Sherali and Adams [SA90] in this language.

16

2.2.2 The SA operator

For any fixed integer k ∈ [n], the SAk operator can be defined as follows:

1. Let S̃A
k
(P) denote the set of matrices Y ∈ RA+

1 ×Ak which satisfy all of the following
conditions:

(SA 1) Y [F ,F] = 1.

(SA 2) Y eα ∈ K(P), for every α ∈ Ak.
(SA 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T).

(SA 4) For all α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.

(SA 5) For all α1, α2 ∈ A+
1 , β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2,

Y [α1, β1] = Y [α2, β2].

2. Define
SAk(P) :=

{
x ∈ Rn : ∃Y ∈ S̃A

k
(P), Y eF = x̂

}
.

The SAk operator was originally described by linearizing polynomial inequalities, as
follows: given an inequality

∑n
i=1 aixi ≤ a0 that is valid for P , disjoint subsets of indices

S, T ⊆ [n] such that |S|+ |T | ≤ k, SAk generates the inequality(∏
i∈S

xi

)(∏
i∈T

1− xi

)(
n∑
i=1

aixi

)
≤

(∏
i∈S

xi

)(∏
i∈T

1− xi

)
a0, (2.1)

and obtains a linear inequality by replacing xji with xi (for all j ≥ 2) in all terms, and then
by using a new variable to represent each remaining nontrivial product of monomials. In
our definition of SAk, the linearized inequality would be

n∑
i=1

aiY [i|1, S|1 ∩ T |0] ≤ a0Y [F , S|1 ∩ T |0],

which is enforced by (SA 2) on the column of Y indexed by the set S|1 ∩ T |0. Also, for
every set of indices U ⊆ [n], the product of monomials

∏
i∈U xi could appear multiple

times in the original formulation when we generate (2.1) using different S and T . Then
SAk identifies them all by the variable xU in the linearized formulation. This requirement
is enforced by (SA 5) in our definition.

It is not hard to see that SA1(P) = LS(P). In general, SA obtains extra strength over
LS by lifting P to a set of matrices of higher dimension, and using some properties of sets
in An to identify variables in the lifted space.

Also, note that SAn is exactly Ψ, the operator we presented immediately before intro-
ducing SA. Thus, we see readily that SAk is a “restricted” version of Ψ. This observation,
together with Proposition 2, gives us another proof that SA converges to the integer hull
of any set in at most n iterations.

17

2.2.3 The SA′ operator

We now look into sharpening the condition (SA 4) to obtain a lift-and-project operator
that is potentially stronger than SA. Recall that, in the proof of Proposition 2, each entry
of the certificate matrix Y ∈ Ψ̃(P) for an integral point x is a product of entries of x.
Then if x ∈ P ∩ F , and α, β ∈ An are sets such that α ∩ β ∩ P = ∅, the entry Y [α, β]
must be zero. Thus, imposing such a constraint still preserves all matrices in the lifted
space which correspond to integral points in P .

As we will utilize this observation in some variants of the Bienstock–Zuckerberg op-
erators and relate their performances to other operators (such as SA), it is worthwhile
to investigate how this new condition impacts the performance of an operator. Given
P ⊆ [0, 1]n, and integer k ≥ 1, define

SA′k(P) :=
{
x ∈ Rn : ∃Y ∈ S̃A

′k
(P) : Y eF = x̂

}
,

where S̃A
′k

(P) is the set of matrices in S̃A
k
(P) that satisfy

(SA′ 4) For all α ∈ A+
1 , β ∈ Ak such that α ∩ β ∩ P = ∅, Y [α, β] = 0.

Note that SA′k yields a tractable algorithm when k = O(1), as the condition (SA′ 4)
can be verified efficiently (assuming P is tractable), and is only checked polynomially many
times. Also, since (SA′ 4) is more restrictive than (SA 4), it is apparent that SA′k(P) ⊆
SAk(P) in general. However, it turns out that in the case of SA, this extra condition
would at most “save” one iteration.

Proposition 3. For every P ⊆ [0, 1]n and every k ≥ 1,

SAk+1(P) ⊆ SA′k(P).

Proof. Let x ∈ SAk+1(P), and let Y ∈ S̃A
k+1

(P) such that Y eF = x̂. Define Y ′ ∈ RA+
1 ×Ak

such that Y ′[α, β] = Y [α, β], ∀α ∈ A+
1 , β ∈ Ak (i.e., Y ′ is a submatrix of Y). We show

that Y ′ ∈ S̃A
′k

(P). Since Y ′eF = Y eF = x̂, this would imply that x ∈ SA′k(P).

First, since Y ∈ S̃A
k+1

(P), it is obvious that Y ′ ∈ S̃A
k
(P). Thus, we only need to

show that Y ′ satisfies (SA′ 4). Given α ∈ A+
1 , β ∈ Ak, suppose α = i|1 for some i ∈ [n],

and β = S|1 ∩ T |0 for some S, T ⊆ [n]. Now α ∩ β = (S ∪ {i})|1 ∩ T |0 ∈ Ak+1, and thus
the entry Y [F , α ∩ β] exists.

Since Y eα∩β ∈ K(P) by (SA 2), Y [F , α ∩ β] > 0 would imply that the point

1

Y [F , α ∩ β]
(Y [1|1, α ∩ β], Y [2|1, α ∩ β], . . . , Y [n|1, α ∩ β])>

is in P , and thus α∩β∩P 6= ∅. Hence, we see that (SA′ 4) holds, and our claim follows.

18

Proposition 3 establishes the dashed arrow from SA′ to SA in Figure 1.3, and assures
that if one can provide a performance guarantee for SA′ on a polytope P , then the same
can be said of the weaker SA operator by using one extra iteration. The meanings for
the other four dashed arrows in Figure 1.3 are similar in nature — for some linear or
quadratic function of the iterate number, the weaker operator performs at least as well
as the stronger operator. However, they are much more involved than Proposition 3, and
sometimes depend on the properties of the given set P . We will address them in detail in
the subsequent chapters.

2.3 Utilizing positive semidefiniteness in

lift-and-project operators

So far, every lift-and-project operator we have seen returns polyhedral tightened relax-
ations. Next, we will expand our discussion to operators that may not produce polyhedral
relaxations. In particular, we will introduce several lift-and-project operators that uti-
lize positive semidefiniteness, and look into the power and limitations of these additional
constraints.

2.3.1 An extremely brief introduction to semidefinite program-
ming

Before we do that, it is helpful to mention a few basic elements of semidefinite program-
ming. Given two matrices A,B ∈ Sn, we let

〈A,B〉 := tr(A>B) =
n∑
i=1

n∑
j=1

AijBij

denote the standard inner product on Sn. Also, we say that a matrix A ∈ Sn is positive
semidefinite if h>Ah ≥ 0, ∀h ∈ Rn. There are also several alternative ways to characterize
positive semidefinite matrices:

Proposition 4. Given a matrix A ∈ Sn, the following are equivalent:

1. A is positive semidefinite;

2. All eigenvalues of A are nonnegative;

3. There exists a real matrix U such that A = U>U ;

4. 〈A,B〉 ≥ 0 for every positive semidefinite matrix B;

5. There exists a collection of vectors S ⊆ Rn such that A =
∑

x∈S xx
>.

19

Let Sn+ ⊂ Sn denote the set of symmetric, positive semidefinite n×n matrices, and we
indicate that a matrix A is positive semidefinite by writing A � 0. Similarly, we define a
matrix A ∈ Sn+ to be positive definite (denoted by A � 0), if x>Ax > 0 for every nonzero
vector x ∈ Rn.

It is easy to see that, for all x ∈ Rn, the matrix xx> is positive semidefinite. Moreover,
for all A ∈ Sn+ and nonnegative scalar k ∈ R, the matrix kA is also positive semidefinite.
Thus, the set of n× n positive semidefinite matrices form a cone in Rn×n. This, together
with 5. of Proposition 4, implies that Sn+ is a convex cone contained in Rn×n, and the
extreme rays of Sn+ are exactly the set of matrices of the form xx> for some nonzero vector
x ∈ Rn.

As we have seen in the description of LS, the matrices in the lifted space that cor-
respond to integer points are of the form xx>. Thus, Sn+ is a natural relaxation of the
convex hull of these rank 1 matrices. This motivates the following model: Given matrices
C,A1, . . . , Am ∈ Sn and vector b ∈ Rm, the mathematical program

max 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i ∈ [m]

X � 0,
(2.2)

is called a semidefinite program (SDP). SDPs are fundamental in the study of both
continuous and discrete optimization, and have been used to obtain good approxima-
tion algorithms for many hard problems in combinatorial optimization (e.g. Goemans
and Williamson’s celebrated result on max-cut [GW95]). Semidefinite programming also
boasts many applications in areas such as operations research, management sciences and
quantum computing.

Also, SDP formulations are highly flexible. For instance, the formulation (2.2) can
accommodate variations such as minimizations problems, inequality constraints, or even
additional linear equations that we enforce on the entries of the matrix variable X. In
particular, SDPs are a more general mathematical model than LPs. To see this, suppose
we have the following LP:

max c>x
subject to

∑n
j=1 aijxj = bi ∀i ∈ [m]

x ≥ 0.
(2.3)

Given a vector x ∈ Rn, let Diag(x) denote the n× n matrix
x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 .

Then we define C := Diag(c) and Ai := Diag((ai1, . . . , ain)>) for all i ∈ [m]. We also
define Eij to be the n × n matrix whose ij entry is 1, and 0 everywhere else, for all

20

i, j ∈ [n]. Now consider the following:

max 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i ∈ [m]

〈Eij, X〉 = 0 ∀i, j ∈ [n], i < j
X � 0.

(2.4)

Obviously, (2.4) is an SDP. Also, notice that every feasible solution X has to be a di-
agonal matrix, which is positive semidefinite if and only if all of its diagonal entries are
nonnegative. Thus, we see that x is feasible in (2.3) if and only if Diag(x) is feasible
in (2.4). Moreover, c>x = 〈C,Diag(x)〉, and thus the two formulations are equivalent.
Hence, every LP can be modelled as an SDP.

Another way to see that SDP generalizes LP is the following. Observe that the n-
dimensional nonnegative orthant {x ∈ Rn : x ≥ 0} can be expressed as

R+ ⊕ R+ ⊕ · · · ⊕ R+︸ ︷︷ ︸
n times

.

Thus, the constraint x ≥ 0 in the LP in the form of (2.3) can be interpreted as “x is in
a convex cone that is a direct sum of n irreducible convex cones”. Therefore, replacing
each R+ by an irreducible cone Smi+ for some positive integer mi, we arrive at the cone
constraint

X ∈ Sm1
+ ⊕ Sm2

+ ⊕ · · · ⊕ Smn+ ,

whose intersection with a polyhedron is a feasible region for an SDP.

Furthermore, semidefinite programming also has a nice duality theory, much of which
resembles that of linear programming. Given an SDP in the form (2.2), its dual problem
is

min b>y
subject to

∑m
i=1 yiAi � C.

(2.5)

Note that (2.5) is itself a SDP, and can be put into the form of (2.2). Then the weak duality
relation for LPs also hold for SDPs: if X, y are feasible in (2.2) and (2.5), respectively,
then

b>y =
m∑
i=1

biyi =
m∑
i=1

〈Ai, X〉 yi =

〈
m∑
i=1

yiAi, X

〉
≥ 〈C,X〉 .

However, unlike in LPs, it is possible for both an SDP and its dual to be feasible, but
their optimal values not coincide. Given a maximization SDP (P) and its dual problem
(D), their duality gap is defined to be the difference between the infimum of the objective
values of feasible solutions in (D) and the supremum of the objective values of feasible
solutions in (P). While this quantity can be nonzero for a general primal-dual pair of
SDPs, it can be assured to be zero by the following condition: We say that an SDP
satisfies the Slater condition if it has a strictly feasible solution (e.g. for (2.2), it would
be a feasible X such that X � 0; for (2.5), it would be a vector y where

∑m
i=1Aiyi � C).

Then we have the following:

21

Theorem 5. Let (P) be an maximization SDP, and (D) be its dual.

1. If the objective value of (P) is bounded from above, and (P) satisfies Slater condition,
then (P) and (D) have zero duality gap, and (D) has an optimal solution.

2. If the objective value of (D) is bounded from below, and (D) satisfies Slater condition,
then (P) and (D) have zero duality gap, and (P) has an optimal solution.

In particular, when both (P) and (D) satisfy the Slater condition, then they must have
a zero duality gap, and there exist solutions in (P) and (D) that attain the optimal value.
Thus, the strong duality relation, when present, assures us of many key properties of a
primal-dual pair of SDPs that we can take for granted in the case of LPs.

Finally, assuming certain technical conditions, SDPs can be approximately solved to
arbitrary precision, in polynomial time of the size of the input, by algorithms such as
the ellipsoid method and interior-point methods. This is true even if we do not explicitly
have the data A1, . . . , Am and b, but only a weak separation oracle for the feasible region
of the SDP. The SDPs we will encounter in this thesis usually have feasible regions that
are sets in the lifted space of an operator, and do satisfy these conditions. For instance,
for most of the relaxations we look at, it is usually not hard to determine the affine hull
of its lifted set from the conditions imposed by a lift-and-project operator, as well as
our knowledge of some of the integer solutions of the underlying problem. For the full
technicality of these details, as well as discussion on the theory and applications of SDPs
in combinatorial optimization, the reader may refer to [Tun10].

Thus, we see that SDPs can be extremely useful in delivering tight, tractable re-
laxations of IPs that are difficult to tackle directly. Then, using duality theory (and
other tools), we can uncover many nontrivial properties of the underlying optimization
problems, such as tight bounds of their optimal values. As we shall see, lift-and-project
operators that utilize positive semidefiniteness and return SDP relaxations can perform
dramatically better than their polyhedral counterparts, in many cases.

2.3.2 The operators LS+, SA+ and SA′+

Perhaps the most elementary operator that utilizes positive semidefiniteness is the LS+

operator defined in [LS91]. Recall that one way to see why PI ⊆ LS(P) in general is to
observe that for every integral point x ∈ P , x̂x̂> is a matrix that certifies x’s membership
in LS(P). Since x̂x̂> is positive semidefinite for all x, it is easy to see that

LS+(P) :=
{
x ∈ Rn : ∃Y ∈ Sn+1

+ , Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n], Y e0 = diag(Y) = x̂
}

contains PI as well. Also, by definition, LS+(P) ⊆ LS(P) for all P ⊆ [0, 1]n, and thus
LS+ potentially obtains a tighter relaxation than LS(P) in general.

It is also easy to see that for every set P ⊆ [0, 1]n, LS+(P) can be expressed as the
feasible region of an SDP, whose size is polynomial of the data describing P .

22

Next, we define two positive semidefinite variants of the SA operator that are even
stronger than LS+. Given a vector y ∈ RA′ where A+

1 ⊆ A′, we define

x̂(y) := (yF , y1|1 , . . . , yn|1)
>.

Then, given any positive integer k, we define the operators SAk
+ and SA′k+ as follows:

1. Let S̃A
k

+(P) be the set of matrices Y ∈ SAk+ that satisfy all of the following condi-
tions:

(SA+ 1) Y [F ,F] = 1.

(SA+ 2) For every α ∈ Ak:
(i) x̂(Y eα) ∈ K(P);

(ii) Y eα ≥ 0.

(SA+ 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T).

(SA+ 4) For all α, β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.

(SA+ 5) For all α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

2. Let S̃A
′k
+(P) be the set of matrices S̃A

k

+(P) that also satisfy:

(SA′+ 4) For all α, β ∈ Ak such that α ∩ β ∩ P = ∅, Y [α, β] = 0.

3. Define
SAk

+(P) =
{
x ∈ Rn : ∃Y ∈ S̃A

k

+(P), x̂(Y eF) = x̂
}
,

and
SA′k+(P) :=

{
x ∈ Rn : ∃Y ∈ S̃A

′k
+(P), x̂(Y eF) = x̂

}
.

The SAk
+ and SA′k+ operators extend the lifted space of the SAk operator (which are

matrices of dimension (n+1)×O(nk)) to a set of square matrices, and impose an additional
positive semidefiniteness constraint. What sets these two new operators apart is that SA′k+
utilizes a (SA′ 4)-like condition to potentially obtain additional strength over SAk

+. While
we have seen in their polyhedral counterparts SA′ and SA that adding this additional
constraint could decrease the number of iterations needed to reach the integer hull by at
most one, the difference can be much more pronounced between SA+ and SA′+. Using the
same observations in the proof of Proposition 3, we can prove the following:

Proposition 6. For every P ⊆ [0, 1]n and every k ≥ 1,

SA2k
+ (P) ⊆ SA′k+(P).

23

We shall see examples in Chapter 6 where SA′+ requires Θ(n) less iterations than SA+

to return the integer hull of a polytope.

Also, note that in (SA+ 2) we have imposed that all certificate matrices in S̃A
k

+(P)

(which contains S̃A
′k
+(P)) have nonnegative entries, which obviously holds for matrices

lifted from integral points. In contrast with (SA 2), the nonnegativity condition was not
explicitly stated there as it is implied by the fact that P ⊆ [0, 1]n.

Next, we show that SAk
+ dominates the LSk+ operator (i.e., k iterative applications of

LS+):

Proposition 7. For every polytope P ⊆ [0, 1]n and every integer k ≥ 1,

SAk
+(P) ⊆ LS+(SAk−1

+ (P)).

Proof. Suppose Y ∈ S̃A
k

+(P) and x̂(Y eF) = x̂. Let Y ′ be the (n+ 1)× (n+ 1) symmetric
minor of Y , with rows and columns indexed by elements in A+

1 . To adapt to the notation
for LS+, we index the rows and columns of Y ′ by 0, 1, . . . , n (instead of F , 1|1, . . . , n|1).
It is obvious that Y ′ ∈ Sn+1

+ , and Y ′e0 = diag(Y ′) = x̂. Thus, it suffices to show that
Y ′ei, Y

′(e0 − ei) ∈ K(SAk−1
+ (P)), ∀i ∈ [n].

We first show that Y ′e1 ∈ K(SAk−1
+ (P)). If (Y ′e1)0 = 0, then Y ′e1 is the zero vector

and the claim is obviously true. Next, suppose (Y ′e1)0 > 0. Define the matrix Y ′′ ∈ SAk−1 ,
such that

Y ′′[α, β] =
1

(Y ′e1)0

Y [α ∩ 1|1, β ∩ 1|1], ∀α, β ∈ Ak−1.

Notice that Y ′′ is a positive scalar multiple of a symmetric minor of Y , and thus is
positive semidefinite and nonnegative. Moreover, it satisfies (SA+ 1) by construction, and

inherits the properties (SA+ 2)–(SA+ 5) from Y . Thus, Y ′′ ∈ S̃A
k−1

+ (P) and x̂(Y ′′eF) =
1

(Y ′e1)0
Y ′e1 ∈ K(SAk−1

+ (P)). Hence, we obtain that Y ′e1 ∈ K(SAk−1
+ (P)). Since we can

use the same observations to show that Y ′ei, Y
′(e0 − ei) ∈ K(SAk−1

+ (P)) for all i ∈ [n],
our claim follows.

Then it follows immediately from the definitions of SA+, SA′+ and Proposition 7 that

SA′k+(P) ⊆ SAk
+(P) ⊆ LSk+(P),

for every k ≥ 1. The SA+ and SA′+ operators will be useful in simplifying our analysis
and improving our understanding of the Bienstock–Zuckerberg operator enhanced with
positive semidefiniteness.

2.4 The Lasserre operator

We turn our attention to Lasserre’s operator defined in [Las01], denoted Las herein. While
Las can be applied to semialgebraic sets, we restrict our discussion to their applications

24

to polytopes contained in [0, 1]n. Also, our presentation of the operator is closer to that
in [Lau03a]. Given P := {x ∈ [0, 1]n : Ax ≤ b}, and an integer k ∈ [n],

1. Let L̃as
k
(P) denote the set of matrices Y ∈ SA

+
k+1

+ that satisfy all of the following
conditions:

(Las 1) Y [F ,F] = 1;

(Las 2) For every i ∈ [m], define the matrix Y i ∈ SA+
k where

Y i[S|1, S ′|1] := biY [S|1, S ′|1]−
n∑
i=1

A[i, j]Y [(S ∪ {j})|1, (S ′ ∪ {j})|1],

and impose Y i � 0.

(Las 3) For every α1, α2, β1, β2 ∈ A+
k such that α1∩β1 = α2∩β2, Y [α1, β1] = Y [α2, β2].

2. Define
Lask(P) :=

{
x ∈ Rn : ∃Y ∈ L̃as

k
(P) : x̂(Y eF) = x̂

}
.

We note that, unlike the previously mentioned operators, Las requires an explicit
description of P in terms of valid inequalities. Also, similar to how we strengthened the
original Sherali–Adams operator, we can define a refined version of Las as follows. Again,
given P := {x ∈ [0, 1]n : Ax ≤ b}, and an integer k ∈ [n]:

1. Let L̃as
′k

(P) denote the set of nonnegative matrices Y ∈ SAk+1

+ that satisfy all of
the following conditions:

(Las′ 1) Y [F ,F] = 1;

(Las′ 2) For every i ∈ [m], define the matrix Y i ∈ SAk where

Y i[α, β] := biY [α, β]−
n∑
j=1

A[i, j]Y [α ∩ i|1, β ∩ i|1].

Impose Y i � 0 and Y i ≥ 0.

(Las′ 3) For every α ∈ Ak,

Y eα∩j|1 + Y eα∩j|0 = Y eα, ∀j ∈ [n].

(Las′ 4) For every α, β ∈ Ak+1 such that α ∩ β ∩ P = ∅, Y [α, β] = 0.

(Las′ 5) For all α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

2. Define
Las′k(P) :=

{
x ∈ Rn : ∃Y ∈ L̃as

′k
(P) : x̂(Y eF) = x̂

}
.

25

Note that while S̃A
′k
+(P) and S̃A

k

+(P) have the same dimension, the matrices in

L̃as
′k

(P) have dimension Ak+1 × Ak+1, while those in L̃as
k
(P) have size A+

k+1 × A
+
k+1.

Also, matrices in the lifted space of Las′ are required to be nonnegative (which is not
imposed by Las), and (Las′ 4) is a condition that, like (SA′ 4) and (SA′+ 4), may force
more variables in the lifted space to be zero. It is not hard to see that Las′k dominates
Lask — if x ∈ Las′k(P), then a symmetric minor of its certificate matrix would show that
x ∈ Lask(P). We next show that Las′k also dominates SA′k+. Note that, from here on, we
will sometimes use v[i] to denote the i-entry of a vector v (instead of vi).

Proposition 8. For every polytopes P := {x ∈ [0, 1]n : Ax ≤ b} and for every integer
k ≥ 1, Las′k(P) ⊆ SA′k+(P).

Proof. Let x ∈ Las′k(P), and Y be its certificate matrix in L̃as
′k

(P). Then Y is Ak+1 ×
Ak+1. Let Y ′ be the symmetric minor of Y whose rows and columns are indexed by Ak.
We show that Y ′ ∈ S̃A

′k
+(P).

First, (SA+ 1), (SA+ 2), (SA′+ 4) and (SA+ 5) follow from (Las′ 1), (Las′ 2), (Las′ 4)
and (Las′ 5), respectively. Also, since Y ′ � 0 and Y ≥ 0, and Y ′ is a symmetric minor of
Y , we obtain that Y ′ is also positive semidefinite and nonnegative. Thus, it only remains
to verify that x̂(Y eα) ∈ K(P) for every α ∈ Ak. Observe that, for every inequality∑n

j=1 A[i, j]y ≤ b[i], and α ∈ Ak,
n∑
j=1

Y [j|1, α] ≤ b[i]Y [F , α],

as Y i[α, α] ≥ 0. Thus, x̂(Y eα) ∈ K(P), and we are finished.

In Chapter 6, we will provide examples in which Las′ and SA′+ strictly outperform their
unprimed counterparts. Also, we remark that Gouveia, Parrilo and Thomas provided
in [GPT10] an alternative description of the Las operator, where PI is described as the
variety of an ideal intersected with the solutions to a system of polynomial inequalities. For
an example, given a graph G = (V,E), if we let H1 := {x ∈ Rn : xi(xi − 1) = 0,∀i ∈ V }
and H2 := {x ∈ Rn : 1− xi − xj ≥ 0,∀ {i, j} ∈ E}, then STAB(G) = conv(H1 ∩ H2).
Generalizing Lovász’s theta body [Lov79], they proposed the notion of the theta body
of an ideal, which they proved is equivalent to the Las operator, if Las was restricted
to only using vanishing ideals of subsets of {0, 1}n (without intersection with system of
polynomial inequalities). For instance, the vanishing ideal of STAB(G) is generated by
the polynomials

{xi(xi − 1) : i ∈ V } ∪ {xixj : {i, j} ∈ E} .
One distinction of their relaxations is that they only depend on the desired set of integer
points in PI , instead of an initial, tractable relaxation. They showed that this more
restricted version of the Las operator produces simpler but weaker relaxations than some of
the other relaxations used commonly in the literature. We will look into these relaxations
in more detail in Chapter 7.

26

2.5 The Bienstock–Zuckerberg operator and their

variants

Finally, we look into the lift-and-project operators devised by Bienstock and Zucker-
berg [BZ04].

Recall that the idea of convexification requires a collection of disjoint subsets of P
whose union contains all integral points in P . So far, every operator that we have seen
obtains these sets by intersecting P with faces of [0, 1]n. However, sometimes it is beneficial
to allow more flexibility in choosing the way we partition the integral points in P . For
example, consider

P :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− 1

2

}
.

P is known to be a worst-case instance for many lift-and-project operators. For instance,
we will see in Chapter 6 that SAn−1

+ (P), a relaxation obtained from using convexification
with exponentially many sets that are all intersections of P and faces of [0, 1]n as well as
positive semidefiniteness, still strictly contains PI . On the other hand, if we define

Qj :=

{
x ∈ P :

n∑
i=1

xi = j

}
,

for every j ∈ {0, 1, . . . , n}, then every integral point in P is contained in Qj for some j,
and

PI = conv

(
n⋃
i=0

Qj

)
.

We will see in the next section that the set conv (
⋃n
i=0Qj) can be described as the pro-

jection of a set of dimension O(n2) that is tractable as long as P is.

Bienstock and Zuckerberg [BZ04] utilized this type of ideas and invented operators that
use variables that were not exploited by the operators proposed earlier (namely, subsets
of F that are not in An), in conjunction with some new constraints. We will denote their
operators by BZ and BZ+, but we also present variants of them called BZ′,BZ′+,BZ′′+
and BZ′′+. The operators BZ′′ and BZ′′+ are slightly refined versions of BZ and BZ+,
respectively. They produce tractable relaxations for tractable relaxations, and will be
defined and discussed in the Appendix, together with BZ and BZ+. Our focus here will
be on BZ′ and BZ′+, variants that are even stronger but we believe are simpler to present.
While BZ′ and BZ′+ may require exponential run-time and space (in terms of the size of
the data in the given relaxation), we will only use them to establish inapproximability
results. Note that if one shows that, say, BZ′ cannot return the integer hull of a relaxation
in a certain number of iterations, the same can be said of the weaker operators such as
BZ and BZ′′.

Also, since we are mostly interested in applying these operators to polytopes that arise
from set packing problems (such as the stable set and matching problems of graphs), we

27

will state versions of these operators that only apply to lower-comprehensive polytopes.
(Recall that a set P ⊆ [0, 1]n is lower-comprehensive if for every x ∈ P , y ∈ P for every
y such that 0 ≤ y ≤ x.) We will discuss this in more detail after stating the elements of
their operators.

2.5.1 The subset algebra of F

From here on, we let A denote 2F , the power set of F . For each x ∈ F , we define the
vector xA ∈ RA where

xA[α] =

{
1 if x ∈ α;
0 otherwise.

That is, each coordinate of A corresponds to a subset of the vertices of the n-dimensional
unit hypercube, and xA[α] = 1 if and only if the point x is contained in the set α. It is
not hard to see that for all x ∈ F , we have xA[F] = 1, and xA[i|1] = xi,∀i ∈ [n]. Another
important property of xA is that, given disjoint subsets α1, α2, . . . , αk ⊆ β ⊆ F , we know
that

xA[α1] + xA[α2] + · · ·+ xA[αk] ≤ xA[β], (2.6)

and equality holds if {α1, α2, . . . , αk} partitions β.

Thus, for any given x ∈ F , if we define Y x
A := xA(xA)>, then the entries of Y x

A have
considerable structure. Most notably, the following must hold:

Proposition 9. For every x ∈ F , the matrix Y x
A = xA(xA)> satisfies all of the following:

(P1) Y x
AeF = (Y x

A)>eF = diag(Y x
A) = xA;

(P2) Y x
Aeα ∈

{
0, xA

}
, ∀α ∈ A;

(P3) Y x
A ∈ SA+;

(P4) Y x
A [α, β] = 1 ⇐⇒ x ∈ α ∩ β;

(P5) if α1 ∩ β1 = α2 ∩ β2, then Y x
A [α1, β1] = Y x

A [α2, β2];

(P6) If y is a row or column vector of Y x
A , and α1, . . . , αk are disjoint subsets of β ∈ A,

then
k∑
i=1

y[αi] ≤ y[β].

Moreover, equality holds if α1, . . . , αk partition β.

As with matrices in the lifted space of the operator Ψ defined in Section 2.2.1, Y x
A has

exponential size, and utilizing all its entries in an operator can be computationally costly.
However, we can again work with polynomial-size submatrices of Y x

A to yield a tractable
lift-and-project algorithm, and now we have much more flexibility in choosing variables
as we can now use sets in A that are not in An.

28

2.5.2 Obstructions, walls and tiers

Suppose we are given a polytope P := {x ∈ [0, 1]n : Ax ≤ b}, where A ∈ Rm×n has non-
negative entires and b ∈ Rm is positive. The BZ′ operator can be viewed as a two-step
process. The first step is refinement. Given a vector v ∈ Rn, let

supp(v) := {i ∈ [n] : vi 6= 0}

denote the support of v. Also, for every i ∈ [m], let Ai denote the ith row of A. If O ⊆ [n]
satisfies

• O ⊆ supp(Ai);

•
∑

j∈O A
i
j > bi; and

• |O| ≤ k + 1 or |O| ≥ |supp(Ai)| − (k + 1)

for some i ∈ [m], then we call O a k-small obstruction. Let Ok denote the collection of
all k-small obstructions of P (or more precisely, of the system Ax ≤ b). Notice that, for
every obstruction O ∈ Ok, and integral vector x ∈ P , the inequality

∑
i∈O xi ≤ |O| − 1

holds. Thus,

Ok(P) :=

{
x ∈ P :

∑
i∈O

xi ≤ |O| − 1, ∀O ∈ Ok

}
is a relaxation of PI that is potentially tighter than P .

The second step of the BZ′ operator is lifting. Before we give the details of this step,
we need another intermediate set of indices, called walls. For every k ≥ 1, we define

Wk :=

 ⋃
i,j∈[`],i 6=j

(Oi ∩Oj) : O1, . . . , O` ∈ Ok, ` ≤ k + 1

 ∪ {{1} , . . . , {n}} .
That is, each subset of up to (k + 1) k-small obstructions generate a wall, which is the
set of elements that appear in at least two of the given obstructions. We also ensure that
the singleton sets of indices are walls. Next, we define the collection of tiers

Tk :=

{
S ⊆ [n] : ∃Wi1 , . . . ,Wik ∈ Wk, S ⊆

k⋃
j=1

Wij

}
.

That is, we define a set of indices S to be a tier if there exist k walls whose union contains
S. Note that every subset of [n] of size up to k is a tier. Obstructions, walls and tiers
play an integral role in the generation of BZ′-relaxations.

29

2.5.3 The BZ′ and BZ′+ operators

Given a set U ⊆ [n] and a nonnegative integer r, we define

U |<r :=

{
x ∈ F :

∑
i∈U

xi ≤ r − 1

}
.

We shall see that the elements in A that are being generated by BZ′ all take the form
S|1 ∩ T |0 ∩ U |<r, where S, T, U are disjoint sets of indices. Next, we describe the lifting
step of BZ′k and BZ′k+, for every integer k ≥ 1:

1. Define A′ to be the set consisting of the following. For each tier S ∈ Tk, include:

(S \ T)|1 ∩ T |0,

for all T ⊆ S such that |T | ≤ k; and

(S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |),

for every T, U ⊆ S such that U ∩ T = ∅, |T | < k and |U | + |T | > k. We say these
variables (indexed by the above sets) are associated with the tier S.

2. Let B̃Z
′k

(P) denote the set of matrices Y ∈ SA′ that satisfy all of the following
conditions:

(BZ′ 1) Y [F ,F] = 1.

(BZ′ 2) For every column x of the matrix Y ,

(i) 0 ≤ xα ≤ xF , for all α ∈ A′.
(ii) x̂(x) ∈ K(Ok(P)).

(iii) xi|1 + xi|0 = xF , for every i ∈ [n].

(iv) For each α ∈ A′ in the form of S|1 ∩ T |0 impose the inequalities

xi|1 ≥ xα, ∀i ∈ S; (2.7)

xi|0 ≥ xα, ∀i ∈ T ; (2.8)

xα + x(S∪{i})|1∩(T\{i})|0 = xS|1∩(T\{i})|0 , ∀i ∈ T ; (2.9)∑
i∈S

xi|1 +
∑
i∈T

xi|0 − xα ≤ (|S|+ |T | − 1)xF . (2.10)

(v) For each α ∈ A′ in the form S|1 ∩ T |0 ∩ U |<r, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S; (2.11)

xi|0 ≥ xα, ∀i ∈ T ; (2.12)∑
i∈U

xi|0 ≥ (|U | − (r − 1))xα; (2.13)

xα = xS|1∩T |0 −
∑

U ′⊆U,|U ′|≥r

x(S∪U ′)|1∩(T∪(U\U ′))|0 . (2.14)

30

(BZ′ 3) For all α, β ∈ A′ such that α ∩ β ∩ P = ∅, Y [α, β] = 0.

