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Abstract

In order to accommodate growing traffic demands, next generation cellular networks

must become highly heterogeneous to achieve capacity gains. Heterogeneous cellular

networks composed of macro base stations and low-power base stations of different

types are able to improve spectral efficiency per unit area, and to eliminate coverage

holes. In such networks, intelligent user association and resource allocation schemes

are needed to achieve gains in performance. We focus on heterogeneous cellular

networks that consist of macro and pico BSs, and study the interplay between user

association and resource allocation using two modeling approaches, namely a static

modeling approach and a dynamic modeling approach.

Our first study focuses on modeling heterogeneous cellular networks with a static

approach. We propose a unified static framework to study the interplay of user associ-

ation and resource allocation under a well-defined set of assumptions. This framework

allows us to compare the performance of three resource allocation strategies: partially

Shared deployment, orthogonal deployment, and co-channel deployment when the user

association is optimized. We have formulated joint optimization problems that are

non-linear integer programs which are NP-hard. We have, therefore, developed tech-

niques to obtain upper bounds on the system’s performance. We also propose a

simple association rule that performs much better than all existing user association

rules. We have used these upper bounds as benchmarks to provide many engineering
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insights, and to quantify how well different combinations of user association rules and

resource allocation schemes perform.

Our second study focuses on modeling heterogeneous cellular networks with a dy-

namic modeling approach. We propose a unified framework to study the interplay of

user association, resource allocation, user arrival, and delay. We select three different

performance metrics: the highest possible arrival rate, the network average delay,

and the delay-constrained maximum throughput, and formulate three different opti-

mal user association problems to optimize our performance metrics. The proposed

problems are non-linear integer programs which are hard to solve efficiently. We have

developed numerical techniques to compute either the exact solutions or tight lower

bounds to these problems. We have used these lower bounds and the exact solu-

tions as benchmarks to provide many engineering insights, and to quantify how well

different user association rules and resource allocation schemes perform.

Finally, using our numerical results, we compare the static and dynamic modeling

approaches to study the robustness of our results. Our numerical results show that

engineering insights on the resource allocation schemes drawn out the static study

are valid in a dynamic context, and vice versa. However, the engineering insights on

user association rules drawn out of the static study are not always consistent with

the insights drawn out of the dynamic study.
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Chapter 1

Introduction

1.1 Overview

Current cellular wireless technologies are mainly based on homogeneous networks,

i.e., a set of identical base stations (BS) called macro BSs. In such networks, BSs

follow a carefully planned layout and are identical in terms of power levels, antenna

configurations, backhaul capacities, etc. BSs are carefully configured to optimize cov-

erage, minimize interference with other BSs, and ensure a roughly equivalent number

of users in each cell. A typical homogeneous cellular system is shown in Fig. 1.1 in

which a BS is located at the center of each homogeneous cell.

Such networks were able to handle the data traffic generated by customers and

managed to be beneficial for both the customers and the operators till the last decade.

Over the past decade, telecommunication companies have realized that the volume of

data traffic is increasing at a very fast rate, over 100% per year as shown in Fig. 1.2

and Fig. 1.3. Because of this, the operators will face some major challenges in the
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1.1. OVERVIEW

Figure 1.1: Typical Homogeneous Cellular System

near future.

There are some limitations in the amount of data traffic that a homogeneous net-

work can handle. These limitations are mainly determined by the available spectrum

and the capacity of the network. The network capacity is determined by information

theoretic capacity limits, especially the Shannon-capacity. According to the result

in [1], Shannon-capacity for a Single Input Single Output (SISO) cellular system,

considering interference as noise, is around 2 bps/Hz spatially averaged over the cell.

Hence, the best possible long term throughput is about 2bps/Hz. Although in theory

this capacity can be increased by deploying base station cooperation, Multi-Input

Multi-Output (MIMO) transmissions, and interference cancelation and alignment

schemes, in practice these techniques have not been proven to provide a significant

gain due to many practical considerations [2].

Spectrum is the other factor that limits telecommunication companies in handling
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1.1. OVERVIEW

Figure 1.2: Data Traffic Growing Faster Than Revenues
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1.1. OVERVIEW

Figure 1.3: Laptops and Smartphones Lead Traffic Growth

high volume of traffic, especially in dense urban areas. Telecommunication companies

can either buy more licensed bands or utilize the unlicensed spectrum. Since licensed

bands are expensive, network operators prefer to use the available licensed spectrum

more efficiently.

Cell size is another factor that affects the number of users that a given BS can

handle. By reducing the cell size of the cells (i.e., by adding more BSs) in cellular

networks, the network capacity can be improved. Initially, cellular networks were

designed with large cell size to keep the infrastructure cost low. Since traffic has

increased, operators need to install more BSs to handle higher volume of traffic.

This methodology is called cell splitting, and if it is combined with sectorization

techniques, it can provide an efficient way of improving network capacity [3], but the

cost of infrastructure increases significantly.

While cell splitting can be used to accommodate growing traffic demands, such
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1.1. OVERVIEW

an approach can be difficult in dense urban environments because of the challenges

in finding new BS sites and the cost of backhauling. In the near future, homogeneous

cellular networks will be unable to deliver the required per-user throughput, because

a typical modern BS in isolation, employing advanced signal processing, modulation

and coding techniques, has already practically reached the information theoretic limits

of what an isolated system can achieve. In the future, capacity gains will be achieved

by using a wide range of technologies among which will be low-power BSs such as

pico, femto, and relay BSs. Cellular networks will become highly heterogeneous, i.e.,

use different types of technologies to offer higher per-user throughput.

Heterogeneous cellular networks (Hetnets) are composed of macro BSs and low-

power BSs of different types, including pico (also called small cells in the literature),

femto, and relay BSs. Hetnets are designed to improve spectral efficiency per unit

area [4]. The mixture of different BSs with different power levels and different cell

sizes can lead to significant gains in performance by offering higher spatial reuse, by

eliminating coverage holes, and by creating hot-spots. The LTE-Advanced standard,

for example, proposes improvement to network-wide spectral efficiency by employing

a mix of low-power BSs [5], [6].

Typically, an operator will place low-power BSs at strategic points to improve

performance while keeping the infrastructure cost low. Hence, a user might not

always be in the coverage area of a low-power BS. This being said, users should try to

associate to low-power BSs if they can, to improve spectral efficiency. This association

should improve the user throughput and result in a higher spatial reuse, if resource

allocation and interference management mitigate interference among low-power BSs

and there are enough resources at the low-power BSs to serve all the users in their
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1.2. MOTIVATION AND CONTRIBUTIONS

vicinity. Therefore, intelligent user association, resource allocation, and interference

management schemes are needed to achieve gains in performance, and the interplay

between these schemes has to be studied carefully. There is clearly a complex interplay

between the different decisions an operator needs to take during the deployment phase

and it is important to perform studies that consider all these processes jointly, namely

user association, resource allocation and interference management, and scheduling.

In the next section, we discuss these schemes in more detail.

1.2 Motivation and Contributions

In this thesis, we study Hetnets on the downlink, and more precisely their engineer-

ing. At the time of deployment, the operator needs to take many decisions that are a

function of the predicted profile of the user population in the region under considera-

tion and the level of service to offer under nominal conditions. Decisions to be taken

should include the following processes:

1. User Association (UA): This defines a set of rules for assigning users to

the different BSs available in the system. A decision to associate a user with

one BS will affect the throughput seen by that user, as well as the throughput

of the other users associated with all other BSs that would have served that

user. In Hetnets, the downlink signal of a macro BSs is typically stronger than

that of a low-power BS because of the difference in their transmission powers.

Hence, almost all users would associate with macro BSs if user association is

based on the downlink received signal strength as it is in homogeneous networks.

Therefore, by using the downlink signal strength based association rule, macro

6



1.2. MOTIVATION AND CONTRIBUTIONS

BSs would be overloaded while low-power BSs would serve a small number of

users. This would negatively impact the performance of the system, and result

in the waste of the resources allocated to the low-power BSs.

In the conventional homogeneous cellular networks, and also in LTE Release-

8 [7], [5], user association is based on downlink received signal strength. Many

association rules have been proposed that perform better than the conventional

rule in Hetnets (e.g., [8], [9]); however, it is not clear which one is the best option

since each study is based on a specific resource allocation scheme and a different

set of assumptions. In this thesis, we present a benchmark for comparing the

performance of the existing association rules in Hetnets in the literature.

2. Resource Allocation and Interference Management (RA): Typically,

Hetnets are based on OFDM1, and hence one of the resources to distribute

among the different BSs is sub-channels. Another important resource is transmit

power. Given a fixed number of channels and a fixed total transmit power

(possibly different) at each BS, a RA scheme determines how to allocate the

channels among the BSs, and how to use the power budget on the allocated

channels at each BS. Hence, in its most complex form, a RA scheme can be

seen as a centralized scheduling deciding which BSs should transmit to whom,

on which channels, and with what transmit power, at each time. Even in a static

scenario where channel gains are known and fixed, and the user association is

given, this problem is not tractable due to the very large number of variables.

1We assume that the Hetnet as a whole is allocated a frequency band that is divided into M ′

orthogonal sub-channels (or Resource Blocks (RB) in the context of LTE [10]) where each sub-
channel has a bandwidth b. We will use the term channel and sub-channel interchangeably in the
thesis.
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1.2. MOTIVATION AND CONTRIBUTIONS

In its simplest form, a RA scheme might allow each BS to transmit at all time

on all sub-channels (and to cope with the resulting interference) using the same

power on each channel. In that case, for a given association rule, each BS can

locally schedule its own users without the need for any coordination with the

other BSs. Clearly, even in this simple case, one expects different performance

for different association rules. In this study, we focus on RA schemes that do not

require fine coordination among BSs, i.e., the schemes determine the number of

channels that each BS can use and each BS then uses these channels at all time

with the maximum allowed transmit power (distributed over these channels) to

schedule its users.

Currently, multiple options exist for managing interference and allocating re-

sources in a Hetnet that includes macro and femto BSs [11], [12], [13], and

selecting the right option is a hard problem.

3. Scheduling Policy: User throughput is a function of the number of users

associated with the same BS as well as the user scheduling policy implemented

by the BS and the allocated resource. Hence, the choice of a scheduling policy

will significantly impact the system performance. We consider a user scheduling

policy based on proportional fairness (PF).

There is a need to develop a unified framework to analyze, compare, and evaluate the

performance of different resource allocation schemes when user association is either

computed optimally or performed via the use of simple rules.

In practice, cellular networks are dynamic systems with respect to users’ arrival,

service times, user mobility, users’ locations, and channel gains. It is hard to study

8



1.2. MOTIVATION AND CONTRIBUTIONS

such systems considering all possible dynamics. However, each of these dynamics can

be captured independently. In the literature, several modeling approaches have been

proposed to individually capture the dynamic nature of a specific dimension such as

users’ arrival, service times, users’ locations, and channel gains. In the most classic

modeling approach (known as static modeling approach), we study a snapshot of the

system. We assume that BSs’ locations are fixed and known, and that there are N

greedy users placed at random in the system area. These users are greedy in rate, i.e.,

they want their rate to be as large as possible. We also assume that the BS has an

infinite backlog of packets for each of these users. This modeling approach enables us

to study the average behavior of many physical layer metrics (such as users’ SINRs)

over several spatial realizations2 of the N users in a cellular network.

The static modeling approach allows us to formulate many network utility max-

imization (NUM) problems, and to evaluate the performance of various scheduling,

power control, and channel allocation schemes. The main drawback of this approach

is that we need to perform multiple network realizations, and to compute the aver-

age behavior of our performance metrics over the realizations. Stochastic geometry

modeling is another static approach in which users are greedy in rate, and are placed

according to some probability distribution in the system area. This modeling ap-

proach allows the study of the average behavior of many physical layer metrics over

several spatial realizations of a cellular network without performing multiple network

realizations.

2A spatial realization corresponds to the random placement of the N users in the system area
based on a specific user distribution.
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1.2. MOTIVATION AND CONTRIBUTIONS

Dynamic modeling approach (also called flow level modeling approach) captures

the dynamic nature of users’ arrival and service times. In this approach, we assume

that users arrive in the system, download a file whose size is finite (recall that we

focus on the downlink), and depart the system when the file has been received, i.e.,

we assume a dynamic user population. Such users want to download their files as fast

as possible, and want their delay to be as small as possible (i.e., they are sensitive to

delay). We fix the power and channel allocations as well as the user scheduling policy

per BS (either round robin or processor sharing), and capture the system dynamics by

a queueing model which takes into account the users’ arrival and departure processes.

More precisely, we consider the coverage area of each BS as a queue, and model the

cellular network as a set of queues serving the cell area. This approach enables us to

study the average behavior of many network layer metrics (such as the average delay

in the system) without performing any long-run simulation.

The dynamic modeling approach allows us to optimize several delay-based per-

formance metrics when each BS schedules its users locally (using either round robin

or processor sharing) given a power control and channel allocation scheme. Unlike

the static modeling approach, it is hard to evaluate the performance of various user

scheduling, power control, and channel allocation schemes using the dynamic ap-

proach. Although the dynamic approach is less flexible than the static approach, it

allows us to study the performance of cellular systems in terms of delay-based metrics.

Simulation is another approach to study the dynamic behavior of an Hetnet. The

main drawback of this approach is that we need to perform long-run simulations to

evaluate the performance of a user scheduling, power control, and channel allocation

scheme. Because of this, it is hard to evaluate the performance of many combina-
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Table 1.1: Comparison between the static and dynamic modeling approaches.

Characteristics Static Approach Dynamic Approach
User population Static with fixed number of users Dynamic
Number of users Fixed irrespective of the deployed UA and RA Highly depends on the deployed UA and RA

File size Infinite Finite
Performance metric Throughput Delay and Throughput

tions of user scheduling, power control, and channel allocation schemes. Although

this approach allows us to study the dynamic behavior of an Hetnet, it makes the

optimization of our performance metrics very difficult.

As mentioned above, each of the developed modeling approaches captures different

aspects of cellular systems, and models the system under a specific set of assumptions

(see Table 1.1). When we model cellular networks under different sets of assumptions

(e.g., static or dynamic user population), we might get different engineering insights.

Engineering insights that are not “robust” to the set of assumptions are somewhat

dubious. Real cellular networks are dynamic systems with users joining and leav-

ing the system. It is not clear whether a combination of a resource allocation and

user association scheme that is performing well for a static user population, can also

perform well in a dynamic system.

In this thesis, we focus on Hetnets that consist of macro and pico BSs, and study

the interplay of user association and resource allocation. We first study Hetnets with

a static approach and then with a dynamic approach. We study the interplay of the

network processes (i.e., user association and resource allocation), and provide many

engineering insights for a static and dynamic user population. The purpose of this

study is twofold: First, it is to study the interplay between the various options that a

cellular operator has to choose from, and second, to compare the static and dynamic
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modeling approaches to make sure that the conclusions that can be drawn out of the

static study are valid in a more dynamic context.

Modeling Hetnets using a static approach: We study a snapshot of the

system on the downlink, and assume that there are N greedy users in the system, i.e.,

a static user population. We define precisely the Hetnet that we study in terms of the

processes (i.e., user association and resource allocation), and formulate a “one-shot”

joint user association and resource allocation problem. Our framework is centralized

and static since we consider a snapshot of the system both in terms of user deployment

and channel gains. This framework allows us to perform an offline study of different

combinations of resource allocation and user association schemes, and to select the

best performing ones. Our main contributions on the static modeling approach can

be summarized as follows:

1. We formulate a centralized static unified framework to analyze and compare

several combinations of association rules and RA schemes. We consider three

RA schemes: co-channel deployment (CCD), orthogonal deployment (OD),

and partially shared deployment (PSD). For CCD, we formulate an optimal

user association problem. For OD and PSD, we formulate an optimal joint

user association and resource allocation problem. For these three problems,

we consider an objective function corresponding to PF among all users in the

system (we call this global PF). These three problems are multi-purpose in that,

they can be used to compute the optimal association for each RA scheme under

consideration (along with the optimal channel allocation for OD and PSD),

which gives us a benchmark (i.e., an upper bound) on the performance to be

expected for each scheme. In the case of CCD, the problem can be used to
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compute the performance of a given association rule. In the case of OD and

PSD, the problem can be used to compute, for a given association rule, the

optimal splitting and the corresponding performance.

2. We show how the global PF criteria yields a solution in which each BS schedules

its users using local PF.

3. Although the problems in their more general form are non-linear integer pro-

grams, we are able to develop numerical techniques to compute tight upper

bounds on the performance for small to large systems.

4. We use the numerical results to compare the three RA schemes when the asso-

ciation is optimal. We find that under our assumptions (especially the one on

the absence of coordination among BSs), OD and PSD perform significantly

better than CCD.

5. We then focus on PSD and OD, and study the impact of different parameters

and how different simple association rules perform. In particular, we propose a

simple association rule and show that it works better than the existing associ-

ation rules.

Modeling Hetnets using a dynamic approach: We consider dynamics in

users’ arrival and service times, i.e., we assume that users arrive in the system, stay

while downloading the file they need, and then depart. We capture the system dy-

namics by a queueing model which takes into account the users’ arrival and departure

processes. More precisely, we consider the coverage area of each BS as a multi-class
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processor-sharing queue, and model the Hetnet as a set of generalized processor shar-

ing (GPS) queues serving the cell area.