(BZ′ 4) For all α1, β1, α2, β2 ∈ A′ such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

3. Define
BZ′k(P) :=

{
x ∈ Rn : ∃Y ∈ B̃Z

′k
(P), x̂(Y eF) = x̂

}
.

and
BZ′k+(P) :=

{
x ∈ Rn : ∃Y ∈ B̃Z

′k
+(P), x̂(Y eF) = x̂

}
,

where B̃Z
′k
+(P) := B̃Z

′k
(P) ∩ SA′+ .

Similar to the case of SAk, BZ′k can be seen as creating columns that correspond to
sets that partition F . While SAk only generates a partition for each subset of up to k
indices, BZ′k does so for every tier, which is a much broader collection of indices. For a
tier S up to size k, it does the same as SAk and generates 2|S| columns corresponding to
all possible negations of indices in S. However, for S of size greater than k, it generates a
“k-deep” partition of S: a column for (S \T)|1∩T |0 for each T ⊆ S of size up to k, and a
column for S|<|S|−k. In fact, given a tier S and T ⊆ S such that |T | < k, BZ′k generates
a (k − |T |)-deep partition of this set for each U ⊆ S \ T such that |U | + |T | > k. First,
the column for

(S \ (T ∪ U ′))|1 ∩ (T ∪ U ′)|0 = (S \ (T ∪ U))|1 ∩ T |0 ∩ (U \ U ′)|1 ∩ U ′|0

is generated for all U ′ ⊆ U of size ≤ k − |T |. Then BZ′k also generates

(S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |)

to capture the remainder of the partition.

Since each singleton index set is a wall, we see that every index set of size up to k is
a tier. Thus, A′ contains Ak, and it is not hard to see that BZ′k(P) ⊆ SA′k(Ok(P)) in
general. Furthermore, notice that in BZ′, we have generated exponentially many variables,
whereas in the original BZ only polynomially many are selected. The role of walls is
also much more important in selecting the variables in BZ, which we have intentionally
suppressed in BZ′ to make our presentation and analysis more transparent. Some of the
details of the relationships between these modified operators and the original Bienstock–
Zuckerberg operators are given in the Appendix.

One of the main results Bienstock and Zuckerberg achieved with the BZk operator is
on set covering problems. Given an inequality a>x ≥ a0 such that a ≥ 0 and a0 > 0, its
pitch is defined to be the smallest positive integer j such that

S ⊆ supp(a), |S| ≥ j ⇒ a>χS ≥ a0.

Also, let ē denote the all-ones vector of suitable size. Then they showed the following
powerful result in [BZ04]:

31

Theorem 10. Suppose P := {x ∈ [0, 1]n : Ax ≥ ē} where A is a 0, 1 matrix. Then for
every k ≥ 1, every valid inequality of PI that has pitch at most k+ 1 is valid for BZk(P).

Note that if all coefficients of an inequality are integral and at most k, then the pitch
of the inequality is no more than k. An important property of the Bienstock–Zuckerberg
operators is that its performance can vary upon different algebraic descriptions of the
given set P , even if they geometrically describe the same set. For instance, adding a
redundant inequality to the system Ax ≤ b could make many more sets qualify as k-small
obstructions. This could increase the dimension of the lifted set as more walls and tiers are
generated, and as a result strengthen the operator. We provide examples that illustrate
this phenomenon after the definition of Bienstock and Zuckerberg’s original operators in
the Appendix.

32

Chapter 3

Lower-Bound Analysis

As we saw in Chapter 2, one way to gain additional strength in devising a lift-and-
project operator is to lift to a space of higher dimension, and obtain a potentially tighter
formulation by using more variables, albeit at a computational cost. In this Chapter, we
provide conditions on sets and higher dimensional liftings which do not lead to strong cuts.
As a result, we show in some cases, BZ′k performs no better than SA′` for some suitably
chosen k and `. We also prove a similar result relating the performance of the operators
BZ′k+ and SA′`+. We then look into the consequences of these findings, and present some
lower-bound results on the matching and stable set relaxations.

3.1 Identifying unhelpful variables in the lifted space

3.1.1 A general template

Recall that F = {0, 1}n, and A is the power set of F . A common theme among all
lift-and-project operators we have looked at so far is that their lifted spaces can all be
interpreted as sets of matrices whose columns and rows are indexed by elements in A.
Moreover, they all impose a constraint in the tune of “each column of the matrix belongs
to a certain set linked to P” (e.g. conditions (SA 2) and (BZ′ 2)). This provides a natural
way of partitioning the constraints of a lift-and-project operator into two categories: those
that are present (and identical) for every matrix column, and the remaining constraints
that cannot be captured this way.

We say that a lift-and-project operator Γ is admissible under the pair (f, g) if there
exist functions f, g such that all of the following properties hold:

(I1) Given a convex set P ⊆ [0, 1]n, Γ lifts P to a set of matrices Γ̃(P) ⊆ RS×S′ , such
that

A+
1 ⊆ S ⊆ S ′ ⊆ A.

33

(I2) f is a column constraint function that maps elements in A to subsets of RS , and g
is a cross-column constraint function that maps sets contained in [0, 1]n to sets of
matrices in RS×S′ , such that

Γ̃(P) = {Y ∈ g(P) : Y eS′ ∈ f(S ′), ∀S ′ ∈ S ′} .

Furthermore, f has the property that, for every pair of disjoint sets S, T ∈ S ′:

1. f(S) ∪ f(T) ⊆ f(S ∪ T);

2. f(S) = f(T) if S ∩ P = T ∩ P .

(I3)

Γ(P) :=
{
x ∈ Rn : ∃Y ∈ Γ̃(P), Y [F ,F] = 1, x̂(Y eF) = x̂

}
.

Note that the notion of admissible operators is extremely broad. Every lift-and-project
operator Γ is admissible under the pair (f, g), if we let g(P) := Γ̃(P) and f(S) := RS
for all S ∈ A (i.e., we define f to be trivial and “shove” all constraints of Γ under g).
However, as mentioned above, the intention of this definition is that we try to capture
as much of Γ as possible with f by using it to describe the constraints Γ places on every
column of the matrices in the lifted space, and only include the remaining constraints in g.
Thus, we want f to be maximal, and g to be minimal in this sense. For instance, we can
show that SAk is admissible under the pair (f, g) where f(S) := K(P ∩conv(S)), ∀S ∈ A,

and let g(P) to be the set of matrices in RA+
1 ×Ak that satisfy (SA 3), (SA 4) and (SA 5).

All named operators mentioned in this manuscript can be shown to be admissible in
this fashion — using f to describe that each matrix column has to be in some lifted set
determined by P , and let g capture the remaining constraints.

For many known operators, these “other” constraints placed by g are relaxations of
the set theoretical properties (P5) and (P6) of Y x

A listed in Proposition 9. For instance,
(SA 5) is in place to make sure the variables in the linearized polynomial inequalities
that would be identified in the original description of SAk would in fact have the same

value in all matrices in S̃A
k
(P). Likewise, (SA 3) and (SA 4) are also needed to capture

the relationship between the variables that would be established naturally in the original
description with polynomial inequalities.

Furthermore, sometimes using matrices to describe the lifted space and assigning set
theoretical meanings to their columns and rows have advantages over using linearized
polynomial inequalities directly. For instance, we again consider the set

P :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− 1

2

}
.

We have seen that if we define

Qj :=

{
x ∈ P :

n∑
i=1

xi = j

}
,

34

for every j ∈ {0, 1, . . . , n}, then PI = conv
(⋃n

j=0 Qj

)
. However, if we attempt to con-

struct a formulation by linearizing polynomial inequalities as in the original description
of SA, one would need to linearize

∑
S,T :S∪T=[n],
S∩T=∅,|S|=j

(∏
i∈S

xi

)(∏
i∈T

1− xi

)(
n∑
i=1

aixi

)
≤

∑
S,T :S∪T=[n],
S∩T=∅,|S|=j

(∏
i∈S

xi

)(∏
i∈T

1− xi

)
a0

to capture the constraints for Qj, for all facets
∑n

i=1 aixi ≤ a0 of P . Of course, when
j ≈ n

2
, the above constraint would have exponentially many terms.

However, we can obtain an efficient lifted formulation by doing the following: for each
j ∈ {0, 1, . . . , n}, define Rj ∈ A where

Rj =

{
x ∈ F :

n∑
i=1

xi = j

}
.

Then Qj = conv(P ∩ Rj) for every j. Let S = {F , R0, R1, . . . , Rn}. We now define Φ to
be the lift-and-project operator as follows:

1. Let Φ̃(P) denote the set of matrices Y ∈ RA+
1 ×S such that

(i) Y [F ,F] = 1.

(ii) Y eRj ∈ K(P ∩ conv(Rj)), ∀j ∈ {0, . . . , n}.
(iii) Y eF =

∑n
j=0 Y eRj .

2. Define
Φ(P) =

{
x ∈ Rn : ∃Y ∈ Φ̃(P), Y eF = x̂

}
.

Then it is not hard to see that Φ(P) = conv (
⋃n
i=0Qj) for any set P ⊆ [0, 1]n. Note that

we used constraint (iii) to enforce that the entries in the matrix behave consistently with
their corresponding set theoretical meanings. In particular, since R0, . . . , Rn partition F ,
we require that the columns indexed by the sets R0, . . . , Rn sum up to that representing
F .

Thus, the following notions are helpful when we attempt to analyze g more systemati-
cally. First, given S,S ′ ⊆ A, we say that S ′ refines S if for all S ∈ S, there exist mutually
disjoint sets in S ′ that partition S. Equivalently, given S ⊆ A, let Y x

S denote the A× S
submatrix of Y x

A consisting of the columns indexed by sets in S. Then S ′ refines S if and
only if every column Y x

S is contained in the cone generated by the column vectors of Y x
S′ ,

for every x ∈ F . For instance, S ′ refines S whenever S ⊆ S ′. Another example is that
Ak refines A` whenever k ≥ `. Note that the notion of refinement is transitive — if S ′
refines S and S ′′ refines S ′, then S ′′ refines S.

35

Next, given Y1 ∈ RS1×S′1 and Y2 ∈ RS2×S′2 where S1,S ′1,S2,S ′2 ⊆ A, we say that Y1 and
Y2 are consistent if

k∑
i=1

Y1[S1i, S
′
1i] =

∑̀
i=1

Y2[S2i, S
′
2i]

whenever {S1i ∩ S ′1i : i ∈ [k]} and {S2i ∩ S ′2i : i ∈ [`]} are both collections of mutually dis-
joint sets such that

⋃k
i=1 (S1i ∩ S ′1i) =

⋃`
i=1 (S2i ∩ S ′2i). We will extend the above definition

to determine whether two vectors are consistent with each other (viewing those vectors
as n× 1 matrices), and whether a matrix and a vector are consistent with each other.

We remark that our notion of consistency is closely related to some of similar notions
by Zuckerberg [Zuc03]. Given S = {S1, . . . , S`} ⊆ A, let A(S) denote the collection of
subsets of A that can be obtained from taking unions of sets in the collection{(⋂

i∈I

Si

)
∩

(⋂
i∈6∈I

A \ Si

)
: I ⊆ [`]

}
.

Equivalently, A(S) is the smallest collection of subsets of A that contains S, and is closed
under unions and intersections. Then, given a vector y ∈ RS , Zuckerberg defines y to
be A(S) signed measure consistent if there exists z ∈ RA(S) that is consistent (under
our definition) with both y and itself. He also looked into a more restrictive notion
of consistency, and defined a vector y to be A(S) measure consistent if there exists a
nonnegative vector z ∈ RA(S) that witnesses y’s signed measure consistency.

Next, given S,S ′ ⊆ A, we say that a matrix Y ∈ RS×S′ is overall measure consistent
(OMC) if it is consistent with itself. All matrices in the lifted spaces of all variants of
SAk,Lask and BZk satisfy (OMC), for all k ≥ 1. One notable observation is that, in the
case of vectors, if S ′ refines S, and x ∈ RS′ satisfies (OMC), then there is a unique y ∈ RS
that is consistent with x.

Finally, we are ready to formally describe some variables that we will show are un-
helpful in the lifted space under this framework. Given an admissible operator Γ and
P ⊆ [0, 1]n, suppose Γ̃(P) ⊆ RS×S′ . We say that S ′ ∈ S ′ is P -useless if there is a
collection T = {T1, . . . , Tk} ⊆ S ′ such that

1. S ′ ∈ T and
⋃k
i=1 Ti ∈ S ′ \ T ;

2. there exists ` ∈ [k] such that P ∩ conv(Tj) = ∅, ∀j ∈ [k], j 6= `.

What does it mean for variables to be P -useless? For example, let T = {T1, . . . , Tk} ⊆
S ′ be a collection of variables such that R :=

⋃k
i=1 Ti is itself a variable in S ′, and R 6∈ T .

Further suppose there exists a unique ` ∈ [k] such that P ∩ conv(Tj) = ∅, ∀j 6= `. This
means that in this setting, each of the Tj has the set theoretical meaning of the empty
set. Thus, we do not lose any points when projecting Γ̃(P) to Γ(P) if we assume that
the matrix column indexed by Tj is the vector of all zeros. Moreover, since R =

⋃k
i=1 Ti,

36

we see that R ∩ P = T` ∩ P , and so the variables R and T` can be interpreted as having
the same set theoretical meaning in the formulation, and we can deem T` redundant.
Therefore, in this case, T1, . . . , Tk are all P -useless.

With the notion of P -useless variables, we can show the following:

Proposition 11. Let Γ1,Γ2 be two lift-and-project operators that are admissible under
the pairs (f1, g1) and (f2, g2), respectively. Let P ⊆ [0, 1]n, and suppose Γ̃1(P) ∈ RS1×S′1
and Γ̃2(P) ∈ RS2×S′2. Also, let U be a set of P -useless variables in S ′2. Further suppose
that the following conditions hold:

(i) Every matrix in Γ̃1(P) satisfies (OMC).

(ii) {S ∩ S ′ : S ∈ S1, S
′ ∈ S ′1} refines {S ∩ S ′ : S ∈ S2 \ U, S ′ ∈ S ′2 \ U}, and S ′1 refines

S ′2 \ U .

(iii) Let Y ∈ Γ̃1(P), and S ∈ S ′2. If y ∈ RS2×{S} is consistent with Y , then y ∈ f2(S).

(iv) If Y1 ∈ g1(P) and Y2 ∈ RS2×S′2 is consistent with Y1, then Y2 ∈ g2(P).

Then, Γ1(P) ⊆ Γ2(P).

Intuitively, the above conditions are needed so that given a point x ∈ Γ1(P) and its
certificate matrix Y ∈ Γ̃(P), we know enough structure about the entries and set theoretic
meanings of Y to construct a matrix in R(S2\U)×(S′2\U) that is consistent with Y . Then
using the fact that the variables in U are P -useless, we can extend this to a matrix in
RS2×S′2 that certifies x’s membership in Γ2(P). Also, for y ∈ RS2×{S}, we are referring to
a vector with |S2| entries that are indexed by elements of {T ∩ S : T ∈ S2}. Since we will
be talking about whether y is consistent with another vector or matrix, we will need to
specify not only the entries of y, but also the sets in A these entries correspond to.

Now we are ready to prove Proposition 11.

Proof of Proposition 11. Suppose x ∈ Γ1(P). Let Y ∈ RS1×S′1 be a matrix in Γ̃(P) such
that x̂(Y eF) = x̂. First, we construct an intermediate matrix Y ′ ∈ R(S2\U)×(S′2\U). For
each α ∈ S2 \ U and β ∈ S ′2 \ U , we know (due to (ii)) that there exists a set of ordered
pairs

Iα,β ⊆ {(S, S ′) : S ∈ S1, S
′ ∈ S ′1}

such that the collection {S ∩ S ′ : (S, S ′) ∈ Iα,β} partitions α ∩ β. Next, we construct Y ′

such that
Y ′[α, β] :=

∑
(S,S′)∈Iα,β

Y [S, S ′].

Note that by (OMC), the entry Y ′[α, β] is invariant under the choice of Iα,β. Also,
since {(F ,F)} is a valid candidate for IF ,F , we see that Y ′[F ,F] = Y [F ,F] = 1, and
x̂(Y ′eF) = x̂(Y eF) = x̂.

37

Next, we construct Y ′′ ∈ Γ̃2(P) from Y ′. Given α ∈ U such that P ∩ conv(α) 6= ∅,
there exists a set h(α) ∈ S ′2 \U such that conv(α)∩P = conv(h(α)∩P). Note that h(α)
may not be unique, but any eligible choice would do.

Next, we define V 1 ∈ R(S2\U)×S2 as follows:

V 1(eα) :=

eα if α ∈ S2 \ U ;
eh(α) if α ∈ U and conv(α) ∩ P 6= ∅;
0 otherwise.

Similarly, we define V 2 ∈ R(S′2\U)×S′2 as follows:

V 2(eα) :=

eα if α ∈ S ′2 \ U ;
eh(α) if α ∈ U and conv(α) ∩ P 6= ∅;
0 otherwise.

We show that Y ′′ := V 1Y ′(V 2)> ∈ Γ̃2(P). Since our map from Y to Y ′′ preserves (OMC),
Y ′′ is consistent with Y , and thus by (iv) it satisfies all constraints in g2. Also, by (iii) it
satisfies all column constraints in f2 as well. Thus, Y ′′ ∈ Γ̃2(P). Since x̂(Y ′′eF) = x̂, we
are finished.

We note that, in some cases, we can relate the performance of two lift-and-project
operators by assuming a condition slightly weaker than (OMC). Given a matrix Y ∈
RS×S′ , where S,S ′ ⊆ A, we say that it is row and column measure consistent (RCMC) if
every column and row of Y satisfies (OMC). As is apparent in its definition, (RCMC) is
less restrictive than (OMC). In fact, it is satisfied by all matrices in the lifted space of all
named lift-and-project operators mentioned in this thesis. Then, we have the following
result that is the (RCMC) counterpart of Proposition 11:

Proposition 12. Let Γ1,Γ2 be lift-and-project operators that are admissible under the
pairs (f1, g1) and (f2, g2), respectively. Also, let P ⊆ [0, 1]n, and suppose Γ̃1(P) ∈ RS1×S′1
and Γ̃2(P) ∈ RS2×S′2. Also, let U be a set of P -useless variables in S ′2. Further suppose
that all of the following conditions hold:

(i) Every matrix in Γ̃1(P) satisfies (RCMC).

(ii) S1 refines S2 \ U , and S ′1 refines S ′2 \ U .

(iii) Let S ∈ S ′2. If x ∈ RS1×{S} is contained in f1(S) and y ∈ RS2×{S} is consistent with
x, then y ∈ f2(S).

(iv) If Y1 ∈ g1(P) and Y2 ∈ RS2×S′2 is consistent with Y1, then Y2 ∈ g2(P).

Then, Γ1(P) ⊆ Γ2(P).

38

Proof. The result can be shown by following the same outline as in the proof of Propo-
sition 11. Suppose x ∈ Γ1(P) and Y ∈ RS1×S′1 is a certificate matrix for x. For each
α ∈ S2 \ U , define Iα to be a collection of sets in S1 that partitions α. Since S1 refines
S2 \ U , such a collection must exist. Likewise, for all α ∈ S ′2 \ U , we define I ′α to be a
collection of sets in S ′1 that partitions α.

Next, we define Y ′ ∈ R(S2\U)×(S′2\U) such that

Y ′[α, β] :=
∑

S∈Iα,S′∈I′β

Y [S, S ′].

Since Y satisfies (RCMC), Y ′[α, β] is invariant under the choices of Iα and I ′β. From here

on, we can define V1, V2 and Y ′′ ∈ RS2×S′2 as in the proof of Proposition 11, and apply the
same reasoning therein to show that it is in Γ̃2(P). Now since x̂(Y ′′eF) = x̂(Y eF) = x̂,
we conclude that x ∈ Γ2(P).

3.1.2 Relating BZ′,BZ′+ with SA′, SA′+

Next, we look into several applications of Proposition 11 and 12. First, they can be
applied to relate the integrality gaps between relaxations. Given two operators Γ1,Γ2 and
a set P such that Γ1(P) ⊆ Γ2(P), it is apparent that the integrality gap of Γ1(P) is no
more than that of Γ2(P) with respect to any chosen direction. We will formally define
integrality gap and discuss these results in more depth in Chapter 7.

Next, we relate the performance of BZ′ and SA′ under some suitable conditions. First,
we define a tier S ∈ Tk to be P -useless if all variables associated with S are P -useless.
Then we have the following:

Theorem 13. Suppose there exists ` ∈ [n] such that all tiers S generated by BZ′k of size
greater than ` are P -useless. Then

BZ′k(P) ⊇ SA′2`(Ok(P)).

Proof. Let Γ1 = SA′2`(Ok(·)) and Γ2 = BZ′k(·). We prove our assertion by checking all
conditions listed in Proposition 11.

First of all, all matrices in the lifted space of SA′2` satisfy (OMC). Next, since S1 = A+
1

and S ′1 = A2`, we see that {S ∩ S ′ : S ∈ S1, S
′ ∈ S ′1} refines A2`. On the other hand, since

every tier of size greater than ` is P -useless, we see that A` refines both S2 \U and S ′2 \U .
Thus, A2` refines {S ∩ S ′ : S ∈ S2 \ U, S ′ ∈ S ′2 \ U}. Also, it is apparent that S ′1 = A2`

refines S ′2 \ U , so (ii) holds.

For (iii), we let f1(S) = K(Ok(P) ∩ conv(S)), ∀S ∈ A, and

f2(S) :=
{
y ∈ RS′2 : x̂(y) ∈ K(Ok(P) ∩ conv(S)), y satisfies (BZ′ 2)

}
.

39

Note that all conditions in (BZ′ 2) are relaxations of constraints in (P5) and (P6) in

Proposition 9, and thus are implied by (OMC). Let Y ∈ S̃A
′2`

(Ok(P)), and Y ′′ be the
matrix obtained from the construction in the proof of Proposition 11. Since Y satisfies
(OMC) and Y ′′ is consistent with Y , the columns of Y ′′ must satisfy (BZ′ 2).

To check (iv), we see that g2(P) would be the set of matrices in the lifted space that
satisfy (BZ′ 3) and (BZ′ 4). It is easy to see that (BZ′ 4) is implied by (OMC). For (BZ′ 3),
suppose S ∈ S2, S

′ ∈ S ′2, and S ∩ S ′ ∩ Ok(P) = ∅. If Y ′′[S, S ′] 6= 0, then we know
that P ∩ conv(S) 6= ∅ and P ∩ conv(S ′) 6= ∅, by the construction of Y ′′. Thus, define
α := S if S 6∈ U , and α := h(S) if S ∈ U . Likewise, define β := S ′ if S ′ 6∈ U , and
β := h(S ′) if S ′ ∈ U . In all cases, we have now obtained α ∈ S2 \ U, β ∈ S ′2 \ U such that
Y ′′[α, β] = Y ′′[S, S ′].

Since
Y ′′[α, β] = Y ′[α, β] =

∑
(T,T ′)∈Iα,β

Y [T, T ′],

we obtain T ∈ A+
1 , T

′ ∈ Ak such that Y [T, T ′] 6= 0. Then by (SA′ 4), T ∩ T ′ ∩ P 6= ∅.
This implies that S ∩ S ′ ∩ P 6= ∅, and so (BZ′ 3) holds.

We remark that, with a little more care and using the same observation as in the proof
of Proposition 3, one can slightly sharpen Theorem 13 and show that SA2`(Ok(P)) ⊆
BZ′k(P) under these assumptions.

Next, we turn to relate the performances of BZ′+ and SA′+. Observe that in Proposi-
tion 12, in the special case of comparing two lift-and-project operators whose lifted spaces
are both square matrices (i.e. S1 = S ′1 and S2 = S ′2), the construction of Y ′ and Y ′′ pre-
serves positive semidefiniteness of Y . Thus, this framework can be applied even when g1

and g2 enforce positive semidefiniteness constraints in their respective lifted spaces. The
following is an illustration of such an application:

Theorem 14. Suppose there exists ` ∈ [n] such that all tiers S generated by BZ′k+ of size
greater than ` are P -useless. Then

BZ′k+(P) ⊇ SA′`+(Ok(P)).

Proof. We prove our claim by verifying the conditions in Proposition 12. First, every
matrix in the lifted space of SA′`+ satisfies (OMC), which implies (RCMC). Next, since
S1 = S ′1 = A` and every tier of BZ′k+ that is not useless has size at most `, we see that (ii)
holds as well.

For (iii), note that we can let

f1(S) =
{
y ∈ RS′1 : x̂(y) ∈ K(P ∩ conv(S)), y satisfies (OMC)

}
,

and
f2(S) =

{
y ∈ RS′2 : x̂(y) ∈ K(P ∩ conv(S)), y satisfies (BZ′ 2)

}
.

40

As mentioned before, all conditions in (BZ′ 2) are implied by (OMC) constraints and the
fact that A` refines S2. Thus, (iii) is satisfied.

For (iv), we see that g2(P) would be the set of matrices in SS2+ that satisfy (BZ′ 3) and
(BZ′ 4). It is easy to see that (BZ′ 4) is implied by (OMC). Also, (BZ′ 3) is implied by
(SA′+ 4). Thus, we are finished.

3.2 Applications to matching and stable set relax-

ations

Next, we look into the lift-and-project ranks of a number of relaxations that arise from
combinatorial optimization problems. Given a lift-and-project operator Γ and polytope
P , the Γ-rank of P is defined to be the smallest integer k such that Γk(P) = PI . The
notion of rank gives us a measure of how close P is to PI with respect to Γ. Moreover, it
is useful when comparing the performances of different operators.

First, we look into the matching problem of graphs. Given a simple, undirected graph
G = (V,E), we define

MT (G) :=

x ∈ [0, 1]E :
∑

j:{i,j}∈E

xij ≤ 1, ∀i ∈ V

 .

Then MT (G)I is the matching polytope ofG, and is exactly the convex hull of the incidence
vectors of the matchings of G.

While there exist efficient algorithms that solve the matching problem (e.g. Edmonds’
seminal blossom algorithm [Edm65]), many lift-and-project operators have been shown
to require exponential time to compute the matching polytope starting with MT (G). In
particular, MT (K2n+1) is known to have LS+-rank n [ST99] and BCC-rank n2 [ABN04].
More recently, Mathieu and Sinclair [MS09] showed that the SA-rank of MT (K2n+1) is
2n− 1. Using their result and Theorem 13, we can show that this polytope is also a bad
instance for BZ′.

Theorem 15. Let G = K2n+1 for some integer n ≥ 1. Then the BZ′-rank of MT (G) is
at least

⌈√
2n− 3

2

⌉
.

Proof. Let P = MT (G). We first identify the tiers generated by BZ′k that are P -useless.
Observe that a set O ⊆ E is a k-small obstruction generated by BZ′k if there is a vertex
that is incident with all edges in O, and that |O| ≤ k + 1 or |O| ≥ 2n− k. Now suppose
W ∈ Wk is a wall, and let {e1, e2, . . . , ep} be a maximum cardinality matching contained
in W . Notice that for e1 = {u1, v1} to be in W , it has to be contained in at least 2
obstructions, and each of these obstructions has to originate from the u1- or v1-constraint
in the formulation of MT (G). Now suppose e2 = {u2, v2}. By the same logic, we deduce

41

that the obstructions that allow e2 to be in W have to be different from those that enabled
e1 to be in W . Since each wall is generated by at most k + 1 obstructions, we see that
p ≤ k+1

2
. Therefore, for every tier S ∈ Tk (which has to be contained in the union of k

walls), the maximum cardinality matching contained in S has at most k(k+1)
2

edges.

Hence, if |S| > k(k+1)
2

+ k, then S \ T is not a matching for any set T ⊆ S of size up
to k, which implies (S \ T)|1 ∩ T |0 ∩ P = ∅. Thus, the only variables α associated with S
such that α∩P 6= ∅ take the form α = (S \ (T ∪U))|1 ∩ T |0 ∩U |<|U |−(k−|T |). In this case,
it is not hard to see that α∩P = (S \ (T ∪U))|1 ∩ T |0 ∩P . Since BZ′k does generate the
tier S \ U , we see that the variable (S \ (T ∪ U))|1 ∩ T |0 is present. Thus, all variables
associated with S are P -useless. By Proposition 3 and the Mathieu–Sinclair result, we
see that the SA′-rank of P is at least 2n − 2. Thus, by Theorem 13, for BZ′k(P) to be

equal to PI , we need 2
(
k(k+1)

2
+ k
)
≥ 2n− 2, which is implied by k ≥

√
2n− 3

2
.

The best upper bound we know for the BZ′-rank of MT (K2n+1) is 2n − 1 (due to
Mathieu and Sinclair’s result, and the fact that BZ′k dominates SAk). In contrast, we
shall see in Chapter 4 that the BZ′+-rank of MT (K2n+1) is at most

√
2n, and utilizing

positive semidefiniteness allows us to prove a much better upper bound in this case.

We next look at the stable set problem of graphs. Given a graph G = (V,E), its
fractional stable set polytope is defined to be

FRAC (G) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1, ∀ {i, j} ∈ E

}
.

That is, FRAC (G) is exactly the feasible region of the LP (1.5) mentioned in Section 1.2.
Then the stable set polytope STAB(G) := FRAC (G)I is precisely the convex hull of
incidence vectors of stable sets of G. Since there is a bijection between the set of matchings
in G and the set of stable sets in its line graph L(G), we obtain the next result readily
from Theorem 15.

Corollary 16. Let G be the line graph of K2n+1. Then the BZ′-rank of FRAC (G) is at
least

⌈√
2n− 3

2

⌉
.

Proof. First, it is not hard to see that MT (H) ⊆ FRAC (L(H)), for every graph H. Also,
it is apparent from the definition of BZ′ thatOk(P) ⊆ Ok(P ′) implies BZ′k(P) ⊆ BZ′k(P ′).
Since the collection of k-small obstructions of FRAC (G) is exactly the set of edges of G
for all k ≥ 1, we see that FRAC (G) = Ok(FRAC (G)). Therefore,

Ok(MT (K2n+1) ⊆ MT (K2n+1) ⊆ FRAC (G) = Ok(FRAC (G)),

which implies that the BZ′-rank of FRAC (G) is at least that of MT (K2n+1).

Thus, we obtain from Corollary 16 a family of graphs on n vertices whose fractional
stable set polytope has BZ′-rank Ω(n1/4).

42

We next turn to the complete graph G := Kn. Starting with the seminal paper of
Lovász and Schrijver [LS91], it was noticed quite early that LS0,LS and even SA perform
poorly on FRAC (G) when G = Kn. We show that this is also true for SA′ and BZ′. First,
we have the following:

Proposition 17. For every graph G and every integer k ≥ 1,

1

k + 2
ē ∈ SA′k(FRAC (G)).

In particular, when G = Kn, the SA′-rank of FRAC (G) is n− 2, for every n ≥ 2.

Proof. We define the matrix Y ∈ RAk×A+
1 , where

Y [α, β] =

1

k+2
if α ∩ β = i|1 ∩ T |0 for some i ∈ [n], T ⊆ [n]

k+2−|T |
k+2

if α ∩ β = T |0 for some i ∈ [n], T ⊆ [n]

0 otherwise.

Next, we prove that Y ∈ S̃A
′k

(FRAC (G)). Since F = ∅|0, Y [F ,F] = 1, and (SA 1) holds.
Next, we see that for all α ∈ Ak, Y eα is either Y [F , α](e0 + ei) for some i ∈ [n], or is

less than or equal to

(
Y [F , α]
Y [F ,α]

2
ē

)
. Thus, (SA 2) holds. (SA 3) and (SA 5) also hold by

the construction of Y . Finally (SA′ 4) is satisfied because whenever Y [α, β] > 0, α ∩ β
contains at most one positive index, and thus has nonempty intersection with FRAC (G).
Thus, it follows that 1

k−2
ē ∈ SA′k(FRAC (G)).

For the second part of the claim, suppose G = Kn for some n ≥ 2. Since it is apparent
that 1

k−2
ē 6∈ STAB(G) whenever k − 2 < n, the SA′-rank of FRAC (G) is at least n − 2.

On the other hand, it was shown in [LS91] that the LS0-rank of FRAC (G) is exactly
n − 2. Since SA′ dominates LS0, we see that the SA′-rank of FRAC (G) is also exactly
n− 2.

Proposition 17 extends Lovász and Schrijver’s result (Lemma 2.7 in [LS91]) which
shows that 1

k+2
ē ∈ LSk(FRAC (G)) for every k ≥ 1. Now, we are ready to bound the

BZ′-rank of FRAC (Kn).

Theorem 18. Suppose G = Kn for some integer n ≥ 3. Then the BZ′-rank of FRAC (G)
is between

⌈
n
2

⌉
− 2 and

⌈
n+1

2

⌉
. The same bounds apply to the BZ-rank.

Proof. Let P := FRAC (Kn). We first prove the lower bound, by showing that all tiers
generated by BZ′k of size greater than k + 1 are P -useless. This, combined with Theo-
rem 13, implies that BZ′k(P) ⊇ SA′2k+2(Ok(P)).