There is a complex interplay between user association, resource allocation, user

arrival, and delay in Hetnets. To precisely understand such an important interplay,

we focus on the long-run performance of the Hetnet, i.e., the set of GPS queues, and

define the Hetnet that we study in terms of user association, resource allocation, and

user arrival. We select three different performance metrics: the highest possible arrival

rate, the network delay, and the delay-constrained maximum throughput. We then

formulate three different optimal user association problems to optimize these metrics.

The proposed framework allows us to study Hetnets in a more dynamic context, i.e.,

to choose the right combination of resource allocation and user association schemes

so that a set of delay-based metrics is optimized. Our contributions on the dynamic

modeling approach can be summarized as follows:

1. We formulate a centralized framework to analyze and compare different com-

binations of UA and RA schemes in Hetnets with a dynamic user population.

We consider the three RA schemes CCD, OD, and PSD, and three different

objective functions corresponding to each of the delay-based performance met-

rics, namely the highest possible arrival rate, the network delay, and the delay-

constrained maximum throughput. Given a resource allocation and its param-

eters, we formulate three optimal user association problems to optimize the

objective functions. The proposed problems enable us to analyze and compare

different combinations of UA and RA schemes in Hetnets with a dynamic user

population.
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2. The proposed user association problems are non-linear integer programs. We

develop numerical techniques to compute either the exact solutions or tight

lower bounds to these problems.

3. We compare the three RA schemes in terms of the highest possible user arrival

rate. We find that OD and PSD perform significantly better than CCD.

4. We then focus on PSD, and study the delay performance of different association

rules as well as the impact of different system parameters. In particular, we

show that the proposed association rule is performing better than the existing

association rules.

Finally, we use the proposed frameworks (the static and dynamic ones) to compare

the two modeling approaches to make sure that the conclusions that were drawn

out of the static study are valid in a more dynamic context. This study is a first

step to systematically compare different user association rules and resource allocation

schemes for Hetnets, and to compare the two modeling approaches extensively used

to model Hetnets. It shows the critical impact of the association rule and the resource

allocation scheme as well as the modeling approach in achieving good performance.

1.3 Outline

The rest of the thesis is organized as follows: Chapter 2 presents an overview of the

related works. In Chapter 3, we focus on a Hetnet with a static user population.

We describe the system model, and formulate a joint user association and resource

allocation problem for a static user population. We also provide numerical results
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along with engineering insights. In Chapter 4, we consider a Hetnet in which users

arrive into the system, download a file, and depart the system. We focus on the

long-run performance of the Hetnet, and define the Hetnet that we study in terms of

UA, RA, and user arrival. We then formulate three different optimal user association

problems to optimize the highest possible arrival rate, the network delay, and the

delay-constrained maximum throughput. We also provide numerical results along

with engineering insights. In Chapter 5, we compare the two modeling approaches

(i.e., the static and the dynamic ones) to make sure that the conclusions that were

drawn out of the static study in Chapter 3 are valid in a more dynamic context.

Chapter 6 concludes this thesis by summarizing all the insights drawn out of this

thesis.
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Chapter 2

Literature Background

Resource allocation, interference management, and user association (known as cell-

site selection) are well known problems in the area of wireless networking. They have

a direct impact on each other. Because of this, some researchers have worked on

joint resource allocation, interference management, and user association schemes. In

this chapter, an overview of the state of the art for these problems is provided that

includes the previous works in the context of both homogeneous and heterogeneous

cellular networks. In the following, we mainly focus on frequency division multiple

access (FDMA) systems. However, some examples of code division multiple access

(CDMA) Hetnets are also provided.
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2.1 Resource Allocation and Interference Manage-

ment

There are different interference management techniques such as power control, chan-

nel allocation, interference cancellation (successive or parallel) [14], and interference

alignment [15] in the literature. In this section, we focus on interference management

via channel allocation among BSs.

2.1.1 Homogeneous Networks

Extensive work has been done on resource allocation and interference management

in FDMA homogeneous networks (i.e., that include only macrocells). In FDMA

systems, the intra-cell interference is negligible, since we can assume intra-cell users

are orthogonal to each other. Hence, the main source of interference is inter-cell

interference. Since co-channel interference between adjacent cells can be very large, in

traditional FDMA cellular networks to avoid interference among co-channel cells, co-

channels cells are spaced a couple of cells away [16]. This technique is called “Channel

reuse”, and the required minimum spacing called “Reuse Distance” is determined by

the minimum required average signal to interference plus noise ratio (SINR) in the

system. “Reuse Distance” is defined as the distance between the centers of the cells

that use the same channels.

Channel reuse plays an important role in the performance of conventional cellular

systems, since it determines the amount of interference between co-channel macro-

cells [16]. Planning of conventional cellular systems has been based on channel reuse

methods. However, in recent years, more sophisticated channel allocation schemes
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have been proposed that can utilize frequency resources more efficiently.

In cellular systems, since all BSs transmit with equal power, it is reasonable for

the user to associate with the BS that provides the strongest signal (the best SINR).

In such scenarios, considering the high traffic aggregation, “reuse factor one” in which

all BSs have access to the available frequency band can be an appropriate resource

allocation scheme for cell-interior users within a cell [17], but for cell-edge users “reuse

factor one” can lead to high interference. In a given cell, the users who are closer to

the BS of the cell rather than the neighboring cells are called cell-interior users, and

users who are at the edge of the cell are called cell-edge users.

Fractional frequency reuse (FFR) [18] has been proposed as a solution to mitigate

the inter-cell interference for both cell-edge and cell-interior users while using fre-

quency resources more efficiently. In FFR systems, the bandwidth is divided into two

parts corresponding to cell-interior and cell-edge users. For cell-interior users, “reuse

factor one” can be the best bandwidth allocation, since these users are far enough

from the neighboring BSs. In contrarily, cell-edge users are close to the neighbor-

ing BSs; and so “reuse factor one” is not the right reuse for cell-edge users, since it

results in high interference for cell-edge users, and it degrades the rate of cell-edge

users. Because of this, typically a reuse factor that is greater than one (e.g., reuse

factor 3) has been used for cell-edge users to avoid inter-cell interference between the

neighboring BSs.

In FFR cellular systems, there are some tradeoffs between different system perfor-

mance metrics such as rate improvement, coverage for cell-edge users, overall network

throughput, and spectral efficiency, and hence, the design of FFR systems has a di-

rect impact on various performance metrics of the system in hand [19]. For example,
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in [20], [21] and [22], the authors focus on the optimal design of FFR systems to

maximize the network throughput while in [23] the spectral efficiency is considered

as the objective.

2.1.2 Heterogeneous Networks

In Hetnets that include macro and pico BSs, the throughput of the system can be

degraded by co-channel interference among neighboring cells. In [24], Yonezawa et

al. propose a central channel allocation algorithm to minimize interference among

co-channel picocells assuming user association and channel allocation among pico and

macro BSs are given. In this algorithm, a central node collects some information from

users to construct an interference graph. Then, by using the chromatic polynomial in

graph theory, the central node determines whether the graph can be colored by the

given number of channels or not. If the answer is “No”, then the algorithm prunes

an edge that means ignoring the interference constraint and increasing the level of

interference in the network, and then tries to color the graph again. The final channel

allocation minimizes the interference level between co-channel picocells for a given

number of channels. Some simulations and experiments are done to demonstrate the

effectiveness of the algorithm.

The same problem is addressed in [25] and [26]. The authors propose an algorithm

in which users send the interference information to a central node. Based on the

received information, the central node assigns sub-channels to pico BSs recursively

until interference is higher than a given interference level. Although the authors show

the effectiveness of their proposed algorithms based on some computer simulations

and experiments, there are numerous drawbacks with this algorithm that diminish
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the performance of the system. For example, the performance of the algorithm could

be diminished if the number of available sub-channels is relatively small as compared

to the cell density. Moreover, the algorithm could make the network to oscillate in

terms of channel assignment, since it might change the frequency sub-channels of pico

BSs after receiving the feedback information.

In [27], Chandrasekhar et al. study the problem of resource allocation in FDMA

based Hetnets that include macro and femto BSs. The authors propose an optimal

decentralized algorithm for channel allocation between femtcells and the macrocell

BS (in a given cell) that maximizes the area spectral efficiency (ASE) while both

macrocell and femtocell users can attain a minimum predetermined data rate. The

algorithm is analyzed and its performance is demonstrated based on some simulation

results. The numerical results show that channel allocation between the macrocell

and femtocells depends on the minimum data rate requirement of users, the hotspot

density, and the co-channel interference between macrocells and femtocells. In this

work, it is assumed that femtocells pick their frequency sub-channels randomly. This

assumption is very strong, since typically random channel assignment does not lead

to significant gains in throughput [28]. All derived expressions are based on this

assumption. Therefore, the provided optimum frequency division expressions and

evaluations cannot be considered as a general result.

In [28], the problem of sub-channel assignment among femtocells in Orthogonal

Frequency Division Multiple Access (OFDMA) femtocell networks is addressed. Two

sub-channel assignment algorithms are proposed that enable femtocells to reduce

inter-cell interference and improve the network capacity. The algorithms operate

in two phases called “sensing phase” and “tuning phase”. In the sensing phase,
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femtocells and users measure interference in all sub-channels and then broadcast

the measurements to other femtocells. In the tuning phase, based on the received

reports, each femtocell adjusts its sub-channels such that interference is minimized

in the network. Some simulation results are provided that show the effectiveness of

the algorithm in reducing interference in the network. Although the authors impose

some conditions on the “tuning phase” to prevent possible oscillations in terms of

channel assignment, there is no guarantee that the algorithm does not oscillate and

it converges to an optimum (or sub-optimum) channel assignment.

In Hetnets where the spectrum is shared (e.g., CDMA femtocells) and there is no

coordination among BSs in different tiers, cross-tier interference limits the network

capacity. In [29], Chandrasekhar et al. derive a fundamental relation that provide the

largest macrocell SINR given any set of feasible femtocell SINRs, and they propose

a distributed utility-based SINR adaptation at femtocells that mitigates cross-tier

interference at macrocells caused by femtocells. In this algorithm, each femtocell

maximizes its individual utility that consists of a SINR based reward and a cost

corresponding to the generated interference by the femtocell. The provided numer-

ical results show more than 30% improvement in mean femtocell SINRs relative to

Foschini-Miljanic algorithm [30].

Three resource allocation options, including co-channel deployment (CCD), or-

thogonal deployment (OD), and partially shared deployment (PSD), have been pro-

posed in 3GPP to share resources between macro and pico tiers [31]. In OD, low-power

BSs that have the same transmit power share the same set of resources. This solution

mitigates interference among different classes of BSs since BSs transmitting on the

same sub-channels have the same transmit power. In PSD, a set of frequency resources
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is dedicated to macro BSs, and the rest of the available frequency resources is shared

among the macro and low-power BSs. In this solution, capacity gains can be achieved

by using low-power BSs without affecting the coverage of the macro BSs. Note that to

reduce interference among macro and low-power BSs on the shared spectrum, macro

BSs transmit with reduced power on the shared frequency resources. This solution

provides an efficient way of using resources without affecting coverage area of macro

BSs.

In CCD, all BSs have access to the whole set of channels. This solution is consid-

ered more efficient for systems with limited spectrum since it avoids spectrum parti-

tioning, and for systems in which PSD is not supported by user equipments. CCD

results in high interference among macro and low-power BSs so that the coverage of

low-power BSs is reduced and their capacity gains are diminished if no interference

management technique is deployed in the system. To mitigate the interference among

co-channel BSs, 3GPP introduced almost blank subframe (ABS), a subframe in which

the macro tier is not allowed to transmit data [31], [32]. Low-power BSs can schedule

their users who are close to a macro BS, in the allocated ABSs.

In [33], Cierny et al. use stochastic geometry to find the minimum number of

ABSs so that users’ throughput requirements are satisfied. The authors propose a

semi-analytical formula which can be used to evaluate the performance of Hetnets

comprising macro/femto BSs and macro/pico BSs. Their numerical results show

that in Hetnets comprising macro/femto BSs, the white residue interference in ABSs

is tolerable for femto users while in Hetnets comprising pico/macro BSs the white

residue interference in ABSs significantly affects the required number of ABSs

In [34], the authors explore the performance of OD and CCD with the assumption
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that the system uses the conventional association rule in which a user associates with

the BS that provides the highest downlink signal power. The authors show, via

simulation, that CCD achieves a higher average throughput when the channels are

equally divided between the macro and pico BSs.

In summary, in the context of Hetnets (multi-tier networks), there are two main

questions related to interference management via channel allocation:

1. How many sub-channels should be allocated to a tier in multi-tier networks ?

2. Assuming channel allocation between tiers is done, what is the best channel

assignment to bases stations in each tier ?

Researchers have tried to find reasonable answers to these questions for pico and

femtocell networks with a static user population, but the proposed solutions are not

general enough. In general, it is hard to answers these questions using different fading

models (especially in the dynamic modeling approach). In this thesis, we will assume

that fast fading is averaged out at the link level, and the sub-channel gains account

for the path loss and shadowing effects. We then try to answer these questions for

Hetnets that include pico and macro BSs, using the static and dynamic modeling

approaches.

2.2 User Association

2.2.1 User Association in Homogeneous Networks

There is extensive work on user association focusing on different objectives such as

load balancing, decreasing call blocking probability, and increasing the number of
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connected users. In [35], the problem of joint power allocation and user association in

spread spectrum cellular networks is formulated, and a distributed power control and

user association algorithm that achieves capacity of wireless spread spectrum systems

is provided. Based on some numerical examples, it is shown that the algorithm

effectively associates users with different BSs such that interference is minimized.

In High Speed Packet Access (HSPA) cellular networks, load balancing in terms

of distributing users among different BSs can result in smaller blocking rate for voice

traffic, higher throughput and better minimum rate. In [36] and [37], the problem

of load balancing in HSPA networks is addressed. The authors propose a load-aware

handoff/cell-site selection scheme that maximizes the number of connected users, re-

duces the number of hot-spots by doing load balancing among different BSs, and

increases the robustness of the system to asymmetric load dynamics across the net-

work.

The work in [38] deals with the planning problem of frequency allocation in FDMA

voice systems given the locations of BSs. The authors try to maximize the number

of connected users in the system given a certain blocking probability. They model

the interplay between user association and frequency allocation as a linear integer

program subject to some constraints on the number of channels determined by Erlang

B-formula as the minimum number of channels required to keep blocking probability

below the given threshold. The authors do not provide any numerical result for the

proposed benchmark. Only a short discussion on the complexity of the proposed

problem is provided in the paper.

In [39], Klein et al. studied the cell selection problem for mobile users considering

the effect of user’s velocity and the amount of data to be transmitted. Based on
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the user’s velocity and the amount of data to be transmitted, two user association

schemes are proposed, and some analytical expressions for the optimal thresholds on

the velocity and the amount of data to be transmitted that minimize the expected

system load, are provided. The results are general, and hold for any user distribution

and call arrival rate. In addition, some on-line user association schemes that do

not require a priori information of the network parameters and achieve near optimal

performance are also provided.

2.2.2 User Association in Heterogeneous Networks

In [40], the cell selection problem for two tier cellular networks that include macro

and micro BSs is studied, and a user cell selection algorithm that reduces the total

uplink transmit power required to achieve a given target SINR is proposed. In this

algorithm, users will be divided into different set of groups, and then users in each

group compete with each other to choose the serving BS that requires the smallest

transmit power to achieve the target SINR. Based on some simulation results, it is

shown that the algorithm can improve the performance in terms of the required power

at the BSs, the transmit power of users, and the load balancing among cells compared

with the conventional user association scheme.

In [41], Yang et al. consider hand-off between different technologies in hetero-

geneous wideband code division multiple access (W-CDMA) networks as a multi-

dimensional problem. The authors propose a multi-dimensional adaptive SINR based

vertical hand-off algorithm (MASVH) that combines the effects of SINR, user required

bandwidth, user traffic cost, and BS utilization to make handoff decisions. Some per-

formance evaluations are done that demonstrate the effectiveness of the algorithm in
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improving throughput, and reducing dropping probability.

In [8], the authors consider the effect of user association on the network’s through-

put for a fixed partitioning of resources between the macrocell and some picocells. A

simple association rule called “Range Extension” (RE) is proposed, and the authors

show by simulation that it can improve the network’s throughput as compared to an

association based on SINR. In RE, users associate with the BS with the minimum

path loss rather than the BS with the maximum downlink SINR. The performance

of RE is demonstrated via simulation in which there are less than 50 users. Clearly,

this limited setup is not suitable for demonstrating the effectiveness of the association

rule. There are some system parameters such as the number of channels allocated to

picocells, user population, and their distribution that can affect the performance of

RE, and there are some scenarios in which SINR based association performs much

better than RE.

In [42], a new association rule called “Range Expansion” is proposed. It adds a

bias to the reference signal’s received power from pico BSs to artificially extend their

coverage [31]. In 3GPP, this association rule and its parameter are called “Cell Range

Extension” (CRE) and “Cell Individual Offset” (CIO), respectively [32]. The bias can

be selected such that users associate with the BS with the minimum path loss, i.e.,

RE [8]. In [43], Mukherjee et al. study the impact of range expansion bias on the

distribution of users’ SINRs and the spectral efficiency in Hetnets comprising macro

and pico BSs. Using stochastic geometry models, the authors derive closed-form

expressions for the spectral efficiency of the Hetnet as well as the SINR distribution

of users associated with macro and pico BSs.

In femtocell networks, two types of access methods called “Open Access” and
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“Closed Access” have been defined for femtocells [44]. In “Closed Access”, only

administered users can connect to a femtocell, but in “Open Access” all users who

can hear a given femtocell are allowed to be connected to its BS. Clearly, “Closed

Access” limits the number of users connected to femtocells while “Open Access” does

not impose any restriction on users to connect to any femtocell.

In [45], Chandrasekhar et al. analyze “Open Access” and “Closed Access” for the

downlink transmission in Hetnets that include macro and femto BSs. It is assumed

that the system uses round robin scheduling. The authors provide some expressions

for the SINR distribution of various areas within a cell, and based on these expressions

the average sum throughput of femtocell and macrocell users under both open and

closed access methods have been determined. It is shown that femtocell users prefer

“Closed Access” in terms of having higher throughput while macrocell users prefer

“Open Access” especially at the cell edge.

In [46], Son et al. study the the problem of optimal user association in multi-cell

networks. The authors formulate the proportional fair association problem, and pro-

pose an offline and online user association schemes. In the proposed online algorithm,

users send their information to their current BSs, and BSs send their users’ informa-

tion to a central node. The central node finds which user(s) is the best candidate for

re-association. The central controller allows only few users to associate or re-associate

at each step. The proposed online algorithm uses a notion of average throughput as

the decision making metric, instead of the signal strength in conventional systems.

The authors numerically show that the online algorithm works significantly better

than the conventional association rule.

In [47], Kim et al. consider a dynamic system where users arrive randomly into
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the system, download files, and leave after being served. The authors propose a gen-

eral framework for user association in wireless networks, and capture the dynamics

of the system with a flow-level queuing model. The proposed framework is general

and applicable to Hetnets since there is no limitation on the transmit power of BSs.

The authors formulate the user association problem as a convex optimization prob-

lem. They propose and analyze an iterative distributed user association policy that

converges to a global optimum and tracks slowly varying traffic loads. The pro-

posed algorithm supports a family of load-balancing objectives such as rate-optimal,

throughput-optimal, and delay-optimal objectives. Finally, they propose admission

control policies for the scenario where the system is overloaded and cannot be stabi-

lized. It is shown that the optimal admission control policy blocks all flows at cells

edges.

In summary, the performance of an association rule depends on different parame-

ters such as transmission power, number of available sub-channels, user density, user

population behavior (i.e., static or dynamic user population), scheduling policy, and

access methods. In Hetnets, the interplay between these parameters becomes more

complicated, since different tiers have different transmission powers, cell sizes, and

different access methods. As mentioned above, recently, some researchers have worked

on user association in Hetnets, but with many simplifying assumptions. In this study,

we find the optimal association, and propose a simple association rule. We also com-

pare the performance of different association rules under different system parameters

in terms of number of users, user population (static or dynamic) and density, and

number of allocated sub-channels.
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2.3 Joint Resource Allocation and User Associa-

tion

In [48], Madan et al. study the effect of joint user association and resource allo-

cation among macro and pico BSs for a static user population. An OFDM system

is considered in which the total bandwidth is divided into M sub-channels. Power

and scheduling time (on a per sub-channel basis) are the resources that are allo-

cated among different BSs. A global high level scheduling problem is formulated to

maximize at each time-slot the sum of the logarithm of the rates as a function of

several variables, including power levels, scheduling, sub-channels, and user associa-

tion. However, since this problem is a very large combinatorial problem, they propose

heuristic algorithms for adaptive user association and resource partitioning. The per-

formance of these heuristic algorithms is demonstrated via simulations. It is shown

that the heuristics can achieve near optimal performance at least for small networks.

In [48], Madan et al. compare the performance of different user association and

resource allocation schemes. To do this, they consider a system composed of 2 macro

and 10 pico BSs, and 20 users, and compare the performance of the conventional user

association rule and “Rang Extension” under different resource allocation schemes

and different user utility functions. The resource allocation schemes are “reuse one”

(both macro and pico BSs have access to the same set of sub-channels) and “fixed

resource partitioning” (the resources are allocated equally between the macrocells and

the picocells). The numerical results show that “Range Extension” associates more

users with low-power BSs, and significant performance gains can be achieved by using

such simple user association rules.
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In [49], the performances of “Range Extension” and the conventional association

rule are compared under a specific frequency allocation in which the resources are

equally divided between the macroells and the picocells. The authors show via sim-

ulation that the number of users served by picocells is already large enough with the

conventional user association rule, and “Range Extension” does not improve users’

throughput significantly. In [9], Tongwei et al. propose a new user association rule

called “Based on Queue (BQ)”. In BQ, a user associates with the low-power BS that

has the strongest signal among other low-power BSs and its signal power is greater

than the strongest downlink macrocell signal minus 25 dB. BQ associates more users

with picocells. The authors compare BQ’s performance under two different resource

allocation schemes called overlap inter-cell interference coordination (Overlap ICIC)

and non-verlap inter-cell interference coordination (Non-overlap ICIC). In “Overlap

ICIC”, macrocell BSs use half of the available frequency while picocells can use the

entire frequency band. In “Non-overlap ICIC”, the available bandwidth is equally

divided between macrocells and the picocells. Finally, it is shown via simulation

that the new scheme works better than “Range Extension” and the conventional user

association rule.

In [50], Fooladivanda et al. develop a unified framework to analyze, compare,

and evaluate the performance of different user association rules in Hetnets using

max-min scheduling for Orthogonal deployment. The authors formulate a joint user

association and resource allocation problem, and propose a simple association rule

called “Picocell First”. The proposed problem is an integer linear program which

can be solved for relatively large networks. The authors obtain exact solutions to

the proposed problem, and numerically show that the proposed association rule can

31



2.3. JOINT RESOURCE ALLOCATION AND USER ASSOCIATION

improve the minimum throughput as compared to an association based on SINR. In

the next chapter, more details are provided on the performance of “Picocell First”.

As mentioned in this section, there are some challenging interplay in Hetnets, e.g.,

between the user association and the channel allocation, that have a significant impact

on the system performance. Extensive work has been done on user association and

resource allocation schemes in Hetnets for a static user population, but none of these

works can be used as a unified benchmark to compare the performance of existing

user association rules and resource allocation schemes. It is not clear why some simple

association rules perform well in one scenario while these rules do not work well in

another scenario. Moreover, none of the existing works explore the interplay between

user association and resource allocation in a dynamic context. As mentioned earlier,

real cellular networks are dynamic systems with users joining and leaving the system.

It is not clear whether a combination of a resource allocation and user association

scheme that is performing well for a static user population, can also perform well in

a dynamic system. In this thesis, we try to find some reasonable answers to these

challenging questions.
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Chapter 3

Hetnets with a Static User

Population

3.1 System Model

We consider a multi-tier communication system composed of several macro BSs. Each

macro BS is overlaid with B pico BSs that are identical in terms of transmit power,

antenna gain, and backhaul capacity. We focus on the macro BS at the center (cell

0). The coverage area1 of the macro BS is covered by a grid corresponding to possible

locations for the users (i.e., we discretize the set of locations at which users can

be). Let B and L denote the set of pico BSs deployed by the operator (|B| = B)

in the coverage area of the macro BS and the set of possible user locations within

the cell area (|L| = L), respectively. We study the downlink and make the following

1The coverage area of a macro BS is the area in the multi-tier communication system without
pico BSs (a homogenous system) which is covered by the macro BS.
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assumptions:

• The system is an OFDM system with M ′ sub-channels, each of bandwidth b.

These sub-channels are divided among the macro BSs based on conventional

frequency reuse [16], i.e., given reuse factor r, the M ′ sub-channels are equally

divided among the macro BSs such that each macro BS is granted a group of

M = M ′

r
sub-channels.

• The sub-channel gains are the same on each sub-channel for a given (loca-

tion,BS) pair.

• Fast fading is averaged out at the link level, and the sub-channel gains account

for the path loss and shadowing effects, i.e., the channel gains are random, but

remain constant for a relatively long period of time.

• Each pico BS is connected to the macro BS via a high capacity wired backhaul.

• The maximum transmit powers of the macro (Pm) and pico (Pp) BSs are fixed

and known a priori.

• Each user can associate with only one BS.

• All BSs are active at all time, i.e., there is no time at which a BS is not

transmitting. Also, a BS uses all its available transmit power at all time.

• There are N fixed users in the system. These users are placed at random at N of

the L possible user locations, i.e., we fix the realization2. All users’ information,

2A realization corresponds to the random placement of the N users in the cell area based on a
specific user distribution.
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including the channel gains, are available so that the SINR to each user from

each BS can be computed.

• The rate function f(·) for each BS is known so that given the SINRs, users’ rates

from all BSs can be computed. We do not make any restricting assumptions

on f . We assume f is the same for each BS (though our framework does not

depend at all on this assumption).

Sub-channels are the resources that we allocate to the different BSs, so that our

global objective function is maximized. We study different resource allocation and

interference management schemes, including three channel allocation strategies and

one type of power allocation scheme well studied in the literature.

3.1.1 Channel Allocation

We study three channel allocation schemes as follows:

• Co-channel deployment ( CCD): Each BS transmits on all the sub-channels.

• Orthogonal deployment ( OD): K sub-channels are dedicated exclusively to the

pool of pico BSs and (M − K) sub-channels are dedicated to the macro BS.

Each pico BS transmits on all the K sub-channels.

• Partially shared deployment ( PSD): K sub-channels are shared by the macro

and pico BSs and the other (M −K) sub-channels are dedicated to the macro

BS. Each pico BS transmits on all the K sub-channels.
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3.1.2 Power Allocation

We assume that the total transmit powers of the macro (Pm) and pico (Pp) BSs are

fixed and known. For CCD and OD, we assume that the power budget of a BS is

shared equally among all channels allocated to this BS. For PSD, we assume that the

macro BS uses the same transmit power budget Pp on the K channels shared with

the pico BSs, and that it uses (Pm − Pp) on the other (M −K) sub-channels [51].

3.1.3 Physical Link Model

Let N denote the set of users in the system. The SINR of user i ∈ N from BS

j ∈ B ∪ {0} on each sub-channel (i.e., on the downlink) can be written as:

γ
(c)
ij =

P
(c)
j Gij

N0 +
∑

h∈Ij P
(c)
h Gih

(3.1)

where Ij is the set of BSs transmitting on the same set of sub-channels (not including

j) in the multi-tier system, P
(c)
j is the transmit power of BS j on each of its sub-

channels, N0 is the additive white Gaussian noise power, and Gij is the flat gain

between user i and BS j that accounts for the path loss, shadow fading, antenna

gain, and equipment losses. Note that given a reuse factor r and a RA scheme (i.e.,

CCD, OD, or PSD), Ij the set of BSs that use the same set of sub-channels as well as

the transmit power of each BS on each sub-channel, P
(c)
j , can be determined. Then

γ
(c)
ij can be calculated for all i ∈ N and j ∈ B ∪ {0}.

As mentioned earlier, we assume there is a mapping function f(·) that maps the
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SINR to the corresponding rate in bps (bit/second), i.e., r
(c)
ij = f(γ

(c)
ij ) 3. Next, we

formulate our optimization problems, one for each of the three channel allocation

schemes presented above.

3.2 Problem Formulations and Solution Techniques

As briefly mentioned earlier, we select proportional fairness as our global objective

function, i.e., we maximize
∑

i log(λi) where λi is the throughput of user i. To

compute λi, let rij denote user i’s link rate from BS j (i.e., rij = |Cj| × f(γ
(c)
ij ) where

Cj is the set of (flat) sub-channels allocated to BS j) and let αij be the proportion of

time that user i is scheduled on the downlink by BS j. We assume that a BS allocates

all its sub-channels to a user at a given time (which is a reasonable assumption if the

channels are flat). Let xij be equal to one if user i is associated with BS j, and

let it be 0, otherwise. Hence, for all i ∈ N ,
∑

j∈B∪{0} xij is equal to one. Note

that we implicitly assume that each user i can hear at least one BS with a non-

zero rate, i.e., there are no non-covered users in the system. Hence, λi is equal to∑
j∈B∪{0} (xijαij) rij. Note that BS j allocates all its time among its associated users

and hence,
∑

i∈N (xijαij) = 1.

We begin with the formulation for co-channel deployment. In this case, the prob-

lem is only one of optimal association and scheduling, i.e., the {xij} and the {αij}

are the only variables. The problem can be formulated as follows: given the CCD

channel allocation, the M channels, the channel gains for the N fixed users, the rate

function f(·), and the transmit powers, compute {xij} and {αij} so as to maximize

3Note that the effect of channel bandwidth b is implicit in the rate function f(·).
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the global proportional fairness objective:

PCCD : max
{xij},{αij}

∑
i∈N

log(λi)

subject to λi =
∑

j∈B∪{0}

(xijαij) rij , ∀i ∈ N (3.2a)

∑
j∈B∪{0}

xij = 1 , ∀i ∈ N (3.2b)

∑
i∈N

(xijαij) = 1 , ∀j ∈ B ∪ {0} (3.2c)

0 ≤ αij ≤ 1, xij ∈ {0, 1} , ∀i ∈ N , ∀j ∈ B ∪ {0} (3.2d)

where rij = M × f(γ
(c)
ij ), and P

(c)
j = Pm

M
if j = 0 and P

(c)
j = Pp

M
otherwise.

We assume that the backhaul infrastructure is not the bottleneck. More precisely,

let Cj denote the capacity of the wired backhaul between pico BS j and the macro BS.

For each feasible solution {xij}, we need to have
∑

i∈N xijλi ≤ Cj for all j ∈ B∪{0}.

If Cj is sufficiently large, i.e.,
∑

i∈N xijλi � Cj for all feasible solutions {xij} to

PCCD, these constraints will be satisfied, and they can be removed from the problem.

Before discussing this problem in more details, we formulate the problem of opti-

mal user association and resource allocation for orthogonal deployment that allocates

the first K sub-channels to the pico BSs and the rest to the macro BS. Each pico BS

will be assigned K sub-channels. Note that P
(c)
j = Pp

K
for j ∈ B, and P

(c)
0 = Pm

M−K .

In the case of OD, we optimize the same objective function as for CCD with

respect to the following variables: K, {xij}, and {αij}. Note that the effect of K is

implicit in γ
(c)
ij . The problem can be formulated as follows: given the OD channel

allocation, the M channels, the channel gains for the N fixed users, the rate function
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f(·), and the transmit powers, compute K, {αij}, and {xij} so as to maximize the

proportional fairness objective:

POD : max
K,{xij},{αij}

∑
i∈N

log(λi)

subject to (3.2a)− (3.2d)

ri0 = (M −K)× f(γ
(c)
i0 ), ∀i ∈ N (3.3a)

rij = K × f(γ
(c)
ij ), ∀j ∈ B, ∀i ∈ N (3.3b)

K ∈ {1, · · · ,M − 1} (3.3c)

For PSD, the macro BS transmitting on the K sub-channels can be considered as

a new BS in the system. By doing this, we optimize the same objective function as

for OD with respect to K, {xij}, and {αij}, and we obtain a problem PPSD similar

to POD. For brevity, we do not present the problem formulation for PSD.

Our objective is to solve these three problems exactly which is not going to be

possible as we explain now. First, note that the proposed problem POD is a very

complex problem. Some variables such as K are discrete while some others such

as {αij} are continuous. Hence, it is hard to solve this problem as it is. Since

K ∈ {1, · · · ,M − 1}, a solution for POD can be obtained by solving POD iteratively

for all possible values of K, and then selecting the best solution. In particular, let us

define the optimal value of the objective function for POD for a given K, as PF ? (K).

Hence, the solution for POD can be obtained by solving maxK {PF ? (K)}. Let P′OD

and P′PSD be the problems obtained by fixing K. P′OD (as well as P′PSD) reduces

to a joint problem of optimal user association and scheduling (as is PCCD). These
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three problems are non-convex integer programs and are NP-hard [52]. Hence, it is

not possible to obtain exact solutions to these problems efficiently. Our goal is to

transform these problems into convex problems for which the relaxed programs can

be solved efficiently (i.e., for which upper bounds can be computed). To do so we

tackle the problem in two steps. We will explain these steps for OD, but similar

steps can be used for PSD and CCD. In the first step, we are going to show that

P′OD can be reduced to a pure optimal association problem by proving that for the

optimal solutions, xijαij is equal to xij/Nj where Nj =
∑

i∈N xij is the number of

users associated with BS j. This means that the global PF criteria yields a solution

based on local PF at each BS (i.e., each BS offers the same amount of time to all its

users). In the second step, we will transform this pure optimal association problem

into a convex program whose solutions provide tight upper bounds on the solutions

of P′OD.

STEP 1 : As mentioned earlier, we focus on OD although similar results hold for

CCD and PSD. Assume each BS uses local PF scheduling. According to Lemma

1 [53], a BS assigns the same amount of time to its users.