Since the set of k-small obstructions of FRAC (Kn) is exactly E for every k ≥ 1, we
see that Wk = {W ⊆ [n] : |W | ≤ k + 1} and Tk = {S ⊆ [n] : |S| ≤ k(k + 1)}. Now if S
is any tier of size at least k + 2, we see that (S \ T)|1 ∩ T |0 ∩ P = ∅ for all T ⊆ S such

43

that |T | ≤ k. This is because in such cases |S \ T | ≥ 2, and there are no points in P
which contain at least two 1s. Thus, the only variables α associated with S such that
α ∩ P 6= ∅ take the form (S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |). However, in this case we
know that S \ (T ∪ U) has size 0 or 1, and thus α ∩ P is equal to either F ∩ P or i|1 ∩ P
for some i ∈ [n]. Therefore, all variables associated with S are P -useless, and so the tier
S is P -useless.

Also, observe that P = Ok(P) for any k ≥ 1, and from Proposition 17 we know that P
has SA′-rank n− 2. Thus, it follows that the BZ′-rank of P is at least

⌈
n
2

⌉
− 2. Moreover,

since BZ′ dominates BZ′′, it follows from Proposition 85 that FRAC (G) has BZ′-rank at
most

⌈
n+1

2

⌉
.

Finally, we turn to the BZ-rank of FRAC (G). Again, Ok = E for all k ≥ 1. Therefore,
in this case the conditions (BZ 3) and (BZ′ 3) are equivalent. Since each vertex is incident
with at least 2 edges, BZ does generate all the singleton sets as walls. Thus, the BZ- and
BZ′-rank of FRAC (G) must coincide.

Thus, we see that, as with all other popular polyhedral lift-and-project operators,
BZ′ (which is already stronger than BZ) performs poorly on the fractional stable set
polytope of complete graphs. On the other hand, Lovász and Schrijver [LS91] showed
that LS+(FRAC (G)) is contained in Lovász’s theta body [Lov79] for every graph G. This
implies that the LS+-rank of FRAC (G) is 1 for every perfect graph G (see [LS91, LT03]
for more examples of graphs whose fractional stable set polytopes have low LS+-rank).
In particular, it follows that FRAC (Kn) has rank 1 with respect to all lift-and-project
operators we have discussed that utilize positive semidefiniteness. Also, Bienstock and
Ozbay [BO04] showed that the SA-rank of FRAC (G) is bounded above by the tree-
width of G. Consequently, every operator that dominates SA can compute STAB(G)
in polynomial time for graphs G with known, bounded tree-widths. Interestingly, there
is a family of graphs with tree-width 3 whose fractional stable set polytope is shown
to have unbounded LS0-rank [LT03]. These examples are all helpful in enhancing our
understanding of the general behaviour of lift-and-project methods.

44

Chapter 4

Upper-Bound Analysis

In Chapter 3, we looked at tools that help establish lower-bound results, and relate the
performances of different lift-and-project operators. In this Chapter, we look into some
techniques that help with proving upper-bound results, and provide an application of
these results on the matching relaxations.

4.1 Utilizing `-establishing variables

Somewhat complementary to the notion of useless variables, here we look into instances
where the presence of a certain set of variables in the lifted space provides a guarantee
on the overall performance of the operator. Given j ∈ {0, 1, . . . , n}, let [n]j denote the
collection of subsets of [n] of size j. Suppose Y ∈ SA′ for some A′ ⊆ A. We say that Y is
`-established if all of the following conditions hold:

(`1) Y [F ,F] = 1.

(`2) Y � 0.

(`3) A+
` ⊆ A′.

(`4) For all α, β, α′, β′ ∈ A+
` such that α ∩ β = α′ ∩ β′, Y [α, β] = Y [α′, β′].

(`5) For all α, β ∈ A+
` , Y [F , β] ≥ Y [α, β].

Notice that all matrices in S̃A
`

+(P) (which contains S̃A
′`
+(P)) are `-established, for all

P ⊆ [0, 1]n. A matrix in B̃Z
′k
+(P) is also `-established if all subsets of size up to ` are

generated as tiers (and thus every matrix in B̃Z
′k
+(P) is at least k-established). Given

such a matrix, we may define a vector y whose entries are indexed by sets in
⋃2`
i=0[n]i,

such that yS = Y [S ′|1, S ′′|1], where S ′, S ′′ are subsets of [n] of size at most ` such that

45

S ′ ∪ S ′′ = S. Note that such choices of S ′, S ′′ must exist by (`3), and by (`4) the value of
yS is invariant under the choices of S ′ and S ′′.

Finally, we define Z ∈ R2`+1 such that

Zi :=
∑
S⊆[n]i

yS, ∀i ∈ {0, 1, . . . , 2`} .

Note that Z0 is always equal to 1 (by (`1)), and Z1 =
∑n

i=1 Y [i|1,F]. Also, observe that
the entries of Z are related to each other. For example, if x̂(Y eF) is an integral 0-1 vector,
then by (`5) we know that yS ≤ 1 for all S, and yS > 0 only if y{i} = 1, ∀i ∈ S. Thus,
we can infer that

Zj =
∑
S∈[n]j

yS ≤
(
Z1

j

)
, ∀j ∈ [2`].

We next show that the positive semidefiniteness of Y also forces the Zi’s to relate to each
other, somewhat similarly to the above. The following result would be more intuitive by
noting that

(
p
i+1

)
/
(
p
i

)
= p−i

i+1
.

Proposition 19. Suppose Y ∈ SA′+ is `-established, and y, Z are defined as above. If there
exists an integer p ≥ ` such that

Zi+1 ≤
(
p− i
i+ 1

)
Zi, ∀i ∈ {`, `+ 1, . . . , 2`− 1} ,

then Zi ≤
(
p
i

)
, ∀i ∈ [2`]. In particular, Z1 ≤ p.

Proof. We first show that Z` ≤
(
p
`

)
. Given i ∈ [`], define the vector v(i) ∈ RA′ such that

v(i)α :=

(
p
i

)
if α = F ;

−1 if α = S|1 where S ∈ [n]i;
0 otherwise.

By the positive semidefiniteness of Y , we obtain

0 ≤ v(`)>Y v(`) =

(
p

`

)2

− 2

(
p

`

)
Z` +

∑
S,S′∈[n]`

Y [S|1, S ′|1]. (4.1)

Notice that for any T ∈ [n]`+j, the number of sets T ′, T ′′ ∈ [n]` such that T ′ ∪ T ′′ = T is(
`
j

)(
`+j
`

)
. Hence, this is the number of times the term yT appears in

∑
S,S′∈[n]`

Y [S|1, S ′|1].

We also know by assumption that for all j ∈ [`],

Z`+j ≤
(
p− j − `+ 1

j + `

)(
p− j − `+ 2

j + `− 1

)
· · ·
(
p− `
`+ 1

)
Z`

=

(
(p− `)!`!

(p− `− j)!(j + `)!

)
Z`. (4.2)

46

Thus,

∑
S,S′∈[n]`

Y [S|1, S ′|1] =
∑̀
j=0

∑
S∈[n]`+j

(
`+ j

`

)(
`

j

)
yS

=
∑̀
j=0

(
`+ j

`

)(
`

j

)
Z`+j

≤
∑̀
j=0

(
`

j

)(
(`+ j)!

j!`!

)(
(p− `)!`!

(p− `− j)!(`+ j)!

)
Z`

=

(
p

`

)
Z`.

Therefore, we conclude from (4.1) that 0 ≤
(
p
`

)2 −
(
p
`

)
Z`, which implies that Z` ≤

(
p
`

)
.

Together with (4.2), this implies that Z`+j ≤
(
p
`+j

)
, ∀j ∈ {0, 1, . . . , `}.

It remains to show that Zi ≤
(
p
i

)
, ∀i ∈ [` − 1]. To do that, it suffices to show that

Zi ≤
(
p
i

)
can be deduced from assuming Zi+j ≤

(
p
i+j

)
, ∀j ∈ [i]. Then applying the

argument recursively would yield the result for all i. Observe that

∑
S,S′∈[n]i

Y [S|1, S ′|1] =
i∑

j=0

∑
S∈[n]i+j

(
i+ j

i

)(
i

j

)
yS

≤ Zi +
i∑

j=1

(
i+ j

i

)(
i

j

)(
p

i+ j

)

= Zi −
(
p

i

)
+

(
p

i

)2

.

Hence,

0 ≤ v(i)>Y v(i) ≤
(
p

i

)2

−2

(
p

i

)
Zi+

(
Zi −

(
p

i

)
+

(
p

i

)2
)

= 2

((
p

i

)
− 1

)((
p

i

)
− Zi

)
,

and we conclude that Zi ≤
(
p
i

)
.

An immediate but noteworthy implication of Proposition 19 is the following:

Corollary 20. Suppose Y ∈ SA′ is `-established, and y, Z are defined as before. If Zi = 0,
∀i > `, then Z1 ≤ `.

Proof. Since Y � 0,

0 ≤ v(`)>Y v(`) = 1− 2Z` +
∑

S,S′∈[n]`

Y [S|1, S ′|1].

47

Since Zi = 0, ∀i > `, Y [S|1, S ′|1] > 0 only if S = S ′. Therefore,∑
S,S′∈[n]`

Y [S|1, S ′|1] =
∑
S∈[n]`

Y [S|1, S|1] = Z`,

and we deduce that Z` ≤ 1. Then we can apply Proposition 19 and deduce that Zi ≤(
`
i

)
, ∀i ∈ [2`]. In particular, Z1 ≤ `.

4.2 Applications to matching relaxations

We now employ the upper-bound proving techniques developed earlier and the notion of
`-established matrices to prove the following result on the matching polytope of graphs.

Theorem 21. The SA′+-rank of MT (K2n+1) is at most n−
⌊√

2n+1−1
2

⌋
.

Proof. Suppose G = K2n+1 and let P = MT (G). Let Y ∈ S̃A
′k
+(P). Since Y is k-

established, it suffices to show that Zi+1 ≤
(
n−i
i+1

)
Zi for all integer i ∈ {k, k + 1, . . . , 2k − 1}

whenever k ≥ n −
⌊√

2n+1−1
2

⌋
. Then it follows from Proposition 19 that Z1 ≤ n, which

implies
∑

e∈E xe ≤ n is valid for SA′k+(P).

By the fact that the maximum cardinality matching in G has size n and the con-
dition (SA′+ 4), Zi = 0, ∀i > n. Thus, it suffices to verify the above claim for the
case when k ≤ i ≤ n − 1. Let S be a matching of size k that saturates the ver-
tices {2n− 2k + 2, . . . , 2n+ 1}, let T be a matching of size i − k that saturates vertices
{2n− 2i+ 2, . . . , 2n− 2k + 1} and let E ′ be the set of edges that do not saturate any
vertices in S or T . Also, for each U ⊆ E ′, we define the vector fU ∈ R|E′|+1 (indexed by
{0} ∪ E ′) such that

(fU)i :=

{
Y [(T ∪ U)|1 ∩ (E ′ \ U)|0, S|1] if i = 0 or if i ∈ U ;
0 otherwise.

Notice that k ≥ n −
√

2n+1−1
2

implies k ≥
(

2n+1−2k
2

)
≥ |E ′| + |T |. Therefore, the above

entries in Y do exist, and the vectors fU are well-defined. Also, applying (SA 3) iteratively
on each index in E ′ gives∑

U⊆E′
fU = (Y [T |1, S|1], Y [(T ∪ {e1})|1, S|1], . . . , Y [(T ∪

{
e|E′|

}
)|1, S|1])>, (4.3)

where e1, . . . , e|E′| are the edges in E ′.

Moreover, observe that fU =

(
(fU)0

(fU)0χ
U

)
for all U ⊆ E ′, and by (SA′+ 4) we know

that (fU)0 > 0 only if U ∪ T ∪ S is a matching of G, which implies that U is a matching

48

contained in E ′. Since E ′ spans 2n − 2i + 1 vertices, such a U must have size at most
n − i. Thus, for each fU such that (fU)0 > 0, we know that

∑
i∈E′(fU)i ≤ (n − i)(fU)0.

Therefore, by (4.3),(
2n− 2i+ 1

2

)
Zi+1

|Mn,i+1|
=
∑
i∈E′

Y [(T ∪ {ei})|1, S|1] ≤ (n− i)Y [T |1, S|1] = (n− i) Zi
|Mn,i|

,

where we used Mn,i to denote the set of all matchings of size i in Kn. Notice that

|Mn,i| =
1

i!

(
n

2

)(
n− 2

2

)
· · ·
(
n− 2i+ 2

2

)
=

n!

2ii!(n− 2i)!
.

Thus, we obtain that

Zi+1 ≤
(n− i)|Mn,i+1|(

2n−2i+1
2

)
|Mn,i|

Zi =
n− i
i+ 1

Zi.

This concludes the proof, as we see that the facets of MT (G)I corresponding to smaller
odd cliques in G are also generated by SA′k+.

Recall that the LS+-rank of MT (K2n+1) is exactly n, as shown in [ST99]. Thus,
the techniques we proposed prove that SA′+ performs strictly better on this family of
polytopes.

Next, we show that the notion of `-established matrices can also be applied to provide
an upper bound on the BZ′+-rank of MT (K2n+1).

Theorem 22. The BZ′+-rank of MT (K2n+1) is at most
⌈√

2n+ 1
4
− 1

2

⌉
.

Proof. Let P = MT (K2n+1). First, we show that every subset W ⊆ E of size up to
⌊
k+1

2

⌋
is a wall generated by BZ′k+. Given any edge {i, j} ∈ W , take a vertex v 6∈ {i, j}. Then
{{i, v} , {i, j}} and {{j, v} , {i, j}} are both k-small obstructions for any k ≥ 1, and their
intersection contains {i, j}. If we do this for every edge in W , then we see that there is a
set of at most 2|W | ≤ k + 1 obstructions that generate W as a wall.

Therefore, every set S of size up to k
⌊
k+1

2

⌋
is a tier, and the variable S|1 is generated.

Since k ≥
⌈√

2n+ 1
4
− 1

2

⌉
implies k

⌊
k+1

2

⌋
≥ n, we see that any Y ∈ B̃Z

′k
+(P) is n-

established. By (BZ′ 3), Y [S|1, S ′|1] > 0 only if S ∪ S ′ is a matching, which implies
Zi = 0, ∀i > n. Thus, we can apply Corollary 20 and deduce that Z1 ≤ n. Therefore,∑

e∈E xe ≤ n is valid for BZ′k+(P).

Again, since the facets of MT (G)I corresponding to smaller odd cliques in G are also
generated by BZ′k+, we are finished.

Note that the above upper bound also applies to the slightly weaker BZ+ operator.

49

Chapter 5

Tools for Constructing and Verifying
Certificate Matrices

In Chapter 3, we presented tools that can help establishing a lower-bound result by
relating the performances of two lift-and-project operators. We saw that these tools can
reduce the task of constructing a certificate matrix for a complicated operator (e.g. BZ′

or BZ′+) to constructing one for a simpler operator (e.g. SA′ or SA′+). We now proceed
to look at ideas that can further simplify the construction and verification of certificate
matrices, using ideas such as linear dependence, symmetries, convexity and connections
with combinatorial objects.

First, we shall see that many matrices in the lifted space of a lift-and-project operators
have very low rank compared to their dimensions. This is because many operators enforce
linear dependencies on the matrices in their lifted spaces to try to capture the relationships
between the sets in A that are represented by the rows and columns of the matrices. Also,
sometimes dependencies can also arise when the entries of the matrices that represent
larger subsets of F align with those for the smaller subsets in a special way. In these cases,
verifying the membership of the matrix in the lifted space can be reduced to verifying
some of the conditions of a symmetric minor that has the same rank as the original matrix.

Also, since many lift-and-project operators impose positive-semidefiniteness constraints
on the matrices in their lifted spaces, we provide some techniques that can simplify this
task. In this context, we will first look into the case when there is a connection between the
eigenspaces of a candidate matrix and sets of combinatorial objects, which may provide
valuable information about the eigenvectors and eigenvalues (and their multiplicities) of
our matrix. We will then look into some maps that commute with lift-and-project opera-
tors. Hong and Tunçel provided in [HT08] a template of proving a lower-bound result for
the Lovász–Schrijver operators by using such maps, and we show that some of their work
can be extended to the stronger SA-based operators. We will also look at the special case
when the map is a permutation of the n coordinates, and use them to show that when the
given initial relaxation has a lot of symmetries, we might be able to conclude that there

50

are certificate matrices in the lifted space with very few distinct entries. This in turn can
allow us to verify the positive semidefiniteness of a very large matrix by only doing that
on a much smaller matrix.

The idea of using symmetry and convexity to reduce the number of parameters in-
volved in a problem instance have been widely exploited in both computational work
and theoretical research. This at least goes back to Lovász’s seminal work on the theta
function in [Lov79] and related findings by Schrijver in [Sch79]. Also during the 1970s,
Godsil used similar ideas in his work in algebraic graph theory (see [CG97] for a more
recent survey). More recently, these ideas have also been proven useful in reducing SDP
instances [GP04, dKPS07], bounding the crossing number of graphs [dKMP+06], and
obtaining SDP relaxations for polynomial optimization problems [MWT13].

In this chapter, we will focus on how these ideas can help simplify the construction
and verification of certificate matrices. Notice that the conditions imposed by the named
lift-and-project operators can be loosely partitioned into the following three categories:

1. P -related constraints: Enforcing some vector formed by a subset of matrix entries
to be contained in some lifted version of the initial relaxation P (e.g. the conditions
Y ei, Y (e0 − ei) ∈ K(P) for the Lovász–Schrijver operators, conditions (SA 2), and
(BZ′ 2)(ii)).

2. Set theoretical constraints: Establishing dependencies between matrix entries to
ensure some consistency between the behaviour of these entries with their intended
set theoretical values (e.g. the condition Y = Y > in LS; (SA 3), (SA 4) and (SA 5);
(BZ′ 2) (iii)-(v), (BZ′ 3) and (BZ′ 4).)

3. Positive Semidefiniteness: Requiring that a matrix (or a certain submatrix) is
positive semidefinite.

Depending on what we know at hand (about the problem, the lift-and-project operator,
related known lower-bound results, etc.), we can take different approaches to constructing
a certificate matrix, such that one or two of the above set of conditions are guaranteed to
hold. Then it only suffices to check the remaining (perhaps more challenging) constraints
to establish the desired lower-bound result.

We now look at several such approaches, highlighting how each could simplify the
construction and verification of certificate matrices. We will also see how many of these
ideas apply to specific lift-and-project relaxations, such as the Lasserre relaxations of the
max-cut problem, and the SA′+-relaxations of the matching problem.

51

5.1 Reducing certificate matrices using linear depen-

dencies

Recall that given x ∈ {0, 1}n, Y x
A is the matrix whose rows and columns are indexed by

sets in A, where Y x
A [S, T] = 1 if and only if x ∈ S ∩T . Notice that the columns of Y x

A are
not linearly independent. For example,

Y x
Aeα = Y x

Aeα∩i|1 + Y x
Aeα∩i|0 ,

for all α ∈ A and i ∈ [n]. The above equation captures the trivial fact that for every
point y ∈ α, either y ∈ α ∩ i|1 or y ∈ α ∩ i|0. Recall that many existing lift-and-project
operators can be interpreted as working with submatrices of Y x

A , and many of them do
enforce this type of linear dependence in the lifted space to make the matrix variables
behave as consistently with their set theoretical meanings as possible (e.g. the condition
(SA 3)). Knowing this, when we try to construct a certificate matrix in the lifted space of
an operator, we really only have to construct enough of it such that the rest of the matrix
would be determined by the linear dependence conditions imposed by the operator. Even
when these dependence conditions are not enforced by the given operator, we can use
them as guidance to help us construct such matrices.

Let us formalize the above observations. First, recall that given S ⊆ A, we let Y x
S

denote the A× S submatrix of Y x
A consisting of the columns indexed by sets in S. Then

given S,S ′ ⊆ A, we say that S generates S ′ if the column space of Y x
S contains that of

Y x
S′ , for all x ∈ F .

It is pretty easy to see that if S refines S ′ (recall that S refines S ′ if every set in S ′ can
be expressed as a disjoint union of sets in S), then S generates S ′. The converse to this is
not true — an important observation to construct counterexamples is that A+

k generates
Ak, for all k ∈ [n]. To see this, let α = S|1 ∩ T |0 ∈ Ak. Then it is not hard to check that

Y x
Aeα =

∑
U⊆T

(−1)|U |Y x
Ae(S∪U)|1 ,

for every x ∈ F .

Using the above observation, we can give the following alternative definition of the
SAk operator.

Proposition 23. For any fixed integer k ∈ [n] and P ⊆ [0, 1]n, define the lift-and-project
operator Γk as follows:

1. Let Γ̃k(P) denote the set of matrices Y ∈ RA+
1 ×A

+
k which satisfy all of the following

conditions:

(Γ1) Y [F ,F] = 1.

52

(Γ2) For all disjoint subsets S, T ⊆ [n] where |S|+ |T | ≤ k,∑
U⊆T

(−1)|U |Y e(S∪U)|1 ∈ K(P).

(Γ3) For all α1, α2 ∈ A+
1 , β1, β2 ∈ A+

k such that α1 ∩ β1 = α2 ∩ β2,
Y [α1, β1] = Y [α2, β2].

2. Define

Γk(P) :=
{
x ∈ Rn : ∃Y ∈ Γ̃k(P), Y eF = x̂

}
.

Then Γk(P) = SAk(P) for every k ∈ [n] and P ⊆ [0, 1]n.

Proof. First, we show that SAk(P) ⊆ Γk(P). Given x ∈ SAk(P), let Y ′ be its certificate

matrix in S̃A
k
(P), and Y be the submatrix of Y consisting of only the columns indexed

by sets in A+
k . Then we see that (Γ1) is implied by (SA 1), (Γ2) follows from (SA 2) and

(SA 3), and (Γ3) follows from (SA 5). Since x̂ = Y eF , x ∈ Γk(P).

Next, we prove that Γk(P) ⊆ SAk(P). Given x ∈ Γk(P), let Y ∈ RA+
1 ×A

+
k be its

certificate matrix in Γ̃(P). We define the matrix Y ′ ∈ RA+
1 ×Ak where

Y ′eS|1∩T |0 =
∑
U⊆T

(−1)|U |Y e(S∪U)|1 ,

for all disjoint S, T ⊆ [n] such that |S| + |T | ≤ k. Then we see that Y ′ ∈ S̃A
k
(P),

as (SA 1) follows from (Γ1), (SA 2) and (SA 3) follow from (Γ2). Also, both (SA 4) and
(SA 5) are implied by (Γ3). Since x̂ = Y ′eF , we obtain that x ∈ SAk(P).

Similarly, since Ak \ Ak−1 refines (and therefore generates) Ak, the definition of SAk

can also be rewritten with the lifted space being a set of matrices whose columns are
indexed by (Ak \ Ak−1).

More generally, suppose P ⊆ [0, 1]n, Γ is an admissible lift-and-project operator, and
Γ̃(P) ⊆ RS×T where S, T ⊆ A. Furthermore, suppose S ′ generates S and T ′ generates
T . Then there exists U ∈ RS′×S such that Y x

S′U = Y x
S for all x ∈ F . Similarly, there

exists V ∈ RT ′×T such that Y x
T ′V = Y x

T for all x ∈ F . If all matrices in Y ∈ Γ̃(P)
satisfy (RCMC), then we know that we can write Y = U>Y ′V for some Y ′ ∈ RS′×T ′ . In
many cases, Y ′ might be easier to obtain than directly computing Y (e.g. when S ′, T ′ are
subsets of S, T respectively, or when their set theoretical structures relate better to our
problem at hand). Moreover, it is apparent that extending Y ′ to Y preserves conditions
such as (OMC) and (RCMC). Thus, some of the conditions of Γ might only need to be
verified on Y ′ instead of Y , which can simplify our construction of certificate matrices.

In particular, when Γ̃(P) is a set of square matrices whose rows and columns are
indexed by the same sets in A (such as in the cases when Γ ∈

{
SA+, SA′+,BZ′+

}
), the

53

above construction preserves positive semidefiniteness. Thus, instead of checking Y � 0,
it suffices to check Y ′ � 0.

Sometimes we can further reduce the task of checking Y ′ � 0 by the following simple
observation:

Proposition 24. Suppose Y ∈ Sn can be written as

(
A B
B> C

)
, where A and C are square

matrices. If there exists a matrix L such that AL = B, then Y � 0 if and only if A � 0
and C − L>AL � 0.

Proof. Since AL = B, B> = L>A. Then observe that(
I −L
0 I

)>
Y

(
I −L
0 I

)
=

(
A 0
0 C − L>AL

)
.

Since

(
I −L
0 I

)
is invertible, we see that Y ′ � 0 if and only if A � 0 and C − L>AL �

0.

Note that in the case when A is positive definite, Proposition 24 is an application of
the Schur complement. Moreover, if the sets indexing the rows and columns of Y ′ — and
the entries of Y ′ themselves — have considerable structure and symmetry, it might be
possible to find a matrix L that has some combinatorial meaning, which can help explain
and establish the positive semidefiniteness of A and C − L>AL. We shall discuss this
further in the next section.

5.2 Verifying positive semidefiniteness when weights

align

In many cases, the last hurdle of verifying if a matrix is a certificate matrix is establishing
that it is in fact positive semidefinite. This could happen, for instance, when we use
tools outlined in previous section to construct a candidate matrix that already satisfies
P -related and set theoretical constraints. Also, if a lower-bound result for a polyhedral
operator (e.g. LS or BZ′) has already been established, and in addition one can verify
that the certificate matrix is also positive semidefinite, then the lower-bound result can
be established on an even stronger operator (e.g LS+ or BZ′+). Here, we look into some
cases when we know more about the candidate certificate matrices, and provide some
tools that can simplify the task of verifying their positive semidefiniteness.

54

5.2.1 The “last block” approach

Suppose we would like to show that a matrix Y is positive semidefinite. Then the following
simple observation could be helpful:

Proposition 25. Let Y be a symmetric matrix, and Y ′ be a symmetric minor of Y . If
rank(Y ′) = rank(Y), then Y � 0 ⇐⇒ Y ′ � 0.

Proof. First, the forward implication is obvious, as Y ′ is a symmetric minor of Y . For
the other direction, suppose Y is n× n, and assume without loss of generality that Y ′ is

the m ×m leading symmetric minor of Y . Then we can write Y =

(
Y ′ U
U> W

)
for some

matrices U,W . Now since rank(Y ′) = rank(Y), every column in U can be expressed as a
linear combination of columns in Y ′, and so there exists an m× (n−m) matrix L where
Y ′L = U . By the same linear dependence argument, we obtain that such a matrix L must
also satisfy U>L = W . Thus, we obtain that W = U>L = (LY ′)>L = L>Y ′L, and we
have the desired result by Proposition 24. We can also directly compute:

Y =

(
Y ′ Y ′L
L>Y ′ L>Y ′L

)
=

(
I
L>

)
Y ′
(
I L

)
.

Thus, Y ′ � 0⇒ Y � 0.

While Proposition 25 is very elementary, it has quite a few interesting applications in
the certificate matrices for lift-and-project relaxations. One particular way of utilizing it
is the following: Let {B0, B1, . . . , Bk} be a partition of the rows (and thus also columns)
of Y . Then we can rewrite Y in the block matrix form:

Y =

Y0,0 Y0,1 · · · Y0,k

Y1,0 Y1,1 · · · Y1,k
...

...
. . .

...
Yk,0 Yk,1 · · · Yk,k

 , (5.1)

where Yi,j ∈ RBi×Bj , for all i, j ∈ {0, . . . , k}. Note that if Y is a matrix in the in the lifted
space for operators such as SA+ and Las, then there is a natural way to partition of the
rows and columns of a certificate matrix (e.g. Bi could be Ai \ Ai−1 in the case of SA+,
and A+

i \A+
i−1 in case of Las). Nonetheless, the following observations apply to whichever

way we partition the rows and columns of Y ′.

Proposition 26. Let Y be a matrix whose rows and columns are partitioned into sets
B0, . . . , Bk as in (5.1). Suppose rank(Y) = rank(Yk,k). Then there exists matrices
L0, L1, . . . , Lk such that

Yi,j = LiYk,kLj,

for all i, j ≤ k. In particular, Yk,k � 0 ⇐⇒ Y ′ � 0.

55

Proposition 26 is specialization of Proposition 25, and can be proved by essentially
the same argument. Thus, we see that when rank(Y) = rank(Yk,k), the Yi,j matrices are
all connected to each other by linear dependencies in a special way, and that the task
of establishing Y � 0 is reduced to showing the “last” symmetric minor block of Y is
positive semidefinite. While the assumption in Proposition 26 might seem very restrictive,
such relationships between entries of the matrix can be very insightful. For example, in
the case when Bi = A+

i \A+
i−1, one can interpret the above property as entries in Y being

“weights” assigned to certain “slices” of F . Then the presence of these Li matrices can
be interpreted as the fact that the entries of Y corresponding to larger subsets can be
expressed as linear functions of the weights of finer, smaller subsets.

For an example of a certificate matrix with this property, we turn to the max-cut
problem and some of its known lower-bound results. The max-cut problem is the problem
of, given a graph G = (V,E), find a set of vertices U ⊆ V such that the size of the cut
induced by U ,

δ(U) := {{i, j} ∈ E : | {i, j} | ∩ U = 1}
is maximized. The max-cut problem can be formulated as the following nonlinear integer
program:

max
∑
{i,j}∈E

wi,j(xi + xj − 2xixj)

subject to x ∈ {0, 1}V .
(5.2)

Note that for all x ∈ {0, 1}V ,

xi + xj − 2xixj = x2
i + x2

j − 2xixj = (xi − xj)2,

which evaluates to 1 if xi and xj differ, and 0 otherwise. Thus, x̄ is an optimal solution
of (5.2) if and only if U := {i : x̄i = 1} produces a maximum cut in the graph G.

The following series of semidefinite relaxations of max-cut have been studied by re-
searchers including Laurent [Lau03b] and Georgiou [Geo10], and have often been referred
to as the “Lasserre relaxations” of the max-cut problem. While these relaxations are not
obtained by applying the Las operator as defined in Chapter 2 to an initial relaxation,
it was proposed by Lasserre in [Las00]. To state these relaxations, it is helpful to intro-

duce the notion of moment matrices. Let y ∈ RA+
2k for some integer k. Then for every

integer ` ≤ k, we define the matrix M`(y) ∈ RA+
` ×A

+
` where M`(y)[α, β] = y[α ∩ β] for all

α, β ∈ Ak` . Then for every k ≥ 1, we define the semidefinite program:

max
∑
{i,j}∈E

wi,j(y[i|1] + y[j|1]− 2y[{i, j} |1])

subject to Mk(y) � 0, y ∈ RA+
2k , y[F] = 1.

(5.3)

Note that given a set of vertices U , we may define y ∈ RA+
2k where

y[S|1] =

{
1 if S ⊆ U ;
0 otherwise.

56

Then Mk(y)[α, β] = y[α]y[β] for every α, β ∈ A+
k , and thus is positive semidefinite since

y ≥ 0. Moreover, the objective value given by this y is exactly that of the total weight of
the cut induced by U . Thus, we see that (5.3) indeed gives a family of relaxations of the
max-cut problem.

Consider G := K2n+1. The maximum cut in G has size n(n + 1). Laurent [Lau03b]
showed (in a slightly different language, as she started with a [−1, 1]-relaxation as opposed
to a [0, 1]-relaxation) that the kth relaxation in (5.3) has optimal value greater than n(n+1)
if and only if k ≤ n. Subsequently, Georgiou [Geo10] provided an alternative proof to
Laurent’s result, while showing the following:

Theorem 27 (Theorem 9.3.2 in [Geo10]). Given G = K2n+1, construct y ∈ RA+
2n where

y[S|1] :=

(
n+1/2
|S|

)(
2n+1
|S|

) .
Then Mn(y) � 0.

This shows that, for all integers k ≤ n, the optimal value of the kth relaxation of (5.3)
is at least ∑

{i,j}∈E(G)

(
1

2
+

1

2
− 2

(
2n− 1

8n

))
=

(2n+ 1)2

4
> n(n+ 1).

Consequently, the relaxation (5.3) is not exact for all k ≤ n. One of the key observations

Georgiou used in establishing Theorem 27 is the following: let y ∈ RA+
2n be the vector as

defined in Theorem 27, and Y = Mn(y). Georgiou showed that, if we define B0 := {F}
and Bi := A+

i \ A+
i−1 for all i ∈ [n] and rewrite Y in block matrix form as in (5.1), then

the rank of Yn,n is equal to the rank of Y . This implies that, to show Y � 0, it suffices to
show that Yn,n � 0.

The certificate matrix Laurent used in her proof of the result in [Lau03b] was different,
but she used similar steps to establish the positive semidefiniteness of her matrix. More
precisely, let Y ∈ RA+

n×A+
n denote the certificate matrix used in her proof. Laurent proved

that the principle minor of Y with rows and columns indexed by the sets in A+
n \ A+

n−1

is positive definite, and that the nullspace of Y has dimension at least |A+
n−1|. Then it

follows that Y � 0.

We now provide another example of this phenomenon, showing how the weight-
aligning property in a matrix could simplify the task for verifying certificate matrices

in S̃A
′k
+(MT (G)). Recall that Mn,k denotes the set of matchings of Kn of size k, and

|Mn,k| =
1

k!

(
n

2

)(
n− 2

2

)
· · ·
(
n− 2k + 2

2

)
=

n!

2kk!(n− 2k)!
= (2k − 1)!!

(
n

2k

)
.