Lemma 1 [53] Let’s assume there is one BS and all users have the same priority.

Given resource allocation parameters including the number of sub-channels and the

transmit power on each sub-channel, PF scheduling assigns equal proportion of time

to all users.

We can then formulate a new pure association problem called P′
`
OD as follows where
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we assume that each BS schedules using local PF:

P′
`
OD : max

{xij},{Nj}

∑
i∈N

log (λi)

subject to∑
j∈B∪{0}

xij = 1 , ∀i ∈ N (3.4a)

λi =
∑

j∈B∪{0}

(
xij
Nj

)
rij , ∀i ∈ N (3.4b)

xij ∈ {0, 1}, Nj =
∑
i∈N

xij , ∀j ∈ B ∪ {0}, ∀i ∈ N , (3.4c)

where all rij’s can be computed beforehand and used as inputs to the optimization

problem.

We say that two problems are equivalent if and only if an exact solution of one is

an exact solution of the other.

Theorem 1 Given B, N , M , the channel gains, the rate function, the parameters

of the OD, i.e., K, P′OD and P′
`
OD are equivalent.

Proof : Please see Appendix.

Based on this theorem, we work now with P′
`
OD. Note that P`

CCD and P`
PSD

can be reduced to the same non-convex integer program since their differences are all

summarized in the rij’s that can be computed beforehand.

STEP 2 : To obtain an upper bound for P′
`
OD we could try to simply relax the

integrality constraints on {xij} (i.e., we assume that 0 ≤ xij ≤ 1 for all i, j) and try

to solve the relaxed problem. However, even after relaxing the integrality constraints

in P′
`
OD, the problem remains non-convex. Note that non-convex programs cannot
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be easily solved exactly. Fortunately, the structure of P′
`
OD is such that we can

reformulate it into an integer convex problem as follows. Noting that all xij’s are

binary variables and
∑

j∈B∪{0} xij = 1 for all users, there exists only one value of j,

i.e. j̄, for which xij̄ = 1 (i.e., xij = 0, ∀j 6= j̄). Therefore, the objective function in

P′
`
OD can be rewritten as follows:

∑
i∈N

log

 ∑
j∈B∪{0}

xij
Nj

rij

 =
∑
i∈N

∑
j∈B∪{0}

xij log

(
rij
Nj

)
. (3.5)

Using this property, P′
`
OD can be reformulated into a convex integer program and

the relaxed program (with respect to the integrality constraints on {xij}) can be

solved efficiently even for large systems since it is a convex problem. Note that this

problem is convex, and hence it can be solved to the desired precision in polynomial

time [54]. This enables us to obtain upper bounds on the performance of P`
CCD,

P′
`
OD, and P′

`
PSD in terms of the global objective function, i.e.,

∑
i log(λi), for large

Hetnets that are composed of a large number of users, one macro BS, and many pico

BSs. Although we are unable to show the tightness of these bounds analytically, we

show numerically that P′
`
OD indeed provides a tight upper bound. We can verify the

tightness of these upper bounds by finding a feasible solution for a given resource

allocation and then comparing the corresponding performance metric
∑

i log(λi) for

this feasible solution with the computed upper bound. To generate feasible solutions

for a given RA, we will use simple association rules. It is important to note that the

problems PCCD, POD, and PPSD can be used to provide the performance metric for

a given association rule. Indeed, if the association rule is given, then the {xij} is

given and the problems can then be solved easily. We will use this fact to compare
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the performance of several simple user association rules under our three resource

allocation schemes, as shown in Section 3.4.

The purpose of the static study is threefold: First, we want to compare the three

resource allocation schemes, i.e., CCD, PSD, and OD not only in terms of the objec-

tive function, but also in terms of aggregate throughput, and minimum throughput

in the system, i.e., the performance metrics are
∑

i log(λi),
∑

i λi, and mini {λi}. Op-

erators are typically trying to trade-off fairness (usually using proportional fairness

criteria), the total aggregate throughput which is a measure of the “capacity” of their

system, and some criteria to take edge users’ performance into consideration. We

chose to use the minimum rate in the system as such a measure. Second, we want

to study how different simple association rules perform as compared to the optimal

solutions for these three resource allocation schemes. Finally, we want to study in

more details the impact of some of the parameters of PSD which, under our assump-

tions, performs significantly better than CCD and OD. Next, we describe the simple

association rules that we are going to study and compare.

3.3 Simple User Association Rules

In practical cellular systems, users arrive in the network, stay for a while, and depart

the network. Such systems would work optimally if we are able to compute the optimal

RA parameter (if any) and associate and re-associate users optimally whenever a

new user arrives, a user moves or departs the system, or the channel gains change

significantly. Such heavy computations are difficult to do online and changing the

RA parameter and re-associating a large number of users frequently might degrade
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the system’s performance and result in oscillations. To avoid such possible problems,

simple association rules have been used in homogeneous cellular systems and proposed

in the literature for heterogeneous systems. These rules typically associate users

based on physical layer parameters without considering other system’s issues such as

load balancing among BSs. We study some of those rules and propose a new user

association rule that we call Picocell First. A description of these rules is as follows:

1. Best SINR: A user i associates with BS j? that provides the highest SINR,

i.e., j? = arg maxj∈B∪{0} {γ(c)
ij } where γ

(c)
ij denotes the SINR of user i from BS

j, on each sub-channel respectively. This association rule has been used in

conventional cellular networks.

2. Range Extension (RE) [55]: A user at location i associates with BS j? =

arg minj∈B∪{0} {δij} where δij is the path loss from BS j to location i.

3. Picocell First (PCF) [50]: A user at location i associates with pico BS

j? = arg maxj∈B∪{0} {γ(c)
ij } as long as γij? > β where β is a tuning parameter.

Note that γ
(c)
ij denotes user i’s SINR on each sub-channel. If maxj∈B {γ(c)

ij } < β,

user i associates with the BS that provides the highest SINR. This rule asso-

ciates users with pico BSs regardless of their received power from the macro BS

as long as the best SINR seen from a pico BS is larger than β. The motivation

behind this rule is to bring BSs closer to users and offload data traffic via pico

BSs.

For each of these rules, once the physical layer parameters are known, we can

compute the values of xij for all users i and BSs j. To compute the physical layer

parameters, we need to fix the resource allocation scheme and its parameters if any,
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i.e., K, for OD and PSD. Therefore, for OD and PSD, to compute the system’s

performance when the user association is given by a simple association rule, we need to

fix K, and to compute the system’s performance corresponding to these parameters,

and then iterate on these parameters. Note that for CCD the resource allocation

parameters are fixed. Thus, given a user association {xij}, we can compute the

solution to P`
CCD by calculating

∑
i log(λi).

We now have a unified framework, i.e., the proposed joint user association and

resource allocation problems, and we can compute upper bounds on the objective

function of the proposed problems. Using this framework, we can compute the optimal

resource allocation parameters and the performance metrics (i.e.,
∑

i log(λi),
∑

i λi,

mini {λi}) when an association rule is given. Note that when we fix the association

rule, we can generate a feasible integral solution to each problem PCCD, PPSD, and

POD. If we can find a simple association that yields an objective function close to the

corresponding upper bound, then we would have validated the tightness of our bound

and the goodness of that simple association rule. Next, we explore the performance

of existing and proposed user association and RA schemes.

3.4 Numerical Results

3.4.1 Parameter Settings

We consider a communication system composed of 19 macro BSs. Each macro BS’s

coverage area is overlaid with four pico BSs. The network has an inter-cell distance

of 500 m. We study the cell at the center which is a hexagonal area with radius
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Macro BS

Pico BSHotspot

Figure 3.1: A Hetnet comprising 19 macro BSs (the triangles). Each macro BS is
overlaid with 4 pico BSs. Pico locations for the cell at the center are shown in the
figure in the right-hand side. The triangle is the macro BS and the squares are the
pico BSs. There are four hotspots shown as circles around the pico BSs.

R = 500/
√

3 m (see Fig. 3.1). The cell is covered by one macro BS and four pico

BSs. The macro BS is located at the center of the cell while the pico BSs are located

symmetrically around the macro BS with distance d = 230 m from the center. As

mentioned earlier, we assume that the system is an OFDM system with M ′ sub-

channels. We consider a reuse factor of “three”, i.e., each macro BS has access to

M = M ′/3 sub-channels. We use M = 100 sub-channels, and assume that there are

L = 2000 possible user locations in each macro BS area.

We consider two configurations. In Configuration 1, there are N = 20 users while

in Configuration 2, there are N = 60 users distributed in the cell area. To consider

the case where users are clustered in some areas in the system, we consider two types

of user distribution: uniform (UD) and non-uniform (NUD). With the uniform user

distribution, the N users are uniformly distributed at random in the cell area, while

with the non-uniform user distribution, 2
3

of the users are uniformly distributed at

random in the hotspot areas shown in Fig. 3.1 while the rest is distributed uniformly
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Table 3.1: Physical Layer Parameters
Noise Power −174 dBm

Hz
Tsubframe 1 ms

Ppico 30 dBm Pmacro 46 dBm
UE Ant. Gain 0 dB Sub-channel Bandwidth 180 KHz
Shadowing s.d. 8 dB Penetration Loss 20 dB

SCofdm 12 SYofdm 14
Path Loss (Pico) 140.7 + 36.7 log10(d/1000), d ≥ 10m

Path Loss (Macro) 128 + 37.6 log10(d/1000), d ≥ 35m

Table 3.2: Modulation and Coding Schemes-LTE

SINR thresholds (in dB) -6.5 -4 -2.6 -1 1 3 6.6 10 11.4 11.8 13 13.8 15.6 16.8 17.6
Efficiency (in bits/symbol) 0.15 0.23 0.38 0.60 0.88 1.18 1.48 1.91 2.41 2.73 3.32 3.90 4.52 5.12 5.55

in the cell area. Each hotspot is a circle of radius 80m, centered at a pico BS.

The physical layer parameters are based on the 3GPP evaluation methodology

document [56] used for Hetnets in LTE. These parameters are shown in Table 3.1. We

use the SINR model introduced in Section 3.1.3 that accounts for path loss and slow

fading. Slow fading is modeled by a log-normal shadowing with standard deviation of

8 dB, and path losses for pico and macro BSs are given in Table 3.1. We assume that

the system uses adaptive modulation and coding with 15 discrete rates. Table 3.2

taken from [57] and [58] gives us the mapping between the SINR and the efficiency (in

bits/symbol) per sub-carrier for the modulation and coding schemes (MCS) for LTE.

The bit rate obtained by a user that has a SINR between level ` and level ` + 1 is

r = SCofdm SYofdm

Tsubframe
e` where e` is the efficiency (bits/symbol) of the corresponding level

`, SCofdm is the number of data subcarriers per sub-channel bandwidth, SYofdm is the

number of OFDM symbols per subframe, and Tsubframe is the subframe duration in

time units. The value of these parameters are shown in Table 3.1.
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Table 3.3: The SINR threshold values for the tuning parameter β

β β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

SINR thresholds (in dB) -6.5 -4 -2.6 -1 1 3 6.6 8.17 9.33 10.24

Table 3.4: The SINR threshold values for the tuning parameter β

β β11 β12 β13 β14 β15 β16 β17 β18 β19 β20

SINR thresholds (in dB) 10.99 11.63 12.19 12.68 13.13 13.53 13.8 15.6 16.8 17.6

Our comparisons are based on the following performance metrics:

• GM : Geometric mean rate of the users, i.e., N

√∏N
i=1 λi (note that for fixed N ,

maximizing the GM is equivalent to maximizing our objective function);

• Min Throughput : Minimum throughput among all users, i.e., mini{λi};

• TT : Total throughput of the system, i.e.,
∑N

i=1 λi.

“Picocell First” has a tuning parameter β . We assume that β can take any

one of the SINR threshold values shown in tables 3.3-3.4. In the numerical results,

we select the value of β that gives the highest possible geometric mean rate. Two

configurations and two types of user distribution provide us four scenarios to compare

the performance of different combinations of resource allocation and user association

schemes. For each scenario, we compute the upper bound for 20 networks. A network

corresponds to the random realization of the shadowing coefficients for the L = 2000

locations from all the BSs in the multi-tier system. For each network, we compute

the average results over 100 realizations. A realization corresponds to the random
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placement of the N users in the system area based on the scenario. In the following,

we show the trends averaged over the 20 networks. For each network, we compute

the average results over the 100 realizations.

3.4.2 Comparison Results

Tables 3.5-3.6 provide the results for four typical scenarios corresponding to uniform

and non-uniform user distributions, respectively. In the row entitled “GM relaxation”

in these tables, the upper bounds of the joint user association and resource allocation

for CCD, OD, and PSD are provided when all system parameters are computed

optimally (i.e, for OD and PSD, we compute the best K). To check the tightness

of these upper bounds, we compare them to the geometric mean rate of the Picocell

First association rule (GM PCF in the tables) computed for the β that provides the

highest geometric mean rate. For the scenarios, we also consider the system without

any pico BS (called “No pico” in tables 3.5-3.6) to see how much gain can be achieved

by deploying pico BSs. The results show the following:

• PSD and OD perform significantly better than CCD in all cases. PSD and OD

perform almost the same with a slight advantage for PSD. For PSD, we saw

gains (with respect to CCD) in total throughput in the range of 50% to 110%,

and gains in geometric mean rate in the range of 35% to 88% over 20 networks.

This is not so surprising under our assumption that the BSs are not coordinated

and transmit at all time on all channels allocated to them at full power.

• The association rule Picocell First is almost optimal since the geometric mean

rate of the Picocell First is very close to the upper bound for CCD, OD, and
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for PSD when all system parameters, including β, are chosen optimally. This

has two consequences. It validates our relaxation approach because an integer

feasible solution to the proposed problems achieves almost the same geometric

mean rate as the solution of the relaxed problem. It also shows that Picocell

First is a very good yet simple association rule. Similar results were obtained

in [50] for a different framework. Since it is near optimal, we will use Picocell

First when we want to compare the resource allocation schemes in term of

minimum throughput and total throughput.

• The comparison of the system’s performance (using Picocell First) between the

system with and without pico BSs (“No pico” in the tables) shows that pico

BSs can significantly improve the performance of the system. We saw gains

(with respect to the system without pico BSs) in total throughput in the range

of 250% to 340%, and gains in geometric mean rate in the range of 100% to

250% over 20 networks.

3.4.3 In Depth Study of PSD

We now study Partially Shared deployment in more details. We compare the per-

formance of the simple association rules with the upper bound as a function of K.

For each value of K, we compute the upper bound, i.e., the solution to the relaxed

problem P′
`
PSD, and the corresponding geometric mean rate for each association rule.

The results for the four scenarios are shown in figures 3.2 to 3.5, which all show the

same relative performances. The curve corresponding to the upper bound is labeled

Upper bound in the figures. Since CCD is often considered as the preferred option
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Table 3.5: Configuration 1: The average GM, Min Throughput, and TT, in bits per
second for N = 20, M = 100, and best β. Note that the results are averaged over
20 networks, and that for each network, we compute the average results over 100
realizations.

Uniform user distribution
RA scheme CCD OD PSD

GM relaxation 3.6867e+6 5.2236e+6 5.8960e+6
GM PCF 3.6846e+6 4.6088e+6 5.0266e+6

GM No Pico 2.6299e+6 2.6299e+6 2.6299e+6

Min Throughput PCF 0.9105e+6 1.2018e+6 1.1678+6
Min Throughput No Pico 0.6923e+6 0.6923e+6 0.6923e+6

TT PCF 3.5473e+8 5.7253e+8 6.4054e+8
TT No Pico 1.8765e+8 1.8765e+8 1.8765e+8

Non-uniform user distribution

RA scheme CCD OD PSD

GM relaxation 4.0656e+6 6.6021e+6 7.2058e+6
GM PCF 4.0221e+6 6.0025e+6 6.5796e+6

GM No Pico 2.3907e+6 2.3907e+6 2.3907e+6

Min Throughput PCF 0.9270e+6 1.3662e+6 1.5721e+6
Min Throughput No Pico 0.6325e+6 0.6325e+6 0.6325e+6

TT PCF 3.9391e+8 6.5226e+8 7.6344e+8
TT No Pico 1.7407e+8 1.7407e+8 1.7407e+8

51



3.4. NUMERICAL RESULTS

Table 3.6: Configuration 2: The average GM, Min Throughput, and TT, in bits per
second for N = 60, M = 100, and best β. Note that the results are averaged over
20 networks, and that for each network, we compute teh average results over 100
realizations.