Note that we have used d!! to denote the double factorial of d, which can be defined
recursively as follows: (−1)!! = 0!! = 1, and for all d ≥ 1, d!! := d× (d− 2)!!. Next, given

57

integers n, k, ` such that n ≥ max {2k, 2`}, we define Yn,k,` to be theMn,k ×Mn,` matrix
where

Yn,k,`[S, T] :=

{
(n− 1− 2(|S ∪ T |))!! if S ∪ T is a matching;
0 otherwise.

Then we have the following:

Theorem 28. If Y2n+1,k,k � 0, then 1
2n
ē ∈ SA′k+(MT (K2n+1)).

Observe that Y2n+1,k,k is much smaller than matrices in S̃A
′k
+(MT (K2n+1)). For in-

stance, Y13,3,3 is 25740× 25740, while matrices in S̃A
′3
+(MT (K13)) are 620777× 620777.

Before we prove Theorem 28, we establish several combinatorial identities that relate
the entries of Yn,k,k:

Lemma 29. Given integers n, i, j where i+ j ≤ n
2
,

fn,i,j :=
∑

S∈Mn,i,S′∈Mn,j

Yn,i,j[S, S
′] = (n− 1)!!

(
n/2

i

)(
n/2

j

)
.

Proof. We first prove the claim for the case when i = 0. Notice that Yn,0,j is just a row
vector with |Mn,j| entries, each being (n− 2j − 1)!! (since j ≤ n

2
).Therefore,

fn,0,j = (2j − 1)!!

(
n

2j

)
(n− 2j − 1)!! =

(2j − 1)!!n!(n− 2j − 1)!!

(2j)!(n− 2j)!
= (n− 1)!!

(
n/2

j

)
.

Next, we compute fn,i,j. It is easy to see that Yn,i,j = (Yn,j,i)
>. Hence, fn,i,j = fn,j,i, and

we may assume without loss of generality that i ≥ j.

Focus on any matching S ′ ∈Mj. The number of matchings S ∈Mi such that S ∪ S ′
is a matching and |S ∩ S ′| = p is

(
j
p

)
|Mn−2j,i−p|. Thus, these matchings contribute(

j

p

)
|Mn−2j,i−p|(n− 2(i+ j − p)− 1)!! = (n− 2j − 1)!!

(
j

p

)(
(n− 2j)/2

i− p

)
to fn,i,j (assuming i + j ≤ n

2
). Also, by the symmetry of Kn and our definition of Yn,i,j,∑

S∈Mi
Yn,i,j[S, S

′] is the same for each S ′ ∈Mj. Therefore,

fn,i,j = |Mn,j|
j∑

p=0

(n− 2j − 1)!!

(
j

p

)(
(n− 2j)/2

i− p

)

= fn,0,j

j∑
p=0

(
j

p

)(
(n− 2j)/2

i− p

)
= fn,0,j

(
[xp](1 + x)j

) (
[xi−p](1 + x)

n−2j
2

)
= fn,0,j[x

i](1 + x)
n
2

= (n− 1)!!

(
n/2

j

)(
n/2

i

)
.

58

Note that we have used [xk]f(x) to denote the coefficient of xk in f(x). This completes
the proof of our claim.

Next, we introduce another family of matrices that are closely related to Yn,k,k matrices.
Given positive integers n, k, ` such that 2k ≤ 2` ≤ n, we define the matrix Ln,k,` to be
the Mn,k ×Mn,` matrix where

Ln,k,`[S, T] :=

{
1 if S ⊆ T ;
0 otherwise.

The next result shows a key property of L matrices in relating Y matrices.:

Lemma 30. Given integers i, j, k, n such that i, j ≤ k ≤ n/2,

Yn,i,j =

(
(n− 2i)/2

k − i

)−1(
(n− 2j)/2

k − j

)−1

Ln,i,kYn,k,kL
>
n,j,k. (5.4)

Proof. For convenience, let Y ′ denote the right hand side of (5.4). Given S ∈ Mi, S
′ ∈

Mj, we see that

Y ′[S, S ′] =

(
(n− 2i)/2

k − i

)−1(
(n− 2j)/2

k − j

)−1

〈Yn,k,k, (Ln,i,keS)(Ln,j,keS′)
>〉

=

(
(n− 2i)/2

k − i

)−1(
(n− 2j)/2

k − j

)−1 ∑
T,T ′∈Mk,
T⊇S,T ′⊇S′

Yn,k,k[T, T
′].

Notice that if S ∪ S ′ is not a matching, T ⊇ S and T ′ ⊇ S ′, then T ∪ T ′ is not a
matching either, and we know that Yn,k,k[T, T

′] = 0. Therefore, if S∪S ′ is not a matching,
Y ′[S, S ′] = 0.

Now suppose S ∪ S ′ is a matching. We want to sum over the entries Yn,k,k[T, T
′] such

that T ⊇ S and T ′ ⊇ S ′. Notice that for sets W ⊆ S \ S ′,W ′ ⊆ S ′ \ S,∑
T∈Mk,T⊇S,T∩(S′\S)=W ′

T ′∈Mk,T
′⊇S′,T ′∩(S′\S)=W

Yn,k,k[T, T
′]

= (n− 2|S ∪ S ′| − 1)!!fn−2|S∪S′|,k−|S|−|W ′|,k−|S′|−|W |.

59

Then we have∑
W⊆(S\S′),
W ′⊆(S′\S)

fn−2|S∪S′|,k−|S|−|W ′|,k−|S′|−|W |

=

|S\S′|∑
i=0

|S′\S|∑
j=0

(
|S \ S ′|

i

)(
|S ′ \ S|

j

)
fn−2|S∪S′|,k−|S|−j,k−|S′|−i

=

|S\S′|∑
i=0

|S′\S|∑
j=0

(
|S \ S ′|

i

)(
|S ′ \ S|

j

)(
(n− 2|S ∪ S ′|)/2

k − |S| − j

)(
(n− 2|S ∪ S ′|)/2
k − |S ′| − i

)

=

|S\S′|∑
i=0

(
|S \ S ′|

i

)(
(n− 2|S ∪ S ′|)/2
k − |S ′| − i

)|S′\S|∑
j=0

(
|S ′ \ S|

j

)(
(n− 2|S ∪ S ′|)/2

k − |S| − j

)
=

(
|S \ S ′|+ (n− 2|S ∪ S ′|)/2

k − |S ′|

)(
|S ′ \ S|+ (n− 2|S ∪ S ′|)/2

k − |S|

)
=

(
(n− 2j)/2

k − j

)(
(n− 2i)/2

k − i

)
.

Therefore, Y ′[S, S ′] = (n − 2|S ∪ S ′| − 1)!!, which coincides with Yn,i,j[S, S
′]. Hence, we

are finished.

We are now ready to prove Theorem 28.

Proof of Theorem 28. For convenience, we let G := K2n+1 and P = MT (G). We con-

struct Y ∈ SAk such that x̂(Y eF) = 1
2n
ē, and show that Y ∈ S̃A

′k
+(P). Define the vector

y ∈ RA2k as follows. Given S ⊆ E(G) and |S| ≤ k, we set

yS|1 :=

{
(2n−2|S|)!!

(2n)!!
if S is a matching;

0 otherwise.

Next, given disjoint S, T , we define

yS|1∩T |0 :=
∑
U⊆T

(−1)|U |y(S∪U)|1 .

Notice that by the above construction, the entries of y satisfy

yS|1∩T |0 = yS|1∩T |0∩j|1 + yS|1∩T |0∩j|0 ,

for any disjoint S, T such that |S| + |T | < k, and j 6∈ S ∪ T . Thus y satisfies (OMC).
Moreover, y is nonnegative. Given disjoint sets of edges S, T , if S is not a matching, then

60

y(S∪U)|1 = 0 for every U , and thus yS|1∩T |0 = 0. Now suppose S is in fact a matching.
Then

yS|1∩T |0 =
∑
U⊆T

(−1)|U |y(S∪U)|1

= yS|1 +

|T |∑
i=1

∑
U⊆T,|U |=i

(−1)|U |y(S∪U)|1

≥ 1

2n!!

(2n− 2|S|)!!−
∑

i:1≤i≤|T |,i odd

(
|T |
i

)
(2n− 2|S| − 2i)!!

≥ (2n− 2|S|)!!

2n!!

1−
∑

i:1≤i≤|T |,i odd

1

2i

≥ 0.

Next, we define the matrix Y ∈ SAk such that

Y [S|1 ∩ T |0, S ′|1 ∩ T ′|0] :=

{
y(S∪S′)|1∩(T∪T ′)|0 if (S ∪ S ′) ∩ (T ∪ T ′) = ∅;
0 otherwise.

Notice that (SA+ 1), (SA+ 3), (SA′+ 4) and (SA+ 5) all hold by the construction of Y .
Also, it was shown in [MS09] that x̂Y eα ∈ K(P) for all α ∈ Ak. Since y ≥ 0, Y has
nonnegative entries, and so (SA+ 2) holds as well. Thus, it only remains to verify that Y
is positive semidefinite.

We now utilize the linear dependence of the rows and columns of Y to reduce it to a
smaller matrix. Consider a column in Y indexed by S|1 ∩ T |0 for some disjoint S, T . By
the construction of y and Y ,

Y eS|1∩T |0 =
∑
U⊆T

(−1)|U |Y e(S∪U)|1 .

Furthermore, notice that Y e(S∪U)|1 is the zero vector if S ∪ U is not a matching. Thus,
every column of Y is a linear combination of columns corresponding S|1, where S is a
matching.

Hence, if we let A′ ⊆ Ak be this collection of sets, and Y ′ be the symmetric minor
of Y consisting of the columns and rows from A′, then by the symmetry of Y and the
above claim, there exists a matrix U ∈ RA′×Ak such that Y = U>Y ′U . Thus, to verify
that Y � 0, it suffices to show that Y ′ � 0.

Notice that there is a natural one-to-one correspondence between A′ and
⋃n
i=0M2n+1,i.

In fact, Y ′ can be expressed as the block matrix

1

(2n)!!

Y2n+1,0,0 Y2n+1,0,1 · · · Y2n+1,0,k

Y2n+1,1,0 Y2n+1,1,1 · · · Y2n+1,1,k
...

...
. . .

...
Y2n+1,k,0 Y2n+1,k,1 · · · Y2n+1,k,k

 .

61

Now by Lemma 30 and Proposition 26, the positive semidefiniteness of Y ′ � 0 follows
from that of Y2n+1,k,k. Thus, it follows that 1

2n
ē ∈ SA′k+(P).

We will revisit these Y2n+1,k,k matrices in Section 5.4, where we present other tools
that can further simplify the task of establishing their positive semidefiniteness.

5.2.2 The inductive approach

Note that Proposition 26 can be seen as a special instance of Proposition 24, where we
used Yk,k as the “A” block, and C − L>AL happens to be the zero matrix. On the other
hand, if the blocks of Y ′ are related by Li matrices as described in Proposition 26, we can
also establish Y ′ � 0 in an inductive way as follows:

Proposition 31. Let Y ′ be a matrix whose rows and columns are partitioned into sets
B0, . . . , Bk as in (5.1). Suppose, for every i ≤ k − 1, there exists a Bi × Bi+1 matrix L̃i
where Yi,iL̃i = Yi,i+1. Further assume that Y0,0 � 0, and

Yi+1,i+1 − L̃>i Yi,iL̃i � 0,

for all i ∈ {0, 1, . . . , k − 1}. Then Y ′ � 0.

Proof. By Proposition 26, it suffices to show that Yk,k � 0, which we do by induction
on k. The base case holds by assumption, as Y0,0 � 0. Assuming Yi,i � 0 for all i ∈
{0, . . . , k − 1} and the existence of L̃k−1, we can write

Yk,k = (Yk,k − L̃>k−1Yk−1,k−1L̃k−1) + L̃>k−1Yk−1,k−1L̃k−1.

The both summands on the right hand side are positive semidefinite (first one by assump-
tion and second one by the inductive hypothesis). Thus, it follows that Yk,k � 0, and
consequently Y ′ � 0.

Of course, in general if we know that Yi,i � 0, and any Bi × Bi+1 matrix M where
Yi+1,i+1 −M>Yi,iM � 0, then Yi+1,i+1 � 0 follows. However, we believe that using the L̃i
matrices described in Proposition 31 to establish the positive semidefiniteness of Yk,k can
have special combinatorial meaning — at each inductive step, we are essentially “peeling
off” the information in Yi,i that is “inherited” from Yi−1,i−1. More importantly, if Yk,k is
in fact positive semidefinite, then we are assured that such L̃i matrices exist.

Proposition 32. Suppose the assumption in Proposition 26 holds, and Yk,k � 0. Then
for all i ∈ {0, . . . , k − 1}, there exists a Bi ×Bi+1 matrix L̃i where Yi,iL̃i = Yi,i+1.

Proof. The claim holds if and only if the column space of Yi,i+1 is contained in that of Yi,i,
which is true if and only if the left nullspace of Yi,i is contained in that of Yi,i+1. Thus, it
suffices to show that whenever Y >i,ix = Yi,ix = 0, then Y >i,i+1x = Yi+1,ix = 0.

62

First, Yk,k � 0 implies that Li+1,kYk,kL
>
i+1,k = Yi+1,i+1 � 0. Then we can write

Yi+1,i+1 = U>U for some matrix U . Now,

Yi,ix = 0 ⇒ x>Yi,ix = 0

⇒ x>Li,i+1Yi+1,i+1L
>
i,i+1x = 0

⇒ (UL>i,i+1x)>(UL>i,i+1x) = 0

⇒ UL>i,i+1x = 0

⇒ U>UL>i,i+1x = 0

⇒ Yi+1,ix = 0.

Hence, we are finished.

Thus, we see that Proposition 31 provides a template to inductively establish the
positive semidefiniteness of our certificate matrix. Essentially, we want to show that(

LAL> AL>

LA A

)
� 0, (5.5)

while knowing that LAL> � 0 and there exists L̃ such that LA = LAL>L̃. We have
seen that the task of showing (5.5) can be reduced to showing A− L̃>LAL>L̃ � 0. Next,
we consider situations when the latter may be easier to verify than just directly showing
A � 0. One way of showing that a matrix is positive semidefinite is by finding all of its
eigenvectors and eigenvalues. Here, we show that sometimes A− L̃>LAL>L̃ does have a
simpler eigenspace structure than A, in the presence of the above L, L̃ matrices.

Proposition 33. Suppose A ∈ Sn, and L, L̃ are m×n matrices such that LAL>L̃ = LA.
Let B := L̃>LAL>L̃. If x is an eigenvector of A with eigenvalue λ, then

Bx =

{
λx if x is in the rowspace of L;
0 if x is in the nullspace of L.

Proof. First, note that B = L̃>LA. Thus, if Lx = 0, then

Bx = (L̃>LA)x = λL̃>Lx = 0.

On the other hand, if x is in the rowspace of L, then ∃y ∈ Rm, x = L>y. Therefore,

Bx = (L̃>LA)(L>y) = (LA)>y = AL>y = λx.

Thus, our claim follows.

Proposition 33 tells us that, if no eigenspace of A has nontrivial intersection with
both the rowspace and nullspace of L (which are orthogonal complements of each other
in Rn), then the eigenspaces of B and A − B are aligned (i.e. x is an eigenvector of one

63

if and only if it is also an eigenvector of the other). Moreover, B is obviously positive
semidefinite by the fact that LAL> is positive semidefinite, and no eigenvector of A
can have nonzero eigenvalue for both B and A − B. Thus, B essentially maximizes the
eigenspace information in A we can obtain from the fact that LAL> � 0. Now if we could
find all eigenvectors and eigenvalues of A−B, then we can write

A = B +
∑

λvv>

where v’s are the normalized eigenvectors of A− B (which we know are in the nullspace
of L), and λ are their eigenvalues.

Another way to look at the above observation is the following:

Proposition 34. Suppose A ∈ Sn, and L, L̃ are m×n matrices such that LAL>L̃ = LA.
If

A ∈
({
L̃>ML̃ : M ∈ Sm+

}
+
{
vv> : v ∈ Null(L)

})
,

then A � 0.

While the proof to Proposition 34 is elementary (if A is contained in the Minkowski
sum of two sets of positive semidefinite matrices, it is certainly positive semidefinite itself),
it translates the task of proving A � 0 into a membership problem, where various linear
algebraic and geometric tools could be applied as the set in question is a convex cone.
Also, depending on what we know about the matrices A,L and L̃, the set in Proposition 34
can be loosened of tightened to allow easier verification of the containment of A.

5.3 Connecting eigenspaces of certificate matrices

with combinatorial objects

While there are many different ways one can prove that a matrix is positive semidefinite,
sometimes finding all of its eigenvalues is the most straightforward approach. In this
section, we present several examples where elegant connections can be made between the
eigenspaces of certificate matrices and certain families of combinatorial objects. These
connections can provide deeper insights into the underlying optimization problem at hand,
and perhaps even give rise to new combinatorial identities and spark new threads of
research.

For example, in establishing the LS+-rank of MT (K2n+1), Stephen and Tunçel [ST99]
proved the following:

Proposition 35 (Lemma 4.2 in [ST99]). Let G = (V,E) be the complete graph on 2n+ 1
vertices where n ≥ 1. Define Y ∈ R({0}∪E)×({0}∪E) where

• Y [0, 0] = 1;

64

• Y [i, 0] = Y [i, i] = Y [0, i] = 1
2n

for all i ∈ E;

• Y [i, j] = 1
2n(2n−2)

for all i, j ∈ E such that {i, j} is a matching of size 2;

• Y [i, j] = 0 otherwise.

Then Y � 0.

Stephen and Tunçel proved Proposition 35 by listing all eigenvalues and their multi-
plicities of Y . Some of the eigenvectors of Y can be described as follows:

• Let C be any even cycle of length 2k in G, and let {i1, i2, . . . , i2k} be the edges on
the cycle in order. Define x ∈ RE∪{0} such that

x[j] =

1 if j ∈ {i1, i3, . . . , i2k−1};
−1 if j ∈ {i2, i4, . . . , i2k};
0 otherwise.

Then x is an eigenvector of Y with eigenvalue 2n−1
2n(2n−2)

. In particular, let H be a
fixed set of edges that make up a cycle of G that passes through all 2n+ 1 vertices.
Then for every j ∈ E \H, H ∪ {j} contains a unique even cycle. There are

|E| − |H| =
(

2n+ 1

2

)
− (2n+ 1) = (2n+ 1)(n− 1)

choices of the edge j, and the eigenvectors obtained from these (2n+ 1)(n− 1) even
cycles are linearly independent, since xj 6= 0 for exactly one of these vectors for
every j ∈ E \H.

• Let v1, v2 be two fixed vertices in G. Define x ∈ RE∪{0} such that

x[j] =

1 if j ∈ E is incident with v1 but not v2

−1 if j ∈ E is incident with v2 but not v1;
0 otherwise.

Then x is an eigenvector of Y with eigenvalue 0. Now it is not hard to see that, if we
fix v1 and let v2 vary over V \ {v1}, we obtain 2n linearly independent eigenvectors.

Notice that

(2n+ 1)(n− 1) + 2n =

(
2n+ 1

2

)
− 2,

and hence all but two of the |E|+ 1 eigenvalues of Y are accounted by the two families of
eigenvectors described above, and their multiplicity arguments are very transparent when
described combinatorially with even cycles and complete bipartite graphs.

65

Next, we turn to the matrix studied by Georgiou in his result on max-cut in [Geo10],

as defined in Proposition 27. Again, let y ∈ RA+
2n where

y[S|1] :=

(
n+1/2
|S|

)(
2n+1
|S|

) .
Let Y be the symmetric minor of Mn(y) whose rows and columns are indexed by elements
of A+

n . Recall that, as observed by Georgiou in [Geo10], Y has the same rank as Mn(y).
Thus, the task of proving that Mn(y) � 0 can be reduced to establishing the positive
semidefiniteness of Y , which is a

(
2n+1
n

)
×
(

2n+1
n

)
-matrix.

Georgiou then pointed out that Y can be expressed as a linear combination of the
adjacency matrices of a generalization of Kneser graphs: Given integers n, r, s where
n ≥ r ≥ s, define Gn

r,s to be the graph whose vertices are the subsets of [n] of size r, and
we join two vertices S, T by an edge if and only if |S ∩ T | = s. In the case of s = 0,
we obtain the traditional Kneser graphs, whose eigenvectors and eigenvalues were known
(e.g. see [Lov79] and [Kar99]). Georgiou then showed that the eigenvectors for Kneser
graphs are also eigenvectors for the generalized version, and went on to prove that the
eigenvalues of Y are nonnegative.

We now return to the matching problem. Recall the matrices Yn,k,k, as defined imme-
diately before Theorem 28. For the rest of this section, we will focus on these matrices
and describe some of its eigenvectors, which seem to have a lot of connections with in-
teger partitions and Young diagrams. Somewhat surprisingly, many of these connections
seem to only rely on the sparsity pattern of Yn,k,k, and not on the value of its entries. To
illustrate this, let m ∈ Rk+1 be a vector whose entries are indexed by {k, k + 1, . . . , 2k}.
We define Yn,k,k(m) ∈ RMn,k×Mn,k to be the matrix where

Yn,k,k(m)[S, T] :=

{
mi if S ∪ T is a matching of size i;
0 otherwise.

(5.6)

Thus, Yn,k,k is merely Yn,k,k(m) with

m = ((n− 2k − 1)!!, (n− 2k − 3)!!, . . . , (n− 4k − 1)!!)> .

Before we describe some eigenvectors of Yn,k,k(m), we need some elementary facts about
integer partitions and Young tableaux. There are many other instances in the literature
where various algebraic objects based on matchings in graphs were associated with Young
tableaux (for a recent paper involving 3-matchings, see [GMP14]). Given a nonnegative
integer k, a partition of k is a sequence of nonincreasing, positive integers that sum up to
k. For instance, the five distinct partitions of 4 are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

Moreover, each partition λ can be visualized by a Young diagram, an array with rows
aligned to the left such that row i has λi boxes. For example, the five partitions of 4

66

Figure 5.1: Young diagrams for all partitions of size 4.

above can be represented by the five Young diagrams in Figure 5.1, respectively. We
now construct a family of vectors that are eigenvectors of Yn,k,k. Given a partition λ =
(λ1, . . . , λ`) of size k, define λ0 := λ1. Consider a set of vertices

S := {vij : 0 ≤ i ≤ ` : 1 ≤ j ≤ 2λi} . (5.7)

Thus, S is a set of 2k + 2λ1 vertices. We can imagine S as being laid out in a grid as
suggested by the indexing of its elements (i.e. we say vij, vi′j′ ∈ S are in the same row if
i = i′, and in the same column if j = j′, and so on). Note that S has row lengths (from
top to bottom) 2λ1, 2λ1, 2λ2, . . . , 2λ`. For example, Figure 5.2 gives a visualization of this
layout of vertices for λ = (3, 3, 2).

v01 v02 v03 v04 v05 v06

v11 v12 v13 v14 v15 v16

v21 v22 v23 v24 v25 v26

v31 v32 v33 v34

Figure 5.2: Laying out vertices of S in a grid for λ = (3, 3, 2).

Next, we define T (λ) to be set of λ-permutations, which are Young diagrams of shape
(2λ0, 2λ1, . . . , 2λ`), such that each column of size q is filled with entries from 0 to q−1, each
appearing exactly once. For instance, Figure 5.3 shows a λ-permutation for λ = (3, 3, 2).

1 1 1 3 0 1
0 3 3 2 1 0
3 2 0 1 2 2
2 0 2 0

Figure 5.3: Example of a (3, 3, 2)-permutation.

As the name suggests, for each λ-permutation T ∈ T (λ), we look at each column of
T as a permutation on {0, 1, . . . , q − 1}. Given such a permutation π, we let f(π) denote

67

the minimum number of two-element-swaps to transform π into the identity permutation.
For instance, if we let π1, . . . , π6 denote the permutations corresponding to the 6 columns
of the λ-permutation in Figure 5.3, then f(πi) = 2, 2, 3, 2, 0, 1 for i ∈ {1, 2, 3, 4, 5, 6},
respectively. We slightly abuse notation and define f(T) :=

∑λ1
i=1 f(πi) a λ-partition T .

Next, for each T ∈ T (λ), we define T (S) to be the rearrangement of vertices in S such
that the ith row of vertices in T (S) is

{
vT (i,j),j : j ∈ [2λi]

}
for all i ∈ {0, 1, . . . , `}. For

instance, for the set S in Figure 5.2 and T in Figure 5.3, the set T (S) would be arranged
as follows:

v11 v12 v13 v34 v05 v16

v01 v32 v33 v24 v15 v06

v31 v22 v03 v14 v25 v26

v21 v02 v23 v04

Figure 5.4: A rearrangement of S under a λ-permutation.

Given a λ-permutation T , we say that a matching M ∈ Mn,k is aligned with T if M
saturates every vertex in T (S) except those in the top (zeroth) row, and every edge in M
joins two vertices on the same row in T (S). Notice that if M is aligned with T , then it
saturates exactly 2λ1 + · · ·+ 2λ` = 2k vertices, and thus |M | = k.

Figure 5.5: Visualizing aligning matchings.

Next, given a set of vertices S and a λ-permutation T , we define the vector uS ∈ RMn,k

such that

uT (S)[M] :=

{
1 if M is aligned with T ;
0 otherwise.

Then we define the vector
zS :=

∑
T∈T (λ)

(−1)f(T)uT (S). (5.8)

It is also not hard to see that if M ∈ Mn,k is aligned with both T (S) and T ′(S), then
(−1)f(T) = (−1)f(T ′). Thus, we see that |zS[M]| gives the number of λ-partitions that are
aligned with M . Moreover, we can extend the parity function f and define M to be even
(resp. odd) if (−1)f(T) is equal to 1 (resp. −1) for some T ∈ T (λ) that is aligned with
M . Note that we do not define the parity of a matching M where zS[M] = 0.

68

For an example, let λ := (3, 1) and S is a fixed set of 14 vertices, as arranged in
Figure 5.6. Consider the matchings M1 and M2.

M1 M2

Figure 5.6: A set of vertices corresponding to λ = (3, 1) and two relevant matchings.

Then zS[M1] = 2 as M1 is aligned with the two λ-permutations in Figure 5.7, all of
which satisfies (−1)f(T) = 1. On the other hand, zS[M2] = 1 as it is only aligned with the
first λ-permutation in Figure 5.7.

0 2 0 0 0 0
1 0 1 1 1 1
2 1

0 2 0 0 0 0
2 1 1 1 1 1
1 0

Figure 5.7: λ-permutations related to matchings in Figure 5.6.

We next show that, for some special partitions λ, zS gives an eigenvector of Yn,k,k(m):

Theorem 36. Let λ = (λ1, . . . , λ`) be a partition of size k such that either ` = 1 or
λ2 = 1. Then for every set of 2k + 2λ1 ≤ n vertices S as labelled as in (5.7), zS is an
eigenvector of Yn,k,k(ek+i) with eigenvalue

µ :=

(
k − `+ 1

i

)
(2i− 1)!! + (`− 1)

(
k − `
i− 1

)
(2i− 3)!!,

for all i = {0, . . . , k}.

Proof. First, given a set of vertices S, we say that a matching M ∈ Mn,k is S-relevant
if for every column of vertices in S of size q, M saturates exactly q − 1 of the vertices.
Notice that zS[M] 6= 0 implies that S is M -relevant.

We first show that, if M is not S relevant, then (Yn,k,k(ei)z
S)[M] = 0. Since M is not

S relevant, there must exist some column i of S where M leaves both vertices vij1 , vij2
unsaturated. Now consider

Yn,k,k(ei)z
S[M] =

∑
M ′∈Mn,k:M∪M ′∈Mn,k+i

zS[M ′]. (5.9)

Observe that every M ′ that contributes to (5.9) must be S-relevant, and thus must sat-
urate at least one of vij1 , vij2 . If it saturates exactly one of them, then assume without

69

loss of generality that it saturates vij1 but not vij2 . Let {u, vij1} be the edge in M ′ that
saturates vij1 ,and define the matching

M ′′ := (M ′ ∪ {{u, vij2}}) \ {{u, vij1}} .

Then, it is not hard to see that M ∪M ′′ ∈ Mn,k+i, and zS[M ′] = −zS[M ′′]. Thus, the
contributions of different matchings cancel out, and the sum in (5.9) vanishes. Next,
suppose M ′ saturates both vij1 , vij2 . Then M ′ must contain edges {u1, vij1} , {u2, vij2}. In
this case, define

M ′′ := (M ′ ∪ {{u1, vij2} , {u2, vij1}}) \ {{u1, vij1} , {u2, vij2}} .

Then again, M ∪M ′′ ∈ Mn,k+i and zS[M ′] = −zS[M ′′]. Hence, the sum in (5.9) again
evaluates to zero.

Next, we focus on M that are S-relevant. Given the partition λ that either has at
most one part of size greater than 1, we partition S into S1, S2, where

S1 := {vij : j ≤ 2} ;

S2 := {vij : 0 ≤ i ≤ 1, 3 ≤ j ≤ λ1} .

v`,1 v`,2

...
...

v3,1 v3,2

v2,1 v2,2

v1,1 v1,2 v1,3 v1,4

v0,1 v0,2 v0,3 v0,4

· · ·

· · ·

v1,λ1

v0,λ1

S1 S2

Figure 5.8: Illustrating the partition of S into S1, S2.

If M is S-relevant, then either |zS[M]| = `! (if it has no edges crossing S1 and S2) or
|zS[M]| = (`− 1)! (if it has two edges crossing S1 and S2). We say that M is of type 0 if

70

M1 M2 M3 M4

Figure 5.9: Examples of type 0 matchings (M1,M2) and type 1 matchings (M3,M4).

it has no edge crossing S1, S2, and type 1 otherwise. For instance, in Figure 5.9, M1,M2

are type 0 matchings, while M3,M4 are type 1.

Now it only remains to evaluate (5.9) for each of these two cases. Suppose M is of
type 0, and zS[M] = `!. Then M must contain ` edges that join vertices in S1, and k − `
edges that join vertices between S2. Now let us exhaust all the possible matchings M ′,
where M ′ is S-relevant and M ∪M ′ ∈Mn,k+i. There are three cases:

1. M ′ contains all ` S1-edges from M . In that case, M ′ must be of type 0, and contains
exactly i S2 edges that are not in M . There are

(
k−`
i

)
|M2i,i| to select these edges,

and thus these matchings contribute a total of
(
k−`
i

)
|M2i,i|`! to (5.9).

2. M ′ contains `− 1 S1-edges from M and is of type 0. The total contribution in this
case is `

(
k−`
i−1

)
|M2i−2,i−1|`!.

3. M ′ contains ` − 1 S1-edges from M , and is of type 1. The total contribution is
`
(
k−`
i−1

)
(2i− 2)(2i− 3)|M2i−4,i−2|(`− 1)!.

Thus, in this case, (5.9) evaluates to(
k − `
i

)
|M2i,i|`! + `

(
k − `
i− 1

)
|M2i−2,i−1|`! + `

(
k − `
i− 1

)
(2i− 2)(2i− 3)|M2i−4,i−2|(`− 1)!

=

(
(2i− 1)

(
k − `
i

)
+ (`+ 2i− 2)

(
k − `
i− 1

))
(2i− 3)!!`!

=

(
(2i− 1)

((
k − `
i

)
+

(
k − `
i− 1

))
+ (`− 1)

(
k − `
i− 1

))
(2i− 3)!!`!

=

(
(2i− 1)

(
k − `+ 1

i

)
+ (`− 1)

(
k − `
i− 1

))
(2i− 3)!!`!

= µzS[M].

Note that, in all cases, if M,M ′ ∈Mn,k are S-relevant, and M∪M ′ is also a matching,
then M,M ′ must have the same parity. Next, we turn to the case when zS[M] = (`− 1)!,
and let f1, f2 be the two edges in M that cross S1 and S2. Then M must contain (`−1) S1-
edges and (k− `−1) S2-edges. Here are all the possible cases where M ′ is also S-relevant,
and M ∪M ′ ∈Mn,k+i:

71

1. M ′ contains all (` − 1) S1-edges in M . There are a total of
(
k−`+1

i

)
|M2i,i| such

matchings, and
(
k−`−1
i−2

)
|M2i−2,i−1| of them are of type 0, with the remainder being

type 1. Thus, the total contribution in this case is((
k − `+ 1

i

)
|M2i,i| −

(
k − `− 1

i− 2

)
|M2i−2,i−1|

)
(`−1)!+

(
k − `− 1

i− 2

)
|M2i−2,i−1|`!.

2. M ′ contains only (`− 2) S1-edges in M . Then it must contain both f1 and f2, and
must be of type 1. The total contribution here is (`− 1)

(
k−`−1
i−1

)
|M2i−2,i−1|(`− 1)!.

Adding them up, we get((
k − `+ 1

i

)
|M2i,i| −

(
k − `− 1

i− 2

)
|M2i−2,i−1|

)
(`− 1)! +(

k − `− 1

i− 2

)
|M2i−2,i−1|`! + (`− 1)

(
k − `− 1

i− 1

)
|M2i−2,i−1|(`− 1)!

=

((
k − `+ 1

i

)
(2i− 1) + (`− 1)

(
k − `− 1

i− 2

)
+ (`− 1)

(
k − `− 1

i− 1

))
(2i− 3)!!(`− 1)!

=

(
(2i− 1)

(
k − `+ 1

i

)
+ (`− 1)

(
k − `
i− 1

))
(2i− 3)!!(`− 1)!

= µzS[M].

Thus, we obtain in both cases that (5.9) evaluates to µzS[M]. The cases for zS[M] = −`!
and −(` − 1)! can be shown similarly. Hence, we conclude that zS is an eigenvector of
Yn,k,k(ek+i) with eigenvalue µ.