Uniform user distribution
RA scheme CCD OD PSD

GM relaxation 1.2876e+6 1.8365e+6 2.0497e+6
GM PCF 1.2875e+6 1.6516e+6 1.8808e+6

GM No Pico 0.8695e+6 0.8695e+6 0.8695e+6

Min Throughput PCF 0.2023e+6 0.2909e+6 0.3557+6
Min Throughput No Pico 0.1467e+6 0.1467e+6 0.1467e+6

TT PCF 1.4272e+8 2.2405e+8 2.3142e+8
TT No Pico 0.6259e+8 0.6259e+8 0.6259e+8

Non-uniform user distribution

RA scheme CCD OD PSD

GM relaxation 1.4394e+6 2.3364e+6 2.5779e+6
GM PCF 1.4308e+6 2.1973e+6 2.3778e+6

GM No Pico 0.7742e+6 0.7742e+6 0.7742e+6

Min Throughput PCF 0.2271e+6 0.4291e+6 0.4095e+6
Min Throughput No Pico 0.1293e+6 0.1293e+6 0.1293e+6

TT PCF 1.4810e+8 2.3139e+8 2.6410e+8
TT No Pico 0.5713e+8 0.5713e+8 0.5713e+8

52



3.4. NUMERICAL RESULTS

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6x 10
6

K

G
M

 

 

Upper bound
PSD−PCF
PSD−SINR
PSD−RE
NoPico
CCD−PCF

Figure 3.2: Configuration 1, PSD, UD: Geometric mean rate (in bits per second) as a
function of K when N = 20 and M = 100. We choose the β that provides the highest
geometric mean rate. Note that the results are averaged over 20 networks, and that
for each network, we compute the average results over 100 realizations.

in Hetnets, we also show the upper bound for CCD for each scenario to compare its

performance with PSD. Note that Picocell First performs very well for CCD, i.e., it

is very close to the upper bound (see tables 3.5-3.6). Because of this, we show the

performance of Picocell First for CCD instead of the upper bound for CCD. The com-

parison between the upper bounds for PSD and CCD for the four scenarios, shows

that PSD performs better than CCD for a large range of K, i.e., even if the operator

cannot choose K optimally, he should still prefer PSD over CCD under our assump-

tions. Figures 3.2 to 3.5 also show that the optimal value of the channel allocation

parameter K is highly dependent on the deployed association and on the scenario at

hand.

The comparison between the geometric mean rate of the simple association rules
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Figure 3.3: Configuration 1, PSD, NUD: Geometric mean rate (in bits per second)
as a function of K when N = 20 and M = 100. We choose the β that provides the
highest geometric mean rate. Note that the results are averaged over 20 networks,
and that for each network, we compute the average results over 100 realizations.

and the upper bound for PSD shows that “Picocell First” almost always performs the

best of the three rules for a range of values of K. The results also show that “Best

SINR” does not perform well in any of the scenarios. When K is not chosen optimally,

the performance of “Picocell First” can be far from the upper bound. We believe that

this can be explained by the fact that if resource allocation is not performed well,

load balancing becomes a major issue and none of our simple association rules take

load balancing into account.

3.5 Conclusions

We have studied the problem of joint user association and resource allocation in Het-

nets that consist of macro and pico BSs. We have considered three channel allocation
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Figure 3.4: Configuration 2, PSD, UD: Geometric mean rate (in bits per second) as a
function of K when N = 60 and M = 100. We choose the β that provides the highest
geometric mean rate. Note that the results are averaged over 20 networks, and that
for each network, we compute the average results over 100 realizations.

schemes, and assumed that all the BSs are transmitting all the time on all their allo-

cated channels. The proposed problems are non-linear integer programs, and hence

it is not possible to efficiently obtain exact solutions. Therefore, we have developed

techniques to obtain upper bounds on the system’s performance. Numerical results

show that the proposed upper bounds are tight and can be used as benchmarks to

quantify how well different user association rules and resource allocation schemes

perform.

Our numerical results indicate that significant performance gains are achievable

for Hetnets with a static user population if the system uses the right combination of

user association and resource allocation. Gains in total throughput in the range of

250% to 340%, and gains in geometric mean rate in the range of 100% to 250%, are
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Figure 3.5: Configuration 2, PSD, NUD: Geometric mean rate (in bits per second)
as a function of K when N = 60 and M = 100. We choose the β that provides the
highest geometric mean rate. Note that the results are averaged over 20 networks,
and that for each network, we compute the average results over 100 realizations.

achievable for Hetnets using pico BSs. Partially shared deployment and orthogonal

deployment perform significantly better than co-channel deployment. Noting the sig-

nificant impact of association rules on the performance of Hetnets, we have proposed

a new user association rule. Our results show that rules which favor associating users

with pico BSs (e.g. “Picocell First” and “Range Extension”) yield significantly bet-

ter performance than the conventional association rule if their tuning parameters are

chosen properly and if the resource allocation parameters have been chosen optimally.

56



Chapter 4

Hetnets with a Dynamic User

Population

4.1 System Model

We consider a multi-tier communication system composed of several macro BSs. Each

macro BS is overlaid with B pico BSs. We focus on the cell at the center (cell 0), and

assume that the cell is overlaid with B pico BSs that are identical in terms of transmit

power, antenna gain, and backhaul capacity. The coverage area of the macro BS is

covered by a grid corresponding to possible locations for the users (i.e., we discretize

the set of locations at which users can be). Let B and L denote the set of pico BSs

deployed by the operator (|B| = B) and the set of possible user locations within the

cell area (|L| = L), respectively. We focus on the downlink, and make the following

assumptions:

1. The system is an OFDM system with M ′ sub-channels, each of bandwidth b.
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These sub-channels are divided among the macro BSs based on conventional

frequency reuse [16], i.e., given reuse factor r, the M ′ sub-channels are equally

divided among the macro BSs such that each macro BS is granted a group of

M = M ′/r sub-channels.

2. The sub-channel gains are the same on each sub-channel for a given (loca-

tion,BS) pair.

3. Fast fading is averaged out at the link level, and the sub-channel gains account

for the path loss and shadowing effects, i.e., the channel gains are random, but

remain constant for a relatively long period of time.

4. Each pico BS is connected to the macro BS via a high capacity wired backhaul.

5. The maximum transmit powers of the macro (Pm) and pico (Pp) BSs are fixed

and known a priori.

6. The total transmit power of each BS is shared equally among all the sub-

channels allocated to it.

7. Each BS schedules its users using local PF, and there is no time at which the

BS is not transmitting (i.e., all BSs are active all the time).

8. Each user associates with one BS.

9. Users arrive at each location i ∈ L according to a Poisson process with density

λ̄. Users arrival process into the entire cell area is a Poisson process with density

λ = |L|λ̄.
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10. Users do not move during their calls, and hence the link rate between a user

and its BS is fixed.

11. Users arriving to the system download files whose sizes are independent and

identically distributed (i.i.d.) random variables of mean F . Note that the file

size has a general distribution and is not necessarily exponentially distributed.

12. Users depart the system as soon as their files have been downloaded completely.

Sub-channels are the resources that we allocate to different BSs, so that the net-

work performance metrics are optimized. We consider three different resource alloca-

tion and interference management schemes:

• Co-channel deployment ( CCD): Each BS transmits on all the M sub-channels.

• Orthogonal deployment ( OD): K sub-channels are dedicated exclusively to the

pool of pico BSs and the remaining (M −K) sub-channels are dedicated to the

macro BS. Each pico BS transmits on all the K sub-channels, and the macro

BS transmits on all the (M −K) sub-channels.

• Partially shared deployment ( PSD): K sub-channels are shared by the macro

and pico BSs and the other (M −K) sub-channels are dedicated to the macro

BS. Each pico BS transmits on all the K sub-channels, and the macro BS

transmits on all the M sub-channels.

For CCD and OD, we assume that the power budget of a BS is shared equally

among all channels allocated to this BS. For PSD, we assume that the macro BS uses

the same transmit power budget Pp on the K channels shared with the pico BSs, and

that it uses (Pm − Pp) on the other (M −K) sub-channels.
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The deployed channel allocation strategy determines the set of BSs transmitting

on the same set of sub-channels as well as the transmit power of each BS on each of

its sub-channels. Knowing the set of co-channel BSs and the transmit power of each

BS on each of its sub-channels, we can compute the SINR of location i ∈ L from BS

j ∈ B ∪ {0} on each sub-channel (call it γ
(c)
ij ) as follows:

γ
(c)
ij =

P
(c)
j Gij

N0 +
∑

h∈Ij P
(c)
h Gih

(4.1)

where Ij is the set of BSs transmitting on the same set of sub-channels (not including

j) in the multi-tier system, P
(c)
j is the transmit power of BS j on each of its sub-

channels, N0 is the additive white Gaussian noise power on the sub-channel, and Gij

is the flat gain between location i and BS j that accounts for the path loss, shadow

fading, antenna gain, and equipment losses. Note that given a reuse factor r, and a

resource allocation and its parameter if any, i.e., K for OD or PSD, Ij (the set of BSs

that use the same set of sub-channels) as well as P
(c)
j (the transmit power of each

BS on each sub-channel) can be determined. Given γ
(c)
ij for i ∈ L and j ∈ B ∪ {0},

using the mapping function f(·) that maps the SINR to the corresponding link rate

in bps (bit/second), the link rate at location i from BS j on each sub-channel can be

calculated by r
(c)
ij = f(γ

(c)
ij )1.

A decision to associate a user with a BS will affect the throughput seen by the

user as well as the throughput of the other users associated with that BS. Each

location in the cell area, might be in the coverage area of multiple BSs, and hence

the users arriving to a location can possibly associate with different BSs. An user

1Note that the effect of channel bandwidth b is implicit in the rate function f(·).
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association policy UA defines a set of rules for assigning users to the different available

BSs in the Hetnet. Several user association rules have been proposed in the literature

(e.g., [46], [48], [50], [59]- [63]) that perform well for a static user population. Typically,

such rules use physical layer parameters (averaged at the link level) such as received

signal power, path loss, and SINR, to choose the best BS for each user. Since fast

fading is averaged out at the link level, the physical layer parameters comprise only the

path loss and shadowing effects which are quasi-static. Therefore, the users arriving

at a certain location, would associate with the same BS if the system associates users

based on their physical layer parameters. In this study, for simplicity reasons, we

assume that the users arriving at a certain location, associate with the same BS.

Under this assumption, an user association policy defines a set of rules for assigning

each location to a unique BS in the Hetnet.

Users arrive at each of the L possible locations according to a Poisson process with

density λ̄ (i.e., the inter-arrival times at each location are exponentially distributed

random variables), and download files. Using a certain UA rule, the arriving users

associate with one of the BSs in the cell area, and get served by the BS. Each BS

offers the same amount of time to all its users since it uses local PF scheduling and

its backhaul capacity is infinite. Therefore, the arriving users to each BS get served

based on the processor sharing (PS) discipline [64].

The processor sharing discipline, introduced in [64], captures the following prop-

erties of time-sharing systems. First, it allows multiple users to be in service at the

same time so that the server shares its resources equally among the users present in

the system. Second, it allows all arriving users to enter service immediately. There-

fore, in the systems using the GPS discipline, the service rate allocated to each user
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depends on the total number of users present in the system. For more information

on the processor sharing discipline, we refer the reader to [65]- [67].

We can capture the system dynamics by a queueing model which takes into account

the users’ arrival and departure processes as well as the scheduling policy. We consider

the coverage area of each BS as a generalized processor sharing queue, and each of the

L locations in the cell area as a class. We assume that each location sees a fixed SINR

that can be computed using (4.1). Therefore, each location i (i.e., class i) has its own

general service time distribution which is dependent on the file size distribution in

location i. More precisely, we model the coverage area of each BS as a GPS queue,

and the Hetnet as a set of GPS queues serving the cell area. Since each BS transmits

all the time and there is no coordination among the BSs, we can decompose the set

of GPS queues, and view the Hetnet as a set of independent GPS queues serving the

cell area.

Users arrive in the system according to a Poisson process and download files whose

sizes are i.i.d. random variables of mean F . Therefore, each BS can be modeled by

a multi-class M/G/1 PS queue. The stationary distribution of the number of users

in the M/G/1 PS queue has a geometric distribution and is insensitive to the service

time distribution except through its mean. Using this property, we can assume that

a user arriving to location i requires to download a file of data with an exponentially

distributed file size of mean F , and hence we can view each BS j as a multi-class

M/M/1 PS queue. Using this model, the Hetnet can be viewed as a set of multi-class

M/M/1 PS queues serving the cell area.

In each of the multi-class M/M/1 PS queues, the per user service rate is a function

of the number of channels available at the BS, the level of interference, and the current
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amount of users associated with the BS. Therefore, the deployed UA and RA schemes

will have a critical impact on service rates (as well as other delay-based performance

metrics), and this is what we study in this chapter. Our performance metrics are as

follows:

1. The Highest Possible Arrival Rate λ̄max: When user arrivals happen faster than

service completions (i.e., file downloads) in a queue, the queue length can grow

indefinitely long (i.e., the queue will not have a stationary distribution). As

mentioned above, service rates are mainly determined by the deployed RA and

UA. Given a set of service rates, arrival rate λ̄ should be less than or equal to a

certain value (call it λ̄max)
2 to make sure that the system is stable. The value

of λ̄max is highly dependent on the service rates. The per-user service rate is

mainly determined by the number of channels available at the BS, the level of

interference, and the current amount of users associated with the BS which are

a function of the deployed UA and RA. Therefore, the network processes (i.e.,

UA and RA) will have a critical impact on λ̄max, and this is what we want to

study.

2. Network Delay: The average delay experienced by the users arriving to location

i (we call it the average delay of class i) depends on the service rate in location

i as well as the arrival rate λ̄. As mentioned earlier, service rates are mainly

determined by the deployed RA and UA. Therefore, given an arrival rate λ̄, the

average delay of class i is mainly determined by the deployed UA and RA. We

choose the maximum average delay per class and the average delay in the cell

2Let λmax denote the highest arrival rate into the entire cell area.
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as our delay metrics, and study the interplay of UA, RA, and delay when the

arrival rate (i.e., λ̄ ≤ λ̄max) is given. The maximum average delay per class can

be seen as a performance metric for edge users (i.e., users with low link rates)

while the average delay in the cell represents the average delay over all users

arriving in the cell.

3. Delay-Constrained Maximum Throughput λ̄T : Arrival rate λ̄ can be as large as

λ̄max if there is no constraint on delay. When there is a constraint on delay

(e.g., the maximum average delay per class should be less than or equal to

T ), the operator has to control the arrival process (i.e., the operator needs to

perform an admission control) since the average delay is increasing in λ̄. We

select delay-constrained maximum throughput λ̄T as our third metric, and try

to understand the impact of UA and RA on this metric.

These performance metrics are highly dependent on the users’ service rates as well as

the user arrival rate. As mentioned earlier, the level of interference and the quantity

of channels available at each BS, and the number of users associated with each BS

have a critical impact on the service rates. Therefore, the deployed UA and RA will

significantly impact the values of our performance metrics.

We define the Hetnet that we study in terms of UA, RA, user arrival, and our

performance metrics, and try to answer the following questions:

• What is the highest possible arrival rate λ̄max for a given resource allocation

and its parameter if any? How is this metric impacted by the deployed UA?

• In the case, where admission control cannot be performed, the operator has to

choose schemes that yield good delay performance over a wide range of λ̄. What
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is the best combination of UA and RA schemes to obtain the lowest possible

delay? How are these delay metrics affected by different UA and RA schemes?

• Assuming that the operator could perform admission control, how is λ̄T a func-

tion of T for different UA and RA?

These questions represent different possible scenarios that a network operator might

need to consider during the engineering of its Hetnet. To answer these questions, we

fix the resource allocation and its parameter if any (i.e., either CCD or, OD or PSD

with a given K), and compute the service rates. Given the service rates, we try to

answer each of the above questions. By answering the above questions iteratively for

all possible values of K, we can answer the above questions completely, i.e., we can

find the best resource allocation and the value of its parameter if any.

4.2 Problem Formulations

We focus on the long-run performance of the Hetnet, i.e., the set of M/M/1 PS

queues. The long-run performance of a single multi-class M/G/1 PS queue is very

well studied in the literature. In [68], Karray et al. use the fact that the stationary

distribution of the number of users in an M/G/1 PS queue is insensitive to the service

time distribution except through its mean, and derive the distribution of the number

of users in a cell (i.e., M/M/1 PS queue) as well as the expected delay per location

in the cell. We use the queueing results in [68] without proof.
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4.2.1 Network Stability

Let us fix the resource allocation and its parameter if any, i.e., K for OD or PSD. Let

RA denote the fixed resource allocation. Given the resource allocation (i.e., RA),

our objective is to compute the highest possible arrival rate λmax(RA). As mentioned

earlier, the highest possible arrival rate is linked to stability, and the Hetnet can be

viewed as a set of independent M/M/1 PS queues. Therefore, the system is stable

if and only if each queue3 is stable. Before presenting the stability criterion for an

M/M/1 PS queue, let us define the load factor of BS j (call it ρj). To do this, let rij

denote location i’s link rate from BS j (i.e., rij = |Kj|f(γ
(c)
ij ) where Kj denotes the

set of sub-channels allocated to BS j). Let xij = 1 if location i is associated with BS

j, and let it be 0, otherwise. Hence, for all i ∈ L,
∑

j∈B∪{0} xij = 1. We define the

load factor of BS j as follows:

ρj =
∑
i∈L

xij
λ̄F

rij
j ∈ B ∪ {0} . (4.2)

An M/M/1 PS queue is stable if and only if the load factor of the queue is strictly

less than one [68]. Using the stability criterion, the Hetnet is stable if and only if the

following condition is satisfied:

λ̄
∑
i∈L

xij
F

rij
< 1 , ∀j ∈ B ∪ {0}. (4.3)

Given the resource allocation, i.e., either CCD, or OD or PSD with a given K, we can

compute {rij}. Therefore, given the resource allocation, an arrival rate λ̄ is feasible

3We will use the term queue and BS interchangeably in the thesis.
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(i.e., the system is stable) if and only if there exists an user association {xij} for which

(4.3) is satisfied. By using (4.3), we can easily check the feasibility of λ̄ for a given user

association, but it is harder to find whether there exists an user association for which

(4.3) is satisfied. In order to write tractable optimization problems, we prefer not

to work with strict inequalities4, and hence we introduce a parameter ρ̄, and assume

that the load at each BS j cannot be larger than ρ̄ (i.e., ρj ≤ ρ̄) where 0 < ρ̄ < 1 is

a constant. Therefore, for a given 0 < ρ̄ < 1, we replace the stability condition (4.3)

by

λ̄
∑
i∈L

xij
F

rij
≤ ρ̄ , ∀j ∈ B ∪ {0}. (4.4)

Given the resource allocation RA, our objective is to compute the highest possible

arrival rate λmax(RA) for which there exists an user association such that the system

is stable. To compute λmax(RA), we formulate a joint optimization problem in which

the variables are the {xij}’s and λ̄. The problem can be formulated as follows: Given

ρ̄, {rij}, and F , compute {xij} and λ̄ so as to maximize the arrival rate:

P(1)
s : max

{xij},λ̄
λ̄

subject to λ̄
∑
i∈L

xij
F

rij
≤ ρ̄ , ∀j ∈ B ∪ {0} (4.5a)

∑
j∈B∪{0}

xij = 1 , ∀i ∈ L (4.5b)

λ̄ ≥ 0, xij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ B ∪ {0} (4.5c)

Note that maximizing λ̄ is equivalent to minimizing the maximum of
(∑

i∈L xij
F
rij

)
’s

4Strict inequalities result in open sets.
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for all j ∈ B ∪ {0}. Using this property, P(1)
s can be rewritten as follows:

P(2)
s : min

{xij},T
T

subject to
∑
i∈L

xij
F

rij
≤ T , ∀j ∈ B ∪ {0} (4.6a)

∑
j∈B∪{0}

xij = 1 , ∀i ∈ L (4.6b)

T ≥ 0, xij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ B ∪ {0} (4.6c)

P(2)
s is an integer linear program which can be solved with a commercial solver soft-

ware. Therefore, given ρ̄, F , and a resource allocation (i.e., RA), the highest arrival

rate λ̄max is

λmax(RA) =
ρ̄

T ?
(4.7)

where T ? denotes the optimal solution to P(2)
s .

The proposed optimization problem enables us to compute the highest possible

arrival rate λmax(RA) for a given resource allocation RA. Arrival rate λ̄ can be as

large as λmax(RA) if we use the user association {x?ij} where {x?ij} is the solution to

P(2)
s ; otherwise, the system is not necessarily stable. For any other user association

rule UA = {xoij} (i.e., any other feasible solution {xoij} to P(2)
s ), the highest possible

arrival rate (call it λ̃max(RA, {xoij})) can be easily computed by using (4.4), and is

less than or equal to λmax(RA). In Section 4.5, we compute the maximum arrival

rate λmax(RA) for different RA schemes, and study the stability region of different

combinations of user association and resource allocation schemes in more details.

Next, we focus on the network delay metrics. We fix the resource allocation and its
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parameter if any, and try to compute the lowest possible values of our delay metrics

for a given λ̄. We formulate a problem of optimal user association assuming the

resource allocation RA, λmax(RA), and an arrival rate λ̄ ≤ λmax(RA) are given.

4.2.2 Network Delay

Let us assume that a resource allocation, its parameter if any (call the resource allo-

cation RA), and an arrival rate λ̄ which is less than or equal to λmax(RA) (the value

computed for the resource allocation), are given. Given the resource allocation and

arrival rate λ̄, our objective is to find the lowest possible values of our delay metrics,

i.e., the lowest possible values of d1({Ti}) = maxi∈L Ti and d2({Ti}) = 1
|L|
∑

i∈L Ti

where Ti denotes the average delay at location i (i.e., class i). Given the resource

allocation, we can compute {rij}. Therefore, for a given user association UA = {xoij},

we can compute the average delay at location i [68], i.e.,

T oi =
∑

j∈B∪{0}

xoij
F

(1− ρj)rij
(4.8)

where ρj = λ̄
∑

i∈L x
o
ij
F
rij

is the load factor of BS j. Hence, we can easily compute the

values of our delay metrics when an user association scheme is given. We might also

be interested in finding the optimal association, i.e., the association that would yield

the minimum delay metric. Then, given the resource allocation (i.e., either CCD,

or OD or PSD with a given K) and arrival rate λ̄, our objective is to find the user

associations that minimize our delay metrics (i.e., d1({Ti}) and d2({Ti})). To find

the lowest possible values of our delay metrics and the optimal user association, we

formulate an optimal user association problem.
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Given the resource allocation and arrival rate λ̄, the problem is to find the

user association that minimizes our delay metrics (either d1({Ti}) = maxi∈L Ti or

d2({Ti}) = 1
|L|
∑

i∈L Ti). We formulate an optimal user association problem in which

the variables are the {xij}. The problem can be formulated as follows: Given ρ̄, λ̄, the

resource allocation RA, the channel gains for the L fixed locations, and F , compute

{xij} so as to minimize our objective function:

Pdelay : min
{xij},{ρj},{Ti}

d({Ti})

subject to (4.5a)− (4.5b)

Ti ≥ xij
F

(1− ρj)rij
, ∀i ∈ L, ∀j ∈ B ∪ {0} (4.9a)

ρj = λ̄
∑
i∈L

xij
F

rij
, ∀j ∈ B ∪ {0} (4.9b)

xij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ B ∪ {0} (4.9c)

where rij’s can be computed beforehand.

Pdelay is an integer generalized linear-fractional program, and hence it is not pos-

sible to solve Pdelay efficiently as it is. Therefore, we have developed numerical tech-

niques to solve Pdelay. We propose an algorithm to solve Pdelay with the desired

precision ε > 0 when the objective is to minimize the maximum average delay per

class, and propose a simple transformation to transform Pdelay into a convex integer

program when the objective is to minimize the average delay in the cell area. The

proposed techniques are provided in Section 4.3. In Section 4.5, using the proposed

techniques, we compute the lowest possible delay for different resource allocation

schemes, and compare the delay performance of several combinations of user associ-
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ation and resource allocation schemes.

Next, we try to find the highest possible arrival rate when there is a constraint

on the maximum average delay per class. We fix the resource allocation and its

parameter if any, and formulate a problem of optimal user association assuming the

resource allocation RA, λmax(RA), and a constraint on the highest possible delay

per class are given.

4.2.3 Delay-constrained Maximum Throughput

Let us assume that a resource allocation, its parameter if any (call the resource

allocation RA), λmax(RA) (the value computed for the resource allocation), and a

constraint T on the maximum average delay per class are given. Given the resource

allocation and the constraint, our objective is to find the highest possible arrival rate

(i.e., λ̄T (RA)) for which the maximum average delay per class is less than or equal to a

certain value T > 0, i.e., d({Ti}) = maxi∈L Ti ≤ T . Given the resource allocation, we

can compute {rij}. Therefore, for a given user association UA = {xoij}, we can easily

compute the highest arrival rate (call it λ̃T (RA,UA)) by using (4.2) and (4.8). We

might also be interested in finding the optimal association, i.e., the association that

would yield the largest arrival rate. Then, given the resource allocation scheme (i.e.,

either CCD, or OD or PSD with a given K) and the delay constraint, our objective

is to compute the highest possible arrival rate λ̄T (RA) for which there exists an user

association such that the system is stable, and that the maximum average delay per

class is less than or equal to T . To find λ̄T (RA) and the optimal user association,

we formulate a joint optimization problem.

Given the resource allocation and the delay constraint, the problem is to find the
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user association that maximizes the allowable arrival rate λ̄. We formulate a joint

optimization problem in which the variables are the {xij} and λ̄. The problem can

be formulated as follows: Given ρ̄, T , the resource allocation RA, λmax(RA), the

channel gains for the L fixed locations, and F , compute {xij} and λ̄, so as to maximize

arrival rate λ̄:

PT : max
{xij},λ̄

λ̄

subject to (4.5a)− (4.5b), (4.9a)− (4.9c)

Ti ≤ T, ∀i ∈ L (4.10a)

0 ≤ λ̄ ≤ λmax(RA) (4.10b)

where rij’s can be computed beforehand. PT is a mixed integer non-linear program,

and hence it is not possible to obtain exact solutions to PT efficiently as it is. However,

the structure of PT is such that it can be transformed into an integer linear program.

In Section 4.3, we propose a simple technique to transform PT into a linear integer

program which can be solved with a commercial solver software.

Remark 4.2.1 Given an RA and arrival rate λ̄, let d0 denote the lowest possible

value of d1({Ti}). Given a constraint d0 on the maximum average delay per class,

let λ̄d0(RA) denote the highest allowable arrival rate for the resource allocation RA,

i.e., the optimal solution to PT . We can show that λ̄d0(RA) = λ̄.

Next, we focus on our solution techniques for solving Pdelay and PT .
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4.3 Solution Techniques

As mentioned earlier, the proposed problems Pdelay and PT are mixed integer non-

linear programs which are hard to solve in their current forms. We propose simple

solution techniques some of which enable us to solve these problems and some others

allow us to obtain lower bounds on the system’s performance.

4.3.1 Minimizing The Maximum Average Delay per Class

Let us focus on the problem Pdelay assuming the objective is to minimize the maxi-

mum average delay per class, i.e., d1({Ti}) = maxi∈L Ti. This problem is an integer

generalized linear-fractional program. Unlike linear fractional programs, generalized

linear fractional programs cannot be reduced to linear programs. However, we can

check whether the optimal value of Pdelay is less than or more than a given value t

by solving the following feasibility problem: Given t > 0, ρ̄, λ̄, {rij}, and F , compute

{xij} so as to minimize our objective function:

P
(f)
delay(t) : min

{xij},{ρj},{Ti}
1

subject to (4.5a)− (4.5b), (4.9a)− (4.9c)

Ti ≤ t, i ∈ L

Note that P
(f)
delay(t) can be rewritten as follows:

P
(f)
delay(t) : min

{xij},{ρj},{Ti}
1

subject to (4.5a)− (4.5b), (4.9b)− (4.9c)
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t(1− ρj) ≥ xij
F

rij
∀i ∈ L, ∀j ∈ B ∪ {0} (4.12a)

The feasibility problem P
(f)
delay(t) is an integer linear program which can be solved

with a commercial solver software.

If the feasibility problem P
(f)
delay(t) is feasible, then we have p? ≤ t where p? denotes

the optimal value of the objective function in Pdelay; otherwise, we have p? > t. We use

this observation as the basis of a simple algorithm for solving Pdelay using bisection. In

this algorithm, we first try to find a feasible solution to Pdelay using one of the simple

association rules which will be introduced in Section 4.4. Let t0 denote the value of

maxi∈L Ti for the association rule. Let us assume that λ̄ ≤ λmax(RA) (i.e., Pdelay

is feasible), and start with the interval I0 = [0, t0]. Clearly, the interval I0 contains

the optimal value of the objective function in Pdelay. We solve the feasibility problem

P
(f)
delay(t) at the midpoint of I0, i.e., t = t0

2
. This determines whether the optimal value

p? is in the lower or upper half of I0. Then, we obtain a new interval which contains

the optimal value p? (i.e., the optimal value of the objective function). Note that the

width of the new interval is reduced to half of the interval in the previous iteration.

We repeat this process until the width of the interval is sufficiently small. In each

step, the width of the interval is reduced by two folds, and hence after k iterations,

the length of the interval is 2−kt0. Therefore, we need dlog2( t0
ε

)e iterations to obtain

the optimal value of Pdelay with the desired precision ε > 0. A formal description of

the bisection algorithm is given in Fig. 4.1.

Unfortunately, the bisection technique is not useful for solving Pdelay when the

objective is to minimize the average delay in the cell area. In this case, the feasibility

problem is a non-linear integer program which is hard to solve. Next, we develop a
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Given t0 > 0, tolerance ε > 0
Set ` = 0, u = t0, i = 0
repeat

1. ti := `+u
2

2. Solve the feasibility problem P
(f)
delay(ti).

3. If P
(f)
delay(ti) is feasible, set u := ti; otherwise, set ` := ti.

4. i := i+ 1

until u− ` ≤ ε

Figure 4.1: A formal description of the bisection algorithm.

simple technique to obtain lower bounds on the lowest average delay in the cell area.

4.3.2 Minimizing The Average Delay in The Cell

Let us focus on Pdelay, and assume that the objective is to minimize the average

delay in the cell area, i.e., d2({Ti}) = 1
|L|
∑

i∈L Ti. The problem Pdelay is a non-

convex quadratic program which is hard to solve as it is. Our goal is to obtain lower

bounds for Pdelay. To compute a lower bound for Pdelay, we could simply relax the

integrality constraints on {xij}, and try to solve the relaxed problem. However, even

after relaxing the integrality constraints in Pdelay, the problem remains non-convex.

Fortunately, the problem Pdelay can be reformulated into an integer convex problem.

Using (4.8), we can easily show that the average delay in the cell is equal to

1
λ̄|L|
∑

j∈B∪{0}
ρj

1−ρj where ρj = λ̄
∑

i∈L xij
F
rij

for all j. Therefore, minimizing the av-

erage delay in the cell is equivalent to minimizing
∑

j∈B∪{0}
ρj

1−ρj since λ̄ and |L| are

given beforehand. We can show that
∑

j∈B∪{0}
ρj

1−ρj = −(|B| + 1) +
∑

j∈B∪{0}
1

1−ρj .

Hence, Pdelay can be rewritten as follows: Given ρ̄, λ̄, {rij}, and F , compute {xij} so
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as to minimize our objective function:

P′delay : min
{xij},{ρj}

∑
j∈B∪{0}

1

1− ρj

subject to (4.5a)− (4.5b)

ρj = λ̄
∑
i∈L

xij
F

rij
, ∀j ∈ B ∪ {0} (4.13a)

xij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ B ∪ {0} (4.13b)

where rij’s can be computed beforehand. The problem P′delay is a convex integer

program, and its relaxed program can be solved efficiently even for large systems.

Note that convex programs can be solved to the desired precision in polynomial

time [54]. This enables us to obtain lower bounds on the lowest average delay in the

cell area.

We will numerically verify the tightness of the computed lower bound (i.e., the

solution to P′delay) by finding a feasible solution to the problem Pdelay, and then

comparing the average delay d2({Ti}) = 1
|L|
∑

i∈L Ti for this feasible solution with

the solution to P′delay. Note that we will use simple association rules to generate

feasible solutions for a given resource allocation. In this case, the average delay can

be determined easily.

4.3.3 Maximizing The Delay-Constrained Throughput

The problem PT is a non-convex quadratic program which is hard to solve as it is.

This is due to the quadratic constraint (4.5a). Our goal is to transform the problem

into a linear integer program at the cost of additional variables and constraints. To
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do so, we will need two steps. In the first step, we make sure that there exists a

feasible solution to PT with a non-zero arrival rate. Clearly, if there does not exist

such a feasible solution, then the delay-constrained maximum throughput is zero (i.e.,

λ̄T (RA) = 0). Otherwise, we proceed to the second step in which we transform PT

into a linear integer program (we call it P′T ), and compute the delay-constrained

maximum throughput λ̄T (RA).

STEP 1 : Given ρ̄, T , λmax(RA), {rij}, and F , we can verify that PT has a feasible

solution with a non-zero arrival rate if and only if for each location i ∈ L, there exists

a BS j? such that F < Trij? . Using this property, we find that the delay-constrained

maximum throughput λ̄T (RA) is zero if there exists a location i for which F ≥ Trij

for all j ∈ B ∪ {0}; otherwise λ̄T (RA) > 0.

STEP 2 : Let us assume that the delay-constrained maximum throughput is not

zero (i.e., λ̄T (RA) > 0). We define a new variable λ′ = 1/λ̄, and reformulate PT by

using the new variable. PT can be rewritten as follows:

PT : min
{xij},λ′

λ′

subject to

ρj =
1

λ′

∑
i∈L

xij
F

rij
, ∀j ∈ B ∪ {0} (4.14a)

λ′xij
F

Trij
≤

(
λ′ −

∑
i∈L

xij
F

rij

)
, ∀i ∈ L, ∀j ∈ B ∪ {0} (4.14b)

∑
j∈B∪{0}

xij = 1 , ∀i ∈ L (4.14c)

1

λmax(RA)
≤ λ′ (4.14d)
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xij ∈ {0, 1} , ρj ≤ ρ̄ ∀i ∈ L, ∀j ∈ B ∪ {0} (4.14e)

Although the new problem is not a linear integer problem, the mixed quadratic terms

involving binary variables (i.e., λ′xijs) can be linearized (exactly) with the lineariza-

tion techniques proposed in [69].