Since Yn,k,k(m) =
∑2k

i=kmiYn,k,k(ei), it follows that zS is an eigenvector of Yn,k,k(m)
for all m ∈ Rk+1, for the partitions described above.

In the next sections, when we explore additional techniques that will further reduce
the task of proving Yn,k,k � 0, we will point out another connection between matchings
and integer partitions (Proposition 50). We will also see another example of relating
eigenvectors and eigenvalues to combinatorial objects when we compute the eigenvalues
of ZZ> (where Z is the zeta matrix of a set) in Chapter 6.

5.4 Commutative maps and reductions using symme-

tries

We have seen that it can be helpful to partition the rows and columns of a certificate matrix
into “slices” (as in (5.1)), and that sometimes their eigenvectors can be related to families
of combinatorial objects. Moreover, such structures and connections lend themselves

72

rather naturally to inductive arguments. For instance, we saw in Proposition 31 how one
could verify the positive semidefiniteness of a matrix within this setup by induction.

In [HT08], Hong and Tunçel outlined a framework of establishing lower-bound results
for the Lovász–Schrijver operators. They looked at maps that are commutative with
these operators, and showed that, using these maps, the certificate matrix of a smaller
instance of a problem can often be lifted to form one for a larger instance. This type of
technique can be extremely useful when one tries to verify a family of certificate matrices
inductively. Herein, we show that some of their results can be extended to stronger lift-
and-project operators (such as SA and SA+), and look at how these maps can simplify the
construction and verification of certificate matrices for sets that have a lot of symmetries.

5.4.1 Maps that commute with operators based on SA

First, we define a lift-and-project operator Γ to be union-commutative if

conv(Γ(P1) ∪ Γ(P2)) ⊆ Γ(conv(P1 ∪ P2)),

for all P1, P2 ⊆ [0, 1]n. It was shown in [HT08] (in a slightly different language) that the
three Lovász–Schrijver operators LS0,LS and LS+ are all union-commutative. Here, we
show that this property is also shared by many other operators:

Proposition 37. The operators SAk, SA′k, SAk
+ and SA′k+ are all union-commutative, for

every k ≥ 1.

Proof. We only show the proof of the result for SA′k, as the arguments for the other
operators rely on the same observations. Let x ∈ conv(SA′k(P1) + SA′k(P2)). Then, there

exists Y = λY1 + (1− λ)Y2, where Y eF = x̂, Yi ∈ S̃A
′k

(Pi), i ∈ {1, 2}, and λ ∈ [0, 1]. Now

Y [F ,F] = λY1[F ,F] + (1− λ)Y2[F ,F] = λ+ (1− λ) = 1,

so (SA 1) holds. Next, it is not hard to see that for every α ∈ Ak, Y1eα ∈ K(P1) and
Y2eα ∈ K(P2) imply that Y eα ∈ K(conv(P1 ∪ P2)), so (SA 2) is satisfied as well. Since
taking convex combination of matrices preserves (OMC), (SA 3) and (SA 5) also hold.
Finally, for (SA′ 4), if Y [α, β] 6= 0, then at least one of Y1[α, β], Y2[α, β] is nonzero, which
means that α ∩ β ∩ (P1 ∪ P2) 6= ∅. Hence, α ∩ β ∩ conv(P1 ∪ P2) 6= ∅.

Note that given polytopes P1, P2 ⊆ [0, 1]n, a point x ∈ conv(P1 ∪P2) if and only if the
system

x̂ = y + z
y ∈ K(P1)
z ∈ K(P2)

is feasible. This shows that if we have a separation oracle for P1, P2, then conv(P1 ∪ P2)
is also tractable. In particular, Γ(conv(P1∪P2)) is then also tractable if Γ only requires a

73

weak separation oracle for the input relaxation. However, it is not apparent that we can
efficiently generate a facet description of conv(P1 ∪ P2) from facet descriptions of P1 and
P2. Thus, for operators that depend on the algebraic description of the relaxation (such
as Las and the Bienstock–Zuckerberg variants), it is not clear if the linear optimization
problem over Γ(conv(P1 ∪ P2)) is polynomial-time solvable.

Next, given a function M : Rn → Rp, we extend the point-to-point mapping M to a
set-to-set mapping by defining

M(P) := {M(x) : x ∈ P}

for all P ⊆ Rn. Then we say that a lift-and-project operator Γ is M-commutative if

M(Γ(P)) ⊆ Γ(M(P)),

for every set P ⊆ [0, 1]n. Here, we show that SAk
+ and SA′k+ are commutative with a

special family of maps.

Proposition 38. Suppose M : Rn → Rp is a function such that, for all i ∈ [p], one of
the following applies:

1. (M(x))i = 0 for all x ∈ Rn;

2. (M(x))i = 1 for all x ∈ Rn;

3. there exists j ∈ [n] such that (M(x))i = xj for all x ∈ Rn;

4. there exists j ∈ [n] such that (M(x))i = 1− xj for all x ∈ Rn.

Then SAk
+ and SA′k+ are both M-commutative, for every k ≥ 1.

Proof. We only prove the claim for SAk
+, as the same argument applies for SA′k+. Herein,

let An,k denote {S|1 ∩ T |0 : S, T ⊆ [n], |S|+ |T | ≤ k}, and define Ap,k similarly. For every
i ∈ [p], we define

g(i|1) :=

F if (M(x))i = 1 for all x ∈ Rn;
j|1 if (M(x))i = xj for all x ∈ Rn;
j|0 if (M(x))i = 1− xj for all x ∈ Rn;
∅ if (M(x))i = 0 for all x ∈ Rn.

We also define g(i|0) := F\g(i|1) for every i ∈ [p]. Furthermore, given α = S|1∩T |0 ∈ Ap,k,
define

g(α) :=

(⋂
j∈S

g(j|1)

)
∩

(⋂
j∈T

g(j|0)

)
.

Note that this definition is consistent with that of g(i|1) and g(i|0). Also observe that
g(α) ∈ An,k, for all α ∈ Ap,k.

74

Next, define M̃ ∈ RAp,k×An,k , where M̃ [α, β] = 1 if g(β) = α, and 0 otherwise. We

claim that if Y ∈ S̃A
k

+(P), then M̃Y M̃> ∈ S̃A
k

+(M(P)). This is due to the construction

of M̃ , as M̃Y M̃>[α, β] = Y [g(α), g(β)] for every α, β ∈ Ap,k. Thus, M̃Y M̃> inherits the
conditions (SA+ 1) – (SA+ 5) from Y . Also, Y � 0 ⇒ M̃Y M̃> � 0. Since M̃Y M̃> is a
certificate for M(x). we see that SAk

+ is M -commutative.

These mappings M can be described as taking a set in [0, 1]n and producing a set in
[0, 1]p where each of the p coordinates is either obtained by embedding (i.e. (M(x))i = 0 or
1), duplicating an existing coordinate (i.e. (M(x))i = xj) or flipping an existing coordinate
(i.e. (M(x))i = 1−xj). Also, one can use similar observations to show that such mappings
are also commutative with operators such as SAk and Lask. A broader family of maps
that contains those we just described were shown in [HT08] to be commutative with all
three Lovász–Schrijver operators.

Hong and Tunçel remarked that these commutative maps lend themselves readily to
be used in inductive arguments. Several such examples were provided in [HT08], and we
expand on one of them here. Consider the graph K2n+3, and label its edges from 1 to(

2n+3
2

)
by their lexicographic order. That is, the edges are labelled in order

{1, 2} , {1, 3} , . . . , {1, 2n+ 3} , {2, 3} , . . . , {n− 1, n} .

For each edge f ∈ E(K2n+3), we let K2n+3 \ f denote the graph with f and the two
vertices it is incident with removed. We then define Mf : RE(K2n+1) → RE(K2n+3) where

(Mf (x))i =

1 if i = f ;
0 if i 6= f , but they share a common vertex;
xj if i is the jth edge in K2n+3 \ f .

In establishing their result on the LS+-rank of the matching polytope of complete graphs
in [ST99], Stephen and Tunçel proved the following:

Proposition 39 (Lemma 4.1 in [ST99]). If 1
2n
ē ∈ LSk+(MT (K2n+1)), then 1

2n+2
ē ∈

LSk+1
+ (MT (K2n+3)).

The sketch of their proof is the following: Since the map Mf is LS+-commutative,

Mf

(
1

2n
ē

)
∈ LSk+(Mf (MT (K2n+1)) ⊆ LSk+(MT (K2n+3)),

for every edge f . Note that the last containment follows because Mf (MT (K2n+1) ⊆
MT (K2n+3), and LSk+ preserves containment. Then it turns out that the matrix Y ∈
R({0}∪E(K2n+3))×({0}∪E(K2n+3)) where

Y ef =

(

1
1

2n+2
ē

)
if f = 0;

1
2n+2

x̂
(
Mf (

1
2n
ē)
)

for all f ∈ E(K2n+3),

75

is a certificate for 1
2n+2

ē ∈ LSk+1
+ (MT (K2n+3)). Note that one main ingredients that make

this type of inductive proofs relatively simple is the fact that LSk+(P) = LS+(LSk−1
+ (P))

for every set P ⊆ [0, 1]n and integer k ≥ 1 (same applies for the operators LS0,LS). Thus,
such a template cannot be readily extended for proving lower-bound results for, say, SA+,
since SAk

+(P) might be strictly contained in SA+(SAk−1
+ (P)) in general. Another hurdle

is that while a certificate matrix for a point in LSk+(P) has dimension (n + 1) × (n + 1)
for every k ≥ 1, the certificate matrices for SAk

+(P) grows in size rather rapidly as k
increases.

Nonetheless, we can still use the fact that the map Mf is SA+-commutative to show
that the SA+-rank of MT (K2n+1) is indeed nondecreasing with respect to n.

Proposition 40. If 1
2n
ē ∈ SA′k+(MT (K2n+1)), then 1

2n+2
ē ∈ SA′k+(MT (K2n+3)).

Proof. First, by Proposition 38, we obtain that SA′k+ is Mf -commutative, and thus

Mf

(
1

2n
ē

)
∈ SA′k+(Mf (MT (K2n+1)) ⊆ SA′k+(MT (K2n+3)).

Thus, by the convexity of SA′k+(MT (K2n+3)), the point

(
2n+ 3

2

)−1 (2n+3
2)∑

f=1

Mf

(
1

2n
ē

)
=

1

2n+ 2
ē

is contained in SA′k+(MT (K2n+3)).

Proposition 40 immediately implies the following about Yn,k,k matrices:

Corollary 41. If Y2n+1,k,k � 0, then Y2p+1,k,k � 0 for all integers p > n.

Proof. By Theorem 28, Y2n+1,k,k � 0 implies that 1
2n
ē ∈ SA′k+(MT (K2n+1)), which in

turn implies that 1
2n+2

ē ∈ SA′k+(MT (K2n+3)) by Proposition 40. Then we can construct

a certificate matrix for 1
2n+2

ē in S̃A
′k
+(MT (K2n+3)) by taking the certificate matrices for

Mf (
1

2n
ē) (as constructed in the proof of Proposition 38), and taking the average of these

matrices. That would result in the matrix

Y =

Y2n+3,0,0 Y2n+3,0,1 · · · Y2n+3,0,k

Y2n+3,1,0 Y2n+3,1,1 · · · Y2n+3,1,k
...

...
. . .

...
Y2n+3,k,0 Y2n+3,k,1 · · · Y2n+3,k,k

 .

Since Y � 0, its symmetric minor Y2n+3,k,k must also be positive semidefinite. Proceeding
with this argument iteratively, and we obtain that Y2p+1,k,k � 0 for all integers p > n.

76

5.4.2 Reducing matrices using permutation-commutative maps

Notice that Proposition 40 had a rather simple proof largely because we were working with
a certificate matrix with very few distinct parameters, and that the underlying relaxation
MT (Kn) is highly symmetric. We now look into a particular type of commutative maps,
and illustrate how the symmetries present in the given relaxation P can allow us assume
that, if there exists a point in a lift-and-project relaxation that violates a valid inequality
of the integer hull, then there exists a point that inherits all symmetries of P . We will
further see that often times we can further assume that the certificate matrix of such a
point also possesses these symmetries.

Given a compact, convex set P ⊆ [0, 1]n and an n× n matrix Q, we define

Q(P) := {Qx : x ∈ P} .

The following elementary result shows that all matrices Q which satisfy Q(P) = P must
have a very simple structure.

Lemma 42. Suppose P ⊆ [0, 1]n is a compact, convex set that contains the unit simplex.
If a matrix Q satisfies Q(P) = P , then Q is a permutation matrix.

Proof. First, we show that each column of Q have exactly one nonzero entry. Since both
P and Q(P) are fully dimensional sets, Q must be invertible, and it is not hard to see
that Q−1(P) = P .

Now fix i ∈ [n] and consider Q
(

1
2
ei
)
. We know Q

(
1
2
ei
)
6= 0 (since Q is invertible).

Next, consider S ⊂ P to be the line segment joining 0 and 1
2
ei. Since S is contained

in exactly one edge in P , by linearity of the mapping, so must Q(S). Moreover, since
Q(0) = 0, we know that Q(S) must also be an edge containing 0, and thus we deduce
that Q

(
1
2
ei
)

= kej for some scalar k ∈ [0, 1] and j ∈ [n].

Next, we argue that k = 1
2
. If k > 1

2
, then Qei 6∈ [0, 1]n, contradicting Q(P) = P . On

the other hand, if k < 1
2
, then Qei = 2kej < ej, and is not an extreme point of P while ei

is one, a contradiction. Thus, we see that for every i ∈ [n], there exists j ∈ [n] such that
Qei = ej.

Again, by the linearity of the mapping, every row of Q cannot contain more than one
nonzero entry (otherwise there exist i, j, k ∈ [n] such that Qei = Qej = ek). Thus, we
conclude that Q must be a permutation matrix.

Thus, we see that in such cases, there exists an integer N such that QN = I, the
identity matrix (e.g. N = n! would do). From now on, we say that a lift-and-project
operator Γ is permutation-commutative if it is Q-commutative for all permutation matrices
Q. Note that mappings defined by permutation matrices fall under those described in
Proposition 38. Thus, it follows that many operators, including all Lovász–Schrijver and
Sherali–Adams variants that we discussed, are permutation-commutative.

77

When trying to establish a lower-bound result for a lift-and-project operator Γ applied
to P , we are often trying to construct a certificate matrix for a point x ∈ Γ(P) that
violates some inequality in the form of a>y ≤ β that is valid for PI . We now look at how
the symmetries in the initial relaxation P , and in the coefficients of a, can allow us to
construct a violating point x ∈ Γ(P) that also has a lot of symmetries.

Proposition 43. Let P ⊆ [0, 1]n be a compact, convex set, and Γ be a permutation-
commutative lift-and-project operator such that Γ(P) is also convex. Then the inequality
a>y ≤ β is not valid for Γ(P) if and only if there exists x ∈ Γ(P) such that α>x > β,
and xi = xj whenever there exists a permutation matrix Q such that Q(P) = P,Qa = a
and Qei = ej.

Proof. The “if” portion of the claim is clear. For the “only if” part, take any point
x ∈ Γ(P) that violates a>y ≤ β, and a permutation matrix Q such that Q(P) = P and
Qa = a. Then we see that

Qx ∈ Q(Γ(P)) ⊆ Γ(Q(P)) = Γ(P),

since Γ is Q-commutative. Thus, it follows that Qix ∈ Γ(P) for all i ≥ 1. Moreover, let
N be an integer such that QN = I. Then we see that

a>(Qx) = (Q>a)>x = (QN−1a)>x = a>x,

where we used the fact that Q> = Q−1 for all permutation matrices Q, and applied
Qa = a iteratively for N − 1 times.

Therefore, the above observations imply that if we let z := 1
N

∑N−1
i=0 Qix, then z ∈ Γ(P)

by convexity, and

a>z =
1

N

N−1∑
i=0

a>(Qix) = a>x > β.

Moreover, by the construction of z,

Qz = Q

(
1

N

N−1∑
i=0

Qix

)
=

1

N

N∑
i=1

Qix = z.

Thus, zi = zj whenever Qei = ej, and our claim follows.

Thus, we know that if a certain inequality a>y ≤ β is violated by some point x,
then it has to be violated by a point that inherits all symmetries of P and the vector a.
Notice that, in many optimization problems, we are interested in computing the largest
or smallest cardinality of a set among a given collection (e.g. the stable set problem,
matching problem, and the max-cut problem). Thus, we are often optimizing in the
direction of ē. Moreover, we have seen that many hardness results have been achieved by
highly symmetric combinatorial objects (e.g. the complete graph), which correspond to
polytopes that have a lot of symmetries. Thus, we define a set P ⊆ [0, 1]n to be symmetric
if for all i, j ∈ [n], there exists a permutation matrix Q such that Q(P) = P and Qei = ej.
Then the following special instance of Proposition 43 is particularly noteworthy.

78

Corollary 44. Let P ⊆ [0, 1]n be a compact, convex set that is symmetric. If a lift-and-
project operator Γ is permutation-commutative and Γ(P) is convex, then the inequality
ē>y ≤ β is valid for Γ(P) if and only if

max {k : kē ∈ Γ(P)} ≤ β

n
.

Hence, not only can the above observations simplify lower-bound analyses by intro-
ducing symmetries and guiding us to find points that may have “nice” certificate matrices,
it can also reduce the task of proving an upper-bound result from showing PI ⊆ Γ(P) to
verifying if a specific point is on the boundary of Γ(P).

Moreover, in addition to using the presence of Q to construct points in Γ(P) that have
a lot of symmetries, sometimes we can show that these same symmetries can be assumed
upon the matrices in Γ̃(P).

Corollary 45. Let P ⊆ [0, 1]n be a compact, convex set, and Q be a permutation matrix
such that Q(P) = P . Then the inequality ē>y ≤ ` is not valid for SAk

+(P) if and only if

there exists Y ∈ S̃A
k

+(P) such that

•
∑n

i=1 Y [i|1,F] > `, and

• Y [S1|1 ∩ T1|0, S ′1 ∩ T ′1|0] = Y [S2|1 ∩ T2|0, S ′2|1 ∩ T ′2|0] whenever QχS1∪S′1 = χS2∪S′2 and
QχT1∪T

′
1 = χT2∪T

′
2.

The same assertion also holds for the operators SAk, SA′k and SA′k+, for every k ≥ 1.

Proof. The proof closely follows that of Proposition 43. First, let x ∈ SAk
+(P) and Y be its

certificate matrix. Since SAk
+ is Q-commutative, we can follow the proof of Proposition 38

to construct a matrix that certifies Qx ∈ SAk
+(P). Let us slightly abuse notation and

denote this matrix by Q(Y). We can likewise construct Qi(Y) that certifies Qix ∈ SAk
+(P)

for all i ≥ 1.

Again, let N be an integer such that QN = I. Then it is not hard to see that

1

N

N−1∑
i=0

Qi(Y)

is in S̃A
k

+(P), by the convexity of the set S̃A
k

+(P), and this “averaged out” matrix would
fulfill the symmetry assertions. The same argument applies to the other operators.

In the case when Γ is a lift-and-project operator whose performance can vary upon the
algebraic descriptions of P , simply assuming Q(P) = P is not enough. However, similar
results can be achieved with a slightly stronger assumption. For instance, we illustrate
such a result for the Lasserre operator:

79

Proposition 46. Let P = {y : Ay ≤ b} ⊆ [0, 1]n be a polytope, and Q be a permutation
matrix such that AQ = A. Then the inequality ē>y ≤ ` is not valid for Lask(P) if and

only if there exists Y ∈ L̃as
k
(P) such that

•
∑n

i=1 Y [i|1,F] > `, and

• Y [S1|1, S ′1|1] = Y [S2|1, S ′2|1] whenever QχS1∪S′1 = χS2∪S′2.

The same assertion also holds for Las′k, for every k ≥ 1.

Thus, we see that the symmetries of P can allow us to construct symmetric points
and certificate matrices in its lift-and-project relaxations. Next, we look to further exploit
these symmetries to simply the verification of these certificate matrices. In particular,
we show how these ideas can be utilized to establish the positive semidefiniteness of
a certificate matrix by doing that on another matrix that is potentially much smaller.
First, we have the following elementary result:

Proposition 47. Suppose Y ∈ Sn, and Q is a permutation matrix such that QY = Y .
Let C1, . . . , Ck ⊆ [n] be the disjoint cycles of the permutation on [n] that correspond to Q,
and x be an eigenvector of Y with eigenvalue λ. Define the vector z where

zj =

∑
j∈Ci xj

|Ci|
, ∀i ∈ Ci, ∀i ∈ [k].

Then Y z = λz.

Proof. Observe that

Y (Qx) = (Y Q)x = (Q>Y >)>x = (Q−1Y)>x = Y x = QY x = λQx.

Again, Q> = Q−1 for all permutation matrices Q. Thus, we see that Qix is an eigenvector
of Y with eigenvalue λ, for all i ≥ 1. If QN = I for some integer N , then z :=

∑N−1
i=0 Qix

satisfies Y z = λz. Also, it is not hard to see that zi = zj whenever Qei = ej (i.e. when
i, j belong to the same cycle). Thus, our claim follows.

Therefore, when such a permutation matrix exists, we can assume that for every
eigenvalue of Y , we can obtain eigenvectors whose entries are identical within each orbit
of Q. The only problem is that z above could be the zero vector, and one has to exercise
caution in choosing x and Q to not “lose” these eigenvectors in the process.

One way to do that is the following: We say that an n × n matrix Y is coordinate-
transitive if, for all i, j ∈ [n], there exists a permutation matrix Q such that QY = Y
and Qei = ej. Given such a matrix, we can define an equivalence relation on [n], and say
that i ∼ j if there exists a permutation matrix Q where QY = Y,Qe1 = e1 and Qei = ej.
Let C1, . . . , C` be the resulting equivalence classes that partition [n]. Then we have the
following:

80

Proposition 48. Suppose Y is a coordinate-transitive matrix, and the equivalence classes
C1, . . . , C` are defined as above. Define the n× ` matrix L where

L[i, j] =

{
1 if i ∈ Cj;
0 otherwise.

Then λ is an eigenvalue of Y if and only if it is also an eigenvalue of

Y ′ := (L>L)−1L>Y L.

Proof. Let λ be an eigenvalue of Y , with a corresponding eigenvector x. Since Y is
coordinate-transitive, we may assume that there is such an x where x1 6= 0. Then using
permutation matrices Q where QY = Y and Qe1 = e1, we can construct from Propo-
sition 47 a vector z whose entries are uniform among each Ci. Also, since z1 = x1, z is
nonzero and thus indeed an eigenvector of Y with eigenvalue λ.

Define z̄ ∈ R` where z̄i = zj, where j ∈ Ci, for all i ∈ [`]. (Again, since all entries of z
corresponding to Ci are identical, we can choose any j ∈ Ci.) Note that z = Lz̄. Now,

Y ′z̄ = (L>L)−1L>Y Lz̄

= (L>L)−1L>Y z

= λ(L>L)−1L>z

= λ(L>L)−1L>Lz̄

= λz̄.

Next, we show that Y ′z̄ = λz̄ implies Y z = λz. Notice L>L is the `× ` diagonal matrix
where L>L[i, i] = |Ci| for all i ∈ [`]. Thus, (L>L)−1 must exist, and is the diagonal matrix
whose ith diagonal entry is 1

|Ci| . Hence, Y ′[i, j] = 1
|Ci|
∑

p∈Ci,q∈Cj Y [p, q], and from that it is

easy to see that LY ′ = Y L. Hence,

Y z = Y Lz̄ = LY ′z̄ = λLz̄ = λz,

and our claim follows.

Thus, if we need to verify if Y is positive semidefinite, it is equivalent to verify that
for Y ′, a matrix that is potentially much smaller. In fact, the same can be said about
several other `× ` matrices:

Corollary 49. Let Y be a coordinate-transitive matrix, and L as defined in Proposi-
tion 48. Then the following are equivalent:

1. Y � 0;

2. (L>L)−1L>Y L � 0;

3. L>Y L � 0;

81

4. (L>L)−1/2L>Y L(L>L)−1/2 � 0.

While the proof to Corollary 49 is elementary, we remark that each of the above
matrices boasts different advantages:

• 2. and 4. have the same eigenvalues as Y , while 3. may not;

• 3. and 4. are symmetric but 2. is generally not;

• 2. and 3. have rational entries (given Y has rational entries) and 4. may not.

Thus, depending on individual circumstances, some of these matrices might be more
fruitful to work with than the others.

Next, we utilize Proposition 48 to compute eigenvalues for Yn,k,k(m) (the matrix whose
rows and columns are indexed by matchings of size k in Kn, defined in (5.6)). First, it is
apparent that Yn,k,k(m) is coordinate-transitive. Thus, let M be a fixed matching of sized
k, and consider all automorphisms of Kn that fixes M . More precisely, P : [n] → [n] is
an isomorphism that fixes M = {{u1, v1} , {u2, v2} , . . . , {uk, vk}} if

{{P (u1), P (v1)} , {P (u2), P (v2}), . . . , {P (uk), P (vk)}} = M.

Note that the sets above are unordered, and {ui, vi} is not necessarily equal to {P (ui), P (vi)}
for any particular i ∈ [k]. Hence, among the n! automorphisms of Kn, there are exactly
(2k)!! that fix M . Next, we define the equivalence classes C1, . . . C` as in Proposition 48
and the matrix L, and look into the reduced matrix

Y ′n,k,k(m) = (L>L)−1L>Yn,k,k(m)L.

We assume throughout this section that n ≥ 2k. In such cases, the number of equivalence
classes in Mn,k is only dependent on k. Recall that, given a polynomial or power series
f(x), [xk]f(x) denotes the coefficient of xk in f(x). The following result gives one way of
counting these equivalence classes:

Proposition 50. Let M ∈ Mn,k be a fixed matching, and we define the equivalence
relation on Mn,k such that S1 ∼ S2 if there exists an automorphism on Kn that fixes M
and maps S1 to S2. Then the total number of equivalence classes under this relation is

αk := [xk]
1

2

(∏
j≥1

1

(1− xj)4
+
∏
j≥1

1

(1− xjy)(1− xjy−1)(1− xj)2

)
.

Proof. First, we construct a bijection between the equivalence classes, and the set of
partitions of k with four types of parts {p+, p, p′, p− : p ≥ 1}, in which the number of

82

parts of the kind p+ is no more than that of the kind p−. For instance, when k = 2, there
are 10 such partitions:

(2−), (1−, 1−), , (1−, 1), (1−, 1′), (1−, 1+), (2), (1, 1), (1, 1′), (2′), (1′, 1′).

Given an equivalence class Ci, take any matching S ∈ Ci, and consider the components in
S ∪M . For each component that contains p edges from S (where p ≥ 1), we assign it to
a part as follows:

• p− if the component is a path of length 2p− 1;

• p if the component is a cycle of length 2p where p ≥ 2, or when the component
consists of one edge belonging to both M and S;

• p′ if the component is a path of length 2p;

• p+ if the component is a path of length 2p+ 1.

If we do that for each component that contains some edges from S, we obtain parts
that add up to k. Moreover, at most k of the edges from M would be accounted for.
Thus, since each p−-component contains p − 1 edges from M , and each p+-component
contains p+ 1 edges from M , the partition of k we obtain must contain as least as many
p− parts as p+ parts. Figure 5.10 illustrates the bijection between the 10 partitions and
the 10 nonisomorphic cases for S ∪M when k = 2.

By the definition of our equivalence relation and the construction of the partition, we
see that S1 ∼ S2 if and only if S1∪M and S2∪M correspond to the same partition. Also,
the construction is reversible — given such a partition, we can construct all components
of S ∪M , and recover the equivalence class that contains S.

Finally, we count the number of such partitions. The total number of partitions of
k with four kinds of parts is [xk]

∏
j≥1

1
(1−xj)4 . Now there is a natural bijection between

partitions with more p+ parts than p− parts and vice versa. Thus, the number of partitions
we want is the total number of partitions of k with four kinds of different parts, plus such
partitions with the same number of p+ and p− parts, all divided by two. Note that since
[xky`](1−xjy)−1 is the number of partitions of k with ` parts, [xk] ((1− xjy)(1− xjy−1))

−1

counts the number of partitions of k with two kinds of parts, with the same number of
parts of each kind. This finishes our proof.

Computations show that the first few values of αk are 3 , 10 , 27 , 69 , 161 , 361 and
767. Thus, we see that it suffices to verify the positive semidefiniteness of an αk × αk
matrix to prove that Yn,k,k(m) � 0.

Next, we look into these reduced matrices of Yn,k,k(m) for small k. For k = 1, we
have α1 = 3. If we let M = {{u, v}}, then the three equivalence classes (and their
corresponding partitions) are:

83

(2−) (1−, 1−) (1−, 1) (1−, 1′) (1−, 1+) (2)

edges in M

edges in S

(1, 1) (1, 1′) (2′) (1′, 1′)

Figure 5.10: The bijection between integer partitions and nonisomorphic unions of two
matchings.

(1) C1, which consists of the edge {u, v};

(1′) C2, the edges that are incident with u or v, but not both;

(1−) C3, the edges that are neither incident with u nor v.

Thus, while Yn,1,1(m) is an
(
n
2

)
×
(
n
2

)
matrix, Y ′n,1,1(m) is 3 × 3, regardless of n. For

example,

Y ′5,1,1(m) =

m1 0 3m2

0 m1 + 2m2 m2

m2 2m2 m1

 ,

where the rows and columns are ordered according to the listing of the equivalence classes
above (e.g. Y ′5,1,1(m)[1, 3] = 3m2 since 1

|C1|
∑

p∈C1,q∈C3 Y5,1,1[p, q] = 3m2).

Then the eigenvalues of Y ′ are m1+m2,m1−2m2 and m1−3m2, each with multiplicity
one. Thus, by Proposition 48, these are also the eigenvalues of Y5,1,1(m).

For k = 2, there are α2 = 10 equivalence classes. We list their corresponding partitions
in order:

(1, 1), (2), (2−), (1′, 1′), (1−, 1−), (1, 1′), (1−, 1), (2′), (1−, 1+), (1−, 1−).

84

Then one can compute that Y ′9,2,2(m) is the matrix

b2 0 0 0 15b4 0 20b3 0 0 0
0 b2 0 0 15b4 0 0 0 20b3 0
0 0 b2 + 6b4 12b3 0 2b3 3b4 0 0 6b3 + 6b4
0 0 6b3 b2 + 6b3 + 6b4 0 0 0 2b3 3b4 6b3 + 6b4
b4 2b4 0 0 b2 4b4 4b3 8b4 8b3 8b3
0 0 4b3 0 3b4 b2 + 4b3 6b3 0 0 6b3 + 12b4
b3 0 6b4 0 3b3 6b3 b2 + 4b3 + 3b4 0 0 6b3 + 6b4
0 0 0 4b3 3b4 0 0 b2 + 4b3 6b3 6b3 + 12b4
0 b3 0 6b4 3b3 0 0 6b3 b2 + 4b3 + 3b4 6b3 + 6b4
0 0 2b3 + 2b4 4b3 + 4b4 b3 b3 + 2b4 b3 + b4 2b3 + 4b4 2b3 + 2b4 b2 + 7b3

.

The eigenvalues of Y ′9,2,2(m) are:

Eigenvalue Multiplicity Corresponding eigenvalue of Y9,2,2

m2 + 20m3 + 15m4 1 63

m2 + 2m3 +
9m4+
√

336m2
3−168m3m4+81m2

4

2
2 33

m2 + 2m3 + 3m4 1 15
m2 + 2m3 1 12
m2 − 4m3 1 0

m2 −m3 − 6m4 1 0
m2 + 2m3 − 12m4 1 0

m2 + 2m3 +
9m4−
√

336m2
3−168m3m4+81m2

4

2
2 0

Total = 10

Table 5.1: Eigenvalue breakdown of the reduced Y9,2,2(m).

Thus, we see that Y9,2,2 � 0. Together with Corollary 41, we obtain that Yn,2,2 � 0 for
all odd integers n ≥ 9.

For k = 3, α3 = 27. While we were not able to compute the eigenvalues of the matrix
Y ′13,3,3(m) for a general vector m, the eigenvalues of Y ′13,3,3 were relatively easy to obtain:

For k = 4 there are α4 = 69 equivalence classes, and the eigenvalue breakdown of
Y ′17,4,4 is:

Note that Y17,4,4 is a 2552550 × 2552550 matrix, and Proposition 48 allows us to
completely recover its eigenvalues by looking into a mere 69× 69 matrix. Thus, it follows
that Yn,3,3 � 0 for all odd n ≥ 13, and Yn,4,4 � 0 for all odd n ≥ 17. We will further
discuss these findings about Yn,k,k in Chapter 8.

85

Eigenvalue Multiplicity
1287 1
657 2
287 2
272 2
105 1
80 1
72 1
0 17

Total = 27

Table 5.2: Eigenvalue breakdown of the reduced Y13,3,3.

Eigenvalue Multiplicity
36465 1
18447 2
8241 3
8052 2
3087 2
2872 3
2760 2
945 1
700 1
640 1
616 1
576 1
0 49

Total = 69

Table 5.3: Eigenvalue breakdown of the reduced Y17,4,4.