Proposition 4.3.1 [69] Given a binary variable x and any (linear) function g(w)

in a continuous variable w ∈ W (bounded), a variable z equals the quadratic function

xg(w) if and only if

Lx ≤ z ≤ Ux, and g(w)− U(1− x) ≤ z ≤ g(w)− L(1− x)

where L = min {g(w) : w ∈ W} and U = max {g(w) : w ∈ W} assumed finite.

Let’s define a new variable λ′ij for each pair (i, j) where i ∈ L and j ∈ B ∪ {0}:

λ′ij = λ′ xij .

Note that a lower bound on λ′ is given in (4.14d). Therefore, we only need to find

an upper bound on λ′, i.e., a lower bound on λ̄. Since λ̄T (RA) 6= 0, there exists

a strictly positive lower bound (we call it λ̄0) on λ̄T (RA). To find such a lower

bound, we associate each location i ∈ L with a BS j? for which F < Trij? , and use

the problem PT to compute λ̄0. Note that the problem PT can be used to compute

the delay-constrained maximum throughput for a given association rule. It can be

verified that the computed value λ̄0 is strictly positive, i.e., (1/λ̄0) is an upper bound

on λ′.
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Using Proposition 4.3.1, PT can be reformulated as follows:

P′T : min
{xij},λ′

λ′

subject to ∑
i∈L

xij
F

rij
≤ λ′ρ̄, ∀j ∈ B ∪ {0} (4.15a)

λ′ij
F

Trij
≤

(
λ′ −

∑
i∈L

xij
F

rij

)
, ∀i ∈ L, ∀j ∈ B ∪ {0} (4.15b)

∑
j∈B∪{0}

xij = 1 , ∀i ∈ L (4.15c)

xij

λmax(RA)
≤ λ′ij ≤

xij
λ̄0

(4.15d)

λ′ − (1− xij)
λ̄0

≤ λ′ij ≤ λ′ − (1− xij)
λmax(RA)

(4.15e)

xij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ B ∪ {0} (4.15f)

P′T is a linear integer program which can be solved with a commercial solver software.

The proposed user association problems enable us to compute the optimal values of

our performance metrics (i.e., the highest possible arrival rate, the maximum average

delay per class, the average delay in the cell, and the delay-constrained maximum

throughput) for a given resource allocation (i.e., either CCD or, OD or PSD with a

given K). We can find the optimal resource allocation and its parameter if any, by

computing the optimal values of our performance metrics iteratively for all possible

values of K, and then selecting the best solution. Using this technique, we can

compare different combinations of user association and resource allocation schemes.

Next, we describe the simple association rules that we are going to study.
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4.4 User Association Rules

In our system, we assume that users arrive, and depart when their files have been

downloaded completely. To operate this system optimally, we need to compute the

optimal resource allocation and user association whenever the user arrival rate λ̄ or

channel gains change. It is hard to do such heavy computations online. In addition,

changing the resource allocation and its parameters if any, and re-associating users

too often might degrade the system’s performance. To avoid such problems, network

operators associate users in a distributed fashion using some simple user association

rules. Typically, these rules use physical layer parameters such as received signal

power, path loss, and SINR, to determine the BS each user should associate to. We

study the simple user association rules introduced in Chapter 3:

1. Best SINR: A user at location i ∈ L associates with BS j? that provides the

highest SINR, i.e., j? = arg maxj∈B∪{0} {γ(c)
ij } where γ

(c)
ij denotes the SINR of

location i from BS j, on each sub-channel respectively. This association rule

has been used in homogeneous cellular networks.

2. Range Extension (RE) [55]: A user at location i associates with BS j? =

arg minj∈B∪{0} {δij} where δij is the path loss from BS j to location i.

3. Picocell First (PCF) [50]: A user at location i associates with pico BS

j? = arg maxj∈B∪{0} {γ(c)
ij } as long as γ

(c)
ij? > β where β is a tuning parame-

ter. Note that γ
(c)
ij denotes the SINR at location i on each sub-channel. If

maxj∈B {γ(c)
ij } < β, the user at location i associates with the BS that gives the

maximum SINR.
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For each of these rules, we can compute the values of xij for all locations i and BSs

j when we fix the resource allocation scheme and its parameters if any (i.e., either

CCD or, OD or PSD with a given K). Hence, given a combination of a resource

allocation and user association rule, we can easily compute the system’s performance

(i.e., the highest possible arrival rate, the maximum average delay per class, the

average delay in the cell, and the delay-constrained maximum throughput). We can

also find the optimal resource allocation and its parameter if any, by computing the

optimal values of our performance metrics iteratively for all possible values of K,

and then selecting the best solution. Using this technique, we can compare different

combinations of user association and resource allocation schemes. Next, we explore

the performance of existing user association and resource allocation schemes.

4.5 Numerical Results

4.5.1 Parameter Settings

We consider a system composed of 19 macro BSs. Each macro BS’s coverage area

is overlaid with four pico BSs. The system has an inter-cell distance of 500 m. We

study the cell at the center which is a hexagonal area with radius R = 500/
√

3 m

(see Fig. 4.2). The macro BS is located at the center of the cell while the pico BSs

are located around the macro BS with distance d = 230 m symmetrically from the

center. As mentioned earlier, we assume that the system is an OFDM system with

M ′ sub-channels. We consider a reuse factor of “three”, i.e., each macro BS has access

to M = M ′/3 sub-channels. We use M = 100 sub-channels, and take ρ̄ = 0.95.
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Macro BS

Pico BS

Figure 4.2: A Hetnet comprising 19 macro BSs (the triangles), and many pico BSs
(the squares). Each macro BS is overlaid with 4 pico BSs. Pico locations for the cell
at the center are shown in the right-hand side figure. The triangle is the macro BS
and the squares are the pico BSs.

Table 4.1: Physical Layer Parameters
Noise Power −174 dBm

Hz
Tsubframe 1 ms

Ppico 30 dBm Pmacro 46 dBm
UE Ant. Gain 0 dB Sub-channel Bandwidth 180 KHz
Shadowing s.d. 8 dB Penetration Loss 20 dB

SCofdm 12 SYofdm 14
Path Loss Pico 140.7 + 36.7 log10(d/1000), d ≥ 10m

Path Loss Macro 128 + 37.6 log10(d/1000), d ≥ 35m

We assume that there are L = 2000 possible user locations in the cell area. Users

arrive into each location according to a Poisson process with density λ̄, i.e., users

arrive into the cell area according to a Poisson process with density λ = Lλ̄. We

assume that users arriving to the system download files whose sizes are independent

and identically distributed (i.i.d.) random variables of mean F = 106 bits.

The physical layer parameters are based on the 3GPP evaluation methodology

document [56] used for Hetnets in LTE. These parameters are shown in Table 4.1.

We use the SINR model introduced in Section 4.1 that accounts for path loss and slow
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Table 4.2: Modulation and Coding Schemes-LTE

SINR thresholds (in dB) -6.5 -4 -2.6 -1 1 3 6.6 10 11.4 11.8 13 13.8 15.6 16.8 17.6
Efficiency (in bits/symbol) 0.15 0.23 0.38 0.60 0.88 1.18 1.48 1.91 2.41 2.73 3.32 3.90 4.52 5.12 5.55

Table 4.3: The SINR threshold values for the tuning parameter β

β β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

SINR thresholds (in dB) -6.5 -4 -2.6 -1 1 3 6.6 8.17 9.33 10.24

fading. Slow fading is modeled by a log-normal shadowing with standard deviation

of 8 dB, and path losses for pico and macro BSs are given in Table 4.1. We assume

that the system uses adaptive modulation and coding with discrete rates. Table 4.2

taken from [57] and [58] gives us the mapping between the SINR and the efficiency

(in bits/symbol) for the modulation and coding schemes (MCS) for LTE. The bit rate

obtained by a user that has a SINR between level ` and level `+1 is r = SCofdm SYofdm

Tsubframe
e`

where e` is the efficiency (bits/symbol) of the corresponding level `, SCofdm is the

number of data subcarriers per sub-channel bandwidth, SYofdm is the number of

OFDM symbols per subframe, and Tsubframe is the subframe duration in time units.

The value of these parameters are shown in Table 4.1. “Picocell First” has a tuning

parameter β . We assume that β can take any one of the SINR threshold values

shown in Tables 4.3-4.4.

As mentioned earlier in Remark 4.2.1, the delay performance metrics and the

delay-constrained maximum throughput are closely related to each other. In this

section, we focus on the highest possible arrival rate, the maximum average delay
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Table 4.4: The SINR threshold values for the tuning parameter β

β β11 β12 β13 β14 β15 β16 β17 β18 β19 β20

SINR thresholds (in dB) 10.99 11.63 12.19 12.68 13.13 13.53 13.8 15.6 16.8 17.6

per class, and the average delay in the cell, and provide numerical results on these

metrics. We compute the optimal values of our performance metrics (i.e., the highest

possible arrival rate, the maximum average delay per class, and the average delay

in the cell) for different resource allocation schemes as well as the values of our

metrics for different combinations of UA and RA schemes for 20 networks. A network

corresponds to the random realization of the shadowing coefficients for the L = 2000

locations from all the BSs in the multi-tier system. In contrast to the static modeling

approach, we do not need to randomly drop users in the system area, and compute the

average results over multiple realizations. We only need to consider multiple network

realizations corresponding to different shadowing environments. In this section, we

show the trends averaged over the 20 networks.

4.5.2 Comparison Results

We now focus on Network Stability, and compare different resource allocation schemes

in terms of the highest possible arrival rate. We fix the resource allocation and

its parameters if any, i.e., K for OD or PSD, and compute the highest possible

arrival rate λmax(RA) for different RA schemes (i.e., PSD, OD, and CCD) as well as

λ̃max(RA,UA) for different combinations of UA and RA schemes. More precisely, we

fix the resource allocation (we call it RA), and compute the solution to the problem
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Figure 4.3: PSD, OD, and CCD: The highest user arrival rate as a function of K
when ρ̄ = 0.95, and F = 106 bits. For each K, we choose the best β. Note that the
results are averaged over 20 networks.

P(2)
s and the corresponding highest arrival rate λ̃max(RA,UA) for different UA rules.

Fig. 4.3 shows the highest possible arrival rate λmax(RA) for different RA schemes

(i.e., PSD, OD, and CCD) as well as λ̃max(RA,UA) for different combinations of UA

and RA schemes. We also show the highest possible arrival rate for the system without

pico BSs. The curves corresponding to the optimal solution to P(2)
s (corresponding

to the optimal user association) are labeled Optimal in the figure. The results show

that:

• PSD and OD work significantly better than CCD for almost all values of K.

PSD and OD perform almost the same with a slight advantage for PSD. For

PSD, we saw an average gain of 100% (with respect to CCD) for the highest

arrival rate. CCD cannot improve the highest arrival rate significantly (with
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respect to the system without pico BSs). It can even degrade the highest arrival

rate if the operator does not choose the right UA scheme.

• For CCD, the association rules Picocell First and Range Extension are almost

optimal since the highest possible arrival rates of the rules Picocell First and

Range Extension are very close to the optimal arrival rate for CCD. However,

the association rule Best SINR does not perform very well since its highest

arrival rate is strictly less than the highest arrival rate in the system without

any pico BSs.

• For PSD and OD, the association rules Picocell First, Range Extension, and

Best SINR perform almost the same with a slight advantage for Picocell First.

The performance of these rules is far from the optimal. This can be explained

by the fact that load balancing plays a critical role and none of our rules take

load balancing into account.

• For PSD and OD, the association rule Picocell First performs almost the same

for a large range of values of K when the tuning parameter β is optimized. How-

ever, all the association rules Range Extension, Best SINR, and Picocell First

with a fixed β are sensitive to the value of the resource allocation parameter

K. If the value of the parameter K is not chosen carefully, all the simple rules

(i.e., the non-optimal rules) can do worse than the system without pico BSs.

• The comparison of the highest arrival rate (using the optimal solution) between

the system with and without pico BSs (“No Pico” in the figure) shows that

pico BSs can significantly increase the highest arrival rate. We saw gains (with
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respect to the system without pico BSs) in the highest possible arrival rate in

the range of 110% to 130%.

4.5.3 In Depth Study of PSD

We now study partially shared deployment in more details5. To do so, we first focus

on the maximum average delay per class, and then study the average delay in the cell

area.

Maximum average delay per class:

We select the maximum average delay per class as our delay metric, and try to

minimize it, i.e., we try to minimize maxi∈L Ti where Ti denotes the average delay for

class i. We compare the delay performance of the simple UA rules with the optimal

delay performance as a function of λ. We fix the resource allocation parameter K as

well as the arrival rate λ, and compute the optimal solution to the problem Pdelay with

the desired precision ε = 0.02, and the corresponding maximum average delay per

class for each UA rule. For each value of λ, we obtain the optimal delay performance

by solving Pdelay iteratively for all values of K, and then selecting the best solution.

Similarly, for each UA rule, we select the value of K which results in the lowest

maximum average delay per class. The results for two non-overlapping ranges of λ

are shown in Figures 4.4-4.5. The curve corresponding to the optimal solution is

labeled Optimal in the figures. The results show that:

• The association rules Picocell First and Best SINR perform almost the same

5We have obtained similar results for OD.
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Figure 4.4: PSD: The maximum average delay per class as a function of λ when
F = 106 bits. We choose the best values of K and β. Note that the results are
averaged over 20 networks.
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Figure 4.5: PSD: The maximum average delay per class as a function of λ when
F = 106 bits. We choose the best values of K and β. Note that the results are
averaged over 20 networks.
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Figure 4.6: PSD, PCF(β): The maximum average delay per class as a function of λ
when F = 106 bits. Note that the results are averaged over 20 networks.

with a slight advantage for Picocell First, and they work significantly better

than Range Extension for all values of λ when we select β and K carefully.

• The association rule Picocell First performs better than the system without pico

BSs for all values of λ. However, the rules Best SINR and Range Extension do

not always perform better than the system without pico BSs (especially for low

values of λ).

• None of the simple rules are performing very well for high values of λ, i.e., they

are quite far from the optimal user association.

• The association rule Range Extension is not performing better than the system

without pico BSs for low values of λ while it is performing better than the

system without pico BS for high values of λ.
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We now study the impact of the RA parameter K as well as the tuning parameter

β on the performance of Picocell First. To do this, we compare the delay performance

of Picocell First as a function of λ for different values of K and β. We select three

values of β for which Picocell First performs relatively well for all values of λ when we

optimize K. The values of β are β6, β7, and β8 taken from Table 4.3. Each value of

β corresponds to an instantiation of the PCF rule. For each value of β, we select the

value of K that is optimal for λ = 61 users per second (the highest arrival rate that

we consider). Given the values of β and K, we fix the arrival rate λ, and compute the

maximum average delay per class. We also compute the optimal delay performance

as well as the delay performance of Picocell First when the parameters K and β are

optimized. The results provided in Fig. 4.6 show that:

• The association rules corresponding to β6, β7, and β8 perform almost the same

with a slight advantage for β6 = 3dB. The performance of Picocell First is not

very sensitive to the value of β.

• Given a value of β, the value of K that is optimal for λ1, is quasi-optimal for

all values of λ which are smaller than λ1.

Average delay in the cell:

We compare the average delay of the simple UA rules with the lower bound on the

optimal average delay as a function of λ. We fix the arrival rate λ, and compute the

lower bound of the optimal user association problem Pdelay (i.e., the relaxed solution

to Pdelay) for PSD, and the average delay for each UA rule when the RA parameter

K is computed optimally. To check the tightness of the computed lower bound, we
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Figure 4.7: PSD: The average delay in the cell as a function of λ when F = 106 bits.
We choose the best values of K and β. Note that the results are averaged over 20
networks.

31 34 40 43 46 49 52 55 58 61
0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ

D
el
ay

 

 
Lower Bound
RE
SINR
No Pico
PCF(best β)

Figure 4.8: PSD: The average delay in the cell as a function of λ when F = 106 bits.
We choose the best values of K and β. Note that the results are averaged over 20
networks.
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compare it with the average delay of the simple UA rules. The results for two non-

overlapping ranges of λ are shown in Figures 4.7-4.8. The curve corresponding to the

lower bound is labeled Lower Bound in the figures. The results show that:

• The UA rule Best SINR is almost optimal since the average delay of Best SINR

is very close to the computed lower bound for a large range of λ when the RA

parameter K is chosen optimally. This validates our relaxation approach since

an integer solution to the proposed problem obtains almost the same average

delay as the solution of the relaxed problem. This observation also shows that

Best SINR is a good UA rule for minimizing the average delay in the cell area

if we choose K optimally.

• The association rules Picocell First and Best SINR perform almost the same

with a sight advantage for Best SINR, and they work significantly better than

Range Extension for all values of λ when we select β and K carefully.

• The comparison of the delay performance (using the lower bound) between the

system with and without pico BSs shows that pico BSs can increase the average

delay in the cell when the arrival rate is relatively low (less than 19 users per

second). This shows the critical impact of the interference caused by the pico

BSs on the delay performance for small values of λ.