86

Chapter 6

When Positive Semidefiniteness
Does Not Help

In earlier chapters, we looked at tools such as Theorem 11 and 12 that can relate the per-
formances of two lift-and-project operators. In the way they are derived, the comparison
is usually applied to two operators that are either both polyhedral or both semidefinite,
and showing that those operators do not gain any strength by lifting a given set to a
higher dimension (e.g. Theorem 13 and 14). In this chapter, we are more interested in
comparing two operators from the two different realms, such as SAk and SAk

+. While we
already know that SAk

+ dominates SAk in general, it is worthwhile to ask the following:
Under what conditions does SAk

+ not perform strictly better than SAk? In such cases, it
would be silly to apply SAk

+, verify a complex set of conditions, only to yield the exact
same relaxation as that obtained by applying the much simpler SAk.

6.1 When SAk
+ does not outperform LSk0

In [GT01], Goemans and Tunçel studied the question of when LS+ does not outperform
LS0, and they proved the following:

Theorem 51. Suppose P ⊆ [0, 1]n. Given x ∈ P , let

S(x) := {i ∈ [n] : 0 < xi < 1} .

If the points obtained from x by

1. increasing xi to 1, and

2. decreasing xi to 0

are both in P, ∀i ∈ S(x), then x ∈ LS+(P).

87

1

1

0

P

1

1

0

⊆ LS+(P)

Figure 6.1: An illustration of Theorem 51.

1

1

0

P

1

1

0

= LS+(P)

Figure 6.2: An illustration of Corollary 52.

For an example, if P is the set on the left hand side of Figure 6.1, then Theorem 51
implies that the grey area on the right hand side of Figure 6.1, as well as all points on
the two axes, are contained in LS+(P).

Theorem 51 then immediately implies the following:

Corollary 52. Suppose P ⊆ [0, 1]n, and

{x ∈ P : xi = 1} = {x ∈ P : xi = 0}+ {ei}

for all i ∈ [n], then

LS+(P) = LS0(P) = {x : x− xjej ∈ P, ∀j ∈ [n]} .

For instance, Figure 6.2 provides an illustration of Corollary 52. In this example, the
points described in Theorem 51 accounts for all points in the set LS+(P).

Herein, we extend Theorem 51 and Corollary 52, and provide some conditions under
which SAk

+ does not outperform LSk0. Given x ∈ [0, 1]n and two disjoint sets of indices
I, J ⊆ [n], we define the vector xIJ ∈ [0, 1]n where

xIJ [i] =

1 if i ∈ I;
0 if i ∈ J ;
x[i] otherwise.

88

In other words, xIJ is the vector obtained from x by setting all entries indexed by elements
in I to 1, and all entries indexed by elements in J to 0. Then we have the following.

Theorem 53. Let P ⊆ [0, 1]n and x ∈ P . If xIJ ∈ P for all I, J ⊆ S(x) such that
|I|+ |J | ≤ k, then x ∈ SAk

+(P).

Proof. We prove our claim by constructing a matrix in RAk×Ak that certifies x ∈ SAk
+(P).

Recall that
Ak = {S|1 ∩ T |0 : S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ k} ,

and
A+
k = {S|1 : |S| ≤ k} .

For each I ⊆ [n], |I| ≤ k, define y(I) ∈ A+
k such that

y(I)[S|1] =

{ ∏
i∈S\I xi if I ⊆ S;

0 otherwise.

Note that in the case of y(I)[I|1], the empty product is defined to evaluate to 1. Next, we

define Y ∈ RA+
k ×A

+
k as

Y :=
∑

S⊆[n],|S|≤k

(∏
i∈S

xi(1− xi)

)
y(S)(y(S))>.

Note that Y � 0. Now given S, T ⊆ [n], |S|, |T | ≤ k, observe that

Y [S|1, T |1] =
∑

U⊆S∩T

(∏
i∈U

xi(1− xi)

) ∏
i∈S\U

xi

 ∏
i∈T\U

xi

=

(∏
i∈S∪T

xi

) ∑
U⊆S∩T

(∏
i∈U

(1− xi)

) ∏
i∈(S∩T)\U

xi

=

∏
i∈S∪T

xi.

Next, define U ∈ RAk×A+
k such that

U>(eS|1∩T |0) =
∑

U :S⊆U⊆(S∪T)

(−1)|U\S|eU |1 ,

for all disjoint S, T ⊆ [n] such that |S|+ |T | ≤ k. We claim that Y ′ := UY U> ∈ S̃A
k

+(P).

First, notice that Y ′[F ,F] = Y [F ,F] = 1, so (SA+ 1) holds. Next, given α = S|1 ∩
T |0 ∈ Ak,

x̂ (Y ′eα) =

(
Y ′[F , α]
Y ′[F , α]xST

)
=

(
Y ′[F , α]

Y ′[F , α]x
S∩S(x)
T∩S(x)

)
∈ K(P),

89

by the assumption that xIJ ∈ P for all I, J ⊆ S(x) where |I|+ |J | ≤ k. Also, we see that
given α, β ∈ Ak where α = S|1 ∩ T0, β = S ′|1 ∩ T ′|0,

Y ′[α, β] =

(∏
i∈S∪S′

xi

)(∏
i∈T∪T ′

(1− xi)

)
,

and hence is nonnegative. Thus, (SA+ 2) is satisfied as well. (SA+ 3)−(SA+ 5) are ensured
by the construction of U . Also, since Y � 0, Y ′ � 0 as well.

Finally, since x̂(Y ′eF) = x̂, it follows that x ∈ SAk
+(P).

From the above, we are able to characterize some convex sets for which SAk
+ does not

produce a tighter relaxation than an operator as weak as LSk0.

Corollary 54. Suppose P ⊆ [0, 1]n is a convex set such that, for all x ∈ P and for all
I, J, I ′, J ′ ⊆ [n] such that I ∪ J = I ′ ∪ J ′ and |I|+ |J | = k,

xIJ ∈ P ⇐⇒ xI
′

J ′ ∈ P.

Then
SAk

+(P) = LSk0(P) =
⋂

I⊆[n],|I|=k

{
x : xI∅ ∈ P

}
.

The two results above generalize Theorem 51 and Corollary 52, respectively.

6.2 Some bad instances for SA+,Las and BZ′+

In this section, we look at two polytopes that have been shown to be bad instances for
many known lift-and-project operators, and analyze their ranks with respect to some of
the strongest operators. For the first example, consider the set

P (α) :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− α

}
.

Using Theorem 53, we have the following for the SA+-rank of P (α):

Proposition 55. For every n ≥ 2, if α ∈ (0, n) is not an integer and k < n(dαe−α)
dαe , then

the SA+-rank of P (α) is at least k + 1.

Proof. First observe that for every α where 0 < α < n,

P (α)I =

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− dαe

}
.

90

Next, note that

k <
n(dαe − α)

dαe
⇐⇒ (n− k)

(
n− dαe

n

)
+ k < n− α

Thus, there exists ` ∈ R such that (n − k)` + k < n − α and ` > n−dαe
n

. Now consider

the point x := `ē. Since ` > n−dαe
n

, x 6∈ P (α)I . However, for every disjoint sets of indices
I, J ⊆ [n] where |I|+ |J | ≤ k, we have

n∑
i=1

xIJ [i] ≤ (n− k)`+ k < n− α,

by the choice of `. Thus, xIJ ∈ P (α) for any such choices of I, J . Note that the first
inequality above follows from the fact that xIJ is maximized by choosing any I with
|I| = k and J = ∅. Thus, it follows from Theorem 53 that x ∈ SAk

+(P (α)). This proves
that SAk

+(P (α)) 6= P (α)I , and hence the SA+-rank of P (α) is at least k + 1.

Using Proposition 55 and some results shown earlier in this thesis, we obtain a lower-
bound result on the BZ′+-rank of P (α), establishing what we believe to be the first example
in which BZ′+ (and, as a result, BZ+) requires more than a constant number of iterations
to return the integer hull of a set.

Proposition 56. Suppose an integer n ≥ 19 is not a perfect square. Then there exists

α ∈ (b
√
nc , d

√
ne) such that the BZ′+-rank of P (α) is at least

⌊√√
n−1
2

⌋
+ 1.

Proof. For convenience, let k :=

⌊√√
n−1
2

⌋
. Notice that for all n ≥ 19, k + 2 < b

√
nc,

and so BZ′k+ does not generate any k-small obstructions of P (α) for all α > b
√
nc. Thus,

Ok(P (α)) = P (α), and the walls generated by BZ′k+ is exactly the subsets of [n] of size at
most k in this case. Hence, every tier has size at most k2. Then it follows from Theorem 14
that, for all α > b

√
nc, BZ′k+(P (α)) ⊇ SA′k

2

+ (P (α)). Then Proposition 6 in turn implies

that SA′k
2

+ (P (α)) ⊇ SA2k2

+ (P (α)).

Now choose ε > 0 small enough such that

√
n− 1 <

n(d
√
ne − (b

√
nc+ ε)

d
√
ne

,

and let α := b
√
nc + ε. From Proposition 55, as long as 2k2 ≤

√
n − 1, SA2k2

+ (P (α)) 6=

P (α)I . Thus, the BZ′+-rank of P (α) is at least

⌊√√
n−1
2

⌋
+ 1.

Note that one particular consequence of Proposition 55 is that P (α) has SA+-rank n
for all α ∈ (0, 1

n
). We next show that the SA+-rank is in fact n for all α ∈ (0, 1):

91

Proposition 57. For every n ≥ 2, the SA+-rank of P (α) is n for all α ∈ (0, 1).

Proof. We prove our claim by showing that
(
1− α

αn+1−α

)
ē ∈ SAn−1

+ (P (α))\P (α)I . First,

n

(
1− α

αn+ 1− α

)
= n− αn

αn+ 1− α
> n− 1,

and so
(
1− α

αn+1−α

)
ē 6∈ P (α)I . We next show that this vector is in SAn−1

+ (P (α)). Let

A− := {S|0 : S ⊆ [n]}. It is clear that A− generates A (for the same reason A+
k generates

Ak, as explained in Section 5.1). Define y ∈ RA− where

y[S|0] =

1 if S = ∅;

α
αn+1−α if |S| = 1;

0 otherwise.

Now let Y ∈ RAn−1×An−1 be the unique matrix that is consistent with y. We claim that

Y ∈ S̃A
n−1

+ (P (α)). First, (SA+ 1) holds as Y [F ,F] = y[∅|0] = 1. It is also not hard to see
that Y ≥ 0, as every entry in Y is either 0 or 1−k α

αn+1−α for some integer k ∈ {0, . . . , n}.
Next, we check that x̂(Y eβ) ∈ K(P (α)) for all β ∈ An−1. Given β = S|1 ∩ T |0, x̂(Y eβ) is
the zero vector whenever |T | ≥ 2, and is the vector α

αn+1−α(ē− ei) whenever T = {i} for
some i ∈ [n].

Finally, suppose β = S|1 for some S ⊆ [n]. Then

x̂(Y eβ)[i] =

{
1− kα

αn+1−α if i = 0 or i ∈ S;

1− (k+1)α
αn+1−α if i ∈ [n] \ S.

Now

k

(
1− kα

αn+ 1− α

)
+ (n− k)

(
1− (k + 1)α

αn+ 1− α

)
= n

(
1− kα

αn+ 1− α

)
− α

(
n− k

αn+ 1− α

)
≤ (n− α)

(
1− kα

αn+ 1− α

)
.

Thus, x̂(Y eβ) ∈ K(P) in this case as well. Next, (SA+ 3), (SA+ 4) and (SA+ 5) hold since
Y satisfies (OMC) by construction. Finally, to see that Y � 0, let Y ′ be the symmetric
minor of Y indexed by rows and columns from A−. Then Y ′ � 0 as it is diagonally
dominant. Also, since A− generates An−1, there exists matrix L such that Y = LY ′L>.
Hence, we conclude that Y � 0 as well. This completes our proof.

Note that Proposition 57 slightly strengthens a result of Cheung’s in [Che07], who
used similar techniques to show that the SA-rank and LS+-rank of P (α) are both n for
all α ∈ (0, 1). Interestingly, Cheung also showed the following in the same paper:

92

Theorem 58. For every integer n ≥ 4,

1. The Las-rank of P (α) is at most n− 1 for all α ≥ 1
n

;

2. There exists α ∈
(
0, 1

n

)
such that the Las-rank of P (α) is n.

Thus, Las seems to be the only lift-and-project operator (among those we consider in
this thesis) whose performance is sensitive to the perturbation of the parameter α.

Also, we remark that the proof of Proposition 85 can be adapted to show that the
SA′+-rank and Las′-rank of any polytope contained in [0, 1]n is at most

⌈
n+1

2

⌉
. Since we

can choose α to be small enough such that P (α) has Las-rank n (by Theorem 58), we
obtain a family of examples whose Las-rank and Las′-rank differ by roughly n

2
. We also

note that the BZ-rank of P (α) is 1 for every α ∈ (0, 1). This is because the set [n] is a
k-small obstruction for every k ≥ 1, and so

∑n
i=1 xi ≤ n − 1 is valid for Ok(P (α)), and

the refinement step in BZ already suffices in generating the integer hull of P (α).

We next turn our attention to another well-studied example. Let α > 0, and define
the set

Q(α) :=

{
x ∈ [0, 1]n :

∑
i∈S

(1− xi) +
∑
i 6∈S

xi ≥ α, ∀S ⊆ [n]

}
.

Observe that, for every S ⊆ [n], its incidence vector χS violates the inequality correspond-
ing to S in the description of Q(α). Thus, we see that Q(α)I = ∅. Also, Q(1

2
) has been

shown to be a worst-case instance for many known lift-and-project methods. We show
that it is no different for SA+.

Corollary 59. For every n ≥ 2 and α ∈
(
0, 1

2

]
, SAk

+(Q(α)) = Q
(
k+α

2

)
for every k ∈ [n].

In particular, the SA+-rank of Q(α) is n.

Proof. Since Q(α) fulfills the description in Corollary 54, it follows that

SAk
+(Q(α)) =

⋂
I⊆[n],|I|=k

{
x : xI∅ ∈ Q(α)

}
= Q

(
k + α

2

)
.

Since Q(α)I = ∅, and 1
2
ē ∈ Q

(
k+α

2

)
for all k ≤ n − 1, it follows that the SA+-rank of

Q(α) is n.

Since SA2k
+ (P) ⊆ SA′k+(P) in general (Proposition 6), the SA′+-rank of Q(α) is at

least
⌈
n
2

⌉
for every α ∈ (0, 1

2
]. Also, as mentioned above, the SA′+-rank of any polytope

contained in [0, 1]n is at most
⌈
n+1

2

⌉
. Thus, we see that in this case, SA′+ requires roughly

n
2

fewer rounds than SA+ to show that Q(α) has an empty integer hull.

It was shown in [BZ04] that BZ2(Q(1
2
)) = ∅ = Q(1

2
)I (which implies BZ′2(Q(1

2
)) =

BZ′2+(Q(1
2
)) = ∅). However, since the run-time of BZ depends on the size of the system of

inequalities describing P (which in this case is exponential in n), the relaxation generated

93

by BZ2 is not obviously tractable. In contrast, note that it is easy to find an efficient
separation oracle for Q(α) (e.g. by observing that x ∈ Q(α) if and only if

∑n
i=1 |xi−

1
2
| ≤

n
2
−α), and thus one could optimize a linear function over, say, SAk(Q(α)) in polynomial

time for any k = O(1). The reader may refer to Figure 1.2 for a complete classification
of operators that depend on the algebraic description of the input set P , as opposed to
those that only require a weak separation oracle.

As for the Las-rank of Q(1
2
), it is shown to be 1 for n = 2 in [Lau03a], and 2 for

n = 4 in [Che07]. While Las depends on the algebraic description of the initial relaxation
just like the Bienstock–Zuckerberg operators, the following observation can significantly
simplify the analysis of the Las-rank of Q(α).

Proposition 60. Suppose n, k are fixed integers and α ∈ (0, 1). Define the vector w ∈
RA+

n where
w[S|1] = (n− |S| − 2α)2−|S|−1, ∀S ⊆ [n].

Then Lask(Q(α)) 6= ∅ if and only if Mk(w) � 0.

Proof. Suppose Lask(Q(α)) 6= ∅, and let Y ′ ∈ L̃as
k
(Q(α)). Notice that every automor-

phism for the unit hypercube is also an automorphism for Q(α). If we take these 2nn!
automorphisms and apply them onto Y ′ as outlined in the proof of Proposition 38, we

obtain 2nn! matrices in L̃as
k
(Q(α)). Let Ȳ be the average of these matrices. Then by the

symmetry of Q(α), we know that Ȳ = Mk(y), where y ∈ RA+
n ,

y[S|1] = 2−|S|−1, ∀S ⊆ [n].

By the convexity of L̃as
k
(Q(α)), Ȳ ∈ L̃as

k
(Q(α)), and thus satisfies (Las 2) for all of the

2n equalities defining Q(α). In fact, due to the entries of Ȳ , the matrix Ȳ j is the same
for all 2n inequalities describing Q(α). Thus, using the inequality

∑n
i=1 xi ≤ n − α, we

obtain that

Ȳ j[S|1, T |1] = (n− α)Y [S|1, T |1]−
n∑
i=1

Y [(S ∪ {i})|1, (T ∪ {i})|1]

= (n− |S ∪ T | − 2α)2−|S∪T |−1

= Mk(w)[S|1, T |1]

for all S, T ⊆ [n], |S|, |T | ≤ k. Hence, we deduce that Lask(Q(α)) 6= ∅ ⇒Mk(w) � 0.

The converse can be proven by tracing the above argument backwards. In establishing
the SA+-rank lower bound of Q(α), we have shown that Ȳ � 0. Again, the matrix Ȳ j is
exactly Mk(w) for all 2n inequalities describing Q(α). Since Mk(w) � 0 by assumption,

Ȳ ∈ L̃as
k
(Q(α)). Thus, we obtain that 1

2
ē ∈ Lask(Q(α)), and so Lask(Q(α)) 6= ∅.

Thus, computing the Las-rank of Q(α) reduces to finding the largest k where the
matrix Mk(w) defined in the statement of Proposition 60 is positive semidefinite (which
would then imply that the Las-rank of Q(α) is k + 1). Using that, we are able to show
the following:

94

Theorem 61. For every n ≥ 2, there exists α ∈ (0, 1) such that Q(α) has Las-rank n.

Before we prove Theorem 61, we need some notation. Define the matrix Z ∈ RA+
n×A+

n

where

Z[S|1, T |1] =

{
1 if S ⊆ T ;
0 otherwise.

Z is the zeta matrix of {1, . . . , n}. It is well known that Z is invertible. For example,
if we order the rows and columns of Z such that their size is nondecreasing, then Z is
upper-triangular. In particular, with such a row and column ordering, both the first row
of Z and the last column of Z are all ones.

Laurent [Lau03a] showed the following relation between zeta matrices and moment
matrices:

Proposition 62 (Lemma 2 in [Lau03a]). Suppose y ∈ RA+
n . Define u ∈ RA+

n where

u[S|1] =
∑
T⊇S

(−1)|T\S|y[T |1].

Then Mn(y) = Z Diag(u)Z>.

Recall that Diag(u) denotes the diagonal matrix U where U [S|1, S|1) = u[S|1] for all
S ⊆ [n]. Now we are ready to prove Theorem 61.

Proof of Theorem 61. By Proposition 60, it suffices to prove that, for every n, there exists
α such that Mn−1(w) � 0. Since the entries of the matrix Mn−1(w) depend continuously
on α, our claim follows if we prove that Mn−1(w) � 0 when α = 0.

Let Z ′ denote the symmetric minor of the zeta matrix Z with the last row and column

(which corresponds to the set [n]|1) removed. Then Z =

(
Z ′ ē
0 1

)
. Also, define u ∈ RA+

n

such that u[S|1] =
∑

T⊇S(−1)|T\S|w[T |1]. Then

u[S|1]

=
∑
T⊇S

(−1)|T\S|(n− |T | − 2α)2−|T |−1

= 2−n
n−|S|∑
i=0

(−1)i
(
n− |S|

i

)
(n− |S| − i− 2α)2n−|S|−i−1

= 2−n
n−|S|∑
i=0

(n− |S|)
(

(−1)i
(
n− |S| − 1

i

)
2n−|S|−i−1

)
− α

(
(−1)i

(
n− |S|

i

)
2n−|S|−i

)
= 2−n(n− |S| − α).

95

Therefore, when α = 0, u[S|1] > 0 for all S ⊂ [n], and u[[n]|1] = 0. Let u′ ∈ RA
+
n−1 be

the vector u with the entry corresponding to [n]|1 removed. Then u′ > 0, and Diag(u) =(
Diag(u′) 0

0 0

)
.

Hence, by Proposition 62,

Mn(w) = Z Diag(u)Z>

=

(
Z ′ ē
0 1

)(
Diag(u′) 0

0 0

)(
Z ′> 0
ē> 1

)
=

(
Z ′Diag(u′)Z ′> 0

0 0

)
.

Since Mn−1(w) is the symmetric minor of Mn(w) with the last row and column removed,
we obtain that Mn−1(w) = Z ′Diag(u′)Z ′>. Now Z ′ is upper-triangular (and thus invert-
ible), and Diag(u′) � 0 (since u′ > 0). Thus, Mn−1(w) � 0, and we are finished.

In fact, with a more careful analysis, one can find an interval of α’s where Q(α) attains
Las-rank n. The following lemma will be helpful:

Lemma 63. Let Z(n) be the 2n× 2n zeta matrix on [n], and let β := 3−
√

5
2

. Then βn−2i is
an eigenvalue of Z(n)(Z(n))> with multiplicity

(
n
i

)
, for every i ∈ {0, 1, . . . , n}.

Proof. For this proof, we use the following ordering of rows and columns of Z(n): Given
distinct subsets S, S ′ ⊆ [n], we place the S-column in Z to the right of S ′-column if
the element with the largest index in the symmetric difference of S and S ′ is in S. For
example, the columns of Z(3) correspond to the subsets

∅, {1} , {2} , {1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3} ,

if we scan from left to right. With this ordering, it is not hard to see that Z(n) =(
Z(n−1) Z(n−1)

0 Z(n−1)

)
for all n ≥ 1. Moreover,

Z(n)(Z(n))> =

(
Z(n−1) Z(n−1)

0 Z(n−1)

)(
(Z(n−1))> (Z(n−1))>

(Z(n−1))> 0

)
=

(
2Z(n−1)(Z(n−1))> Z(n−1)(Z(n−1))>

Z(n−1)(Z(n−1))> Z(n−1)(Z(n−1))>

)
=

(
2 1
1 1

)
⊗ Z(n−1)(Z(n−1))>,

where ⊗ denotes the Kronecker product. In fact, since Z(1)(Z(1))> =

(
2 1
1 1

)
, we obtain

that

Z(n)(Z(n))> =

(
2 1
1 1

)
⊗
(

2 1
1 1

)
⊗ · · · ⊗

(
2 1
1 1

)
︸ ︷︷ ︸

n times

,

96

for every n ≥ 1. Since the eigenvalues of

(
2 1
1 1

)
are β and β−1, and that the eigenvalues

of the Kronecker product are the pairwise products of the eigenvalues of the two matrices,
our claim follows.

In particular, since β < 1, we obtain that the smallest eigenvalue of Z(n)(Z(n))> is βn.
Then we have the following:

Theorem 64. Suppose n ≥ 2, and

0 < α ≤ 5n − 4n

5n − 2n+1 + 1
.

Then Q(α) has Las-rank n.

Proof. We follow the proof of Theorem 61, while sharpening a few details. Again, if we
define u ∈ RA+

n such that u[S|1] =
∑

T⊇S(−1)|T\S|w[T |1]. Then

u[S|1] = 2−n(n− |S| − α)

for all S ⊆ [n]. Now u[S|1] > 0 for all S ⊂ [n], and u[[n]|1] = −2−nα. Let u′ ∈
RA

+
n−1 be the vector u with the entry corresponding to [n]|1 removed. Then Diag(u) =(

Diag(u′) 0
0 −2−nα

)
.

Hence, by Proposition 62,

Mn(w) = Z Diag(u)Z>

=

(
Z ′ ē
0 1

)(
Diag(u′) 0

0 −2−nα

)(
Z ′> 0
ē> 1

)
=

(
Z ′Diag(u′)Z ′> − 2−nαēē> −2−nαē

−2−nαē> −2−nα

)
.

Since Mn−1(w) is the symmetric minor of Mn(w) with the last row and column removed,
we obtain that Mn−1(w) = Z ′Diag(u′)Z ′> − 2−nαēē>.

Next, since u′ ≥ 2−n(1− α)ē,

Z ′Diag(u′)Z ′> � 2−n(1− α)Z ′Z ′>.

Thus, to establish Mn−1(w) � 0, it suffices to show that

(1− α)Z ′Z ′> − αēē> � 0. (6.1)

97

Since (1− α)Z ′Z ′> � 0 and all vectors orthogonal to ē have eigenvalue 0 for ēē>, we see
that (6.1) holds if and only if

(1− α)ē>Z ′Z ′>ē− αē>(ēē>)ē ≥ 0

⇐⇒ (1− α)

(
n−1∑
i=0

(
n

i

)
(2i)2

)
− α(2n − 1)2 ≥ 0

⇐⇒ α ≤ 5n − 4n

5n − 4n + (2n − 1)2

⇐⇒ α ≤ 5n − 4n

5n − 2n+1 + 1
.

Thus, our claim follows.

Therefore, similar to the case for P (α), the Las-rank of Q(α) is n for sufficiently small
α. Also, as with P (α), the Las-rank of Q(α) varies under the choice of α. For instance,
Figure 6.3 illustrates the Las-rank for Q

(
k

1000

)
for k ∈ [500], for several values of n.

100 200 300 400 500
0

2

4

6

8

10

12

k

Las-rank of Q
(

k
1000

)

n = 12

n = 9
n = 6

n = 3

Figure 6.3: The Las-rank of Q(α) for varying values of α, for n ∈ {3, 6, 9, 12}.

The pattern is similar for all other values of n we were able to test — the Las-rank is
around n

2
when α = 1

2
, and slowly rises to n as α approaches 0.

Also, while the interval of α’s where Q(α) has Las-rank n is probably wider than that
shown in Theorem 64, computational results show that the size of this “window” of α’s
seem to shrink exponentially as n increases. Let f(n) be the largest α where Q(α) has Las-
rank n. We have computed log2 f(n) to within two decimal place for n ∈ {2, 3, . . . , 12}, as

98

illustrated in Figure 6.4. Somewhat surprisingly, log2(f(n)) increases at an almost linear
rate with respect to n, at least for the small values of n we have computed.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

n

log2 f(n)

(2, 2.07)

(3, 2.5)
(4, 2.92)

(5, 3.34)
(6, 3.75)

(7, 4.17)
(8, 4.59)

(9, 5.01)
(10, 5.44)

(11, 5.88)
(12, 6.33)

(13, 6.79)

Figure 6.4: Computational results for f(n) := min
{
α : Lasn−1(Q(α)) 6= ∅

}
.

In general, since all lift-and-project operators we have studied preserve containment,
starting with a tighter initial relaxation might offer a lift-and-project operator a head
start and yield stronger relaxations in fewer iterations. However, in the two examples
we just saw, different lift-and-project operators utilized this head start in different ways.
For operators such as LS+, SA and SA+ that use linear constraints to relate the entries
of the matrices in the lifted space to P (e.g. imposing x̂(Y eα) ∈ K(P)), the “head start”
is preserved throughout the rounds in sort of a statical manner. For instance, we know
from Corollary 59 that given α, α′ where 0 < α < α′ < 1

2
,

SAk
+(Q(α)) = Q

(
α +

k

2

)
⊃ Q

(
α′ +

k

2

)
= SAk

+(Q(α′)),

for all k ∈ [n− 1]. However, they still converge to the integer hull in the same number of
steps. On the other hand, the Las operator turns every inequality of in the description of
the relaxation P into a semidefinite constraint, which have shown (at least on P (α) and
Q(α)) that it can compound with the improved initial relaxation to arrive at the integer
hull in fewer iterations.

It would be interesting to better understand how the performance of Las depends
on the system of inequalities (linear or polynomial) describing P , and whether it can
benefit from some “preprocessing” of the set P , such as adding some selected Gomory–

99

Chvátal cuts, or including inequalities obtained from the refinement step in the Bienstock–
Zuckerberg operators.

100

Chapter 7

On the Integrality Gaps of
Lift-and-Project Relaxations

So far, we have been using the rank of a relaxation with respect to a lift-and-project
operator as the measure of how far that relaxation is away from its integer hull. Another
measure of the “tightness” of a relaxation that is commonly used and well-studied is its
integrality gap. Let P ⊆ [0, 1]n be a compact, convex set such that PI 6= ∅, and suppose
c ∈ Rn. Then

γc(P) :=
max

{
c>x : x ∈ P

}
max {c>x : x ∈ PI}

is the integrality gap of P with respect to c. Obviously, if P = PI , then γc(P) = 1 for
all c ∈ Rn. Otherwise, there exists some vector c such that γc(P) > 1. Of course, the
minimization analog of the integrality gap can also be defined similarly, but we focus on
the above version as we will mostly look at maximization problems.

Observe that, given two different relaxations of the same set of integer points such
that one relaxation contains the other, then obviously the smaller set provides a better
relaxation. This elementary fact is also reflected in the integrality gaps of these sets —
given P, P ′ such that PI = P ′I and P ⊆ P ′, then γc(P) ≤ γc(P

′) for every vector c. Thus,
our analysis of relative strengths of lift-and-project operators in Chapter 3 immediately
implies the following:

Corollary 65. Suppose P ⊆ [0, 1]n, and two lift-and-project operators Γ1,Γ2 satisfy the
conditions in either Theorem 11 or 12. Then

γc(Γ1(P)) ≤ γc(Γ2(P)),

for all c ∈ Rn.

In general, the integrality gap provides a finer and more direction-specific measure of
the tightness of a relaxation. For instance, in Chapter 6, we saw examples when adding

101

positive semidefiniteness constraints does not provide a tighter relaxation. However, some-
times even when these constraints’ inclusion produces a tighter set, they might still be
deemed unhelpful if they trim off parts of the relaxations that are not in the direction of
our interest. More precisely, given two relaxations P, P ′ such that PI = P ′I and P ⊂ P ′,
it is still possible that maximizing c>x over P and P ′ yields the same optimal value for
some vector c. This is equivalent to saying that P and P ′ have the same integrality gap
with respect to c.

In this chapter, we first establish some tools that can help computing the integrality
gap for general relaxations. We then apply these tools, and look at the integrality gaps
for several lift-and-project relaxations. Finally, we will look at how the integrality gaps of
various lift-and-project relaxations converge to 1. Many circumstantial pieces of evidence
suggest that the convergence behaviours are quite different for operators that produce
polyhedral versus semidefinite relaxations, and we discuss a few examples that highlight
these tendencies.

7.1 Simplifying integrality gap computations by

utilizing symmetries

Recall that in our discussion of constructing certificate matrices for x ∈ Γ(P) in the
presence of a permutation matrix Q such that Q(P) = P , we may assume that x inherits
the symmetries of P and Q. Thus, the next result follows readily from Proposition 43.

Corollary 66. Let P ⊆ [0, 1]n be a compact, convex set, and Γ be a permutation-
commutative lift-and-project operator such that Γ(P) is also convex. Then, for every
c ∈ Rn, the integrality gap γc(Γ(P)) is attained by a vector x ∈ Γ(P) with the property
that xi = xj whenever there exists a permutation matrix Q such that Q(P) = P,Qc = c
and Qei = ej.

In particular, in the case when P is symmetric and we are optimizing in the direction
of ē, we have the following:

Corollary 67. Let P ⊆ [0, 1]n be a compact, convex set that is symmetric. If a lift-and-
project operator Γ is permutation-commutative and Γ(P) is convex, then

• γē(Γ(P)) is attained by a multiple of ē;

• if `ē 6∈ Γ(P) and `0ē ∈ Γ(P) for some `0 < `, then

γē(Γ(P)) <
`n

max {
∑n

i=1 xi : x ∈ PI}
.

Of course, an analog of Corollary 67 for γ−ē(·) can be obtained by essentially the same
observations. Thus, we see that in many cases, it suffices to check whether a certain
multiple of ē belongs to Γ(P) to obtain a bound on γē(Γ(P)). This structure, when
present, can make the analysis a lot easier.

102

7.2 Obtaining integrality gap results from

lower-bound results

Next, we show that many lower-bound results on lift-and-project relaxations readily lead
to integrality gap results, simply by applying the above observations. First, we look at
the fractional stable set polytope of complete graphs.

Proposition 68. For all integers n ≥ 2, k ∈ {0, 1, . . . , n− 2} and lift-and-project operator
Γ ∈ {LS0,LS, SA, SA′},

γē(Γ
k(FRAC (Kn)) =

n

k + 2
.

Proof. Let P denote FRAC (Kn). First, since

SA′k(P) ⊆ SAk(P) ⊆ LSk(P) ⊆ LSk0(P)

for every k, it suffices to show that γē(SA′k(P) ≥ n
k+2

and γē(LSk0(P) ≤ n
k+2

. The former

follows immediately from Proposition 17, as 1
k+2

ē ∈ SA′k(P) achieves the claimed inte-
grality gap. As for the latter, note that P is symmetric (in fact, Q(P) = P for every
permutation matrix Q), and LS0 is permutation-commutative and produces convex relax-
ations. Thus, we may apply Corollary 67 and conclude that γē(LSk0(P)) is attained by a
multiple of ē. Since it is easy to show that `ē 6∈ LSk0(P) for all ` > 1

k+2
(e.g. by induction

on k), our result follows.