We now try to understand the impact of the system parameters K and β on the

average delay of Picocell First. We take β6 and β7 from Table 4.3, and we compare

the delay performance of Picocell First as a function of λ for different values of K

and β. Each value of β corresponds to an instantiation of the PCF rule. For each

value of β, we select the value of K that is optimal for λ = 61 users per second. Our
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Figure 4.9: PSD, Best SINR, PCF(β): The average delay in the cell as a function of
λ when F = 106 bits. Note that the results are averaged over 20 networks.

numerical results are shown in Fig. 4.9. We also show the lower bound on the average

delay as well as the average delay of Picocell First when the parameters K and β are

chosen optimally. The results show that:

• The association rules corresponding to β6 and β7 perform almost the same with

a slight advantage for β6.

• Given a value of β, the value of K that is optimal for λ1, is quasi-optimal for

all values of λ which are smaller than λ1.

4.6 Conclusions

We have studied the problem of joint user association and resource allocation in

Hetnets in which users arrive in the system, stay while downloading the file they
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need, and then depart. We have considered three resource allocation schemes CCD,

OD, and PSD, and three different performance metrics (the highest possible arrival

rate, the network delay, and the delay-constrained maximum throughput). Given a

resource allocation and its parameter, we have formulated three optimal user asso-

ciation problems to optimize our performance metrics. The proposed problems are

non-linear integer programs, and hence it is not possible to efficiently obtain opti-

mal solutions. We have developed numerical techniques to compute either the exact

solutions or tight lower bounds to these problems. Our numerical results show that

the proposed lower bounds are tight and can be used as benchmarks to analyze and

compare different combinations of user association and resource allocation schemes.

Our numerical results show that pico BSs can improve the system’s performance

if the network operator uses the right combination of user association and resource

allocation schemes; otherwise, pico BSs can degrade the system’s performance, and

increase the average delay in the cell significantly. The results indicate that partially

shared deployment and orthogonal deployment perform significantly better than co-

channel deployment if we associate users optimally. Our numerical results also show

that user association schemes which favor associating users with pico BSs without

taking load balancing into account (e.g. “Picocell First” and “Range Extension”), do

not necessarily perform very well.
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Chapter 5

A Comparative Study of The

Static and Dynamic Modeling

Approaches

5.1 Introduction

There are several ways to model cellular systems. In this thesis, we have focused on

two modeling approaches, namely static modeling approach and dynamic modeling

approach. We have modeled snapshots of an Hetnet as well as an Hetnet with a

dynamic user population via queueing, and we have studied the interplay between

user association and resource allocation via these two approaches. Our numerical

results show that the engineering insights drawn out of the static study are not

always consistent with the insights drawn out of the dynamic study. This can be

explained by the fact that these modeling approaches model Hetnets under different
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sets of assumptions. In this chapter, we use the numerical results obtained in the

previous chapters to compare the static and dynamic modeling approaches, and to

draw conclusions on the “robustness” of the results obtained via these two approaches.

To do so, we compare trends without any quantitative comparison across the two

modeling approaches.

5.2 Comparison of The Resource Allocation

Schemes

We compare the three resource allocation schemes (i.e., PSD, OD, and CCD) using

the geometric mean rate (the computed upper bound) for the static approach, the

highest possible arrival rate, the maximum average delay per class, and the average

delay in the cell for the dynamic approach. Figures 5.1-5.7 provide the results when

the resource allocation parameter K is optimized1.

Figure 5.1 provides the results for the highest possible arrival rate for the three

resource allocation schemes obtained via the dynamic approach. The comparison of

the highest possible arrival rate between the three resource allocation schemes shows

that PSD and OD perform significantly better than CCD for a large range of K, and

that PSD performs better than OD. The results also show that the system without

pico BSs always performs worse than the system with pico BSs. The results in Figures

5.2-5.3, computed via the dynamic approach, show that PSD/OD and CCD perform

almost the same (in terms of the maximum average delay per class) for low values

1The numerical results show that PSD and OD have the same delay performance. Because of
this, we only show the results for PSD in Figures 5.2-5.5.

96



5.2. COMPARISON OF THE RESOURCE ALLOCATION
SCHEMES

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

K

λ
m

a
x

 

 

Optimal−PSD
Optimal−OD
Optimal−CCD
NoPico

Figure 5.1: PSD, OD, and CCD: The highest user arrival rate as a function of K when
ρ̄ = 0.95, and F = 106 bits. Note that the results are averaged over 20 networks.

of λ while PSD/OD performs significantly better than CCD for high values of λ.

The results also show that PSD/OD and CCD perform significantly better than the

system without pico BSs.

Figures 5.4-5.5 provide the results for the average delay in the cell computed via

the dynamic approach. The comparison of the average delay in the cell between the

resource allocation schemes shows that the system without pico BSs performs better

than the system with pico BSs when the arrival rate is quite low. The results also

show that for low values of λ, PSD/OD and CCD perform almost the same. However,

for high values of λ, PSD/OD performs significantly better than CCD and the system

without pico BSs. The results also show that the system without pico BSs always

performs worse than the system with pico BSs. Our numerical results show that there

is a large difference between PSD/OD and CCD in terms of the highest arrival rate,

the maximum average delay per class, and the average delay in the cell, i.e., PSD/OD
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Figure 5.2: PSD, OD, and CCD: The maximum average delay per class as a function
of λ when F = 106 bits. Note that the results are averaged over 20 networks.
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Figure 5.3: PSD, OD, and CCD: The maximum average delay per class as a function
of λ when F = 106 bits. Note that the results are averaged over 20 networks.
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Figure 5.4: PSD, OD, and CCD: The average delay in the cell as a function of λ when
F = 106 bits. Note that the results are averaged over 20 networks.
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Figure 5.5: PSD, OD, and CCD: The average delay in the cell as a function of λ when
F = 106 bits. Note that the results are averaged over 20 networks.
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Figure 5.6: PSD, OD, and CCD: Geometric mean rate (in bits per second) as a
function of N (the number of users in the cell) when the N users are uniformly
distributed in the cell area. Note that the results are averaged over 20 networks, and
that for each network, we compute the average results over 100 realizations.
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Figure 5.7: PSD, OD, and CCD: Geometric mean rate (in bits per second) as a
function of K when N = 20 users are uniformly distributed in the cell area. We
choose the β that provides the highest geometric mean rate. Note that the results
are averaged over 20 networks, and that for each network, we compute the average
results over 100 realizations.
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is the best resource allocation for Hetnets with a dynamic user population.

The comparison of the geometric mean rates (obtained via the static approach)

between the three resource allocation schemes (using the results in Fig. 5.6) shows

that PSD and OD perform significantly better than CCD irrespective of the number

of users in the cell N . The results also show that PSD performs slightly better than

OD, and that the system without pico BSs always performs worse than the system

with pico BSs. The results in Fig. 5.7 show the geometric mean rate as a function of

K when there are 20 users in the cell. The results show that PSD and OD perform

better than CCD for a large range of K, and that for all values of K the system with

pico BSs performs better than the system without pico BSs.

Our numerical results show that the engineering insights on the RA schemes drawn

out the static study are valid in a dynamic context, and vice versa. Note that we have

used either an optimal user association or a solution to the relaxed program (either

P′
`
OD or Pdelay) to obtain these engineering insights. Next, we focus on PSD, and

study the impact of user association in more details.

5.3 In Depth Study of PSD

We compare the performance of the association rules PCF, Best SINR, and RE in

terms of the geometric mean rate computed via the static approach, the highest pos-

sible arrival rate, and the network delay metrics computed via the dynamic approach.

The results in Fig. 5.8 show the geometric mean rate of the association rules when

the system parameters K and β are optimized. The results show that PCF is quasi-

optimal since the geometric mean rate of PCF is very close to the computed upper
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bound (especially when there are more than 20 users in the cell). The results also

show that PCF is performing better than Best SINR and RE irrespective of the

number of users in the cell (i.e., N), and that the association rules Best SINR and

RE perform almost the same for all possible values of N . Fig. 5.9 provides the results

for the geometric mean rate as a function of K when there are 20 users in the system.

The results show that all the simple association rules perform better than the system

without pico BSs for a large range of K, and that PCF with β = 3 dB outperforms

the other user association rules as long as the parameter K is chosen carefully.

In summary, using the static modeling approach, we find that PCF is performing

well, and that the simple association rules RE and Best SINR are performing almost

the same. Our numerical results show that all the simple association rules perform

better than the system without pico BSs for a large range of K.

Fig. 5.10 provides the results for the highest possible arrival rate computed via

the dynamic approach. The results show that:

• The association rules PCF and Best SINR perform almost the same, and that

these rules perform better than RE when K is optimized.

• None of the simple association rules are performing well since none of these

rules are close to the optimal user association. The highest arrival rate that

can be obtained by the simple UA rules is 62 users per second while the highest

possible arrival rate for the partially shared deployment is 86 users per second

(corresponding to the optimal user association). This can be explained by the

fact that none of the simple association rules take load balancing into account.

• The simple association rules perform better than the system without pico BSs
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Figure 5.8: PSD: Geometric mean rate (in bits per second) as a function of N (the
number of users in the cell) when the N users are uniformly distributed in the cell
area. Note that the results are averaged over 20 networks, and that for each network,
we compute the average results over 100 realizations.
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Figure 5.9: PSD: Geometric mean rate (in bits per second) as a function of K when
N = 20 users are uniformly distributed in the cell area. We choose the β that provides
the highest geometric mean rate. Note that the results are averaged over 20 networks,
and that for each network, we compute the average results over 100 realizations.

103



5.3. IN DEPTH STUDY OF PSD

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

K

λ
m

a
x

 

 
Optimal
PCF(best β)
PCF(β=3 dB)
SINR
RE
NoPico

Figure 5.10: PSD: The highest user arrival rate as a function of K when ρ̄ = 0.95, and
F = 106 bits. For each K, we choose the best β. Note that the results are averaged
over 20 networks.

only for a short range K, i.e., when the resource allocation parameter K is not

chosen carefully, the system with pico BSs can perform worse than the system

without pico BSs

As mentioned above, the system with pico BSs performs worse than the system

without pico BSs if the parameter K is not chosen carefully. We now focus on the

rules PCF and Best SINR, and try to understand the impact of K on our network

delay metrics. Figures 5.11-5.12 provide the results for the maximum average delay

per class as well as the average delay in the cell (computed via the dynamic approach)

when K is equal to 10 and 36 for Best SINR and PCF, respectively. Note that K = 10

and K = 36 maximize the highest arrival rate for Best SINR and PCF, respectively.

The results show that:
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Figure 5.11: PSD, Best SINR, PCF: The average delay in the cell as a function of λ
when F = 106 bits. Note that the results are averaged over 20 networks.
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Figure 5.12: PSD, Best SINR, PCF: The maximum average delay per class as a
function of λ when F = 106 bits. Note that the results are averaged over 20 networks.
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• There is a negligible difference between the average delay in the cell for PCF

with K = 36 (resp. Best SINR with K = 10) and the average delay in the cell

for PCF with the optimal K (resp. Best SINR with the optimal K).

• There is a significant difference between the maximum average delay per class

for Best SINR with K = 10 and the maximum average delay per class for Best

SINR with the optimal K.

Therefore, selecting the value of the parameter K that maximizes the highest arrival

rate, does not significantly impact the delay performance of PCF while it affects the

delay performance of Best SINR (especially the maximum average delay per class).

In the static modeling approach, PCF is quasi-optimal, and the association rules

RE and Best SINR are performing better than the system without pico BSs for a large

range of K. However, in the dynamic modeling approach, none of the association rules

are performing extremely well. The engineering insights drawn out of the dynamic

study show that PCF and Best SINR perform almost the same in terms of the

average delay in the cell and the highest possible arrival rate, and that these rules

work significantly better than RE. These results show that the engineering insights on

the association rules in PSD drawn out of the static study are not always consistent

with the insights drawn out of the dynamic study. Our numerical results also show

that the association rule PCF is quite robust.
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Chapter 6

Conclusion

In this dissertation, we have studied the problem of joint user association and resource

allocation in Hetnets that consist of macro and pico BSs. We have considered two

modeling approaches, namely a static modeling approach and a dynamic modeling

approach. Using a static modeling approach, we have developed a unified framework

to study the interplay of user association and resource allocation for Hetnets. In

particular, we have formulated joint user association and resource allocation prob-

lems. These problems are non-linear integer programs, and hence it is impossible to

efficiently obtain optimal solutions. To solve these problems, we have developed tech-

niques to obtain upper bounds on the system’s performance. We also have proposed

a simple user association rule that performs significantly better than the existing

association rules.

Using the proposed framework, we have provided numerical evidence that the

proposed techniques compute a tight upper bound on the maximum achievable geo-

metric mean rate. Our numerical results indicate that the resource allocations par-

107



tially shared deployment and orthogonal deployment perform significantly better than

co-channel deployment, and that user association rules which favor associating users

with pico BSs yield significantly better performance than the conventional association

rule.

In the second part of this dissertation, we have studied the problem of joint user

association and resource allocation in Hetnets using a dynamic modeling approach.

We have proposed a unified framework to study the interplay of user association,

resource allocation, user arrival, and delay. Given a resource allocation, we have

formulated three optimal user association problems to optimize the highest possible

arrival rate, the network delay, and the delay-constrained maximum throughput. The

proposed problems are non-linear integer programs which are hard to solve efficiently.

We have developed numerical techniques to compute either the exact solutions or

tight lower bounds to these problems. We have provided numerical evidence that the

proposed lower bounds are tight. Our numerical results indicate that partially shared

deployment and orthogonal deployment perform significantly better than co-channel

deployment if we associate users optimally, and that user association schemes which

favor associating users with pico BSs without taking load balancing into account do

not necessarily perform very well though they perform better than the other user

association rules.

We have used the numerical results obtained in this dissertation to compare the

static and dynamic modeling approaches, and to draw conclusions on the “robust-

ness” of the results obtained via the two modeling approaches. Our numerical results

indicate that the engineering insights on the resource allocation schemes drawn out

the static study are valid in a dynamic context, and vice versa. More precisely, the
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numerical results obtained in this dissertation show that partially shared deployment

performs better than orthogonal deployment, and that partially shared deployment

and orthogonal deployment perform significantly better than co-channel deployment

irrespective of the modeling approach.

We have also compared the performance of the simple association rules in partially

shared deployment via the two modeling approaches. We have provided numerical

evidence that the engineering insights on the association rules in partially shared

deployment drawn out of the static study are not always consistent with the insights

drawn out of the dynamic study. The results drawn out of the static study indicate

that the proposed association rule Picocell First performs better than the existing

rules, and that it is quasi-optimal. However, the numerical results obtained out of

the dynamic study indicate that Picocell First performs significantly better than

the other association rules only for edge users (it does perform as well as the other

rules for other users), and that the conventional association rule (i.e., Best SINR)

performs relatively well except for edge users. Our numerical results, obtained from

the dynamic approach, also indicate that user association rules that do not take load

balancing into account, do not perform very well in practical cellular systems. The

comparative study of the two modeling approaches shows the lack of robustness of

certain insights drawn out of the static approach.
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Appendix A

Proof of Theorem 1

Let H′ and H′` denote the set of optimal solutions for P′OD and P′
`
OD, respectively.

The following claim shows that the set of exact solutions to P′
`
OD is a subset of the

set of exact solutions to P′OD so that solving P′
`
OD is equivalent to solving P′OD,

and vice versa.

Claim 1 Given problems P′OD and P′
`
OD, we have:

H′ =
{

({xij}, {αij})
∣∣∣∣xijαij =

xij∑
i∈N xij

{xij} ∈ H′`, ∀i ∈ N , ∀j ∈ B ∪ {0}
}
.

Proof : Let us assume ({xij}, {αij}) ∈ H′, and there exists some i0 ∈ N and

j0 ∈ B ∪ {0} for which αi0j0 6= 1∑
i∈N xij0

while xi0j0 = 1. For such i’s, let us define

U (j0) = {i ∈ N | xij0 = 1} If α′ij0 = 1∑
i∈N xij0

for all i ∈ U (j0) and α′ij = αij for

all i ∈ N and j ∈ B ∪ {0} (i /∈ U (j0) and j 6= j0), then ({xij}, {α′ij}) is feasible

for P′OD, and according to Lemma 1:
∑

i∈U(j0) log(λ′i) >
∑

i∈U(j0) log(λi) where λ′i
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and λi are the user i’s throughput corresponding to the scheduling coefficients α′ij0

and αij0 , respectively. Hence, there exits another feasible solution ({xij}, {α′ij}) that

achieves a larger objective value than ({xij}, {αij}). This contradicts the assumption

that ({xij}, {αij}) ∈ H′. The inverse can be proved by using Lemma 1 and following

the same argument as above.

Therefore, there exists an onto mapping between the elements of H′` and H′ so

that an exact solution ({xij}, {αij}) to P′OD corresponds to an exact solution ({xij})

to P′
`
OD with scheduling coefficients

xij∑
i∈N xij

, and vice versa. This mapping is not a

one-to-one mapping since in some solutions of P′OD there might exist some i0 ∈ N

and j0 ∈ B ∪ {0} for which αi0j0 > 0 while xi0j0 = 0 . Note that this does not change

users’ throughput in P′OD since αi0j0xi0j0 = 0. Based on Claim 1 and the structure of

problems P′OD and P′
`
OD, it can be verified that the optimal solutions to P′OD and

P′
`
OD result in the same users’ throughput. Hence, P′OD and P′

`
OD are equivalent

problems. This completes the proof.
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