Note that in the proof of Theorem 18, we showed that

BZ′k(FRAC (Kn)) ⊇ SA′2k+2(FRAC (Kn)),

for every n ≥ 3 and k ≥ 0. We also obtained that the BZ′-rank of FRAC (Kn) is at most⌈
n+1

2

⌉
. Thus, we immediately obtain the following

Proposition 69. For all integers n ≥ 3, k ∈
{

0, 1, . . . ,
⌈
n
2

⌉
− 2
}

,

γē(BZ′k(FRAC (Kn)) ≥ n

2k + 4
.

Moreover, γē(BZ′k(FRAC (Kn)) = 1 for all k ≥
⌈
n+1

2

⌉
.

Next, we turn to matching polytope. It was shown in [MS09] that γē(SAk(MT (K2n+1)))
exhibits very interesting behaviour as k varies: It remains at 1 + 1

2n
for all k ≤ n − 1,

then gradually decreases, and reaches 1 exactly when k = 2n − 1. Relying on Stephen
and Tunçel’s results on LSk+(MT (K2n+1)) from [ST99], we show that the integrality gaps
of the LS+-relaxations behave quite differently.

103

Proposition 70. Let P = MT (K2n+1) for some integer n ≥ 1. Then

γē(LSk+(P)) =

{
1 + 1

2n
if k ≤ n− 1;

1 if k ≥ n.

Proof. It was shown in [ST99] that LSn+(P) = PI , and thus the integrality gap is 1
for all k ≥ n. On the other hand, they also showed that 1

2n
ē ∈ LSn−1

+ (P), and thus
γē(LSn−1

+ (P)) ≥ 1 + 1
2n

. It is not hard to show that `ē 6∈ P for all ` > 1
2n

. Since
P is obviously symmetric, γē(P) is attained by a multiple of ē and so we obtain that
γē(P) ≤ 1+ 1

2n
. Then our result follows, as the integrality gap is monotonously decreasing

with respect to k.

We now look into the relaxations of the max-cut problem. Recall Lasserre’s semidefi-
nite relaxations (5.3) and Georgiou’s lower-bound result (Theorem 27). While the relax-
ations (5.3) are technically not derived from any of the lift-and-project methods we have
looked at, one can still exploit the symmetries in its objective function and feasible region
and argue (along the lines of the proof of Corollary 45) that the maximum integrality
gaps of (5.3) is achieved by a matrix M where M [S1|1, T1|1] = M [S2|1, T2|1] whenever
|S1 ∪ T1| = |S2 ∪ T2|. This tells us that the integrality gap of (5.3) with respect to ē, as
first pointed out by Georgiou [Geo10], is

(2n+ 1)2/4

n(n+ 1)
= 1 +

1

4n(n+ 1)
.

Another relaxation of the max-cut problem that has been studied in the literature (and
was referred to as the “edge model” in [Lau04]) is the following. Given a graph G = (V,E),
one can define its cut polytope to be

CUT (G) := conv(
{
χδ(S) : S ⊆ V

}
).

Then a relaxation of CUT (G) is the metric polytope of G,

MET (G) :=

{
x ∈ [0, 1]E : 1 ≤

∑
e∈C

xe ≤ |C| − 1,∀ odd cycles C ⊆ E

}
.

While not all integer points in MET (G) are cuts, it is not hard to see that

max
{
c>x : x ∈ MET (G) ∩ {0, 1}E

}
= max

{
c>x : x ∈ CUT (G)

}
for all vectors c ≥ 0. Thus, we can apply any of the lift-and-project methods to MET (G)
to approximate CUT (G). Laurent [Lau04] showed that Lask(MET (G)) is a weaker re-
laxation than the kth relaxation in (5.3).

Another similar relaxation for max-cut was proposed by Gouveia, Parrilo and Thomas
in [GPT10], utilizing an observation that is akin to the notion of obstructions in the BZ

104

operator: define O(G) to be the collection where S ⊆ E is in O(G) if and only if S is the
set of edges of an odd cycle in G. Then the size of the largest cut in G is equal to

max

{∑
e∈E

xe :
∏
e∈S

xe = 0, ∀S ∈ O(G)

}
.

Using this, they defined the following hierarchy of relaxations:

THk(CUT (G)) := {x ∈ RE : ∃y ∈ RA
+
2k , yF = 1, ye|1 = xe ∀e ∈ E,

yS|1 = 0, if S ⊇ T for some T ∈ O(G)

Mk(y) � 0}. (7.1)

Then it is clear that THk(CUT (G)) ⊇ CUT (G) for all k ≥ 1. This idea of describing a
desired set of integer points by a list of “forbidden subsets” can also be applied to other
combinatorial optimization problems. For instance, it was shown in [GPT10] that

THk(STAB(G)) := {x ∈ RV : ∃y ∈ RA
+
2k , yF = 1, yi|1 = xi ∀i ∈ V,

yS|1 = 0, if S ⊇ {i, j} for some {i, j} ∈ E
Mk(y) � 0}. (7.2)

Notice that TH1(STAB(G)) is exactly the theta body of G, as defined by Lovász
in [Lov79]. However, while THk(CUT (G)) and THk(STAB(G)) are intuitively simple to
describe, they are rather weak relaxations. For instance, while the odd cycle inequalities
are valid for simple linear relaxations such as LS0(FRAC (G)), they are generally not valid
for TH1(STAB(G)) (although they are for TH2(STAB(G)), as shown in [GPT10]). Also,
if G is an odd cycle of 2n + 1 vertices, then THn(CUT (G)) 6= CUT (G) [GPT10]. It
would be interesting if there are other problems in which this theta body approach using
obstruction sets can yield strong relaxations.

Finally, note that Lasserre’s max-cut relaxations (5.3) can be interpreted as lifting
from the vertex space and projecting into a space indexed by V (G) ∪E(G). This idea of
projecting a lifted space onto a set defined by the variables used in the objective function
may also be extended to other problems. For instance, let ` be a sufficiently large constant.
Then one can obtain an upper bound to the size of the largest stable set in a graph G by
solving the following:

max
∑

i∈V (G)

y[i|1]− `

 ∑
{i,j}∈E(G)

y[{i, j} |1]

subject to Mk(y) � 0, y ∈ RA+

2k , y[F] = 1.

(7.3)

For instance, when ` = |V |, then an integer solution would have a nonnegative objective
value if and only if it corresponds to a stable set. Moreover, the feasible region of (7.3)

105

is identical to that of (5.3), and insights obtained in one problem might be useful for the
other. To go a bit further, one could theoretically combine the two ideas above, and (say)
optimize the objective function in (7.3) over THk(STAB(G)), or any other lift-and-project
relaxations where the y{i,j}1 variables are present.

7.3 Integrality gaps of SA′+-relaxations for matching

We now turn our attention to obtain a bound on the integrality gap of a specific family of
relaxations. As seen in Chapter 5, sometimes we can use the symmetries of P to prove the
existence of “nice” certificate matrices that have few parameters (e.g. Proposition 45).
Herein, we give an application of this approach, and prove a result on the integrality gap
for relaxations of the matching polytope produced by SA′+, with respect to ē. Throughout
this section, let G be K4n+1. Since 1

4n
ē ∈ MT (G) and the largest matching in G has size

2n, we know that

γē(MT (G)) ≥ 1

4n

(
4n+ 1

2

)
1

2n
=

4n+ 1

4n
.

In fact, equality holds as it is not hard to see that `ē 6∈ MT (G) for all ` > 1
4n

. Here, we
show that SA′+ takes at most n+ 1 iterations to obtain improvement on this gap.

Theorem 71. For all integers n ≥ 1,

γē(SA′n+1
+ (MT (G))) <

4n+ 1

4n
.

Before proving Theorem 71, we need some intermediate results. First, we describe
another family of eigenvectors of Yn,k,k(m). We remark that these are generalizations of
the second type of eigenvectors described after Proposition 35.

Proposition 72. Define x ∈ RMn,k where

x[S] =

1 if S saturates vertex 1 but not 2;
−1 if S saturates vertex 2 but not 1;
0 otherwise.

Then x is an eigenvector of Yn,k,k(m) with eigenvalue

min{k−1,bn−2k−1
2 c}∑

i=0

|Mn−2k−1,i| (mk+i − (n− 2k − 1− 2i)mk+i+1) .

Proof. First, we evaluate ∑
T∈Mn,k

Yn,k,k(m)[S, T]x[T]. (7.4)

106

for the case when x[S] = 0. If S contains the edge {1, 2}, then it is easy to see that there
are no matchings T such that S ∪ T is a matching, and x[T] 6= 0. Thus, (7.4) evaluates
to 0. Next, suppose S saturates neither vertex 1 nor vertex 2. Let T be a matching such
that x[T] = 1 and Y [S, T] 6= 0. Then T contains an edge {1, i} for some vertex i. Now
observe that for the matching

T ′ := (T \ {{1, i}}) ∪ {{2, i}} ,

x[T ′] = −1 and Y [S, T ′] = Y [S, T]. Thus, their contributions to (7.4) cancel each other
out, and the sum also vanishes in this case. Likewise, suppose S contains edges {1, i} and
{2, j} for some vertices i, j. If T is a matching such that x[T] = 1 and Y [S, T] 6= 0 (so T
must contain {1, i}), then

T ′ := (T \ {{1, i}}) ∪ {{2, j}}

satisfies x[T ′] = −1 and Y [S, T ′] = Y [S, T], so again the sum evaluates to 0.

Next, we turn to the case x[S] = 1. Consider the matchings T such that x[T] = 1,
S ∪ T is a matching, and |T \ S| = i. This implies that both S, T contain the same edge
that is incident with vertex 1. Also, |T \ S| = i implies that Y [S, T] = mk+i. Now the i
edges in S\T cannot saturate vertices already saturated by S, or the vertex 2. Thus, there
are |Mn−2k−1,i| such choices, and such matchings T contribute a total of |Mn−2k−1,i|mk+i

to (7.4).

Likewise, if we consider the matchings T such that x[T] = −1, S ∪ T is a matching,
and |T \S| = i+ 1, we obtain that these matchings contribute −|Mn−2k−1,i|(n− 2k− 1−
2i)mk+i+1. Summing these contributions over all possible i leads to our result.

We then need the next result, which relates the entries in certificate matrices that are
of our interest.

Corollary 73. Let M :=
⋃k
i=0Mn,i. Define Y ∈ RM×M such that

Y [S, T] =

(n− 2i− 1)!! if S ∪ T ∈Mn,i, i ∈ {0, 1, . . . , 2k − 1}
α if S ∪ T ∈Mn,2k

0 otherwise.

If Y � 0, then α = (n− 4k − 1)!!.

Proof. For convenience, let pi denote (n− 2i− 1)!! throughout this proof. Our goal then
is to show that α = p2k.

First, if α was in fact pk, then we know from Lemma 29 that,∑
S∈Mn,i,T∈Mn,j

Y [S, T] = (n− 1)!!

(
n/2

i

)(
n/2

j

)
,

107

for all i, j ≤ k. Notice that the α entries only appear in the rows and columns of Y
indexed by matchings of size k. Thus, if α < p2k, then ∑

S,T∈Mn,k−1

Y [S, T]

 ∑
S,T∈Mn,k

Y [S, T]

 <

 ∑
S∈Mn,k−1,T∈Mn,k

Y [S, T]

2

,

and Y 6� 0.

On the other hand, suppose α > p2k. Let Y ′ be the symmetric minor of Y indexed by
Mn,k. Then we know from Proposition 72 that

|Mn−2k−1,k−1| (p2k−1 − (n− 4k + 1)α) .

is an eigenvalue of Y ′. Since α > p2k = 1
n−4k+1

m2k−1, this eigenvalue is negative. Thus,
we conclude that α = p2k, and we are finished.

We are now ready to prove Theorem 71.

Proof of Theorem 71. Suppose x ∈ SA′n+1
+ (MT (G)) attains γē(SA′n+1

+ (MT (G))), and let

Y be the corresponding certificate matrix in S̃A
′n+1

+ (MT (G)). Notice that for every
pair of matchings S, T of the same size, there exists a permutation matrix Q such that
Q(MT (G)) = MT (G), and QχS = χ>. Thus, by Corollary 44, we may assume that there
exists m0,m1, . . . ,m2n ∈ R such that

Y [S|1, S ′|1] =

{
mi if S ∪ S ′ is matching of size i;
0 otherwise.

We further assume Y [S|1, S ′|1] = 0 whenever S ∪ S ′ is not a matching due to (SA′+ 4).
We also know from (SA+ 1) that m0 = 1.

To prove our result, it suffices to show that m1 <
1

4n
. Suppose for a contradiction that

m1 is in fact 1
4n

(it could not be greater, as `ē 6∈ MT (G), ∀` > 1
4n

). We show by induction

that this implies mi = (4n−2i)!!
(4n)!!

for all i ∈ [2n]. Suppose i ≤ n + 1 and mj = (4n−2i)!!
(4n)!!

for
all j ≤ i. Pick any matching S ∈ Mn,i and consider the column Y eS|1 . Take a vertex
v that is not saturated by S. Applying the degree constraint of v on the column Y eS|1
yields that ∑

e∈δ(v)

Y [S|1, e|1] ≤ Y [S|1,F].

Notice that Y [S|1, e|1] must be 0 if the other endpoint of e is saturated by S, and mi+1

otherwise. Since Y [S|1,F] = mi, we obtain that (4n− 2i)mi+1 ≤ mi.

Next, pick an edge in S and call it f . The same degree constraint on the column
Y e(S\f)|1∩f |0 is

(4n+ 2− 2i)mi − (4n− 2i)mi+1 ≤ mi−1 −mi.

108

Therefore, using the fact that mi−1 = (4n + 2 − 2i)mi, the above is equivalent to (4n −
2i)mi+1 ≥ mi. Thus, we obtain that mi+1 = (4n−2i)!!

(4n)!!
,∀i ≤ n+ 1.

Next, we show that mi = (4n−2i)!!
(4n)!!

for i ≥ n + 2. If i is even, then we can apply

Corollary 73 and deduce that mi = (4n−2i)!!
(4n)!!

. If i is odd, then fix an edge e ∈ E(G), and

let Y ′ be the symmetric minor of Y such that Y ′ only contains the rows and columns of
whose indices (which are matchings) contain e. Then

Y ′ =
1

(4n− 2)!!

Y4n−1,0,0 Y4n−1,0,1 · · · Y4n−1,0,(i−1)/2 · · ·
Y4n−1,1,0 Y4n−1,1,1 · · · Y4n−1,1,(i−1)/2 · · ·

...
...

. . .
... · · ·

Y4n−1,(i−1)/2,0 Y4n−1,(i−1)/2,1 · · · Y4n−1,(i−1)/2,(i−1)/2 · · ·
...

...
...

...
. . .

 .

Also notice that the Y4n−1,i,j portion of Y ′ comes from the submatrix Y4n+1,i+1,j+1 in Y .
Since i− 1 is even, we may apply the argument above, and infer from Corollary 73 that
Y ′[S, T] = (4n−2−2(i−1))!!

(4n−2)!!
whenever S ∪ T ∈Mn−2,i−1. This implies that mi = (4n−2i)!!

(4n)!!
.

Iteratively, we can show that mi = (4n−2i)!!
(4n)!!

for all i ≤ 2n. Since all the remaining

entries are 0, we have reduced the task of showing ē>x < 4n+1
2

for all x ∈ SA′n+1
+ (MT (G))

to showing that this particular matrix Y is not positive semidefinite.

To complete our proof, notice that Y ′′ := 1
(4n)!!

(
1 Y4n+1,0,n+1

Y4n+1,n+1,0 Y4n+1,n+1,n+1

)
is a sym-

metric minor of Y . From the proof of Lemma 29, we see that the entries in Y4n+1,0,n+1

and Y4n+1,n+1,0 both sum up to
(

(4n+1)/2
n+1

)
, while the entries in Y4n+1,n+1,n+1 sum up to less

than
(

(4n+1)/2
n+1

)2
. Thus, Y ′′ 6� 0, and consequently Y 6� 0.

Also, since the Las′k operator dominates SA′k+, Theorem 71 immediately implies the
following:

Corollary 74. For all integers n ≥ 1,

γē(Las′n+1(MT (G))) <
4n+ 1

4n
.

7.4 Integrality gaps of polyhedral versus semidefinite

lift-and-project relaxations

We conclude this chapter by noting the following interesting phenomenon on the integral-
ity gaps of polyhedral versus semidefinite relaxations. In many well-studied examples,
when a polyhedral lift-and-project operator is applied iteratively, the integrality gap of the

109

relaxations decrease to 1 gradually. On the other hand, the integrality gaps obtained from
applying a semidefinite operator to the same initial relaxation experience sudden jumps as
the number of iterations crosses some threshold. For instance, if we let P = FRAC (Kn),
then we saw in Propositions 68 and 69 that all hierarchies of polyhedral lift-and-project
relaxations we have looked at, the integrality gap starts at n

2
, then gradually decreases,

and reaches 1 after Ω(n) iterations. On the other hand, it takes semidefinite operators
such as LS+, SA+ and Las exactly one iteration to reach the integer hull of P , and thus
the corresponding integrality gaps for these operators would dive from n

2
to 1 in just one

iteration.

Another example is P = MT (K2n+1). We saw in Proposition 70 that the

γē(LSk+(FRAC (K2n+1))) = 1 +
1

2n

for every k ∈ {0, 1, . . . , n− 1}, then suddenly drops to 1 when k = n. In contrast, Mathieu
and Sinclair [MS09] showed the following:

Theorem 75 (Theorem 1.2 in [MS09]). For P = MT (K2n+1),

• For every k ∈ {0, 1, . . . , n− 1}, γē(SAk(P)) = 1 + 1
2n

.

• If n ≤ k ≤ 2n− ω(
√
n), then

1 +
1

2n
− o

(
1

n

)
≤ γē(SAk(P)) ≤ 1 +

1

2n
.

• If 2n− o(
√
n) ≤ k ≤ 2n− 2, then

1 < γē(SAk(P)) ≤ 1 + o

(
1

n

)
.

• If k ≥ 2n− 1, then γē(SAk(P)) = 1.

Thus, while the integrality gap of the SA-relaxations coincide with that of the LS+-
relaxations for the first n−1 iterations, it then drops from 1+ 1

2n
to 1 over Ω(n) iterations.

Another example of similar behaviours (although not as extreme as that described
above) was given by Goemans and Tunçel in [GT01]:

Theorem 76 (Theorem 4.4 in [GT01]). For the set

P :=

{
x ∈ [0, 1]2n :

∑
i∈S

xi ≤ n, ∀S, |S| = n+ 1

}
,

1. the LS-rank of P is 2n− 2;

110

2. the LS+-rank of P is n;

3. for every k ≤ n−
√

2n+ 3
2
,

max
{
ē>y : y ∈ LSk(P)

}
= max

{
ē>y : y ∈ LSk+(P)

}
.

Thus, we see that the integrality gaps of LSk(P) and LSk+(P) with respect to ē would
agree for Ω(n) rounds, and then γē(LSk+(P)) would suddenly decrease to 1 rather rapidly,
while γē(LSk(P)) takes another O(n) rounds to tail off to 1. Somewhat different from
the examples we have seen above, γē(LSk+(P)) does decrease very slowly before suddenly
dropping off (see Figure 3 in [GT01]).

It would be interesting to find out whether the above examples are merely coincidences,
or this trend extends to lift-and-project relaxations for other optimization problems. A
better understanding on this front may offer clues in how semidefinite and polyhedral
operators differ in generating cuts.

It should be noted that the number of inequalities imposed by most lift-and-project
methods (including LS and LS+) are superpolynomial in n after Ω(log(n)) rounds. Thus
it is possible that there is a threshold in the number of iterations which, after crossing, the
increase in the number of new inequalities generated is so overwhelming that we would
quickly converge to the integer hull.

111

Chapter 8

Conclusions and Future Research
Directions

In this thesis, we looked at various lift-and-project operators and their relaxations for
a number of combinatorial optimization problems. Through our work, we have now a
much better understanding of the strongest existing operators (such as BZ′ and BZ′+),
and have exposed some of their limitations by studying the characteristics of these op-
erators (such as identifying the variables in their lifted spaces that are unhelpful). We
analyzed the role of positive semidefiniteness plays in lift-and-project relaxations, and
showed instances where these constraints are guaranteed to generate strong cuts (Chap-
ter 4), and where they do not contribute (Chapter 6). We added to existing evidence that
polyhedral lift-and-project methods can perform poorly on the stable set relaxations, and
both polyhedral and nonpolyhedral lift-and-project methods can perform poorly on the
matching relaxations. Most importantly, we presented and discussed many different tools
for analyzing these lift-and-project relaxations. Through the new operators we defined,
dominance and restricted reverse dominance relations we established, and frameworks
we presented that simplify the construction and verification of certificate matrices, we
have brought the forefront of the research on lift-and-project methods to the strongest
operators, and have made future analyses of existing and new operators simpler, more
systematic, and more transparent.

In this final chapter, we first use the techniques we developed in previous chapters to
relate the SA′+,BZ′+ and Las′-rank of the matching relaxations of odd cliques. We then
revisit the connections between matchings and integer partitions. We provide evidence
that they seem to run much deeper than were shown in Chapter 5, and point out their
implications on the relaxations of the matching polytope. Finally, we finish with some
concluding remarks and discuss some possible future research directions.

112

8.1 Relating the SA′+-, BZ′+-and Las′-relaxations for

matching

As we saw in Chapter 3, many lift-and-project operators perform poorly on MT (G) when
G is an odd clique. To summarize, MT (K2n+1) is known to have LS+-rank n [ST99],
BCC-rank n2 [ABN04], and SA-rank 2n − 1 [MS09]. We showed in this thesis that its
BZ′-rank is at least

⌈√
2n− 3

2

⌉
(Theorem 15).

Next, we show that using the results we established earlier, we can relate the perfor-
mances of the strongest lift-and-project operators with positive semidefiniteness, such as
SA′+,BZ′+ and Las′, on the matching relaxations. First, we have the following:

Theorem 77. Let the SA′+-rank and the BZ′+-rank of MT (K2n+1) be k and `, respectively.
Then

` ≥
√

2k − 1− 1.

Proof. We have shown in the proof of Theorem 15 that, for every ` ≥ 1, all tiers generated
by BZ′` of size greater than `(`+1)

2
+ ` = (`+1)(`+2)

2
are P -useless. Since BZ′`+ generates

exactly the same tiers, the observation applies here as well. Therefore, we may apply
Theorem 14 and deduce that

BZ′`+(P) ⊇ SA
′(`+1)(`+2)/2
+ (P),

for every ` ≥ 1. Observe that

(`+ 1)(`+ 2)

2
≤ k − 1 ⇐⇒ ` ≤

√
2k − 7

4
− 3

2
.

Thus, if MT (G) has SA′+-rank k, then SA′k−1
+ (P) 6= PI , and BZ′`+(P) 6= PI for all ` ≤√

2k − 7
4
− 3

2
. Thus, we obtain that the BZ′+-rank of MT (G) is at least

√
2k − 7

4
− 1

2
≤

√
2k − 1− 1, as desired.

Of course, if we know that the SA′+-rank of MT (K2n+1) is k, then the BZ′+-rank must
be no more than k, since BZ′+ dominates SA′+. Thus, determining the SA′+-rank in this
case would give us both an upper bound and a lower bound of the BZ′+-rank of the set.

Next, we show a similar result that relates the Las′ and SA′+ relaxations of MT (K2n+1).

Proposition 78. Suppose G = K2n+1. Then

1

2n
ē ∈ SA′k+(MT (G))⇒ 1

2n
ē ∈ Las′k−1(MT (G)),

for every integer k ≥ 2.

113

Proof. Let P := MT (G), and suppose 1
2n
ē ∈ SA′k+(P). By Theorem 71, we know that

this implies k ≤ n
2
. Also, it follows from Corollary 73 that 1

2n
ē has a unique matrix

Y ∈ S̃A
′k
+(P). We show that Y ∈ L̃as

′k−1

+ (P).

First, the fact that Y ∈ S̃A
′k
+(P) implies most of the conditions for Las′. It only

remains to check Y j � 0 and Y j ≥ 0 for each inequality j ∈ V (G) (since each inequality
describing MT (G) corresponds to a vertex in G). By the symmetry of G and MT (G),
the Y j’s are identical, and we only have to verify the conditions on Y j for one particular
j.

It turns out that Y j is the matrix of all zeros. Let δ(j) denote the set of 2n edges that
are incident with vertex j. Suppose S, S ′ ⊆ E(G) and |S|, |S ′| ≤ k. We know that

Y j[S|1, S ′|1] = Y [S|1, S ′|1]−
∑
e∈δ(j)

Y [(S ∪ {e})|1, (S ′ ∪ {e})|1].

If Y [S|1, S ′|1] = 0, that means that S ∪ S ′ is not a matching of G, and thus Y [(S ∪
{e})|1, (S ′ ∪ {e})1] = 0, ∀e ∈ δ(j). Therefore, Y j[S|1, S ′|1] = 0 in this case.

Now suppose S∪S ′ is a matching of G. There are two cases: either S∪S ′ contains an
edge incident with j, or it does not. First assume it does, and let e′ be this edge. Notice
that for any e ∈ δ(j), S ∪ S ′ ∪ {e} is a matching only when e = e′. Therefore,

Y j[S|1, S ′|1] = Y [S|1, S ′|1]− Y [(S ∪ {e′})|1, (S ′ ∪ {e′})|1] = 0,

where the last equality follows from (Las′ 5) (since e′ ∈ S ∪ S ′).
For the other case, let ` := |S ∪ S ′|. Then for any e ∈ δ(j), S ∪ S ′ ∪ {e} is a matching

if and only if e joins j to one of the 2n − 2` vertices not saturated by S ∪ S ′. Since
` ≤ |S|+ |S ′| ≤ 2(k−1) < n, such an edge exists and let e′ be one of them. Then from the

construction of Y , we know that Y [S|1, S ′|1] = (2n−2`)!!
(2n)!!

and Y [(S ∪{e′})|1, (S ′ ∪{e′})|1] =
(2n−2`−2)!!

(2n)!!
. Hence,

Y j[S|1, S ′|1] =
(2n− 2`)!!

(2n)!!
− (2n− 2`)

(
(2n− 2`− 2)!!

(2n)!!

)
= 0.

Thus, the symmetric minor of Y j indexed by sets in A+
k−1 is the matrix of all zeros. Since

Y j satisfies (OMC) by construction and A+
k−1 generates Ak−1, we obtain that the entire

Y j matrix is zero, and therefore, Y j is trivially positive semidefinite and nonnegative.
Hence, the claimed lower bound is established.

Since 1
2n
ē 6∈ MT (K2n+1)I , Proposition 78 immediately implies the following:

Theorem 79. Define

` := max

{
k :

1

2n
ē ∈ SA′k+(MT (K2n+1))

}
.

Then the Las-rank of MT (K2n+1) is at least `− 1.

114

Theorems 77 and 79, together with what we showed in the proof of Theorem 15 and
several other reverse dominance results that hold in general, gives us many handles on how
the rank of MT (K2n+1) for different operators relate to each other. Using these relations,
establishing the rank of MT (K2n+1) for an operator in Figure 8.1 leads to implications
on the performances of all other operators in the chart.

SA SA′ BZ BZ′′ BZ′

SA+ SA′+ BZ+ BZ′′+ BZ′+

Las Las′

Thm. 79

Thm. 77

Thm. 15

Prop. 6

Prop. 3

Figure 8.1: Relating the rank of MT (K2n+1) for various operators.

8.2 More connections between matchings and integer

partitions

Recall that in Chapter 5, we defined a family of vectors using integer partitions, and
proved (Theorem 36) that those correspond to partitions with no more than one part of
size greater than one are eigenvectors of Yn,k,k(m).

We believe that vectors corresponding to other partitions are also eigenvectors of
Yn,k,k(m). In fact, we also believe that the multiplicities of these conjectured eigenvectors
are related to the number of standard Young tableaux of certain shapes. Given any
partition λ of an integer k, a standard Young tableaux of shape λ is an assignment of
integers 1 to k to the k boxes of the Young diagram of shape λ, with each integer appearing
exactly once, such that each row is increasing from left to right, and each column is
increasing from top to bottom. For example, Figure 8.2 lists the nine standard Young
tableaux of shape λ = (4, 2):

We let t(λ) denote the number of standard Young tableaux of shape λ. One way
to compute t(λ) is the following. For each box (i, j) in the Young diagram of λ, we let
hook(i, j) denote the hook length of (i, j), which is defined to be the number of boxes to
the right and directly below (i, j), including the box (i, j). For instance, if we consider
the Young diagram for λ = (4, 4, 3, 1), and fill in each box with its hook length, then we
obtain the Young diagram in Figure 8.3.

115

1 2 3 4
5 6

1 2 3 5
4 6

1 2 3 6
4 5

1 2 4 5
3 6

1 2 4 6
3 5

1 2 5 6
3 4

1 3 4 5
2 6

1 3 4 6
2 5

1 3 5 6
2 4

Figure 8.2: The nine standard Young tableaux of shape (4, 2).

7 5 4 2
6 4 3 1
4 2 1
1

Figure 8.3: A Young diagram where each box is labelled by its hook length.

It is well known that, for a partition λ of k,

t(λ) =
k!∏

(i,j):j≤λi hook(i, j)
.

Thus, from the above, we see that the number of standard Young tableaux of shape
(4, 4, 3, 1) is

t(4, 4, 3, 1) =
12!

7 · 5 · 4 · 2 · 6 · 4 · 3 · 1 · 4 · 2 · 1 · 1
= 2970.

Also, let |λ| denote the size of a partition λ. Then our conjecture about these eigenvectors
can be summarized as follows:

Conjecture 80. Let λ = (λ1, . . . , λ`) be a partition of size k, and suppose n ≥ 2k + 2λ1.
Then for every set of 2k + 2λ1 vertices S as labelled as in (5.7), zS is an eigenvector of
Yn,k,k(m) with multiplicity

t (n− 2|λ|, 2λ1, 2λ2, . . . , 2λ`) ,

for every vector m ∈ Rk+1.

The eigenvectors described in Conjecture 80 can be integral in establishing Yn,k,k � 0,
as we believe that they are exactly the eigenvectors with nonzero eigenvalues of the matrix

Yn,k,k − L̃>n,i−1Yn,k−1,k−1L̃n,i−1,

where L̃n,i−1 is any matrix that satisfies Yn,k−1,k−1L̃n,i−1 = Yn,k−1,k. However, computa-
tions indicate that while L matrices are simple, L̃ matrices are hard to capture in general
in this case. An observation that might be helpful is the following. Recall that the zeta
matrix on the set {1, . . . , n} is the matrix Z ∈ RA+

n×A+
n where

Z[S|1, T |1] =

{
1 if S ⊆ T ;
0 otherwise.

116

It is well known that Z is invertible, and

Z−1[S|1, T |1] =

{
−1|T\S| if S ⊆ T ;
0 otherwise.

Z−1 is also known as the Möbuis matrix. Since the Ln,i,j matrices (defined immediately
before Lemma 30) are submatrices of the zeta matrix, it is likely that the L̃ matrices are
in some ways related the Möbuis matrix.

Next, we narrow our focus onto the matrices Yn,k,k. First, we believe the following is
true:

Conjecture 81. For every n ≥ 1, Y4n+1,n,n � 0.

We saw in Section 5.4.2 that Y4n+1,n,n � 0 for all n ≤ 4. In addition to being positive
semidefinite, we believe we can say a lot more about these matrices. We let (n, λ)-vectors
denote the vectors described in Conjecture 80 that are based on a graph with n vertices
and the partition λ (so entries of (n, λ)-vectors are indexed by elements ofMn,|λ|). Also,
for every integer k ≥ 1, we let P(k) denote the set of all partitions of size up to and
including k. Then we have the following:

Conjecture 82. Let n, k be integers where 4n ≥ k. Then for every λ = (λ1, . . . , λ`) ∈
P(k), Yn,k,k has an eigenspace of dimension

t(n− 2|λ|, 2λ1, . . . , 2λ`),

which are spanned by the vectors{
Yn,k,|λ|x : x is an (n, λ)-vector

}
.

Furthermore, the above sets account for all eigenvectors of Yn,k,k with nonzero eigenvalue.

Due to computational limitations, we could only completely verify Conjecture 82 up
to n = 13 and k = 3. The following table shows all eigenvalues of Y13,3,3 and their
multiplicities.

For larger values of n, k, Theorem 36 does provide some eigenvectors for Yn,k,k. Also,
(n, λ)-vectors are verified (by hand) to be eigenvectors of Yn,k,k(m) for all λ where |λ| ≤ 6.

If Conjecture 81 is true, then we can use Theorem 28 to show that 1
4n
ē is contained in

SA′n+(MT (K4n+1)), and it would follow that MT (K4n+1) has SA′+-rank at least n. This

would imply that the BZ′+-rank of MT (K4n+1) is at least roughly
√

2n (Theorem 77), and
the Las′-rank is at least n− 1 (Theorem 79).

While our initial motivation of studying the Yn,k,k matrices was to establish their posi-
tive semidefiniteness and obtain a lower-bound result for the SA+-rank, we are excited to
have uncovered a wealth of combinatorial connections between matchings and integer par-
titions. It would be fascinating if future work allowed us to understand these connections
in a more unifying way.

117

Eigenvalue Multiplicity Corresponding λ in P3

1287 1 = t(13) ∅
657 65 = t(11,2) {1}
287 429 = t(9,4) {2}
272 936 = t(9,2,2) {1, 1}
105 429 = t(7,6) {3}
80 6006 = t(7,4,2) {2, 1}
72 4004 = t(7,2,2,2) {1, 1, 1}
0 13870
Total 25740

Table 8.1: Eigenvalues and multiplicities of Y13,3,3.

8.3 Final remarks

In this final section, we briefly remind the reader some of the main ideas and results we
have seen throughout this thesis, and discuss several future research directions.

• We proposed many new, strong lift-and-project operators such as SA′+ and BZ′+, and
showed how they relate to the existing ones, both through dominance and (under
certain assumptions) reverse dominance relationships (Figure 1.3).

• We developed the notions of admissible operators, measure consistency of matrices,
and P -useless variables. We used them to relate the strengths of different operators
(Theorems 13 and 14), which allowed us to give the first known bad instances for
the operator BZ (Theorems 15 and 18).

• We provided overall performance guarantee of a lift-and-project operator in the
presence of `-establishing variables and positive semidefiniteness constraints, and
used this framework to prove some upper-bound results (e.g. Theorems 21 and 22).

• We presented ideas (such as using linear dependencies, connecting with combina-
torial objects, and utilizing symmetries and commutative maps) to simplify the
construction and verification of certificate matrices in lifted spaces.

• We characterized some sets where SA+, a strong operator that imposes positive
semidefiniteness constraints in its lifted spaces, does not perform better than poly-
hedral operators such as LS0 (Theorem 53). We also looked at several examples
whose SA+- and Las-ranks are as high as the dimension of the relaxations.

• We showed that, often times, lower-bound results for lift-and-project relaxations
readily lead to integrality gap results on these relaxations, and streamlined such
derivations.

118

On the other hand, there are still a lot in the area to be uncovered, as there are
still many optimization problems whose lift-and-project relaxations (especially those of
the stronger operators such as Las and BZ+) are not well-understood. For instance,
it would be interesting to see if we can apply the new tools and techniques we have
developed to problems such as the travelling salesman problem and vertex cover. Non-
approximability results on these problems based on, say, the BZ+ operator would be a
significant improvement over our current knowledge of their hardness with respect to
lift-and-project methods.

Lift-and-project relaxations have also been shown recently to be closely related with
the extension complexity of sets. As mentioned in Chapter 1, Chan et. al. [CLRS13]
proved that inapproximability results for the Sherali–Adams lift-and-project relaxations
of approximate constraint satisfaction problems can be extended to lower-bound results on
the extension complexity of the max-cut and max 3-sat polytopes. Thus, it is natural to
ask if other lift-and-project relaxations also admit such potentials, and more importantly
if hardness results on semidefinite representations can be obtained by this approach.

While one of the advantages of lift-and-project operators is that they are systematic
and can be applied to any relaxation without additional problem-specific observations,
there might be value in making these operators adapt to their initial relaxations in some
way. Bienstock and Zuckerberg [BZ04] devised the first operators that generate different
variables for different relaxations (or even different algebraic descriptions of the same
relaxation — see Proposition 87 for an example). They showed that this flexibility can
be very useful in attacking relaxations of some set covering problems, and perhaps tight
relaxations for other hard problems can be found similarly by building a lift-and-project
operator with suitable adaptations.

Looking further ahead, while we currently do have rather strong operators such as
SA+,Las, and BZ+, we are interested in pushing the limits of lift-and-project methods,
and build the strongest possible tightening operator that can arise in this approach. A
sufficiently strong operator might provide a breakthrough in combinatorial optimization
and approximation algorithms. For example, it is conceivable that such an operator may
yield a 2 − Θ(1) approximation algorithm for vertex cover. On the other hand, if this
cannot be achieved by the strongest possible operator, then we obtain a hardness result
that banishes all hopes of finding a (2−Θ(1))-approximation algorithm for this problem
using the lift-and-project approach.

119

APPENDICES

120

Appendix A

The Original BZ,BZ+ Operators

We now state the original BZ operator in our unifying language, and show that it is refined
by BZ′.

A.1 Details of the original BZ,BZ+ operators

The refinement step of BZk coincides with BZ′k — both operators derive k-small obstruc-
tions from the linear inequalities describing P , and use them to construct Ok(P). Then
BZk defines its set of walls to be

Wk :=

 ⋃
i,j∈[`],i 6=j

(Oi ∩Oj) : O1, . . . O` ∈ Ok, ` ≤ k + 1

 .

Note that unlike for BZ′k, BZk does not guarantee that the singleton sets are walls, and
we will see that this could make a difference in performance. As for the tiers, BZk defines
them to be the sets of indices that can be written as the union of up to k walls in Wk.
Thus, BZk only generates a polynomial size subset of the tiers used in BZ′k. Then the
lifting step of BZk (and BZk+) can be described as follows:

1. Define A′ to be the set consisting of the following:

• F and i|1, i|0, ∀i ∈ [n].

• Suppose S :=
⋃`
i=1Wi is a tier. Then we do the following:

– For each `-tuple of sets, (T1, . . . , T`) such that Ti ⊆ Wi, ∀i ∈ [`] and∑`
i=1 |Ti| ≤ k, include the set(⋃̀

i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(⋃̀
i=1

Ti

)∣∣∣∣∣
0

. (A.1)

121

If
∑`

i=1 |Ti| = k and T` ⊂ W`, then include the set(
`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W`|<|W`|−|T`|. (A.2)

2. Let B̃Z
k
(P) denote the set of matrices Y ∈ SA′ that satisfy all of the following

conditions:

(BZ 1) Y [F ,F] = 1.

(BZ 2) For any column x of the matrix Y ,

(i) 0 ≤ xα ≤ xF , for all α ∈ A′.
(ii) x̂(x) ∈ K(Ok(P)).

(iii) xi|1 + xi|0 = xF , for every i ∈ [n].

(iv) For each α ∈ A′ in the form of S|1 ∩ T |0, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S; (A.3)

xi|0 ≥ xα, ∀i ∈ T ; (A.4)∑
i∈S

xi|1 +
∑
i∈T

xi|0 − xα ≤ (|S|+ |T | − 1)xF . (A.5)

(v) For each α ∈ A′ in the form S|1 ∩ T |0 ∩ U |<r, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S; (A.6)

xi|0 ≥ xα, ∀i ∈ T ; (A.7)∑
i∈U

xi|0 ≥ (|U | − (r − 1))xα. (A.8)

(vi) For each variable in the form (A.1), if |W`|+
∑`−1

i=1 |Ti| ≤ k, impose∑
U⊆W`

x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩(W`\U)|1∩U |0

= x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0

. (A.9)

Otherwise, define r := k − (
∑`−1

i=1 |Ti|), and impose∑
U⊆W`,|U |≤r

x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩(W`\U)|1∩U |0

+ x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0∩W`|<|W`|−r

= x(
⋃`−1
i=1 Wi\Ti)|1∩(

⋃`−1
i=1 Ti)|0

. (A.10)

(BZ 3) For all α, β ∈ A′ such that α ∩ β = ∅, or α ∩ β is contained in O|1 for some
k-small obstruction O ∈ Ok, Y [α, β] = 0.

122

(BZ 4) For all α1, β1, α2, β2 ∈ A′ such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

3. Define
BZk(P) :=

{
x ∈ Rn : ∃Y ∈ B̃Z

k
(P), x̂(Y eF) = x̂

}
,

and
BZk+(P) :=

{
x ∈ Rn : ∃Y ∈ B̃Z

k

+(P), x̂(Y eF) = x̂
}
,

where B̃Z
k

+(P) := B̃Z
k
(P) ∩ SA′+ .

In [BZ04], BZ was defined so that the first relaxation in the hierarchy is BZ2(P),
with BZn+1(P) being the nth relaxation that is guaranteed to be PI . We have modi-
fied their definitions and presented their operators such that the relaxations are instead
BZ1(P), . . . ,BZn(P), to align them with the other named operators mentioned in this
manuscript.

Next, we show that BZ′ and BZ′+ indeed dominate their original counterparts.

Proposition 83. For every polytope P ⊆ [0, 1]n and integer k ≥ 1, BZ′k(P) ⊆ BZk(P)
and BZ′k+(P) ⊆ BZk+(P).

Proof. It is apparent that every variable generated by BZk is also generated by BZ′k. The
only nontrivial case is when BZk generates a variable in the form(

`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W`|<|W`|−|T`| (A.11)

such that W` is not disjoint from
⋃`−1
i=1 Wi. In this case if we define W ′ := W` \

⋃`−1
i=1 Wi,

then the above is equivalent to ∅ if |W ′| ≤ |T`|, and(
`−1⋃
i=1

Wi \ Ti

)∣∣∣∣∣
1

∩

(
`−1⋃
i=1

Ti

)∣∣∣∣∣
0

∩W ′|<|W ′|−|T`|

otherwise, which we know is generated by BZ′k.

Also, the condition (BZ′ 3) is more easily triggered than (BZ 3), and thus BZ′ forces
more variables to be zero and is more restrictive. It is also not hard to see that the con-
straints (2.7)–(2.14) imply their corresponding counterparts (A.3)–(A.10) in BZ. Hence,

we have B̃Z
′k

(P) ⊆ B̃Z
k
(P), and it follows readily that BZ′k(P) ⊆ BZk(P) and BZ′k+(P) ⊆

BZk+(P).

As Bienstock and Zuckerberg proved in [BZ04], the original BZ operator can efficiently
solve many set covering type problems which require exponential effort to solve by previ-
ously known operators such as SA. However, since BZk does not ensure that it generates
walls of small sizes, its tiers (which are unions of walls) could all be large, and the lifted
set of variables A′ does not necessarily contain Ak as in BZ′k. In fact, in some cases, BZk

performs no better than one round of LS.

123

Proposition 84. Let p, q be positive integers such that 1 ≤ q < p, and let

P :=

{
x ∈ [0, 1]p :

p∑
i=1

x1 ≤ q +
1

2

}
.

If (k + 1)(k + 2) ≤ p− q and k + 1 ≤ q, then BZk(P) = LS(P) and BZk+(P) = LS+(P).

Proof. Since q + 1
2
> k + 1, there are no k-small obstructions of size k + 1 or less. Thus,

S ⊆ [n] is a k-small obstruction if and only if |S| ≥ p− (k + 1), which implies that every
wall (and hence, every tier) has size at least p − (k + 1)2. If p − (k + 1)2 − (k + 1) ≥ q,
then we see that every tier is P -useless. The only remaining variables that are not useless
are F , i|1 and i|0 for all i ∈ [n]. Thus, BZk(P) = LS(Ok(P)) and BZk+(P) = LS+(Ok(P)).

Furthermore, Ok(P) = P whenever k+ 1 ≤ p− q, which is implied by (k+ 1)(k+ 2) ≤
p− q. Thus, our claim follows.

Since LS(P) ⊂ P whenever P 6= PI , the above implies that one can construct examples
in which LS2(P) ⊂ BZk(P) for arbitrarily large k. On the other hand, it is easy to obtain
a lift-and-project operator that has the unique strength of BZ, while also refining the
earlier operators (for instance, by simply taking Γk(P) = SAk(P) ∩ BZk(P)).

A.2 Strong and tractable — the BZ′′,BZ′′+ operators

We can take this one step further. Recall that BZ′ generates exponentially many variables
in its lifted space, and thus does not admit a straightforward polynomial-time implemen-
tation. However, the number of variables generated becomes polynomial in n if we instead
use the original BZ’s rule of generating tiers (i.e., defining S to be a tier if it is a union
of up to k walls). Let BZ′′ denote this new operator. Then BZ′′ is just like the original
BZ, except it has polynomially more variables, always ensures the singleton sets are walls,
and imposes the condition (BZ′ 3) instead of the weaker (BZ 3). Also, just like (SA′ 4)
and (SA′+ 2), the condition (BZ′ 3) can be efficiently verified, given we have an efficient
separation oracle for P , and the condition is only checked polynomially many times. Re-
placing (BZ 3) with (BZ′ 3) boasts the advantage of eliminating the operator’s dependence
on the set of obstructions in the lifting step, and allows us state the operator as a two-step
process. Thus. if k = O(1) and we have a compact description of P , then BZ′′k(P) is
tractable. It is also not hard to see that BZ′′ dominates both SA′ and BZ. Moreover, the
following is true:

Proposition 85. The BZ′′-rank of P is at most
⌈
n+1

2

⌉
, for all P ⊆ [0, 1]n.

Proof. Let Y ∈ B̃Z
′′k

(P) such that k ≥ n+1
2

. We show that x̂(Y eF) ∈ K(PI). Notice

that BZ′′k generates S := [k] is a tier (derived from k singleton-set walls), and we know

124

by (2.9) and the symmetry of Y that

Y eF =
∑
T⊆S

Y eT |1∩(S\T)|0 . (A.12)

In the remainder of this proof, we let YT denote Y eT |1∩(S\T)|0 to reduce cluttering. Note
that since |S| = k, BZ′′k does generate the variable T |1 ∩ (S \ T)|0 for all T ⊆ S, and so
YT is well defined.

Next, we prove that x̂(YT) ∈ K(PI) for every T ⊆ S. Then by (A.12), it follows that
x̂(Y eF) ∈ K(PI). For convenience, we let S̄ denote [n] \ S. Notice that

(YT)F =
∑
S′⊆S̄

(YT)S′|1∩(S̄\S′)|0 (A.13)

by (2.9). Also, since k ≥ n+1
2

, |S̄| = n− k ≤ k− 1. Hence, {j} ∪ S̄ is a tier for all j ∈ [n],
and

(YT)j|1 =
∑
S′⊆S̄

(YT)(j∪S′)|1∩(S̄\S′)|0 , ∀j ∈ [n]. (A.14)

Next, for all T ′ ⊆ S̄, we define YT,T ′ ∈ Rn+1 such that

(YT,T ′)i =

{
(YT)T ′|1∩(S̄\T ′)|0 if i = 0 or i ∈ T ∪ T ′;
0 otherwise.

From (A.13), (A.14), and the construction of YT,T ′ , we obtain that

x̂(YT) =
∑
T ′⊆S̄

YT,T ′ , ∀T ⊆ S.

Thus, it suffices to show that YT,T ′ ∈ K(PI), ∀T ⊆ S, T ′ ⊆ S̄. This is obviously true if
(YT,T ′)0 = 0. If (YT,T ′)0 > 0, then by (BZ′ 3) we know that (T∪T ′)|1∩([n]\(T∪T ′))|0∩P 6=

∅. Since YT,T ′ =

(
(YT,T ′)0

(YT,T ′)0χ
T∪T ′

)
, it follows that YT,T ′ ∈ K(PI), completing the proof.

Likewise, we can define BZ′′+ to be the positive semidefinite counterpart of BZ′′, and
obtain a tractable operator that dominates both SA′+ and BZ+. Therefore, it follows
that the BZ′′+-rank of any P ⊆ [0, 1]n is also at most

⌈
n+1

2

⌉
. Moreover, observe that the

essential ingredients used in the above proof are the presence of the variables in Adn+1/2e
in the lifted space and the condition (BZ′ 3), which also applies for the SA′k+ relaxation
for any k ≥ n+1

2
. Thus, the above proof can be slightly modified to show that the SA′+-

rank of any polytope contained in [0, 1]n is at most
⌈
n+1

2

⌉
. In contrast, we have seen in

Corollary 59 an example in which the SA+-rank is n.

While we do not have an example of a set whose BZ-rank exceeds
⌈
n+1

2

⌉
, we do have

an instance in which BZ′′ outperforms BZ.

125

Proposition 86. Let P :=
{
x ∈ [0, 1]7 :

∑7
i=1 2xi ≤ 7

}
. Then

y := (0.76, 0.76, 0.76, 0.3, 0.3, 0.3, 0.3)> ∈ BZ(P) \ BZ′′(P).

Proof. First, it is easy to see that PI =
{
x ∈ [0, 1]7 :

∑7
i=1 xi ≤ 3

}
, and O1(P) = P . It

can also be checked that y ∈ BZ(P). We next show that BZ′′ cuts off y. First, the 1-small
obstructions of P is the collection of subsets of [7] of size at least 5, and it is not hard to
see that O1(P) = P .

Since each wall is an intersection of up to two obstructions, every subset of [7] of size
between 3 and 5 is a wall. These sets are also exactly the tiers, as every tier is consisted
of one wall in BZ′′. Suppose for a contradiction that there exists a certificate matrix

Y ∈ B̃Z
′′
(P) for y. Consider the tier S := {1, 2, 3}. By (2.14), we know that

Y eF = Y eS|1 +
∑
i∈S

Y e(S\{i})|1∩i|0 + Y eS|<2 . (A.15)

Since x̂(Y eα) ∈ K(O1(P)) = K(P) for all variables α ∈ A′, we know from (A.15) we can
write x̂(Y eF) as z + w, where z := x̂(Y eS|1), and w ∈ K(P).

Now, applying (2.10) of S|1 on the column Y eF , we obtain that

Y [1|1,F] + Y [2|1,F] + Y [3|1,F]− Y [S|1,F] ≤ (|S| − 1)Y [F ,F].

Hence, z0 = Y [F , S|1] = Y [S|1,F] ≥ 3(0.76)− 2 = 0.28, and w0 = 1− z0 ≥ 0.72. We also
know that

∑7
i=1wi ≤

7
2
w0 (as w ∈ K(P)).

For j ∈ {4, 5, 6, 7}, since j|1 ∩S|1 ∩P = ∅, our strengthened rule (BZ′ 3) requires that
Y [j|1, S|1] = 0 (this is what sets BZ′′ apart from BZ in this example). Therefore, we have

7∑
i=1

zi =
7∑
i=1

Y [i|1, S|1] ≤ 3Y [F , S|1] = 3z0.

Thus, the inequality

7∑
i=1

xi =
7∑
i=1

(zi + wi) ≤ 3z0 +
7

2
w0 ≤ 3(0.28) +

7

2
(0.72) = 3.36

is valid for BZ′′(P). However,
∑7

i=1 yi = 3.48, which implies that y 6∈ BZ′′(P).

Next, we remark that, in general, adding redundant inequalities to the system Ax ≤ b
could generate more obstructions and walls, and thus can improve the performance of BZ
(and its variants). An example of this phenomenon is the following:

126

H
HHH

HH

�
���

��

�
��

�
��

H
HH

H
HHA
A
A
A
A
A

�
�
�
�
�
�

r

r
r r

r r
Figure A.1: A graph for which BZ performs better on FRAC (G) with a redundant in-
equality.

Proposition 87. Let G be the graph in Figure A.1. Further let P be the set defined by
the facets of FRAC (G) and P ′ be the system P with the additional (redundant) inequality∑

i∈V

xi ≤ 3.

Then
BZ′+(P) ⊃ BZ(P ′) = PI .

Proof. For the first claim, notice that the obstructions generated by BZ′+ are exactly the
edge sets, so Ok(P) = (P). This also implies that all walls and tiers have size 1, so

BZ′+(P) = LS+(Ok(P)) = LS+(P) 6= PI ,

as it is shown in [LT03] that P has LS+-rank 2.

For the second claim, notice that with the additional inequality in P ′, all sets of size
at least 4 are 1-small obstructions, and thus all sets of size 2 are walls (and hence tiers).
In this case, BZ(P ′) ⊆ SA2(P ′) = PI .

127

References

[ABN04] Néstor E. Aguilera, Silvia M. Bianchi, and Graciela L. Nasini. Lift and
project relaxations for the matching and related polytopes. Discrete Appl.
Math., 134(1-3):193–212, 2004.

[AT09] Yu Hin Au and Levent Tunçel. On the polyhedral lift-and-project methods
and the fractional stable set polytope. Discrete Optimization, 6(2):206–213,
2009.

[AT11] Yu Hin Au and Levent Tunçel. Complexity analyses of Bienstock–Zuckerberg
and Lasserre relaxations on the matching and stable set polytopes. In Integer
Programming and Combinatoral Optimization, pages 14–26. Springer, 2011.

[Au07] Yu Hin Au. On the polyhedral lift-and-project rank conjecture for the frac-
tional stable set polytope. Master’s thesis, University of Waterloo, 2007.

[Bal98] Egon Balas. Disjunctive programming: properties of the convex hull of fea-
sible points. Discrete Appl. Math., 89(1-3):3–44, 1998.

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project
cutting plane algorithm for mixed 0-1 programs. Math. Programming, 58(3,
Ser. A):295–324, 1993.

[BCGM11] Siavosh Benabbas, Siu On Chan, Konstantinos Georgiou, and Avner Magen.
Tight gaps for vertex cover in the Sherali–Adams SDP hierarchy. In 31st
International Conference on Foundations of Software Technology and Theo-
retical Computer Science, volume 13 of LIPIcs. Leibniz Int. Proc. Inform.,
pages 41–54. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2011.

[BGM10] Siavosh Benabbas, Konstantinos Georgiou, and Avner Magen. The Sherali–
Adams system applied to vertex cover: why Borsuk graphs fool strong LPs
and some tight integrality gaps for SDPs. Extended Abstract, 2010.

[BGMT12] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tul-
siani. SDP gaps from pairwise independence. Theory Comput., 8:269–289,
2012.

128

[BM10] Siavosh Benabbas and Avner Magen. Extending SDP integrality gaps to
Sherali–Adams with applications to quadratic programming and MaxCut-
Gain. In Integer programming and combinatorial optimization, volume 6080
of Lecture Notes in Comput. Sci., pages 299–312. Springer, Berlin, 2010.

[BO04] Daniel Bienstock and Nuri Ozbay. Tree-width and the Sherali–Adams oper-
ator. Discrete Optimization, 1(1):13–21, 2004.

[BZ04] Daniel Bienstock and Mark Zuckerberg. Subset algebra lift operators for 0-1
integer programming. SIAM Journal on Optimization, 15(1):63–95, 2004.

[CD01] William Cook and Sanjeeb Dash. On the matrix-cut rank of polyhedra.
Mathematics of Operations Research, 26(1):19–30, 2001.

[CG97] Ada Chan and Chris D. Godsil. Symmetry and eigenvectors. In Graph
Symmetry, pages 75–106. Springer, 1997.

[CGGS13] Joseph Cheriyan, Zhihan Gao, Konstantinos Georgiou, and Sahil Singla. On
integrality ratios for asymmetric TSP in the Sherali–Adams hierarchy. In
Automata, Languages, and Programming, pages 340–351. Springer, 2013.

[Che05] Kevin K. H. Cheung. On Lovász–Schrijver lift-and-project procedures on
the Dantzig-Fulkerson-Johnson relaxation of the TSP. SIAM Journal on
Optimization, 16(2):380–399 (electronic), 2005.

[Che07] Kevin K. H. Cheung. Computation of the Lasserre ranks of some polytopes.
Mathematics of Operations Research, 32(1):88–94, 2007.

[CLRS13] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer.
Approximate constraint satisfaction requires large LP relaxations. arXiv
preprint arXiv:1309.0563, 2013.

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality
gaps for Sherali–Adams relaxations. In STOC’09—Proceedings of the 2009
ACM International Symposium on Theory of Computing, pages 283–292.
ACM, New York, 2009.

[CS08] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees
through higher levels of SDP hierarchies. In Approximation, randomization
and combinatorial optimization, volume 5171 of Lecture Notes in Comput.
Sci., pages 49–62. Springer, Berlin, 2008.

[dKMP+06] Etienne de Klerk, John Maharry, Dmitrii V. Pasechnik, R. Bruce Richter,
and Gelasio Salazar. Improved bounds for the crossing numbers of Km,n and
Kn. SIAM Journal on Discrete Mathematics, 20(1):189–202, 2006.

129

[dKP02] Etienne de Klerk and Dmitrii V. Pasechnik. Approximation of the stability
number of a graph via copositive programming. SIAM Journal on Optimiza-
tion, 12(4):875–892, 2002.

[dKPS07] Etienne de Klerk, Dmitrii V. Pasechnik, and Alexander Schrijver. Reduc-
tion of symmetric semidefinite programs using the regular ∗-representation.
Mathematical programming, 109(2-3):613–624, 2007.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

[FKKK+14] Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mo-
hammad Shadravan, and Madhur Tulsiani. Linear programming hierarchies
suffice for Directed Steiner Tree. In Integer Programming and Combinatorial
Optimization, pages 285–296. Springer, 2014.

[FMP+12] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and
Ronald de Wolf. Linear vs. semidefinite extended formulations: exponential
separation and strong lower bounds. In Proceedings of the 44th symposium
on Theory of Computing, pages 95–106. ACM, 2012.

[Geo10] Konstantinos Georgiou. Integrality Gaps for Strong Linear Programming and
Semidefinite Programming Relaxations. PhD thesis, University of Toronto,
2010.

[GL07] Neboǰsa Gvozdenović and Monique Laurent. Semidefinite bounds for the sta-
bility number of a graph via sums of squares of polynomials. Math. Program.,
110(1, Ser. B):145–173, 2007.

[GMP14] Dima Grigoriev, Mikhail Muzychuk, and Ilya Ponomarenko. Tensor rank:
matching polynomials and Schur rings. Foundations of Computational Math-
ematics, 14(3):457–481, 2014.

[GMPT06] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis.
Tight integrality gaps for vertex cover SDPs in the Lovász–Schrijver hierar-
chy. Electronic Colloquium on Computational Complexity (ECCC), 13(152),
2006.

[Goe09] Michel X. Goemans. Smallest compact formulation for the permutahedron.
Preprint, 2009.

[GP04] Karin Gatermann and Pablo A. Parrilo. Symmetry groups, semidefinite pro-
grams, and sums of squares. Journal of Pure and Applied Algebra, 192(1):95–
128, 2004.

[GPT10] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. Theta bodies for
polynomial ideals. SIAM Journal on Optimization, 20(4):2097–2118, 2010.

130

[GT01] Michel X. Goemans and Levent Tunçel. When does the positive semidefi-
niteness constraint help in lifting procedures? Mathematics of Operations
Research, 26(4):796–815, 2001.

[GTW13] Anupam Gupta, Kunal Talwar, and David Witmer. Sparsest cut on bounded
treewidth graphs: algorithms and hardness results. In Proceedings of the
45th annual ACM symposium on Theory of computing, pages 281–290. ACM,
2013.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[H̊as96] Johan H̊astad. Clique is hard to approximate within n1−ε. In Foundations
of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
627–636. IEEE, 1996.

[HT08] Sung-Pil Hong and Levent Tunçel. Unification of lower-bound analyses of
the lift-and-project rank of combinatorial optimization polyhedra. Discrete
Appl. Math., 156(1):25–41, 2008.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. Springer,
1972.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the 16th annual ACM symposium on Theory of
computing, pages 302–311. ACM, 1984.

[Kar99] Howard Karloff. How good is the Goemans–Williamson MAX CUT algo-
rithm? SIAM Journal on Computing, 29(1):336–350, 1999.

[Kha80] Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KM72] Victor Klee and George J. Minty. How good is the simplex method? Pro-
ceedings of the Third Symposium on Inequalities, pages 159–175, 1972.

[KMN11] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps
of linear and semi-definite programming relaxations for knapsack. In Inte-
ger Programming and Combinatoral Optimization, pages 301–314. Springer,
2011.

[Las00] Jean B. Lasserre. Optimality conditions and LMI relaxations for 0-1 pro-
grams. Technical Report, (00099), 2000.

131

[Las01] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 pro-
grams. In Integer programming and combinatorial optimization (Utrecht,
2001), volume 2081 of Lecture Notes in Comput. Sci., pages 293–303.
Springer, Berlin, 2001.

[Lau02] Monique Laurent. Tighter linear and semidefinite relaxations for max-cut
based on the Lovász–Schrijver lift-and-project procedure. SIAM Journal on
Optimization, 12(2):345–375 (electronic), 2001/02.

[Lau03a] Monique Laurent. A comparison of the Sherali–Adams, Lovász-Schrijver,
and Lasserre relaxations for 0-1 programming. Mathematics of Operations
Research, 28(3):470–496, 2003.

[Lau03b] Monique Laurent. Lower bound for the number of iterations in semidefi-
nite hierarchies for the cut polytope. Mathematics of Operations Research,
28(4):871–883, 2003.

[Lau04] Monique Laurent. Semidefinite relaxations for max-cut. The Sharpest Cut:
The Impact of Manfred Padberg and His Work, 4:257, 2004.

[Lov79] László Lovász. On the Shannon capacity of a graph. Information Theory,
IEEE Transactions on, 25(1):1–7, 1979.

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions
and 0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[LT03] László Lipták and Levent Tunçel. The stable set problem and the lift-and-
project ranks of graphs. Math. Program., 98(1-3, Ser. B):319–353, 2003.
Integer programming (Pittsburgh, PA, 2002).

[MGS88] Laszlo Lovász Martin Grötschel and Alexander Schrijver. Geometric algo-
rithms and combinatorial optimization. Berlin: Springer-Verlag, 33:34, 1988.

[MS09] Claire Mathieu and Alistair Sinclair. Sherali–Adams relaxations of the
matching polytope. In STOC’09—Proceedings of the 2009 ACM Interna-
tional Symposium on Theory of Computing. ACM Press, 2009.

[MWT13] Masakazu Muramatsu, Hayato Waki, and Levent Tunçel. A perturbed sums
of squares theorem for polynomial optimization and its applications. arXiv
preprint arXiv:1304.0065, 2013.

[PVZ07] Javier Peña, Juan Vera, and Luis F. Zuluaga. Computing the stability num-
ber of a graph via linear and semidefinite programming. SIAM Journal on
Optimization, 18(1):87–105, 2007.

[Rot14] Thomas Rothvoß. The matching polytope has exponential extension com-
plexity. In Proceedings of the 46th symposium on Theory of Computing, pages
263–272, 2014.

132

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

[Sch79] Alexander Schrijver. A comparison of the delsarte and lovász bounds. In-
formation Theory, IEEE Transactions on, 25(4):425–429, 1979.

[Sch08] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs.
In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, pages 593–602. IEEE, 2008.

[SL96] Hanif D. Sherali and Youngho Lee. Tighter representations for set partition-
ing problems. Discrete Appl. Math., 68(1-2):153–167, 1996.

[ST99] Tamon Stephen and Levent Tunçel. On a representation of the match-
ing polytope via semidefinite liftings. Mathematics of Operations Research,
24(1):1–7, 1999.

[STT06] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round
lower bound for Lovász–Schrijver SDP relaxations of vertex cover. In IEEE
Conference on Computational Complexity. IEEE Computer Society, pages
06–098, 2006.

[Tun10] Levent Tunçel. Polyhedral and semidefinite programming methods in combi-
natorial optimization, volume 27. American Mathematical Soc., 2010.

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by lin-
ear programs. J. Comput. Syst. Sci., 43(3):441–466, 1991.

[Zuc03] Mark Zuckerberg. A Set Theoretic Approach to Lifting Procedures for 0,1
Integer Programming. PhD thesis, Columbia University, 2003.

133

	List of Tables
	List of Figures
	Introduction
	Linear programming
	Integer programming
	Lift-and-project methods
	Results and organization of this thesis

	Preliminaries
	The `39`42`"613A``45`47`"603ABCC operator and the Lovász–Schrijver operators
	The face lattice interpretation and the Sherali–Adams operator
	Lifting to the face lattice of [0,1]n
	The `39`42`"613A``45`47`"603ASA operator
	The `39`42`"613A``45`47`"603ASA' operator

	Utilizing positive semidefiniteness in lift-and-project operators
	An extremely brief introduction to semidefinite programming
	The operators `39`42`"613A``45`47`"603ALS+, `39`42`"613A``45`47`"603ASA+ and `39`42`"613A``45`47`"603ASA+'

	The Lasserre operator
	The Bienstock–Zuckerberg operator and their variants
	The subset algebra of F
	Obstructions, walls and tiers
	The `39`42`"613A``45`47`"603ABZ' and `39`42`"613A``45`47`"603ABZ+' operators

	Lower-Bound Analysis
	Identifying unhelpful variables in the lifted space
	A general template
	Relating `39`42`"613A``45`47`"603ABZ',`39`42`"613A``45`47`"603ABZ+' with `39`42`"613A``45`47`"603ASA', `39`42`"613A``45`47`"603ASA+'

	Applications to matching and stable set relaxations

	Upper-Bound Analysis
	Utilizing -establishing variables
	Applications to matching relaxations

	Tools for Constructing and Verifying Certificate Matrices
	Reducing certificate matrices using linear dependencies
	Verifying positive semidefiniteness when weights align
	The ``last block'' approach
	The inductive approach

	Connecting eigenspaces of certificate matrices with combinatorial objects
	Commutative maps and reductions using symmetries
	Maps that commute with operators based on `39`42`"613A``45`47`"603ASA
	Reducing matrices using permutation-commutative maps

	When Positive Semidefiniteness Does Not Help
	When `39`42`"613A``45`47`"603ASA+k does not outperform `39`42`"613A``45`47`"603ALS0k
	Some bad instances for `39`42`"613A``45`47`"603ASA+, `39`42`"613A``45`47`"603ALas and `39`42`"613A``45`47`"603ABZ+'

	On the Integrality Gaps of Lift-and-Project Relaxations
	Simplifying integrality gap computations by utilizing symmetries
	Obtaining integrality gap results from lower-bound results
	Integrality gaps of `39`42`"613A``45`47`"603ASA+'-relaxations for matching
	Integrality gaps of polyhedral versus semidefinite lift-and-project relaxations

	Conclusions and Future Research Directions
	Relating the `39`42`"613A``45`47`"603ASA+'-, `39`42`"613A``45`47`"603ABZ+'-and `39`42`"613A``45`47`"603ALas'-relaxations for matching
	More connections between matchings and integer partitions
	Final remarks

	APPENDICES
	The Original `39`42`"613A``45`47`"603ABZ, `39`42`"613A``45`47`"603ABZ+ Operators
	Details of the original `39`42`"613A``45`47`"603ABZ, `39`42`"613A``45`47`"603ABZ+ operators
	Strong and tractable — the `39`42`"613A``45`47`"603ABZ'', `39`42`"613A``45`47`"603ABZ+'' operators

	References

